os_linux.cpp revision 11013:89e698785deb
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_linux.inline.hpp"
41#include "os_share_linux.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/init.hpp"
51#include "runtime/java.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/mutexLocker.hpp"
54#include "runtime/objectMonitor.hpp"
55#include "runtime/orderAccess.inline.hpp"
56#include "runtime/osThread.hpp"
57#include "runtime/perfMemory.hpp"
58#include "runtime/sharedRuntime.hpp"
59#include "runtime/statSampler.hpp"
60#include "runtime/stubRoutines.hpp"
61#include "runtime/thread.inline.hpp"
62#include "runtime/threadCritical.hpp"
63#include "runtime/timer.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/elfFile.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/macros.hpp"
74#include "utilities/vmError.hpp"
75
76// put OS-includes here
77# include <sys/types.h>
78# include <sys/mman.h>
79# include <sys/stat.h>
80# include <sys/select.h>
81# include <pthread.h>
82# include <signal.h>
83# include <errno.h>
84# include <dlfcn.h>
85# include <stdio.h>
86# include <unistd.h>
87# include <sys/resource.h>
88# include <pthread.h>
89# include <sys/stat.h>
90# include <sys/time.h>
91# include <sys/times.h>
92# include <sys/utsname.h>
93# include <sys/socket.h>
94# include <sys/wait.h>
95# include <pwd.h>
96# include <poll.h>
97# include <semaphore.h>
98# include <fcntl.h>
99# include <string.h>
100# include <syscall.h>
101# include <sys/sysinfo.h>
102# include <gnu/libc-version.h>
103# include <sys/ipc.h>
104# include <sys/shm.h>
105# include <link.h>
106# include <stdint.h>
107# include <inttypes.h>
108# include <sys/ioctl.h>
109
110#ifndef _GNU_SOURCE
111  #define _GNU_SOURCE
112  #include <sched.h>
113  #undef _GNU_SOURCE
114#else
115  #include <sched.h>
116#endif
117
118// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
119// getrusage() is prepared to handle the associated failure.
120#ifndef RUSAGE_THREAD
121  #define RUSAGE_THREAD   (1)               /* only the calling thread */
122#endif
123
124#define MAX_PATH    (2 * K)
125
126#define MAX_SECS 100000000
127
128// for timer info max values which include all bits
129#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130
131#define LARGEPAGES_BIT (1 << 6)
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Linux::_physical_memory = 0;
135
136address   os::Linux::_initial_thread_stack_bottom = NULL;
137uintptr_t os::Linux::_initial_thread_stack_size   = 0;
138
139int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
141int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
142Mutex* os::Linux::_createThread_lock = NULL;
143pthread_t os::Linux::_main_thread;
144int os::Linux::_page_size = -1;
145const int os::Linux::_vm_default_page_size = (8 * K);
146bool os::Linux::_supports_fast_thread_cpu_time = false;
147uint32_t os::Linux::_os_version = 0;
148const char * os::Linux::_glibc_version = NULL;
149const char * os::Linux::_libpthread_version = NULL;
150pthread_condattr_t os::Linux::_condattr[1];
151
152static jlong initial_time_count=0;
153
154static int clock_tics_per_sec = 100;
155
156// For diagnostics to print a message once. see run_periodic_checks
157static sigset_t check_signal_done;
158static bool check_signals = true;
159
160// Signal number used to suspend/resume a thread
161
162// do not use any signal number less than SIGSEGV, see 4355769
163static int SR_signum = SIGUSR2;
164sigset_t SR_sigset;
165
166// Declarations
167static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
168
169// utility functions
170
171static int SR_initialize();
172
173julong os::available_memory() {
174  return Linux::available_memory();
175}
176
177julong os::Linux::available_memory() {
178  // values in struct sysinfo are "unsigned long"
179  struct sysinfo si;
180  sysinfo(&si);
181
182  return (julong)si.freeram * si.mem_unit;
183}
184
185julong os::physical_memory() {
186  return Linux::physical_memory();
187}
188
189// Return true if user is running as root.
190
191bool os::have_special_privileges() {
192  static bool init = false;
193  static bool privileges = false;
194  if (!init) {
195    privileges = (getuid() != geteuid()) || (getgid() != getegid());
196    init = true;
197  }
198  return privileges;
199}
200
201
202#ifndef SYS_gettid
203// i386: 224, ia64: 1105, amd64: 186, sparc 143
204  #ifdef __ia64__
205    #define SYS_gettid 1105
206  #else
207    #ifdef __i386__
208      #define SYS_gettid 224
209    #else
210      #ifdef __amd64__
211        #define SYS_gettid 186
212      #else
213        #ifdef __sparc__
214          #define SYS_gettid 143
215        #else
216          #error define gettid for the arch
217        #endif
218      #endif
219    #endif
220  #endif
221#endif
222
223// Cpu architecture string
224static char cpu_arch[] = HOTSPOT_LIB_ARCH;
225
226
227// pid_t gettid()
228//
229// Returns the kernel thread id of the currently running thread. Kernel
230// thread id is used to access /proc.
231pid_t os::Linux::gettid() {
232  int rslt = syscall(SYS_gettid);
233  assert(rslt != -1, "must be."); // old linuxthreads implementation?
234  return (pid_t)rslt;
235}
236
237// Most versions of linux have a bug where the number of processors are
238// determined by looking at the /proc file system.  In a chroot environment,
239// the system call returns 1.  This causes the VM to act as if it is
240// a single processor and elide locking (see is_MP() call).
241static bool unsafe_chroot_detected = false;
242static const char *unstable_chroot_error = "/proc file system not found.\n"
243                     "Java may be unstable running multithreaded in a chroot "
244                     "environment on Linux when /proc filesystem is not mounted.";
245
246void os::Linux::initialize_system_info() {
247  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
248  if (processor_count() == 1) {
249    pid_t pid = os::Linux::gettid();
250    char fname[32];
251    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
252    FILE *fp = fopen(fname, "r");
253    if (fp == NULL) {
254      unsafe_chroot_detected = true;
255    } else {
256      fclose(fp);
257    }
258  }
259  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
260  assert(processor_count() > 0, "linux error");
261}
262
263void os::init_system_properties_values() {
264  // The next steps are taken in the product version:
265  //
266  // Obtain the JAVA_HOME value from the location of libjvm.so.
267  // This library should be located at:
268  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
269  //
270  // If "/jre/lib/" appears at the right place in the path, then we
271  // assume libjvm.so is installed in a JDK and we use this path.
272  //
273  // Otherwise exit with message: "Could not create the Java virtual machine."
274  //
275  // The following extra steps are taken in the debugging version:
276  //
277  // If "/jre/lib/" does NOT appear at the right place in the path
278  // instead of exit check for $JAVA_HOME environment variable.
279  //
280  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
281  // then we append a fake suffix "hotspot/libjvm.so" to this path so
282  // it looks like libjvm.so is installed there
283  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
284  //
285  // Otherwise exit.
286  //
287  // Important note: if the location of libjvm.so changes this
288  // code needs to be changed accordingly.
289
290  // See ld(1):
291  //      The linker uses the following search paths to locate required
292  //      shared libraries:
293  //        1: ...
294  //        ...
295  //        7: The default directories, normally /lib and /usr/lib.
296#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
297  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
298#else
299  #define DEFAULT_LIBPATH "/lib:/usr/lib"
300#endif
301
302// Base path of extensions installed on the system.
303#define SYS_EXT_DIR     "/usr/java/packages"
304#define EXTENSIONS_DIR  "/lib/ext"
305
306  // Buffer that fits several sprintfs.
307  // Note that the space for the colon and the trailing null are provided
308  // by the nulls included by the sizeof operator.
309  const size_t bufsize =
310    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
311         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
312  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
313
314  // sysclasspath, java_home, dll_dir
315  {
316    char *pslash;
317    os::jvm_path(buf, bufsize);
318
319    // Found the full path to libjvm.so.
320    // Now cut the path to <java_home>/jre if we can.
321    pslash = strrchr(buf, '/');
322    if (pslash != NULL) {
323      *pslash = '\0';            // Get rid of /libjvm.so.
324    }
325    pslash = strrchr(buf, '/');
326    if (pslash != NULL) {
327      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
328    }
329    Arguments::set_dll_dir(buf);
330
331    if (pslash != NULL) {
332      pslash = strrchr(buf, '/');
333      if (pslash != NULL) {
334        *pslash = '\0';          // Get rid of /<arch>.
335        pslash = strrchr(buf, '/');
336        if (pslash != NULL) {
337          *pslash = '\0';        // Get rid of /lib.
338        }
339      }
340    }
341    Arguments::set_java_home(buf);
342    set_boot_path('/', ':');
343  }
344
345  // Where to look for native libraries.
346  //
347  // Note: Due to a legacy implementation, most of the library path
348  // is set in the launcher. This was to accomodate linking restrictions
349  // on legacy Linux implementations (which are no longer supported).
350  // Eventually, all the library path setting will be done here.
351  //
352  // However, to prevent the proliferation of improperly built native
353  // libraries, the new path component /usr/java/packages is added here.
354  // Eventually, all the library path setting will be done here.
355  {
356    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
357    // should always exist (until the legacy problem cited above is
358    // addressed).
359    const char *v = ::getenv("LD_LIBRARY_PATH");
360    const char *v_colon = ":";
361    if (v == NULL) { v = ""; v_colon = ""; }
362    // That's +1 for the colon and +1 for the trailing '\0'.
363    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
364                                                     strlen(v) + 1 +
365                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
366                                                     mtInternal);
367    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
368    Arguments::set_library_path(ld_library_path);
369    FREE_C_HEAP_ARRAY(char, ld_library_path);
370  }
371
372  // Extensions directories.
373  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
374  Arguments::set_ext_dirs(buf);
375
376  FREE_C_HEAP_ARRAY(char, buf);
377
378#undef DEFAULT_LIBPATH
379#undef SYS_EXT_DIR
380#undef EXTENSIONS_DIR
381}
382
383////////////////////////////////////////////////////////////////////////////////
384// breakpoint support
385
386void os::breakpoint() {
387  BREAKPOINT;
388}
389
390extern "C" void breakpoint() {
391  // use debugger to set breakpoint here
392}
393
394////////////////////////////////////////////////////////////////////////////////
395// signal support
396
397debug_only(static bool signal_sets_initialized = false);
398static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
399
400bool os::Linux::is_sig_ignored(int sig) {
401  struct sigaction oact;
402  sigaction(sig, (struct sigaction*)NULL, &oact);
403  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
404                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
405  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
406    return true;
407  } else {
408    return false;
409  }
410}
411
412void os::Linux::signal_sets_init() {
413  // Should also have an assertion stating we are still single-threaded.
414  assert(!signal_sets_initialized, "Already initialized");
415  // Fill in signals that are necessarily unblocked for all threads in
416  // the VM. Currently, we unblock the following signals:
417  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
418  //                         by -Xrs (=ReduceSignalUsage));
419  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
420  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
421  // the dispositions or masks wrt these signals.
422  // Programs embedding the VM that want to use the above signals for their
423  // own purposes must, at this time, use the "-Xrs" option to prevent
424  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
425  // (See bug 4345157, and other related bugs).
426  // In reality, though, unblocking these signals is really a nop, since
427  // these signals are not blocked by default.
428  sigemptyset(&unblocked_sigs);
429  sigemptyset(&allowdebug_blocked_sigs);
430  sigaddset(&unblocked_sigs, SIGILL);
431  sigaddset(&unblocked_sigs, SIGSEGV);
432  sigaddset(&unblocked_sigs, SIGBUS);
433  sigaddset(&unblocked_sigs, SIGFPE);
434#if defined(PPC64)
435  sigaddset(&unblocked_sigs, SIGTRAP);
436#endif
437  sigaddset(&unblocked_sigs, SR_signum);
438
439  if (!ReduceSignalUsage) {
440    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
441      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
442      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
443    }
444    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
445      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
446      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
447    }
448    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
449      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
450      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
451    }
452  }
453  // Fill in signals that are blocked by all but the VM thread.
454  sigemptyset(&vm_sigs);
455  if (!ReduceSignalUsage) {
456    sigaddset(&vm_sigs, BREAK_SIGNAL);
457  }
458  debug_only(signal_sets_initialized = true);
459
460}
461
462// These are signals that are unblocked while a thread is running Java.
463// (For some reason, they get blocked by default.)
464sigset_t* os::Linux::unblocked_signals() {
465  assert(signal_sets_initialized, "Not initialized");
466  return &unblocked_sigs;
467}
468
469// These are the signals that are blocked while a (non-VM) thread is
470// running Java. Only the VM thread handles these signals.
471sigset_t* os::Linux::vm_signals() {
472  assert(signal_sets_initialized, "Not initialized");
473  return &vm_sigs;
474}
475
476// These are signals that are blocked during cond_wait to allow debugger in
477sigset_t* os::Linux::allowdebug_blocked_signals() {
478  assert(signal_sets_initialized, "Not initialized");
479  return &allowdebug_blocked_sigs;
480}
481
482void os::Linux::hotspot_sigmask(Thread* thread) {
483
484  //Save caller's signal mask before setting VM signal mask
485  sigset_t caller_sigmask;
486  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
487
488  OSThread* osthread = thread->osthread();
489  osthread->set_caller_sigmask(caller_sigmask);
490
491  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
492
493  if (!ReduceSignalUsage) {
494    if (thread->is_VM_thread()) {
495      // Only the VM thread handles BREAK_SIGNAL ...
496      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
497    } else {
498      // ... all other threads block BREAK_SIGNAL
499      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
500    }
501  }
502}
503
504//////////////////////////////////////////////////////////////////////////////
505// detecting pthread library
506
507void os::Linux::libpthread_init() {
508  // Save glibc and pthread version strings.
509#if !defined(_CS_GNU_LIBC_VERSION) || \
510    !defined(_CS_GNU_LIBPTHREAD_VERSION)
511  #error "glibc too old (< 2.3.2)"
512#endif
513
514  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
515  assert(n > 0, "cannot retrieve glibc version");
516  char *str = (char *)malloc(n, mtInternal);
517  confstr(_CS_GNU_LIBC_VERSION, str, n);
518  os::Linux::set_glibc_version(str);
519
520  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
521  assert(n > 0, "cannot retrieve pthread version");
522  str = (char *)malloc(n, mtInternal);
523  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
524  os::Linux::set_libpthread_version(str);
525}
526
527/////////////////////////////////////////////////////////////////////////////
528// thread stack expansion
529
530// os::Linux::manually_expand_stack() takes care of expanding the thread
531// stack. Note that this is normally not needed: pthread stacks allocate
532// thread stack using mmap() without MAP_NORESERVE, so the stack is already
533// committed. Therefore it is not necessary to expand the stack manually.
534//
535// Manually expanding the stack was historically needed on LinuxThreads
536// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
537// it is kept to deal with very rare corner cases:
538//
539// For one, user may run the VM on an own implementation of threads
540// whose stacks are - like the old LinuxThreads - implemented using
541// mmap(MAP_GROWSDOWN).
542//
543// Also, this coding may be needed if the VM is running on the primordial
544// thread. Normally we avoid running on the primordial thread; however,
545// user may still invoke the VM on the primordial thread.
546//
547// The following historical comment describes the details about running
548// on a thread stack allocated with mmap(MAP_GROWSDOWN):
549
550
551// Force Linux kernel to expand current thread stack. If "bottom" is close
552// to the stack guard, caller should block all signals.
553//
554// MAP_GROWSDOWN:
555//   A special mmap() flag that is used to implement thread stacks. It tells
556//   kernel that the memory region should extend downwards when needed. This
557//   allows early versions of LinuxThreads to only mmap the first few pages
558//   when creating a new thread. Linux kernel will automatically expand thread
559//   stack as needed (on page faults).
560//
561//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
562//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
563//   region, it's hard to tell if the fault is due to a legitimate stack
564//   access or because of reading/writing non-exist memory (e.g. buffer
565//   overrun). As a rule, if the fault happens below current stack pointer,
566//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
567//   application (see Linux kernel fault.c).
568//
569//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
570//   stack overflow detection.
571//
572//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
573//   not use MAP_GROWSDOWN.
574//
575// To get around the problem and allow stack banging on Linux, we need to
576// manually expand thread stack after receiving the SIGSEGV.
577//
578// There are two ways to expand thread stack to address "bottom", we used
579// both of them in JVM before 1.5:
580//   1. adjust stack pointer first so that it is below "bottom", and then
581//      touch "bottom"
582//   2. mmap() the page in question
583//
584// Now alternate signal stack is gone, it's harder to use 2. For instance,
585// if current sp is already near the lower end of page 101, and we need to
586// call mmap() to map page 100, it is possible that part of the mmap() frame
587// will be placed in page 100. When page 100 is mapped, it is zero-filled.
588// That will destroy the mmap() frame and cause VM to crash.
589//
590// The following code works by adjusting sp first, then accessing the "bottom"
591// page to force a page fault. Linux kernel will then automatically expand the
592// stack mapping.
593//
594// _expand_stack_to() assumes its frame size is less than page size, which
595// should always be true if the function is not inlined.
596
597static void NOINLINE _expand_stack_to(address bottom) {
598  address sp;
599  size_t size;
600  volatile char *p;
601
602  // Adjust bottom to point to the largest address within the same page, it
603  // gives us a one-page buffer if alloca() allocates slightly more memory.
604  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
605  bottom += os::Linux::page_size() - 1;
606
607  // sp might be slightly above current stack pointer; if that's the case, we
608  // will alloca() a little more space than necessary, which is OK. Don't use
609  // os::current_stack_pointer(), as its result can be slightly below current
610  // stack pointer, causing us to not alloca enough to reach "bottom".
611  sp = (address)&sp;
612
613  if (sp > bottom) {
614    size = sp - bottom;
615    p = (volatile char *)alloca(size);
616    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
617    p[0] = '\0';
618  }
619}
620
621bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
622  assert(t!=NULL, "just checking");
623  assert(t->osthread()->expanding_stack(), "expand should be set");
624  assert(t->stack_base() != NULL, "stack_base was not initialized");
625
626  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
627    sigset_t mask_all, old_sigset;
628    sigfillset(&mask_all);
629    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
630    _expand_stack_to(addr);
631    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
632    return true;
633  }
634  return false;
635}
636
637//////////////////////////////////////////////////////////////////////////////
638// create new thread
639
640// Thread start routine for all newly created threads
641static void *java_start(Thread *thread) {
642  // Try to randomize the cache line index of hot stack frames.
643  // This helps when threads of the same stack traces evict each other's
644  // cache lines. The threads can be either from the same JVM instance, or
645  // from different JVM instances. The benefit is especially true for
646  // processors with hyperthreading technology.
647  static int counter = 0;
648  int pid = os::current_process_id();
649  alloca(((pid ^ counter++) & 7) * 128);
650
651  thread->initialize_thread_current();
652
653  OSThread* osthread = thread->osthread();
654  Monitor* sync = osthread->startThread_lock();
655
656  osthread->set_thread_id(os::current_thread_id());
657
658  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
659    os::current_thread_id(), (uintx) pthread_self());
660
661  if (UseNUMA) {
662    int lgrp_id = os::numa_get_group_id();
663    if (lgrp_id != -1) {
664      thread->set_lgrp_id(lgrp_id);
665    }
666  }
667  // initialize signal mask for this thread
668  os::Linux::hotspot_sigmask(thread);
669
670  // initialize floating point control register
671  os::Linux::init_thread_fpu_state();
672
673  // handshaking with parent thread
674  {
675    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
676
677    // notify parent thread
678    osthread->set_state(INITIALIZED);
679    sync->notify_all();
680
681    // wait until os::start_thread()
682    while (osthread->get_state() == INITIALIZED) {
683      sync->wait(Mutex::_no_safepoint_check_flag);
684    }
685  }
686
687  // call one more level start routine
688  thread->run();
689
690  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
691    os::current_thread_id(), (uintx) pthread_self());
692
693  return 0;
694}
695
696bool os::create_thread(Thread* thread, ThreadType thr_type,
697                       size_t stack_size) {
698  assert(thread->osthread() == NULL, "caller responsible");
699
700  // Allocate the OSThread object
701  OSThread* osthread = new OSThread(NULL, NULL);
702  if (osthread == NULL) {
703    return false;
704  }
705
706  // set the correct thread state
707  osthread->set_thread_type(thr_type);
708
709  // Initial state is ALLOCATED but not INITIALIZED
710  osthread->set_state(ALLOCATED);
711
712  thread->set_osthread(osthread);
713
714  // init thread attributes
715  pthread_attr_t attr;
716  pthread_attr_init(&attr);
717  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
718
719  // stack size
720  // calculate stack size if it's not specified by caller
721  if (stack_size == 0) {
722    stack_size = os::Linux::default_stack_size(thr_type);
723
724    switch (thr_type) {
725    case os::java_thread:
726      // Java threads use ThreadStackSize which default value can be
727      // changed with the flag -Xss
728      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
729      stack_size = JavaThread::stack_size_at_create();
730      break;
731    case os::compiler_thread:
732      if (CompilerThreadStackSize > 0) {
733        stack_size = (size_t)(CompilerThreadStackSize * K);
734        break;
735      } // else fall through:
736        // use VMThreadStackSize if CompilerThreadStackSize is not defined
737    case os::vm_thread:
738    case os::pgc_thread:
739    case os::cgc_thread:
740    case os::watcher_thread:
741      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
742      break;
743    }
744  }
745
746  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
747  pthread_attr_setstacksize(&attr, stack_size);
748
749  // glibc guard page
750  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
751
752  ThreadState state;
753
754  {
755    pthread_t tid;
756    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
757
758    char buf[64];
759    if (ret == 0) {
760      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
761        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
762    } else {
763      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
764        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
765    }
766
767    pthread_attr_destroy(&attr);
768
769    if (ret != 0) {
770      // Need to clean up stuff we've allocated so far
771      thread->set_osthread(NULL);
772      delete osthread;
773      return false;
774    }
775
776    // Store pthread info into the OSThread
777    osthread->set_pthread_id(tid);
778
779    // Wait until child thread is either initialized or aborted
780    {
781      Monitor* sync_with_child = osthread->startThread_lock();
782      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
783      while ((state = osthread->get_state()) == ALLOCATED) {
784        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
785      }
786    }
787  }
788
789  // Aborted due to thread limit being reached
790  if (state == ZOMBIE) {
791    thread->set_osthread(NULL);
792    delete osthread;
793    return false;
794  }
795
796  // The thread is returned suspended (in state INITIALIZED),
797  // and is started higher up in the call chain
798  assert(state == INITIALIZED, "race condition");
799  return true;
800}
801
802/////////////////////////////////////////////////////////////////////////////
803// attach existing thread
804
805// bootstrap the main thread
806bool os::create_main_thread(JavaThread* thread) {
807  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
808  return create_attached_thread(thread);
809}
810
811bool os::create_attached_thread(JavaThread* thread) {
812#ifdef ASSERT
813  thread->verify_not_published();
814#endif
815
816  // Allocate the OSThread object
817  OSThread* osthread = new OSThread(NULL, NULL);
818
819  if (osthread == NULL) {
820    return false;
821  }
822
823  // Store pthread info into the OSThread
824  osthread->set_thread_id(os::Linux::gettid());
825  osthread->set_pthread_id(::pthread_self());
826
827  // initialize floating point control register
828  os::Linux::init_thread_fpu_state();
829
830  // Initial thread state is RUNNABLE
831  osthread->set_state(RUNNABLE);
832
833  thread->set_osthread(osthread);
834
835  if (UseNUMA) {
836    int lgrp_id = os::numa_get_group_id();
837    if (lgrp_id != -1) {
838      thread->set_lgrp_id(lgrp_id);
839    }
840  }
841
842  if (os::Linux::is_initial_thread()) {
843    // If current thread is initial thread, its stack is mapped on demand,
844    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
845    // the entire stack region to avoid SEGV in stack banging.
846    // It is also useful to get around the heap-stack-gap problem on SuSE
847    // kernel (see 4821821 for details). We first expand stack to the top
848    // of yellow zone, then enable stack yellow zone (order is significant,
849    // enabling yellow zone first will crash JVM on SuSE Linux), so there
850    // is no gap between the last two virtual memory regions.
851
852    JavaThread *jt = (JavaThread *)thread;
853    address addr = jt->stack_reserved_zone_base();
854    assert(addr != NULL, "initialization problem?");
855    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
856
857    osthread->set_expanding_stack();
858    os::Linux::manually_expand_stack(jt, addr);
859    osthread->clear_expanding_stack();
860  }
861
862  // initialize signal mask for this thread
863  // and save the caller's signal mask
864  os::Linux::hotspot_sigmask(thread);
865
866  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
867    os::current_thread_id(), (uintx) pthread_self());
868
869  return true;
870}
871
872void os::pd_start_thread(Thread* thread) {
873  OSThread * osthread = thread->osthread();
874  assert(osthread->get_state() != INITIALIZED, "just checking");
875  Monitor* sync_with_child = osthread->startThread_lock();
876  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
877  sync_with_child->notify();
878}
879
880// Free Linux resources related to the OSThread
881void os::free_thread(OSThread* osthread) {
882  assert(osthread != NULL, "osthread not set");
883
884  if (Thread::current()->osthread() == osthread) {
885#ifdef ASSERT
886    sigset_t current;
887    sigemptyset(&current);
888    pthread_sigmask(SIG_SETMASK, NULL, &current);
889    assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
890#endif
891
892    // Restore caller's signal mask
893    sigset_t sigmask = osthread->caller_sigmask();
894    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
895  }
896
897  delete osthread;
898}
899
900//////////////////////////////////////////////////////////////////////////////
901// initial thread
902
903// Check if current thread is the initial thread, similar to Solaris thr_main.
904bool os::Linux::is_initial_thread(void) {
905  char dummy;
906  // If called before init complete, thread stack bottom will be null.
907  // Can be called if fatal error occurs before initialization.
908  if (initial_thread_stack_bottom() == NULL) return false;
909  assert(initial_thread_stack_bottom() != NULL &&
910         initial_thread_stack_size()   != 0,
911         "os::init did not locate initial thread's stack region");
912  if ((address)&dummy >= initial_thread_stack_bottom() &&
913      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
914    return true;
915  } else {
916    return false;
917  }
918}
919
920// Find the virtual memory area that contains addr
921static bool find_vma(address addr, address* vma_low, address* vma_high) {
922  FILE *fp = fopen("/proc/self/maps", "r");
923  if (fp) {
924    address low, high;
925    while (!feof(fp)) {
926      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
927        if (low <= addr && addr < high) {
928          if (vma_low)  *vma_low  = low;
929          if (vma_high) *vma_high = high;
930          fclose(fp);
931          return true;
932        }
933      }
934      for (;;) {
935        int ch = fgetc(fp);
936        if (ch == EOF || ch == (int)'\n') break;
937      }
938    }
939    fclose(fp);
940  }
941  return false;
942}
943
944// Locate initial thread stack. This special handling of initial thread stack
945// is needed because pthread_getattr_np() on most (all?) Linux distros returns
946// bogus value for initial thread.
947void os::Linux::capture_initial_stack(size_t max_size) {
948  // stack size is the easy part, get it from RLIMIT_STACK
949  size_t stack_size;
950  struct rlimit rlim;
951  getrlimit(RLIMIT_STACK, &rlim);
952  stack_size = rlim.rlim_cur;
953
954  // 6308388: a bug in ld.so will relocate its own .data section to the
955  //   lower end of primordial stack; reduce ulimit -s value a little bit
956  //   so we won't install guard page on ld.so's data section.
957  stack_size -= 2 * page_size();
958
959  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
960  //   7.1, in both cases we will get 2G in return value.
961  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
962  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
963  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
964  //   in case other parts in glibc still assumes 2M max stack size.
965  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
966  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
967  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
968    stack_size = 2 * K * K IA64_ONLY(*2);
969  }
970  // Try to figure out where the stack base (top) is. This is harder.
971  //
972  // When an application is started, glibc saves the initial stack pointer in
973  // a global variable "__libc_stack_end", which is then used by system
974  // libraries. __libc_stack_end should be pretty close to stack top. The
975  // variable is available since the very early days. However, because it is
976  // a private interface, it could disappear in the future.
977  //
978  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
979  // to __libc_stack_end, it is very close to stack top, but isn't the real
980  // stack top. Note that /proc may not exist if VM is running as a chroot
981  // program, so reading /proc/<pid>/stat could fail. Also the contents of
982  // /proc/<pid>/stat could change in the future (though unlikely).
983  //
984  // We try __libc_stack_end first. If that doesn't work, look for
985  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
986  // as a hint, which should work well in most cases.
987
988  uintptr_t stack_start;
989
990  // try __libc_stack_end first
991  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
992  if (p && *p) {
993    stack_start = *p;
994  } else {
995    // see if we can get the start_stack field from /proc/self/stat
996    FILE *fp;
997    int pid;
998    char state;
999    int ppid;
1000    int pgrp;
1001    int session;
1002    int nr;
1003    int tpgrp;
1004    unsigned long flags;
1005    unsigned long minflt;
1006    unsigned long cminflt;
1007    unsigned long majflt;
1008    unsigned long cmajflt;
1009    unsigned long utime;
1010    unsigned long stime;
1011    long cutime;
1012    long cstime;
1013    long prio;
1014    long nice;
1015    long junk;
1016    long it_real;
1017    uintptr_t start;
1018    uintptr_t vsize;
1019    intptr_t rss;
1020    uintptr_t rsslim;
1021    uintptr_t scodes;
1022    uintptr_t ecode;
1023    int i;
1024
1025    // Figure what the primordial thread stack base is. Code is inspired
1026    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1027    // followed by command name surrounded by parentheses, state, etc.
1028    char stat[2048];
1029    int statlen;
1030
1031    fp = fopen("/proc/self/stat", "r");
1032    if (fp) {
1033      statlen = fread(stat, 1, 2047, fp);
1034      stat[statlen] = '\0';
1035      fclose(fp);
1036
1037      // Skip pid and the command string. Note that we could be dealing with
1038      // weird command names, e.g. user could decide to rename java launcher
1039      // to "java 1.4.2 :)", then the stat file would look like
1040      //                1234 (java 1.4.2 :)) R ... ...
1041      // We don't really need to know the command string, just find the last
1042      // occurrence of ")" and then start parsing from there. See bug 4726580.
1043      char * s = strrchr(stat, ')');
1044
1045      i = 0;
1046      if (s) {
1047        // Skip blank chars
1048        do { s++; } while (s && isspace(*s));
1049
1050#define _UFM UINTX_FORMAT
1051#define _DFM INTX_FORMAT
1052
1053        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1054        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1055        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1056                   &state,          // 3  %c
1057                   &ppid,           // 4  %d
1058                   &pgrp,           // 5  %d
1059                   &session,        // 6  %d
1060                   &nr,             // 7  %d
1061                   &tpgrp,          // 8  %d
1062                   &flags,          // 9  %lu
1063                   &minflt,         // 10 %lu
1064                   &cminflt,        // 11 %lu
1065                   &majflt,         // 12 %lu
1066                   &cmajflt,        // 13 %lu
1067                   &utime,          // 14 %lu
1068                   &stime,          // 15 %lu
1069                   &cutime,         // 16 %ld
1070                   &cstime,         // 17 %ld
1071                   &prio,           // 18 %ld
1072                   &nice,           // 19 %ld
1073                   &junk,           // 20 %ld
1074                   &it_real,        // 21 %ld
1075                   &start,          // 22 UINTX_FORMAT
1076                   &vsize,          // 23 UINTX_FORMAT
1077                   &rss,            // 24 INTX_FORMAT
1078                   &rsslim,         // 25 UINTX_FORMAT
1079                   &scodes,         // 26 UINTX_FORMAT
1080                   &ecode,          // 27 UINTX_FORMAT
1081                   &stack_start);   // 28 UINTX_FORMAT
1082      }
1083
1084#undef _UFM
1085#undef _DFM
1086
1087      if (i != 28 - 2) {
1088        assert(false, "Bad conversion from /proc/self/stat");
1089        // product mode - assume we are the initial thread, good luck in the
1090        // embedded case.
1091        warning("Can't detect initial thread stack location - bad conversion");
1092        stack_start = (uintptr_t) &rlim;
1093      }
1094    } else {
1095      // For some reason we can't open /proc/self/stat (for example, running on
1096      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1097      // most cases, so don't abort:
1098      warning("Can't detect initial thread stack location - no /proc/self/stat");
1099      stack_start = (uintptr_t) &rlim;
1100    }
1101  }
1102
1103  // Now we have a pointer (stack_start) very close to the stack top, the
1104  // next thing to do is to figure out the exact location of stack top. We
1105  // can find out the virtual memory area that contains stack_start by
1106  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1107  // and its upper limit is the real stack top. (again, this would fail if
1108  // running inside chroot, because /proc may not exist.)
1109
1110  uintptr_t stack_top;
1111  address low, high;
1112  if (find_vma((address)stack_start, &low, &high)) {
1113    // success, "high" is the true stack top. (ignore "low", because initial
1114    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1115    stack_top = (uintptr_t)high;
1116  } else {
1117    // failed, likely because /proc/self/maps does not exist
1118    warning("Can't detect initial thread stack location - find_vma failed");
1119    // best effort: stack_start is normally within a few pages below the real
1120    // stack top, use it as stack top, and reduce stack size so we won't put
1121    // guard page outside stack.
1122    stack_top = stack_start;
1123    stack_size -= 16 * page_size();
1124  }
1125
1126  // stack_top could be partially down the page so align it
1127  stack_top = align_size_up(stack_top, page_size());
1128
1129  if (max_size && stack_size > max_size) {
1130    _initial_thread_stack_size = max_size;
1131  } else {
1132    _initial_thread_stack_size = stack_size;
1133  }
1134
1135  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1136  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1137}
1138
1139////////////////////////////////////////////////////////////////////////////////
1140// time support
1141
1142// Time since start-up in seconds to a fine granularity.
1143// Used by VMSelfDestructTimer and the MemProfiler.
1144double os::elapsedTime() {
1145
1146  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1147}
1148
1149jlong os::elapsed_counter() {
1150  return javaTimeNanos() - initial_time_count;
1151}
1152
1153jlong os::elapsed_frequency() {
1154  return NANOSECS_PER_SEC; // nanosecond resolution
1155}
1156
1157bool os::supports_vtime() { return true; }
1158bool os::enable_vtime()   { return false; }
1159bool os::vtime_enabled()  { return false; }
1160
1161double os::elapsedVTime() {
1162  struct rusage usage;
1163  int retval = getrusage(RUSAGE_THREAD, &usage);
1164  if (retval == 0) {
1165    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1166  } else {
1167    // better than nothing, but not much
1168    return elapsedTime();
1169  }
1170}
1171
1172jlong os::javaTimeMillis() {
1173  timeval time;
1174  int status = gettimeofday(&time, NULL);
1175  assert(status != -1, "linux error");
1176  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1177}
1178
1179void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1180  timeval time;
1181  int status = gettimeofday(&time, NULL);
1182  assert(status != -1, "linux error");
1183  seconds = jlong(time.tv_sec);
1184  nanos = jlong(time.tv_usec) * 1000;
1185}
1186
1187
1188#ifndef CLOCK_MONOTONIC
1189  #define CLOCK_MONOTONIC (1)
1190#endif
1191
1192void os::Linux::clock_init() {
1193  // we do dlopen's in this particular order due to bug in linux
1194  // dynamical loader (see 6348968) leading to crash on exit
1195  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1196  if (handle == NULL) {
1197    handle = dlopen("librt.so", RTLD_LAZY);
1198  }
1199
1200  if (handle) {
1201    int (*clock_getres_func)(clockid_t, struct timespec*) =
1202           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1203    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1204           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1205    if (clock_getres_func && clock_gettime_func) {
1206      // See if monotonic clock is supported by the kernel. Note that some
1207      // early implementations simply return kernel jiffies (updated every
1208      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1209      // for nano time (though the monotonic property is still nice to have).
1210      // It's fixed in newer kernels, however clock_getres() still returns
1211      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1212      // resolution for now. Hopefully as people move to new kernels, this
1213      // won't be a problem.
1214      struct timespec res;
1215      struct timespec tp;
1216      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1217          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1218        // yes, monotonic clock is supported
1219        _clock_gettime = clock_gettime_func;
1220        return;
1221      } else {
1222        // close librt if there is no monotonic clock
1223        dlclose(handle);
1224      }
1225    }
1226  }
1227  warning("No monotonic clock was available - timed services may " \
1228          "be adversely affected if the time-of-day clock changes");
1229}
1230
1231#ifndef SYS_clock_getres
1232  #if defined(IA32) || defined(AMD64)
1233    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1234    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235  #else
1236    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1237    #define sys_clock_getres(x,y)  -1
1238  #endif
1239#else
1240  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241#endif
1242
1243void os::Linux::fast_thread_clock_init() {
1244  if (!UseLinuxPosixThreadCPUClocks) {
1245    return;
1246  }
1247  clockid_t clockid;
1248  struct timespec tp;
1249  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1250      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1251
1252  // Switch to using fast clocks for thread cpu time if
1253  // the sys_clock_getres() returns 0 error code.
1254  // Note, that some kernels may support the current thread
1255  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1256  // returned by the pthread_getcpuclockid().
1257  // If the fast Posix clocks are supported then the sys_clock_getres()
1258  // must return at least tp.tv_sec == 0 which means a resolution
1259  // better than 1 sec. This is extra check for reliability.
1260
1261  if (pthread_getcpuclockid_func &&
1262      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1263      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1264    _supports_fast_thread_cpu_time = true;
1265    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1266  }
1267}
1268
1269jlong os::javaTimeNanos() {
1270  if (os::supports_monotonic_clock()) {
1271    struct timespec tp;
1272    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1273    assert(status == 0, "gettime error");
1274    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1275    return result;
1276  } else {
1277    timeval time;
1278    int status = gettimeofday(&time, NULL);
1279    assert(status != -1, "linux error");
1280    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1281    return 1000 * usecs;
1282  }
1283}
1284
1285void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1286  if (os::supports_monotonic_clock()) {
1287    info_ptr->max_value = ALL_64_BITS;
1288
1289    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1290    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1291    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1292  } else {
1293    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1294    info_ptr->max_value = ALL_64_BITS;
1295
1296    // gettimeofday is a real time clock so it skips
1297    info_ptr->may_skip_backward = true;
1298    info_ptr->may_skip_forward = true;
1299  }
1300
1301  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1302}
1303
1304// Return the real, user, and system times in seconds from an
1305// arbitrary fixed point in the past.
1306bool os::getTimesSecs(double* process_real_time,
1307                      double* process_user_time,
1308                      double* process_system_time) {
1309  struct tms ticks;
1310  clock_t real_ticks = times(&ticks);
1311
1312  if (real_ticks == (clock_t) (-1)) {
1313    return false;
1314  } else {
1315    double ticks_per_second = (double) clock_tics_per_sec;
1316    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1317    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1318    *process_real_time = ((double) real_ticks) / ticks_per_second;
1319
1320    return true;
1321  }
1322}
1323
1324
1325char * os::local_time_string(char *buf, size_t buflen) {
1326  struct tm t;
1327  time_t long_time;
1328  time(&long_time);
1329  localtime_r(&long_time, &t);
1330  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1331               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1332               t.tm_hour, t.tm_min, t.tm_sec);
1333  return buf;
1334}
1335
1336struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1337  return localtime_r(clock, res);
1338}
1339
1340////////////////////////////////////////////////////////////////////////////////
1341// runtime exit support
1342
1343// Note: os::shutdown() might be called very early during initialization, or
1344// called from signal handler. Before adding something to os::shutdown(), make
1345// sure it is async-safe and can handle partially initialized VM.
1346void os::shutdown() {
1347
1348  // allow PerfMemory to attempt cleanup of any persistent resources
1349  perfMemory_exit();
1350
1351  // needs to remove object in file system
1352  AttachListener::abort();
1353
1354  // flush buffered output, finish log files
1355  ostream_abort();
1356
1357  // Check for abort hook
1358  abort_hook_t abort_hook = Arguments::abort_hook();
1359  if (abort_hook != NULL) {
1360    abort_hook();
1361  }
1362
1363}
1364
1365// Note: os::abort() might be called very early during initialization, or
1366// called from signal handler. Before adding something to os::abort(), make
1367// sure it is async-safe and can handle partially initialized VM.
1368void os::abort(bool dump_core, void* siginfo, const void* context) {
1369  os::shutdown();
1370  if (dump_core) {
1371#ifndef PRODUCT
1372    fdStream out(defaultStream::output_fd());
1373    out.print_raw("Current thread is ");
1374    char buf[16];
1375    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1376    out.print_raw_cr(buf);
1377    out.print_raw_cr("Dumping core ...");
1378#endif
1379    ::abort(); // dump core
1380  }
1381
1382  ::exit(1);
1383}
1384
1385// Die immediately, no exit hook, no abort hook, no cleanup.
1386void os::die() {
1387  ::abort();
1388}
1389
1390
1391// This method is a copy of JDK's sysGetLastErrorString
1392// from src/solaris/hpi/src/system_md.c
1393
1394size_t os::lasterror(char *buf, size_t len) {
1395  if (errno == 0)  return 0;
1396
1397  const char *s = os::strerror(errno);
1398  size_t n = ::strlen(s);
1399  if (n >= len) {
1400    n = len - 1;
1401  }
1402  ::strncpy(buf, s, n);
1403  buf[n] = '\0';
1404  return n;
1405}
1406
1407// thread_id is kernel thread id (similar to Solaris LWP id)
1408intx os::current_thread_id() { return os::Linux::gettid(); }
1409int os::current_process_id() {
1410  return ::getpid();
1411}
1412
1413// DLL functions
1414
1415const char* os::dll_file_extension() { return ".so"; }
1416
1417// This must be hard coded because it's the system's temporary
1418// directory not the java application's temp directory, ala java.io.tmpdir.
1419const char* os::get_temp_directory() { return "/tmp"; }
1420
1421static bool file_exists(const char* filename) {
1422  struct stat statbuf;
1423  if (filename == NULL || strlen(filename) == 0) {
1424    return false;
1425  }
1426  return os::stat(filename, &statbuf) == 0;
1427}
1428
1429bool os::dll_build_name(char* buffer, size_t buflen,
1430                        const char* pname, const char* fname) {
1431  bool retval = false;
1432  // Copied from libhpi
1433  const size_t pnamelen = pname ? strlen(pname) : 0;
1434
1435  // Return error on buffer overflow.
1436  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1437    return retval;
1438  }
1439
1440  if (pnamelen == 0) {
1441    snprintf(buffer, buflen, "lib%s.so", fname);
1442    retval = true;
1443  } else if (strchr(pname, *os::path_separator()) != NULL) {
1444    int n;
1445    char** pelements = split_path(pname, &n);
1446    if (pelements == NULL) {
1447      return false;
1448    }
1449    for (int i = 0; i < n; i++) {
1450      // Really shouldn't be NULL, but check can't hurt
1451      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1452        continue; // skip the empty path values
1453      }
1454      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1455      if (file_exists(buffer)) {
1456        retval = true;
1457        break;
1458      }
1459    }
1460    // release the storage
1461    for (int i = 0; i < n; i++) {
1462      if (pelements[i] != NULL) {
1463        FREE_C_HEAP_ARRAY(char, pelements[i]);
1464      }
1465    }
1466    if (pelements != NULL) {
1467      FREE_C_HEAP_ARRAY(char*, pelements);
1468    }
1469  } else {
1470    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1471    retval = true;
1472  }
1473  return retval;
1474}
1475
1476// check if addr is inside libjvm.so
1477bool os::address_is_in_vm(address addr) {
1478  static address libjvm_base_addr;
1479  Dl_info dlinfo;
1480
1481  if (libjvm_base_addr == NULL) {
1482    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1483      libjvm_base_addr = (address)dlinfo.dli_fbase;
1484    }
1485    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1486  }
1487
1488  if (dladdr((void *)addr, &dlinfo) != 0) {
1489    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1490  }
1491
1492  return false;
1493}
1494
1495bool os::dll_address_to_function_name(address addr, char *buf,
1496                                      int buflen, int *offset,
1497                                      bool demangle) {
1498  // buf is not optional, but offset is optional
1499  assert(buf != NULL, "sanity check");
1500
1501  Dl_info dlinfo;
1502
1503  if (dladdr((void*)addr, &dlinfo) != 0) {
1504    // see if we have a matching symbol
1505    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1506      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1507        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1508      }
1509      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1510      return true;
1511    }
1512    // no matching symbol so try for just file info
1513    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1514      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1515                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1516        return true;
1517      }
1518    }
1519  }
1520
1521  buf[0] = '\0';
1522  if (offset != NULL) *offset = -1;
1523  return false;
1524}
1525
1526struct _address_to_library_name {
1527  address addr;          // input : memory address
1528  size_t  buflen;        //         size of fname
1529  char*   fname;         // output: library name
1530  address base;          //         library base addr
1531};
1532
1533static int address_to_library_name_callback(struct dl_phdr_info *info,
1534                                            size_t size, void *data) {
1535  int i;
1536  bool found = false;
1537  address libbase = NULL;
1538  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1539
1540  // iterate through all loadable segments
1541  for (i = 0; i < info->dlpi_phnum; i++) {
1542    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1543    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1544      // base address of a library is the lowest address of its loaded
1545      // segments.
1546      if (libbase == NULL || libbase > segbase) {
1547        libbase = segbase;
1548      }
1549      // see if 'addr' is within current segment
1550      if (segbase <= d->addr &&
1551          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1552        found = true;
1553      }
1554    }
1555  }
1556
1557  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1558  // so dll_address_to_library_name() can fall through to use dladdr() which
1559  // can figure out executable name from argv[0].
1560  if (found && info->dlpi_name && info->dlpi_name[0]) {
1561    d->base = libbase;
1562    if (d->fname) {
1563      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1564    }
1565    return 1;
1566  }
1567  return 0;
1568}
1569
1570bool os::dll_address_to_library_name(address addr, char* buf,
1571                                     int buflen, int* offset) {
1572  // buf is not optional, but offset is optional
1573  assert(buf != NULL, "sanity check");
1574
1575  Dl_info dlinfo;
1576  struct _address_to_library_name data;
1577
1578  // There is a bug in old glibc dladdr() implementation that it could resolve
1579  // to wrong library name if the .so file has a base address != NULL. Here
1580  // we iterate through the program headers of all loaded libraries to find
1581  // out which library 'addr' really belongs to. This workaround can be
1582  // removed once the minimum requirement for glibc is moved to 2.3.x.
1583  data.addr = addr;
1584  data.fname = buf;
1585  data.buflen = buflen;
1586  data.base = NULL;
1587  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1588
1589  if (rslt) {
1590    // buf already contains library name
1591    if (offset) *offset = addr - data.base;
1592    return true;
1593  }
1594  if (dladdr((void*)addr, &dlinfo) != 0) {
1595    if (dlinfo.dli_fname != NULL) {
1596      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1597    }
1598    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1599      *offset = addr - (address)dlinfo.dli_fbase;
1600    }
1601    return true;
1602  }
1603
1604  buf[0] = '\0';
1605  if (offset) *offset = -1;
1606  return false;
1607}
1608
1609// Loads .dll/.so and
1610// in case of error it checks if .dll/.so was built for the
1611// same architecture as Hotspot is running on
1612
1613
1614// Remember the stack's state. The Linux dynamic linker will change
1615// the stack to 'executable' at most once, so we must safepoint only once.
1616bool os::Linux::_stack_is_executable = false;
1617
1618// VM operation that loads a library.  This is necessary if stack protection
1619// of the Java stacks can be lost during loading the library.  If we
1620// do not stop the Java threads, they can stack overflow before the stacks
1621// are protected again.
1622class VM_LinuxDllLoad: public VM_Operation {
1623 private:
1624  const char *_filename;
1625  char *_ebuf;
1626  int _ebuflen;
1627  void *_lib;
1628 public:
1629  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1630    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1631  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1632  void doit() {
1633    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1634    os::Linux::_stack_is_executable = true;
1635  }
1636  void* loaded_library() { return _lib; }
1637};
1638
1639void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1640  void * result = NULL;
1641  bool load_attempted = false;
1642
1643  // Check whether the library to load might change execution rights
1644  // of the stack. If they are changed, the protection of the stack
1645  // guard pages will be lost. We need a safepoint to fix this.
1646  //
1647  // See Linux man page execstack(8) for more info.
1648  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1649    ElfFile ef(filename);
1650    if (!ef.specifies_noexecstack()) {
1651      if (!is_init_completed()) {
1652        os::Linux::_stack_is_executable = true;
1653        // This is OK - No Java threads have been created yet, and hence no
1654        // stack guard pages to fix.
1655        //
1656        // This should happen only when you are building JDK7 using a very
1657        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1658        //
1659        // Dynamic loader will make all stacks executable after
1660        // this function returns, and will not do that again.
1661        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1662      } else {
1663        warning("You have loaded library %s which might have disabled stack guard. "
1664                "The VM will try to fix the stack guard now.\n"
1665                "It's highly recommended that you fix the library with "
1666                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1667                filename);
1668
1669        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1670        JavaThread *jt = JavaThread::current();
1671        if (jt->thread_state() != _thread_in_native) {
1672          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1673          // that requires ExecStack. Cannot enter safe point. Let's give up.
1674          warning("Unable to fix stack guard. Giving up.");
1675        } else {
1676          if (!LoadExecStackDllInVMThread) {
1677            // This is for the case where the DLL has an static
1678            // constructor function that executes JNI code. We cannot
1679            // load such DLLs in the VMThread.
1680            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1681          }
1682
1683          ThreadInVMfromNative tiv(jt);
1684          debug_only(VMNativeEntryWrapper vew;)
1685
1686          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1687          VMThread::execute(&op);
1688          if (LoadExecStackDllInVMThread) {
1689            result = op.loaded_library();
1690          }
1691          load_attempted = true;
1692        }
1693      }
1694    }
1695  }
1696
1697  if (!load_attempted) {
1698    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1699  }
1700
1701  if (result != NULL) {
1702    // Successful loading
1703    return result;
1704  }
1705
1706  Elf32_Ehdr elf_head;
1707  int diag_msg_max_length=ebuflen-strlen(ebuf);
1708  char* diag_msg_buf=ebuf+strlen(ebuf);
1709
1710  if (diag_msg_max_length==0) {
1711    // No more space in ebuf for additional diagnostics message
1712    return NULL;
1713  }
1714
1715
1716  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1717
1718  if (file_descriptor < 0) {
1719    // Can't open library, report dlerror() message
1720    return NULL;
1721  }
1722
1723  bool failed_to_read_elf_head=
1724    (sizeof(elf_head)!=
1725     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1726
1727  ::close(file_descriptor);
1728  if (failed_to_read_elf_head) {
1729    // file i/o error - report dlerror() msg
1730    return NULL;
1731  }
1732
1733  typedef struct {
1734    Elf32_Half  code;         // Actual value as defined in elf.h
1735    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1736    char        elf_class;    // 32 or 64 bit
1737    char        endianess;    // MSB or LSB
1738    char*       name;         // String representation
1739  } arch_t;
1740
1741#ifndef EM_486
1742  #define EM_486          6               /* Intel 80486 */
1743#endif
1744#ifndef EM_AARCH64
1745  #define EM_AARCH64    183               /* ARM AARCH64 */
1746#endif
1747
1748  static const arch_t arch_array[]={
1749    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1750    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1751    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1752    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1753    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1754    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1755    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1756    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1757#if defined(VM_LITTLE_ENDIAN)
1758    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1759#else
1760    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1761#endif
1762    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1763    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1764    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1765    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1766    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1767    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1768    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1769    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1770  };
1771
1772#if  (defined IA32)
1773  static  Elf32_Half running_arch_code=EM_386;
1774#elif   (defined AMD64)
1775  static  Elf32_Half running_arch_code=EM_X86_64;
1776#elif  (defined IA64)
1777  static  Elf32_Half running_arch_code=EM_IA_64;
1778#elif  (defined __sparc) && (defined _LP64)
1779  static  Elf32_Half running_arch_code=EM_SPARCV9;
1780#elif  (defined __sparc) && (!defined _LP64)
1781  static  Elf32_Half running_arch_code=EM_SPARC;
1782#elif  (defined __powerpc64__)
1783  static  Elf32_Half running_arch_code=EM_PPC64;
1784#elif  (defined __powerpc__)
1785  static  Elf32_Half running_arch_code=EM_PPC;
1786#elif  (defined ARM)
1787  static  Elf32_Half running_arch_code=EM_ARM;
1788#elif  (defined S390)
1789  static  Elf32_Half running_arch_code=EM_S390;
1790#elif  (defined ALPHA)
1791  static  Elf32_Half running_arch_code=EM_ALPHA;
1792#elif  (defined MIPSEL)
1793  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1794#elif  (defined PARISC)
1795  static  Elf32_Half running_arch_code=EM_PARISC;
1796#elif  (defined MIPS)
1797  static  Elf32_Half running_arch_code=EM_MIPS;
1798#elif  (defined M68K)
1799  static  Elf32_Half running_arch_code=EM_68K;
1800#elif  (defined AARCH64)
1801  static  Elf32_Half running_arch_code=EM_AARCH64;
1802#else
1803    #error Method os::dll_load requires that one of following is defined:\
1804         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1805#endif
1806
1807  // Identify compatability class for VM's architecture and library's architecture
1808  // Obtain string descriptions for architectures
1809
1810  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1811  int running_arch_index=-1;
1812
1813  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1814    if (running_arch_code == arch_array[i].code) {
1815      running_arch_index    = i;
1816    }
1817    if (lib_arch.code == arch_array[i].code) {
1818      lib_arch.compat_class = arch_array[i].compat_class;
1819      lib_arch.name         = arch_array[i].name;
1820    }
1821  }
1822
1823  assert(running_arch_index != -1,
1824         "Didn't find running architecture code (running_arch_code) in arch_array");
1825  if (running_arch_index == -1) {
1826    // Even though running architecture detection failed
1827    // we may still continue with reporting dlerror() message
1828    return NULL;
1829  }
1830
1831  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1832    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1833    return NULL;
1834  }
1835
1836#ifndef S390
1837  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1838    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1839    return NULL;
1840  }
1841#endif // !S390
1842
1843  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1844    if (lib_arch.name!=NULL) {
1845      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1846                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1847                 lib_arch.name, arch_array[running_arch_index].name);
1848    } else {
1849      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1850                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1851                 lib_arch.code,
1852                 arch_array[running_arch_index].name);
1853    }
1854  }
1855
1856  return NULL;
1857}
1858
1859void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1860                                int ebuflen) {
1861  void * result = ::dlopen(filename, RTLD_LAZY);
1862  if (result == NULL) {
1863    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1864    ebuf[ebuflen-1] = '\0';
1865  }
1866  return result;
1867}
1868
1869void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1870                                       int ebuflen) {
1871  void * result = NULL;
1872  if (LoadExecStackDllInVMThread) {
1873    result = dlopen_helper(filename, ebuf, ebuflen);
1874  }
1875
1876  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1877  // library that requires an executable stack, or which does not have this
1878  // stack attribute set, dlopen changes the stack attribute to executable. The
1879  // read protection of the guard pages gets lost.
1880  //
1881  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1882  // may have been queued at the same time.
1883
1884  if (!_stack_is_executable) {
1885    JavaThread *jt = Threads::first();
1886
1887    while (jt) {
1888      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1889          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1890        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1891          warning("Attempt to reguard stack yellow zone failed.");
1892        }
1893      }
1894      jt = jt->next();
1895    }
1896  }
1897
1898  return result;
1899}
1900
1901void* os::dll_lookup(void* handle, const char* name) {
1902  void* res = dlsym(handle, name);
1903  return res;
1904}
1905
1906void* os::get_default_process_handle() {
1907  return (void*)::dlopen(NULL, RTLD_LAZY);
1908}
1909
1910static bool _print_ascii_file(const char* filename, outputStream* st) {
1911  int fd = ::open(filename, O_RDONLY);
1912  if (fd == -1) {
1913    return false;
1914  }
1915
1916  char buf[32];
1917  int bytes;
1918  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1919    st->print_raw(buf, bytes);
1920  }
1921
1922  ::close(fd);
1923
1924  return true;
1925}
1926
1927void os::print_dll_info(outputStream *st) {
1928  st->print_cr("Dynamic libraries:");
1929
1930  char fname[32];
1931  pid_t pid = os::Linux::gettid();
1932
1933  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1934
1935  if (!_print_ascii_file(fname, st)) {
1936    st->print("Can not get library information for pid = %d\n", pid);
1937  }
1938}
1939
1940int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1941  FILE *procmapsFile = NULL;
1942
1943  // Open the procfs maps file for the current process
1944  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1945    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1946    char line[PATH_MAX + 100];
1947
1948    // Read line by line from 'file'
1949    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1950      u8 base, top, offset, inode;
1951      char permissions[5];
1952      char device[6];
1953      char name[PATH_MAX + 1];
1954
1955      // Parse fields from line
1956      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1957             &base, &top, permissions, &offset, device, &inode, name);
1958
1959      // Filter by device id '00:00' so that we only get file system mapped files.
1960      if (strcmp(device, "00:00") != 0) {
1961
1962        // Call callback with the fields of interest
1963        if(callback(name, (address)base, (address)top, param)) {
1964          // Oops abort, callback aborted
1965          fclose(procmapsFile);
1966          return 1;
1967        }
1968      }
1969    }
1970    fclose(procmapsFile);
1971  }
1972  return 0;
1973}
1974
1975void os::print_os_info_brief(outputStream* st) {
1976  os::Linux::print_distro_info(st);
1977
1978  os::Posix::print_uname_info(st);
1979
1980  os::Linux::print_libversion_info(st);
1981
1982}
1983
1984void os::print_os_info(outputStream* st) {
1985  st->print("OS:");
1986
1987  os::Linux::print_distro_info(st);
1988
1989  os::Posix::print_uname_info(st);
1990
1991  // Print warning if unsafe chroot environment detected
1992  if (unsafe_chroot_detected) {
1993    st->print("WARNING!! ");
1994    st->print_cr("%s", unstable_chroot_error);
1995  }
1996
1997  os::Linux::print_libversion_info(st);
1998
1999  os::Posix::print_rlimit_info(st);
2000
2001  os::Posix::print_load_average(st);
2002
2003  os::Linux::print_full_memory_info(st);
2004}
2005
2006// Try to identify popular distros.
2007// Most Linux distributions have a /etc/XXX-release file, which contains
2008// the OS version string. Newer Linux distributions have a /etc/lsb-release
2009// file that also contains the OS version string. Some have more than one
2010// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2011// /etc/redhat-release.), so the order is important.
2012// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2013// their own specific XXX-release file as well as a redhat-release file.
2014// Because of this the XXX-release file needs to be searched for before the
2015// redhat-release file.
2016// Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2017// search for redhat-release / SuSE-release needs to be before lsb-release.
2018// Since the lsb-release file is the new standard it needs to be searched
2019// before the older style release files.
2020// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2021// next to last resort.  The os-release file is a new standard that contains
2022// distribution information and the system-release file seems to be an old
2023// standard that has been replaced by the lsb-release and os-release files.
2024// Searching for the debian_version file is the last resort.  It contains
2025// an informative string like "6.0.6" or "wheezy/sid". Because of this
2026// "Debian " is printed before the contents of the debian_version file.
2027
2028const char* distro_files[] = {
2029  "/etc/oracle-release",
2030  "/etc/mandriva-release",
2031  "/etc/mandrake-release",
2032  "/etc/sun-release",
2033  "/etc/redhat-release",
2034  "/etc/SuSE-release",
2035  "/etc/lsb-release",
2036  "/etc/turbolinux-release",
2037  "/etc/gentoo-release",
2038  "/etc/ltib-release",
2039  "/etc/angstrom-version",
2040  "/etc/system-release",
2041  "/etc/os-release",
2042  NULL };
2043
2044void os::Linux::print_distro_info(outputStream* st) {
2045  for (int i = 0;; i++) {
2046    const char* file = distro_files[i];
2047    if (file == NULL) {
2048      break;  // done
2049    }
2050    // If file prints, we found it.
2051    if (_print_ascii_file(file, st)) {
2052      return;
2053    }
2054  }
2055
2056  if (file_exists("/etc/debian_version")) {
2057    st->print("Debian ");
2058    _print_ascii_file("/etc/debian_version", st);
2059  } else {
2060    st->print("Linux");
2061  }
2062  st->cr();
2063}
2064
2065static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2066  char buf[256];
2067  while (fgets(buf, sizeof(buf), fp)) {
2068    // Edit out extra stuff in expected format
2069    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2070      char* ptr = strstr(buf, "\"");  // the name is in quotes
2071      if (ptr != NULL) {
2072        ptr++; // go beyond first quote
2073        char* nl = strchr(ptr, '\"');
2074        if (nl != NULL) *nl = '\0';
2075        strncpy(distro, ptr, length);
2076      } else {
2077        ptr = strstr(buf, "=");
2078        ptr++; // go beyond equals then
2079        char* nl = strchr(ptr, '\n');
2080        if (nl != NULL) *nl = '\0';
2081        strncpy(distro, ptr, length);
2082      }
2083      return;
2084    } else if (get_first_line) {
2085      char* nl = strchr(buf, '\n');
2086      if (nl != NULL) *nl = '\0';
2087      strncpy(distro, buf, length);
2088      return;
2089    }
2090  }
2091  // print last line and close
2092  char* nl = strchr(buf, '\n');
2093  if (nl != NULL) *nl = '\0';
2094  strncpy(distro, buf, length);
2095}
2096
2097static void parse_os_info(char* distro, size_t length, const char* file) {
2098  FILE* fp = fopen(file, "r");
2099  if (fp != NULL) {
2100    // if suse format, print out first line
2101    bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2102    parse_os_info_helper(fp, distro, length, get_first_line);
2103    fclose(fp);
2104  }
2105}
2106
2107void os::get_summary_os_info(char* buf, size_t buflen) {
2108  for (int i = 0;; i++) {
2109    const char* file = distro_files[i];
2110    if (file == NULL) {
2111      break; // ran out of distro_files
2112    }
2113    if (file_exists(file)) {
2114      parse_os_info(buf, buflen, file);
2115      return;
2116    }
2117  }
2118  // special case for debian
2119  if (file_exists("/etc/debian_version")) {
2120    strncpy(buf, "Debian ", buflen);
2121    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2122  } else {
2123    strncpy(buf, "Linux", buflen);
2124  }
2125}
2126
2127void os::Linux::print_libversion_info(outputStream* st) {
2128  // libc, pthread
2129  st->print("libc:");
2130  st->print("%s ", os::Linux::glibc_version());
2131  st->print("%s ", os::Linux::libpthread_version());
2132  st->cr();
2133}
2134
2135void os::Linux::print_full_memory_info(outputStream* st) {
2136  st->print("\n/proc/meminfo:\n");
2137  _print_ascii_file("/proc/meminfo", st);
2138  st->cr();
2139}
2140
2141void os::print_memory_info(outputStream* st) {
2142
2143  st->print("Memory:");
2144  st->print(" %dk page", os::vm_page_size()>>10);
2145
2146  // values in struct sysinfo are "unsigned long"
2147  struct sysinfo si;
2148  sysinfo(&si);
2149
2150  st->print(", physical " UINT64_FORMAT "k",
2151            os::physical_memory() >> 10);
2152  st->print("(" UINT64_FORMAT "k free)",
2153            os::available_memory() >> 10);
2154  st->print(", swap " UINT64_FORMAT "k",
2155            ((jlong)si.totalswap * si.mem_unit) >> 10);
2156  st->print("(" UINT64_FORMAT "k free)",
2157            ((jlong)si.freeswap * si.mem_unit) >> 10);
2158  st->cr();
2159}
2160
2161// Print the first "model name" line and the first "flags" line
2162// that we find and nothing more. We assume "model name" comes
2163// before "flags" so if we find a second "model name", then the
2164// "flags" field is considered missing.
2165static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2166#if defined(IA32) || defined(AMD64)
2167  // Other platforms have less repetitive cpuinfo files
2168  FILE *fp = fopen("/proc/cpuinfo", "r");
2169  if (fp) {
2170    while (!feof(fp)) {
2171      if (fgets(buf, buflen, fp)) {
2172        // Assume model name comes before flags
2173        bool model_name_printed = false;
2174        if (strstr(buf, "model name") != NULL) {
2175          if (!model_name_printed) {
2176            st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2177            st->print_raw(buf);
2178            model_name_printed = true;
2179          } else {
2180            // model name printed but not flags?  Odd, just return
2181            fclose(fp);
2182            return true;
2183          }
2184        }
2185        // print the flags line too
2186        if (strstr(buf, "flags") != NULL) {
2187          st->print_raw(buf);
2188          fclose(fp);
2189          return true;
2190        }
2191      }
2192    }
2193    fclose(fp);
2194  }
2195#endif // x86 platforms
2196  return false;
2197}
2198
2199void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2200  // Only print the model name if the platform provides this as a summary
2201  if (!print_model_name_and_flags(st, buf, buflen)) {
2202    st->print("\n/proc/cpuinfo:\n");
2203    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2204      st->print_cr("  <Not Available>");
2205    }
2206  }
2207}
2208
2209#if defined(AMD64) || defined(IA32) || defined(X32)
2210const char* search_string = "model name";
2211#elif defined(SPARC)
2212const char* search_string = "cpu";
2213#elif defined(PPC64)
2214const char* search_string = "cpu";
2215#else
2216const char* search_string = "Processor";
2217#endif
2218
2219// Parses the cpuinfo file for string representing the model name.
2220void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2221  FILE* fp = fopen("/proc/cpuinfo", "r");
2222  if (fp != NULL) {
2223    while (!feof(fp)) {
2224      char buf[256];
2225      if (fgets(buf, sizeof(buf), fp)) {
2226        char* start = strstr(buf, search_string);
2227        if (start != NULL) {
2228          char *ptr = start + strlen(search_string);
2229          char *end = buf + strlen(buf);
2230          while (ptr != end) {
2231             // skip whitespace and colon for the rest of the name.
2232             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2233               break;
2234             }
2235             ptr++;
2236          }
2237          if (ptr != end) {
2238            // reasonable string, get rid of newline and keep the rest
2239            char* nl = strchr(buf, '\n');
2240            if (nl != NULL) *nl = '\0';
2241            strncpy(cpuinfo, ptr, length);
2242            fclose(fp);
2243            return;
2244          }
2245        }
2246      }
2247    }
2248    fclose(fp);
2249  }
2250  // cpuinfo not found or parsing failed, just print generic string.  The entire
2251  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2252#if defined(AMD64)
2253  strncpy(cpuinfo, "x86_64", length);
2254#elif defined(IA32)
2255  strncpy(cpuinfo, "x86_32", length);
2256#elif defined(IA64)
2257  strncpy(cpuinfo, "IA64", length);
2258#elif defined(SPARC)
2259  strncpy(cpuinfo, "sparcv9", length);
2260#elif defined(AARCH64)
2261  strncpy(cpuinfo, "AArch64", length);
2262#elif defined(ARM)
2263  strncpy(cpuinfo, "ARM", length);
2264#elif defined(PPC)
2265  strncpy(cpuinfo, "PPC64", length);
2266#elif defined(ZERO_LIBARCH)
2267  strncpy(cpuinfo, ZERO_LIBARCH, length);
2268#else
2269  strncpy(cpuinfo, "unknown", length);
2270#endif
2271}
2272
2273static void print_signal_handler(outputStream* st, int sig,
2274                                 char* buf, size_t buflen);
2275
2276void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2277  st->print_cr("Signal Handlers:");
2278  print_signal_handler(st, SIGSEGV, buf, buflen);
2279  print_signal_handler(st, SIGBUS , buf, buflen);
2280  print_signal_handler(st, SIGFPE , buf, buflen);
2281  print_signal_handler(st, SIGPIPE, buf, buflen);
2282  print_signal_handler(st, SIGXFSZ, buf, buflen);
2283  print_signal_handler(st, SIGILL , buf, buflen);
2284  print_signal_handler(st, SR_signum, buf, buflen);
2285  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2286  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2287  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2288  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2289#if defined(PPC64)
2290  print_signal_handler(st, SIGTRAP, buf, buflen);
2291#endif
2292}
2293
2294static char saved_jvm_path[MAXPATHLEN] = {0};
2295
2296// Find the full path to the current module, libjvm.so
2297void os::jvm_path(char *buf, jint buflen) {
2298  // Error checking.
2299  if (buflen < MAXPATHLEN) {
2300    assert(false, "must use a large-enough buffer");
2301    buf[0] = '\0';
2302    return;
2303  }
2304  // Lazy resolve the path to current module.
2305  if (saved_jvm_path[0] != 0) {
2306    strcpy(buf, saved_jvm_path);
2307    return;
2308  }
2309
2310  char dli_fname[MAXPATHLEN];
2311  bool ret = dll_address_to_library_name(
2312                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2313                                         dli_fname, sizeof(dli_fname), NULL);
2314  assert(ret, "cannot locate libjvm");
2315  char *rp = NULL;
2316  if (ret && dli_fname[0] != '\0') {
2317    rp = realpath(dli_fname, buf);
2318  }
2319  if (rp == NULL) {
2320    return;
2321  }
2322
2323  if (Arguments::sun_java_launcher_is_altjvm()) {
2324    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2325    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2326    // If "/jre/lib/" appears at the right place in the string, then
2327    // assume we are installed in a JDK and we're done. Otherwise, check
2328    // for a JAVA_HOME environment variable and fix up the path so it
2329    // looks like libjvm.so is installed there (append a fake suffix
2330    // hotspot/libjvm.so).
2331    const char *p = buf + strlen(buf) - 1;
2332    for (int count = 0; p > buf && count < 5; ++count) {
2333      for (--p; p > buf && *p != '/'; --p)
2334        /* empty */ ;
2335    }
2336
2337    if (strncmp(p, "/jre/lib/", 9) != 0) {
2338      // Look for JAVA_HOME in the environment.
2339      char* java_home_var = ::getenv("JAVA_HOME");
2340      if (java_home_var != NULL && java_home_var[0] != 0) {
2341        char* jrelib_p;
2342        int len;
2343
2344        // Check the current module name "libjvm.so".
2345        p = strrchr(buf, '/');
2346        if (p == NULL) {
2347          return;
2348        }
2349        assert(strstr(p, "/libjvm") == p, "invalid library name");
2350
2351        rp = realpath(java_home_var, buf);
2352        if (rp == NULL) {
2353          return;
2354        }
2355
2356        // determine if this is a legacy image or modules image
2357        // modules image doesn't have "jre" subdirectory
2358        len = strlen(buf);
2359        assert(len < buflen, "Ran out of buffer room");
2360        jrelib_p = buf + len;
2361        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2362        if (0 != access(buf, F_OK)) {
2363          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2364        }
2365
2366        if (0 == access(buf, F_OK)) {
2367          // Use current module name "libjvm.so"
2368          len = strlen(buf);
2369          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2370        } else {
2371          // Go back to path of .so
2372          rp = realpath(dli_fname, buf);
2373          if (rp == NULL) {
2374            return;
2375          }
2376        }
2377      }
2378    }
2379  }
2380
2381  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2382  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2383}
2384
2385void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2386  // no prefix required, not even "_"
2387}
2388
2389void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2390  // no suffix required
2391}
2392
2393////////////////////////////////////////////////////////////////////////////////
2394// sun.misc.Signal support
2395
2396static volatile jint sigint_count = 0;
2397
2398static void UserHandler(int sig, void *siginfo, void *context) {
2399  // 4511530 - sem_post is serialized and handled by the manager thread. When
2400  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2401  // don't want to flood the manager thread with sem_post requests.
2402  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2403    return;
2404  }
2405
2406  // Ctrl-C is pressed during error reporting, likely because the error
2407  // handler fails to abort. Let VM die immediately.
2408  if (sig == SIGINT && is_error_reported()) {
2409    os::die();
2410  }
2411
2412  os::signal_notify(sig);
2413}
2414
2415void* os::user_handler() {
2416  return CAST_FROM_FN_PTR(void*, UserHandler);
2417}
2418
2419struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2420  struct timespec ts;
2421  // Semaphore's are always associated with CLOCK_REALTIME
2422  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2423  // see unpackTime for discussion on overflow checking
2424  if (sec >= MAX_SECS) {
2425    ts.tv_sec += MAX_SECS;
2426    ts.tv_nsec = 0;
2427  } else {
2428    ts.tv_sec += sec;
2429    ts.tv_nsec += nsec;
2430    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2431      ts.tv_nsec -= NANOSECS_PER_SEC;
2432      ++ts.tv_sec; // note: this must be <= max_secs
2433    }
2434  }
2435
2436  return ts;
2437}
2438
2439extern "C" {
2440  typedef void (*sa_handler_t)(int);
2441  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2442}
2443
2444void* os::signal(int signal_number, void* handler) {
2445  struct sigaction sigAct, oldSigAct;
2446
2447  sigfillset(&(sigAct.sa_mask));
2448  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2449  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2450
2451  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2452    // -1 means registration failed
2453    return (void *)-1;
2454  }
2455
2456  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2457}
2458
2459void os::signal_raise(int signal_number) {
2460  ::raise(signal_number);
2461}
2462
2463// The following code is moved from os.cpp for making this
2464// code platform specific, which it is by its very nature.
2465
2466// Will be modified when max signal is changed to be dynamic
2467int os::sigexitnum_pd() {
2468  return NSIG;
2469}
2470
2471// a counter for each possible signal value
2472static volatile jint pending_signals[NSIG+1] = { 0 };
2473
2474// Linux(POSIX) specific hand shaking semaphore.
2475static sem_t sig_sem;
2476static PosixSemaphore sr_semaphore;
2477
2478void os::signal_init_pd() {
2479  // Initialize signal structures
2480  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2481
2482  // Initialize signal semaphore
2483  ::sem_init(&sig_sem, 0, 0);
2484}
2485
2486void os::signal_notify(int sig) {
2487  Atomic::inc(&pending_signals[sig]);
2488  ::sem_post(&sig_sem);
2489}
2490
2491static int check_pending_signals(bool wait) {
2492  Atomic::store(0, &sigint_count);
2493  for (;;) {
2494    for (int i = 0; i < NSIG + 1; i++) {
2495      jint n = pending_signals[i];
2496      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2497        return i;
2498      }
2499    }
2500    if (!wait) {
2501      return -1;
2502    }
2503    JavaThread *thread = JavaThread::current();
2504    ThreadBlockInVM tbivm(thread);
2505
2506    bool threadIsSuspended;
2507    do {
2508      thread->set_suspend_equivalent();
2509      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2510      ::sem_wait(&sig_sem);
2511
2512      // were we externally suspended while we were waiting?
2513      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2514      if (threadIsSuspended) {
2515        // The semaphore has been incremented, but while we were waiting
2516        // another thread suspended us. We don't want to continue running
2517        // while suspended because that would surprise the thread that
2518        // suspended us.
2519        ::sem_post(&sig_sem);
2520
2521        thread->java_suspend_self();
2522      }
2523    } while (threadIsSuspended);
2524  }
2525}
2526
2527int os::signal_lookup() {
2528  return check_pending_signals(false);
2529}
2530
2531int os::signal_wait() {
2532  return check_pending_signals(true);
2533}
2534
2535////////////////////////////////////////////////////////////////////////////////
2536// Virtual Memory
2537
2538int os::vm_page_size() {
2539  // Seems redundant as all get out
2540  assert(os::Linux::page_size() != -1, "must call os::init");
2541  return os::Linux::page_size();
2542}
2543
2544// Solaris allocates memory by pages.
2545int os::vm_allocation_granularity() {
2546  assert(os::Linux::page_size() != -1, "must call os::init");
2547  return os::Linux::page_size();
2548}
2549
2550// Rationale behind this function:
2551//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2552//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2553//  samples for JITted code. Here we create private executable mapping over the code cache
2554//  and then we can use standard (well, almost, as mapping can change) way to provide
2555//  info for the reporting script by storing timestamp and location of symbol
2556void linux_wrap_code(char* base, size_t size) {
2557  static volatile jint cnt = 0;
2558
2559  if (!UseOprofile) {
2560    return;
2561  }
2562
2563  char buf[PATH_MAX+1];
2564  int num = Atomic::add(1, &cnt);
2565
2566  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2567           os::get_temp_directory(), os::current_process_id(), num);
2568  unlink(buf);
2569
2570  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2571
2572  if (fd != -1) {
2573    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2574    if (rv != (off_t)-1) {
2575      if (::write(fd, "", 1) == 1) {
2576        mmap(base, size,
2577             PROT_READ|PROT_WRITE|PROT_EXEC,
2578             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2579      }
2580    }
2581    ::close(fd);
2582    unlink(buf);
2583  }
2584}
2585
2586static bool recoverable_mmap_error(int err) {
2587  // See if the error is one we can let the caller handle. This
2588  // list of errno values comes from JBS-6843484. I can't find a
2589  // Linux man page that documents this specific set of errno
2590  // values so while this list currently matches Solaris, it may
2591  // change as we gain experience with this failure mode.
2592  switch (err) {
2593  case EBADF:
2594  case EINVAL:
2595  case ENOTSUP:
2596    // let the caller deal with these errors
2597    return true;
2598
2599  default:
2600    // Any remaining errors on this OS can cause our reserved mapping
2601    // to be lost. That can cause confusion where different data
2602    // structures think they have the same memory mapped. The worst
2603    // scenario is if both the VM and a library think they have the
2604    // same memory mapped.
2605    return false;
2606  }
2607}
2608
2609static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2610                                    int err) {
2611  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2612          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2613          os::strerror(err), err);
2614}
2615
2616static void warn_fail_commit_memory(char* addr, size_t size,
2617                                    size_t alignment_hint, bool exec,
2618                                    int err) {
2619  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2620          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2621          alignment_hint, exec, os::strerror(err), err);
2622}
2623
2624// NOTE: Linux kernel does not really reserve the pages for us.
2625//       All it does is to check if there are enough free pages
2626//       left at the time of mmap(). This could be a potential
2627//       problem.
2628int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2629  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2630  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2631                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2632  if (res != (uintptr_t) MAP_FAILED) {
2633    if (UseNUMAInterleaving) {
2634      numa_make_global(addr, size);
2635    }
2636    return 0;
2637  }
2638
2639  int err = errno;  // save errno from mmap() call above
2640
2641  if (!recoverable_mmap_error(err)) {
2642    warn_fail_commit_memory(addr, size, exec, err);
2643    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2644  }
2645
2646  return err;
2647}
2648
2649bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2650  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2651}
2652
2653void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2654                                  const char* mesg) {
2655  assert(mesg != NULL, "mesg must be specified");
2656  int err = os::Linux::commit_memory_impl(addr, size, exec);
2657  if (err != 0) {
2658    // the caller wants all commit errors to exit with the specified mesg:
2659    warn_fail_commit_memory(addr, size, exec, err);
2660    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2661  }
2662}
2663
2664// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2665#ifndef MAP_HUGETLB
2666  #define MAP_HUGETLB 0x40000
2667#endif
2668
2669// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2670#ifndef MADV_HUGEPAGE
2671  #define MADV_HUGEPAGE 14
2672#endif
2673
2674int os::Linux::commit_memory_impl(char* addr, size_t size,
2675                                  size_t alignment_hint, bool exec) {
2676  int err = os::Linux::commit_memory_impl(addr, size, exec);
2677  if (err == 0) {
2678    realign_memory(addr, size, alignment_hint);
2679  }
2680  return err;
2681}
2682
2683bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2684                          bool exec) {
2685  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2686}
2687
2688void os::pd_commit_memory_or_exit(char* addr, size_t size,
2689                                  size_t alignment_hint, bool exec,
2690                                  const char* mesg) {
2691  assert(mesg != NULL, "mesg must be specified");
2692  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2693  if (err != 0) {
2694    // the caller wants all commit errors to exit with the specified mesg:
2695    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2696    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2697  }
2698}
2699
2700void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2701  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2702    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2703    // be supported or the memory may already be backed by huge pages.
2704    ::madvise(addr, bytes, MADV_HUGEPAGE);
2705  }
2706}
2707
2708void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2709  // This method works by doing an mmap over an existing mmaping and effectively discarding
2710  // the existing pages. However it won't work for SHM-based large pages that cannot be
2711  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2712  // small pages on top of the SHM segment. This method always works for small pages, so we
2713  // allow that in any case.
2714  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2715    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2716  }
2717}
2718
2719void os::numa_make_global(char *addr, size_t bytes) {
2720  Linux::numa_interleave_memory(addr, bytes);
2721}
2722
2723// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2724// bind policy to MPOL_PREFERRED for the current thread.
2725#define USE_MPOL_PREFERRED 0
2726
2727void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2728  // To make NUMA and large pages more robust when both enabled, we need to ease
2729  // the requirements on where the memory should be allocated. MPOL_BIND is the
2730  // default policy and it will force memory to be allocated on the specified
2731  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2732  // the specified node, but will not force it. Using this policy will prevent
2733  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2734  // free large pages.
2735  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2736  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2737}
2738
2739bool os::numa_topology_changed() { return false; }
2740
2741size_t os::numa_get_groups_num() {
2742  int max_node = Linux::numa_max_node();
2743  return max_node > 0 ? max_node + 1 : 1;
2744}
2745
2746int os::numa_get_group_id() {
2747  int cpu_id = Linux::sched_getcpu();
2748  if (cpu_id != -1) {
2749    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2750    if (lgrp_id != -1) {
2751      return lgrp_id;
2752    }
2753  }
2754  return 0;
2755}
2756
2757size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2758  for (size_t i = 0; i < size; i++) {
2759    ids[i] = i;
2760  }
2761  return size;
2762}
2763
2764bool os::get_page_info(char *start, page_info* info) {
2765  return false;
2766}
2767
2768char *os::scan_pages(char *start, char* end, page_info* page_expected,
2769                     page_info* page_found) {
2770  return end;
2771}
2772
2773
2774int os::Linux::sched_getcpu_syscall(void) {
2775  unsigned int cpu = 0;
2776  int retval = -1;
2777
2778#if defined(IA32)
2779  #ifndef SYS_getcpu
2780    #define SYS_getcpu 318
2781  #endif
2782  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2783#elif defined(AMD64)
2784// Unfortunately we have to bring all these macros here from vsyscall.h
2785// to be able to compile on old linuxes.
2786  #define __NR_vgetcpu 2
2787  #define VSYSCALL_START (-10UL << 20)
2788  #define VSYSCALL_SIZE 1024
2789  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2790  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2791  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2792  retval = vgetcpu(&cpu, NULL, NULL);
2793#endif
2794
2795  return (retval == -1) ? retval : cpu;
2796}
2797
2798// Something to do with the numa-aware allocator needs these symbols
2799extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2800extern "C" JNIEXPORT void numa_error(char *where) { }
2801
2802
2803// If we are running with libnuma version > 2, then we should
2804// be trying to use symbols with versions 1.1
2805// If we are running with earlier version, which did not have symbol versions,
2806// we should use the base version.
2807void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2808  void *f = dlvsym(handle, name, "libnuma_1.1");
2809  if (f == NULL) {
2810    f = dlsym(handle, name);
2811  }
2812  return f;
2813}
2814
2815bool os::Linux::libnuma_init() {
2816  // sched_getcpu() should be in libc.
2817  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2818                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2819
2820  // If it's not, try a direct syscall.
2821  if (sched_getcpu() == -1) {
2822    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2823                                    (void*)&sched_getcpu_syscall));
2824  }
2825
2826  if (sched_getcpu() != -1) { // Does it work?
2827    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2828    if (handle != NULL) {
2829      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2830                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2831      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2832                                       libnuma_dlsym(handle, "numa_max_node")));
2833      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2834                                        libnuma_dlsym(handle, "numa_available")));
2835      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2836                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2837      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2838                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2839      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2840                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2841
2842
2843      if (numa_available() != -1) {
2844        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2845        // Create a cpu -> node mapping
2846        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2847        rebuild_cpu_to_node_map();
2848        return true;
2849      }
2850    }
2851  }
2852  return false;
2853}
2854
2855// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2856// The table is later used in get_node_by_cpu().
2857void os::Linux::rebuild_cpu_to_node_map() {
2858  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2859                              // in libnuma (possible values are starting from 16,
2860                              // and continuing up with every other power of 2, but less
2861                              // than the maximum number of CPUs supported by kernel), and
2862                              // is a subject to change (in libnuma version 2 the requirements
2863                              // are more reasonable) we'll just hardcode the number they use
2864                              // in the library.
2865  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2866
2867  size_t cpu_num = os::active_processor_count();
2868  size_t cpu_map_size = NCPUS / BitsPerCLong;
2869  size_t cpu_map_valid_size =
2870    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2871
2872  cpu_to_node()->clear();
2873  cpu_to_node()->at_grow(cpu_num - 1);
2874  size_t node_num = numa_get_groups_num();
2875
2876  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2877  for (size_t i = 0; i < node_num; i++) {
2878    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2879      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2880        if (cpu_map[j] != 0) {
2881          for (size_t k = 0; k < BitsPerCLong; k++) {
2882            if (cpu_map[j] & (1UL << k)) {
2883              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2884            }
2885          }
2886        }
2887      }
2888    }
2889  }
2890  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2891}
2892
2893int os::Linux::get_node_by_cpu(int cpu_id) {
2894  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2895    return cpu_to_node()->at(cpu_id);
2896  }
2897  return -1;
2898}
2899
2900GrowableArray<int>* os::Linux::_cpu_to_node;
2901os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2902os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2903os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2904os::Linux::numa_available_func_t os::Linux::_numa_available;
2905os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2906os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2907os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2908unsigned long* os::Linux::_numa_all_nodes;
2909
2910bool os::pd_uncommit_memory(char* addr, size_t size) {
2911  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2912                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2913  return res  != (uintptr_t) MAP_FAILED;
2914}
2915
2916static address get_stack_commited_bottom(address bottom, size_t size) {
2917  address nbot = bottom;
2918  address ntop = bottom + size;
2919
2920  size_t page_sz = os::vm_page_size();
2921  unsigned pages = size / page_sz;
2922
2923  unsigned char vec[1];
2924  unsigned imin = 1, imax = pages + 1, imid;
2925  int mincore_return_value = 0;
2926
2927  assert(imin <= imax, "Unexpected page size");
2928
2929  while (imin < imax) {
2930    imid = (imax + imin) / 2;
2931    nbot = ntop - (imid * page_sz);
2932
2933    // Use a trick with mincore to check whether the page is mapped or not.
2934    // mincore sets vec to 1 if page resides in memory and to 0 if page
2935    // is swapped output but if page we are asking for is unmapped
2936    // it returns -1,ENOMEM
2937    mincore_return_value = mincore(nbot, page_sz, vec);
2938
2939    if (mincore_return_value == -1) {
2940      // Page is not mapped go up
2941      // to find first mapped page
2942      if (errno != EAGAIN) {
2943        assert(errno == ENOMEM, "Unexpected mincore errno");
2944        imax = imid;
2945      }
2946    } else {
2947      // Page is mapped go down
2948      // to find first not mapped page
2949      imin = imid + 1;
2950    }
2951  }
2952
2953  nbot = nbot + page_sz;
2954
2955  // Adjust stack bottom one page up if last checked page is not mapped
2956  if (mincore_return_value == -1) {
2957    nbot = nbot + page_sz;
2958  }
2959
2960  return nbot;
2961}
2962
2963
2964// Linux uses a growable mapping for the stack, and if the mapping for
2965// the stack guard pages is not removed when we detach a thread the
2966// stack cannot grow beyond the pages where the stack guard was
2967// mapped.  If at some point later in the process the stack expands to
2968// that point, the Linux kernel cannot expand the stack any further
2969// because the guard pages are in the way, and a segfault occurs.
2970//
2971// However, it's essential not to split the stack region by unmapping
2972// a region (leaving a hole) that's already part of the stack mapping,
2973// so if the stack mapping has already grown beyond the guard pages at
2974// the time we create them, we have to truncate the stack mapping.
2975// So, we need to know the extent of the stack mapping when
2976// create_stack_guard_pages() is called.
2977
2978// We only need this for stacks that are growable: at the time of
2979// writing thread stacks don't use growable mappings (i.e. those
2980// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2981// only applies to the main thread.
2982
2983// If the (growable) stack mapping already extends beyond the point
2984// where we're going to put our guard pages, truncate the mapping at
2985// that point by munmap()ping it.  This ensures that when we later
2986// munmap() the guard pages we don't leave a hole in the stack
2987// mapping. This only affects the main/initial thread
2988
2989bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2990  if (os::Linux::is_initial_thread()) {
2991    // As we manually grow stack up to bottom inside create_attached_thread(),
2992    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2993    // we don't need to do anything special.
2994    // Check it first, before calling heavy function.
2995    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2996    unsigned char vec[1];
2997
2998    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2999      // Fallback to slow path on all errors, including EAGAIN
3000      stack_extent = (uintptr_t) get_stack_commited_bottom(
3001                                                           os::Linux::initial_thread_stack_bottom(),
3002                                                           (size_t)addr - stack_extent);
3003    }
3004
3005    if (stack_extent < (uintptr_t)addr) {
3006      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3007    }
3008  }
3009
3010  return os::commit_memory(addr, size, !ExecMem);
3011}
3012
3013// If this is a growable mapping, remove the guard pages entirely by
3014// munmap()ping them.  If not, just call uncommit_memory(). This only
3015// affects the main/initial thread, but guard against future OS changes
3016// It's safe to always unmap guard pages for initial thread because we
3017// always place it right after end of the mapped region
3018
3019bool os::remove_stack_guard_pages(char* addr, size_t size) {
3020  uintptr_t stack_extent, stack_base;
3021
3022  if (os::Linux::is_initial_thread()) {
3023    return ::munmap(addr, size) == 0;
3024  }
3025
3026  return os::uncommit_memory(addr, size);
3027}
3028
3029// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3030// at 'requested_addr'. If there are existing memory mappings at the same
3031// location, however, they will be overwritten. If 'fixed' is false,
3032// 'requested_addr' is only treated as a hint, the return value may or
3033// may not start from the requested address. Unlike Linux mmap(), this
3034// function returns NULL to indicate failure.
3035static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3036  char * addr;
3037  int flags;
3038
3039  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3040  if (fixed) {
3041    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3042    flags |= MAP_FIXED;
3043  }
3044
3045  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3046  // touch an uncommitted page. Otherwise, the read/write might
3047  // succeed if we have enough swap space to back the physical page.
3048  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3049                       flags, -1, 0);
3050
3051  return addr == MAP_FAILED ? NULL : addr;
3052}
3053
3054static int anon_munmap(char * addr, size_t size) {
3055  return ::munmap(addr, size) == 0;
3056}
3057
3058char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3059                            size_t alignment_hint) {
3060  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3061}
3062
3063bool os::pd_release_memory(char* addr, size_t size) {
3064  return anon_munmap(addr, size);
3065}
3066
3067static bool linux_mprotect(char* addr, size_t size, int prot) {
3068  // Linux wants the mprotect address argument to be page aligned.
3069  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3070
3071  // According to SUSv3, mprotect() should only be used with mappings
3072  // established by mmap(), and mmap() always maps whole pages. Unaligned
3073  // 'addr' likely indicates problem in the VM (e.g. trying to change
3074  // protection of malloc'ed or statically allocated memory). Check the
3075  // caller if you hit this assert.
3076  assert(addr == bottom, "sanity check");
3077
3078  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3079  return ::mprotect(bottom, size, prot) == 0;
3080}
3081
3082// Set protections specified
3083bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3084                        bool is_committed) {
3085  unsigned int p = 0;
3086  switch (prot) {
3087  case MEM_PROT_NONE: p = PROT_NONE; break;
3088  case MEM_PROT_READ: p = PROT_READ; break;
3089  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3090  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3091  default:
3092    ShouldNotReachHere();
3093  }
3094  // is_committed is unused.
3095  return linux_mprotect(addr, bytes, p);
3096}
3097
3098bool os::guard_memory(char* addr, size_t size) {
3099  return linux_mprotect(addr, size, PROT_NONE);
3100}
3101
3102bool os::unguard_memory(char* addr, size_t size) {
3103  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3104}
3105
3106bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3107                                                    size_t page_size) {
3108  bool result = false;
3109  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3110                 MAP_ANONYMOUS|MAP_PRIVATE,
3111                 -1, 0);
3112  if (p != MAP_FAILED) {
3113    void *aligned_p = align_ptr_up(p, page_size);
3114
3115    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3116
3117    munmap(p, page_size * 2);
3118  }
3119
3120  if (warn && !result) {
3121    warning("TransparentHugePages is not supported by the operating system.");
3122  }
3123
3124  return result;
3125}
3126
3127bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3128  bool result = false;
3129  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3130                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3131                 -1, 0);
3132
3133  if (p != MAP_FAILED) {
3134    // We don't know if this really is a huge page or not.
3135    FILE *fp = fopen("/proc/self/maps", "r");
3136    if (fp) {
3137      while (!feof(fp)) {
3138        char chars[257];
3139        long x = 0;
3140        if (fgets(chars, sizeof(chars), fp)) {
3141          if (sscanf(chars, "%lx-%*x", &x) == 1
3142              && x == (long)p) {
3143            if (strstr (chars, "hugepage")) {
3144              result = true;
3145              break;
3146            }
3147          }
3148        }
3149      }
3150      fclose(fp);
3151    }
3152    munmap(p, page_size);
3153  }
3154
3155  if (warn && !result) {
3156    warning("HugeTLBFS is not supported by the operating system.");
3157  }
3158
3159  return result;
3160}
3161
3162// Set the coredump_filter bits to include largepages in core dump (bit 6)
3163//
3164// From the coredump_filter documentation:
3165//
3166// - (bit 0) anonymous private memory
3167// - (bit 1) anonymous shared memory
3168// - (bit 2) file-backed private memory
3169// - (bit 3) file-backed shared memory
3170// - (bit 4) ELF header pages in file-backed private memory areas (it is
3171//           effective only if the bit 2 is cleared)
3172// - (bit 5) hugetlb private memory
3173// - (bit 6) hugetlb shared memory
3174//
3175static void set_coredump_filter(void) {
3176  FILE *f;
3177  long cdm;
3178
3179  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3180    return;
3181  }
3182
3183  if (fscanf(f, "%lx", &cdm) != 1) {
3184    fclose(f);
3185    return;
3186  }
3187
3188  rewind(f);
3189
3190  if ((cdm & LARGEPAGES_BIT) == 0) {
3191    cdm |= LARGEPAGES_BIT;
3192    fprintf(f, "%#lx", cdm);
3193  }
3194
3195  fclose(f);
3196}
3197
3198// Large page support
3199
3200static size_t _large_page_size = 0;
3201
3202size_t os::Linux::find_large_page_size() {
3203  size_t large_page_size = 0;
3204
3205  // large_page_size on Linux is used to round up heap size. x86 uses either
3206  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3207  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3208  // page as large as 256M.
3209  //
3210  // Here we try to figure out page size by parsing /proc/meminfo and looking
3211  // for a line with the following format:
3212  //    Hugepagesize:     2048 kB
3213  //
3214  // If we can't determine the value (e.g. /proc is not mounted, or the text
3215  // format has been changed), we'll use the largest page size supported by
3216  // the processor.
3217
3218#ifndef ZERO
3219  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3220                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3221#endif // ZERO
3222
3223  FILE *fp = fopen("/proc/meminfo", "r");
3224  if (fp) {
3225    while (!feof(fp)) {
3226      int x = 0;
3227      char buf[16];
3228      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3229        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3230          large_page_size = x * K;
3231          break;
3232        }
3233      } else {
3234        // skip to next line
3235        for (;;) {
3236          int ch = fgetc(fp);
3237          if (ch == EOF || ch == (int)'\n') break;
3238        }
3239      }
3240    }
3241    fclose(fp);
3242  }
3243
3244  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3245    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3246            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3247            proper_unit_for_byte_size(large_page_size));
3248  }
3249
3250  return large_page_size;
3251}
3252
3253size_t os::Linux::setup_large_page_size() {
3254  _large_page_size = Linux::find_large_page_size();
3255  const size_t default_page_size = (size_t)Linux::page_size();
3256  if (_large_page_size > default_page_size) {
3257    _page_sizes[0] = _large_page_size;
3258    _page_sizes[1] = default_page_size;
3259    _page_sizes[2] = 0;
3260  }
3261
3262  return _large_page_size;
3263}
3264
3265bool os::Linux::setup_large_page_type(size_t page_size) {
3266  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3267      FLAG_IS_DEFAULT(UseSHM) &&
3268      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3269
3270    // The type of large pages has not been specified by the user.
3271
3272    // Try UseHugeTLBFS and then UseSHM.
3273    UseHugeTLBFS = UseSHM = true;
3274
3275    // Don't try UseTransparentHugePages since there are known
3276    // performance issues with it turned on. This might change in the future.
3277    UseTransparentHugePages = false;
3278  }
3279
3280  if (UseTransparentHugePages) {
3281    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3282    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3283      UseHugeTLBFS = false;
3284      UseSHM = false;
3285      return true;
3286    }
3287    UseTransparentHugePages = false;
3288  }
3289
3290  if (UseHugeTLBFS) {
3291    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3292    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3293      UseSHM = false;
3294      return true;
3295    }
3296    UseHugeTLBFS = false;
3297  }
3298
3299  return UseSHM;
3300}
3301
3302void os::large_page_init() {
3303  if (!UseLargePages &&
3304      !UseTransparentHugePages &&
3305      !UseHugeTLBFS &&
3306      !UseSHM) {
3307    // Not using large pages.
3308    return;
3309  }
3310
3311  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3312    // The user explicitly turned off large pages.
3313    // Ignore the rest of the large pages flags.
3314    UseTransparentHugePages = false;
3315    UseHugeTLBFS = false;
3316    UseSHM = false;
3317    return;
3318  }
3319
3320  size_t large_page_size = Linux::setup_large_page_size();
3321  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3322
3323  set_coredump_filter();
3324}
3325
3326#ifndef SHM_HUGETLB
3327  #define SHM_HUGETLB 04000
3328#endif
3329
3330char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3331                                            char* req_addr, bool exec) {
3332  // "exec" is passed in but not used.  Creating the shared image for
3333  // the code cache doesn't have an SHM_X executable permission to check.
3334  assert(UseLargePages && UseSHM, "only for SHM large pages");
3335  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3336
3337  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3338    return NULL; // Fallback to small pages.
3339  }
3340
3341  key_t key = IPC_PRIVATE;
3342  char *addr;
3343
3344  bool warn_on_failure = UseLargePages &&
3345                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3346                         !FLAG_IS_DEFAULT(UseSHM) ||
3347                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3348  char msg[128];
3349
3350  // Create a large shared memory region to attach to based on size.
3351  // Currently, size is the total size of the heap
3352  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3353  if (shmid == -1) {
3354    // Possible reasons for shmget failure:
3355    // 1. shmmax is too small for Java heap.
3356    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3357    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3358    // 2. not enough large page memory.
3359    //    > check available large pages: cat /proc/meminfo
3360    //    > increase amount of large pages:
3361    //          echo new_value > /proc/sys/vm/nr_hugepages
3362    //      Note 1: different Linux may use different name for this property,
3363    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3364    //      Note 2: it's possible there's enough physical memory available but
3365    //            they are so fragmented after a long run that they can't
3366    //            coalesce into large pages. Try to reserve large pages when
3367    //            the system is still "fresh".
3368    if (warn_on_failure) {
3369      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3370      warning("%s", msg);
3371    }
3372    return NULL;
3373  }
3374
3375  // attach to the region
3376  addr = (char*)shmat(shmid, req_addr, 0);
3377  int err = errno;
3378
3379  // Remove shmid. If shmat() is successful, the actual shared memory segment
3380  // will be deleted when it's detached by shmdt() or when the process
3381  // terminates. If shmat() is not successful this will remove the shared
3382  // segment immediately.
3383  shmctl(shmid, IPC_RMID, NULL);
3384
3385  if ((intptr_t)addr == -1) {
3386    if (warn_on_failure) {
3387      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3388      warning("%s", msg);
3389    }
3390    return NULL;
3391  }
3392
3393  return addr;
3394}
3395
3396static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3397                                        int error) {
3398  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3399
3400  bool warn_on_failure = UseLargePages &&
3401      (!FLAG_IS_DEFAULT(UseLargePages) ||
3402       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3403       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3404
3405  if (warn_on_failure) {
3406    char msg[128];
3407    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3408                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3409    warning("%s", msg);
3410  }
3411}
3412
3413char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3414                                                        char* req_addr,
3415                                                        bool exec) {
3416  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3417  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3418  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3419
3420  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3421  char* addr = (char*)::mmap(req_addr, bytes, prot,
3422                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3423                             -1, 0);
3424
3425  if (addr == MAP_FAILED) {
3426    warn_on_large_pages_failure(req_addr, bytes, errno);
3427    return NULL;
3428  }
3429
3430  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3431
3432  return addr;
3433}
3434
3435// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3436// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3437//   (req_addr != NULL) or with a given alignment.
3438//  - bytes shall be a multiple of alignment.
3439//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3440//  - alignment sets the alignment at which memory shall be allocated.
3441//     It must be a multiple of allocation granularity.
3442// Returns address of memory or NULL. If req_addr was not NULL, will only return
3443//  req_addr or NULL.
3444static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3445
3446  size_t extra_size = bytes;
3447  if (req_addr == NULL && alignment > 0) {
3448    extra_size += alignment;
3449  }
3450
3451  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3452    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3453    -1, 0);
3454  if (start == MAP_FAILED) {
3455    start = NULL;
3456  } else {
3457    if (req_addr != NULL) {
3458      if (start != req_addr) {
3459        ::munmap(start, extra_size);
3460        start = NULL;
3461      }
3462    } else {
3463      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3464      char* const end_aligned = start_aligned + bytes;
3465      char* const end = start + extra_size;
3466      if (start_aligned > start) {
3467        ::munmap(start, start_aligned - start);
3468      }
3469      if (end_aligned < end) {
3470        ::munmap(end_aligned, end - end_aligned);
3471      }
3472      start = start_aligned;
3473    }
3474  }
3475  return start;
3476
3477}
3478
3479// Reserve memory using mmap(MAP_HUGETLB).
3480//  - bytes shall be a multiple of alignment.
3481//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3482//  - alignment sets the alignment at which memory shall be allocated.
3483//     It must be a multiple of allocation granularity.
3484// Returns address of memory or NULL. If req_addr was not NULL, will only return
3485//  req_addr or NULL.
3486char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3487                                                         size_t alignment,
3488                                                         char* req_addr,
3489                                                         bool exec) {
3490  size_t large_page_size = os::large_page_size();
3491  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3492
3493  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3494  assert(is_size_aligned(bytes, alignment), "Must be");
3495
3496  // First reserve - but not commit - the address range in small pages.
3497  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3498
3499  if (start == NULL) {
3500    return NULL;
3501  }
3502
3503  assert(is_ptr_aligned(start, alignment), "Must be");
3504
3505  char* end = start + bytes;
3506
3507  // Find the regions of the allocated chunk that can be promoted to large pages.
3508  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3509  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3510
3511  size_t lp_bytes = lp_end - lp_start;
3512
3513  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3514
3515  if (lp_bytes == 0) {
3516    // The mapped region doesn't even span the start and the end of a large page.
3517    // Fall back to allocate a non-special area.
3518    ::munmap(start, end - start);
3519    return NULL;
3520  }
3521
3522  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3523
3524  void* result;
3525
3526  // Commit small-paged leading area.
3527  if (start != lp_start) {
3528    result = ::mmap(start, lp_start - start, prot,
3529                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3530                    -1, 0);
3531    if (result == MAP_FAILED) {
3532      ::munmap(lp_start, end - lp_start);
3533      return NULL;
3534    }
3535  }
3536
3537  // Commit large-paged area.
3538  result = ::mmap(lp_start, lp_bytes, prot,
3539                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3540                  -1, 0);
3541  if (result == MAP_FAILED) {
3542    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3543    // If the mmap above fails, the large pages region will be unmapped and we
3544    // have regions before and after with small pages. Release these regions.
3545    //
3546    // |  mapped  |  unmapped  |  mapped  |
3547    // ^          ^            ^          ^
3548    // start      lp_start     lp_end     end
3549    //
3550    ::munmap(start, lp_start - start);
3551    ::munmap(lp_end, end - lp_end);
3552    return NULL;
3553  }
3554
3555  // Commit small-paged trailing area.
3556  if (lp_end != end) {
3557    result = ::mmap(lp_end, end - lp_end, prot,
3558                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3559                    -1, 0);
3560    if (result == MAP_FAILED) {
3561      ::munmap(start, lp_end - start);
3562      return NULL;
3563    }
3564  }
3565
3566  return start;
3567}
3568
3569char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3570                                                   size_t alignment,
3571                                                   char* req_addr,
3572                                                   bool exec) {
3573  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3574  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3575  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3576  assert(is_power_of_2(os::large_page_size()), "Must be");
3577  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3578
3579  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3580    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3581  } else {
3582    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3583  }
3584}
3585
3586char* os::reserve_memory_special(size_t bytes, size_t alignment,
3587                                 char* req_addr, bool exec) {
3588  assert(UseLargePages, "only for large pages");
3589
3590  char* addr;
3591  if (UseSHM) {
3592    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3593  } else {
3594    assert(UseHugeTLBFS, "must be");
3595    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3596  }
3597
3598  if (addr != NULL) {
3599    if (UseNUMAInterleaving) {
3600      numa_make_global(addr, bytes);
3601    }
3602
3603    // The memory is committed
3604    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3605  }
3606
3607  return addr;
3608}
3609
3610bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3611  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3612  return shmdt(base) == 0;
3613}
3614
3615bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3616  return pd_release_memory(base, bytes);
3617}
3618
3619bool os::release_memory_special(char* base, size_t bytes) {
3620  bool res;
3621  if (MemTracker::tracking_level() > NMT_minimal) {
3622    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3623    res = os::Linux::release_memory_special_impl(base, bytes);
3624    if (res) {
3625      tkr.record((address)base, bytes);
3626    }
3627
3628  } else {
3629    res = os::Linux::release_memory_special_impl(base, bytes);
3630  }
3631  return res;
3632}
3633
3634bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3635  assert(UseLargePages, "only for large pages");
3636  bool res;
3637
3638  if (UseSHM) {
3639    res = os::Linux::release_memory_special_shm(base, bytes);
3640  } else {
3641    assert(UseHugeTLBFS, "must be");
3642    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3643  }
3644  return res;
3645}
3646
3647size_t os::large_page_size() {
3648  return _large_page_size;
3649}
3650
3651// With SysV SHM the entire memory region must be allocated as shared
3652// memory.
3653// HugeTLBFS allows application to commit large page memory on demand.
3654// However, when committing memory with HugeTLBFS fails, the region
3655// that was supposed to be committed will lose the old reservation
3656// and allow other threads to steal that memory region. Because of this
3657// behavior we can't commit HugeTLBFS memory.
3658bool os::can_commit_large_page_memory() {
3659  return UseTransparentHugePages;
3660}
3661
3662bool os::can_execute_large_page_memory() {
3663  return UseTransparentHugePages || UseHugeTLBFS;
3664}
3665
3666// Reserve memory at an arbitrary address, only if that area is
3667// available (and not reserved for something else).
3668
3669char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3670  const int max_tries = 10;
3671  char* base[max_tries];
3672  size_t size[max_tries];
3673  const size_t gap = 0x000000;
3674
3675  // Assert only that the size is a multiple of the page size, since
3676  // that's all that mmap requires, and since that's all we really know
3677  // about at this low abstraction level.  If we need higher alignment,
3678  // we can either pass an alignment to this method or verify alignment
3679  // in one of the methods further up the call chain.  See bug 5044738.
3680  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3681
3682  // Repeatedly allocate blocks until the block is allocated at the
3683  // right spot.
3684
3685  // Linux mmap allows caller to pass an address as hint; give it a try first,
3686  // if kernel honors the hint then we can return immediately.
3687  char * addr = anon_mmap(requested_addr, bytes, false);
3688  if (addr == requested_addr) {
3689    return requested_addr;
3690  }
3691
3692  if (addr != NULL) {
3693    // mmap() is successful but it fails to reserve at the requested address
3694    anon_munmap(addr, bytes);
3695  }
3696
3697  int i;
3698  for (i = 0; i < max_tries; ++i) {
3699    base[i] = reserve_memory(bytes);
3700
3701    if (base[i] != NULL) {
3702      // Is this the block we wanted?
3703      if (base[i] == requested_addr) {
3704        size[i] = bytes;
3705        break;
3706      }
3707
3708      // Does this overlap the block we wanted? Give back the overlapped
3709      // parts and try again.
3710
3711      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3712      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3713        unmap_memory(base[i], top_overlap);
3714        base[i] += top_overlap;
3715        size[i] = bytes - top_overlap;
3716      } else {
3717        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3718        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3719          unmap_memory(requested_addr, bottom_overlap);
3720          size[i] = bytes - bottom_overlap;
3721        } else {
3722          size[i] = bytes;
3723        }
3724      }
3725    }
3726  }
3727
3728  // Give back the unused reserved pieces.
3729
3730  for (int j = 0; j < i; ++j) {
3731    if (base[j] != NULL) {
3732      unmap_memory(base[j], size[j]);
3733    }
3734  }
3735
3736  if (i < max_tries) {
3737    return requested_addr;
3738  } else {
3739    return NULL;
3740  }
3741}
3742
3743size_t os::read(int fd, void *buf, unsigned int nBytes) {
3744  return ::read(fd, buf, nBytes);
3745}
3746
3747size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3748  return ::pread(fd, buf, nBytes, offset);
3749}
3750
3751// Short sleep, direct OS call.
3752//
3753// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3754// sched_yield(2) will actually give up the CPU:
3755//
3756//   * Alone on this pariticular CPU, keeps running.
3757//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3758//     (pre 2.6.39).
3759//
3760// So calling this with 0 is an alternative.
3761//
3762void os::naked_short_sleep(jlong ms) {
3763  struct timespec req;
3764
3765  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3766  req.tv_sec = 0;
3767  if (ms > 0) {
3768    req.tv_nsec = (ms % 1000) * 1000000;
3769  } else {
3770    req.tv_nsec = 1;
3771  }
3772
3773  nanosleep(&req, NULL);
3774
3775  return;
3776}
3777
3778// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3779void os::infinite_sleep() {
3780  while (true) {    // sleep forever ...
3781    ::sleep(100);   // ... 100 seconds at a time
3782  }
3783}
3784
3785// Used to convert frequent JVM_Yield() to nops
3786bool os::dont_yield() {
3787  return DontYieldALot;
3788}
3789
3790void os::naked_yield() {
3791  sched_yield();
3792}
3793
3794////////////////////////////////////////////////////////////////////////////////
3795// thread priority support
3796
3797// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3798// only supports dynamic priority, static priority must be zero. For real-time
3799// applications, Linux supports SCHED_RR which allows static priority (1-99).
3800// However, for large multi-threaded applications, SCHED_RR is not only slower
3801// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3802// of 5 runs - Sep 2005).
3803//
3804// The following code actually changes the niceness of kernel-thread/LWP. It
3805// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3806// not the entire user process, and user level threads are 1:1 mapped to kernel
3807// threads. It has always been the case, but could change in the future. For
3808// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3809// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3810
3811int os::java_to_os_priority[CriticalPriority + 1] = {
3812  19,              // 0 Entry should never be used
3813
3814   4,              // 1 MinPriority
3815   3,              // 2
3816   2,              // 3
3817
3818   1,              // 4
3819   0,              // 5 NormPriority
3820  -1,              // 6
3821
3822  -2,              // 7
3823  -3,              // 8
3824  -4,              // 9 NearMaxPriority
3825
3826  -5,              // 10 MaxPriority
3827
3828  -5               // 11 CriticalPriority
3829};
3830
3831static int prio_init() {
3832  if (ThreadPriorityPolicy == 1) {
3833    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3834    // if effective uid is not root. Perhaps, a more elegant way of doing
3835    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3836    if (geteuid() != 0) {
3837      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3838        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3839      }
3840      ThreadPriorityPolicy = 0;
3841    }
3842  }
3843  if (UseCriticalJavaThreadPriority) {
3844    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3845  }
3846  return 0;
3847}
3848
3849OSReturn os::set_native_priority(Thread* thread, int newpri) {
3850  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3851
3852  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3853  return (ret == 0) ? OS_OK : OS_ERR;
3854}
3855
3856OSReturn os::get_native_priority(const Thread* const thread,
3857                                 int *priority_ptr) {
3858  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3859    *priority_ptr = java_to_os_priority[NormPriority];
3860    return OS_OK;
3861  }
3862
3863  errno = 0;
3864  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3865  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3866}
3867
3868// Hint to the underlying OS that a task switch would not be good.
3869// Void return because it's a hint and can fail.
3870void os::hint_no_preempt() {}
3871
3872////////////////////////////////////////////////////////////////////////////////
3873// suspend/resume support
3874
3875//  the low-level signal-based suspend/resume support is a remnant from the
3876//  old VM-suspension that used to be for java-suspension, safepoints etc,
3877//  within hotspot. Now there is a single use-case for this:
3878//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3879//      that runs in the watcher thread.
3880//  The remaining code is greatly simplified from the more general suspension
3881//  code that used to be used.
3882//
3883//  The protocol is quite simple:
3884//  - suspend:
3885//      - sends a signal to the target thread
3886//      - polls the suspend state of the osthread using a yield loop
3887//      - target thread signal handler (SR_handler) sets suspend state
3888//        and blocks in sigsuspend until continued
3889//  - resume:
3890//      - sets target osthread state to continue
3891//      - sends signal to end the sigsuspend loop in the SR_handler
3892//
3893//  Note that the SR_lock plays no role in this suspend/resume protocol.
3894
3895static void resume_clear_context(OSThread *osthread) {
3896  osthread->set_ucontext(NULL);
3897  osthread->set_siginfo(NULL);
3898}
3899
3900static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3901                                 ucontext_t* context) {
3902  osthread->set_ucontext(context);
3903  osthread->set_siginfo(siginfo);
3904}
3905
3906// Handler function invoked when a thread's execution is suspended or
3907// resumed. We have to be careful that only async-safe functions are
3908// called here (Note: most pthread functions are not async safe and
3909// should be avoided.)
3910//
3911// Note: sigwait() is a more natural fit than sigsuspend() from an
3912// interface point of view, but sigwait() prevents the signal hander
3913// from being run. libpthread would get very confused by not having
3914// its signal handlers run and prevents sigwait()'s use with the
3915// mutex granting granting signal.
3916//
3917// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3918//
3919static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3920  // Save and restore errno to avoid confusing native code with EINTR
3921  // after sigsuspend.
3922  int old_errno = errno;
3923
3924  Thread* thread = Thread::current_or_null_safe();
3925  assert(thread != NULL, "Missing current thread in SR_handler");
3926  OSThread* osthread = thread->osthread();
3927  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3928
3929  os::SuspendResume::State current = osthread->sr.state();
3930  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3931    suspend_save_context(osthread, siginfo, context);
3932
3933    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3934    os::SuspendResume::State state = osthread->sr.suspended();
3935    if (state == os::SuspendResume::SR_SUSPENDED) {
3936      sigset_t suspend_set;  // signals for sigsuspend()
3937      sigemptyset(&suspend_set);
3938      // get current set of blocked signals and unblock resume signal
3939      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3940      sigdelset(&suspend_set, SR_signum);
3941
3942      sr_semaphore.signal();
3943      // wait here until we are resumed
3944      while (1) {
3945        sigsuspend(&suspend_set);
3946
3947        os::SuspendResume::State result = osthread->sr.running();
3948        if (result == os::SuspendResume::SR_RUNNING) {
3949          sr_semaphore.signal();
3950          break;
3951        }
3952      }
3953
3954    } else if (state == os::SuspendResume::SR_RUNNING) {
3955      // request was cancelled, continue
3956    } else {
3957      ShouldNotReachHere();
3958    }
3959
3960    resume_clear_context(osthread);
3961  } else if (current == os::SuspendResume::SR_RUNNING) {
3962    // request was cancelled, continue
3963  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3964    // ignore
3965  } else {
3966    // ignore
3967  }
3968
3969  errno = old_errno;
3970}
3971
3972static int SR_initialize() {
3973  struct sigaction act;
3974  char *s;
3975
3976  // Get signal number to use for suspend/resume
3977  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3978    int sig = ::strtol(s, 0, 10);
3979    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3980        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3981      SR_signum = sig;
3982    } else {
3983      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3984              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3985    }
3986  }
3987
3988  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3989         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3990
3991  sigemptyset(&SR_sigset);
3992  sigaddset(&SR_sigset, SR_signum);
3993
3994  // Set up signal handler for suspend/resume
3995  act.sa_flags = SA_RESTART|SA_SIGINFO;
3996  act.sa_handler = (void (*)(int)) SR_handler;
3997
3998  // SR_signum is blocked by default.
3999  // 4528190 - We also need to block pthread restart signal (32 on all
4000  // supported Linux platforms). Note that LinuxThreads need to block
4001  // this signal for all threads to work properly. So we don't have
4002  // to use hard-coded signal number when setting up the mask.
4003  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4004
4005  if (sigaction(SR_signum, &act, 0) == -1) {
4006    return -1;
4007  }
4008
4009  // Save signal flag
4010  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4011  return 0;
4012}
4013
4014static int sr_notify(OSThread* osthread) {
4015  int status = pthread_kill(osthread->pthread_id(), SR_signum);
4016  assert_status(status == 0, status, "pthread_kill");
4017  return status;
4018}
4019
4020// "Randomly" selected value for how long we want to spin
4021// before bailing out on suspending a thread, also how often
4022// we send a signal to a thread we want to resume
4023static const int RANDOMLY_LARGE_INTEGER = 1000000;
4024static const int RANDOMLY_LARGE_INTEGER2 = 100;
4025
4026// returns true on success and false on error - really an error is fatal
4027// but this seems the normal response to library errors
4028static bool do_suspend(OSThread* osthread) {
4029  assert(osthread->sr.is_running(), "thread should be running");
4030  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4031
4032  // mark as suspended and send signal
4033  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4034    // failed to switch, state wasn't running?
4035    ShouldNotReachHere();
4036    return false;
4037  }
4038
4039  if (sr_notify(osthread) != 0) {
4040    ShouldNotReachHere();
4041  }
4042
4043  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4044  while (true) {
4045    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4046      break;
4047    } else {
4048      // timeout
4049      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4050      if (cancelled == os::SuspendResume::SR_RUNNING) {
4051        return false;
4052      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4053        // make sure that we consume the signal on the semaphore as well
4054        sr_semaphore.wait();
4055        break;
4056      } else {
4057        ShouldNotReachHere();
4058        return false;
4059      }
4060    }
4061  }
4062
4063  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4064  return true;
4065}
4066
4067static void do_resume(OSThread* osthread) {
4068  assert(osthread->sr.is_suspended(), "thread should be suspended");
4069  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4070
4071  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4072    // failed to switch to WAKEUP_REQUEST
4073    ShouldNotReachHere();
4074    return;
4075  }
4076
4077  while (true) {
4078    if (sr_notify(osthread) == 0) {
4079      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4080        if (osthread->sr.is_running()) {
4081          return;
4082        }
4083      }
4084    } else {
4085      ShouldNotReachHere();
4086    }
4087  }
4088
4089  guarantee(osthread->sr.is_running(), "Must be running!");
4090}
4091
4092///////////////////////////////////////////////////////////////////////////////////
4093// signal handling (except suspend/resume)
4094
4095// This routine may be used by user applications as a "hook" to catch signals.
4096// The user-defined signal handler must pass unrecognized signals to this
4097// routine, and if it returns true (non-zero), then the signal handler must
4098// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4099// routine will never retun false (zero), but instead will execute a VM panic
4100// routine kill the process.
4101//
4102// If this routine returns false, it is OK to call it again.  This allows
4103// the user-defined signal handler to perform checks either before or after
4104// the VM performs its own checks.  Naturally, the user code would be making
4105// a serious error if it tried to handle an exception (such as a null check
4106// or breakpoint) that the VM was generating for its own correct operation.
4107//
4108// This routine may recognize any of the following kinds of signals:
4109//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4110// It should be consulted by handlers for any of those signals.
4111//
4112// The caller of this routine must pass in the three arguments supplied
4113// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4114// field of the structure passed to sigaction().  This routine assumes that
4115// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4116//
4117// Note that the VM will print warnings if it detects conflicting signal
4118// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4119//
4120extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4121                                                 siginfo_t* siginfo,
4122                                                 void* ucontext,
4123                                                 int abort_if_unrecognized);
4124
4125void signalHandler(int sig, siginfo_t* info, void* uc) {
4126  assert(info != NULL && uc != NULL, "it must be old kernel");
4127  int orig_errno = errno;  // Preserve errno value over signal handler.
4128  JVM_handle_linux_signal(sig, info, uc, true);
4129  errno = orig_errno;
4130}
4131
4132
4133// This boolean allows users to forward their own non-matching signals
4134// to JVM_handle_linux_signal, harmlessly.
4135bool os::Linux::signal_handlers_are_installed = false;
4136
4137// For signal-chaining
4138struct sigaction sigact[NSIG];
4139uint64_t sigs = 0;
4140#if (64 < NSIG-1)
4141#error "Not all signals can be encoded in sigs. Adapt its type!"
4142#endif
4143bool os::Linux::libjsig_is_loaded = false;
4144typedef struct sigaction *(*get_signal_t)(int);
4145get_signal_t os::Linux::get_signal_action = NULL;
4146
4147struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4148  struct sigaction *actp = NULL;
4149
4150  if (libjsig_is_loaded) {
4151    // Retrieve the old signal handler from libjsig
4152    actp = (*get_signal_action)(sig);
4153  }
4154  if (actp == NULL) {
4155    // Retrieve the preinstalled signal handler from jvm
4156    actp = get_preinstalled_handler(sig);
4157  }
4158
4159  return actp;
4160}
4161
4162static bool call_chained_handler(struct sigaction *actp, int sig,
4163                                 siginfo_t *siginfo, void *context) {
4164  // Call the old signal handler
4165  if (actp->sa_handler == SIG_DFL) {
4166    // It's more reasonable to let jvm treat it as an unexpected exception
4167    // instead of taking the default action.
4168    return false;
4169  } else if (actp->sa_handler != SIG_IGN) {
4170    if ((actp->sa_flags & SA_NODEFER) == 0) {
4171      // automaticlly block the signal
4172      sigaddset(&(actp->sa_mask), sig);
4173    }
4174
4175    sa_handler_t hand = NULL;
4176    sa_sigaction_t sa = NULL;
4177    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4178    // retrieve the chained handler
4179    if (siginfo_flag_set) {
4180      sa = actp->sa_sigaction;
4181    } else {
4182      hand = actp->sa_handler;
4183    }
4184
4185    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4186      actp->sa_handler = SIG_DFL;
4187    }
4188
4189    // try to honor the signal mask
4190    sigset_t oset;
4191    sigemptyset(&oset);
4192    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4193
4194    // call into the chained handler
4195    if (siginfo_flag_set) {
4196      (*sa)(sig, siginfo, context);
4197    } else {
4198      (*hand)(sig);
4199    }
4200
4201    // restore the signal mask
4202    pthread_sigmask(SIG_SETMASK, &oset, NULL);
4203  }
4204  // Tell jvm's signal handler the signal is taken care of.
4205  return true;
4206}
4207
4208bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4209  bool chained = false;
4210  // signal-chaining
4211  if (UseSignalChaining) {
4212    struct sigaction *actp = get_chained_signal_action(sig);
4213    if (actp != NULL) {
4214      chained = call_chained_handler(actp, sig, siginfo, context);
4215    }
4216  }
4217  return chained;
4218}
4219
4220struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4221  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4222    return &sigact[sig];
4223  }
4224  return NULL;
4225}
4226
4227void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4228  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4229  sigact[sig] = oldAct;
4230  sigs |= (uint64_t)1 << (sig-1);
4231}
4232
4233// for diagnostic
4234int sigflags[NSIG];
4235
4236int os::Linux::get_our_sigflags(int sig) {
4237  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4238  return sigflags[sig];
4239}
4240
4241void os::Linux::set_our_sigflags(int sig, int flags) {
4242  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4243  if (sig > 0 && sig < NSIG) {
4244    sigflags[sig] = flags;
4245  }
4246}
4247
4248void os::Linux::set_signal_handler(int sig, bool set_installed) {
4249  // Check for overwrite.
4250  struct sigaction oldAct;
4251  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4252
4253  void* oldhand = oldAct.sa_sigaction
4254                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4255                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4256  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4257      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4258      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4259    if (AllowUserSignalHandlers || !set_installed) {
4260      // Do not overwrite; user takes responsibility to forward to us.
4261      return;
4262    } else if (UseSignalChaining) {
4263      // save the old handler in jvm
4264      save_preinstalled_handler(sig, oldAct);
4265      // libjsig also interposes the sigaction() call below and saves the
4266      // old sigaction on it own.
4267    } else {
4268      fatal("Encountered unexpected pre-existing sigaction handler "
4269            "%#lx for signal %d.", (long)oldhand, sig);
4270    }
4271  }
4272
4273  struct sigaction sigAct;
4274  sigfillset(&(sigAct.sa_mask));
4275  sigAct.sa_handler = SIG_DFL;
4276  if (!set_installed) {
4277    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4278  } else {
4279    sigAct.sa_sigaction = signalHandler;
4280    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4281  }
4282  // Save flags, which are set by ours
4283  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4284  sigflags[sig] = sigAct.sa_flags;
4285
4286  int ret = sigaction(sig, &sigAct, &oldAct);
4287  assert(ret == 0, "check");
4288
4289  void* oldhand2  = oldAct.sa_sigaction
4290                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4291                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4292  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4293}
4294
4295// install signal handlers for signals that HotSpot needs to
4296// handle in order to support Java-level exception handling.
4297
4298void os::Linux::install_signal_handlers() {
4299  if (!signal_handlers_are_installed) {
4300    signal_handlers_are_installed = true;
4301
4302    // signal-chaining
4303    typedef void (*signal_setting_t)();
4304    signal_setting_t begin_signal_setting = NULL;
4305    signal_setting_t end_signal_setting = NULL;
4306    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4307                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4308    if (begin_signal_setting != NULL) {
4309      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4310                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4311      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4312                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4313      libjsig_is_loaded = true;
4314      assert(UseSignalChaining, "should enable signal-chaining");
4315    }
4316    if (libjsig_is_loaded) {
4317      // Tell libjsig jvm is setting signal handlers
4318      (*begin_signal_setting)();
4319    }
4320
4321    set_signal_handler(SIGSEGV, true);
4322    set_signal_handler(SIGPIPE, true);
4323    set_signal_handler(SIGBUS, true);
4324    set_signal_handler(SIGILL, true);
4325    set_signal_handler(SIGFPE, true);
4326#if defined(PPC64)
4327    set_signal_handler(SIGTRAP, true);
4328#endif
4329    set_signal_handler(SIGXFSZ, true);
4330
4331    if (libjsig_is_loaded) {
4332      // Tell libjsig jvm finishes setting signal handlers
4333      (*end_signal_setting)();
4334    }
4335
4336    // We don't activate signal checker if libjsig is in place, we trust ourselves
4337    // and if UserSignalHandler is installed all bets are off.
4338    // Log that signal checking is off only if -verbose:jni is specified.
4339    if (CheckJNICalls) {
4340      if (libjsig_is_loaded) {
4341        if (PrintJNIResolving) {
4342          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4343        }
4344        check_signals = false;
4345      }
4346      if (AllowUserSignalHandlers) {
4347        if (PrintJNIResolving) {
4348          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4349        }
4350        check_signals = false;
4351      }
4352    }
4353  }
4354}
4355
4356// This is the fastest way to get thread cpu time on Linux.
4357// Returns cpu time (user+sys) for any thread, not only for current.
4358// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4359// It might work on 2.6.10+ with a special kernel/glibc patch.
4360// For reference, please, see IEEE Std 1003.1-2004:
4361//   http://www.unix.org/single_unix_specification
4362
4363jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4364  struct timespec tp;
4365  int rc = os::Linux::clock_gettime(clockid, &tp);
4366  assert(rc == 0, "clock_gettime is expected to return 0 code");
4367
4368  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4369}
4370
4371void os::Linux::initialize_os_info() {
4372  assert(_os_version == 0, "OS info already initialized");
4373
4374  struct utsname _uname;
4375
4376  uint32_t major;
4377  uint32_t minor;
4378  uint32_t fix;
4379
4380  int rc;
4381
4382  // Kernel version is unknown if
4383  // verification below fails.
4384  _os_version = 0x01000000;
4385
4386  rc = uname(&_uname);
4387  if (rc != -1) {
4388
4389    rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4390    if (rc == 3) {
4391
4392      if (major < 256 && minor < 256 && fix < 256) {
4393        // Kernel version format is as expected,
4394        // set it overriding unknown state.
4395        _os_version = (major << 16) |
4396                      (minor << 8 ) |
4397                      (fix   << 0 ) ;
4398      }
4399    }
4400  }
4401}
4402
4403uint32_t os::Linux::os_version() {
4404  assert(_os_version != 0, "not initialized");
4405  return _os_version & 0x00FFFFFF;
4406}
4407
4408bool os::Linux::os_version_is_known() {
4409  assert(_os_version != 0, "not initialized");
4410  return _os_version & 0x01000000 ? false : true;
4411}
4412
4413/////
4414// glibc on Linux platform uses non-documented flag
4415// to indicate, that some special sort of signal
4416// trampoline is used.
4417// We will never set this flag, and we should
4418// ignore this flag in our diagnostic
4419#ifdef SIGNIFICANT_SIGNAL_MASK
4420  #undef SIGNIFICANT_SIGNAL_MASK
4421#endif
4422#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4423
4424static const char* get_signal_handler_name(address handler,
4425                                           char* buf, int buflen) {
4426  int offset = 0;
4427  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4428  if (found) {
4429    // skip directory names
4430    const char *p1, *p2;
4431    p1 = buf;
4432    size_t len = strlen(os::file_separator());
4433    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4434    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4435  } else {
4436    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4437  }
4438  return buf;
4439}
4440
4441static void print_signal_handler(outputStream* st, int sig,
4442                                 char* buf, size_t buflen) {
4443  struct sigaction sa;
4444
4445  sigaction(sig, NULL, &sa);
4446
4447  // See comment for SIGNIFICANT_SIGNAL_MASK define
4448  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4449
4450  st->print("%s: ", os::exception_name(sig, buf, buflen));
4451
4452  address handler = (sa.sa_flags & SA_SIGINFO)
4453    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4454    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4455
4456  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4457    st->print("SIG_DFL");
4458  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4459    st->print("SIG_IGN");
4460  } else {
4461    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4462  }
4463
4464  st->print(", sa_mask[0]=");
4465  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4466
4467  address rh = VMError::get_resetted_sighandler(sig);
4468  // May be, handler was resetted by VMError?
4469  if (rh != NULL) {
4470    handler = rh;
4471    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4472  }
4473
4474  st->print(", sa_flags=");
4475  os::Posix::print_sa_flags(st, sa.sa_flags);
4476
4477  // Check: is it our handler?
4478  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4479      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4480    // It is our signal handler
4481    // check for flags, reset system-used one!
4482    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4483      st->print(
4484                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4485                os::Linux::get_our_sigflags(sig));
4486    }
4487  }
4488  st->cr();
4489}
4490
4491
4492#define DO_SIGNAL_CHECK(sig)                      \
4493  do {                                            \
4494    if (!sigismember(&check_signal_done, sig)) {  \
4495      os::Linux::check_signal_handler(sig);       \
4496    }                                             \
4497  } while (0)
4498
4499// This method is a periodic task to check for misbehaving JNI applications
4500// under CheckJNI, we can add any periodic checks here
4501
4502void os::run_periodic_checks() {
4503  if (check_signals == false) return;
4504
4505  // SEGV and BUS if overridden could potentially prevent
4506  // generation of hs*.log in the event of a crash, debugging
4507  // such a case can be very challenging, so we absolutely
4508  // check the following for a good measure:
4509  DO_SIGNAL_CHECK(SIGSEGV);
4510  DO_SIGNAL_CHECK(SIGILL);
4511  DO_SIGNAL_CHECK(SIGFPE);
4512  DO_SIGNAL_CHECK(SIGBUS);
4513  DO_SIGNAL_CHECK(SIGPIPE);
4514  DO_SIGNAL_CHECK(SIGXFSZ);
4515#if defined(PPC64)
4516  DO_SIGNAL_CHECK(SIGTRAP);
4517#endif
4518
4519  // ReduceSignalUsage allows the user to override these handlers
4520  // see comments at the very top and jvm_solaris.h
4521  if (!ReduceSignalUsage) {
4522    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4523    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4524    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4525    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4526  }
4527
4528  DO_SIGNAL_CHECK(SR_signum);
4529}
4530
4531typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4532
4533static os_sigaction_t os_sigaction = NULL;
4534
4535void os::Linux::check_signal_handler(int sig) {
4536  char buf[O_BUFLEN];
4537  address jvmHandler = NULL;
4538
4539
4540  struct sigaction act;
4541  if (os_sigaction == NULL) {
4542    // only trust the default sigaction, in case it has been interposed
4543    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4544    if (os_sigaction == NULL) return;
4545  }
4546
4547  os_sigaction(sig, (struct sigaction*)NULL, &act);
4548
4549
4550  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4551
4552  address thisHandler = (act.sa_flags & SA_SIGINFO)
4553    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4554    : CAST_FROM_FN_PTR(address, act.sa_handler);
4555
4556
4557  switch (sig) {
4558  case SIGSEGV:
4559  case SIGBUS:
4560  case SIGFPE:
4561  case SIGPIPE:
4562  case SIGILL:
4563  case SIGXFSZ:
4564    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4565    break;
4566
4567  case SHUTDOWN1_SIGNAL:
4568  case SHUTDOWN2_SIGNAL:
4569  case SHUTDOWN3_SIGNAL:
4570  case BREAK_SIGNAL:
4571    jvmHandler = (address)user_handler();
4572    break;
4573
4574  default:
4575    if (sig == SR_signum) {
4576      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4577    } else {
4578      return;
4579    }
4580    break;
4581  }
4582
4583  if (thisHandler != jvmHandler) {
4584    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4585    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4586    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4587    // No need to check this sig any longer
4588    sigaddset(&check_signal_done, sig);
4589    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4590    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4591      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4592                    exception_name(sig, buf, O_BUFLEN));
4593    }
4594  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4595    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4596    tty->print("expected:");
4597    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4598    tty->cr();
4599    tty->print("  found:");
4600    os::Posix::print_sa_flags(tty, act.sa_flags);
4601    tty->cr();
4602    // No need to check this sig any longer
4603    sigaddset(&check_signal_done, sig);
4604  }
4605
4606  // Dump all the signal
4607  if (sigismember(&check_signal_done, sig)) {
4608    print_signal_handlers(tty, buf, O_BUFLEN);
4609  }
4610}
4611
4612extern void report_error(char* file_name, int line_no, char* title,
4613                         char* format, ...);
4614
4615// this is called _before_ the most of global arguments have been parsed
4616void os::init(void) {
4617  char dummy;   // used to get a guess on initial stack address
4618//  first_hrtime = gethrtime();
4619
4620  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4621
4622  init_random(1234567);
4623
4624  ThreadCritical::initialize();
4625
4626  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4627  if (Linux::page_size() == -1) {
4628    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4629          os::strerror(errno));
4630  }
4631  init_page_sizes((size_t) Linux::page_size());
4632
4633  Linux::initialize_system_info();
4634
4635  Linux::initialize_os_info();
4636
4637  // main_thread points to the aboriginal thread
4638  Linux::_main_thread = pthread_self();
4639
4640  Linux::clock_init();
4641  initial_time_count = javaTimeNanos();
4642
4643  // pthread_condattr initialization for monotonic clock
4644  int status;
4645  pthread_condattr_t* _condattr = os::Linux::condAttr();
4646  if ((status = pthread_condattr_init(_condattr)) != 0) {
4647    fatal("pthread_condattr_init: %s", os::strerror(status));
4648  }
4649  // Only set the clock if CLOCK_MONOTONIC is available
4650  if (os::supports_monotonic_clock()) {
4651    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4652      if (status == EINVAL) {
4653        warning("Unable to use monotonic clock with relative timed-waits" \
4654                " - changes to the time-of-day clock may have adverse affects");
4655      } else {
4656        fatal("pthread_condattr_setclock: %s", os::strerror(status));
4657      }
4658    }
4659  }
4660  // else it defaults to CLOCK_REALTIME
4661
4662  // retrieve entry point for pthread_setname_np
4663  Linux::_pthread_setname_np =
4664    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4665
4666}
4667
4668// To install functions for atexit system call
4669extern "C" {
4670  static void perfMemory_exit_helper() {
4671    perfMemory_exit();
4672  }
4673}
4674
4675// this is called _after_ the global arguments have been parsed
4676jint os::init_2(void) {
4677  Linux::fast_thread_clock_init();
4678
4679  // Allocate a single page and mark it as readable for safepoint polling
4680  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4681  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4682
4683  os::set_polling_page(polling_page);
4684  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4685
4686  if (!UseMembar) {
4687    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4688    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4689    os::set_memory_serialize_page(mem_serialize_page);
4690    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4691  }
4692
4693  // initialize suspend/resume support - must do this before signal_sets_init()
4694  if (SR_initialize() != 0) {
4695    perror("SR_initialize failed");
4696    return JNI_ERR;
4697  }
4698
4699  Linux::signal_sets_init();
4700  Linux::install_signal_handlers();
4701
4702  // Check minimum allowable stack size for thread creation and to initialize
4703  // the java system classes, including StackOverflowError - depends on page
4704  // size.  Add a page for compiler2 recursion in main thread.
4705  // Add in 2*BytesPerWord times page size to account for VM stack during
4706  // class initialization depending on 32 or 64 bit VM.
4707  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4708                                      JavaThread::stack_guard_zone_size() +
4709                                      JavaThread::stack_shadow_zone_size() +
4710                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4711
4712  size_t threadStackSizeInBytes = ThreadStackSize * K;
4713  if (threadStackSizeInBytes != 0 &&
4714      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4715    tty->print_cr("\nThe stack size specified is too small, "
4716                  "Specify at least " SIZE_FORMAT "k",
4717                  os::Linux::min_stack_allowed/ K);
4718    return JNI_ERR;
4719  }
4720
4721  // Make the stack size a multiple of the page size so that
4722  // the yellow/red zones can be guarded.
4723  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4724                                                vm_page_size()));
4725
4726  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4727
4728#if defined(IA32)
4729  workaround_expand_exec_shield_cs_limit();
4730#endif
4731
4732  Linux::libpthread_init();
4733  log_info(os)("HotSpot is running with %s, %s",
4734               Linux::glibc_version(), Linux::libpthread_version());
4735
4736  if (UseNUMA) {
4737    if (!Linux::libnuma_init()) {
4738      UseNUMA = false;
4739    } else {
4740      if ((Linux::numa_max_node() < 1)) {
4741        // There's only one node(they start from 0), disable NUMA.
4742        UseNUMA = false;
4743      }
4744    }
4745    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4746    // we can make the adaptive lgrp chunk resizing work. If the user specified
4747    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4748    // disable adaptive resizing.
4749    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4750      if (FLAG_IS_DEFAULT(UseNUMA)) {
4751        UseNUMA = false;
4752      } else {
4753        if (FLAG_IS_DEFAULT(UseLargePages) &&
4754            FLAG_IS_DEFAULT(UseSHM) &&
4755            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4756          UseLargePages = false;
4757        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4758          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4759          UseAdaptiveSizePolicy = false;
4760          UseAdaptiveNUMAChunkSizing = false;
4761        }
4762      }
4763    }
4764    if (!UseNUMA && ForceNUMA) {
4765      UseNUMA = true;
4766    }
4767  }
4768
4769  if (MaxFDLimit) {
4770    // set the number of file descriptors to max. print out error
4771    // if getrlimit/setrlimit fails but continue regardless.
4772    struct rlimit nbr_files;
4773    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4774    if (status != 0) {
4775      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4776    } else {
4777      nbr_files.rlim_cur = nbr_files.rlim_max;
4778      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4779      if (status != 0) {
4780        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4781      }
4782    }
4783  }
4784
4785  // Initialize lock used to serialize thread creation (see os::create_thread)
4786  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4787
4788  // at-exit methods are called in the reverse order of their registration.
4789  // atexit functions are called on return from main or as a result of a
4790  // call to exit(3C). There can be only 32 of these functions registered
4791  // and atexit() does not set errno.
4792
4793  if (PerfAllowAtExitRegistration) {
4794    // only register atexit functions if PerfAllowAtExitRegistration is set.
4795    // atexit functions can be delayed until process exit time, which
4796    // can be problematic for embedded VM situations. Embedded VMs should
4797    // call DestroyJavaVM() to assure that VM resources are released.
4798
4799    // note: perfMemory_exit_helper atexit function may be removed in
4800    // the future if the appropriate cleanup code can be added to the
4801    // VM_Exit VMOperation's doit method.
4802    if (atexit(perfMemory_exit_helper) != 0) {
4803      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4804    }
4805  }
4806
4807  // initialize thread priority policy
4808  prio_init();
4809
4810  return JNI_OK;
4811}
4812
4813// Mark the polling page as unreadable
4814void os::make_polling_page_unreadable(void) {
4815  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4816    fatal("Could not disable polling page");
4817  }
4818}
4819
4820// Mark the polling page as readable
4821void os::make_polling_page_readable(void) {
4822  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4823    fatal("Could not enable polling page");
4824  }
4825}
4826
4827// older glibc versions don't have this macro (which expands to
4828// an optimized bit-counting function) so we have to roll our own
4829#ifndef CPU_COUNT
4830
4831static int _cpu_count(const cpu_set_t* cpus) {
4832  int count = 0;
4833  // only look up to the number of configured processors
4834  for (int i = 0; i < os::processor_count(); i++) {
4835    if (CPU_ISSET(i, cpus)) {
4836      count++;
4837    }
4838  }
4839  return count;
4840}
4841
4842#define CPU_COUNT(cpus) _cpu_count(cpus)
4843
4844#endif // CPU_COUNT
4845
4846// Get the current number of available processors for this process.
4847// This value can change at any time during a process's lifetime.
4848// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4849// If it appears there may be more than 1024 processors then we do a
4850// dynamic check - see 6515172 for details.
4851// If anything goes wrong we fallback to returning the number of online
4852// processors - which can be greater than the number available to the process.
4853int os::active_processor_count() {
4854  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4855  cpu_set_t* cpus_p = &cpus;
4856  int cpus_size = sizeof(cpu_set_t);
4857
4858  int configured_cpus = processor_count();  // upper bound on available cpus
4859  int cpu_count = 0;
4860
4861// old build platforms may not support dynamic cpu sets
4862#ifdef CPU_ALLOC
4863
4864  // To enable easy testing of the dynamic path on different platforms we
4865  // introduce a diagnostic flag: UseCpuAllocPath
4866  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4867    // kernel may use a mask bigger than cpu_set_t
4868    log_trace(os)("active_processor_count: using dynamic path %s"
4869                  "- configured processors: %d",
4870                  UseCpuAllocPath ? "(forced) " : "",
4871                  configured_cpus);
4872    cpus_p = CPU_ALLOC(configured_cpus);
4873    if (cpus_p != NULL) {
4874      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4875      // zero it just to be safe
4876      CPU_ZERO_S(cpus_size, cpus_p);
4877    }
4878    else {
4879       // failed to allocate so fallback to online cpus
4880       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4881       log_trace(os)("active_processor_count: "
4882                     "CPU_ALLOC failed (%s) - using "
4883                     "online processor count: %d",
4884                     os::strerror(errno), online_cpus);
4885       return online_cpus;
4886    }
4887  }
4888  else {
4889    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4890                  configured_cpus);
4891  }
4892#else // CPU_ALLOC
4893// these stubs won't be executed
4894#define CPU_COUNT_S(size, cpus) -1
4895#define CPU_FREE(cpus)
4896
4897  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4898                configured_cpus);
4899#endif // CPU_ALLOC
4900
4901  // pid 0 means the current thread - which we have to assume represents the process
4902  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4903    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4904      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4905    }
4906    else {
4907      cpu_count = CPU_COUNT(cpus_p);
4908    }
4909    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4910  }
4911  else {
4912    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4913    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4914            "which may exceed available processors", os::strerror(errno), cpu_count);
4915  }
4916
4917  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4918    CPU_FREE(cpus_p);
4919  }
4920
4921  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4922  return cpu_count;
4923}
4924
4925void os::set_native_thread_name(const char *name) {
4926  if (Linux::_pthread_setname_np) {
4927    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4928    snprintf(buf, sizeof(buf), "%s", name);
4929    buf[sizeof(buf) - 1] = '\0';
4930    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4931    // ERANGE should not happen; all other errors should just be ignored.
4932    assert(rc != ERANGE, "pthread_setname_np failed");
4933  }
4934}
4935
4936bool os::distribute_processes(uint length, uint* distribution) {
4937  // Not yet implemented.
4938  return false;
4939}
4940
4941bool os::bind_to_processor(uint processor_id) {
4942  // Not yet implemented.
4943  return false;
4944}
4945
4946///
4947
4948void os::SuspendedThreadTask::internal_do_task() {
4949  if (do_suspend(_thread->osthread())) {
4950    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4951    do_task(context);
4952    do_resume(_thread->osthread());
4953  }
4954}
4955
4956class PcFetcher : public os::SuspendedThreadTask {
4957 public:
4958  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4959  ExtendedPC result();
4960 protected:
4961  void do_task(const os::SuspendedThreadTaskContext& context);
4962 private:
4963  ExtendedPC _epc;
4964};
4965
4966ExtendedPC PcFetcher::result() {
4967  guarantee(is_done(), "task is not done yet.");
4968  return _epc;
4969}
4970
4971void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4972  Thread* thread = context.thread();
4973  OSThread* osthread = thread->osthread();
4974  if (osthread->ucontext() != NULL) {
4975    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
4976  } else {
4977    // NULL context is unexpected, double-check this is the VMThread
4978    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4979  }
4980}
4981
4982// Suspends the target using the signal mechanism and then grabs the PC before
4983// resuming the target. Used by the flat-profiler only
4984ExtendedPC os::get_thread_pc(Thread* thread) {
4985  // Make sure that it is called by the watcher for the VMThread
4986  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4987  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4988
4989  PcFetcher fetcher(thread);
4990  fetcher.run();
4991  return fetcher.result();
4992}
4993
4994////////////////////////////////////////////////////////////////////////////////
4995// debug support
4996
4997bool os::find(address addr, outputStream* st) {
4998  Dl_info dlinfo;
4999  memset(&dlinfo, 0, sizeof(dlinfo));
5000  if (dladdr(addr, &dlinfo) != 0) {
5001    st->print(PTR_FORMAT ": ", p2i(addr));
5002    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5003      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5004                p2i(addr) - p2i(dlinfo.dli_saddr));
5005    } else if (dlinfo.dli_fbase != NULL) {
5006      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5007    } else {
5008      st->print("<absolute address>");
5009    }
5010    if (dlinfo.dli_fname != NULL) {
5011      st->print(" in %s", dlinfo.dli_fname);
5012    }
5013    if (dlinfo.dli_fbase != NULL) {
5014      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5015    }
5016    st->cr();
5017
5018    if (Verbose) {
5019      // decode some bytes around the PC
5020      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5021      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5022      address       lowest = (address) dlinfo.dli_sname;
5023      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5024      if (begin < lowest)  begin = lowest;
5025      Dl_info dlinfo2;
5026      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5027          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5028        end = (address) dlinfo2.dli_saddr;
5029      }
5030      Disassembler::decode(begin, end, st);
5031    }
5032    return true;
5033  }
5034  return false;
5035}
5036
5037////////////////////////////////////////////////////////////////////////////////
5038// misc
5039
5040// This does not do anything on Linux. This is basically a hook for being
5041// able to use structured exception handling (thread-local exception filters)
5042// on, e.g., Win32.
5043void
5044os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5045                         JavaCallArguments* args, Thread* thread) {
5046  f(value, method, args, thread);
5047}
5048
5049void os::print_statistics() {
5050}
5051
5052bool os::message_box(const char* title, const char* message) {
5053  int i;
5054  fdStream err(defaultStream::error_fd());
5055  for (i = 0; i < 78; i++) err.print_raw("=");
5056  err.cr();
5057  err.print_raw_cr(title);
5058  for (i = 0; i < 78; i++) err.print_raw("-");
5059  err.cr();
5060  err.print_raw_cr(message);
5061  for (i = 0; i < 78; i++) err.print_raw("=");
5062  err.cr();
5063
5064  char buf[16];
5065  // Prevent process from exiting upon "read error" without consuming all CPU
5066  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5067
5068  return buf[0] == 'y' || buf[0] == 'Y';
5069}
5070
5071int os::stat(const char *path, struct stat *sbuf) {
5072  char pathbuf[MAX_PATH];
5073  if (strlen(path) > MAX_PATH - 1) {
5074    errno = ENAMETOOLONG;
5075    return -1;
5076  }
5077  os::native_path(strcpy(pathbuf, path));
5078  return ::stat(pathbuf, sbuf);
5079}
5080
5081bool os::check_heap(bool force) {
5082  return true;
5083}
5084
5085// Is a (classpath) directory empty?
5086bool os::dir_is_empty(const char* path) {
5087  DIR *dir = NULL;
5088  struct dirent *ptr;
5089
5090  dir = opendir(path);
5091  if (dir == NULL) return true;
5092
5093  // Scan the directory
5094  bool result = true;
5095  char buf[sizeof(struct dirent) + MAX_PATH];
5096  while (result && (ptr = ::readdir(dir)) != NULL) {
5097    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5098      result = false;
5099    }
5100  }
5101  closedir(dir);
5102  return result;
5103}
5104
5105// This code originates from JDK's sysOpen and open64_w
5106// from src/solaris/hpi/src/system_md.c
5107
5108int os::open(const char *path, int oflag, int mode) {
5109  if (strlen(path) > MAX_PATH - 1) {
5110    errno = ENAMETOOLONG;
5111    return -1;
5112  }
5113
5114  // All file descriptors that are opened in the Java process and not
5115  // specifically destined for a subprocess should have the close-on-exec
5116  // flag set.  If we don't set it, then careless 3rd party native code
5117  // might fork and exec without closing all appropriate file descriptors
5118  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5119  // turn might:
5120  //
5121  // - cause end-of-file to fail to be detected on some file
5122  //   descriptors, resulting in mysterious hangs, or
5123  //
5124  // - might cause an fopen in the subprocess to fail on a system
5125  //   suffering from bug 1085341.
5126  //
5127  // (Yes, the default setting of the close-on-exec flag is a Unix
5128  // design flaw)
5129  //
5130  // See:
5131  // 1085341: 32-bit stdio routines should support file descriptors >255
5132  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5133  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5134  //
5135  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5136  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5137  // because it saves a system call and removes a small window where the flag
5138  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5139  // and we fall back to using FD_CLOEXEC (see below).
5140#ifdef O_CLOEXEC
5141  oflag |= O_CLOEXEC;
5142#endif
5143
5144  int fd = ::open64(path, oflag, mode);
5145  if (fd == -1) return -1;
5146
5147  //If the open succeeded, the file might still be a directory
5148  {
5149    struct stat64 buf64;
5150    int ret = ::fstat64(fd, &buf64);
5151    int st_mode = buf64.st_mode;
5152
5153    if (ret != -1) {
5154      if ((st_mode & S_IFMT) == S_IFDIR) {
5155        errno = EISDIR;
5156        ::close(fd);
5157        return -1;
5158      }
5159    } else {
5160      ::close(fd);
5161      return -1;
5162    }
5163  }
5164
5165#ifdef FD_CLOEXEC
5166  // Validate that the use of the O_CLOEXEC flag on open above worked.
5167  // With recent kernels, we will perform this check exactly once.
5168  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5169  if (!O_CLOEXEC_is_known_to_work) {
5170    int flags = ::fcntl(fd, F_GETFD);
5171    if (flags != -1) {
5172      if ((flags & FD_CLOEXEC) != 0)
5173        O_CLOEXEC_is_known_to_work = 1;
5174      else
5175        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5176    }
5177  }
5178#endif
5179
5180  return fd;
5181}
5182
5183
5184// create binary file, rewriting existing file if required
5185int os::create_binary_file(const char* path, bool rewrite_existing) {
5186  int oflags = O_WRONLY | O_CREAT;
5187  if (!rewrite_existing) {
5188    oflags |= O_EXCL;
5189  }
5190  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5191}
5192
5193// return current position of file pointer
5194jlong os::current_file_offset(int fd) {
5195  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5196}
5197
5198// move file pointer to the specified offset
5199jlong os::seek_to_file_offset(int fd, jlong offset) {
5200  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5201}
5202
5203// This code originates from JDK's sysAvailable
5204// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5205
5206int os::available(int fd, jlong *bytes) {
5207  jlong cur, end;
5208  int mode;
5209  struct stat64 buf64;
5210
5211  if (::fstat64(fd, &buf64) >= 0) {
5212    mode = buf64.st_mode;
5213    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5214      int n;
5215      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5216        *bytes = n;
5217        return 1;
5218      }
5219    }
5220  }
5221  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5222    return 0;
5223  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5224    return 0;
5225  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5226    return 0;
5227  }
5228  *bytes = end - cur;
5229  return 1;
5230}
5231
5232// Map a block of memory.
5233char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5234                        char *addr, size_t bytes, bool read_only,
5235                        bool allow_exec) {
5236  int prot;
5237  int flags = MAP_PRIVATE;
5238
5239  if (read_only) {
5240    prot = PROT_READ;
5241  } else {
5242    prot = PROT_READ | PROT_WRITE;
5243  }
5244
5245  if (allow_exec) {
5246    prot |= PROT_EXEC;
5247  }
5248
5249  if (addr != NULL) {
5250    flags |= MAP_FIXED;
5251  }
5252
5253  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5254                                     fd, file_offset);
5255  if (mapped_address == MAP_FAILED) {
5256    return NULL;
5257  }
5258  return mapped_address;
5259}
5260
5261
5262// Remap a block of memory.
5263char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5264                          char *addr, size_t bytes, bool read_only,
5265                          bool allow_exec) {
5266  // same as map_memory() on this OS
5267  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5268                        allow_exec);
5269}
5270
5271
5272// Unmap a block of memory.
5273bool os::pd_unmap_memory(char* addr, size_t bytes) {
5274  return munmap(addr, bytes) == 0;
5275}
5276
5277static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5278
5279static clockid_t thread_cpu_clockid(Thread* thread) {
5280  pthread_t tid = thread->osthread()->pthread_id();
5281  clockid_t clockid;
5282
5283  // Get thread clockid
5284  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5285  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5286  return clockid;
5287}
5288
5289// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5290// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5291// of a thread.
5292//
5293// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5294// the fast estimate available on the platform.
5295
5296jlong os::current_thread_cpu_time() {
5297  if (os::Linux::supports_fast_thread_cpu_time()) {
5298    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5299  } else {
5300    // return user + sys since the cost is the same
5301    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5302  }
5303}
5304
5305jlong os::thread_cpu_time(Thread* thread) {
5306  // consistent with what current_thread_cpu_time() returns
5307  if (os::Linux::supports_fast_thread_cpu_time()) {
5308    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5309  } else {
5310    return slow_thread_cpu_time(thread, true /* user + sys */);
5311  }
5312}
5313
5314jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5315  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5316    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5317  } else {
5318    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5319  }
5320}
5321
5322jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5323  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5324    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5325  } else {
5326    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5327  }
5328}
5329
5330//  -1 on error.
5331static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5332  pid_t  tid = thread->osthread()->thread_id();
5333  char *s;
5334  char stat[2048];
5335  int statlen;
5336  char proc_name[64];
5337  int count;
5338  long sys_time, user_time;
5339  char cdummy;
5340  int idummy;
5341  long ldummy;
5342  FILE *fp;
5343
5344  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5345  fp = fopen(proc_name, "r");
5346  if (fp == NULL) return -1;
5347  statlen = fread(stat, 1, 2047, fp);
5348  stat[statlen] = '\0';
5349  fclose(fp);
5350
5351  // Skip pid and the command string. Note that we could be dealing with
5352  // weird command names, e.g. user could decide to rename java launcher
5353  // to "java 1.4.2 :)", then the stat file would look like
5354  //                1234 (java 1.4.2 :)) R ... ...
5355  // We don't really need to know the command string, just find the last
5356  // occurrence of ")" and then start parsing from there. See bug 4726580.
5357  s = strrchr(stat, ')');
5358  if (s == NULL) return -1;
5359
5360  // Skip blank chars
5361  do { s++; } while (s && isspace(*s));
5362
5363  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5364                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5365                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5366                 &user_time, &sys_time);
5367  if (count != 13) return -1;
5368  if (user_sys_cpu_time) {
5369    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5370  } else {
5371    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5372  }
5373}
5374
5375void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5376  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5377  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5378  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5379  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5380}
5381
5382void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5383  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5384  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5385  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5386  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5387}
5388
5389bool os::is_thread_cpu_time_supported() {
5390  return true;
5391}
5392
5393// System loadavg support.  Returns -1 if load average cannot be obtained.
5394// Linux doesn't yet have a (official) notion of processor sets,
5395// so just return the system wide load average.
5396int os::loadavg(double loadavg[], int nelem) {
5397  return ::getloadavg(loadavg, nelem);
5398}
5399
5400void os::pause() {
5401  char filename[MAX_PATH];
5402  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5403    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5404  } else {
5405    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5406  }
5407
5408  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5409  if (fd != -1) {
5410    struct stat buf;
5411    ::close(fd);
5412    while (::stat(filename, &buf) == 0) {
5413      (void)::poll(NULL, 0, 100);
5414    }
5415  } else {
5416    jio_fprintf(stderr,
5417                "Could not open pause file '%s', continuing immediately.\n", filename);
5418  }
5419}
5420
5421
5422// Refer to the comments in os_solaris.cpp park-unpark. The next two
5423// comment paragraphs are worth repeating here:
5424//
5425// Assumption:
5426//    Only one parker can exist on an event, which is why we allocate
5427//    them per-thread. Multiple unparkers can coexist.
5428//
5429// _Event serves as a restricted-range semaphore.
5430//   -1 : thread is blocked, i.e. there is a waiter
5431//    0 : neutral: thread is running or ready,
5432//        could have been signaled after a wait started
5433//    1 : signaled - thread is running or ready
5434//
5435
5436// utility to compute the abstime argument to timedwait:
5437// millis is the relative timeout time
5438// abstime will be the absolute timeout time
5439// TODO: replace compute_abstime() with unpackTime()
5440
5441static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5442  if (millis < 0)  millis = 0;
5443
5444  jlong seconds = millis / 1000;
5445  millis %= 1000;
5446  if (seconds > 50000000) { // see man cond_timedwait(3T)
5447    seconds = 50000000;
5448  }
5449
5450  if (os::supports_monotonic_clock()) {
5451    struct timespec now;
5452    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5453    assert_status(status == 0, status, "clock_gettime");
5454    abstime->tv_sec = now.tv_sec  + seconds;
5455    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5456    if (nanos >= NANOSECS_PER_SEC) {
5457      abstime->tv_sec += 1;
5458      nanos -= NANOSECS_PER_SEC;
5459    }
5460    abstime->tv_nsec = nanos;
5461  } else {
5462    struct timeval now;
5463    int status = gettimeofday(&now, NULL);
5464    assert(status == 0, "gettimeofday");
5465    abstime->tv_sec = now.tv_sec  + seconds;
5466    long usec = now.tv_usec + millis * 1000;
5467    if (usec >= 1000000) {
5468      abstime->tv_sec += 1;
5469      usec -= 1000000;
5470    }
5471    abstime->tv_nsec = usec * 1000;
5472  }
5473  return abstime;
5474}
5475
5476void os::PlatformEvent::park() {       // AKA "down()"
5477  // Transitions for _Event:
5478  //   -1 => -1 : illegal
5479  //    1 =>  0 : pass - return immediately
5480  //    0 => -1 : block; then set _Event to 0 before returning
5481
5482  // Invariant: Only the thread associated with the Event/PlatformEvent
5483  // may call park().
5484  // TODO: assert that _Assoc != NULL or _Assoc == Self
5485  assert(_nParked == 0, "invariant");
5486
5487  int v;
5488  for (;;) {
5489    v = _Event;
5490    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5491  }
5492  guarantee(v >= 0, "invariant");
5493  if (v == 0) {
5494    // Do this the hard way by blocking ...
5495    int status = pthread_mutex_lock(_mutex);
5496    assert_status(status == 0, status, "mutex_lock");
5497    guarantee(_nParked == 0, "invariant");
5498    ++_nParked;
5499    while (_Event < 0) {
5500      status = pthread_cond_wait(_cond, _mutex);
5501      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5502      // Treat this the same as if the wait was interrupted
5503      if (status == ETIME) { status = EINTR; }
5504      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5505    }
5506    --_nParked;
5507
5508    _Event = 0;
5509    status = pthread_mutex_unlock(_mutex);
5510    assert_status(status == 0, status, "mutex_unlock");
5511    // Paranoia to ensure our locked and lock-free paths interact
5512    // correctly with each other.
5513    OrderAccess::fence();
5514  }
5515  guarantee(_Event >= 0, "invariant");
5516}
5517
5518int os::PlatformEvent::park(jlong millis) {
5519  // Transitions for _Event:
5520  //   -1 => -1 : illegal
5521  //    1 =>  0 : pass - return immediately
5522  //    0 => -1 : block; then set _Event to 0 before returning
5523
5524  guarantee(_nParked == 0, "invariant");
5525
5526  int v;
5527  for (;;) {
5528    v = _Event;
5529    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5530  }
5531  guarantee(v >= 0, "invariant");
5532  if (v != 0) return OS_OK;
5533
5534  // We do this the hard way, by blocking the thread.
5535  // Consider enforcing a minimum timeout value.
5536  struct timespec abst;
5537  compute_abstime(&abst, millis);
5538
5539  int ret = OS_TIMEOUT;
5540  int status = pthread_mutex_lock(_mutex);
5541  assert_status(status == 0, status, "mutex_lock");
5542  guarantee(_nParked == 0, "invariant");
5543  ++_nParked;
5544
5545  // Object.wait(timo) will return because of
5546  // (a) notification
5547  // (b) timeout
5548  // (c) thread.interrupt
5549  //
5550  // Thread.interrupt and object.notify{All} both call Event::set.
5551  // That is, we treat thread.interrupt as a special case of notification.
5552  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5553  // We assume all ETIME returns are valid.
5554  //
5555  // TODO: properly differentiate simultaneous notify+interrupt.
5556  // In that case, we should propagate the notify to another waiter.
5557
5558  while (_Event < 0) {
5559    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5560    assert_status(status == 0 || status == EINTR ||
5561                  status == ETIME || status == ETIMEDOUT,
5562                  status, "cond_timedwait");
5563    if (!FilterSpuriousWakeups) break;                 // previous semantics
5564    if (status == ETIME || status == ETIMEDOUT) break;
5565    // We consume and ignore EINTR and spurious wakeups.
5566  }
5567  --_nParked;
5568  if (_Event >= 0) {
5569    ret = OS_OK;
5570  }
5571  _Event = 0;
5572  status = pthread_mutex_unlock(_mutex);
5573  assert_status(status == 0, status, "mutex_unlock");
5574  assert(_nParked == 0, "invariant");
5575  // Paranoia to ensure our locked and lock-free paths interact
5576  // correctly with each other.
5577  OrderAccess::fence();
5578  return ret;
5579}
5580
5581void os::PlatformEvent::unpark() {
5582  // Transitions for _Event:
5583  //    0 => 1 : just return
5584  //    1 => 1 : just return
5585  //   -1 => either 0 or 1; must signal target thread
5586  //         That is, we can safely transition _Event from -1 to either
5587  //         0 or 1.
5588  // See also: "Semaphores in Plan 9" by Mullender & Cox
5589  //
5590  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5591  // that it will take two back-to-back park() calls for the owning
5592  // thread to block. This has the benefit of forcing a spurious return
5593  // from the first park() call after an unpark() call which will help
5594  // shake out uses of park() and unpark() without condition variables.
5595
5596  if (Atomic::xchg(1, &_Event) >= 0) return;
5597
5598  // Wait for the thread associated with the event to vacate
5599  int status = pthread_mutex_lock(_mutex);
5600  assert_status(status == 0, status, "mutex_lock");
5601  int AnyWaiters = _nParked;
5602  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5603  status = pthread_mutex_unlock(_mutex);
5604  assert_status(status == 0, status, "mutex_unlock");
5605  if (AnyWaiters != 0) {
5606    // Note that we signal() *after* dropping the lock for "immortal" Events.
5607    // This is safe and avoids a common class of  futile wakeups.  In rare
5608    // circumstances this can cause a thread to return prematurely from
5609    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5610    // will simply re-test the condition and re-park itself.
5611    // This provides particular benefit if the underlying platform does not
5612    // provide wait morphing.
5613    status = pthread_cond_signal(_cond);
5614    assert_status(status == 0, status, "cond_signal");
5615  }
5616}
5617
5618
5619// JSR166
5620// -------------------------------------------------------
5621
5622// The solaris and linux implementations of park/unpark are fairly
5623// conservative for now, but can be improved. They currently use a
5624// mutex/condvar pair, plus a a count.
5625// Park decrements count if > 0, else does a condvar wait.  Unpark
5626// sets count to 1 and signals condvar.  Only one thread ever waits
5627// on the condvar. Contention seen when trying to park implies that someone
5628// is unparking you, so don't wait. And spurious returns are fine, so there
5629// is no need to track notifications.
5630
5631// This code is common to linux and solaris and will be moved to a
5632// common place in dolphin.
5633//
5634// The passed in time value is either a relative time in nanoseconds
5635// or an absolute time in milliseconds. Either way it has to be unpacked
5636// into suitable seconds and nanoseconds components and stored in the
5637// given timespec structure.
5638// Given time is a 64-bit value and the time_t used in the timespec is only
5639// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5640// overflow if times way in the future are given. Further on Solaris versions
5641// prior to 10 there is a restriction (see cond_timedwait) that the specified
5642// number of seconds, in abstime, is less than current_time  + 100,000,000.
5643// As it will be 28 years before "now + 100000000" will overflow we can
5644// ignore overflow and just impose a hard-limit on seconds using the value
5645// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5646// years from "now".
5647
5648static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5649  assert(time > 0, "convertTime");
5650  time_t max_secs = 0;
5651
5652  if (!os::supports_monotonic_clock() || isAbsolute) {
5653    struct timeval now;
5654    int status = gettimeofday(&now, NULL);
5655    assert(status == 0, "gettimeofday");
5656
5657    max_secs = now.tv_sec + MAX_SECS;
5658
5659    if (isAbsolute) {
5660      jlong secs = time / 1000;
5661      if (secs > max_secs) {
5662        absTime->tv_sec = max_secs;
5663      } else {
5664        absTime->tv_sec = secs;
5665      }
5666      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5667    } else {
5668      jlong secs = time / NANOSECS_PER_SEC;
5669      if (secs >= MAX_SECS) {
5670        absTime->tv_sec = max_secs;
5671        absTime->tv_nsec = 0;
5672      } else {
5673        absTime->tv_sec = now.tv_sec + secs;
5674        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5675        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5676          absTime->tv_nsec -= NANOSECS_PER_SEC;
5677          ++absTime->tv_sec; // note: this must be <= max_secs
5678        }
5679      }
5680    }
5681  } else {
5682    // must be relative using monotonic clock
5683    struct timespec now;
5684    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5685    assert_status(status == 0, status, "clock_gettime");
5686    max_secs = now.tv_sec + MAX_SECS;
5687    jlong secs = time / NANOSECS_PER_SEC;
5688    if (secs >= MAX_SECS) {
5689      absTime->tv_sec = max_secs;
5690      absTime->tv_nsec = 0;
5691    } else {
5692      absTime->tv_sec = now.tv_sec + secs;
5693      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5694      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5695        absTime->tv_nsec -= NANOSECS_PER_SEC;
5696        ++absTime->tv_sec; // note: this must be <= max_secs
5697      }
5698    }
5699  }
5700  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5701  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5702  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5703  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5704}
5705
5706void Parker::park(bool isAbsolute, jlong time) {
5707  // Ideally we'd do something useful while spinning, such
5708  // as calling unpackTime().
5709
5710  // Optional fast-path check:
5711  // Return immediately if a permit is available.
5712  // We depend on Atomic::xchg() having full barrier semantics
5713  // since we are doing a lock-free update to _counter.
5714  if (Atomic::xchg(0, &_counter) > 0) return;
5715
5716  Thread* thread = Thread::current();
5717  assert(thread->is_Java_thread(), "Must be JavaThread");
5718  JavaThread *jt = (JavaThread *)thread;
5719
5720  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5721  // Check interrupt before trying to wait
5722  if (Thread::is_interrupted(thread, false)) {
5723    return;
5724  }
5725
5726  // Next, demultiplex/decode time arguments
5727  timespec absTime;
5728  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5729    return;
5730  }
5731  if (time > 0) {
5732    unpackTime(&absTime, isAbsolute, time);
5733  }
5734
5735
5736  // Enter safepoint region
5737  // Beware of deadlocks such as 6317397.
5738  // The per-thread Parker:: mutex is a classic leaf-lock.
5739  // In particular a thread must never block on the Threads_lock while
5740  // holding the Parker:: mutex.  If safepoints are pending both the
5741  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5742  ThreadBlockInVM tbivm(jt);
5743
5744  // Don't wait if cannot get lock since interference arises from
5745  // unblocking.  Also. check interrupt before trying wait
5746  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5747    return;
5748  }
5749
5750  int status;
5751  if (_counter > 0)  { // no wait needed
5752    _counter = 0;
5753    status = pthread_mutex_unlock(_mutex);
5754    assert_status(status == 0, status, "invariant");
5755    // Paranoia to ensure our locked and lock-free paths interact
5756    // correctly with each other and Java-level accesses.
5757    OrderAccess::fence();
5758    return;
5759  }
5760
5761#ifdef ASSERT
5762  // Don't catch signals while blocked; let the running threads have the signals.
5763  // (This allows a debugger to break into the running thread.)
5764  sigset_t oldsigs;
5765  sigemptyset(&oldsigs);
5766  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5767  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5768#endif
5769
5770  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5771  jt->set_suspend_equivalent();
5772  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5773
5774  assert(_cur_index == -1, "invariant");
5775  if (time == 0) {
5776    _cur_index = REL_INDEX; // arbitrary choice when not timed
5777    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5778  } else {
5779    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5780    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5781  }
5782  _cur_index = -1;
5783  assert_status(status == 0 || status == EINTR ||
5784                status == ETIME || status == ETIMEDOUT,
5785                status, "cond_timedwait");
5786
5787#ifdef ASSERT
5788  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5789#endif
5790
5791  _counter = 0;
5792  status = pthread_mutex_unlock(_mutex);
5793  assert_status(status == 0, status, "invariant");
5794  // Paranoia to ensure our locked and lock-free paths interact
5795  // correctly with each other and Java-level accesses.
5796  OrderAccess::fence();
5797
5798  // If externally suspended while waiting, re-suspend
5799  if (jt->handle_special_suspend_equivalent_condition()) {
5800    jt->java_suspend_self();
5801  }
5802}
5803
5804void Parker::unpark() {
5805  int status = pthread_mutex_lock(_mutex);
5806  assert_status(status == 0, status, "invariant");
5807  const int s = _counter;
5808  _counter = 1;
5809  // must capture correct index before unlocking
5810  int index = _cur_index;
5811  status = pthread_mutex_unlock(_mutex);
5812  assert_status(status == 0, status, "invariant");
5813  if (s < 1 && index != -1) {
5814    // thread is definitely parked
5815    status = pthread_cond_signal(&_cond[index]);
5816    assert_status(status == 0, status, "invariant");
5817  }
5818}
5819
5820
5821extern char** environ;
5822
5823// Run the specified command in a separate process. Return its exit value,
5824// or -1 on failure (e.g. can't fork a new process).
5825// Unlike system(), this function can be called from signal handler. It
5826// doesn't block SIGINT et al.
5827int os::fork_and_exec(char* cmd) {
5828  const char * argv[4] = {"sh", "-c", cmd, NULL};
5829
5830  pid_t pid = fork();
5831
5832  if (pid < 0) {
5833    // fork failed
5834    return -1;
5835
5836  } else if (pid == 0) {
5837    // child process
5838
5839    execve("/bin/sh", (char* const*)argv, environ);
5840
5841    // execve failed
5842    _exit(-1);
5843
5844  } else  {
5845    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5846    // care about the actual exit code, for now.
5847
5848    int status;
5849
5850    // Wait for the child process to exit.  This returns immediately if
5851    // the child has already exited. */
5852    while (waitpid(pid, &status, 0) < 0) {
5853      switch (errno) {
5854      case ECHILD: return 0;
5855      case EINTR: break;
5856      default: return -1;
5857      }
5858    }
5859
5860    if (WIFEXITED(status)) {
5861      // The child exited normally; get its exit code.
5862      return WEXITSTATUS(status);
5863    } else if (WIFSIGNALED(status)) {
5864      // The child exited because of a signal
5865      // The best value to return is 0x80 + signal number,
5866      // because that is what all Unix shells do, and because
5867      // it allows callers to distinguish between process exit and
5868      // process death by signal.
5869      return 0x80 + WTERMSIG(status);
5870    } else {
5871      // Unknown exit code; pass it through
5872      return status;
5873    }
5874  }
5875}
5876
5877// is_headless_jre()
5878//
5879// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5880// in order to report if we are running in a headless jre
5881//
5882// Since JDK8 xawt/libmawt.so was moved into the same directory
5883// as libawt.so, and renamed libawt_xawt.so
5884//
5885bool os::is_headless_jre() {
5886  struct stat statbuf;
5887  char buf[MAXPATHLEN];
5888  char libmawtpath[MAXPATHLEN];
5889  const char *xawtstr  = "/xawt/libmawt.so";
5890  const char *new_xawtstr = "/libawt_xawt.so";
5891  char *p;
5892
5893  // Get path to libjvm.so
5894  os::jvm_path(buf, sizeof(buf));
5895
5896  // Get rid of libjvm.so
5897  p = strrchr(buf, '/');
5898  if (p == NULL) {
5899    return false;
5900  } else {
5901    *p = '\0';
5902  }
5903
5904  // Get rid of client or server
5905  p = strrchr(buf, '/');
5906  if (p == NULL) {
5907    return false;
5908  } else {
5909    *p = '\0';
5910  }
5911
5912  // check xawt/libmawt.so
5913  strcpy(libmawtpath, buf);
5914  strcat(libmawtpath, xawtstr);
5915  if (::stat(libmawtpath, &statbuf) == 0) return false;
5916
5917  // check libawt_xawt.so
5918  strcpy(libmawtpath, buf);
5919  strcat(libmawtpath, new_xawtstr);
5920  if (::stat(libmawtpath, &statbuf) == 0) return false;
5921
5922  return true;
5923}
5924
5925// Get the default path to the core file
5926// Returns the length of the string
5927int os::get_core_path(char* buffer, size_t bufferSize) {
5928  /*
5929   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5930   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5931   */
5932  const int core_pattern_len = 129;
5933  char core_pattern[core_pattern_len] = {0};
5934
5935  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5936  if (core_pattern_file == -1) {
5937    return -1;
5938  }
5939
5940  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5941  ::close(core_pattern_file);
5942  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5943    return -1;
5944  }
5945  if (core_pattern[ret-1] == '\n') {
5946    core_pattern[ret-1] = '\0';
5947  } else {
5948    core_pattern[ret] = '\0';
5949  }
5950
5951  char *pid_pos = strstr(core_pattern, "%p");
5952  int written;
5953
5954  if (core_pattern[0] == '/') {
5955    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5956  } else {
5957    char cwd[PATH_MAX];
5958
5959    const char* p = get_current_directory(cwd, PATH_MAX);
5960    if (p == NULL) {
5961      return -1;
5962    }
5963
5964    if (core_pattern[0] == '|') {
5965      written = jio_snprintf(buffer, bufferSize,
5966                        "\"%s\" (or dumping to %s/core.%d)",
5967                                     &core_pattern[1], p, current_process_id());
5968    } else {
5969      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5970    }
5971  }
5972
5973  if (written < 0) {
5974    return -1;
5975  }
5976
5977  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5978    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5979
5980    if (core_uses_pid_file != -1) {
5981      char core_uses_pid = 0;
5982      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5983      ::close(core_uses_pid_file);
5984
5985      if (core_uses_pid == '1') {
5986        jio_snprintf(buffer + written, bufferSize - written,
5987                                          ".%d", current_process_id());
5988      }
5989    }
5990  }
5991
5992  return strlen(buffer);
5993}
5994
5995bool os::start_debugging(char *buf, int buflen) {
5996  int len = (int)strlen(buf);
5997  char *p = &buf[len];
5998
5999  jio_snprintf(p, buflen-len,
6000             "\n\n"
6001             "Do you want to debug the problem?\n\n"
6002             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6003             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6004             "Otherwise, press RETURN to abort...",
6005             os::current_process_id(), os::current_process_id(),
6006             os::current_thread_id(), os::current_thread_id());
6007
6008  bool yes = os::message_box("Unexpected Error", buf);
6009
6010  if (yes) {
6011    // yes, user asked VM to launch debugger
6012    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
6013                     os::current_process_id(), os::current_process_id());
6014
6015    os::fork_and_exec(buf);
6016    yes = false;
6017  }
6018  return yes;
6019}
6020
6021static inline struct timespec get_mtime(const char* filename) {
6022  struct stat st;
6023  int ret = os::stat(filename, &st);
6024  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6025  return st.st_mtim;
6026}
6027
6028int os::compare_file_modified_times(const char* file1, const char* file2) {
6029  struct timespec filetime1 = get_mtime(file1);
6030  struct timespec filetime2 = get_mtime(file2);
6031  int diff = filetime1.tv_sec - filetime2.tv_sec;
6032  if (diff == 0) {
6033    return filetime1.tv_nsec - filetime2.tv_nsec;
6034  }
6035  return diff;
6036}
6037
6038/////////////// Unit tests ///////////////
6039
6040#ifndef PRODUCT
6041
6042#define test_log(...)              \
6043  do {                             \
6044    if (VerboseInternalVMTests) {  \
6045      tty->print_cr(__VA_ARGS__);  \
6046      tty->flush();                \
6047    }                              \
6048  } while (false)
6049
6050class TestReserveMemorySpecial : AllStatic {
6051 public:
6052  static void small_page_write(void* addr, size_t size) {
6053    size_t page_size = os::vm_page_size();
6054
6055    char* end = (char*)addr + size;
6056    for (char* p = (char*)addr; p < end; p += page_size) {
6057      *p = 1;
6058    }
6059  }
6060
6061  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6062    if (!UseHugeTLBFS) {
6063      return;
6064    }
6065
6066    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6067
6068    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6069
6070    if (addr != NULL) {
6071      small_page_write(addr, size);
6072
6073      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6074    }
6075  }
6076
6077  static void test_reserve_memory_special_huge_tlbfs_only() {
6078    if (!UseHugeTLBFS) {
6079      return;
6080    }
6081
6082    size_t lp = os::large_page_size();
6083
6084    for (size_t size = lp; size <= lp * 10; size += lp) {
6085      test_reserve_memory_special_huge_tlbfs_only(size);
6086    }
6087  }
6088
6089  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6090    size_t lp = os::large_page_size();
6091    size_t ag = os::vm_allocation_granularity();
6092
6093    // sizes to test
6094    const size_t sizes[] = {
6095      lp, lp + ag, lp + lp / 2, lp * 2,
6096      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6097      lp * 10, lp * 10 + lp / 2
6098    };
6099    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6100
6101    // For each size/alignment combination, we test three scenarios:
6102    // 1) with req_addr == NULL
6103    // 2) with a non-null req_addr at which we expect to successfully allocate
6104    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6105    //    expect the allocation to either fail or to ignore req_addr
6106
6107    // Pre-allocate two areas; they shall be as large as the largest allocation
6108    //  and aligned to the largest alignment we will be testing.
6109    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6110    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6111      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6112      -1, 0);
6113    assert(mapping1 != MAP_FAILED, "should work");
6114
6115    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6116      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6117      -1, 0);
6118    assert(mapping2 != MAP_FAILED, "should work");
6119
6120    // Unmap the first mapping, but leave the second mapping intact: the first
6121    // mapping will serve as a value for a "good" req_addr (case 2). The second
6122    // mapping, still intact, as "bad" req_addr (case 3).
6123    ::munmap(mapping1, mapping_size);
6124
6125    // Case 1
6126    test_log("%s, req_addr NULL:", __FUNCTION__);
6127    test_log("size            align           result");
6128
6129    for (int i = 0; i < num_sizes; i++) {
6130      const size_t size = sizes[i];
6131      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6132        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6133        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6134                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6135        if (p != NULL) {
6136          assert(is_ptr_aligned(p, alignment), "must be");
6137          small_page_write(p, size);
6138          os::Linux::release_memory_special_huge_tlbfs(p, size);
6139        }
6140      }
6141    }
6142
6143    // Case 2
6144    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6145    test_log("size            align           req_addr         result");
6146
6147    for (int i = 0; i < num_sizes; i++) {
6148      const size_t size = sizes[i];
6149      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6150        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6151        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6152        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6153                 size, alignment, p2i(req_addr), p2i(p),
6154                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6155        if (p != NULL) {
6156          assert(p == req_addr, "must be");
6157          small_page_write(p, size);
6158          os::Linux::release_memory_special_huge_tlbfs(p, size);
6159        }
6160      }
6161    }
6162
6163    // Case 3
6164    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6165    test_log("size            align           req_addr         result");
6166
6167    for (int i = 0; i < num_sizes; i++) {
6168      const size_t size = sizes[i];
6169      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6170        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6171        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6172        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6173                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6174        // as the area around req_addr contains already existing mappings, the API should always
6175        // return NULL (as per contract, it cannot return another address)
6176        assert(p == NULL, "must be");
6177      }
6178    }
6179
6180    ::munmap(mapping2, mapping_size);
6181
6182  }
6183
6184  static void test_reserve_memory_special_huge_tlbfs() {
6185    if (!UseHugeTLBFS) {
6186      return;
6187    }
6188
6189    test_reserve_memory_special_huge_tlbfs_only();
6190    test_reserve_memory_special_huge_tlbfs_mixed();
6191  }
6192
6193  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6194    if (!UseSHM) {
6195      return;
6196    }
6197
6198    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6199
6200    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6201
6202    if (addr != NULL) {
6203      assert(is_ptr_aligned(addr, alignment), "Check");
6204      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6205
6206      small_page_write(addr, size);
6207
6208      os::Linux::release_memory_special_shm(addr, size);
6209    }
6210  }
6211
6212  static void test_reserve_memory_special_shm() {
6213    size_t lp = os::large_page_size();
6214    size_t ag = os::vm_allocation_granularity();
6215
6216    for (size_t size = ag; size < lp * 3; size += ag) {
6217      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6218        test_reserve_memory_special_shm(size, alignment);
6219      }
6220    }
6221  }
6222
6223  static void test() {
6224    test_reserve_memory_special_huge_tlbfs();
6225    test_reserve_memory_special_shm();
6226  }
6227};
6228
6229void TestReserveMemorySpecial_test() {
6230  TestReserveMemorySpecial::test();
6231}
6232
6233#endif
6234