os_linux.cpp revision 11658:8a5735c11a84
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_linux.inline.hpp"
40#include "os_share_linux.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/init.hpp"
50#include "runtime/java.hpp"
51#include "runtime/javaCalls.hpp"
52#include "runtime/mutexLocker.hpp"
53#include "runtime/objectMonitor.hpp"
54#include "runtime/orderAccess.inline.hpp"
55#include "runtime/osThread.hpp"
56#include "runtime/perfMemory.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/statSampler.hpp"
59#include "runtime/stubRoutines.hpp"
60#include "runtime/thread.inline.hpp"
61#include "runtime/threadCritical.hpp"
62#include "runtime/timer.hpp"
63#include "semaphore_posix.hpp"
64#include "services/attachListener.hpp"
65#include "services/memTracker.hpp"
66#include "services/runtimeService.hpp"
67#include "utilities/decoder.hpp"
68#include "utilities/defaultStream.hpp"
69#include "utilities/events.hpp"
70#include "utilities/elfFile.hpp"
71#include "utilities/growableArray.hpp"
72#include "utilities/macros.hpp"
73#include "utilities/vmError.hpp"
74
75// put OS-includes here
76# include <sys/types.h>
77# include <sys/mman.h>
78# include <sys/stat.h>
79# include <sys/select.h>
80# include <pthread.h>
81# include <signal.h>
82# include <errno.h>
83# include <dlfcn.h>
84# include <stdio.h>
85# include <unistd.h>
86# include <sys/resource.h>
87# include <pthread.h>
88# include <sys/stat.h>
89# include <sys/time.h>
90# include <sys/times.h>
91# include <sys/utsname.h>
92# include <sys/socket.h>
93# include <sys/wait.h>
94# include <pwd.h>
95# include <poll.h>
96# include <semaphore.h>
97# include <fcntl.h>
98# include <string.h>
99# include <syscall.h>
100# include <sys/sysinfo.h>
101# include <gnu/libc-version.h>
102# include <sys/ipc.h>
103# include <sys/shm.h>
104# include <link.h>
105# include <stdint.h>
106# include <inttypes.h>
107# include <sys/ioctl.h>
108
109#ifndef _GNU_SOURCE
110  #define _GNU_SOURCE
111  #include <sched.h>
112  #undef _GNU_SOURCE
113#else
114  #include <sched.h>
115#endif
116
117// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
118// getrusage() is prepared to handle the associated failure.
119#ifndef RUSAGE_THREAD
120  #define RUSAGE_THREAD   (1)               /* only the calling thread */
121#endif
122
123#define MAX_PATH    (2 * K)
124
125#define MAX_SECS 100000000
126
127// for timer info max values which include all bits
128#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
129
130#define LARGEPAGES_BIT (1 << 6)
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Linux::_physical_memory = 0;
134
135address   os::Linux::_initial_thread_stack_bottom = NULL;
136uintptr_t os::Linux::_initial_thread_stack_size   = 0;
137
138int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
139int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
140int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
141Mutex* os::Linux::_createThread_lock = NULL;
142pthread_t os::Linux::_main_thread;
143int os::Linux::_page_size = -1;
144bool os::Linux::_supports_fast_thread_cpu_time = false;
145uint32_t os::Linux::_os_version = 0;
146const char * os::Linux::_glibc_version = NULL;
147const char * os::Linux::_libpthread_version = NULL;
148pthread_condattr_t os::Linux::_condattr[1];
149
150static jlong initial_time_count=0;
151
152static int clock_tics_per_sec = 100;
153
154// For diagnostics to print a message once. see run_periodic_checks
155static sigset_t check_signal_done;
156static bool check_signals = true;
157
158// Signal number used to suspend/resume a thread
159
160// do not use any signal number less than SIGSEGV, see 4355769
161static int SR_signum = SIGUSR2;
162sigset_t SR_sigset;
163
164// Declarations
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167// utility functions
168
169static int SR_initialize();
170
171julong os::available_memory() {
172  return Linux::available_memory();
173}
174
175julong os::Linux::available_memory() {
176  // values in struct sysinfo are "unsigned long"
177  struct sysinfo si;
178  sysinfo(&si);
179
180  return (julong)si.freeram * si.mem_unit;
181}
182
183julong os::physical_memory() {
184  return Linux::physical_memory();
185}
186
187// Return true if user is running as root.
188
189bool os::have_special_privileges() {
190  static bool init = false;
191  static bool privileges = false;
192  if (!init) {
193    privileges = (getuid() != geteuid()) || (getgid() != getegid());
194    init = true;
195  }
196  return privileges;
197}
198
199
200#ifndef SYS_gettid
201// i386: 224, ia64: 1105, amd64: 186, sparc 143
202  #ifdef __ia64__
203    #define SYS_gettid 1105
204  #else
205    #ifdef __i386__
206      #define SYS_gettid 224
207    #else
208      #ifdef __amd64__
209        #define SYS_gettid 186
210      #else
211        #ifdef __sparc__
212          #define SYS_gettid 143
213        #else
214          #error define gettid for the arch
215        #endif
216      #endif
217    #endif
218  #endif
219#endif
220
221// Cpu architecture string
222static char cpu_arch[] = HOTSPOT_LIB_ARCH;
223
224
225// pid_t gettid()
226//
227// Returns the kernel thread id of the currently running thread. Kernel
228// thread id is used to access /proc.
229pid_t os::Linux::gettid() {
230  int rslt = syscall(SYS_gettid);
231  assert(rslt != -1, "must be."); // old linuxthreads implementation?
232  return (pid_t)rslt;
233}
234
235// Most versions of linux have a bug where the number of processors are
236// determined by looking at the /proc file system.  In a chroot environment,
237// the system call returns 1.  This causes the VM to act as if it is
238// a single processor and elide locking (see is_MP() call).
239static bool unsafe_chroot_detected = false;
240static const char *unstable_chroot_error = "/proc file system not found.\n"
241                     "Java may be unstable running multithreaded in a chroot "
242                     "environment on Linux when /proc filesystem is not mounted.";
243
244void os::Linux::initialize_system_info() {
245  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
246  if (processor_count() == 1) {
247    pid_t pid = os::Linux::gettid();
248    char fname[32];
249    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
250    FILE *fp = fopen(fname, "r");
251    if (fp == NULL) {
252      unsafe_chroot_detected = true;
253    } else {
254      fclose(fp);
255    }
256  }
257  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
258  assert(processor_count() > 0, "linux error");
259}
260
261void os::init_system_properties_values() {
262  // The next steps are taken in the product version:
263  //
264  // Obtain the JAVA_HOME value from the location of libjvm.so.
265  // This library should be located at:
266  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
267  //
268  // If "/jre/lib/" appears at the right place in the path, then we
269  // assume libjvm.so is installed in a JDK and we use this path.
270  //
271  // Otherwise exit with message: "Could not create the Java virtual machine."
272  //
273  // The following extra steps are taken in the debugging version:
274  //
275  // If "/jre/lib/" does NOT appear at the right place in the path
276  // instead of exit check for $JAVA_HOME environment variable.
277  //
278  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
279  // then we append a fake suffix "hotspot/libjvm.so" to this path so
280  // it looks like libjvm.so is installed there
281  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
282  //
283  // Otherwise exit.
284  //
285  // Important note: if the location of libjvm.so changes this
286  // code needs to be changed accordingly.
287
288  // See ld(1):
289  //      The linker uses the following search paths to locate required
290  //      shared libraries:
291  //        1: ...
292  //        ...
293  //        7: The default directories, normally /lib and /usr/lib.
294#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
295  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
296#else
297  #define DEFAULT_LIBPATH "/lib:/usr/lib"
298#endif
299
300// Base path of extensions installed on the system.
301#define SYS_EXT_DIR     "/usr/java/packages"
302#define EXTENSIONS_DIR  "/lib/ext"
303
304  // Buffer that fits several sprintfs.
305  // Note that the space for the colon and the trailing null are provided
306  // by the nulls included by the sizeof operator.
307  const size_t bufsize =
308    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
309         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
310  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
311
312  // sysclasspath, java_home, dll_dir
313  {
314    char *pslash;
315    os::jvm_path(buf, bufsize);
316
317    // Found the full path to libjvm.so.
318    // Now cut the path to <java_home>/jre if we can.
319    pslash = strrchr(buf, '/');
320    if (pslash != NULL) {
321      *pslash = '\0';            // Get rid of /libjvm.so.
322    }
323    pslash = strrchr(buf, '/');
324    if (pslash != NULL) {
325      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
326    }
327    Arguments::set_dll_dir(buf);
328
329    if (pslash != NULL) {
330      pslash = strrchr(buf, '/');
331      if (pslash != NULL) {
332        *pslash = '\0';          // Get rid of /<arch>.
333        pslash = strrchr(buf, '/');
334        if (pslash != NULL) {
335          *pslash = '\0';        // Get rid of /lib.
336        }
337      }
338    }
339    Arguments::set_java_home(buf);
340    set_boot_path('/', ':');
341  }
342
343  // Where to look for native libraries.
344  //
345  // Note: Due to a legacy implementation, most of the library path
346  // is set in the launcher. This was to accomodate linking restrictions
347  // on legacy Linux implementations (which are no longer supported).
348  // Eventually, all the library path setting will be done here.
349  //
350  // However, to prevent the proliferation of improperly built native
351  // libraries, the new path component /usr/java/packages is added here.
352  // Eventually, all the library path setting will be done here.
353  {
354    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
355    // should always exist (until the legacy problem cited above is
356    // addressed).
357    const char *v = ::getenv("LD_LIBRARY_PATH");
358    const char *v_colon = ":";
359    if (v == NULL) { v = ""; v_colon = ""; }
360    // That's +1 for the colon and +1 for the trailing '\0'.
361    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
362                                                     strlen(v) + 1 +
363                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
364                                                     mtInternal);
365    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
366    Arguments::set_library_path(ld_library_path);
367    FREE_C_HEAP_ARRAY(char, ld_library_path);
368  }
369
370  // Extensions directories.
371  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
372  Arguments::set_ext_dirs(buf);
373
374  FREE_C_HEAP_ARRAY(char, buf);
375
376#undef DEFAULT_LIBPATH
377#undef SYS_EXT_DIR
378#undef EXTENSIONS_DIR
379}
380
381////////////////////////////////////////////////////////////////////////////////
382// breakpoint support
383
384void os::breakpoint() {
385  BREAKPOINT;
386}
387
388extern "C" void breakpoint() {
389  // use debugger to set breakpoint here
390}
391
392////////////////////////////////////////////////////////////////////////////////
393// signal support
394
395debug_only(static bool signal_sets_initialized = false);
396static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
397
398bool os::Linux::is_sig_ignored(int sig) {
399  struct sigaction oact;
400  sigaction(sig, (struct sigaction*)NULL, &oact);
401  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
402                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
403  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
404    return true;
405  } else {
406    return false;
407  }
408}
409
410void os::Linux::signal_sets_init() {
411  // Should also have an assertion stating we are still single-threaded.
412  assert(!signal_sets_initialized, "Already initialized");
413  // Fill in signals that are necessarily unblocked for all threads in
414  // the VM. Currently, we unblock the following signals:
415  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
416  //                         by -Xrs (=ReduceSignalUsage));
417  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
418  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
419  // the dispositions or masks wrt these signals.
420  // Programs embedding the VM that want to use the above signals for their
421  // own purposes must, at this time, use the "-Xrs" option to prevent
422  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
423  // (See bug 4345157, and other related bugs).
424  // In reality, though, unblocking these signals is really a nop, since
425  // these signals are not blocked by default.
426  sigemptyset(&unblocked_sigs);
427  sigemptyset(&allowdebug_blocked_sigs);
428  sigaddset(&unblocked_sigs, SIGILL);
429  sigaddset(&unblocked_sigs, SIGSEGV);
430  sigaddset(&unblocked_sigs, SIGBUS);
431  sigaddset(&unblocked_sigs, SIGFPE);
432#if defined(PPC64)
433  sigaddset(&unblocked_sigs, SIGTRAP);
434#endif
435  sigaddset(&unblocked_sigs, SR_signum);
436
437  if (!ReduceSignalUsage) {
438    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
439      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
440      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
441    }
442    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
443      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
444      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
445    }
446    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
447      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
448      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
449    }
450  }
451  // Fill in signals that are blocked by all but the VM thread.
452  sigemptyset(&vm_sigs);
453  if (!ReduceSignalUsage) {
454    sigaddset(&vm_sigs, BREAK_SIGNAL);
455  }
456  debug_only(signal_sets_initialized = true);
457
458}
459
460// These are signals that are unblocked while a thread is running Java.
461// (For some reason, they get blocked by default.)
462sigset_t* os::Linux::unblocked_signals() {
463  assert(signal_sets_initialized, "Not initialized");
464  return &unblocked_sigs;
465}
466
467// These are the signals that are blocked while a (non-VM) thread is
468// running Java. Only the VM thread handles these signals.
469sigset_t* os::Linux::vm_signals() {
470  assert(signal_sets_initialized, "Not initialized");
471  return &vm_sigs;
472}
473
474// These are signals that are blocked during cond_wait to allow debugger in
475sigset_t* os::Linux::allowdebug_blocked_signals() {
476  assert(signal_sets_initialized, "Not initialized");
477  return &allowdebug_blocked_sigs;
478}
479
480void os::Linux::hotspot_sigmask(Thread* thread) {
481
482  //Save caller's signal mask before setting VM signal mask
483  sigset_t caller_sigmask;
484  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
485
486  OSThread* osthread = thread->osthread();
487  osthread->set_caller_sigmask(caller_sigmask);
488
489  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
490
491  if (!ReduceSignalUsage) {
492    if (thread->is_VM_thread()) {
493      // Only the VM thread handles BREAK_SIGNAL ...
494      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
495    } else {
496      // ... all other threads block BREAK_SIGNAL
497      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
498    }
499  }
500}
501
502//////////////////////////////////////////////////////////////////////////////
503// detecting pthread library
504
505void os::Linux::libpthread_init() {
506  // Save glibc and pthread version strings.
507#if !defined(_CS_GNU_LIBC_VERSION) || \
508    !defined(_CS_GNU_LIBPTHREAD_VERSION)
509  #error "glibc too old (< 2.3.2)"
510#endif
511
512  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
513  assert(n > 0, "cannot retrieve glibc version");
514  char *str = (char *)malloc(n, mtInternal);
515  confstr(_CS_GNU_LIBC_VERSION, str, n);
516  os::Linux::set_glibc_version(str);
517
518  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
519  assert(n > 0, "cannot retrieve pthread version");
520  str = (char *)malloc(n, mtInternal);
521  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
522  os::Linux::set_libpthread_version(str);
523}
524
525/////////////////////////////////////////////////////////////////////////////
526// thread stack expansion
527
528// os::Linux::manually_expand_stack() takes care of expanding the thread
529// stack. Note that this is normally not needed: pthread stacks allocate
530// thread stack using mmap() without MAP_NORESERVE, so the stack is already
531// committed. Therefore it is not necessary to expand the stack manually.
532//
533// Manually expanding the stack was historically needed on LinuxThreads
534// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
535// it is kept to deal with very rare corner cases:
536//
537// For one, user may run the VM on an own implementation of threads
538// whose stacks are - like the old LinuxThreads - implemented using
539// mmap(MAP_GROWSDOWN).
540//
541// Also, this coding may be needed if the VM is running on the primordial
542// thread. Normally we avoid running on the primordial thread; however,
543// user may still invoke the VM on the primordial thread.
544//
545// The following historical comment describes the details about running
546// on a thread stack allocated with mmap(MAP_GROWSDOWN):
547
548
549// Force Linux kernel to expand current thread stack. If "bottom" is close
550// to the stack guard, caller should block all signals.
551//
552// MAP_GROWSDOWN:
553//   A special mmap() flag that is used to implement thread stacks. It tells
554//   kernel that the memory region should extend downwards when needed. This
555//   allows early versions of LinuxThreads to only mmap the first few pages
556//   when creating a new thread. Linux kernel will automatically expand thread
557//   stack as needed (on page faults).
558//
559//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
560//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
561//   region, it's hard to tell if the fault is due to a legitimate stack
562//   access or because of reading/writing non-exist memory (e.g. buffer
563//   overrun). As a rule, if the fault happens below current stack pointer,
564//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
565//   application (see Linux kernel fault.c).
566//
567//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
568//   stack overflow detection.
569//
570//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
571//   not use MAP_GROWSDOWN.
572//
573// To get around the problem and allow stack banging on Linux, we need to
574// manually expand thread stack after receiving the SIGSEGV.
575//
576// There are two ways to expand thread stack to address "bottom", we used
577// both of them in JVM before 1.5:
578//   1. adjust stack pointer first so that it is below "bottom", and then
579//      touch "bottom"
580//   2. mmap() the page in question
581//
582// Now alternate signal stack is gone, it's harder to use 2. For instance,
583// if current sp is already near the lower end of page 101, and we need to
584// call mmap() to map page 100, it is possible that part of the mmap() frame
585// will be placed in page 100. When page 100 is mapped, it is zero-filled.
586// That will destroy the mmap() frame and cause VM to crash.
587//
588// The following code works by adjusting sp first, then accessing the "bottom"
589// page to force a page fault. Linux kernel will then automatically expand the
590// stack mapping.
591//
592// _expand_stack_to() assumes its frame size is less than page size, which
593// should always be true if the function is not inlined.
594
595static void NOINLINE _expand_stack_to(address bottom) {
596  address sp;
597  size_t size;
598  volatile char *p;
599
600  // Adjust bottom to point to the largest address within the same page, it
601  // gives us a one-page buffer if alloca() allocates slightly more memory.
602  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
603  bottom += os::Linux::page_size() - 1;
604
605  // sp might be slightly above current stack pointer; if that's the case, we
606  // will alloca() a little more space than necessary, which is OK. Don't use
607  // os::current_stack_pointer(), as its result can be slightly below current
608  // stack pointer, causing us to not alloca enough to reach "bottom".
609  sp = (address)&sp;
610
611  if (sp > bottom) {
612    size = sp - bottom;
613    p = (volatile char *)alloca(size);
614    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
615    p[0] = '\0';
616  }
617}
618
619bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
620  assert(t!=NULL, "just checking");
621  assert(t->osthread()->expanding_stack(), "expand should be set");
622  assert(t->stack_base() != NULL, "stack_base was not initialized");
623
624  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
625    sigset_t mask_all, old_sigset;
626    sigfillset(&mask_all);
627    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
628    _expand_stack_to(addr);
629    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
630    return true;
631  }
632  return false;
633}
634
635//////////////////////////////////////////////////////////////////////////////
636// create new thread
637
638// Thread start routine for all newly created threads
639static void *thread_native_entry(Thread *thread) {
640  // Try to randomize the cache line index of hot stack frames.
641  // This helps when threads of the same stack traces evict each other's
642  // cache lines. The threads can be either from the same JVM instance, or
643  // from different JVM instances. The benefit is especially true for
644  // processors with hyperthreading technology.
645  static int counter = 0;
646  int pid = os::current_process_id();
647  alloca(((pid ^ counter++) & 7) * 128);
648
649  thread->initialize_thread_current();
650
651  OSThread* osthread = thread->osthread();
652  Monitor* sync = osthread->startThread_lock();
653
654  osthread->set_thread_id(os::current_thread_id());
655
656  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
657    os::current_thread_id(), (uintx) pthread_self());
658
659  if (UseNUMA) {
660    int lgrp_id = os::numa_get_group_id();
661    if (lgrp_id != -1) {
662      thread->set_lgrp_id(lgrp_id);
663    }
664  }
665  // initialize signal mask for this thread
666  os::Linux::hotspot_sigmask(thread);
667
668  // initialize floating point control register
669  os::Linux::init_thread_fpu_state();
670
671  // handshaking with parent thread
672  {
673    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
674
675    // notify parent thread
676    osthread->set_state(INITIALIZED);
677    sync->notify_all();
678
679    // wait until os::start_thread()
680    while (osthread->get_state() == INITIALIZED) {
681      sync->wait(Mutex::_no_safepoint_check_flag);
682    }
683  }
684
685  // call one more level start routine
686  thread->run();
687
688  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
689    os::current_thread_id(), (uintx) pthread_self());
690
691  // If a thread has not deleted itself ("delete this") as part of its
692  // termination sequence, we have to ensure thread-local-storage is
693  // cleared before we actually terminate. No threads should ever be
694  // deleted asynchronously with respect to their termination.
695  if (Thread::current_or_null_safe() != NULL) {
696    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
697    thread->clear_thread_current();
698  }
699
700  return 0;
701}
702
703bool os::create_thread(Thread* thread, ThreadType thr_type,
704                       size_t stack_size) {
705  assert(thread->osthread() == NULL, "caller responsible");
706
707  // Allocate the OSThread object
708  OSThread* osthread = new OSThread(NULL, NULL);
709  if (osthread == NULL) {
710    return false;
711  }
712
713  // set the correct thread state
714  osthread->set_thread_type(thr_type);
715
716  // Initial state is ALLOCATED but not INITIALIZED
717  osthread->set_state(ALLOCATED);
718
719  thread->set_osthread(osthread);
720
721  // init thread attributes
722  pthread_attr_t attr;
723  pthread_attr_init(&attr);
724  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
725
726  // stack size
727  // calculate stack size if it's not specified by caller
728  if (stack_size == 0) {
729    stack_size = os::Linux::default_stack_size(thr_type);
730
731    switch (thr_type) {
732    case os::java_thread:
733      // Java threads use ThreadStackSize which default value can be
734      // changed with the flag -Xss
735      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
736      stack_size = JavaThread::stack_size_at_create();
737      break;
738    case os::compiler_thread:
739      if (CompilerThreadStackSize > 0) {
740        stack_size = (size_t)(CompilerThreadStackSize * K);
741        break;
742      } // else fall through:
743        // use VMThreadStackSize if CompilerThreadStackSize is not defined
744    case os::vm_thread:
745    case os::pgc_thread:
746    case os::cgc_thread:
747    case os::watcher_thread:
748      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
749      break;
750    }
751  }
752
753  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
754  pthread_attr_setstacksize(&attr, stack_size);
755
756  // glibc guard page
757  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
758
759  ThreadState state;
760
761  {
762    pthread_t tid;
763    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
764
765    char buf[64];
766    if (ret == 0) {
767      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
768        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
769    } else {
770      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
771        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
772    }
773
774    pthread_attr_destroy(&attr);
775
776    if (ret != 0) {
777      // Need to clean up stuff we've allocated so far
778      thread->set_osthread(NULL);
779      delete osthread;
780      return false;
781    }
782
783    // Store pthread info into the OSThread
784    osthread->set_pthread_id(tid);
785
786    // Wait until child thread is either initialized or aborted
787    {
788      Monitor* sync_with_child = osthread->startThread_lock();
789      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
790      while ((state = osthread->get_state()) == ALLOCATED) {
791        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
792      }
793    }
794  }
795
796  // Aborted due to thread limit being reached
797  if (state == ZOMBIE) {
798    thread->set_osthread(NULL);
799    delete osthread;
800    return false;
801  }
802
803  // The thread is returned suspended (in state INITIALIZED),
804  // and is started higher up in the call chain
805  assert(state == INITIALIZED, "race condition");
806  return true;
807}
808
809/////////////////////////////////////////////////////////////////////////////
810// attach existing thread
811
812// bootstrap the main thread
813bool os::create_main_thread(JavaThread* thread) {
814  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
815  return create_attached_thread(thread);
816}
817
818bool os::create_attached_thread(JavaThread* thread) {
819#ifdef ASSERT
820  thread->verify_not_published();
821#endif
822
823  // Allocate the OSThread object
824  OSThread* osthread = new OSThread(NULL, NULL);
825
826  if (osthread == NULL) {
827    return false;
828  }
829
830  // Store pthread info into the OSThread
831  osthread->set_thread_id(os::Linux::gettid());
832  osthread->set_pthread_id(::pthread_self());
833
834  // initialize floating point control register
835  os::Linux::init_thread_fpu_state();
836
837  // Initial thread state is RUNNABLE
838  osthread->set_state(RUNNABLE);
839
840  thread->set_osthread(osthread);
841
842  if (UseNUMA) {
843    int lgrp_id = os::numa_get_group_id();
844    if (lgrp_id != -1) {
845      thread->set_lgrp_id(lgrp_id);
846    }
847  }
848
849  if (os::Linux::is_initial_thread()) {
850    // If current thread is initial thread, its stack is mapped on demand,
851    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
852    // the entire stack region to avoid SEGV in stack banging.
853    // It is also useful to get around the heap-stack-gap problem on SuSE
854    // kernel (see 4821821 for details). We first expand stack to the top
855    // of yellow zone, then enable stack yellow zone (order is significant,
856    // enabling yellow zone first will crash JVM on SuSE Linux), so there
857    // is no gap between the last two virtual memory regions.
858
859    JavaThread *jt = (JavaThread *)thread;
860    address addr = jt->stack_reserved_zone_base();
861    assert(addr != NULL, "initialization problem?");
862    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
863
864    osthread->set_expanding_stack();
865    os::Linux::manually_expand_stack(jt, addr);
866    osthread->clear_expanding_stack();
867  }
868
869  // initialize signal mask for this thread
870  // and save the caller's signal mask
871  os::Linux::hotspot_sigmask(thread);
872
873  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
874    os::current_thread_id(), (uintx) pthread_self());
875
876  return true;
877}
878
879void os::pd_start_thread(Thread* thread) {
880  OSThread * osthread = thread->osthread();
881  assert(osthread->get_state() != INITIALIZED, "just checking");
882  Monitor* sync_with_child = osthread->startThread_lock();
883  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
884  sync_with_child->notify();
885}
886
887// Free Linux resources related to the OSThread
888void os::free_thread(OSThread* osthread) {
889  assert(osthread != NULL, "osthread not set");
890
891  // We are told to free resources of the argument thread,
892  // but we can only really operate on the current thread.
893  assert(Thread::current()->osthread() == osthread,
894         "os::free_thread but not current thread");
895
896#ifdef ASSERT
897  sigset_t current;
898  sigemptyset(&current);
899  pthread_sigmask(SIG_SETMASK, NULL, &current);
900  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
901#endif
902
903  // Restore caller's signal mask
904  sigset_t sigmask = osthread->caller_sigmask();
905  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
906
907  delete osthread;
908}
909
910//////////////////////////////////////////////////////////////////////////////
911// initial thread
912
913// Check if current thread is the initial thread, similar to Solaris thr_main.
914bool os::Linux::is_initial_thread(void) {
915  char dummy;
916  // If called before init complete, thread stack bottom will be null.
917  // Can be called if fatal error occurs before initialization.
918  if (initial_thread_stack_bottom() == NULL) return false;
919  assert(initial_thread_stack_bottom() != NULL &&
920         initial_thread_stack_size()   != 0,
921         "os::init did not locate initial thread's stack region");
922  if ((address)&dummy >= initial_thread_stack_bottom() &&
923      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
924    return true;
925  } else {
926    return false;
927  }
928}
929
930// Find the virtual memory area that contains addr
931static bool find_vma(address addr, address* vma_low, address* vma_high) {
932  FILE *fp = fopen("/proc/self/maps", "r");
933  if (fp) {
934    address low, high;
935    while (!feof(fp)) {
936      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
937        if (low <= addr && addr < high) {
938          if (vma_low)  *vma_low  = low;
939          if (vma_high) *vma_high = high;
940          fclose(fp);
941          return true;
942        }
943      }
944      for (;;) {
945        int ch = fgetc(fp);
946        if (ch == EOF || ch == (int)'\n') break;
947      }
948    }
949    fclose(fp);
950  }
951  return false;
952}
953
954// Locate initial thread stack. This special handling of initial thread stack
955// is needed because pthread_getattr_np() on most (all?) Linux distros returns
956// bogus value for initial thread.
957void os::Linux::capture_initial_stack(size_t max_size) {
958  // stack size is the easy part, get it from RLIMIT_STACK
959  size_t stack_size;
960  struct rlimit rlim;
961  getrlimit(RLIMIT_STACK, &rlim);
962  stack_size = rlim.rlim_cur;
963
964  // 6308388: a bug in ld.so will relocate its own .data section to the
965  //   lower end of primordial stack; reduce ulimit -s value a little bit
966  //   so we won't install guard page on ld.so's data section.
967  stack_size -= 2 * page_size();
968
969  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
970  //   7.1, in both cases we will get 2G in return value.
971  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
972  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
973  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
974  //   in case other parts in glibc still assumes 2M max stack size.
975  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
976  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
977  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
978    stack_size = 2 * K * K IA64_ONLY(*2);
979  }
980  // Try to figure out where the stack base (top) is. This is harder.
981  //
982  // When an application is started, glibc saves the initial stack pointer in
983  // a global variable "__libc_stack_end", which is then used by system
984  // libraries. __libc_stack_end should be pretty close to stack top. The
985  // variable is available since the very early days. However, because it is
986  // a private interface, it could disappear in the future.
987  //
988  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
989  // to __libc_stack_end, it is very close to stack top, but isn't the real
990  // stack top. Note that /proc may not exist if VM is running as a chroot
991  // program, so reading /proc/<pid>/stat could fail. Also the contents of
992  // /proc/<pid>/stat could change in the future (though unlikely).
993  //
994  // We try __libc_stack_end first. If that doesn't work, look for
995  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
996  // as a hint, which should work well in most cases.
997
998  uintptr_t stack_start;
999
1000  // try __libc_stack_end first
1001  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1002  if (p && *p) {
1003    stack_start = *p;
1004  } else {
1005    // see if we can get the start_stack field from /proc/self/stat
1006    FILE *fp;
1007    int pid;
1008    char state;
1009    int ppid;
1010    int pgrp;
1011    int session;
1012    int nr;
1013    int tpgrp;
1014    unsigned long flags;
1015    unsigned long minflt;
1016    unsigned long cminflt;
1017    unsigned long majflt;
1018    unsigned long cmajflt;
1019    unsigned long utime;
1020    unsigned long stime;
1021    long cutime;
1022    long cstime;
1023    long prio;
1024    long nice;
1025    long junk;
1026    long it_real;
1027    uintptr_t start;
1028    uintptr_t vsize;
1029    intptr_t rss;
1030    uintptr_t rsslim;
1031    uintptr_t scodes;
1032    uintptr_t ecode;
1033    int i;
1034
1035    // Figure what the primordial thread stack base is. Code is inspired
1036    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1037    // followed by command name surrounded by parentheses, state, etc.
1038    char stat[2048];
1039    int statlen;
1040
1041    fp = fopen("/proc/self/stat", "r");
1042    if (fp) {
1043      statlen = fread(stat, 1, 2047, fp);
1044      stat[statlen] = '\0';
1045      fclose(fp);
1046
1047      // Skip pid and the command string. Note that we could be dealing with
1048      // weird command names, e.g. user could decide to rename java launcher
1049      // to "java 1.4.2 :)", then the stat file would look like
1050      //                1234 (java 1.4.2 :)) R ... ...
1051      // We don't really need to know the command string, just find the last
1052      // occurrence of ")" and then start parsing from there. See bug 4726580.
1053      char * s = strrchr(stat, ')');
1054
1055      i = 0;
1056      if (s) {
1057        // Skip blank chars
1058        do { s++; } while (s && isspace(*s));
1059
1060#define _UFM UINTX_FORMAT
1061#define _DFM INTX_FORMAT
1062
1063        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1064        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1065        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1066                   &state,          // 3  %c
1067                   &ppid,           // 4  %d
1068                   &pgrp,           // 5  %d
1069                   &session,        // 6  %d
1070                   &nr,             // 7  %d
1071                   &tpgrp,          // 8  %d
1072                   &flags,          // 9  %lu
1073                   &minflt,         // 10 %lu
1074                   &cminflt,        // 11 %lu
1075                   &majflt,         // 12 %lu
1076                   &cmajflt,        // 13 %lu
1077                   &utime,          // 14 %lu
1078                   &stime,          // 15 %lu
1079                   &cutime,         // 16 %ld
1080                   &cstime,         // 17 %ld
1081                   &prio,           // 18 %ld
1082                   &nice,           // 19 %ld
1083                   &junk,           // 20 %ld
1084                   &it_real,        // 21 %ld
1085                   &start,          // 22 UINTX_FORMAT
1086                   &vsize,          // 23 UINTX_FORMAT
1087                   &rss,            // 24 INTX_FORMAT
1088                   &rsslim,         // 25 UINTX_FORMAT
1089                   &scodes,         // 26 UINTX_FORMAT
1090                   &ecode,          // 27 UINTX_FORMAT
1091                   &stack_start);   // 28 UINTX_FORMAT
1092      }
1093
1094#undef _UFM
1095#undef _DFM
1096
1097      if (i != 28 - 2) {
1098        assert(false, "Bad conversion from /proc/self/stat");
1099        // product mode - assume we are the initial thread, good luck in the
1100        // embedded case.
1101        warning("Can't detect initial thread stack location - bad conversion");
1102        stack_start = (uintptr_t) &rlim;
1103      }
1104    } else {
1105      // For some reason we can't open /proc/self/stat (for example, running on
1106      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1107      // most cases, so don't abort:
1108      warning("Can't detect initial thread stack location - no /proc/self/stat");
1109      stack_start = (uintptr_t) &rlim;
1110    }
1111  }
1112
1113  // Now we have a pointer (stack_start) very close to the stack top, the
1114  // next thing to do is to figure out the exact location of stack top. We
1115  // can find out the virtual memory area that contains stack_start by
1116  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1117  // and its upper limit is the real stack top. (again, this would fail if
1118  // running inside chroot, because /proc may not exist.)
1119
1120  uintptr_t stack_top;
1121  address low, high;
1122  if (find_vma((address)stack_start, &low, &high)) {
1123    // success, "high" is the true stack top. (ignore "low", because initial
1124    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1125    stack_top = (uintptr_t)high;
1126  } else {
1127    // failed, likely because /proc/self/maps does not exist
1128    warning("Can't detect initial thread stack location - find_vma failed");
1129    // best effort: stack_start is normally within a few pages below the real
1130    // stack top, use it as stack top, and reduce stack size so we won't put
1131    // guard page outside stack.
1132    stack_top = stack_start;
1133    stack_size -= 16 * page_size();
1134  }
1135
1136  // stack_top could be partially down the page so align it
1137  stack_top = align_size_up(stack_top, page_size());
1138
1139  if (max_size && stack_size > max_size) {
1140    _initial_thread_stack_size = max_size;
1141  } else {
1142    _initial_thread_stack_size = stack_size;
1143  }
1144
1145  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1146  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1147}
1148
1149////////////////////////////////////////////////////////////////////////////////
1150// time support
1151
1152// Time since start-up in seconds to a fine granularity.
1153// Used by VMSelfDestructTimer and the MemProfiler.
1154double os::elapsedTime() {
1155
1156  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1157}
1158
1159jlong os::elapsed_counter() {
1160  return javaTimeNanos() - initial_time_count;
1161}
1162
1163jlong os::elapsed_frequency() {
1164  return NANOSECS_PER_SEC; // nanosecond resolution
1165}
1166
1167bool os::supports_vtime() { return true; }
1168bool os::enable_vtime()   { return false; }
1169bool os::vtime_enabled()  { return false; }
1170
1171double os::elapsedVTime() {
1172  struct rusage usage;
1173  int retval = getrusage(RUSAGE_THREAD, &usage);
1174  if (retval == 0) {
1175    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1176  } else {
1177    // better than nothing, but not much
1178    return elapsedTime();
1179  }
1180}
1181
1182jlong os::javaTimeMillis() {
1183  timeval time;
1184  int status = gettimeofday(&time, NULL);
1185  assert(status != -1, "linux error");
1186  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1187}
1188
1189void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1190  timeval time;
1191  int status = gettimeofday(&time, NULL);
1192  assert(status != -1, "linux error");
1193  seconds = jlong(time.tv_sec);
1194  nanos = jlong(time.tv_usec) * 1000;
1195}
1196
1197
1198#ifndef CLOCK_MONOTONIC
1199  #define CLOCK_MONOTONIC (1)
1200#endif
1201
1202void os::Linux::clock_init() {
1203  // we do dlopen's in this particular order due to bug in linux
1204  // dynamical loader (see 6348968) leading to crash on exit
1205  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1206  if (handle == NULL) {
1207    handle = dlopen("librt.so", RTLD_LAZY);
1208  }
1209
1210  if (handle) {
1211    int (*clock_getres_func)(clockid_t, struct timespec*) =
1212           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1213    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1214           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1215    if (clock_getres_func && clock_gettime_func) {
1216      // See if monotonic clock is supported by the kernel. Note that some
1217      // early implementations simply return kernel jiffies (updated every
1218      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1219      // for nano time (though the monotonic property is still nice to have).
1220      // It's fixed in newer kernels, however clock_getres() still returns
1221      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1222      // resolution for now. Hopefully as people move to new kernels, this
1223      // won't be a problem.
1224      struct timespec res;
1225      struct timespec tp;
1226      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1227          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1228        // yes, monotonic clock is supported
1229        _clock_gettime = clock_gettime_func;
1230        return;
1231      } else {
1232        // close librt if there is no monotonic clock
1233        dlclose(handle);
1234      }
1235    }
1236  }
1237  warning("No monotonic clock was available - timed services may " \
1238          "be adversely affected if the time-of-day clock changes");
1239}
1240
1241#ifndef SYS_clock_getres
1242  #if defined(IA32) || defined(AMD64)
1243    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1244    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1245  #else
1246    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1247    #define sys_clock_getres(x,y)  -1
1248  #endif
1249#else
1250  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1251#endif
1252
1253void os::Linux::fast_thread_clock_init() {
1254  if (!UseLinuxPosixThreadCPUClocks) {
1255    return;
1256  }
1257  clockid_t clockid;
1258  struct timespec tp;
1259  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1260      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1261
1262  // Switch to using fast clocks for thread cpu time if
1263  // the sys_clock_getres() returns 0 error code.
1264  // Note, that some kernels may support the current thread
1265  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1266  // returned by the pthread_getcpuclockid().
1267  // If the fast Posix clocks are supported then the sys_clock_getres()
1268  // must return at least tp.tv_sec == 0 which means a resolution
1269  // better than 1 sec. This is extra check for reliability.
1270
1271  if (pthread_getcpuclockid_func &&
1272      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1273      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1274    _supports_fast_thread_cpu_time = true;
1275    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1276  }
1277}
1278
1279jlong os::javaTimeNanos() {
1280  if (os::supports_monotonic_clock()) {
1281    struct timespec tp;
1282    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1283    assert(status == 0, "gettime error");
1284    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1285    return result;
1286  } else {
1287    timeval time;
1288    int status = gettimeofday(&time, NULL);
1289    assert(status != -1, "linux error");
1290    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1291    return 1000 * usecs;
1292  }
1293}
1294
1295void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1296  if (os::supports_monotonic_clock()) {
1297    info_ptr->max_value = ALL_64_BITS;
1298
1299    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1300    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1301    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1302  } else {
1303    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1304    info_ptr->max_value = ALL_64_BITS;
1305
1306    // gettimeofday is a real time clock so it skips
1307    info_ptr->may_skip_backward = true;
1308    info_ptr->may_skip_forward = true;
1309  }
1310
1311  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1312}
1313
1314// Return the real, user, and system times in seconds from an
1315// arbitrary fixed point in the past.
1316bool os::getTimesSecs(double* process_real_time,
1317                      double* process_user_time,
1318                      double* process_system_time) {
1319  struct tms ticks;
1320  clock_t real_ticks = times(&ticks);
1321
1322  if (real_ticks == (clock_t) (-1)) {
1323    return false;
1324  } else {
1325    double ticks_per_second = (double) clock_tics_per_sec;
1326    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1327    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1328    *process_real_time = ((double) real_ticks) / ticks_per_second;
1329
1330    return true;
1331  }
1332}
1333
1334
1335char * os::local_time_string(char *buf, size_t buflen) {
1336  struct tm t;
1337  time_t long_time;
1338  time(&long_time);
1339  localtime_r(&long_time, &t);
1340  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1341               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1342               t.tm_hour, t.tm_min, t.tm_sec);
1343  return buf;
1344}
1345
1346struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1347  return localtime_r(clock, res);
1348}
1349
1350////////////////////////////////////////////////////////////////////////////////
1351// runtime exit support
1352
1353// Note: os::shutdown() might be called very early during initialization, or
1354// called from signal handler. Before adding something to os::shutdown(), make
1355// sure it is async-safe and can handle partially initialized VM.
1356void os::shutdown() {
1357
1358  // allow PerfMemory to attempt cleanup of any persistent resources
1359  perfMemory_exit();
1360
1361  // needs to remove object in file system
1362  AttachListener::abort();
1363
1364  // flush buffered output, finish log files
1365  ostream_abort();
1366
1367  // Check for abort hook
1368  abort_hook_t abort_hook = Arguments::abort_hook();
1369  if (abort_hook != NULL) {
1370    abort_hook();
1371  }
1372
1373}
1374
1375// Note: os::abort() might be called very early during initialization, or
1376// called from signal handler. Before adding something to os::abort(), make
1377// sure it is async-safe and can handle partially initialized VM.
1378void os::abort(bool dump_core, void* siginfo, const void* context) {
1379  os::shutdown();
1380  if (dump_core) {
1381#ifndef PRODUCT
1382    fdStream out(defaultStream::output_fd());
1383    out.print_raw("Current thread is ");
1384    char buf[16];
1385    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1386    out.print_raw_cr(buf);
1387    out.print_raw_cr("Dumping core ...");
1388#endif
1389    ::abort(); // dump core
1390  }
1391
1392  ::exit(1);
1393}
1394
1395// Die immediately, no exit hook, no abort hook, no cleanup.
1396void os::die() {
1397  ::abort();
1398}
1399
1400
1401// This method is a copy of JDK's sysGetLastErrorString
1402// from src/solaris/hpi/src/system_md.c
1403
1404size_t os::lasterror(char *buf, size_t len) {
1405  if (errno == 0)  return 0;
1406
1407  const char *s = os::strerror(errno);
1408  size_t n = ::strlen(s);
1409  if (n >= len) {
1410    n = len - 1;
1411  }
1412  ::strncpy(buf, s, n);
1413  buf[n] = '\0';
1414  return n;
1415}
1416
1417// thread_id is kernel thread id (similar to Solaris LWP id)
1418intx os::current_thread_id() { return os::Linux::gettid(); }
1419int os::current_process_id() {
1420  return ::getpid();
1421}
1422
1423// DLL functions
1424
1425const char* os::dll_file_extension() { return ".so"; }
1426
1427// This must be hard coded because it's the system's temporary
1428// directory not the java application's temp directory, ala java.io.tmpdir.
1429const char* os::get_temp_directory() { return "/tmp"; }
1430
1431static bool file_exists(const char* filename) {
1432  struct stat statbuf;
1433  if (filename == NULL || strlen(filename) == 0) {
1434    return false;
1435  }
1436  return os::stat(filename, &statbuf) == 0;
1437}
1438
1439bool os::dll_build_name(char* buffer, size_t buflen,
1440                        const char* pname, const char* fname) {
1441  bool retval = false;
1442  // Copied from libhpi
1443  const size_t pnamelen = pname ? strlen(pname) : 0;
1444
1445  // Return error on buffer overflow.
1446  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1447    return retval;
1448  }
1449
1450  if (pnamelen == 0) {
1451    snprintf(buffer, buflen, "lib%s.so", fname);
1452    retval = true;
1453  } else if (strchr(pname, *os::path_separator()) != NULL) {
1454    int n;
1455    char** pelements = split_path(pname, &n);
1456    if (pelements == NULL) {
1457      return false;
1458    }
1459    for (int i = 0; i < n; i++) {
1460      // Really shouldn't be NULL, but check can't hurt
1461      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1462        continue; // skip the empty path values
1463      }
1464      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1465      if (file_exists(buffer)) {
1466        retval = true;
1467        break;
1468      }
1469    }
1470    // release the storage
1471    for (int i = 0; i < n; i++) {
1472      if (pelements[i] != NULL) {
1473        FREE_C_HEAP_ARRAY(char, pelements[i]);
1474      }
1475    }
1476    if (pelements != NULL) {
1477      FREE_C_HEAP_ARRAY(char*, pelements);
1478    }
1479  } else {
1480    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1481    retval = true;
1482  }
1483  return retval;
1484}
1485
1486// check if addr is inside libjvm.so
1487bool os::address_is_in_vm(address addr) {
1488  static address libjvm_base_addr;
1489  Dl_info dlinfo;
1490
1491  if (libjvm_base_addr == NULL) {
1492    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1493      libjvm_base_addr = (address)dlinfo.dli_fbase;
1494    }
1495    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1496  }
1497
1498  if (dladdr((void *)addr, &dlinfo) != 0) {
1499    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1500  }
1501
1502  return false;
1503}
1504
1505bool os::dll_address_to_function_name(address addr, char *buf,
1506                                      int buflen, int *offset,
1507                                      bool demangle) {
1508  // buf is not optional, but offset is optional
1509  assert(buf != NULL, "sanity check");
1510
1511  Dl_info dlinfo;
1512
1513  if (dladdr((void*)addr, &dlinfo) != 0) {
1514    // see if we have a matching symbol
1515    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1516      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1517        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1518      }
1519      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1520      return true;
1521    }
1522    // no matching symbol so try for just file info
1523    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1524      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1525                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1526        return true;
1527      }
1528    }
1529  }
1530
1531  buf[0] = '\0';
1532  if (offset != NULL) *offset = -1;
1533  return false;
1534}
1535
1536struct _address_to_library_name {
1537  address addr;          // input : memory address
1538  size_t  buflen;        //         size of fname
1539  char*   fname;         // output: library name
1540  address base;          //         library base addr
1541};
1542
1543static int address_to_library_name_callback(struct dl_phdr_info *info,
1544                                            size_t size, void *data) {
1545  int i;
1546  bool found = false;
1547  address libbase = NULL;
1548  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1549
1550  // iterate through all loadable segments
1551  for (i = 0; i < info->dlpi_phnum; i++) {
1552    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1553    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1554      // base address of a library is the lowest address of its loaded
1555      // segments.
1556      if (libbase == NULL || libbase > segbase) {
1557        libbase = segbase;
1558      }
1559      // see if 'addr' is within current segment
1560      if (segbase <= d->addr &&
1561          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1562        found = true;
1563      }
1564    }
1565  }
1566
1567  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1568  // so dll_address_to_library_name() can fall through to use dladdr() which
1569  // can figure out executable name from argv[0].
1570  if (found && info->dlpi_name && info->dlpi_name[0]) {
1571    d->base = libbase;
1572    if (d->fname) {
1573      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1574    }
1575    return 1;
1576  }
1577  return 0;
1578}
1579
1580bool os::dll_address_to_library_name(address addr, char* buf,
1581                                     int buflen, int* offset) {
1582  // buf is not optional, but offset is optional
1583  assert(buf != NULL, "sanity check");
1584
1585  Dl_info dlinfo;
1586  struct _address_to_library_name data;
1587
1588  // There is a bug in old glibc dladdr() implementation that it could resolve
1589  // to wrong library name if the .so file has a base address != NULL. Here
1590  // we iterate through the program headers of all loaded libraries to find
1591  // out which library 'addr' really belongs to. This workaround can be
1592  // removed once the minimum requirement for glibc is moved to 2.3.x.
1593  data.addr = addr;
1594  data.fname = buf;
1595  data.buflen = buflen;
1596  data.base = NULL;
1597  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1598
1599  if (rslt) {
1600    // buf already contains library name
1601    if (offset) *offset = addr - data.base;
1602    return true;
1603  }
1604  if (dladdr((void*)addr, &dlinfo) != 0) {
1605    if (dlinfo.dli_fname != NULL) {
1606      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1607    }
1608    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1609      *offset = addr - (address)dlinfo.dli_fbase;
1610    }
1611    return true;
1612  }
1613
1614  buf[0] = '\0';
1615  if (offset) *offset = -1;
1616  return false;
1617}
1618
1619// Loads .dll/.so and
1620// in case of error it checks if .dll/.so was built for the
1621// same architecture as Hotspot is running on
1622
1623
1624// Remember the stack's state. The Linux dynamic linker will change
1625// the stack to 'executable' at most once, so we must safepoint only once.
1626bool os::Linux::_stack_is_executable = false;
1627
1628// VM operation that loads a library.  This is necessary if stack protection
1629// of the Java stacks can be lost during loading the library.  If we
1630// do not stop the Java threads, they can stack overflow before the stacks
1631// are protected again.
1632class VM_LinuxDllLoad: public VM_Operation {
1633 private:
1634  const char *_filename;
1635  char *_ebuf;
1636  int _ebuflen;
1637  void *_lib;
1638 public:
1639  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1640    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1641  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1642  void doit() {
1643    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1644    os::Linux::_stack_is_executable = true;
1645  }
1646  void* loaded_library() { return _lib; }
1647};
1648
1649void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1650  void * result = NULL;
1651  bool load_attempted = false;
1652
1653  // Check whether the library to load might change execution rights
1654  // of the stack. If they are changed, the protection of the stack
1655  // guard pages will be lost. We need a safepoint to fix this.
1656  //
1657  // See Linux man page execstack(8) for more info.
1658  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1659    ElfFile ef(filename);
1660    if (!ef.specifies_noexecstack()) {
1661      if (!is_init_completed()) {
1662        os::Linux::_stack_is_executable = true;
1663        // This is OK - No Java threads have been created yet, and hence no
1664        // stack guard pages to fix.
1665        //
1666        // This should happen only when you are building JDK7 using a very
1667        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1668        //
1669        // Dynamic loader will make all stacks executable after
1670        // this function returns, and will not do that again.
1671        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1672      } else {
1673        warning("You have loaded library %s which might have disabled stack guard. "
1674                "The VM will try to fix the stack guard now.\n"
1675                "It's highly recommended that you fix the library with "
1676                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1677                filename);
1678
1679        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1680        JavaThread *jt = JavaThread::current();
1681        if (jt->thread_state() != _thread_in_native) {
1682          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1683          // that requires ExecStack. Cannot enter safe point. Let's give up.
1684          warning("Unable to fix stack guard. Giving up.");
1685        } else {
1686          if (!LoadExecStackDllInVMThread) {
1687            // This is for the case where the DLL has an static
1688            // constructor function that executes JNI code. We cannot
1689            // load such DLLs in the VMThread.
1690            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1691          }
1692
1693          ThreadInVMfromNative tiv(jt);
1694          debug_only(VMNativeEntryWrapper vew;)
1695
1696          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1697          VMThread::execute(&op);
1698          if (LoadExecStackDllInVMThread) {
1699            result = op.loaded_library();
1700          }
1701          load_attempted = true;
1702        }
1703      }
1704    }
1705  }
1706
1707  if (!load_attempted) {
1708    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1709  }
1710
1711  if (result != NULL) {
1712    // Successful loading
1713    return result;
1714  }
1715
1716  Elf32_Ehdr elf_head;
1717  int diag_msg_max_length=ebuflen-strlen(ebuf);
1718  char* diag_msg_buf=ebuf+strlen(ebuf);
1719
1720  if (diag_msg_max_length==0) {
1721    // No more space in ebuf for additional diagnostics message
1722    return NULL;
1723  }
1724
1725
1726  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1727
1728  if (file_descriptor < 0) {
1729    // Can't open library, report dlerror() message
1730    return NULL;
1731  }
1732
1733  bool failed_to_read_elf_head=
1734    (sizeof(elf_head)!=
1735     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1736
1737  ::close(file_descriptor);
1738  if (failed_to_read_elf_head) {
1739    // file i/o error - report dlerror() msg
1740    return NULL;
1741  }
1742
1743  typedef struct {
1744    Elf32_Half    code;         // Actual value as defined in elf.h
1745    Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1746    unsigned char elf_class;    // 32 or 64 bit
1747    unsigned char endianess;    // MSB or LSB
1748    char*         name;         // String representation
1749  } arch_t;
1750
1751#ifndef EM_486
1752  #define EM_486          6               /* Intel 80486 */
1753#endif
1754#ifndef EM_AARCH64
1755  #define EM_AARCH64    183               /* ARM AARCH64 */
1756#endif
1757
1758  static const arch_t arch_array[]={
1759    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1760    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1761    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1762    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1763    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1764    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1765    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1766    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1767#if defined(VM_LITTLE_ENDIAN)
1768    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1769#else
1770    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1771#endif
1772    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1773    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1774    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1775    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1776    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1777    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1778    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1779    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1780  };
1781
1782#if  (defined IA32)
1783  static  Elf32_Half running_arch_code=EM_386;
1784#elif   (defined AMD64)
1785  static  Elf32_Half running_arch_code=EM_X86_64;
1786#elif  (defined IA64)
1787  static  Elf32_Half running_arch_code=EM_IA_64;
1788#elif  (defined __sparc) && (defined _LP64)
1789  static  Elf32_Half running_arch_code=EM_SPARCV9;
1790#elif  (defined __sparc) && (!defined _LP64)
1791  static  Elf32_Half running_arch_code=EM_SPARC;
1792#elif  (defined __powerpc64__)
1793  static  Elf32_Half running_arch_code=EM_PPC64;
1794#elif  (defined __powerpc__)
1795  static  Elf32_Half running_arch_code=EM_PPC;
1796#elif  (defined ARM)
1797  static  Elf32_Half running_arch_code=EM_ARM;
1798#elif  (defined S390)
1799  static  Elf32_Half running_arch_code=EM_S390;
1800#elif  (defined ALPHA)
1801  static  Elf32_Half running_arch_code=EM_ALPHA;
1802#elif  (defined MIPSEL)
1803  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1804#elif  (defined PARISC)
1805  static  Elf32_Half running_arch_code=EM_PARISC;
1806#elif  (defined MIPS)
1807  static  Elf32_Half running_arch_code=EM_MIPS;
1808#elif  (defined M68K)
1809  static  Elf32_Half running_arch_code=EM_68K;
1810#elif  (defined AARCH64)
1811  static  Elf32_Half running_arch_code=EM_AARCH64;
1812#else
1813    #error Method os::dll_load requires that one of following is defined:\
1814         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1815#endif
1816
1817  // Identify compatability class for VM's architecture and library's architecture
1818  // Obtain string descriptions for architectures
1819
1820  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1821  int running_arch_index=-1;
1822
1823  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1824    if (running_arch_code == arch_array[i].code) {
1825      running_arch_index    = i;
1826    }
1827    if (lib_arch.code == arch_array[i].code) {
1828      lib_arch.compat_class = arch_array[i].compat_class;
1829      lib_arch.name         = arch_array[i].name;
1830    }
1831  }
1832
1833  assert(running_arch_index != -1,
1834         "Didn't find running architecture code (running_arch_code) in arch_array");
1835  if (running_arch_index == -1) {
1836    // Even though running architecture detection failed
1837    // we may still continue with reporting dlerror() message
1838    return NULL;
1839  }
1840
1841  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1842    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1843    return NULL;
1844  }
1845
1846#ifndef S390
1847  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1848    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1849    return NULL;
1850  }
1851#endif // !S390
1852
1853  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1854    if (lib_arch.name!=NULL) {
1855      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1856                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1857                 lib_arch.name, arch_array[running_arch_index].name);
1858    } else {
1859      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1860                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1861                 lib_arch.code,
1862                 arch_array[running_arch_index].name);
1863    }
1864  }
1865
1866  return NULL;
1867}
1868
1869void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1870                                int ebuflen) {
1871  void * result = ::dlopen(filename, RTLD_LAZY);
1872  if (result == NULL) {
1873    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1874    ebuf[ebuflen-1] = '\0';
1875  }
1876  return result;
1877}
1878
1879void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1880                                       int ebuflen) {
1881  void * result = NULL;
1882  if (LoadExecStackDllInVMThread) {
1883    result = dlopen_helper(filename, ebuf, ebuflen);
1884  }
1885
1886  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1887  // library that requires an executable stack, or which does not have this
1888  // stack attribute set, dlopen changes the stack attribute to executable. The
1889  // read protection of the guard pages gets lost.
1890  //
1891  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1892  // may have been queued at the same time.
1893
1894  if (!_stack_is_executable) {
1895    JavaThread *jt = Threads::first();
1896
1897    while (jt) {
1898      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1899          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1900        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1901          warning("Attempt to reguard stack yellow zone failed.");
1902        }
1903      }
1904      jt = jt->next();
1905    }
1906  }
1907
1908  return result;
1909}
1910
1911void* os::dll_lookup(void* handle, const char* name) {
1912  void* res = dlsym(handle, name);
1913  return res;
1914}
1915
1916void* os::get_default_process_handle() {
1917  return (void*)::dlopen(NULL, RTLD_LAZY);
1918}
1919
1920static bool _print_ascii_file(const char* filename, outputStream* st) {
1921  int fd = ::open(filename, O_RDONLY);
1922  if (fd == -1) {
1923    return false;
1924  }
1925
1926  char buf[33];
1927  int bytes;
1928  buf[32] = '\0';
1929  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1930    st->print_raw(buf, bytes);
1931  }
1932
1933  ::close(fd);
1934
1935  return true;
1936}
1937
1938void os::print_dll_info(outputStream *st) {
1939  st->print_cr("Dynamic libraries:");
1940
1941  char fname[32];
1942  pid_t pid = os::Linux::gettid();
1943
1944  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1945
1946  if (!_print_ascii_file(fname, st)) {
1947    st->print("Can not get library information for pid = %d\n", pid);
1948  }
1949}
1950
1951int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1952  FILE *procmapsFile = NULL;
1953
1954  // Open the procfs maps file for the current process
1955  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1956    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1957    char line[PATH_MAX + 100];
1958
1959    // Read line by line from 'file'
1960    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1961      u8 base, top, offset, inode;
1962      char permissions[5];
1963      char device[6];
1964      char name[PATH_MAX + 1];
1965
1966      // Parse fields from line
1967      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1968             &base, &top, permissions, &offset, device, &inode, name);
1969
1970      // Filter by device id '00:00' so that we only get file system mapped files.
1971      if (strcmp(device, "00:00") != 0) {
1972
1973        // Call callback with the fields of interest
1974        if(callback(name, (address)base, (address)top, param)) {
1975          // Oops abort, callback aborted
1976          fclose(procmapsFile);
1977          return 1;
1978        }
1979      }
1980    }
1981    fclose(procmapsFile);
1982  }
1983  return 0;
1984}
1985
1986void os::print_os_info_brief(outputStream* st) {
1987  os::Linux::print_distro_info(st);
1988
1989  os::Posix::print_uname_info(st);
1990
1991  os::Linux::print_libversion_info(st);
1992
1993}
1994
1995void os::print_os_info(outputStream* st) {
1996  st->print("OS:");
1997
1998  os::Linux::print_distro_info(st);
1999
2000  os::Posix::print_uname_info(st);
2001
2002  // Print warning if unsafe chroot environment detected
2003  if (unsafe_chroot_detected) {
2004    st->print("WARNING!! ");
2005    st->print_cr("%s", unstable_chroot_error);
2006  }
2007
2008  os::Linux::print_libversion_info(st);
2009
2010  os::Posix::print_rlimit_info(st);
2011
2012  os::Posix::print_load_average(st);
2013
2014  os::Linux::print_full_memory_info(st);
2015}
2016
2017// Try to identify popular distros.
2018// Most Linux distributions have a /etc/XXX-release file, which contains
2019// the OS version string. Newer Linux distributions have a /etc/lsb-release
2020// file that also contains the OS version string. Some have more than one
2021// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2022// /etc/redhat-release.), so the order is important.
2023// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2024// their own specific XXX-release file as well as a redhat-release file.
2025// Because of this the XXX-release file needs to be searched for before the
2026// redhat-release file.
2027// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2028// search for redhat-release / SuSE-release needs to be before lsb-release.
2029// Since the lsb-release file is the new standard it needs to be searched
2030// before the older style release files.
2031// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2032// next to last resort.  The os-release file is a new standard that contains
2033// distribution information and the system-release file seems to be an old
2034// standard that has been replaced by the lsb-release and os-release files.
2035// Searching for the debian_version file is the last resort.  It contains
2036// an informative string like "6.0.6" or "wheezy/sid". Because of this
2037// "Debian " is printed before the contents of the debian_version file.
2038
2039const char* distro_files[] = {
2040  "/etc/oracle-release",
2041  "/etc/mandriva-release",
2042  "/etc/mandrake-release",
2043  "/etc/sun-release",
2044  "/etc/redhat-release",
2045  "/etc/SuSE-release",
2046  "/etc/lsb-release",
2047  "/etc/turbolinux-release",
2048  "/etc/gentoo-release",
2049  "/etc/ltib-release",
2050  "/etc/angstrom-version",
2051  "/etc/system-release",
2052  "/etc/os-release",
2053  NULL };
2054
2055void os::Linux::print_distro_info(outputStream* st) {
2056  for (int i = 0;; i++) {
2057    const char* file = distro_files[i];
2058    if (file == NULL) {
2059      break;  // done
2060    }
2061    // If file prints, we found it.
2062    if (_print_ascii_file(file, st)) {
2063      return;
2064    }
2065  }
2066
2067  if (file_exists("/etc/debian_version")) {
2068    st->print("Debian ");
2069    _print_ascii_file("/etc/debian_version", st);
2070  } else {
2071    st->print("Linux");
2072  }
2073  st->cr();
2074}
2075
2076static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2077  char buf[256];
2078  while (fgets(buf, sizeof(buf), fp)) {
2079    // Edit out extra stuff in expected format
2080    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2081      char* ptr = strstr(buf, "\"");  // the name is in quotes
2082      if (ptr != NULL) {
2083        ptr++; // go beyond first quote
2084        char* nl = strchr(ptr, '\"');
2085        if (nl != NULL) *nl = '\0';
2086        strncpy(distro, ptr, length);
2087      } else {
2088        ptr = strstr(buf, "=");
2089        ptr++; // go beyond equals then
2090        char* nl = strchr(ptr, '\n');
2091        if (nl != NULL) *nl = '\0';
2092        strncpy(distro, ptr, length);
2093      }
2094      return;
2095    } else if (get_first_line) {
2096      char* nl = strchr(buf, '\n');
2097      if (nl != NULL) *nl = '\0';
2098      strncpy(distro, buf, length);
2099      return;
2100    }
2101  }
2102  // print last line and close
2103  char* nl = strchr(buf, '\n');
2104  if (nl != NULL) *nl = '\0';
2105  strncpy(distro, buf, length);
2106}
2107
2108static void parse_os_info(char* distro, size_t length, const char* file) {
2109  FILE* fp = fopen(file, "r");
2110  if (fp != NULL) {
2111    // if suse format, print out first line
2112    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2113    parse_os_info_helper(fp, distro, length, get_first_line);
2114    fclose(fp);
2115  }
2116}
2117
2118void os::get_summary_os_info(char* buf, size_t buflen) {
2119  for (int i = 0;; i++) {
2120    const char* file = distro_files[i];
2121    if (file == NULL) {
2122      break; // ran out of distro_files
2123    }
2124    if (file_exists(file)) {
2125      parse_os_info(buf, buflen, file);
2126      return;
2127    }
2128  }
2129  // special case for debian
2130  if (file_exists("/etc/debian_version")) {
2131    strncpy(buf, "Debian ", buflen);
2132    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2133  } else {
2134    strncpy(buf, "Linux", buflen);
2135  }
2136}
2137
2138void os::Linux::print_libversion_info(outputStream* st) {
2139  // libc, pthread
2140  st->print("libc:");
2141  st->print("%s ", os::Linux::glibc_version());
2142  st->print("%s ", os::Linux::libpthread_version());
2143  st->cr();
2144}
2145
2146void os::Linux::print_full_memory_info(outputStream* st) {
2147  st->print("\n/proc/meminfo:\n");
2148  _print_ascii_file("/proc/meminfo", st);
2149  st->cr();
2150}
2151
2152void os::print_memory_info(outputStream* st) {
2153
2154  st->print("Memory:");
2155  st->print(" %dk page", os::vm_page_size()>>10);
2156
2157  // values in struct sysinfo are "unsigned long"
2158  struct sysinfo si;
2159  sysinfo(&si);
2160
2161  st->print(", physical " UINT64_FORMAT "k",
2162            os::physical_memory() >> 10);
2163  st->print("(" UINT64_FORMAT "k free)",
2164            os::available_memory() >> 10);
2165  st->print(", swap " UINT64_FORMAT "k",
2166            ((jlong)si.totalswap * si.mem_unit) >> 10);
2167  st->print("(" UINT64_FORMAT "k free)",
2168            ((jlong)si.freeswap * si.mem_unit) >> 10);
2169  st->cr();
2170}
2171
2172// Print the first "model name" line and the first "flags" line
2173// that we find and nothing more. We assume "model name" comes
2174// before "flags" so if we find a second "model name", then the
2175// "flags" field is considered missing.
2176static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2177#if defined(IA32) || defined(AMD64)
2178  // Other platforms have less repetitive cpuinfo files
2179  FILE *fp = fopen("/proc/cpuinfo", "r");
2180  if (fp) {
2181    while (!feof(fp)) {
2182      if (fgets(buf, buflen, fp)) {
2183        // Assume model name comes before flags
2184        bool model_name_printed = false;
2185        if (strstr(buf, "model name") != NULL) {
2186          if (!model_name_printed) {
2187            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2188            st->print_raw(buf);
2189            model_name_printed = true;
2190          } else {
2191            // model name printed but not flags?  Odd, just return
2192            fclose(fp);
2193            return true;
2194          }
2195        }
2196        // print the flags line too
2197        if (strstr(buf, "flags") != NULL) {
2198          st->print_raw(buf);
2199          fclose(fp);
2200          return true;
2201        }
2202      }
2203    }
2204    fclose(fp);
2205  }
2206#endif // x86 platforms
2207  return false;
2208}
2209
2210void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2211  // Only print the model name if the platform provides this as a summary
2212  if (!print_model_name_and_flags(st, buf, buflen)) {
2213    st->print("\n/proc/cpuinfo:\n");
2214    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2215      st->print_cr("  <Not Available>");
2216    }
2217  }
2218}
2219
2220#if defined(AMD64) || defined(IA32) || defined(X32)
2221const char* search_string = "model name";
2222#elif defined(SPARC)
2223const char* search_string = "cpu";
2224#elif defined(PPC64)
2225const char* search_string = "cpu";
2226#else
2227const char* search_string = "Processor";
2228#endif
2229
2230// Parses the cpuinfo file for string representing the model name.
2231void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2232  FILE* fp = fopen("/proc/cpuinfo", "r");
2233  if (fp != NULL) {
2234    while (!feof(fp)) {
2235      char buf[256];
2236      if (fgets(buf, sizeof(buf), fp)) {
2237        char* start = strstr(buf, search_string);
2238        if (start != NULL) {
2239          char *ptr = start + strlen(search_string);
2240          char *end = buf + strlen(buf);
2241          while (ptr != end) {
2242             // skip whitespace and colon for the rest of the name.
2243             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2244               break;
2245             }
2246             ptr++;
2247          }
2248          if (ptr != end) {
2249            // reasonable string, get rid of newline and keep the rest
2250            char* nl = strchr(buf, '\n');
2251            if (nl != NULL) *nl = '\0';
2252            strncpy(cpuinfo, ptr, length);
2253            fclose(fp);
2254            return;
2255          }
2256        }
2257      }
2258    }
2259    fclose(fp);
2260  }
2261  // cpuinfo not found or parsing failed, just print generic string.  The entire
2262  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2263#if defined(AMD64)
2264  strncpy(cpuinfo, "x86_64", length);
2265#elif defined(IA32)
2266  strncpy(cpuinfo, "x86_32", length);
2267#elif defined(IA64)
2268  strncpy(cpuinfo, "IA64", length);
2269#elif defined(SPARC)
2270  strncpy(cpuinfo, "sparcv9", length);
2271#elif defined(AARCH64)
2272  strncpy(cpuinfo, "AArch64", length);
2273#elif defined(ARM)
2274  strncpy(cpuinfo, "ARM", length);
2275#elif defined(PPC)
2276  strncpy(cpuinfo, "PPC64", length);
2277#elif defined(ZERO_LIBARCH)
2278  strncpy(cpuinfo, ZERO_LIBARCH, length);
2279#else
2280  strncpy(cpuinfo, "unknown", length);
2281#endif
2282}
2283
2284static void print_signal_handler(outputStream* st, int sig,
2285                                 char* buf, size_t buflen);
2286
2287void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2288  st->print_cr("Signal Handlers:");
2289  print_signal_handler(st, SIGSEGV, buf, buflen);
2290  print_signal_handler(st, SIGBUS , buf, buflen);
2291  print_signal_handler(st, SIGFPE , buf, buflen);
2292  print_signal_handler(st, SIGPIPE, buf, buflen);
2293  print_signal_handler(st, SIGXFSZ, buf, buflen);
2294  print_signal_handler(st, SIGILL , buf, buflen);
2295  print_signal_handler(st, SR_signum, buf, buflen);
2296  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2297  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2298  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2299  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2300#if defined(PPC64)
2301  print_signal_handler(st, SIGTRAP, buf, buflen);
2302#endif
2303}
2304
2305static char saved_jvm_path[MAXPATHLEN] = {0};
2306
2307// Find the full path to the current module, libjvm.so
2308void os::jvm_path(char *buf, jint buflen) {
2309  // Error checking.
2310  if (buflen < MAXPATHLEN) {
2311    assert(false, "must use a large-enough buffer");
2312    buf[0] = '\0';
2313    return;
2314  }
2315  // Lazy resolve the path to current module.
2316  if (saved_jvm_path[0] != 0) {
2317    strcpy(buf, saved_jvm_path);
2318    return;
2319  }
2320
2321  char dli_fname[MAXPATHLEN];
2322  bool ret = dll_address_to_library_name(
2323                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2324                                         dli_fname, sizeof(dli_fname), NULL);
2325  assert(ret, "cannot locate libjvm");
2326  char *rp = NULL;
2327  if (ret && dli_fname[0] != '\0') {
2328    rp = realpath(dli_fname, buf);
2329  }
2330  if (rp == NULL) {
2331    return;
2332  }
2333
2334  if (Arguments::sun_java_launcher_is_altjvm()) {
2335    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2336    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2337    // If "/jre/lib/" appears at the right place in the string, then
2338    // assume we are installed in a JDK and we're done. Otherwise, check
2339    // for a JAVA_HOME environment variable and fix up the path so it
2340    // looks like libjvm.so is installed there (append a fake suffix
2341    // hotspot/libjvm.so).
2342    const char *p = buf + strlen(buf) - 1;
2343    for (int count = 0; p > buf && count < 5; ++count) {
2344      for (--p; p > buf && *p != '/'; --p)
2345        /* empty */ ;
2346    }
2347
2348    if (strncmp(p, "/jre/lib/", 9) != 0) {
2349      // Look for JAVA_HOME in the environment.
2350      char* java_home_var = ::getenv("JAVA_HOME");
2351      if (java_home_var != NULL && java_home_var[0] != 0) {
2352        char* jrelib_p;
2353        int len;
2354
2355        // Check the current module name "libjvm.so".
2356        p = strrchr(buf, '/');
2357        if (p == NULL) {
2358          return;
2359        }
2360        assert(strstr(p, "/libjvm") == p, "invalid library name");
2361
2362        rp = realpath(java_home_var, buf);
2363        if (rp == NULL) {
2364          return;
2365        }
2366
2367        // determine if this is a legacy image or modules image
2368        // modules image doesn't have "jre" subdirectory
2369        len = strlen(buf);
2370        assert(len < buflen, "Ran out of buffer room");
2371        jrelib_p = buf + len;
2372        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2373        if (0 != access(buf, F_OK)) {
2374          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2375        }
2376
2377        if (0 == access(buf, F_OK)) {
2378          // Use current module name "libjvm.so"
2379          len = strlen(buf);
2380          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2381        } else {
2382          // Go back to path of .so
2383          rp = realpath(dli_fname, buf);
2384          if (rp == NULL) {
2385            return;
2386          }
2387        }
2388      }
2389    }
2390  }
2391
2392  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2393  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2394}
2395
2396void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2397  // no prefix required, not even "_"
2398}
2399
2400void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2401  // no suffix required
2402}
2403
2404////////////////////////////////////////////////////////////////////////////////
2405// sun.misc.Signal support
2406
2407static volatile jint sigint_count = 0;
2408
2409static void UserHandler(int sig, void *siginfo, void *context) {
2410  // 4511530 - sem_post is serialized and handled by the manager thread. When
2411  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2412  // don't want to flood the manager thread with sem_post requests.
2413  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2414    return;
2415  }
2416
2417  // Ctrl-C is pressed during error reporting, likely because the error
2418  // handler fails to abort. Let VM die immediately.
2419  if (sig == SIGINT && is_error_reported()) {
2420    os::die();
2421  }
2422
2423  os::signal_notify(sig);
2424}
2425
2426void* os::user_handler() {
2427  return CAST_FROM_FN_PTR(void*, UserHandler);
2428}
2429
2430struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2431  struct timespec ts;
2432  // Semaphore's are always associated with CLOCK_REALTIME
2433  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2434  // see unpackTime for discussion on overflow checking
2435  if (sec >= MAX_SECS) {
2436    ts.tv_sec += MAX_SECS;
2437    ts.tv_nsec = 0;
2438  } else {
2439    ts.tv_sec += sec;
2440    ts.tv_nsec += nsec;
2441    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2442      ts.tv_nsec -= NANOSECS_PER_SEC;
2443      ++ts.tv_sec; // note: this must be <= max_secs
2444    }
2445  }
2446
2447  return ts;
2448}
2449
2450extern "C" {
2451  typedef void (*sa_handler_t)(int);
2452  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2453}
2454
2455void* os::signal(int signal_number, void* handler) {
2456  struct sigaction sigAct, oldSigAct;
2457
2458  sigfillset(&(sigAct.sa_mask));
2459  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2460  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2461
2462  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2463    // -1 means registration failed
2464    return (void *)-1;
2465  }
2466
2467  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2468}
2469
2470void os::signal_raise(int signal_number) {
2471  ::raise(signal_number);
2472}
2473
2474// The following code is moved from os.cpp for making this
2475// code platform specific, which it is by its very nature.
2476
2477// Will be modified when max signal is changed to be dynamic
2478int os::sigexitnum_pd() {
2479  return NSIG;
2480}
2481
2482// a counter for each possible signal value
2483static volatile jint pending_signals[NSIG+1] = { 0 };
2484
2485// Linux(POSIX) specific hand shaking semaphore.
2486static sem_t sig_sem;
2487static PosixSemaphore sr_semaphore;
2488
2489void os::signal_init_pd() {
2490  // Initialize signal structures
2491  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2492
2493  // Initialize signal semaphore
2494  ::sem_init(&sig_sem, 0, 0);
2495}
2496
2497void os::signal_notify(int sig) {
2498  Atomic::inc(&pending_signals[sig]);
2499  ::sem_post(&sig_sem);
2500}
2501
2502static int check_pending_signals(bool wait) {
2503  Atomic::store(0, &sigint_count);
2504  for (;;) {
2505    for (int i = 0; i < NSIG + 1; i++) {
2506      jint n = pending_signals[i];
2507      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2508        return i;
2509      }
2510    }
2511    if (!wait) {
2512      return -1;
2513    }
2514    JavaThread *thread = JavaThread::current();
2515    ThreadBlockInVM tbivm(thread);
2516
2517    bool threadIsSuspended;
2518    do {
2519      thread->set_suspend_equivalent();
2520      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2521      ::sem_wait(&sig_sem);
2522
2523      // were we externally suspended while we were waiting?
2524      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2525      if (threadIsSuspended) {
2526        // The semaphore has been incremented, but while we were waiting
2527        // another thread suspended us. We don't want to continue running
2528        // while suspended because that would surprise the thread that
2529        // suspended us.
2530        ::sem_post(&sig_sem);
2531
2532        thread->java_suspend_self();
2533      }
2534    } while (threadIsSuspended);
2535  }
2536}
2537
2538int os::signal_lookup() {
2539  return check_pending_signals(false);
2540}
2541
2542int os::signal_wait() {
2543  return check_pending_signals(true);
2544}
2545
2546////////////////////////////////////////////////////////////////////////////////
2547// Virtual Memory
2548
2549int os::vm_page_size() {
2550  // Seems redundant as all get out
2551  assert(os::Linux::page_size() != -1, "must call os::init");
2552  return os::Linux::page_size();
2553}
2554
2555// Solaris allocates memory by pages.
2556int os::vm_allocation_granularity() {
2557  assert(os::Linux::page_size() != -1, "must call os::init");
2558  return os::Linux::page_size();
2559}
2560
2561// Rationale behind this function:
2562//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2563//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2564//  samples for JITted code. Here we create private executable mapping over the code cache
2565//  and then we can use standard (well, almost, as mapping can change) way to provide
2566//  info for the reporting script by storing timestamp and location of symbol
2567void linux_wrap_code(char* base, size_t size) {
2568  static volatile jint cnt = 0;
2569
2570  if (!UseOprofile) {
2571    return;
2572  }
2573
2574  char buf[PATH_MAX+1];
2575  int num = Atomic::add(1, &cnt);
2576
2577  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2578           os::get_temp_directory(), os::current_process_id(), num);
2579  unlink(buf);
2580
2581  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2582
2583  if (fd != -1) {
2584    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2585    if (rv != (off_t)-1) {
2586      if (::write(fd, "", 1) == 1) {
2587        mmap(base, size,
2588             PROT_READ|PROT_WRITE|PROT_EXEC,
2589             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2590      }
2591    }
2592    ::close(fd);
2593    unlink(buf);
2594  }
2595}
2596
2597static bool recoverable_mmap_error(int err) {
2598  // See if the error is one we can let the caller handle. This
2599  // list of errno values comes from JBS-6843484. I can't find a
2600  // Linux man page that documents this specific set of errno
2601  // values so while this list currently matches Solaris, it may
2602  // change as we gain experience with this failure mode.
2603  switch (err) {
2604  case EBADF:
2605  case EINVAL:
2606  case ENOTSUP:
2607    // let the caller deal with these errors
2608    return true;
2609
2610  default:
2611    // Any remaining errors on this OS can cause our reserved mapping
2612    // to be lost. That can cause confusion where different data
2613    // structures think they have the same memory mapped. The worst
2614    // scenario is if both the VM and a library think they have the
2615    // same memory mapped.
2616    return false;
2617  }
2618}
2619
2620static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2621                                    int err) {
2622  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2624          os::strerror(err), err);
2625}
2626
2627static void warn_fail_commit_memory(char* addr, size_t size,
2628                                    size_t alignment_hint, bool exec,
2629                                    int err) {
2630  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2631          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2632          alignment_hint, exec, os::strerror(err), err);
2633}
2634
2635// NOTE: Linux kernel does not really reserve the pages for us.
2636//       All it does is to check if there are enough free pages
2637//       left at the time of mmap(). This could be a potential
2638//       problem.
2639int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2640  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2641  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2642                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2643  if (res != (uintptr_t) MAP_FAILED) {
2644    if (UseNUMAInterleaving) {
2645      numa_make_global(addr, size);
2646    }
2647    return 0;
2648  }
2649
2650  int err = errno;  // save errno from mmap() call above
2651
2652  if (!recoverable_mmap_error(err)) {
2653    warn_fail_commit_memory(addr, size, exec, err);
2654    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2655  }
2656
2657  return err;
2658}
2659
2660bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2661  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2662}
2663
2664void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2665                                  const char* mesg) {
2666  assert(mesg != NULL, "mesg must be specified");
2667  int err = os::Linux::commit_memory_impl(addr, size, exec);
2668  if (err != 0) {
2669    // the caller wants all commit errors to exit with the specified mesg:
2670    warn_fail_commit_memory(addr, size, exec, err);
2671    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2672  }
2673}
2674
2675// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2676#ifndef MAP_HUGETLB
2677  #define MAP_HUGETLB 0x40000
2678#endif
2679
2680// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2681#ifndef MADV_HUGEPAGE
2682  #define MADV_HUGEPAGE 14
2683#endif
2684
2685int os::Linux::commit_memory_impl(char* addr, size_t size,
2686                                  size_t alignment_hint, bool exec) {
2687  int err = os::Linux::commit_memory_impl(addr, size, exec);
2688  if (err == 0) {
2689    realign_memory(addr, size, alignment_hint);
2690  }
2691  return err;
2692}
2693
2694bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2695                          bool exec) {
2696  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2697}
2698
2699void os::pd_commit_memory_or_exit(char* addr, size_t size,
2700                                  size_t alignment_hint, bool exec,
2701                                  const char* mesg) {
2702  assert(mesg != NULL, "mesg must be specified");
2703  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2704  if (err != 0) {
2705    // the caller wants all commit errors to exit with the specified mesg:
2706    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2707    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2708  }
2709}
2710
2711void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2713    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2714    // be supported or the memory may already be backed by huge pages.
2715    ::madvise(addr, bytes, MADV_HUGEPAGE);
2716  }
2717}
2718
2719void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2720  // This method works by doing an mmap over an existing mmaping and effectively discarding
2721  // the existing pages. However it won't work for SHM-based large pages that cannot be
2722  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2723  // small pages on top of the SHM segment. This method always works for small pages, so we
2724  // allow that in any case.
2725  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2726    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2727  }
2728}
2729
2730void os::numa_make_global(char *addr, size_t bytes) {
2731  Linux::numa_interleave_memory(addr, bytes);
2732}
2733
2734// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2735// bind policy to MPOL_PREFERRED for the current thread.
2736#define USE_MPOL_PREFERRED 0
2737
2738void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2739  // To make NUMA and large pages more robust when both enabled, we need to ease
2740  // the requirements on where the memory should be allocated. MPOL_BIND is the
2741  // default policy and it will force memory to be allocated on the specified
2742  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2743  // the specified node, but will not force it. Using this policy will prevent
2744  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2745  // free large pages.
2746  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2747  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2748}
2749
2750bool os::numa_topology_changed() { return false; }
2751
2752size_t os::numa_get_groups_num() {
2753  int max_node = Linux::numa_max_node();
2754  return max_node > 0 ? max_node + 1 : 1;
2755}
2756
2757int os::numa_get_group_id() {
2758  int cpu_id = Linux::sched_getcpu();
2759  if (cpu_id != -1) {
2760    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2761    if (lgrp_id != -1) {
2762      return lgrp_id;
2763    }
2764  }
2765  return 0;
2766}
2767
2768size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2769  for (size_t i = 0; i < size; i++) {
2770    ids[i] = i;
2771  }
2772  return size;
2773}
2774
2775bool os::get_page_info(char *start, page_info* info) {
2776  return false;
2777}
2778
2779char *os::scan_pages(char *start, char* end, page_info* page_expected,
2780                     page_info* page_found) {
2781  return end;
2782}
2783
2784
2785int os::Linux::sched_getcpu_syscall(void) {
2786  unsigned int cpu = 0;
2787  int retval = -1;
2788
2789#if defined(IA32)
2790  #ifndef SYS_getcpu
2791    #define SYS_getcpu 318
2792  #endif
2793  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2794#elif defined(AMD64)
2795// Unfortunately we have to bring all these macros here from vsyscall.h
2796// to be able to compile on old linuxes.
2797  #define __NR_vgetcpu 2
2798  #define VSYSCALL_START (-10UL << 20)
2799  #define VSYSCALL_SIZE 1024
2800  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2801  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2802  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2803  retval = vgetcpu(&cpu, NULL, NULL);
2804#endif
2805
2806  return (retval == -1) ? retval : cpu;
2807}
2808
2809// Something to do with the numa-aware allocator needs these symbols
2810extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2811extern "C" JNIEXPORT void numa_error(char *where) { }
2812
2813
2814// If we are running with libnuma version > 2, then we should
2815// be trying to use symbols with versions 1.1
2816// If we are running with earlier version, which did not have symbol versions,
2817// we should use the base version.
2818void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2819  void *f = dlvsym(handle, name, "libnuma_1.1");
2820  if (f == NULL) {
2821    f = dlsym(handle, name);
2822  }
2823  return f;
2824}
2825
2826bool os::Linux::libnuma_init() {
2827  // sched_getcpu() should be in libc.
2828  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2829                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2830
2831  // If it's not, try a direct syscall.
2832  if (sched_getcpu() == -1) {
2833    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2834                                    (void*)&sched_getcpu_syscall));
2835  }
2836
2837  if (sched_getcpu() != -1) { // Does it work?
2838    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2839    if (handle != NULL) {
2840      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2841                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2842      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2843                                       libnuma_dlsym(handle, "numa_max_node")));
2844      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2845                                        libnuma_dlsym(handle, "numa_available")));
2846      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2847                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2848      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2849                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2850      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2851                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2852
2853
2854      if (numa_available() != -1) {
2855        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2856        // Create a cpu -> node mapping
2857        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2858        rebuild_cpu_to_node_map();
2859        return true;
2860      }
2861    }
2862  }
2863  return false;
2864}
2865
2866// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2867// The table is later used in get_node_by_cpu().
2868void os::Linux::rebuild_cpu_to_node_map() {
2869  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2870                              // in libnuma (possible values are starting from 16,
2871                              // and continuing up with every other power of 2, but less
2872                              // than the maximum number of CPUs supported by kernel), and
2873                              // is a subject to change (in libnuma version 2 the requirements
2874                              // are more reasonable) we'll just hardcode the number they use
2875                              // in the library.
2876  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2877
2878  size_t cpu_num = os::active_processor_count();
2879  size_t cpu_map_size = NCPUS / BitsPerCLong;
2880  size_t cpu_map_valid_size =
2881    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2882
2883  cpu_to_node()->clear();
2884  cpu_to_node()->at_grow(cpu_num - 1);
2885  size_t node_num = numa_get_groups_num();
2886
2887  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2888  for (size_t i = 0; i < node_num; i++) {
2889    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2890      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2891        if (cpu_map[j] != 0) {
2892          for (size_t k = 0; k < BitsPerCLong; k++) {
2893            if (cpu_map[j] & (1UL << k)) {
2894              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2895            }
2896          }
2897        }
2898      }
2899    }
2900  }
2901  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2902}
2903
2904int os::Linux::get_node_by_cpu(int cpu_id) {
2905  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2906    return cpu_to_node()->at(cpu_id);
2907  }
2908  return -1;
2909}
2910
2911GrowableArray<int>* os::Linux::_cpu_to_node;
2912os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2913os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2914os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2915os::Linux::numa_available_func_t os::Linux::_numa_available;
2916os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2917os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2918os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2919unsigned long* os::Linux::_numa_all_nodes;
2920
2921bool os::pd_uncommit_memory(char* addr, size_t size) {
2922  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2923                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2924  return res  != (uintptr_t) MAP_FAILED;
2925}
2926
2927static address get_stack_commited_bottom(address bottom, size_t size) {
2928  address nbot = bottom;
2929  address ntop = bottom + size;
2930
2931  size_t page_sz = os::vm_page_size();
2932  unsigned pages = size / page_sz;
2933
2934  unsigned char vec[1];
2935  unsigned imin = 1, imax = pages + 1, imid;
2936  int mincore_return_value = 0;
2937
2938  assert(imin <= imax, "Unexpected page size");
2939
2940  while (imin < imax) {
2941    imid = (imax + imin) / 2;
2942    nbot = ntop - (imid * page_sz);
2943
2944    // Use a trick with mincore to check whether the page is mapped or not.
2945    // mincore sets vec to 1 if page resides in memory and to 0 if page
2946    // is swapped output but if page we are asking for is unmapped
2947    // it returns -1,ENOMEM
2948    mincore_return_value = mincore(nbot, page_sz, vec);
2949
2950    if (mincore_return_value == -1) {
2951      // Page is not mapped go up
2952      // to find first mapped page
2953      if (errno != EAGAIN) {
2954        assert(errno == ENOMEM, "Unexpected mincore errno");
2955        imax = imid;
2956      }
2957    } else {
2958      // Page is mapped go down
2959      // to find first not mapped page
2960      imin = imid + 1;
2961    }
2962  }
2963
2964  nbot = nbot + page_sz;
2965
2966  // Adjust stack bottom one page up if last checked page is not mapped
2967  if (mincore_return_value == -1) {
2968    nbot = nbot + page_sz;
2969  }
2970
2971  return nbot;
2972}
2973
2974
2975// Linux uses a growable mapping for the stack, and if the mapping for
2976// the stack guard pages is not removed when we detach a thread the
2977// stack cannot grow beyond the pages where the stack guard was
2978// mapped.  If at some point later in the process the stack expands to
2979// that point, the Linux kernel cannot expand the stack any further
2980// because the guard pages are in the way, and a segfault occurs.
2981//
2982// However, it's essential not to split the stack region by unmapping
2983// a region (leaving a hole) that's already part of the stack mapping,
2984// so if the stack mapping has already grown beyond the guard pages at
2985// the time we create them, we have to truncate the stack mapping.
2986// So, we need to know the extent of the stack mapping when
2987// create_stack_guard_pages() is called.
2988
2989// We only need this for stacks that are growable: at the time of
2990// writing thread stacks don't use growable mappings (i.e. those
2991// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2992// only applies to the main thread.
2993
2994// If the (growable) stack mapping already extends beyond the point
2995// where we're going to put our guard pages, truncate the mapping at
2996// that point by munmap()ping it.  This ensures that when we later
2997// munmap() the guard pages we don't leave a hole in the stack
2998// mapping. This only affects the main/initial thread
2999
3000bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3001  if (os::Linux::is_initial_thread()) {
3002    // As we manually grow stack up to bottom inside create_attached_thread(),
3003    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3004    // we don't need to do anything special.
3005    // Check it first, before calling heavy function.
3006    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3007    unsigned char vec[1];
3008
3009    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3010      // Fallback to slow path on all errors, including EAGAIN
3011      stack_extent = (uintptr_t) get_stack_commited_bottom(
3012                                                           os::Linux::initial_thread_stack_bottom(),
3013                                                           (size_t)addr - stack_extent);
3014    }
3015
3016    if (stack_extent < (uintptr_t)addr) {
3017      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3018    }
3019  }
3020
3021  return os::commit_memory(addr, size, !ExecMem);
3022}
3023
3024// If this is a growable mapping, remove the guard pages entirely by
3025// munmap()ping them.  If not, just call uncommit_memory(). This only
3026// affects the main/initial thread, but guard against future OS changes
3027// It's safe to always unmap guard pages for initial thread because we
3028// always place it right after end of the mapped region
3029
3030bool os::remove_stack_guard_pages(char* addr, size_t size) {
3031  uintptr_t stack_extent, stack_base;
3032
3033  if (os::Linux::is_initial_thread()) {
3034    return ::munmap(addr, size) == 0;
3035  }
3036
3037  return os::uncommit_memory(addr, size);
3038}
3039
3040// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3041// at 'requested_addr'. If there are existing memory mappings at the same
3042// location, however, they will be overwritten. If 'fixed' is false,
3043// 'requested_addr' is only treated as a hint, the return value may or
3044// may not start from the requested address. Unlike Linux mmap(), this
3045// function returns NULL to indicate failure.
3046static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3047  char * addr;
3048  int flags;
3049
3050  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3051  if (fixed) {
3052    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3053    flags |= MAP_FIXED;
3054  }
3055
3056  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3057  // touch an uncommitted page. Otherwise, the read/write might
3058  // succeed if we have enough swap space to back the physical page.
3059  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3060                       flags, -1, 0);
3061
3062  return addr == MAP_FAILED ? NULL : addr;
3063}
3064
3065// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3066//   (req_addr != NULL) or with a given alignment.
3067//  - bytes shall be a multiple of alignment.
3068//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3069//  - alignment sets the alignment at which memory shall be allocated.
3070//     It must be a multiple of allocation granularity.
3071// Returns address of memory or NULL. If req_addr was not NULL, will only return
3072//  req_addr or NULL.
3073static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3074
3075  size_t extra_size = bytes;
3076  if (req_addr == NULL && alignment > 0) {
3077    extra_size += alignment;
3078  }
3079
3080  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3081    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3082    -1, 0);
3083  if (start == MAP_FAILED) {
3084    start = NULL;
3085  } else {
3086    if (req_addr != NULL) {
3087      if (start != req_addr) {
3088        ::munmap(start, extra_size);
3089        start = NULL;
3090      }
3091    } else {
3092      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3093      char* const end_aligned = start_aligned + bytes;
3094      char* const end = start + extra_size;
3095      if (start_aligned > start) {
3096        ::munmap(start, start_aligned - start);
3097      }
3098      if (end_aligned < end) {
3099        ::munmap(end_aligned, end - end_aligned);
3100      }
3101      start = start_aligned;
3102    }
3103  }
3104  return start;
3105}
3106
3107static int anon_munmap(char * addr, size_t size) {
3108  return ::munmap(addr, size) == 0;
3109}
3110
3111char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3112                            size_t alignment_hint) {
3113  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3114}
3115
3116bool os::pd_release_memory(char* addr, size_t size) {
3117  return anon_munmap(addr, size);
3118}
3119
3120static bool linux_mprotect(char* addr, size_t size, int prot) {
3121  // Linux wants the mprotect address argument to be page aligned.
3122  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3123
3124  // According to SUSv3, mprotect() should only be used with mappings
3125  // established by mmap(), and mmap() always maps whole pages. Unaligned
3126  // 'addr' likely indicates problem in the VM (e.g. trying to change
3127  // protection of malloc'ed or statically allocated memory). Check the
3128  // caller if you hit this assert.
3129  assert(addr == bottom, "sanity check");
3130
3131  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3132  return ::mprotect(bottom, size, prot) == 0;
3133}
3134
3135// Set protections specified
3136bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3137                        bool is_committed) {
3138  unsigned int p = 0;
3139  switch (prot) {
3140  case MEM_PROT_NONE: p = PROT_NONE; break;
3141  case MEM_PROT_READ: p = PROT_READ; break;
3142  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3143  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3144  default:
3145    ShouldNotReachHere();
3146  }
3147  // is_committed is unused.
3148  return linux_mprotect(addr, bytes, p);
3149}
3150
3151bool os::guard_memory(char* addr, size_t size) {
3152  return linux_mprotect(addr, size, PROT_NONE);
3153}
3154
3155bool os::unguard_memory(char* addr, size_t size) {
3156  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3157}
3158
3159bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3160                                                    size_t page_size) {
3161  bool result = false;
3162  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3163                 MAP_ANONYMOUS|MAP_PRIVATE,
3164                 -1, 0);
3165  if (p != MAP_FAILED) {
3166    void *aligned_p = align_ptr_up(p, page_size);
3167
3168    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3169
3170    munmap(p, page_size * 2);
3171  }
3172
3173  if (warn && !result) {
3174    warning("TransparentHugePages is not supported by the operating system.");
3175  }
3176
3177  return result;
3178}
3179
3180bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3181  bool result = false;
3182  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3183                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3184                 -1, 0);
3185
3186  if (p != MAP_FAILED) {
3187    // We don't know if this really is a huge page or not.
3188    FILE *fp = fopen("/proc/self/maps", "r");
3189    if (fp) {
3190      while (!feof(fp)) {
3191        char chars[257];
3192        long x = 0;
3193        if (fgets(chars, sizeof(chars), fp)) {
3194          if (sscanf(chars, "%lx-%*x", &x) == 1
3195              && x == (long)p) {
3196            if (strstr (chars, "hugepage")) {
3197              result = true;
3198              break;
3199            }
3200          }
3201        }
3202      }
3203      fclose(fp);
3204    }
3205    munmap(p, page_size);
3206  }
3207
3208  if (warn && !result) {
3209    warning("HugeTLBFS is not supported by the operating system.");
3210  }
3211
3212  return result;
3213}
3214
3215// Set the coredump_filter bits to include largepages in core dump (bit 6)
3216//
3217// From the coredump_filter documentation:
3218//
3219// - (bit 0) anonymous private memory
3220// - (bit 1) anonymous shared memory
3221// - (bit 2) file-backed private memory
3222// - (bit 3) file-backed shared memory
3223// - (bit 4) ELF header pages in file-backed private memory areas (it is
3224//           effective only if the bit 2 is cleared)
3225// - (bit 5) hugetlb private memory
3226// - (bit 6) hugetlb shared memory
3227//
3228static void set_coredump_filter(void) {
3229  FILE *f;
3230  long cdm;
3231
3232  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3233    return;
3234  }
3235
3236  if (fscanf(f, "%lx", &cdm) != 1) {
3237    fclose(f);
3238    return;
3239  }
3240
3241  rewind(f);
3242
3243  if ((cdm & LARGEPAGES_BIT) == 0) {
3244    cdm |= LARGEPAGES_BIT;
3245    fprintf(f, "%#lx", cdm);
3246  }
3247
3248  fclose(f);
3249}
3250
3251// Large page support
3252
3253static size_t _large_page_size = 0;
3254
3255size_t os::Linux::find_large_page_size() {
3256  size_t large_page_size = 0;
3257
3258  // large_page_size on Linux is used to round up heap size. x86 uses either
3259  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3260  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3261  // page as large as 256M.
3262  //
3263  // Here we try to figure out page size by parsing /proc/meminfo and looking
3264  // for a line with the following format:
3265  //    Hugepagesize:     2048 kB
3266  //
3267  // If we can't determine the value (e.g. /proc is not mounted, or the text
3268  // format has been changed), we'll use the largest page size supported by
3269  // the processor.
3270
3271#ifndef ZERO
3272  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3273                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3274#endif // ZERO
3275
3276  FILE *fp = fopen("/proc/meminfo", "r");
3277  if (fp) {
3278    while (!feof(fp)) {
3279      int x = 0;
3280      char buf[16];
3281      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3282        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3283          large_page_size = x * K;
3284          break;
3285        }
3286      } else {
3287        // skip to next line
3288        for (;;) {
3289          int ch = fgetc(fp);
3290          if (ch == EOF || ch == (int)'\n') break;
3291        }
3292      }
3293    }
3294    fclose(fp);
3295  }
3296
3297  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3298    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3299            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3300            proper_unit_for_byte_size(large_page_size));
3301  }
3302
3303  return large_page_size;
3304}
3305
3306size_t os::Linux::setup_large_page_size() {
3307  _large_page_size = Linux::find_large_page_size();
3308  const size_t default_page_size = (size_t)Linux::page_size();
3309  if (_large_page_size > default_page_size) {
3310    _page_sizes[0] = _large_page_size;
3311    _page_sizes[1] = default_page_size;
3312    _page_sizes[2] = 0;
3313  }
3314
3315  return _large_page_size;
3316}
3317
3318bool os::Linux::setup_large_page_type(size_t page_size) {
3319  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3320      FLAG_IS_DEFAULT(UseSHM) &&
3321      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3322
3323    // The type of large pages has not been specified by the user.
3324
3325    // Try UseHugeTLBFS and then UseSHM.
3326    UseHugeTLBFS = UseSHM = true;
3327
3328    // Don't try UseTransparentHugePages since there are known
3329    // performance issues with it turned on. This might change in the future.
3330    UseTransparentHugePages = false;
3331  }
3332
3333  if (UseTransparentHugePages) {
3334    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3335    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3336      UseHugeTLBFS = false;
3337      UseSHM = false;
3338      return true;
3339    }
3340    UseTransparentHugePages = false;
3341  }
3342
3343  if (UseHugeTLBFS) {
3344    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3345    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3346      UseSHM = false;
3347      return true;
3348    }
3349    UseHugeTLBFS = false;
3350  }
3351
3352  return UseSHM;
3353}
3354
3355void os::large_page_init() {
3356  if (!UseLargePages &&
3357      !UseTransparentHugePages &&
3358      !UseHugeTLBFS &&
3359      !UseSHM) {
3360    // Not using large pages.
3361    return;
3362  }
3363
3364  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3365    // The user explicitly turned off large pages.
3366    // Ignore the rest of the large pages flags.
3367    UseTransparentHugePages = false;
3368    UseHugeTLBFS = false;
3369    UseSHM = false;
3370    return;
3371  }
3372
3373  size_t large_page_size = Linux::setup_large_page_size();
3374  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3375
3376  set_coredump_filter();
3377}
3378
3379#ifndef SHM_HUGETLB
3380  #define SHM_HUGETLB 04000
3381#endif
3382
3383#define shm_warning_format(format, ...)              \
3384  do {                                               \
3385    if (UseLargePages &&                             \
3386        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3387         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3388         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3389      warning(format, __VA_ARGS__);                  \
3390    }                                                \
3391  } while (0)
3392
3393#define shm_warning(str) shm_warning_format("%s", str)
3394
3395#define shm_warning_with_errno(str)                \
3396  do {                                             \
3397    int err = errno;                               \
3398    shm_warning_format(str " (error = %d)", err);  \
3399  } while (0)
3400
3401static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3402  assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3403
3404  if (!is_size_aligned(alignment, SHMLBA)) {
3405    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3406    return NULL;
3407  }
3408
3409  // To ensure that we get 'alignment' aligned memory from shmat,
3410  // we pre-reserve aligned virtual memory and then attach to that.
3411
3412  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3413  if (pre_reserved_addr == NULL) {
3414    // Couldn't pre-reserve aligned memory.
3415    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3416    return NULL;
3417  }
3418
3419  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3420  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3421
3422  if ((intptr_t)addr == -1) {
3423    int err = errno;
3424    shm_warning_with_errno("Failed to attach shared memory.");
3425
3426    assert(err != EACCES, "Unexpected error");
3427    assert(err != EIDRM,  "Unexpected error");
3428    assert(err != EINVAL, "Unexpected error");
3429
3430    // Since we don't know if the kernel unmapped the pre-reserved memory area
3431    // we can't unmap it, since that would potentially unmap memory that was
3432    // mapped from other threads.
3433    return NULL;
3434  }
3435
3436  return addr;
3437}
3438
3439static char* shmat_at_address(int shmid, char* req_addr) {
3440  if (!is_ptr_aligned(req_addr, SHMLBA)) {
3441    assert(false, "Requested address needs to be SHMLBA aligned");
3442    return NULL;
3443  }
3444
3445  char* addr = (char*)shmat(shmid, req_addr, 0);
3446
3447  if ((intptr_t)addr == -1) {
3448    shm_warning_with_errno("Failed to attach shared memory.");
3449    return NULL;
3450  }
3451
3452  return addr;
3453}
3454
3455static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3456  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3457  if (req_addr != NULL) {
3458    assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3459    assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3460    return shmat_at_address(shmid, req_addr);
3461  }
3462
3463  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3464  // return large page size aligned memory addresses when req_addr == NULL.
3465  // However, if the alignment is larger than the large page size, we have
3466  // to manually ensure that the memory returned is 'alignment' aligned.
3467  if (alignment > os::large_page_size()) {
3468    assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3469    return shmat_with_alignment(shmid, bytes, alignment);
3470  } else {
3471    return shmat_at_address(shmid, NULL);
3472  }
3473}
3474
3475char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3476                                            char* req_addr, bool exec) {
3477  // "exec" is passed in but not used.  Creating the shared image for
3478  // the code cache doesn't have an SHM_X executable permission to check.
3479  assert(UseLargePages && UseSHM, "only for SHM large pages");
3480  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3481  assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3482
3483  if (!is_size_aligned(bytes, os::large_page_size())) {
3484    return NULL; // Fallback to small pages.
3485  }
3486
3487  // Create a large shared memory region to attach to based on size.
3488  // Currently, size is the total size of the heap.
3489  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3490  if (shmid == -1) {
3491    // Possible reasons for shmget failure:
3492    // 1. shmmax is too small for Java heap.
3493    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3494    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3495    // 2. not enough large page memory.
3496    //    > check available large pages: cat /proc/meminfo
3497    //    > increase amount of large pages:
3498    //          echo new_value > /proc/sys/vm/nr_hugepages
3499    //      Note 1: different Linux may use different name for this property,
3500    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3501    //      Note 2: it's possible there's enough physical memory available but
3502    //            they are so fragmented after a long run that they can't
3503    //            coalesce into large pages. Try to reserve large pages when
3504    //            the system is still "fresh".
3505    shm_warning_with_errno("Failed to reserve shared memory.");
3506    return NULL;
3507  }
3508
3509  // Attach to the region.
3510  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3511
3512  // Remove shmid. If shmat() is successful, the actual shared memory segment
3513  // will be deleted when it's detached by shmdt() or when the process
3514  // terminates. If shmat() is not successful this will remove the shared
3515  // segment immediately.
3516  shmctl(shmid, IPC_RMID, NULL);
3517
3518  return addr;
3519}
3520
3521static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3522                                        int error) {
3523  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3524
3525  bool warn_on_failure = UseLargePages &&
3526      (!FLAG_IS_DEFAULT(UseLargePages) ||
3527       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3528       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3529
3530  if (warn_on_failure) {
3531    char msg[128];
3532    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3533                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3534    warning("%s", msg);
3535  }
3536}
3537
3538char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3539                                                        char* req_addr,
3540                                                        bool exec) {
3541  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3542  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3543  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3544
3545  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3546  char* addr = (char*)::mmap(req_addr, bytes, prot,
3547                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3548                             -1, 0);
3549
3550  if (addr == MAP_FAILED) {
3551    warn_on_large_pages_failure(req_addr, bytes, errno);
3552    return NULL;
3553  }
3554
3555  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3556
3557  return addr;
3558}
3559
3560// Reserve memory using mmap(MAP_HUGETLB).
3561//  - bytes shall be a multiple of alignment.
3562//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3563//  - alignment sets the alignment at which memory shall be allocated.
3564//     It must be a multiple of allocation granularity.
3565// Returns address of memory or NULL. If req_addr was not NULL, will only return
3566//  req_addr or NULL.
3567char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3568                                                         size_t alignment,
3569                                                         char* req_addr,
3570                                                         bool exec) {
3571  size_t large_page_size = os::large_page_size();
3572  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3573
3574  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3575  assert(is_size_aligned(bytes, alignment), "Must be");
3576
3577  // First reserve - but not commit - the address range in small pages.
3578  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3579
3580  if (start == NULL) {
3581    return NULL;
3582  }
3583
3584  assert(is_ptr_aligned(start, alignment), "Must be");
3585
3586  char* end = start + bytes;
3587
3588  // Find the regions of the allocated chunk that can be promoted to large pages.
3589  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3590  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3591
3592  size_t lp_bytes = lp_end - lp_start;
3593
3594  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3595
3596  if (lp_bytes == 0) {
3597    // The mapped region doesn't even span the start and the end of a large page.
3598    // Fall back to allocate a non-special area.
3599    ::munmap(start, end - start);
3600    return NULL;
3601  }
3602
3603  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3604
3605  void* result;
3606
3607  // Commit small-paged leading area.
3608  if (start != lp_start) {
3609    result = ::mmap(start, lp_start - start, prot,
3610                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3611                    -1, 0);
3612    if (result == MAP_FAILED) {
3613      ::munmap(lp_start, end - lp_start);
3614      return NULL;
3615    }
3616  }
3617
3618  // Commit large-paged area.
3619  result = ::mmap(lp_start, lp_bytes, prot,
3620                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3621                  -1, 0);
3622  if (result == MAP_FAILED) {
3623    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3624    // If the mmap above fails, the large pages region will be unmapped and we
3625    // have regions before and after with small pages. Release these regions.
3626    //
3627    // |  mapped  |  unmapped  |  mapped  |
3628    // ^          ^            ^          ^
3629    // start      lp_start     lp_end     end
3630    //
3631    ::munmap(start, lp_start - start);
3632    ::munmap(lp_end, end - lp_end);
3633    return NULL;
3634  }
3635
3636  // Commit small-paged trailing area.
3637  if (lp_end != end) {
3638    result = ::mmap(lp_end, end - lp_end, prot,
3639                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3640                    -1, 0);
3641    if (result == MAP_FAILED) {
3642      ::munmap(start, lp_end - start);
3643      return NULL;
3644    }
3645  }
3646
3647  return start;
3648}
3649
3650char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3651                                                   size_t alignment,
3652                                                   char* req_addr,
3653                                                   bool exec) {
3654  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3655  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3656  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3657  assert(is_power_of_2(os::large_page_size()), "Must be");
3658  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3659
3660  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3661    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3662  } else {
3663    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3664  }
3665}
3666
3667char* os::reserve_memory_special(size_t bytes, size_t alignment,
3668                                 char* req_addr, bool exec) {
3669  assert(UseLargePages, "only for large pages");
3670
3671  char* addr;
3672  if (UseSHM) {
3673    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3674  } else {
3675    assert(UseHugeTLBFS, "must be");
3676    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3677  }
3678
3679  if (addr != NULL) {
3680    if (UseNUMAInterleaving) {
3681      numa_make_global(addr, bytes);
3682    }
3683
3684    // The memory is committed
3685    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3686  }
3687
3688  return addr;
3689}
3690
3691bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3692  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3693  return shmdt(base) == 0;
3694}
3695
3696bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3697  return pd_release_memory(base, bytes);
3698}
3699
3700bool os::release_memory_special(char* base, size_t bytes) {
3701  bool res;
3702  if (MemTracker::tracking_level() > NMT_minimal) {
3703    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3704    res = os::Linux::release_memory_special_impl(base, bytes);
3705    if (res) {
3706      tkr.record((address)base, bytes);
3707    }
3708
3709  } else {
3710    res = os::Linux::release_memory_special_impl(base, bytes);
3711  }
3712  return res;
3713}
3714
3715bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3716  assert(UseLargePages, "only for large pages");
3717  bool res;
3718
3719  if (UseSHM) {
3720    res = os::Linux::release_memory_special_shm(base, bytes);
3721  } else {
3722    assert(UseHugeTLBFS, "must be");
3723    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3724  }
3725  return res;
3726}
3727
3728size_t os::large_page_size() {
3729  return _large_page_size;
3730}
3731
3732// With SysV SHM the entire memory region must be allocated as shared
3733// memory.
3734// HugeTLBFS allows application to commit large page memory on demand.
3735// However, when committing memory with HugeTLBFS fails, the region
3736// that was supposed to be committed will lose the old reservation
3737// and allow other threads to steal that memory region. Because of this
3738// behavior we can't commit HugeTLBFS memory.
3739bool os::can_commit_large_page_memory() {
3740  return UseTransparentHugePages;
3741}
3742
3743bool os::can_execute_large_page_memory() {
3744  return UseTransparentHugePages || UseHugeTLBFS;
3745}
3746
3747// Reserve memory at an arbitrary address, only if that area is
3748// available (and not reserved for something else).
3749
3750char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3751  const int max_tries = 10;
3752  char* base[max_tries];
3753  size_t size[max_tries];
3754  const size_t gap = 0x000000;
3755
3756  // Assert only that the size is a multiple of the page size, since
3757  // that's all that mmap requires, and since that's all we really know
3758  // about at this low abstraction level.  If we need higher alignment,
3759  // we can either pass an alignment to this method or verify alignment
3760  // in one of the methods further up the call chain.  See bug 5044738.
3761  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3762
3763  // Repeatedly allocate blocks until the block is allocated at the
3764  // right spot.
3765
3766  // Linux mmap allows caller to pass an address as hint; give it a try first,
3767  // if kernel honors the hint then we can return immediately.
3768  char * addr = anon_mmap(requested_addr, bytes, false);
3769  if (addr == requested_addr) {
3770    return requested_addr;
3771  }
3772
3773  if (addr != NULL) {
3774    // mmap() is successful but it fails to reserve at the requested address
3775    anon_munmap(addr, bytes);
3776  }
3777
3778  int i;
3779  for (i = 0; i < max_tries; ++i) {
3780    base[i] = reserve_memory(bytes);
3781
3782    if (base[i] != NULL) {
3783      // Is this the block we wanted?
3784      if (base[i] == requested_addr) {
3785        size[i] = bytes;
3786        break;
3787      }
3788
3789      // Does this overlap the block we wanted? Give back the overlapped
3790      // parts and try again.
3791
3792      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3793      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3794        unmap_memory(base[i], top_overlap);
3795        base[i] += top_overlap;
3796        size[i] = bytes - top_overlap;
3797      } else {
3798        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3799        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3800          unmap_memory(requested_addr, bottom_overlap);
3801          size[i] = bytes - bottom_overlap;
3802        } else {
3803          size[i] = bytes;
3804        }
3805      }
3806    }
3807  }
3808
3809  // Give back the unused reserved pieces.
3810
3811  for (int j = 0; j < i; ++j) {
3812    if (base[j] != NULL) {
3813      unmap_memory(base[j], size[j]);
3814    }
3815  }
3816
3817  if (i < max_tries) {
3818    return requested_addr;
3819  } else {
3820    return NULL;
3821  }
3822}
3823
3824size_t os::read(int fd, void *buf, unsigned int nBytes) {
3825  return ::read(fd, buf, nBytes);
3826}
3827
3828size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3829  return ::pread(fd, buf, nBytes, offset);
3830}
3831
3832// Short sleep, direct OS call.
3833//
3834// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3835// sched_yield(2) will actually give up the CPU:
3836//
3837//   * Alone on this pariticular CPU, keeps running.
3838//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3839//     (pre 2.6.39).
3840//
3841// So calling this with 0 is an alternative.
3842//
3843void os::naked_short_sleep(jlong ms) {
3844  struct timespec req;
3845
3846  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3847  req.tv_sec = 0;
3848  if (ms > 0) {
3849    req.tv_nsec = (ms % 1000) * 1000000;
3850  } else {
3851    req.tv_nsec = 1;
3852  }
3853
3854  nanosleep(&req, NULL);
3855
3856  return;
3857}
3858
3859// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3860void os::infinite_sleep() {
3861  while (true) {    // sleep forever ...
3862    ::sleep(100);   // ... 100 seconds at a time
3863  }
3864}
3865
3866// Used to convert frequent JVM_Yield() to nops
3867bool os::dont_yield() {
3868  return DontYieldALot;
3869}
3870
3871void os::naked_yield() {
3872  sched_yield();
3873}
3874
3875////////////////////////////////////////////////////////////////////////////////
3876// thread priority support
3877
3878// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3879// only supports dynamic priority, static priority must be zero. For real-time
3880// applications, Linux supports SCHED_RR which allows static priority (1-99).
3881// However, for large multi-threaded applications, SCHED_RR is not only slower
3882// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3883// of 5 runs - Sep 2005).
3884//
3885// The following code actually changes the niceness of kernel-thread/LWP. It
3886// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3887// not the entire user process, and user level threads are 1:1 mapped to kernel
3888// threads. It has always been the case, but could change in the future. For
3889// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3890// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3891
3892int os::java_to_os_priority[CriticalPriority + 1] = {
3893  19,              // 0 Entry should never be used
3894
3895   4,              // 1 MinPriority
3896   3,              // 2
3897   2,              // 3
3898
3899   1,              // 4
3900   0,              // 5 NormPriority
3901  -1,              // 6
3902
3903  -2,              // 7
3904  -3,              // 8
3905  -4,              // 9 NearMaxPriority
3906
3907  -5,              // 10 MaxPriority
3908
3909  -5               // 11 CriticalPriority
3910};
3911
3912static int prio_init() {
3913  if (ThreadPriorityPolicy == 1) {
3914    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3915    // if effective uid is not root. Perhaps, a more elegant way of doing
3916    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3917    if (geteuid() != 0) {
3918      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3919        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3920      }
3921      ThreadPriorityPolicy = 0;
3922    }
3923  }
3924  if (UseCriticalJavaThreadPriority) {
3925    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3926  }
3927  return 0;
3928}
3929
3930OSReturn os::set_native_priority(Thread* thread, int newpri) {
3931  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3932
3933  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3934  return (ret == 0) ? OS_OK : OS_ERR;
3935}
3936
3937OSReturn os::get_native_priority(const Thread* const thread,
3938                                 int *priority_ptr) {
3939  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3940    *priority_ptr = java_to_os_priority[NormPriority];
3941    return OS_OK;
3942  }
3943
3944  errno = 0;
3945  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3946  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3947}
3948
3949// Hint to the underlying OS that a task switch would not be good.
3950// Void return because it's a hint and can fail.
3951void os::hint_no_preempt() {}
3952
3953////////////////////////////////////////////////////////////////////////////////
3954// suspend/resume support
3955
3956//  the low-level signal-based suspend/resume support is a remnant from the
3957//  old VM-suspension that used to be for java-suspension, safepoints etc,
3958//  within hotspot. Now there is a single use-case for this:
3959//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3960//      that runs in the watcher thread.
3961//  The remaining code is greatly simplified from the more general suspension
3962//  code that used to be used.
3963//
3964//  The protocol is quite simple:
3965//  - suspend:
3966//      - sends a signal to the target thread
3967//      - polls the suspend state of the osthread using a yield loop
3968//      - target thread signal handler (SR_handler) sets suspend state
3969//        and blocks in sigsuspend until continued
3970//  - resume:
3971//      - sets target osthread state to continue
3972//      - sends signal to end the sigsuspend loop in the SR_handler
3973//
3974//  Note that the SR_lock plays no role in this suspend/resume protocol.
3975
3976static void resume_clear_context(OSThread *osthread) {
3977  osthread->set_ucontext(NULL);
3978  osthread->set_siginfo(NULL);
3979}
3980
3981static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3982                                 ucontext_t* context) {
3983  osthread->set_ucontext(context);
3984  osthread->set_siginfo(siginfo);
3985}
3986
3987// Handler function invoked when a thread's execution is suspended or
3988// resumed. We have to be careful that only async-safe functions are
3989// called here (Note: most pthread functions are not async safe and
3990// should be avoided.)
3991//
3992// Note: sigwait() is a more natural fit than sigsuspend() from an
3993// interface point of view, but sigwait() prevents the signal hander
3994// from being run. libpthread would get very confused by not having
3995// its signal handlers run and prevents sigwait()'s use with the
3996// mutex granting granting signal.
3997//
3998// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3999//
4000static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4001  // Save and restore errno to avoid confusing native code with EINTR
4002  // after sigsuspend.
4003  int old_errno = errno;
4004
4005  Thread* thread = Thread::current_or_null_safe();
4006  assert(thread != NULL, "Missing current thread in SR_handler");
4007  OSThread* osthread = thread->osthread();
4008  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4009
4010  os::SuspendResume::State current = osthread->sr.state();
4011  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4012    suspend_save_context(osthread, siginfo, context);
4013
4014    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4015    os::SuspendResume::State state = osthread->sr.suspended();
4016    if (state == os::SuspendResume::SR_SUSPENDED) {
4017      sigset_t suspend_set;  // signals for sigsuspend()
4018      sigemptyset(&suspend_set);
4019      // get current set of blocked signals and unblock resume signal
4020      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4021      sigdelset(&suspend_set, SR_signum);
4022
4023      sr_semaphore.signal();
4024      // wait here until we are resumed
4025      while (1) {
4026        sigsuspend(&suspend_set);
4027
4028        os::SuspendResume::State result = osthread->sr.running();
4029        if (result == os::SuspendResume::SR_RUNNING) {
4030          sr_semaphore.signal();
4031          break;
4032        }
4033      }
4034
4035    } else if (state == os::SuspendResume::SR_RUNNING) {
4036      // request was cancelled, continue
4037    } else {
4038      ShouldNotReachHere();
4039    }
4040
4041    resume_clear_context(osthread);
4042  } else if (current == os::SuspendResume::SR_RUNNING) {
4043    // request was cancelled, continue
4044  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4045    // ignore
4046  } else {
4047    // ignore
4048  }
4049
4050  errno = old_errno;
4051}
4052
4053static int SR_initialize() {
4054  struct sigaction act;
4055  char *s;
4056
4057  // Get signal number to use for suspend/resume
4058  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4059    int sig = ::strtol(s, 0, 10);
4060    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4061        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4062      SR_signum = sig;
4063    } else {
4064      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4065              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4066    }
4067  }
4068
4069  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4070         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4071
4072  sigemptyset(&SR_sigset);
4073  sigaddset(&SR_sigset, SR_signum);
4074
4075  // Set up signal handler for suspend/resume
4076  act.sa_flags = SA_RESTART|SA_SIGINFO;
4077  act.sa_handler = (void (*)(int)) SR_handler;
4078
4079  // SR_signum is blocked by default.
4080  // 4528190 - We also need to block pthread restart signal (32 on all
4081  // supported Linux platforms). Note that LinuxThreads need to block
4082  // this signal for all threads to work properly. So we don't have
4083  // to use hard-coded signal number when setting up the mask.
4084  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4085
4086  if (sigaction(SR_signum, &act, 0) == -1) {
4087    return -1;
4088  }
4089
4090  // Save signal flag
4091  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4092  return 0;
4093}
4094
4095static int sr_notify(OSThread* osthread) {
4096  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4097  assert_status(status == 0, status, "pthread_kill");
4098  return status;
4099}
4100
4101// "Randomly" selected value for how long we want to spin
4102// before bailing out on suspending a thread, also how often
4103// we send a signal to a thread we want to resume
4104static const int RANDOMLY_LARGE_INTEGER = 1000000;
4105static const int RANDOMLY_LARGE_INTEGER2 = 100;
4106
4107// returns true on success and false on error - really an error is fatal
4108// but this seems the normal response to library errors
4109static bool do_suspend(OSThread* osthread) {
4110  assert(osthread->sr.is_running(), "thread should be running");
4111  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4112
4113  // mark as suspended and send signal
4114  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4115    // failed to switch, state wasn't running?
4116    ShouldNotReachHere();
4117    return false;
4118  }
4119
4120  if (sr_notify(osthread) != 0) {
4121    ShouldNotReachHere();
4122  }
4123
4124  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4125  while (true) {
4126    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4127      break;
4128    } else {
4129      // timeout
4130      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4131      if (cancelled == os::SuspendResume::SR_RUNNING) {
4132        return false;
4133      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4134        // make sure that we consume the signal on the semaphore as well
4135        sr_semaphore.wait();
4136        break;
4137      } else {
4138        ShouldNotReachHere();
4139        return false;
4140      }
4141    }
4142  }
4143
4144  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4145  return true;
4146}
4147
4148static void do_resume(OSThread* osthread) {
4149  assert(osthread->sr.is_suspended(), "thread should be suspended");
4150  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4151
4152  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4153    // failed to switch to WAKEUP_REQUEST
4154    ShouldNotReachHere();
4155    return;
4156  }
4157
4158  while (true) {
4159    if (sr_notify(osthread) == 0) {
4160      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4161        if (osthread->sr.is_running()) {
4162          return;
4163        }
4164      }
4165    } else {
4166      ShouldNotReachHere();
4167    }
4168  }
4169
4170  guarantee(osthread->sr.is_running(), "Must be running!");
4171}
4172
4173///////////////////////////////////////////////////////////////////////////////////
4174// signal handling (except suspend/resume)
4175
4176// This routine may be used by user applications as a "hook" to catch signals.
4177// The user-defined signal handler must pass unrecognized signals to this
4178// routine, and if it returns true (non-zero), then the signal handler must
4179// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4180// routine will never retun false (zero), but instead will execute a VM panic
4181// routine kill the process.
4182//
4183// If this routine returns false, it is OK to call it again.  This allows
4184// the user-defined signal handler to perform checks either before or after
4185// the VM performs its own checks.  Naturally, the user code would be making
4186// a serious error if it tried to handle an exception (such as a null check
4187// or breakpoint) that the VM was generating for its own correct operation.
4188//
4189// This routine may recognize any of the following kinds of signals:
4190//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4191// It should be consulted by handlers for any of those signals.
4192//
4193// The caller of this routine must pass in the three arguments supplied
4194// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4195// field of the structure passed to sigaction().  This routine assumes that
4196// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4197//
4198// Note that the VM will print warnings if it detects conflicting signal
4199// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4200//
4201extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4202                                                 siginfo_t* siginfo,
4203                                                 void* ucontext,
4204                                                 int abort_if_unrecognized);
4205
4206void signalHandler(int sig, siginfo_t* info, void* uc) {
4207  assert(info != NULL && uc != NULL, "it must be old kernel");
4208  int orig_errno = errno;  // Preserve errno value over signal handler.
4209  JVM_handle_linux_signal(sig, info, uc, true);
4210  errno = orig_errno;
4211}
4212
4213
4214// This boolean allows users to forward their own non-matching signals
4215// to JVM_handle_linux_signal, harmlessly.
4216bool os::Linux::signal_handlers_are_installed = false;
4217
4218// For signal-chaining
4219struct sigaction sigact[NSIG];
4220uint64_t sigs = 0;
4221#if (64 < NSIG-1)
4222#error "Not all signals can be encoded in sigs. Adapt its type!"
4223#endif
4224bool os::Linux::libjsig_is_loaded = false;
4225typedef struct sigaction *(*get_signal_t)(int);
4226get_signal_t os::Linux::get_signal_action = NULL;
4227
4228struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4229  struct sigaction *actp = NULL;
4230
4231  if (libjsig_is_loaded) {
4232    // Retrieve the old signal handler from libjsig
4233    actp = (*get_signal_action)(sig);
4234  }
4235  if (actp == NULL) {
4236    // Retrieve the preinstalled signal handler from jvm
4237    actp = get_preinstalled_handler(sig);
4238  }
4239
4240  return actp;
4241}
4242
4243static bool call_chained_handler(struct sigaction *actp, int sig,
4244                                 siginfo_t *siginfo, void *context) {
4245  // Call the old signal handler
4246  if (actp->sa_handler == SIG_DFL) {
4247    // It's more reasonable to let jvm treat it as an unexpected exception
4248    // instead of taking the default action.
4249    return false;
4250  } else if (actp->sa_handler != SIG_IGN) {
4251    if ((actp->sa_flags & SA_NODEFER) == 0) {
4252      // automaticlly block the signal
4253      sigaddset(&(actp->sa_mask), sig);
4254    }
4255
4256    sa_handler_t hand = NULL;
4257    sa_sigaction_t sa = NULL;
4258    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4259    // retrieve the chained handler
4260    if (siginfo_flag_set) {
4261      sa = actp->sa_sigaction;
4262    } else {
4263      hand = actp->sa_handler;
4264    }
4265
4266    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4267      actp->sa_handler = SIG_DFL;
4268    }
4269
4270    // try to honor the signal mask
4271    sigset_t oset;
4272    sigemptyset(&oset);
4273    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4274
4275    // call into the chained handler
4276    if (siginfo_flag_set) {
4277      (*sa)(sig, siginfo, context);
4278    } else {
4279      (*hand)(sig);
4280    }
4281
4282    // restore the signal mask
4283    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4284  }
4285  // Tell jvm's signal handler the signal is taken care of.
4286  return true;
4287}
4288
4289bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4290  bool chained = false;
4291  // signal-chaining
4292  if (UseSignalChaining) {
4293    struct sigaction *actp = get_chained_signal_action(sig);
4294    if (actp != NULL) {
4295      chained = call_chained_handler(actp, sig, siginfo, context);
4296    }
4297  }
4298  return chained;
4299}
4300
4301struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4302  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4303    return &sigact[sig];
4304  }
4305  return NULL;
4306}
4307
4308void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4309  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4310  sigact[sig] = oldAct;
4311  sigs |= (uint64_t)1 << (sig-1);
4312}
4313
4314// for diagnostic
4315int sigflags[NSIG];
4316
4317int os::Linux::get_our_sigflags(int sig) {
4318  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4319  return sigflags[sig];
4320}
4321
4322void os::Linux::set_our_sigflags(int sig, int flags) {
4323  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4324  if (sig > 0 && sig < NSIG) {
4325    sigflags[sig] = flags;
4326  }
4327}
4328
4329void os::Linux::set_signal_handler(int sig, bool set_installed) {
4330  // Check for overwrite.
4331  struct sigaction oldAct;
4332  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4333
4334  void* oldhand = oldAct.sa_sigaction
4335                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4336                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4337  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4338      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4339      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4340    if (AllowUserSignalHandlers || !set_installed) {
4341      // Do not overwrite; user takes responsibility to forward to us.
4342      return;
4343    } else if (UseSignalChaining) {
4344      // save the old handler in jvm
4345      save_preinstalled_handler(sig, oldAct);
4346      // libjsig also interposes the sigaction() call below and saves the
4347      // old sigaction on it own.
4348    } else {
4349      fatal("Encountered unexpected pre-existing sigaction handler "
4350            "%#lx for signal %d.", (long)oldhand, sig);
4351    }
4352  }
4353
4354  struct sigaction sigAct;
4355  sigfillset(&(sigAct.sa_mask));
4356  sigAct.sa_handler = SIG_DFL;
4357  if (!set_installed) {
4358    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4359  } else {
4360    sigAct.sa_sigaction = signalHandler;
4361    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4362  }
4363  // Save flags, which are set by ours
4364  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4365  sigflags[sig] = sigAct.sa_flags;
4366
4367  int ret = sigaction(sig, &sigAct, &oldAct);
4368  assert(ret == 0, "check");
4369
4370  void* oldhand2  = oldAct.sa_sigaction
4371                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4372                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4373  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4374}
4375
4376// install signal handlers for signals that HotSpot needs to
4377// handle in order to support Java-level exception handling.
4378
4379void os::Linux::install_signal_handlers() {
4380  if (!signal_handlers_are_installed) {
4381    signal_handlers_are_installed = true;
4382
4383    // signal-chaining
4384    typedef void (*signal_setting_t)();
4385    signal_setting_t begin_signal_setting = NULL;
4386    signal_setting_t end_signal_setting = NULL;
4387    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4388                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4389    if (begin_signal_setting != NULL) {
4390      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4391                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4392      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4393                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4394      libjsig_is_loaded = true;
4395      assert(UseSignalChaining, "should enable signal-chaining");
4396    }
4397    if (libjsig_is_loaded) {
4398      // Tell libjsig jvm is setting signal handlers
4399      (*begin_signal_setting)();
4400    }
4401
4402    set_signal_handler(SIGSEGV, true);
4403    set_signal_handler(SIGPIPE, true);
4404    set_signal_handler(SIGBUS, true);
4405    set_signal_handler(SIGILL, true);
4406    set_signal_handler(SIGFPE, true);
4407#if defined(PPC64)
4408    set_signal_handler(SIGTRAP, true);
4409#endif
4410    set_signal_handler(SIGXFSZ, true);
4411
4412    if (libjsig_is_loaded) {
4413      // Tell libjsig jvm finishes setting signal handlers
4414      (*end_signal_setting)();
4415    }
4416
4417    // We don't activate signal checker if libjsig is in place, we trust ourselves
4418    // and if UserSignalHandler is installed all bets are off.
4419    // Log that signal checking is off only if -verbose:jni is specified.
4420    if (CheckJNICalls) {
4421      if (libjsig_is_loaded) {
4422        if (PrintJNIResolving) {
4423          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4424        }
4425        check_signals = false;
4426      }
4427      if (AllowUserSignalHandlers) {
4428        if (PrintJNIResolving) {
4429          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4430        }
4431        check_signals = false;
4432      }
4433    }
4434  }
4435}
4436
4437// This is the fastest way to get thread cpu time on Linux.
4438// Returns cpu time (user+sys) for any thread, not only for current.
4439// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4440// It might work on 2.6.10+ with a special kernel/glibc patch.
4441// For reference, please, see IEEE Std 1003.1-2004:
4442//   http://www.unix.org/single_unix_specification
4443
4444jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4445  struct timespec tp;
4446  int rc = os::Linux::clock_gettime(clockid, &tp);
4447  assert(rc == 0, "clock_gettime is expected to return 0 code");
4448
4449  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4450}
4451
4452void os::Linux::initialize_os_info() {
4453  assert(_os_version == 0, "OS info already initialized");
4454
4455  struct utsname _uname;
4456
4457  uint32_t major;
4458  uint32_t minor;
4459  uint32_t fix;
4460
4461  int rc;
4462
4463  // Kernel version is unknown if
4464  // verification below fails.
4465  _os_version = 0x01000000;
4466
4467  rc = uname(&_uname);
4468  if (rc != -1) {
4469
4470    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4471    if (rc == 3) {
4472
4473      if (major < 256 && minor < 256 && fix < 256) {
4474        // Kernel version format is as expected,
4475        // set it overriding unknown state.
4476        _os_version = (major << 16) |
4477                      (minor << 8 ) |
4478                      (fix   << 0 ) ;
4479      }
4480    }
4481  }
4482}
4483
4484uint32_t os::Linux::os_version() {
4485  assert(_os_version != 0, "not initialized");
4486  return _os_version & 0x00FFFFFF;
4487}
4488
4489bool os::Linux::os_version_is_known() {
4490  assert(_os_version != 0, "not initialized");
4491  return _os_version & 0x01000000 ? false : true;
4492}
4493
4494/////
4495// glibc on Linux platform uses non-documented flag
4496// to indicate, that some special sort of signal
4497// trampoline is used.
4498// We will never set this flag, and we should
4499// ignore this flag in our diagnostic
4500#ifdef SIGNIFICANT_SIGNAL_MASK
4501  #undef SIGNIFICANT_SIGNAL_MASK
4502#endif
4503#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4504
4505static const char* get_signal_handler_name(address handler,
4506                                           char* buf, int buflen) {
4507  int offset = 0;
4508  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4509  if (found) {
4510    // skip directory names
4511    const char *p1, *p2;
4512    p1 = buf;
4513    size_t len = strlen(os::file_separator());
4514    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4515    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4516  } else {
4517    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4518  }
4519  return buf;
4520}
4521
4522static void print_signal_handler(outputStream* st, int sig,
4523                                 char* buf, size_t buflen) {
4524  struct sigaction sa;
4525
4526  sigaction(sig, NULL, &sa);
4527
4528  // See comment for SIGNIFICANT_SIGNAL_MASK define
4529  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4530
4531  st->print("%s: ", os::exception_name(sig, buf, buflen));
4532
4533  address handler = (sa.sa_flags & SA_SIGINFO)
4534    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4535    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4536
4537  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4538    st->print("SIG_DFL");
4539  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4540    st->print("SIG_IGN");
4541  } else {
4542    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4543  }
4544
4545  st->print(", sa_mask[0]=");
4546  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4547
4548  address rh = VMError::get_resetted_sighandler(sig);
4549  // May be, handler was resetted by VMError?
4550  if (rh != NULL) {
4551    handler = rh;
4552    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4553  }
4554
4555  st->print(", sa_flags=");
4556  os::Posix::print_sa_flags(st, sa.sa_flags);
4557
4558  // Check: is it our handler?
4559  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4560      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4561    // It is our signal handler
4562    // check for flags, reset system-used one!
4563    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4564      st->print(
4565                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4566                os::Linux::get_our_sigflags(sig));
4567    }
4568  }
4569  st->cr();
4570}
4571
4572
4573#define DO_SIGNAL_CHECK(sig)                      \
4574  do {                                            \
4575    if (!sigismember(&check_signal_done, sig)) {  \
4576      os::Linux::check_signal_handler(sig);       \
4577    }                                             \
4578  } while (0)
4579
4580// This method is a periodic task to check for misbehaving JNI applications
4581// under CheckJNI, we can add any periodic checks here
4582
4583void os::run_periodic_checks() {
4584  if (check_signals == false) return;
4585
4586  // SEGV and BUS if overridden could potentially prevent
4587  // generation of hs*.log in the event of a crash, debugging
4588  // such a case can be very challenging, so we absolutely
4589  // check the following for a good measure:
4590  DO_SIGNAL_CHECK(SIGSEGV);
4591  DO_SIGNAL_CHECK(SIGILL);
4592  DO_SIGNAL_CHECK(SIGFPE);
4593  DO_SIGNAL_CHECK(SIGBUS);
4594  DO_SIGNAL_CHECK(SIGPIPE);
4595  DO_SIGNAL_CHECK(SIGXFSZ);
4596#if defined(PPC64)
4597  DO_SIGNAL_CHECK(SIGTRAP);
4598#endif
4599
4600  // ReduceSignalUsage allows the user to override these handlers
4601  // see comments at the very top and jvm_solaris.h
4602  if (!ReduceSignalUsage) {
4603    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4604    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4605    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4606    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4607  }
4608
4609  DO_SIGNAL_CHECK(SR_signum);
4610}
4611
4612typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4613
4614static os_sigaction_t os_sigaction = NULL;
4615
4616void os::Linux::check_signal_handler(int sig) {
4617  char buf[O_BUFLEN];
4618  address jvmHandler = NULL;
4619
4620
4621  struct sigaction act;
4622  if (os_sigaction == NULL) {
4623    // only trust the default sigaction, in case it has been interposed
4624    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4625    if (os_sigaction == NULL) return;
4626  }
4627
4628  os_sigaction(sig, (struct sigaction*)NULL, &act);
4629
4630
4631  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4632
4633  address thisHandler = (act.sa_flags & SA_SIGINFO)
4634    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4635    : CAST_FROM_FN_PTR(address, act.sa_handler);
4636
4637
4638  switch (sig) {
4639  case SIGSEGV:
4640  case SIGBUS:
4641  case SIGFPE:
4642  case SIGPIPE:
4643  case SIGILL:
4644  case SIGXFSZ:
4645    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4646    break;
4647
4648  case SHUTDOWN1_SIGNAL:
4649  case SHUTDOWN2_SIGNAL:
4650  case SHUTDOWN3_SIGNAL:
4651  case BREAK_SIGNAL:
4652    jvmHandler = (address)user_handler();
4653    break;
4654
4655  default:
4656    if (sig == SR_signum) {
4657      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4658    } else {
4659      return;
4660    }
4661    break;
4662  }
4663
4664  if (thisHandler != jvmHandler) {
4665    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4666    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4667    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4668    // No need to check this sig any longer
4669    sigaddset(&check_signal_done, sig);
4670    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4671    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4672      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4673                    exception_name(sig, buf, O_BUFLEN));
4674    }
4675  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4676    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4677    tty->print("expected:");
4678    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4679    tty->cr();
4680    tty->print("  found:");
4681    os::Posix::print_sa_flags(tty, act.sa_flags);
4682    tty->cr();
4683    // No need to check this sig any longer
4684    sigaddset(&check_signal_done, sig);
4685  }
4686
4687  // Dump all the signal
4688  if (sigismember(&check_signal_done, sig)) {
4689    print_signal_handlers(tty, buf, O_BUFLEN);
4690  }
4691}
4692
4693extern void report_error(char* file_name, int line_no, char* title,
4694                         char* format, ...);
4695
4696// this is called _before_ the most of global arguments have been parsed
4697void os::init(void) {
4698  char dummy;   // used to get a guess on initial stack address
4699//  first_hrtime = gethrtime();
4700
4701  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4702
4703  init_random(1234567);
4704
4705  ThreadCritical::initialize();
4706
4707  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4708  if (Linux::page_size() == -1) {
4709    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4710          os::strerror(errno));
4711  }
4712  init_page_sizes((size_t) Linux::page_size());
4713
4714  Linux::initialize_system_info();
4715
4716  Linux::initialize_os_info();
4717
4718  // main_thread points to the aboriginal thread
4719  Linux::_main_thread = pthread_self();
4720
4721  Linux::clock_init();
4722  initial_time_count = javaTimeNanos();
4723
4724  // pthread_condattr initialization for monotonic clock
4725  int status;
4726  pthread_condattr_t* _condattr = os::Linux::condAttr();
4727  if ((status = pthread_condattr_init(_condattr)) != 0) {
4728    fatal("pthread_condattr_init: %s", os::strerror(status));
4729  }
4730  // Only set the clock if CLOCK_MONOTONIC is available
4731  if (os::supports_monotonic_clock()) {
4732    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4733      if (status == EINVAL) {
4734        warning("Unable to use monotonic clock with relative timed-waits" \
4735                " - changes to the time-of-day clock may have adverse affects");
4736      } else {
4737        fatal("pthread_condattr_setclock: %s", os::strerror(status));
4738      }
4739    }
4740  }
4741  // else it defaults to CLOCK_REALTIME
4742
4743  // retrieve entry point for pthread_setname_np
4744  Linux::_pthread_setname_np =
4745    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4746
4747}
4748
4749// To install functions for atexit system call
4750extern "C" {
4751  static void perfMemory_exit_helper() {
4752    perfMemory_exit();
4753  }
4754}
4755
4756// this is called _after_ the global arguments have been parsed
4757jint os::init_2(void) {
4758  Linux::fast_thread_clock_init();
4759
4760  // Allocate a single page and mark it as readable for safepoint polling
4761  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4762  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4763
4764  os::set_polling_page(polling_page);
4765  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4766
4767  if (!UseMembar) {
4768    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4769    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4770    os::set_memory_serialize_page(mem_serialize_page);
4771    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4772  }
4773
4774  // initialize suspend/resume support - must do this before signal_sets_init()
4775  if (SR_initialize() != 0) {
4776    perror("SR_initialize failed");
4777    return JNI_ERR;
4778  }
4779
4780  Linux::signal_sets_init();
4781  Linux::install_signal_handlers();
4782
4783  // Check minimum allowable stack size for thread creation and to initialize
4784  // the java system classes, including StackOverflowError - depends on page
4785  // size.  Add two 4K pages for compiler2 recursion in main thread.
4786  // Add in 4*BytesPerWord 4K pages to account for VM stack during
4787  // class initialization depending on 32 or 64 bit VM.
4788  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4789                                      JavaThread::stack_guard_zone_size() +
4790                                      JavaThread::stack_shadow_zone_size() +
4791                                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4792
4793  os::Linux::min_stack_allowed = align_size_up(os::Linux::min_stack_allowed, os::vm_page_size());
4794
4795  size_t threadStackSizeInBytes = ThreadStackSize * K;
4796  if (threadStackSizeInBytes != 0 &&
4797      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4798    tty->print_cr("\nThe stack size specified is too small, "
4799                  "Specify at least " SIZE_FORMAT "k",
4800                  os::Linux::min_stack_allowed/ K);
4801    return JNI_ERR;
4802  }
4803
4804  // Make the stack size a multiple of the page size so that
4805  // the yellow/red zones can be guarded.
4806  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4807                                                vm_page_size()));
4808
4809  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4810
4811#if defined(IA32)
4812  workaround_expand_exec_shield_cs_limit();
4813#endif
4814
4815  Linux::libpthread_init();
4816  log_info(os)("HotSpot is running with %s, %s",
4817               Linux::glibc_version(), Linux::libpthread_version());
4818
4819  if (UseNUMA) {
4820    if (!Linux::libnuma_init()) {
4821      UseNUMA = false;
4822    } else {
4823      if ((Linux::numa_max_node() < 1)) {
4824        // There's only one node(they start from 0), disable NUMA.
4825        UseNUMA = false;
4826      }
4827    }
4828    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4829    // we can make the adaptive lgrp chunk resizing work. If the user specified
4830    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4831    // disable adaptive resizing.
4832    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4833      if (FLAG_IS_DEFAULT(UseNUMA)) {
4834        UseNUMA = false;
4835      } else {
4836        if (FLAG_IS_DEFAULT(UseLargePages) &&
4837            FLAG_IS_DEFAULT(UseSHM) &&
4838            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4839          UseLargePages = false;
4840        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4841          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4842          UseAdaptiveSizePolicy = false;
4843          UseAdaptiveNUMAChunkSizing = false;
4844        }
4845      }
4846    }
4847    if (!UseNUMA && ForceNUMA) {
4848      UseNUMA = true;
4849    }
4850  }
4851
4852  if (MaxFDLimit) {
4853    // set the number of file descriptors to max. print out error
4854    // if getrlimit/setrlimit fails but continue regardless.
4855    struct rlimit nbr_files;
4856    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4857    if (status != 0) {
4858      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4859    } else {
4860      nbr_files.rlim_cur = nbr_files.rlim_max;
4861      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4862      if (status != 0) {
4863        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4864      }
4865    }
4866  }
4867
4868  // Initialize lock used to serialize thread creation (see os::create_thread)
4869  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4870
4871  // at-exit methods are called in the reverse order of their registration.
4872  // atexit functions are called on return from main or as a result of a
4873  // call to exit(3C). There can be only 32 of these functions registered
4874  // and atexit() does not set errno.
4875
4876  if (PerfAllowAtExitRegistration) {
4877    // only register atexit functions if PerfAllowAtExitRegistration is set.
4878    // atexit functions can be delayed until process exit time, which
4879    // can be problematic for embedded VM situations. Embedded VMs should
4880    // call DestroyJavaVM() to assure that VM resources are released.
4881
4882    // note: perfMemory_exit_helper atexit function may be removed in
4883    // the future if the appropriate cleanup code can be added to the
4884    // VM_Exit VMOperation's doit method.
4885    if (atexit(perfMemory_exit_helper) != 0) {
4886      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4887    }
4888  }
4889
4890  // initialize thread priority policy
4891  prio_init();
4892
4893  return JNI_OK;
4894}
4895
4896// Mark the polling page as unreadable
4897void os::make_polling_page_unreadable(void) {
4898  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4899    fatal("Could not disable polling page");
4900  }
4901}
4902
4903// Mark the polling page as readable
4904void os::make_polling_page_readable(void) {
4905  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4906    fatal("Could not enable polling page");
4907  }
4908}
4909
4910// older glibc versions don't have this macro (which expands to
4911// an optimized bit-counting function) so we have to roll our own
4912#ifndef CPU_COUNT
4913
4914static int _cpu_count(const cpu_set_t* cpus) {
4915  int count = 0;
4916  // only look up to the number of configured processors
4917  for (int i = 0; i < os::processor_count(); i++) {
4918    if (CPU_ISSET(i, cpus)) {
4919      count++;
4920    }
4921  }
4922  return count;
4923}
4924
4925#define CPU_COUNT(cpus) _cpu_count(cpus)
4926
4927#endif // CPU_COUNT
4928
4929// Get the current number of available processors for this process.
4930// This value can change at any time during a process's lifetime.
4931// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4932// If it appears there may be more than 1024 processors then we do a
4933// dynamic check - see 6515172 for details.
4934// If anything goes wrong we fallback to returning the number of online
4935// processors - which can be greater than the number available to the process.
4936int os::active_processor_count() {
4937  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4938  cpu_set_t* cpus_p = &cpus;
4939  int cpus_size = sizeof(cpu_set_t);
4940
4941  int configured_cpus = processor_count();  // upper bound on available cpus
4942  int cpu_count = 0;
4943
4944// old build platforms may not support dynamic cpu sets
4945#ifdef CPU_ALLOC
4946
4947  // To enable easy testing of the dynamic path on different platforms we
4948  // introduce a diagnostic flag: UseCpuAllocPath
4949  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4950    // kernel may use a mask bigger than cpu_set_t
4951    log_trace(os)("active_processor_count: using dynamic path %s"
4952                  "- configured processors: %d",
4953                  UseCpuAllocPath ? "(forced) " : "",
4954                  configured_cpus);
4955    cpus_p = CPU_ALLOC(configured_cpus);
4956    if (cpus_p != NULL) {
4957      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4958      // zero it just to be safe
4959      CPU_ZERO_S(cpus_size, cpus_p);
4960    }
4961    else {
4962       // failed to allocate so fallback to online cpus
4963       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4964       log_trace(os)("active_processor_count: "
4965                     "CPU_ALLOC failed (%s) - using "
4966                     "online processor count: %d",
4967                     os::strerror(errno), online_cpus);
4968       return online_cpus;
4969    }
4970  }
4971  else {
4972    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4973                  configured_cpus);
4974  }
4975#else // CPU_ALLOC
4976// these stubs won't be executed
4977#define CPU_COUNT_S(size, cpus) -1
4978#define CPU_FREE(cpus)
4979
4980  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4981                configured_cpus);
4982#endif // CPU_ALLOC
4983
4984  // pid 0 means the current thread - which we have to assume represents the process
4985  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4986    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4987      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4988    }
4989    else {
4990      cpu_count = CPU_COUNT(cpus_p);
4991    }
4992    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4993  }
4994  else {
4995    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4996    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4997            "which may exceed available processors", os::strerror(errno), cpu_count);
4998  }
4999
5000  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5001    CPU_FREE(cpus_p);
5002  }
5003
5004  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5005  return cpu_count;
5006}
5007
5008void os::set_native_thread_name(const char *name) {
5009  if (Linux::_pthread_setname_np) {
5010    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5011    snprintf(buf, sizeof(buf), "%s", name);
5012    buf[sizeof(buf) - 1] = '\0';
5013    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5014    // ERANGE should not happen; all other errors should just be ignored.
5015    assert(rc != ERANGE, "pthread_setname_np failed");
5016  }
5017}
5018
5019bool os::distribute_processes(uint length, uint* distribution) {
5020  // Not yet implemented.
5021  return false;
5022}
5023
5024bool os::bind_to_processor(uint processor_id) {
5025  // Not yet implemented.
5026  return false;
5027}
5028
5029///
5030
5031void os::SuspendedThreadTask::internal_do_task() {
5032  if (do_suspend(_thread->osthread())) {
5033    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5034    do_task(context);
5035    do_resume(_thread->osthread());
5036  }
5037}
5038
5039class PcFetcher : public os::SuspendedThreadTask {
5040 public:
5041  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5042  ExtendedPC result();
5043 protected:
5044  void do_task(const os::SuspendedThreadTaskContext& context);
5045 private:
5046  ExtendedPC _epc;
5047};
5048
5049ExtendedPC PcFetcher::result() {
5050  guarantee(is_done(), "task is not done yet.");
5051  return _epc;
5052}
5053
5054void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5055  Thread* thread = context.thread();
5056  OSThread* osthread = thread->osthread();
5057  if (osthread->ucontext() != NULL) {
5058    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5059  } else {
5060    // NULL context is unexpected, double-check this is the VMThread
5061    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5062  }
5063}
5064
5065// Suspends the target using the signal mechanism and then grabs the PC before
5066// resuming the target. Used by the flat-profiler only
5067ExtendedPC os::get_thread_pc(Thread* thread) {
5068  // Make sure that it is called by the watcher for the VMThread
5069  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5070  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5071
5072  PcFetcher fetcher(thread);
5073  fetcher.run();
5074  return fetcher.result();
5075}
5076
5077////////////////////////////////////////////////////////////////////////////////
5078// debug support
5079
5080bool os::find(address addr, outputStream* st) {
5081  Dl_info dlinfo;
5082  memset(&dlinfo, 0, sizeof(dlinfo));
5083  if (dladdr(addr, &dlinfo) != 0) {
5084    st->print(PTR_FORMAT ": ", p2i(addr));
5085    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5086      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5087                p2i(addr) - p2i(dlinfo.dli_saddr));
5088    } else if (dlinfo.dli_fbase != NULL) {
5089      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5090    } else {
5091      st->print("<absolute address>");
5092    }
5093    if (dlinfo.dli_fname != NULL) {
5094      st->print(" in %s", dlinfo.dli_fname);
5095    }
5096    if (dlinfo.dli_fbase != NULL) {
5097      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5098    }
5099    st->cr();
5100
5101    if (Verbose) {
5102      // decode some bytes around the PC
5103      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5104      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5105      address       lowest = (address) dlinfo.dli_sname;
5106      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5107      if (begin < lowest)  begin = lowest;
5108      Dl_info dlinfo2;
5109      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5110          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5111        end = (address) dlinfo2.dli_saddr;
5112      }
5113      Disassembler::decode(begin, end, st);
5114    }
5115    return true;
5116  }
5117  return false;
5118}
5119
5120////////////////////////////////////////////////////////////////////////////////
5121// misc
5122
5123// This does not do anything on Linux. This is basically a hook for being
5124// able to use structured exception handling (thread-local exception filters)
5125// on, e.g., Win32.
5126void
5127os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5128                         JavaCallArguments* args, Thread* thread) {
5129  f(value, method, args, thread);
5130}
5131
5132void os::print_statistics() {
5133}
5134
5135bool os::message_box(const char* title, const char* message) {
5136  int i;
5137  fdStream err(defaultStream::error_fd());
5138  for (i = 0; i < 78; i++) err.print_raw("=");
5139  err.cr();
5140  err.print_raw_cr(title);
5141  for (i = 0; i < 78; i++) err.print_raw("-");
5142  err.cr();
5143  err.print_raw_cr(message);
5144  for (i = 0; i < 78; i++) err.print_raw("=");
5145  err.cr();
5146
5147  char buf[16];
5148  // Prevent process from exiting upon "read error" without consuming all CPU
5149  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5150
5151  return buf[0] == 'y' || buf[0] == 'Y';
5152}
5153
5154int os::stat(const char *path, struct stat *sbuf) {
5155  char pathbuf[MAX_PATH];
5156  if (strlen(path) > MAX_PATH - 1) {
5157    errno = ENAMETOOLONG;
5158    return -1;
5159  }
5160  os::native_path(strcpy(pathbuf, path));
5161  return ::stat(pathbuf, sbuf);
5162}
5163
5164bool os::check_heap(bool force) {
5165  return true;
5166}
5167
5168// Is a (classpath) directory empty?
5169bool os::dir_is_empty(const char* path) {
5170  DIR *dir = NULL;
5171  struct dirent *ptr;
5172
5173  dir = opendir(path);
5174  if (dir == NULL) return true;
5175
5176  // Scan the directory
5177  bool result = true;
5178  char buf[sizeof(struct dirent) + MAX_PATH];
5179  while (result && (ptr = ::readdir(dir)) != NULL) {
5180    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5181      result = false;
5182    }
5183  }
5184  closedir(dir);
5185  return result;
5186}
5187
5188// This code originates from JDK's sysOpen and open64_w
5189// from src/solaris/hpi/src/system_md.c
5190
5191int os::open(const char *path, int oflag, int mode) {
5192  if (strlen(path) > MAX_PATH - 1) {
5193    errno = ENAMETOOLONG;
5194    return -1;
5195  }
5196
5197  // All file descriptors that are opened in the Java process and not
5198  // specifically destined for a subprocess should have the close-on-exec
5199  // flag set.  If we don't set it, then careless 3rd party native code
5200  // might fork and exec without closing all appropriate file descriptors
5201  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5202  // turn might:
5203  //
5204  // - cause end-of-file to fail to be detected on some file
5205  //   descriptors, resulting in mysterious hangs, or
5206  //
5207  // - might cause an fopen in the subprocess to fail on a system
5208  //   suffering from bug 1085341.
5209  //
5210  // (Yes, the default setting of the close-on-exec flag is a Unix
5211  // design flaw)
5212  //
5213  // See:
5214  // 1085341: 32-bit stdio routines should support file descriptors >255
5215  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5216  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5217  //
5218  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5219  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5220  // because it saves a system call and removes a small window where the flag
5221  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5222  // and we fall back to using FD_CLOEXEC (see below).
5223#ifdef O_CLOEXEC
5224  oflag |= O_CLOEXEC;
5225#endif
5226
5227  int fd = ::open64(path, oflag, mode);
5228  if (fd == -1) return -1;
5229
5230  //If the open succeeded, the file might still be a directory
5231  {
5232    struct stat64 buf64;
5233    int ret = ::fstat64(fd, &buf64);
5234    int st_mode = buf64.st_mode;
5235
5236    if (ret != -1) {
5237      if ((st_mode & S_IFMT) == S_IFDIR) {
5238        errno = EISDIR;
5239        ::close(fd);
5240        return -1;
5241      }
5242    } else {
5243      ::close(fd);
5244      return -1;
5245    }
5246  }
5247
5248#ifdef FD_CLOEXEC
5249  // Validate that the use of the O_CLOEXEC flag on open above worked.
5250  // With recent kernels, we will perform this check exactly once.
5251  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5252  if (!O_CLOEXEC_is_known_to_work) {
5253    int flags = ::fcntl(fd, F_GETFD);
5254    if (flags != -1) {
5255      if ((flags & FD_CLOEXEC) != 0)
5256        O_CLOEXEC_is_known_to_work = 1;
5257      else
5258        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5259    }
5260  }
5261#endif
5262
5263  return fd;
5264}
5265
5266
5267// create binary file, rewriting existing file if required
5268int os::create_binary_file(const char* path, bool rewrite_existing) {
5269  int oflags = O_WRONLY | O_CREAT;
5270  if (!rewrite_existing) {
5271    oflags |= O_EXCL;
5272  }
5273  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5274}
5275
5276// return current position of file pointer
5277jlong os::current_file_offset(int fd) {
5278  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5279}
5280
5281// move file pointer to the specified offset
5282jlong os::seek_to_file_offset(int fd, jlong offset) {
5283  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5284}
5285
5286// This code originates from JDK's sysAvailable
5287// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5288
5289int os::available(int fd, jlong *bytes) {
5290  jlong cur, end;
5291  int mode;
5292  struct stat64 buf64;
5293
5294  if (::fstat64(fd, &buf64) >= 0) {
5295    mode = buf64.st_mode;
5296    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5297      int n;
5298      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5299        *bytes = n;
5300        return 1;
5301      }
5302    }
5303  }
5304  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5305    return 0;
5306  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5307    return 0;
5308  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5309    return 0;
5310  }
5311  *bytes = end - cur;
5312  return 1;
5313}
5314
5315// Map a block of memory.
5316char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5317                        char *addr, size_t bytes, bool read_only,
5318                        bool allow_exec) {
5319  int prot;
5320  int flags = MAP_PRIVATE;
5321
5322  if (read_only) {
5323    prot = PROT_READ;
5324  } else {
5325    prot = PROT_READ | PROT_WRITE;
5326  }
5327
5328  if (allow_exec) {
5329    prot |= PROT_EXEC;
5330  }
5331
5332  if (addr != NULL) {
5333    flags |= MAP_FIXED;
5334  }
5335
5336  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5337                                     fd, file_offset);
5338  if (mapped_address == MAP_FAILED) {
5339    return NULL;
5340  }
5341  return mapped_address;
5342}
5343
5344
5345// Remap a block of memory.
5346char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5347                          char *addr, size_t bytes, bool read_only,
5348                          bool allow_exec) {
5349  // same as map_memory() on this OS
5350  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5351                        allow_exec);
5352}
5353
5354
5355// Unmap a block of memory.
5356bool os::pd_unmap_memory(char* addr, size_t bytes) {
5357  return munmap(addr, bytes) == 0;
5358}
5359
5360static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5361
5362static clockid_t thread_cpu_clockid(Thread* thread) {
5363  pthread_t tid = thread->osthread()->pthread_id();
5364  clockid_t clockid;
5365
5366  // Get thread clockid
5367  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5368  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5369  return clockid;
5370}
5371
5372// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5373// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5374// of a thread.
5375//
5376// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5377// the fast estimate available on the platform.
5378
5379jlong os::current_thread_cpu_time() {
5380  if (os::Linux::supports_fast_thread_cpu_time()) {
5381    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5382  } else {
5383    // return user + sys since the cost is the same
5384    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5385  }
5386}
5387
5388jlong os::thread_cpu_time(Thread* thread) {
5389  // consistent with what current_thread_cpu_time() returns
5390  if (os::Linux::supports_fast_thread_cpu_time()) {
5391    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5392  } else {
5393    return slow_thread_cpu_time(thread, true /* user + sys */);
5394  }
5395}
5396
5397jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5398  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5399    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5400  } else {
5401    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5402  }
5403}
5404
5405jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5406  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5407    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5408  } else {
5409    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5410  }
5411}
5412
5413//  -1 on error.
5414static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5415  pid_t  tid = thread->osthread()->thread_id();
5416  char *s;
5417  char stat[2048];
5418  int statlen;
5419  char proc_name[64];
5420  int count;
5421  long sys_time, user_time;
5422  char cdummy;
5423  int idummy;
5424  long ldummy;
5425  FILE *fp;
5426
5427  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5428  fp = fopen(proc_name, "r");
5429  if (fp == NULL) return -1;
5430  statlen = fread(stat, 1, 2047, fp);
5431  stat[statlen] = '\0';
5432  fclose(fp);
5433
5434  // Skip pid and the command string. Note that we could be dealing with
5435  // weird command names, e.g. user could decide to rename java launcher
5436  // to "java 1.4.2 :)", then the stat file would look like
5437  //                1234 (java 1.4.2 :)) R ... ...
5438  // We don't really need to know the command string, just find the last
5439  // occurrence of ")" and then start parsing from there. See bug 4726580.
5440  s = strrchr(stat, ')');
5441  if (s == NULL) return -1;
5442
5443  // Skip blank chars
5444  do { s++; } while (s && isspace(*s));
5445
5446  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5447                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5448                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5449                 &user_time, &sys_time);
5450  if (count != 13) return -1;
5451  if (user_sys_cpu_time) {
5452    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5453  } else {
5454    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5455  }
5456}
5457
5458void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5459  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5460  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5461  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5462  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5463}
5464
5465void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5466  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5467  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5468  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5469  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5470}
5471
5472bool os::is_thread_cpu_time_supported() {
5473  return true;
5474}
5475
5476// System loadavg support.  Returns -1 if load average cannot be obtained.
5477// Linux doesn't yet have a (official) notion of processor sets,
5478// so just return the system wide load average.
5479int os::loadavg(double loadavg[], int nelem) {
5480  return ::getloadavg(loadavg, nelem);
5481}
5482
5483void os::pause() {
5484  char filename[MAX_PATH];
5485  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5486    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5487  } else {
5488    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5489  }
5490
5491  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5492  if (fd != -1) {
5493    struct stat buf;
5494    ::close(fd);
5495    while (::stat(filename, &buf) == 0) {
5496      (void)::poll(NULL, 0, 100);
5497    }
5498  } else {
5499    jio_fprintf(stderr,
5500                "Could not open pause file '%s', continuing immediately.\n", filename);
5501  }
5502}
5503
5504
5505// Refer to the comments in os_solaris.cpp park-unpark. The next two
5506// comment paragraphs are worth repeating here:
5507//
5508// Assumption:
5509//    Only one parker can exist on an event, which is why we allocate
5510//    them per-thread. Multiple unparkers can coexist.
5511//
5512// _Event serves as a restricted-range semaphore.
5513//   -1 : thread is blocked, i.e. there is a waiter
5514//    0 : neutral: thread is running or ready,
5515//        could have been signaled after a wait started
5516//    1 : signaled - thread is running or ready
5517//
5518
5519// utility to compute the abstime argument to timedwait:
5520// millis is the relative timeout time
5521// abstime will be the absolute timeout time
5522// TODO: replace compute_abstime() with unpackTime()
5523
5524static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5525  if (millis < 0)  millis = 0;
5526
5527  jlong seconds = millis / 1000;
5528  millis %= 1000;
5529  if (seconds > 50000000) { // see man cond_timedwait(3T)
5530    seconds = 50000000;
5531  }
5532
5533  if (os::supports_monotonic_clock()) {
5534    struct timespec now;
5535    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5536    assert_status(status == 0, status, "clock_gettime");
5537    abstime->tv_sec = now.tv_sec  + seconds;
5538    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5539    if (nanos >= NANOSECS_PER_SEC) {
5540      abstime->tv_sec += 1;
5541      nanos -= NANOSECS_PER_SEC;
5542    }
5543    abstime->tv_nsec = nanos;
5544  } else {
5545    struct timeval now;
5546    int status = gettimeofday(&now, NULL);
5547    assert(status == 0, "gettimeofday");
5548    abstime->tv_sec = now.tv_sec  + seconds;
5549    long usec = now.tv_usec + millis * 1000;
5550    if (usec >= 1000000) {
5551      abstime->tv_sec += 1;
5552      usec -= 1000000;
5553    }
5554    abstime->tv_nsec = usec * 1000;
5555  }
5556  return abstime;
5557}
5558
5559void os::PlatformEvent::park() {       // AKA "down()"
5560  // Transitions for _Event:
5561  //   -1 => -1 : illegal
5562  //    1 =>  0 : pass - return immediately
5563  //    0 => -1 : block; then set _Event to 0 before returning
5564
5565  // Invariant: Only the thread associated with the Event/PlatformEvent
5566  // may call park().
5567  // TODO: assert that _Assoc != NULL or _Assoc == Self
5568  assert(_nParked == 0, "invariant");
5569
5570  int v;
5571  for (;;) {
5572    v = _Event;
5573    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5574  }
5575  guarantee(v >= 0, "invariant");
5576  if (v == 0) {
5577    // Do this the hard way by blocking ...
5578    int status = pthread_mutex_lock(_mutex);
5579    assert_status(status == 0, status, "mutex_lock");
5580    guarantee(_nParked == 0, "invariant");
5581    ++_nParked;
5582    while (_Event < 0) {
5583      status = pthread_cond_wait(_cond, _mutex);
5584      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5585      // Treat this the same as if the wait was interrupted
5586      if (status == ETIME) { status = EINTR; }
5587      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5588    }
5589    --_nParked;
5590
5591    _Event = 0;
5592    status = pthread_mutex_unlock(_mutex);
5593    assert_status(status == 0, status, "mutex_unlock");
5594    // Paranoia to ensure our locked and lock-free paths interact
5595    // correctly with each other.
5596    OrderAccess::fence();
5597  }
5598  guarantee(_Event >= 0, "invariant");
5599}
5600
5601int os::PlatformEvent::park(jlong millis) {
5602  // Transitions for _Event:
5603  //   -1 => -1 : illegal
5604  //    1 =>  0 : pass - return immediately
5605  //    0 => -1 : block; then set _Event to 0 before returning
5606
5607  guarantee(_nParked == 0, "invariant");
5608
5609  int v;
5610  for (;;) {
5611    v = _Event;
5612    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5613  }
5614  guarantee(v >= 0, "invariant");
5615  if (v != 0) return OS_OK;
5616
5617  // We do this the hard way, by blocking the thread.
5618  // Consider enforcing a minimum timeout value.
5619  struct timespec abst;
5620  compute_abstime(&abst, millis);
5621
5622  int ret = OS_TIMEOUT;
5623  int status = pthread_mutex_lock(_mutex);
5624  assert_status(status == 0, status, "mutex_lock");
5625  guarantee(_nParked == 0, "invariant");
5626  ++_nParked;
5627
5628  // Object.wait(timo) will return because of
5629  // (a) notification
5630  // (b) timeout
5631  // (c) thread.interrupt
5632  //
5633  // Thread.interrupt and object.notify{All} both call Event::set.
5634  // That is, we treat thread.interrupt as a special case of notification.
5635  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5636  // We assume all ETIME returns are valid.
5637  //
5638  // TODO: properly differentiate simultaneous notify+interrupt.
5639  // In that case, we should propagate the notify to another waiter.
5640
5641  while (_Event < 0) {
5642    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5643    assert_status(status == 0 || status == EINTR ||
5644                  status == ETIME || status == ETIMEDOUT,
5645                  status, "cond_timedwait");
5646    if (!FilterSpuriousWakeups) break;                 // previous semantics
5647    if (status == ETIME || status == ETIMEDOUT) break;
5648    // We consume and ignore EINTR and spurious wakeups.
5649  }
5650  --_nParked;
5651  if (_Event >= 0) {
5652    ret = OS_OK;
5653  }
5654  _Event = 0;
5655  status = pthread_mutex_unlock(_mutex);
5656  assert_status(status == 0, status, "mutex_unlock");
5657  assert(_nParked == 0, "invariant");
5658  // Paranoia to ensure our locked and lock-free paths interact
5659  // correctly with each other.
5660  OrderAccess::fence();
5661  return ret;
5662}
5663
5664void os::PlatformEvent::unpark() {
5665  // Transitions for _Event:
5666  //    0 => 1 : just return
5667  //    1 => 1 : just return
5668  //   -1 => either 0 or 1; must signal target thread
5669  //         That is, we can safely transition _Event from -1 to either
5670  //         0 or 1.
5671  // See also: "Semaphores in Plan 9" by Mullender & Cox
5672  //
5673  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5674  // that it will take two back-to-back park() calls for the owning
5675  // thread to block. This has the benefit of forcing a spurious return
5676  // from the first park() call after an unpark() call which will help
5677  // shake out uses of park() and unpark() without condition variables.
5678
5679  if (Atomic::xchg(1, &_Event) >= 0) return;
5680
5681  // Wait for the thread associated with the event to vacate
5682  int status = pthread_mutex_lock(_mutex);
5683  assert_status(status == 0, status, "mutex_lock");
5684  int AnyWaiters = _nParked;
5685  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5686  status = pthread_mutex_unlock(_mutex);
5687  assert_status(status == 0, status, "mutex_unlock");
5688  if (AnyWaiters != 0) {
5689    // Note that we signal() *after* dropping the lock for "immortal" Events.
5690    // This is safe and avoids a common class of  futile wakeups.  In rare
5691    // circumstances this can cause a thread to return prematurely from
5692    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5693    // will simply re-test the condition and re-park itself.
5694    // This provides particular benefit if the underlying platform does not
5695    // provide wait morphing.
5696    status = pthread_cond_signal(_cond);
5697    assert_status(status == 0, status, "cond_signal");
5698  }
5699}
5700
5701
5702// JSR166
5703// -------------------------------------------------------
5704
5705// The solaris and linux implementations of park/unpark are fairly
5706// conservative for now, but can be improved. They currently use a
5707// mutex/condvar pair, plus a a count.
5708// Park decrements count if > 0, else does a condvar wait.  Unpark
5709// sets count to 1 and signals condvar.  Only one thread ever waits
5710// on the condvar. Contention seen when trying to park implies that someone
5711// is unparking you, so don't wait. And spurious returns are fine, so there
5712// is no need to track notifications.
5713
5714// This code is common to linux and solaris and will be moved to a
5715// common place in dolphin.
5716//
5717// The passed in time value is either a relative time in nanoseconds
5718// or an absolute time in milliseconds. Either way it has to be unpacked
5719// into suitable seconds and nanoseconds components and stored in the
5720// given timespec structure.
5721// Given time is a 64-bit value and the time_t used in the timespec is only
5722// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5723// overflow if times way in the future are given. Further on Solaris versions
5724// prior to 10 there is a restriction (see cond_timedwait) that the specified
5725// number of seconds, in abstime, is less than current_time  + 100,000,000.
5726// As it will be 28 years before "now + 100000000" will overflow we can
5727// ignore overflow and just impose a hard-limit on seconds using the value
5728// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5729// years from "now".
5730
5731static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5732  assert(time > 0, "convertTime");
5733  time_t max_secs = 0;
5734
5735  if (!os::supports_monotonic_clock() || isAbsolute) {
5736    struct timeval now;
5737    int status = gettimeofday(&now, NULL);
5738    assert(status == 0, "gettimeofday");
5739
5740    max_secs = now.tv_sec + MAX_SECS;
5741
5742    if (isAbsolute) {
5743      jlong secs = time / 1000;
5744      if (secs > max_secs) {
5745        absTime->tv_sec = max_secs;
5746      } else {
5747        absTime->tv_sec = secs;
5748      }
5749      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5750    } else {
5751      jlong secs = time / NANOSECS_PER_SEC;
5752      if (secs >= MAX_SECS) {
5753        absTime->tv_sec = max_secs;
5754        absTime->tv_nsec = 0;
5755      } else {
5756        absTime->tv_sec = now.tv_sec + secs;
5757        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5758        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5759          absTime->tv_nsec -= NANOSECS_PER_SEC;
5760          ++absTime->tv_sec; // note: this must be <= max_secs
5761        }
5762      }
5763    }
5764  } else {
5765    // must be relative using monotonic clock
5766    struct timespec now;
5767    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5768    assert_status(status == 0, status, "clock_gettime");
5769    max_secs = now.tv_sec + MAX_SECS;
5770    jlong secs = time / NANOSECS_PER_SEC;
5771    if (secs >= MAX_SECS) {
5772      absTime->tv_sec = max_secs;
5773      absTime->tv_nsec = 0;
5774    } else {
5775      absTime->tv_sec = now.tv_sec + secs;
5776      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5777      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5778        absTime->tv_nsec -= NANOSECS_PER_SEC;
5779        ++absTime->tv_sec; // note: this must be <= max_secs
5780      }
5781    }
5782  }
5783  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5784  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5785  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5786  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5787}
5788
5789void Parker::park(bool isAbsolute, jlong time) {
5790  // Ideally we'd do something useful while spinning, such
5791  // as calling unpackTime().
5792
5793  // Optional fast-path check:
5794  // Return immediately if a permit is available.
5795  // We depend on Atomic::xchg() having full barrier semantics
5796  // since we are doing a lock-free update to _counter.
5797  if (Atomic::xchg(0, &_counter) > 0) return;
5798
5799  Thread* thread = Thread::current();
5800  assert(thread->is_Java_thread(), "Must be JavaThread");
5801  JavaThread *jt = (JavaThread *)thread;
5802
5803  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5804  // Check interrupt before trying to wait
5805  if (Thread::is_interrupted(thread, false)) {
5806    return;
5807  }
5808
5809  // Next, demultiplex/decode time arguments
5810  timespec absTime;
5811  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5812    return;
5813  }
5814  if (time > 0) {
5815    unpackTime(&absTime, isAbsolute, time);
5816  }
5817
5818
5819  // Enter safepoint region
5820  // Beware of deadlocks such as 6317397.
5821  // The per-thread Parker:: mutex is a classic leaf-lock.
5822  // In particular a thread must never block on the Threads_lock while
5823  // holding the Parker:: mutex.  If safepoints are pending both the
5824  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5825  ThreadBlockInVM tbivm(jt);
5826
5827  // Don't wait if cannot get lock since interference arises from
5828  // unblocking.  Also. check interrupt before trying wait
5829  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5830    return;
5831  }
5832
5833  int status;
5834  if (_counter > 0)  { // no wait needed
5835    _counter = 0;
5836    status = pthread_mutex_unlock(_mutex);
5837    assert_status(status == 0, status, "invariant");
5838    // Paranoia to ensure our locked and lock-free paths interact
5839    // correctly with each other and Java-level accesses.
5840    OrderAccess::fence();
5841    return;
5842  }
5843
5844#ifdef ASSERT
5845  // Don't catch signals while blocked; let the running threads have the signals.
5846  // (This allows a debugger to break into the running thread.)
5847  sigset_t oldsigs;
5848  sigemptyset(&oldsigs);
5849  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5850  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5851#endif
5852
5853  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5854  jt->set_suspend_equivalent();
5855  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5856
5857  assert(_cur_index == -1, "invariant");
5858  if (time == 0) {
5859    _cur_index = REL_INDEX; // arbitrary choice when not timed
5860    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5861  } else {
5862    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5863    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5864  }
5865  _cur_index = -1;
5866  assert_status(status == 0 || status == EINTR ||
5867                status == ETIME || status == ETIMEDOUT,
5868                status, "cond_timedwait");
5869
5870#ifdef ASSERT
5871  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5872#endif
5873
5874  _counter = 0;
5875  status = pthread_mutex_unlock(_mutex);
5876  assert_status(status == 0, status, "invariant");
5877  // Paranoia to ensure our locked and lock-free paths interact
5878  // correctly with each other and Java-level accesses.
5879  OrderAccess::fence();
5880
5881  // If externally suspended while waiting, re-suspend
5882  if (jt->handle_special_suspend_equivalent_condition()) {
5883    jt->java_suspend_self();
5884  }
5885}
5886
5887void Parker::unpark() {
5888  int status = pthread_mutex_lock(_mutex);
5889  assert_status(status == 0, status, "invariant");
5890  const int s = _counter;
5891  _counter = 1;
5892  // must capture correct index before unlocking
5893  int index = _cur_index;
5894  status = pthread_mutex_unlock(_mutex);
5895  assert_status(status == 0, status, "invariant");
5896  if (s < 1 && index != -1) {
5897    // thread is definitely parked
5898    status = pthread_cond_signal(&_cond[index]);
5899    assert_status(status == 0, status, "invariant");
5900  }
5901}
5902
5903
5904extern char** environ;
5905
5906// Run the specified command in a separate process. Return its exit value,
5907// or -1 on failure (e.g. can't fork a new process).
5908// Unlike system(), this function can be called from signal handler. It
5909// doesn't block SIGINT et al.
5910int os::fork_and_exec(char* cmd) {
5911  const char * argv[4] = {"sh", "-c", cmd, NULL};
5912
5913  pid_t pid = fork();
5914
5915  if (pid < 0) {
5916    // fork failed
5917    return -1;
5918
5919  } else if (pid == 0) {
5920    // child process
5921
5922    execve("/bin/sh", (char* const*)argv, environ);
5923
5924    // execve failed
5925    _exit(-1);
5926
5927  } else  {
5928    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5929    // care about the actual exit code, for now.
5930
5931    int status;
5932
5933    // Wait for the child process to exit.  This returns immediately if
5934    // the child has already exited. */
5935    while (waitpid(pid, &status, 0) < 0) {
5936      switch (errno) {
5937      case ECHILD: return 0;
5938      case EINTR: break;
5939      default: return -1;
5940      }
5941    }
5942
5943    if (WIFEXITED(status)) {
5944      // The child exited normally; get its exit code.
5945      return WEXITSTATUS(status);
5946    } else if (WIFSIGNALED(status)) {
5947      // The child exited because of a signal
5948      // The best value to return is 0x80 + signal number,
5949      // because that is what all Unix shells do, and because
5950      // it allows callers to distinguish between process exit and
5951      // process death by signal.
5952      return 0x80 + WTERMSIG(status);
5953    } else {
5954      // Unknown exit code; pass it through
5955      return status;
5956    }
5957  }
5958}
5959
5960// is_headless_jre()
5961//
5962// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5963// in order to report if we are running in a headless jre
5964//
5965// Since JDK8 xawt/libmawt.so was moved into the same directory
5966// as libawt.so, and renamed libawt_xawt.so
5967//
5968bool os::is_headless_jre() {
5969  struct stat statbuf;
5970  char buf[MAXPATHLEN];
5971  char libmawtpath[MAXPATHLEN];
5972  const char *xawtstr  = "/xawt/libmawt.so";
5973  const char *new_xawtstr = "/libawt_xawt.so";
5974  char *p;
5975
5976  // Get path to libjvm.so
5977  os::jvm_path(buf, sizeof(buf));
5978
5979  // Get rid of libjvm.so
5980  p = strrchr(buf, '/');
5981  if (p == NULL) {
5982    return false;
5983  } else {
5984    *p = '\0';
5985  }
5986
5987  // Get rid of client or server
5988  p = strrchr(buf, '/');
5989  if (p == NULL) {
5990    return false;
5991  } else {
5992    *p = '\0';
5993  }
5994
5995  // check xawt/libmawt.so
5996  strcpy(libmawtpath, buf);
5997  strcat(libmawtpath, xawtstr);
5998  if (::stat(libmawtpath, &statbuf) == 0) return false;
5999
6000  // check libawt_xawt.so
6001  strcpy(libmawtpath, buf);
6002  strcat(libmawtpath, new_xawtstr);
6003  if (::stat(libmawtpath, &statbuf) == 0) return false;
6004
6005  return true;
6006}
6007
6008// Get the default path to the core file
6009// Returns the length of the string
6010int os::get_core_path(char* buffer, size_t bufferSize) {
6011  /*
6012   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6013   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6014   */
6015  const int core_pattern_len = 129;
6016  char core_pattern[core_pattern_len] = {0};
6017
6018  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6019  if (core_pattern_file == -1) {
6020    return -1;
6021  }
6022
6023  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6024  ::close(core_pattern_file);
6025  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6026    return -1;
6027  }
6028  if (core_pattern[ret-1] == '\n') {
6029    core_pattern[ret-1] = '\0';
6030  } else {
6031    core_pattern[ret] = '\0';
6032  }
6033
6034  char *pid_pos = strstr(core_pattern, "%p");
6035  int written;
6036
6037  if (core_pattern[0] == '/') {
6038    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6039  } else {
6040    char cwd[PATH_MAX];
6041
6042    const char* p = get_current_directory(cwd, PATH_MAX);
6043    if (p == NULL) {
6044      return -1;
6045    }
6046
6047    if (core_pattern[0] == '|') {
6048      written = jio_snprintf(buffer, bufferSize,
6049                             "\"%s\" (or dumping to %s/core.%d)",
6050                             &core_pattern[1], p, current_process_id());
6051    } else {
6052      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6053    }
6054  }
6055
6056  if (written < 0) {
6057    return -1;
6058  }
6059
6060  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6061    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6062
6063    if (core_uses_pid_file != -1) {
6064      char core_uses_pid = 0;
6065      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6066      ::close(core_uses_pid_file);
6067
6068      if (core_uses_pid == '1') {
6069        jio_snprintf(buffer + written, bufferSize - written,
6070                                          ".%d", current_process_id());
6071      }
6072    }
6073  }
6074
6075  return strlen(buffer);
6076}
6077
6078bool os::start_debugging(char *buf, int buflen) {
6079  int len = (int)strlen(buf);
6080  char *p = &buf[len];
6081
6082  jio_snprintf(p, buflen-len,
6083               "\n\n"
6084               "Do you want to debug the problem?\n\n"
6085               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6086               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6087               "Otherwise, press RETURN to abort...",
6088               os::current_process_id(), os::current_process_id(),
6089               os::current_thread_id(), os::current_thread_id());
6090
6091  bool yes = os::message_box("Unexpected Error", buf);
6092
6093  if (yes) {
6094    // yes, user asked VM to launch debugger
6095    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6096                 os::current_process_id(), os::current_process_id());
6097
6098    os::fork_and_exec(buf);
6099    yes = false;
6100  }
6101  return yes;
6102}
6103
6104static inline struct timespec get_mtime(const char* filename) {
6105  struct stat st;
6106  int ret = os::stat(filename, &st);
6107  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6108  return st.st_mtim;
6109}
6110
6111int os::compare_file_modified_times(const char* file1, const char* file2) {
6112  struct timespec filetime1 = get_mtime(file1);
6113  struct timespec filetime2 = get_mtime(file2);
6114  int diff = filetime1.tv_sec - filetime2.tv_sec;
6115  if (diff == 0) {
6116    return filetime1.tv_nsec - filetime2.tv_nsec;
6117  }
6118  return diff;
6119}
6120
6121/////////////// Unit tests ///////////////
6122
6123#ifndef PRODUCT
6124
6125#define test_log(...)              \
6126  do {                             \
6127    if (VerboseInternalVMTests) {  \
6128      tty->print_cr(__VA_ARGS__);  \
6129      tty->flush();                \
6130    }                              \
6131  } while (false)
6132
6133class TestReserveMemorySpecial : AllStatic {
6134 public:
6135  static void small_page_write(void* addr, size_t size) {
6136    size_t page_size = os::vm_page_size();
6137
6138    char* end = (char*)addr + size;
6139    for (char* p = (char*)addr; p < end; p += page_size) {
6140      *p = 1;
6141    }
6142  }
6143
6144  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6145    if (!UseHugeTLBFS) {
6146      return;
6147    }
6148
6149    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6150
6151    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6152
6153    if (addr != NULL) {
6154      small_page_write(addr, size);
6155
6156      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6157    }
6158  }
6159
6160  static void test_reserve_memory_special_huge_tlbfs_only() {
6161    if (!UseHugeTLBFS) {
6162      return;
6163    }
6164
6165    size_t lp = os::large_page_size();
6166
6167    for (size_t size = lp; size <= lp * 10; size += lp) {
6168      test_reserve_memory_special_huge_tlbfs_only(size);
6169    }
6170  }
6171
6172  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6173    size_t lp = os::large_page_size();
6174    size_t ag = os::vm_allocation_granularity();
6175
6176    // sizes to test
6177    const size_t sizes[] = {
6178      lp, lp + ag, lp + lp / 2, lp * 2,
6179      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6180      lp * 10, lp * 10 + lp / 2
6181    };
6182    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6183
6184    // For each size/alignment combination, we test three scenarios:
6185    // 1) with req_addr == NULL
6186    // 2) with a non-null req_addr at which we expect to successfully allocate
6187    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6188    //    expect the allocation to either fail or to ignore req_addr
6189
6190    // Pre-allocate two areas; they shall be as large as the largest allocation
6191    //  and aligned to the largest alignment we will be testing.
6192    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6193    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6194      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6195      -1, 0);
6196    assert(mapping1 != MAP_FAILED, "should work");
6197
6198    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6199      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6200      -1, 0);
6201    assert(mapping2 != MAP_FAILED, "should work");
6202
6203    // Unmap the first mapping, but leave the second mapping intact: the first
6204    // mapping will serve as a value for a "good" req_addr (case 2). The second
6205    // mapping, still intact, as "bad" req_addr (case 3).
6206    ::munmap(mapping1, mapping_size);
6207
6208    // Case 1
6209    test_log("%s, req_addr NULL:", __FUNCTION__);
6210    test_log("size            align           result");
6211
6212    for (int i = 0; i < num_sizes; i++) {
6213      const size_t size = sizes[i];
6214      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6215        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6216        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6217                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6218        if (p != NULL) {
6219          assert(is_ptr_aligned(p, alignment), "must be");
6220          small_page_write(p, size);
6221          os::Linux::release_memory_special_huge_tlbfs(p, size);
6222        }
6223      }
6224    }
6225
6226    // Case 2
6227    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6228    test_log("size            align           req_addr         result");
6229
6230    for (int i = 0; i < num_sizes; i++) {
6231      const size_t size = sizes[i];
6232      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6233        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6234        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6235        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6236                 size, alignment, p2i(req_addr), p2i(p),
6237                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6238        if (p != NULL) {
6239          assert(p == req_addr, "must be");
6240          small_page_write(p, size);
6241          os::Linux::release_memory_special_huge_tlbfs(p, size);
6242        }
6243      }
6244    }
6245
6246    // Case 3
6247    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6248    test_log("size            align           req_addr         result");
6249
6250    for (int i = 0; i < num_sizes; i++) {
6251      const size_t size = sizes[i];
6252      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6253        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6254        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6255        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6256                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6257        // as the area around req_addr contains already existing mappings, the API should always
6258        // return NULL (as per contract, it cannot return another address)
6259        assert(p == NULL, "must be");
6260      }
6261    }
6262
6263    ::munmap(mapping2, mapping_size);
6264
6265  }
6266
6267  static void test_reserve_memory_special_huge_tlbfs() {
6268    if (!UseHugeTLBFS) {
6269      return;
6270    }
6271
6272    test_reserve_memory_special_huge_tlbfs_only();
6273    test_reserve_memory_special_huge_tlbfs_mixed();
6274  }
6275
6276  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6277    if (!UseSHM) {
6278      return;
6279    }
6280
6281    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6282
6283    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6284
6285    if (addr != NULL) {
6286      assert(is_ptr_aligned(addr, alignment), "Check");
6287      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6288
6289      small_page_write(addr, size);
6290
6291      os::Linux::release_memory_special_shm(addr, size);
6292    }
6293  }
6294
6295  static void test_reserve_memory_special_shm() {
6296    size_t lp = os::large_page_size();
6297    size_t ag = os::vm_allocation_granularity();
6298
6299    for (size_t size = ag; size < lp * 3; size += ag) {
6300      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6301        test_reserve_memory_special_shm(size, alignment);
6302      }
6303    }
6304  }
6305
6306  static void test() {
6307    test_reserve_memory_special_huge_tlbfs();
6308    test_reserve_memory_special_shm();
6309  }
6310};
6311
6312void TestReserveMemorySpecial_test() {
6313  TestReserveMemorySpecial::test();
6314}
6315
6316#endif
6317