os_linux.cpp revision 12468:548cb3b7b713
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109#ifndef _GNU_SOURCE
110  #define _GNU_SOURCE
111  #include <sched.h>
112  #undef _GNU_SOURCE
113#else
114  #include <sched.h>
115#endif
116
117// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
118// getrusage() is prepared to handle the associated failure.
119#ifndef RUSAGE_THREAD
120  #define RUSAGE_THREAD   (1)               /* only the calling thread */
121#endif
122
123#define MAX_PATH    (2 * K)
124
125#define MAX_SECS 100000000
126
127// for timer info max values which include all bits
128#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
129
130#define LARGEPAGES_BIT (1 << 6)
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Linux::_physical_memory = 0;
134
135address   os::Linux::_initial_thread_stack_bottom = NULL;
136uintptr_t os::Linux::_initial_thread_stack_size   = 0;
137
138int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
139int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
140int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
141Mutex* os::Linux::_createThread_lock = NULL;
142pthread_t os::Linux::_main_thread;
143int os::Linux::_page_size = -1;
144bool os::Linux::_supports_fast_thread_cpu_time = false;
145uint32_t os::Linux::_os_version = 0;
146const char * os::Linux::_glibc_version = NULL;
147const char * os::Linux::_libpthread_version = NULL;
148pthread_condattr_t os::Linux::_condattr[1];
149
150static jlong initial_time_count=0;
151
152static int clock_tics_per_sec = 100;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static sigset_t check_signal_done;
156static bool check_signals = true;
157
158// Signal number used to suspend/resume a thread
159
160// do not use any signal number less than SIGSEGV, see 4355769
161static int SR_signum = SIGUSR2;
162sigset_t SR_sigset;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167// utility functions
168
169static int SR_initialize();
170
171julong os::available_memory() {
172  return Linux::available_memory();
173}
174
175julong os::Linux::available_memory() {
176  // values in struct sysinfo are "unsigned long"
177  struct sysinfo si;
178  sysinfo(&si);
179
180  return (julong)si.freeram * si.mem_unit;
181}
182
183julong os::physical_memory() {
184  return Linux::physical_memory();
185}
186
187// Return true if user is running as root.
188
189bool os::have_special_privileges() {
190  static bool init = false;
191  static bool privileges = false;
192  if (!init) {
193    privileges = (getuid() != geteuid()) || (getgid() != getegid());
194    init = true;
195  }
196  return privileges;
197}
198
199
200#ifndef SYS_gettid
201// i386: 224, ia64: 1105, amd64: 186, sparc 143
202  #ifdef __ia64__
203    #define SYS_gettid 1105
204  #else
205    #ifdef __i386__
206      #define SYS_gettid 224
207    #else
208      #ifdef __amd64__
209        #define SYS_gettid 186
210      #else
211        #ifdef __sparc__
212          #define SYS_gettid 143
213        #else
214          #error define gettid for the arch
215        #endif
216      #endif
217    #endif
218  #endif
219#endif
220
221
222// pid_t gettid()
223//
224// Returns the kernel thread id of the currently running thread. Kernel
225// thread id is used to access /proc.
226pid_t os::Linux::gettid() {
227  int rslt = syscall(SYS_gettid);
228  assert(rslt != -1, "must be."); // old linuxthreads implementation?
229  return (pid_t)rslt;
230}
231
232// Most versions of linux have a bug where the number of processors are
233// determined by looking at the /proc file system.  In a chroot environment,
234// the system call returns 1.  This causes the VM to act as if it is
235// a single processor and elide locking (see is_MP() call).
236static bool unsafe_chroot_detected = false;
237static const char *unstable_chroot_error = "/proc file system not found.\n"
238                     "Java may be unstable running multithreaded in a chroot "
239                     "environment on Linux when /proc filesystem is not mounted.";
240
241void os::Linux::initialize_system_info() {
242  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
243  if (processor_count() == 1) {
244    pid_t pid = os::Linux::gettid();
245    char fname[32];
246    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
247    FILE *fp = fopen(fname, "r");
248    if (fp == NULL) {
249      unsafe_chroot_detected = true;
250    } else {
251      fclose(fp);
252    }
253  }
254  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
255  assert(processor_count() > 0, "linux error");
256}
257
258void os::init_system_properties_values() {
259  // The next steps are taken in the product version:
260  //
261  // Obtain the JAVA_HOME value from the location of libjvm.so.
262  // This library should be located at:
263  // <JAVA_HOME>/lib/{client|server}/libjvm.so.
264  //
265  // If "/jre/lib/" appears at the right place in the path, then we
266  // assume libjvm.so is installed in a JDK and we use this path.
267  //
268  // Otherwise exit with message: "Could not create the Java virtual machine."
269  //
270  // The following extra steps are taken in the debugging version:
271  //
272  // If "/jre/lib/" does NOT appear at the right place in the path
273  // instead of exit check for $JAVA_HOME environment variable.
274  //
275  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
276  // then we append a fake suffix "hotspot/libjvm.so" to this path so
277  // it looks like libjvm.so is installed there
278  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
279  //
280  // Otherwise exit.
281  //
282  // Important note: if the location of libjvm.so changes this
283  // code needs to be changed accordingly.
284
285  // See ld(1):
286  //      The linker uses the following search paths to locate required
287  //      shared libraries:
288  //        1: ...
289  //        ...
290  //        7: The default directories, normally /lib and /usr/lib.
291#if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
292  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
293#else
294  #define DEFAULT_LIBPATH "/lib:/usr/lib"
295#endif
296
297// Base path of extensions installed on the system.
298#define SYS_EXT_DIR     "/usr/java/packages"
299#define EXTENSIONS_DIR  "/lib/ext"
300
301  // Buffer that fits several sprintfs.
302  // Note that the space for the colon and the trailing null are provided
303  // by the nulls included by the sizeof operator.
304  const size_t bufsize =
305    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
306         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
307  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
308
309  // sysclasspath, java_home, dll_dir
310  {
311    char *pslash;
312    os::jvm_path(buf, bufsize);
313
314    // Found the full path to libjvm.so.
315    // Now cut the path to <java_home>/jre if we can.
316    pslash = strrchr(buf, '/');
317    if (pslash != NULL) {
318      *pslash = '\0';            // Get rid of /libjvm.so.
319    }
320    pslash = strrchr(buf, '/');
321    if (pslash != NULL) {
322      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
323    }
324    Arguments::set_dll_dir(buf);
325
326    if (pslash != NULL) {
327      pslash = strrchr(buf, '/');
328      if (pslash != NULL) {
329        *pslash = '\0';        // Get rid of /lib.
330      }
331    }
332    Arguments::set_java_home(buf);
333    set_boot_path('/', ':');
334  }
335
336  // Where to look for native libraries.
337  //
338  // Note: Due to a legacy implementation, most of the library path
339  // is set in the launcher. This was to accomodate linking restrictions
340  // on legacy Linux implementations (which are no longer supported).
341  // Eventually, all the library path setting will be done here.
342  //
343  // However, to prevent the proliferation of improperly built native
344  // libraries, the new path component /usr/java/packages is added here.
345  // Eventually, all the library path setting will be done here.
346  {
347    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
348    // should always exist (until the legacy problem cited above is
349    // addressed).
350    const char *v = ::getenv("LD_LIBRARY_PATH");
351    const char *v_colon = ":";
352    if (v == NULL) { v = ""; v_colon = ""; }
353    // That's +1 for the colon and +1 for the trailing '\0'.
354    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
355                                                     strlen(v) + 1 +
356                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
357                                                     mtInternal);
358    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
359    Arguments::set_library_path(ld_library_path);
360    FREE_C_HEAP_ARRAY(char, ld_library_path);
361  }
362
363  // Extensions directories.
364  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
365  Arguments::set_ext_dirs(buf);
366
367  FREE_C_HEAP_ARRAY(char, buf);
368
369#undef DEFAULT_LIBPATH
370#undef SYS_EXT_DIR
371#undef EXTENSIONS_DIR
372}
373
374////////////////////////////////////////////////////////////////////////////////
375// breakpoint support
376
377void os::breakpoint() {
378  BREAKPOINT;
379}
380
381extern "C" void breakpoint() {
382  // use debugger to set breakpoint here
383}
384
385////////////////////////////////////////////////////////////////////////////////
386// signal support
387
388debug_only(static bool signal_sets_initialized = false);
389static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
390
391bool os::Linux::is_sig_ignored(int sig) {
392  struct sigaction oact;
393  sigaction(sig, (struct sigaction*)NULL, &oact);
394  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
395                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
396  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
397    return true;
398  } else {
399    return false;
400  }
401}
402
403void os::Linux::signal_sets_init() {
404  // Should also have an assertion stating we are still single-threaded.
405  assert(!signal_sets_initialized, "Already initialized");
406  // Fill in signals that are necessarily unblocked for all threads in
407  // the VM. Currently, we unblock the following signals:
408  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
409  //                         by -Xrs (=ReduceSignalUsage));
410  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
411  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
412  // the dispositions or masks wrt these signals.
413  // Programs embedding the VM that want to use the above signals for their
414  // own purposes must, at this time, use the "-Xrs" option to prevent
415  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
416  // (See bug 4345157, and other related bugs).
417  // In reality, though, unblocking these signals is really a nop, since
418  // these signals are not blocked by default.
419  sigemptyset(&unblocked_sigs);
420  sigemptyset(&allowdebug_blocked_sigs);
421  sigaddset(&unblocked_sigs, SIGILL);
422  sigaddset(&unblocked_sigs, SIGSEGV);
423  sigaddset(&unblocked_sigs, SIGBUS);
424  sigaddset(&unblocked_sigs, SIGFPE);
425#if defined(PPC64)
426  sigaddset(&unblocked_sigs, SIGTRAP);
427#endif
428  sigaddset(&unblocked_sigs, SR_signum);
429
430  if (!ReduceSignalUsage) {
431    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
432      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
433      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
434    }
435    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
436      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
437      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
438    }
439    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
440      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
441      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
442    }
443  }
444  // Fill in signals that are blocked by all but the VM thread.
445  sigemptyset(&vm_sigs);
446  if (!ReduceSignalUsage) {
447    sigaddset(&vm_sigs, BREAK_SIGNAL);
448  }
449  debug_only(signal_sets_initialized = true);
450
451}
452
453// These are signals that are unblocked while a thread is running Java.
454// (For some reason, they get blocked by default.)
455sigset_t* os::Linux::unblocked_signals() {
456  assert(signal_sets_initialized, "Not initialized");
457  return &unblocked_sigs;
458}
459
460// These are the signals that are blocked while a (non-VM) thread is
461// running Java. Only the VM thread handles these signals.
462sigset_t* os::Linux::vm_signals() {
463  assert(signal_sets_initialized, "Not initialized");
464  return &vm_sigs;
465}
466
467// These are signals that are blocked during cond_wait to allow debugger in
468sigset_t* os::Linux::allowdebug_blocked_signals() {
469  assert(signal_sets_initialized, "Not initialized");
470  return &allowdebug_blocked_sigs;
471}
472
473void os::Linux::hotspot_sigmask(Thread* thread) {
474
475  //Save caller's signal mask before setting VM signal mask
476  sigset_t caller_sigmask;
477  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
478
479  OSThread* osthread = thread->osthread();
480  osthread->set_caller_sigmask(caller_sigmask);
481
482  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
483
484  if (!ReduceSignalUsage) {
485    if (thread->is_VM_thread()) {
486      // Only the VM thread handles BREAK_SIGNAL ...
487      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
488    } else {
489      // ... all other threads block BREAK_SIGNAL
490      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
491    }
492  }
493}
494
495//////////////////////////////////////////////////////////////////////////////
496// detecting pthread library
497
498void os::Linux::libpthread_init() {
499  // Save glibc and pthread version strings.
500#if !defined(_CS_GNU_LIBC_VERSION) || \
501    !defined(_CS_GNU_LIBPTHREAD_VERSION)
502  #error "glibc too old (< 2.3.2)"
503#endif
504
505  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
506  assert(n > 0, "cannot retrieve glibc version");
507  char *str = (char *)malloc(n, mtInternal);
508  confstr(_CS_GNU_LIBC_VERSION, str, n);
509  os::Linux::set_glibc_version(str);
510
511  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
512  assert(n > 0, "cannot retrieve pthread version");
513  str = (char *)malloc(n, mtInternal);
514  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
515  os::Linux::set_libpthread_version(str);
516}
517
518/////////////////////////////////////////////////////////////////////////////
519// thread stack expansion
520
521// os::Linux::manually_expand_stack() takes care of expanding the thread
522// stack. Note that this is normally not needed: pthread stacks allocate
523// thread stack using mmap() without MAP_NORESERVE, so the stack is already
524// committed. Therefore it is not necessary to expand the stack manually.
525//
526// Manually expanding the stack was historically needed on LinuxThreads
527// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
528// it is kept to deal with very rare corner cases:
529//
530// For one, user may run the VM on an own implementation of threads
531// whose stacks are - like the old LinuxThreads - implemented using
532// mmap(MAP_GROWSDOWN).
533//
534// Also, this coding may be needed if the VM is running on the primordial
535// thread. Normally we avoid running on the primordial thread; however,
536// user may still invoke the VM on the primordial thread.
537//
538// The following historical comment describes the details about running
539// on a thread stack allocated with mmap(MAP_GROWSDOWN):
540
541
542// Force Linux kernel to expand current thread stack. If "bottom" is close
543// to the stack guard, caller should block all signals.
544//
545// MAP_GROWSDOWN:
546//   A special mmap() flag that is used to implement thread stacks. It tells
547//   kernel that the memory region should extend downwards when needed. This
548//   allows early versions of LinuxThreads to only mmap the first few pages
549//   when creating a new thread. Linux kernel will automatically expand thread
550//   stack as needed (on page faults).
551//
552//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
553//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
554//   region, it's hard to tell if the fault is due to a legitimate stack
555//   access or because of reading/writing non-exist memory (e.g. buffer
556//   overrun). As a rule, if the fault happens below current stack pointer,
557//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
558//   application (see Linux kernel fault.c).
559//
560//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
561//   stack overflow detection.
562//
563//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
564//   not use MAP_GROWSDOWN.
565//
566// To get around the problem and allow stack banging on Linux, we need to
567// manually expand thread stack after receiving the SIGSEGV.
568//
569// There are two ways to expand thread stack to address "bottom", we used
570// both of them in JVM before 1.5:
571//   1. adjust stack pointer first so that it is below "bottom", and then
572//      touch "bottom"
573//   2. mmap() the page in question
574//
575// Now alternate signal stack is gone, it's harder to use 2. For instance,
576// if current sp is already near the lower end of page 101, and we need to
577// call mmap() to map page 100, it is possible that part of the mmap() frame
578// will be placed in page 100. When page 100 is mapped, it is zero-filled.
579// That will destroy the mmap() frame and cause VM to crash.
580//
581// The following code works by adjusting sp first, then accessing the "bottom"
582// page to force a page fault. Linux kernel will then automatically expand the
583// stack mapping.
584//
585// _expand_stack_to() assumes its frame size is less than page size, which
586// should always be true if the function is not inlined.
587
588static void NOINLINE _expand_stack_to(address bottom) {
589  address sp;
590  size_t size;
591  volatile char *p;
592
593  // Adjust bottom to point to the largest address within the same page, it
594  // gives us a one-page buffer if alloca() allocates slightly more memory.
595  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
596  bottom += os::Linux::page_size() - 1;
597
598  // sp might be slightly above current stack pointer; if that's the case, we
599  // will alloca() a little more space than necessary, which is OK. Don't use
600  // os::current_stack_pointer(), as its result can be slightly below current
601  // stack pointer, causing us to not alloca enough to reach "bottom".
602  sp = (address)&sp;
603
604  if (sp > bottom) {
605    size = sp - bottom;
606    p = (volatile char *)alloca(size);
607    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
608    p[0] = '\0';
609  }
610}
611
612bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
613  assert(t!=NULL, "just checking");
614  assert(t->osthread()->expanding_stack(), "expand should be set");
615  assert(t->stack_base() != NULL, "stack_base was not initialized");
616
617  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
618    sigset_t mask_all, old_sigset;
619    sigfillset(&mask_all);
620    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
621    _expand_stack_to(addr);
622    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
623    return true;
624  }
625  return false;
626}
627
628//////////////////////////////////////////////////////////////////////////////
629// create new thread
630
631// Thread start routine for all newly created threads
632static void *thread_native_entry(Thread *thread) {
633  // Try to randomize the cache line index of hot stack frames.
634  // This helps when threads of the same stack traces evict each other's
635  // cache lines. The threads can be either from the same JVM instance, or
636  // from different JVM instances. The benefit is especially true for
637  // processors with hyperthreading technology.
638  static int counter = 0;
639  int pid = os::current_process_id();
640  alloca(((pid ^ counter++) & 7) * 128);
641
642  thread->initialize_thread_current();
643
644  OSThread* osthread = thread->osthread();
645  Monitor* sync = osthread->startThread_lock();
646
647  osthread->set_thread_id(os::current_thread_id());
648
649  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
650    os::current_thread_id(), (uintx) pthread_self());
651
652  if (UseNUMA) {
653    int lgrp_id = os::numa_get_group_id();
654    if (lgrp_id != -1) {
655      thread->set_lgrp_id(lgrp_id);
656    }
657  }
658  // initialize signal mask for this thread
659  os::Linux::hotspot_sigmask(thread);
660
661  // initialize floating point control register
662  os::Linux::init_thread_fpu_state();
663
664  // handshaking with parent thread
665  {
666    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
667
668    // notify parent thread
669    osthread->set_state(INITIALIZED);
670    sync->notify_all();
671
672    // wait until os::start_thread()
673    while (osthread->get_state() == INITIALIZED) {
674      sync->wait(Mutex::_no_safepoint_check_flag);
675    }
676  }
677
678  // call one more level start routine
679  thread->run();
680
681  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
682    os::current_thread_id(), (uintx) pthread_self());
683
684  // If a thread has not deleted itself ("delete this") as part of its
685  // termination sequence, we have to ensure thread-local-storage is
686  // cleared before we actually terminate. No threads should ever be
687  // deleted asynchronously with respect to their termination.
688  if (Thread::current_or_null_safe() != NULL) {
689    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
690    thread->clear_thread_current();
691  }
692
693  return 0;
694}
695
696bool os::create_thread(Thread* thread, ThreadType thr_type,
697                       size_t req_stack_size) {
698  assert(thread->osthread() == NULL, "caller responsible");
699
700  // Allocate the OSThread object
701  OSThread* osthread = new OSThread(NULL, NULL);
702  if (osthread == NULL) {
703    return false;
704  }
705
706  // set the correct thread state
707  osthread->set_thread_type(thr_type);
708
709  // Initial state is ALLOCATED but not INITIALIZED
710  osthread->set_state(ALLOCATED);
711
712  thread->set_osthread(osthread);
713
714  // init thread attributes
715  pthread_attr_t attr;
716  pthread_attr_init(&attr);
717  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
718
719  // Calculate stack size if it's not specified by caller.
720  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
721  // In the Linux NPTL pthread implementation the guard size mechanism
722  // is not implemented properly. The posix standard requires adding
723  // the size of the guard pages to the stack size, instead Linux
724  // takes the space out of 'stacksize'. Thus we adapt the requested
725  // stack_size by the size of the guard pages to mimick proper
726  // behaviour.
727  stack_size = align_size_up(stack_size + os::Linux::default_guard_size(thr_type), vm_page_size());
728  pthread_attr_setstacksize(&attr, stack_size);
729
730  // Configure glibc guard page.
731  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
732
733  ThreadState state;
734
735  {
736    pthread_t tid;
737    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
738
739    char buf[64];
740    if (ret == 0) {
741      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
742        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
743    } else {
744      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
745        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
746    }
747
748    pthread_attr_destroy(&attr);
749
750    if (ret != 0) {
751      // Need to clean up stuff we've allocated so far
752      thread->set_osthread(NULL);
753      delete osthread;
754      return false;
755    }
756
757    // Store pthread info into the OSThread
758    osthread->set_pthread_id(tid);
759
760    // Wait until child thread is either initialized or aborted
761    {
762      Monitor* sync_with_child = osthread->startThread_lock();
763      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
764      while ((state = osthread->get_state()) == ALLOCATED) {
765        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
766      }
767    }
768  }
769
770  // Aborted due to thread limit being reached
771  if (state == ZOMBIE) {
772    thread->set_osthread(NULL);
773    delete osthread;
774    return false;
775  }
776
777  // The thread is returned suspended (in state INITIALIZED),
778  // and is started higher up in the call chain
779  assert(state == INITIALIZED, "race condition");
780  return true;
781}
782
783/////////////////////////////////////////////////////////////////////////////
784// attach existing thread
785
786// bootstrap the main thread
787bool os::create_main_thread(JavaThread* thread) {
788  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
789  return create_attached_thread(thread);
790}
791
792bool os::create_attached_thread(JavaThread* thread) {
793#ifdef ASSERT
794  thread->verify_not_published();
795#endif
796
797  // Allocate the OSThread object
798  OSThread* osthread = new OSThread(NULL, NULL);
799
800  if (osthread == NULL) {
801    return false;
802  }
803
804  // Store pthread info into the OSThread
805  osthread->set_thread_id(os::Linux::gettid());
806  osthread->set_pthread_id(::pthread_self());
807
808  // initialize floating point control register
809  os::Linux::init_thread_fpu_state();
810
811  // Initial thread state is RUNNABLE
812  osthread->set_state(RUNNABLE);
813
814  thread->set_osthread(osthread);
815
816  if (UseNUMA) {
817    int lgrp_id = os::numa_get_group_id();
818    if (lgrp_id != -1) {
819      thread->set_lgrp_id(lgrp_id);
820    }
821  }
822
823  if (os::Linux::is_initial_thread()) {
824    // If current thread is initial thread, its stack is mapped on demand,
825    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
826    // the entire stack region to avoid SEGV in stack banging.
827    // It is also useful to get around the heap-stack-gap problem on SuSE
828    // kernel (see 4821821 for details). We first expand stack to the top
829    // of yellow zone, then enable stack yellow zone (order is significant,
830    // enabling yellow zone first will crash JVM on SuSE Linux), so there
831    // is no gap between the last two virtual memory regions.
832
833    JavaThread *jt = (JavaThread *)thread;
834    address addr = jt->stack_reserved_zone_base();
835    assert(addr != NULL, "initialization problem?");
836    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
837
838    osthread->set_expanding_stack();
839    os::Linux::manually_expand_stack(jt, addr);
840    osthread->clear_expanding_stack();
841  }
842
843  // initialize signal mask for this thread
844  // and save the caller's signal mask
845  os::Linux::hotspot_sigmask(thread);
846
847  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
848    os::current_thread_id(), (uintx) pthread_self());
849
850  return true;
851}
852
853void os::pd_start_thread(Thread* thread) {
854  OSThread * osthread = thread->osthread();
855  assert(osthread->get_state() != INITIALIZED, "just checking");
856  Monitor* sync_with_child = osthread->startThread_lock();
857  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
858  sync_with_child->notify();
859}
860
861// Free Linux resources related to the OSThread
862void os::free_thread(OSThread* osthread) {
863  assert(osthread != NULL, "osthread not set");
864
865  // We are told to free resources of the argument thread,
866  // but we can only really operate on the current thread.
867  assert(Thread::current()->osthread() == osthread,
868         "os::free_thread but not current thread");
869
870#ifdef ASSERT
871  sigset_t current;
872  sigemptyset(&current);
873  pthread_sigmask(SIG_SETMASK, NULL, &current);
874  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
875#endif
876
877  // Restore caller's signal mask
878  sigset_t sigmask = osthread->caller_sigmask();
879  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
880
881  delete osthread;
882}
883
884//////////////////////////////////////////////////////////////////////////////
885// initial thread
886
887// Check if current thread is the initial thread, similar to Solaris thr_main.
888bool os::Linux::is_initial_thread(void) {
889  char dummy;
890  // If called before init complete, thread stack bottom will be null.
891  // Can be called if fatal error occurs before initialization.
892  if (initial_thread_stack_bottom() == NULL) return false;
893  assert(initial_thread_stack_bottom() != NULL &&
894         initial_thread_stack_size()   != 0,
895         "os::init did not locate initial thread's stack region");
896  if ((address)&dummy >= initial_thread_stack_bottom() &&
897      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
898    return true;
899  } else {
900    return false;
901  }
902}
903
904// Find the virtual memory area that contains addr
905static bool find_vma(address addr, address* vma_low, address* vma_high) {
906  FILE *fp = fopen("/proc/self/maps", "r");
907  if (fp) {
908    address low, high;
909    while (!feof(fp)) {
910      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
911        if (low <= addr && addr < high) {
912          if (vma_low)  *vma_low  = low;
913          if (vma_high) *vma_high = high;
914          fclose(fp);
915          return true;
916        }
917      }
918      for (;;) {
919        int ch = fgetc(fp);
920        if (ch == EOF || ch == (int)'\n') break;
921      }
922    }
923    fclose(fp);
924  }
925  return false;
926}
927
928// Locate initial thread stack. This special handling of initial thread stack
929// is needed because pthread_getattr_np() on most (all?) Linux distros returns
930// bogus value for initial thread.
931void os::Linux::capture_initial_stack(size_t max_size) {
932  // stack size is the easy part, get it from RLIMIT_STACK
933  struct rlimit rlim;
934  getrlimit(RLIMIT_STACK, &rlim);
935  size_t stack_size = rlim.rlim_cur;
936
937  // 6308388: a bug in ld.so will relocate its own .data section to the
938  //   lower end of primordial stack; reduce ulimit -s value a little bit
939  //   so we won't install guard page on ld.so's data section.
940  stack_size -= 2 * page_size();
941
942  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
943  //   7.1, in both cases we will get 2G in return value.
944  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
945  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
946  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
947  //   in case other parts in glibc still assumes 2M max stack size.
948  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
949  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
950  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
951    stack_size = 2 * K * K IA64_ONLY(*2);
952  }
953  // Try to figure out where the stack base (top) is. This is harder.
954  //
955  // When an application is started, glibc saves the initial stack pointer in
956  // a global variable "__libc_stack_end", which is then used by system
957  // libraries. __libc_stack_end should be pretty close to stack top. The
958  // variable is available since the very early days. However, because it is
959  // a private interface, it could disappear in the future.
960  //
961  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
962  // to __libc_stack_end, it is very close to stack top, but isn't the real
963  // stack top. Note that /proc may not exist if VM is running as a chroot
964  // program, so reading /proc/<pid>/stat could fail. Also the contents of
965  // /proc/<pid>/stat could change in the future (though unlikely).
966  //
967  // We try __libc_stack_end first. If that doesn't work, look for
968  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
969  // as a hint, which should work well in most cases.
970
971  uintptr_t stack_start;
972
973  // try __libc_stack_end first
974  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
975  if (p && *p) {
976    stack_start = *p;
977  } else {
978    // see if we can get the start_stack field from /proc/self/stat
979    FILE *fp;
980    int pid;
981    char state;
982    int ppid;
983    int pgrp;
984    int session;
985    int nr;
986    int tpgrp;
987    unsigned long flags;
988    unsigned long minflt;
989    unsigned long cminflt;
990    unsigned long majflt;
991    unsigned long cmajflt;
992    unsigned long utime;
993    unsigned long stime;
994    long cutime;
995    long cstime;
996    long prio;
997    long nice;
998    long junk;
999    long it_real;
1000    uintptr_t start;
1001    uintptr_t vsize;
1002    intptr_t rss;
1003    uintptr_t rsslim;
1004    uintptr_t scodes;
1005    uintptr_t ecode;
1006    int i;
1007
1008    // Figure what the primordial thread stack base is. Code is inspired
1009    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1010    // followed by command name surrounded by parentheses, state, etc.
1011    char stat[2048];
1012    int statlen;
1013
1014    fp = fopen("/proc/self/stat", "r");
1015    if (fp) {
1016      statlen = fread(stat, 1, 2047, fp);
1017      stat[statlen] = '\0';
1018      fclose(fp);
1019
1020      // Skip pid and the command string. Note that we could be dealing with
1021      // weird command names, e.g. user could decide to rename java launcher
1022      // to "java 1.4.2 :)", then the stat file would look like
1023      //                1234 (java 1.4.2 :)) R ... ...
1024      // We don't really need to know the command string, just find the last
1025      // occurrence of ")" and then start parsing from there. See bug 4726580.
1026      char * s = strrchr(stat, ')');
1027
1028      i = 0;
1029      if (s) {
1030        // Skip blank chars
1031        do { s++; } while (s && isspace(*s));
1032
1033#define _UFM UINTX_FORMAT
1034#define _DFM INTX_FORMAT
1035
1036        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1037        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1038        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1039                   &state,          // 3  %c
1040                   &ppid,           // 4  %d
1041                   &pgrp,           // 5  %d
1042                   &session,        // 6  %d
1043                   &nr,             // 7  %d
1044                   &tpgrp,          // 8  %d
1045                   &flags,          // 9  %lu
1046                   &minflt,         // 10 %lu
1047                   &cminflt,        // 11 %lu
1048                   &majflt,         // 12 %lu
1049                   &cmajflt,        // 13 %lu
1050                   &utime,          // 14 %lu
1051                   &stime,          // 15 %lu
1052                   &cutime,         // 16 %ld
1053                   &cstime,         // 17 %ld
1054                   &prio,           // 18 %ld
1055                   &nice,           // 19 %ld
1056                   &junk,           // 20 %ld
1057                   &it_real,        // 21 %ld
1058                   &start,          // 22 UINTX_FORMAT
1059                   &vsize,          // 23 UINTX_FORMAT
1060                   &rss,            // 24 INTX_FORMAT
1061                   &rsslim,         // 25 UINTX_FORMAT
1062                   &scodes,         // 26 UINTX_FORMAT
1063                   &ecode,          // 27 UINTX_FORMAT
1064                   &stack_start);   // 28 UINTX_FORMAT
1065      }
1066
1067#undef _UFM
1068#undef _DFM
1069
1070      if (i != 28 - 2) {
1071        assert(false, "Bad conversion from /proc/self/stat");
1072        // product mode - assume we are the initial thread, good luck in the
1073        // embedded case.
1074        warning("Can't detect initial thread stack location - bad conversion");
1075        stack_start = (uintptr_t) &rlim;
1076      }
1077    } else {
1078      // For some reason we can't open /proc/self/stat (for example, running on
1079      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1080      // most cases, so don't abort:
1081      warning("Can't detect initial thread stack location - no /proc/self/stat");
1082      stack_start = (uintptr_t) &rlim;
1083    }
1084  }
1085
1086  // Now we have a pointer (stack_start) very close to the stack top, the
1087  // next thing to do is to figure out the exact location of stack top. We
1088  // can find out the virtual memory area that contains stack_start by
1089  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1090  // and its upper limit is the real stack top. (again, this would fail if
1091  // running inside chroot, because /proc may not exist.)
1092
1093  uintptr_t stack_top;
1094  address low, high;
1095  if (find_vma((address)stack_start, &low, &high)) {
1096    // success, "high" is the true stack top. (ignore "low", because initial
1097    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1098    stack_top = (uintptr_t)high;
1099  } else {
1100    // failed, likely because /proc/self/maps does not exist
1101    warning("Can't detect initial thread stack location - find_vma failed");
1102    // best effort: stack_start is normally within a few pages below the real
1103    // stack top, use it as stack top, and reduce stack size so we won't put
1104    // guard page outside stack.
1105    stack_top = stack_start;
1106    stack_size -= 16 * page_size();
1107  }
1108
1109  // stack_top could be partially down the page so align it
1110  stack_top = align_size_up(stack_top, page_size());
1111
1112  if (max_size && stack_size > max_size) {
1113    _initial_thread_stack_size = max_size;
1114  } else {
1115    _initial_thread_stack_size = stack_size;
1116  }
1117
1118  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1119  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1120}
1121
1122////////////////////////////////////////////////////////////////////////////////
1123// time support
1124
1125// Time since start-up in seconds to a fine granularity.
1126// Used by VMSelfDestructTimer and the MemProfiler.
1127double os::elapsedTime() {
1128
1129  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1130}
1131
1132jlong os::elapsed_counter() {
1133  return javaTimeNanos() - initial_time_count;
1134}
1135
1136jlong os::elapsed_frequency() {
1137  return NANOSECS_PER_SEC; // nanosecond resolution
1138}
1139
1140bool os::supports_vtime() { return true; }
1141bool os::enable_vtime()   { return false; }
1142bool os::vtime_enabled()  { return false; }
1143
1144double os::elapsedVTime() {
1145  struct rusage usage;
1146  int retval = getrusage(RUSAGE_THREAD, &usage);
1147  if (retval == 0) {
1148    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1149  } else {
1150    // better than nothing, but not much
1151    return elapsedTime();
1152  }
1153}
1154
1155jlong os::javaTimeMillis() {
1156  timeval time;
1157  int status = gettimeofday(&time, NULL);
1158  assert(status != -1, "linux error");
1159  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1160}
1161
1162void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1163  timeval time;
1164  int status = gettimeofday(&time, NULL);
1165  assert(status != -1, "linux error");
1166  seconds = jlong(time.tv_sec);
1167  nanos = jlong(time.tv_usec) * 1000;
1168}
1169
1170
1171#ifndef CLOCK_MONOTONIC
1172  #define CLOCK_MONOTONIC (1)
1173#endif
1174
1175void os::Linux::clock_init() {
1176  // we do dlopen's in this particular order due to bug in linux
1177  // dynamical loader (see 6348968) leading to crash on exit
1178  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1179  if (handle == NULL) {
1180    handle = dlopen("librt.so", RTLD_LAZY);
1181  }
1182
1183  if (handle) {
1184    int (*clock_getres_func)(clockid_t, struct timespec*) =
1185           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1186    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1187           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1188    if (clock_getres_func && clock_gettime_func) {
1189      // See if monotonic clock is supported by the kernel. Note that some
1190      // early implementations simply return kernel jiffies (updated every
1191      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1192      // for nano time (though the monotonic property is still nice to have).
1193      // It's fixed in newer kernels, however clock_getres() still returns
1194      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1195      // resolution for now. Hopefully as people move to new kernels, this
1196      // won't be a problem.
1197      struct timespec res;
1198      struct timespec tp;
1199      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1200          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1201        // yes, monotonic clock is supported
1202        _clock_gettime = clock_gettime_func;
1203        return;
1204      } else {
1205        // close librt if there is no monotonic clock
1206        dlclose(handle);
1207      }
1208    }
1209  }
1210  warning("No monotonic clock was available - timed services may " \
1211          "be adversely affected if the time-of-day clock changes");
1212}
1213
1214#ifndef SYS_clock_getres
1215  #if defined(X86) || defined(PPC64) || defined(S390)
1216    #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1217    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1218  #else
1219    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1220    #define sys_clock_getres(x,y)  -1
1221  #endif
1222#else
1223  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1224#endif
1225
1226void os::Linux::fast_thread_clock_init() {
1227  if (!UseLinuxPosixThreadCPUClocks) {
1228    return;
1229  }
1230  clockid_t clockid;
1231  struct timespec tp;
1232  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1233      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1234
1235  // Switch to using fast clocks for thread cpu time if
1236  // the sys_clock_getres() returns 0 error code.
1237  // Note, that some kernels may support the current thread
1238  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1239  // returned by the pthread_getcpuclockid().
1240  // If the fast Posix clocks are supported then the sys_clock_getres()
1241  // must return at least tp.tv_sec == 0 which means a resolution
1242  // better than 1 sec. This is extra check for reliability.
1243
1244  if (pthread_getcpuclockid_func &&
1245      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1246      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1247    _supports_fast_thread_cpu_time = true;
1248    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1249  }
1250}
1251
1252jlong os::javaTimeNanos() {
1253  if (os::supports_monotonic_clock()) {
1254    struct timespec tp;
1255    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1256    assert(status == 0, "gettime error");
1257    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1258    return result;
1259  } else {
1260    timeval time;
1261    int status = gettimeofday(&time, NULL);
1262    assert(status != -1, "linux error");
1263    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1264    return 1000 * usecs;
1265  }
1266}
1267
1268void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1269  if (os::supports_monotonic_clock()) {
1270    info_ptr->max_value = ALL_64_BITS;
1271
1272    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1273    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1274    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1275  } else {
1276    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1277    info_ptr->max_value = ALL_64_BITS;
1278
1279    // gettimeofday is a real time clock so it skips
1280    info_ptr->may_skip_backward = true;
1281    info_ptr->may_skip_forward = true;
1282  }
1283
1284  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1285}
1286
1287// Return the real, user, and system times in seconds from an
1288// arbitrary fixed point in the past.
1289bool os::getTimesSecs(double* process_real_time,
1290                      double* process_user_time,
1291                      double* process_system_time) {
1292  struct tms ticks;
1293  clock_t real_ticks = times(&ticks);
1294
1295  if (real_ticks == (clock_t) (-1)) {
1296    return false;
1297  } else {
1298    double ticks_per_second = (double) clock_tics_per_sec;
1299    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1300    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1301    *process_real_time = ((double) real_ticks) / ticks_per_second;
1302
1303    return true;
1304  }
1305}
1306
1307
1308char * os::local_time_string(char *buf, size_t buflen) {
1309  struct tm t;
1310  time_t long_time;
1311  time(&long_time);
1312  localtime_r(&long_time, &t);
1313  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1314               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1315               t.tm_hour, t.tm_min, t.tm_sec);
1316  return buf;
1317}
1318
1319struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1320  return localtime_r(clock, res);
1321}
1322
1323////////////////////////////////////////////////////////////////////////////////
1324// runtime exit support
1325
1326// Note: os::shutdown() might be called very early during initialization, or
1327// called from signal handler. Before adding something to os::shutdown(), make
1328// sure it is async-safe and can handle partially initialized VM.
1329void os::shutdown() {
1330
1331  // allow PerfMemory to attempt cleanup of any persistent resources
1332  perfMemory_exit();
1333
1334  // needs to remove object in file system
1335  AttachListener::abort();
1336
1337  // flush buffered output, finish log files
1338  ostream_abort();
1339
1340  // Check for abort hook
1341  abort_hook_t abort_hook = Arguments::abort_hook();
1342  if (abort_hook != NULL) {
1343    abort_hook();
1344  }
1345
1346}
1347
1348// Note: os::abort() might be called very early during initialization, or
1349// called from signal handler. Before adding something to os::abort(), make
1350// sure it is async-safe and can handle partially initialized VM.
1351void os::abort(bool dump_core, void* siginfo, const void* context) {
1352  os::shutdown();
1353  if (dump_core) {
1354#ifndef PRODUCT
1355    fdStream out(defaultStream::output_fd());
1356    out.print_raw("Current thread is ");
1357    char buf[16];
1358    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1359    out.print_raw_cr(buf);
1360    out.print_raw_cr("Dumping core ...");
1361#endif
1362    ::abort(); // dump core
1363  }
1364
1365  ::exit(1);
1366}
1367
1368// Die immediately, no exit hook, no abort hook, no cleanup.
1369void os::die() {
1370  ::abort();
1371}
1372
1373
1374// This method is a copy of JDK's sysGetLastErrorString
1375// from src/solaris/hpi/src/system_md.c
1376
1377size_t os::lasterror(char *buf, size_t len) {
1378  if (errno == 0)  return 0;
1379
1380  const char *s = os::strerror(errno);
1381  size_t n = ::strlen(s);
1382  if (n >= len) {
1383    n = len - 1;
1384  }
1385  ::strncpy(buf, s, n);
1386  buf[n] = '\0';
1387  return n;
1388}
1389
1390// thread_id is kernel thread id (similar to Solaris LWP id)
1391intx os::current_thread_id() { return os::Linux::gettid(); }
1392int os::current_process_id() {
1393  return ::getpid();
1394}
1395
1396// DLL functions
1397
1398const char* os::dll_file_extension() { return ".so"; }
1399
1400// This must be hard coded because it's the system's temporary
1401// directory not the java application's temp directory, ala java.io.tmpdir.
1402const char* os::get_temp_directory() { return "/tmp"; }
1403
1404static bool file_exists(const char* filename) {
1405  struct stat statbuf;
1406  if (filename == NULL || strlen(filename) == 0) {
1407    return false;
1408  }
1409  return os::stat(filename, &statbuf) == 0;
1410}
1411
1412bool os::dll_build_name(char* buffer, size_t buflen,
1413                        const char* pname, const char* fname) {
1414  bool retval = false;
1415  // Copied from libhpi
1416  const size_t pnamelen = pname ? strlen(pname) : 0;
1417
1418  // Return error on buffer overflow.
1419  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1420    return retval;
1421  }
1422
1423  if (pnamelen == 0) {
1424    snprintf(buffer, buflen, "lib%s.so", fname);
1425    retval = true;
1426  } else if (strchr(pname, *os::path_separator()) != NULL) {
1427    int n;
1428    char** pelements = split_path(pname, &n);
1429    if (pelements == NULL) {
1430      return false;
1431    }
1432    for (int i = 0; i < n; i++) {
1433      // Really shouldn't be NULL, but check can't hurt
1434      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1435        continue; // skip the empty path values
1436      }
1437      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1438      if (file_exists(buffer)) {
1439        retval = true;
1440        break;
1441      }
1442    }
1443    // release the storage
1444    for (int i = 0; i < n; i++) {
1445      if (pelements[i] != NULL) {
1446        FREE_C_HEAP_ARRAY(char, pelements[i]);
1447      }
1448    }
1449    if (pelements != NULL) {
1450      FREE_C_HEAP_ARRAY(char*, pelements);
1451    }
1452  } else {
1453    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1454    retval = true;
1455  }
1456  return retval;
1457}
1458
1459// check if addr is inside libjvm.so
1460bool os::address_is_in_vm(address addr) {
1461  static address libjvm_base_addr;
1462  Dl_info dlinfo;
1463
1464  if (libjvm_base_addr == NULL) {
1465    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1466      libjvm_base_addr = (address)dlinfo.dli_fbase;
1467    }
1468    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1469  }
1470
1471  if (dladdr((void *)addr, &dlinfo) != 0) {
1472    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1473  }
1474
1475  return false;
1476}
1477
1478bool os::dll_address_to_function_name(address addr, char *buf,
1479                                      int buflen, int *offset,
1480                                      bool demangle) {
1481  // buf is not optional, but offset is optional
1482  assert(buf != NULL, "sanity check");
1483
1484  Dl_info dlinfo;
1485
1486  if (dladdr((void*)addr, &dlinfo) != 0) {
1487    // see if we have a matching symbol
1488    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1489      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1490        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1491      }
1492      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1493      return true;
1494    }
1495    // no matching symbol so try for just file info
1496    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1497      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1498                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1499        return true;
1500      }
1501    }
1502  }
1503
1504  buf[0] = '\0';
1505  if (offset != NULL) *offset = -1;
1506  return false;
1507}
1508
1509struct _address_to_library_name {
1510  address addr;          // input : memory address
1511  size_t  buflen;        //         size of fname
1512  char*   fname;         // output: library name
1513  address base;          //         library base addr
1514};
1515
1516static int address_to_library_name_callback(struct dl_phdr_info *info,
1517                                            size_t size, void *data) {
1518  int i;
1519  bool found = false;
1520  address libbase = NULL;
1521  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1522
1523  // iterate through all loadable segments
1524  for (i = 0; i < info->dlpi_phnum; i++) {
1525    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1526    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1527      // base address of a library is the lowest address of its loaded
1528      // segments.
1529      if (libbase == NULL || libbase > segbase) {
1530        libbase = segbase;
1531      }
1532      // see if 'addr' is within current segment
1533      if (segbase <= d->addr &&
1534          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1535        found = true;
1536      }
1537    }
1538  }
1539
1540  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1541  // so dll_address_to_library_name() can fall through to use dladdr() which
1542  // can figure out executable name from argv[0].
1543  if (found && info->dlpi_name && info->dlpi_name[0]) {
1544    d->base = libbase;
1545    if (d->fname) {
1546      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1547    }
1548    return 1;
1549  }
1550  return 0;
1551}
1552
1553bool os::dll_address_to_library_name(address addr, char* buf,
1554                                     int buflen, int* offset) {
1555  // buf is not optional, but offset is optional
1556  assert(buf != NULL, "sanity check");
1557
1558  Dl_info dlinfo;
1559  struct _address_to_library_name data;
1560
1561  // There is a bug in old glibc dladdr() implementation that it could resolve
1562  // to wrong library name if the .so file has a base address != NULL. Here
1563  // we iterate through the program headers of all loaded libraries to find
1564  // out which library 'addr' really belongs to. This workaround can be
1565  // removed once the minimum requirement for glibc is moved to 2.3.x.
1566  data.addr = addr;
1567  data.fname = buf;
1568  data.buflen = buflen;
1569  data.base = NULL;
1570  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1571
1572  if (rslt) {
1573    // buf already contains library name
1574    if (offset) *offset = addr - data.base;
1575    return true;
1576  }
1577  if (dladdr((void*)addr, &dlinfo) != 0) {
1578    if (dlinfo.dli_fname != NULL) {
1579      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1580    }
1581    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1582      *offset = addr - (address)dlinfo.dli_fbase;
1583    }
1584    return true;
1585  }
1586
1587  buf[0] = '\0';
1588  if (offset) *offset = -1;
1589  return false;
1590}
1591
1592// Loads .dll/.so and
1593// in case of error it checks if .dll/.so was built for the
1594// same architecture as Hotspot is running on
1595
1596
1597// Remember the stack's state. The Linux dynamic linker will change
1598// the stack to 'executable' at most once, so we must safepoint only once.
1599bool os::Linux::_stack_is_executable = false;
1600
1601// VM operation that loads a library.  This is necessary if stack protection
1602// of the Java stacks can be lost during loading the library.  If we
1603// do not stop the Java threads, they can stack overflow before the stacks
1604// are protected again.
1605class VM_LinuxDllLoad: public VM_Operation {
1606 private:
1607  const char *_filename;
1608  char *_ebuf;
1609  int _ebuflen;
1610  void *_lib;
1611 public:
1612  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1613    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1614  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1615  void doit() {
1616    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1617    os::Linux::_stack_is_executable = true;
1618  }
1619  void* loaded_library() { return _lib; }
1620};
1621
1622void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1623  void * result = NULL;
1624  bool load_attempted = false;
1625
1626  // Check whether the library to load might change execution rights
1627  // of the stack. If they are changed, the protection of the stack
1628  // guard pages will be lost. We need a safepoint to fix this.
1629  //
1630  // See Linux man page execstack(8) for more info.
1631  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1632    ElfFile ef(filename);
1633    if (!ef.specifies_noexecstack()) {
1634      if (!is_init_completed()) {
1635        os::Linux::_stack_is_executable = true;
1636        // This is OK - No Java threads have been created yet, and hence no
1637        // stack guard pages to fix.
1638        //
1639        // This should happen only when you are building JDK7 using a very
1640        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1641        //
1642        // Dynamic loader will make all stacks executable after
1643        // this function returns, and will not do that again.
1644        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1645      } else {
1646        warning("You have loaded library %s which might have disabled stack guard. "
1647                "The VM will try to fix the stack guard now.\n"
1648                "It's highly recommended that you fix the library with "
1649                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1650                filename);
1651
1652        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1653        JavaThread *jt = JavaThread::current();
1654        if (jt->thread_state() != _thread_in_native) {
1655          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1656          // that requires ExecStack. Cannot enter safe point. Let's give up.
1657          warning("Unable to fix stack guard. Giving up.");
1658        } else {
1659          if (!LoadExecStackDllInVMThread) {
1660            // This is for the case where the DLL has an static
1661            // constructor function that executes JNI code. We cannot
1662            // load such DLLs in the VMThread.
1663            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1664          }
1665
1666          ThreadInVMfromNative tiv(jt);
1667          debug_only(VMNativeEntryWrapper vew;)
1668
1669          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1670          VMThread::execute(&op);
1671          if (LoadExecStackDllInVMThread) {
1672            result = op.loaded_library();
1673          }
1674          load_attempted = true;
1675        }
1676      }
1677    }
1678  }
1679
1680  if (!load_attempted) {
1681    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1682  }
1683
1684  if (result != NULL) {
1685    // Successful loading
1686    return result;
1687  }
1688
1689  Elf32_Ehdr elf_head;
1690  int diag_msg_max_length=ebuflen-strlen(ebuf);
1691  char* diag_msg_buf=ebuf+strlen(ebuf);
1692
1693  if (diag_msg_max_length==0) {
1694    // No more space in ebuf for additional diagnostics message
1695    return NULL;
1696  }
1697
1698
1699  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1700
1701  if (file_descriptor < 0) {
1702    // Can't open library, report dlerror() message
1703    return NULL;
1704  }
1705
1706  bool failed_to_read_elf_head=
1707    (sizeof(elf_head)!=
1708     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1709
1710  ::close(file_descriptor);
1711  if (failed_to_read_elf_head) {
1712    // file i/o error - report dlerror() msg
1713    return NULL;
1714  }
1715
1716  typedef struct {
1717    Elf32_Half    code;         // Actual value as defined in elf.h
1718    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1719    unsigned char elf_class;    // 32 or 64 bit
1720    unsigned char endianess;    // MSB or LSB
1721    char*         name;         // String representation
1722  } arch_t;
1723
1724#ifndef EM_486
1725  #define EM_486          6               /* Intel 80486 */
1726#endif
1727#ifndef EM_AARCH64
1728  #define EM_AARCH64    183               /* ARM AARCH64 */
1729#endif
1730
1731  static const arch_t arch_array[]={
1732    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1733    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1734    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1735    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1736    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1737    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1738    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1739    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1740#if defined(VM_LITTLE_ENDIAN)
1741    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1742#else
1743    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1744#endif
1745    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1746    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1747    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1748    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1749    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1750    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1751    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1752    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1753  };
1754
1755#if  (defined IA32)
1756  static  Elf32_Half running_arch_code=EM_386;
1757#elif   (defined AMD64)
1758  static  Elf32_Half running_arch_code=EM_X86_64;
1759#elif  (defined IA64)
1760  static  Elf32_Half running_arch_code=EM_IA_64;
1761#elif  (defined __sparc) && (defined _LP64)
1762  static  Elf32_Half running_arch_code=EM_SPARCV9;
1763#elif  (defined __sparc) && (!defined _LP64)
1764  static  Elf32_Half running_arch_code=EM_SPARC;
1765#elif  (defined __powerpc64__)
1766  static  Elf32_Half running_arch_code=EM_PPC64;
1767#elif  (defined __powerpc__)
1768  static  Elf32_Half running_arch_code=EM_PPC;
1769#elif  (defined AARCH64)
1770  static  Elf32_Half running_arch_code=EM_AARCH64;
1771#elif  (defined ARM)
1772  static  Elf32_Half running_arch_code=EM_ARM;
1773#elif  (defined S390)
1774  static  Elf32_Half running_arch_code=EM_S390;
1775#elif  (defined ALPHA)
1776  static  Elf32_Half running_arch_code=EM_ALPHA;
1777#elif  (defined MIPSEL)
1778  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1779#elif  (defined PARISC)
1780  static  Elf32_Half running_arch_code=EM_PARISC;
1781#elif  (defined MIPS)
1782  static  Elf32_Half running_arch_code=EM_MIPS;
1783#elif  (defined M68K)
1784  static  Elf32_Half running_arch_code=EM_68K;
1785#else
1786    #error Method os::dll_load requires that one of following is defined:\
1787        AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1788#endif
1789
1790  // Identify compatability class for VM's architecture and library's architecture
1791  // Obtain string descriptions for architectures
1792
1793  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1794  int running_arch_index=-1;
1795
1796  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1797    if (running_arch_code == arch_array[i].code) {
1798      running_arch_index    = i;
1799    }
1800    if (lib_arch.code == arch_array[i].code) {
1801      lib_arch.compat_class = arch_array[i].compat_class;
1802      lib_arch.name         = arch_array[i].name;
1803    }
1804  }
1805
1806  assert(running_arch_index != -1,
1807         "Didn't find running architecture code (running_arch_code) in arch_array");
1808  if (running_arch_index == -1) {
1809    // Even though running architecture detection failed
1810    // we may still continue with reporting dlerror() message
1811    return NULL;
1812  }
1813
1814  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1815    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1816    return NULL;
1817  }
1818
1819#ifndef S390
1820  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1821    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1822    return NULL;
1823  }
1824#endif // !S390
1825
1826  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1827    if (lib_arch.name!=NULL) {
1828      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1829                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1830                 lib_arch.name, arch_array[running_arch_index].name);
1831    } else {
1832      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1833                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1834                 lib_arch.code,
1835                 arch_array[running_arch_index].name);
1836    }
1837  }
1838
1839  return NULL;
1840}
1841
1842void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1843                                int ebuflen) {
1844  void * result = ::dlopen(filename, RTLD_LAZY);
1845  if (result == NULL) {
1846    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1847    ebuf[ebuflen-1] = '\0';
1848  }
1849  return result;
1850}
1851
1852void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1853                                       int ebuflen) {
1854  void * result = NULL;
1855  if (LoadExecStackDllInVMThread) {
1856    result = dlopen_helper(filename, ebuf, ebuflen);
1857  }
1858
1859  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1860  // library that requires an executable stack, or which does not have this
1861  // stack attribute set, dlopen changes the stack attribute to executable. The
1862  // read protection of the guard pages gets lost.
1863  //
1864  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1865  // may have been queued at the same time.
1866
1867  if (!_stack_is_executable) {
1868    JavaThread *jt = Threads::first();
1869
1870    while (jt) {
1871      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1872          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1873        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1874          warning("Attempt to reguard stack yellow zone failed.");
1875        }
1876      }
1877      jt = jt->next();
1878    }
1879  }
1880
1881  return result;
1882}
1883
1884void* os::dll_lookup(void* handle, const char* name) {
1885  void* res = dlsym(handle, name);
1886  return res;
1887}
1888
1889void* os::get_default_process_handle() {
1890  return (void*)::dlopen(NULL, RTLD_LAZY);
1891}
1892
1893static bool _print_ascii_file(const char* filename, outputStream* st) {
1894  int fd = ::open(filename, O_RDONLY);
1895  if (fd == -1) {
1896    return false;
1897  }
1898
1899  char buf[33];
1900  int bytes;
1901  buf[32] = '\0';
1902  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1903    st->print_raw(buf, bytes);
1904  }
1905
1906  ::close(fd);
1907
1908  return true;
1909}
1910
1911void os::print_dll_info(outputStream *st) {
1912  st->print_cr("Dynamic libraries:");
1913
1914  char fname[32];
1915  pid_t pid = os::Linux::gettid();
1916
1917  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1918
1919  if (!_print_ascii_file(fname, st)) {
1920    st->print("Can not get library information for pid = %d\n", pid);
1921  }
1922}
1923
1924int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1925  FILE *procmapsFile = NULL;
1926
1927  // Open the procfs maps file for the current process
1928  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1929    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1930    char line[PATH_MAX + 100];
1931
1932    // Read line by line from 'file'
1933    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1934      u8 base, top, offset, inode;
1935      char permissions[5];
1936      char device[6];
1937      char name[PATH_MAX + 1];
1938
1939      // Parse fields from line
1940      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1941             &base, &top, permissions, &offset, device, &inode, name);
1942
1943      // Filter by device id '00:00' so that we only get file system mapped files.
1944      if (strcmp(device, "00:00") != 0) {
1945
1946        // Call callback with the fields of interest
1947        if(callback(name, (address)base, (address)top, param)) {
1948          // Oops abort, callback aborted
1949          fclose(procmapsFile);
1950          return 1;
1951        }
1952      }
1953    }
1954    fclose(procmapsFile);
1955  }
1956  return 0;
1957}
1958
1959void os::print_os_info_brief(outputStream* st) {
1960  os::Linux::print_distro_info(st);
1961
1962  os::Posix::print_uname_info(st);
1963
1964  os::Linux::print_libversion_info(st);
1965
1966}
1967
1968void os::print_os_info(outputStream* st) {
1969  st->print("OS:");
1970
1971  os::Linux::print_distro_info(st);
1972
1973  os::Posix::print_uname_info(st);
1974
1975  // Print warning if unsafe chroot environment detected
1976  if (unsafe_chroot_detected) {
1977    st->print("WARNING!! ");
1978    st->print_cr("%s", unstable_chroot_error);
1979  }
1980
1981  os::Linux::print_libversion_info(st);
1982
1983  os::Posix::print_rlimit_info(st);
1984
1985  os::Posix::print_load_average(st);
1986
1987  os::Linux::print_full_memory_info(st);
1988}
1989
1990// Try to identify popular distros.
1991// Most Linux distributions have a /etc/XXX-release file, which contains
1992// the OS version string. Newer Linux distributions have a /etc/lsb-release
1993// file that also contains the OS version string. Some have more than one
1994// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1995// /etc/redhat-release.), so the order is important.
1996// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1997// their own specific XXX-release file as well as a redhat-release file.
1998// Because of this the XXX-release file needs to be searched for before the
1999// redhat-release file.
2000// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2001// search for redhat-release / SuSE-release needs to be before lsb-release.
2002// Since the lsb-release file is the new standard it needs to be searched
2003// before the older style release files.
2004// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2005// next to last resort.  The os-release file is a new standard that contains
2006// distribution information and the system-release file seems to be an old
2007// standard that has been replaced by the lsb-release and os-release files.
2008// Searching for the debian_version file is the last resort.  It contains
2009// an informative string like "6.0.6" or "wheezy/sid". Because of this
2010// "Debian " is printed before the contents of the debian_version file.
2011
2012const char* distro_files[] = {
2013  "/etc/oracle-release",
2014  "/etc/mandriva-release",
2015  "/etc/mandrake-release",
2016  "/etc/sun-release",
2017  "/etc/redhat-release",
2018  "/etc/SuSE-release",
2019  "/etc/lsb-release",
2020  "/etc/turbolinux-release",
2021  "/etc/gentoo-release",
2022  "/etc/ltib-release",
2023  "/etc/angstrom-version",
2024  "/etc/system-release",
2025  "/etc/os-release",
2026  NULL };
2027
2028void os::Linux::print_distro_info(outputStream* st) {
2029  for (int i = 0;; i++) {
2030    const char* file = distro_files[i];
2031    if (file == NULL) {
2032      break;  // done
2033    }
2034    // If file prints, we found it.
2035    if (_print_ascii_file(file, st)) {
2036      return;
2037    }
2038  }
2039
2040  if (file_exists("/etc/debian_version")) {
2041    st->print("Debian ");
2042    _print_ascii_file("/etc/debian_version", st);
2043  } else {
2044    st->print("Linux");
2045  }
2046  st->cr();
2047}
2048
2049static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2050  char buf[256];
2051  while (fgets(buf, sizeof(buf), fp)) {
2052    // Edit out extra stuff in expected format
2053    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2054      char* ptr = strstr(buf, "\"");  // the name is in quotes
2055      if (ptr != NULL) {
2056        ptr++; // go beyond first quote
2057        char* nl = strchr(ptr, '\"');
2058        if (nl != NULL) *nl = '\0';
2059        strncpy(distro, ptr, length);
2060      } else {
2061        ptr = strstr(buf, "=");
2062        ptr++; // go beyond equals then
2063        char* nl = strchr(ptr, '\n');
2064        if (nl != NULL) *nl = '\0';
2065        strncpy(distro, ptr, length);
2066      }
2067      return;
2068    } else if (get_first_line) {
2069      char* nl = strchr(buf, '\n');
2070      if (nl != NULL) *nl = '\0';
2071      strncpy(distro, buf, length);
2072      return;
2073    }
2074  }
2075  // print last line and close
2076  char* nl = strchr(buf, '\n');
2077  if (nl != NULL) *nl = '\0';
2078  strncpy(distro, buf, length);
2079}
2080
2081static void parse_os_info(char* distro, size_t length, const char* file) {
2082  FILE* fp = fopen(file, "r");
2083  if (fp != NULL) {
2084    // if suse format, print out first line
2085    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2086    parse_os_info_helper(fp, distro, length, get_first_line);
2087    fclose(fp);
2088  }
2089}
2090
2091void os::get_summary_os_info(char* buf, size_t buflen) {
2092  for (int i = 0;; i++) {
2093    const char* file = distro_files[i];
2094    if (file == NULL) {
2095      break; // ran out of distro_files
2096    }
2097    if (file_exists(file)) {
2098      parse_os_info(buf, buflen, file);
2099      return;
2100    }
2101  }
2102  // special case for debian
2103  if (file_exists("/etc/debian_version")) {
2104    strncpy(buf, "Debian ", buflen);
2105    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2106  } else {
2107    strncpy(buf, "Linux", buflen);
2108  }
2109}
2110
2111void os::Linux::print_libversion_info(outputStream* st) {
2112  // libc, pthread
2113  st->print("libc:");
2114  st->print("%s ", os::Linux::glibc_version());
2115  st->print("%s ", os::Linux::libpthread_version());
2116  st->cr();
2117}
2118
2119void os::Linux::print_full_memory_info(outputStream* st) {
2120  st->print("\n/proc/meminfo:\n");
2121  _print_ascii_file("/proc/meminfo", st);
2122  st->cr();
2123}
2124
2125void os::print_memory_info(outputStream* st) {
2126
2127  st->print("Memory:");
2128  st->print(" %dk page", os::vm_page_size()>>10);
2129
2130  // values in struct sysinfo are "unsigned long"
2131  struct sysinfo si;
2132  sysinfo(&si);
2133
2134  st->print(", physical " UINT64_FORMAT "k",
2135            os::physical_memory() >> 10);
2136  st->print("(" UINT64_FORMAT "k free)",
2137            os::available_memory() >> 10);
2138  st->print(", swap " UINT64_FORMAT "k",
2139            ((jlong)si.totalswap * si.mem_unit) >> 10);
2140  st->print("(" UINT64_FORMAT "k free)",
2141            ((jlong)si.freeswap * si.mem_unit) >> 10);
2142  st->cr();
2143}
2144
2145// Print the first "model name" line and the first "flags" line
2146// that we find and nothing more. We assume "model name" comes
2147// before "flags" so if we find a second "model name", then the
2148// "flags" field is considered missing.
2149static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2150#if defined(IA32) || defined(AMD64)
2151  // Other platforms have less repetitive cpuinfo files
2152  FILE *fp = fopen("/proc/cpuinfo", "r");
2153  if (fp) {
2154    while (!feof(fp)) {
2155      if (fgets(buf, buflen, fp)) {
2156        // Assume model name comes before flags
2157        bool model_name_printed = false;
2158        if (strstr(buf, "model name") != NULL) {
2159          if (!model_name_printed) {
2160            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2161            st->print_raw(buf);
2162            model_name_printed = true;
2163          } else {
2164            // model name printed but not flags?  Odd, just return
2165            fclose(fp);
2166            return true;
2167          }
2168        }
2169        // print the flags line too
2170        if (strstr(buf, "flags") != NULL) {
2171          st->print_raw(buf);
2172          fclose(fp);
2173          return true;
2174        }
2175      }
2176    }
2177    fclose(fp);
2178  }
2179#endif // x86 platforms
2180  return false;
2181}
2182
2183void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2184  // Only print the model name if the platform provides this as a summary
2185  if (!print_model_name_and_flags(st, buf, buflen)) {
2186    st->print("\n/proc/cpuinfo:\n");
2187    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2188      st->print_cr("  <Not Available>");
2189    }
2190  }
2191}
2192
2193#if defined(AMD64) || defined(IA32) || defined(X32)
2194const char* search_string = "model name";
2195#elif defined(PPC64)
2196const char* search_string = "cpu";
2197#elif defined(S390)
2198const char* search_string = "processor";
2199#elif defined(SPARC)
2200const char* search_string = "cpu";
2201#else
2202const char* search_string = "Processor";
2203#endif
2204
2205// Parses the cpuinfo file for string representing the model name.
2206void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2207  FILE* fp = fopen("/proc/cpuinfo", "r");
2208  if (fp != NULL) {
2209    while (!feof(fp)) {
2210      char buf[256];
2211      if (fgets(buf, sizeof(buf), fp)) {
2212        char* start = strstr(buf, search_string);
2213        if (start != NULL) {
2214          char *ptr = start + strlen(search_string);
2215          char *end = buf + strlen(buf);
2216          while (ptr != end) {
2217             // skip whitespace and colon for the rest of the name.
2218             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2219               break;
2220             }
2221             ptr++;
2222          }
2223          if (ptr != end) {
2224            // reasonable string, get rid of newline and keep the rest
2225            char* nl = strchr(buf, '\n');
2226            if (nl != NULL) *nl = '\0';
2227            strncpy(cpuinfo, ptr, length);
2228            fclose(fp);
2229            return;
2230          }
2231        }
2232      }
2233    }
2234    fclose(fp);
2235  }
2236  // cpuinfo not found or parsing failed, just print generic string.  The entire
2237  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2238#if   defined(AARCH64)
2239  strncpy(cpuinfo, "AArch64", length);
2240#elif defined(AMD64)
2241  strncpy(cpuinfo, "x86_64", length);
2242#elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2243  strncpy(cpuinfo, "ARM", length);
2244#elif defined(IA32)
2245  strncpy(cpuinfo, "x86_32", length);
2246#elif defined(IA64)
2247  strncpy(cpuinfo, "IA64", length);
2248#elif defined(PPC)
2249  strncpy(cpuinfo, "PPC64", length);
2250#elif defined(S390)
2251  strncpy(cpuinfo, "S390", length);
2252#elif defined(SPARC)
2253  strncpy(cpuinfo, "sparcv9", length);
2254#elif defined(ZERO_LIBARCH)
2255  strncpy(cpuinfo, ZERO_LIBARCH, length);
2256#else
2257  strncpy(cpuinfo, "unknown", length);
2258#endif
2259}
2260
2261static void print_signal_handler(outputStream* st, int sig,
2262                                 char* buf, size_t buflen);
2263
2264void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2265  st->print_cr("Signal Handlers:");
2266  print_signal_handler(st, SIGSEGV, buf, buflen);
2267  print_signal_handler(st, SIGBUS , buf, buflen);
2268  print_signal_handler(st, SIGFPE , buf, buflen);
2269  print_signal_handler(st, SIGPIPE, buf, buflen);
2270  print_signal_handler(st, SIGXFSZ, buf, buflen);
2271  print_signal_handler(st, SIGILL , buf, buflen);
2272  print_signal_handler(st, SR_signum, buf, buflen);
2273  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2274  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2275  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2276  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2277#if defined(PPC64)
2278  print_signal_handler(st, SIGTRAP, buf, buflen);
2279#endif
2280}
2281
2282static char saved_jvm_path[MAXPATHLEN] = {0};
2283
2284// Find the full path to the current module, libjvm.so
2285void os::jvm_path(char *buf, jint buflen) {
2286  // Error checking.
2287  if (buflen < MAXPATHLEN) {
2288    assert(false, "must use a large-enough buffer");
2289    buf[0] = '\0';
2290    return;
2291  }
2292  // Lazy resolve the path to current module.
2293  if (saved_jvm_path[0] != 0) {
2294    strcpy(buf, saved_jvm_path);
2295    return;
2296  }
2297
2298  char dli_fname[MAXPATHLEN];
2299  bool ret = dll_address_to_library_name(
2300                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2301                                         dli_fname, sizeof(dli_fname), NULL);
2302  assert(ret, "cannot locate libjvm");
2303  char *rp = NULL;
2304  if (ret && dli_fname[0] != '\0') {
2305    rp = realpath(dli_fname, buf);
2306  }
2307  if (rp == NULL) {
2308    return;
2309  }
2310
2311  if (Arguments::sun_java_launcher_is_altjvm()) {
2312    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2313    // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2314    // If "/jre/lib/" appears at the right place in the string, then
2315    // assume we are installed in a JDK and we're done. Otherwise, check
2316    // for a JAVA_HOME environment variable and fix up the path so it
2317    // looks like libjvm.so is installed there (append a fake suffix
2318    // hotspot/libjvm.so).
2319    const char *p = buf + strlen(buf) - 1;
2320    for (int count = 0; p > buf && count < 5; ++count) {
2321      for (--p; p > buf && *p != '/'; --p)
2322        /* empty */ ;
2323    }
2324
2325    if (strncmp(p, "/jre/lib/", 9) != 0) {
2326      // Look for JAVA_HOME in the environment.
2327      char* java_home_var = ::getenv("JAVA_HOME");
2328      if (java_home_var != NULL && java_home_var[0] != 0) {
2329        char* jrelib_p;
2330        int len;
2331
2332        // Check the current module name "libjvm.so".
2333        p = strrchr(buf, '/');
2334        if (p == NULL) {
2335          return;
2336        }
2337        assert(strstr(p, "/libjvm") == p, "invalid library name");
2338
2339        rp = realpath(java_home_var, buf);
2340        if (rp == NULL) {
2341          return;
2342        }
2343
2344        // determine if this is a legacy image or modules image
2345        // modules image doesn't have "jre" subdirectory
2346        len = strlen(buf);
2347        assert(len < buflen, "Ran out of buffer room");
2348        jrelib_p = buf + len;
2349        snprintf(jrelib_p, buflen-len, "/jre/lib");
2350        if (0 != access(buf, F_OK)) {
2351          snprintf(jrelib_p, buflen-len, "/lib");
2352        }
2353
2354        if (0 == access(buf, F_OK)) {
2355          // Use current module name "libjvm.so"
2356          len = strlen(buf);
2357          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2358        } else {
2359          // Go back to path of .so
2360          rp = realpath(dli_fname, buf);
2361          if (rp == NULL) {
2362            return;
2363          }
2364        }
2365      }
2366    }
2367  }
2368
2369  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2370  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2371}
2372
2373void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2374  // no prefix required, not even "_"
2375}
2376
2377void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2378  // no suffix required
2379}
2380
2381////////////////////////////////////////////////////////////////////////////////
2382// sun.misc.Signal support
2383
2384static volatile jint sigint_count = 0;
2385
2386static void UserHandler(int sig, void *siginfo, void *context) {
2387  // 4511530 - sem_post is serialized and handled by the manager thread. When
2388  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2389  // don't want to flood the manager thread with sem_post requests.
2390  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2391    return;
2392  }
2393
2394  // Ctrl-C is pressed during error reporting, likely because the error
2395  // handler fails to abort. Let VM die immediately.
2396  if (sig == SIGINT && is_error_reported()) {
2397    os::die();
2398  }
2399
2400  os::signal_notify(sig);
2401}
2402
2403void* os::user_handler() {
2404  return CAST_FROM_FN_PTR(void*, UserHandler);
2405}
2406
2407struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2408  struct timespec ts;
2409  // Semaphore's are always associated with CLOCK_REALTIME
2410  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2411  // see unpackTime for discussion on overflow checking
2412  if (sec >= MAX_SECS) {
2413    ts.tv_sec += MAX_SECS;
2414    ts.tv_nsec = 0;
2415  } else {
2416    ts.tv_sec += sec;
2417    ts.tv_nsec += nsec;
2418    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2419      ts.tv_nsec -= NANOSECS_PER_SEC;
2420      ++ts.tv_sec; // note: this must be <= max_secs
2421    }
2422  }
2423
2424  return ts;
2425}
2426
2427extern "C" {
2428  typedef void (*sa_handler_t)(int);
2429  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2430}
2431
2432void* os::signal(int signal_number, void* handler) {
2433  struct sigaction sigAct, oldSigAct;
2434
2435  sigfillset(&(sigAct.sa_mask));
2436  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2437  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2438
2439  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2440    // -1 means registration failed
2441    return (void *)-1;
2442  }
2443
2444  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2445}
2446
2447void os::signal_raise(int signal_number) {
2448  ::raise(signal_number);
2449}
2450
2451// The following code is moved from os.cpp for making this
2452// code platform specific, which it is by its very nature.
2453
2454// Will be modified when max signal is changed to be dynamic
2455int os::sigexitnum_pd() {
2456  return NSIG;
2457}
2458
2459// a counter for each possible signal value
2460static volatile jint pending_signals[NSIG+1] = { 0 };
2461
2462// Linux(POSIX) specific hand shaking semaphore.
2463static sem_t sig_sem;
2464static PosixSemaphore sr_semaphore;
2465
2466void os::signal_init_pd() {
2467  // Initialize signal structures
2468  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2469
2470  // Initialize signal semaphore
2471  ::sem_init(&sig_sem, 0, 0);
2472}
2473
2474void os::signal_notify(int sig) {
2475  Atomic::inc(&pending_signals[sig]);
2476  ::sem_post(&sig_sem);
2477}
2478
2479static int check_pending_signals(bool wait) {
2480  Atomic::store(0, &sigint_count);
2481  for (;;) {
2482    for (int i = 0; i < NSIG + 1; i++) {
2483      jint n = pending_signals[i];
2484      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2485        return i;
2486      }
2487    }
2488    if (!wait) {
2489      return -1;
2490    }
2491    JavaThread *thread = JavaThread::current();
2492    ThreadBlockInVM tbivm(thread);
2493
2494    bool threadIsSuspended;
2495    do {
2496      thread->set_suspend_equivalent();
2497      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2498      ::sem_wait(&sig_sem);
2499
2500      // were we externally suspended while we were waiting?
2501      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2502      if (threadIsSuspended) {
2503        // The semaphore has been incremented, but while we were waiting
2504        // another thread suspended us. We don't want to continue running
2505        // while suspended because that would surprise the thread that
2506        // suspended us.
2507        ::sem_post(&sig_sem);
2508
2509        thread->java_suspend_self();
2510      }
2511    } while (threadIsSuspended);
2512  }
2513}
2514
2515int os::signal_lookup() {
2516  return check_pending_signals(false);
2517}
2518
2519int os::signal_wait() {
2520  return check_pending_signals(true);
2521}
2522
2523////////////////////////////////////////////////////////////////////////////////
2524// Virtual Memory
2525
2526int os::vm_page_size() {
2527  // Seems redundant as all get out
2528  assert(os::Linux::page_size() != -1, "must call os::init");
2529  return os::Linux::page_size();
2530}
2531
2532// Solaris allocates memory by pages.
2533int os::vm_allocation_granularity() {
2534  assert(os::Linux::page_size() != -1, "must call os::init");
2535  return os::Linux::page_size();
2536}
2537
2538// Rationale behind this function:
2539//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2540//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2541//  samples for JITted code. Here we create private executable mapping over the code cache
2542//  and then we can use standard (well, almost, as mapping can change) way to provide
2543//  info for the reporting script by storing timestamp and location of symbol
2544void linux_wrap_code(char* base, size_t size) {
2545  static volatile jint cnt = 0;
2546
2547  if (!UseOprofile) {
2548    return;
2549  }
2550
2551  char buf[PATH_MAX+1];
2552  int num = Atomic::add(1, &cnt);
2553
2554  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2555           os::get_temp_directory(), os::current_process_id(), num);
2556  unlink(buf);
2557
2558  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2559
2560  if (fd != -1) {
2561    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2562    if (rv != (off_t)-1) {
2563      if (::write(fd, "", 1) == 1) {
2564        mmap(base, size,
2565             PROT_READ|PROT_WRITE|PROT_EXEC,
2566             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2567      }
2568    }
2569    ::close(fd);
2570    unlink(buf);
2571  }
2572}
2573
2574static bool recoverable_mmap_error(int err) {
2575  // See if the error is one we can let the caller handle. This
2576  // list of errno values comes from JBS-6843484. I can't find a
2577  // Linux man page that documents this specific set of errno
2578  // values so while this list currently matches Solaris, it may
2579  // change as we gain experience with this failure mode.
2580  switch (err) {
2581  case EBADF:
2582  case EINVAL:
2583  case ENOTSUP:
2584    // let the caller deal with these errors
2585    return true;
2586
2587  default:
2588    // Any remaining errors on this OS can cause our reserved mapping
2589    // to be lost. That can cause confusion where different data
2590    // structures think they have the same memory mapped. The worst
2591    // scenario is if both the VM and a library think they have the
2592    // same memory mapped.
2593    return false;
2594  }
2595}
2596
2597static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2598                                    int err) {
2599  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2600          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2601          os::strerror(err), err);
2602}
2603
2604static void warn_fail_commit_memory(char* addr, size_t size,
2605                                    size_t alignment_hint, bool exec,
2606                                    int err) {
2607  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2608          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2609          alignment_hint, exec, os::strerror(err), err);
2610}
2611
2612// NOTE: Linux kernel does not really reserve the pages for us.
2613//       All it does is to check if there are enough free pages
2614//       left at the time of mmap(). This could be a potential
2615//       problem.
2616int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2617  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2618  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2619                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2620  if (res != (uintptr_t) MAP_FAILED) {
2621    if (UseNUMAInterleaving) {
2622      numa_make_global(addr, size);
2623    }
2624    return 0;
2625  }
2626
2627  int err = errno;  // save errno from mmap() call above
2628
2629  if (!recoverable_mmap_error(err)) {
2630    warn_fail_commit_memory(addr, size, exec, err);
2631    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2632  }
2633
2634  return err;
2635}
2636
2637bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2638  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2639}
2640
2641void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2642                                  const char* mesg) {
2643  assert(mesg != NULL, "mesg must be specified");
2644  int err = os::Linux::commit_memory_impl(addr, size, exec);
2645  if (err != 0) {
2646    // the caller wants all commit errors to exit with the specified mesg:
2647    warn_fail_commit_memory(addr, size, exec, err);
2648    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2649  }
2650}
2651
2652// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2653#ifndef MAP_HUGETLB
2654  #define MAP_HUGETLB 0x40000
2655#endif
2656
2657// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2658#ifndef MADV_HUGEPAGE
2659  #define MADV_HUGEPAGE 14
2660#endif
2661
2662int os::Linux::commit_memory_impl(char* addr, size_t size,
2663                                  size_t alignment_hint, bool exec) {
2664  int err = os::Linux::commit_memory_impl(addr, size, exec);
2665  if (err == 0) {
2666    realign_memory(addr, size, alignment_hint);
2667  }
2668  return err;
2669}
2670
2671bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2672                          bool exec) {
2673  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2674}
2675
2676void os::pd_commit_memory_or_exit(char* addr, size_t size,
2677                                  size_t alignment_hint, bool exec,
2678                                  const char* mesg) {
2679  assert(mesg != NULL, "mesg must be specified");
2680  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2681  if (err != 0) {
2682    // the caller wants all commit errors to exit with the specified mesg:
2683    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2684    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2685  }
2686}
2687
2688void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2689  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2690    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2691    // be supported or the memory may already be backed by huge pages.
2692    ::madvise(addr, bytes, MADV_HUGEPAGE);
2693  }
2694}
2695
2696void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2697  // This method works by doing an mmap over an existing mmaping and effectively discarding
2698  // the existing pages. However it won't work for SHM-based large pages that cannot be
2699  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2700  // small pages on top of the SHM segment. This method always works for small pages, so we
2701  // allow that in any case.
2702  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2703    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2704  }
2705}
2706
2707void os::numa_make_global(char *addr, size_t bytes) {
2708  Linux::numa_interleave_memory(addr, bytes);
2709}
2710
2711// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2712// bind policy to MPOL_PREFERRED for the current thread.
2713#define USE_MPOL_PREFERRED 0
2714
2715void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2716  // To make NUMA and large pages more robust when both enabled, we need to ease
2717  // the requirements on where the memory should be allocated. MPOL_BIND is the
2718  // default policy and it will force memory to be allocated on the specified
2719  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2720  // the specified node, but will not force it. Using this policy will prevent
2721  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2722  // free large pages.
2723  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2724  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2725}
2726
2727bool os::numa_topology_changed() { return false; }
2728
2729size_t os::numa_get_groups_num() {
2730  int max_node = Linux::numa_max_node();
2731  return max_node > 0 ? max_node + 1 : 1;
2732}
2733
2734int os::numa_get_group_id() {
2735  int cpu_id = Linux::sched_getcpu();
2736  if (cpu_id != -1) {
2737    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2738    if (lgrp_id != -1) {
2739      return lgrp_id;
2740    }
2741  }
2742  return 0;
2743}
2744
2745size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2746  for (size_t i = 0; i < size; i++) {
2747    ids[i] = i;
2748  }
2749  return size;
2750}
2751
2752bool os::get_page_info(char *start, page_info* info) {
2753  return false;
2754}
2755
2756char *os::scan_pages(char *start, char* end, page_info* page_expected,
2757                     page_info* page_found) {
2758  return end;
2759}
2760
2761
2762int os::Linux::sched_getcpu_syscall(void) {
2763  unsigned int cpu = 0;
2764  int retval = -1;
2765
2766#if defined(IA32)
2767  #ifndef SYS_getcpu
2768    #define SYS_getcpu 318
2769  #endif
2770  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2771#elif defined(AMD64)
2772// Unfortunately we have to bring all these macros here from vsyscall.h
2773// to be able to compile on old linuxes.
2774  #define __NR_vgetcpu 2
2775  #define VSYSCALL_START (-10UL << 20)
2776  #define VSYSCALL_SIZE 1024
2777  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2778  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2779  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2780  retval = vgetcpu(&cpu, NULL, NULL);
2781#endif
2782
2783  return (retval == -1) ? retval : cpu;
2784}
2785
2786// Something to do with the numa-aware allocator needs these symbols
2787extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2788extern "C" JNIEXPORT void numa_error(char *where) { }
2789
2790
2791// If we are running with libnuma version > 2, then we should
2792// be trying to use symbols with versions 1.1
2793// If we are running with earlier version, which did not have symbol versions,
2794// we should use the base version.
2795void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2796  void *f = dlvsym(handle, name, "libnuma_1.1");
2797  if (f == NULL) {
2798    f = dlsym(handle, name);
2799  }
2800  return f;
2801}
2802
2803bool os::Linux::libnuma_init() {
2804  // sched_getcpu() should be in libc.
2805  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2806                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2807
2808  // If it's not, try a direct syscall.
2809  if (sched_getcpu() == -1) {
2810    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2811                                    (void*)&sched_getcpu_syscall));
2812  }
2813
2814  if (sched_getcpu() != -1) { // Does it work?
2815    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2816    if (handle != NULL) {
2817      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2818                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2819      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2820                                       libnuma_dlsym(handle, "numa_max_node")));
2821      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2822                                        libnuma_dlsym(handle, "numa_available")));
2823      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2824                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2825      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2826                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2827      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2828                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2829
2830
2831      if (numa_available() != -1) {
2832        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2833        // Create a cpu -> node mapping
2834        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2835        rebuild_cpu_to_node_map();
2836        return true;
2837      }
2838    }
2839  }
2840  return false;
2841}
2842
2843size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2844  // Creating guard page is very expensive. Java thread has HotSpot
2845  // guard pages, only enable glibc guard page for non-Java threads.
2846  // (Remember: compiler thread is a Java thread, too!)
2847  return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2848}
2849
2850// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2851// The table is later used in get_node_by_cpu().
2852void os::Linux::rebuild_cpu_to_node_map() {
2853  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2854                              // in libnuma (possible values are starting from 16,
2855                              // and continuing up with every other power of 2, but less
2856                              // than the maximum number of CPUs supported by kernel), and
2857                              // is a subject to change (in libnuma version 2 the requirements
2858                              // are more reasonable) we'll just hardcode the number they use
2859                              // in the library.
2860  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2861
2862  size_t cpu_num = processor_count();
2863  size_t cpu_map_size = NCPUS / BitsPerCLong;
2864  size_t cpu_map_valid_size =
2865    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2866
2867  cpu_to_node()->clear();
2868  cpu_to_node()->at_grow(cpu_num - 1);
2869  size_t node_num = numa_get_groups_num();
2870
2871  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2872  for (size_t i = 0; i < node_num; i++) {
2873    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2874      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2875        if (cpu_map[j] != 0) {
2876          for (size_t k = 0; k < BitsPerCLong; k++) {
2877            if (cpu_map[j] & (1UL << k)) {
2878              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2879            }
2880          }
2881        }
2882      }
2883    }
2884  }
2885  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2886}
2887
2888int os::Linux::get_node_by_cpu(int cpu_id) {
2889  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2890    return cpu_to_node()->at(cpu_id);
2891  }
2892  return -1;
2893}
2894
2895GrowableArray<int>* os::Linux::_cpu_to_node;
2896os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2897os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2898os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2899os::Linux::numa_available_func_t os::Linux::_numa_available;
2900os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2901os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2902os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2903unsigned long* os::Linux::_numa_all_nodes;
2904
2905bool os::pd_uncommit_memory(char* addr, size_t size) {
2906  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2907                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2908  return res  != (uintptr_t) MAP_FAILED;
2909}
2910
2911static address get_stack_commited_bottom(address bottom, size_t size) {
2912  address nbot = bottom;
2913  address ntop = bottom + size;
2914
2915  size_t page_sz = os::vm_page_size();
2916  unsigned pages = size / page_sz;
2917
2918  unsigned char vec[1];
2919  unsigned imin = 1, imax = pages + 1, imid;
2920  int mincore_return_value = 0;
2921
2922  assert(imin <= imax, "Unexpected page size");
2923
2924  while (imin < imax) {
2925    imid = (imax + imin) / 2;
2926    nbot = ntop - (imid * page_sz);
2927
2928    // Use a trick with mincore to check whether the page is mapped or not.
2929    // mincore sets vec to 1 if page resides in memory and to 0 if page
2930    // is swapped output but if page we are asking for is unmapped
2931    // it returns -1,ENOMEM
2932    mincore_return_value = mincore(nbot, page_sz, vec);
2933
2934    if (mincore_return_value == -1) {
2935      // Page is not mapped go up
2936      // to find first mapped page
2937      if (errno != EAGAIN) {
2938        assert(errno == ENOMEM, "Unexpected mincore errno");
2939        imax = imid;
2940      }
2941    } else {
2942      // Page is mapped go down
2943      // to find first not mapped page
2944      imin = imid + 1;
2945    }
2946  }
2947
2948  nbot = nbot + page_sz;
2949
2950  // Adjust stack bottom one page up if last checked page is not mapped
2951  if (mincore_return_value == -1) {
2952    nbot = nbot + page_sz;
2953  }
2954
2955  return nbot;
2956}
2957
2958
2959// Linux uses a growable mapping for the stack, and if the mapping for
2960// the stack guard pages is not removed when we detach a thread the
2961// stack cannot grow beyond the pages where the stack guard was
2962// mapped.  If at some point later in the process the stack expands to
2963// that point, the Linux kernel cannot expand the stack any further
2964// because the guard pages are in the way, and a segfault occurs.
2965//
2966// However, it's essential not to split the stack region by unmapping
2967// a region (leaving a hole) that's already part of the stack mapping,
2968// so if the stack mapping has already grown beyond the guard pages at
2969// the time we create them, we have to truncate the stack mapping.
2970// So, we need to know the extent of the stack mapping when
2971// create_stack_guard_pages() is called.
2972
2973// We only need this for stacks that are growable: at the time of
2974// writing thread stacks don't use growable mappings (i.e. those
2975// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2976// only applies to the main thread.
2977
2978// If the (growable) stack mapping already extends beyond the point
2979// where we're going to put our guard pages, truncate the mapping at
2980// that point by munmap()ping it.  This ensures that when we later
2981// munmap() the guard pages we don't leave a hole in the stack
2982// mapping. This only affects the main/initial thread
2983
2984bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2985  if (os::Linux::is_initial_thread()) {
2986    // As we manually grow stack up to bottom inside create_attached_thread(),
2987    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2988    // we don't need to do anything special.
2989    // Check it first, before calling heavy function.
2990    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2991    unsigned char vec[1];
2992
2993    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2994      // Fallback to slow path on all errors, including EAGAIN
2995      stack_extent = (uintptr_t) get_stack_commited_bottom(
2996                                                           os::Linux::initial_thread_stack_bottom(),
2997                                                           (size_t)addr - stack_extent);
2998    }
2999
3000    if (stack_extent < (uintptr_t)addr) {
3001      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3002    }
3003  }
3004
3005  return os::commit_memory(addr, size, !ExecMem);
3006}
3007
3008// If this is a growable mapping, remove the guard pages entirely by
3009// munmap()ping them.  If not, just call uncommit_memory(). This only
3010// affects the main/initial thread, but guard against future OS changes
3011// It's safe to always unmap guard pages for initial thread because we
3012// always place it right after end of the mapped region
3013
3014bool os::remove_stack_guard_pages(char* addr, size_t size) {
3015  uintptr_t stack_extent, stack_base;
3016
3017  if (os::Linux::is_initial_thread()) {
3018    return ::munmap(addr, size) == 0;
3019  }
3020
3021  return os::uncommit_memory(addr, size);
3022}
3023
3024// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3025// at 'requested_addr'. If there are existing memory mappings at the same
3026// location, however, they will be overwritten. If 'fixed' is false,
3027// 'requested_addr' is only treated as a hint, the return value may or
3028// may not start from the requested address. Unlike Linux mmap(), this
3029// function returns NULL to indicate failure.
3030static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3031  char * addr;
3032  int flags;
3033
3034  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3035  if (fixed) {
3036    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3037    flags |= MAP_FIXED;
3038  }
3039
3040  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3041  // touch an uncommitted page. Otherwise, the read/write might
3042  // succeed if we have enough swap space to back the physical page.
3043  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3044                       flags, -1, 0);
3045
3046  return addr == MAP_FAILED ? NULL : addr;
3047}
3048
3049// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3050//   (req_addr != NULL) or with a given alignment.
3051//  - bytes shall be a multiple of alignment.
3052//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3053//  - alignment sets the alignment at which memory shall be allocated.
3054//     It must be a multiple of allocation granularity.
3055// Returns address of memory or NULL. If req_addr was not NULL, will only return
3056//  req_addr or NULL.
3057static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3058
3059  size_t extra_size = bytes;
3060  if (req_addr == NULL && alignment > 0) {
3061    extra_size += alignment;
3062  }
3063
3064  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3065    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3066    -1, 0);
3067  if (start == MAP_FAILED) {
3068    start = NULL;
3069  } else {
3070    if (req_addr != NULL) {
3071      if (start != req_addr) {
3072        ::munmap(start, extra_size);
3073        start = NULL;
3074      }
3075    } else {
3076      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3077      char* const end_aligned = start_aligned + bytes;
3078      char* const end = start + extra_size;
3079      if (start_aligned > start) {
3080        ::munmap(start, start_aligned - start);
3081      }
3082      if (end_aligned < end) {
3083        ::munmap(end_aligned, end - end_aligned);
3084      }
3085      start = start_aligned;
3086    }
3087  }
3088  return start;
3089}
3090
3091static int anon_munmap(char * addr, size_t size) {
3092  return ::munmap(addr, size) == 0;
3093}
3094
3095char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3096                            size_t alignment_hint) {
3097  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3098}
3099
3100bool os::pd_release_memory(char* addr, size_t size) {
3101  return anon_munmap(addr, size);
3102}
3103
3104static bool linux_mprotect(char* addr, size_t size, int prot) {
3105  // Linux wants the mprotect address argument to be page aligned.
3106  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3107
3108  // According to SUSv3, mprotect() should only be used with mappings
3109  // established by mmap(), and mmap() always maps whole pages. Unaligned
3110  // 'addr' likely indicates problem in the VM (e.g. trying to change
3111  // protection of malloc'ed or statically allocated memory). Check the
3112  // caller if you hit this assert.
3113  assert(addr == bottom, "sanity check");
3114
3115  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3116  return ::mprotect(bottom, size, prot) == 0;
3117}
3118
3119// Set protections specified
3120bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3121                        bool is_committed) {
3122  unsigned int p = 0;
3123  switch (prot) {
3124  case MEM_PROT_NONE: p = PROT_NONE; break;
3125  case MEM_PROT_READ: p = PROT_READ; break;
3126  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3127  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3128  default:
3129    ShouldNotReachHere();
3130  }
3131  // is_committed is unused.
3132  return linux_mprotect(addr, bytes, p);
3133}
3134
3135bool os::guard_memory(char* addr, size_t size) {
3136  return linux_mprotect(addr, size, PROT_NONE);
3137}
3138
3139bool os::unguard_memory(char* addr, size_t size) {
3140  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3141}
3142
3143bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3144                                                    size_t page_size) {
3145  bool result = false;
3146  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3147                 MAP_ANONYMOUS|MAP_PRIVATE,
3148                 -1, 0);
3149  if (p != MAP_FAILED) {
3150    void *aligned_p = align_ptr_up(p, page_size);
3151
3152    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3153
3154    munmap(p, page_size * 2);
3155  }
3156
3157  if (warn && !result) {
3158    warning("TransparentHugePages is not supported by the operating system.");
3159  }
3160
3161  return result;
3162}
3163
3164bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3165  bool result = false;
3166  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3167                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3168                 -1, 0);
3169
3170  if (p != MAP_FAILED) {
3171    // We don't know if this really is a huge page or not.
3172    FILE *fp = fopen("/proc/self/maps", "r");
3173    if (fp) {
3174      while (!feof(fp)) {
3175        char chars[257];
3176        long x = 0;
3177        if (fgets(chars, sizeof(chars), fp)) {
3178          if (sscanf(chars, "%lx-%*x", &x) == 1
3179              && x == (long)p) {
3180            if (strstr (chars, "hugepage")) {
3181              result = true;
3182              break;
3183            }
3184          }
3185        }
3186      }
3187      fclose(fp);
3188    }
3189    munmap(p, page_size);
3190  }
3191
3192  if (warn && !result) {
3193    warning("HugeTLBFS is not supported by the operating system.");
3194  }
3195
3196  return result;
3197}
3198
3199// Set the coredump_filter bits to include largepages in core dump (bit 6)
3200//
3201// From the coredump_filter documentation:
3202//
3203// - (bit 0) anonymous private memory
3204// - (bit 1) anonymous shared memory
3205// - (bit 2) file-backed private memory
3206// - (bit 3) file-backed shared memory
3207// - (bit 4) ELF header pages in file-backed private memory areas (it is
3208//           effective only if the bit 2 is cleared)
3209// - (bit 5) hugetlb private memory
3210// - (bit 6) hugetlb shared memory
3211//
3212static void set_coredump_filter(void) {
3213  FILE *f;
3214  long cdm;
3215
3216  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3217    return;
3218  }
3219
3220  if (fscanf(f, "%lx", &cdm) != 1) {
3221    fclose(f);
3222    return;
3223  }
3224
3225  rewind(f);
3226
3227  if ((cdm & LARGEPAGES_BIT) == 0) {
3228    cdm |= LARGEPAGES_BIT;
3229    fprintf(f, "%#lx", cdm);
3230  }
3231
3232  fclose(f);
3233}
3234
3235// Large page support
3236
3237static size_t _large_page_size = 0;
3238
3239size_t os::Linux::find_large_page_size() {
3240  size_t large_page_size = 0;
3241
3242  // large_page_size on Linux is used to round up heap size. x86 uses either
3243  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3244  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3245  // page as large as 256M.
3246  //
3247  // Here we try to figure out page size by parsing /proc/meminfo and looking
3248  // for a line with the following format:
3249  //    Hugepagesize:     2048 kB
3250  //
3251  // If we can't determine the value (e.g. /proc is not mounted, or the text
3252  // format has been changed), we'll use the largest page size supported by
3253  // the processor.
3254
3255#ifndef ZERO
3256  large_page_size =
3257    AARCH64_ONLY(2 * M)
3258    AMD64_ONLY(2 * M)
3259    ARM32_ONLY(2 * M)
3260    IA32_ONLY(4 * M)
3261    IA64_ONLY(256 * M)
3262    PPC_ONLY(4 * M)
3263    S390_ONLY(1 * M)
3264    SPARC_ONLY(4 * M);
3265#endif // ZERO
3266
3267  FILE *fp = fopen("/proc/meminfo", "r");
3268  if (fp) {
3269    while (!feof(fp)) {
3270      int x = 0;
3271      char buf[16];
3272      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3273        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3274          large_page_size = x * K;
3275          break;
3276        }
3277      } else {
3278        // skip to next line
3279        for (;;) {
3280          int ch = fgetc(fp);
3281          if (ch == EOF || ch == (int)'\n') break;
3282        }
3283      }
3284    }
3285    fclose(fp);
3286  }
3287
3288  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3289    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3290            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3291            proper_unit_for_byte_size(large_page_size));
3292  }
3293
3294  return large_page_size;
3295}
3296
3297size_t os::Linux::setup_large_page_size() {
3298  _large_page_size = Linux::find_large_page_size();
3299  const size_t default_page_size = (size_t)Linux::page_size();
3300  if (_large_page_size > default_page_size) {
3301    _page_sizes[0] = _large_page_size;
3302    _page_sizes[1] = default_page_size;
3303    _page_sizes[2] = 0;
3304  }
3305
3306  return _large_page_size;
3307}
3308
3309bool os::Linux::setup_large_page_type(size_t page_size) {
3310  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3311      FLAG_IS_DEFAULT(UseSHM) &&
3312      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3313
3314    // The type of large pages has not been specified by the user.
3315
3316    // Try UseHugeTLBFS and then UseSHM.
3317    UseHugeTLBFS = UseSHM = true;
3318
3319    // Don't try UseTransparentHugePages since there are known
3320    // performance issues with it turned on. This might change in the future.
3321    UseTransparentHugePages = false;
3322  }
3323
3324  if (UseTransparentHugePages) {
3325    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3326    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3327      UseHugeTLBFS = false;
3328      UseSHM = false;
3329      return true;
3330    }
3331    UseTransparentHugePages = false;
3332  }
3333
3334  if (UseHugeTLBFS) {
3335    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3336    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3337      UseSHM = false;
3338      return true;
3339    }
3340    UseHugeTLBFS = false;
3341  }
3342
3343  return UseSHM;
3344}
3345
3346void os::large_page_init() {
3347  if (!UseLargePages &&
3348      !UseTransparentHugePages &&
3349      !UseHugeTLBFS &&
3350      !UseSHM) {
3351    // Not using large pages.
3352    return;
3353  }
3354
3355  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3356    // The user explicitly turned off large pages.
3357    // Ignore the rest of the large pages flags.
3358    UseTransparentHugePages = false;
3359    UseHugeTLBFS = false;
3360    UseSHM = false;
3361    return;
3362  }
3363
3364  size_t large_page_size = Linux::setup_large_page_size();
3365  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3366
3367  set_coredump_filter();
3368}
3369
3370#ifndef SHM_HUGETLB
3371  #define SHM_HUGETLB 04000
3372#endif
3373
3374#define shm_warning_format(format, ...)              \
3375  do {                                               \
3376    if (UseLargePages &&                             \
3377        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3378         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3379         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3380      warning(format, __VA_ARGS__);                  \
3381    }                                                \
3382  } while (0)
3383
3384#define shm_warning(str) shm_warning_format("%s", str)
3385
3386#define shm_warning_with_errno(str)                \
3387  do {                                             \
3388    int err = errno;                               \
3389    shm_warning_format(str " (error = %d)", err);  \
3390  } while (0)
3391
3392static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3393  assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3394
3395  if (!is_size_aligned(alignment, SHMLBA)) {
3396    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3397    return NULL;
3398  }
3399
3400  // To ensure that we get 'alignment' aligned memory from shmat,
3401  // we pre-reserve aligned virtual memory and then attach to that.
3402
3403  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3404  if (pre_reserved_addr == NULL) {
3405    // Couldn't pre-reserve aligned memory.
3406    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3407    return NULL;
3408  }
3409
3410  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3411  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3412
3413  if ((intptr_t)addr == -1) {
3414    int err = errno;
3415    shm_warning_with_errno("Failed to attach shared memory.");
3416
3417    assert(err != EACCES, "Unexpected error");
3418    assert(err != EIDRM,  "Unexpected error");
3419    assert(err != EINVAL, "Unexpected error");
3420
3421    // Since we don't know if the kernel unmapped the pre-reserved memory area
3422    // we can't unmap it, since that would potentially unmap memory that was
3423    // mapped from other threads.
3424    return NULL;
3425  }
3426
3427  return addr;
3428}
3429
3430static char* shmat_at_address(int shmid, char* req_addr) {
3431  if (!is_ptr_aligned(req_addr, SHMLBA)) {
3432    assert(false, "Requested address needs to be SHMLBA aligned");
3433    return NULL;
3434  }
3435
3436  char* addr = (char*)shmat(shmid, req_addr, 0);
3437
3438  if ((intptr_t)addr == -1) {
3439    shm_warning_with_errno("Failed to attach shared memory.");
3440    return NULL;
3441  }
3442
3443  return addr;
3444}
3445
3446static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3447  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3448  if (req_addr != NULL) {
3449    assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3450    assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3451    return shmat_at_address(shmid, req_addr);
3452  }
3453
3454  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3455  // return large page size aligned memory addresses when req_addr == NULL.
3456  // However, if the alignment is larger than the large page size, we have
3457  // to manually ensure that the memory returned is 'alignment' aligned.
3458  if (alignment > os::large_page_size()) {
3459    assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3460    return shmat_with_alignment(shmid, bytes, alignment);
3461  } else {
3462    return shmat_at_address(shmid, NULL);
3463  }
3464}
3465
3466char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3467                                            char* req_addr, bool exec) {
3468  // "exec" is passed in but not used.  Creating the shared image for
3469  // the code cache doesn't have an SHM_X executable permission to check.
3470  assert(UseLargePages && UseSHM, "only for SHM large pages");
3471  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3472  assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3473
3474  if (!is_size_aligned(bytes, os::large_page_size())) {
3475    return NULL; // Fallback to small pages.
3476  }
3477
3478  // Create a large shared memory region to attach to based on size.
3479  // Currently, size is the total size of the heap.
3480  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3481  if (shmid == -1) {
3482    // Possible reasons for shmget failure:
3483    // 1. shmmax is too small for Java heap.
3484    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3485    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3486    // 2. not enough large page memory.
3487    //    > check available large pages: cat /proc/meminfo
3488    //    > increase amount of large pages:
3489    //          echo new_value > /proc/sys/vm/nr_hugepages
3490    //      Note 1: different Linux may use different name for this property,
3491    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3492    //      Note 2: it's possible there's enough physical memory available but
3493    //            they are so fragmented after a long run that they can't
3494    //            coalesce into large pages. Try to reserve large pages when
3495    //            the system is still "fresh".
3496    shm_warning_with_errno("Failed to reserve shared memory.");
3497    return NULL;
3498  }
3499
3500  // Attach to the region.
3501  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3502
3503  // Remove shmid. If shmat() is successful, the actual shared memory segment
3504  // will be deleted when it's detached by shmdt() or when the process
3505  // terminates. If shmat() is not successful this will remove the shared
3506  // segment immediately.
3507  shmctl(shmid, IPC_RMID, NULL);
3508
3509  return addr;
3510}
3511
3512static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3513                                        int error) {
3514  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3515
3516  bool warn_on_failure = UseLargePages &&
3517      (!FLAG_IS_DEFAULT(UseLargePages) ||
3518       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3519       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3520
3521  if (warn_on_failure) {
3522    char msg[128];
3523    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3524                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3525    warning("%s", msg);
3526  }
3527}
3528
3529char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3530                                                        char* req_addr,
3531                                                        bool exec) {
3532  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3533  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3534  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3535
3536  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3537  char* addr = (char*)::mmap(req_addr, bytes, prot,
3538                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3539                             -1, 0);
3540
3541  if (addr == MAP_FAILED) {
3542    warn_on_large_pages_failure(req_addr, bytes, errno);
3543    return NULL;
3544  }
3545
3546  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3547
3548  return addr;
3549}
3550
3551// Reserve memory using mmap(MAP_HUGETLB).
3552//  - bytes shall be a multiple of alignment.
3553//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3554//  - alignment sets the alignment at which memory shall be allocated.
3555//     It must be a multiple of allocation granularity.
3556// Returns address of memory or NULL. If req_addr was not NULL, will only return
3557//  req_addr or NULL.
3558char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3559                                                         size_t alignment,
3560                                                         char* req_addr,
3561                                                         bool exec) {
3562  size_t large_page_size = os::large_page_size();
3563  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3564
3565  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3566  assert(is_size_aligned(bytes, alignment), "Must be");
3567
3568  // First reserve - but not commit - the address range in small pages.
3569  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3570
3571  if (start == NULL) {
3572    return NULL;
3573  }
3574
3575  assert(is_ptr_aligned(start, alignment), "Must be");
3576
3577  char* end = start + bytes;
3578
3579  // Find the regions of the allocated chunk that can be promoted to large pages.
3580  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3581  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3582
3583  size_t lp_bytes = lp_end - lp_start;
3584
3585  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3586
3587  if (lp_bytes == 0) {
3588    // The mapped region doesn't even span the start and the end of a large page.
3589    // Fall back to allocate a non-special area.
3590    ::munmap(start, end - start);
3591    return NULL;
3592  }
3593
3594  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3595
3596  void* result;
3597
3598  // Commit small-paged leading area.
3599  if (start != lp_start) {
3600    result = ::mmap(start, lp_start - start, prot,
3601                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3602                    -1, 0);
3603    if (result == MAP_FAILED) {
3604      ::munmap(lp_start, end - lp_start);
3605      return NULL;
3606    }
3607  }
3608
3609  // Commit large-paged area.
3610  result = ::mmap(lp_start, lp_bytes, prot,
3611                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3612                  -1, 0);
3613  if (result == MAP_FAILED) {
3614    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3615    // If the mmap above fails, the large pages region will be unmapped and we
3616    // have regions before and after with small pages. Release these regions.
3617    //
3618    // |  mapped  |  unmapped  |  mapped  |
3619    // ^          ^            ^          ^
3620    // start      lp_start     lp_end     end
3621    //
3622    ::munmap(start, lp_start - start);
3623    ::munmap(lp_end, end - lp_end);
3624    return NULL;
3625  }
3626
3627  // Commit small-paged trailing area.
3628  if (lp_end != end) {
3629    result = ::mmap(lp_end, end - lp_end, prot,
3630                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3631                    -1, 0);
3632    if (result == MAP_FAILED) {
3633      ::munmap(start, lp_end - start);
3634      return NULL;
3635    }
3636  }
3637
3638  return start;
3639}
3640
3641char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3642                                                   size_t alignment,
3643                                                   char* req_addr,
3644                                                   bool exec) {
3645  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3646  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3647  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3648  assert(is_power_of_2(os::large_page_size()), "Must be");
3649  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3650
3651  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3652    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3653  } else {
3654    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3655  }
3656}
3657
3658char* os::reserve_memory_special(size_t bytes, size_t alignment,
3659                                 char* req_addr, bool exec) {
3660  assert(UseLargePages, "only for large pages");
3661
3662  char* addr;
3663  if (UseSHM) {
3664    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3665  } else {
3666    assert(UseHugeTLBFS, "must be");
3667    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3668  }
3669
3670  if (addr != NULL) {
3671    if (UseNUMAInterleaving) {
3672      numa_make_global(addr, bytes);
3673    }
3674
3675    // The memory is committed
3676    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3677  }
3678
3679  return addr;
3680}
3681
3682bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3683  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3684  return shmdt(base) == 0;
3685}
3686
3687bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3688  return pd_release_memory(base, bytes);
3689}
3690
3691bool os::release_memory_special(char* base, size_t bytes) {
3692  bool res;
3693  if (MemTracker::tracking_level() > NMT_minimal) {
3694    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3695    res = os::Linux::release_memory_special_impl(base, bytes);
3696    if (res) {
3697      tkr.record((address)base, bytes);
3698    }
3699
3700  } else {
3701    res = os::Linux::release_memory_special_impl(base, bytes);
3702  }
3703  return res;
3704}
3705
3706bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3707  assert(UseLargePages, "only for large pages");
3708  bool res;
3709
3710  if (UseSHM) {
3711    res = os::Linux::release_memory_special_shm(base, bytes);
3712  } else {
3713    assert(UseHugeTLBFS, "must be");
3714    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3715  }
3716  return res;
3717}
3718
3719size_t os::large_page_size() {
3720  return _large_page_size;
3721}
3722
3723// With SysV SHM the entire memory region must be allocated as shared
3724// memory.
3725// HugeTLBFS allows application to commit large page memory on demand.
3726// However, when committing memory with HugeTLBFS fails, the region
3727// that was supposed to be committed will lose the old reservation
3728// and allow other threads to steal that memory region. Because of this
3729// behavior we can't commit HugeTLBFS memory.
3730bool os::can_commit_large_page_memory() {
3731  return UseTransparentHugePages;
3732}
3733
3734bool os::can_execute_large_page_memory() {
3735  return UseTransparentHugePages || UseHugeTLBFS;
3736}
3737
3738// Reserve memory at an arbitrary address, only if that area is
3739// available (and not reserved for something else).
3740
3741char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3742  const int max_tries = 10;
3743  char* base[max_tries];
3744  size_t size[max_tries];
3745  const size_t gap = 0x000000;
3746
3747  // Assert only that the size is a multiple of the page size, since
3748  // that's all that mmap requires, and since that's all we really know
3749  // about at this low abstraction level.  If we need higher alignment,
3750  // we can either pass an alignment to this method or verify alignment
3751  // in one of the methods further up the call chain.  See bug 5044738.
3752  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3753
3754  // Repeatedly allocate blocks until the block is allocated at the
3755  // right spot.
3756
3757  // Linux mmap allows caller to pass an address as hint; give it a try first,
3758  // if kernel honors the hint then we can return immediately.
3759  char * addr = anon_mmap(requested_addr, bytes, false);
3760  if (addr == requested_addr) {
3761    return requested_addr;
3762  }
3763
3764  if (addr != NULL) {
3765    // mmap() is successful but it fails to reserve at the requested address
3766    anon_munmap(addr, bytes);
3767  }
3768
3769  int i;
3770  for (i = 0; i < max_tries; ++i) {
3771    base[i] = reserve_memory(bytes);
3772
3773    if (base[i] != NULL) {
3774      // Is this the block we wanted?
3775      if (base[i] == requested_addr) {
3776        size[i] = bytes;
3777        break;
3778      }
3779
3780      // Does this overlap the block we wanted? Give back the overlapped
3781      // parts and try again.
3782
3783      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3784      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3785        unmap_memory(base[i], top_overlap);
3786        base[i] += top_overlap;
3787        size[i] = bytes - top_overlap;
3788      } else {
3789        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3790        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3791          unmap_memory(requested_addr, bottom_overlap);
3792          size[i] = bytes - bottom_overlap;
3793        } else {
3794          size[i] = bytes;
3795        }
3796      }
3797    }
3798  }
3799
3800  // Give back the unused reserved pieces.
3801
3802  for (int j = 0; j < i; ++j) {
3803    if (base[j] != NULL) {
3804      unmap_memory(base[j], size[j]);
3805    }
3806  }
3807
3808  if (i < max_tries) {
3809    return requested_addr;
3810  } else {
3811    return NULL;
3812  }
3813}
3814
3815size_t os::read(int fd, void *buf, unsigned int nBytes) {
3816  return ::read(fd, buf, nBytes);
3817}
3818
3819size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3820  return ::pread(fd, buf, nBytes, offset);
3821}
3822
3823// Short sleep, direct OS call.
3824//
3825// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3826// sched_yield(2) will actually give up the CPU:
3827//
3828//   * Alone on this pariticular CPU, keeps running.
3829//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3830//     (pre 2.6.39).
3831//
3832// So calling this with 0 is an alternative.
3833//
3834void os::naked_short_sleep(jlong ms) {
3835  struct timespec req;
3836
3837  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3838  req.tv_sec = 0;
3839  if (ms > 0) {
3840    req.tv_nsec = (ms % 1000) * 1000000;
3841  } else {
3842    req.tv_nsec = 1;
3843  }
3844
3845  nanosleep(&req, NULL);
3846
3847  return;
3848}
3849
3850// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3851void os::infinite_sleep() {
3852  while (true) {    // sleep forever ...
3853    ::sleep(100);   // ... 100 seconds at a time
3854  }
3855}
3856
3857// Used to convert frequent JVM_Yield() to nops
3858bool os::dont_yield() {
3859  return DontYieldALot;
3860}
3861
3862void os::naked_yield() {
3863  sched_yield();
3864}
3865
3866////////////////////////////////////////////////////////////////////////////////
3867// thread priority support
3868
3869// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3870// only supports dynamic priority, static priority must be zero. For real-time
3871// applications, Linux supports SCHED_RR which allows static priority (1-99).
3872// However, for large multi-threaded applications, SCHED_RR is not only slower
3873// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3874// of 5 runs - Sep 2005).
3875//
3876// The following code actually changes the niceness of kernel-thread/LWP. It
3877// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3878// not the entire user process, and user level threads are 1:1 mapped to kernel
3879// threads. It has always been the case, but could change in the future. For
3880// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3881// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3882
3883int os::java_to_os_priority[CriticalPriority + 1] = {
3884  19,              // 0 Entry should never be used
3885
3886   4,              // 1 MinPriority
3887   3,              // 2
3888   2,              // 3
3889
3890   1,              // 4
3891   0,              // 5 NormPriority
3892  -1,              // 6
3893
3894  -2,              // 7
3895  -3,              // 8
3896  -4,              // 9 NearMaxPriority
3897
3898  -5,              // 10 MaxPriority
3899
3900  -5               // 11 CriticalPriority
3901};
3902
3903static int prio_init() {
3904  if (ThreadPriorityPolicy == 1) {
3905    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3906    // if effective uid is not root. Perhaps, a more elegant way of doing
3907    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3908    if (geteuid() != 0) {
3909      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3910        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3911      }
3912      ThreadPriorityPolicy = 0;
3913    }
3914  }
3915  if (UseCriticalJavaThreadPriority) {
3916    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3917  }
3918  return 0;
3919}
3920
3921OSReturn os::set_native_priority(Thread* thread, int newpri) {
3922  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3923
3924  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3925  return (ret == 0) ? OS_OK : OS_ERR;
3926}
3927
3928OSReturn os::get_native_priority(const Thread* const thread,
3929                                 int *priority_ptr) {
3930  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3931    *priority_ptr = java_to_os_priority[NormPriority];
3932    return OS_OK;
3933  }
3934
3935  errno = 0;
3936  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3937  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3938}
3939
3940// Hint to the underlying OS that a task switch would not be good.
3941// Void return because it's a hint and can fail.
3942void os::hint_no_preempt() {}
3943
3944////////////////////////////////////////////////////////////////////////////////
3945// suspend/resume support
3946
3947//  the low-level signal-based suspend/resume support is a remnant from the
3948//  old VM-suspension that used to be for java-suspension, safepoints etc,
3949//  within hotspot. Now there is a single use-case for this:
3950//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3951//      that runs in the watcher thread.
3952//  The remaining code is greatly simplified from the more general suspension
3953//  code that used to be used.
3954//
3955//  The protocol is quite simple:
3956//  - suspend:
3957//      - sends a signal to the target thread
3958//      - polls the suspend state of the osthread using a yield loop
3959//      - target thread signal handler (SR_handler) sets suspend state
3960//        and blocks in sigsuspend until continued
3961//  - resume:
3962//      - sets target osthread state to continue
3963//      - sends signal to end the sigsuspend loop in the SR_handler
3964//
3965//  Note that the SR_lock plays no role in this suspend/resume protocol,
3966//  but is checked for NULL in SR_handler as a thread termination indicator.
3967
3968static void resume_clear_context(OSThread *osthread) {
3969  osthread->set_ucontext(NULL);
3970  osthread->set_siginfo(NULL);
3971}
3972
3973static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3974                                 ucontext_t* context) {
3975  osthread->set_ucontext(context);
3976  osthread->set_siginfo(siginfo);
3977}
3978
3979// Handler function invoked when a thread's execution is suspended or
3980// resumed. We have to be careful that only async-safe functions are
3981// called here (Note: most pthread functions are not async safe and
3982// should be avoided.)
3983//
3984// Note: sigwait() is a more natural fit than sigsuspend() from an
3985// interface point of view, but sigwait() prevents the signal hander
3986// from being run. libpthread would get very confused by not having
3987// its signal handlers run and prevents sigwait()'s use with the
3988// mutex granting granting signal.
3989//
3990// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3991//
3992static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3993  // Save and restore errno to avoid confusing native code with EINTR
3994  // after sigsuspend.
3995  int old_errno = errno;
3996
3997  Thread* thread = Thread::current_or_null_safe();
3998  assert(thread != NULL, "Missing current thread in SR_handler");
3999
4000  // On some systems we have seen signal delivery get "stuck" until the signal
4001  // mask is changed as part of thread termination. Check that the current thread
4002  // has not already terminated (via SR_lock()) - else the following assertion
4003  // will fail because the thread is no longer a JavaThread as the ~JavaThread
4004  // destructor has completed.
4005
4006  if (thread->SR_lock() == NULL) {
4007    return;
4008  }
4009
4010  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4011
4012  OSThread* osthread = thread->osthread();
4013
4014  os::SuspendResume::State current = osthread->sr.state();
4015  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4016    suspend_save_context(osthread, siginfo, context);
4017
4018    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4019    os::SuspendResume::State state = osthread->sr.suspended();
4020    if (state == os::SuspendResume::SR_SUSPENDED) {
4021      sigset_t suspend_set;  // signals for sigsuspend()
4022      sigemptyset(&suspend_set);
4023      // get current set of blocked signals and unblock resume signal
4024      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4025      sigdelset(&suspend_set, SR_signum);
4026
4027      sr_semaphore.signal();
4028      // wait here until we are resumed
4029      while (1) {
4030        sigsuspend(&suspend_set);
4031
4032        os::SuspendResume::State result = osthread->sr.running();
4033        if (result == os::SuspendResume::SR_RUNNING) {
4034          sr_semaphore.signal();
4035          break;
4036        }
4037      }
4038
4039    } else if (state == os::SuspendResume::SR_RUNNING) {
4040      // request was cancelled, continue
4041    } else {
4042      ShouldNotReachHere();
4043    }
4044
4045    resume_clear_context(osthread);
4046  } else if (current == os::SuspendResume::SR_RUNNING) {
4047    // request was cancelled, continue
4048  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4049    // ignore
4050  } else {
4051    // ignore
4052  }
4053
4054  errno = old_errno;
4055}
4056
4057static int SR_initialize() {
4058  struct sigaction act;
4059  char *s;
4060
4061  // Get signal number to use for suspend/resume
4062  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4063    int sig = ::strtol(s, 0, 10);
4064    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4065        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4066      SR_signum = sig;
4067    } else {
4068      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4069              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4070    }
4071  }
4072
4073  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4074         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4075
4076  sigemptyset(&SR_sigset);
4077  sigaddset(&SR_sigset, SR_signum);
4078
4079  // Set up signal handler for suspend/resume
4080  act.sa_flags = SA_RESTART|SA_SIGINFO;
4081  act.sa_handler = (void (*)(int)) SR_handler;
4082
4083  // SR_signum is blocked by default.
4084  // 4528190 - We also need to block pthread restart signal (32 on all
4085  // supported Linux platforms). Note that LinuxThreads need to block
4086  // this signal for all threads to work properly. So we don't have
4087  // to use hard-coded signal number when setting up the mask.
4088  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4089
4090  if (sigaction(SR_signum, &act, 0) == -1) {
4091    return -1;
4092  }
4093
4094  // Save signal flag
4095  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4096  return 0;
4097}
4098
4099static int sr_notify(OSThread* osthread) {
4100  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4101  assert_status(status == 0, status, "pthread_kill");
4102  return status;
4103}
4104
4105// "Randomly" selected value for how long we want to spin
4106// before bailing out on suspending a thread, also how often
4107// we send a signal to a thread we want to resume
4108static const int RANDOMLY_LARGE_INTEGER = 1000000;
4109static const int RANDOMLY_LARGE_INTEGER2 = 100;
4110
4111// returns true on success and false on error - really an error is fatal
4112// but this seems the normal response to library errors
4113static bool do_suspend(OSThread* osthread) {
4114  assert(osthread->sr.is_running(), "thread should be running");
4115  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4116
4117  // mark as suspended and send signal
4118  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4119    // failed to switch, state wasn't running?
4120    ShouldNotReachHere();
4121    return false;
4122  }
4123
4124  if (sr_notify(osthread) != 0) {
4125    ShouldNotReachHere();
4126  }
4127
4128  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4129  while (true) {
4130    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4131      break;
4132    } else {
4133      // timeout
4134      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4135      if (cancelled == os::SuspendResume::SR_RUNNING) {
4136        return false;
4137      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4138        // make sure that we consume the signal on the semaphore as well
4139        sr_semaphore.wait();
4140        break;
4141      } else {
4142        ShouldNotReachHere();
4143        return false;
4144      }
4145    }
4146  }
4147
4148  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4149  return true;
4150}
4151
4152static void do_resume(OSThread* osthread) {
4153  assert(osthread->sr.is_suspended(), "thread should be suspended");
4154  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4155
4156  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4157    // failed to switch to WAKEUP_REQUEST
4158    ShouldNotReachHere();
4159    return;
4160  }
4161
4162  while (true) {
4163    if (sr_notify(osthread) == 0) {
4164      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4165        if (osthread->sr.is_running()) {
4166          return;
4167        }
4168      }
4169    } else {
4170      ShouldNotReachHere();
4171    }
4172  }
4173
4174  guarantee(osthread->sr.is_running(), "Must be running!");
4175}
4176
4177///////////////////////////////////////////////////////////////////////////////////
4178// signal handling (except suspend/resume)
4179
4180// This routine may be used by user applications as a "hook" to catch signals.
4181// The user-defined signal handler must pass unrecognized signals to this
4182// routine, and if it returns true (non-zero), then the signal handler must
4183// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4184// routine will never retun false (zero), but instead will execute a VM panic
4185// routine kill the process.
4186//
4187// If this routine returns false, it is OK to call it again.  This allows
4188// the user-defined signal handler to perform checks either before or after
4189// the VM performs its own checks.  Naturally, the user code would be making
4190// a serious error if it tried to handle an exception (such as a null check
4191// or breakpoint) that the VM was generating for its own correct operation.
4192//
4193// This routine may recognize any of the following kinds of signals:
4194//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4195// It should be consulted by handlers for any of those signals.
4196//
4197// The caller of this routine must pass in the three arguments supplied
4198// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4199// field of the structure passed to sigaction().  This routine assumes that
4200// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4201//
4202// Note that the VM will print warnings if it detects conflicting signal
4203// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4204//
4205extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4206                                                 siginfo_t* siginfo,
4207                                                 void* ucontext,
4208                                                 int abort_if_unrecognized);
4209
4210void signalHandler(int sig, siginfo_t* info, void* uc) {
4211  assert(info != NULL && uc != NULL, "it must be old kernel");
4212  int orig_errno = errno;  // Preserve errno value over signal handler.
4213  JVM_handle_linux_signal(sig, info, uc, true);
4214  errno = orig_errno;
4215}
4216
4217
4218// This boolean allows users to forward their own non-matching signals
4219// to JVM_handle_linux_signal, harmlessly.
4220bool os::Linux::signal_handlers_are_installed = false;
4221
4222// For signal-chaining
4223struct sigaction sigact[NSIG];
4224uint64_t sigs = 0;
4225#if (64 < NSIG-1)
4226#error "Not all signals can be encoded in sigs. Adapt its type!"
4227#endif
4228bool os::Linux::libjsig_is_loaded = false;
4229typedef struct sigaction *(*get_signal_t)(int);
4230get_signal_t os::Linux::get_signal_action = NULL;
4231
4232struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4233  struct sigaction *actp = NULL;
4234
4235  if (libjsig_is_loaded) {
4236    // Retrieve the old signal handler from libjsig
4237    actp = (*get_signal_action)(sig);
4238  }
4239  if (actp == NULL) {
4240    // Retrieve the preinstalled signal handler from jvm
4241    actp = get_preinstalled_handler(sig);
4242  }
4243
4244  return actp;
4245}
4246
4247static bool call_chained_handler(struct sigaction *actp, int sig,
4248                                 siginfo_t *siginfo, void *context) {
4249  // Call the old signal handler
4250  if (actp->sa_handler == SIG_DFL) {
4251    // It's more reasonable to let jvm treat it as an unexpected exception
4252    // instead of taking the default action.
4253    return false;
4254  } else if (actp->sa_handler != SIG_IGN) {
4255    if ((actp->sa_flags & SA_NODEFER) == 0) {
4256      // automaticlly block the signal
4257      sigaddset(&(actp->sa_mask), sig);
4258    }
4259
4260    sa_handler_t hand = NULL;
4261    sa_sigaction_t sa = NULL;
4262    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4263    // retrieve the chained handler
4264    if (siginfo_flag_set) {
4265      sa = actp->sa_sigaction;
4266    } else {
4267      hand = actp->sa_handler;
4268    }
4269
4270    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4271      actp->sa_handler = SIG_DFL;
4272    }
4273
4274    // try to honor the signal mask
4275    sigset_t oset;
4276    sigemptyset(&oset);
4277    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4278
4279    // call into the chained handler
4280    if (siginfo_flag_set) {
4281      (*sa)(sig, siginfo, context);
4282    } else {
4283      (*hand)(sig);
4284    }
4285
4286    // restore the signal mask
4287    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4288  }
4289  // Tell jvm's signal handler the signal is taken care of.
4290  return true;
4291}
4292
4293bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4294  bool chained = false;
4295  // signal-chaining
4296  if (UseSignalChaining) {
4297    struct sigaction *actp = get_chained_signal_action(sig);
4298    if (actp != NULL) {
4299      chained = call_chained_handler(actp, sig, siginfo, context);
4300    }
4301  }
4302  return chained;
4303}
4304
4305struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4306  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4307    return &sigact[sig];
4308  }
4309  return NULL;
4310}
4311
4312void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4313  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4314  sigact[sig] = oldAct;
4315  sigs |= (uint64_t)1 << (sig-1);
4316}
4317
4318// for diagnostic
4319int sigflags[NSIG];
4320
4321int os::Linux::get_our_sigflags(int sig) {
4322  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4323  return sigflags[sig];
4324}
4325
4326void os::Linux::set_our_sigflags(int sig, int flags) {
4327  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4328  if (sig > 0 && sig < NSIG) {
4329    sigflags[sig] = flags;
4330  }
4331}
4332
4333void os::Linux::set_signal_handler(int sig, bool set_installed) {
4334  // Check for overwrite.
4335  struct sigaction oldAct;
4336  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4337
4338  void* oldhand = oldAct.sa_sigaction
4339                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4340                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4341  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4342      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4343      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4344    if (AllowUserSignalHandlers || !set_installed) {
4345      // Do not overwrite; user takes responsibility to forward to us.
4346      return;
4347    } else if (UseSignalChaining) {
4348      // save the old handler in jvm
4349      save_preinstalled_handler(sig, oldAct);
4350      // libjsig also interposes the sigaction() call below and saves the
4351      // old sigaction on it own.
4352    } else {
4353      fatal("Encountered unexpected pre-existing sigaction handler "
4354            "%#lx for signal %d.", (long)oldhand, sig);
4355    }
4356  }
4357
4358  struct sigaction sigAct;
4359  sigfillset(&(sigAct.sa_mask));
4360  sigAct.sa_handler = SIG_DFL;
4361  if (!set_installed) {
4362    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4363  } else {
4364    sigAct.sa_sigaction = signalHandler;
4365    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4366  }
4367  // Save flags, which are set by ours
4368  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4369  sigflags[sig] = sigAct.sa_flags;
4370
4371  int ret = sigaction(sig, &sigAct, &oldAct);
4372  assert(ret == 0, "check");
4373
4374  void* oldhand2  = oldAct.sa_sigaction
4375                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4376                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4377  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4378}
4379
4380// install signal handlers for signals that HotSpot needs to
4381// handle in order to support Java-level exception handling.
4382
4383void os::Linux::install_signal_handlers() {
4384  if (!signal_handlers_are_installed) {
4385    signal_handlers_are_installed = true;
4386
4387    // signal-chaining
4388    typedef void (*signal_setting_t)();
4389    signal_setting_t begin_signal_setting = NULL;
4390    signal_setting_t end_signal_setting = NULL;
4391    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4392                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4393    if (begin_signal_setting != NULL) {
4394      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4395                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4396      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4397                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4398      libjsig_is_loaded = true;
4399      assert(UseSignalChaining, "should enable signal-chaining");
4400    }
4401    if (libjsig_is_loaded) {
4402      // Tell libjsig jvm is setting signal handlers
4403      (*begin_signal_setting)();
4404    }
4405
4406    set_signal_handler(SIGSEGV, true);
4407    set_signal_handler(SIGPIPE, true);
4408    set_signal_handler(SIGBUS, true);
4409    set_signal_handler(SIGILL, true);
4410    set_signal_handler(SIGFPE, true);
4411#if defined(PPC64)
4412    set_signal_handler(SIGTRAP, true);
4413#endif
4414    set_signal_handler(SIGXFSZ, true);
4415
4416    if (libjsig_is_loaded) {
4417      // Tell libjsig jvm finishes setting signal handlers
4418      (*end_signal_setting)();
4419    }
4420
4421    // We don't activate signal checker if libjsig is in place, we trust ourselves
4422    // and if UserSignalHandler is installed all bets are off.
4423    // Log that signal checking is off only if -verbose:jni is specified.
4424    if (CheckJNICalls) {
4425      if (libjsig_is_loaded) {
4426        if (PrintJNIResolving) {
4427          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4428        }
4429        check_signals = false;
4430      }
4431      if (AllowUserSignalHandlers) {
4432        if (PrintJNIResolving) {
4433          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4434        }
4435        check_signals = false;
4436      }
4437    }
4438  }
4439}
4440
4441// This is the fastest way to get thread cpu time on Linux.
4442// Returns cpu time (user+sys) for any thread, not only for current.
4443// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4444// It might work on 2.6.10+ with a special kernel/glibc patch.
4445// For reference, please, see IEEE Std 1003.1-2004:
4446//   http://www.unix.org/single_unix_specification
4447
4448jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4449  struct timespec tp;
4450  int rc = os::Linux::clock_gettime(clockid, &tp);
4451  assert(rc == 0, "clock_gettime is expected to return 0 code");
4452
4453  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4454}
4455
4456void os::Linux::initialize_os_info() {
4457  assert(_os_version == 0, "OS info already initialized");
4458
4459  struct utsname _uname;
4460
4461  uint32_t major;
4462  uint32_t minor;
4463  uint32_t fix;
4464
4465  int rc;
4466
4467  // Kernel version is unknown if
4468  // verification below fails.
4469  _os_version = 0x01000000;
4470
4471  rc = uname(&_uname);
4472  if (rc != -1) {
4473
4474    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4475    if (rc == 3) {
4476
4477      if (major < 256 && minor < 256 && fix < 256) {
4478        // Kernel version format is as expected,
4479        // set it overriding unknown state.
4480        _os_version = (major << 16) |
4481                      (minor << 8 ) |
4482                      (fix   << 0 ) ;
4483      }
4484    }
4485  }
4486}
4487
4488uint32_t os::Linux::os_version() {
4489  assert(_os_version != 0, "not initialized");
4490  return _os_version & 0x00FFFFFF;
4491}
4492
4493bool os::Linux::os_version_is_known() {
4494  assert(_os_version != 0, "not initialized");
4495  return _os_version & 0x01000000 ? false : true;
4496}
4497
4498/////
4499// glibc on Linux platform uses non-documented flag
4500// to indicate, that some special sort of signal
4501// trampoline is used.
4502// We will never set this flag, and we should
4503// ignore this flag in our diagnostic
4504#ifdef SIGNIFICANT_SIGNAL_MASK
4505  #undef SIGNIFICANT_SIGNAL_MASK
4506#endif
4507#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4508
4509static const char* get_signal_handler_name(address handler,
4510                                           char* buf, int buflen) {
4511  int offset = 0;
4512  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4513  if (found) {
4514    // skip directory names
4515    const char *p1, *p2;
4516    p1 = buf;
4517    size_t len = strlen(os::file_separator());
4518    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4519    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4520  } else {
4521    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4522  }
4523  return buf;
4524}
4525
4526static void print_signal_handler(outputStream* st, int sig,
4527                                 char* buf, size_t buflen) {
4528  struct sigaction sa;
4529
4530  sigaction(sig, NULL, &sa);
4531
4532  // See comment for SIGNIFICANT_SIGNAL_MASK define
4533  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4534
4535  st->print("%s: ", os::exception_name(sig, buf, buflen));
4536
4537  address handler = (sa.sa_flags & SA_SIGINFO)
4538    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4539    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4540
4541  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4542    st->print("SIG_DFL");
4543  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4544    st->print("SIG_IGN");
4545  } else {
4546    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4547  }
4548
4549  st->print(", sa_mask[0]=");
4550  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4551
4552  address rh = VMError::get_resetted_sighandler(sig);
4553  // May be, handler was resetted by VMError?
4554  if (rh != NULL) {
4555    handler = rh;
4556    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4557  }
4558
4559  st->print(", sa_flags=");
4560  os::Posix::print_sa_flags(st, sa.sa_flags);
4561
4562  // Check: is it our handler?
4563  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4564      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4565    // It is our signal handler
4566    // check for flags, reset system-used one!
4567    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4568      st->print(
4569                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4570                os::Linux::get_our_sigflags(sig));
4571    }
4572  }
4573  st->cr();
4574}
4575
4576
4577#define DO_SIGNAL_CHECK(sig)                      \
4578  do {                                            \
4579    if (!sigismember(&check_signal_done, sig)) {  \
4580      os::Linux::check_signal_handler(sig);       \
4581    }                                             \
4582  } while (0)
4583
4584// This method is a periodic task to check for misbehaving JNI applications
4585// under CheckJNI, we can add any periodic checks here
4586
4587void os::run_periodic_checks() {
4588  if (check_signals == false) return;
4589
4590  // SEGV and BUS if overridden could potentially prevent
4591  // generation of hs*.log in the event of a crash, debugging
4592  // such a case can be very challenging, so we absolutely
4593  // check the following for a good measure:
4594  DO_SIGNAL_CHECK(SIGSEGV);
4595  DO_SIGNAL_CHECK(SIGILL);
4596  DO_SIGNAL_CHECK(SIGFPE);
4597  DO_SIGNAL_CHECK(SIGBUS);
4598  DO_SIGNAL_CHECK(SIGPIPE);
4599  DO_SIGNAL_CHECK(SIGXFSZ);
4600#if defined(PPC64)
4601  DO_SIGNAL_CHECK(SIGTRAP);
4602#endif
4603
4604  // ReduceSignalUsage allows the user to override these handlers
4605  // see comments at the very top and jvm_solaris.h
4606  if (!ReduceSignalUsage) {
4607    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4608    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4609    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4610    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4611  }
4612
4613  DO_SIGNAL_CHECK(SR_signum);
4614}
4615
4616typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4617
4618static os_sigaction_t os_sigaction = NULL;
4619
4620void os::Linux::check_signal_handler(int sig) {
4621  char buf[O_BUFLEN];
4622  address jvmHandler = NULL;
4623
4624
4625  struct sigaction act;
4626  if (os_sigaction == NULL) {
4627    // only trust the default sigaction, in case it has been interposed
4628    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4629    if (os_sigaction == NULL) return;
4630  }
4631
4632  os_sigaction(sig, (struct sigaction*)NULL, &act);
4633
4634
4635  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4636
4637  address thisHandler = (act.sa_flags & SA_SIGINFO)
4638    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4639    : CAST_FROM_FN_PTR(address, act.sa_handler);
4640
4641
4642  switch (sig) {
4643  case SIGSEGV:
4644  case SIGBUS:
4645  case SIGFPE:
4646  case SIGPIPE:
4647  case SIGILL:
4648  case SIGXFSZ:
4649    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4650    break;
4651
4652  case SHUTDOWN1_SIGNAL:
4653  case SHUTDOWN2_SIGNAL:
4654  case SHUTDOWN3_SIGNAL:
4655  case BREAK_SIGNAL:
4656    jvmHandler = (address)user_handler();
4657    break;
4658
4659  default:
4660    if (sig == SR_signum) {
4661      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4662    } else {
4663      return;
4664    }
4665    break;
4666  }
4667
4668  if (thisHandler != jvmHandler) {
4669    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4670    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4671    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4672    // No need to check this sig any longer
4673    sigaddset(&check_signal_done, sig);
4674    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4675    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4676      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4677                    exception_name(sig, buf, O_BUFLEN));
4678    }
4679  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4680    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4681    tty->print("expected:");
4682    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4683    tty->cr();
4684    tty->print("  found:");
4685    os::Posix::print_sa_flags(tty, act.sa_flags);
4686    tty->cr();
4687    // No need to check this sig any longer
4688    sigaddset(&check_signal_done, sig);
4689  }
4690
4691  // Dump all the signal
4692  if (sigismember(&check_signal_done, sig)) {
4693    print_signal_handlers(tty, buf, O_BUFLEN);
4694  }
4695}
4696
4697extern void report_error(char* file_name, int line_no, char* title,
4698                         char* format, ...);
4699
4700// this is called _before_ the most of global arguments have been parsed
4701void os::init(void) {
4702  char dummy;   // used to get a guess on initial stack address
4703//  first_hrtime = gethrtime();
4704
4705  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4706
4707  init_random(1234567);
4708
4709  ThreadCritical::initialize();
4710
4711  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4712  if (Linux::page_size() == -1) {
4713    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4714          os::strerror(errno));
4715  }
4716  init_page_sizes((size_t) Linux::page_size());
4717
4718  Linux::initialize_system_info();
4719
4720  Linux::initialize_os_info();
4721
4722  // main_thread points to the aboriginal thread
4723  Linux::_main_thread = pthread_self();
4724
4725  Linux::clock_init();
4726  initial_time_count = javaTimeNanos();
4727
4728  // pthread_condattr initialization for monotonic clock
4729  int status;
4730  pthread_condattr_t* _condattr = os::Linux::condAttr();
4731  if ((status = pthread_condattr_init(_condattr)) != 0) {
4732    fatal("pthread_condattr_init: %s", os::strerror(status));
4733  }
4734  // Only set the clock if CLOCK_MONOTONIC is available
4735  if (os::supports_monotonic_clock()) {
4736    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4737      if (status == EINVAL) {
4738        warning("Unable to use monotonic clock with relative timed-waits" \
4739                " - changes to the time-of-day clock may have adverse affects");
4740      } else {
4741        fatal("pthread_condattr_setclock: %s", os::strerror(status));
4742      }
4743    }
4744  }
4745  // else it defaults to CLOCK_REALTIME
4746
4747  // retrieve entry point for pthread_setname_np
4748  Linux::_pthread_setname_np =
4749    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4750
4751}
4752
4753// To install functions for atexit system call
4754extern "C" {
4755  static void perfMemory_exit_helper() {
4756    perfMemory_exit();
4757  }
4758}
4759
4760// this is called _after_ the global arguments have been parsed
4761jint os::init_2(void) {
4762  Linux::fast_thread_clock_init();
4763
4764  // Allocate a single page and mark it as readable for safepoint polling
4765  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4766  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4767
4768  os::set_polling_page(polling_page);
4769  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4770
4771  if (!UseMembar) {
4772    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4773    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4774    os::set_memory_serialize_page(mem_serialize_page);
4775    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4776  }
4777
4778  // initialize suspend/resume support - must do this before signal_sets_init()
4779  if (SR_initialize() != 0) {
4780    perror("SR_initialize failed");
4781    return JNI_ERR;
4782  }
4783
4784  Linux::signal_sets_init();
4785  Linux::install_signal_handlers();
4786
4787  // Check and sets minimum stack sizes against command line options
4788  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4789    return JNI_ERR;
4790  }
4791  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4792
4793#if defined(IA32)
4794  workaround_expand_exec_shield_cs_limit();
4795#endif
4796
4797  Linux::libpthread_init();
4798  log_info(os)("HotSpot is running with %s, %s",
4799               Linux::glibc_version(), Linux::libpthread_version());
4800
4801  if (UseNUMA) {
4802    if (!Linux::libnuma_init()) {
4803      UseNUMA = false;
4804    } else {
4805      if ((Linux::numa_max_node() < 1)) {
4806        // There's only one node(they start from 0), disable NUMA.
4807        UseNUMA = false;
4808      }
4809    }
4810    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4811    // we can make the adaptive lgrp chunk resizing work. If the user specified
4812    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4813    // disable adaptive resizing.
4814    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4815      if (FLAG_IS_DEFAULT(UseNUMA)) {
4816        UseNUMA = false;
4817      } else {
4818        if (FLAG_IS_DEFAULT(UseLargePages) &&
4819            FLAG_IS_DEFAULT(UseSHM) &&
4820            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4821          UseLargePages = false;
4822        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4823          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4824          UseAdaptiveSizePolicy = false;
4825          UseAdaptiveNUMAChunkSizing = false;
4826        }
4827      }
4828    }
4829    if (!UseNUMA && ForceNUMA) {
4830      UseNUMA = true;
4831    }
4832  }
4833
4834  if (MaxFDLimit) {
4835    // set the number of file descriptors to max. print out error
4836    // if getrlimit/setrlimit fails but continue regardless.
4837    struct rlimit nbr_files;
4838    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4839    if (status != 0) {
4840      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4841    } else {
4842      nbr_files.rlim_cur = nbr_files.rlim_max;
4843      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4844      if (status != 0) {
4845        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4846      }
4847    }
4848  }
4849
4850  // Initialize lock used to serialize thread creation (see os::create_thread)
4851  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4852
4853  // at-exit methods are called in the reverse order of their registration.
4854  // atexit functions are called on return from main or as a result of a
4855  // call to exit(3C). There can be only 32 of these functions registered
4856  // and atexit() does not set errno.
4857
4858  if (PerfAllowAtExitRegistration) {
4859    // only register atexit functions if PerfAllowAtExitRegistration is set.
4860    // atexit functions can be delayed until process exit time, which
4861    // can be problematic for embedded VM situations. Embedded VMs should
4862    // call DestroyJavaVM() to assure that VM resources are released.
4863
4864    // note: perfMemory_exit_helper atexit function may be removed in
4865    // the future if the appropriate cleanup code can be added to the
4866    // VM_Exit VMOperation's doit method.
4867    if (atexit(perfMemory_exit_helper) != 0) {
4868      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4869    }
4870  }
4871
4872  // initialize thread priority policy
4873  prio_init();
4874
4875  return JNI_OK;
4876}
4877
4878// Mark the polling page as unreadable
4879void os::make_polling_page_unreadable(void) {
4880  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4881    fatal("Could not disable polling page");
4882  }
4883}
4884
4885// Mark the polling page as readable
4886void os::make_polling_page_readable(void) {
4887  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4888    fatal("Could not enable polling page");
4889  }
4890}
4891
4892// older glibc versions don't have this macro (which expands to
4893// an optimized bit-counting function) so we have to roll our own
4894#ifndef CPU_COUNT
4895
4896static int _cpu_count(const cpu_set_t* cpus) {
4897  int count = 0;
4898  // only look up to the number of configured processors
4899  for (int i = 0; i < os::processor_count(); i++) {
4900    if (CPU_ISSET(i, cpus)) {
4901      count++;
4902    }
4903  }
4904  return count;
4905}
4906
4907#define CPU_COUNT(cpus) _cpu_count(cpus)
4908
4909#endif // CPU_COUNT
4910
4911// Get the current number of available processors for this process.
4912// This value can change at any time during a process's lifetime.
4913// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4914// If it appears there may be more than 1024 processors then we do a
4915// dynamic check - see 6515172 for details.
4916// If anything goes wrong we fallback to returning the number of online
4917// processors - which can be greater than the number available to the process.
4918int os::active_processor_count() {
4919  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4920  cpu_set_t* cpus_p = &cpus;
4921  int cpus_size = sizeof(cpu_set_t);
4922
4923  int configured_cpus = processor_count();  // upper bound on available cpus
4924  int cpu_count = 0;
4925
4926// old build platforms may not support dynamic cpu sets
4927#ifdef CPU_ALLOC
4928
4929  // To enable easy testing of the dynamic path on different platforms we
4930  // introduce a diagnostic flag: UseCpuAllocPath
4931  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4932    // kernel may use a mask bigger than cpu_set_t
4933    log_trace(os)("active_processor_count: using dynamic path %s"
4934                  "- configured processors: %d",
4935                  UseCpuAllocPath ? "(forced) " : "",
4936                  configured_cpus);
4937    cpus_p = CPU_ALLOC(configured_cpus);
4938    if (cpus_p != NULL) {
4939      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4940      // zero it just to be safe
4941      CPU_ZERO_S(cpus_size, cpus_p);
4942    }
4943    else {
4944       // failed to allocate so fallback to online cpus
4945       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4946       log_trace(os)("active_processor_count: "
4947                     "CPU_ALLOC failed (%s) - using "
4948                     "online processor count: %d",
4949                     os::strerror(errno), online_cpus);
4950       return online_cpus;
4951    }
4952  }
4953  else {
4954    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4955                  configured_cpus);
4956  }
4957#else // CPU_ALLOC
4958// these stubs won't be executed
4959#define CPU_COUNT_S(size, cpus) -1
4960#define CPU_FREE(cpus)
4961
4962  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4963                configured_cpus);
4964#endif // CPU_ALLOC
4965
4966  // pid 0 means the current thread - which we have to assume represents the process
4967  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4968    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4969      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4970    }
4971    else {
4972      cpu_count = CPU_COUNT(cpus_p);
4973    }
4974    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4975  }
4976  else {
4977    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4978    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4979            "which may exceed available processors", os::strerror(errno), cpu_count);
4980  }
4981
4982  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4983    CPU_FREE(cpus_p);
4984  }
4985
4986  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4987  return cpu_count;
4988}
4989
4990void os::set_native_thread_name(const char *name) {
4991  if (Linux::_pthread_setname_np) {
4992    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4993    snprintf(buf, sizeof(buf), "%s", name);
4994    buf[sizeof(buf) - 1] = '\0';
4995    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4996    // ERANGE should not happen; all other errors should just be ignored.
4997    assert(rc != ERANGE, "pthread_setname_np failed");
4998  }
4999}
5000
5001bool os::distribute_processes(uint length, uint* distribution) {
5002  // Not yet implemented.
5003  return false;
5004}
5005
5006bool os::bind_to_processor(uint processor_id) {
5007  // Not yet implemented.
5008  return false;
5009}
5010
5011///
5012
5013void os::SuspendedThreadTask::internal_do_task() {
5014  if (do_suspend(_thread->osthread())) {
5015    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5016    do_task(context);
5017    do_resume(_thread->osthread());
5018  }
5019}
5020
5021class PcFetcher : public os::SuspendedThreadTask {
5022 public:
5023  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5024  ExtendedPC result();
5025 protected:
5026  void do_task(const os::SuspendedThreadTaskContext& context);
5027 private:
5028  ExtendedPC _epc;
5029};
5030
5031ExtendedPC PcFetcher::result() {
5032  guarantee(is_done(), "task is not done yet.");
5033  return _epc;
5034}
5035
5036void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5037  Thread* thread = context.thread();
5038  OSThread* osthread = thread->osthread();
5039  if (osthread->ucontext() != NULL) {
5040    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5041  } else {
5042    // NULL context is unexpected, double-check this is the VMThread
5043    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5044  }
5045}
5046
5047// Suspends the target using the signal mechanism and then grabs the PC before
5048// resuming the target. Used by the flat-profiler only
5049ExtendedPC os::get_thread_pc(Thread* thread) {
5050  // Make sure that it is called by the watcher for the VMThread
5051  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5052  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5053
5054  PcFetcher fetcher(thread);
5055  fetcher.run();
5056  return fetcher.result();
5057}
5058
5059////////////////////////////////////////////////////////////////////////////////
5060// debug support
5061
5062bool os::find(address addr, outputStream* st) {
5063  Dl_info dlinfo;
5064  memset(&dlinfo, 0, sizeof(dlinfo));
5065  if (dladdr(addr, &dlinfo) != 0) {
5066    st->print(PTR_FORMAT ": ", p2i(addr));
5067    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5068      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5069                p2i(addr) - p2i(dlinfo.dli_saddr));
5070    } else if (dlinfo.dli_fbase != NULL) {
5071      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5072    } else {
5073      st->print("<absolute address>");
5074    }
5075    if (dlinfo.dli_fname != NULL) {
5076      st->print(" in %s", dlinfo.dli_fname);
5077    }
5078    if (dlinfo.dli_fbase != NULL) {
5079      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5080    }
5081    st->cr();
5082
5083    if (Verbose) {
5084      // decode some bytes around the PC
5085      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5086      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5087      address       lowest = (address) dlinfo.dli_sname;
5088      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5089      if (begin < lowest)  begin = lowest;
5090      Dl_info dlinfo2;
5091      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5092          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5093        end = (address) dlinfo2.dli_saddr;
5094      }
5095      Disassembler::decode(begin, end, st);
5096    }
5097    return true;
5098  }
5099  return false;
5100}
5101
5102////////////////////////////////////////////////////////////////////////////////
5103// misc
5104
5105// This does not do anything on Linux. This is basically a hook for being
5106// able to use structured exception handling (thread-local exception filters)
5107// on, e.g., Win32.
5108void
5109os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5110                         JavaCallArguments* args, Thread* thread) {
5111  f(value, method, args, thread);
5112}
5113
5114void os::print_statistics() {
5115}
5116
5117bool os::message_box(const char* title, const char* message) {
5118  int i;
5119  fdStream err(defaultStream::error_fd());
5120  for (i = 0; i < 78; i++) err.print_raw("=");
5121  err.cr();
5122  err.print_raw_cr(title);
5123  for (i = 0; i < 78; i++) err.print_raw("-");
5124  err.cr();
5125  err.print_raw_cr(message);
5126  for (i = 0; i < 78; i++) err.print_raw("=");
5127  err.cr();
5128
5129  char buf[16];
5130  // Prevent process from exiting upon "read error" without consuming all CPU
5131  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5132
5133  return buf[0] == 'y' || buf[0] == 'Y';
5134}
5135
5136int os::stat(const char *path, struct stat *sbuf) {
5137  char pathbuf[MAX_PATH];
5138  if (strlen(path) > MAX_PATH - 1) {
5139    errno = ENAMETOOLONG;
5140    return -1;
5141  }
5142  os::native_path(strcpy(pathbuf, path));
5143  return ::stat(pathbuf, sbuf);
5144}
5145
5146// Is a (classpath) directory empty?
5147bool os::dir_is_empty(const char* path) {
5148  DIR *dir = NULL;
5149  struct dirent *ptr;
5150
5151  dir = opendir(path);
5152  if (dir == NULL) return true;
5153
5154  // Scan the directory
5155  bool result = true;
5156  char buf[sizeof(struct dirent) + MAX_PATH];
5157  while (result && (ptr = ::readdir(dir)) != NULL) {
5158    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5159      result = false;
5160    }
5161  }
5162  closedir(dir);
5163  return result;
5164}
5165
5166// This code originates from JDK's sysOpen and open64_w
5167// from src/solaris/hpi/src/system_md.c
5168
5169int os::open(const char *path, int oflag, int mode) {
5170  if (strlen(path) > MAX_PATH - 1) {
5171    errno = ENAMETOOLONG;
5172    return -1;
5173  }
5174
5175  // All file descriptors that are opened in the Java process and not
5176  // specifically destined for a subprocess should have the close-on-exec
5177  // flag set.  If we don't set it, then careless 3rd party native code
5178  // might fork and exec without closing all appropriate file descriptors
5179  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5180  // turn might:
5181  //
5182  // - cause end-of-file to fail to be detected on some file
5183  //   descriptors, resulting in mysterious hangs, or
5184  //
5185  // - might cause an fopen in the subprocess to fail on a system
5186  //   suffering from bug 1085341.
5187  //
5188  // (Yes, the default setting of the close-on-exec flag is a Unix
5189  // design flaw)
5190  //
5191  // See:
5192  // 1085341: 32-bit stdio routines should support file descriptors >255
5193  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5194  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5195  //
5196  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5197  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5198  // because it saves a system call and removes a small window where the flag
5199  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5200  // and we fall back to using FD_CLOEXEC (see below).
5201#ifdef O_CLOEXEC
5202  oflag |= O_CLOEXEC;
5203#endif
5204
5205  int fd = ::open64(path, oflag, mode);
5206  if (fd == -1) return -1;
5207
5208  //If the open succeeded, the file might still be a directory
5209  {
5210    struct stat64 buf64;
5211    int ret = ::fstat64(fd, &buf64);
5212    int st_mode = buf64.st_mode;
5213
5214    if (ret != -1) {
5215      if ((st_mode & S_IFMT) == S_IFDIR) {
5216        errno = EISDIR;
5217        ::close(fd);
5218        return -1;
5219      }
5220    } else {
5221      ::close(fd);
5222      return -1;
5223    }
5224  }
5225
5226#ifdef FD_CLOEXEC
5227  // Validate that the use of the O_CLOEXEC flag on open above worked.
5228  // With recent kernels, we will perform this check exactly once.
5229  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5230  if (!O_CLOEXEC_is_known_to_work) {
5231    int flags = ::fcntl(fd, F_GETFD);
5232    if (flags != -1) {
5233      if ((flags & FD_CLOEXEC) != 0)
5234        O_CLOEXEC_is_known_to_work = 1;
5235      else
5236        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5237    }
5238  }
5239#endif
5240
5241  return fd;
5242}
5243
5244
5245// create binary file, rewriting existing file if required
5246int os::create_binary_file(const char* path, bool rewrite_existing) {
5247  int oflags = O_WRONLY | O_CREAT;
5248  if (!rewrite_existing) {
5249    oflags |= O_EXCL;
5250  }
5251  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5252}
5253
5254// return current position of file pointer
5255jlong os::current_file_offset(int fd) {
5256  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5257}
5258
5259// move file pointer to the specified offset
5260jlong os::seek_to_file_offset(int fd, jlong offset) {
5261  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5262}
5263
5264// This code originates from JDK's sysAvailable
5265// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5266
5267int os::available(int fd, jlong *bytes) {
5268  jlong cur, end;
5269  int mode;
5270  struct stat64 buf64;
5271
5272  if (::fstat64(fd, &buf64) >= 0) {
5273    mode = buf64.st_mode;
5274    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5275      int n;
5276      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5277        *bytes = n;
5278        return 1;
5279      }
5280    }
5281  }
5282  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5283    return 0;
5284  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5285    return 0;
5286  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5287    return 0;
5288  }
5289  *bytes = end - cur;
5290  return 1;
5291}
5292
5293// Map a block of memory.
5294char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5295                        char *addr, size_t bytes, bool read_only,
5296                        bool allow_exec) {
5297  int prot;
5298  int flags = MAP_PRIVATE;
5299
5300  if (read_only) {
5301    prot = PROT_READ;
5302  } else {
5303    prot = PROT_READ | PROT_WRITE;
5304  }
5305
5306  if (allow_exec) {
5307    prot |= PROT_EXEC;
5308  }
5309
5310  if (addr != NULL) {
5311    flags |= MAP_FIXED;
5312  }
5313
5314  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5315                                     fd, file_offset);
5316  if (mapped_address == MAP_FAILED) {
5317    return NULL;
5318  }
5319  return mapped_address;
5320}
5321
5322
5323// Remap a block of memory.
5324char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5325                          char *addr, size_t bytes, bool read_only,
5326                          bool allow_exec) {
5327  // same as map_memory() on this OS
5328  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5329                        allow_exec);
5330}
5331
5332
5333// Unmap a block of memory.
5334bool os::pd_unmap_memory(char* addr, size_t bytes) {
5335  return munmap(addr, bytes) == 0;
5336}
5337
5338static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5339
5340static clockid_t thread_cpu_clockid(Thread* thread) {
5341  pthread_t tid = thread->osthread()->pthread_id();
5342  clockid_t clockid;
5343
5344  // Get thread clockid
5345  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5346  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5347  return clockid;
5348}
5349
5350// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5351// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5352// of a thread.
5353//
5354// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5355// the fast estimate available on the platform.
5356
5357jlong os::current_thread_cpu_time() {
5358  if (os::Linux::supports_fast_thread_cpu_time()) {
5359    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5360  } else {
5361    // return user + sys since the cost is the same
5362    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5363  }
5364}
5365
5366jlong os::thread_cpu_time(Thread* thread) {
5367  // consistent with what current_thread_cpu_time() returns
5368  if (os::Linux::supports_fast_thread_cpu_time()) {
5369    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5370  } else {
5371    return slow_thread_cpu_time(thread, true /* user + sys */);
5372  }
5373}
5374
5375jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5376  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5377    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5378  } else {
5379    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5380  }
5381}
5382
5383jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5384  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5385    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5386  } else {
5387    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5388  }
5389}
5390
5391//  -1 on error.
5392static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5393  pid_t  tid = thread->osthread()->thread_id();
5394  char *s;
5395  char stat[2048];
5396  int statlen;
5397  char proc_name[64];
5398  int count;
5399  long sys_time, user_time;
5400  char cdummy;
5401  int idummy;
5402  long ldummy;
5403  FILE *fp;
5404
5405  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5406  fp = fopen(proc_name, "r");
5407  if (fp == NULL) return -1;
5408  statlen = fread(stat, 1, 2047, fp);
5409  stat[statlen] = '\0';
5410  fclose(fp);
5411
5412  // Skip pid and the command string. Note that we could be dealing with
5413  // weird command names, e.g. user could decide to rename java launcher
5414  // to "java 1.4.2 :)", then the stat file would look like
5415  //                1234 (java 1.4.2 :)) R ... ...
5416  // We don't really need to know the command string, just find the last
5417  // occurrence of ")" and then start parsing from there. See bug 4726580.
5418  s = strrchr(stat, ')');
5419  if (s == NULL) return -1;
5420
5421  // Skip blank chars
5422  do { s++; } while (s && isspace(*s));
5423
5424  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5425                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5426                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5427                 &user_time, &sys_time);
5428  if (count != 13) return -1;
5429  if (user_sys_cpu_time) {
5430    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5431  } else {
5432    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5433  }
5434}
5435
5436void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5437  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5438  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5439  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5440  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5441}
5442
5443void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5444  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5445  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5446  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5447  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5448}
5449
5450bool os::is_thread_cpu_time_supported() {
5451  return true;
5452}
5453
5454// System loadavg support.  Returns -1 if load average cannot be obtained.
5455// Linux doesn't yet have a (official) notion of processor sets,
5456// so just return the system wide load average.
5457int os::loadavg(double loadavg[], int nelem) {
5458  return ::getloadavg(loadavg, nelem);
5459}
5460
5461void os::pause() {
5462  char filename[MAX_PATH];
5463  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5464    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5465  } else {
5466    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5467  }
5468
5469  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5470  if (fd != -1) {
5471    struct stat buf;
5472    ::close(fd);
5473    while (::stat(filename, &buf) == 0) {
5474      (void)::poll(NULL, 0, 100);
5475    }
5476  } else {
5477    jio_fprintf(stderr,
5478                "Could not open pause file '%s', continuing immediately.\n", filename);
5479  }
5480}
5481
5482
5483// Refer to the comments in os_solaris.cpp park-unpark. The next two
5484// comment paragraphs are worth repeating here:
5485//
5486// Assumption:
5487//    Only one parker can exist on an event, which is why we allocate
5488//    them per-thread. Multiple unparkers can coexist.
5489//
5490// _Event serves as a restricted-range semaphore.
5491//   -1 : thread is blocked, i.e. there is a waiter
5492//    0 : neutral: thread is running or ready,
5493//        could have been signaled after a wait started
5494//    1 : signaled - thread is running or ready
5495//
5496
5497// utility to compute the abstime argument to timedwait:
5498// millis is the relative timeout time
5499// abstime will be the absolute timeout time
5500// TODO: replace compute_abstime() with unpackTime()
5501
5502static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5503  if (millis < 0)  millis = 0;
5504
5505  jlong seconds = millis / 1000;
5506  millis %= 1000;
5507  if (seconds > 50000000) { // see man cond_timedwait(3T)
5508    seconds = 50000000;
5509  }
5510
5511  if (os::supports_monotonic_clock()) {
5512    struct timespec now;
5513    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5514    assert_status(status == 0, status, "clock_gettime");
5515    abstime->tv_sec = now.tv_sec  + seconds;
5516    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5517    if (nanos >= NANOSECS_PER_SEC) {
5518      abstime->tv_sec += 1;
5519      nanos -= NANOSECS_PER_SEC;
5520    }
5521    abstime->tv_nsec = nanos;
5522  } else {
5523    struct timeval now;
5524    int status = gettimeofday(&now, NULL);
5525    assert(status == 0, "gettimeofday");
5526    abstime->tv_sec = now.tv_sec  + seconds;
5527    long usec = now.tv_usec + millis * 1000;
5528    if (usec >= 1000000) {
5529      abstime->tv_sec += 1;
5530      usec -= 1000000;
5531    }
5532    abstime->tv_nsec = usec * 1000;
5533  }
5534  return abstime;
5535}
5536
5537void os::PlatformEvent::park() {       // AKA "down()"
5538  // Transitions for _Event:
5539  //   -1 => -1 : illegal
5540  //    1 =>  0 : pass - return immediately
5541  //    0 => -1 : block; then set _Event to 0 before returning
5542
5543  // Invariant: Only the thread associated with the Event/PlatformEvent
5544  // may call park().
5545  // TODO: assert that _Assoc != NULL or _Assoc == Self
5546  assert(_nParked == 0, "invariant");
5547
5548  int v;
5549  for (;;) {
5550    v = _Event;
5551    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5552  }
5553  guarantee(v >= 0, "invariant");
5554  if (v == 0) {
5555    // Do this the hard way by blocking ...
5556    int status = pthread_mutex_lock(_mutex);
5557    assert_status(status == 0, status, "mutex_lock");
5558    guarantee(_nParked == 0, "invariant");
5559    ++_nParked;
5560    while (_Event < 0) {
5561      status = pthread_cond_wait(_cond, _mutex);
5562      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5563      // Treat this the same as if the wait was interrupted
5564      if (status == ETIME) { status = EINTR; }
5565      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5566    }
5567    --_nParked;
5568
5569    _Event = 0;
5570    status = pthread_mutex_unlock(_mutex);
5571    assert_status(status == 0, status, "mutex_unlock");
5572    // Paranoia to ensure our locked and lock-free paths interact
5573    // correctly with each other.
5574    OrderAccess::fence();
5575  }
5576  guarantee(_Event >= 0, "invariant");
5577}
5578
5579int os::PlatformEvent::park(jlong millis) {
5580  // Transitions for _Event:
5581  //   -1 => -1 : illegal
5582  //    1 =>  0 : pass - return immediately
5583  //    0 => -1 : block; then set _Event to 0 before returning
5584
5585  guarantee(_nParked == 0, "invariant");
5586
5587  int v;
5588  for (;;) {
5589    v = _Event;
5590    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5591  }
5592  guarantee(v >= 0, "invariant");
5593  if (v != 0) return OS_OK;
5594
5595  // We do this the hard way, by blocking the thread.
5596  // Consider enforcing a minimum timeout value.
5597  struct timespec abst;
5598  compute_abstime(&abst, millis);
5599
5600  int ret = OS_TIMEOUT;
5601  int status = pthread_mutex_lock(_mutex);
5602  assert_status(status == 0, status, "mutex_lock");
5603  guarantee(_nParked == 0, "invariant");
5604  ++_nParked;
5605
5606  // Object.wait(timo) will return because of
5607  // (a) notification
5608  // (b) timeout
5609  // (c) thread.interrupt
5610  //
5611  // Thread.interrupt and object.notify{All} both call Event::set.
5612  // That is, we treat thread.interrupt as a special case of notification.
5613  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5614  // We assume all ETIME returns are valid.
5615  //
5616  // TODO: properly differentiate simultaneous notify+interrupt.
5617  // In that case, we should propagate the notify to another waiter.
5618
5619  while (_Event < 0) {
5620    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5621    assert_status(status == 0 || status == EINTR ||
5622                  status == ETIME || status == ETIMEDOUT,
5623                  status, "cond_timedwait");
5624    if (!FilterSpuriousWakeups) break;                 // previous semantics
5625    if (status == ETIME || status == ETIMEDOUT) break;
5626    // We consume and ignore EINTR and spurious wakeups.
5627  }
5628  --_nParked;
5629  if (_Event >= 0) {
5630    ret = OS_OK;
5631  }
5632  _Event = 0;
5633  status = pthread_mutex_unlock(_mutex);
5634  assert_status(status == 0, status, "mutex_unlock");
5635  assert(_nParked == 0, "invariant");
5636  // Paranoia to ensure our locked and lock-free paths interact
5637  // correctly with each other.
5638  OrderAccess::fence();
5639  return ret;
5640}
5641
5642void os::PlatformEvent::unpark() {
5643  // Transitions for _Event:
5644  //    0 => 1 : just return
5645  //    1 => 1 : just return
5646  //   -1 => either 0 or 1; must signal target thread
5647  //         That is, we can safely transition _Event from -1 to either
5648  //         0 or 1.
5649  // See also: "Semaphores in Plan 9" by Mullender & Cox
5650  //
5651  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5652  // that it will take two back-to-back park() calls for the owning
5653  // thread to block. This has the benefit of forcing a spurious return
5654  // from the first park() call after an unpark() call which will help
5655  // shake out uses of park() and unpark() without condition variables.
5656
5657  if (Atomic::xchg(1, &_Event) >= 0) return;
5658
5659  // Wait for the thread associated with the event to vacate
5660  int status = pthread_mutex_lock(_mutex);
5661  assert_status(status == 0, status, "mutex_lock");
5662  int AnyWaiters = _nParked;
5663  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5664  status = pthread_mutex_unlock(_mutex);
5665  assert_status(status == 0, status, "mutex_unlock");
5666  if (AnyWaiters != 0) {
5667    // Note that we signal() *after* dropping the lock for "immortal" Events.
5668    // This is safe and avoids a common class of  futile wakeups.  In rare
5669    // circumstances this can cause a thread to return prematurely from
5670    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5671    // will simply re-test the condition and re-park itself.
5672    // This provides particular benefit if the underlying platform does not
5673    // provide wait morphing.
5674    status = pthread_cond_signal(_cond);
5675    assert_status(status == 0, status, "cond_signal");
5676  }
5677}
5678
5679
5680// JSR166
5681// -------------------------------------------------------
5682
5683// The solaris and linux implementations of park/unpark are fairly
5684// conservative for now, but can be improved. They currently use a
5685// mutex/condvar pair, plus a a count.
5686// Park decrements count if > 0, else does a condvar wait.  Unpark
5687// sets count to 1 and signals condvar.  Only one thread ever waits
5688// on the condvar. Contention seen when trying to park implies that someone
5689// is unparking you, so don't wait. And spurious returns are fine, so there
5690// is no need to track notifications.
5691
5692// This code is common to linux and solaris and will be moved to a
5693// common place in dolphin.
5694//
5695// The passed in time value is either a relative time in nanoseconds
5696// or an absolute time in milliseconds. Either way it has to be unpacked
5697// into suitable seconds and nanoseconds components and stored in the
5698// given timespec structure.
5699// Given time is a 64-bit value and the time_t used in the timespec is only
5700// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5701// overflow if times way in the future are given. Further on Solaris versions
5702// prior to 10 there is a restriction (see cond_timedwait) that the specified
5703// number of seconds, in abstime, is less than current_time  + 100,000,000.
5704// As it will be 28 years before "now + 100000000" will overflow we can
5705// ignore overflow and just impose a hard-limit on seconds using the value
5706// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5707// years from "now".
5708
5709static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5710  assert(time > 0, "convertTime");
5711  time_t max_secs = 0;
5712
5713  if (!os::supports_monotonic_clock() || isAbsolute) {
5714    struct timeval now;
5715    int status = gettimeofday(&now, NULL);
5716    assert(status == 0, "gettimeofday");
5717
5718    max_secs = now.tv_sec + MAX_SECS;
5719
5720    if (isAbsolute) {
5721      jlong secs = time / 1000;
5722      if (secs > max_secs) {
5723        absTime->tv_sec = max_secs;
5724      } else {
5725        absTime->tv_sec = secs;
5726      }
5727      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5728    } else {
5729      jlong secs = time / NANOSECS_PER_SEC;
5730      if (secs >= MAX_SECS) {
5731        absTime->tv_sec = max_secs;
5732        absTime->tv_nsec = 0;
5733      } else {
5734        absTime->tv_sec = now.tv_sec + secs;
5735        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5736        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5737          absTime->tv_nsec -= NANOSECS_PER_SEC;
5738          ++absTime->tv_sec; // note: this must be <= max_secs
5739        }
5740      }
5741    }
5742  } else {
5743    // must be relative using monotonic clock
5744    struct timespec now;
5745    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5746    assert_status(status == 0, status, "clock_gettime");
5747    max_secs = now.tv_sec + MAX_SECS;
5748    jlong secs = time / NANOSECS_PER_SEC;
5749    if (secs >= MAX_SECS) {
5750      absTime->tv_sec = max_secs;
5751      absTime->tv_nsec = 0;
5752    } else {
5753      absTime->tv_sec = now.tv_sec + secs;
5754      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5755      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5756        absTime->tv_nsec -= NANOSECS_PER_SEC;
5757        ++absTime->tv_sec; // note: this must be <= max_secs
5758      }
5759    }
5760  }
5761  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5762  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5763  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5764  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5765}
5766
5767void Parker::park(bool isAbsolute, jlong time) {
5768  // Ideally we'd do something useful while spinning, such
5769  // as calling unpackTime().
5770
5771  // Optional fast-path check:
5772  // Return immediately if a permit is available.
5773  // We depend on Atomic::xchg() having full barrier semantics
5774  // since we are doing a lock-free update to _counter.
5775  if (Atomic::xchg(0, &_counter) > 0) return;
5776
5777  Thread* thread = Thread::current();
5778  assert(thread->is_Java_thread(), "Must be JavaThread");
5779  JavaThread *jt = (JavaThread *)thread;
5780
5781  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5782  // Check interrupt before trying to wait
5783  if (Thread::is_interrupted(thread, false)) {
5784    return;
5785  }
5786
5787  // Next, demultiplex/decode time arguments
5788  timespec absTime;
5789  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5790    return;
5791  }
5792  if (time > 0) {
5793    unpackTime(&absTime, isAbsolute, time);
5794  }
5795
5796
5797  // Enter safepoint region
5798  // Beware of deadlocks such as 6317397.
5799  // The per-thread Parker:: mutex is a classic leaf-lock.
5800  // In particular a thread must never block on the Threads_lock while
5801  // holding the Parker:: mutex.  If safepoints are pending both the
5802  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5803  ThreadBlockInVM tbivm(jt);
5804
5805  // Don't wait if cannot get lock since interference arises from
5806  // unblocking.  Also. check interrupt before trying wait
5807  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5808    return;
5809  }
5810
5811  int status;
5812  if (_counter > 0)  { // no wait needed
5813    _counter = 0;
5814    status = pthread_mutex_unlock(_mutex);
5815    assert_status(status == 0, status, "invariant");
5816    // Paranoia to ensure our locked and lock-free paths interact
5817    // correctly with each other and Java-level accesses.
5818    OrderAccess::fence();
5819    return;
5820  }
5821
5822#ifdef ASSERT
5823  // Don't catch signals while blocked; let the running threads have the signals.
5824  // (This allows a debugger to break into the running thread.)
5825  sigset_t oldsigs;
5826  sigemptyset(&oldsigs);
5827  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5828  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5829#endif
5830
5831  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5832  jt->set_suspend_equivalent();
5833  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5834
5835  assert(_cur_index == -1, "invariant");
5836  if (time == 0) {
5837    _cur_index = REL_INDEX; // arbitrary choice when not timed
5838    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5839  } else {
5840    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5841    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5842  }
5843  _cur_index = -1;
5844  assert_status(status == 0 || status == EINTR ||
5845                status == ETIME || status == ETIMEDOUT,
5846                status, "cond_timedwait");
5847
5848#ifdef ASSERT
5849  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5850#endif
5851
5852  _counter = 0;
5853  status = pthread_mutex_unlock(_mutex);
5854  assert_status(status == 0, status, "invariant");
5855  // Paranoia to ensure our locked and lock-free paths interact
5856  // correctly with each other and Java-level accesses.
5857  OrderAccess::fence();
5858
5859  // If externally suspended while waiting, re-suspend
5860  if (jt->handle_special_suspend_equivalent_condition()) {
5861    jt->java_suspend_self();
5862  }
5863}
5864
5865void Parker::unpark() {
5866  int status = pthread_mutex_lock(_mutex);
5867  assert_status(status == 0, status, "invariant");
5868  const int s = _counter;
5869  _counter = 1;
5870  // must capture correct index before unlocking
5871  int index = _cur_index;
5872  status = pthread_mutex_unlock(_mutex);
5873  assert_status(status == 0, status, "invariant");
5874  if (s < 1 && index != -1) {
5875    // thread is definitely parked
5876    status = pthread_cond_signal(&_cond[index]);
5877    assert_status(status == 0, status, "invariant");
5878  }
5879}
5880
5881
5882extern char** environ;
5883
5884// Run the specified command in a separate process. Return its exit value,
5885// or -1 on failure (e.g. can't fork a new process).
5886// Unlike system(), this function can be called from signal handler. It
5887// doesn't block SIGINT et al.
5888int os::fork_and_exec(char* cmd) {
5889  const char * argv[4] = {"sh", "-c", cmd, NULL};
5890
5891  pid_t pid = fork();
5892
5893  if (pid < 0) {
5894    // fork failed
5895    return -1;
5896
5897  } else if (pid == 0) {
5898    // child process
5899
5900    execve("/bin/sh", (char* const*)argv, environ);
5901
5902    // execve failed
5903    _exit(-1);
5904
5905  } else  {
5906    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5907    // care about the actual exit code, for now.
5908
5909    int status;
5910
5911    // Wait for the child process to exit.  This returns immediately if
5912    // the child has already exited. */
5913    while (waitpid(pid, &status, 0) < 0) {
5914      switch (errno) {
5915      case ECHILD: return 0;
5916      case EINTR: break;
5917      default: return -1;
5918      }
5919    }
5920
5921    if (WIFEXITED(status)) {
5922      // The child exited normally; get its exit code.
5923      return WEXITSTATUS(status);
5924    } else if (WIFSIGNALED(status)) {
5925      // The child exited because of a signal
5926      // The best value to return is 0x80 + signal number,
5927      // because that is what all Unix shells do, and because
5928      // it allows callers to distinguish between process exit and
5929      // process death by signal.
5930      return 0x80 + WTERMSIG(status);
5931    } else {
5932      // Unknown exit code; pass it through
5933      return status;
5934    }
5935  }
5936}
5937
5938// is_headless_jre()
5939//
5940// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5941// in order to report if we are running in a headless jre
5942//
5943// Since JDK8 xawt/libmawt.so was moved into the same directory
5944// as libawt.so, and renamed libawt_xawt.so
5945//
5946bool os::is_headless_jre() {
5947  struct stat statbuf;
5948  char buf[MAXPATHLEN];
5949  char libmawtpath[MAXPATHLEN];
5950  const char *xawtstr  = "/xawt/libmawt.so";
5951  const char *new_xawtstr = "/libawt_xawt.so";
5952  char *p;
5953
5954  // Get path to libjvm.so
5955  os::jvm_path(buf, sizeof(buf));
5956
5957  // Get rid of libjvm.so
5958  p = strrchr(buf, '/');
5959  if (p == NULL) {
5960    return false;
5961  } else {
5962    *p = '\0';
5963  }
5964
5965  // Get rid of client or server
5966  p = strrchr(buf, '/');
5967  if (p == NULL) {
5968    return false;
5969  } else {
5970    *p = '\0';
5971  }
5972
5973  // check xawt/libmawt.so
5974  strcpy(libmawtpath, buf);
5975  strcat(libmawtpath, xawtstr);
5976  if (::stat(libmawtpath, &statbuf) == 0) return false;
5977
5978  // check libawt_xawt.so
5979  strcpy(libmawtpath, buf);
5980  strcat(libmawtpath, new_xawtstr);
5981  if (::stat(libmawtpath, &statbuf) == 0) return false;
5982
5983  return true;
5984}
5985
5986// Get the default path to the core file
5987// Returns the length of the string
5988int os::get_core_path(char* buffer, size_t bufferSize) {
5989  /*
5990   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5991   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5992   */
5993  const int core_pattern_len = 129;
5994  char core_pattern[core_pattern_len] = {0};
5995
5996  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5997  if (core_pattern_file == -1) {
5998    return -1;
5999  }
6000
6001  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6002  ::close(core_pattern_file);
6003  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6004    return -1;
6005  }
6006  if (core_pattern[ret-1] == '\n') {
6007    core_pattern[ret-1] = '\0';
6008  } else {
6009    core_pattern[ret] = '\0';
6010  }
6011
6012  char *pid_pos = strstr(core_pattern, "%p");
6013  int written;
6014
6015  if (core_pattern[0] == '/') {
6016    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6017  } else {
6018    char cwd[PATH_MAX];
6019
6020    const char* p = get_current_directory(cwd, PATH_MAX);
6021    if (p == NULL) {
6022      return -1;
6023    }
6024
6025    if (core_pattern[0] == '|') {
6026      written = jio_snprintf(buffer, bufferSize,
6027                             "\"%s\" (or dumping to %s/core.%d)",
6028                             &core_pattern[1], p, current_process_id());
6029    } else {
6030      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6031    }
6032  }
6033
6034  if (written < 0) {
6035    return -1;
6036  }
6037
6038  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6039    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6040
6041    if (core_uses_pid_file != -1) {
6042      char core_uses_pid = 0;
6043      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6044      ::close(core_uses_pid_file);
6045
6046      if (core_uses_pid == '1') {
6047        jio_snprintf(buffer + written, bufferSize - written,
6048                                          ".%d", current_process_id());
6049      }
6050    }
6051  }
6052
6053  return strlen(buffer);
6054}
6055
6056bool os::start_debugging(char *buf, int buflen) {
6057  int len = (int)strlen(buf);
6058  char *p = &buf[len];
6059
6060  jio_snprintf(p, buflen-len,
6061               "\n\n"
6062               "Do you want to debug the problem?\n\n"
6063               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6064               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6065               "Otherwise, press RETURN to abort...",
6066               os::current_process_id(), os::current_process_id(),
6067               os::current_thread_id(), os::current_thread_id());
6068
6069  bool yes = os::message_box("Unexpected Error", buf);
6070
6071  if (yes) {
6072    // yes, user asked VM to launch debugger
6073    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6074                 os::current_process_id(), os::current_process_id());
6075
6076    os::fork_and_exec(buf);
6077    yes = false;
6078  }
6079  return yes;
6080}
6081
6082
6083// Java/Compiler thread:
6084//
6085//   Low memory addresses
6086// P0 +------------------------+
6087//    |                        |\  Java thread created by VM does not have glibc
6088//    |    glibc guard page    | - guard page, attached Java thread usually has
6089//    |                        |/  1 glibc guard page.
6090// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6091//    |                        |\
6092//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6093//    |                        |/
6094//    +------------------------+ JavaThread::stack_reserved_zone_base()
6095//    |                        |\
6096//    |      Normal Stack      | -
6097//    |                        |/
6098// P2 +------------------------+ Thread::stack_base()
6099//
6100// Non-Java thread:
6101//
6102//   Low memory addresses
6103// P0 +------------------------+
6104//    |                        |\
6105//    |  glibc guard page      | - usually 1 page
6106//    |                        |/
6107// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6108//    |                        |\
6109//    |      Normal Stack      | -
6110//    |                        |/
6111// P2 +------------------------+ Thread::stack_base()
6112//
6113// ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6114//    returned from pthread_attr_getstack().
6115// ** Due to NPTL implementation error, linux takes the glibc guard page out
6116//    of the stack size given in pthread_attr. We work around this for
6117//    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6118//
6119#ifndef ZERO
6120static void current_stack_region(address * bottom, size_t * size) {
6121  if (os::Linux::is_initial_thread()) {
6122    // initial thread needs special handling because pthread_getattr_np()
6123    // may return bogus value.
6124    *bottom = os::Linux::initial_thread_stack_bottom();
6125    *size   = os::Linux::initial_thread_stack_size();
6126  } else {
6127    pthread_attr_t attr;
6128
6129    int rslt = pthread_getattr_np(pthread_self(), &attr);
6130
6131    // JVM needs to know exact stack location, abort if it fails
6132    if (rslt != 0) {
6133      if (rslt == ENOMEM) {
6134        vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6135      } else {
6136        fatal("pthread_getattr_np failed with error = %d", rslt);
6137      }
6138    }
6139
6140    if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6141      fatal("Cannot locate current stack attributes!");
6142    }
6143
6144    // Work around NPTL stack guard error.
6145    size_t guard_size = 0;
6146    rslt = pthread_attr_getguardsize(&attr, &guard_size);
6147    if (rslt != 0) {
6148      fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6149    }
6150    *bottom += guard_size;
6151    *size   -= guard_size;
6152
6153    pthread_attr_destroy(&attr);
6154
6155  }
6156  assert(os::current_stack_pointer() >= *bottom &&
6157         os::current_stack_pointer() < *bottom + *size, "just checking");
6158}
6159
6160address os::current_stack_base() {
6161  address bottom;
6162  size_t size;
6163  current_stack_region(&bottom, &size);
6164  return (bottom + size);
6165}
6166
6167size_t os::current_stack_size() {
6168  // This stack size includes the usable stack and HotSpot guard pages
6169  // (for the threads that have Hotspot guard pages).
6170  address bottom;
6171  size_t size;
6172  current_stack_region(&bottom, &size);
6173  return size;
6174}
6175#endif
6176
6177static inline struct timespec get_mtime(const char* filename) {
6178  struct stat st;
6179  int ret = os::stat(filename, &st);
6180  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6181  return st.st_mtim;
6182}
6183
6184int os::compare_file_modified_times(const char* file1, const char* file2) {
6185  struct timespec filetime1 = get_mtime(file1);
6186  struct timespec filetime2 = get_mtime(file2);
6187  int diff = filetime1.tv_sec - filetime2.tv_sec;
6188  if (diff == 0) {
6189    return filetime1.tv_nsec - filetime2.tv_nsec;
6190  }
6191  return diff;
6192}
6193
6194/////////////// Unit tests ///////////////
6195
6196#ifndef PRODUCT
6197
6198#define test_log(...)              \
6199  do {                             \
6200    if (VerboseInternalVMTests) {  \
6201      tty->print_cr(__VA_ARGS__);  \
6202      tty->flush();                \
6203    }                              \
6204  } while (false)
6205
6206class TestReserveMemorySpecial : AllStatic {
6207 public:
6208  static void small_page_write(void* addr, size_t size) {
6209    size_t page_size = os::vm_page_size();
6210
6211    char* end = (char*)addr + size;
6212    for (char* p = (char*)addr; p < end; p += page_size) {
6213      *p = 1;
6214    }
6215  }
6216
6217  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6218    if (!UseHugeTLBFS) {
6219      return;
6220    }
6221
6222    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6223
6224    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6225
6226    if (addr != NULL) {
6227      small_page_write(addr, size);
6228
6229      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6230    }
6231  }
6232
6233  static void test_reserve_memory_special_huge_tlbfs_only() {
6234    if (!UseHugeTLBFS) {
6235      return;
6236    }
6237
6238    size_t lp = os::large_page_size();
6239
6240    for (size_t size = lp; size <= lp * 10; size += lp) {
6241      test_reserve_memory_special_huge_tlbfs_only(size);
6242    }
6243  }
6244
6245  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6246    size_t lp = os::large_page_size();
6247    size_t ag = os::vm_allocation_granularity();
6248
6249    // sizes to test
6250    const size_t sizes[] = {
6251      lp, lp + ag, lp + lp / 2, lp * 2,
6252      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6253      lp * 10, lp * 10 + lp / 2
6254    };
6255    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6256
6257    // For each size/alignment combination, we test three scenarios:
6258    // 1) with req_addr == NULL
6259    // 2) with a non-null req_addr at which we expect to successfully allocate
6260    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6261    //    expect the allocation to either fail or to ignore req_addr
6262
6263    // Pre-allocate two areas; they shall be as large as the largest allocation
6264    //  and aligned to the largest alignment we will be testing.
6265    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6266    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6267      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6268      -1, 0);
6269    assert(mapping1 != MAP_FAILED, "should work");
6270
6271    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6272      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6273      -1, 0);
6274    assert(mapping2 != MAP_FAILED, "should work");
6275
6276    // Unmap the first mapping, but leave the second mapping intact: the first
6277    // mapping will serve as a value for a "good" req_addr (case 2). The second
6278    // mapping, still intact, as "bad" req_addr (case 3).
6279    ::munmap(mapping1, mapping_size);
6280
6281    // Case 1
6282    test_log("%s, req_addr NULL:", __FUNCTION__);
6283    test_log("size            align           result");
6284
6285    for (int i = 0; i < num_sizes; i++) {
6286      const size_t size = sizes[i];
6287      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6288        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6289        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6290                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6291        if (p != NULL) {
6292          assert(is_ptr_aligned(p, alignment), "must be");
6293          small_page_write(p, size);
6294          os::Linux::release_memory_special_huge_tlbfs(p, size);
6295        }
6296      }
6297    }
6298
6299    // Case 2
6300    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6301    test_log("size            align           req_addr         result");
6302
6303    for (int i = 0; i < num_sizes; i++) {
6304      const size_t size = sizes[i];
6305      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6306        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6307        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6308        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6309                 size, alignment, p2i(req_addr), p2i(p),
6310                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6311        if (p != NULL) {
6312          assert(p == req_addr, "must be");
6313          small_page_write(p, size);
6314          os::Linux::release_memory_special_huge_tlbfs(p, size);
6315        }
6316      }
6317    }
6318
6319    // Case 3
6320    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6321    test_log("size            align           req_addr         result");
6322
6323    for (int i = 0; i < num_sizes; i++) {
6324      const size_t size = sizes[i];
6325      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6326        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6327        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6328        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6329                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6330        // as the area around req_addr contains already existing mappings, the API should always
6331        // return NULL (as per contract, it cannot return another address)
6332        assert(p == NULL, "must be");
6333      }
6334    }
6335
6336    ::munmap(mapping2, mapping_size);
6337
6338  }
6339
6340  static void test_reserve_memory_special_huge_tlbfs() {
6341    if (!UseHugeTLBFS) {
6342      return;
6343    }
6344
6345    test_reserve_memory_special_huge_tlbfs_only();
6346    test_reserve_memory_special_huge_tlbfs_mixed();
6347  }
6348
6349  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6350    if (!UseSHM) {
6351      return;
6352    }
6353
6354    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6355
6356    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6357
6358    if (addr != NULL) {
6359      assert(is_ptr_aligned(addr, alignment), "Check");
6360      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6361
6362      small_page_write(addr, size);
6363
6364      os::Linux::release_memory_special_shm(addr, size);
6365    }
6366  }
6367
6368  static void test_reserve_memory_special_shm() {
6369    size_t lp = os::large_page_size();
6370    size_t ag = os::vm_allocation_granularity();
6371
6372    for (size_t size = ag; size < lp * 3; size += ag) {
6373      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6374        test_reserve_memory_special_shm(size, alignment);
6375      }
6376    }
6377  }
6378
6379  static void test() {
6380    test_reserve_memory_special_huge_tlbfs();
6381    test_reserve_memory_special_shm();
6382  }
6383};
6384
6385void TestReserveMemorySpecial_test() {
6386  TestReserveMemorySpecial::test();
6387}
6388
6389#endif
6390