os_linux.cpp revision 11330:778d1fc95e05
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_linux.inline.hpp"
41#include "os_share_linux.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/init.hpp"
51#include "runtime/java.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/mutexLocker.hpp"
54#include "runtime/objectMonitor.hpp"
55#include "runtime/orderAccess.inline.hpp"
56#include "runtime/osThread.hpp"
57#include "runtime/perfMemory.hpp"
58#include "runtime/sharedRuntime.hpp"
59#include "runtime/statSampler.hpp"
60#include "runtime/stubRoutines.hpp"
61#include "runtime/thread.inline.hpp"
62#include "runtime/threadCritical.hpp"
63#include "runtime/timer.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/elfFile.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/macros.hpp"
74#include "utilities/vmError.hpp"
75
76// put OS-includes here
77# include <sys/types.h>
78# include <sys/mman.h>
79# include <sys/stat.h>
80# include <sys/select.h>
81# include <pthread.h>
82# include <signal.h>
83# include <errno.h>
84# include <dlfcn.h>
85# include <stdio.h>
86# include <unistd.h>
87# include <sys/resource.h>
88# include <pthread.h>
89# include <sys/stat.h>
90# include <sys/time.h>
91# include <sys/times.h>
92# include <sys/utsname.h>
93# include <sys/socket.h>
94# include <sys/wait.h>
95# include <pwd.h>
96# include <poll.h>
97# include <semaphore.h>
98# include <fcntl.h>
99# include <string.h>
100# include <syscall.h>
101# include <sys/sysinfo.h>
102# include <gnu/libc-version.h>
103# include <sys/ipc.h>
104# include <sys/shm.h>
105# include <link.h>
106# include <stdint.h>
107# include <inttypes.h>
108# include <sys/ioctl.h>
109
110#ifndef _GNU_SOURCE
111  #define _GNU_SOURCE
112  #include <sched.h>
113  #undef _GNU_SOURCE
114#else
115  #include <sched.h>
116#endif
117
118// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
119// getrusage() is prepared to handle the associated failure.
120#ifndef RUSAGE_THREAD
121  #define RUSAGE_THREAD   (1)               /* only the calling thread */
122#endif
123
124#define MAX_PATH    (2 * K)
125
126#define MAX_SECS 100000000
127
128// for timer info max values which include all bits
129#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130
131#define LARGEPAGES_BIT (1 << 6)
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Linux::_physical_memory = 0;
135
136address   os::Linux::_initial_thread_stack_bottom = NULL;
137uintptr_t os::Linux::_initial_thread_stack_size   = 0;
138
139int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
141int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
142Mutex* os::Linux::_createThread_lock = NULL;
143pthread_t os::Linux::_main_thread;
144int os::Linux::_page_size = -1;
145const int os::Linux::_vm_default_page_size = (8 * K);
146bool os::Linux::_supports_fast_thread_cpu_time = false;
147uint32_t os::Linux::_os_version = 0;
148const char * os::Linux::_glibc_version = NULL;
149const char * os::Linux::_libpthread_version = NULL;
150pthread_condattr_t os::Linux::_condattr[1];
151
152static jlong initial_time_count=0;
153
154static int clock_tics_per_sec = 100;
155
156// For diagnostics to print a message once. see run_periodic_checks
157static sigset_t check_signal_done;
158static bool check_signals = true;
159
160// Signal number used to suspend/resume a thread
161
162// do not use any signal number less than SIGSEGV, see 4355769
163static int SR_signum = SIGUSR2;
164sigset_t SR_sigset;
165
166// Declarations
167static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
168
169// utility functions
170
171static int SR_initialize();
172
173julong os::available_memory() {
174  return Linux::available_memory();
175}
176
177julong os::Linux::available_memory() {
178  // values in struct sysinfo are "unsigned long"
179  struct sysinfo si;
180  sysinfo(&si);
181
182  return (julong)si.freeram * si.mem_unit;
183}
184
185julong os::physical_memory() {
186  return Linux::physical_memory();
187}
188
189// Return true if user is running as root.
190
191bool os::have_special_privileges() {
192  static bool init = false;
193  static bool privileges = false;
194  if (!init) {
195    privileges = (getuid() != geteuid()) || (getgid() != getegid());
196    init = true;
197  }
198  return privileges;
199}
200
201
202#ifndef SYS_gettid
203// i386: 224, ia64: 1105, amd64: 186, sparc 143
204  #ifdef __ia64__
205    #define SYS_gettid 1105
206  #else
207    #ifdef __i386__
208      #define SYS_gettid 224
209    #else
210      #ifdef __amd64__
211        #define SYS_gettid 186
212      #else
213        #ifdef __sparc__
214          #define SYS_gettid 143
215        #else
216          #error define gettid for the arch
217        #endif
218      #endif
219    #endif
220  #endif
221#endif
222
223// Cpu architecture string
224static char cpu_arch[] = HOTSPOT_LIB_ARCH;
225
226
227// pid_t gettid()
228//
229// Returns the kernel thread id of the currently running thread. Kernel
230// thread id is used to access /proc.
231pid_t os::Linux::gettid() {
232  int rslt = syscall(SYS_gettid);
233  assert(rslt != -1, "must be."); // old linuxthreads implementation?
234  return (pid_t)rslt;
235}
236
237// Most versions of linux have a bug where the number of processors are
238// determined by looking at the /proc file system.  In a chroot environment,
239// the system call returns 1.  This causes the VM to act as if it is
240// a single processor and elide locking (see is_MP() call).
241static bool unsafe_chroot_detected = false;
242static const char *unstable_chroot_error = "/proc file system not found.\n"
243                     "Java may be unstable running multithreaded in a chroot "
244                     "environment on Linux when /proc filesystem is not mounted.";
245
246void os::Linux::initialize_system_info() {
247  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
248  if (processor_count() == 1) {
249    pid_t pid = os::Linux::gettid();
250    char fname[32];
251    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
252    FILE *fp = fopen(fname, "r");
253    if (fp == NULL) {
254      unsafe_chroot_detected = true;
255    } else {
256      fclose(fp);
257    }
258  }
259  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
260  assert(processor_count() > 0, "linux error");
261}
262
263void os::init_system_properties_values() {
264  // The next steps are taken in the product version:
265  //
266  // Obtain the JAVA_HOME value from the location of libjvm.so.
267  // This library should be located at:
268  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
269  //
270  // If "/jre/lib/" appears at the right place in the path, then we
271  // assume libjvm.so is installed in a JDK and we use this path.
272  //
273  // Otherwise exit with message: "Could not create the Java virtual machine."
274  //
275  // The following extra steps are taken in the debugging version:
276  //
277  // If "/jre/lib/" does NOT appear at the right place in the path
278  // instead of exit check for $JAVA_HOME environment variable.
279  //
280  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
281  // then we append a fake suffix "hotspot/libjvm.so" to this path so
282  // it looks like libjvm.so is installed there
283  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
284  //
285  // Otherwise exit.
286  //
287  // Important note: if the location of libjvm.so changes this
288  // code needs to be changed accordingly.
289
290  // See ld(1):
291  //      The linker uses the following search paths to locate required
292  //      shared libraries:
293  //        1: ...
294  //        ...
295  //        7: The default directories, normally /lib and /usr/lib.
296#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
297  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
298#else
299  #define DEFAULT_LIBPATH "/lib:/usr/lib"
300#endif
301
302// Base path of extensions installed on the system.
303#define SYS_EXT_DIR     "/usr/java/packages"
304#define EXTENSIONS_DIR  "/lib/ext"
305
306  // Buffer that fits several sprintfs.
307  // Note that the space for the colon and the trailing null are provided
308  // by the nulls included by the sizeof operator.
309  const size_t bufsize =
310    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
311         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
312  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
313
314  // sysclasspath, java_home, dll_dir
315  {
316    char *pslash;
317    os::jvm_path(buf, bufsize);
318
319    // Found the full path to libjvm.so.
320    // Now cut the path to <java_home>/jre if we can.
321    pslash = strrchr(buf, '/');
322    if (pslash != NULL) {
323      *pslash = '\0';            // Get rid of /libjvm.so.
324    }
325    pslash = strrchr(buf, '/');
326    if (pslash != NULL) {
327      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
328    }
329    Arguments::set_dll_dir(buf);
330
331    if (pslash != NULL) {
332      pslash = strrchr(buf, '/');
333      if (pslash != NULL) {
334        *pslash = '\0';          // Get rid of /<arch>.
335        pslash = strrchr(buf, '/');
336        if (pslash != NULL) {
337          *pslash = '\0';        // Get rid of /lib.
338        }
339      }
340    }
341    Arguments::set_java_home(buf);
342    set_boot_path('/', ':');
343  }
344
345  // Where to look for native libraries.
346  //
347  // Note: Due to a legacy implementation, most of the library path
348  // is set in the launcher. This was to accomodate linking restrictions
349  // on legacy Linux implementations (which are no longer supported).
350  // Eventually, all the library path setting will be done here.
351  //
352  // However, to prevent the proliferation of improperly built native
353  // libraries, the new path component /usr/java/packages is added here.
354  // Eventually, all the library path setting will be done here.
355  {
356    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
357    // should always exist (until the legacy problem cited above is
358    // addressed).
359    const char *v = ::getenv("LD_LIBRARY_PATH");
360    const char *v_colon = ":";
361    if (v == NULL) { v = ""; v_colon = ""; }
362    // That's +1 for the colon and +1 for the trailing '\0'.
363    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
364                                                     strlen(v) + 1 +
365                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
366                                                     mtInternal);
367    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
368    Arguments::set_library_path(ld_library_path);
369    FREE_C_HEAP_ARRAY(char, ld_library_path);
370  }
371
372  // Extensions directories.
373  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
374  Arguments::set_ext_dirs(buf);
375
376  FREE_C_HEAP_ARRAY(char, buf);
377
378#undef DEFAULT_LIBPATH
379#undef SYS_EXT_DIR
380#undef EXTENSIONS_DIR
381}
382
383////////////////////////////////////////////////////////////////////////////////
384// breakpoint support
385
386void os::breakpoint() {
387  BREAKPOINT;
388}
389
390extern "C" void breakpoint() {
391  // use debugger to set breakpoint here
392}
393
394////////////////////////////////////////////////////////////////////////////////
395// signal support
396
397debug_only(static bool signal_sets_initialized = false);
398static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
399
400bool os::Linux::is_sig_ignored(int sig) {
401  struct sigaction oact;
402  sigaction(sig, (struct sigaction*)NULL, &oact);
403  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
404                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
405  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
406    return true;
407  } else {
408    return false;
409  }
410}
411
412void os::Linux::signal_sets_init() {
413  // Should also have an assertion stating we are still single-threaded.
414  assert(!signal_sets_initialized, "Already initialized");
415  // Fill in signals that are necessarily unblocked for all threads in
416  // the VM. Currently, we unblock the following signals:
417  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
418  //                         by -Xrs (=ReduceSignalUsage));
419  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
420  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
421  // the dispositions or masks wrt these signals.
422  // Programs embedding the VM that want to use the above signals for their
423  // own purposes must, at this time, use the "-Xrs" option to prevent
424  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
425  // (See bug 4345157, and other related bugs).
426  // In reality, though, unblocking these signals is really a nop, since
427  // these signals are not blocked by default.
428  sigemptyset(&unblocked_sigs);
429  sigemptyset(&allowdebug_blocked_sigs);
430  sigaddset(&unblocked_sigs, SIGILL);
431  sigaddset(&unblocked_sigs, SIGSEGV);
432  sigaddset(&unblocked_sigs, SIGBUS);
433  sigaddset(&unblocked_sigs, SIGFPE);
434#if defined(PPC64)
435  sigaddset(&unblocked_sigs, SIGTRAP);
436#endif
437  sigaddset(&unblocked_sigs, SR_signum);
438
439  if (!ReduceSignalUsage) {
440    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
441      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
442      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
443    }
444    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
445      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
446      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
447    }
448    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
449      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
450      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
451    }
452  }
453  // Fill in signals that are blocked by all but the VM thread.
454  sigemptyset(&vm_sigs);
455  if (!ReduceSignalUsage) {
456    sigaddset(&vm_sigs, BREAK_SIGNAL);
457  }
458  debug_only(signal_sets_initialized = true);
459
460}
461
462// These are signals that are unblocked while a thread is running Java.
463// (For some reason, they get blocked by default.)
464sigset_t* os::Linux::unblocked_signals() {
465  assert(signal_sets_initialized, "Not initialized");
466  return &unblocked_sigs;
467}
468
469// These are the signals that are blocked while a (non-VM) thread is
470// running Java. Only the VM thread handles these signals.
471sigset_t* os::Linux::vm_signals() {
472  assert(signal_sets_initialized, "Not initialized");
473  return &vm_sigs;
474}
475
476// These are signals that are blocked during cond_wait to allow debugger in
477sigset_t* os::Linux::allowdebug_blocked_signals() {
478  assert(signal_sets_initialized, "Not initialized");
479  return &allowdebug_blocked_sigs;
480}
481
482void os::Linux::hotspot_sigmask(Thread* thread) {
483
484  //Save caller's signal mask before setting VM signal mask
485  sigset_t caller_sigmask;
486  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
487
488  OSThread* osthread = thread->osthread();
489  osthread->set_caller_sigmask(caller_sigmask);
490
491  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
492
493  if (!ReduceSignalUsage) {
494    if (thread->is_VM_thread()) {
495      // Only the VM thread handles BREAK_SIGNAL ...
496      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
497    } else {
498      // ... all other threads block BREAK_SIGNAL
499      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
500    }
501  }
502}
503
504//////////////////////////////////////////////////////////////////////////////
505// detecting pthread library
506
507void os::Linux::libpthread_init() {
508  // Save glibc and pthread version strings.
509#if !defined(_CS_GNU_LIBC_VERSION) || \
510    !defined(_CS_GNU_LIBPTHREAD_VERSION)
511  #error "glibc too old (< 2.3.2)"
512#endif
513
514  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
515  assert(n > 0, "cannot retrieve glibc version");
516  char *str = (char *)malloc(n, mtInternal);
517  confstr(_CS_GNU_LIBC_VERSION, str, n);
518  os::Linux::set_glibc_version(str);
519
520  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
521  assert(n > 0, "cannot retrieve pthread version");
522  str = (char *)malloc(n, mtInternal);
523  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
524  os::Linux::set_libpthread_version(str);
525}
526
527/////////////////////////////////////////////////////////////////////////////
528// thread stack expansion
529
530// os::Linux::manually_expand_stack() takes care of expanding the thread
531// stack. Note that this is normally not needed: pthread stacks allocate
532// thread stack using mmap() without MAP_NORESERVE, so the stack is already
533// committed. Therefore it is not necessary to expand the stack manually.
534//
535// Manually expanding the stack was historically needed on LinuxThreads
536// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
537// it is kept to deal with very rare corner cases:
538//
539// For one, user may run the VM on an own implementation of threads
540// whose stacks are - like the old LinuxThreads - implemented using
541// mmap(MAP_GROWSDOWN).
542//
543// Also, this coding may be needed if the VM is running on the primordial
544// thread. Normally we avoid running on the primordial thread; however,
545// user may still invoke the VM on the primordial thread.
546//
547// The following historical comment describes the details about running
548// on a thread stack allocated with mmap(MAP_GROWSDOWN):
549
550
551// Force Linux kernel to expand current thread stack. If "bottom" is close
552// to the stack guard, caller should block all signals.
553//
554// MAP_GROWSDOWN:
555//   A special mmap() flag that is used to implement thread stacks. It tells
556//   kernel that the memory region should extend downwards when needed. This
557//   allows early versions of LinuxThreads to only mmap the first few pages
558//   when creating a new thread. Linux kernel will automatically expand thread
559//   stack as needed (on page faults).
560//
561//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
562//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
563//   region, it's hard to tell if the fault is due to a legitimate stack
564//   access or because of reading/writing non-exist memory (e.g. buffer
565//   overrun). As a rule, if the fault happens below current stack pointer,
566//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
567//   application (see Linux kernel fault.c).
568//
569//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
570//   stack overflow detection.
571//
572//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
573//   not use MAP_GROWSDOWN.
574//
575// To get around the problem and allow stack banging on Linux, we need to
576// manually expand thread stack after receiving the SIGSEGV.
577//
578// There are two ways to expand thread stack to address "bottom", we used
579// both of them in JVM before 1.5:
580//   1. adjust stack pointer first so that it is below "bottom", and then
581//      touch "bottom"
582//   2. mmap() the page in question
583//
584// Now alternate signal stack is gone, it's harder to use 2. For instance,
585// if current sp is already near the lower end of page 101, and we need to
586// call mmap() to map page 100, it is possible that part of the mmap() frame
587// will be placed in page 100. When page 100 is mapped, it is zero-filled.
588// That will destroy the mmap() frame and cause VM to crash.
589//
590// The following code works by adjusting sp first, then accessing the "bottom"
591// page to force a page fault. Linux kernel will then automatically expand the
592// stack mapping.
593//
594// _expand_stack_to() assumes its frame size is less than page size, which
595// should always be true if the function is not inlined.
596
597static void NOINLINE _expand_stack_to(address bottom) {
598  address sp;
599  size_t size;
600  volatile char *p;
601
602  // Adjust bottom to point to the largest address within the same page, it
603  // gives us a one-page buffer if alloca() allocates slightly more memory.
604  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
605  bottom += os::Linux::page_size() - 1;
606
607  // sp might be slightly above current stack pointer; if that's the case, we
608  // will alloca() a little more space than necessary, which is OK. Don't use
609  // os::current_stack_pointer(), as its result can be slightly below current
610  // stack pointer, causing us to not alloca enough to reach "bottom".
611  sp = (address)&sp;
612
613  if (sp > bottom) {
614    size = sp - bottom;
615    p = (volatile char *)alloca(size);
616    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
617    p[0] = '\0';
618  }
619}
620
621bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
622  assert(t!=NULL, "just checking");
623  assert(t->osthread()->expanding_stack(), "expand should be set");
624  assert(t->stack_base() != NULL, "stack_base was not initialized");
625
626  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
627    sigset_t mask_all, old_sigset;
628    sigfillset(&mask_all);
629    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
630    _expand_stack_to(addr);
631    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
632    return true;
633  }
634  return false;
635}
636
637//////////////////////////////////////////////////////////////////////////////
638// create new thread
639
640// Thread start routine for all newly created threads
641static void *thread_native_entry(Thread *thread) {
642  // Try to randomize the cache line index of hot stack frames.
643  // This helps when threads of the same stack traces evict each other's
644  // cache lines. The threads can be either from the same JVM instance, or
645  // from different JVM instances. The benefit is especially true for
646  // processors with hyperthreading technology.
647  static int counter = 0;
648  int pid = os::current_process_id();
649  alloca(((pid ^ counter++) & 7) * 128);
650
651  thread->initialize_thread_current();
652
653  OSThread* osthread = thread->osthread();
654  Monitor* sync = osthread->startThread_lock();
655
656  osthread->set_thread_id(os::current_thread_id());
657
658  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
659    os::current_thread_id(), (uintx) pthread_self());
660
661  if (UseNUMA) {
662    int lgrp_id = os::numa_get_group_id();
663    if (lgrp_id != -1) {
664      thread->set_lgrp_id(lgrp_id);
665    }
666  }
667  // initialize signal mask for this thread
668  os::Linux::hotspot_sigmask(thread);
669
670  // initialize floating point control register
671  os::Linux::init_thread_fpu_state();
672
673  // handshaking with parent thread
674  {
675    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
676
677    // notify parent thread
678    osthread->set_state(INITIALIZED);
679    sync->notify_all();
680
681    // wait until os::start_thread()
682    while (osthread->get_state() == INITIALIZED) {
683      sync->wait(Mutex::_no_safepoint_check_flag);
684    }
685  }
686
687  // call one more level start routine
688  thread->run();
689
690  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
691    os::current_thread_id(), (uintx) pthread_self());
692
693  // If a thread has not deleted itself ("delete this") as part of its
694  // termination sequence, we have to ensure thread-local-storage is
695  // cleared before we actually terminate. No threads should ever be
696  // deleted asynchronously with respect to their termination.
697  if (Thread::current_or_null_safe() != NULL) {
698    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
699    thread->clear_thread_current();
700  }
701
702  return 0;
703}
704
705bool os::create_thread(Thread* thread, ThreadType thr_type,
706                       size_t stack_size) {
707  assert(thread->osthread() == NULL, "caller responsible");
708
709  // Allocate the OSThread object
710  OSThread* osthread = new OSThread(NULL, NULL);
711  if (osthread == NULL) {
712    return false;
713  }
714
715  // set the correct thread state
716  osthread->set_thread_type(thr_type);
717
718  // Initial state is ALLOCATED but not INITIALIZED
719  osthread->set_state(ALLOCATED);
720
721  thread->set_osthread(osthread);
722
723  // init thread attributes
724  pthread_attr_t attr;
725  pthread_attr_init(&attr);
726  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
727
728  // stack size
729  // calculate stack size if it's not specified by caller
730  if (stack_size == 0) {
731    stack_size = os::Linux::default_stack_size(thr_type);
732
733    switch (thr_type) {
734    case os::java_thread:
735      // Java threads use ThreadStackSize which default value can be
736      // changed with the flag -Xss
737      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
738      stack_size = JavaThread::stack_size_at_create();
739      break;
740    case os::compiler_thread:
741      if (CompilerThreadStackSize > 0) {
742        stack_size = (size_t)(CompilerThreadStackSize * K);
743        break;
744      } // else fall through:
745        // use VMThreadStackSize if CompilerThreadStackSize is not defined
746    case os::vm_thread:
747    case os::pgc_thread:
748    case os::cgc_thread:
749    case os::watcher_thread:
750      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
751      break;
752    }
753  }
754
755  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
756  pthread_attr_setstacksize(&attr, stack_size);
757
758  // glibc guard page
759  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
760
761  ThreadState state;
762
763  {
764    pthread_t tid;
765    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
766
767    char buf[64];
768    if (ret == 0) {
769      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
770        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
771    } else {
772      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
773        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
774    }
775
776    pthread_attr_destroy(&attr);
777
778    if (ret != 0) {
779      // Need to clean up stuff we've allocated so far
780      thread->set_osthread(NULL);
781      delete osthread;
782      return false;
783    }
784
785    // Store pthread info into the OSThread
786    osthread->set_pthread_id(tid);
787
788    // Wait until child thread is either initialized or aborted
789    {
790      Monitor* sync_with_child = osthread->startThread_lock();
791      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
792      while ((state = osthread->get_state()) == ALLOCATED) {
793        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
794      }
795    }
796  }
797
798  // Aborted due to thread limit being reached
799  if (state == ZOMBIE) {
800    thread->set_osthread(NULL);
801    delete osthread;
802    return false;
803  }
804
805  // The thread is returned suspended (in state INITIALIZED),
806  // and is started higher up in the call chain
807  assert(state == INITIALIZED, "race condition");
808  return true;
809}
810
811/////////////////////////////////////////////////////////////////////////////
812// attach existing thread
813
814// bootstrap the main thread
815bool os::create_main_thread(JavaThread* thread) {
816  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
817  return create_attached_thread(thread);
818}
819
820bool os::create_attached_thread(JavaThread* thread) {
821#ifdef ASSERT
822  thread->verify_not_published();
823#endif
824
825  // Allocate the OSThread object
826  OSThread* osthread = new OSThread(NULL, NULL);
827
828  if (osthread == NULL) {
829    return false;
830  }
831
832  // Store pthread info into the OSThread
833  osthread->set_thread_id(os::Linux::gettid());
834  osthread->set_pthread_id(::pthread_self());
835
836  // initialize floating point control register
837  os::Linux::init_thread_fpu_state();
838
839  // Initial thread state is RUNNABLE
840  osthread->set_state(RUNNABLE);
841
842  thread->set_osthread(osthread);
843
844  if (UseNUMA) {
845    int lgrp_id = os::numa_get_group_id();
846    if (lgrp_id != -1) {
847      thread->set_lgrp_id(lgrp_id);
848    }
849  }
850
851  if (os::Linux::is_initial_thread()) {
852    // If current thread is initial thread, its stack is mapped on demand,
853    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
854    // the entire stack region to avoid SEGV in stack banging.
855    // It is also useful to get around the heap-stack-gap problem on SuSE
856    // kernel (see 4821821 for details). We first expand stack to the top
857    // of yellow zone, then enable stack yellow zone (order is significant,
858    // enabling yellow zone first will crash JVM on SuSE Linux), so there
859    // is no gap between the last two virtual memory regions.
860
861    JavaThread *jt = (JavaThread *)thread;
862    address addr = jt->stack_reserved_zone_base();
863    assert(addr != NULL, "initialization problem?");
864    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
865
866    osthread->set_expanding_stack();
867    os::Linux::manually_expand_stack(jt, addr);
868    osthread->clear_expanding_stack();
869  }
870
871  // initialize signal mask for this thread
872  // and save the caller's signal mask
873  os::Linux::hotspot_sigmask(thread);
874
875  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
876    os::current_thread_id(), (uintx) pthread_self());
877
878  return true;
879}
880
881void os::pd_start_thread(Thread* thread) {
882  OSThread * osthread = thread->osthread();
883  assert(osthread->get_state() != INITIALIZED, "just checking");
884  Monitor* sync_with_child = osthread->startThread_lock();
885  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
886  sync_with_child->notify();
887}
888
889// Free Linux resources related to the OSThread
890void os::free_thread(OSThread* osthread) {
891  assert(osthread != NULL, "osthread not set");
892
893  // We are told to free resources of the argument thread,
894  // but we can only really operate on the current thread.
895  assert(Thread::current()->osthread() == osthread,
896         "os::free_thread but not current thread");
897
898#ifdef ASSERT
899  sigset_t current;
900  sigemptyset(&current);
901  pthread_sigmask(SIG_SETMASK, NULL, &current);
902  assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
903#endif
904
905  // Restore caller's signal mask
906  sigset_t sigmask = osthread->caller_sigmask();
907  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
908
909  delete osthread;
910}
911
912//////////////////////////////////////////////////////////////////////////////
913// initial thread
914
915// Check if current thread is the initial thread, similar to Solaris thr_main.
916bool os::Linux::is_initial_thread(void) {
917  char dummy;
918  // If called before init complete, thread stack bottom will be null.
919  // Can be called if fatal error occurs before initialization.
920  if (initial_thread_stack_bottom() == NULL) return false;
921  assert(initial_thread_stack_bottom() != NULL &&
922         initial_thread_stack_size()   != 0,
923         "os::init did not locate initial thread's stack region");
924  if ((address)&dummy >= initial_thread_stack_bottom() &&
925      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
926    return true;
927  } else {
928    return false;
929  }
930}
931
932// Find the virtual memory area that contains addr
933static bool find_vma(address addr, address* vma_low, address* vma_high) {
934  FILE *fp = fopen("/proc/self/maps", "r");
935  if (fp) {
936    address low, high;
937    while (!feof(fp)) {
938      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
939        if (low <= addr && addr < high) {
940          if (vma_low)  *vma_low  = low;
941          if (vma_high) *vma_high = high;
942          fclose(fp);
943          return true;
944        }
945      }
946      for (;;) {
947        int ch = fgetc(fp);
948        if (ch == EOF || ch == (int)'\n') break;
949      }
950    }
951    fclose(fp);
952  }
953  return false;
954}
955
956// Locate initial thread stack. This special handling of initial thread stack
957// is needed because pthread_getattr_np() on most (all?) Linux distros returns
958// bogus value for initial thread.
959void os::Linux::capture_initial_stack(size_t max_size) {
960  // stack size is the easy part, get it from RLIMIT_STACK
961  size_t stack_size;
962  struct rlimit rlim;
963  getrlimit(RLIMIT_STACK, &rlim);
964  stack_size = rlim.rlim_cur;
965
966  // 6308388: a bug in ld.so will relocate its own .data section to the
967  //   lower end of primordial stack; reduce ulimit -s value a little bit
968  //   so we won't install guard page on ld.so's data section.
969  stack_size -= 2 * page_size();
970
971  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
972  //   7.1, in both cases we will get 2G in return value.
973  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
974  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
975  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
976  //   in case other parts in glibc still assumes 2M max stack size.
977  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
978  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
979  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
980    stack_size = 2 * K * K IA64_ONLY(*2);
981  }
982  // Try to figure out where the stack base (top) is. This is harder.
983  //
984  // When an application is started, glibc saves the initial stack pointer in
985  // a global variable "__libc_stack_end", which is then used by system
986  // libraries. __libc_stack_end should be pretty close to stack top. The
987  // variable is available since the very early days. However, because it is
988  // a private interface, it could disappear in the future.
989  //
990  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
991  // to __libc_stack_end, it is very close to stack top, but isn't the real
992  // stack top. Note that /proc may not exist if VM is running as a chroot
993  // program, so reading /proc/<pid>/stat could fail. Also the contents of
994  // /proc/<pid>/stat could change in the future (though unlikely).
995  //
996  // We try __libc_stack_end first. If that doesn't work, look for
997  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
998  // as a hint, which should work well in most cases.
999
1000  uintptr_t stack_start;
1001
1002  // try __libc_stack_end first
1003  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1004  if (p && *p) {
1005    stack_start = *p;
1006  } else {
1007    // see if we can get the start_stack field from /proc/self/stat
1008    FILE *fp;
1009    int pid;
1010    char state;
1011    int ppid;
1012    int pgrp;
1013    int session;
1014    int nr;
1015    int tpgrp;
1016    unsigned long flags;
1017    unsigned long minflt;
1018    unsigned long cminflt;
1019    unsigned long majflt;
1020    unsigned long cmajflt;
1021    unsigned long utime;
1022    unsigned long stime;
1023    long cutime;
1024    long cstime;
1025    long prio;
1026    long nice;
1027    long junk;
1028    long it_real;
1029    uintptr_t start;
1030    uintptr_t vsize;
1031    intptr_t rss;
1032    uintptr_t rsslim;
1033    uintptr_t scodes;
1034    uintptr_t ecode;
1035    int i;
1036
1037    // Figure what the primordial thread stack base is. Code is inspired
1038    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1039    // followed by command name surrounded by parentheses, state, etc.
1040    char stat[2048];
1041    int statlen;
1042
1043    fp = fopen("/proc/self/stat", "r");
1044    if (fp) {
1045      statlen = fread(stat, 1, 2047, fp);
1046      stat[statlen] = '\0';
1047      fclose(fp);
1048
1049      // Skip pid and the command string. Note that we could be dealing with
1050      // weird command names, e.g. user could decide to rename java launcher
1051      // to "java 1.4.2 :)", then the stat file would look like
1052      //                1234 (java 1.4.2 :)) R ... ...
1053      // We don't really need to know the command string, just find the last
1054      // occurrence of ")" and then start parsing from there. See bug 4726580.
1055      char * s = strrchr(stat, ')');
1056
1057      i = 0;
1058      if (s) {
1059        // Skip blank chars
1060        do { s++; } while (s && isspace(*s));
1061
1062#define _UFM UINTX_FORMAT
1063#define _DFM INTX_FORMAT
1064
1065        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1066        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1067        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1068                   &state,          // 3  %c
1069                   &ppid,           // 4  %d
1070                   &pgrp,           // 5  %d
1071                   &session,        // 6  %d
1072                   &nr,             // 7  %d
1073                   &tpgrp,          // 8  %d
1074                   &flags,          // 9  %lu
1075                   &minflt,         // 10 %lu
1076                   &cminflt,        // 11 %lu
1077                   &majflt,         // 12 %lu
1078                   &cmajflt,        // 13 %lu
1079                   &utime,          // 14 %lu
1080                   &stime,          // 15 %lu
1081                   &cutime,         // 16 %ld
1082                   &cstime,         // 17 %ld
1083                   &prio,           // 18 %ld
1084                   &nice,           // 19 %ld
1085                   &junk,           // 20 %ld
1086                   &it_real,        // 21 %ld
1087                   &start,          // 22 UINTX_FORMAT
1088                   &vsize,          // 23 UINTX_FORMAT
1089                   &rss,            // 24 INTX_FORMAT
1090                   &rsslim,         // 25 UINTX_FORMAT
1091                   &scodes,         // 26 UINTX_FORMAT
1092                   &ecode,          // 27 UINTX_FORMAT
1093                   &stack_start);   // 28 UINTX_FORMAT
1094      }
1095
1096#undef _UFM
1097#undef _DFM
1098
1099      if (i != 28 - 2) {
1100        assert(false, "Bad conversion from /proc/self/stat");
1101        // product mode - assume we are the initial thread, good luck in the
1102        // embedded case.
1103        warning("Can't detect initial thread stack location - bad conversion");
1104        stack_start = (uintptr_t) &rlim;
1105      }
1106    } else {
1107      // For some reason we can't open /proc/self/stat (for example, running on
1108      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1109      // most cases, so don't abort:
1110      warning("Can't detect initial thread stack location - no /proc/self/stat");
1111      stack_start = (uintptr_t) &rlim;
1112    }
1113  }
1114
1115  // Now we have a pointer (stack_start) very close to the stack top, the
1116  // next thing to do is to figure out the exact location of stack top. We
1117  // can find out the virtual memory area that contains stack_start by
1118  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1119  // and its upper limit is the real stack top. (again, this would fail if
1120  // running inside chroot, because /proc may not exist.)
1121
1122  uintptr_t stack_top;
1123  address low, high;
1124  if (find_vma((address)stack_start, &low, &high)) {
1125    // success, "high" is the true stack top. (ignore "low", because initial
1126    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1127    stack_top = (uintptr_t)high;
1128  } else {
1129    // failed, likely because /proc/self/maps does not exist
1130    warning("Can't detect initial thread stack location - find_vma failed");
1131    // best effort: stack_start is normally within a few pages below the real
1132    // stack top, use it as stack top, and reduce stack size so we won't put
1133    // guard page outside stack.
1134    stack_top = stack_start;
1135    stack_size -= 16 * page_size();
1136  }
1137
1138  // stack_top could be partially down the page so align it
1139  stack_top = align_size_up(stack_top, page_size());
1140
1141  if (max_size && stack_size > max_size) {
1142    _initial_thread_stack_size = max_size;
1143  } else {
1144    _initial_thread_stack_size = stack_size;
1145  }
1146
1147  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1148  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1149}
1150
1151////////////////////////////////////////////////////////////////////////////////
1152// time support
1153
1154// Time since start-up in seconds to a fine granularity.
1155// Used by VMSelfDestructTimer and the MemProfiler.
1156double os::elapsedTime() {
1157
1158  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1159}
1160
1161jlong os::elapsed_counter() {
1162  return javaTimeNanos() - initial_time_count;
1163}
1164
1165jlong os::elapsed_frequency() {
1166  return NANOSECS_PER_SEC; // nanosecond resolution
1167}
1168
1169bool os::supports_vtime() { return true; }
1170bool os::enable_vtime()   { return false; }
1171bool os::vtime_enabled()  { return false; }
1172
1173double os::elapsedVTime() {
1174  struct rusage usage;
1175  int retval = getrusage(RUSAGE_THREAD, &usage);
1176  if (retval == 0) {
1177    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1178  } else {
1179    // better than nothing, but not much
1180    return elapsedTime();
1181  }
1182}
1183
1184jlong os::javaTimeMillis() {
1185  timeval time;
1186  int status = gettimeofday(&time, NULL);
1187  assert(status != -1, "linux error");
1188  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1189}
1190
1191void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1192  timeval time;
1193  int status = gettimeofday(&time, NULL);
1194  assert(status != -1, "linux error");
1195  seconds = jlong(time.tv_sec);
1196  nanos = jlong(time.tv_usec) * 1000;
1197}
1198
1199
1200#ifndef CLOCK_MONOTONIC
1201  #define CLOCK_MONOTONIC (1)
1202#endif
1203
1204void os::Linux::clock_init() {
1205  // we do dlopen's in this particular order due to bug in linux
1206  // dynamical loader (see 6348968) leading to crash on exit
1207  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1208  if (handle == NULL) {
1209    handle = dlopen("librt.so", RTLD_LAZY);
1210  }
1211
1212  if (handle) {
1213    int (*clock_getres_func)(clockid_t, struct timespec*) =
1214           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1215    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1216           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1217    if (clock_getres_func && clock_gettime_func) {
1218      // See if monotonic clock is supported by the kernel. Note that some
1219      // early implementations simply return kernel jiffies (updated every
1220      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1221      // for nano time (though the monotonic property is still nice to have).
1222      // It's fixed in newer kernels, however clock_getres() still returns
1223      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1224      // resolution for now. Hopefully as people move to new kernels, this
1225      // won't be a problem.
1226      struct timespec res;
1227      struct timespec tp;
1228      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1229          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1230        // yes, monotonic clock is supported
1231        _clock_gettime = clock_gettime_func;
1232        return;
1233      } else {
1234        // close librt if there is no monotonic clock
1235        dlclose(handle);
1236      }
1237    }
1238  }
1239  warning("No monotonic clock was available - timed services may " \
1240          "be adversely affected if the time-of-day clock changes");
1241}
1242
1243#ifndef SYS_clock_getres
1244  #if defined(IA32) || defined(AMD64)
1245    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1246    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1247  #else
1248    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1249    #define sys_clock_getres(x,y)  -1
1250  #endif
1251#else
1252  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1253#endif
1254
1255void os::Linux::fast_thread_clock_init() {
1256  if (!UseLinuxPosixThreadCPUClocks) {
1257    return;
1258  }
1259  clockid_t clockid;
1260  struct timespec tp;
1261  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1262      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1263
1264  // Switch to using fast clocks for thread cpu time if
1265  // the sys_clock_getres() returns 0 error code.
1266  // Note, that some kernels may support the current thread
1267  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1268  // returned by the pthread_getcpuclockid().
1269  // If the fast Posix clocks are supported then the sys_clock_getres()
1270  // must return at least tp.tv_sec == 0 which means a resolution
1271  // better than 1 sec. This is extra check for reliability.
1272
1273  if (pthread_getcpuclockid_func &&
1274      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1275      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1276    _supports_fast_thread_cpu_time = true;
1277    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1278  }
1279}
1280
1281jlong os::javaTimeNanos() {
1282  if (os::supports_monotonic_clock()) {
1283    struct timespec tp;
1284    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1285    assert(status == 0, "gettime error");
1286    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1287    return result;
1288  } else {
1289    timeval time;
1290    int status = gettimeofday(&time, NULL);
1291    assert(status != -1, "linux error");
1292    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1293    return 1000 * usecs;
1294  }
1295}
1296
1297void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1298  if (os::supports_monotonic_clock()) {
1299    info_ptr->max_value = ALL_64_BITS;
1300
1301    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1302    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1303    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1304  } else {
1305    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1306    info_ptr->max_value = ALL_64_BITS;
1307
1308    // gettimeofday is a real time clock so it skips
1309    info_ptr->may_skip_backward = true;
1310    info_ptr->may_skip_forward = true;
1311  }
1312
1313  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1314}
1315
1316// Return the real, user, and system times in seconds from an
1317// arbitrary fixed point in the past.
1318bool os::getTimesSecs(double* process_real_time,
1319                      double* process_user_time,
1320                      double* process_system_time) {
1321  struct tms ticks;
1322  clock_t real_ticks = times(&ticks);
1323
1324  if (real_ticks == (clock_t) (-1)) {
1325    return false;
1326  } else {
1327    double ticks_per_second = (double) clock_tics_per_sec;
1328    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1329    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1330    *process_real_time = ((double) real_ticks) / ticks_per_second;
1331
1332    return true;
1333  }
1334}
1335
1336
1337char * os::local_time_string(char *buf, size_t buflen) {
1338  struct tm t;
1339  time_t long_time;
1340  time(&long_time);
1341  localtime_r(&long_time, &t);
1342  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1343               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1344               t.tm_hour, t.tm_min, t.tm_sec);
1345  return buf;
1346}
1347
1348struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1349  return localtime_r(clock, res);
1350}
1351
1352////////////////////////////////////////////////////////////////////////////////
1353// runtime exit support
1354
1355// Note: os::shutdown() might be called very early during initialization, or
1356// called from signal handler. Before adding something to os::shutdown(), make
1357// sure it is async-safe and can handle partially initialized VM.
1358void os::shutdown() {
1359
1360  // allow PerfMemory to attempt cleanup of any persistent resources
1361  perfMemory_exit();
1362
1363  // needs to remove object in file system
1364  AttachListener::abort();
1365
1366  // flush buffered output, finish log files
1367  ostream_abort();
1368
1369  // Check for abort hook
1370  abort_hook_t abort_hook = Arguments::abort_hook();
1371  if (abort_hook != NULL) {
1372    abort_hook();
1373  }
1374
1375}
1376
1377// Note: os::abort() might be called very early during initialization, or
1378// called from signal handler. Before adding something to os::abort(), make
1379// sure it is async-safe and can handle partially initialized VM.
1380void os::abort(bool dump_core, void* siginfo, const void* context) {
1381  os::shutdown();
1382  if (dump_core) {
1383#ifndef PRODUCT
1384    fdStream out(defaultStream::output_fd());
1385    out.print_raw("Current thread is ");
1386    char buf[16];
1387    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1388    out.print_raw_cr(buf);
1389    out.print_raw_cr("Dumping core ...");
1390#endif
1391    ::abort(); // dump core
1392  }
1393
1394  ::exit(1);
1395}
1396
1397// Die immediately, no exit hook, no abort hook, no cleanup.
1398void os::die() {
1399  ::abort();
1400}
1401
1402
1403// This method is a copy of JDK's sysGetLastErrorString
1404// from src/solaris/hpi/src/system_md.c
1405
1406size_t os::lasterror(char *buf, size_t len) {
1407  if (errno == 0)  return 0;
1408
1409  const char *s = os::strerror(errno);
1410  size_t n = ::strlen(s);
1411  if (n >= len) {
1412    n = len - 1;
1413  }
1414  ::strncpy(buf, s, n);
1415  buf[n] = '\0';
1416  return n;
1417}
1418
1419// thread_id is kernel thread id (similar to Solaris LWP id)
1420intx os::current_thread_id() { return os::Linux::gettid(); }
1421int os::current_process_id() {
1422  return ::getpid();
1423}
1424
1425// DLL functions
1426
1427const char* os::dll_file_extension() { return ".so"; }
1428
1429// This must be hard coded because it's the system's temporary
1430// directory not the java application's temp directory, ala java.io.tmpdir.
1431const char* os::get_temp_directory() { return "/tmp"; }
1432
1433static bool file_exists(const char* filename) {
1434  struct stat statbuf;
1435  if (filename == NULL || strlen(filename) == 0) {
1436    return false;
1437  }
1438  return os::stat(filename, &statbuf) == 0;
1439}
1440
1441bool os::dll_build_name(char* buffer, size_t buflen,
1442                        const char* pname, const char* fname) {
1443  bool retval = false;
1444  // Copied from libhpi
1445  const size_t pnamelen = pname ? strlen(pname) : 0;
1446
1447  // Return error on buffer overflow.
1448  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1449    return retval;
1450  }
1451
1452  if (pnamelen == 0) {
1453    snprintf(buffer, buflen, "lib%s.so", fname);
1454    retval = true;
1455  } else if (strchr(pname, *os::path_separator()) != NULL) {
1456    int n;
1457    char** pelements = split_path(pname, &n);
1458    if (pelements == NULL) {
1459      return false;
1460    }
1461    for (int i = 0; i < n; i++) {
1462      // Really shouldn't be NULL, but check can't hurt
1463      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1464        continue; // skip the empty path values
1465      }
1466      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1467      if (file_exists(buffer)) {
1468        retval = true;
1469        break;
1470      }
1471    }
1472    // release the storage
1473    for (int i = 0; i < n; i++) {
1474      if (pelements[i] != NULL) {
1475        FREE_C_HEAP_ARRAY(char, pelements[i]);
1476      }
1477    }
1478    if (pelements != NULL) {
1479      FREE_C_HEAP_ARRAY(char*, pelements);
1480    }
1481  } else {
1482    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1483    retval = true;
1484  }
1485  return retval;
1486}
1487
1488// check if addr is inside libjvm.so
1489bool os::address_is_in_vm(address addr) {
1490  static address libjvm_base_addr;
1491  Dl_info dlinfo;
1492
1493  if (libjvm_base_addr == NULL) {
1494    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1495      libjvm_base_addr = (address)dlinfo.dli_fbase;
1496    }
1497    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1498  }
1499
1500  if (dladdr((void *)addr, &dlinfo) != 0) {
1501    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1502  }
1503
1504  return false;
1505}
1506
1507bool os::dll_address_to_function_name(address addr, char *buf,
1508                                      int buflen, int *offset,
1509                                      bool demangle) {
1510  // buf is not optional, but offset is optional
1511  assert(buf != NULL, "sanity check");
1512
1513  Dl_info dlinfo;
1514
1515  if (dladdr((void*)addr, &dlinfo) != 0) {
1516    // see if we have a matching symbol
1517    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1518      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1519        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1520      }
1521      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1522      return true;
1523    }
1524    // no matching symbol so try for just file info
1525    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1526      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1527                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1528        return true;
1529      }
1530    }
1531  }
1532
1533  buf[0] = '\0';
1534  if (offset != NULL) *offset = -1;
1535  return false;
1536}
1537
1538struct _address_to_library_name {
1539  address addr;          // input : memory address
1540  size_t  buflen;        //         size of fname
1541  char*   fname;         // output: library name
1542  address base;          //         library base addr
1543};
1544
1545static int address_to_library_name_callback(struct dl_phdr_info *info,
1546                                            size_t size, void *data) {
1547  int i;
1548  bool found = false;
1549  address libbase = NULL;
1550  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1551
1552  // iterate through all loadable segments
1553  for (i = 0; i < info->dlpi_phnum; i++) {
1554    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1555    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1556      // base address of a library is the lowest address of its loaded
1557      // segments.
1558      if (libbase == NULL || libbase > segbase) {
1559        libbase = segbase;
1560      }
1561      // see if 'addr' is within current segment
1562      if (segbase <= d->addr &&
1563          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1564        found = true;
1565      }
1566    }
1567  }
1568
1569  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1570  // so dll_address_to_library_name() can fall through to use dladdr() which
1571  // can figure out executable name from argv[0].
1572  if (found && info->dlpi_name && info->dlpi_name[0]) {
1573    d->base = libbase;
1574    if (d->fname) {
1575      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1576    }
1577    return 1;
1578  }
1579  return 0;
1580}
1581
1582bool os::dll_address_to_library_name(address addr, char* buf,
1583                                     int buflen, int* offset) {
1584  // buf is not optional, but offset is optional
1585  assert(buf != NULL, "sanity check");
1586
1587  Dl_info dlinfo;
1588  struct _address_to_library_name data;
1589
1590  // There is a bug in old glibc dladdr() implementation that it could resolve
1591  // to wrong library name if the .so file has a base address != NULL. Here
1592  // we iterate through the program headers of all loaded libraries to find
1593  // out which library 'addr' really belongs to. This workaround can be
1594  // removed once the minimum requirement for glibc is moved to 2.3.x.
1595  data.addr = addr;
1596  data.fname = buf;
1597  data.buflen = buflen;
1598  data.base = NULL;
1599  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1600
1601  if (rslt) {
1602    // buf already contains library name
1603    if (offset) *offset = addr - data.base;
1604    return true;
1605  }
1606  if (dladdr((void*)addr, &dlinfo) != 0) {
1607    if (dlinfo.dli_fname != NULL) {
1608      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1609    }
1610    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1611      *offset = addr - (address)dlinfo.dli_fbase;
1612    }
1613    return true;
1614  }
1615
1616  buf[0] = '\0';
1617  if (offset) *offset = -1;
1618  return false;
1619}
1620
1621// Loads .dll/.so and
1622// in case of error it checks if .dll/.so was built for the
1623// same architecture as Hotspot is running on
1624
1625
1626// Remember the stack's state. The Linux dynamic linker will change
1627// the stack to 'executable' at most once, so we must safepoint only once.
1628bool os::Linux::_stack_is_executable = false;
1629
1630// VM operation that loads a library.  This is necessary if stack protection
1631// of the Java stacks can be lost during loading the library.  If we
1632// do not stop the Java threads, they can stack overflow before the stacks
1633// are protected again.
1634class VM_LinuxDllLoad: public VM_Operation {
1635 private:
1636  const char *_filename;
1637  char *_ebuf;
1638  int _ebuflen;
1639  void *_lib;
1640 public:
1641  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1642    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1643  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1644  void doit() {
1645    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1646    os::Linux::_stack_is_executable = true;
1647  }
1648  void* loaded_library() { return _lib; }
1649};
1650
1651void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1652  void * result = NULL;
1653  bool load_attempted = false;
1654
1655  // Check whether the library to load might change execution rights
1656  // of the stack. If they are changed, the protection of the stack
1657  // guard pages will be lost. We need a safepoint to fix this.
1658  //
1659  // See Linux man page execstack(8) for more info.
1660  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1661    ElfFile ef(filename);
1662    if (!ef.specifies_noexecstack()) {
1663      if (!is_init_completed()) {
1664        os::Linux::_stack_is_executable = true;
1665        // This is OK - No Java threads have been created yet, and hence no
1666        // stack guard pages to fix.
1667        //
1668        // This should happen only when you are building JDK7 using a very
1669        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1670        //
1671        // Dynamic loader will make all stacks executable after
1672        // this function returns, and will not do that again.
1673        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1674      } else {
1675        warning("You have loaded library %s which might have disabled stack guard. "
1676                "The VM will try to fix the stack guard now.\n"
1677                "It's highly recommended that you fix the library with "
1678                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1679                filename);
1680
1681        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1682        JavaThread *jt = JavaThread::current();
1683        if (jt->thread_state() != _thread_in_native) {
1684          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1685          // that requires ExecStack. Cannot enter safe point. Let's give up.
1686          warning("Unable to fix stack guard. Giving up.");
1687        } else {
1688          if (!LoadExecStackDllInVMThread) {
1689            // This is for the case where the DLL has an static
1690            // constructor function that executes JNI code. We cannot
1691            // load such DLLs in the VMThread.
1692            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1693          }
1694
1695          ThreadInVMfromNative tiv(jt);
1696          debug_only(VMNativeEntryWrapper vew;)
1697
1698          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1699          VMThread::execute(&op);
1700          if (LoadExecStackDllInVMThread) {
1701            result = op.loaded_library();
1702          }
1703          load_attempted = true;
1704        }
1705      }
1706    }
1707  }
1708
1709  if (!load_attempted) {
1710    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1711  }
1712
1713  if (result != NULL) {
1714    // Successful loading
1715    return result;
1716  }
1717
1718  Elf32_Ehdr elf_head;
1719  int diag_msg_max_length=ebuflen-strlen(ebuf);
1720  char* diag_msg_buf=ebuf+strlen(ebuf);
1721
1722  if (diag_msg_max_length==0) {
1723    // No more space in ebuf for additional diagnostics message
1724    return NULL;
1725  }
1726
1727
1728  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1729
1730  if (file_descriptor < 0) {
1731    // Can't open library, report dlerror() message
1732    return NULL;
1733  }
1734
1735  bool failed_to_read_elf_head=
1736    (sizeof(elf_head)!=
1737     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1738
1739  ::close(file_descriptor);
1740  if (failed_to_read_elf_head) {
1741    // file i/o error - report dlerror() msg
1742    return NULL;
1743  }
1744
1745  typedef struct {
1746    Elf32_Half  code;         // Actual value as defined in elf.h
1747    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1748    char        elf_class;    // 32 or 64 bit
1749    char        endianess;    // MSB or LSB
1750    char*       name;         // String representation
1751  } arch_t;
1752
1753#ifndef EM_486
1754  #define EM_486          6               /* Intel 80486 */
1755#endif
1756#ifndef EM_AARCH64
1757  #define EM_AARCH64    183               /* ARM AARCH64 */
1758#endif
1759
1760  static const arch_t arch_array[]={
1761    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1762    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1763    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1764    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1765    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1766    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1767    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1768    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1769#if defined(VM_LITTLE_ENDIAN)
1770    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1771#else
1772    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1773#endif
1774    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1775    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1776    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1777    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1778    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1779    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1780    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1781    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1782  };
1783
1784#if  (defined IA32)
1785  static  Elf32_Half running_arch_code=EM_386;
1786#elif   (defined AMD64)
1787  static  Elf32_Half running_arch_code=EM_X86_64;
1788#elif  (defined IA64)
1789  static  Elf32_Half running_arch_code=EM_IA_64;
1790#elif  (defined __sparc) && (defined _LP64)
1791  static  Elf32_Half running_arch_code=EM_SPARCV9;
1792#elif  (defined __sparc) && (!defined _LP64)
1793  static  Elf32_Half running_arch_code=EM_SPARC;
1794#elif  (defined __powerpc64__)
1795  static  Elf32_Half running_arch_code=EM_PPC64;
1796#elif  (defined __powerpc__)
1797  static  Elf32_Half running_arch_code=EM_PPC;
1798#elif  (defined ARM)
1799  static  Elf32_Half running_arch_code=EM_ARM;
1800#elif  (defined S390)
1801  static  Elf32_Half running_arch_code=EM_S390;
1802#elif  (defined ALPHA)
1803  static  Elf32_Half running_arch_code=EM_ALPHA;
1804#elif  (defined MIPSEL)
1805  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1806#elif  (defined PARISC)
1807  static  Elf32_Half running_arch_code=EM_PARISC;
1808#elif  (defined MIPS)
1809  static  Elf32_Half running_arch_code=EM_MIPS;
1810#elif  (defined M68K)
1811  static  Elf32_Half running_arch_code=EM_68K;
1812#elif  (defined AARCH64)
1813  static  Elf32_Half running_arch_code=EM_AARCH64;
1814#else
1815    #error Method os::dll_load requires that one of following is defined:\
1816         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1817#endif
1818
1819  // Identify compatability class for VM's architecture and library's architecture
1820  // Obtain string descriptions for architectures
1821
1822  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1823  int running_arch_index=-1;
1824
1825  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1826    if (running_arch_code == arch_array[i].code) {
1827      running_arch_index    = i;
1828    }
1829    if (lib_arch.code == arch_array[i].code) {
1830      lib_arch.compat_class = arch_array[i].compat_class;
1831      lib_arch.name         = arch_array[i].name;
1832    }
1833  }
1834
1835  assert(running_arch_index != -1,
1836         "Didn't find running architecture code (running_arch_code) in arch_array");
1837  if (running_arch_index == -1) {
1838    // Even though running architecture detection failed
1839    // we may still continue with reporting dlerror() message
1840    return NULL;
1841  }
1842
1843  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1844    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1845    return NULL;
1846  }
1847
1848#ifndef S390
1849  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1850    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1851    return NULL;
1852  }
1853#endif // !S390
1854
1855  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1856    if (lib_arch.name!=NULL) {
1857      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1858                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1859                 lib_arch.name, arch_array[running_arch_index].name);
1860    } else {
1861      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1862                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1863                 lib_arch.code,
1864                 arch_array[running_arch_index].name);
1865    }
1866  }
1867
1868  return NULL;
1869}
1870
1871void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1872                                int ebuflen) {
1873  void * result = ::dlopen(filename, RTLD_LAZY);
1874  if (result == NULL) {
1875    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1876    ebuf[ebuflen-1] = '\0';
1877  }
1878  return result;
1879}
1880
1881void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1882                                       int ebuflen) {
1883  void * result = NULL;
1884  if (LoadExecStackDllInVMThread) {
1885    result = dlopen_helper(filename, ebuf, ebuflen);
1886  }
1887
1888  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1889  // library that requires an executable stack, or which does not have this
1890  // stack attribute set, dlopen changes the stack attribute to executable. The
1891  // read protection of the guard pages gets lost.
1892  //
1893  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1894  // may have been queued at the same time.
1895
1896  if (!_stack_is_executable) {
1897    JavaThread *jt = Threads::first();
1898
1899    while (jt) {
1900      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1901          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1902        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1903          warning("Attempt to reguard stack yellow zone failed.");
1904        }
1905      }
1906      jt = jt->next();
1907    }
1908  }
1909
1910  return result;
1911}
1912
1913void* os::dll_lookup(void* handle, const char* name) {
1914  void* res = dlsym(handle, name);
1915  return res;
1916}
1917
1918void* os::get_default_process_handle() {
1919  return (void*)::dlopen(NULL, RTLD_LAZY);
1920}
1921
1922static bool _print_ascii_file(const char* filename, outputStream* st) {
1923  int fd = ::open(filename, O_RDONLY);
1924  if (fd == -1) {
1925    return false;
1926  }
1927
1928  char buf[33];
1929  int bytes;
1930  buf[32] = '\0';
1931  while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1932    st->print_raw(buf, bytes);
1933  }
1934
1935  ::close(fd);
1936
1937  return true;
1938}
1939
1940void os::print_dll_info(outputStream *st) {
1941  st->print_cr("Dynamic libraries:");
1942
1943  char fname[32];
1944  pid_t pid = os::Linux::gettid();
1945
1946  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1947
1948  if (!_print_ascii_file(fname, st)) {
1949    st->print("Can not get library information for pid = %d\n", pid);
1950  }
1951}
1952
1953int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1954  FILE *procmapsFile = NULL;
1955
1956  // Open the procfs maps file for the current process
1957  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1958    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1959    char line[PATH_MAX + 100];
1960
1961    // Read line by line from 'file'
1962    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1963      u8 base, top, offset, inode;
1964      char permissions[5];
1965      char device[6];
1966      char name[PATH_MAX + 1];
1967
1968      // Parse fields from line
1969      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1970             &base, &top, permissions, &offset, device, &inode, name);
1971
1972      // Filter by device id '00:00' so that we only get file system mapped files.
1973      if (strcmp(device, "00:00") != 0) {
1974
1975        // Call callback with the fields of interest
1976        if(callback(name, (address)base, (address)top, param)) {
1977          // Oops abort, callback aborted
1978          fclose(procmapsFile);
1979          return 1;
1980        }
1981      }
1982    }
1983    fclose(procmapsFile);
1984  }
1985  return 0;
1986}
1987
1988void os::print_os_info_brief(outputStream* st) {
1989  os::Linux::print_distro_info(st);
1990
1991  os::Posix::print_uname_info(st);
1992
1993  os::Linux::print_libversion_info(st);
1994
1995}
1996
1997void os::print_os_info(outputStream* st) {
1998  st->print("OS:");
1999
2000  os::Linux::print_distro_info(st);
2001
2002  os::Posix::print_uname_info(st);
2003
2004  // Print warning if unsafe chroot environment detected
2005  if (unsafe_chroot_detected) {
2006    st->print("WARNING!! ");
2007    st->print_cr("%s", unstable_chroot_error);
2008  }
2009
2010  os::Linux::print_libversion_info(st);
2011
2012  os::Posix::print_rlimit_info(st);
2013
2014  os::Posix::print_load_average(st);
2015
2016  os::Linux::print_full_memory_info(st);
2017}
2018
2019// Try to identify popular distros.
2020// Most Linux distributions have a /etc/XXX-release file, which contains
2021// the OS version string. Newer Linux distributions have a /etc/lsb-release
2022// file that also contains the OS version string. Some have more than one
2023// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2024// /etc/redhat-release.), so the order is important.
2025// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2026// their own specific XXX-release file as well as a redhat-release file.
2027// Because of this the XXX-release file needs to be searched for before the
2028// redhat-release file.
2029// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2030// search for redhat-release / SuSE-release needs to be before lsb-release.
2031// Since the lsb-release file is the new standard it needs to be searched
2032// before the older style release files.
2033// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2034// next to last resort.  The os-release file is a new standard that contains
2035// distribution information and the system-release file seems to be an old
2036// standard that has been replaced by the lsb-release and os-release files.
2037// Searching for the debian_version file is the last resort.  It contains
2038// an informative string like "6.0.6" or "wheezy/sid". Because of this
2039// "Debian " is printed before the contents of the debian_version file.
2040
2041const char* distro_files[] = {
2042  "/etc/oracle-release",
2043  "/etc/mandriva-release",
2044  "/etc/mandrake-release",
2045  "/etc/sun-release",
2046  "/etc/redhat-release",
2047  "/etc/SuSE-release",
2048  "/etc/lsb-release",
2049  "/etc/turbolinux-release",
2050  "/etc/gentoo-release",
2051  "/etc/ltib-release",
2052  "/etc/angstrom-version",
2053  "/etc/system-release",
2054  "/etc/os-release",
2055  NULL };
2056
2057void os::Linux::print_distro_info(outputStream* st) {
2058  for (int i = 0;; i++) {
2059    const char* file = distro_files[i];
2060    if (file == NULL) {
2061      break;  // done
2062    }
2063    // If file prints, we found it.
2064    if (_print_ascii_file(file, st)) {
2065      return;
2066    }
2067  }
2068
2069  if (file_exists("/etc/debian_version")) {
2070    st->print("Debian ");
2071    _print_ascii_file("/etc/debian_version", st);
2072  } else {
2073    st->print("Linux");
2074  }
2075  st->cr();
2076}
2077
2078static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2079  char buf[256];
2080  while (fgets(buf, sizeof(buf), fp)) {
2081    // Edit out extra stuff in expected format
2082    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2083      char* ptr = strstr(buf, "\"");  // the name is in quotes
2084      if (ptr != NULL) {
2085        ptr++; // go beyond first quote
2086        char* nl = strchr(ptr, '\"');
2087        if (nl != NULL) *nl = '\0';
2088        strncpy(distro, ptr, length);
2089      } else {
2090        ptr = strstr(buf, "=");
2091        ptr++; // go beyond equals then
2092        char* nl = strchr(ptr, '\n');
2093        if (nl != NULL) *nl = '\0';
2094        strncpy(distro, ptr, length);
2095      }
2096      return;
2097    } else if (get_first_line) {
2098      char* nl = strchr(buf, '\n');
2099      if (nl != NULL) *nl = '\0';
2100      strncpy(distro, buf, length);
2101      return;
2102    }
2103  }
2104  // print last line and close
2105  char* nl = strchr(buf, '\n');
2106  if (nl != NULL) *nl = '\0';
2107  strncpy(distro, buf, length);
2108}
2109
2110static void parse_os_info(char* distro, size_t length, const char* file) {
2111  FILE* fp = fopen(file, "r");
2112  if (fp != NULL) {
2113    // if suse format, print out first line
2114    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2115    parse_os_info_helper(fp, distro, length, get_first_line);
2116    fclose(fp);
2117  }
2118}
2119
2120void os::get_summary_os_info(char* buf, size_t buflen) {
2121  for (int i = 0;; i++) {
2122    const char* file = distro_files[i];
2123    if (file == NULL) {
2124      break; // ran out of distro_files
2125    }
2126    if (file_exists(file)) {
2127      parse_os_info(buf, buflen, file);
2128      return;
2129    }
2130  }
2131  // special case for debian
2132  if (file_exists("/etc/debian_version")) {
2133    strncpy(buf, "Debian ", buflen);
2134    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2135  } else {
2136    strncpy(buf, "Linux", buflen);
2137  }
2138}
2139
2140void os::Linux::print_libversion_info(outputStream* st) {
2141  // libc, pthread
2142  st->print("libc:");
2143  st->print("%s ", os::Linux::glibc_version());
2144  st->print("%s ", os::Linux::libpthread_version());
2145  st->cr();
2146}
2147
2148void os::Linux::print_full_memory_info(outputStream* st) {
2149  st->print("\n/proc/meminfo:\n");
2150  _print_ascii_file("/proc/meminfo", st);
2151  st->cr();
2152}
2153
2154void os::print_memory_info(outputStream* st) {
2155
2156  st->print("Memory:");
2157  st->print(" %dk page", os::vm_page_size()>>10);
2158
2159  // values in struct sysinfo are "unsigned long"
2160  struct sysinfo si;
2161  sysinfo(&si);
2162
2163  st->print(", physical " UINT64_FORMAT "k",
2164            os::physical_memory() >> 10);
2165  st->print("(" UINT64_FORMAT "k free)",
2166            os::available_memory() >> 10);
2167  st->print(", swap " UINT64_FORMAT "k",
2168            ((jlong)si.totalswap * si.mem_unit) >> 10);
2169  st->print("(" UINT64_FORMAT "k free)",
2170            ((jlong)si.freeswap * si.mem_unit) >> 10);
2171  st->cr();
2172}
2173
2174// Print the first "model name" line and the first "flags" line
2175// that we find and nothing more. We assume "model name" comes
2176// before "flags" so if we find a second "model name", then the
2177// "flags" field is considered missing.
2178static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2179#if defined(IA32) || defined(AMD64)
2180  // Other platforms have less repetitive cpuinfo files
2181  FILE *fp = fopen("/proc/cpuinfo", "r");
2182  if (fp) {
2183    while (!feof(fp)) {
2184      if (fgets(buf, buflen, fp)) {
2185        // Assume model name comes before flags
2186        bool model_name_printed = false;
2187        if (strstr(buf, "model name") != NULL) {
2188          if (!model_name_printed) {
2189            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2190            st->print_raw(buf);
2191            model_name_printed = true;
2192          } else {
2193            // model name printed but not flags?  Odd, just return
2194            fclose(fp);
2195            return true;
2196          }
2197        }
2198        // print the flags line too
2199        if (strstr(buf, "flags") != NULL) {
2200          st->print_raw(buf);
2201          fclose(fp);
2202          return true;
2203        }
2204      }
2205    }
2206    fclose(fp);
2207  }
2208#endif // x86 platforms
2209  return false;
2210}
2211
2212void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2213  // Only print the model name if the platform provides this as a summary
2214  if (!print_model_name_and_flags(st, buf, buflen)) {
2215    st->print("\n/proc/cpuinfo:\n");
2216    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2217      st->print_cr("  <Not Available>");
2218    }
2219  }
2220}
2221
2222#if defined(AMD64) || defined(IA32) || defined(X32)
2223const char* search_string = "model name";
2224#elif defined(SPARC)
2225const char* search_string = "cpu";
2226#elif defined(PPC64)
2227const char* search_string = "cpu";
2228#else
2229const char* search_string = "Processor";
2230#endif
2231
2232// Parses the cpuinfo file for string representing the model name.
2233void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2234  FILE* fp = fopen("/proc/cpuinfo", "r");
2235  if (fp != NULL) {
2236    while (!feof(fp)) {
2237      char buf[256];
2238      if (fgets(buf, sizeof(buf), fp)) {
2239        char* start = strstr(buf, search_string);
2240        if (start != NULL) {
2241          char *ptr = start + strlen(search_string);
2242          char *end = buf + strlen(buf);
2243          while (ptr != end) {
2244             // skip whitespace and colon for the rest of the name.
2245             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2246               break;
2247             }
2248             ptr++;
2249          }
2250          if (ptr != end) {
2251            // reasonable string, get rid of newline and keep the rest
2252            char* nl = strchr(buf, '\n');
2253            if (nl != NULL) *nl = '\0';
2254            strncpy(cpuinfo, ptr, length);
2255            fclose(fp);
2256            return;
2257          }
2258        }
2259      }
2260    }
2261    fclose(fp);
2262  }
2263  // cpuinfo not found or parsing failed, just print generic string.  The entire
2264  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2265#if defined(AMD64)
2266  strncpy(cpuinfo, "x86_64", length);
2267#elif defined(IA32)
2268  strncpy(cpuinfo, "x86_32", length);
2269#elif defined(IA64)
2270  strncpy(cpuinfo, "IA64", length);
2271#elif defined(SPARC)
2272  strncpy(cpuinfo, "sparcv9", length);
2273#elif defined(AARCH64)
2274  strncpy(cpuinfo, "AArch64", length);
2275#elif defined(ARM)
2276  strncpy(cpuinfo, "ARM", length);
2277#elif defined(PPC)
2278  strncpy(cpuinfo, "PPC64", length);
2279#elif defined(ZERO_LIBARCH)
2280  strncpy(cpuinfo, ZERO_LIBARCH, length);
2281#else
2282  strncpy(cpuinfo, "unknown", length);
2283#endif
2284}
2285
2286static void print_signal_handler(outputStream* st, int sig,
2287                                 char* buf, size_t buflen);
2288
2289void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2290  st->print_cr("Signal Handlers:");
2291  print_signal_handler(st, SIGSEGV, buf, buflen);
2292  print_signal_handler(st, SIGBUS , buf, buflen);
2293  print_signal_handler(st, SIGFPE , buf, buflen);
2294  print_signal_handler(st, SIGPIPE, buf, buflen);
2295  print_signal_handler(st, SIGXFSZ, buf, buflen);
2296  print_signal_handler(st, SIGILL , buf, buflen);
2297  print_signal_handler(st, SR_signum, buf, buflen);
2298  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2299  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2300  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2301  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2302#if defined(PPC64)
2303  print_signal_handler(st, SIGTRAP, buf, buflen);
2304#endif
2305}
2306
2307static char saved_jvm_path[MAXPATHLEN] = {0};
2308
2309// Find the full path to the current module, libjvm.so
2310void os::jvm_path(char *buf, jint buflen) {
2311  // Error checking.
2312  if (buflen < MAXPATHLEN) {
2313    assert(false, "must use a large-enough buffer");
2314    buf[0] = '\0';
2315    return;
2316  }
2317  // Lazy resolve the path to current module.
2318  if (saved_jvm_path[0] != 0) {
2319    strcpy(buf, saved_jvm_path);
2320    return;
2321  }
2322
2323  char dli_fname[MAXPATHLEN];
2324  bool ret = dll_address_to_library_name(
2325                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2326                                         dli_fname, sizeof(dli_fname), NULL);
2327  assert(ret, "cannot locate libjvm");
2328  char *rp = NULL;
2329  if (ret && dli_fname[0] != '\0') {
2330    rp = realpath(dli_fname, buf);
2331  }
2332  if (rp == NULL) {
2333    return;
2334  }
2335
2336  if (Arguments::sun_java_launcher_is_altjvm()) {
2337    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2338    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2339    // If "/jre/lib/" appears at the right place in the string, then
2340    // assume we are installed in a JDK and we're done. Otherwise, check
2341    // for a JAVA_HOME environment variable and fix up the path so it
2342    // looks like libjvm.so is installed there (append a fake suffix
2343    // hotspot/libjvm.so).
2344    const char *p = buf + strlen(buf) - 1;
2345    for (int count = 0; p > buf && count < 5; ++count) {
2346      for (--p; p > buf && *p != '/'; --p)
2347        /* empty */ ;
2348    }
2349
2350    if (strncmp(p, "/jre/lib/", 9) != 0) {
2351      // Look for JAVA_HOME in the environment.
2352      char* java_home_var = ::getenv("JAVA_HOME");
2353      if (java_home_var != NULL && java_home_var[0] != 0) {
2354        char* jrelib_p;
2355        int len;
2356
2357        // Check the current module name "libjvm.so".
2358        p = strrchr(buf, '/');
2359        if (p == NULL) {
2360          return;
2361        }
2362        assert(strstr(p, "/libjvm") == p, "invalid library name");
2363
2364        rp = realpath(java_home_var, buf);
2365        if (rp == NULL) {
2366          return;
2367        }
2368
2369        // determine if this is a legacy image or modules image
2370        // modules image doesn't have "jre" subdirectory
2371        len = strlen(buf);
2372        assert(len < buflen, "Ran out of buffer room");
2373        jrelib_p = buf + len;
2374        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2375        if (0 != access(buf, F_OK)) {
2376          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2377        }
2378
2379        if (0 == access(buf, F_OK)) {
2380          // Use current module name "libjvm.so"
2381          len = strlen(buf);
2382          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2383        } else {
2384          // Go back to path of .so
2385          rp = realpath(dli_fname, buf);
2386          if (rp == NULL) {
2387            return;
2388          }
2389        }
2390      }
2391    }
2392  }
2393
2394  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2395  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2396}
2397
2398void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2399  // no prefix required, not even "_"
2400}
2401
2402void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2403  // no suffix required
2404}
2405
2406////////////////////////////////////////////////////////////////////////////////
2407// sun.misc.Signal support
2408
2409static volatile jint sigint_count = 0;
2410
2411static void UserHandler(int sig, void *siginfo, void *context) {
2412  // 4511530 - sem_post is serialized and handled by the manager thread. When
2413  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2414  // don't want to flood the manager thread with sem_post requests.
2415  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2416    return;
2417  }
2418
2419  // Ctrl-C is pressed during error reporting, likely because the error
2420  // handler fails to abort. Let VM die immediately.
2421  if (sig == SIGINT && is_error_reported()) {
2422    os::die();
2423  }
2424
2425  os::signal_notify(sig);
2426}
2427
2428void* os::user_handler() {
2429  return CAST_FROM_FN_PTR(void*, UserHandler);
2430}
2431
2432struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2433  struct timespec ts;
2434  // Semaphore's are always associated with CLOCK_REALTIME
2435  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2436  // see unpackTime for discussion on overflow checking
2437  if (sec >= MAX_SECS) {
2438    ts.tv_sec += MAX_SECS;
2439    ts.tv_nsec = 0;
2440  } else {
2441    ts.tv_sec += sec;
2442    ts.tv_nsec += nsec;
2443    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2444      ts.tv_nsec -= NANOSECS_PER_SEC;
2445      ++ts.tv_sec; // note: this must be <= max_secs
2446    }
2447  }
2448
2449  return ts;
2450}
2451
2452extern "C" {
2453  typedef void (*sa_handler_t)(int);
2454  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2455}
2456
2457void* os::signal(int signal_number, void* handler) {
2458  struct sigaction sigAct, oldSigAct;
2459
2460  sigfillset(&(sigAct.sa_mask));
2461  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2462  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2463
2464  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2465    // -1 means registration failed
2466    return (void *)-1;
2467  }
2468
2469  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2470}
2471
2472void os::signal_raise(int signal_number) {
2473  ::raise(signal_number);
2474}
2475
2476// The following code is moved from os.cpp for making this
2477// code platform specific, which it is by its very nature.
2478
2479// Will be modified when max signal is changed to be dynamic
2480int os::sigexitnum_pd() {
2481  return NSIG;
2482}
2483
2484// a counter for each possible signal value
2485static volatile jint pending_signals[NSIG+1] = { 0 };
2486
2487// Linux(POSIX) specific hand shaking semaphore.
2488static sem_t sig_sem;
2489static PosixSemaphore sr_semaphore;
2490
2491void os::signal_init_pd() {
2492  // Initialize signal structures
2493  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2494
2495  // Initialize signal semaphore
2496  ::sem_init(&sig_sem, 0, 0);
2497}
2498
2499void os::signal_notify(int sig) {
2500  Atomic::inc(&pending_signals[sig]);
2501  ::sem_post(&sig_sem);
2502}
2503
2504static int check_pending_signals(bool wait) {
2505  Atomic::store(0, &sigint_count);
2506  for (;;) {
2507    for (int i = 0; i < NSIG + 1; i++) {
2508      jint n = pending_signals[i];
2509      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2510        return i;
2511      }
2512    }
2513    if (!wait) {
2514      return -1;
2515    }
2516    JavaThread *thread = JavaThread::current();
2517    ThreadBlockInVM tbivm(thread);
2518
2519    bool threadIsSuspended;
2520    do {
2521      thread->set_suspend_equivalent();
2522      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2523      ::sem_wait(&sig_sem);
2524
2525      // were we externally suspended while we were waiting?
2526      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2527      if (threadIsSuspended) {
2528        // The semaphore has been incremented, but while we were waiting
2529        // another thread suspended us. We don't want to continue running
2530        // while suspended because that would surprise the thread that
2531        // suspended us.
2532        ::sem_post(&sig_sem);
2533
2534        thread->java_suspend_self();
2535      }
2536    } while (threadIsSuspended);
2537  }
2538}
2539
2540int os::signal_lookup() {
2541  return check_pending_signals(false);
2542}
2543
2544int os::signal_wait() {
2545  return check_pending_signals(true);
2546}
2547
2548////////////////////////////////////////////////////////////////////////////////
2549// Virtual Memory
2550
2551int os::vm_page_size() {
2552  // Seems redundant as all get out
2553  assert(os::Linux::page_size() != -1, "must call os::init");
2554  return os::Linux::page_size();
2555}
2556
2557// Solaris allocates memory by pages.
2558int os::vm_allocation_granularity() {
2559  assert(os::Linux::page_size() != -1, "must call os::init");
2560  return os::Linux::page_size();
2561}
2562
2563// Rationale behind this function:
2564//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2565//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2566//  samples for JITted code. Here we create private executable mapping over the code cache
2567//  and then we can use standard (well, almost, as mapping can change) way to provide
2568//  info for the reporting script by storing timestamp and location of symbol
2569void linux_wrap_code(char* base, size_t size) {
2570  static volatile jint cnt = 0;
2571
2572  if (!UseOprofile) {
2573    return;
2574  }
2575
2576  char buf[PATH_MAX+1];
2577  int num = Atomic::add(1, &cnt);
2578
2579  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2580           os::get_temp_directory(), os::current_process_id(), num);
2581  unlink(buf);
2582
2583  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2584
2585  if (fd != -1) {
2586    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2587    if (rv != (off_t)-1) {
2588      if (::write(fd, "", 1) == 1) {
2589        mmap(base, size,
2590             PROT_READ|PROT_WRITE|PROT_EXEC,
2591             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2592      }
2593    }
2594    ::close(fd);
2595    unlink(buf);
2596  }
2597}
2598
2599static bool recoverable_mmap_error(int err) {
2600  // See if the error is one we can let the caller handle. This
2601  // list of errno values comes from JBS-6843484. I can't find a
2602  // Linux man page that documents this specific set of errno
2603  // values so while this list currently matches Solaris, it may
2604  // change as we gain experience with this failure mode.
2605  switch (err) {
2606  case EBADF:
2607  case EINVAL:
2608  case ENOTSUP:
2609    // let the caller deal with these errors
2610    return true;
2611
2612  default:
2613    // Any remaining errors on this OS can cause our reserved mapping
2614    // to be lost. That can cause confusion where different data
2615    // structures think they have the same memory mapped. The worst
2616    // scenario is if both the VM and a library think they have the
2617    // same memory mapped.
2618    return false;
2619  }
2620}
2621
2622static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2623                                    int err) {
2624  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2625          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2626          os::strerror(err), err);
2627}
2628
2629static void warn_fail_commit_memory(char* addr, size_t size,
2630                                    size_t alignment_hint, bool exec,
2631                                    int err) {
2632  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2633          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2634          alignment_hint, exec, os::strerror(err), err);
2635}
2636
2637// NOTE: Linux kernel does not really reserve the pages for us.
2638//       All it does is to check if there are enough free pages
2639//       left at the time of mmap(). This could be a potential
2640//       problem.
2641int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2642  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2643  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2644                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2645  if (res != (uintptr_t) MAP_FAILED) {
2646    if (UseNUMAInterleaving) {
2647      numa_make_global(addr, size);
2648    }
2649    return 0;
2650  }
2651
2652  int err = errno;  // save errno from mmap() call above
2653
2654  if (!recoverable_mmap_error(err)) {
2655    warn_fail_commit_memory(addr, size, exec, err);
2656    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2657  }
2658
2659  return err;
2660}
2661
2662bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2663  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2664}
2665
2666void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2667                                  const char* mesg) {
2668  assert(mesg != NULL, "mesg must be specified");
2669  int err = os::Linux::commit_memory_impl(addr, size, exec);
2670  if (err != 0) {
2671    // the caller wants all commit errors to exit with the specified mesg:
2672    warn_fail_commit_memory(addr, size, exec, err);
2673    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2674  }
2675}
2676
2677// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2678#ifndef MAP_HUGETLB
2679  #define MAP_HUGETLB 0x40000
2680#endif
2681
2682// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2683#ifndef MADV_HUGEPAGE
2684  #define MADV_HUGEPAGE 14
2685#endif
2686
2687int os::Linux::commit_memory_impl(char* addr, size_t size,
2688                                  size_t alignment_hint, bool exec) {
2689  int err = os::Linux::commit_memory_impl(addr, size, exec);
2690  if (err == 0) {
2691    realign_memory(addr, size, alignment_hint);
2692  }
2693  return err;
2694}
2695
2696bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2697                          bool exec) {
2698  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2699}
2700
2701void os::pd_commit_memory_or_exit(char* addr, size_t size,
2702                                  size_t alignment_hint, bool exec,
2703                                  const char* mesg) {
2704  assert(mesg != NULL, "mesg must be specified");
2705  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2706  if (err != 0) {
2707    // the caller wants all commit errors to exit with the specified mesg:
2708    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2709    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2710  }
2711}
2712
2713void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2714  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2715    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2716    // be supported or the memory may already be backed by huge pages.
2717    ::madvise(addr, bytes, MADV_HUGEPAGE);
2718  }
2719}
2720
2721void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2722  // This method works by doing an mmap over an existing mmaping and effectively discarding
2723  // the existing pages. However it won't work for SHM-based large pages that cannot be
2724  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2725  // small pages on top of the SHM segment. This method always works for small pages, so we
2726  // allow that in any case.
2727  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2728    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2729  }
2730}
2731
2732void os::numa_make_global(char *addr, size_t bytes) {
2733  Linux::numa_interleave_memory(addr, bytes);
2734}
2735
2736// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2737// bind policy to MPOL_PREFERRED for the current thread.
2738#define USE_MPOL_PREFERRED 0
2739
2740void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2741  // To make NUMA and large pages more robust when both enabled, we need to ease
2742  // the requirements on where the memory should be allocated. MPOL_BIND is the
2743  // default policy and it will force memory to be allocated on the specified
2744  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2745  // the specified node, but will not force it. Using this policy will prevent
2746  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2747  // free large pages.
2748  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2749  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2750}
2751
2752bool os::numa_topology_changed() { return false; }
2753
2754size_t os::numa_get_groups_num() {
2755  int max_node = Linux::numa_max_node();
2756  return max_node > 0 ? max_node + 1 : 1;
2757}
2758
2759int os::numa_get_group_id() {
2760  int cpu_id = Linux::sched_getcpu();
2761  if (cpu_id != -1) {
2762    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2763    if (lgrp_id != -1) {
2764      return lgrp_id;
2765    }
2766  }
2767  return 0;
2768}
2769
2770size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2771  for (size_t i = 0; i < size; i++) {
2772    ids[i] = i;
2773  }
2774  return size;
2775}
2776
2777bool os::get_page_info(char *start, page_info* info) {
2778  return false;
2779}
2780
2781char *os::scan_pages(char *start, char* end, page_info* page_expected,
2782                     page_info* page_found) {
2783  return end;
2784}
2785
2786
2787int os::Linux::sched_getcpu_syscall(void) {
2788  unsigned int cpu = 0;
2789  int retval = -1;
2790
2791#if defined(IA32)
2792  #ifndef SYS_getcpu
2793    #define SYS_getcpu 318
2794  #endif
2795  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2796#elif defined(AMD64)
2797// Unfortunately we have to bring all these macros here from vsyscall.h
2798// to be able to compile on old linuxes.
2799  #define __NR_vgetcpu 2
2800  #define VSYSCALL_START (-10UL << 20)
2801  #define VSYSCALL_SIZE 1024
2802  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2803  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2804  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2805  retval = vgetcpu(&cpu, NULL, NULL);
2806#endif
2807
2808  return (retval == -1) ? retval : cpu;
2809}
2810
2811// Something to do with the numa-aware allocator needs these symbols
2812extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2813extern "C" JNIEXPORT void numa_error(char *where) { }
2814
2815
2816// If we are running with libnuma version > 2, then we should
2817// be trying to use symbols with versions 1.1
2818// If we are running with earlier version, which did not have symbol versions,
2819// we should use the base version.
2820void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2821  void *f = dlvsym(handle, name, "libnuma_1.1");
2822  if (f == NULL) {
2823    f = dlsym(handle, name);
2824  }
2825  return f;
2826}
2827
2828bool os::Linux::libnuma_init() {
2829  // sched_getcpu() should be in libc.
2830  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2831                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2832
2833  // If it's not, try a direct syscall.
2834  if (sched_getcpu() == -1) {
2835    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2836                                    (void*)&sched_getcpu_syscall));
2837  }
2838
2839  if (sched_getcpu() != -1) { // Does it work?
2840    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2841    if (handle != NULL) {
2842      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2843                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2844      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2845                                       libnuma_dlsym(handle, "numa_max_node")));
2846      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2847                                        libnuma_dlsym(handle, "numa_available")));
2848      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2849                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2850      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2851                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2852      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2853                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2854
2855
2856      if (numa_available() != -1) {
2857        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2858        // Create a cpu -> node mapping
2859        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2860        rebuild_cpu_to_node_map();
2861        return true;
2862      }
2863    }
2864  }
2865  return false;
2866}
2867
2868// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2869// The table is later used in get_node_by_cpu().
2870void os::Linux::rebuild_cpu_to_node_map() {
2871  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2872                              // in libnuma (possible values are starting from 16,
2873                              // and continuing up with every other power of 2, but less
2874                              // than the maximum number of CPUs supported by kernel), and
2875                              // is a subject to change (in libnuma version 2 the requirements
2876                              // are more reasonable) we'll just hardcode the number they use
2877                              // in the library.
2878  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2879
2880  size_t cpu_num = os::active_processor_count();
2881  size_t cpu_map_size = NCPUS / BitsPerCLong;
2882  size_t cpu_map_valid_size =
2883    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2884
2885  cpu_to_node()->clear();
2886  cpu_to_node()->at_grow(cpu_num - 1);
2887  size_t node_num = numa_get_groups_num();
2888
2889  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2890  for (size_t i = 0; i < node_num; i++) {
2891    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2892      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2893        if (cpu_map[j] != 0) {
2894          for (size_t k = 0; k < BitsPerCLong; k++) {
2895            if (cpu_map[j] & (1UL << k)) {
2896              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2897            }
2898          }
2899        }
2900      }
2901    }
2902  }
2903  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2904}
2905
2906int os::Linux::get_node_by_cpu(int cpu_id) {
2907  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2908    return cpu_to_node()->at(cpu_id);
2909  }
2910  return -1;
2911}
2912
2913GrowableArray<int>* os::Linux::_cpu_to_node;
2914os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2915os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2916os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2917os::Linux::numa_available_func_t os::Linux::_numa_available;
2918os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2919os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2920os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2921unsigned long* os::Linux::_numa_all_nodes;
2922
2923bool os::pd_uncommit_memory(char* addr, size_t size) {
2924  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2925                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2926  return res  != (uintptr_t) MAP_FAILED;
2927}
2928
2929static address get_stack_commited_bottom(address bottom, size_t size) {
2930  address nbot = bottom;
2931  address ntop = bottom + size;
2932
2933  size_t page_sz = os::vm_page_size();
2934  unsigned pages = size / page_sz;
2935
2936  unsigned char vec[1];
2937  unsigned imin = 1, imax = pages + 1, imid;
2938  int mincore_return_value = 0;
2939
2940  assert(imin <= imax, "Unexpected page size");
2941
2942  while (imin < imax) {
2943    imid = (imax + imin) / 2;
2944    nbot = ntop - (imid * page_sz);
2945
2946    // Use a trick with mincore to check whether the page is mapped or not.
2947    // mincore sets vec to 1 if page resides in memory and to 0 if page
2948    // is swapped output but if page we are asking for is unmapped
2949    // it returns -1,ENOMEM
2950    mincore_return_value = mincore(nbot, page_sz, vec);
2951
2952    if (mincore_return_value == -1) {
2953      // Page is not mapped go up
2954      // to find first mapped page
2955      if (errno != EAGAIN) {
2956        assert(errno == ENOMEM, "Unexpected mincore errno");
2957        imax = imid;
2958      }
2959    } else {
2960      // Page is mapped go down
2961      // to find first not mapped page
2962      imin = imid + 1;
2963    }
2964  }
2965
2966  nbot = nbot + page_sz;
2967
2968  // Adjust stack bottom one page up if last checked page is not mapped
2969  if (mincore_return_value == -1) {
2970    nbot = nbot + page_sz;
2971  }
2972
2973  return nbot;
2974}
2975
2976
2977// Linux uses a growable mapping for the stack, and if the mapping for
2978// the stack guard pages is not removed when we detach a thread the
2979// stack cannot grow beyond the pages where the stack guard was
2980// mapped.  If at some point later in the process the stack expands to
2981// that point, the Linux kernel cannot expand the stack any further
2982// because the guard pages are in the way, and a segfault occurs.
2983//
2984// However, it's essential not to split the stack region by unmapping
2985// a region (leaving a hole) that's already part of the stack mapping,
2986// so if the stack mapping has already grown beyond the guard pages at
2987// the time we create them, we have to truncate the stack mapping.
2988// So, we need to know the extent of the stack mapping when
2989// create_stack_guard_pages() is called.
2990
2991// We only need this for stacks that are growable: at the time of
2992// writing thread stacks don't use growable mappings (i.e. those
2993// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2994// only applies to the main thread.
2995
2996// If the (growable) stack mapping already extends beyond the point
2997// where we're going to put our guard pages, truncate the mapping at
2998// that point by munmap()ping it.  This ensures that when we later
2999// munmap() the guard pages we don't leave a hole in the stack
3000// mapping. This only affects the main/initial thread
3001
3002bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3003  if (os::Linux::is_initial_thread()) {
3004    // As we manually grow stack up to bottom inside create_attached_thread(),
3005    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3006    // we don't need to do anything special.
3007    // Check it first, before calling heavy function.
3008    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3009    unsigned char vec[1];
3010
3011    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3012      // Fallback to slow path on all errors, including EAGAIN
3013      stack_extent = (uintptr_t) get_stack_commited_bottom(
3014                                                           os::Linux::initial_thread_stack_bottom(),
3015                                                           (size_t)addr - stack_extent);
3016    }
3017
3018    if (stack_extent < (uintptr_t)addr) {
3019      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3020    }
3021  }
3022
3023  return os::commit_memory(addr, size, !ExecMem);
3024}
3025
3026// If this is a growable mapping, remove the guard pages entirely by
3027// munmap()ping them.  If not, just call uncommit_memory(). This only
3028// affects the main/initial thread, but guard against future OS changes
3029// It's safe to always unmap guard pages for initial thread because we
3030// always place it right after end of the mapped region
3031
3032bool os::remove_stack_guard_pages(char* addr, size_t size) {
3033  uintptr_t stack_extent, stack_base;
3034
3035  if (os::Linux::is_initial_thread()) {
3036    return ::munmap(addr, size) == 0;
3037  }
3038
3039  return os::uncommit_memory(addr, size);
3040}
3041
3042// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3043// at 'requested_addr'. If there are existing memory mappings at the same
3044// location, however, they will be overwritten. If 'fixed' is false,
3045// 'requested_addr' is only treated as a hint, the return value may or
3046// may not start from the requested address. Unlike Linux mmap(), this
3047// function returns NULL to indicate failure.
3048static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3049  char * addr;
3050  int flags;
3051
3052  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3053  if (fixed) {
3054    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3055    flags |= MAP_FIXED;
3056  }
3057
3058  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3059  // touch an uncommitted page. Otherwise, the read/write might
3060  // succeed if we have enough swap space to back the physical page.
3061  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3062                       flags, -1, 0);
3063
3064  return addr == MAP_FAILED ? NULL : addr;
3065}
3066
3067// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3068//   (req_addr != NULL) or with a given alignment.
3069//  - bytes shall be a multiple of alignment.
3070//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3071//  - alignment sets the alignment at which memory shall be allocated.
3072//     It must be a multiple of allocation granularity.
3073// Returns address of memory or NULL. If req_addr was not NULL, will only return
3074//  req_addr or NULL.
3075static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3076
3077  size_t extra_size = bytes;
3078  if (req_addr == NULL && alignment > 0) {
3079    extra_size += alignment;
3080  }
3081
3082  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3083    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3084    -1, 0);
3085  if (start == MAP_FAILED) {
3086    start = NULL;
3087  } else {
3088    if (req_addr != NULL) {
3089      if (start != req_addr) {
3090        ::munmap(start, extra_size);
3091        start = NULL;
3092      }
3093    } else {
3094      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3095      char* const end_aligned = start_aligned + bytes;
3096      char* const end = start + extra_size;
3097      if (start_aligned > start) {
3098        ::munmap(start, start_aligned - start);
3099      }
3100      if (end_aligned < end) {
3101        ::munmap(end_aligned, end - end_aligned);
3102      }
3103      start = start_aligned;
3104    }
3105  }
3106  return start;
3107}
3108
3109static int anon_munmap(char * addr, size_t size) {
3110  return ::munmap(addr, size) == 0;
3111}
3112
3113char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3114                            size_t alignment_hint) {
3115  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3116}
3117
3118bool os::pd_release_memory(char* addr, size_t size) {
3119  return anon_munmap(addr, size);
3120}
3121
3122static bool linux_mprotect(char* addr, size_t size, int prot) {
3123  // Linux wants the mprotect address argument to be page aligned.
3124  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3125
3126  // According to SUSv3, mprotect() should only be used with mappings
3127  // established by mmap(), and mmap() always maps whole pages. Unaligned
3128  // 'addr' likely indicates problem in the VM (e.g. trying to change
3129  // protection of malloc'ed or statically allocated memory). Check the
3130  // caller if you hit this assert.
3131  assert(addr == bottom, "sanity check");
3132
3133  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3134  return ::mprotect(bottom, size, prot) == 0;
3135}
3136
3137// Set protections specified
3138bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3139                        bool is_committed) {
3140  unsigned int p = 0;
3141  switch (prot) {
3142  case MEM_PROT_NONE: p = PROT_NONE; break;
3143  case MEM_PROT_READ: p = PROT_READ; break;
3144  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3145  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3146  default:
3147    ShouldNotReachHere();
3148  }
3149  // is_committed is unused.
3150  return linux_mprotect(addr, bytes, p);
3151}
3152
3153bool os::guard_memory(char* addr, size_t size) {
3154  return linux_mprotect(addr, size, PROT_NONE);
3155}
3156
3157bool os::unguard_memory(char* addr, size_t size) {
3158  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3159}
3160
3161bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3162                                                    size_t page_size) {
3163  bool result = false;
3164  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3165                 MAP_ANONYMOUS|MAP_PRIVATE,
3166                 -1, 0);
3167  if (p != MAP_FAILED) {
3168    void *aligned_p = align_ptr_up(p, page_size);
3169
3170    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3171
3172    munmap(p, page_size * 2);
3173  }
3174
3175  if (warn && !result) {
3176    warning("TransparentHugePages is not supported by the operating system.");
3177  }
3178
3179  return result;
3180}
3181
3182bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3183  bool result = false;
3184  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3185                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3186                 -1, 0);
3187
3188  if (p != MAP_FAILED) {
3189    // We don't know if this really is a huge page or not.
3190    FILE *fp = fopen("/proc/self/maps", "r");
3191    if (fp) {
3192      while (!feof(fp)) {
3193        char chars[257];
3194        long x = 0;
3195        if (fgets(chars, sizeof(chars), fp)) {
3196          if (sscanf(chars, "%lx-%*x", &x) == 1
3197              && x == (long)p) {
3198            if (strstr (chars, "hugepage")) {
3199              result = true;
3200              break;
3201            }
3202          }
3203        }
3204      }
3205      fclose(fp);
3206    }
3207    munmap(p, page_size);
3208  }
3209
3210  if (warn && !result) {
3211    warning("HugeTLBFS is not supported by the operating system.");
3212  }
3213
3214  return result;
3215}
3216
3217// Set the coredump_filter bits to include largepages in core dump (bit 6)
3218//
3219// From the coredump_filter documentation:
3220//
3221// - (bit 0) anonymous private memory
3222// - (bit 1) anonymous shared memory
3223// - (bit 2) file-backed private memory
3224// - (bit 3) file-backed shared memory
3225// - (bit 4) ELF header pages in file-backed private memory areas (it is
3226//           effective only if the bit 2 is cleared)
3227// - (bit 5) hugetlb private memory
3228// - (bit 6) hugetlb shared memory
3229//
3230static void set_coredump_filter(void) {
3231  FILE *f;
3232  long cdm;
3233
3234  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3235    return;
3236  }
3237
3238  if (fscanf(f, "%lx", &cdm) != 1) {
3239    fclose(f);
3240    return;
3241  }
3242
3243  rewind(f);
3244
3245  if ((cdm & LARGEPAGES_BIT) == 0) {
3246    cdm |= LARGEPAGES_BIT;
3247    fprintf(f, "%#lx", cdm);
3248  }
3249
3250  fclose(f);
3251}
3252
3253// Large page support
3254
3255static size_t _large_page_size = 0;
3256
3257size_t os::Linux::find_large_page_size() {
3258  size_t large_page_size = 0;
3259
3260  // large_page_size on Linux is used to round up heap size. x86 uses either
3261  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3262  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3263  // page as large as 256M.
3264  //
3265  // Here we try to figure out page size by parsing /proc/meminfo and looking
3266  // for a line with the following format:
3267  //    Hugepagesize:     2048 kB
3268  //
3269  // If we can't determine the value (e.g. /proc is not mounted, or the text
3270  // format has been changed), we'll use the largest page size supported by
3271  // the processor.
3272
3273#ifndef ZERO
3274  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3275                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3276#endif // ZERO
3277
3278  FILE *fp = fopen("/proc/meminfo", "r");
3279  if (fp) {
3280    while (!feof(fp)) {
3281      int x = 0;
3282      char buf[16];
3283      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3284        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3285          large_page_size = x * K;
3286          break;
3287        }
3288      } else {
3289        // skip to next line
3290        for (;;) {
3291          int ch = fgetc(fp);
3292          if (ch == EOF || ch == (int)'\n') break;
3293        }
3294      }
3295    }
3296    fclose(fp);
3297  }
3298
3299  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3300    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3301            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3302            proper_unit_for_byte_size(large_page_size));
3303  }
3304
3305  return large_page_size;
3306}
3307
3308size_t os::Linux::setup_large_page_size() {
3309  _large_page_size = Linux::find_large_page_size();
3310  const size_t default_page_size = (size_t)Linux::page_size();
3311  if (_large_page_size > default_page_size) {
3312    _page_sizes[0] = _large_page_size;
3313    _page_sizes[1] = default_page_size;
3314    _page_sizes[2] = 0;
3315  }
3316
3317  return _large_page_size;
3318}
3319
3320bool os::Linux::setup_large_page_type(size_t page_size) {
3321  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3322      FLAG_IS_DEFAULT(UseSHM) &&
3323      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3324
3325    // The type of large pages has not been specified by the user.
3326
3327    // Try UseHugeTLBFS and then UseSHM.
3328    UseHugeTLBFS = UseSHM = true;
3329
3330    // Don't try UseTransparentHugePages since there are known
3331    // performance issues with it turned on. This might change in the future.
3332    UseTransparentHugePages = false;
3333  }
3334
3335  if (UseTransparentHugePages) {
3336    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3337    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3338      UseHugeTLBFS = false;
3339      UseSHM = false;
3340      return true;
3341    }
3342    UseTransparentHugePages = false;
3343  }
3344
3345  if (UseHugeTLBFS) {
3346    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3347    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3348      UseSHM = false;
3349      return true;
3350    }
3351    UseHugeTLBFS = false;
3352  }
3353
3354  return UseSHM;
3355}
3356
3357void os::large_page_init() {
3358  if (!UseLargePages &&
3359      !UseTransparentHugePages &&
3360      !UseHugeTLBFS &&
3361      !UseSHM) {
3362    // Not using large pages.
3363    return;
3364  }
3365
3366  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3367    // The user explicitly turned off large pages.
3368    // Ignore the rest of the large pages flags.
3369    UseTransparentHugePages = false;
3370    UseHugeTLBFS = false;
3371    UseSHM = false;
3372    return;
3373  }
3374
3375  size_t large_page_size = Linux::setup_large_page_size();
3376  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3377
3378  set_coredump_filter();
3379}
3380
3381#ifndef SHM_HUGETLB
3382  #define SHM_HUGETLB 04000
3383#endif
3384
3385#define shm_warning_format(format, ...)              \
3386  do {                                               \
3387    if (UseLargePages &&                             \
3388        (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3389         !FLAG_IS_DEFAULT(UseSHM) ||                 \
3390         !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3391      warning(format, __VA_ARGS__);                  \
3392    }                                                \
3393  } while (0)
3394
3395#define shm_warning(str) shm_warning_format("%s", str)
3396
3397#define shm_warning_with_errno(str)                \
3398  do {                                             \
3399    int err = errno;                               \
3400    shm_warning_format(str " (error = %d)", err);  \
3401  } while (0)
3402
3403static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3404  assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3405
3406  if (!is_size_aligned(alignment, SHMLBA)) {
3407    assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3408    return NULL;
3409  }
3410
3411  // To ensure that we get 'alignment' aligned memory from shmat,
3412  // we pre-reserve aligned virtual memory and then attach to that.
3413
3414  char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3415  if (pre_reserved_addr == NULL) {
3416    // Couldn't pre-reserve aligned memory.
3417    shm_warning("Failed to pre-reserve aligned memory for shmat.");
3418    return NULL;
3419  }
3420
3421  // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3422  char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3423
3424  if ((intptr_t)addr == -1) {
3425    int err = errno;
3426    shm_warning_with_errno("Failed to attach shared memory.");
3427
3428    assert(err != EACCES, "Unexpected error");
3429    assert(err != EIDRM,  "Unexpected error");
3430    assert(err != EINVAL, "Unexpected error");
3431
3432    // Since we don't know if the kernel unmapped the pre-reserved memory area
3433    // we can't unmap it, since that would potentially unmap memory that was
3434    // mapped from other threads.
3435    return NULL;
3436  }
3437
3438  return addr;
3439}
3440
3441static char* shmat_at_address(int shmid, char* req_addr) {
3442  if (!is_ptr_aligned(req_addr, SHMLBA)) {
3443    assert(false, "Requested address needs to be SHMLBA aligned");
3444    return NULL;
3445  }
3446
3447  char* addr = (char*)shmat(shmid, req_addr, 0);
3448
3449  if ((intptr_t)addr == -1) {
3450    shm_warning_with_errno("Failed to attach shared memory.");
3451    return NULL;
3452  }
3453
3454  return addr;
3455}
3456
3457static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3458  // If a req_addr has been provided, we assume that the caller has already aligned the address.
3459  if (req_addr != NULL) {
3460    assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3461    assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3462    return shmat_at_address(shmid, req_addr);
3463  }
3464
3465  // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3466  // return large page size aligned memory addresses when req_addr == NULL.
3467  // However, if the alignment is larger than the large page size, we have
3468  // to manually ensure that the memory returned is 'alignment' aligned.
3469  if (alignment > os::large_page_size()) {
3470    assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3471    return shmat_with_alignment(shmid, bytes, alignment);
3472  } else {
3473    return shmat_at_address(shmid, NULL);
3474  }
3475}
3476
3477char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3478                                            char* req_addr, bool exec) {
3479  // "exec" is passed in but not used.  Creating the shared image for
3480  // the code cache doesn't have an SHM_X executable permission to check.
3481  assert(UseLargePages && UseSHM, "only for SHM large pages");
3482  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3483  assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3484
3485  if (!is_size_aligned(bytes, os::large_page_size())) {
3486    return NULL; // Fallback to small pages.
3487  }
3488
3489  // Create a large shared memory region to attach to based on size.
3490  // Currently, size is the total size of the heap.
3491  int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3492  if (shmid == -1) {
3493    // Possible reasons for shmget failure:
3494    // 1. shmmax is too small for Java heap.
3495    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3496    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3497    // 2. not enough large page memory.
3498    //    > check available large pages: cat /proc/meminfo
3499    //    > increase amount of large pages:
3500    //          echo new_value > /proc/sys/vm/nr_hugepages
3501    //      Note 1: different Linux may use different name for this property,
3502    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3503    //      Note 2: it's possible there's enough physical memory available but
3504    //            they are so fragmented after a long run that they can't
3505    //            coalesce into large pages. Try to reserve large pages when
3506    //            the system is still "fresh".
3507    shm_warning_with_errno("Failed to reserve shared memory.");
3508    return NULL;
3509  }
3510
3511  // Attach to the region.
3512  char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3513
3514  // Remove shmid. If shmat() is successful, the actual shared memory segment
3515  // will be deleted when it's detached by shmdt() or when the process
3516  // terminates. If shmat() is not successful this will remove the shared
3517  // segment immediately.
3518  shmctl(shmid, IPC_RMID, NULL);
3519
3520  return addr;
3521}
3522
3523static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3524                                        int error) {
3525  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3526
3527  bool warn_on_failure = UseLargePages &&
3528      (!FLAG_IS_DEFAULT(UseLargePages) ||
3529       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3530       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3531
3532  if (warn_on_failure) {
3533    char msg[128];
3534    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3535                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3536    warning("%s", msg);
3537  }
3538}
3539
3540char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3541                                                        char* req_addr,
3542                                                        bool exec) {
3543  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3544  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3545  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3546
3547  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3548  char* addr = (char*)::mmap(req_addr, bytes, prot,
3549                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3550                             -1, 0);
3551
3552  if (addr == MAP_FAILED) {
3553    warn_on_large_pages_failure(req_addr, bytes, errno);
3554    return NULL;
3555  }
3556
3557  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3558
3559  return addr;
3560}
3561
3562// Reserve memory using mmap(MAP_HUGETLB).
3563//  - bytes shall be a multiple of alignment.
3564//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3565//  - alignment sets the alignment at which memory shall be allocated.
3566//     It must be a multiple of allocation granularity.
3567// Returns address of memory or NULL. If req_addr was not NULL, will only return
3568//  req_addr or NULL.
3569char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3570                                                         size_t alignment,
3571                                                         char* req_addr,
3572                                                         bool exec) {
3573  size_t large_page_size = os::large_page_size();
3574  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3575
3576  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3577  assert(is_size_aligned(bytes, alignment), "Must be");
3578
3579  // First reserve - but not commit - the address range in small pages.
3580  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3581
3582  if (start == NULL) {
3583    return NULL;
3584  }
3585
3586  assert(is_ptr_aligned(start, alignment), "Must be");
3587
3588  char* end = start + bytes;
3589
3590  // Find the regions of the allocated chunk that can be promoted to large pages.
3591  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3592  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3593
3594  size_t lp_bytes = lp_end - lp_start;
3595
3596  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3597
3598  if (lp_bytes == 0) {
3599    // The mapped region doesn't even span the start and the end of a large page.
3600    // Fall back to allocate a non-special area.
3601    ::munmap(start, end - start);
3602    return NULL;
3603  }
3604
3605  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3606
3607  void* result;
3608
3609  // Commit small-paged leading area.
3610  if (start != lp_start) {
3611    result = ::mmap(start, lp_start - start, prot,
3612                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3613                    -1, 0);
3614    if (result == MAP_FAILED) {
3615      ::munmap(lp_start, end - lp_start);
3616      return NULL;
3617    }
3618  }
3619
3620  // Commit large-paged area.
3621  result = ::mmap(lp_start, lp_bytes, prot,
3622                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3623                  -1, 0);
3624  if (result == MAP_FAILED) {
3625    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3626    // If the mmap above fails, the large pages region will be unmapped and we
3627    // have regions before and after with small pages. Release these regions.
3628    //
3629    // |  mapped  |  unmapped  |  mapped  |
3630    // ^          ^            ^          ^
3631    // start      lp_start     lp_end     end
3632    //
3633    ::munmap(start, lp_start - start);
3634    ::munmap(lp_end, end - lp_end);
3635    return NULL;
3636  }
3637
3638  // Commit small-paged trailing area.
3639  if (lp_end != end) {
3640    result = ::mmap(lp_end, end - lp_end, prot,
3641                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3642                    -1, 0);
3643    if (result == MAP_FAILED) {
3644      ::munmap(start, lp_end - start);
3645      return NULL;
3646    }
3647  }
3648
3649  return start;
3650}
3651
3652char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3653                                                   size_t alignment,
3654                                                   char* req_addr,
3655                                                   bool exec) {
3656  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3657  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3658  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3659  assert(is_power_of_2(os::large_page_size()), "Must be");
3660  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3661
3662  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3663    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3664  } else {
3665    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3666  }
3667}
3668
3669char* os::reserve_memory_special(size_t bytes, size_t alignment,
3670                                 char* req_addr, bool exec) {
3671  assert(UseLargePages, "only for large pages");
3672
3673  char* addr;
3674  if (UseSHM) {
3675    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3676  } else {
3677    assert(UseHugeTLBFS, "must be");
3678    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3679  }
3680
3681  if (addr != NULL) {
3682    if (UseNUMAInterleaving) {
3683      numa_make_global(addr, bytes);
3684    }
3685
3686    // The memory is committed
3687    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3688  }
3689
3690  return addr;
3691}
3692
3693bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3694  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3695  return shmdt(base) == 0;
3696}
3697
3698bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3699  return pd_release_memory(base, bytes);
3700}
3701
3702bool os::release_memory_special(char* base, size_t bytes) {
3703  bool res;
3704  if (MemTracker::tracking_level() > NMT_minimal) {
3705    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3706    res = os::Linux::release_memory_special_impl(base, bytes);
3707    if (res) {
3708      tkr.record((address)base, bytes);
3709    }
3710
3711  } else {
3712    res = os::Linux::release_memory_special_impl(base, bytes);
3713  }
3714  return res;
3715}
3716
3717bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3718  assert(UseLargePages, "only for large pages");
3719  bool res;
3720
3721  if (UseSHM) {
3722    res = os::Linux::release_memory_special_shm(base, bytes);
3723  } else {
3724    assert(UseHugeTLBFS, "must be");
3725    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3726  }
3727  return res;
3728}
3729
3730size_t os::large_page_size() {
3731  return _large_page_size;
3732}
3733
3734// With SysV SHM the entire memory region must be allocated as shared
3735// memory.
3736// HugeTLBFS allows application to commit large page memory on demand.
3737// However, when committing memory with HugeTLBFS fails, the region
3738// that was supposed to be committed will lose the old reservation
3739// and allow other threads to steal that memory region. Because of this
3740// behavior we can't commit HugeTLBFS memory.
3741bool os::can_commit_large_page_memory() {
3742  return UseTransparentHugePages;
3743}
3744
3745bool os::can_execute_large_page_memory() {
3746  return UseTransparentHugePages || UseHugeTLBFS;
3747}
3748
3749// Reserve memory at an arbitrary address, only if that area is
3750// available (and not reserved for something else).
3751
3752char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3753  const int max_tries = 10;
3754  char* base[max_tries];
3755  size_t size[max_tries];
3756  const size_t gap = 0x000000;
3757
3758  // Assert only that the size is a multiple of the page size, since
3759  // that's all that mmap requires, and since that's all we really know
3760  // about at this low abstraction level.  If we need higher alignment,
3761  // we can either pass an alignment to this method or verify alignment
3762  // in one of the methods further up the call chain.  See bug 5044738.
3763  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3764
3765  // Repeatedly allocate blocks until the block is allocated at the
3766  // right spot.
3767
3768  // Linux mmap allows caller to pass an address as hint; give it a try first,
3769  // if kernel honors the hint then we can return immediately.
3770  char * addr = anon_mmap(requested_addr, bytes, false);
3771  if (addr == requested_addr) {
3772    return requested_addr;
3773  }
3774
3775  if (addr != NULL) {
3776    // mmap() is successful but it fails to reserve at the requested address
3777    anon_munmap(addr, bytes);
3778  }
3779
3780  int i;
3781  for (i = 0; i < max_tries; ++i) {
3782    base[i] = reserve_memory(bytes);
3783
3784    if (base[i] != NULL) {
3785      // Is this the block we wanted?
3786      if (base[i] == requested_addr) {
3787        size[i] = bytes;
3788        break;
3789      }
3790
3791      // Does this overlap the block we wanted? Give back the overlapped
3792      // parts and try again.
3793
3794      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3795      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3796        unmap_memory(base[i], top_overlap);
3797        base[i] += top_overlap;
3798        size[i] = bytes - top_overlap;
3799      } else {
3800        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3801        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3802          unmap_memory(requested_addr, bottom_overlap);
3803          size[i] = bytes - bottom_overlap;
3804        } else {
3805          size[i] = bytes;
3806        }
3807      }
3808    }
3809  }
3810
3811  // Give back the unused reserved pieces.
3812
3813  for (int j = 0; j < i; ++j) {
3814    if (base[j] != NULL) {
3815      unmap_memory(base[j], size[j]);
3816    }
3817  }
3818
3819  if (i < max_tries) {
3820    return requested_addr;
3821  } else {
3822    return NULL;
3823  }
3824}
3825
3826size_t os::read(int fd, void *buf, unsigned int nBytes) {
3827  return ::read(fd, buf, nBytes);
3828}
3829
3830size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3831  return ::pread(fd, buf, nBytes, offset);
3832}
3833
3834// Short sleep, direct OS call.
3835//
3836// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3837// sched_yield(2) will actually give up the CPU:
3838//
3839//   * Alone on this pariticular CPU, keeps running.
3840//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3841//     (pre 2.6.39).
3842//
3843// So calling this with 0 is an alternative.
3844//
3845void os::naked_short_sleep(jlong ms) {
3846  struct timespec req;
3847
3848  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3849  req.tv_sec = 0;
3850  if (ms > 0) {
3851    req.tv_nsec = (ms % 1000) * 1000000;
3852  } else {
3853    req.tv_nsec = 1;
3854  }
3855
3856  nanosleep(&req, NULL);
3857
3858  return;
3859}
3860
3861// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3862void os::infinite_sleep() {
3863  while (true) {    // sleep forever ...
3864    ::sleep(100);   // ... 100 seconds at a time
3865  }
3866}
3867
3868// Used to convert frequent JVM_Yield() to nops
3869bool os::dont_yield() {
3870  return DontYieldALot;
3871}
3872
3873void os::naked_yield() {
3874  sched_yield();
3875}
3876
3877////////////////////////////////////////////////////////////////////////////////
3878// thread priority support
3879
3880// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3881// only supports dynamic priority, static priority must be zero. For real-time
3882// applications, Linux supports SCHED_RR which allows static priority (1-99).
3883// However, for large multi-threaded applications, SCHED_RR is not only slower
3884// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3885// of 5 runs - Sep 2005).
3886//
3887// The following code actually changes the niceness of kernel-thread/LWP. It
3888// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3889// not the entire user process, and user level threads are 1:1 mapped to kernel
3890// threads. It has always been the case, but could change in the future. For
3891// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3892// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3893
3894int os::java_to_os_priority[CriticalPriority + 1] = {
3895  19,              // 0 Entry should never be used
3896
3897   4,              // 1 MinPriority
3898   3,              // 2
3899   2,              // 3
3900
3901   1,              // 4
3902   0,              // 5 NormPriority
3903  -1,              // 6
3904
3905  -2,              // 7
3906  -3,              // 8
3907  -4,              // 9 NearMaxPriority
3908
3909  -5,              // 10 MaxPriority
3910
3911  -5               // 11 CriticalPriority
3912};
3913
3914static int prio_init() {
3915  if (ThreadPriorityPolicy == 1) {
3916    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3917    // if effective uid is not root. Perhaps, a more elegant way of doing
3918    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3919    if (geteuid() != 0) {
3920      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3921        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3922      }
3923      ThreadPriorityPolicy = 0;
3924    }
3925  }
3926  if (UseCriticalJavaThreadPriority) {
3927    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3928  }
3929  return 0;
3930}
3931
3932OSReturn os::set_native_priority(Thread* thread, int newpri) {
3933  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3934
3935  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3936  return (ret == 0) ? OS_OK : OS_ERR;
3937}
3938
3939OSReturn os::get_native_priority(const Thread* const thread,
3940                                 int *priority_ptr) {
3941  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3942    *priority_ptr = java_to_os_priority[NormPriority];
3943    return OS_OK;
3944  }
3945
3946  errno = 0;
3947  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3948  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3949}
3950
3951// Hint to the underlying OS that a task switch would not be good.
3952// Void return because it's a hint and can fail.
3953void os::hint_no_preempt() {}
3954
3955////////////////////////////////////////////////////////////////////////////////
3956// suspend/resume support
3957
3958//  the low-level signal-based suspend/resume support is a remnant from the
3959//  old VM-suspension that used to be for java-suspension, safepoints etc,
3960//  within hotspot. Now there is a single use-case for this:
3961//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3962//      that runs in the watcher thread.
3963//  The remaining code is greatly simplified from the more general suspension
3964//  code that used to be used.
3965//
3966//  The protocol is quite simple:
3967//  - suspend:
3968//      - sends a signal to the target thread
3969//      - polls the suspend state of the osthread using a yield loop
3970//      - target thread signal handler (SR_handler) sets suspend state
3971//        and blocks in sigsuspend until continued
3972//  - resume:
3973//      - sets target osthread state to continue
3974//      - sends signal to end the sigsuspend loop in the SR_handler
3975//
3976//  Note that the SR_lock plays no role in this suspend/resume protocol.
3977
3978static void resume_clear_context(OSThread *osthread) {
3979  osthread->set_ucontext(NULL);
3980  osthread->set_siginfo(NULL);
3981}
3982
3983static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3984                                 ucontext_t* context) {
3985  osthread->set_ucontext(context);
3986  osthread->set_siginfo(siginfo);
3987}
3988
3989// Handler function invoked when a thread's execution is suspended or
3990// resumed. We have to be careful that only async-safe functions are
3991// called here (Note: most pthread functions are not async safe and
3992// should be avoided.)
3993//
3994// Note: sigwait() is a more natural fit than sigsuspend() from an
3995// interface point of view, but sigwait() prevents the signal hander
3996// from being run. libpthread would get very confused by not having
3997// its signal handlers run and prevents sigwait()'s use with the
3998// mutex granting granting signal.
3999//
4000// Currently only ever called on the VMThread and JavaThreads (PC sampling)
4001//
4002static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4003  // Save and restore errno to avoid confusing native code with EINTR
4004  // after sigsuspend.
4005  int old_errno = errno;
4006
4007  Thread* thread = Thread::current_or_null_safe();
4008  assert(thread != NULL, "Missing current thread in SR_handler");
4009  OSThread* osthread = thread->osthread();
4010  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4011
4012  os::SuspendResume::State current = osthread->sr.state();
4013  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4014    suspend_save_context(osthread, siginfo, context);
4015
4016    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4017    os::SuspendResume::State state = osthread->sr.suspended();
4018    if (state == os::SuspendResume::SR_SUSPENDED) {
4019      sigset_t suspend_set;  // signals for sigsuspend()
4020      sigemptyset(&suspend_set);
4021      // get current set of blocked signals and unblock resume signal
4022      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4023      sigdelset(&suspend_set, SR_signum);
4024
4025      sr_semaphore.signal();
4026      // wait here until we are resumed
4027      while (1) {
4028        sigsuspend(&suspend_set);
4029
4030        os::SuspendResume::State result = osthread->sr.running();
4031        if (result == os::SuspendResume::SR_RUNNING) {
4032          sr_semaphore.signal();
4033          break;
4034        }
4035      }
4036
4037    } else if (state == os::SuspendResume::SR_RUNNING) {
4038      // request was cancelled, continue
4039    } else {
4040      ShouldNotReachHere();
4041    }
4042
4043    resume_clear_context(osthread);
4044  } else if (current == os::SuspendResume::SR_RUNNING) {
4045    // request was cancelled, continue
4046  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4047    // ignore
4048  } else {
4049    // ignore
4050  }
4051
4052  errno = old_errno;
4053}
4054
4055static int SR_initialize() {
4056  struct sigaction act;
4057  char *s;
4058
4059  // Get signal number to use for suspend/resume
4060  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4061    int sig = ::strtol(s, 0, 10);
4062    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4063        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4064      SR_signum = sig;
4065    } else {
4066      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4067              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4068    }
4069  }
4070
4071  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4072         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4073
4074  sigemptyset(&SR_sigset);
4075  sigaddset(&SR_sigset, SR_signum);
4076
4077  // Set up signal handler for suspend/resume
4078  act.sa_flags = SA_RESTART|SA_SIGINFO;
4079  act.sa_handler = (void (*)(int)) SR_handler;
4080
4081  // SR_signum is blocked by default.
4082  // 4528190 - We also need to block pthread restart signal (32 on all
4083  // supported Linux platforms). Note that LinuxThreads need to block
4084  // this signal for all threads to work properly. So we don't have
4085  // to use hard-coded signal number when setting up the mask.
4086  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4087
4088  if (sigaction(SR_signum, &act, 0) == -1) {
4089    return -1;
4090  }
4091
4092  // Save signal flag
4093  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4094  return 0;
4095}
4096
4097static int sr_notify(OSThread* osthread) {
4098  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4099  assert_status(status == 0, status, "pthread_kill");
4100  return status;
4101}
4102
4103// "Randomly" selected value for how long we want to spin
4104// before bailing out on suspending a thread, also how often
4105// we send a signal to a thread we want to resume
4106static const int RANDOMLY_LARGE_INTEGER = 1000000;
4107static const int RANDOMLY_LARGE_INTEGER2 = 100;
4108
4109// returns true on success and false on error - really an error is fatal
4110// but this seems the normal response to library errors
4111static bool do_suspend(OSThread* osthread) {
4112  assert(osthread->sr.is_running(), "thread should be running");
4113  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4114
4115  // mark as suspended and send signal
4116  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4117    // failed to switch, state wasn't running?
4118    ShouldNotReachHere();
4119    return false;
4120  }
4121
4122  if (sr_notify(osthread) != 0) {
4123    ShouldNotReachHere();
4124  }
4125
4126  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4127  while (true) {
4128    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4129      break;
4130    } else {
4131      // timeout
4132      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4133      if (cancelled == os::SuspendResume::SR_RUNNING) {
4134        return false;
4135      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4136        // make sure that we consume the signal on the semaphore as well
4137        sr_semaphore.wait();
4138        break;
4139      } else {
4140        ShouldNotReachHere();
4141        return false;
4142      }
4143    }
4144  }
4145
4146  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4147  return true;
4148}
4149
4150static void do_resume(OSThread* osthread) {
4151  assert(osthread->sr.is_suspended(), "thread should be suspended");
4152  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4153
4154  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4155    // failed to switch to WAKEUP_REQUEST
4156    ShouldNotReachHere();
4157    return;
4158  }
4159
4160  while (true) {
4161    if (sr_notify(osthread) == 0) {
4162      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4163        if (osthread->sr.is_running()) {
4164          return;
4165        }
4166      }
4167    } else {
4168      ShouldNotReachHere();
4169    }
4170  }
4171
4172  guarantee(osthread->sr.is_running(), "Must be running!");
4173}
4174
4175///////////////////////////////////////////////////////////////////////////////////
4176// signal handling (except suspend/resume)
4177
4178// This routine may be used by user applications as a "hook" to catch signals.
4179// The user-defined signal handler must pass unrecognized signals to this
4180// routine, and if it returns true (non-zero), then the signal handler must
4181// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4182// routine will never retun false (zero), but instead will execute a VM panic
4183// routine kill the process.
4184//
4185// If this routine returns false, it is OK to call it again.  This allows
4186// the user-defined signal handler to perform checks either before or after
4187// the VM performs its own checks.  Naturally, the user code would be making
4188// a serious error if it tried to handle an exception (such as a null check
4189// or breakpoint) that the VM was generating for its own correct operation.
4190//
4191// This routine may recognize any of the following kinds of signals:
4192//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4193// It should be consulted by handlers for any of those signals.
4194//
4195// The caller of this routine must pass in the three arguments supplied
4196// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4197// field of the structure passed to sigaction().  This routine assumes that
4198// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4199//
4200// Note that the VM will print warnings if it detects conflicting signal
4201// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4202//
4203extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4204                                                 siginfo_t* siginfo,
4205                                                 void* ucontext,
4206                                                 int abort_if_unrecognized);
4207
4208void signalHandler(int sig, siginfo_t* info, void* uc) {
4209  assert(info != NULL && uc != NULL, "it must be old kernel");
4210  int orig_errno = errno;  // Preserve errno value over signal handler.
4211  JVM_handle_linux_signal(sig, info, uc, true);
4212  errno = orig_errno;
4213}
4214
4215
4216// This boolean allows users to forward their own non-matching signals
4217// to JVM_handle_linux_signal, harmlessly.
4218bool os::Linux::signal_handlers_are_installed = false;
4219
4220// For signal-chaining
4221struct sigaction sigact[NSIG];
4222uint64_t sigs = 0;
4223#if (64 < NSIG-1)
4224#error "Not all signals can be encoded in sigs. Adapt its type!"
4225#endif
4226bool os::Linux::libjsig_is_loaded = false;
4227typedef struct sigaction *(*get_signal_t)(int);
4228get_signal_t os::Linux::get_signal_action = NULL;
4229
4230struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4231  struct sigaction *actp = NULL;
4232
4233  if (libjsig_is_loaded) {
4234    // Retrieve the old signal handler from libjsig
4235    actp = (*get_signal_action)(sig);
4236  }
4237  if (actp == NULL) {
4238    // Retrieve the preinstalled signal handler from jvm
4239    actp = get_preinstalled_handler(sig);
4240  }
4241
4242  return actp;
4243}
4244
4245static bool call_chained_handler(struct sigaction *actp, int sig,
4246                                 siginfo_t *siginfo, void *context) {
4247  // Call the old signal handler
4248  if (actp->sa_handler == SIG_DFL) {
4249    // It's more reasonable to let jvm treat it as an unexpected exception
4250    // instead of taking the default action.
4251    return false;
4252  } else if (actp->sa_handler != SIG_IGN) {
4253    if ((actp->sa_flags & SA_NODEFER) == 0) {
4254      // automaticlly block the signal
4255      sigaddset(&(actp->sa_mask), sig);
4256    }
4257
4258    sa_handler_t hand = NULL;
4259    sa_sigaction_t sa = NULL;
4260    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4261    // retrieve the chained handler
4262    if (siginfo_flag_set) {
4263      sa = actp->sa_sigaction;
4264    } else {
4265      hand = actp->sa_handler;
4266    }
4267
4268    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4269      actp->sa_handler = SIG_DFL;
4270    }
4271
4272    // try to honor the signal mask
4273    sigset_t oset;
4274    sigemptyset(&oset);
4275    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4276
4277    // call into the chained handler
4278    if (siginfo_flag_set) {
4279      (*sa)(sig, siginfo, context);
4280    } else {
4281      (*hand)(sig);
4282    }
4283
4284    // restore the signal mask
4285    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4286  }
4287  // Tell jvm's signal handler the signal is taken care of.
4288  return true;
4289}
4290
4291bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4292  bool chained = false;
4293  // signal-chaining
4294  if (UseSignalChaining) {
4295    struct sigaction *actp = get_chained_signal_action(sig);
4296    if (actp != NULL) {
4297      chained = call_chained_handler(actp, sig, siginfo, context);
4298    }
4299  }
4300  return chained;
4301}
4302
4303struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4304  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4305    return &sigact[sig];
4306  }
4307  return NULL;
4308}
4309
4310void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4311  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4312  sigact[sig] = oldAct;
4313  sigs |= (uint64_t)1 << (sig-1);
4314}
4315
4316// for diagnostic
4317int sigflags[NSIG];
4318
4319int os::Linux::get_our_sigflags(int sig) {
4320  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4321  return sigflags[sig];
4322}
4323
4324void os::Linux::set_our_sigflags(int sig, int flags) {
4325  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4326  if (sig > 0 && sig < NSIG) {
4327    sigflags[sig] = flags;
4328  }
4329}
4330
4331void os::Linux::set_signal_handler(int sig, bool set_installed) {
4332  // Check for overwrite.
4333  struct sigaction oldAct;
4334  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4335
4336  void* oldhand = oldAct.sa_sigaction
4337                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4338                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4339  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4340      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4341      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4342    if (AllowUserSignalHandlers || !set_installed) {
4343      // Do not overwrite; user takes responsibility to forward to us.
4344      return;
4345    } else if (UseSignalChaining) {
4346      // save the old handler in jvm
4347      save_preinstalled_handler(sig, oldAct);
4348      // libjsig also interposes the sigaction() call below and saves the
4349      // old sigaction on it own.
4350    } else {
4351      fatal("Encountered unexpected pre-existing sigaction handler "
4352            "%#lx for signal %d.", (long)oldhand, sig);
4353    }
4354  }
4355
4356  struct sigaction sigAct;
4357  sigfillset(&(sigAct.sa_mask));
4358  sigAct.sa_handler = SIG_DFL;
4359  if (!set_installed) {
4360    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4361  } else {
4362    sigAct.sa_sigaction = signalHandler;
4363    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4364  }
4365  // Save flags, which are set by ours
4366  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4367  sigflags[sig] = sigAct.sa_flags;
4368
4369  int ret = sigaction(sig, &sigAct, &oldAct);
4370  assert(ret == 0, "check");
4371
4372  void* oldhand2  = oldAct.sa_sigaction
4373                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4374                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4375  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4376}
4377
4378// install signal handlers for signals that HotSpot needs to
4379// handle in order to support Java-level exception handling.
4380
4381void os::Linux::install_signal_handlers() {
4382  if (!signal_handlers_are_installed) {
4383    signal_handlers_are_installed = true;
4384
4385    // signal-chaining
4386    typedef void (*signal_setting_t)();
4387    signal_setting_t begin_signal_setting = NULL;
4388    signal_setting_t end_signal_setting = NULL;
4389    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4390                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4391    if (begin_signal_setting != NULL) {
4392      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4393                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4394      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4395                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4396      libjsig_is_loaded = true;
4397      assert(UseSignalChaining, "should enable signal-chaining");
4398    }
4399    if (libjsig_is_loaded) {
4400      // Tell libjsig jvm is setting signal handlers
4401      (*begin_signal_setting)();
4402    }
4403
4404    set_signal_handler(SIGSEGV, true);
4405    set_signal_handler(SIGPIPE, true);
4406    set_signal_handler(SIGBUS, true);
4407    set_signal_handler(SIGILL, true);
4408    set_signal_handler(SIGFPE, true);
4409#if defined(PPC64)
4410    set_signal_handler(SIGTRAP, true);
4411#endif
4412    set_signal_handler(SIGXFSZ, true);
4413
4414    if (libjsig_is_loaded) {
4415      // Tell libjsig jvm finishes setting signal handlers
4416      (*end_signal_setting)();
4417    }
4418
4419    // We don't activate signal checker if libjsig is in place, we trust ourselves
4420    // and if UserSignalHandler is installed all bets are off.
4421    // Log that signal checking is off only if -verbose:jni is specified.
4422    if (CheckJNICalls) {
4423      if (libjsig_is_loaded) {
4424        if (PrintJNIResolving) {
4425          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4426        }
4427        check_signals = false;
4428      }
4429      if (AllowUserSignalHandlers) {
4430        if (PrintJNIResolving) {
4431          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4432        }
4433        check_signals = false;
4434      }
4435    }
4436  }
4437}
4438
4439// This is the fastest way to get thread cpu time on Linux.
4440// Returns cpu time (user+sys) for any thread, not only for current.
4441// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4442// It might work on 2.6.10+ with a special kernel/glibc patch.
4443// For reference, please, see IEEE Std 1003.1-2004:
4444//   http://www.unix.org/single_unix_specification
4445
4446jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4447  struct timespec tp;
4448  int rc = os::Linux::clock_gettime(clockid, &tp);
4449  assert(rc == 0, "clock_gettime is expected to return 0 code");
4450
4451  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4452}
4453
4454void os::Linux::initialize_os_info() {
4455  assert(_os_version == 0, "OS info already initialized");
4456
4457  struct utsname _uname;
4458
4459  uint32_t major;
4460  uint32_t minor;
4461  uint32_t fix;
4462
4463  int rc;
4464
4465  // Kernel version is unknown if
4466  // verification below fails.
4467  _os_version = 0x01000000;
4468
4469  rc = uname(&_uname);
4470  if (rc != -1) {
4471
4472    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4473    if (rc == 3) {
4474
4475      if (major < 256 && minor < 256 && fix < 256) {
4476        // Kernel version format is as expected,
4477        // set it overriding unknown state.
4478        _os_version = (major << 16) |
4479                      (minor << 8 ) |
4480                      (fix   << 0 ) ;
4481      }
4482    }
4483  }
4484}
4485
4486uint32_t os::Linux::os_version() {
4487  assert(_os_version != 0, "not initialized");
4488  return _os_version & 0x00FFFFFF;
4489}
4490
4491bool os::Linux::os_version_is_known() {
4492  assert(_os_version != 0, "not initialized");
4493  return _os_version & 0x01000000 ? false : true;
4494}
4495
4496/////
4497// glibc on Linux platform uses non-documented flag
4498// to indicate, that some special sort of signal
4499// trampoline is used.
4500// We will never set this flag, and we should
4501// ignore this flag in our diagnostic
4502#ifdef SIGNIFICANT_SIGNAL_MASK
4503  #undef SIGNIFICANT_SIGNAL_MASK
4504#endif
4505#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4506
4507static const char* get_signal_handler_name(address handler,
4508                                           char* buf, int buflen) {
4509  int offset = 0;
4510  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4511  if (found) {
4512    // skip directory names
4513    const char *p1, *p2;
4514    p1 = buf;
4515    size_t len = strlen(os::file_separator());
4516    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4517    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4518  } else {
4519    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4520  }
4521  return buf;
4522}
4523
4524static void print_signal_handler(outputStream* st, int sig,
4525                                 char* buf, size_t buflen) {
4526  struct sigaction sa;
4527
4528  sigaction(sig, NULL, &sa);
4529
4530  // See comment for SIGNIFICANT_SIGNAL_MASK define
4531  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4532
4533  st->print("%s: ", os::exception_name(sig, buf, buflen));
4534
4535  address handler = (sa.sa_flags & SA_SIGINFO)
4536    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4537    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4538
4539  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4540    st->print("SIG_DFL");
4541  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4542    st->print("SIG_IGN");
4543  } else {
4544    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4545  }
4546
4547  st->print(", sa_mask[0]=");
4548  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4549
4550  address rh = VMError::get_resetted_sighandler(sig);
4551  // May be, handler was resetted by VMError?
4552  if (rh != NULL) {
4553    handler = rh;
4554    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4555  }
4556
4557  st->print(", sa_flags=");
4558  os::Posix::print_sa_flags(st, sa.sa_flags);
4559
4560  // Check: is it our handler?
4561  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4562      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4563    // It is our signal handler
4564    // check for flags, reset system-used one!
4565    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4566      st->print(
4567                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4568                os::Linux::get_our_sigflags(sig));
4569    }
4570  }
4571  st->cr();
4572}
4573
4574
4575#define DO_SIGNAL_CHECK(sig)                      \
4576  do {                                            \
4577    if (!sigismember(&check_signal_done, sig)) {  \
4578      os::Linux::check_signal_handler(sig);       \
4579    }                                             \
4580  } while (0)
4581
4582// This method is a periodic task to check for misbehaving JNI applications
4583// under CheckJNI, we can add any periodic checks here
4584
4585void os::run_periodic_checks() {
4586  if (check_signals == false) return;
4587
4588  // SEGV and BUS if overridden could potentially prevent
4589  // generation of hs*.log in the event of a crash, debugging
4590  // such a case can be very challenging, so we absolutely
4591  // check the following for a good measure:
4592  DO_SIGNAL_CHECK(SIGSEGV);
4593  DO_SIGNAL_CHECK(SIGILL);
4594  DO_SIGNAL_CHECK(SIGFPE);
4595  DO_SIGNAL_CHECK(SIGBUS);
4596  DO_SIGNAL_CHECK(SIGPIPE);
4597  DO_SIGNAL_CHECK(SIGXFSZ);
4598#if defined(PPC64)
4599  DO_SIGNAL_CHECK(SIGTRAP);
4600#endif
4601
4602  // ReduceSignalUsage allows the user to override these handlers
4603  // see comments at the very top and jvm_solaris.h
4604  if (!ReduceSignalUsage) {
4605    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4606    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4607    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4608    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4609  }
4610
4611  DO_SIGNAL_CHECK(SR_signum);
4612}
4613
4614typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4615
4616static os_sigaction_t os_sigaction = NULL;
4617
4618void os::Linux::check_signal_handler(int sig) {
4619  char buf[O_BUFLEN];
4620  address jvmHandler = NULL;
4621
4622
4623  struct sigaction act;
4624  if (os_sigaction == NULL) {
4625    // only trust the default sigaction, in case it has been interposed
4626    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4627    if (os_sigaction == NULL) return;
4628  }
4629
4630  os_sigaction(sig, (struct sigaction*)NULL, &act);
4631
4632
4633  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4634
4635  address thisHandler = (act.sa_flags & SA_SIGINFO)
4636    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4637    : CAST_FROM_FN_PTR(address, act.sa_handler);
4638
4639
4640  switch (sig) {
4641  case SIGSEGV:
4642  case SIGBUS:
4643  case SIGFPE:
4644  case SIGPIPE:
4645  case SIGILL:
4646  case SIGXFSZ:
4647    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4648    break;
4649
4650  case SHUTDOWN1_SIGNAL:
4651  case SHUTDOWN2_SIGNAL:
4652  case SHUTDOWN3_SIGNAL:
4653  case BREAK_SIGNAL:
4654    jvmHandler = (address)user_handler();
4655    break;
4656
4657  default:
4658    if (sig == SR_signum) {
4659      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4660    } else {
4661      return;
4662    }
4663    break;
4664  }
4665
4666  if (thisHandler != jvmHandler) {
4667    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4668    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4669    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4670    // No need to check this sig any longer
4671    sigaddset(&check_signal_done, sig);
4672    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4673    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4674      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4675                    exception_name(sig, buf, O_BUFLEN));
4676    }
4677  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4678    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4679    tty->print("expected:");
4680    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4681    tty->cr();
4682    tty->print("  found:");
4683    os::Posix::print_sa_flags(tty, act.sa_flags);
4684    tty->cr();
4685    // No need to check this sig any longer
4686    sigaddset(&check_signal_done, sig);
4687  }
4688
4689  // Dump all the signal
4690  if (sigismember(&check_signal_done, sig)) {
4691    print_signal_handlers(tty, buf, O_BUFLEN);
4692  }
4693}
4694
4695extern void report_error(char* file_name, int line_no, char* title,
4696                         char* format, ...);
4697
4698// this is called _before_ the most of global arguments have been parsed
4699void os::init(void) {
4700  char dummy;   // used to get a guess on initial stack address
4701//  first_hrtime = gethrtime();
4702
4703  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4704
4705  init_random(1234567);
4706
4707  ThreadCritical::initialize();
4708
4709  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4710  if (Linux::page_size() == -1) {
4711    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4712          os::strerror(errno));
4713  }
4714  init_page_sizes((size_t) Linux::page_size());
4715
4716  Linux::initialize_system_info();
4717
4718  Linux::initialize_os_info();
4719
4720  // main_thread points to the aboriginal thread
4721  Linux::_main_thread = pthread_self();
4722
4723  Linux::clock_init();
4724  initial_time_count = javaTimeNanos();
4725
4726  // pthread_condattr initialization for monotonic clock
4727  int status;
4728  pthread_condattr_t* _condattr = os::Linux::condAttr();
4729  if ((status = pthread_condattr_init(_condattr)) != 0) {
4730    fatal("pthread_condattr_init: %s", os::strerror(status));
4731  }
4732  // Only set the clock if CLOCK_MONOTONIC is available
4733  if (os::supports_monotonic_clock()) {
4734    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4735      if (status == EINVAL) {
4736        warning("Unable to use monotonic clock with relative timed-waits" \
4737                " - changes to the time-of-day clock may have adverse affects");
4738      } else {
4739        fatal("pthread_condattr_setclock: %s", os::strerror(status));
4740      }
4741    }
4742  }
4743  // else it defaults to CLOCK_REALTIME
4744
4745  // retrieve entry point for pthread_setname_np
4746  Linux::_pthread_setname_np =
4747    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4748
4749}
4750
4751// To install functions for atexit system call
4752extern "C" {
4753  static void perfMemory_exit_helper() {
4754    perfMemory_exit();
4755  }
4756}
4757
4758// this is called _after_ the global arguments have been parsed
4759jint os::init_2(void) {
4760  Linux::fast_thread_clock_init();
4761
4762  // Allocate a single page and mark it as readable for safepoint polling
4763  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4764  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4765
4766  os::set_polling_page(polling_page);
4767  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4768
4769  if (!UseMembar) {
4770    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4771    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4772    os::set_memory_serialize_page(mem_serialize_page);
4773    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4774  }
4775
4776  // initialize suspend/resume support - must do this before signal_sets_init()
4777  if (SR_initialize() != 0) {
4778    perror("SR_initialize failed");
4779    return JNI_ERR;
4780  }
4781
4782  Linux::signal_sets_init();
4783  Linux::install_signal_handlers();
4784
4785  // Check minimum allowable stack size for thread creation and to initialize
4786  // the java system classes, including StackOverflowError - depends on page
4787  // size.  Add a page for compiler2 recursion in main thread.
4788  // Add in 2*BytesPerWord times page size to account for VM stack during
4789  // class initialization depending on 32 or 64 bit VM.
4790  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4791                                      JavaThread::stack_guard_zone_size() +
4792                                      JavaThread::stack_shadow_zone_size() +
4793                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4794
4795  size_t threadStackSizeInBytes = ThreadStackSize * K;
4796  if (threadStackSizeInBytes != 0 &&
4797      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4798    tty->print_cr("\nThe stack size specified is too small, "
4799                  "Specify at least " SIZE_FORMAT "k",
4800                  os::Linux::min_stack_allowed/ K);
4801    return JNI_ERR;
4802  }
4803
4804  // Make the stack size a multiple of the page size so that
4805  // the yellow/red zones can be guarded.
4806  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4807                                                vm_page_size()));
4808
4809  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4810
4811#if defined(IA32)
4812  workaround_expand_exec_shield_cs_limit();
4813#endif
4814
4815  Linux::libpthread_init();
4816  log_info(os)("HotSpot is running with %s, %s",
4817               Linux::glibc_version(), Linux::libpthread_version());
4818
4819  if (UseNUMA) {
4820    if (!Linux::libnuma_init()) {
4821      UseNUMA = false;
4822    } else {
4823      if ((Linux::numa_max_node() < 1)) {
4824        // There's only one node(they start from 0), disable NUMA.
4825        UseNUMA = false;
4826      }
4827    }
4828    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4829    // we can make the adaptive lgrp chunk resizing work. If the user specified
4830    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4831    // disable adaptive resizing.
4832    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4833      if (FLAG_IS_DEFAULT(UseNUMA)) {
4834        UseNUMA = false;
4835      } else {
4836        if (FLAG_IS_DEFAULT(UseLargePages) &&
4837            FLAG_IS_DEFAULT(UseSHM) &&
4838            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4839          UseLargePages = false;
4840        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4841          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4842          UseAdaptiveSizePolicy = false;
4843          UseAdaptiveNUMAChunkSizing = false;
4844        }
4845      }
4846    }
4847    if (!UseNUMA && ForceNUMA) {
4848      UseNUMA = true;
4849    }
4850  }
4851
4852  if (MaxFDLimit) {
4853    // set the number of file descriptors to max. print out error
4854    // if getrlimit/setrlimit fails but continue regardless.
4855    struct rlimit nbr_files;
4856    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4857    if (status != 0) {
4858      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4859    } else {
4860      nbr_files.rlim_cur = nbr_files.rlim_max;
4861      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4862      if (status != 0) {
4863        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4864      }
4865    }
4866  }
4867
4868  // Initialize lock used to serialize thread creation (see os::create_thread)
4869  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4870
4871  // at-exit methods are called in the reverse order of their registration.
4872  // atexit functions are called on return from main or as a result of a
4873  // call to exit(3C). There can be only 32 of these functions registered
4874  // and atexit() does not set errno.
4875
4876  if (PerfAllowAtExitRegistration) {
4877    // only register atexit functions if PerfAllowAtExitRegistration is set.
4878    // atexit functions can be delayed until process exit time, which
4879    // can be problematic for embedded VM situations. Embedded VMs should
4880    // call DestroyJavaVM() to assure that VM resources are released.
4881
4882    // note: perfMemory_exit_helper atexit function may be removed in
4883    // the future if the appropriate cleanup code can be added to the
4884    // VM_Exit VMOperation's doit method.
4885    if (atexit(perfMemory_exit_helper) != 0) {
4886      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4887    }
4888  }
4889
4890  // initialize thread priority policy
4891  prio_init();
4892
4893  return JNI_OK;
4894}
4895
4896// Mark the polling page as unreadable
4897void os::make_polling_page_unreadable(void) {
4898  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4899    fatal("Could not disable polling page");
4900  }
4901}
4902
4903// Mark the polling page as readable
4904void os::make_polling_page_readable(void) {
4905  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4906    fatal("Could not enable polling page");
4907  }
4908}
4909
4910// older glibc versions don't have this macro (which expands to
4911// an optimized bit-counting function) so we have to roll our own
4912#ifndef CPU_COUNT
4913
4914static int _cpu_count(const cpu_set_t* cpus) {
4915  int count = 0;
4916  // only look up to the number of configured processors
4917  for (int i = 0; i < os::processor_count(); i++) {
4918    if (CPU_ISSET(i, cpus)) {
4919      count++;
4920    }
4921  }
4922  return count;
4923}
4924
4925#define CPU_COUNT(cpus) _cpu_count(cpus)
4926
4927#endif // CPU_COUNT
4928
4929// Get the current number of available processors for this process.
4930// This value can change at any time during a process's lifetime.
4931// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4932// If it appears there may be more than 1024 processors then we do a
4933// dynamic check - see 6515172 for details.
4934// If anything goes wrong we fallback to returning the number of online
4935// processors - which can be greater than the number available to the process.
4936int os::active_processor_count() {
4937  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4938  cpu_set_t* cpus_p = &cpus;
4939  int cpus_size = sizeof(cpu_set_t);
4940
4941  int configured_cpus = processor_count();  // upper bound on available cpus
4942  int cpu_count = 0;
4943
4944// old build platforms may not support dynamic cpu sets
4945#ifdef CPU_ALLOC
4946
4947  // To enable easy testing of the dynamic path on different platforms we
4948  // introduce a diagnostic flag: UseCpuAllocPath
4949  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4950    // kernel may use a mask bigger than cpu_set_t
4951    log_trace(os)("active_processor_count: using dynamic path %s"
4952                  "- configured processors: %d",
4953                  UseCpuAllocPath ? "(forced) " : "",
4954                  configured_cpus);
4955    cpus_p = CPU_ALLOC(configured_cpus);
4956    if (cpus_p != NULL) {
4957      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4958      // zero it just to be safe
4959      CPU_ZERO_S(cpus_size, cpus_p);
4960    }
4961    else {
4962       // failed to allocate so fallback to online cpus
4963       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4964       log_trace(os)("active_processor_count: "
4965                     "CPU_ALLOC failed (%s) - using "
4966                     "online processor count: %d",
4967                     os::strerror(errno), online_cpus);
4968       return online_cpus;
4969    }
4970  }
4971  else {
4972    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4973                  configured_cpus);
4974  }
4975#else // CPU_ALLOC
4976// these stubs won't be executed
4977#define CPU_COUNT_S(size, cpus) -1
4978#define CPU_FREE(cpus)
4979
4980  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4981                configured_cpus);
4982#endif // CPU_ALLOC
4983
4984  // pid 0 means the current thread - which we have to assume represents the process
4985  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4986    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4987      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4988    }
4989    else {
4990      cpu_count = CPU_COUNT(cpus_p);
4991    }
4992    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4993  }
4994  else {
4995    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4996    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4997            "which may exceed available processors", os::strerror(errno), cpu_count);
4998  }
4999
5000  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5001    CPU_FREE(cpus_p);
5002  }
5003
5004  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5005  return cpu_count;
5006}
5007
5008void os::set_native_thread_name(const char *name) {
5009  if (Linux::_pthread_setname_np) {
5010    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5011    snprintf(buf, sizeof(buf), "%s", name);
5012    buf[sizeof(buf) - 1] = '\0';
5013    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5014    // ERANGE should not happen; all other errors should just be ignored.
5015    assert(rc != ERANGE, "pthread_setname_np failed");
5016  }
5017}
5018
5019bool os::distribute_processes(uint length, uint* distribution) {
5020  // Not yet implemented.
5021  return false;
5022}
5023
5024bool os::bind_to_processor(uint processor_id) {
5025  // Not yet implemented.
5026  return false;
5027}
5028
5029///
5030
5031void os::SuspendedThreadTask::internal_do_task() {
5032  if (do_suspend(_thread->osthread())) {
5033    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5034    do_task(context);
5035    do_resume(_thread->osthread());
5036  }
5037}
5038
5039class PcFetcher : public os::SuspendedThreadTask {
5040 public:
5041  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5042  ExtendedPC result();
5043 protected:
5044  void do_task(const os::SuspendedThreadTaskContext& context);
5045 private:
5046  ExtendedPC _epc;
5047};
5048
5049ExtendedPC PcFetcher::result() {
5050  guarantee(is_done(), "task is not done yet.");
5051  return _epc;
5052}
5053
5054void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5055  Thread* thread = context.thread();
5056  OSThread* osthread = thread->osthread();
5057  if (osthread->ucontext() != NULL) {
5058    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5059  } else {
5060    // NULL context is unexpected, double-check this is the VMThread
5061    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5062  }
5063}
5064
5065// Suspends the target using the signal mechanism and then grabs the PC before
5066// resuming the target. Used by the flat-profiler only
5067ExtendedPC os::get_thread_pc(Thread* thread) {
5068  // Make sure that it is called by the watcher for the VMThread
5069  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5070  assert(thread->is_VM_thread(), "Can only be called for VMThread");
5071
5072  PcFetcher fetcher(thread);
5073  fetcher.run();
5074  return fetcher.result();
5075}
5076
5077////////////////////////////////////////////////////////////////////////////////
5078// debug support
5079
5080bool os::find(address addr, outputStream* st) {
5081  Dl_info dlinfo;
5082  memset(&dlinfo, 0, sizeof(dlinfo));
5083  if (dladdr(addr, &dlinfo) != 0) {
5084    st->print(PTR_FORMAT ": ", p2i(addr));
5085    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5086      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5087                p2i(addr) - p2i(dlinfo.dli_saddr));
5088    } else if (dlinfo.dli_fbase != NULL) {
5089      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5090    } else {
5091      st->print("<absolute address>");
5092    }
5093    if (dlinfo.dli_fname != NULL) {
5094      st->print(" in %s", dlinfo.dli_fname);
5095    }
5096    if (dlinfo.dli_fbase != NULL) {
5097      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5098    }
5099    st->cr();
5100
5101    if (Verbose) {
5102      // decode some bytes around the PC
5103      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5104      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5105      address       lowest = (address) dlinfo.dli_sname;
5106      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5107      if (begin < lowest)  begin = lowest;
5108      Dl_info dlinfo2;
5109      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5110          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5111        end = (address) dlinfo2.dli_saddr;
5112      }
5113      Disassembler::decode(begin, end, st);
5114    }
5115    return true;
5116  }
5117  return false;
5118}
5119
5120////////////////////////////////////////////////////////////////////////////////
5121// misc
5122
5123// This does not do anything on Linux. This is basically a hook for being
5124// able to use structured exception handling (thread-local exception filters)
5125// on, e.g., Win32.
5126void
5127os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5128                         JavaCallArguments* args, Thread* thread) {
5129  f(value, method, args, thread);
5130}
5131
5132void os::print_statistics() {
5133}
5134
5135bool os::message_box(const char* title, const char* message) {
5136  int i;
5137  fdStream err(defaultStream::error_fd());
5138  for (i = 0; i < 78; i++) err.print_raw("=");
5139  err.cr();
5140  err.print_raw_cr(title);
5141  for (i = 0; i < 78; i++) err.print_raw("-");
5142  err.cr();
5143  err.print_raw_cr(message);
5144  for (i = 0; i < 78; i++) err.print_raw("=");
5145  err.cr();
5146
5147  char buf[16];
5148  // Prevent process from exiting upon "read error" without consuming all CPU
5149  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5150
5151  return buf[0] == 'y' || buf[0] == 'Y';
5152}
5153
5154int os::stat(const char *path, struct stat *sbuf) {
5155  char pathbuf[MAX_PATH];
5156  if (strlen(path) > MAX_PATH - 1) {
5157    errno = ENAMETOOLONG;
5158    return -1;
5159  }
5160  os::native_path(strcpy(pathbuf, path));
5161  return ::stat(pathbuf, sbuf);
5162}
5163
5164bool os::check_heap(bool force) {
5165  return true;
5166}
5167
5168// Is a (classpath) directory empty?
5169bool os::dir_is_empty(const char* path) {
5170  DIR *dir = NULL;
5171  struct dirent *ptr;
5172
5173  dir = opendir(path);
5174  if (dir == NULL) return true;
5175
5176  // Scan the directory
5177  bool result = true;
5178  char buf[sizeof(struct dirent) + MAX_PATH];
5179  while (result && (ptr = ::readdir(dir)) != NULL) {
5180    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5181      result = false;
5182    }
5183  }
5184  closedir(dir);
5185  return result;
5186}
5187
5188// This code originates from JDK's sysOpen and open64_w
5189// from src/solaris/hpi/src/system_md.c
5190
5191int os::open(const char *path, int oflag, int mode) {
5192  if (strlen(path) > MAX_PATH - 1) {
5193    errno = ENAMETOOLONG;
5194    return -1;
5195  }
5196
5197  // All file descriptors that are opened in the Java process and not
5198  // specifically destined for a subprocess should have the close-on-exec
5199  // flag set.  If we don't set it, then careless 3rd party native code
5200  // might fork and exec without closing all appropriate file descriptors
5201  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5202  // turn might:
5203  //
5204  // - cause end-of-file to fail to be detected on some file
5205  //   descriptors, resulting in mysterious hangs, or
5206  //
5207  // - might cause an fopen in the subprocess to fail on a system
5208  //   suffering from bug 1085341.
5209  //
5210  // (Yes, the default setting of the close-on-exec flag is a Unix
5211  // design flaw)
5212  //
5213  // See:
5214  // 1085341: 32-bit stdio routines should support file descriptors >255
5215  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5216  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5217  //
5218  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5219  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5220  // because it saves a system call and removes a small window where the flag
5221  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5222  // and we fall back to using FD_CLOEXEC (see below).
5223#ifdef O_CLOEXEC
5224  oflag |= O_CLOEXEC;
5225#endif
5226
5227  int fd = ::open64(path, oflag, mode);
5228  if (fd == -1) return -1;
5229
5230  //If the open succeeded, the file might still be a directory
5231  {
5232    struct stat64 buf64;
5233    int ret = ::fstat64(fd, &buf64);
5234    int st_mode = buf64.st_mode;
5235
5236    if (ret != -1) {
5237      if ((st_mode & S_IFMT) == S_IFDIR) {
5238        errno = EISDIR;
5239        ::close(fd);
5240        return -1;
5241      }
5242    } else {
5243      ::close(fd);
5244      return -1;
5245    }
5246  }
5247
5248#ifdef FD_CLOEXEC
5249  // Validate that the use of the O_CLOEXEC flag on open above worked.
5250  // With recent kernels, we will perform this check exactly once.
5251  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5252  if (!O_CLOEXEC_is_known_to_work) {
5253    int flags = ::fcntl(fd, F_GETFD);
5254    if (flags != -1) {
5255      if ((flags & FD_CLOEXEC) != 0)
5256        O_CLOEXEC_is_known_to_work = 1;
5257      else
5258        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5259    }
5260  }
5261#endif
5262
5263  return fd;
5264}
5265
5266
5267// create binary file, rewriting existing file if required
5268int os::create_binary_file(const char* path, bool rewrite_existing) {
5269  int oflags = O_WRONLY | O_CREAT;
5270  if (!rewrite_existing) {
5271    oflags |= O_EXCL;
5272  }
5273  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5274}
5275
5276// return current position of file pointer
5277jlong os::current_file_offset(int fd) {
5278  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5279}
5280
5281// move file pointer to the specified offset
5282jlong os::seek_to_file_offset(int fd, jlong offset) {
5283  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5284}
5285
5286// This code originates from JDK's sysAvailable
5287// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5288
5289int os::available(int fd, jlong *bytes) {
5290  jlong cur, end;
5291  int mode;
5292  struct stat64 buf64;
5293
5294  if (::fstat64(fd, &buf64) >= 0) {
5295    mode = buf64.st_mode;
5296    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5297      int n;
5298      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5299        *bytes = n;
5300        return 1;
5301      }
5302    }
5303  }
5304  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5305    return 0;
5306  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5307    return 0;
5308  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5309    return 0;
5310  }
5311  *bytes = end - cur;
5312  return 1;
5313}
5314
5315// Map a block of memory.
5316char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5317                        char *addr, size_t bytes, bool read_only,
5318                        bool allow_exec) {
5319  int prot;
5320  int flags = MAP_PRIVATE;
5321
5322  if (read_only) {
5323    prot = PROT_READ;
5324  } else {
5325    prot = PROT_READ | PROT_WRITE;
5326  }
5327
5328  if (allow_exec) {
5329    prot |= PROT_EXEC;
5330  }
5331
5332  if (addr != NULL) {
5333    flags |= MAP_FIXED;
5334  }
5335
5336  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5337                                     fd, file_offset);
5338  if (mapped_address == MAP_FAILED) {
5339    return NULL;
5340  }
5341  return mapped_address;
5342}
5343
5344
5345// Remap a block of memory.
5346char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5347                          char *addr, size_t bytes, bool read_only,
5348                          bool allow_exec) {
5349  // same as map_memory() on this OS
5350  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5351                        allow_exec);
5352}
5353
5354
5355// Unmap a block of memory.
5356bool os::pd_unmap_memory(char* addr, size_t bytes) {
5357  return munmap(addr, bytes) == 0;
5358}
5359
5360static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5361
5362static clockid_t thread_cpu_clockid(Thread* thread) {
5363  pthread_t tid = thread->osthread()->pthread_id();
5364  clockid_t clockid;
5365
5366  // Get thread clockid
5367  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5368  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5369  return clockid;
5370}
5371
5372// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5373// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5374// of a thread.
5375//
5376// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5377// the fast estimate available on the platform.
5378
5379jlong os::current_thread_cpu_time() {
5380  if (os::Linux::supports_fast_thread_cpu_time()) {
5381    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5382  } else {
5383    // return user + sys since the cost is the same
5384    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5385  }
5386}
5387
5388jlong os::thread_cpu_time(Thread* thread) {
5389  // consistent with what current_thread_cpu_time() returns
5390  if (os::Linux::supports_fast_thread_cpu_time()) {
5391    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5392  } else {
5393    return slow_thread_cpu_time(thread, true /* user + sys */);
5394  }
5395}
5396
5397jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5398  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5399    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5400  } else {
5401    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5402  }
5403}
5404
5405jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5406  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5407    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5408  } else {
5409    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5410  }
5411}
5412
5413//  -1 on error.
5414static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5415  pid_t  tid = thread->osthread()->thread_id();
5416  char *s;
5417  char stat[2048];
5418  int statlen;
5419  char proc_name[64];
5420  int count;
5421  long sys_time, user_time;
5422  char cdummy;
5423  int idummy;
5424  long ldummy;
5425  FILE *fp;
5426
5427  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5428  fp = fopen(proc_name, "r");
5429  if (fp == NULL) return -1;
5430  statlen = fread(stat, 1, 2047, fp);
5431  stat[statlen] = '\0';
5432  fclose(fp);
5433
5434  // Skip pid and the command string. Note that we could be dealing with
5435  // weird command names, e.g. user could decide to rename java launcher
5436  // to "java 1.4.2 :)", then the stat file would look like
5437  //                1234 (java 1.4.2 :)) R ... ...
5438  // We don't really need to know the command string, just find the last
5439  // occurrence of ")" and then start parsing from there. See bug 4726580.
5440  s = strrchr(stat, ')');
5441  if (s == NULL) return -1;
5442
5443  // Skip blank chars
5444  do { s++; } while (s && isspace(*s));
5445
5446  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5447                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5448                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5449                 &user_time, &sys_time);
5450  if (count != 13) return -1;
5451  if (user_sys_cpu_time) {
5452    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5453  } else {
5454    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5455  }
5456}
5457
5458void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5459  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5460  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5461  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5462  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5463}
5464
5465void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5466  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5467  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5468  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5469  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5470}
5471
5472bool os::is_thread_cpu_time_supported() {
5473  return true;
5474}
5475
5476// System loadavg support.  Returns -1 if load average cannot be obtained.
5477// Linux doesn't yet have a (official) notion of processor sets,
5478// so just return the system wide load average.
5479int os::loadavg(double loadavg[], int nelem) {
5480  return ::getloadavg(loadavg, nelem);
5481}
5482
5483void os::pause() {
5484  char filename[MAX_PATH];
5485  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5486    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5487  } else {
5488    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5489  }
5490
5491  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5492  if (fd != -1) {
5493    struct stat buf;
5494    ::close(fd);
5495    while (::stat(filename, &buf) == 0) {
5496      (void)::poll(NULL, 0, 100);
5497    }
5498  } else {
5499    jio_fprintf(stderr,
5500                "Could not open pause file '%s', continuing immediately.\n", filename);
5501  }
5502}
5503
5504
5505// Refer to the comments in os_solaris.cpp park-unpark. The next two
5506// comment paragraphs are worth repeating here:
5507//
5508// Assumption:
5509//    Only one parker can exist on an event, which is why we allocate
5510//    them per-thread. Multiple unparkers can coexist.
5511//
5512// _Event serves as a restricted-range semaphore.
5513//   -1 : thread is blocked, i.e. there is a waiter
5514//    0 : neutral: thread is running or ready,
5515//        could have been signaled after a wait started
5516//    1 : signaled - thread is running or ready
5517//
5518
5519// utility to compute the abstime argument to timedwait:
5520// millis is the relative timeout time
5521// abstime will be the absolute timeout time
5522// TODO: replace compute_abstime() with unpackTime()
5523
5524static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5525  if (millis < 0)  millis = 0;
5526
5527  jlong seconds = millis / 1000;
5528  millis %= 1000;
5529  if (seconds > 50000000) { // see man cond_timedwait(3T)
5530    seconds = 50000000;
5531  }
5532
5533  if (os::supports_monotonic_clock()) {
5534    struct timespec now;
5535    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5536    assert_status(status == 0, status, "clock_gettime");
5537    abstime->tv_sec = now.tv_sec  + seconds;
5538    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5539    if (nanos >= NANOSECS_PER_SEC) {
5540      abstime->tv_sec += 1;
5541      nanos -= NANOSECS_PER_SEC;
5542    }
5543    abstime->tv_nsec = nanos;
5544  } else {
5545    struct timeval now;
5546    int status = gettimeofday(&now, NULL);
5547    assert(status == 0, "gettimeofday");
5548    abstime->tv_sec = now.tv_sec  + seconds;
5549    long usec = now.tv_usec + millis * 1000;
5550    if (usec >= 1000000) {
5551      abstime->tv_sec += 1;
5552      usec -= 1000000;
5553    }
5554    abstime->tv_nsec = usec * 1000;
5555  }
5556  return abstime;
5557}
5558
5559void os::PlatformEvent::park() {       // AKA "down()"
5560  // Transitions for _Event:
5561  //   -1 => -1 : illegal
5562  //    1 =>  0 : pass - return immediately
5563  //    0 => -1 : block; then set _Event to 0 before returning
5564
5565  // Invariant: Only the thread associated with the Event/PlatformEvent
5566  // may call park().
5567  // TODO: assert that _Assoc != NULL or _Assoc == Self
5568  assert(_nParked == 0, "invariant");
5569
5570  int v;
5571  for (;;) {
5572    v = _Event;
5573    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5574  }
5575  guarantee(v >= 0, "invariant");
5576  if (v == 0) {
5577    // Do this the hard way by blocking ...
5578    int status = pthread_mutex_lock(_mutex);
5579    assert_status(status == 0, status, "mutex_lock");
5580    guarantee(_nParked == 0, "invariant");
5581    ++_nParked;
5582    while (_Event < 0) {
5583      status = pthread_cond_wait(_cond, _mutex);
5584      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5585      // Treat this the same as if the wait was interrupted
5586      if (status == ETIME) { status = EINTR; }
5587      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5588    }
5589    --_nParked;
5590
5591    _Event = 0;
5592    status = pthread_mutex_unlock(_mutex);
5593    assert_status(status == 0, status, "mutex_unlock");
5594    // Paranoia to ensure our locked and lock-free paths interact
5595    // correctly with each other.
5596    OrderAccess::fence();
5597  }
5598  guarantee(_Event >= 0, "invariant");
5599}
5600
5601int os::PlatformEvent::park(jlong millis) {
5602  // Transitions for _Event:
5603  //   -1 => -1 : illegal
5604  //    1 =>  0 : pass - return immediately
5605  //    0 => -1 : block; then set _Event to 0 before returning
5606
5607  guarantee(_nParked == 0, "invariant");
5608
5609  int v;
5610  for (;;) {
5611    v = _Event;
5612    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5613  }
5614  guarantee(v >= 0, "invariant");
5615  if (v != 0) return OS_OK;
5616
5617  // We do this the hard way, by blocking the thread.
5618  // Consider enforcing a minimum timeout value.
5619  struct timespec abst;
5620  compute_abstime(&abst, millis);
5621
5622  int ret = OS_TIMEOUT;
5623  int status = pthread_mutex_lock(_mutex);
5624  assert_status(status == 0, status, "mutex_lock");
5625  guarantee(_nParked == 0, "invariant");
5626  ++_nParked;
5627
5628  // Object.wait(timo) will return because of
5629  // (a) notification
5630  // (b) timeout
5631  // (c) thread.interrupt
5632  //
5633  // Thread.interrupt and object.notify{All} both call Event::set.
5634  // That is, we treat thread.interrupt as a special case of notification.
5635  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5636  // We assume all ETIME returns are valid.
5637  //
5638  // TODO: properly differentiate simultaneous notify+interrupt.
5639  // In that case, we should propagate the notify to another waiter.
5640
5641  while (_Event < 0) {
5642    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5643    assert_status(status == 0 || status == EINTR ||
5644                  status == ETIME || status == ETIMEDOUT,
5645                  status, "cond_timedwait");
5646    if (!FilterSpuriousWakeups) break;                 // previous semantics
5647    if (status == ETIME || status == ETIMEDOUT) break;
5648    // We consume and ignore EINTR and spurious wakeups.
5649  }
5650  --_nParked;
5651  if (_Event >= 0) {
5652    ret = OS_OK;
5653  }
5654  _Event = 0;
5655  status = pthread_mutex_unlock(_mutex);
5656  assert_status(status == 0, status, "mutex_unlock");
5657  assert(_nParked == 0, "invariant");
5658  // Paranoia to ensure our locked and lock-free paths interact
5659  // correctly with each other.
5660  OrderAccess::fence();
5661  return ret;
5662}
5663
5664void os::PlatformEvent::unpark() {
5665  // Transitions for _Event:
5666  //    0 => 1 : just return
5667  //    1 => 1 : just return
5668  //   -1 => either 0 or 1; must signal target thread
5669  //         That is, we can safely transition _Event from -1 to either
5670  //         0 or 1.
5671  // See also: "Semaphores in Plan 9" by Mullender & Cox
5672  //
5673  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5674  // that it will take two back-to-back park() calls for the owning
5675  // thread to block. This has the benefit of forcing a spurious return
5676  // from the first park() call after an unpark() call which will help
5677  // shake out uses of park() and unpark() without condition variables.
5678
5679  if (Atomic::xchg(1, &_Event) >= 0) return;
5680
5681  // Wait for the thread associated with the event to vacate
5682  int status = pthread_mutex_lock(_mutex);
5683  assert_status(status == 0, status, "mutex_lock");
5684  int AnyWaiters = _nParked;
5685  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5686  status = pthread_mutex_unlock(_mutex);
5687  assert_status(status == 0, status, "mutex_unlock");
5688  if (AnyWaiters != 0) {
5689    // Note that we signal() *after* dropping the lock for "immortal" Events.
5690    // This is safe and avoids a common class of  futile wakeups.  In rare
5691    // circumstances this can cause a thread to return prematurely from
5692    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5693    // will simply re-test the condition and re-park itself.
5694    // This provides particular benefit if the underlying platform does not
5695    // provide wait morphing.
5696    status = pthread_cond_signal(_cond);
5697    assert_status(status == 0, status, "cond_signal");
5698  }
5699}
5700
5701
5702// JSR166
5703// -------------------------------------------------------
5704
5705// The solaris and linux implementations of park/unpark are fairly
5706// conservative for now, but can be improved. They currently use a
5707// mutex/condvar pair, plus a a count.
5708// Park decrements count if > 0, else does a condvar wait.  Unpark
5709// sets count to 1 and signals condvar.  Only one thread ever waits
5710// on the condvar. Contention seen when trying to park implies that someone
5711// is unparking you, so don't wait. And spurious returns are fine, so there
5712// is no need to track notifications.
5713
5714// This code is common to linux and solaris and will be moved to a
5715// common place in dolphin.
5716//
5717// The passed in time value is either a relative time in nanoseconds
5718// or an absolute time in milliseconds. Either way it has to be unpacked
5719// into suitable seconds and nanoseconds components and stored in the
5720// given timespec structure.
5721// Given time is a 64-bit value and the time_t used in the timespec is only
5722// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5723// overflow if times way in the future are given. Further on Solaris versions
5724// prior to 10 there is a restriction (see cond_timedwait) that the specified
5725// number of seconds, in abstime, is less than current_time  + 100,000,000.
5726// As it will be 28 years before "now + 100000000" will overflow we can
5727// ignore overflow and just impose a hard-limit on seconds using the value
5728// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5729// years from "now".
5730
5731static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5732  assert(time > 0, "convertTime");
5733  time_t max_secs = 0;
5734
5735  if (!os::supports_monotonic_clock() || isAbsolute) {
5736    struct timeval now;
5737    int status = gettimeofday(&now, NULL);
5738    assert(status == 0, "gettimeofday");
5739
5740    max_secs = now.tv_sec + MAX_SECS;
5741
5742    if (isAbsolute) {
5743      jlong secs = time / 1000;
5744      if (secs > max_secs) {
5745        absTime->tv_sec = max_secs;
5746      } else {
5747        absTime->tv_sec = secs;
5748      }
5749      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5750    } else {
5751      jlong secs = time / NANOSECS_PER_SEC;
5752      if (secs >= MAX_SECS) {
5753        absTime->tv_sec = max_secs;
5754        absTime->tv_nsec = 0;
5755      } else {
5756        absTime->tv_sec = now.tv_sec + secs;
5757        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5758        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5759          absTime->tv_nsec -= NANOSECS_PER_SEC;
5760          ++absTime->tv_sec; // note: this must be <= max_secs
5761        }
5762      }
5763    }
5764  } else {
5765    // must be relative using monotonic clock
5766    struct timespec now;
5767    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5768    assert_status(status == 0, status, "clock_gettime");
5769    max_secs = now.tv_sec + MAX_SECS;
5770    jlong secs = time / NANOSECS_PER_SEC;
5771    if (secs >= MAX_SECS) {
5772      absTime->tv_sec = max_secs;
5773      absTime->tv_nsec = 0;
5774    } else {
5775      absTime->tv_sec = now.tv_sec + secs;
5776      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5777      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5778        absTime->tv_nsec -= NANOSECS_PER_SEC;
5779        ++absTime->tv_sec; // note: this must be <= max_secs
5780      }
5781    }
5782  }
5783  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5784  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5785  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5786  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5787}
5788
5789void Parker::park(bool isAbsolute, jlong time) {
5790  // Ideally we'd do something useful while spinning, such
5791  // as calling unpackTime().
5792
5793  // Optional fast-path check:
5794  // Return immediately if a permit is available.
5795  // We depend on Atomic::xchg() having full barrier semantics
5796  // since we are doing a lock-free update to _counter.
5797  if (Atomic::xchg(0, &_counter) > 0) return;
5798
5799  Thread* thread = Thread::current();
5800  assert(thread->is_Java_thread(), "Must be JavaThread");
5801  JavaThread *jt = (JavaThread *)thread;
5802
5803  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5804  // Check interrupt before trying to wait
5805  if (Thread::is_interrupted(thread, false)) {
5806    return;
5807  }
5808
5809  // Next, demultiplex/decode time arguments
5810  timespec absTime;
5811  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5812    return;
5813  }
5814  if (time > 0) {
5815    unpackTime(&absTime, isAbsolute, time);
5816  }
5817
5818
5819  // Enter safepoint region
5820  // Beware of deadlocks such as 6317397.
5821  // The per-thread Parker:: mutex is a classic leaf-lock.
5822  // In particular a thread must never block on the Threads_lock while
5823  // holding the Parker:: mutex.  If safepoints are pending both the
5824  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5825  ThreadBlockInVM tbivm(jt);
5826
5827  // Don't wait if cannot get lock since interference arises from
5828  // unblocking.  Also. check interrupt before trying wait
5829  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5830    return;
5831  }
5832
5833  int status;
5834  if (_counter > 0)  { // no wait needed
5835    _counter = 0;
5836    status = pthread_mutex_unlock(_mutex);
5837    assert_status(status == 0, status, "invariant");
5838    // Paranoia to ensure our locked and lock-free paths interact
5839    // correctly with each other and Java-level accesses.
5840    OrderAccess::fence();
5841    return;
5842  }
5843
5844#ifdef ASSERT
5845  // Don't catch signals while blocked; let the running threads have the signals.
5846  // (This allows a debugger to break into the running thread.)
5847  sigset_t oldsigs;
5848  sigemptyset(&oldsigs);
5849  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5850  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5851#endif
5852
5853  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5854  jt->set_suspend_equivalent();
5855  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5856
5857  assert(_cur_index == -1, "invariant");
5858  if (time == 0) {
5859    _cur_index = REL_INDEX; // arbitrary choice when not timed
5860    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5861  } else {
5862    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5863    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5864  }
5865  _cur_index = -1;
5866  assert_status(status == 0 || status == EINTR ||
5867                status == ETIME || status == ETIMEDOUT,
5868                status, "cond_timedwait");
5869
5870#ifdef ASSERT
5871  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5872#endif
5873
5874  _counter = 0;
5875  status = pthread_mutex_unlock(_mutex);
5876  assert_status(status == 0, status, "invariant");
5877  // Paranoia to ensure our locked and lock-free paths interact
5878  // correctly with each other and Java-level accesses.
5879  OrderAccess::fence();
5880
5881  // If externally suspended while waiting, re-suspend
5882  if (jt->handle_special_suspend_equivalent_condition()) {
5883    jt->java_suspend_self();
5884  }
5885}
5886
5887void Parker::unpark() {
5888  int status = pthread_mutex_lock(_mutex);
5889  assert_status(status == 0, status, "invariant");
5890  const int s = _counter;
5891  _counter = 1;
5892  // must capture correct index before unlocking
5893  int index = _cur_index;
5894  status = pthread_mutex_unlock(_mutex);
5895  assert_status(status == 0, status, "invariant");
5896  if (s < 1 && index != -1) {
5897    // thread is definitely parked
5898    status = pthread_cond_signal(&_cond[index]);
5899    assert_status(status == 0, status, "invariant");
5900  }
5901}
5902
5903
5904extern char** environ;
5905
5906// Run the specified command in a separate process. Return its exit value,
5907// or -1 on failure (e.g. can't fork a new process).
5908// Unlike system(), this function can be called from signal handler. It
5909// doesn't block SIGINT et al.
5910int os::fork_and_exec(char* cmd) {
5911  const char * argv[4] = {"sh", "-c", cmd, NULL};
5912
5913  pid_t pid = fork();
5914
5915  if (pid < 0) {
5916    // fork failed
5917    return -1;
5918
5919  } else if (pid == 0) {
5920    // child process
5921
5922    execve("/bin/sh", (char* const*)argv, environ);
5923
5924    // execve failed
5925    _exit(-1);
5926
5927  } else  {
5928    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5929    // care about the actual exit code, for now.
5930
5931    int status;
5932
5933    // Wait for the child process to exit.  This returns immediately if
5934    // the child has already exited. */
5935    while (waitpid(pid, &status, 0) < 0) {
5936      switch (errno) {
5937      case ECHILD: return 0;
5938      case EINTR: break;
5939      default: return -1;
5940      }
5941    }
5942
5943    if (WIFEXITED(status)) {
5944      // The child exited normally; get its exit code.
5945      return WEXITSTATUS(status);
5946    } else if (WIFSIGNALED(status)) {
5947      // The child exited because of a signal
5948      // The best value to return is 0x80 + signal number,
5949      // because that is what all Unix shells do, and because
5950      // it allows callers to distinguish between process exit and
5951      // process death by signal.
5952      return 0x80 + WTERMSIG(status);
5953    } else {
5954      // Unknown exit code; pass it through
5955      return status;
5956    }
5957  }
5958}
5959
5960// is_headless_jre()
5961//
5962// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5963// in order to report if we are running in a headless jre
5964//
5965// Since JDK8 xawt/libmawt.so was moved into the same directory
5966// as libawt.so, and renamed libawt_xawt.so
5967//
5968bool os::is_headless_jre() {
5969  struct stat statbuf;
5970  char buf[MAXPATHLEN];
5971  char libmawtpath[MAXPATHLEN];
5972  const char *xawtstr  = "/xawt/libmawt.so";
5973  const char *new_xawtstr = "/libawt_xawt.so";
5974  char *p;
5975
5976  // Get path to libjvm.so
5977  os::jvm_path(buf, sizeof(buf));
5978
5979  // Get rid of libjvm.so
5980  p = strrchr(buf, '/');
5981  if (p == NULL) {
5982    return false;
5983  } else {
5984    *p = '\0';
5985  }
5986
5987  // Get rid of client or server
5988  p = strrchr(buf, '/');
5989  if (p == NULL) {
5990    return false;
5991  } else {
5992    *p = '\0';
5993  }
5994
5995  // check xawt/libmawt.so
5996  strcpy(libmawtpath, buf);
5997  strcat(libmawtpath, xawtstr);
5998  if (::stat(libmawtpath, &statbuf) == 0) return false;
5999
6000  // check libawt_xawt.so
6001  strcpy(libmawtpath, buf);
6002  strcat(libmawtpath, new_xawtstr);
6003  if (::stat(libmawtpath, &statbuf) == 0) return false;
6004
6005  return true;
6006}
6007
6008// Get the default path to the core file
6009// Returns the length of the string
6010int os::get_core_path(char* buffer, size_t bufferSize) {
6011  /*
6012   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6013   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6014   */
6015  const int core_pattern_len = 129;
6016  char core_pattern[core_pattern_len] = {0};
6017
6018  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6019  if (core_pattern_file == -1) {
6020    return -1;
6021  }
6022
6023  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6024  ::close(core_pattern_file);
6025  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6026    return -1;
6027  }
6028  if (core_pattern[ret-1] == '\n') {
6029    core_pattern[ret-1] = '\0';
6030  } else {
6031    core_pattern[ret] = '\0';
6032  }
6033
6034  char *pid_pos = strstr(core_pattern, "%p");
6035  int written;
6036
6037  if (core_pattern[0] == '/') {
6038    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6039  } else {
6040    char cwd[PATH_MAX];
6041
6042    const char* p = get_current_directory(cwd, PATH_MAX);
6043    if (p == NULL) {
6044      return -1;
6045    }
6046
6047    if (core_pattern[0] == '|') {
6048      written = jio_snprintf(buffer, bufferSize,
6049                             "\"%s\" (or dumping to %s/core.%d)",
6050                             &core_pattern[1], p, current_process_id());
6051    } else {
6052      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6053    }
6054  }
6055
6056  if (written < 0) {
6057    return -1;
6058  }
6059
6060  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6061    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6062
6063    if (core_uses_pid_file != -1) {
6064      char core_uses_pid = 0;
6065      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6066      ::close(core_uses_pid_file);
6067
6068      if (core_uses_pid == '1') {
6069        jio_snprintf(buffer + written, bufferSize - written,
6070                                          ".%d", current_process_id());
6071      }
6072    }
6073  }
6074
6075  return strlen(buffer);
6076}
6077
6078bool os::start_debugging(char *buf, int buflen) {
6079  int len = (int)strlen(buf);
6080  char *p = &buf[len];
6081
6082  jio_snprintf(p, buflen-len,
6083               "\n\n"
6084               "Do you want to debug the problem?\n\n"
6085               "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6086               "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6087               "Otherwise, press RETURN to abort...",
6088               os::current_process_id(), os::current_process_id(),
6089               os::current_thread_id(), os::current_thread_id());
6090
6091  bool yes = os::message_box("Unexpected Error", buf);
6092
6093  if (yes) {
6094    // yes, user asked VM to launch debugger
6095    jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6096                 os::current_process_id(), os::current_process_id());
6097
6098    os::fork_and_exec(buf);
6099    yes = false;
6100  }
6101  return yes;
6102}
6103
6104static inline struct timespec get_mtime(const char* filename) {
6105  struct stat st;
6106  int ret = os::stat(filename, &st);
6107  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6108  return st.st_mtim;
6109}
6110
6111int os::compare_file_modified_times(const char* file1, const char* file2) {
6112  struct timespec filetime1 = get_mtime(file1);
6113  struct timespec filetime2 = get_mtime(file2);
6114  int diff = filetime1.tv_sec - filetime2.tv_sec;
6115  if (diff == 0) {
6116    return filetime1.tv_nsec - filetime2.tv_nsec;
6117  }
6118  return diff;
6119}
6120
6121/////////////// Unit tests ///////////////
6122
6123#ifndef PRODUCT
6124
6125#define test_log(...)              \
6126  do {                             \
6127    if (VerboseInternalVMTests) {  \
6128      tty->print_cr(__VA_ARGS__);  \
6129      tty->flush();                \
6130    }                              \
6131  } while (false)
6132
6133class TestReserveMemorySpecial : AllStatic {
6134 public:
6135  static void small_page_write(void* addr, size_t size) {
6136    size_t page_size = os::vm_page_size();
6137
6138    char* end = (char*)addr + size;
6139    for (char* p = (char*)addr; p < end; p += page_size) {
6140      *p = 1;
6141    }
6142  }
6143
6144  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6145    if (!UseHugeTLBFS) {
6146      return;
6147    }
6148
6149    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6150
6151    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6152
6153    if (addr != NULL) {
6154      small_page_write(addr, size);
6155
6156      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6157    }
6158  }
6159
6160  static void test_reserve_memory_special_huge_tlbfs_only() {
6161    if (!UseHugeTLBFS) {
6162      return;
6163    }
6164
6165    size_t lp = os::large_page_size();
6166
6167    for (size_t size = lp; size <= lp * 10; size += lp) {
6168      test_reserve_memory_special_huge_tlbfs_only(size);
6169    }
6170  }
6171
6172  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6173    size_t lp = os::large_page_size();
6174    size_t ag = os::vm_allocation_granularity();
6175
6176    // sizes to test
6177    const size_t sizes[] = {
6178      lp, lp + ag, lp + lp / 2, lp * 2,
6179      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6180      lp * 10, lp * 10 + lp / 2
6181    };
6182    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6183
6184    // For each size/alignment combination, we test three scenarios:
6185    // 1) with req_addr == NULL
6186    // 2) with a non-null req_addr at which we expect to successfully allocate
6187    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6188    //    expect the allocation to either fail or to ignore req_addr
6189
6190    // Pre-allocate two areas; they shall be as large as the largest allocation
6191    //  and aligned to the largest alignment we will be testing.
6192    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6193    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6194      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6195      -1, 0);
6196    assert(mapping1 != MAP_FAILED, "should work");
6197
6198    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6199      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6200      -1, 0);
6201    assert(mapping2 != MAP_FAILED, "should work");
6202
6203    // Unmap the first mapping, but leave the second mapping intact: the first
6204    // mapping will serve as a value for a "good" req_addr (case 2). The second
6205    // mapping, still intact, as "bad" req_addr (case 3).
6206    ::munmap(mapping1, mapping_size);
6207
6208    // Case 1
6209    test_log("%s, req_addr NULL:", __FUNCTION__);
6210    test_log("size            align           result");
6211
6212    for (int i = 0; i < num_sizes; i++) {
6213      const size_t size = sizes[i];
6214      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6215        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6216        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6217                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6218        if (p != NULL) {
6219          assert(is_ptr_aligned(p, alignment), "must be");
6220          small_page_write(p, size);
6221          os::Linux::release_memory_special_huge_tlbfs(p, size);
6222        }
6223      }
6224    }
6225
6226    // Case 2
6227    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6228    test_log("size            align           req_addr         result");
6229
6230    for (int i = 0; i < num_sizes; i++) {
6231      const size_t size = sizes[i];
6232      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6233        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6234        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6235        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6236                 size, alignment, p2i(req_addr), p2i(p),
6237                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6238        if (p != NULL) {
6239          assert(p == req_addr, "must be");
6240          small_page_write(p, size);
6241          os::Linux::release_memory_special_huge_tlbfs(p, size);
6242        }
6243      }
6244    }
6245
6246    // Case 3
6247    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6248    test_log("size            align           req_addr         result");
6249
6250    for (int i = 0; i < num_sizes; i++) {
6251      const size_t size = sizes[i];
6252      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6253        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6254        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6255        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6256                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6257        // as the area around req_addr contains already existing mappings, the API should always
6258        // return NULL (as per contract, it cannot return another address)
6259        assert(p == NULL, "must be");
6260      }
6261    }
6262
6263    ::munmap(mapping2, mapping_size);
6264
6265  }
6266
6267  static void test_reserve_memory_special_huge_tlbfs() {
6268    if (!UseHugeTLBFS) {
6269      return;
6270    }
6271
6272    test_reserve_memory_special_huge_tlbfs_only();
6273    test_reserve_memory_special_huge_tlbfs_mixed();
6274  }
6275
6276  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6277    if (!UseSHM) {
6278      return;
6279    }
6280
6281    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6282
6283    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6284
6285    if (addr != NULL) {
6286      assert(is_ptr_aligned(addr, alignment), "Check");
6287      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6288
6289      small_page_write(addr, size);
6290
6291      os::Linux::release_memory_special_shm(addr, size);
6292    }
6293  }
6294
6295  static void test_reserve_memory_special_shm() {
6296    size_t lp = os::large_page_size();
6297    size_t ag = os::vm_allocation_granularity();
6298
6299    for (size_t size = ag; size < lp * 3; size += ag) {
6300      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6301        test_reserve_memory_special_shm(size, alignment);
6302      }
6303    }
6304  }
6305
6306  static void test() {
6307    test_reserve_memory_special_huge_tlbfs();
6308    test_reserve_memory_special_shm();
6309  }
6310};
6311
6312void TestReserveMemorySpecial_test() {
6313  TestReserveMemorySpecial::test();
6314}
6315
6316#endif
6317