os_linux.cpp revision 12470:f39d1612915a
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109#ifndef _GNU_SOURCE
110  #define _GNU_SOURCE
111  #include <sched.h>
112  #undef _GNU_SOURCE
113#else
114  #include <sched.h>
115#endif
116
117// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
118// getrusage() is prepared to handle the associated failure.
119#ifndef RUSAGE_THREAD
120  #define RUSAGE_THREAD   (1)               /* only the calling thread */
121#endif
122
123#define MAX_PATH    (2 * K)
124
125#define MAX_SECS 100000000
126
127// for timer info max values which include all bits
128#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
129
130#define LARGEPAGES_BIT (1 << 6)
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Linux::_physical_memory = 0;
134
135address   os::Linux::_initial_thread_stack_bottom = NULL;
136uintptr_t os::Linux::_initial_thread_stack_size   = 0;
137
138int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
139int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
140int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
141Mutex* os::Linux::_createThread_lock = NULL;
142pthread_t os::Linux::_main_thread;
143int os::Linux::_page_size = -1;
144bool os::Linux::_supports_fast_thread_cpu_time = false;
145uint32_t os::Linux::_os_version = 0;
146const char * os::Linux::_glibc_version = NULL;
147const char * os::Linux::_libpthread_version = NULL;
148pthread_condattr_t os::Linux::_condattr[1];
149
150static jlong initial_time_count=0;
151
152static int clock_tics_per_sec = 100;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static sigset_t check_signal_done;
156static bool check_signals = true;
157
158// Signal number used to suspend/resume a thread
159
160// do not use any signal number less than SIGSEGV, see 4355769
161static int SR_signum = SIGUSR2;
162sigset_t SR_sigset;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167// utility functions
168
169static int SR_initialize();
170
171julong os::available_memory() {
172  return Linux::available_memory();
173}
174
175julong os::Linux::available_memory() {
176  // values in struct sysinfo are "unsigned long"
177  struct sysinfo si;
178  sysinfo(&si);
179
180  return (julong)si.freeram * si.mem_unit;
181}
182
183julong os::physical_memory() {
184  return Linux::physical_memory();
185}
186
187// Return true if user is running as root.
188
189bool os::have_special_privileges() {
190  static bool init = false;
191  static bool privileges = false;
192  if (!init) {
193    privileges = (getuid() != geteuid()) || (getgid() != getegid());
194    init = true;
195  }
196  return privileges;
197}
198
199
200#ifndef SYS_gettid
201// i386: 224, ia64: 1105, amd64: 186, sparc 143
202  #ifdef __ia64__
203    #define SYS_gettid 1105
204  #else
205    #ifdef __i386__
206      #define SYS_gettid 224
207    #else
208      #ifdef __amd64__
209        #define SYS_gettid 186
210      #else
211        #ifdef __sparc__
212          #define SYS_gettid 143
213        #else
214          #error define gettid for the arch
215        #endif
216      #endif
217    #endif
218  #endif
219#endif
220
221
222// pid_t gettid()
223//
224// Returns the kernel thread id of the currently running thread. Kernel
225// thread id is used to access /proc.
226pid_t os::Linux::gettid() {
227  int rslt = syscall(SYS_gettid);
228  assert(rslt != -1, "must be."); // old linuxthreads implementation?
229  return (pid_t)rslt;
230}
231
232// Most versions of linux have a bug where the number of processors are
233// determined by looking at the /proc file system.  In a chroot environment,
234// the system call returns 1.  This causes the VM to act as if it is
235// a single processor and elide locking (see is_MP() call).
236static bool unsafe_chroot_detected = false;
237static const char *unstable_chroot_error = "/proc file system not found.\n"
238                     "Java may be unstable running multithreaded in a chroot "
239                     "environment on Linux when /proc filesystem is not mounted.";
240
241void os::Linux::initialize_system_info() {
242  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
243  if (processor_count() == 1) {
244    pid_t pid = os::Linux::gettid();
245    char fname[32];
246    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
247    FILE *fp = fopen(fname, "r");
248    if (fp == NULL) {
249      unsafe_chroot_detected = true;
250    } else {
251      fclose(fp);
252    }
253  }
254  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
255  assert(processor_count() > 0, "linux error");
256}
257
258void os::init_system_properties_values() {
259  // The next steps are taken in the product version:
260  //
261  // Obtain the JAVA_HOME value from the location of libjvm.so.
262  // This library should be located at:
263  // <JAVA_HOME>/lib/{client|server}/libjvm.so.
264  //
265  // If "/jre/lib/" appears at the right place in the path, then we
266  // assume libjvm.so is installed in a JDK and we use this path.
267  //
268  // Otherwise exit with message: "Could not create the Java virtual machine."
269  //
270  // The following extra steps are taken in the debugging version:
271  //
272  // If "/jre/lib/" does NOT appear at the right place in the path
273  // instead of exit check for $JAVA_HOME environment variable.
274  //
275  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
276  // then we append a fake suffix "hotspot/libjvm.so" to this path so
277  // it looks like libjvm.so is installed there
278  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
279  //
280  // Otherwise exit.
281  //
282  // Important note: if the location of libjvm.so changes this
283  // code needs to be changed accordingly.
284
285  // See ld(1):
286  //      The linker uses the following search paths to locate required
287  //      shared libraries:
288  //        1: ...
289  //        ...
290  //        7: The default directories, normally /lib and /usr/lib.
291#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
292  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
293#else
294  #define DEFAULT_LIBPATH "/lib:/usr/lib"
295#endif
296
297// Base path of extensions installed on the system.
298#define SYS_EXT_DIR     "/usr/java/packages"
299#define EXTENSIONS_DIR  "/lib/ext"
300
301  // Buffer that fits several sprintfs.
302  // Note that the space for the colon and the trailing null are provided
303  // by the nulls included by the sizeof operator.
304  const size_t bufsize =
305    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
306         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
307  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
308
309  // sysclasspath, java_home, dll_dir
310  {
311    char *pslash;
312    os::jvm_path(buf, bufsize);
313
314    // Found the full path to libjvm.so.
315    // Now cut the path to <java_home>/jre if we can.
316    pslash = strrchr(buf, '/');
317    if (pslash != NULL) {
318      *pslash = '\0';            // Get rid of /libjvm.so.
319    }
320    pslash = strrchr(buf, '/');
321    if (pslash != NULL) {
322      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
323    }
324    Arguments::set_dll_dir(buf);
325
326    if (pslash != NULL) {
327      pslash = strrchr(buf, '/');
328      if (pslash != NULL) {
329        *pslash = '\0';        // Get rid of /lib.
330      }
331    }
332    Arguments::set_java_home(buf);
333    set_boot_path('/', ':');
334  }
335
336  // Where to look for native libraries.
337  //
338  // Note: Due to a legacy implementation, most of the library path
339  // is set in the launcher. This was to accomodate linking restrictions
340  // on legacy Linux implementations (which are no longer supported).
341  // Eventually, all the library path setting will be done here.
342  //
343  // However, to prevent the proliferation of improperly built native
344  // libraries, the new path component /usr/java/packages is added here.
345  // Eventually, all the library path setting will be done here.
346  {
347    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
348    // should always exist (until the legacy problem cited above is
349    // addressed).
350    const char *v = ::getenv("LD_LIBRARY_PATH");
351    const char *v_colon = ":";
352    if (v == NULL) { v = ""; v_colon = ""; }
353    // That's +1 for the colon and +1 for the trailing '\0'.
354    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
355                                                     strlen(v) + 1 +
356                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
357                                                     mtInternal);
358    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
359    Arguments::set_library_path(ld_library_path);
360    FREE_C_HEAP_ARRAY(char, ld_library_path);
361  }
362
363  // Extensions directories.
364  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
365  Arguments::set_ext_dirs(buf);
366
367  FREE_C_HEAP_ARRAY(char, buf);
368
369#undef DEFAULT_LIBPATH
370#undef SYS_EXT_DIR
371#undef EXTENSIONS_DIR
372}
373
374////////////////////////////////////////////////////////////////////////////////
375// breakpoint support
376
377void os::breakpoint() {
378  BREAKPOINT;
379}
380
381extern "C" void breakpoint() {
382  // use debugger to set breakpoint here
383}
384
385////////////////////////////////////////////////////////////////////////////////
386// signal support
387
388debug_only(static bool signal_sets_initialized = false);
389static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
390
391bool os::Linux::is_sig_ignored(int sig) {
392  struct sigaction oact;
393  sigaction(sig, (struct sigaction*)NULL, &oact);
394  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
395                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
396  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
397    return true;
398  } else {
399    return false;
400  }
401}
402
403void os::Linux::signal_sets_init() {
404  // Should also have an assertion stating we are still single-threaded.
405  assert(!signal_sets_initialized, "Already initialized");
406  // Fill in signals that are necessarily unblocked for all threads in
407  // the VM. Currently, we unblock the following signals:
408  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
409  //                         by -Xrs (=ReduceSignalUsage));
410  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
411  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
412  // the dispositions or masks wrt these signals.
413  // Programs embedding the VM that want to use the above signals for their
414  // own purposes must, at this time, use the "-Xrs" option to prevent
415  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
416  // (See bug 4345157, and other related bugs).
417  // In reality, though, unblocking these signals is really a nop, since
418  // these signals are not blocked by default.
419  sigemptyset(&unblocked_sigs);
420  sigemptyset(&allowdebug_blocked_sigs);
421  sigaddset(&unblocked_sigs, SIGILL);
422  sigaddset(&unblocked_sigs, SIGSEGV);
423  sigaddset(&unblocked_sigs, SIGBUS);
424  sigaddset(&unblocked_sigs, SIGFPE);
425#if defined(PPC64)
426  sigaddset(&unblocked_sigs, SIGTRAP);
427#endif
428  sigaddset(&unblocked_sigs, SR_signum);
429
430  if (!ReduceSignalUsage) {
431    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
432      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
433      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
434    }
435    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
436      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
437      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
438    }
439    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
440      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
441      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
442    }
443  }
444  // Fill in signals that are blocked by all but the VM thread.
445  sigemptyset(&vm_sigs);
446  if (!ReduceSignalUsage) {
447    sigaddset(&vm_sigs, BREAK_SIGNAL);
448  }
449  debug_only(signal_sets_initialized = true);
450
451}
452
453// These are signals that are unblocked while a thread is running Java.
454// (For some reason, they get blocked by default.)
455sigset_t* os::Linux::unblocked_signals() {
456  assert(signal_sets_initialized, "Not initialized");
457  return &unblocked_sigs;
458}
459
460// These are the signals that are blocked while a (non-VM) thread is
461// running Java. Only the VM thread handles these signals.
462sigset_t* os::Linux::vm_signals() {
463  assert(signal_sets_initialized, "Not initialized");
464  return &vm_sigs;
465}
466
467// These are signals that are blocked during cond_wait to allow debugger in
468sigset_t* os::Linux::allowdebug_blocked_signals() {
469  assert(signal_sets_initialized, "Not initialized");
470  return &allowdebug_blocked_sigs;
471}
472
473void os::Linux::hotspot_sigmask(Thread* thread) {
474
475  //Save caller's signal mask before setting VM signal mask
476  sigset_t caller_sigmask;
477  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
478
479  OSThread* osthread = thread->osthread();
480  osthread->set_caller_sigmask(caller_sigmask);
481
482  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
483
484  if (!ReduceSignalUsage) {
485    if (thread->is_VM_thread()) {
486      // Only the VM thread handles BREAK_SIGNAL ...
487      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
488    } else {
489      // ... all other threads block BREAK_SIGNAL
490      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
491    }
492  }
493}
494
495//////////////////////////////////////////////////////////////////////////////
496// detecting pthread library
497
498void os::Linux::libpthread_init() {
499  // Save glibc and pthread version strings.
500#if !defined(_CS_GNU_LIBC_VERSION) || \
501    !defined(_CS_GNU_LIBPTHREAD_VERSION)
502  #error "glibc too old (< 2.3.2)"
503#endif
504
505  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
506  assert(n > 0, "cannot retrieve glibc version");
507  char *str = (char *)malloc(n, mtInternal);
508  confstr(_CS_GNU_LIBC_VERSION, str, n);
509  os::Linux::set_glibc_version(str);
510
511  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
512  assert(n > 0, "cannot retrieve pthread version");
513  str = (char *)malloc(n, mtInternal);
514  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
515  os::Linux::set_libpthread_version(str);
516}
517
518/////////////////////////////////////////////////////////////////////////////
519// thread stack expansion
520
521// os::Linux::manually_expand_stack() takes care of expanding the thread
522// stack. Note that this is normally not needed: pthread stacks allocate
523// thread stack using mmap() without MAP_NORESERVE, so the stack is already
524// committed. Therefore it is not necessary to expand the stack manually.
525//
526// Manually expanding the stack was historically needed on LinuxThreads
527// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
528// it is kept to deal with very rare corner cases:
529//
530// For one, user may run the VM on an own implementation of threads
531// whose stacks are - like the old LinuxThreads - implemented using
532// mmap(MAP_GROWSDOWN).
533//
534// Also, this coding may be needed if the VM is running on the primordial
535// thread. Normally we avoid running on the primordial thread; however,
536// user may still invoke the VM on the primordial thread.
537//
538// The following historical comment describes the details about running
539// on a thread stack allocated with mmap(MAP_GROWSDOWN):
540
541
542// Force Linux kernel to expand current thread stack. If "bottom" is close
543// to the stack guard, caller should block all signals.
544//
545// MAP_GROWSDOWN:
546//   A special mmap() flag that is used to implement thread stacks. It tells
547//   kernel that the memory region should extend downwards when needed. This
548//   allows early versions of LinuxThreads to only mmap the first few pages
549//   when creating a new thread. Linux kernel will automatically expand thread
550//   stack as needed (on page faults).
551//
552//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
553//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
554//   region, it's hard to tell if the fault is due to a legitimate stack
555//   access or because of reading/writing non-exist memory (e.g. buffer
556//   overrun). As a rule, if the fault happens below current stack pointer,
557//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
558//   application (see Linux kernel fault.c).
559//
560//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
561//   stack overflow detection.
562//
563//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
564//   not use MAP_GROWSDOWN.
565//
566// To get around the problem and allow stack banging on Linux, we need to
567// manually expand thread stack after receiving the SIGSEGV.
568//
569// There are two ways to expand thread stack to address "bottom", we used
570// both of them in JVM before 1.5:
571//   1. adjust stack pointer first so that it is below "bottom", and then
572//      touch "bottom"
573//   2. mmap() the page in question
574//
575// Now alternate signal stack is gone, it's harder to use 2. For instance,
576// if current sp is already near the lower end of page 101, and we need to
577// call mmap() to map page 100, it is possible that part of the mmap() frame
578// will be placed in page 100. When page 100 is mapped, it is zero-filled.
579// That will destroy the mmap() frame and cause VM to crash.
580//
581// The following code works by adjusting sp first, then accessing the "bottom"
582// page to force a page fault. Linux kernel will then automatically expand the
583// stack mapping.
584//
585// _expand_stack_to() assumes its frame size is less than page size, which
586// should always be true if the function is not inlined.
587
588static void NOINLINE _expand_stack_to(address bottom) {
589  address sp;
590  size_t size;
591  volatile char *p;
592
593  // Adjust bottom to point to the largest address within the same page, it
594  // gives us a one-page buffer if alloca() allocates slightly more memory.
595  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
596  bottom += os::Linux::page_size() - 1;
597
598  // sp might be slightly above current stack pointer; if that's the case, we
599  // will alloca() a little more space than necessary, which is OK. Don't use
600  // os::current_stack_pointer(), as its result can be slightly below current
601  // stack pointer, causing us to not alloca enough to reach "bottom".
602  sp = (address)&sp;
603
604  if (sp > bottom) {
605    size = sp - bottom;
606    p = (volatile char *)alloca(size);
607    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
608    p[0] = '\0';
609  }
610}
611
612bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
613  assert(t!=NULL, "just checking");
614  assert(t->osthread()->expanding_stack(), "expand should be set");
615  assert(t->stack_base() != NULL, "stack_base was not initialized");
616
617  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
618    sigset_t mask_all, old_sigset;
619    sigfillset(&mask_all);
620    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
621    _expand_stack_to(addr);
622    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
623    return true;
624  }
625  return false;
626}
627
628//////////////////////////////////////////////////////////////////////////////
629// create new thread
630
631// Thread start routine for all newly created threads
632static void *thread_native_entry(Thread *thread) {
633  // Try to randomize the cache line index of hot stack frames.
634  // This helps when threads of the same stack traces evict each other's
635  // cache lines. The threads can be either from the same JVM instance, or
636  // from different JVM instances. The benefit is especially true for
637  // processors with hyperthreading technology.
638  static int counter = 0;
639  int pid = os::current_process_id();
640  alloca(((pid ^ counter++) & 7) * 128);
641
642  thread->initialize_thread_current();
643
644  OSThread* osthread = thread->osthread();
645  Monitor* sync = osthread->startThread_lock();
646
647  osthread->set_thread_id(os::current_thread_id());
648
649  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
650    os::current_thread_id(), (uintx) pthread_self());
651
652  if (UseNUMA) {
653    int lgrp_id = os::numa_get_group_id();
654    if (lgrp_id != -1) {
655      thread->set_lgrp_id(lgrp_id);
656    }
657  }
658  // initialize signal mask for this thread
659  os::Linux::hotspot_sigmask(thread);
660
661  // initialize floating point control register
662  os::Linux::init_thread_fpu_state();
663
664  // handshaking with parent thread
665  {
666    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
667
668    // notify parent thread
669    osthread->set_state(INITIALIZED);
670    sync->notify_all();
671
672    // wait until os::start_thread()
673    while (osthread->get_state() == INITIALIZED) {
674      sync->wait(Mutex::_no_safepoint_check_flag);
675    }
676  }
677
678  // call one more level start routine
679  thread->run();
680
681  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
682    os::current_thread_id(), (uintx) pthread_self());
683
684  // If a thread has not deleted itself ("delete this") as part of its
685  // termination sequence, we have to ensure thread-local-storage is
686  // cleared before we actually terminate. No threads should ever be
687  // deleted asynchronously with respect to their termination.
688  if (Thread::current_or_null_safe() != NULL) {
689    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
690    thread->clear_thread_current();
691  }
692
693  return 0;
694}
695
696bool os::create_thread(Thread* thread, ThreadType thr_type,
697                       size_t req_stack_size) {
698  assert(thread->osthread() == NULL, "caller responsible");
699
700  // Allocate the OSThread object
701  OSThread* osthread = new OSThread(NULL, NULL);
702  if (osthread == NULL) {
703    return false;
704  }
705
706  // set the correct thread state
707  osthread->set_thread_type(thr_type);
708
709  // Initial state is ALLOCATED but not INITIALIZED
710  osthread->set_state(ALLOCATED);
711
712  thread->set_osthread(osthread);
713
714  // init thread attributes
715  pthread_attr_t attr;
716  pthread_attr_init(&attr);
717  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
718
719  // Calculate stack size if it's not specified by caller.
720  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
721  // In the Linux NPTL pthread implementation the guard size mechanism
722  // is not implemented properly. The posix standard requires adding
723  // the size of the guard pages to the stack size, instead Linux
724  // takes the space out of 'stacksize'. Thus we adapt the requested
725  // stack_size by the size of the guard pages to mimick proper
726  // behaviour.
727  stack_size = align_size_up(stack_size + os::Linux::default_guard_size(thr_type), vm_page_size());
728  pthread_attr_setstacksize(&attr, stack_size);
729
730  // Configure glibc guard page.
731  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
732
733  ThreadState state;
734
735  {
736    pthread_t tid;
737    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
738
739    char buf[64];
740    if (ret == 0) {
741      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
742        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
743    } else {
744      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
745        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
746    }
747
748    pthread_attr_destroy(&attr);
749
750    if (ret != 0) {
751      // Need to clean up stuff we've allocated so far
752      thread->set_osthread(NULL);
753      delete osthread;
754      return false;
755    }
756
757    // Store pthread info into the OSThread
758    osthread->set_pthread_id(tid);
759
760    // Wait until child thread is either initialized or aborted
761    {
762      Monitor* sync_with_child = osthread->startThread_lock();
763      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
764      while ((state = osthread->get_state()) == ALLOCATED) {
765        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
766      }
767    }
768  }
769
770  // Aborted due to thread limit being reached
771  if (state == ZOMBIE) {
772    thread->set_osthread(NULL);
773    delete osthread;
774    return false;
775  }
776
777  // The thread is returned suspended (in state INITIALIZED),
778  // and is started higher up in the call chain
779  assert(state == INITIALIZED, "race condition");
780  return true;
781}
782
783/////////////////////////////////////////////////////////////////////////////
784// attach existing thread
785
786// bootstrap the main thread
787bool os::create_main_thread(JavaThread* thread) {
788  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
789  return create_attached_thread(thread);
790}
791
792bool os::create_attached_thread(JavaThread* thread) {
793#ifdef ASSERT
794  thread->verify_not_published();
795#endif
796
797  // Allocate the OSThread object
798  OSThread* osthread = new OSThread(NULL, NULL);
799
800  if (osthread == NULL) {
801    return false;
802  }
803
804  // Store pthread info into the OSThread
805  osthread->set_thread_id(os::Linux::gettid());
806  osthread->set_pthread_id(::pthread_self());
807
808  // initialize floating point control register
809  os::Linux::init_thread_fpu_state();
810
811  // Initial thread state is RUNNABLE
812  osthread->set_state(RUNNABLE);
813
814  thread->set_osthread(osthread);
815
816  if (UseNUMA) {
817    int lgrp_id = os::numa_get_group_id();
818    if (lgrp_id != -1) {
819      thread->set_lgrp_id(lgrp_id);
820    }
821  }
822
823  if (os::Linux::is_initial_thread()) {
824    // If current thread is initial thread, its stack is mapped on demand,
825    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
826    // the entire stack region to avoid SEGV in stack banging.
827    // It is also useful to get around the heap-stack-gap problem on SuSE
828    // kernel (see 4821821 for details). We first expand stack to the top
829    // of yellow zone, then enable stack yellow zone (order is significant,
830    // enabling yellow zone first will crash JVM on SuSE Linux), so there
831    // is no gap between the last two virtual memory regions.
832
833    JavaThread *jt = (JavaThread *)thread;
834    address addr = jt->stack_reserved_zone_base();
835    assert(addr != NULL, "initialization problem?");
836    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
837
838    osthread->set_expanding_stack();
839    os::Linux::manually_expand_stack(jt, addr);
840    osthread->clear_expanding_stack();
841  }
842
843  // initialize signal mask for this thread
844  // and save the caller's signal mask
845  os::Linux::hotspot_sigmask(thread);
846
847  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
848    os::current_thread_id(), (uintx) pthread_self());
849
850  return true;
851}
852
853void os::pd_start_thread(Thread* thread) {
854  OSThread * osthread = thread->osthread();
855  assert(osthread->get_state() != INITIALIZED, "just checking");
856  Monitor* sync_with_child = osthread->startThread_lock();
857  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
858  sync_with_child->notify();
859}
860
861// Free Linux resources related to the OSThread
862void os::free_thread(OSThread* osthread) {
863  assert(osthread != NULL, "osthread not set");
864
865  // We are told to free resources of the argument thread,
866  // but we can only really operate on the current thread.
867  assert(Thread::current()->osthread() == osthread,
868         "os::free_thread but not current thread");
869
870#ifdef ASSERT
871  sigset_t current;
872  sigemptyset(&current);
873  pthread_sigmask(SIG_SETMASK, NULL, &current);
874  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
875#endif
876
877  // Restore caller's signal mask
878  sigset_t sigmask = osthread->caller_sigmask();
879  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
880
881  delete osthread;
882}
883
884//////////////////////////////////////////////////////////////////////////////
885// initial thread
886
887// Check if current thread is the initial thread, similar to Solaris thr_main.
888bool os::Linux::is_initial_thread(void) {
889  char dummy;
890  // If called before init complete, thread stack bottom will be null.
891  // Can be called if fatal error occurs before initialization.
892  if (initial_thread_stack_bottom() == NULL) return false;
893  assert(initial_thread_stack_bottom() != NULL &&
894         initial_thread_stack_size()   != 0,
895         "os::init did not locate initial thread's stack region");
896  if ((address)&dummy >= initial_thread_stack_bottom() &&
897      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
898    return true;
899  } else {
900    return false;
901  }
902}
903
904// Find the virtual memory area that contains addr
905static bool find_vma(address addr, address* vma_low, address* vma_high) {
906  FILE *fp = fopen("/proc/self/maps", "r");
907  if (fp) {
908    address low, high;
909    while (!feof(fp)) {
910      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
911        if (low <= addr && addr < high) {
912          if (vma_low)  *vma_low  = low;
913          if (vma_high) *vma_high = high;
914          fclose(fp);
915          return true;
916        }
917      }
918      for (;;) {
919        int ch = fgetc(fp);
920        if (ch == EOF || ch == (int)'\n') break;
921      }
922    }
923    fclose(fp);
924  }
925  return false;
926}
927
928// Locate initial thread stack. This special handling of initial thread stack
929// is needed because pthread_getattr_np() on most (all?) Linux distros returns
930// bogus value for the primordial process thread. While the launcher has created
931// the VM in a new thread since JDK 6, we still have to allow for the use of the
932// JNI invocation API from a primordial thread.
933void os::Linux::capture_initial_stack(size_t max_size) {
934
935  // max_size is either 0 (which means accept OS default for thread stacks) or
936  // a user-specified value known to be at least the minimum needed. If we
937  // are actually on the primordial thread we can make it appear that we have a
938  // smaller max_size stack by inserting the guard pages at that location. But we
939  // cannot do anything to emulate a larger stack than what has been provided by
940  // the OS or threading library. In fact if we try to use a stack greater than
941  // what is set by rlimit then we will crash the hosting process.
942
943  // Maximum stack size is the easy part, get it from RLIMIT_STACK.
944  // If this is "unlimited" then it will be a huge value.
945  struct rlimit rlim;
946  getrlimit(RLIMIT_STACK, &rlim);
947  size_t stack_size = rlim.rlim_cur;
948
949  // 6308388: a bug in ld.so will relocate its own .data section to the
950  //   lower end of primordial stack; reduce ulimit -s value a little bit
951  //   so we won't install guard page on ld.so's data section.
952  stack_size -= 2 * page_size();
953
954  // Try to figure out where the stack base (top) is. This is harder.
955  //
956  // When an application is started, glibc saves the initial stack pointer in
957  // a global variable "__libc_stack_end", which is then used by system
958  // libraries. __libc_stack_end should be pretty close to stack top. The
959  // variable is available since the very early days. However, because it is
960  // a private interface, it could disappear in the future.
961  //
962  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
963  // to __libc_stack_end, it is very close to stack top, but isn't the real
964  // stack top. Note that /proc may not exist if VM is running as a chroot
965  // program, so reading /proc/<pid>/stat could fail. Also the contents of
966  // /proc/<pid>/stat could change in the future (though unlikely).
967  //
968  // We try __libc_stack_end first. If that doesn't work, look for
969  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
970  // as a hint, which should work well in most cases.
971
972  uintptr_t stack_start;
973
974  // try __libc_stack_end first
975  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
976  if (p && *p) {
977    stack_start = *p;
978  } else {
979    // see if we can get the start_stack field from /proc/self/stat
980    FILE *fp;
981    int pid;
982    char state;
983    int ppid;
984    int pgrp;
985    int session;
986    int nr;
987    int tpgrp;
988    unsigned long flags;
989    unsigned long minflt;
990    unsigned long cminflt;
991    unsigned long majflt;
992    unsigned long cmajflt;
993    unsigned long utime;
994    unsigned long stime;
995    long cutime;
996    long cstime;
997    long prio;
998    long nice;
999    long junk;
1000    long it_real;
1001    uintptr_t start;
1002    uintptr_t vsize;
1003    intptr_t rss;
1004    uintptr_t rsslim;
1005    uintptr_t scodes;
1006    uintptr_t ecode;
1007    int i;
1008
1009    // Figure what the primordial thread stack base is. Code is inspired
1010    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1011    // followed by command name surrounded by parentheses, state, etc.
1012    char stat[2048];
1013    int statlen;
1014
1015    fp = fopen("/proc/self/stat", "r");
1016    if (fp) {
1017      statlen = fread(stat, 1, 2047, fp);
1018      stat[statlen] = '\0';
1019      fclose(fp);
1020
1021      // Skip pid and the command string. Note that we could be dealing with
1022      // weird command names, e.g. user could decide to rename java launcher
1023      // to "java 1.4.2 :)", then the stat file would look like
1024      //                1234 (java 1.4.2 :)) R ... ...
1025      // We don't really need to know the command string, just find the last
1026      // occurrence of ")" and then start parsing from there. See bug 4726580.
1027      char * s = strrchr(stat, ')');
1028
1029      i = 0;
1030      if (s) {
1031        // Skip blank chars
1032        do { s++; } while (s && isspace(*s));
1033
1034#define _UFM UINTX_FORMAT
1035#define _DFM INTX_FORMAT
1036
1037        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1038        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1039        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1040                   &state,          // 3  %c
1041                   &ppid,           // 4  %d
1042                   &pgrp,           // 5  %d
1043                   &session,        // 6  %d
1044                   &nr,             // 7  %d
1045                   &tpgrp,          // 8  %d
1046                   &flags,          // 9  %lu
1047                   &minflt,         // 10 %lu
1048                   &cminflt,        // 11 %lu
1049                   &majflt,         // 12 %lu
1050                   &cmajflt,        // 13 %lu
1051                   &utime,          // 14 %lu
1052                   &stime,          // 15 %lu
1053                   &cutime,         // 16 %ld
1054                   &cstime,         // 17 %ld
1055                   &prio,           // 18 %ld
1056                   &nice,           // 19 %ld
1057                   &junk,           // 20 %ld
1058                   &it_real,        // 21 %ld
1059                   &start,          // 22 UINTX_FORMAT
1060                   &vsize,          // 23 UINTX_FORMAT
1061                   &rss,            // 24 INTX_FORMAT
1062                   &rsslim,         // 25 UINTX_FORMAT
1063                   &scodes,         // 26 UINTX_FORMAT
1064                   &ecode,          // 27 UINTX_FORMAT
1065                   &stack_start);   // 28 UINTX_FORMAT
1066      }
1067
1068#undef _UFM
1069#undef _DFM
1070
1071      if (i != 28 - 2) {
1072        assert(false, "Bad conversion from /proc/self/stat");
1073        // product mode - assume we are the initial thread, good luck in the
1074        // embedded case.
1075        warning("Can't detect initial thread stack location - bad conversion");
1076        stack_start = (uintptr_t) &rlim;
1077      }
1078    } else {
1079      // For some reason we can't open /proc/self/stat (for example, running on
1080      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1081      // most cases, so don't abort:
1082      warning("Can't detect initial thread stack location - no /proc/self/stat");
1083      stack_start = (uintptr_t) &rlim;
1084    }
1085  }
1086
1087  // Now we have a pointer (stack_start) very close to the stack top, the
1088  // next thing to do is to figure out the exact location of stack top. We
1089  // can find out the virtual memory area that contains stack_start by
1090  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1091  // and its upper limit is the real stack top. (again, this would fail if
1092  // running inside chroot, because /proc may not exist.)
1093
1094  uintptr_t stack_top;
1095  address low, high;
1096  if (find_vma((address)stack_start, &low, &high)) {
1097    // success, "high" is the true stack top. (ignore "low", because initial
1098    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1099    stack_top = (uintptr_t)high;
1100  } else {
1101    // failed, likely because /proc/self/maps does not exist
1102    warning("Can't detect initial thread stack location - find_vma failed");
1103    // best effort: stack_start is normally within a few pages below the real
1104    // stack top, use it as stack top, and reduce stack size so we won't put
1105    // guard page outside stack.
1106    stack_top = stack_start;
1107    stack_size -= 16 * page_size();
1108  }
1109
1110  // stack_top could be partially down the page so align it
1111  stack_top = align_size_up(stack_top, page_size());
1112
1113  // Allowed stack value is minimum of max_size and what we derived from rlimit
1114  if (max_size > 0) {
1115    _initial_thread_stack_size = MIN2(max_size, stack_size);
1116  } else {
1117    // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1118    // clamp it at 8MB as we do on Solaris
1119    _initial_thread_stack_size = MIN2(stack_size, 8*M);
1120  }
1121  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1122  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1123
1124  assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1125
1126  if (log_is_enabled(Info, os, thread)) {
1127    // See if we seem to be on primordial process thread
1128    bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1129                      uintptr_t(&rlim) < stack_top;
1130
1131    log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1132                         SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1133                         primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1134                         stack_top, intptr_t(_initial_thread_stack_bottom));
1135  }
1136}
1137
1138////////////////////////////////////////////////////////////////////////////////
1139// time support
1140
1141// Time since start-up in seconds to a fine granularity.
1142// Used by VMSelfDestructTimer and the MemProfiler.
1143double os::elapsedTime() {
1144
1145  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1146}
1147
1148jlong os::elapsed_counter() {
1149  return javaTimeNanos() - initial_time_count;
1150}
1151
1152jlong os::elapsed_frequency() {
1153  return NANOSECS_PER_SEC; // nanosecond resolution
1154}
1155
1156bool os::supports_vtime() { return true; }
1157bool os::enable_vtime()   { return false; }
1158bool os::vtime_enabled()  { return false; }
1159
1160double os::elapsedVTime() {
1161  struct rusage usage;
1162  int retval = getrusage(RUSAGE_THREAD, &usage);
1163  if (retval == 0) {
1164    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1165  } else {
1166    // better than nothing, but not much
1167    return elapsedTime();
1168  }
1169}
1170
1171jlong os::javaTimeMillis() {
1172  timeval time;
1173  int status = gettimeofday(&time, NULL);
1174  assert(status != -1, "linux error");
1175  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1176}
1177
1178void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1179  timeval time;
1180  int status = gettimeofday(&time, NULL);
1181  assert(status != -1, "linux error");
1182  seconds = jlong(time.tv_sec);
1183  nanos = jlong(time.tv_usec) * 1000;
1184}
1185
1186
1187#ifndef CLOCK_MONOTONIC
1188  #define CLOCK_MONOTONIC (1)
1189#endif
1190
1191void os::Linux::clock_init() {
1192  // we do dlopen's in this particular order due to bug in linux
1193  // dynamical loader (see 6348968) leading to crash on exit
1194  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1195  if (handle == NULL) {
1196    handle = dlopen("librt.so", RTLD_LAZY);
1197  }
1198
1199  if (handle) {
1200    int (*clock_getres_func)(clockid_t, struct timespec*) =
1201           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1202    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1203           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1204    if (clock_getres_func && clock_gettime_func) {
1205      // See if monotonic clock is supported by the kernel. Note that some
1206      // early implementations simply return kernel jiffies (updated every
1207      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1208      // for nano time (though the monotonic property is still nice to have).
1209      // It's fixed in newer kernels, however clock_getres() still returns
1210      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1211      // resolution for now. Hopefully as people move to new kernels, this
1212      // won't be a problem.
1213      struct timespec res;
1214      struct timespec tp;
1215      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1216          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1217        // yes, monotonic clock is supported
1218        _clock_gettime = clock_gettime_func;
1219        return;
1220      } else {
1221        // close librt if there is no monotonic clock
1222        dlclose(handle);
1223      }
1224    }
1225  }
1226  warning("No monotonic clock was available - timed services may " \
1227          "be adversely affected if the time-of-day clock changes");
1228}
1229
1230#ifndef SYS_clock_getres
1231  #if defined(X86) || defined(PPC64) || defined(S390)
1232    #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1233    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1234  #else
1235    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1236    #define sys_clock_getres(x,y)  -1
1237  #endif
1238#else
1239  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1240#endif
1241
1242void os::Linux::fast_thread_clock_init() {
1243  if (!UseLinuxPosixThreadCPUClocks) {
1244    return;
1245  }
1246  clockid_t clockid;
1247  struct timespec tp;
1248  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1249      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1250
1251  // Switch to using fast clocks for thread cpu time if
1252  // the sys_clock_getres() returns 0 error code.
1253  // Note, that some kernels may support the current thread
1254  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1255  // returned by the pthread_getcpuclockid().
1256  // If the fast Posix clocks are supported then the sys_clock_getres()
1257  // must return at least tp.tv_sec == 0 which means a resolution
1258  // better than 1 sec. This is extra check for reliability.
1259
1260  if (pthread_getcpuclockid_func &&
1261      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1262      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1263    _supports_fast_thread_cpu_time = true;
1264    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1265  }
1266}
1267
1268jlong os::javaTimeNanos() {
1269  if (os::supports_monotonic_clock()) {
1270    struct timespec tp;
1271    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1272    assert(status == 0, "gettime error");
1273    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1274    return result;
1275  } else {
1276    timeval time;
1277    int status = gettimeofday(&time, NULL);
1278    assert(status != -1, "linux error");
1279    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1280    return 1000 * usecs;
1281  }
1282}
1283
1284void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1285  if (os::supports_monotonic_clock()) {
1286    info_ptr->max_value = ALL_64_BITS;
1287
1288    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1289    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1290    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1291  } else {
1292    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1293    info_ptr->max_value = ALL_64_BITS;
1294
1295    // gettimeofday is a real time clock so it skips
1296    info_ptr->may_skip_backward = true;
1297    info_ptr->may_skip_forward = true;
1298  }
1299
1300  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1301}
1302
1303// Return the real, user, and system times in seconds from an
1304// arbitrary fixed point in the past.
1305bool os::getTimesSecs(double* process_real_time,
1306                      double* process_user_time,
1307                      double* process_system_time) {
1308  struct tms ticks;
1309  clock_t real_ticks = times(&ticks);
1310
1311  if (real_ticks == (clock_t) (-1)) {
1312    return false;
1313  } else {
1314    double ticks_per_second = (double) clock_tics_per_sec;
1315    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1316    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1317    *process_real_time = ((double) real_ticks) / ticks_per_second;
1318
1319    return true;
1320  }
1321}
1322
1323
1324char * os::local_time_string(char *buf, size_t buflen) {
1325  struct tm t;
1326  time_t long_time;
1327  time(&long_time);
1328  localtime_r(&long_time, &t);
1329  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1330               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1331               t.tm_hour, t.tm_min, t.tm_sec);
1332  return buf;
1333}
1334
1335struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1336  return localtime_r(clock, res);
1337}
1338
1339////////////////////////////////////////////////////////////////////////////////
1340// runtime exit support
1341
1342// Note: os::shutdown() might be called very early during initialization, or
1343// called from signal handler. Before adding something to os::shutdown(), make
1344// sure it is async-safe and can handle partially initialized VM.
1345void os::shutdown() {
1346
1347  // allow PerfMemory to attempt cleanup of any persistent resources
1348  perfMemory_exit();
1349
1350  // needs to remove object in file system
1351  AttachListener::abort();
1352
1353  // flush buffered output, finish log files
1354  ostream_abort();
1355
1356  // Check for abort hook
1357  abort_hook_t abort_hook = Arguments::abort_hook();
1358  if (abort_hook != NULL) {
1359    abort_hook();
1360  }
1361
1362}
1363
1364// Note: os::abort() might be called very early during initialization, or
1365// called from signal handler. Before adding something to os::abort(), make
1366// sure it is async-safe and can handle partially initialized VM.
1367void os::abort(bool dump_core, void* siginfo, const void* context) {
1368  os::shutdown();
1369  if (dump_core) {
1370#ifndef PRODUCT
1371    fdStream out(defaultStream::output_fd());
1372    out.print_raw("Current thread is ");
1373    char buf[16];
1374    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1375    out.print_raw_cr(buf);
1376    out.print_raw_cr("Dumping core ...");
1377#endif
1378    ::abort(); // dump core
1379  }
1380
1381  ::exit(1);
1382}
1383
1384// Die immediately, no exit hook, no abort hook, no cleanup.
1385void os::die() {
1386  ::abort();
1387}
1388
1389
1390// This method is a copy of JDK's sysGetLastErrorString
1391// from src/solaris/hpi/src/system_md.c
1392
1393size_t os::lasterror(char *buf, size_t len) {
1394  if (errno == 0)  return 0;
1395
1396  const char *s = os::strerror(errno);
1397  size_t n = ::strlen(s);
1398  if (n >= len) {
1399    n = len - 1;
1400  }
1401  ::strncpy(buf, s, n);
1402  buf[n] = '\0';
1403  return n;
1404}
1405
1406// thread_id is kernel thread id (similar to Solaris LWP id)
1407intx os::current_thread_id() { return os::Linux::gettid(); }
1408int os::current_process_id() {
1409  return ::getpid();
1410}
1411
1412// DLL functions
1413
1414const char* os::dll_file_extension() { return ".so"; }
1415
1416// This must be hard coded because it's the system's temporary
1417// directory not the java application's temp directory, ala java.io.tmpdir.
1418const char* os::get_temp_directory() { return "/tmp"; }
1419
1420static bool file_exists(const char* filename) {
1421  struct stat statbuf;
1422  if (filename == NULL || strlen(filename) == 0) {
1423    return false;
1424  }
1425  return os::stat(filename, &statbuf) == 0;
1426}
1427
1428bool os::dll_build_name(char* buffer, size_t buflen,
1429                        const char* pname, const char* fname) {
1430  bool retval = false;
1431  // Copied from libhpi
1432  const size_t pnamelen = pname ? strlen(pname) : 0;
1433
1434  // Return error on buffer overflow.
1435  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1436    return retval;
1437  }
1438
1439  if (pnamelen == 0) {
1440    snprintf(buffer, buflen, "lib%s.so", fname);
1441    retval = true;
1442  } else if (strchr(pname, *os::path_separator()) != NULL) {
1443    int n;
1444    char** pelements = split_path(pname, &n);
1445    if (pelements == NULL) {
1446      return false;
1447    }
1448    for (int i = 0; i < n; i++) {
1449      // Really shouldn't be NULL, but check can't hurt
1450      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1451        continue; // skip the empty path values
1452      }
1453      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1454      if (file_exists(buffer)) {
1455        retval = true;
1456        break;
1457      }
1458    }
1459    // release the storage
1460    for (int i = 0; i < n; i++) {
1461      if (pelements[i] != NULL) {
1462        FREE_C_HEAP_ARRAY(char, pelements[i]);
1463      }
1464    }
1465    if (pelements != NULL) {
1466      FREE_C_HEAP_ARRAY(char*, pelements);
1467    }
1468  } else {
1469    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1470    retval = true;
1471  }
1472  return retval;
1473}
1474
1475// check if addr is inside libjvm.so
1476bool os::address_is_in_vm(address addr) {
1477  static address libjvm_base_addr;
1478  Dl_info dlinfo;
1479
1480  if (libjvm_base_addr == NULL) {
1481    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1482      libjvm_base_addr = (address)dlinfo.dli_fbase;
1483    }
1484    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1485  }
1486
1487  if (dladdr((void *)addr, &dlinfo) != 0) {
1488    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1489  }
1490
1491  return false;
1492}
1493
1494bool os::dll_address_to_function_name(address addr, char *buf,
1495                                      int buflen, int *offset,
1496                                      bool demangle) {
1497  // buf is not optional, but offset is optional
1498  assert(buf != NULL, "sanity check");
1499
1500  Dl_info dlinfo;
1501
1502  if (dladdr((void*)addr, &dlinfo) != 0) {
1503    // see if we have a matching symbol
1504    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1505      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1506        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1507      }
1508      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1509      return true;
1510    }
1511    // no matching symbol so try for just file info
1512    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1513      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1514                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1515        return true;
1516      }
1517    }
1518  }
1519
1520  buf[0] = '\0';
1521  if (offset != NULL) *offset = -1;
1522  return false;
1523}
1524
1525struct _address_to_library_name {
1526  address addr;          // input : memory address
1527  size_t  buflen;        //         size of fname
1528  char*   fname;         // output: library name
1529  address base;          //         library base addr
1530};
1531
1532static int address_to_library_name_callback(struct dl_phdr_info *info,
1533                                            size_t size, void *data) {
1534  int i;
1535  bool found = false;
1536  address libbase = NULL;
1537  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1538
1539  // iterate through all loadable segments
1540  for (i = 0; i < info->dlpi_phnum; i++) {
1541    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1542    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1543      // base address of a library is the lowest address of its loaded
1544      // segments.
1545      if (libbase == NULL || libbase > segbase) {
1546        libbase = segbase;
1547      }
1548      // see if 'addr' is within current segment
1549      if (segbase <= d->addr &&
1550          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1551        found = true;
1552      }
1553    }
1554  }
1555
1556  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1557  // so dll_address_to_library_name() can fall through to use dladdr() which
1558  // can figure out executable name from argv[0].
1559  if (found && info->dlpi_name && info->dlpi_name[0]) {
1560    d->base = libbase;
1561    if (d->fname) {
1562      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1563    }
1564    return 1;
1565  }
1566  return 0;
1567}
1568
1569bool os::dll_address_to_library_name(address addr, char* buf,
1570                                     int buflen, int* offset) {
1571  // buf is not optional, but offset is optional
1572  assert(buf != NULL, "sanity check");
1573
1574  Dl_info dlinfo;
1575  struct _address_to_library_name data;
1576
1577  // There is a bug in old glibc dladdr() implementation that it could resolve
1578  // to wrong library name if the .so file has a base address != NULL. Here
1579  // we iterate through the program headers of all loaded libraries to find
1580  // out which library 'addr' really belongs to. This workaround can be
1581  // removed once the minimum requirement for glibc is moved to 2.3.x.
1582  data.addr = addr;
1583  data.fname = buf;
1584  data.buflen = buflen;
1585  data.base = NULL;
1586  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1587
1588  if (rslt) {
1589    // buf already contains library name
1590    if (offset) *offset = addr - data.base;
1591    return true;
1592  }
1593  if (dladdr((void*)addr, &dlinfo) != 0) {
1594    if (dlinfo.dli_fname != NULL) {
1595      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1596    }
1597    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1598      *offset = addr - (address)dlinfo.dli_fbase;
1599    }
1600    return true;
1601  }
1602
1603  buf[0] = '\0';
1604  if (offset) *offset = -1;
1605  return false;
1606}
1607
1608// Loads .dll/.so and
1609// in case of error it checks if .dll/.so was built for the
1610// same architecture as Hotspot is running on
1611
1612
1613// Remember the stack's state. The Linux dynamic linker will change
1614// the stack to 'executable' at most once, so we must safepoint only once.
1615bool os::Linux::_stack_is_executable = false;
1616
1617// VM operation that loads a library.  This is necessary if stack protection
1618// of the Java stacks can be lost during loading the library.  If we
1619// do not stop the Java threads, they can stack overflow before the stacks
1620// are protected again.
1621class VM_LinuxDllLoad: public VM_Operation {
1622 private:
1623  const char *_filename;
1624  char *_ebuf;
1625  int _ebuflen;
1626  void *_lib;
1627 public:
1628  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1629    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1630  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1631  void doit() {
1632    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1633    os::Linux::_stack_is_executable = true;
1634  }
1635  void* loaded_library() { return _lib; }
1636};
1637
1638void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1639  void * result = NULL;
1640  bool load_attempted = false;
1641
1642  // Check whether the library to load might change execution rights
1643  // of the stack. If they are changed, the protection of the stack
1644  // guard pages will be lost. We need a safepoint to fix this.
1645  //
1646  // See Linux man page execstack(8) for more info.
1647  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1648    ElfFile ef(filename);
1649    if (!ef.specifies_noexecstack()) {
1650      if (!is_init_completed()) {
1651        os::Linux::_stack_is_executable = true;
1652        // This is OK - No Java threads have been created yet, and hence no
1653        // stack guard pages to fix.
1654        //
1655        // This should happen only when you are building JDK7 using a very
1656        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1657        //
1658        // Dynamic loader will make all stacks executable after
1659        // this function returns, and will not do that again.
1660        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1661      } else {
1662        warning("You have loaded library %s which might have disabled stack guard. "
1663                "The VM will try to fix the stack guard now.\n"
1664                "It's highly recommended that you fix the library with "
1665                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1666                filename);
1667
1668        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1669        JavaThread *jt = JavaThread::current();
1670        if (jt->thread_state() != _thread_in_native) {
1671          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1672          // that requires ExecStack. Cannot enter safe point. Let's give up.
1673          warning("Unable to fix stack guard. Giving up.");
1674        } else {
1675          if (!LoadExecStackDllInVMThread) {
1676            // This is for the case where the DLL has an static
1677            // constructor function that executes JNI code. We cannot
1678            // load such DLLs in the VMThread.
1679            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1680          }
1681
1682          ThreadInVMfromNative tiv(jt);
1683          debug_only(VMNativeEntryWrapper vew;)
1684
1685          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1686          VMThread::execute(&op);
1687          if (LoadExecStackDllInVMThread) {
1688            result = op.loaded_library();
1689          }
1690          load_attempted = true;
1691        }
1692      }
1693    }
1694  }
1695
1696  if (!load_attempted) {
1697    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1698  }
1699
1700  if (result != NULL) {
1701    // Successful loading
1702    return result;
1703  }
1704
1705  Elf32_Ehdr elf_head;
1706  int diag_msg_max_length=ebuflen-strlen(ebuf);
1707  char* diag_msg_buf=ebuf+strlen(ebuf);
1708
1709  if (diag_msg_max_length==0) {
1710    // No more space in ebuf for additional diagnostics message
1711    return NULL;
1712  }
1713
1714
1715  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1716
1717  if (file_descriptor < 0) {
1718    // Can't open library, report dlerror() message
1719    return NULL;
1720  }
1721
1722  bool failed_to_read_elf_head=
1723    (sizeof(elf_head)!=
1724     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1725
1726  ::close(file_descriptor);
1727  if (failed_to_read_elf_head) {
1728    // file i/o error - report dlerror() msg
1729    return NULL;
1730  }
1731
1732  typedef struct {
1733    Elf32_Half    code;         // Actual value as defined in elf.h
1734    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1735    unsigned char elf_class;    // 32 or 64 bit
1736    unsigned char endianess;    // MSB or LSB
1737    char*         name;         // String representation
1738  } arch_t;
1739
1740#ifndef EM_486
1741  #define EM_486          6               /* Intel 80486 */
1742#endif
1743#ifndef EM_AARCH64
1744  #define EM_AARCH64    183               /* ARM AARCH64 */
1745#endif
1746
1747  static const arch_t arch_array[]={
1748    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1749    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1750    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1751    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1752    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1753    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1754    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1755    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1756#if defined(VM_LITTLE_ENDIAN)
1757    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1758#else
1759    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1760#endif
1761    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1762    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1763    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1764    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1765    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1766    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1767    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1768    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1769  };
1770
1771#if  (defined IA32)
1772  static  Elf32_Half running_arch_code=EM_386;
1773#elif   (defined AMD64)
1774  static  Elf32_Half running_arch_code=EM_X86_64;
1775#elif  (defined IA64)
1776  static  Elf32_Half running_arch_code=EM_IA_64;
1777#elif  (defined __sparc) && (defined _LP64)
1778  static  Elf32_Half running_arch_code=EM_SPARCV9;
1779#elif  (defined __sparc) && (!defined _LP64)
1780  static  Elf32_Half running_arch_code=EM_SPARC;
1781#elif  (defined __powerpc64__)
1782  static  Elf32_Half running_arch_code=EM_PPC64;
1783#elif  (defined __powerpc__)
1784  static  Elf32_Half running_arch_code=EM_PPC;
1785#elif  (defined AARCH64)
1786  static  Elf32_Half running_arch_code=EM_AARCH64;
1787#elif  (defined ARM)
1788  static  Elf32_Half running_arch_code=EM_ARM;
1789#elif  (defined S390)
1790  static  Elf32_Half running_arch_code=EM_S390;
1791#elif  (defined ALPHA)
1792  static  Elf32_Half running_arch_code=EM_ALPHA;
1793#elif  (defined MIPSEL)
1794  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1795#elif  (defined PARISC)
1796  static  Elf32_Half running_arch_code=EM_PARISC;
1797#elif  (defined MIPS)
1798  static  Elf32_Half running_arch_code=EM_MIPS;
1799#elif  (defined M68K)
1800  static  Elf32_Half running_arch_code=EM_68K;
1801#else
1802    #error Method os::dll_load requires that one of following is defined:\
1803        AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1804#endif
1805
1806  // Identify compatability class for VM's architecture and library's architecture
1807  // Obtain string descriptions for architectures
1808
1809  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1810  int running_arch_index=-1;
1811
1812  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1813    if (running_arch_code == arch_array[i].code) {
1814      running_arch_index    = i;
1815    }
1816    if (lib_arch.code == arch_array[i].code) {
1817      lib_arch.compat_class = arch_array[i].compat_class;
1818      lib_arch.name         = arch_array[i].name;
1819    }
1820  }
1821
1822  assert(running_arch_index != -1,
1823         "Didn't find running architecture code (running_arch_code) in arch_array");
1824  if (running_arch_index == -1) {
1825    // Even though running architecture detection failed
1826    // we may still continue with reporting dlerror() message
1827    return NULL;
1828  }
1829
1830  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1831    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1832    return NULL;
1833  }
1834
1835#ifndef S390
1836  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1837    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1838    return NULL;
1839  }
1840#endif // !S390
1841
1842  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1843    if (lib_arch.name!=NULL) {
1844      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1845                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1846                 lib_arch.name, arch_array[running_arch_index].name);
1847    } else {
1848      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1849                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1850                 lib_arch.code,
1851                 arch_array[running_arch_index].name);
1852    }
1853  }
1854
1855  return NULL;
1856}
1857
1858void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1859                                int ebuflen) {
1860  void * result = ::dlopen(filename, RTLD_LAZY);
1861  if (result == NULL) {
1862    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1863    ebuf[ebuflen-1] = '\0';
1864  }
1865  return result;
1866}
1867
1868void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1869                                       int ebuflen) {
1870  void * result = NULL;
1871  if (LoadExecStackDllInVMThread) {
1872    result = dlopen_helper(filename, ebuf, ebuflen);
1873  }
1874
1875  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1876  // library that requires an executable stack, or which does not have this
1877  // stack attribute set, dlopen changes the stack attribute to executable. The
1878  // read protection of the guard pages gets lost.
1879  //
1880  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1881  // may have been queued at the same time.
1882
1883  if (!_stack_is_executable) {
1884    JavaThread *jt = Threads::first();
1885
1886    while (jt) {
1887      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1888          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1889        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1890          warning("Attempt to reguard stack yellow zone failed.");
1891        }
1892      }
1893      jt = jt->next();
1894    }
1895  }
1896
1897  return result;
1898}
1899
1900void* os::dll_lookup(void* handle, const char* name) {
1901  void* res = dlsym(handle, name);
1902  return res;
1903}
1904
1905void* os::get_default_process_handle() {
1906  return (void*)::dlopen(NULL, RTLD_LAZY);
1907}
1908
1909static bool _print_ascii_file(const char* filename, outputStream* st) {
1910  int fd = ::open(filename, O_RDONLY);
1911  if (fd == -1) {
1912    return false;
1913  }
1914
1915  char buf[33];
1916  int bytes;
1917  buf[32] = '\0';
1918  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1919    st->print_raw(buf, bytes);
1920  }
1921
1922  ::close(fd);
1923
1924  return true;
1925}
1926
1927void os::print_dll_info(outputStream *st) {
1928  st->print_cr("Dynamic libraries:");
1929
1930  char fname[32];
1931  pid_t pid = os::Linux::gettid();
1932
1933  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1934
1935  if (!_print_ascii_file(fname, st)) {
1936    st->print("Can not get library information for pid = %d\n", pid);
1937  }
1938}
1939
1940int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1941  FILE *procmapsFile = NULL;
1942
1943  // Open the procfs maps file for the current process
1944  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1945    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1946    char line[PATH_MAX + 100];
1947
1948    // Read line by line from 'file'
1949    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1950      u8 base, top, offset, inode;
1951      char permissions[5];
1952      char device[6];
1953      char name[PATH_MAX + 1];
1954
1955      // Parse fields from line
1956      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1957             &base, &top, permissions, &offset, device, &inode, name);
1958
1959      // Filter by device id '00:00' so that we only get file system mapped files.
1960      if (strcmp(device, "00:00") != 0) {
1961
1962        // Call callback with the fields of interest
1963        if(callback(name, (address)base, (address)top, param)) {
1964          // Oops abort, callback aborted
1965          fclose(procmapsFile);
1966          return 1;
1967        }
1968      }
1969    }
1970    fclose(procmapsFile);
1971  }
1972  return 0;
1973}
1974
1975void os::print_os_info_brief(outputStream* st) {
1976  os::Linux::print_distro_info(st);
1977
1978  os::Posix::print_uname_info(st);
1979
1980  os::Linux::print_libversion_info(st);
1981
1982}
1983
1984void os::print_os_info(outputStream* st) {
1985  st->print("OS:");
1986
1987  os::Linux::print_distro_info(st);
1988
1989  os::Posix::print_uname_info(st);
1990
1991  // Print warning if unsafe chroot environment detected
1992  if (unsafe_chroot_detected) {
1993    st->print("WARNING!! ");
1994    st->print_cr("%s", unstable_chroot_error);
1995  }
1996
1997  os::Linux::print_libversion_info(st);
1998
1999  os::Posix::print_rlimit_info(st);
2000
2001  os::Posix::print_load_average(st);
2002
2003  os::Linux::print_full_memory_info(st);
2004}
2005
2006// Try to identify popular distros.
2007// Most Linux distributions have a /etc/XXX-release file, which contains
2008// the OS version string. Newer Linux distributions have a /etc/lsb-release
2009// file that also contains the OS version string. Some have more than one
2010// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2011// /etc/redhat-release.), so the order is important.
2012// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2013// their own specific XXX-release file as well as a redhat-release file.
2014// Because of this the XXX-release file needs to be searched for before the
2015// redhat-release file.
2016// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2017// search for redhat-release / SuSE-release needs to be before lsb-release.
2018// Since the lsb-release file is the new standard it needs to be searched
2019// before the older style release files.
2020// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2021// next to last resort.  The os-release file is a new standard that contains
2022// distribution information and the system-release file seems to be an old
2023// standard that has been replaced by the lsb-release and os-release files.
2024// Searching for the debian_version file is the last resort.  It contains
2025// an informative string like "6.0.6" or "wheezy/sid". Because of this
2026// "Debian " is printed before the contents of the debian_version file.
2027
2028const char* distro_files[] = {
2029  "/etc/oracle-release",
2030  "/etc/mandriva-release",
2031  "/etc/mandrake-release",
2032  "/etc/sun-release",
2033  "/etc/redhat-release",
2034  "/etc/SuSE-release",
2035  "/etc/lsb-release",
2036  "/etc/turbolinux-release",
2037  "/etc/gentoo-release",
2038  "/etc/ltib-release",
2039  "/etc/angstrom-version",
2040  "/etc/system-release",
2041  "/etc/os-release",
2042  NULL };
2043
2044void os::Linux::print_distro_info(outputStream* st) {
2045  for (int i = 0;; i++) {
2046    const char* file = distro_files[i];
2047    if (file == NULL) {
2048      break;  // done
2049    }
2050    // If file prints, we found it.
2051    if (_print_ascii_file(file, st)) {
2052      return;
2053    }
2054  }
2055
2056  if (file_exists("/etc/debian_version")) {
2057    st->print("Debian ");
2058    _print_ascii_file("/etc/debian_version", st);
2059  } else {
2060    st->print("Linux");
2061  }
2062  st->cr();
2063}
2064
2065static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2066  char buf[256];
2067  while (fgets(buf, sizeof(buf), fp)) {
2068    // Edit out extra stuff in expected format
2069    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2070      char* ptr = strstr(buf, "\"");  // the name is in quotes
2071      if (ptr != NULL) {
2072        ptr++; // go beyond first quote
2073        char* nl = strchr(ptr, '\"');
2074        if (nl != NULL) *nl = '\0';
2075        strncpy(distro, ptr, length);
2076      } else {
2077        ptr = strstr(buf, "=");
2078        ptr++; // go beyond equals then
2079        char* nl = strchr(ptr, '\n');
2080        if (nl != NULL) *nl = '\0';
2081        strncpy(distro, ptr, length);
2082      }
2083      return;
2084    } else if (get_first_line) {
2085      char* nl = strchr(buf, '\n');
2086      if (nl != NULL) *nl = '\0';
2087      strncpy(distro, buf, length);
2088      return;
2089    }
2090  }
2091  // print last line and close
2092  char* nl = strchr(buf, '\n');
2093  if (nl != NULL) *nl = '\0';
2094  strncpy(distro, buf, length);
2095}
2096
2097static void parse_os_info(char* distro, size_t length, const char* file) {
2098  FILE* fp = fopen(file, "r");
2099  if (fp != NULL) {
2100    // if suse format, print out first line
2101    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2102    parse_os_info_helper(fp, distro, length, get_first_line);
2103    fclose(fp);
2104  }
2105}
2106
2107void os::get_summary_os_info(char* buf, size_t buflen) {
2108  for (int i = 0;; i++) {
2109    const char* file = distro_files[i];
2110    if (file == NULL) {
2111      break; // ran out of distro_files
2112    }
2113    if (file_exists(file)) {
2114      parse_os_info(buf, buflen, file);
2115      return;
2116    }
2117  }
2118  // special case for debian
2119  if (file_exists("/etc/debian_version")) {
2120    strncpy(buf, "Debian ", buflen);
2121    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2122  } else {
2123    strncpy(buf, "Linux", buflen);
2124  }
2125}
2126
2127void os::Linux::print_libversion_info(outputStream* st) {
2128  // libc, pthread
2129  st->print("libc:");
2130  st->print("%s ", os::Linux::glibc_version());
2131  st->print("%s ", os::Linux::libpthread_version());
2132  st->cr();
2133}
2134
2135void os::Linux::print_full_memory_info(outputStream* st) {
2136  st->print("\n/proc/meminfo:\n");
2137  _print_ascii_file("/proc/meminfo", st);
2138  st->cr();
2139}
2140
2141void os::print_memory_info(outputStream* st) {
2142
2143  st->print("Memory:");
2144  st->print(" %dk page", os::vm_page_size()>>10);
2145
2146  // values in struct sysinfo are "unsigned long"
2147  struct sysinfo si;
2148  sysinfo(&si);
2149
2150  st->print(", physical " UINT64_FORMAT "k",
2151            os::physical_memory() >> 10);
2152  st->print("(" UINT64_FORMAT "k free)",
2153            os::available_memory() >> 10);
2154  st->print(", swap " UINT64_FORMAT "k",
2155            ((jlong)si.totalswap * si.mem_unit) >> 10);
2156  st->print("(" UINT64_FORMAT "k free)",
2157            ((jlong)si.freeswap * si.mem_unit) >> 10);
2158  st->cr();
2159}
2160
2161// Print the first "model name" line and the first "flags" line
2162// that we find and nothing more. We assume "model name" comes
2163// before "flags" so if we find a second "model name", then the
2164// "flags" field is considered missing.
2165static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2166#if defined(IA32) || defined(AMD64)
2167  // Other platforms have less repetitive cpuinfo files
2168  FILE *fp = fopen("/proc/cpuinfo", "r");
2169  if (fp) {
2170    while (!feof(fp)) {
2171      if (fgets(buf, buflen, fp)) {
2172        // Assume model name comes before flags
2173        bool model_name_printed = false;
2174        if (strstr(buf, "model name") != NULL) {
2175          if (!model_name_printed) {
2176            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2177            st->print_raw(buf);
2178            model_name_printed = true;
2179          } else {
2180            // model name printed but not flags?  Odd, just return
2181            fclose(fp);
2182            return true;
2183          }
2184        }
2185        // print the flags line too
2186        if (strstr(buf, "flags") != NULL) {
2187          st->print_raw(buf);
2188          fclose(fp);
2189          return true;
2190        }
2191      }
2192    }
2193    fclose(fp);
2194  }
2195#endif // x86 platforms
2196  return false;
2197}
2198
2199void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2200  // Only print the model name if the platform provides this as a summary
2201  if (!print_model_name_and_flags(st, buf, buflen)) {
2202    st->print("\n/proc/cpuinfo:\n");
2203    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2204      st->print_cr("  <Not Available>");
2205    }
2206  }
2207}
2208
2209#if defined(AMD64) || defined(IA32) || defined(X32)
2210const char* search_string = "model name";
2211#elif defined(PPC64)
2212const char* search_string = "cpu";
2213#elif defined(S390)
2214const char* search_string = "processor";
2215#elif defined(SPARC)
2216const char* search_string = "cpu";
2217#else
2218const char* search_string = "Processor";
2219#endif
2220
2221// Parses the cpuinfo file for string representing the model name.
2222void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2223  FILE* fp = fopen("/proc/cpuinfo", "r");
2224  if (fp != NULL) {
2225    while (!feof(fp)) {
2226      char buf[256];
2227      if (fgets(buf, sizeof(buf), fp)) {
2228        char* start = strstr(buf, search_string);
2229        if (start != NULL) {
2230          char *ptr = start + strlen(search_string);
2231          char *end = buf + strlen(buf);
2232          while (ptr != end) {
2233             // skip whitespace and colon for the rest of the name.
2234             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2235               break;
2236             }
2237             ptr++;
2238          }
2239          if (ptr != end) {
2240            // reasonable string, get rid of newline and keep the rest
2241            char* nl = strchr(buf, '\n');
2242            if (nl != NULL) *nl = '\0';
2243            strncpy(cpuinfo, ptr, length);
2244            fclose(fp);
2245            return;
2246          }
2247        }
2248      }
2249    }
2250    fclose(fp);
2251  }
2252  // cpuinfo not found or parsing failed, just print generic string.  The entire
2253  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2254#if   defined(AARCH64)
2255  strncpy(cpuinfo, "AArch64", length);
2256#elif defined(AMD64)
2257  strncpy(cpuinfo, "x86_64", length);
2258#elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2259  strncpy(cpuinfo, "ARM", length);
2260#elif defined(IA32)
2261  strncpy(cpuinfo, "x86_32", length);
2262#elif defined(IA64)
2263  strncpy(cpuinfo, "IA64", length);
2264#elif defined(PPC)
2265  strncpy(cpuinfo, "PPC64", length);
2266#elif defined(S390)
2267  strncpy(cpuinfo, "S390", length);
2268#elif defined(SPARC)
2269  strncpy(cpuinfo, "sparcv9", length);
2270#elif defined(ZERO_LIBARCH)
2271  strncpy(cpuinfo, ZERO_LIBARCH, length);
2272#else
2273  strncpy(cpuinfo, "unknown", length);
2274#endif
2275}
2276
2277static void print_signal_handler(outputStream* st, int sig,
2278                                 char* buf, size_t buflen);
2279
2280void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2281  st->print_cr("Signal Handlers:");
2282  print_signal_handler(st, SIGSEGV, buf, buflen);
2283  print_signal_handler(st, SIGBUS , buf, buflen);
2284  print_signal_handler(st, SIGFPE , buf, buflen);
2285  print_signal_handler(st, SIGPIPE, buf, buflen);
2286  print_signal_handler(st, SIGXFSZ, buf, buflen);
2287  print_signal_handler(st, SIGILL , buf, buflen);
2288  print_signal_handler(st, SR_signum, buf, buflen);
2289  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2290  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2291  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2292  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2293#if defined(PPC64)
2294  print_signal_handler(st, SIGTRAP, buf, buflen);
2295#endif
2296}
2297
2298static char saved_jvm_path[MAXPATHLEN] = {0};
2299
2300// Find the full path to the current module, libjvm.so
2301void os::jvm_path(char *buf, jint buflen) {
2302  // Error checking.
2303  if (buflen < MAXPATHLEN) {
2304    assert(false, "must use a large-enough buffer");
2305    buf[0] = '\0';
2306    return;
2307  }
2308  // Lazy resolve the path to current module.
2309  if (saved_jvm_path[0] != 0) {
2310    strcpy(buf, saved_jvm_path);
2311    return;
2312  }
2313
2314  char dli_fname[MAXPATHLEN];
2315  bool ret = dll_address_to_library_name(
2316                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2317                                         dli_fname, sizeof(dli_fname), NULL);
2318  assert(ret, "cannot locate libjvm");
2319  char *rp = NULL;
2320  if (ret && dli_fname[0] != '\0') {
2321    rp = realpath(dli_fname, buf);
2322  }
2323  if (rp == NULL) {
2324    return;
2325  }
2326
2327  if (Arguments::sun_java_launcher_is_altjvm()) {
2328    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2329    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2330    // If "/jre/lib/" appears at the right place in the string, then
2331    // assume we are installed in a JDK and we're done. Otherwise, check
2332    // for a JAVA_HOME environment variable and fix up the path so it
2333    // looks like libjvm.so is installed there (append a fake suffix
2334    // hotspot/libjvm.so).
2335    const char *p = buf + strlen(buf) - 1;
2336    for (int count = 0; p > buf && count < 5; ++count) {
2337      for (--p; p > buf && *p != '/'; --p)
2338        /* empty */ ;
2339    }
2340
2341    if (strncmp(p, "/jre/lib/", 9) != 0) {
2342      // Look for JAVA_HOME in the environment.
2343      char* java_home_var = ::getenv("JAVA_HOME");
2344      if (java_home_var != NULL && java_home_var[0] != 0) {
2345        char* jrelib_p;
2346        int len;
2347
2348        // Check the current module name "libjvm.so".
2349        p = strrchr(buf, '/');
2350        if (p == NULL) {
2351          return;
2352        }
2353        assert(strstr(p, "/libjvm") == p, "invalid library name");
2354
2355        rp = realpath(java_home_var, buf);
2356        if (rp == NULL) {
2357          return;
2358        }
2359
2360        // determine if this is a legacy image or modules image
2361        // modules image doesn't have "jre" subdirectory
2362        len = strlen(buf);
2363        assert(len < buflen, "Ran out of buffer room");
2364        jrelib_p = buf + len;
2365        snprintf(jrelib_p, buflen-len, "/jre/lib");
2366        if (0 != access(buf, F_OK)) {
2367          snprintf(jrelib_p, buflen-len, "/lib");
2368        }
2369
2370        if (0 == access(buf, F_OK)) {
2371          // Use current module name "libjvm.so"
2372          len = strlen(buf);
2373          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2374        } else {
2375          // Go back to path of .so
2376          rp = realpath(dli_fname, buf);
2377          if (rp == NULL) {
2378            return;
2379          }
2380        }
2381      }
2382    }
2383  }
2384
2385  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2386  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2387}
2388
2389void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2390  // no prefix required, not even "_"
2391}
2392
2393void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2394  // no suffix required
2395}
2396
2397////////////////////////////////////////////////////////////////////////////////
2398// sun.misc.Signal support
2399
2400static volatile jint sigint_count = 0;
2401
2402static void UserHandler(int sig, void *siginfo, void *context) {
2403  // 4511530 - sem_post is serialized and handled by the manager thread. When
2404  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2405  // don't want to flood the manager thread with sem_post requests.
2406  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2407    return;
2408  }
2409
2410  // Ctrl-C is pressed during error reporting, likely because the error
2411  // handler fails to abort. Let VM die immediately.
2412  if (sig == SIGINT && is_error_reported()) {
2413    os::die();
2414  }
2415
2416  os::signal_notify(sig);
2417}
2418
2419void* os::user_handler() {
2420  return CAST_FROM_FN_PTR(void*, UserHandler);
2421}
2422
2423struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2424  struct timespec ts;
2425  // Semaphore's are always associated with CLOCK_REALTIME
2426  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2427  // see unpackTime for discussion on overflow checking
2428  if (sec >= MAX_SECS) {
2429    ts.tv_sec += MAX_SECS;
2430    ts.tv_nsec = 0;
2431  } else {
2432    ts.tv_sec += sec;
2433    ts.tv_nsec += nsec;
2434    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2435      ts.tv_nsec -= NANOSECS_PER_SEC;
2436      ++ts.tv_sec; // note: this must be <= max_secs
2437    }
2438  }
2439
2440  return ts;
2441}
2442
2443extern "C" {
2444  typedef void (*sa_handler_t)(int);
2445  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2446}
2447
2448void* os::signal(int signal_number, void* handler) {
2449  struct sigaction sigAct, oldSigAct;
2450
2451  sigfillset(&(sigAct.sa_mask));
2452  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2453  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2454
2455  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2456    // -1 means registration failed
2457    return (void *)-1;
2458  }
2459
2460  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2461}
2462
2463void os::signal_raise(int signal_number) {
2464  ::raise(signal_number);
2465}
2466
2467// The following code is moved from os.cpp for making this
2468// code platform specific, which it is by its very nature.
2469
2470// Will be modified when max signal is changed to be dynamic
2471int os::sigexitnum_pd() {
2472  return NSIG;
2473}
2474
2475// a counter for each possible signal value
2476static volatile jint pending_signals[NSIG+1] = { 0 };
2477
2478// Linux(POSIX) specific hand shaking semaphore.
2479static sem_t sig_sem;
2480static PosixSemaphore sr_semaphore;
2481
2482void os::signal_init_pd() {
2483  // Initialize signal structures
2484  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2485
2486  // Initialize signal semaphore
2487  ::sem_init(&sig_sem, 0, 0);
2488}
2489
2490void os::signal_notify(int sig) {
2491  Atomic::inc(&pending_signals[sig]);
2492  ::sem_post(&sig_sem);
2493}
2494
2495static int check_pending_signals(bool wait) {
2496  Atomic::store(0, &sigint_count);
2497  for (;;) {
2498    for (int i = 0; i < NSIG + 1; i++) {
2499      jint n = pending_signals[i];
2500      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2501        return i;
2502      }
2503    }
2504    if (!wait) {
2505      return -1;
2506    }
2507    JavaThread *thread = JavaThread::current();
2508    ThreadBlockInVM tbivm(thread);
2509
2510    bool threadIsSuspended;
2511    do {
2512      thread->set_suspend_equivalent();
2513      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2514      ::sem_wait(&sig_sem);
2515
2516      // were we externally suspended while we were waiting?
2517      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2518      if (threadIsSuspended) {
2519        // The semaphore has been incremented, but while we were waiting
2520        // another thread suspended us. We don't want to continue running
2521        // while suspended because that would surprise the thread that
2522        // suspended us.
2523        ::sem_post(&sig_sem);
2524
2525        thread->java_suspend_self();
2526      }
2527    } while (threadIsSuspended);
2528  }
2529}
2530
2531int os::signal_lookup() {
2532  return check_pending_signals(false);
2533}
2534
2535int os::signal_wait() {
2536  return check_pending_signals(true);
2537}
2538
2539////////////////////////////////////////////////////////////////////////////////
2540// Virtual Memory
2541
2542int os::vm_page_size() {
2543  // Seems redundant as all get out
2544  assert(os::Linux::page_size() != -1, "must call os::init");
2545  return os::Linux::page_size();
2546}
2547
2548// Solaris allocates memory by pages.
2549int os::vm_allocation_granularity() {
2550  assert(os::Linux::page_size() != -1, "must call os::init");
2551  return os::Linux::page_size();
2552}
2553
2554// Rationale behind this function:
2555//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2556//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2557//  samples for JITted code. Here we create private executable mapping over the code cache
2558//  and then we can use standard (well, almost, as mapping can change) way to provide
2559//  info for the reporting script by storing timestamp and location of symbol
2560void linux_wrap_code(char* base, size_t size) {
2561  static volatile jint cnt = 0;
2562
2563  if (!UseOprofile) {
2564    return;
2565  }
2566
2567  char buf[PATH_MAX+1];
2568  int num = Atomic::add(1, &cnt);
2569
2570  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2571           os::get_temp_directory(), os::current_process_id(), num);
2572  unlink(buf);
2573
2574  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2575
2576  if (fd != -1) {
2577    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2578    if (rv != (off_t)-1) {
2579      if (::write(fd, "", 1) == 1) {
2580        mmap(base, size,
2581             PROT_READ|PROT_WRITE|PROT_EXEC,
2582             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2583      }
2584    }
2585    ::close(fd);
2586    unlink(buf);
2587  }
2588}
2589
2590static bool recoverable_mmap_error(int err) {
2591  // See if the error is one we can let the caller handle. This
2592  // list of errno values comes from JBS-6843484. I can't find a
2593  // Linux man page that documents this specific set of errno
2594  // values so while this list currently matches Solaris, it may
2595  // change as we gain experience with this failure mode.
2596  switch (err) {
2597  case EBADF:
2598  case EINVAL:
2599  case ENOTSUP:
2600    // let the caller deal with these errors
2601    return true;
2602
2603  default:
2604    // Any remaining errors on this OS can cause our reserved mapping
2605    // to be lost. That can cause confusion where different data
2606    // structures think they have the same memory mapped. The worst
2607    // scenario is if both the VM and a library think they have the
2608    // same memory mapped.
2609    return false;
2610  }
2611}
2612
2613static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2614                                    int err) {
2615  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2616          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2617          os::strerror(err), err);
2618}
2619
2620static void warn_fail_commit_memory(char* addr, size_t size,
2621                                    size_t alignment_hint, bool exec,
2622                                    int err) {
2623  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2624          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2625          alignment_hint, exec, os::strerror(err), err);
2626}
2627
2628// NOTE: Linux kernel does not really reserve the pages for us.
2629//       All it does is to check if there are enough free pages
2630//       left at the time of mmap(). This could be a potential
2631//       problem.
2632int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2633  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2634  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2635                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2636  if (res != (uintptr_t) MAP_FAILED) {
2637    if (UseNUMAInterleaving) {
2638      numa_make_global(addr, size);
2639    }
2640    return 0;
2641  }
2642
2643  int err = errno;  // save errno from mmap() call above
2644
2645  if (!recoverable_mmap_error(err)) {
2646    warn_fail_commit_memory(addr, size, exec, err);
2647    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2648  }
2649
2650  return err;
2651}
2652
2653bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2654  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2655}
2656
2657void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2658                                  const char* mesg) {
2659  assert(mesg != NULL, "mesg must be specified");
2660  int err = os::Linux::commit_memory_impl(addr, size, exec);
2661  if (err != 0) {
2662    // the caller wants all commit errors to exit with the specified mesg:
2663    warn_fail_commit_memory(addr, size, exec, err);
2664    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2665  }
2666}
2667
2668// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2669#ifndef MAP_HUGETLB
2670  #define MAP_HUGETLB 0x40000
2671#endif
2672
2673// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2674#ifndef MADV_HUGEPAGE
2675  #define MADV_HUGEPAGE 14
2676#endif
2677
2678int os::Linux::commit_memory_impl(char* addr, size_t size,
2679                                  size_t alignment_hint, bool exec) {
2680  int err = os::Linux::commit_memory_impl(addr, size, exec);
2681  if (err == 0) {
2682    realign_memory(addr, size, alignment_hint);
2683  }
2684  return err;
2685}
2686
2687bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2688                          bool exec) {
2689  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2690}
2691
2692void os::pd_commit_memory_or_exit(char* addr, size_t size,
2693                                  size_t alignment_hint, bool exec,
2694                                  const char* mesg) {
2695  assert(mesg != NULL, "mesg must be specified");
2696  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2697  if (err != 0) {
2698    // the caller wants all commit errors to exit with the specified mesg:
2699    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2700    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2701  }
2702}
2703
2704void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2705  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2706    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2707    // be supported or the memory may already be backed by huge pages.
2708    ::madvise(addr, bytes, MADV_HUGEPAGE);
2709  }
2710}
2711
2712void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2713  // This method works by doing an mmap over an existing mmaping and effectively discarding
2714  // the existing pages. However it won't work for SHM-based large pages that cannot be
2715  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2716  // small pages on top of the SHM segment. This method always works for small pages, so we
2717  // allow that in any case.
2718  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2719    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2720  }
2721}
2722
2723void os::numa_make_global(char *addr, size_t bytes) {
2724  Linux::numa_interleave_memory(addr, bytes);
2725}
2726
2727// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2728// bind policy to MPOL_PREFERRED for the current thread.
2729#define USE_MPOL_PREFERRED 0
2730
2731void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2732  // To make NUMA and large pages more robust when both enabled, we need to ease
2733  // the requirements on where the memory should be allocated. MPOL_BIND is the
2734  // default policy and it will force memory to be allocated on the specified
2735  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2736  // the specified node, but will not force it. Using this policy will prevent
2737  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2738  // free large pages.
2739  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2740  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2741}
2742
2743bool os::numa_topology_changed() { return false; }
2744
2745size_t os::numa_get_groups_num() {
2746  int max_node = Linux::numa_max_node();
2747  return max_node > 0 ? max_node + 1 : 1;
2748}
2749
2750int os::numa_get_group_id() {
2751  int cpu_id = Linux::sched_getcpu();
2752  if (cpu_id != -1) {
2753    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2754    if (lgrp_id != -1) {
2755      return lgrp_id;
2756    }
2757  }
2758  return 0;
2759}
2760
2761size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2762  for (size_t i = 0; i < size; i++) {
2763    ids[i] = i;
2764  }
2765  return size;
2766}
2767
2768bool os::get_page_info(char *start, page_info* info) {
2769  return false;
2770}
2771
2772char *os::scan_pages(char *start, char* end, page_info* page_expected,
2773                     page_info* page_found) {
2774  return end;
2775}
2776
2777
2778int os::Linux::sched_getcpu_syscall(void) {
2779  unsigned int cpu = 0;
2780  int retval = -1;
2781
2782#if defined(IA32)
2783  #ifndef SYS_getcpu
2784    #define SYS_getcpu 318
2785  #endif
2786  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2787#elif defined(AMD64)
2788// Unfortunately we have to bring all these macros here from vsyscall.h
2789// to be able to compile on old linuxes.
2790  #define __NR_vgetcpu 2
2791  #define VSYSCALL_START (-10UL << 20)
2792  #define VSYSCALL_SIZE 1024
2793  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2794  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2795  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2796  retval = vgetcpu(&cpu, NULL, NULL);
2797#endif
2798
2799  return (retval == -1) ? retval : cpu;
2800}
2801
2802// Something to do with the numa-aware allocator needs these symbols
2803extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2804extern "C" JNIEXPORT void numa_error(char *where) { }
2805
2806
2807// If we are running with libnuma version > 2, then we should
2808// be trying to use symbols with versions 1.1
2809// If we are running with earlier version, which did not have symbol versions,
2810// we should use the base version.
2811void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2812  void *f = dlvsym(handle, name, "libnuma_1.1");
2813  if (f == NULL) {
2814    f = dlsym(handle, name);
2815  }
2816  return f;
2817}
2818
2819bool os::Linux::libnuma_init() {
2820  // sched_getcpu() should be in libc.
2821  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2822                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2823
2824  // If it's not, try a direct syscall.
2825  if (sched_getcpu() == -1) {
2826    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2827                                    (void*)&sched_getcpu_syscall));
2828  }
2829
2830  if (sched_getcpu() != -1) { // Does it work?
2831    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2832    if (handle != NULL) {
2833      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2834                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2835      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2836                                       libnuma_dlsym(handle, "numa_max_node")));
2837      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2838                                        libnuma_dlsym(handle, "numa_available")));
2839      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2840                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2841      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2842                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2843      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2844                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2845
2846
2847      if (numa_available() != -1) {
2848        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2849        // Create a cpu -> node mapping
2850        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2851        rebuild_cpu_to_node_map();
2852        return true;
2853      }
2854    }
2855  }
2856  return false;
2857}
2858
2859size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2860  // Creating guard page is very expensive. Java thread has HotSpot
2861  // guard pages, only enable glibc guard page for non-Java threads.
2862  // (Remember: compiler thread is a Java thread, too!)
2863  return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2864}
2865
2866// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2867// The table is later used in get_node_by_cpu().
2868void os::Linux::rebuild_cpu_to_node_map() {
2869  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2870                              // in libnuma (possible values are starting from 16,
2871                              // and continuing up with every other power of 2, but less
2872                              // than the maximum number of CPUs supported by kernel), and
2873                              // is a subject to change (in libnuma version 2 the requirements
2874                              // are more reasonable) we'll just hardcode the number they use
2875                              // in the library.
2876  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2877
2878  size_t cpu_num = processor_count();
2879  size_t cpu_map_size = NCPUS / BitsPerCLong;
2880  size_t cpu_map_valid_size =
2881    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2882
2883  cpu_to_node()->clear();
2884  cpu_to_node()->at_grow(cpu_num - 1);
2885  size_t node_num = numa_get_groups_num();
2886
2887  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2888  for (size_t i = 0; i < node_num; i++) {
2889    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2890      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2891        if (cpu_map[j] != 0) {
2892          for (size_t k = 0; k < BitsPerCLong; k++) {
2893            if (cpu_map[j] & (1UL << k)) {
2894              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2895            }
2896          }
2897        }
2898      }
2899    }
2900  }
2901  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2902}
2903
2904int os::Linux::get_node_by_cpu(int cpu_id) {
2905  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2906    return cpu_to_node()->at(cpu_id);
2907  }
2908  return -1;
2909}
2910
2911GrowableArray<int>* os::Linux::_cpu_to_node;
2912os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2913os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2914os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2915os::Linux::numa_available_func_t os::Linux::_numa_available;
2916os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2917os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2918os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2919unsigned long* os::Linux::_numa_all_nodes;
2920
2921bool os::pd_uncommit_memory(char* addr, size_t size) {
2922  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2923                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2924  return res  != (uintptr_t) MAP_FAILED;
2925}
2926
2927static address get_stack_commited_bottom(address bottom, size_t size) {
2928  address nbot = bottom;
2929  address ntop = bottom + size;
2930
2931  size_t page_sz = os::vm_page_size();
2932  unsigned pages = size / page_sz;
2933
2934  unsigned char vec[1];
2935  unsigned imin = 1, imax = pages + 1, imid;
2936  int mincore_return_value = 0;
2937
2938  assert(imin <= imax, "Unexpected page size");
2939
2940  while (imin < imax) {
2941    imid = (imax + imin) / 2;
2942    nbot = ntop - (imid * page_sz);
2943
2944    // Use a trick with mincore to check whether the page is mapped or not.
2945    // mincore sets vec to 1 if page resides in memory and to 0 if page
2946    // is swapped output but if page we are asking for is unmapped
2947    // it returns -1,ENOMEM
2948    mincore_return_value = mincore(nbot, page_sz, vec);
2949
2950    if (mincore_return_value == -1) {
2951      // Page is not mapped go up
2952      // to find first mapped page
2953      if (errno != EAGAIN) {
2954        assert(errno == ENOMEM, "Unexpected mincore errno");
2955        imax = imid;
2956      }
2957    } else {
2958      // Page is mapped go down
2959      // to find first not mapped page
2960      imin = imid + 1;
2961    }
2962  }
2963
2964  nbot = nbot + page_sz;
2965
2966  // Adjust stack bottom one page up if last checked page is not mapped
2967  if (mincore_return_value == -1) {
2968    nbot = nbot + page_sz;
2969  }
2970
2971  return nbot;
2972}
2973
2974
2975// Linux uses a growable mapping for the stack, and if the mapping for
2976// the stack guard pages is not removed when we detach a thread the
2977// stack cannot grow beyond the pages where the stack guard was
2978// mapped.  If at some point later in the process the stack expands to
2979// that point, the Linux kernel cannot expand the stack any further
2980// because the guard pages are in the way, and a segfault occurs.
2981//
2982// However, it's essential not to split the stack region by unmapping
2983// a region (leaving a hole) that's already part of the stack mapping,
2984// so if the stack mapping has already grown beyond the guard pages at
2985// the time we create them, we have to truncate the stack mapping.
2986// So, we need to know the extent of the stack mapping when
2987// create_stack_guard_pages() is called.
2988
2989// We only need this for stacks that are growable: at the time of
2990// writing thread stacks don't use growable mappings (i.e. those
2991// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2992// only applies to the main thread.
2993
2994// If the (growable) stack mapping already extends beyond the point
2995// where we're going to put our guard pages, truncate the mapping at
2996// that point by munmap()ping it.  This ensures that when we later
2997// munmap() the guard pages we don't leave a hole in the stack
2998// mapping. This only affects the main/initial thread
2999
3000bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3001  if (os::Linux::is_initial_thread()) {
3002    // As we manually grow stack up to bottom inside create_attached_thread(),
3003    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3004    // we don't need to do anything special.
3005    // Check it first, before calling heavy function.
3006    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3007    unsigned char vec[1];
3008
3009    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3010      // Fallback to slow path on all errors, including EAGAIN
3011      stack_extent = (uintptr_t) get_stack_commited_bottom(
3012                                                           os::Linux::initial_thread_stack_bottom(),
3013                                                           (size_t)addr - stack_extent);
3014    }
3015
3016    if (stack_extent < (uintptr_t)addr) {
3017      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3018    }
3019  }
3020
3021  return os::commit_memory(addr, size, !ExecMem);
3022}
3023
3024// If this is a growable mapping, remove the guard pages entirely by
3025// munmap()ping them.  If not, just call uncommit_memory(). This only
3026// affects the main/initial thread, but guard against future OS changes
3027// It's safe to always unmap guard pages for initial thread because we
3028// always place it right after end of the mapped region
3029
3030bool os::remove_stack_guard_pages(char* addr, size_t size) {
3031  uintptr_t stack_extent, stack_base;
3032
3033  if (os::Linux::is_initial_thread()) {
3034    return ::munmap(addr, size) == 0;
3035  }
3036
3037  return os::uncommit_memory(addr, size);
3038}
3039
3040// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3041// at 'requested_addr'. If there are existing memory mappings at the same
3042// location, however, they will be overwritten. If 'fixed' is false,
3043// 'requested_addr' is only treated as a hint, the return value may or
3044// may not start from the requested address. Unlike Linux mmap(), this
3045// function returns NULL to indicate failure.
3046static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3047  char * addr;
3048  int flags;
3049
3050  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3051  if (fixed) {
3052    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3053    flags |= MAP_FIXED;
3054  }
3055
3056  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3057  // touch an uncommitted page. Otherwise, the read/write might
3058  // succeed if we have enough swap space to back the physical page.
3059  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3060                       flags, -1, 0);
3061
3062  return addr == MAP_FAILED ? NULL : addr;
3063}
3064
3065// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3066//   (req_addr != NULL) or with a given alignment.
3067//  - bytes shall be a multiple of alignment.
3068//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3069//  - alignment sets the alignment at which memory shall be allocated.
3070//     It must be a multiple of allocation granularity.
3071// Returns address of memory or NULL. If req_addr was not NULL, will only return
3072//  req_addr or NULL.
3073static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3074
3075  size_t extra_size = bytes;
3076  if (req_addr == NULL && alignment > 0) {
3077    extra_size += alignment;
3078  }
3079
3080  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3081    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3082    -1, 0);
3083  if (start == MAP_FAILED) {
3084    start = NULL;
3085  } else {
3086    if (req_addr != NULL) {
3087      if (start != req_addr) {
3088        ::munmap(start, extra_size);
3089        start = NULL;
3090      }
3091    } else {
3092      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3093      char* const end_aligned = start_aligned + bytes;
3094      char* const end = start + extra_size;
3095      if (start_aligned > start) {
3096        ::munmap(start, start_aligned - start);
3097      }
3098      if (end_aligned < end) {
3099        ::munmap(end_aligned, end - end_aligned);
3100      }
3101      start = start_aligned;
3102    }
3103  }
3104  return start;
3105}
3106
3107static int anon_munmap(char * addr, size_t size) {
3108  return ::munmap(addr, size) == 0;
3109}
3110
3111char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3112                            size_t alignment_hint) {
3113  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3114}
3115
3116bool os::pd_release_memory(char* addr, size_t size) {
3117  return anon_munmap(addr, size);
3118}
3119
3120static bool linux_mprotect(char* addr, size_t size, int prot) {
3121  // Linux wants the mprotect address argument to be page aligned.
3122  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3123
3124  // According to SUSv3, mprotect() should only be used with mappings
3125  // established by mmap(), and mmap() always maps whole pages. Unaligned
3126  // 'addr' likely indicates problem in the VM (e.g. trying to change
3127  // protection of malloc'ed or statically allocated memory). Check the
3128  // caller if you hit this assert.
3129  assert(addr == bottom, "sanity check");
3130
3131  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3132  return ::mprotect(bottom, size, prot) == 0;
3133}
3134
3135// Set protections specified
3136bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3137                        bool is_committed) {
3138  unsigned int p = 0;
3139  switch (prot) {
3140  case MEM_PROT_NONE: p = PROT_NONE; break;
3141  case MEM_PROT_READ: p = PROT_READ; break;
3142  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3143  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3144  default:
3145    ShouldNotReachHere();
3146  }
3147  // is_committed is unused.
3148  return linux_mprotect(addr, bytes, p);
3149}
3150
3151bool os::guard_memory(char* addr, size_t size) {
3152  return linux_mprotect(addr, size, PROT_NONE);
3153}
3154
3155bool os::unguard_memory(char* addr, size_t size) {
3156  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3157}
3158
3159bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3160                                                    size_t page_size) {
3161  bool result = false;
3162  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3163                 MAP_ANONYMOUS|MAP_PRIVATE,
3164                 -1, 0);
3165  if (p != MAP_FAILED) {
3166    void *aligned_p = align_ptr_up(p, page_size);
3167
3168    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3169
3170    munmap(p, page_size * 2);
3171  }
3172
3173  if (warn && !result) {
3174    warning("TransparentHugePages is not supported by the operating system.");
3175  }
3176
3177  return result;
3178}
3179
3180bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3181  bool result = false;
3182  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3183                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3184                 -1, 0);
3185
3186  if (p != MAP_FAILED) {
3187    // We don't know if this really is a huge page or not.
3188    FILE *fp = fopen("/proc/self/maps", "r");
3189    if (fp) {
3190      while (!feof(fp)) {
3191        char chars[257];
3192        long x = 0;
3193        if (fgets(chars, sizeof(chars), fp)) {
3194          if (sscanf(chars, "%lx-%*x", &x) == 1
3195              && x == (long)p) {
3196            if (strstr (chars, "hugepage")) {
3197              result = true;
3198              break;
3199            }
3200          }
3201        }
3202      }
3203      fclose(fp);
3204    }
3205    munmap(p, page_size);
3206  }
3207
3208  if (warn && !result) {
3209    warning("HugeTLBFS is not supported by the operating system.");
3210  }
3211
3212  return result;
3213}
3214
3215// Set the coredump_filter bits to include largepages in core dump (bit 6)
3216//
3217// From the coredump_filter documentation:
3218//
3219// - (bit 0) anonymous private memory
3220// - (bit 1) anonymous shared memory
3221// - (bit 2) file-backed private memory
3222// - (bit 3) file-backed shared memory
3223// - (bit 4) ELF header pages in file-backed private memory areas (it is
3224//           effective only if the bit 2 is cleared)
3225// - (bit 5) hugetlb private memory
3226// - (bit 6) hugetlb shared memory
3227//
3228static void set_coredump_filter(void) {
3229  FILE *f;
3230  long cdm;
3231
3232  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3233    return;
3234  }
3235
3236  if (fscanf(f, "%lx", &cdm) != 1) {
3237    fclose(f);
3238    return;
3239  }
3240
3241  rewind(f);
3242
3243  if ((cdm & LARGEPAGES_BIT) == 0) {
3244    cdm |= LARGEPAGES_BIT;
3245    fprintf(f, "%#lx", cdm);
3246  }
3247
3248  fclose(f);
3249}
3250
3251// Large page support
3252
3253static size_t _large_page_size = 0;
3254
3255size_t os::Linux::find_large_page_size() {
3256  size_t large_page_size = 0;
3257
3258  // large_page_size on Linux is used to round up heap size. x86 uses either
3259  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3260  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3261  // page as large as 256M.
3262  //
3263  // Here we try to figure out page size by parsing /proc/meminfo and looking
3264  // for a line with the following format:
3265  //    Hugepagesize:     2048 kB
3266  //
3267  // If we can't determine the value (e.g. /proc is not mounted, or the text
3268  // format has been changed), we'll use the largest page size supported by
3269  // the processor.
3270
3271#ifndef ZERO
3272  large_page_size =
3273    AARCH64_ONLY(2 * M)
3274    AMD64_ONLY(2 * M)
3275    ARM32_ONLY(2 * M)
3276    IA32_ONLY(4 * M)
3277    IA64_ONLY(256 * M)
3278    PPC_ONLY(4 * M)
3279    S390_ONLY(1 * M)
3280    SPARC_ONLY(4 * M);
3281#endif // ZERO
3282
3283  FILE *fp = fopen("/proc/meminfo", "r");
3284  if (fp) {
3285    while (!feof(fp)) {
3286      int x = 0;
3287      char buf[16];
3288      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3289        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3290          large_page_size = x * K;
3291          break;
3292        }
3293      } else {
3294        // skip to next line
3295        for (;;) {
3296          int ch = fgetc(fp);
3297          if (ch == EOF || ch == (int)'\n') break;
3298        }
3299      }
3300    }
3301    fclose(fp);
3302  }
3303
3304  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3305    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3306            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3307            proper_unit_for_byte_size(large_page_size));
3308  }
3309
3310  return large_page_size;
3311}
3312
3313size_t os::Linux::setup_large_page_size() {
3314  _large_page_size = Linux::find_large_page_size();
3315  const size_t default_page_size = (size_t)Linux::page_size();
3316  if (_large_page_size > default_page_size) {
3317    _page_sizes[0] = _large_page_size;
3318    _page_sizes[1] = default_page_size;
3319    _page_sizes[2] = 0;
3320  }
3321
3322  return _large_page_size;
3323}
3324
3325bool os::Linux::setup_large_page_type(size_t page_size) {
3326  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3327      FLAG_IS_DEFAULT(UseSHM) &&
3328      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3329
3330    // The type of large pages has not been specified by the user.
3331
3332    // Try UseHugeTLBFS and then UseSHM.
3333    UseHugeTLBFS = UseSHM = true;
3334
3335    // Don't try UseTransparentHugePages since there are known
3336    // performance issues with it turned on. This might change in the future.
3337    UseTransparentHugePages = false;
3338  }
3339
3340  if (UseTransparentHugePages) {
3341    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3342    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3343      UseHugeTLBFS = false;
3344      UseSHM = false;
3345      return true;
3346    }
3347    UseTransparentHugePages = false;
3348  }
3349
3350  if (UseHugeTLBFS) {
3351    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3352    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3353      UseSHM = false;
3354      return true;
3355    }
3356    UseHugeTLBFS = false;
3357  }
3358
3359  return UseSHM;
3360}
3361
3362void os::large_page_init() {
3363  if (!UseLargePages &&
3364      !UseTransparentHugePages &&
3365      !UseHugeTLBFS &&
3366      !UseSHM) {
3367    // Not using large pages.
3368    return;
3369  }
3370
3371  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3372    // The user explicitly turned off large pages.
3373    // Ignore the rest of the large pages flags.
3374    UseTransparentHugePages = false;
3375    UseHugeTLBFS = false;
3376    UseSHM = false;
3377    return;
3378  }
3379
3380  size_t large_page_size = Linux::setup_large_page_size();
3381  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3382
3383  set_coredump_filter();
3384}
3385
3386#ifndef SHM_HUGETLB
3387  #define SHM_HUGETLB 04000
3388#endif
3389
3390#define shm_warning_format(format, ...)              \
3391  do {                                               \
3392    if (UseLargePages &&                             \
3393        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3394         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3395         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3396      warning(format, __VA_ARGS__);                  \
3397    }                                                \
3398  } while (0)
3399
3400#define shm_warning(str) shm_warning_format("%s", str)
3401
3402#define shm_warning_with_errno(str)                \
3403  do {                                             \
3404    int err = errno;                               \
3405    shm_warning_format(str " (error = %d)", err);  \
3406  } while (0)
3407
3408static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3409  assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3410
3411  if (!is_size_aligned(alignment, SHMLBA)) {
3412    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3413    return NULL;
3414  }
3415
3416  // To ensure that we get 'alignment' aligned memory from shmat,
3417  // we pre-reserve aligned virtual memory and then attach to that.
3418
3419  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3420  if (pre_reserved_addr == NULL) {
3421    // Couldn't pre-reserve aligned memory.
3422    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3423    return NULL;
3424  }
3425
3426  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3427  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3428
3429  if ((intptr_t)addr == -1) {
3430    int err = errno;
3431    shm_warning_with_errno("Failed to attach shared memory.");
3432
3433    assert(err != EACCES, "Unexpected error");
3434    assert(err != EIDRM,  "Unexpected error");
3435    assert(err != EINVAL, "Unexpected error");
3436
3437    // Since we don't know if the kernel unmapped the pre-reserved memory area
3438    // we can't unmap it, since that would potentially unmap memory that was
3439    // mapped from other threads.
3440    return NULL;
3441  }
3442
3443  return addr;
3444}
3445
3446static char* shmat_at_address(int shmid, char* req_addr) {
3447  if (!is_ptr_aligned(req_addr, SHMLBA)) {
3448    assert(false, "Requested address needs to be SHMLBA aligned");
3449    return NULL;
3450  }
3451
3452  char* addr = (char*)shmat(shmid, req_addr, 0);
3453
3454  if ((intptr_t)addr == -1) {
3455    shm_warning_with_errno("Failed to attach shared memory.");
3456    return NULL;
3457  }
3458
3459  return addr;
3460}
3461
3462static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3463  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3464  if (req_addr != NULL) {
3465    assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3466    assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3467    return shmat_at_address(shmid, req_addr);
3468  }
3469
3470  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3471  // return large page size aligned memory addresses when req_addr == NULL.
3472  // However, if the alignment is larger than the large page size, we have
3473  // to manually ensure that the memory returned is 'alignment' aligned.
3474  if (alignment > os::large_page_size()) {
3475    assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3476    return shmat_with_alignment(shmid, bytes, alignment);
3477  } else {
3478    return shmat_at_address(shmid, NULL);
3479  }
3480}
3481
3482char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3483                                            char* req_addr, bool exec) {
3484  // "exec" is passed in but not used.  Creating the shared image for
3485  // the code cache doesn't have an SHM_X executable permission to check.
3486  assert(UseLargePages && UseSHM, "only for SHM large pages");
3487  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3488  assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3489
3490  if (!is_size_aligned(bytes, os::large_page_size())) {
3491    return NULL; // Fallback to small pages.
3492  }
3493
3494  // Create a large shared memory region to attach to based on size.
3495  // Currently, size is the total size of the heap.
3496  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3497  if (shmid == -1) {
3498    // Possible reasons for shmget failure:
3499    // 1. shmmax is too small for Java heap.
3500    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3501    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3502    // 2. not enough large page memory.
3503    //    > check available large pages: cat /proc/meminfo
3504    //    > increase amount of large pages:
3505    //          echo new_value > /proc/sys/vm/nr_hugepages
3506    //      Note 1: different Linux may use different name for this property,
3507    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3508    //      Note 2: it's possible there's enough physical memory available but
3509    //            they are so fragmented after a long run that they can't
3510    //            coalesce into large pages. Try to reserve large pages when
3511    //            the system is still "fresh".
3512    shm_warning_with_errno("Failed to reserve shared memory.");
3513    return NULL;
3514  }
3515
3516  // Attach to the region.
3517  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3518
3519  // Remove shmid. If shmat() is successful, the actual shared memory segment
3520  // will be deleted when it's detached by shmdt() or when the process
3521  // terminates. If shmat() is not successful this will remove the shared
3522  // segment immediately.
3523  shmctl(shmid, IPC_RMID, NULL);
3524
3525  return addr;
3526}
3527
3528static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3529                                        int error) {
3530  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3531
3532  bool warn_on_failure = UseLargePages &&
3533      (!FLAG_IS_DEFAULT(UseLargePages) ||
3534       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3535       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3536
3537  if (warn_on_failure) {
3538    char msg[128];
3539    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3540                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3541    warning("%s", msg);
3542  }
3543}
3544
3545char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3546                                                        char* req_addr,
3547                                                        bool exec) {
3548  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3549  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3550  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3551
3552  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3553  char* addr = (char*)::mmap(req_addr, bytes, prot,
3554                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3555                             -1, 0);
3556
3557  if (addr == MAP_FAILED) {
3558    warn_on_large_pages_failure(req_addr, bytes, errno);
3559    return NULL;
3560  }
3561
3562  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3563
3564  return addr;
3565}
3566
3567// Reserve memory using mmap(MAP_HUGETLB).
3568//  - bytes shall be a multiple of alignment.
3569//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3570//  - alignment sets the alignment at which memory shall be allocated.
3571//     It must be a multiple of allocation granularity.
3572// Returns address of memory or NULL. If req_addr was not NULL, will only return
3573//  req_addr or NULL.
3574char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3575                                                         size_t alignment,
3576                                                         char* req_addr,
3577                                                         bool exec) {
3578  size_t large_page_size = os::large_page_size();
3579  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3580
3581  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3582  assert(is_size_aligned(bytes, alignment), "Must be");
3583
3584  // First reserve - but not commit - the address range in small pages.
3585  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3586
3587  if (start == NULL) {
3588    return NULL;
3589  }
3590
3591  assert(is_ptr_aligned(start, alignment), "Must be");
3592
3593  char* end = start + bytes;
3594
3595  // Find the regions of the allocated chunk that can be promoted to large pages.
3596  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3597  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3598
3599  size_t lp_bytes = lp_end - lp_start;
3600
3601  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3602
3603  if (lp_bytes == 0) {
3604    // The mapped region doesn't even span the start and the end of a large page.
3605    // Fall back to allocate a non-special area.
3606    ::munmap(start, end - start);
3607    return NULL;
3608  }
3609
3610  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3611
3612  void* result;
3613
3614  // Commit small-paged leading area.
3615  if (start != lp_start) {
3616    result = ::mmap(start, lp_start - start, prot,
3617                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3618                    -1, 0);
3619    if (result == MAP_FAILED) {
3620      ::munmap(lp_start, end - lp_start);
3621      return NULL;
3622    }
3623  }
3624
3625  // Commit large-paged area.
3626  result = ::mmap(lp_start, lp_bytes, prot,
3627                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3628                  -1, 0);
3629  if (result == MAP_FAILED) {
3630    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3631    // If the mmap above fails, the large pages region will be unmapped and we
3632    // have regions before and after with small pages. Release these regions.
3633    //
3634    // |  mapped  |  unmapped  |  mapped  |
3635    // ^          ^            ^          ^
3636    // start      lp_start     lp_end     end
3637    //
3638    ::munmap(start, lp_start - start);
3639    ::munmap(lp_end, end - lp_end);
3640    return NULL;
3641  }
3642
3643  // Commit small-paged trailing area.
3644  if (lp_end != end) {
3645    result = ::mmap(lp_end, end - lp_end, prot,
3646                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3647                    -1, 0);
3648    if (result == MAP_FAILED) {
3649      ::munmap(start, lp_end - start);
3650      return NULL;
3651    }
3652  }
3653
3654  return start;
3655}
3656
3657char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3658                                                   size_t alignment,
3659                                                   char* req_addr,
3660                                                   bool exec) {
3661  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3662  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3663  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3664  assert(is_power_of_2(os::large_page_size()), "Must be");
3665  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3666
3667  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3668    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3669  } else {
3670    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3671  }
3672}
3673
3674char* os::reserve_memory_special(size_t bytes, size_t alignment,
3675                                 char* req_addr, bool exec) {
3676  assert(UseLargePages, "only for large pages");
3677
3678  char* addr;
3679  if (UseSHM) {
3680    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3681  } else {
3682    assert(UseHugeTLBFS, "must be");
3683    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3684  }
3685
3686  if (addr != NULL) {
3687    if (UseNUMAInterleaving) {
3688      numa_make_global(addr, bytes);
3689    }
3690
3691    // The memory is committed
3692    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3693  }
3694
3695  return addr;
3696}
3697
3698bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3699  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3700  return shmdt(base) == 0;
3701}
3702
3703bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3704  return pd_release_memory(base, bytes);
3705}
3706
3707bool os::release_memory_special(char* base, size_t bytes) {
3708  bool res;
3709  if (MemTracker::tracking_level() > NMT_minimal) {
3710    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3711    res = os::Linux::release_memory_special_impl(base, bytes);
3712    if (res) {
3713      tkr.record((address)base, bytes);
3714    }
3715
3716  } else {
3717    res = os::Linux::release_memory_special_impl(base, bytes);
3718  }
3719  return res;
3720}
3721
3722bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3723  assert(UseLargePages, "only for large pages");
3724  bool res;
3725
3726  if (UseSHM) {
3727    res = os::Linux::release_memory_special_shm(base, bytes);
3728  } else {
3729    assert(UseHugeTLBFS, "must be");
3730    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3731  }
3732  return res;
3733}
3734
3735size_t os::large_page_size() {
3736  return _large_page_size;
3737}
3738
3739// With SysV SHM the entire memory region must be allocated as shared
3740// memory.
3741// HugeTLBFS allows application to commit large page memory on demand.
3742// However, when committing memory with HugeTLBFS fails, the region
3743// that was supposed to be committed will lose the old reservation
3744// and allow other threads to steal that memory region. Because of this
3745// behavior we can't commit HugeTLBFS memory.
3746bool os::can_commit_large_page_memory() {
3747  return UseTransparentHugePages;
3748}
3749
3750bool os::can_execute_large_page_memory() {
3751  return UseTransparentHugePages || UseHugeTLBFS;
3752}
3753
3754// Reserve memory at an arbitrary address, only if that area is
3755// available (and not reserved for something else).
3756
3757char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3758  const int max_tries = 10;
3759  char* base[max_tries];
3760  size_t size[max_tries];
3761  const size_t gap = 0x000000;
3762
3763  // Assert only that the size is a multiple of the page size, since
3764  // that's all that mmap requires, and since that's all we really know
3765  // about at this low abstraction level.  If we need higher alignment,
3766  // we can either pass an alignment to this method or verify alignment
3767  // in one of the methods further up the call chain.  See bug 5044738.
3768  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3769
3770  // Repeatedly allocate blocks until the block is allocated at the
3771  // right spot.
3772
3773  // Linux mmap allows caller to pass an address as hint; give it a try first,
3774  // if kernel honors the hint then we can return immediately.
3775  char * addr = anon_mmap(requested_addr, bytes, false);
3776  if (addr == requested_addr) {
3777    return requested_addr;
3778  }
3779
3780  if (addr != NULL) {
3781    // mmap() is successful but it fails to reserve at the requested address
3782    anon_munmap(addr, bytes);
3783  }
3784
3785  int i;
3786  for (i = 0; i < max_tries; ++i) {
3787    base[i] = reserve_memory(bytes);
3788
3789    if (base[i] != NULL) {
3790      // Is this the block we wanted?
3791      if (base[i] == requested_addr) {
3792        size[i] = bytes;
3793        break;
3794      }
3795
3796      // Does this overlap the block we wanted? Give back the overlapped
3797      // parts and try again.
3798
3799      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3800      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3801        unmap_memory(base[i], top_overlap);
3802        base[i] += top_overlap;
3803        size[i] = bytes - top_overlap;
3804      } else {
3805        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3806        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3807          unmap_memory(requested_addr, bottom_overlap);
3808          size[i] = bytes - bottom_overlap;
3809        } else {
3810          size[i] = bytes;
3811        }
3812      }
3813    }
3814  }
3815
3816  // Give back the unused reserved pieces.
3817
3818  for (int j = 0; j < i; ++j) {
3819    if (base[j] != NULL) {
3820      unmap_memory(base[j], size[j]);
3821    }
3822  }
3823
3824  if (i < max_tries) {
3825    return requested_addr;
3826  } else {
3827    return NULL;
3828  }
3829}
3830
3831size_t os::read(int fd, void *buf, unsigned int nBytes) {
3832  return ::read(fd, buf, nBytes);
3833}
3834
3835size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3836  return ::pread(fd, buf, nBytes, offset);
3837}
3838
3839// Short sleep, direct OS call.
3840//
3841// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3842// sched_yield(2) will actually give up the CPU:
3843//
3844//   * Alone on this pariticular CPU, keeps running.
3845//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3846//     (pre 2.6.39).
3847//
3848// So calling this with 0 is an alternative.
3849//
3850void os::naked_short_sleep(jlong ms) {
3851  struct timespec req;
3852
3853  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3854  req.tv_sec = 0;
3855  if (ms > 0) {
3856    req.tv_nsec = (ms % 1000) * 1000000;
3857  } else {
3858    req.tv_nsec = 1;
3859  }
3860
3861  nanosleep(&req, NULL);
3862
3863  return;
3864}
3865
3866// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3867void os::infinite_sleep() {
3868  while (true) {    // sleep forever ...
3869    ::sleep(100);   // ... 100 seconds at a time
3870  }
3871}
3872
3873// Used to convert frequent JVM_Yield() to nops
3874bool os::dont_yield() {
3875  return DontYieldALot;
3876}
3877
3878void os::naked_yield() {
3879  sched_yield();
3880}
3881
3882////////////////////////////////////////////////////////////////////////////////
3883// thread priority support
3884
3885// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3886// only supports dynamic priority, static priority must be zero. For real-time
3887// applications, Linux supports SCHED_RR which allows static priority (1-99).
3888// However, for large multi-threaded applications, SCHED_RR is not only slower
3889// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3890// of 5 runs - Sep 2005).
3891//
3892// The following code actually changes the niceness of kernel-thread/LWP. It
3893// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3894// not the entire user process, and user level threads are 1:1 mapped to kernel
3895// threads. It has always been the case, but could change in the future. For
3896// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3897// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3898
3899int os::java_to_os_priority[CriticalPriority + 1] = {
3900  19,              // 0 Entry should never be used
3901
3902   4,              // 1 MinPriority
3903   3,              // 2
3904   2,              // 3
3905
3906   1,              // 4
3907   0,              // 5 NormPriority
3908  -1,              // 6
3909
3910  -2,              // 7
3911  -3,              // 8
3912  -4,              // 9 NearMaxPriority
3913
3914  -5,              // 10 MaxPriority
3915
3916  -5               // 11 CriticalPriority
3917};
3918
3919static int prio_init() {
3920  if (ThreadPriorityPolicy == 1) {
3921    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3922    // if effective uid is not root. Perhaps, a more elegant way of doing
3923    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3924    if (geteuid() != 0) {
3925      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3926        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3927      }
3928      ThreadPriorityPolicy = 0;
3929    }
3930  }
3931  if (UseCriticalJavaThreadPriority) {
3932    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3933  }
3934  return 0;
3935}
3936
3937OSReturn os::set_native_priority(Thread* thread, int newpri) {
3938  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3939
3940  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3941  return (ret == 0) ? OS_OK : OS_ERR;
3942}
3943
3944OSReturn os::get_native_priority(const Thread* const thread,
3945                                 int *priority_ptr) {
3946  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3947    *priority_ptr = java_to_os_priority[NormPriority];
3948    return OS_OK;
3949  }
3950
3951  errno = 0;
3952  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3953  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3954}
3955
3956// Hint to the underlying OS that a task switch would not be good.
3957// Void return because it's a hint and can fail.
3958void os::hint_no_preempt() {}
3959
3960////////////////////////////////////////////////////////////////////////////////
3961// suspend/resume support
3962
3963//  the low-level signal-based suspend/resume support is a remnant from the
3964//  old VM-suspension that used to be for java-suspension, safepoints etc,
3965//  within hotspot. Now there is a single use-case for this:
3966//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3967//      that runs in the watcher thread.
3968//  The remaining code is greatly simplified from the more general suspension
3969//  code that used to be used.
3970//
3971//  The protocol is quite simple:
3972//  - suspend:
3973//      - sends a signal to the target thread
3974//      - polls the suspend state of the osthread using a yield loop
3975//      - target thread signal handler (SR_handler) sets suspend state
3976//        and blocks in sigsuspend until continued
3977//  - resume:
3978//      - sets target osthread state to continue
3979//      - sends signal to end the sigsuspend loop in the SR_handler
3980//
3981//  Note that the SR_lock plays no role in this suspend/resume protocol,
3982//  but is checked for NULL in SR_handler as a thread termination indicator.
3983
3984static void resume_clear_context(OSThread *osthread) {
3985  osthread->set_ucontext(NULL);
3986  osthread->set_siginfo(NULL);
3987}
3988
3989static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3990                                 ucontext_t* context) {
3991  osthread->set_ucontext(context);
3992  osthread->set_siginfo(siginfo);
3993}
3994
3995// Handler function invoked when a thread's execution is suspended or
3996// resumed. We have to be careful that only async-safe functions are
3997// called here (Note: most pthread functions are not async safe and
3998// should be avoided.)
3999//
4000// Note: sigwait() is a more natural fit than sigsuspend() from an
4001// interface point of view, but sigwait() prevents the signal hander
4002// from being run. libpthread would get very confused by not having
4003// its signal handlers run and prevents sigwait()'s use with the
4004// mutex granting granting signal.
4005//
4006// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4007//
4008static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4009  // Save and restore errno to avoid confusing native code with EINTR
4010  // after sigsuspend.
4011  int old_errno = errno;
4012
4013  Thread* thread = Thread::current_or_null_safe();
4014  assert(thread != NULL, "Missing current thread in SR_handler");
4015
4016  // On some systems we have seen signal delivery get "stuck" until the signal
4017  // mask is changed as part of thread termination. Check that the current thread
4018  // has not already terminated (via SR_lock()) - else the following assertion
4019  // will fail because the thread is no longer a JavaThread as the ~JavaThread
4020  // destructor has completed.
4021
4022  if (thread->SR_lock() == NULL) {
4023    return;
4024  }
4025
4026  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4027
4028  OSThread* osthread = thread->osthread();
4029
4030  os::SuspendResume::State current = osthread->sr.state();
4031  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4032    suspend_save_context(osthread, siginfo, context);
4033
4034    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4035    os::SuspendResume::State state = osthread->sr.suspended();
4036    if (state == os::SuspendResume::SR_SUSPENDED) {
4037      sigset_t suspend_set;  // signals for sigsuspend()
4038      sigemptyset(&suspend_set);
4039      // get current set of blocked signals and unblock resume signal
4040      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4041      sigdelset(&suspend_set, SR_signum);
4042
4043      sr_semaphore.signal();
4044      // wait here until we are resumed
4045      while (1) {
4046        sigsuspend(&suspend_set);
4047
4048        os::SuspendResume::State result = osthread->sr.running();
4049        if (result == os::SuspendResume::SR_RUNNING) {
4050          sr_semaphore.signal();
4051          break;
4052        }
4053      }
4054
4055    } else if (state == os::SuspendResume::SR_RUNNING) {
4056      // request was cancelled, continue
4057    } else {
4058      ShouldNotReachHere();
4059    }
4060
4061    resume_clear_context(osthread);
4062  } else if (current == os::SuspendResume::SR_RUNNING) {
4063    // request was cancelled, continue
4064  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4065    // ignore
4066  } else {
4067    // ignore
4068  }
4069
4070  errno = old_errno;
4071}
4072
4073static int SR_initialize() {
4074  struct sigaction act;
4075  char *s;
4076
4077  // Get signal number to use for suspend/resume
4078  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4079    int sig = ::strtol(s, 0, 10);
4080    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4081        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4082      SR_signum = sig;
4083    } else {
4084      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4085              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4086    }
4087  }
4088
4089  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4090         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4091
4092  sigemptyset(&SR_sigset);
4093  sigaddset(&SR_sigset, SR_signum);
4094
4095  // Set up signal handler for suspend/resume
4096  act.sa_flags = SA_RESTART|SA_SIGINFO;
4097  act.sa_handler = (void (*)(int)) SR_handler;
4098
4099  // SR_signum is blocked by default.
4100  // 4528190 - We also need to block pthread restart signal (32 on all
4101  // supported Linux platforms). Note that LinuxThreads need to block
4102  // this signal for all threads to work properly. So we don't have
4103  // to use hard-coded signal number when setting up the mask.
4104  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4105
4106  if (sigaction(SR_signum, &act, 0) == -1) {
4107    return -1;
4108  }
4109
4110  // Save signal flag
4111  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4112  return 0;
4113}
4114
4115static int sr_notify(OSThread* osthread) {
4116  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4117  assert_status(status == 0, status, "pthread_kill");
4118  return status;
4119}
4120
4121// "Randomly" selected value for how long we want to spin
4122// before bailing out on suspending a thread, also how often
4123// we send a signal to a thread we want to resume
4124static const int RANDOMLY_LARGE_INTEGER = 1000000;
4125static const int RANDOMLY_LARGE_INTEGER2 = 100;
4126
4127// returns true on success and false on error - really an error is fatal
4128// but this seems the normal response to library errors
4129static bool do_suspend(OSThread* osthread) {
4130  assert(osthread->sr.is_running(), "thread should be running");
4131  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4132
4133  // mark as suspended and send signal
4134  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4135    // failed to switch, state wasn't running?
4136    ShouldNotReachHere();
4137    return false;
4138  }
4139
4140  if (sr_notify(osthread) != 0) {
4141    ShouldNotReachHere();
4142  }
4143
4144  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4145  while (true) {
4146    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4147      break;
4148    } else {
4149      // timeout
4150      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4151      if (cancelled == os::SuspendResume::SR_RUNNING) {
4152        return false;
4153      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4154        // make sure that we consume the signal on the semaphore as well
4155        sr_semaphore.wait();
4156        break;
4157      } else {
4158        ShouldNotReachHere();
4159        return false;
4160      }
4161    }
4162  }
4163
4164  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4165  return true;
4166}
4167
4168static void do_resume(OSThread* osthread) {
4169  assert(osthread->sr.is_suspended(), "thread should be suspended");
4170  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4171
4172  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4173    // failed to switch to WAKEUP_REQUEST
4174    ShouldNotReachHere();
4175    return;
4176  }
4177
4178  while (true) {
4179    if (sr_notify(osthread) == 0) {
4180      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4181        if (osthread->sr.is_running()) {
4182          return;
4183        }
4184      }
4185    } else {
4186      ShouldNotReachHere();
4187    }
4188  }
4189
4190  guarantee(osthread->sr.is_running(), "Must be running!");
4191}
4192
4193///////////////////////////////////////////////////////////////////////////////////
4194// signal handling (except suspend/resume)
4195
4196// This routine may be used by user applications as a "hook" to catch signals.
4197// The user-defined signal handler must pass unrecognized signals to this
4198// routine, and if it returns true (non-zero), then the signal handler must
4199// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4200// routine will never retun false (zero), but instead will execute a VM panic
4201// routine kill the process.
4202//
4203// If this routine returns false, it is OK to call it again.  This allows
4204// the user-defined signal handler to perform checks either before or after
4205// the VM performs its own checks.  Naturally, the user code would be making
4206// a serious error if it tried to handle an exception (such as a null check
4207// or breakpoint) that the VM was generating for its own correct operation.
4208//
4209// This routine may recognize any of the following kinds of signals:
4210//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4211// It should be consulted by handlers for any of those signals.
4212//
4213// The caller of this routine must pass in the three arguments supplied
4214// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4215// field of the structure passed to sigaction().  This routine assumes that
4216// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4217//
4218// Note that the VM will print warnings if it detects conflicting signal
4219// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4220//
4221extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4222                                                 siginfo_t* siginfo,
4223                                                 void* ucontext,
4224                                                 int abort_if_unrecognized);
4225
4226void signalHandler(int sig, siginfo_t* info, void* uc) {
4227  assert(info != NULL && uc != NULL, "it must be old kernel");
4228  int orig_errno = errno;  // Preserve errno value over signal handler.
4229  JVM_handle_linux_signal(sig, info, uc, true);
4230  errno = orig_errno;
4231}
4232
4233
4234// This boolean allows users to forward their own non-matching signals
4235// to JVM_handle_linux_signal, harmlessly.
4236bool os::Linux::signal_handlers_are_installed = false;
4237
4238// For signal-chaining
4239struct sigaction sigact[NSIG];
4240uint64_t sigs = 0;
4241#if (64 < NSIG-1)
4242#error "Not all signals can be encoded in sigs. Adapt its type!"
4243#endif
4244bool os::Linux::libjsig_is_loaded = false;
4245typedef struct sigaction *(*get_signal_t)(int);
4246get_signal_t os::Linux::get_signal_action = NULL;
4247
4248struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4249  struct sigaction *actp = NULL;
4250
4251  if (libjsig_is_loaded) {
4252    // Retrieve the old signal handler from libjsig
4253    actp = (*get_signal_action)(sig);
4254  }
4255  if (actp == NULL) {
4256    // Retrieve the preinstalled signal handler from jvm
4257    actp = get_preinstalled_handler(sig);
4258  }
4259
4260  return actp;
4261}
4262
4263static bool call_chained_handler(struct sigaction *actp, int sig,
4264                                 siginfo_t *siginfo, void *context) {
4265  // Call the old signal handler
4266  if (actp->sa_handler == SIG_DFL) {
4267    // It's more reasonable to let jvm treat it as an unexpected exception
4268    // instead of taking the default action.
4269    return false;
4270  } else if (actp->sa_handler != SIG_IGN) {
4271    if ((actp->sa_flags & SA_NODEFER) == 0) {
4272      // automaticlly block the signal
4273      sigaddset(&(actp->sa_mask), sig);
4274    }
4275
4276    sa_handler_t hand = NULL;
4277    sa_sigaction_t sa = NULL;
4278    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4279    // retrieve the chained handler
4280    if (siginfo_flag_set) {
4281      sa = actp->sa_sigaction;
4282    } else {
4283      hand = actp->sa_handler;
4284    }
4285
4286    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4287      actp->sa_handler = SIG_DFL;
4288    }
4289
4290    // try to honor the signal mask
4291    sigset_t oset;
4292    sigemptyset(&oset);
4293    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4294
4295    // call into the chained handler
4296    if (siginfo_flag_set) {
4297      (*sa)(sig, siginfo, context);
4298    } else {
4299      (*hand)(sig);
4300    }
4301
4302    // restore the signal mask
4303    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4304  }
4305  // Tell jvm's signal handler the signal is taken care of.
4306  return true;
4307}
4308
4309bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4310  bool chained = false;
4311  // signal-chaining
4312  if (UseSignalChaining) {
4313    struct sigaction *actp = get_chained_signal_action(sig);
4314    if (actp != NULL) {
4315      chained = call_chained_handler(actp, sig, siginfo, context);
4316    }
4317  }
4318  return chained;
4319}
4320
4321struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4322  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4323    return &sigact[sig];
4324  }
4325  return NULL;
4326}
4327
4328void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4329  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4330  sigact[sig] = oldAct;
4331  sigs |= (uint64_t)1 << (sig-1);
4332}
4333
4334// for diagnostic
4335int sigflags[NSIG];
4336
4337int os::Linux::get_our_sigflags(int sig) {
4338  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4339  return sigflags[sig];
4340}
4341
4342void os::Linux::set_our_sigflags(int sig, int flags) {
4343  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4344  if (sig > 0 && sig < NSIG) {
4345    sigflags[sig] = flags;
4346  }
4347}
4348
4349void os::Linux::set_signal_handler(int sig, bool set_installed) {
4350  // Check for overwrite.
4351  struct sigaction oldAct;
4352  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4353
4354  void* oldhand = oldAct.sa_sigaction
4355                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4356                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4357  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4358      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4359      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4360    if (AllowUserSignalHandlers || !set_installed) {
4361      // Do not overwrite; user takes responsibility to forward to us.
4362      return;
4363    } else if (UseSignalChaining) {
4364      // save the old handler in jvm
4365      save_preinstalled_handler(sig, oldAct);
4366      // libjsig also interposes the sigaction() call below and saves the
4367      // old sigaction on it own.
4368    } else {
4369      fatal("Encountered unexpected pre-existing sigaction handler "
4370            "%#lx for signal %d.", (long)oldhand, sig);
4371    }
4372  }
4373
4374  struct sigaction sigAct;
4375  sigfillset(&(sigAct.sa_mask));
4376  sigAct.sa_handler = SIG_DFL;
4377  if (!set_installed) {
4378    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4379  } else {
4380    sigAct.sa_sigaction = signalHandler;
4381    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4382  }
4383  // Save flags, which are set by ours
4384  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4385  sigflags[sig] = sigAct.sa_flags;
4386
4387  int ret = sigaction(sig, &sigAct, &oldAct);
4388  assert(ret == 0, "check");
4389
4390  void* oldhand2  = oldAct.sa_sigaction
4391                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4392                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4393  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4394}
4395
4396// install signal handlers for signals that HotSpot needs to
4397// handle in order to support Java-level exception handling.
4398
4399void os::Linux::install_signal_handlers() {
4400  if (!signal_handlers_are_installed) {
4401    signal_handlers_are_installed = true;
4402
4403    // signal-chaining
4404    typedef void (*signal_setting_t)();
4405    signal_setting_t begin_signal_setting = NULL;
4406    signal_setting_t end_signal_setting = NULL;
4407    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4408                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4409    if (begin_signal_setting != NULL) {
4410      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4411                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4412      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4413                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4414      libjsig_is_loaded = true;
4415      assert(UseSignalChaining, "should enable signal-chaining");
4416    }
4417    if (libjsig_is_loaded) {
4418      // Tell libjsig jvm is setting signal handlers
4419      (*begin_signal_setting)();
4420    }
4421
4422    set_signal_handler(SIGSEGV, true);
4423    set_signal_handler(SIGPIPE, true);
4424    set_signal_handler(SIGBUS, true);
4425    set_signal_handler(SIGILL, true);
4426    set_signal_handler(SIGFPE, true);
4427#if defined(PPC64)
4428    set_signal_handler(SIGTRAP, true);
4429#endif
4430    set_signal_handler(SIGXFSZ, true);
4431
4432    if (libjsig_is_loaded) {
4433      // Tell libjsig jvm finishes setting signal handlers
4434      (*end_signal_setting)();
4435    }
4436
4437    // We don't activate signal checker if libjsig is in place, we trust ourselves
4438    // and if UserSignalHandler is installed all bets are off.
4439    // Log that signal checking is off only if -verbose:jni is specified.
4440    if (CheckJNICalls) {
4441      if (libjsig_is_loaded) {
4442        if (PrintJNIResolving) {
4443          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4444        }
4445        check_signals = false;
4446      }
4447      if (AllowUserSignalHandlers) {
4448        if (PrintJNIResolving) {
4449          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4450        }
4451        check_signals = false;
4452      }
4453    }
4454  }
4455}
4456
4457// This is the fastest way to get thread cpu time on Linux.
4458// Returns cpu time (user+sys) for any thread, not only for current.
4459// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4460// It might work on 2.6.10+ with a special kernel/glibc patch.
4461// For reference, please, see IEEE Std 1003.1-2004:
4462//   http://www.unix.org/single_unix_specification
4463
4464jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4465  struct timespec tp;
4466  int rc = os::Linux::clock_gettime(clockid, &tp);
4467  assert(rc == 0, "clock_gettime is expected to return 0 code");
4468
4469  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4470}
4471
4472void os::Linux::initialize_os_info() {
4473  assert(_os_version == 0, "OS info already initialized");
4474
4475  struct utsname _uname;
4476
4477  uint32_t major;
4478  uint32_t minor;
4479  uint32_t fix;
4480
4481  int rc;
4482
4483  // Kernel version is unknown if
4484  // verification below fails.
4485  _os_version = 0x01000000;
4486
4487  rc = uname(&_uname);
4488  if (rc != -1) {
4489
4490    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4491    if (rc == 3) {
4492
4493      if (major < 256 && minor < 256 && fix < 256) {
4494        // Kernel version format is as expected,
4495        // set it overriding unknown state.
4496        _os_version = (major << 16) |
4497                      (minor << 8 ) |
4498                      (fix   << 0 ) ;
4499      }
4500    }
4501  }
4502}
4503
4504uint32_t os::Linux::os_version() {
4505  assert(_os_version != 0, "not initialized");
4506  return _os_version & 0x00FFFFFF;
4507}
4508
4509bool os::Linux::os_version_is_known() {
4510  assert(_os_version != 0, "not initialized");
4511  return _os_version & 0x01000000 ? false : true;
4512}
4513
4514/////
4515// glibc on Linux platform uses non-documented flag
4516// to indicate, that some special sort of signal
4517// trampoline is used.
4518// We will never set this flag, and we should
4519// ignore this flag in our diagnostic
4520#ifdef SIGNIFICANT_SIGNAL_MASK
4521  #undef SIGNIFICANT_SIGNAL_MASK
4522#endif
4523#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4524
4525static const char* get_signal_handler_name(address handler,
4526                                           char* buf, int buflen) {
4527  int offset = 0;
4528  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4529  if (found) {
4530    // skip directory names
4531    const char *p1, *p2;
4532    p1 = buf;
4533    size_t len = strlen(os::file_separator());
4534    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4535    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4536  } else {
4537    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4538  }
4539  return buf;
4540}
4541
4542static void print_signal_handler(outputStream* st, int sig,
4543                                 char* buf, size_t buflen) {
4544  struct sigaction sa;
4545
4546  sigaction(sig, NULL, &sa);
4547
4548  // See comment for SIGNIFICANT_SIGNAL_MASK define
4549  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4550
4551  st->print("%s: ", os::exception_name(sig, buf, buflen));
4552
4553  address handler = (sa.sa_flags & SA_SIGINFO)
4554    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4555    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4556
4557  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4558    st->print("SIG_DFL");
4559  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4560    st->print("SIG_IGN");
4561  } else {
4562    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4563  }
4564
4565  st->print(", sa_mask[0]=");
4566  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4567
4568  address rh = VMError::get_resetted_sighandler(sig);
4569  // May be, handler was resetted by VMError?
4570  if (rh != NULL) {
4571    handler = rh;
4572    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4573  }
4574
4575  st->print(", sa_flags=");
4576  os::Posix::print_sa_flags(st, sa.sa_flags);
4577
4578  // Check: is it our handler?
4579  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4580      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4581    // It is our signal handler
4582    // check for flags, reset system-used one!
4583    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4584      st->print(
4585                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4586                os::Linux::get_our_sigflags(sig));
4587    }
4588  }
4589  st->cr();
4590}
4591
4592
4593#define DO_SIGNAL_CHECK(sig)                      \
4594  do {                                            \
4595    if (!sigismember(&check_signal_done, sig)) {  \
4596      os::Linux::check_signal_handler(sig);       \
4597    }                                             \
4598  } while (0)
4599
4600// This method is a periodic task to check for misbehaving JNI applications
4601// under CheckJNI, we can add any periodic checks here
4602
4603void os::run_periodic_checks() {
4604  if (check_signals == false) return;
4605
4606  // SEGV and BUS if overridden could potentially prevent
4607  // generation of hs*.log in the event of a crash, debugging
4608  // such a case can be very challenging, so we absolutely
4609  // check the following for a good measure:
4610  DO_SIGNAL_CHECK(SIGSEGV);
4611  DO_SIGNAL_CHECK(SIGILL);
4612  DO_SIGNAL_CHECK(SIGFPE);
4613  DO_SIGNAL_CHECK(SIGBUS);
4614  DO_SIGNAL_CHECK(SIGPIPE);
4615  DO_SIGNAL_CHECK(SIGXFSZ);
4616#if defined(PPC64)
4617  DO_SIGNAL_CHECK(SIGTRAP);
4618#endif
4619
4620  // ReduceSignalUsage allows the user to override these handlers
4621  // see comments at the very top and jvm_solaris.h
4622  if (!ReduceSignalUsage) {
4623    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4624    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4625    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4626    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4627  }
4628
4629  DO_SIGNAL_CHECK(SR_signum);
4630}
4631
4632typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4633
4634static os_sigaction_t os_sigaction = NULL;
4635
4636void os::Linux::check_signal_handler(int sig) {
4637  char buf[O_BUFLEN];
4638  address jvmHandler = NULL;
4639
4640
4641  struct sigaction act;
4642  if (os_sigaction == NULL) {
4643    // only trust the default sigaction, in case it has been interposed
4644    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4645    if (os_sigaction == NULL) return;
4646  }
4647
4648  os_sigaction(sig, (struct sigaction*)NULL, &act);
4649
4650
4651  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4652
4653  address thisHandler = (act.sa_flags & SA_SIGINFO)
4654    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4655    : CAST_FROM_FN_PTR(address, act.sa_handler);
4656
4657
4658  switch (sig) {
4659  case SIGSEGV:
4660  case SIGBUS:
4661  case SIGFPE:
4662  case SIGPIPE:
4663  case SIGILL:
4664  case SIGXFSZ:
4665    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4666    break;
4667
4668  case SHUTDOWN1_SIGNAL:
4669  case SHUTDOWN2_SIGNAL:
4670  case SHUTDOWN3_SIGNAL:
4671  case BREAK_SIGNAL:
4672    jvmHandler = (address)user_handler();
4673    break;
4674
4675  default:
4676    if (sig == SR_signum) {
4677      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4678    } else {
4679      return;
4680    }
4681    break;
4682  }
4683
4684  if (thisHandler != jvmHandler) {
4685    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4686    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4687    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4688    // No need to check this sig any longer
4689    sigaddset(&check_signal_done, sig);
4690    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4691    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4692      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4693                    exception_name(sig, buf, O_BUFLEN));
4694    }
4695  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4696    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4697    tty->print("expected:");
4698    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4699    tty->cr();
4700    tty->print("  found:");
4701    os::Posix::print_sa_flags(tty, act.sa_flags);
4702    tty->cr();
4703    // No need to check this sig any longer
4704    sigaddset(&check_signal_done, sig);
4705  }
4706
4707  // Dump all the signal
4708  if (sigismember(&check_signal_done, sig)) {
4709    print_signal_handlers(tty, buf, O_BUFLEN);
4710  }
4711}
4712
4713extern void report_error(char* file_name, int line_no, char* title,
4714                         char* format, ...);
4715
4716// this is called _before_ the most of global arguments have been parsed
4717void os::init(void) {
4718  char dummy;   // used to get a guess on initial stack address
4719//  first_hrtime = gethrtime();
4720
4721  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4722
4723  init_random(1234567);
4724
4725  ThreadCritical::initialize();
4726
4727  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4728  if (Linux::page_size() == -1) {
4729    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4730          os::strerror(errno));
4731  }
4732  init_page_sizes((size_t) Linux::page_size());
4733
4734  Linux::initialize_system_info();
4735
4736  Linux::initialize_os_info();
4737
4738  // main_thread points to the aboriginal thread
4739  Linux::_main_thread = pthread_self();
4740
4741  Linux::clock_init();
4742  initial_time_count = javaTimeNanos();
4743
4744  // pthread_condattr initialization for monotonic clock
4745  int status;
4746  pthread_condattr_t* _condattr = os::Linux::condAttr();
4747  if ((status = pthread_condattr_init(_condattr)) != 0) {
4748    fatal("pthread_condattr_init: %s", os::strerror(status));
4749  }
4750  // Only set the clock if CLOCK_MONOTONIC is available
4751  if (os::supports_monotonic_clock()) {
4752    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4753      if (status == EINVAL) {
4754        warning("Unable to use monotonic clock with relative timed-waits" \
4755                " - changes to the time-of-day clock may have adverse affects");
4756      } else {
4757        fatal("pthread_condattr_setclock: %s", os::strerror(status));
4758      }
4759    }
4760  }
4761  // else it defaults to CLOCK_REALTIME
4762
4763  // retrieve entry point for pthread_setname_np
4764  Linux::_pthread_setname_np =
4765    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4766
4767}
4768
4769// To install functions for atexit system call
4770extern "C" {
4771  static void perfMemory_exit_helper() {
4772    perfMemory_exit();
4773  }
4774}
4775
4776// this is called _after_ the global arguments have been parsed
4777jint os::init_2(void) {
4778  Linux::fast_thread_clock_init();
4779
4780  // Allocate a single page and mark it as readable for safepoint polling
4781  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4782  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4783
4784  os::set_polling_page(polling_page);
4785  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4786
4787  if (!UseMembar) {
4788    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4789    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4790    os::set_memory_serialize_page(mem_serialize_page);
4791    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4792  }
4793
4794  // initialize suspend/resume support - must do this before signal_sets_init()
4795  if (SR_initialize() != 0) {
4796    perror("SR_initialize failed");
4797    return JNI_ERR;
4798  }
4799
4800  Linux::signal_sets_init();
4801  Linux::install_signal_handlers();
4802
4803  // Check and sets minimum stack sizes against command line options
4804  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4805    return JNI_ERR;
4806  }
4807  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4808
4809#if defined(IA32)
4810  workaround_expand_exec_shield_cs_limit();
4811#endif
4812
4813  Linux::libpthread_init();
4814  log_info(os)("HotSpot is running with %s, %s",
4815               Linux::glibc_version(), Linux::libpthread_version());
4816
4817  if (UseNUMA) {
4818    if (!Linux::libnuma_init()) {
4819      UseNUMA = false;
4820    } else {
4821      if ((Linux::numa_max_node() < 1)) {
4822        // There's only one node(they start from 0), disable NUMA.
4823        UseNUMA = false;
4824      }
4825    }
4826    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4827    // we can make the adaptive lgrp chunk resizing work. If the user specified
4828    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4829    // disable adaptive resizing.
4830    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4831      if (FLAG_IS_DEFAULT(UseNUMA)) {
4832        UseNUMA = false;
4833      } else {
4834        if (FLAG_IS_DEFAULT(UseLargePages) &&
4835            FLAG_IS_DEFAULT(UseSHM) &&
4836            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4837          UseLargePages = false;
4838        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4839          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4840          UseAdaptiveSizePolicy = false;
4841          UseAdaptiveNUMAChunkSizing = false;
4842        }
4843      }
4844    }
4845    if (!UseNUMA && ForceNUMA) {
4846      UseNUMA = true;
4847    }
4848  }
4849
4850  if (MaxFDLimit) {
4851    // set the number of file descriptors to max. print out error
4852    // if getrlimit/setrlimit fails but continue regardless.
4853    struct rlimit nbr_files;
4854    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4855    if (status != 0) {
4856      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4857    } else {
4858      nbr_files.rlim_cur = nbr_files.rlim_max;
4859      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4860      if (status != 0) {
4861        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4862      }
4863    }
4864  }
4865
4866  // Initialize lock used to serialize thread creation (see os::create_thread)
4867  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4868
4869  // at-exit methods are called in the reverse order of their registration.
4870  // atexit functions are called on return from main or as a result of a
4871  // call to exit(3C). There can be only 32 of these functions registered
4872  // and atexit() does not set errno.
4873
4874  if (PerfAllowAtExitRegistration) {
4875    // only register atexit functions if PerfAllowAtExitRegistration is set.
4876    // atexit functions can be delayed until process exit time, which
4877    // can be problematic for embedded VM situations. Embedded VMs should
4878    // call DestroyJavaVM() to assure that VM resources are released.
4879
4880    // note: perfMemory_exit_helper atexit function may be removed in
4881    // the future if the appropriate cleanup code can be added to the
4882    // VM_Exit VMOperation's doit method.
4883    if (atexit(perfMemory_exit_helper) != 0) {
4884      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4885    }
4886  }
4887
4888  // initialize thread priority policy
4889  prio_init();
4890
4891  return JNI_OK;
4892}
4893
4894// Mark the polling page as unreadable
4895void os::make_polling_page_unreadable(void) {
4896  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4897    fatal("Could not disable polling page");
4898  }
4899}
4900
4901// Mark the polling page as readable
4902void os::make_polling_page_readable(void) {
4903  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4904    fatal("Could not enable polling page");
4905  }
4906}
4907
4908// older glibc versions don't have this macro (which expands to
4909// an optimized bit-counting function) so we have to roll our own
4910#ifndef CPU_COUNT
4911
4912static int _cpu_count(const cpu_set_t* cpus) {
4913  int count = 0;
4914  // only look up to the number of configured processors
4915  for (int i = 0; i < os::processor_count(); i++) {
4916    if (CPU_ISSET(i, cpus)) {
4917      count++;
4918    }
4919  }
4920  return count;
4921}
4922
4923#define CPU_COUNT(cpus) _cpu_count(cpus)
4924
4925#endif // CPU_COUNT
4926
4927// Get the current number of available processors for this process.
4928// This value can change at any time during a process's lifetime.
4929// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4930// If it appears there may be more than 1024 processors then we do a
4931// dynamic check - see 6515172 for details.
4932// If anything goes wrong we fallback to returning the number of online
4933// processors - which can be greater than the number available to the process.
4934int os::active_processor_count() {
4935  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4936  cpu_set_t* cpus_p = &cpus;
4937  int cpus_size = sizeof(cpu_set_t);
4938
4939  int configured_cpus = processor_count();  // upper bound on available cpus
4940  int cpu_count = 0;
4941
4942// old build platforms may not support dynamic cpu sets
4943#ifdef CPU_ALLOC
4944
4945  // To enable easy testing of the dynamic path on different platforms we
4946  // introduce a diagnostic flag: UseCpuAllocPath
4947  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4948    // kernel may use a mask bigger than cpu_set_t
4949    log_trace(os)("active_processor_count: using dynamic path %s"
4950                  "- configured processors: %d",
4951                  UseCpuAllocPath ? "(forced) " : "",
4952                  configured_cpus);
4953    cpus_p = CPU_ALLOC(configured_cpus);
4954    if (cpus_p != NULL) {
4955      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4956      // zero it just to be safe
4957      CPU_ZERO_S(cpus_size, cpus_p);
4958    }
4959    else {
4960       // failed to allocate so fallback to online cpus
4961       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4962       log_trace(os)("active_processor_count: "
4963                     "CPU_ALLOC failed (%s) - using "
4964                     "online processor count: %d",
4965                     os::strerror(errno), online_cpus);
4966       return online_cpus;
4967    }
4968  }
4969  else {
4970    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4971                  configured_cpus);
4972  }
4973#else // CPU_ALLOC
4974// these stubs won't be executed
4975#define CPU_COUNT_S(size, cpus) -1
4976#define CPU_FREE(cpus)
4977
4978  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4979                configured_cpus);
4980#endif // CPU_ALLOC
4981
4982  // pid 0 means the current thread - which we have to assume represents the process
4983  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4984    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4985      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4986    }
4987    else {
4988      cpu_count = CPU_COUNT(cpus_p);
4989    }
4990    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4991  }
4992  else {
4993    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4994    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4995            "which may exceed available processors", os::strerror(errno), cpu_count);
4996  }
4997
4998  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4999    CPU_FREE(cpus_p);
5000  }
5001
5002  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5003  return cpu_count;
5004}
5005
5006void os::set_native_thread_name(const char *name) {
5007  if (Linux::_pthread_setname_np) {
5008    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5009    snprintf(buf, sizeof(buf), "%s", name);
5010    buf[sizeof(buf) - 1] = '\0';
5011    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5012    // ERANGE should not happen; all other errors should just be ignored.
5013    assert(rc != ERANGE, "pthread_setname_np failed");
5014  }
5015}
5016
5017bool os::distribute_processes(uint length, uint* distribution) {
5018  // Not yet implemented.
5019  return false;
5020}
5021
5022bool os::bind_to_processor(uint processor_id) {
5023  // Not yet implemented.
5024  return false;
5025}
5026
5027///
5028
5029void os::SuspendedThreadTask::internal_do_task() {
5030  if (do_suspend(_thread->osthread())) {
5031    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5032    do_task(context);
5033    do_resume(_thread->osthread());
5034  }
5035}
5036
5037class PcFetcher : public os::SuspendedThreadTask {
5038 public:
5039  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5040  ExtendedPC result();
5041 protected:
5042  void do_task(const os::SuspendedThreadTaskContext& context);
5043 private:
5044  ExtendedPC _epc;
5045};
5046
5047ExtendedPC PcFetcher::result() {
5048  guarantee(is_done(), "task is not done yet.");
5049  return _epc;
5050}
5051
5052void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5053  Thread* thread = context.thread();
5054  OSThread* osthread = thread->osthread();
5055  if (osthread->ucontext() != NULL) {
5056    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5057  } else {
5058    // NULL context is unexpected, double-check this is the VMThread
5059    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5060  }
5061}
5062
5063// Suspends the target using the signal mechanism and then grabs the PC before
5064// resuming the target. Used by the flat-profiler only
5065ExtendedPC os::get_thread_pc(Thread* thread) {
5066  // Make sure that it is called by the watcher for the VMThread
5067  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5068  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5069
5070  PcFetcher fetcher(thread);
5071  fetcher.run();
5072  return fetcher.result();
5073}
5074
5075////////////////////////////////////////////////////////////////////////////////
5076// debug support
5077
5078bool os::find(address addr, outputStream* st) {
5079  Dl_info dlinfo;
5080  memset(&dlinfo, 0, sizeof(dlinfo));
5081  if (dladdr(addr, &dlinfo) != 0) {
5082    st->print(PTR_FORMAT ": ", p2i(addr));
5083    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5084      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5085                p2i(addr) - p2i(dlinfo.dli_saddr));
5086    } else if (dlinfo.dli_fbase != NULL) {
5087      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5088    } else {
5089      st->print("<absolute address>");
5090    }
5091    if (dlinfo.dli_fname != NULL) {
5092      st->print(" in %s", dlinfo.dli_fname);
5093    }
5094    if (dlinfo.dli_fbase != NULL) {
5095      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5096    }
5097    st->cr();
5098
5099    if (Verbose) {
5100      // decode some bytes around the PC
5101      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5102      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5103      address       lowest = (address) dlinfo.dli_sname;
5104      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5105      if (begin < lowest)  begin = lowest;
5106      Dl_info dlinfo2;
5107      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5108          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5109        end = (address) dlinfo2.dli_saddr;
5110      }
5111      Disassembler::decode(begin, end, st);
5112    }
5113    return true;
5114  }
5115  return false;
5116}
5117
5118////////////////////////////////////////////////////////////////////////////////
5119// misc
5120
5121// This does not do anything on Linux. This is basically a hook for being
5122// able to use structured exception handling (thread-local exception filters)
5123// on, e.g., Win32.
5124void
5125os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5126                         JavaCallArguments* args, Thread* thread) {
5127  f(value, method, args, thread);
5128}
5129
5130void os::print_statistics() {
5131}
5132
5133bool os::message_box(const char* title, const char* message) {
5134  int i;
5135  fdStream err(defaultStream::error_fd());
5136  for (i = 0; i < 78; i++) err.print_raw("=");
5137  err.cr();
5138  err.print_raw_cr(title);
5139  for (i = 0; i < 78; i++) err.print_raw("-");
5140  err.cr();
5141  err.print_raw_cr(message);
5142  for (i = 0; i < 78; i++) err.print_raw("=");
5143  err.cr();
5144
5145  char buf[16];
5146  // Prevent process from exiting upon "read error" without consuming all CPU
5147  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5148
5149  return buf[0] == 'y' || buf[0] == 'Y';
5150}
5151
5152int os::stat(const char *path, struct stat *sbuf) {
5153  char pathbuf[MAX_PATH];
5154  if (strlen(path) > MAX_PATH - 1) {
5155    errno = ENAMETOOLONG;
5156    return -1;
5157  }
5158  os::native_path(strcpy(pathbuf, path));
5159  return ::stat(pathbuf, sbuf);
5160}
5161
5162// Is a (classpath) directory empty?
5163bool os::dir_is_empty(const char* path) {
5164  DIR *dir = NULL;
5165  struct dirent *ptr;
5166
5167  dir = opendir(path);
5168  if (dir == NULL) return true;
5169
5170  // Scan the directory
5171  bool result = true;
5172  char buf[sizeof(struct dirent) + MAX_PATH];
5173  while (result && (ptr = ::readdir(dir)) != NULL) {
5174    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5175      result = false;
5176    }
5177  }
5178  closedir(dir);
5179  return result;
5180}
5181
5182// This code originates from JDK's sysOpen and open64_w
5183// from src/solaris/hpi/src/system_md.c
5184
5185int os::open(const char *path, int oflag, int mode) {
5186  if (strlen(path) > MAX_PATH - 1) {
5187    errno = ENAMETOOLONG;
5188    return -1;
5189  }
5190
5191  // All file descriptors that are opened in the Java process and not
5192  // specifically destined for a subprocess should have the close-on-exec
5193  // flag set.  If we don't set it, then careless 3rd party native code
5194  // might fork and exec without closing all appropriate file descriptors
5195  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5196  // turn might:
5197  //
5198  // - cause end-of-file to fail to be detected on some file
5199  //   descriptors, resulting in mysterious hangs, or
5200  //
5201  // - might cause an fopen in the subprocess to fail on a system
5202  //   suffering from bug 1085341.
5203  //
5204  // (Yes, the default setting of the close-on-exec flag is a Unix
5205  // design flaw)
5206  //
5207  // See:
5208  // 1085341: 32-bit stdio routines should support file descriptors >255
5209  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5210  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5211  //
5212  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5213  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5214  // because it saves a system call and removes a small window where the flag
5215  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5216  // and we fall back to using FD_CLOEXEC (see below).
5217#ifdef O_CLOEXEC
5218  oflag |= O_CLOEXEC;
5219#endif
5220
5221  int fd = ::open64(path, oflag, mode);
5222  if (fd == -1) return -1;
5223
5224  //If the open succeeded, the file might still be a directory
5225  {
5226    struct stat64 buf64;
5227    int ret = ::fstat64(fd, &buf64);
5228    int st_mode = buf64.st_mode;
5229
5230    if (ret != -1) {
5231      if ((st_mode & S_IFMT) == S_IFDIR) {
5232        errno = EISDIR;
5233        ::close(fd);
5234        return -1;
5235      }
5236    } else {
5237      ::close(fd);
5238      return -1;
5239    }
5240  }
5241
5242#ifdef FD_CLOEXEC
5243  // Validate that the use of the O_CLOEXEC flag on open above worked.
5244  // With recent kernels, we will perform this check exactly once.
5245  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5246  if (!O_CLOEXEC_is_known_to_work) {
5247    int flags = ::fcntl(fd, F_GETFD);
5248    if (flags != -1) {
5249      if ((flags & FD_CLOEXEC) != 0)
5250        O_CLOEXEC_is_known_to_work = 1;
5251      else
5252        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5253    }
5254  }
5255#endif
5256
5257  return fd;
5258}
5259
5260
5261// create binary file, rewriting existing file if required
5262int os::create_binary_file(const char* path, bool rewrite_existing) {
5263  int oflags = O_WRONLY | O_CREAT;
5264  if (!rewrite_existing) {
5265    oflags |= O_EXCL;
5266  }
5267  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5268}
5269
5270// return current position of file pointer
5271jlong os::current_file_offset(int fd) {
5272  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5273}
5274
5275// move file pointer to the specified offset
5276jlong os::seek_to_file_offset(int fd, jlong offset) {
5277  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5278}
5279
5280// This code originates from JDK's sysAvailable
5281// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5282
5283int os::available(int fd, jlong *bytes) {
5284  jlong cur, end;
5285  int mode;
5286  struct stat64 buf64;
5287
5288  if (::fstat64(fd, &buf64) >= 0) {
5289    mode = buf64.st_mode;
5290    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5291      int n;
5292      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5293        *bytes = n;
5294        return 1;
5295      }
5296    }
5297  }
5298  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5299    return 0;
5300  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5301    return 0;
5302  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5303    return 0;
5304  }
5305  *bytes = end - cur;
5306  return 1;
5307}
5308
5309// Map a block of memory.
5310char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5311                        char *addr, size_t bytes, bool read_only,
5312                        bool allow_exec) {
5313  int prot;
5314  int flags = MAP_PRIVATE;
5315
5316  if (read_only) {
5317    prot = PROT_READ;
5318  } else {
5319    prot = PROT_READ | PROT_WRITE;
5320  }
5321
5322  if (allow_exec) {
5323    prot |= PROT_EXEC;
5324  }
5325
5326  if (addr != NULL) {
5327    flags |= MAP_FIXED;
5328  }
5329
5330  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5331                                     fd, file_offset);
5332  if (mapped_address == MAP_FAILED) {
5333    return NULL;
5334  }
5335  return mapped_address;
5336}
5337
5338
5339// Remap a block of memory.
5340char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5341                          char *addr, size_t bytes, bool read_only,
5342                          bool allow_exec) {
5343  // same as map_memory() on this OS
5344  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5345                        allow_exec);
5346}
5347
5348
5349// Unmap a block of memory.
5350bool os::pd_unmap_memory(char* addr, size_t bytes) {
5351  return munmap(addr, bytes) == 0;
5352}
5353
5354static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5355
5356static clockid_t thread_cpu_clockid(Thread* thread) {
5357  pthread_t tid = thread->osthread()->pthread_id();
5358  clockid_t clockid;
5359
5360  // Get thread clockid
5361  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5362  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5363  return clockid;
5364}
5365
5366// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5367// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5368// of a thread.
5369//
5370// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5371// the fast estimate available on the platform.
5372
5373jlong os::current_thread_cpu_time() {
5374  if (os::Linux::supports_fast_thread_cpu_time()) {
5375    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5376  } else {
5377    // return user + sys since the cost is the same
5378    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5379  }
5380}
5381
5382jlong os::thread_cpu_time(Thread* thread) {
5383  // consistent with what current_thread_cpu_time() returns
5384  if (os::Linux::supports_fast_thread_cpu_time()) {
5385    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5386  } else {
5387    return slow_thread_cpu_time(thread, true /* user + sys */);
5388  }
5389}
5390
5391jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5392  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5393    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5394  } else {
5395    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5396  }
5397}
5398
5399jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5400  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5401    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5402  } else {
5403    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5404  }
5405}
5406
5407//  -1 on error.
5408static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5409  pid_t  tid = thread->osthread()->thread_id();
5410  char *s;
5411  char stat[2048];
5412  int statlen;
5413  char proc_name[64];
5414  int count;
5415  long sys_time, user_time;
5416  char cdummy;
5417  int idummy;
5418  long ldummy;
5419  FILE *fp;
5420
5421  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5422  fp = fopen(proc_name, "r");
5423  if (fp == NULL) return -1;
5424  statlen = fread(stat, 1, 2047, fp);
5425  stat[statlen] = '\0';
5426  fclose(fp);
5427
5428  // Skip pid and the command string. Note that we could be dealing with
5429  // weird command names, e.g. user could decide to rename java launcher
5430  // to "java 1.4.2 :)", then the stat file would look like
5431  //                1234 (java 1.4.2 :)) R ... ...
5432  // We don't really need to know the command string, just find the last
5433  // occurrence of ")" and then start parsing from there. See bug 4726580.
5434  s = strrchr(stat, ')');
5435  if (s == NULL) return -1;
5436
5437  // Skip blank chars
5438  do { s++; } while (s && isspace(*s));
5439
5440  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5441                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5442                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5443                 &user_time, &sys_time);
5444  if (count != 13) return -1;
5445  if (user_sys_cpu_time) {
5446    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5447  } else {
5448    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5449  }
5450}
5451
5452void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5453  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5454  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5455  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5456  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5457}
5458
5459void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5460  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5461  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5462  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5463  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5464}
5465
5466bool os::is_thread_cpu_time_supported() {
5467  return true;
5468}
5469
5470// System loadavg support.  Returns -1 if load average cannot be obtained.
5471// Linux doesn't yet have a (official) notion of processor sets,
5472// so just return the system wide load average.
5473int os::loadavg(double loadavg[], int nelem) {
5474  return ::getloadavg(loadavg, nelem);
5475}
5476
5477void os::pause() {
5478  char filename[MAX_PATH];
5479  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5480    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5481  } else {
5482    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5483  }
5484
5485  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5486  if (fd != -1) {
5487    struct stat buf;
5488    ::close(fd);
5489    while (::stat(filename, &buf) == 0) {
5490      (void)::poll(NULL, 0, 100);
5491    }
5492  } else {
5493    jio_fprintf(stderr,
5494                "Could not open pause file '%s', continuing immediately.\n", filename);
5495  }
5496}
5497
5498
5499// Refer to the comments in os_solaris.cpp park-unpark. The next two
5500// comment paragraphs are worth repeating here:
5501//
5502// Assumption:
5503//    Only one parker can exist on an event, which is why we allocate
5504//    them per-thread. Multiple unparkers can coexist.
5505//
5506// _Event serves as a restricted-range semaphore.
5507//   -1 : thread is blocked, i.e. there is a waiter
5508//    0 : neutral: thread is running or ready,
5509//        could have been signaled after a wait started
5510//    1 : signaled - thread is running or ready
5511//
5512
5513// utility to compute the abstime argument to timedwait:
5514// millis is the relative timeout time
5515// abstime will be the absolute timeout time
5516// TODO: replace compute_abstime() with unpackTime()
5517
5518static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5519  if (millis < 0)  millis = 0;
5520
5521  jlong seconds = millis / 1000;
5522  millis %= 1000;
5523  if (seconds > 50000000) { // see man cond_timedwait(3T)
5524    seconds = 50000000;
5525  }
5526
5527  if (os::supports_monotonic_clock()) {
5528    struct timespec now;
5529    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5530    assert_status(status == 0, status, "clock_gettime");
5531    abstime->tv_sec = now.tv_sec  + seconds;
5532    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5533    if (nanos >= NANOSECS_PER_SEC) {
5534      abstime->tv_sec += 1;
5535      nanos -= NANOSECS_PER_SEC;
5536    }
5537    abstime->tv_nsec = nanos;
5538  } else {
5539    struct timeval now;
5540    int status = gettimeofday(&now, NULL);
5541    assert(status == 0, "gettimeofday");
5542    abstime->tv_sec = now.tv_sec  + seconds;
5543    long usec = now.tv_usec + millis * 1000;
5544    if (usec >= 1000000) {
5545      abstime->tv_sec += 1;
5546      usec -= 1000000;
5547    }
5548    abstime->tv_nsec = usec * 1000;
5549  }
5550  return abstime;
5551}
5552
5553void os::PlatformEvent::park() {       // AKA "down()"
5554  // Transitions for _Event:
5555  //   -1 => -1 : illegal
5556  //    1 =>  0 : pass - return immediately
5557  //    0 => -1 : block; then set _Event to 0 before returning
5558
5559  // Invariant: Only the thread associated with the Event/PlatformEvent
5560  // may call park().
5561  // TODO: assert that _Assoc != NULL or _Assoc == Self
5562  assert(_nParked == 0, "invariant");
5563
5564  int v;
5565  for (;;) {
5566    v = _Event;
5567    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5568  }
5569  guarantee(v >= 0, "invariant");
5570  if (v == 0) {
5571    // Do this the hard way by blocking ...
5572    int status = pthread_mutex_lock(_mutex);
5573    assert_status(status == 0, status, "mutex_lock");
5574    guarantee(_nParked == 0, "invariant");
5575    ++_nParked;
5576    while (_Event < 0) {
5577      status = pthread_cond_wait(_cond, _mutex);
5578      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5579      // Treat this the same as if the wait was interrupted
5580      if (status == ETIME) { status = EINTR; }
5581      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5582    }
5583    --_nParked;
5584
5585    _Event = 0;
5586    status = pthread_mutex_unlock(_mutex);
5587    assert_status(status == 0, status, "mutex_unlock");
5588    // Paranoia to ensure our locked and lock-free paths interact
5589    // correctly with each other.
5590    OrderAccess::fence();
5591  }
5592  guarantee(_Event >= 0, "invariant");
5593}
5594
5595int os::PlatformEvent::park(jlong millis) {
5596  // Transitions for _Event:
5597  //   -1 => -1 : illegal
5598  //    1 =>  0 : pass - return immediately
5599  //    0 => -1 : block; then set _Event to 0 before returning
5600
5601  guarantee(_nParked == 0, "invariant");
5602
5603  int v;
5604  for (;;) {
5605    v = _Event;
5606    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5607  }
5608  guarantee(v >= 0, "invariant");
5609  if (v != 0) return OS_OK;
5610
5611  // We do this the hard way, by blocking the thread.
5612  // Consider enforcing a minimum timeout value.
5613  struct timespec abst;
5614  compute_abstime(&abst, millis);
5615
5616  int ret = OS_TIMEOUT;
5617  int status = pthread_mutex_lock(_mutex);
5618  assert_status(status == 0, status, "mutex_lock");
5619  guarantee(_nParked == 0, "invariant");
5620  ++_nParked;
5621
5622  // Object.wait(timo) will return because of
5623  // (a) notification
5624  // (b) timeout
5625  // (c) thread.interrupt
5626  //
5627  // Thread.interrupt and object.notify{All} both call Event::set.
5628  // That is, we treat thread.interrupt as a special case of notification.
5629  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5630  // We assume all ETIME returns are valid.
5631  //
5632  // TODO: properly differentiate simultaneous notify+interrupt.
5633  // In that case, we should propagate the notify to another waiter.
5634
5635  while (_Event < 0) {
5636    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5637    assert_status(status == 0 || status == EINTR ||
5638                  status == ETIME || status == ETIMEDOUT,
5639                  status, "cond_timedwait");
5640    if (!FilterSpuriousWakeups) break;                 // previous semantics
5641    if (status == ETIME || status == ETIMEDOUT) break;
5642    // We consume and ignore EINTR and spurious wakeups.
5643  }
5644  --_nParked;
5645  if (_Event >= 0) {
5646    ret = OS_OK;
5647  }
5648  _Event = 0;
5649  status = pthread_mutex_unlock(_mutex);
5650  assert_status(status == 0, status, "mutex_unlock");
5651  assert(_nParked == 0, "invariant");
5652  // Paranoia to ensure our locked and lock-free paths interact
5653  // correctly with each other.
5654  OrderAccess::fence();
5655  return ret;
5656}
5657
5658void os::PlatformEvent::unpark() {
5659  // Transitions for _Event:
5660  //    0 => 1 : just return
5661  //    1 => 1 : just return
5662  //   -1 => either 0 or 1; must signal target thread
5663  //         That is, we can safely transition _Event from -1 to either
5664  //         0 or 1.
5665  // See also: "Semaphores in Plan 9" by Mullender & Cox
5666  //
5667  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5668  // that it will take two back-to-back park() calls for the owning
5669  // thread to block. This has the benefit of forcing a spurious return
5670  // from the first park() call after an unpark() call which will help
5671  // shake out uses of park() and unpark() without condition variables.
5672
5673  if (Atomic::xchg(1, &_Event) >= 0) return;
5674
5675  // Wait for the thread associated with the event to vacate
5676  int status = pthread_mutex_lock(_mutex);
5677  assert_status(status == 0, status, "mutex_lock");
5678  int AnyWaiters = _nParked;
5679  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5680  status = pthread_mutex_unlock(_mutex);
5681  assert_status(status == 0, status, "mutex_unlock");
5682  if (AnyWaiters != 0) {
5683    // Note that we signal() *after* dropping the lock for "immortal" Events.
5684    // This is safe and avoids a common class of  futile wakeups.  In rare
5685    // circumstances this can cause a thread to return prematurely from
5686    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5687    // will simply re-test the condition and re-park itself.
5688    // This provides particular benefit if the underlying platform does not
5689    // provide wait morphing.
5690    status = pthread_cond_signal(_cond);
5691    assert_status(status == 0, status, "cond_signal");
5692  }
5693}
5694
5695
5696// JSR166
5697// -------------------------------------------------------
5698
5699// The solaris and linux implementations of park/unpark are fairly
5700// conservative for now, but can be improved. They currently use a
5701// mutex/condvar pair, plus a a count.
5702// Park decrements count if > 0, else does a condvar wait.  Unpark
5703// sets count to 1 and signals condvar.  Only one thread ever waits
5704// on the condvar. Contention seen when trying to park implies that someone
5705// is unparking you, so don't wait. And spurious returns are fine, so there
5706// is no need to track notifications.
5707
5708// This code is common to linux and solaris and will be moved to a
5709// common place in dolphin.
5710//
5711// The passed in time value is either a relative time in nanoseconds
5712// or an absolute time in milliseconds. Either way it has to be unpacked
5713// into suitable seconds and nanoseconds components and stored in the
5714// given timespec structure.
5715// Given time is a 64-bit value and the time_t used in the timespec is only
5716// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5717// overflow if times way in the future are given. Further on Solaris versions
5718// prior to 10 there is a restriction (see cond_timedwait) that the specified
5719// number of seconds, in abstime, is less than current_time  + 100,000,000.
5720// As it will be 28 years before "now + 100000000" will overflow we can
5721// ignore overflow and just impose a hard-limit on seconds using the value
5722// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5723// years from "now".
5724
5725static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5726  assert(time > 0, "convertTime");
5727  time_t max_secs = 0;
5728
5729  if (!os::supports_monotonic_clock() || isAbsolute) {
5730    struct timeval now;
5731    int status = gettimeofday(&now, NULL);
5732    assert(status == 0, "gettimeofday");
5733
5734    max_secs = now.tv_sec + MAX_SECS;
5735
5736    if (isAbsolute) {
5737      jlong secs = time / 1000;
5738      if (secs > max_secs) {
5739        absTime->tv_sec = max_secs;
5740      } else {
5741        absTime->tv_sec = secs;
5742      }
5743      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5744    } else {
5745      jlong secs = time / NANOSECS_PER_SEC;
5746      if (secs >= MAX_SECS) {
5747        absTime->tv_sec = max_secs;
5748        absTime->tv_nsec = 0;
5749      } else {
5750        absTime->tv_sec = now.tv_sec + secs;
5751        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5752        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5753          absTime->tv_nsec -= NANOSECS_PER_SEC;
5754          ++absTime->tv_sec; // note: this must be <= max_secs
5755        }
5756      }
5757    }
5758  } else {
5759    // must be relative using monotonic clock
5760    struct timespec now;
5761    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5762    assert_status(status == 0, status, "clock_gettime");
5763    max_secs = now.tv_sec + MAX_SECS;
5764    jlong secs = time / NANOSECS_PER_SEC;
5765    if (secs >= MAX_SECS) {
5766      absTime->tv_sec = max_secs;
5767      absTime->tv_nsec = 0;
5768    } else {
5769      absTime->tv_sec = now.tv_sec + secs;
5770      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5771      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5772        absTime->tv_nsec -= NANOSECS_PER_SEC;
5773        ++absTime->tv_sec; // note: this must be <= max_secs
5774      }
5775    }
5776  }
5777  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5778  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5779  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5780  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5781}
5782
5783void Parker::park(bool isAbsolute, jlong time) {
5784  // Ideally we'd do something useful while spinning, such
5785  // as calling unpackTime().
5786
5787  // Optional fast-path check:
5788  // Return immediately if a permit is available.
5789  // We depend on Atomic::xchg() having full barrier semantics
5790  // since we are doing a lock-free update to _counter.
5791  if (Atomic::xchg(0, &_counter) > 0) return;
5792
5793  Thread* thread = Thread::current();
5794  assert(thread->is_Java_thread(), "Must be JavaThread");
5795  JavaThread *jt = (JavaThread *)thread;
5796
5797  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5798  // Check interrupt before trying to wait
5799  if (Thread::is_interrupted(thread, false)) {
5800    return;
5801  }
5802
5803  // Next, demultiplex/decode time arguments
5804  timespec absTime;
5805  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5806    return;
5807  }
5808  if (time > 0) {
5809    unpackTime(&absTime, isAbsolute, time);
5810  }
5811
5812
5813  // Enter safepoint region
5814  // Beware of deadlocks such as 6317397.
5815  // The per-thread Parker:: mutex is a classic leaf-lock.
5816  // In particular a thread must never block on the Threads_lock while
5817  // holding the Parker:: mutex.  If safepoints are pending both the
5818  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5819  ThreadBlockInVM tbivm(jt);
5820
5821  // Don't wait if cannot get lock since interference arises from
5822  // unblocking.  Also. check interrupt before trying wait
5823  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5824    return;
5825  }
5826
5827  int status;
5828  if (_counter > 0)  { // no wait needed
5829    _counter = 0;
5830    status = pthread_mutex_unlock(_mutex);
5831    assert_status(status == 0, status, "invariant");
5832    // Paranoia to ensure our locked and lock-free paths interact
5833    // correctly with each other and Java-level accesses.
5834    OrderAccess::fence();
5835    return;
5836  }
5837
5838#ifdef ASSERT
5839  // Don't catch signals while blocked; let the running threads have the signals.
5840  // (This allows a debugger to break into the running thread.)
5841  sigset_t oldsigs;
5842  sigemptyset(&oldsigs);
5843  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5844  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5845#endif
5846
5847  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5848  jt->set_suspend_equivalent();
5849  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5850
5851  assert(_cur_index == -1, "invariant");
5852  if (time == 0) {
5853    _cur_index = REL_INDEX; // arbitrary choice when not timed
5854    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5855  } else {
5856    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5857    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5858  }
5859  _cur_index = -1;
5860  assert_status(status == 0 || status == EINTR ||
5861                status == ETIME || status == ETIMEDOUT,
5862                status, "cond_timedwait");
5863
5864#ifdef ASSERT
5865  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5866#endif
5867
5868  _counter = 0;
5869  status = pthread_mutex_unlock(_mutex);
5870  assert_status(status == 0, status, "invariant");
5871  // Paranoia to ensure our locked and lock-free paths interact
5872  // correctly with each other and Java-level accesses.
5873  OrderAccess::fence();
5874
5875  // If externally suspended while waiting, re-suspend
5876  if (jt->handle_special_suspend_equivalent_condition()) {
5877    jt->java_suspend_self();
5878  }
5879}
5880
5881void Parker::unpark() {
5882  int status = pthread_mutex_lock(_mutex);
5883  assert_status(status == 0, status, "invariant");
5884  const int s = _counter;
5885  _counter = 1;
5886  // must capture correct index before unlocking
5887  int index = _cur_index;
5888  status = pthread_mutex_unlock(_mutex);
5889  assert_status(status == 0, status, "invariant");
5890  if (s < 1 && index != -1) {
5891    // thread is definitely parked
5892    status = pthread_cond_signal(&_cond[index]);
5893    assert_status(status == 0, status, "invariant");
5894  }
5895}
5896
5897
5898extern char** environ;
5899
5900// Run the specified command in a separate process. Return its exit value,
5901// or -1 on failure (e.g. can't fork a new process).
5902// Unlike system(), this function can be called from signal handler. It
5903// doesn't block SIGINT et al.
5904int os::fork_and_exec(char* cmd) {
5905  const char * argv[4] = {"sh", "-c", cmd, NULL};
5906
5907  pid_t pid = fork();
5908
5909  if (pid < 0) {
5910    // fork failed
5911    return -1;
5912
5913  } else if (pid == 0) {
5914    // child process
5915
5916    execve("/bin/sh", (char* const*)argv, environ);
5917
5918    // execve failed
5919    _exit(-1);
5920
5921  } else  {
5922    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5923    // care about the actual exit code, for now.
5924
5925    int status;
5926
5927    // Wait for the child process to exit.  This returns immediately if
5928    // the child has already exited. */
5929    while (waitpid(pid, &status, 0) < 0) {
5930      switch (errno) {
5931      case ECHILD: return 0;
5932      case EINTR: break;
5933      default: return -1;
5934      }
5935    }
5936
5937    if (WIFEXITED(status)) {
5938      // The child exited normally; get its exit code.
5939      return WEXITSTATUS(status);
5940    } else if (WIFSIGNALED(status)) {
5941      // The child exited because of a signal
5942      // The best value to return is 0x80 + signal number,
5943      // because that is what all Unix shells do, and because
5944      // it allows callers to distinguish between process exit and
5945      // process death by signal.
5946      return 0x80 + WTERMSIG(status);
5947    } else {
5948      // Unknown exit code; pass it through
5949      return status;
5950    }
5951  }
5952}
5953
5954// is_headless_jre()
5955//
5956// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5957// in order to report if we are running in a headless jre
5958//
5959// Since JDK8 xawt/libmawt.so was moved into the same directory
5960// as libawt.so, and renamed libawt_xawt.so
5961//
5962bool os::is_headless_jre() {
5963  struct stat statbuf;
5964  char buf[MAXPATHLEN];
5965  char libmawtpath[MAXPATHLEN];
5966  const char *xawtstr  = "/xawt/libmawt.so";
5967  const char *new_xawtstr = "/libawt_xawt.so";
5968  char *p;
5969
5970  // Get path to libjvm.so
5971  os::jvm_path(buf, sizeof(buf));
5972
5973  // Get rid of libjvm.so
5974  p = strrchr(buf, '/');
5975  if (p == NULL) {
5976    return false;
5977  } else {
5978    *p = '\0';
5979  }
5980
5981  // Get rid of client or server
5982  p = strrchr(buf, '/');
5983  if (p == NULL) {
5984    return false;
5985  } else {
5986    *p = '\0';
5987  }
5988
5989  // check xawt/libmawt.so
5990  strcpy(libmawtpath, buf);
5991  strcat(libmawtpath, xawtstr);
5992  if (::stat(libmawtpath, &statbuf) == 0) return false;
5993
5994  // check libawt_xawt.so
5995  strcpy(libmawtpath, buf);
5996  strcat(libmawtpath, new_xawtstr);
5997  if (::stat(libmawtpath, &statbuf) == 0) return false;
5998
5999  return true;
6000}
6001
6002// Get the default path to the core file
6003// Returns the length of the string
6004int os::get_core_path(char* buffer, size_t bufferSize) {
6005  /*
6006   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6007   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6008   */
6009  const int core_pattern_len = 129;
6010  char core_pattern[core_pattern_len] = {0};
6011
6012  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6013  if (core_pattern_file == -1) {
6014    return -1;
6015  }
6016
6017  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6018  ::close(core_pattern_file);
6019  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6020    return -1;
6021  }
6022  if (core_pattern[ret-1] == '\n') {
6023    core_pattern[ret-1] = '\0';
6024  } else {
6025    core_pattern[ret] = '\0';
6026  }
6027
6028  char *pid_pos = strstr(core_pattern, "%p");
6029  int written;
6030
6031  if (core_pattern[0] == '/') {
6032    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6033  } else {
6034    char cwd[PATH_MAX];
6035
6036    const char* p = get_current_directory(cwd, PATH_MAX);
6037    if (p == NULL) {
6038      return -1;
6039    }
6040
6041    if (core_pattern[0] == '|') {
6042      written = jio_snprintf(buffer, bufferSize,
6043                             "\"%s\" (or dumping to %s/core.%d)",
6044                             &core_pattern[1], p, current_process_id());
6045    } else {
6046      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6047    }
6048  }
6049
6050  if (written < 0) {
6051    return -1;
6052  }
6053
6054  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6055    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6056
6057    if (core_uses_pid_file != -1) {
6058      char core_uses_pid = 0;
6059      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6060      ::close(core_uses_pid_file);
6061
6062      if (core_uses_pid == '1') {
6063        jio_snprintf(buffer + written, bufferSize - written,
6064                                          ".%d", current_process_id());
6065      }
6066    }
6067  }
6068
6069  return strlen(buffer);
6070}
6071
6072bool os::start_debugging(char *buf, int buflen) {
6073  int len = (int)strlen(buf);
6074  char *p = &buf[len];
6075
6076  jio_snprintf(p, buflen-len,
6077               "\n\n"
6078               "Do you want to debug the problem?\n\n"
6079               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6080               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6081               "Otherwise, press RETURN to abort...",
6082               os::current_process_id(), os::current_process_id(),
6083               os::current_thread_id(), os::current_thread_id());
6084
6085  bool yes = os::message_box("Unexpected Error", buf);
6086
6087  if (yes) {
6088    // yes, user asked VM to launch debugger
6089    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6090                 os::current_process_id(), os::current_process_id());
6091
6092    os::fork_and_exec(buf);
6093    yes = false;
6094  }
6095  return yes;
6096}
6097
6098
6099// Java/Compiler thread:
6100//
6101//   Low memory addresses
6102// P0 +------------------------+
6103//    |                        |\  Java thread created by VM does not have glibc
6104//    |    glibc guard page    | - guard page, attached Java thread usually has
6105//    |                        |/  1 glibc guard page.
6106// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6107//    |                        |\
6108//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6109//    |                        |/
6110//    +------------------------+ JavaThread::stack_reserved_zone_base()
6111//    |                        |\
6112//    |      Normal Stack      | -
6113//    |                        |/
6114// P2 +------------------------+ Thread::stack_base()
6115//
6116// Non-Java thread:
6117//
6118//   Low memory addresses
6119// P0 +------------------------+
6120//    |                        |\
6121//    |  glibc guard page      | - usually 1 page
6122//    |                        |/
6123// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6124//    |                        |\
6125//    |      Normal Stack      | -
6126//    |                        |/
6127// P2 +------------------------+ Thread::stack_base()
6128//
6129// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6130//    returned from pthread_attr_getstack().
6131// ** Due to NPTL implementation error, linux takes the glibc guard page out
6132//    of the stack size given in pthread_attr. We work around this for
6133//    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6134//
6135#ifndef ZERO
6136static void current_stack_region(address * bottom, size_t * size) {
6137  if (os::Linux::is_initial_thread()) {
6138    // initial thread needs special handling because pthread_getattr_np()
6139    // may return bogus value.
6140    *bottom = os::Linux::initial_thread_stack_bottom();
6141    *size   = os::Linux::initial_thread_stack_size();
6142  } else {
6143    pthread_attr_t attr;
6144
6145    int rslt = pthread_getattr_np(pthread_self(), &attr);
6146
6147    // JVM needs to know exact stack location, abort if it fails
6148    if (rslt != 0) {
6149      if (rslt == ENOMEM) {
6150        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6151      } else {
6152        fatal("pthread_getattr_np failed with error = %d", rslt);
6153      }
6154    }
6155
6156    if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6157      fatal("Cannot locate current stack attributes!");
6158    }
6159
6160    // Work around NPTL stack guard error.
6161    size_t guard_size = 0;
6162    rslt = pthread_attr_getguardsize(&attr, &guard_size);
6163    if (rslt != 0) {
6164      fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6165    }
6166    *bottom += guard_size;
6167    *size   -= guard_size;
6168
6169    pthread_attr_destroy(&attr);
6170
6171  }
6172  assert(os::current_stack_pointer() >= *bottom &&
6173         os::current_stack_pointer() < *bottom + *size, "just checking");
6174}
6175
6176address os::current_stack_base() {
6177  address bottom;
6178  size_t size;
6179  current_stack_region(&bottom, &size);
6180  return (bottom + size);
6181}
6182
6183size_t os::current_stack_size() {
6184  // This stack size includes the usable stack and HotSpot guard pages
6185  // (for the threads that have Hotspot guard pages).
6186  address bottom;
6187  size_t size;
6188  current_stack_region(&bottom, &size);
6189  return size;
6190}
6191#endif
6192
6193static inline struct timespec get_mtime(const char* filename) {
6194  struct stat st;
6195  int ret = os::stat(filename, &st);
6196  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6197  return st.st_mtim;
6198}
6199
6200int os::compare_file_modified_times(const char* file1, const char* file2) {
6201  struct timespec filetime1 = get_mtime(file1);
6202  struct timespec filetime2 = get_mtime(file2);
6203  int diff = filetime1.tv_sec - filetime2.tv_sec;
6204  if (diff == 0) {
6205    return filetime1.tv_nsec - filetime2.tv_nsec;
6206  }
6207  return diff;
6208}
6209
6210/////////////// Unit tests ///////////////
6211
6212#ifndef PRODUCT
6213
6214#define test_log(...)              \
6215  do {                             \
6216    if (VerboseInternalVMTests) {  \
6217      tty->print_cr(__VA_ARGS__);  \
6218      tty->flush();                \
6219    }                              \
6220  } while (false)
6221
6222class TestReserveMemorySpecial : AllStatic {
6223 public:
6224  static void small_page_write(void* addr, size_t size) {
6225    size_t page_size = os::vm_page_size();
6226
6227    char* end = (char*)addr + size;
6228    for (char* p = (char*)addr; p < end; p += page_size) {
6229      *p = 1;
6230    }
6231  }
6232
6233  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6234    if (!UseHugeTLBFS) {
6235      return;
6236    }
6237
6238    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6239
6240    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6241
6242    if (addr != NULL) {
6243      small_page_write(addr, size);
6244
6245      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6246    }
6247  }
6248
6249  static void test_reserve_memory_special_huge_tlbfs_only() {
6250    if (!UseHugeTLBFS) {
6251      return;
6252    }
6253
6254    size_t lp = os::large_page_size();
6255
6256    for (size_t size = lp; size <= lp * 10; size += lp) {
6257      test_reserve_memory_special_huge_tlbfs_only(size);
6258    }
6259  }
6260
6261  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6262    size_t lp = os::large_page_size();
6263    size_t ag = os::vm_allocation_granularity();
6264
6265    // sizes to test
6266    const size_t sizes[] = {
6267      lp, lp + ag, lp + lp / 2, lp * 2,
6268      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6269      lp * 10, lp * 10 + lp / 2
6270    };
6271    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6272
6273    // For each size/alignment combination, we test three scenarios:
6274    // 1) with req_addr == NULL
6275    // 2) with a non-null req_addr at which we expect to successfully allocate
6276    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6277    //    expect the allocation to either fail or to ignore req_addr
6278
6279    // Pre-allocate two areas; they shall be as large as the largest allocation
6280    //  and aligned to the largest alignment we will be testing.
6281    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6282    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6283      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6284      -1, 0);
6285    assert(mapping1 != MAP_FAILED, "should work");
6286
6287    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6288      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6289      -1, 0);
6290    assert(mapping2 != MAP_FAILED, "should work");
6291
6292    // Unmap the first mapping, but leave the second mapping intact: the first
6293    // mapping will serve as a value for a "good" req_addr (case 2). The second
6294    // mapping, still intact, as "bad" req_addr (case 3).
6295    ::munmap(mapping1, mapping_size);
6296
6297    // Case 1
6298    test_log("%s, req_addr NULL:", __FUNCTION__);
6299    test_log("size            align           result");
6300
6301    for (int i = 0; i < num_sizes; i++) {
6302      const size_t size = sizes[i];
6303      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6304        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6305        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6306                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6307        if (p != NULL) {
6308          assert(is_ptr_aligned(p, alignment), "must be");
6309          small_page_write(p, size);
6310          os::Linux::release_memory_special_huge_tlbfs(p, size);
6311        }
6312      }
6313    }
6314
6315    // Case 2
6316    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6317    test_log("size            align           req_addr         result");
6318
6319    for (int i = 0; i < num_sizes; i++) {
6320      const size_t size = sizes[i];
6321      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6322        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6323        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6324        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6325                 size, alignment, p2i(req_addr), p2i(p),
6326                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6327        if (p != NULL) {
6328          assert(p == req_addr, "must be");
6329          small_page_write(p, size);
6330          os::Linux::release_memory_special_huge_tlbfs(p, size);
6331        }
6332      }
6333    }
6334
6335    // Case 3
6336    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6337    test_log("size            align           req_addr         result");
6338
6339    for (int i = 0; i < num_sizes; i++) {
6340      const size_t size = sizes[i];
6341      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6342        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6343        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6344        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6345                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6346        // as the area around req_addr contains already existing mappings, the API should always
6347        // return NULL (as per contract, it cannot return another address)
6348        assert(p == NULL, "must be");
6349      }
6350    }
6351
6352    ::munmap(mapping2, mapping_size);
6353
6354  }
6355
6356  static void test_reserve_memory_special_huge_tlbfs() {
6357    if (!UseHugeTLBFS) {
6358      return;
6359    }
6360
6361    test_reserve_memory_special_huge_tlbfs_only();
6362    test_reserve_memory_special_huge_tlbfs_mixed();
6363  }
6364
6365  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6366    if (!UseSHM) {
6367      return;
6368    }
6369
6370    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6371
6372    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6373
6374    if (addr != NULL) {
6375      assert(is_ptr_aligned(addr, alignment), "Check");
6376      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6377
6378      small_page_write(addr, size);
6379
6380      os::Linux::release_memory_special_shm(addr, size);
6381    }
6382  }
6383
6384  static void test_reserve_memory_special_shm() {
6385    size_t lp = os::large_page_size();
6386    size_t ag = os::vm_allocation_granularity();
6387
6388    for (size_t size = ag; size < lp * 3; size += ag) {
6389      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6390        test_reserve_memory_special_shm(size, alignment);
6391      }
6392    }
6393  }
6394
6395  static void test() {
6396    test_reserve_memory_special_huge_tlbfs();
6397    test_reserve_memory_special_shm();
6398  }
6399};
6400
6401void TestReserveMemorySpecial_test() {
6402  TestReserveMemorySpecial::test();
6403}
6404
6405#endif
6406