os_linux.cpp revision 10258:49f65299b140
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_linux.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "mutex_linux.inline.hpp"
39#include "oops/oop.inline.hpp"
40#include "os_linux.inline.hpp"
41#include "os_share_linux.hpp"
42#include "prims/jniFastGetField.hpp"
43#include "prims/jvm.h"
44#include "prims/jvm_misc.hpp"
45#include "runtime/arguments.hpp"
46#include "runtime/atomic.inline.hpp"
47#include "runtime/extendedPC.hpp"
48#include "runtime/globals.hpp"
49#include "runtime/interfaceSupport.hpp"
50#include "runtime/init.hpp"
51#include "runtime/java.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/mutexLocker.hpp"
54#include "runtime/objectMonitor.hpp"
55#include "runtime/orderAccess.inline.hpp"
56#include "runtime/osThread.hpp"
57#include "runtime/perfMemory.hpp"
58#include "runtime/sharedRuntime.hpp"
59#include "runtime/statSampler.hpp"
60#include "runtime/stubRoutines.hpp"
61#include "runtime/thread.inline.hpp"
62#include "runtime/threadCritical.hpp"
63#include "runtime/timer.hpp"
64#include "semaphore_posix.hpp"
65#include "services/attachListener.hpp"
66#include "services/memTracker.hpp"
67#include "services/runtimeService.hpp"
68#include "utilities/decoder.hpp"
69#include "utilities/defaultStream.hpp"
70#include "utilities/events.hpp"
71#include "utilities/elfFile.hpp"
72#include "utilities/growableArray.hpp"
73#include "utilities/macros.hpp"
74#include "utilities/vmError.hpp"
75
76// put OS-includes here
77# include <sys/types.h>
78# include <sys/mman.h>
79# include <sys/stat.h>
80# include <sys/select.h>
81# include <pthread.h>
82# include <signal.h>
83# include <errno.h>
84# include <dlfcn.h>
85# include <stdio.h>
86# include <unistd.h>
87# include <sys/resource.h>
88# include <pthread.h>
89# include <sys/stat.h>
90# include <sys/time.h>
91# include <sys/times.h>
92# include <sys/utsname.h>
93# include <sys/socket.h>
94# include <sys/wait.h>
95# include <pwd.h>
96# include <poll.h>
97# include <semaphore.h>
98# include <fcntl.h>
99# include <string.h>
100# include <syscall.h>
101# include <sys/sysinfo.h>
102# include <gnu/libc-version.h>
103# include <sys/ipc.h>
104# include <sys/shm.h>
105# include <link.h>
106# include <stdint.h>
107# include <inttypes.h>
108# include <sys/ioctl.h>
109
110#ifndef _GNU_SOURCE
111  #define _GNU_SOURCE
112  #include <sched.h>
113  #undef _GNU_SOURCE
114#else
115  #include <sched.h>
116#endif
117
118// if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
119// getrusage() is prepared to handle the associated failure.
120#ifndef RUSAGE_THREAD
121  #define RUSAGE_THREAD   (1)               /* only the calling thread */
122#endif
123
124#define MAX_PATH    (2 * K)
125
126#define MAX_SECS 100000000
127
128// for timer info max values which include all bits
129#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
130
131#define LARGEPAGES_BIT (1 << 6)
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Linux::_physical_memory = 0;
135
136address   os::Linux::_initial_thread_stack_bottom = NULL;
137uintptr_t os::Linux::_initial_thread_stack_size   = 0;
138
139int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
141int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
142Mutex* os::Linux::_createThread_lock = NULL;
143pthread_t os::Linux::_main_thread;
144int os::Linux::_page_size = -1;
145const int os::Linux::_vm_default_page_size = (8 * K);
146bool os::Linux::_supports_fast_thread_cpu_time = false;
147const char * os::Linux::_glibc_version = NULL;
148const char * os::Linux::_libpthread_version = NULL;
149pthread_condattr_t os::Linux::_condattr[1];
150
151static jlong initial_time_count=0;
152
153static int clock_tics_per_sec = 100;
154
155// For diagnostics to print a message once. see run_periodic_checks
156static sigset_t check_signal_done;
157static bool check_signals = true;
158
159// Signal number used to suspend/resume a thread
160
161// do not use any signal number less than SIGSEGV, see 4355769
162static int SR_signum = SIGUSR2;
163sigset_t SR_sigset;
164
165// Declarations
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168// utility functions
169
170static int SR_initialize();
171
172julong os::available_memory() {
173  return Linux::available_memory();
174}
175
176julong os::Linux::available_memory() {
177  // values in struct sysinfo are "unsigned long"
178  struct sysinfo si;
179  sysinfo(&si);
180
181  return (julong)si.freeram * si.mem_unit;
182}
183
184julong os::physical_memory() {
185  return Linux::physical_memory();
186}
187
188// Return true if user is running as root.
189
190bool os::have_special_privileges() {
191  static bool init = false;
192  static bool privileges = false;
193  if (!init) {
194    privileges = (getuid() != geteuid()) || (getgid() != getegid());
195    init = true;
196  }
197  return privileges;
198}
199
200
201#ifndef SYS_gettid
202// i386: 224, ia64: 1105, amd64: 186, sparc 143
203  #ifdef __ia64__
204    #define SYS_gettid 1105
205  #else
206    #ifdef __i386__
207      #define SYS_gettid 224
208    #else
209      #ifdef __amd64__
210        #define SYS_gettid 186
211      #else
212        #ifdef __sparc__
213          #define SYS_gettid 143
214        #else
215          #error define gettid for the arch
216        #endif
217      #endif
218    #endif
219  #endif
220#endif
221
222// Cpu architecture string
223static char cpu_arch[] = HOTSPOT_LIB_ARCH;
224
225
226// pid_t gettid()
227//
228// Returns the kernel thread id of the currently running thread. Kernel
229// thread id is used to access /proc.
230pid_t os::Linux::gettid() {
231  int rslt = syscall(SYS_gettid);
232  assert(rslt != -1, "must be."); // old linuxthreads implementation?
233  return (pid_t)rslt;
234}
235
236// Most versions of linux have a bug where the number of processors are
237// determined by looking at the /proc file system.  In a chroot environment,
238// the system call returns 1.  This causes the VM to act as if it is
239// a single processor and elide locking (see is_MP() call).
240static bool unsafe_chroot_detected = false;
241static const char *unstable_chroot_error = "/proc file system not found.\n"
242                     "Java may be unstable running multithreaded in a chroot "
243                     "environment on Linux when /proc filesystem is not mounted.";
244
245void os::Linux::initialize_system_info() {
246  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
247  if (processor_count() == 1) {
248    pid_t pid = os::Linux::gettid();
249    char fname[32];
250    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
251    FILE *fp = fopen(fname, "r");
252    if (fp == NULL) {
253      unsafe_chroot_detected = true;
254    } else {
255      fclose(fp);
256    }
257  }
258  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
259  assert(processor_count() > 0, "linux error");
260}
261
262void os::init_system_properties_values() {
263  // The next steps are taken in the product version:
264  //
265  // Obtain the JAVA_HOME value from the location of libjvm.so.
266  // This library should be located at:
267  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
268  //
269  // If "/jre/lib/" appears at the right place in the path, then we
270  // assume libjvm.so is installed in a JDK and we use this path.
271  //
272  // Otherwise exit with message: "Could not create the Java virtual machine."
273  //
274  // The following extra steps are taken in the debugging version:
275  //
276  // If "/jre/lib/" does NOT appear at the right place in the path
277  // instead of exit check for $JAVA_HOME environment variable.
278  //
279  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
280  // then we append a fake suffix "hotspot/libjvm.so" to this path so
281  // it looks like libjvm.so is installed there
282  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
283  //
284  // Otherwise exit.
285  //
286  // Important note: if the location of libjvm.so changes this
287  // code needs to be changed accordingly.
288
289  // See ld(1):
290  //      The linker uses the following search paths to locate required
291  //      shared libraries:
292  //        1: ...
293  //        ...
294  //        7: The default directories, normally /lib and /usr/lib.
295#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
296  #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
297#else
298  #define DEFAULT_LIBPATH "/lib:/usr/lib"
299#endif
300
301// Base path of extensions installed on the system.
302#define SYS_EXT_DIR     "/usr/java/packages"
303#define EXTENSIONS_DIR  "/lib/ext"
304
305  // Buffer that fits several sprintfs.
306  // Note that the space for the colon and the trailing null are provided
307  // by the nulls included by the sizeof operator.
308  const size_t bufsize =
309    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
310         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
311  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
312
313  // sysclasspath, java_home, dll_dir
314  {
315    char *pslash;
316    os::jvm_path(buf, bufsize);
317
318    // Found the full path to libjvm.so.
319    // Now cut the path to <java_home>/jre if we can.
320    pslash = strrchr(buf, '/');
321    if (pslash != NULL) {
322      *pslash = '\0';            // Get rid of /libjvm.so.
323    }
324    pslash = strrchr(buf, '/');
325    if (pslash != NULL) {
326      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
327    }
328    Arguments::set_dll_dir(buf);
329
330    if (pslash != NULL) {
331      pslash = strrchr(buf, '/');
332      if (pslash != NULL) {
333        *pslash = '\0';          // Get rid of /<arch>.
334        pslash = strrchr(buf, '/');
335        if (pslash != NULL) {
336          *pslash = '\0';        // Get rid of /lib.
337        }
338      }
339    }
340    Arguments::set_java_home(buf);
341    set_boot_path('/', ':');
342  }
343
344  // Where to look for native libraries.
345  //
346  // Note: Due to a legacy implementation, most of the library path
347  // is set in the launcher. This was to accomodate linking restrictions
348  // on legacy Linux implementations (which are no longer supported).
349  // Eventually, all the library path setting will be done here.
350  //
351  // However, to prevent the proliferation of improperly built native
352  // libraries, the new path component /usr/java/packages is added here.
353  // Eventually, all the library path setting will be done here.
354  {
355    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
356    // should always exist (until the legacy problem cited above is
357    // addressed).
358    const char *v = ::getenv("LD_LIBRARY_PATH");
359    const char *v_colon = ":";
360    if (v == NULL) { v = ""; v_colon = ""; }
361    // That's +1 for the colon and +1 for the trailing '\0'.
362    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
363                                                     strlen(v) + 1 +
364                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
365                                                     mtInternal);
366    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
367    Arguments::set_library_path(ld_library_path);
368    FREE_C_HEAP_ARRAY(char, ld_library_path);
369  }
370
371  // Extensions directories.
372  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
373  Arguments::set_ext_dirs(buf);
374
375  FREE_C_HEAP_ARRAY(char, buf);
376
377#undef DEFAULT_LIBPATH
378#undef SYS_EXT_DIR
379#undef EXTENSIONS_DIR
380}
381
382////////////////////////////////////////////////////////////////////////////////
383// breakpoint support
384
385void os::breakpoint() {
386  BREAKPOINT;
387}
388
389extern "C" void breakpoint() {
390  // use debugger to set breakpoint here
391}
392
393////////////////////////////////////////////////////////////////////////////////
394// signal support
395
396debug_only(static bool signal_sets_initialized = false);
397static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
398
399bool os::Linux::is_sig_ignored(int sig) {
400  struct sigaction oact;
401  sigaction(sig, (struct sigaction*)NULL, &oact);
402  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
403                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
404  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
405    return true;
406  } else {
407    return false;
408  }
409}
410
411void os::Linux::signal_sets_init() {
412  // Should also have an assertion stating we are still single-threaded.
413  assert(!signal_sets_initialized, "Already initialized");
414  // Fill in signals that are necessarily unblocked for all threads in
415  // the VM. Currently, we unblock the following signals:
416  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
417  //                         by -Xrs (=ReduceSignalUsage));
418  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
419  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
420  // the dispositions or masks wrt these signals.
421  // Programs embedding the VM that want to use the above signals for their
422  // own purposes must, at this time, use the "-Xrs" option to prevent
423  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
424  // (See bug 4345157, and other related bugs).
425  // In reality, though, unblocking these signals is really a nop, since
426  // these signals are not blocked by default.
427  sigemptyset(&unblocked_sigs);
428  sigemptyset(&allowdebug_blocked_sigs);
429  sigaddset(&unblocked_sigs, SIGILL);
430  sigaddset(&unblocked_sigs, SIGSEGV);
431  sigaddset(&unblocked_sigs, SIGBUS);
432  sigaddset(&unblocked_sigs, SIGFPE);
433#if defined(PPC64)
434  sigaddset(&unblocked_sigs, SIGTRAP);
435#endif
436  sigaddset(&unblocked_sigs, SR_signum);
437
438  if (!ReduceSignalUsage) {
439    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
440      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
441      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
442    }
443    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
444      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
445      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
446    }
447    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
448      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
449      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
450    }
451  }
452  // Fill in signals that are blocked by all but the VM thread.
453  sigemptyset(&vm_sigs);
454  if (!ReduceSignalUsage) {
455    sigaddset(&vm_sigs, BREAK_SIGNAL);
456  }
457  debug_only(signal_sets_initialized = true);
458
459}
460
461// These are signals that are unblocked while a thread is running Java.
462// (For some reason, they get blocked by default.)
463sigset_t* os::Linux::unblocked_signals() {
464  assert(signal_sets_initialized, "Not initialized");
465  return &unblocked_sigs;
466}
467
468// These are the signals that are blocked while a (non-VM) thread is
469// running Java. Only the VM thread handles these signals.
470sigset_t* os::Linux::vm_signals() {
471  assert(signal_sets_initialized, "Not initialized");
472  return &vm_sigs;
473}
474
475// These are signals that are blocked during cond_wait to allow debugger in
476sigset_t* os::Linux::allowdebug_blocked_signals() {
477  assert(signal_sets_initialized, "Not initialized");
478  return &allowdebug_blocked_sigs;
479}
480
481void os::Linux::hotspot_sigmask(Thread* thread) {
482
483  //Save caller's signal mask before setting VM signal mask
484  sigset_t caller_sigmask;
485  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
486
487  OSThread* osthread = thread->osthread();
488  osthread->set_caller_sigmask(caller_sigmask);
489
490  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
491
492  if (!ReduceSignalUsage) {
493    if (thread->is_VM_thread()) {
494      // Only the VM thread handles BREAK_SIGNAL ...
495      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
496    } else {
497      // ... all other threads block BREAK_SIGNAL
498      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
499    }
500  }
501}
502
503//////////////////////////////////////////////////////////////////////////////
504// detecting pthread library
505
506void os::Linux::libpthread_init() {
507  // Save glibc and pthread version strings.
508#if !defined(_CS_GNU_LIBC_VERSION) || \
509    !defined(_CS_GNU_LIBPTHREAD_VERSION)
510  #error "glibc too old (< 2.3.2)"
511#endif
512
513  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
514  assert(n > 0, "cannot retrieve glibc version");
515  char *str = (char *)malloc(n, mtInternal);
516  confstr(_CS_GNU_LIBC_VERSION, str, n);
517  os::Linux::set_glibc_version(str);
518
519  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
520  assert(n > 0, "cannot retrieve pthread version");
521  str = (char *)malloc(n, mtInternal);
522  confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
523  os::Linux::set_libpthread_version(str);
524}
525
526/////////////////////////////////////////////////////////////////////////////
527// thread stack expansion
528
529// os::Linux::manually_expand_stack() takes care of expanding the thread
530// stack. Note that this is normally not needed: pthread stacks allocate
531// thread stack using mmap() without MAP_NORESERVE, so the stack is already
532// committed. Therefore it is not necessary to expand the stack manually.
533//
534// Manually expanding the stack was historically needed on LinuxThreads
535// thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
536// it is kept to deal with very rare corner cases:
537//
538// For one, user may run the VM on an own implementation of threads
539// whose stacks are - like the old LinuxThreads - implemented using
540// mmap(MAP_GROWSDOWN).
541//
542// Also, this coding may be needed if the VM is running on the primordial
543// thread. Normally we avoid running on the primordial thread; however,
544// user may still invoke the VM on the primordial thread.
545//
546// The following historical comment describes the details about running
547// on a thread stack allocated with mmap(MAP_GROWSDOWN):
548
549
550// Force Linux kernel to expand current thread stack. If "bottom" is close
551// to the stack guard, caller should block all signals.
552//
553// MAP_GROWSDOWN:
554//   A special mmap() flag that is used to implement thread stacks. It tells
555//   kernel that the memory region should extend downwards when needed. This
556//   allows early versions of LinuxThreads to only mmap the first few pages
557//   when creating a new thread. Linux kernel will automatically expand thread
558//   stack as needed (on page faults).
559//
560//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
561//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
562//   region, it's hard to tell if the fault is due to a legitimate stack
563//   access or because of reading/writing non-exist memory (e.g. buffer
564//   overrun). As a rule, if the fault happens below current stack pointer,
565//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
566//   application (see Linux kernel fault.c).
567//
568//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
569//   stack overflow detection.
570//
571//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
572//   not use MAP_GROWSDOWN.
573//
574// To get around the problem and allow stack banging on Linux, we need to
575// manually expand thread stack after receiving the SIGSEGV.
576//
577// There are two ways to expand thread stack to address "bottom", we used
578// both of them in JVM before 1.5:
579//   1. adjust stack pointer first so that it is below "bottom", and then
580//      touch "bottom"
581//   2. mmap() the page in question
582//
583// Now alternate signal stack is gone, it's harder to use 2. For instance,
584// if current sp is already near the lower end of page 101, and we need to
585// call mmap() to map page 100, it is possible that part of the mmap() frame
586// will be placed in page 100. When page 100 is mapped, it is zero-filled.
587// That will destroy the mmap() frame and cause VM to crash.
588//
589// The following code works by adjusting sp first, then accessing the "bottom"
590// page to force a page fault. Linux kernel will then automatically expand the
591// stack mapping.
592//
593// _expand_stack_to() assumes its frame size is less than page size, which
594// should always be true if the function is not inlined.
595
596#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
597  #define NOINLINE
598#else
599  #define NOINLINE __attribute__ ((noinline))
600#endif
601
602static void _expand_stack_to(address bottom) NOINLINE;
603
604static void _expand_stack_to(address bottom) {
605  address sp;
606  size_t size;
607  volatile char *p;
608
609  // Adjust bottom to point to the largest address within the same page, it
610  // gives us a one-page buffer if alloca() allocates slightly more memory.
611  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
612  bottom += os::Linux::page_size() - 1;
613
614  // sp might be slightly above current stack pointer; if that's the case, we
615  // will alloca() a little more space than necessary, which is OK. Don't use
616  // os::current_stack_pointer(), as its result can be slightly below current
617  // stack pointer, causing us to not alloca enough to reach "bottom".
618  sp = (address)&sp;
619
620  if (sp > bottom) {
621    size = sp - bottom;
622    p = (volatile char *)alloca(size);
623    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
624    p[0] = '\0';
625  }
626}
627
628bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
629  assert(t!=NULL, "just checking");
630  assert(t->osthread()->expanding_stack(), "expand should be set");
631  assert(t->stack_base() != NULL, "stack_base was not initialized");
632
633  if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
634    sigset_t mask_all, old_sigset;
635    sigfillset(&mask_all);
636    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
637    _expand_stack_to(addr);
638    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
639    return true;
640  }
641  return false;
642}
643
644//////////////////////////////////////////////////////////////////////////////
645// create new thread
646
647// Thread start routine for all newly created threads
648static void *java_start(Thread *thread) {
649  // Try to randomize the cache line index of hot stack frames.
650  // This helps when threads of the same stack traces evict each other's
651  // cache lines. The threads can be either from the same JVM instance, or
652  // from different JVM instances. The benefit is especially true for
653  // processors with hyperthreading technology.
654  static int counter = 0;
655  int pid = os::current_process_id();
656  alloca(((pid ^ counter++) & 7) * 128);
657
658  thread->initialize_thread_current();
659
660  OSThread* osthread = thread->osthread();
661  Monitor* sync = osthread->startThread_lock();
662
663  osthread->set_thread_id(os::current_thread_id());
664
665  if (UseNUMA) {
666    int lgrp_id = os::numa_get_group_id();
667    if (lgrp_id != -1) {
668      thread->set_lgrp_id(lgrp_id);
669    }
670  }
671  // initialize signal mask for this thread
672  os::Linux::hotspot_sigmask(thread);
673
674  // initialize floating point control register
675  os::Linux::init_thread_fpu_state();
676
677  // handshaking with parent thread
678  {
679    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
680
681    // notify parent thread
682    osthread->set_state(INITIALIZED);
683    sync->notify_all();
684
685    // wait until os::start_thread()
686    while (osthread->get_state() == INITIALIZED) {
687      sync->wait(Mutex::_no_safepoint_check_flag);
688    }
689  }
690
691  // call one more level start routine
692  thread->run();
693
694  return 0;
695}
696
697bool os::create_thread(Thread* thread, ThreadType thr_type,
698                       size_t stack_size) {
699  assert(thread->osthread() == NULL, "caller responsible");
700
701  // Allocate the OSThread object
702  OSThread* osthread = new OSThread(NULL, NULL);
703  if (osthread == NULL) {
704    return false;
705  }
706
707  // set the correct thread state
708  osthread->set_thread_type(thr_type);
709
710  // Initial state is ALLOCATED but not INITIALIZED
711  osthread->set_state(ALLOCATED);
712
713  thread->set_osthread(osthread);
714
715  // init thread attributes
716  pthread_attr_t attr;
717  pthread_attr_init(&attr);
718  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
719
720  // stack size
721  // calculate stack size if it's not specified by caller
722  if (stack_size == 0) {
723    stack_size = os::Linux::default_stack_size(thr_type);
724
725    switch (thr_type) {
726    case os::java_thread:
727      // Java threads use ThreadStackSize which default value can be
728      // changed with the flag -Xss
729      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
730      stack_size = JavaThread::stack_size_at_create();
731      break;
732    case os::compiler_thread:
733      if (CompilerThreadStackSize > 0) {
734        stack_size = (size_t)(CompilerThreadStackSize * K);
735        break;
736      } // else fall through:
737        // use VMThreadStackSize if CompilerThreadStackSize is not defined
738    case os::vm_thread:
739    case os::pgc_thread:
740    case os::cgc_thread:
741    case os::watcher_thread:
742      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
743      break;
744    }
745  }
746
747  stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
748  pthread_attr_setstacksize(&attr, stack_size);
749
750  // glibc guard page
751  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
752
753  ThreadState state;
754
755  {
756    pthread_t tid;
757    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
758
759    pthread_attr_destroy(&attr);
760
761    if (ret != 0) {
762      if (PrintMiscellaneous && (Verbose || WizardMode)) {
763        perror("pthread_create()");
764      }
765      // Need to clean up stuff we've allocated so far
766      thread->set_osthread(NULL);
767      delete osthread;
768      return false;
769    }
770
771    // Store pthread info into the OSThread
772    osthread->set_pthread_id(tid);
773
774    // Wait until child thread is either initialized or aborted
775    {
776      Monitor* sync_with_child = osthread->startThread_lock();
777      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
778      while ((state = osthread->get_state()) == ALLOCATED) {
779        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
780      }
781    }
782  }
783
784  // Aborted due to thread limit being reached
785  if (state == ZOMBIE) {
786    thread->set_osthread(NULL);
787    delete osthread;
788    return false;
789  }
790
791  // The thread is returned suspended (in state INITIALIZED),
792  // and is started higher up in the call chain
793  assert(state == INITIALIZED, "race condition");
794  return true;
795}
796
797/////////////////////////////////////////////////////////////////////////////
798// attach existing thread
799
800// bootstrap the main thread
801bool os::create_main_thread(JavaThread* thread) {
802  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
803  return create_attached_thread(thread);
804}
805
806bool os::create_attached_thread(JavaThread* thread) {
807#ifdef ASSERT
808  thread->verify_not_published();
809#endif
810
811  // Allocate the OSThread object
812  OSThread* osthread = new OSThread(NULL, NULL);
813
814  if (osthread == NULL) {
815    return false;
816  }
817
818  // Store pthread info into the OSThread
819  osthread->set_thread_id(os::Linux::gettid());
820  osthread->set_pthread_id(::pthread_self());
821
822  // initialize floating point control register
823  os::Linux::init_thread_fpu_state();
824
825  // Initial thread state is RUNNABLE
826  osthread->set_state(RUNNABLE);
827
828  thread->set_osthread(osthread);
829
830  if (UseNUMA) {
831    int lgrp_id = os::numa_get_group_id();
832    if (lgrp_id != -1) {
833      thread->set_lgrp_id(lgrp_id);
834    }
835  }
836
837  if (os::Linux::is_initial_thread()) {
838    // If current thread is initial thread, its stack is mapped on demand,
839    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
840    // the entire stack region to avoid SEGV in stack banging.
841    // It is also useful to get around the heap-stack-gap problem on SuSE
842    // kernel (see 4821821 for details). We first expand stack to the top
843    // of yellow zone, then enable stack yellow zone (order is significant,
844    // enabling yellow zone first will crash JVM on SuSE Linux), so there
845    // is no gap between the last two virtual memory regions.
846
847    JavaThread *jt = (JavaThread *)thread;
848    address addr = jt->stack_reserved_zone_base();
849    assert(addr != NULL, "initialization problem?");
850    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
851
852    osthread->set_expanding_stack();
853    os::Linux::manually_expand_stack(jt, addr);
854    osthread->clear_expanding_stack();
855  }
856
857  // initialize signal mask for this thread
858  // and save the caller's signal mask
859  os::Linux::hotspot_sigmask(thread);
860
861  return true;
862}
863
864void os::pd_start_thread(Thread* thread) {
865  OSThread * osthread = thread->osthread();
866  assert(osthread->get_state() != INITIALIZED, "just checking");
867  Monitor* sync_with_child = osthread->startThread_lock();
868  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
869  sync_with_child->notify();
870}
871
872// Free Linux resources related to the OSThread
873void os::free_thread(OSThread* osthread) {
874  assert(osthread != NULL, "osthread not set");
875
876  if (Thread::current()->osthread() == osthread) {
877    // Restore caller's signal mask
878    sigset_t sigmask = osthread->caller_sigmask();
879    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
880  }
881
882  delete osthread;
883}
884
885//////////////////////////////////////////////////////////////////////////////
886// initial thread
887
888// Check if current thread is the initial thread, similar to Solaris thr_main.
889bool os::Linux::is_initial_thread(void) {
890  char dummy;
891  // If called before init complete, thread stack bottom will be null.
892  // Can be called if fatal error occurs before initialization.
893  if (initial_thread_stack_bottom() == NULL) return false;
894  assert(initial_thread_stack_bottom() != NULL &&
895         initial_thread_stack_size()   != 0,
896         "os::init did not locate initial thread's stack region");
897  if ((address)&dummy >= initial_thread_stack_bottom() &&
898      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
899    return true;
900  } else {
901    return false;
902  }
903}
904
905// Find the virtual memory area that contains addr
906static bool find_vma(address addr, address* vma_low, address* vma_high) {
907  FILE *fp = fopen("/proc/self/maps", "r");
908  if (fp) {
909    address low, high;
910    while (!feof(fp)) {
911      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
912        if (low <= addr && addr < high) {
913          if (vma_low)  *vma_low  = low;
914          if (vma_high) *vma_high = high;
915          fclose(fp);
916          return true;
917        }
918      }
919      for (;;) {
920        int ch = fgetc(fp);
921        if (ch == EOF || ch == (int)'\n') break;
922      }
923    }
924    fclose(fp);
925  }
926  return false;
927}
928
929// Locate initial thread stack. This special handling of initial thread stack
930// is needed because pthread_getattr_np() on most (all?) Linux distros returns
931// bogus value for initial thread.
932void os::Linux::capture_initial_stack(size_t max_size) {
933  // stack size is the easy part, get it from RLIMIT_STACK
934  size_t stack_size;
935  struct rlimit rlim;
936  getrlimit(RLIMIT_STACK, &rlim);
937  stack_size = rlim.rlim_cur;
938
939  // 6308388: a bug in ld.so will relocate its own .data section to the
940  //   lower end of primordial stack; reduce ulimit -s value a little bit
941  //   so we won't install guard page on ld.so's data section.
942  stack_size -= 2 * page_size();
943
944  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
945  //   7.1, in both cases we will get 2G in return value.
946  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
947  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
948  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
949  //   in case other parts in glibc still assumes 2M max stack size.
950  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
951  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
952  if (stack_size > 2 * K * K IA64_ONLY(*2)) {
953    stack_size = 2 * K * K IA64_ONLY(*2);
954  }
955  // Try to figure out where the stack base (top) is. This is harder.
956  //
957  // When an application is started, glibc saves the initial stack pointer in
958  // a global variable "__libc_stack_end", which is then used by system
959  // libraries. __libc_stack_end should be pretty close to stack top. The
960  // variable is available since the very early days. However, because it is
961  // a private interface, it could disappear in the future.
962  //
963  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
964  // to __libc_stack_end, it is very close to stack top, but isn't the real
965  // stack top. Note that /proc may not exist if VM is running as a chroot
966  // program, so reading /proc/<pid>/stat could fail. Also the contents of
967  // /proc/<pid>/stat could change in the future (though unlikely).
968  //
969  // We try __libc_stack_end first. If that doesn't work, look for
970  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
971  // as a hint, which should work well in most cases.
972
973  uintptr_t stack_start;
974
975  // try __libc_stack_end first
976  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
977  if (p && *p) {
978    stack_start = *p;
979  } else {
980    // see if we can get the start_stack field from /proc/self/stat
981    FILE *fp;
982    int pid;
983    char state;
984    int ppid;
985    int pgrp;
986    int session;
987    int nr;
988    int tpgrp;
989    unsigned long flags;
990    unsigned long minflt;
991    unsigned long cminflt;
992    unsigned long majflt;
993    unsigned long cmajflt;
994    unsigned long utime;
995    unsigned long stime;
996    long cutime;
997    long cstime;
998    long prio;
999    long nice;
1000    long junk;
1001    long it_real;
1002    uintptr_t start;
1003    uintptr_t vsize;
1004    intptr_t rss;
1005    uintptr_t rsslim;
1006    uintptr_t scodes;
1007    uintptr_t ecode;
1008    int i;
1009
1010    // Figure what the primordial thread stack base is. Code is inspired
1011    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1012    // followed by command name surrounded by parentheses, state, etc.
1013    char stat[2048];
1014    int statlen;
1015
1016    fp = fopen("/proc/self/stat", "r");
1017    if (fp) {
1018      statlen = fread(stat, 1, 2047, fp);
1019      stat[statlen] = '\0';
1020      fclose(fp);
1021
1022      // Skip pid and the command string. Note that we could be dealing with
1023      // weird command names, e.g. user could decide to rename java launcher
1024      // to "java 1.4.2 :)", then the stat file would look like
1025      //                1234 (java 1.4.2 :)) R ... ...
1026      // We don't really need to know the command string, just find the last
1027      // occurrence of ")" and then start parsing from there. See bug 4726580.
1028      char * s = strrchr(stat, ')');
1029
1030      i = 0;
1031      if (s) {
1032        // Skip blank chars
1033        do { s++; } while (s && isspace(*s));
1034
1035#define _UFM UINTX_FORMAT
1036#define _DFM INTX_FORMAT
1037
1038        //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1039        //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1040        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1041                   &state,          // 3  %c
1042                   &ppid,           // 4  %d
1043                   &pgrp,           // 5  %d
1044                   &session,        // 6  %d
1045                   &nr,             // 7  %d
1046                   &tpgrp,          // 8  %d
1047                   &flags,          // 9  %lu
1048                   &minflt,         // 10 %lu
1049                   &cminflt,        // 11 %lu
1050                   &majflt,         // 12 %lu
1051                   &cmajflt,        // 13 %lu
1052                   &utime,          // 14 %lu
1053                   &stime,          // 15 %lu
1054                   &cutime,         // 16 %ld
1055                   &cstime,         // 17 %ld
1056                   &prio,           // 18 %ld
1057                   &nice,           // 19 %ld
1058                   &junk,           // 20 %ld
1059                   &it_real,        // 21 %ld
1060                   &start,          // 22 UINTX_FORMAT
1061                   &vsize,          // 23 UINTX_FORMAT
1062                   &rss,            // 24 INTX_FORMAT
1063                   &rsslim,         // 25 UINTX_FORMAT
1064                   &scodes,         // 26 UINTX_FORMAT
1065                   &ecode,          // 27 UINTX_FORMAT
1066                   &stack_start);   // 28 UINTX_FORMAT
1067      }
1068
1069#undef _UFM
1070#undef _DFM
1071
1072      if (i != 28 - 2) {
1073        assert(false, "Bad conversion from /proc/self/stat");
1074        // product mode - assume we are the initial thread, good luck in the
1075        // embedded case.
1076        warning("Can't detect initial thread stack location - bad conversion");
1077        stack_start = (uintptr_t) &rlim;
1078      }
1079    } else {
1080      // For some reason we can't open /proc/self/stat (for example, running on
1081      // FreeBSD with a Linux emulator, or inside chroot), this should work for
1082      // most cases, so don't abort:
1083      warning("Can't detect initial thread stack location - no /proc/self/stat");
1084      stack_start = (uintptr_t) &rlim;
1085    }
1086  }
1087
1088  // Now we have a pointer (stack_start) very close to the stack top, the
1089  // next thing to do is to figure out the exact location of stack top. We
1090  // can find out the virtual memory area that contains stack_start by
1091  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1092  // and its upper limit is the real stack top. (again, this would fail if
1093  // running inside chroot, because /proc may not exist.)
1094
1095  uintptr_t stack_top;
1096  address low, high;
1097  if (find_vma((address)stack_start, &low, &high)) {
1098    // success, "high" is the true stack top. (ignore "low", because initial
1099    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1100    stack_top = (uintptr_t)high;
1101  } else {
1102    // failed, likely because /proc/self/maps does not exist
1103    warning("Can't detect initial thread stack location - find_vma failed");
1104    // best effort: stack_start is normally within a few pages below the real
1105    // stack top, use it as stack top, and reduce stack size so we won't put
1106    // guard page outside stack.
1107    stack_top = stack_start;
1108    stack_size -= 16 * page_size();
1109  }
1110
1111  // stack_top could be partially down the page so align it
1112  stack_top = align_size_up(stack_top, page_size());
1113
1114  if (max_size && stack_size > max_size) {
1115    _initial_thread_stack_size = max_size;
1116  } else {
1117    _initial_thread_stack_size = stack_size;
1118  }
1119
1120  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1121  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1122}
1123
1124////////////////////////////////////////////////////////////////////////////////
1125// time support
1126
1127// Time since start-up in seconds to a fine granularity.
1128// Used by VMSelfDestructTimer and the MemProfiler.
1129double os::elapsedTime() {
1130
1131  return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1132}
1133
1134jlong os::elapsed_counter() {
1135  return javaTimeNanos() - initial_time_count;
1136}
1137
1138jlong os::elapsed_frequency() {
1139  return NANOSECS_PER_SEC; // nanosecond resolution
1140}
1141
1142bool os::supports_vtime() { return true; }
1143bool os::enable_vtime()   { return false; }
1144bool os::vtime_enabled()  { return false; }
1145
1146double os::elapsedVTime() {
1147  struct rusage usage;
1148  int retval = getrusage(RUSAGE_THREAD, &usage);
1149  if (retval == 0) {
1150    return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1151  } else {
1152    // better than nothing, but not much
1153    return elapsedTime();
1154  }
1155}
1156
1157jlong os::javaTimeMillis() {
1158  timeval time;
1159  int status = gettimeofday(&time, NULL);
1160  assert(status != -1, "linux error");
1161  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1162}
1163
1164void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1165  timeval time;
1166  int status = gettimeofday(&time, NULL);
1167  assert(status != -1, "linux error");
1168  seconds = jlong(time.tv_sec);
1169  nanos = jlong(time.tv_usec) * 1000;
1170}
1171
1172
1173#ifndef CLOCK_MONOTONIC
1174  #define CLOCK_MONOTONIC (1)
1175#endif
1176
1177void os::Linux::clock_init() {
1178  // we do dlopen's in this particular order due to bug in linux
1179  // dynamical loader (see 6348968) leading to crash on exit
1180  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1181  if (handle == NULL) {
1182    handle = dlopen("librt.so", RTLD_LAZY);
1183  }
1184
1185  if (handle) {
1186    int (*clock_getres_func)(clockid_t, struct timespec*) =
1187           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1188    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1189           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1190    if (clock_getres_func && clock_gettime_func) {
1191      // See if monotonic clock is supported by the kernel. Note that some
1192      // early implementations simply return kernel jiffies (updated every
1193      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1194      // for nano time (though the monotonic property is still nice to have).
1195      // It's fixed in newer kernels, however clock_getres() still returns
1196      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1197      // resolution for now. Hopefully as people move to new kernels, this
1198      // won't be a problem.
1199      struct timespec res;
1200      struct timespec tp;
1201      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1202          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1203        // yes, monotonic clock is supported
1204        _clock_gettime = clock_gettime_func;
1205        return;
1206      } else {
1207        // close librt if there is no monotonic clock
1208        dlclose(handle);
1209      }
1210    }
1211  }
1212  warning("No monotonic clock was available - timed services may " \
1213          "be adversely affected if the time-of-day clock changes");
1214}
1215
1216#ifndef SYS_clock_getres
1217  #if defined(IA32) || defined(AMD64)
1218    #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1219    #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1220  #else
1221    #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1222    #define sys_clock_getres(x,y)  -1
1223  #endif
1224#else
1225  #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1226#endif
1227
1228void os::Linux::fast_thread_clock_init() {
1229  if (!UseLinuxPosixThreadCPUClocks) {
1230    return;
1231  }
1232  clockid_t clockid;
1233  struct timespec tp;
1234  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1235      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1236
1237  // Switch to using fast clocks for thread cpu time if
1238  // the sys_clock_getres() returns 0 error code.
1239  // Note, that some kernels may support the current thread
1240  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1241  // returned by the pthread_getcpuclockid().
1242  // If the fast Posix clocks are supported then the sys_clock_getres()
1243  // must return at least tp.tv_sec == 0 which means a resolution
1244  // better than 1 sec. This is extra check for reliability.
1245
1246  if (pthread_getcpuclockid_func &&
1247      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1248      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1249    _supports_fast_thread_cpu_time = true;
1250    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1251  }
1252}
1253
1254jlong os::javaTimeNanos() {
1255  if (os::supports_monotonic_clock()) {
1256    struct timespec tp;
1257    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1258    assert(status == 0, "gettime error");
1259    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1260    return result;
1261  } else {
1262    timeval time;
1263    int status = gettimeofday(&time, NULL);
1264    assert(status != -1, "linux error");
1265    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1266    return 1000 * usecs;
1267  }
1268}
1269
1270void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1271  if (os::supports_monotonic_clock()) {
1272    info_ptr->max_value = ALL_64_BITS;
1273
1274    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1275    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1276    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1277  } else {
1278    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1279    info_ptr->max_value = ALL_64_BITS;
1280
1281    // gettimeofday is a real time clock so it skips
1282    info_ptr->may_skip_backward = true;
1283    info_ptr->may_skip_forward = true;
1284  }
1285
1286  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1287}
1288
1289// Return the real, user, and system times in seconds from an
1290// arbitrary fixed point in the past.
1291bool os::getTimesSecs(double* process_real_time,
1292                      double* process_user_time,
1293                      double* process_system_time) {
1294  struct tms ticks;
1295  clock_t real_ticks = times(&ticks);
1296
1297  if (real_ticks == (clock_t) (-1)) {
1298    return false;
1299  } else {
1300    double ticks_per_second = (double) clock_tics_per_sec;
1301    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1302    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1303    *process_real_time = ((double) real_ticks) / ticks_per_second;
1304
1305    return true;
1306  }
1307}
1308
1309
1310char * os::local_time_string(char *buf, size_t buflen) {
1311  struct tm t;
1312  time_t long_time;
1313  time(&long_time);
1314  localtime_r(&long_time, &t);
1315  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1316               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1317               t.tm_hour, t.tm_min, t.tm_sec);
1318  return buf;
1319}
1320
1321struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1322  return localtime_r(clock, res);
1323}
1324
1325////////////////////////////////////////////////////////////////////////////////
1326// runtime exit support
1327
1328// Note: os::shutdown() might be called very early during initialization, or
1329// called from signal handler. Before adding something to os::shutdown(), make
1330// sure it is async-safe and can handle partially initialized VM.
1331void os::shutdown() {
1332
1333  // allow PerfMemory to attempt cleanup of any persistent resources
1334  perfMemory_exit();
1335
1336  // needs to remove object in file system
1337  AttachListener::abort();
1338
1339  // flush buffered output, finish log files
1340  ostream_abort();
1341
1342  // Check for abort hook
1343  abort_hook_t abort_hook = Arguments::abort_hook();
1344  if (abort_hook != NULL) {
1345    abort_hook();
1346  }
1347
1348}
1349
1350// Note: os::abort() might be called very early during initialization, or
1351// called from signal handler. Before adding something to os::abort(), make
1352// sure it is async-safe and can handle partially initialized VM.
1353void os::abort(bool dump_core, void* siginfo, const void* context) {
1354  os::shutdown();
1355  if (dump_core) {
1356#ifndef PRODUCT
1357    fdStream out(defaultStream::output_fd());
1358    out.print_raw("Current thread is ");
1359    char buf[16];
1360    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1361    out.print_raw_cr(buf);
1362    out.print_raw_cr("Dumping core ...");
1363#endif
1364    ::abort(); // dump core
1365  }
1366
1367  ::exit(1);
1368}
1369
1370// Die immediately, no exit hook, no abort hook, no cleanup.
1371void os::die() {
1372  ::abort();
1373}
1374
1375
1376// This method is a copy of JDK's sysGetLastErrorString
1377// from src/solaris/hpi/src/system_md.c
1378
1379size_t os::lasterror(char *buf, size_t len) {
1380  if (errno == 0)  return 0;
1381
1382  const char *s = ::strerror(errno);
1383  size_t n = ::strlen(s);
1384  if (n >= len) {
1385    n = len - 1;
1386  }
1387  ::strncpy(buf, s, n);
1388  buf[n] = '\0';
1389  return n;
1390}
1391
1392// thread_id is kernel thread id (similar to Solaris LWP id)
1393intx os::current_thread_id() { return os::Linux::gettid(); }
1394int os::current_process_id() {
1395  return ::getpid();
1396}
1397
1398// DLL functions
1399
1400const char* os::dll_file_extension() { return ".so"; }
1401
1402// This must be hard coded because it's the system's temporary
1403// directory not the java application's temp directory, ala java.io.tmpdir.
1404const char* os::get_temp_directory() { return "/tmp"; }
1405
1406static bool file_exists(const char* filename) {
1407  struct stat statbuf;
1408  if (filename == NULL || strlen(filename) == 0) {
1409    return false;
1410  }
1411  return os::stat(filename, &statbuf) == 0;
1412}
1413
1414bool os::dll_build_name(char* buffer, size_t buflen,
1415                        const char* pname, const char* fname) {
1416  bool retval = false;
1417  // Copied from libhpi
1418  const size_t pnamelen = pname ? strlen(pname) : 0;
1419
1420  // Return error on buffer overflow.
1421  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1422    return retval;
1423  }
1424
1425  if (pnamelen == 0) {
1426    snprintf(buffer, buflen, "lib%s.so", fname);
1427    retval = true;
1428  } else if (strchr(pname, *os::path_separator()) != NULL) {
1429    int n;
1430    char** pelements = split_path(pname, &n);
1431    if (pelements == NULL) {
1432      return false;
1433    }
1434    for (int i = 0; i < n; i++) {
1435      // Really shouldn't be NULL, but check can't hurt
1436      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1437        continue; // skip the empty path values
1438      }
1439      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1440      if (file_exists(buffer)) {
1441        retval = true;
1442        break;
1443      }
1444    }
1445    // release the storage
1446    for (int i = 0; i < n; i++) {
1447      if (pelements[i] != NULL) {
1448        FREE_C_HEAP_ARRAY(char, pelements[i]);
1449      }
1450    }
1451    if (pelements != NULL) {
1452      FREE_C_HEAP_ARRAY(char*, pelements);
1453    }
1454  } else {
1455    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1456    retval = true;
1457  }
1458  return retval;
1459}
1460
1461// check if addr is inside libjvm.so
1462bool os::address_is_in_vm(address addr) {
1463  static address libjvm_base_addr;
1464  Dl_info dlinfo;
1465
1466  if (libjvm_base_addr == NULL) {
1467    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1468      libjvm_base_addr = (address)dlinfo.dli_fbase;
1469    }
1470    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1471  }
1472
1473  if (dladdr((void *)addr, &dlinfo) != 0) {
1474    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1475  }
1476
1477  return false;
1478}
1479
1480bool os::dll_address_to_function_name(address addr, char *buf,
1481                                      int buflen, int *offset,
1482                                      bool demangle) {
1483  // buf is not optional, but offset is optional
1484  assert(buf != NULL, "sanity check");
1485
1486  Dl_info dlinfo;
1487
1488  if (dladdr((void*)addr, &dlinfo) != 0) {
1489    // see if we have a matching symbol
1490    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1491      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1492        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1493      }
1494      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1495      return true;
1496    }
1497    // no matching symbol so try for just file info
1498    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1499      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1500                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1501        return true;
1502      }
1503    }
1504  }
1505
1506  buf[0] = '\0';
1507  if (offset != NULL) *offset = -1;
1508  return false;
1509}
1510
1511struct _address_to_library_name {
1512  address addr;          // input : memory address
1513  size_t  buflen;        //         size of fname
1514  char*   fname;         // output: library name
1515  address base;          //         library base addr
1516};
1517
1518static int address_to_library_name_callback(struct dl_phdr_info *info,
1519                                            size_t size, void *data) {
1520  int i;
1521  bool found = false;
1522  address libbase = NULL;
1523  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1524
1525  // iterate through all loadable segments
1526  for (i = 0; i < info->dlpi_phnum; i++) {
1527    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1528    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1529      // base address of a library is the lowest address of its loaded
1530      // segments.
1531      if (libbase == NULL || libbase > segbase) {
1532        libbase = segbase;
1533      }
1534      // see if 'addr' is within current segment
1535      if (segbase <= d->addr &&
1536          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1537        found = true;
1538      }
1539    }
1540  }
1541
1542  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1543  // so dll_address_to_library_name() can fall through to use dladdr() which
1544  // can figure out executable name from argv[0].
1545  if (found && info->dlpi_name && info->dlpi_name[0]) {
1546    d->base = libbase;
1547    if (d->fname) {
1548      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1549    }
1550    return 1;
1551  }
1552  return 0;
1553}
1554
1555bool os::dll_address_to_library_name(address addr, char* buf,
1556                                     int buflen, int* offset) {
1557  // buf is not optional, but offset is optional
1558  assert(buf != NULL, "sanity check");
1559
1560  Dl_info dlinfo;
1561  struct _address_to_library_name data;
1562
1563  // There is a bug in old glibc dladdr() implementation that it could resolve
1564  // to wrong library name if the .so file has a base address != NULL. Here
1565  // we iterate through the program headers of all loaded libraries to find
1566  // out which library 'addr' really belongs to. This workaround can be
1567  // removed once the minimum requirement for glibc is moved to 2.3.x.
1568  data.addr = addr;
1569  data.fname = buf;
1570  data.buflen = buflen;
1571  data.base = NULL;
1572  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1573
1574  if (rslt) {
1575    // buf already contains library name
1576    if (offset) *offset = addr - data.base;
1577    return true;
1578  }
1579  if (dladdr((void*)addr, &dlinfo) != 0) {
1580    if (dlinfo.dli_fname != NULL) {
1581      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1582    }
1583    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1584      *offset = addr - (address)dlinfo.dli_fbase;
1585    }
1586    return true;
1587  }
1588
1589  buf[0] = '\0';
1590  if (offset) *offset = -1;
1591  return false;
1592}
1593
1594// Loads .dll/.so and
1595// in case of error it checks if .dll/.so was built for the
1596// same architecture as Hotspot is running on
1597
1598
1599// Remember the stack's state. The Linux dynamic linker will change
1600// the stack to 'executable' at most once, so we must safepoint only once.
1601bool os::Linux::_stack_is_executable = false;
1602
1603// VM operation that loads a library.  This is necessary if stack protection
1604// of the Java stacks can be lost during loading the library.  If we
1605// do not stop the Java threads, they can stack overflow before the stacks
1606// are protected again.
1607class VM_LinuxDllLoad: public VM_Operation {
1608 private:
1609  const char *_filename;
1610  char *_ebuf;
1611  int _ebuflen;
1612  void *_lib;
1613 public:
1614  VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1615    _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1616  VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1617  void doit() {
1618    _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1619    os::Linux::_stack_is_executable = true;
1620  }
1621  void* loaded_library() { return _lib; }
1622};
1623
1624void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1625  void * result = NULL;
1626  bool load_attempted = false;
1627
1628  // Check whether the library to load might change execution rights
1629  // of the stack. If they are changed, the protection of the stack
1630  // guard pages will be lost. We need a safepoint to fix this.
1631  //
1632  // See Linux man page execstack(8) for more info.
1633  if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1634    ElfFile ef(filename);
1635    if (!ef.specifies_noexecstack()) {
1636      if (!is_init_completed()) {
1637        os::Linux::_stack_is_executable = true;
1638        // This is OK - No Java threads have been created yet, and hence no
1639        // stack guard pages to fix.
1640        //
1641        // This should happen only when you are building JDK7 using a very
1642        // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1643        //
1644        // Dynamic loader will make all stacks executable after
1645        // this function returns, and will not do that again.
1646        assert(Threads::first() == NULL, "no Java threads should exist yet.");
1647      } else {
1648        warning("You have loaded library %s which might have disabled stack guard. "
1649                "The VM will try to fix the stack guard now.\n"
1650                "It's highly recommended that you fix the library with "
1651                "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1652                filename);
1653
1654        assert(Thread::current()->is_Java_thread(), "must be Java thread");
1655        JavaThread *jt = JavaThread::current();
1656        if (jt->thread_state() != _thread_in_native) {
1657          // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1658          // that requires ExecStack. Cannot enter safe point. Let's give up.
1659          warning("Unable to fix stack guard. Giving up.");
1660        } else {
1661          if (!LoadExecStackDllInVMThread) {
1662            // This is for the case where the DLL has an static
1663            // constructor function that executes JNI code. We cannot
1664            // load such DLLs in the VMThread.
1665            result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1666          }
1667
1668          ThreadInVMfromNative tiv(jt);
1669          debug_only(VMNativeEntryWrapper vew;)
1670
1671          VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1672          VMThread::execute(&op);
1673          if (LoadExecStackDllInVMThread) {
1674            result = op.loaded_library();
1675          }
1676          load_attempted = true;
1677        }
1678      }
1679    }
1680  }
1681
1682  if (!load_attempted) {
1683    result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1684  }
1685
1686  if (result != NULL) {
1687    // Successful loading
1688    return result;
1689  }
1690
1691  Elf32_Ehdr elf_head;
1692  int diag_msg_max_length=ebuflen-strlen(ebuf);
1693  char* diag_msg_buf=ebuf+strlen(ebuf);
1694
1695  if (diag_msg_max_length==0) {
1696    // No more space in ebuf for additional diagnostics message
1697    return NULL;
1698  }
1699
1700
1701  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1702
1703  if (file_descriptor < 0) {
1704    // Can't open library, report dlerror() message
1705    return NULL;
1706  }
1707
1708  bool failed_to_read_elf_head=
1709    (sizeof(elf_head)!=
1710     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1711
1712  ::close(file_descriptor);
1713  if (failed_to_read_elf_head) {
1714    // file i/o error - report dlerror() msg
1715    return NULL;
1716  }
1717
1718  typedef struct {
1719    Elf32_Half  code;         // Actual value as defined in elf.h
1720    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1721    char        elf_class;    // 32 or 64 bit
1722    char        endianess;    // MSB or LSB
1723    char*       name;         // String representation
1724  } arch_t;
1725
1726#ifndef EM_486
1727  #define EM_486          6               /* Intel 80486 */
1728#endif
1729#ifndef EM_AARCH64
1730  #define EM_AARCH64    183               /* ARM AARCH64 */
1731#endif
1732
1733  static const arch_t arch_array[]={
1734    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1735    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1736    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1737    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1738    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1739    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1740    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1741    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1742#if defined(VM_LITTLE_ENDIAN)
1743    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1744#else
1745    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1746#endif
1747    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1748    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1749    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1750    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1751    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1752    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1753    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1754    {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1755  };
1756
1757#if  (defined IA32)
1758  static  Elf32_Half running_arch_code=EM_386;
1759#elif   (defined AMD64)
1760  static  Elf32_Half running_arch_code=EM_X86_64;
1761#elif  (defined IA64)
1762  static  Elf32_Half running_arch_code=EM_IA_64;
1763#elif  (defined __sparc) && (defined _LP64)
1764  static  Elf32_Half running_arch_code=EM_SPARCV9;
1765#elif  (defined __sparc) && (!defined _LP64)
1766  static  Elf32_Half running_arch_code=EM_SPARC;
1767#elif  (defined __powerpc64__)
1768  static  Elf32_Half running_arch_code=EM_PPC64;
1769#elif  (defined __powerpc__)
1770  static  Elf32_Half running_arch_code=EM_PPC;
1771#elif  (defined ARM)
1772  static  Elf32_Half running_arch_code=EM_ARM;
1773#elif  (defined S390)
1774  static  Elf32_Half running_arch_code=EM_S390;
1775#elif  (defined ALPHA)
1776  static  Elf32_Half running_arch_code=EM_ALPHA;
1777#elif  (defined MIPSEL)
1778  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1779#elif  (defined PARISC)
1780  static  Elf32_Half running_arch_code=EM_PARISC;
1781#elif  (defined MIPS)
1782  static  Elf32_Half running_arch_code=EM_MIPS;
1783#elif  (defined M68K)
1784  static  Elf32_Half running_arch_code=EM_68K;
1785#elif  (defined AARCH64)
1786  static  Elf32_Half running_arch_code=EM_AARCH64;
1787#else
1788    #error Method os::dll_load requires that one of following is defined:\
1789         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1790#endif
1791
1792  // Identify compatability class for VM's architecture and library's architecture
1793  // Obtain string descriptions for architectures
1794
1795  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1796  int running_arch_index=-1;
1797
1798  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1799    if (running_arch_code == arch_array[i].code) {
1800      running_arch_index    = i;
1801    }
1802    if (lib_arch.code == arch_array[i].code) {
1803      lib_arch.compat_class = arch_array[i].compat_class;
1804      lib_arch.name         = arch_array[i].name;
1805    }
1806  }
1807
1808  assert(running_arch_index != -1,
1809         "Didn't find running architecture code (running_arch_code) in arch_array");
1810  if (running_arch_index == -1) {
1811    // Even though running architecture detection failed
1812    // we may still continue with reporting dlerror() message
1813    return NULL;
1814  }
1815
1816  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1817    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1818    return NULL;
1819  }
1820
1821#ifndef S390
1822  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1823    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1824    return NULL;
1825  }
1826#endif // !S390
1827
1828  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1829    if (lib_arch.name!=NULL) {
1830      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1831                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1832                 lib_arch.name, arch_array[running_arch_index].name);
1833    } else {
1834      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1835                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1836                 lib_arch.code,
1837                 arch_array[running_arch_index].name);
1838    }
1839  }
1840
1841  return NULL;
1842}
1843
1844void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1845                                int ebuflen) {
1846  void * result = ::dlopen(filename, RTLD_LAZY);
1847  if (result == NULL) {
1848    ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1849    ebuf[ebuflen-1] = '\0';
1850  }
1851  return result;
1852}
1853
1854void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1855                                       int ebuflen) {
1856  void * result = NULL;
1857  if (LoadExecStackDllInVMThread) {
1858    result = dlopen_helper(filename, ebuf, ebuflen);
1859  }
1860
1861  // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1862  // library that requires an executable stack, or which does not have this
1863  // stack attribute set, dlopen changes the stack attribute to executable. The
1864  // read protection of the guard pages gets lost.
1865  //
1866  // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1867  // may have been queued at the same time.
1868
1869  if (!_stack_is_executable) {
1870    JavaThread *jt = Threads::first();
1871
1872    while (jt) {
1873      if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1874          jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1875        if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1876          warning("Attempt to reguard stack yellow zone failed.");
1877        }
1878      }
1879      jt = jt->next();
1880    }
1881  }
1882
1883  return result;
1884}
1885
1886void* os::dll_lookup(void* handle, const char* name) {
1887  void* res = dlsym(handle, name);
1888  return res;
1889}
1890
1891void* os::get_default_process_handle() {
1892  return (void*)::dlopen(NULL, RTLD_LAZY);
1893}
1894
1895static bool _print_ascii_file(const char* filename, outputStream* st) {
1896  int fd = ::open(filename, O_RDONLY);
1897  if (fd == -1) {
1898    return false;
1899  }
1900
1901  char buf[32];
1902  int bytes;
1903  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1904    st->print_raw(buf, bytes);
1905  }
1906
1907  ::close(fd);
1908
1909  return true;
1910}
1911
1912void os::print_dll_info(outputStream *st) {
1913  st->print_cr("Dynamic libraries:");
1914
1915  char fname[32];
1916  pid_t pid = os::Linux::gettid();
1917
1918  jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1919
1920  if (!_print_ascii_file(fname, st)) {
1921    st->print("Can not get library information for pid = %d\n", pid);
1922  }
1923}
1924
1925int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1926  FILE *procmapsFile = NULL;
1927
1928  // Open the procfs maps file for the current process
1929  if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1930    // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1931    char line[PATH_MAX + 100];
1932
1933    // Read line by line from 'file'
1934    while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1935      u8 base, top, offset, inode;
1936      char permissions[5];
1937      char device[6];
1938      char name[PATH_MAX + 1];
1939
1940      // Parse fields from line
1941      sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1942             &base, &top, permissions, &offset, device, &inode, name);
1943
1944      // Filter by device id '00:00' so that we only get file system mapped files.
1945      if (strcmp(device, "00:00") != 0) {
1946
1947        // Call callback with the fields of interest
1948        if(callback(name, (address)base, (address)top, param)) {
1949          // Oops abort, callback aborted
1950          fclose(procmapsFile);
1951          return 1;
1952        }
1953      }
1954    }
1955    fclose(procmapsFile);
1956  }
1957  return 0;
1958}
1959
1960void os::print_os_info_brief(outputStream* st) {
1961  os::Linux::print_distro_info(st);
1962
1963  os::Posix::print_uname_info(st);
1964
1965  os::Linux::print_libversion_info(st);
1966
1967}
1968
1969void os::print_os_info(outputStream* st) {
1970  st->print("OS:");
1971
1972  os::Linux::print_distro_info(st);
1973
1974  os::Posix::print_uname_info(st);
1975
1976  // Print warning if unsafe chroot environment detected
1977  if (unsafe_chroot_detected) {
1978    st->print("WARNING!! ");
1979    st->print_cr("%s", unstable_chroot_error);
1980  }
1981
1982  os::Linux::print_libversion_info(st);
1983
1984  os::Posix::print_rlimit_info(st);
1985
1986  os::Posix::print_load_average(st);
1987
1988  os::Linux::print_full_memory_info(st);
1989}
1990
1991// Try to identify popular distros.
1992// Most Linux distributions have a /etc/XXX-release file, which contains
1993// the OS version string. Newer Linux distributions have a /etc/lsb-release
1994// file that also contains the OS version string. Some have more than one
1995// /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1996// /etc/redhat-release.), so the order is important.
1997// Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1998// their own specific XXX-release file as well as a redhat-release file.
1999// Because of this the XXX-release file needs to be searched for before the
2000// redhat-release file.
2001// Since Red Hat has a lsb-release file that is not very descriptive the
2002// search for redhat-release needs to be before lsb-release.
2003// Since the lsb-release file is the new standard it needs to be searched
2004// before the older style release files.
2005// Searching system-release (Red Hat) and os-release (other Linuxes) are a
2006// next to last resort.  The os-release file is a new standard that contains
2007// distribution information and the system-release file seems to be an old
2008// standard that has been replaced by the lsb-release and os-release files.
2009// Searching for the debian_version file is the last resort.  It contains
2010// an informative string like "6.0.6" or "wheezy/sid". Because of this
2011// "Debian " is printed before the contents of the debian_version file.
2012
2013const char* distro_files[] = {
2014  "/etc/oracle-release",
2015  "/etc/mandriva-release",
2016  "/etc/mandrake-release",
2017  "/etc/sun-release",
2018  "/etc/redhat-release",
2019  "/etc/lsb-release",
2020  "/etc/SuSE-release",
2021  "/etc/turbolinux-release",
2022  "/etc/gentoo-release",
2023  "/etc/ltib-release",
2024  "/etc/angstrom-version",
2025  "/etc/system-release",
2026  "/etc/os-release",
2027  NULL };
2028
2029void os::Linux::print_distro_info(outputStream* st) {
2030  for (int i = 0;; i++) {
2031    const char* file = distro_files[i];
2032    if (file == NULL) {
2033      break;  // done
2034    }
2035    // If file prints, we found it.
2036    if (_print_ascii_file(file, st)) {
2037      return;
2038    }
2039  }
2040
2041  if (file_exists("/etc/debian_version")) {
2042    st->print("Debian ");
2043    _print_ascii_file("/etc/debian_version", st);
2044  } else {
2045    st->print("Linux");
2046  }
2047  st->cr();
2048}
2049
2050static void parse_os_info(char* distro, size_t length, const char* file) {
2051  FILE* fp = fopen(file, "r");
2052  if (fp != NULL) {
2053    char buf[256];
2054    // get last line of the file.
2055    while (fgets(buf, sizeof(buf), fp)) { }
2056    // Edit out extra stuff in expected ubuntu format
2057    if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2058      char* ptr = strstr(buf, "\"");  // the name is in quotes
2059      if (ptr != NULL) {
2060        ptr++; // go beyond first quote
2061        char* nl = strchr(ptr, '\"');
2062        if (nl != NULL) *nl = '\0';
2063        strncpy(distro, ptr, length);
2064      } else {
2065        ptr = strstr(buf, "=");
2066        ptr++; // go beyond equals then
2067        char* nl = strchr(ptr, '\n');
2068        if (nl != NULL) *nl = '\0';
2069        strncpy(distro, ptr, length);
2070      }
2071    } else {
2072      // if not in expected Ubuntu format, print out whole line minus \n
2073      char* nl = strchr(buf, '\n');
2074      if (nl != NULL) *nl = '\0';
2075      strncpy(distro, buf, length);
2076    }
2077    // close distro file
2078    fclose(fp);
2079  }
2080}
2081
2082void os::get_summary_os_info(char* buf, size_t buflen) {
2083  for (int i = 0;; i++) {
2084    const char* file = distro_files[i];
2085    if (file == NULL) {
2086      break; // ran out of distro_files
2087    }
2088    if (file_exists(file)) {
2089      parse_os_info(buf, buflen, file);
2090      return;
2091    }
2092  }
2093  // special case for debian
2094  if (file_exists("/etc/debian_version")) {
2095    strncpy(buf, "Debian ", buflen);
2096    parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2097  } else {
2098    strncpy(buf, "Linux", buflen);
2099  }
2100}
2101
2102void os::Linux::print_libversion_info(outputStream* st) {
2103  // libc, pthread
2104  st->print("libc:");
2105  st->print("%s ", os::Linux::glibc_version());
2106  st->print("%s ", os::Linux::libpthread_version());
2107  st->cr();
2108}
2109
2110void os::Linux::print_full_memory_info(outputStream* st) {
2111  st->print("\n/proc/meminfo:\n");
2112  _print_ascii_file("/proc/meminfo", st);
2113  st->cr();
2114}
2115
2116void os::print_memory_info(outputStream* st) {
2117
2118  st->print("Memory:");
2119  st->print(" %dk page", os::vm_page_size()>>10);
2120
2121  // values in struct sysinfo are "unsigned long"
2122  struct sysinfo si;
2123  sysinfo(&si);
2124
2125  st->print(", physical " UINT64_FORMAT "k",
2126            os::physical_memory() >> 10);
2127  st->print("(" UINT64_FORMAT "k free)",
2128            os::available_memory() >> 10);
2129  st->print(", swap " UINT64_FORMAT "k",
2130            ((jlong)si.totalswap * si.mem_unit) >> 10);
2131  st->print("(" UINT64_FORMAT "k free)",
2132            ((jlong)si.freeswap * si.mem_unit) >> 10);
2133  st->cr();
2134}
2135
2136// Print the first "model name" line and the first "flags" line
2137// that we find and nothing more. We assume "model name" comes
2138// before "flags" so if we find a second "model name", then the
2139// "flags" field is considered missing.
2140static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2141#if defined(IA32) || defined(AMD64)
2142  // Other platforms have less repetitive cpuinfo files
2143  FILE *fp = fopen("/proc/cpuinfo", "r");
2144  if (fp) {
2145    while (!feof(fp)) {
2146      if (fgets(buf, buflen, fp)) {
2147        // Assume model name comes before flags
2148        bool model_name_printed = false;
2149        if (strstr(buf, "model name") != NULL) {
2150          if (!model_name_printed) {
2151            st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2152            st->print_raw(buf);
2153            model_name_printed = true;
2154          } else {
2155            // model name printed but not flags?  Odd, just return
2156            fclose(fp);
2157            return true;
2158          }
2159        }
2160        // print the flags line too
2161        if (strstr(buf, "flags") != NULL) {
2162          st->print_raw(buf);
2163          fclose(fp);
2164          return true;
2165        }
2166      }
2167    }
2168    fclose(fp);
2169  }
2170#endif // x86 platforms
2171  return false;
2172}
2173
2174void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2175  // Only print the model name if the platform provides this as a summary
2176  if (!print_model_name_and_flags(st, buf, buflen)) {
2177    st->print("\n/proc/cpuinfo:\n");
2178    if (!_print_ascii_file("/proc/cpuinfo", st)) {
2179      st->print_cr("  <Not Available>");
2180    }
2181  }
2182}
2183
2184#if defined(AMD64) || defined(IA32) || defined(X32)
2185const char* search_string = "model name";
2186#elif defined(SPARC)
2187const char* search_string = "cpu";
2188#elif defined(PPC64)
2189const char* search_string = "cpu";
2190#else
2191const char* search_string = "Processor";
2192#endif
2193
2194// Parses the cpuinfo file for string representing the model name.
2195void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2196  FILE* fp = fopen("/proc/cpuinfo", "r");
2197  if (fp != NULL) {
2198    while (!feof(fp)) {
2199      char buf[256];
2200      if (fgets(buf, sizeof(buf), fp)) {
2201        char* start = strstr(buf, search_string);
2202        if (start != NULL) {
2203          char *ptr = start + strlen(search_string);
2204          char *end = buf + strlen(buf);
2205          while (ptr != end) {
2206             // skip whitespace and colon for the rest of the name.
2207             if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2208               break;
2209             }
2210             ptr++;
2211          }
2212          if (ptr != end) {
2213            // reasonable string, get rid of newline and keep the rest
2214            char* nl = strchr(buf, '\n');
2215            if (nl != NULL) *nl = '\0';
2216            strncpy(cpuinfo, ptr, length);
2217            fclose(fp);
2218            return;
2219          }
2220        }
2221      }
2222    }
2223    fclose(fp);
2224  }
2225  // cpuinfo not found or parsing failed, just print generic string.  The entire
2226  // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2227#if defined(AMD64)
2228  strncpy(cpuinfo, "x86_64", length);
2229#elif defined(IA32)
2230  strncpy(cpuinfo, "x86_32", length);
2231#elif defined(IA64)
2232  strncpy(cpuinfo, "IA64", length);
2233#elif defined(SPARC)
2234  strncpy(cpuinfo, "sparcv9", length);
2235#elif defined(AARCH64)
2236  strncpy(cpuinfo, "AArch64", length);
2237#elif defined(ARM)
2238  strncpy(cpuinfo, "ARM", length);
2239#elif defined(PPC)
2240  strncpy(cpuinfo, "PPC64", length);
2241#elif defined(ZERO_LIBARCH)
2242  strncpy(cpuinfo, ZERO_LIBARCH, length);
2243#else
2244  strncpy(cpuinfo, "unknown", length);
2245#endif
2246}
2247
2248static void print_signal_handler(outputStream* st, int sig,
2249                                 char* buf, size_t buflen);
2250
2251void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2252  st->print_cr("Signal Handlers:");
2253  print_signal_handler(st, SIGSEGV, buf, buflen);
2254  print_signal_handler(st, SIGBUS , buf, buflen);
2255  print_signal_handler(st, SIGFPE , buf, buflen);
2256  print_signal_handler(st, SIGPIPE, buf, buflen);
2257  print_signal_handler(st, SIGXFSZ, buf, buflen);
2258  print_signal_handler(st, SIGILL , buf, buflen);
2259  print_signal_handler(st, SR_signum, buf, buflen);
2260  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2261  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2262  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2263  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2264#if defined(PPC64)
2265  print_signal_handler(st, SIGTRAP, buf, buflen);
2266#endif
2267}
2268
2269static char saved_jvm_path[MAXPATHLEN] = {0};
2270
2271// Find the full path to the current module, libjvm.so
2272void os::jvm_path(char *buf, jint buflen) {
2273  // Error checking.
2274  if (buflen < MAXPATHLEN) {
2275    assert(false, "must use a large-enough buffer");
2276    buf[0] = '\0';
2277    return;
2278  }
2279  // Lazy resolve the path to current module.
2280  if (saved_jvm_path[0] != 0) {
2281    strcpy(buf, saved_jvm_path);
2282    return;
2283  }
2284
2285  char dli_fname[MAXPATHLEN];
2286  bool ret = dll_address_to_library_name(
2287                                         CAST_FROM_FN_PTR(address, os::jvm_path),
2288                                         dli_fname, sizeof(dli_fname), NULL);
2289  assert(ret, "cannot locate libjvm");
2290  char *rp = NULL;
2291  if (ret && dli_fname[0] != '\0') {
2292    rp = realpath(dli_fname, buf);
2293  }
2294  if (rp == NULL) {
2295    return;
2296  }
2297
2298  if (Arguments::sun_java_launcher_is_altjvm()) {
2299    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2300    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2301    // If "/jre/lib/" appears at the right place in the string, then
2302    // assume we are installed in a JDK and we're done. Otherwise, check
2303    // for a JAVA_HOME environment variable and fix up the path so it
2304    // looks like libjvm.so is installed there (append a fake suffix
2305    // hotspot/libjvm.so).
2306    const char *p = buf + strlen(buf) - 1;
2307    for (int count = 0; p > buf && count < 5; ++count) {
2308      for (--p; p > buf && *p != '/'; --p)
2309        /* empty */ ;
2310    }
2311
2312    if (strncmp(p, "/jre/lib/", 9) != 0) {
2313      // Look for JAVA_HOME in the environment.
2314      char* java_home_var = ::getenv("JAVA_HOME");
2315      if (java_home_var != NULL && java_home_var[0] != 0) {
2316        char* jrelib_p;
2317        int len;
2318
2319        // Check the current module name "libjvm.so".
2320        p = strrchr(buf, '/');
2321        if (p == NULL) {
2322          return;
2323        }
2324        assert(strstr(p, "/libjvm") == p, "invalid library name");
2325
2326        rp = realpath(java_home_var, buf);
2327        if (rp == NULL) {
2328          return;
2329        }
2330
2331        // determine if this is a legacy image or modules image
2332        // modules image doesn't have "jre" subdirectory
2333        len = strlen(buf);
2334        assert(len < buflen, "Ran out of buffer room");
2335        jrelib_p = buf + len;
2336        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2337        if (0 != access(buf, F_OK)) {
2338          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2339        }
2340
2341        if (0 == access(buf, F_OK)) {
2342          // Use current module name "libjvm.so"
2343          len = strlen(buf);
2344          snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2345        } else {
2346          // Go back to path of .so
2347          rp = realpath(dli_fname, buf);
2348          if (rp == NULL) {
2349            return;
2350          }
2351        }
2352      }
2353    }
2354  }
2355
2356  strncpy(saved_jvm_path, buf, MAXPATHLEN);
2357  saved_jvm_path[MAXPATHLEN - 1] = '\0';
2358}
2359
2360void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2361  // no prefix required, not even "_"
2362}
2363
2364void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2365  // no suffix required
2366}
2367
2368////////////////////////////////////////////////////////////////////////////////
2369// sun.misc.Signal support
2370
2371static volatile jint sigint_count = 0;
2372
2373static void UserHandler(int sig, void *siginfo, void *context) {
2374  // 4511530 - sem_post is serialized and handled by the manager thread. When
2375  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2376  // don't want to flood the manager thread with sem_post requests.
2377  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2378    return;
2379  }
2380
2381  // Ctrl-C is pressed during error reporting, likely because the error
2382  // handler fails to abort. Let VM die immediately.
2383  if (sig == SIGINT && is_error_reported()) {
2384    os::die();
2385  }
2386
2387  os::signal_notify(sig);
2388}
2389
2390void* os::user_handler() {
2391  return CAST_FROM_FN_PTR(void*, UserHandler);
2392}
2393
2394struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2395  struct timespec ts;
2396  // Semaphore's are always associated with CLOCK_REALTIME
2397  os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2398  // see unpackTime for discussion on overflow checking
2399  if (sec >= MAX_SECS) {
2400    ts.tv_sec += MAX_SECS;
2401    ts.tv_nsec = 0;
2402  } else {
2403    ts.tv_sec += sec;
2404    ts.tv_nsec += nsec;
2405    if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2406      ts.tv_nsec -= NANOSECS_PER_SEC;
2407      ++ts.tv_sec; // note: this must be <= max_secs
2408    }
2409  }
2410
2411  return ts;
2412}
2413
2414extern "C" {
2415  typedef void (*sa_handler_t)(int);
2416  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2417}
2418
2419void* os::signal(int signal_number, void* handler) {
2420  struct sigaction sigAct, oldSigAct;
2421
2422  sigfillset(&(sigAct.sa_mask));
2423  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2424  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2425
2426  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2427    // -1 means registration failed
2428    return (void *)-1;
2429  }
2430
2431  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2432}
2433
2434void os::signal_raise(int signal_number) {
2435  ::raise(signal_number);
2436}
2437
2438// The following code is moved from os.cpp for making this
2439// code platform specific, which it is by its very nature.
2440
2441// Will be modified when max signal is changed to be dynamic
2442int os::sigexitnum_pd() {
2443  return NSIG;
2444}
2445
2446// a counter for each possible signal value
2447static volatile jint pending_signals[NSIG+1] = { 0 };
2448
2449// Linux(POSIX) specific hand shaking semaphore.
2450static sem_t sig_sem;
2451static PosixSemaphore sr_semaphore;
2452
2453void os::signal_init_pd() {
2454  // Initialize signal structures
2455  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2456
2457  // Initialize signal semaphore
2458  ::sem_init(&sig_sem, 0, 0);
2459}
2460
2461void os::signal_notify(int sig) {
2462  Atomic::inc(&pending_signals[sig]);
2463  ::sem_post(&sig_sem);
2464}
2465
2466static int check_pending_signals(bool wait) {
2467  Atomic::store(0, &sigint_count);
2468  for (;;) {
2469    for (int i = 0; i < NSIG + 1; i++) {
2470      jint n = pending_signals[i];
2471      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2472        return i;
2473      }
2474    }
2475    if (!wait) {
2476      return -1;
2477    }
2478    JavaThread *thread = JavaThread::current();
2479    ThreadBlockInVM tbivm(thread);
2480
2481    bool threadIsSuspended;
2482    do {
2483      thread->set_suspend_equivalent();
2484      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2485      ::sem_wait(&sig_sem);
2486
2487      // were we externally suspended while we were waiting?
2488      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2489      if (threadIsSuspended) {
2490        // The semaphore has been incremented, but while we were waiting
2491        // another thread suspended us. We don't want to continue running
2492        // while suspended because that would surprise the thread that
2493        // suspended us.
2494        ::sem_post(&sig_sem);
2495
2496        thread->java_suspend_self();
2497      }
2498    } while (threadIsSuspended);
2499  }
2500}
2501
2502int os::signal_lookup() {
2503  return check_pending_signals(false);
2504}
2505
2506int os::signal_wait() {
2507  return check_pending_signals(true);
2508}
2509
2510////////////////////////////////////////////////////////////////////////////////
2511// Virtual Memory
2512
2513int os::vm_page_size() {
2514  // Seems redundant as all get out
2515  assert(os::Linux::page_size() != -1, "must call os::init");
2516  return os::Linux::page_size();
2517}
2518
2519// Solaris allocates memory by pages.
2520int os::vm_allocation_granularity() {
2521  assert(os::Linux::page_size() != -1, "must call os::init");
2522  return os::Linux::page_size();
2523}
2524
2525// Rationale behind this function:
2526//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2527//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2528//  samples for JITted code. Here we create private executable mapping over the code cache
2529//  and then we can use standard (well, almost, as mapping can change) way to provide
2530//  info for the reporting script by storing timestamp and location of symbol
2531void linux_wrap_code(char* base, size_t size) {
2532  static volatile jint cnt = 0;
2533
2534  if (!UseOprofile) {
2535    return;
2536  }
2537
2538  char buf[PATH_MAX+1];
2539  int num = Atomic::add(1, &cnt);
2540
2541  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2542           os::get_temp_directory(), os::current_process_id(), num);
2543  unlink(buf);
2544
2545  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2546
2547  if (fd != -1) {
2548    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2549    if (rv != (off_t)-1) {
2550      if (::write(fd, "", 1) == 1) {
2551        mmap(base, size,
2552             PROT_READ|PROT_WRITE|PROT_EXEC,
2553             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2554      }
2555    }
2556    ::close(fd);
2557    unlink(buf);
2558  }
2559}
2560
2561static bool recoverable_mmap_error(int err) {
2562  // See if the error is one we can let the caller handle. This
2563  // list of errno values comes from JBS-6843484. I can't find a
2564  // Linux man page that documents this specific set of errno
2565  // values so while this list currently matches Solaris, it may
2566  // change as we gain experience with this failure mode.
2567  switch (err) {
2568  case EBADF:
2569  case EINVAL:
2570  case ENOTSUP:
2571    // let the caller deal with these errors
2572    return true;
2573
2574  default:
2575    // Any remaining errors on this OS can cause our reserved mapping
2576    // to be lost. That can cause confusion where different data
2577    // structures think they have the same memory mapped. The worst
2578    // scenario is if both the VM and a library think they have the
2579    // same memory mapped.
2580    return false;
2581  }
2582}
2583
2584static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2585                                    int err) {
2586  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2587          ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2588          strerror(err), err);
2589}
2590
2591static void warn_fail_commit_memory(char* addr, size_t size,
2592                                    size_t alignment_hint, bool exec,
2593                                    int err) {
2594  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2595          ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2596          alignment_hint, exec, strerror(err), err);
2597}
2598
2599// NOTE: Linux kernel does not really reserve the pages for us.
2600//       All it does is to check if there are enough free pages
2601//       left at the time of mmap(). This could be a potential
2602//       problem.
2603int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2604  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2605  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2606                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2607  if (res != (uintptr_t) MAP_FAILED) {
2608    if (UseNUMAInterleaving) {
2609      numa_make_global(addr, size);
2610    }
2611    return 0;
2612  }
2613
2614  int err = errno;  // save errno from mmap() call above
2615
2616  if (!recoverable_mmap_error(err)) {
2617    warn_fail_commit_memory(addr, size, exec, err);
2618    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2619  }
2620
2621  return err;
2622}
2623
2624bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2625  return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2626}
2627
2628void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2629                                  const char* mesg) {
2630  assert(mesg != NULL, "mesg must be specified");
2631  int err = os::Linux::commit_memory_impl(addr, size, exec);
2632  if (err != 0) {
2633    // the caller wants all commit errors to exit with the specified mesg:
2634    warn_fail_commit_memory(addr, size, exec, err);
2635    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2636  }
2637}
2638
2639// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2640#ifndef MAP_HUGETLB
2641  #define MAP_HUGETLB 0x40000
2642#endif
2643
2644// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2645#ifndef MADV_HUGEPAGE
2646  #define MADV_HUGEPAGE 14
2647#endif
2648
2649int os::Linux::commit_memory_impl(char* addr, size_t size,
2650                                  size_t alignment_hint, bool exec) {
2651  int err = os::Linux::commit_memory_impl(addr, size, exec);
2652  if (err == 0) {
2653    realign_memory(addr, size, alignment_hint);
2654  }
2655  return err;
2656}
2657
2658bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2659                          bool exec) {
2660  return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2661}
2662
2663void os::pd_commit_memory_or_exit(char* addr, size_t size,
2664                                  size_t alignment_hint, bool exec,
2665                                  const char* mesg) {
2666  assert(mesg != NULL, "mesg must be specified");
2667  int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2668  if (err != 0) {
2669    // the caller wants all commit errors to exit with the specified mesg:
2670    warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2671    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2672  }
2673}
2674
2675void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2676  if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2677    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2678    // be supported or the memory may already be backed by huge pages.
2679    ::madvise(addr, bytes, MADV_HUGEPAGE);
2680  }
2681}
2682
2683void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2684  // This method works by doing an mmap over an existing mmaping and effectively discarding
2685  // the existing pages. However it won't work for SHM-based large pages that cannot be
2686  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2687  // small pages on top of the SHM segment. This method always works for small pages, so we
2688  // allow that in any case.
2689  if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2690    commit_memory(addr, bytes, alignment_hint, !ExecMem);
2691  }
2692}
2693
2694void os::numa_make_global(char *addr, size_t bytes) {
2695  Linux::numa_interleave_memory(addr, bytes);
2696}
2697
2698// Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2699// bind policy to MPOL_PREFERRED for the current thread.
2700#define USE_MPOL_PREFERRED 0
2701
2702void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2703  // To make NUMA and large pages more robust when both enabled, we need to ease
2704  // the requirements on where the memory should be allocated. MPOL_BIND is the
2705  // default policy and it will force memory to be allocated on the specified
2706  // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2707  // the specified node, but will not force it. Using this policy will prevent
2708  // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2709  // free large pages.
2710  Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2711  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2712}
2713
2714bool os::numa_topology_changed() { return false; }
2715
2716size_t os::numa_get_groups_num() {
2717  int max_node = Linux::numa_max_node();
2718  return max_node > 0 ? max_node + 1 : 1;
2719}
2720
2721int os::numa_get_group_id() {
2722  int cpu_id = Linux::sched_getcpu();
2723  if (cpu_id != -1) {
2724    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2725    if (lgrp_id != -1) {
2726      return lgrp_id;
2727    }
2728  }
2729  return 0;
2730}
2731
2732size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2733  for (size_t i = 0; i < size; i++) {
2734    ids[i] = i;
2735  }
2736  return size;
2737}
2738
2739bool os::get_page_info(char *start, page_info* info) {
2740  return false;
2741}
2742
2743char *os::scan_pages(char *start, char* end, page_info* page_expected,
2744                     page_info* page_found) {
2745  return end;
2746}
2747
2748
2749int os::Linux::sched_getcpu_syscall(void) {
2750  unsigned int cpu = 0;
2751  int retval = -1;
2752
2753#if defined(IA32)
2754  #ifndef SYS_getcpu
2755    #define SYS_getcpu 318
2756  #endif
2757  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2758#elif defined(AMD64)
2759// Unfortunately we have to bring all these macros here from vsyscall.h
2760// to be able to compile on old linuxes.
2761  #define __NR_vgetcpu 2
2762  #define VSYSCALL_START (-10UL << 20)
2763  #define VSYSCALL_SIZE 1024
2764  #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2765  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2766  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2767  retval = vgetcpu(&cpu, NULL, NULL);
2768#endif
2769
2770  return (retval == -1) ? retval : cpu;
2771}
2772
2773// Something to do with the numa-aware allocator needs these symbols
2774extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2775extern "C" JNIEXPORT void numa_error(char *where) { }
2776
2777
2778// If we are running with libnuma version > 2, then we should
2779// be trying to use symbols with versions 1.1
2780// If we are running with earlier version, which did not have symbol versions,
2781// we should use the base version.
2782void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2783  void *f = dlvsym(handle, name, "libnuma_1.1");
2784  if (f == NULL) {
2785    f = dlsym(handle, name);
2786  }
2787  return f;
2788}
2789
2790bool os::Linux::libnuma_init() {
2791  // sched_getcpu() should be in libc.
2792  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2793                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2794
2795  // If it's not, try a direct syscall.
2796  if (sched_getcpu() == -1) {
2797    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2798                                    (void*)&sched_getcpu_syscall));
2799  }
2800
2801  if (sched_getcpu() != -1) { // Does it work?
2802    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2803    if (handle != NULL) {
2804      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2805                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2806      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2807                                       libnuma_dlsym(handle, "numa_max_node")));
2808      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2809                                        libnuma_dlsym(handle, "numa_available")));
2810      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2811                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2812      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2813                                                libnuma_dlsym(handle, "numa_interleave_memory")));
2814      set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2815                                              libnuma_dlsym(handle, "numa_set_bind_policy")));
2816
2817
2818      if (numa_available() != -1) {
2819        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2820        // Create a cpu -> node mapping
2821        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2822        rebuild_cpu_to_node_map();
2823        return true;
2824      }
2825    }
2826  }
2827  return false;
2828}
2829
2830// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2831// The table is later used in get_node_by_cpu().
2832void os::Linux::rebuild_cpu_to_node_map() {
2833  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2834                              // in libnuma (possible values are starting from 16,
2835                              // and continuing up with every other power of 2, but less
2836                              // than the maximum number of CPUs supported by kernel), and
2837                              // is a subject to change (in libnuma version 2 the requirements
2838                              // are more reasonable) we'll just hardcode the number they use
2839                              // in the library.
2840  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2841
2842  size_t cpu_num = os::active_processor_count();
2843  size_t cpu_map_size = NCPUS / BitsPerCLong;
2844  size_t cpu_map_valid_size =
2845    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2846
2847  cpu_to_node()->clear();
2848  cpu_to_node()->at_grow(cpu_num - 1);
2849  size_t node_num = numa_get_groups_num();
2850
2851  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2852  for (size_t i = 0; i < node_num; i++) {
2853    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2854      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2855        if (cpu_map[j] != 0) {
2856          for (size_t k = 0; k < BitsPerCLong; k++) {
2857            if (cpu_map[j] & (1UL << k)) {
2858              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2859            }
2860          }
2861        }
2862      }
2863    }
2864  }
2865  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2866}
2867
2868int os::Linux::get_node_by_cpu(int cpu_id) {
2869  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2870    return cpu_to_node()->at(cpu_id);
2871  }
2872  return -1;
2873}
2874
2875GrowableArray<int>* os::Linux::_cpu_to_node;
2876os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2877os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2878os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2879os::Linux::numa_available_func_t os::Linux::_numa_available;
2880os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2881os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2882os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2883unsigned long* os::Linux::_numa_all_nodes;
2884
2885bool os::pd_uncommit_memory(char* addr, size_t size) {
2886  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2887                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2888  return res  != (uintptr_t) MAP_FAILED;
2889}
2890
2891static address get_stack_commited_bottom(address bottom, size_t size) {
2892  address nbot = bottom;
2893  address ntop = bottom + size;
2894
2895  size_t page_sz = os::vm_page_size();
2896  unsigned pages = size / page_sz;
2897
2898  unsigned char vec[1];
2899  unsigned imin = 1, imax = pages + 1, imid;
2900  int mincore_return_value = 0;
2901
2902  assert(imin <= imax, "Unexpected page size");
2903
2904  while (imin < imax) {
2905    imid = (imax + imin) / 2;
2906    nbot = ntop - (imid * page_sz);
2907
2908    // Use a trick with mincore to check whether the page is mapped or not.
2909    // mincore sets vec to 1 if page resides in memory and to 0 if page
2910    // is swapped output but if page we are asking for is unmapped
2911    // it returns -1,ENOMEM
2912    mincore_return_value = mincore(nbot, page_sz, vec);
2913
2914    if (mincore_return_value == -1) {
2915      // Page is not mapped go up
2916      // to find first mapped page
2917      if (errno != EAGAIN) {
2918        assert(errno == ENOMEM, "Unexpected mincore errno");
2919        imax = imid;
2920      }
2921    } else {
2922      // Page is mapped go down
2923      // to find first not mapped page
2924      imin = imid + 1;
2925    }
2926  }
2927
2928  nbot = nbot + page_sz;
2929
2930  // Adjust stack bottom one page up if last checked page is not mapped
2931  if (mincore_return_value == -1) {
2932    nbot = nbot + page_sz;
2933  }
2934
2935  return nbot;
2936}
2937
2938
2939// Linux uses a growable mapping for the stack, and if the mapping for
2940// the stack guard pages is not removed when we detach a thread the
2941// stack cannot grow beyond the pages where the stack guard was
2942// mapped.  If at some point later in the process the stack expands to
2943// that point, the Linux kernel cannot expand the stack any further
2944// because the guard pages are in the way, and a segfault occurs.
2945//
2946// However, it's essential not to split the stack region by unmapping
2947// a region (leaving a hole) that's already part of the stack mapping,
2948// so if the stack mapping has already grown beyond the guard pages at
2949// the time we create them, we have to truncate the stack mapping.
2950// So, we need to know the extent of the stack mapping when
2951// create_stack_guard_pages() is called.
2952
2953// We only need this for stacks that are growable: at the time of
2954// writing thread stacks don't use growable mappings (i.e. those
2955// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2956// only applies to the main thread.
2957
2958// If the (growable) stack mapping already extends beyond the point
2959// where we're going to put our guard pages, truncate the mapping at
2960// that point by munmap()ping it.  This ensures that when we later
2961// munmap() the guard pages we don't leave a hole in the stack
2962// mapping. This only affects the main/initial thread
2963
2964bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2965  if (os::Linux::is_initial_thread()) {
2966    // As we manually grow stack up to bottom inside create_attached_thread(),
2967    // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2968    // we don't need to do anything special.
2969    // Check it first, before calling heavy function.
2970    uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2971    unsigned char vec[1];
2972
2973    if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2974      // Fallback to slow path on all errors, including EAGAIN
2975      stack_extent = (uintptr_t) get_stack_commited_bottom(
2976                                                           os::Linux::initial_thread_stack_bottom(),
2977                                                           (size_t)addr - stack_extent);
2978    }
2979
2980    if (stack_extent < (uintptr_t)addr) {
2981      ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2982    }
2983  }
2984
2985  return os::commit_memory(addr, size, !ExecMem);
2986}
2987
2988// If this is a growable mapping, remove the guard pages entirely by
2989// munmap()ping them.  If not, just call uncommit_memory(). This only
2990// affects the main/initial thread, but guard against future OS changes
2991// It's safe to always unmap guard pages for initial thread because we
2992// always place it right after end of the mapped region
2993
2994bool os::remove_stack_guard_pages(char* addr, size_t size) {
2995  uintptr_t stack_extent, stack_base;
2996
2997  if (os::Linux::is_initial_thread()) {
2998    return ::munmap(addr, size) == 0;
2999  }
3000
3001  return os::uncommit_memory(addr, size);
3002}
3003
3004// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3005// at 'requested_addr'. If there are existing memory mappings at the same
3006// location, however, they will be overwritten. If 'fixed' is false,
3007// 'requested_addr' is only treated as a hint, the return value may or
3008// may not start from the requested address. Unlike Linux mmap(), this
3009// function returns NULL to indicate failure.
3010static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3011  char * addr;
3012  int flags;
3013
3014  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3015  if (fixed) {
3016    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3017    flags |= MAP_FIXED;
3018  }
3019
3020  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3021  // touch an uncommitted page. Otherwise, the read/write might
3022  // succeed if we have enough swap space to back the physical page.
3023  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3024                       flags, -1, 0);
3025
3026  return addr == MAP_FAILED ? NULL : addr;
3027}
3028
3029static int anon_munmap(char * addr, size_t size) {
3030  return ::munmap(addr, size) == 0;
3031}
3032
3033char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3034                            size_t alignment_hint) {
3035  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3036}
3037
3038bool os::pd_release_memory(char* addr, size_t size) {
3039  return anon_munmap(addr, size);
3040}
3041
3042static bool linux_mprotect(char* addr, size_t size, int prot) {
3043  // Linux wants the mprotect address argument to be page aligned.
3044  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3045
3046  // According to SUSv3, mprotect() should only be used with mappings
3047  // established by mmap(), and mmap() always maps whole pages. Unaligned
3048  // 'addr' likely indicates problem in the VM (e.g. trying to change
3049  // protection of malloc'ed or statically allocated memory). Check the
3050  // caller if you hit this assert.
3051  assert(addr == bottom, "sanity check");
3052
3053  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3054  return ::mprotect(bottom, size, prot) == 0;
3055}
3056
3057// Set protections specified
3058bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3059                        bool is_committed) {
3060  unsigned int p = 0;
3061  switch (prot) {
3062  case MEM_PROT_NONE: p = PROT_NONE; break;
3063  case MEM_PROT_READ: p = PROT_READ; break;
3064  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3065  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3066  default:
3067    ShouldNotReachHere();
3068  }
3069  // is_committed is unused.
3070  return linux_mprotect(addr, bytes, p);
3071}
3072
3073bool os::guard_memory(char* addr, size_t size) {
3074  return linux_mprotect(addr, size, PROT_NONE);
3075}
3076
3077bool os::unguard_memory(char* addr, size_t size) {
3078  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3079}
3080
3081bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3082                                                    size_t page_size) {
3083  bool result = false;
3084  void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3085                 MAP_ANONYMOUS|MAP_PRIVATE,
3086                 -1, 0);
3087  if (p != MAP_FAILED) {
3088    void *aligned_p = align_ptr_up(p, page_size);
3089
3090    result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3091
3092    munmap(p, page_size * 2);
3093  }
3094
3095  if (warn && !result) {
3096    warning("TransparentHugePages is not supported by the operating system.");
3097  }
3098
3099  return result;
3100}
3101
3102bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3103  bool result = false;
3104  void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3105                 MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3106                 -1, 0);
3107
3108  if (p != MAP_FAILED) {
3109    // We don't know if this really is a huge page or not.
3110    FILE *fp = fopen("/proc/self/maps", "r");
3111    if (fp) {
3112      while (!feof(fp)) {
3113        char chars[257];
3114        long x = 0;
3115        if (fgets(chars, sizeof(chars), fp)) {
3116          if (sscanf(chars, "%lx-%*x", &x) == 1
3117              && x == (long)p) {
3118            if (strstr (chars, "hugepage")) {
3119              result = true;
3120              break;
3121            }
3122          }
3123        }
3124      }
3125      fclose(fp);
3126    }
3127    munmap(p, page_size);
3128  }
3129
3130  if (warn && !result) {
3131    warning("HugeTLBFS is not supported by the operating system.");
3132  }
3133
3134  return result;
3135}
3136
3137// Set the coredump_filter bits to include largepages in core dump (bit 6)
3138//
3139// From the coredump_filter documentation:
3140//
3141// - (bit 0) anonymous private memory
3142// - (bit 1) anonymous shared memory
3143// - (bit 2) file-backed private memory
3144// - (bit 3) file-backed shared memory
3145// - (bit 4) ELF header pages in file-backed private memory areas (it is
3146//           effective only if the bit 2 is cleared)
3147// - (bit 5) hugetlb private memory
3148// - (bit 6) hugetlb shared memory
3149//
3150static void set_coredump_filter(void) {
3151  FILE *f;
3152  long cdm;
3153
3154  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3155    return;
3156  }
3157
3158  if (fscanf(f, "%lx", &cdm) != 1) {
3159    fclose(f);
3160    return;
3161  }
3162
3163  rewind(f);
3164
3165  if ((cdm & LARGEPAGES_BIT) == 0) {
3166    cdm |= LARGEPAGES_BIT;
3167    fprintf(f, "%#lx", cdm);
3168  }
3169
3170  fclose(f);
3171}
3172
3173// Large page support
3174
3175static size_t _large_page_size = 0;
3176
3177size_t os::Linux::find_large_page_size() {
3178  size_t large_page_size = 0;
3179
3180  // large_page_size on Linux is used to round up heap size. x86 uses either
3181  // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3182  // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3183  // page as large as 256M.
3184  //
3185  // Here we try to figure out page size by parsing /proc/meminfo and looking
3186  // for a line with the following format:
3187  //    Hugepagesize:     2048 kB
3188  //
3189  // If we can't determine the value (e.g. /proc is not mounted, or the text
3190  // format has been changed), we'll use the largest page size supported by
3191  // the processor.
3192
3193#ifndef ZERO
3194  large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3195                     ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3196#endif // ZERO
3197
3198  FILE *fp = fopen("/proc/meminfo", "r");
3199  if (fp) {
3200    while (!feof(fp)) {
3201      int x = 0;
3202      char buf[16];
3203      if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3204        if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3205          large_page_size = x * K;
3206          break;
3207        }
3208      } else {
3209        // skip to next line
3210        for (;;) {
3211          int ch = fgetc(fp);
3212          if (ch == EOF || ch == (int)'\n') break;
3213        }
3214      }
3215    }
3216    fclose(fp);
3217  }
3218
3219  if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3220    warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3221            SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3222            proper_unit_for_byte_size(large_page_size));
3223  }
3224
3225  return large_page_size;
3226}
3227
3228size_t os::Linux::setup_large_page_size() {
3229  _large_page_size = Linux::find_large_page_size();
3230  const size_t default_page_size = (size_t)Linux::page_size();
3231  if (_large_page_size > default_page_size) {
3232    _page_sizes[0] = _large_page_size;
3233    _page_sizes[1] = default_page_size;
3234    _page_sizes[2] = 0;
3235  }
3236
3237  return _large_page_size;
3238}
3239
3240bool os::Linux::setup_large_page_type(size_t page_size) {
3241  if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3242      FLAG_IS_DEFAULT(UseSHM) &&
3243      FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3244
3245    // The type of large pages has not been specified by the user.
3246
3247    // Try UseHugeTLBFS and then UseSHM.
3248    UseHugeTLBFS = UseSHM = true;
3249
3250    // Don't try UseTransparentHugePages since there are known
3251    // performance issues with it turned on. This might change in the future.
3252    UseTransparentHugePages = false;
3253  }
3254
3255  if (UseTransparentHugePages) {
3256    bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3257    if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3258      UseHugeTLBFS = false;
3259      UseSHM = false;
3260      return true;
3261    }
3262    UseTransparentHugePages = false;
3263  }
3264
3265  if (UseHugeTLBFS) {
3266    bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3267    if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3268      UseSHM = false;
3269      return true;
3270    }
3271    UseHugeTLBFS = false;
3272  }
3273
3274  return UseSHM;
3275}
3276
3277void os::large_page_init() {
3278  if (!UseLargePages &&
3279      !UseTransparentHugePages &&
3280      !UseHugeTLBFS &&
3281      !UseSHM) {
3282    // Not using large pages.
3283    return;
3284  }
3285
3286  if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3287    // The user explicitly turned off large pages.
3288    // Ignore the rest of the large pages flags.
3289    UseTransparentHugePages = false;
3290    UseHugeTLBFS = false;
3291    UseSHM = false;
3292    return;
3293  }
3294
3295  size_t large_page_size = Linux::setup_large_page_size();
3296  UseLargePages          = Linux::setup_large_page_type(large_page_size);
3297
3298  set_coredump_filter();
3299}
3300
3301#ifndef SHM_HUGETLB
3302  #define SHM_HUGETLB 04000
3303#endif
3304
3305char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3306                                            char* req_addr, bool exec) {
3307  // "exec" is passed in but not used.  Creating the shared image for
3308  // the code cache doesn't have an SHM_X executable permission to check.
3309  assert(UseLargePages && UseSHM, "only for SHM large pages");
3310  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3311
3312  if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3313    return NULL; // Fallback to small pages.
3314  }
3315
3316  key_t key = IPC_PRIVATE;
3317  char *addr;
3318
3319  bool warn_on_failure = UseLargePages &&
3320                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3321                         !FLAG_IS_DEFAULT(UseSHM) ||
3322                         !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3323  char msg[128];
3324
3325  // Create a large shared memory region to attach to based on size.
3326  // Currently, size is the total size of the heap
3327  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3328  if (shmid == -1) {
3329    // Possible reasons for shmget failure:
3330    // 1. shmmax is too small for Java heap.
3331    //    > check shmmax value: cat /proc/sys/kernel/shmmax
3332    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3333    // 2. not enough large page memory.
3334    //    > check available large pages: cat /proc/meminfo
3335    //    > increase amount of large pages:
3336    //          echo new_value > /proc/sys/vm/nr_hugepages
3337    //      Note 1: different Linux may use different name for this property,
3338    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3339    //      Note 2: it's possible there's enough physical memory available but
3340    //            they are so fragmented after a long run that they can't
3341    //            coalesce into large pages. Try to reserve large pages when
3342    //            the system is still "fresh".
3343    if (warn_on_failure) {
3344      jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3345      warning("%s", msg);
3346    }
3347    return NULL;
3348  }
3349
3350  // attach to the region
3351  addr = (char*)shmat(shmid, req_addr, 0);
3352  int err = errno;
3353
3354  // Remove shmid. If shmat() is successful, the actual shared memory segment
3355  // will be deleted when it's detached by shmdt() or when the process
3356  // terminates. If shmat() is not successful this will remove the shared
3357  // segment immediately.
3358  shmctl(shmid, IPC_RMID, NULL);
3359
3360  if ((intptr_t)addr == -1) {
3361    if (warn_on_failure) {
3362      jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3363      warning("%s", msg);
3364    }
3365    return NULL;
3366  }
3367
3368  return addr;
3369}
3370
3371static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3372                                        int error) {
3373  assert(error == ENOMEM, "Only expect to fail if no memory is available");
3374
3375  bool warn_on_failure = UseLargePages &&
3376      (!FLAG_IS_DEFAULT(UseLargePages) ||
3377       !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3378       !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3379
3380  if (warn_on_failure) {
3381    char msg[128];
3382    jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3383                 PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3384    warning("%s", msg);
3385  }
3386}
3387
3388char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3389                                                        char* req_addr,
3390                                                        bool exec) {
3391  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3392  assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3393  assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3394
3395  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3396  char* addr = (char*)::mmap(req_addr, bytes, prot,
3397                             MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3398                             -1, 0);
3399
3400  if (addr == MAP_FAILED) {
3401    warn_on_large_pages_failure(req_addr, bytes, errno);
3402    return NULL;
3403  }
3404
3405  assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3406
3407  return addr;
3408}
3409
3410// Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3411// Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3412//   (req_addr != NULL) or with a given alignment.
3413//  - bytes shall be a multiple of alignment.
3414//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3415//  - alignment sets the alignment at which memory shall be allocated.
3416//     It must be a multiple of allocation granularity.
3417// Returns address of memory or NULL. If req_addr was not NULL, will only return
3418//  req_addr or NULL.
3419static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3420
3421  size_t extra_size = bytes;
3422  if (req_addr == NULL && alignment > 0) {
3423    extra_size += alignment;
3424  }
3425
3426  char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3427    MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3428    -1, 0);
3429  if (start == MAP_FAILED) {
3430    start = NULL;
3431  } else {
3432    if (req_addr != NULL) {
3433      if (start != req_addr) {
3434        ::munmap(start, extra_size);
3435        start = NULL;
3436      }
3437    } else {
3438      char* const start_aligned = (char*) align_ptr_up(start, alignment);
3439      char* const end_aligned = start_aligned + bytes;
3440      char* const end = start + extra_size;
3441      if (start_aligned > start) {
3442        ::munmap(start, start_aligned - start);
3443      }
3444      if (end_aligned < end) {
3445        ::munmap(end_aligned, end - end_aligned);
3446      }
3447      start = start_aligned;
3448    }
3449  }
3450  return start;
3451
3452}
3453
3454// Reserve memory using mmap(MAP_HUGETLB).
3455//  - bytes shall be a multiple of alignment.
3456//  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3457//  - alignment sets the alignment at which memory shall be allocated.
3458//     It must be a multiple of allocation granularity.
3459// Returns address of memory or NULL. If req_addr was not NULL, will only return
3460//  req_addr or NULL.
3461char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3462                                                         size_t alignment,
3463                                                         char* req_addr,
3464                                                         bool exec) {
3465  size_t large_page_size = os::large_page_size();
3466  assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3467
3468  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3469  assert(is_size_aligned(bytes, alignment), "Must be");
3470
3471  // First reserve - but not commit - the address range in small pages.
3472  char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3473
3474  if (start == NULL) {
3475    return NULL;
3476  }
3477
3478  assert(is_ptr_aligned(start, alignment), "Must be");
3479
3480  char* end = start + bytes;
3481
3482  // Find the regions of the allocated chunk that can be promoted to large pages.
3483  char* lp_start = (char*)align_ptr_up(start, large_page_size);
3484  char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3485
3486  size_t lp_bytes = lp_end - lp_start;
3487
3488  assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3489
3490  if (lp_bytes == 0) {
3491    // The mapped region doesn't even span the start and the end of a large page.
3492    // Fall back to allocate a non-special area.
3493    ::munmap(start, end - start);
3494    return NULL;
3495  }
3496
3497  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3498
3499  void* result;
3500
3501  // Commit small-paged leading area.
3502  if (start != lp_start) {
3503    result = ::mmap(start, lp_start - start, prot,
3504                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3505                    -1, 0);
3506    if (result == MAP_FAILED) {
3507      ::munmap(lp_start, end - lp_start);
3508      return NULL;
3509    }
3510  }
3511
3512  // Commit large-paged area.
3513  result = ::mmap(lp_start, lp_bytes, prot,
3514                  MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3515                  -1, 0);
3516  if (result == MAP_FAILED) {
3517    warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3518    // If the mmap above fails, the large pages region will be unmapped and we
3519    // have regions before and after with small pages. Release these regions.
3520    //
3521    // |  mapped  |  unmapped  |  mapped  |
3522    // ^          ^            ^          ^
3523    // start      lp_start     lp_end     end
3524    //
3525    ::munmap(start, lp_start - start);
3526    ::munmap(lp_end, end - lp_end);
3527    return NULL;
3528  }
3529
3530  // Commit small-paged trailing area.
3531  if (lp_end != end) {
3532    result = ::mmap(lp_end, end - lp_end, prot,
3533                    MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3534                    -1, 0);
3535    if (result == MAP_FAILED) {
3536      ::munmap(start, lp_end - start);
3537      return NULL;
3538    }
3539  }
3540
3541  return start;
3542}
3543
3544char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3545                                                   size_t alignment,
3546                                                   char* req_addr,
3547                                                   bool exec) {
3548  assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3549  assert(is_ptr_aligned(req_addr, alignment), "Must be");
3550  assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3551  assert(is_power_of_2(os::large_page_size()), "Must be");
3552  assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3553
3554  if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3555    return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3556  } else {
3557    return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3558  }
3559}
3560
3561char* os::reserve_memory_special(size_t bytes, size_t alignment,
3562                                 char* req_addr, bool exec) {
3563  assert(UseLargePages, "only for large pages");
3564
3565  char* addr;
3566  if (UseSHM) {
3567    addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3568  } else {
3569    assert(UseHugeTLBFS, "must be");
3570    addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3571  }
3572
3573  if (addr != NULL) {
3574    if (UseNUMAInterleaving) {
3575      numa_make_global(addr, bytes);
3576    }
3577
3578    // The memory is committed
3579    MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3580  }
3581
3582  return addr;
3583}
3584
3585bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3586  // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3587  return shmdt(base) == 0;
3588}
3589
3590bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3591  return pd_release_memory(base, bytes);
3592}
3593
3594bool os::release_memory_special(char* base, size_t bytes) {
3595  bool res;
3596  if (MemTracker::tracking_level() > NMT_minimal) {
3597    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3598    res = os::Linux::release_memory_special_impl(base, bytes);
3599    if (res) {
3600      tkr.record((address)base, bytes);
3601    }
3602
3603  } else {
3604    res = os::Linux::release_memory_special_impl(base, bytes);
3605  }
3606  return res;
3607}
3608
3609bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3610  assert(UseLargePages, "only for large pages");
3611  bool res;
3612
3613  if (UseSHM) {
3614    res = os::Linux::release_memory_special_shm(base, bytes);
3615  } else {
3616    assert(UseHugeTLBFS, "must be");
3617    res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3618  }
3619  return res;
3620}
3621
3622size_t os::large_page_size() {
3623  return _large_page_size;
3624}
3625
3626// With SysV SHM the entire memory region must be allocated as shared
3627// memory.
3628// HugeTLBFS allows application to commit large page memory on demand.
3629// However, when committing memory with HugeTLBFS fails, the region
3630// that was supposed to be committed will lose the old reservation
3631// and allow other threads to steal that memory region. Because of this
3632// behavior we can't commit HugeTLBFS memory.
3633bool os::can_commit_large_page_memory() {
3634  return UseTransparentHugePages;
3635}
3636
3637bool os::can_execute_large_page_memory() {
3638  return UseTransparentHugePages || UseHugeTLBFS;
3639}
3640
3641// Reserve memory at an arbitrary address, only if that area is
3642// available (and not reserved for something else).
3643
3644char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3645  const int max_tries = 10;
3646  char* base[max_tries];
3647  size_t size[max_tries];
3648  const size_t gap = 0x000000;
3649
3650  // Assert only that the size is a multiple of the page size, since
3651  // that's all that mmap requires, and since that's all we really know
3652  // about at this low abstraction level.  If we need higher alignment,
3653  // we can either pass an alignment to this method or verify alignment
3654  // in one of the methods further up the call chain.  See bug 5044738.
3655  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3656
3657  // Repeatedly allocate blocks until the block is allocated at the
3658  // right spot.
3659
3660  // Linux mmap allows caller to pass an address as hint; give it a try first,
3661  // if kernel honors the hint then we can return immediately.
3662  char * addr = anon_mmap(requested_addr, bytes, false);
3663  if (addr == requested_addr) {
3664    return requested_addr;
3665  }
3666
3667  if (addr != NULL) {
3668    // mmap() is successful but it fails to reserve at the requested address
3669    anon_munmap(addr, bytes);
3670  }
3671
3672  int i;
3673  for (i = 0; i < max_tries; ++i) {
3674    base[i] = reserve_memory(bytes);
3675
3676    if (base[i] != NULL) {
3677      // Is this the block we wanted?
3678      if (base[i] == requested_addr) {
3679        size[i] = bytes;
3680        break;
3681      }
3682
3683      // Does this overlap the block we wanted? Give back the overlapped
3684      // parts and try again.
3685
3686      ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3687      if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3688        unmap_memory(base[i], top_overlap);
3689        base[i] += top_overlap;
3690        size[i] = bytes - top_overlap;
3691      } else {
3692        ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3693        if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3694          unmap_memory(requested_addr, bottom_overlap);
3695          size[i] = bytes - bottom_overlap;
3696        } else {
3697          size[i] = bytes;
3698        }
3699      }
3700    }
3701  }
3702
3703  // Give back the unused reserved pieces.
3704
3705  for (int j = 0; j < i; ++j) {
3706    if (base[j] != NULL) {
3707      unmap_memory(base[j], size[j]);
3708    }
3709  }
3710
3711  if (i < max_tries) {
3712    return requested_addr;
3713  } else {
3714    return NULL;
3715  }
3716}
3717
3718size_t os::read(int fd, void *buf, unsigned int nBytes) {
3719  return ::read(fd, buf, nBytes);
3720}
3721
3722size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3723  return ::pread(fd, buf, nBytes, offset);
3724}
3725
3726// Short sleep, direct OS call.
3727//
3728// Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3729// sched_yield(2) will actually give up the CPU:
3730//
3731//   * Alone on this pariticular CPU, keeps running.
3732//   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3733//     (pre 2.6.39).
3734//
3735// So calling this with 0 is an alternative.
3736//
3737void os::naked_short_sleep(jlong ms) {
3738  struct timespec req;
3739
3740  assert(ms < 1000, "Un-interruptable sleep, short time use only");
3741  req.tv_sec = 0;
3742  if (ms > 0) {
3743    req.tv_nsec = (ms % 1000) * 1000000;
3744  } else {
3745    req.tv_nsec = 1;
3746  }
3747
3748  nanosleep(&req, NULL);
3749
3750  return;
3751}
3752
3753// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3754void os::infinite_sleep() {
3755  while (true) {    // sleep forever ...
3756    ::sleep(100);   // ... 100 seconds at a time
3757  }
3758}
3759
3760// Used to convert frequent JVM_Yield() to nops
3761bool os::dont_yield() {
3762  return DontYieldALot;
3763}
3764
3765void os::naked_yield() {
3766  sched_yield();
3767}
3768
3769////////////////////////////////////////////////////////////////////////////////
3770// thread priority support
3771
3772// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3773// only supports dynamic priority, static priority must be zero. For real-time
3774// applications, Linux supports SCHED_RR which allows static priority (1-99).
3775// However, for large multi-threaded applications, SCHED_RR is not only slower
3776// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3777// of 5 runs - Sep 2005).
3778//
3779// The following code actually changes the niceness of kernel-thread/LWP. It
3780// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3781// not the entire user process, and user level threads are 1:1 mapped to kernel
3782// threads. It has always been the case, but could change in the future. For
3783// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3784// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3785
3786int os::java_to_os_priority[CriticalPriority + 1] = {
3787  19,              // 0 Entry should never be used
3788
3789   4,              // 1 MinPriority
3790   3,              // 2
3791   2,              // 3
3792
3793   1,              // 4
3794   0,              // 5 NormPriority
3795  -1,              // 6
3796
3797  -2,              // 7
3798  -3,              // 8
3799  -4,              // 9 NearMaxPriority
3800
3801  -5,              // 10 MaxPriority
3802
3803  -5               // 11 CriticalPriority
3804};
3805
3806static int prio_init() {
3807  if (ThreadPriorityPolicy == 1) {
3808    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3809    // if effective uid is not root. Perhaps, a more elegant way of doing
3810    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3811    if (geteuid() != 0) {
3812      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3813        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3814      }
3815      ThreadPriorityPolicy = 0;
3816    }
3817  }
3818  if (UseCriticalJavaThreadPriority) {
3819    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3820  }
3821  return 0;
3822}
3823
3824OSReturn os::set_native_priority(Thread* thread, int newpri) {
3825  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3826
3827  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3828  return (ret == 0) ? OS_OK : OS_ERR;
3829}
3830
3831OSReturn os::get_native_priority(const Thread* const thread,
3832                                 int *priority_ptr) {
3833  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3834    *priority_ptr = java_to_os_priority[NormPriority];
3835    return OS_OK;
3836  }
3837
3838  errno = 0;
3839  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3840  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3841}
3842
3843// Hint to the underlying OS that a task switch would not be good.
3844// Void return because it's a hint and can fail.
3845void os::hint_no_preempt() {}
3846
3847////////////////////////////////////////////////////////////////////////////////
3848// suspend/resume support
3849
3850//  the low-level signal-based suspend/resume support is a remnant from the
3851//  old VM-suspension that used to be for java-suspension, safepoints etc,
3852//  within hotspot. Now there is a single use-case for this:
3853//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3854//      that runs in the watcher thread.
3855//  The remaining code is greatly simplified from the more general suspension
3856//  code that used to be used.
3857//
3858//  The protocol is quite simple:
3859//  - suspend:
3860//      - sends a signal to the target thread
3861//      - polls the suspend state of the osthread using a yield loop
3862//      - target thread signal handler (SR_handler) sets suspend state
3863//        and blocks in sigsuspend until continued
3864//  - resume:
3865//      - sets target osthread state to continue
3866//      - sends signal to end the sigsuspend loop in the SR_handler
3867//
3868//  Note that the SR_lock plays no role in this suspend/resume protocol.
3869
3870static void resume_clear_context(OSThread *osthread) {
3871  osthread->set_ucontext(NULL);
3872  osthread->set_siginfo(NULL);
3873}
3874
3875static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3876                                 ucontext_t* context) {
3877  osthread->set_ucontext(context);
3878  osthread->set_siginfo(siginfo);
3879}
3880
3881// Handler function invoked when a thread's execution is suspended or
3882// resumed. We have to be careful that only async-safe functions are
3883// called here (Note: most pthread functions are not async safe and
3884// should be avoided.)
3885//
3886// Note: sigwait() is a more natural fit than sigsuspend() from an
3887// interface point of view, but sigwait() prevents the signal hander
3888// from being run. libpthread would get very confused by not having
3889// its signal handlers run and prevents sigwait()'s use with the
3890// mutex granting granting signal.
3891//
3892// Currently only ever called on the VMThread and JavaThreads (PC sampling)
3893//
3894static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3895  // Save and restore errno to avoid confusing native code with EINTR
3896  // after sigsuspend.
3897  int old_errno = errno;
3898
3899  Thread* thread = Thread::current();
3900  OSThread* osthread = thread->osthread();
3901  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3902
3903  os::SuspendResume::State current = osthread->sr.state();
3904  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3905    suspend_save_context(osthread, siginfo, context);
3906
3907    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3908    os::SuspendResume::State state = osthread->sr.suspended();
3909    if (state == os::SuspendResume::SR_SUSPENDED) {
3910      sigset_t suspend_set;  // signals for sigsuspend()
3911
3912      // get current set of blocked signals and unblock resume signal
3913      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3914      sigdelset(&suspend_set, SR_signum);
3915
3916      sr_semaphore.signal();
3917      // wait here until we are resumed
3918      while (1) {
3919        sigsuspend(&suspend_set);
3920
3921        os::SuspendResume::State result = osthread->sr.running();
3922        if (result == os::SuspendResume::SR_RUNNING) {
3923          sr_semaphore.signal();
3924          break;
3925        }
3926      }
3927
3928    } else if (state == os::SuspendResume::SR_RUNNING) {
3929      // request was cancelled, continue
3930    } else {
3931      ShouldNotReachHere();
3932    }
3933
3934    resume_clear_context(osthread);
3935  } else if (current == os::SuspendResume::SR_RUNNING) {
3936    // request was cancelled, continue
3937  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3938    // ignore
3939  } else {
3940    // ignore
3941  }
3942
3943  errno = old_errno;
3944}
3945
3946static int SR_initialize() {
3947  struct sigaction act;
3948  char *s;
3949
3950  // Get signal number to use for suspend/resume
3951  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3952    int sig = ::strtol(s, 0, 10);
3953    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3954        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3955      SR_signum = sig;
3956    } else {
3957      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3958              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3959    }
3960  }
3961
3962  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3963         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3964
3965  sigemptyset(&SR_sigset);
3966  sigaddset(&SR_sigset, SR_signum);
3967
3968  // Set up signal handler for suspend/resume
3969  act.sa_flags = SA_RESTART|SA_SIGINFO;
3970  act.sa_handler = (void (*)(int)) SR_handler;
3971
3972  // SR_signum is blocked by default.
3973  // 4528190 - We also need to block pthread restart signal (32 on all
3974  // supported Linux platforms). Note that LinuxThreads need to block
3975  // this signal for all threads to work properly. So we don't have
3976  // to use hard-coded signal number when setting up the mask.
3977  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3978
3979  if (sigaction(SR_signum, &act, 0) == -1) {
3980    return -1;
3981  }
3982
3983  // Save signal flag
3984  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3985  return 0;
3986}
3987
3988static int sr_notify(OSThread* osthread) {
3989  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3990  assert_status(status == 0, status, "pthread_kill");
3991  return status;
3992}
3993
3994// "Randomly" selected value for how long we want to spin
3995// before bailing out on suspending a thread, also how often
3996// we send a signal to a thread we want to resume
3997static const int RANDOMLY_LARGE_INTEGER = 1000000;
3998static const int RANDOMLY_LARGE_INTEGER2 = 100;
3999
4000// returns true on success and false on error - really an error is fatal
4001// but this seems the normal response to library errors
4002static bool do_suspend(OSThread* osthread) {
4003  assert(osthread->sr.is_running(), "thread should be running");
4004  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4005
4006  // mark as suspended and send signal
4007  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4008    // failed to switch, state wasn't running?
4009    ShouldNotReachHere();
4010    return false;
4011  }
4012
4013  if (sr_notify(osthread) != 0) {
4014    ShouldNotReachHere();
4015  }
4016
4017  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4018  while (true) {
4019    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4020      break;
4021    } else {
4022      // timeout
4023      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4024      if (cancelled == os::SuspendResume::SR_RUNNING) {
4025        return false;
4026      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4027        // make sure that we consume the signal on the semaphore as well
4028        sr_semaphore.wait();
4029        break;
4030      } else {
4031        ShouldNotReachHere();
4032        return false;
4033      }
4034    }
4035  }
4036
4037  guarantee(osthread->sr.is_suspended(), "Must be suspended");
4038  return true;
4039}
4040
4041static void do_resume(OSThread* osthread) {
4042  assert(osthread->sr.is_suspended(), "thread should be suspended");
4043  assert(!sr_semaphore.trywait(), "invalid semaphore state");
4044
4045  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4046    // failed to switch to WAKEUP_REQUEST
4047    ShouldNotReachHere();
4048    return;
4049  }
4050
4051  while (true) {
4052    if (sr_notify(osthread) == 0) {
4053      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4054        if (osthread->sr.is_running()) {
4055          return;
4056        }
4057      }
4058    } else {
4059      ShouldNotReachHere();
4060    }
4061  }
4062
4063  guarantee(osthread->sr.is_running(), "Must be running!");
4064}
4065
4066///////////////////////////////////////////////////////////////////////////////////
4067// signal handling (except suspend/resume)
4068
4069// This routine may be used by user applications as a "hook" to catch signals.
4070// The user-defined signal handler must pass unrecognized signals to this
4071// routine, and if it returns true (non-zero), then the signal handler must
4072// return immediately.  If the flag "abort_if_unrecognized" is true, then this
4073// routine will never retun false (zero), but instead will execute a VM panic
4074// routine kill the process.
4075//
4076// If this routine returns false, it is OK to call it again.  This allows
4077// the user-defined signal handler to perform checks either before or after
4078// the VM performs its own checks.  Naturally, the user code would be making
4079// a serious error if it tried to handle an exception (such as a null check
4080// or breakpoint) that the VM was generating for its own correct operation.
4081//
4082// This routine may recognize any of the following kinds of signals:
4083//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4084// It should be consulted by handlers for any of those signals.
4085//
4086// The caller of this routine must pass in the three arguments supplied
4087// to the function referred to in the "sa_sigaction" (not the "sa_handler")
4088// field of the structure passed to sigaction().  This routine assumes that
4089// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4090//
4091// Note that the VM will print warnings if it detects conflicting signal
4092// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4093//
4094extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4095                                                 siginfo_t* siginfo,
4096                                                 void* ucontext,
4097                                                 int abort_if_unrecognized);
4098
4099void signalHandler(int sig, siginfo_t* info, void* uc) {
4100  assert(info != NULL && uc != NULL, "it must be old kernel");
4101  int orig_errno = errno;  // Preserve errno value over signal handler.
4102  JVM_handle_linux_signal(sig, info, uc, true);
4103  errno = orig_errno;
4104}
4105
4106
4107// This boolean allows users to forward their own non-matching signals
4108// to JVM_handle_linux_signal, harmlessly.
4109bool os::Linux::signal_handlers_are_installed = false;
4110
4111// For signal-chaining
4112struct sigaction sigact[NSIG];
4113uint64_t sigs = 0;
4114#if (64 < NSIG-1)
4115#error "Not all signals can be encoded in sigs. Adapt its type!"
4116#endif
4117bool os::Linux::libjsig_is_loaded = false;
4118typedef struct sigaction *(*get_signal_t)(int);
4119get_signal_t os::Linux::get_signal_action = NULL;
4120
4121struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4122  struct sigaction *actp = NULL;
4123
4124  if (libjsig_is_loaded) {
4125    // Retrieve the old signal handler from libjsig
4126    actp = (*get_signal_action)(sig);
4127  }
4128  if (actp == NULL) {
4129    // Retrieve the preinstalled signal handler from jvm
4130    actp = get_preinstalled_handler(sig);
4131  }
4132
4133  return actp;
4134}
4135
4136static bool call_chained_handler(struct sigaction *actp, int sig,
4137                                 siginfo_t *siginfo, void *context) {
4138  // Call the old signal handler
4139  if (actp->sa_handler == SIG_DFL) {
4140    // It's more reasonable to let jvm treat it as an unexpected exception
4141    // instead of taking the default action.
4142    return false;
4143  } else if (actp->sa_handler != SIG_IGN) {
4144    if ((actp->sa_flags & SA_NODEFER) == 0) {
4145      // automaticlly block the signal
4146      sigaddset(&(actp->sa_mask), sig);
4147    }
4148
4149    sa_handler_t hand = NULL;
4150    sa_sigaction_t sa = NULL;
4151    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4152    // retrieve the chained handler
4153    if (siginfo_flag_set) {
4154      sa = actp->sa_sigaction;
4155    } else {
4156      hand = actp->sa_handler;
4157    }
4158
4159    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4160      actp->sa_handler = SIG_DFL;
4161    }
4162
4163    // try to honor the signal mask
4164    sigset_t oset;
4165    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4166
4167    // call into the chained handler
4168    if (siginfo_flag_set) {
4169      (*sa)(sig, siginfo, context);
4170    } else {
4171      (*hand)(sig);
4172    }
4173
4174    // restore the signal mask
4175    pthread_sigmask(SIG_SETMASK, &oset, 0);
4176  }
4177  // Tell jvm's signal handler the signal is taken care of.
4178  return true;
4179}
4180
4181bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4182  bool chained = false;
4183  // signal-chaining
4184  if (UseSignalChaining) {
4185    struct sigaction *actp = get_chained_signal_action(sig);
4186    if (actp != NULL) {
4187      chained = call_chained_handler(actp, sig, siginfo, context);
4188    }
4189  }
4190  return chained;
4191}
4192
4193struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4194  if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4195    return &sigact[sig];
4196  }
4197  return NULL;
4198}
4199
4200void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4201  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4202  sigact[sig] = oldAct;
4203  sigs |= (uint64_t)1 << (sig-1);
4204}
4205
4206// for diagnostic
4207int sigflags[NSIG];
4208
4209int os::Linux::get_our_sigflags(int sig) {
4210  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4211  return sigflags[sig];
4212}
4213
4214void os::Linux::set_our_sigflags(int sig, int flags) {
4215  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4216  if (sig > 0 && sig < NSIG) {
4217    sigflags[sig] = flags;
4218  }
4219}
4220
4221void os::Linux::set_signal_handler(int sig, bool set_installed) {
4222  // Check for overwrite.
4223  struct sigaction oldAct;
4224  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4225
4226  void* oldhand = oldAct.sa_sigaction
4227                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4228                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4229  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4230      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4231      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4232    if (AllowUserSignalHandlers || !set_installed) {
4233      // Do not overwrite; user takes responsibility to forward to us.
4234      return;
4235    } else if (UseSignalChaining) {
4236      // save the old handler in jvm
4237      save_preinstalled_handler(sig, oldAct);
4238      // libjsig also interposes the sigaction() call below and saves the
4239      // old sigaction on it own.
4240    } else {
4241      fatal("Encountered unexpected pre-existing sigaction handler "
4242            "%#lx for signal %d.", (long)oldhand, sig);
4243    }
4244  }
4245
4246  struct sigaction sigAct;
4247  sigfillset(&(sigAct.sa_mask));
4248  sigAct.sa_handler = SIG_DFL;
4249  if (!set_installed) {
4250    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4251  } else {
4252    sigAct.sa_sigaction = signalHandler;
4253    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4254  }
4255  // Save flags, which are set by ours
4256  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4257  sigflags[sig] = sigAct.sa_flags;
4258
4259  int ret = sigaction(sig, &sigAct, &oldAct);
4260  assert(ret == 0, "check");
4261
4262  void* oldhand2  = oldAct.sa_sigaction
4263                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4264                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4265  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4266}
4267
4268// install signal handlers for signals that HotSpot needs to
4269// handle in order to support Java-level exception handling.
4270
4271void os::Linux::install_signal_handlers() {
4272  if (!signal_handlers_are_installed) {
4273    signal_handlers_are_installed = true;
4274
4275    // signal-chaining
4276    typedef void (*signal_setting_t)();
4277    signal_setting_t begin_signal_setting = NULL;
4278    signal_setting_t end_signal_setting = NULL;
4279    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4280                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4281    if (begin_signal_setting != NULL) {
4282      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4283                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4284      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4285                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4286      libjsig_is_loaded = true;
4287      assert(UseSignalChaining, "should enable signal-chaining");
4288    }
4289    if (libjsig_is_loaded) {
4290      // Tell libjsig jvm is setting signal handlers
4291      (*begin_signal_setting)();
4292    }
4293
4294    set_signal_handler(SIGSEGV, true);
4295    set_signal_handler(SIGPIPE, true);
4296    set_signal_handler(SIGBUS, true);
4297    set_signal_handler(SIGILL, true);
4298    set_signal_handler(SIGFPE, true);
4299#if defined(PPC64)
4300    set_signal_handler(SIGTRAP, true);
4301#endif
4302    set_signal_handler(SIGXFSZ, true);
4303
4304    if (libjsig_is_loaded) {
4305      // Tell libjsig jvm finishes setting signal handlers
4306      (*end_signal_setting)();
4307    }
4308
4309    // We don't activate signal checker if libjsig is in place, we trust ourselves
4310    // and if UserSignalHandler is installed all bets are off.
4311    // Log that signal checking is off only if -verbose:jni is specified.
4312    if (CheckJNICalls) {
4313      if (libjsig_is_loaded) {
4314        if (PrintJNIResolving) {
4315          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4316        }
4317        check_signals = false;
4318      }
4319      if (AllowUserSignalHandlers) {
4320        if (PrintJNIResolving) {
4321          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4322        }
4323        check_signals = false;
4324      }
4325    }
4326  }
4327}
4328
4329// This is the fastest way to get thread cpu time on Linux.
4330// Returns cpu time (user+sys) for any thread, not only for current.
4331// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4332// It might work on 2.6.10+ with a special kernel/glibc patch.
4333// For reference, please, see IEEE Std 1003.1-2004:
4334//   http://www.unix.org/single_unix_specification
4335
4336jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4337  struct timespec tp;
4338  int rc = os::Linux::clock_gettime(clockid, &tp);
4339  assert(rc == 0, "clock_gettime is expected to return 0 code");
4340
4341  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4342}
4343
4344/////
4345// glibc on Linux platform uses non-documented flag
4346// to indicate, that some special sort of signal
4347// trampoline is used.
4348// We will never set this flag, and we should
4349// ignore this flag in our diagnostic
4350#ifdef SIGNIFICANT_SIGNAL_MASK
4351  #undef SIGNIFICANT_SIGNAL_MASK
4352#endif
4353#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4354
4355static const char* get_signal_handler_name(address handler,
4356                                           char* buf, int buflen) {
4357  int offset = 0;
4358  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4359  if (found) {
4360    // skip directory names
4361    const char *p1, *p2;
4362    p1 = buf;
4363    size_t len = strlen(os::file_separator());
4364    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4365    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4366  } else {
4367    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4368  }
4369  return buf;
4370}
4371
4372static void print_signal_handler(outputStream* st, int sig,
4373                                 char* buf, size_t buflen) {
4374  struct sigaction sa;
4375
4376  sigaction(sig, NULL, &sa);
4377
4378  // See comment for SIGNIFICANT_SIGNAL_MASK define
4379  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4380
4381  st->print("%s: ", os::exception_name(sig, buf, buflen));
4382
4383  address handler = (sa.sa_flags & SA_SIGINFO)
4384    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4385    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4386
4387  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4388    st->print("SIG_DFL");
4389  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4390    st->print("SIG_IGN");
4391  } else {
4392    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4393  }
4394
4395  st->print(", sa_mask[0]=");
4396  os::Posix::print_signal_set_short(st, &sa.sa_mask);
4397
4398  address rh = VMError::get_resetted_sighandler(sig);
4399  // May be, handler was resetted by VMError?
4400  if (rh != NULL) {
4401    handler = rh;
4402    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4403  }
4404
4405  st->print(", sa_flags=");
4406  os::Posix::print_sa_flags(st, sa.sa_flags);
4407
4408  // Check: is it our handler?
4409  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4410      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4411    // It is our signal handler
4412    // check for flags, reset system-used one!
4413    if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4414      st->print(
4415                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4416                os::Linux::get_our_sigflags(sig));
4417    }
4418  }
4419  st->cr();
4420}
4421
4422
4423#define DO_SIGNAL_CHECK(sig)                      \
4424  do {                                            \
4425    if (!sigismember(&check_signal_done, sig)) {  \
4426      os::Linux::check_signal_handler(sig);       \
4427    }                                             \
4428  } while (0)
4429
4430// This method is a periodic task to check for misbehaving JNI applications
4431// under CheckJNI, we can add any periodic checks here
4432
4433void os::run_periodic_checks() {
4434  if (check_signals == false) return;
4435
4436  // SEGV and BUS if overridden could potentially prevent
4437  // generation of hs*.log in the event of a crash, debugging
4438  // such a case can be very challenging, so we absolutely
4439  // check the following for a good measure:
4440  DO_SIGNAL_CHECK(SIGSEGV);
4441  DO_SIGNAL_CHECK(SIGILL);
4442  DO_SIGNAL_CHECK(SIGFPE);
4443  DO_SIGNAL_CHECK(SIGBUS);
4444  DO_SIGNAL_CHECK(SIGPIPE);
4445  DO_SIGNAL_CHECK(SIGXFSZ);
4446#if defined(PPC64)
4447  DO_SIGNAL_CHECK(SIGTRAP);
4448#endif
4449
4450  // ReduceSignalUsage allows the user to override these handlers
4451  // see comments at the very top and jvm_solaris.h
4452  if (!ReduceSignalUsage) {
4453    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4454    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4455    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4456    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4457  }
4458
4459  DO_SIGNAL_CHECK(SR_signum);
4460}
4461
4462typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4463
4464static os_sigaction_t os_sigaction = NULL;
4465
4466void os::Linux::check_signal_handler(int sig) {
4467  char buf[O_BUFLEN];
4468  address jvmHandler = NULL;
4469
4470
4471  struct sigaction act;
4472  if (os_sigaction == NULL) {
4473    // only trust the default sigaction, in case it has been interposed
4474    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4475    if (os_sigaction == NULL) return;
4476  }
4477
4478  os_sigaction(sig, (struct sigaction*)NULL, &act);
4479
4480
4481  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4482
4483  address thisHandler = (act.sa_flags & SA_SIGINFO)
4484    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4485    : CAST_FROM_FN_PTR(address, act.sa_handler);
4486
4487
4488  switch (sig) {
4489  case SIGSEGV:
4490  case SIGBUS:
4491  case SIGFPE:
4492  case SIGPIPE:
4493  case SIGILL:
4494  case SIGXFSZ:
4495    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4496    break;
4497
4498  case SHUTDOWN1_SIGNAL:
4499  case SHUTDOWN2_SIGNAL:
4500  case SHUTDOWN3_SIGNAL:
4501  case BREAK_SIGNAL:
4502    jvmHandler = (address)user_handler();
4503    break;
4504
4505  default:
4506    if (sig == SR_signum) {
4507      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4508    } else {
4509      return;
4510    }
4511    break;
4512  }
4513
4514  if (thisHandler != jvmHandler) {
4515    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4516    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4517    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4518    // No need to check this sig any longer
4519    sigaddset(&check_signal_done, sig);
4520    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4521    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4522      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4523                    exception_name(sig, buf, O_BUFLEN));
4524    }
4525  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4526    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4527    tty->print("expected:");
4528    os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4529    tty->cr();
4530    tty->print("  found:");
4531    os::Posix::print_sa_flags(tty, act.sa_flags);
4532    tty->cr();
4533    // No need to check this sig any longer
4534    sigaddset(&check_signal_done, sig);
4535  }
4536
4537  // Dump all the signal
4538  if (sigismember(&check_signal_done, sig)) {
4539    print_signal_handlers(tty, buf, O_BUFLEN);
4540  }
4541}
4542
4543extern void report_error(char* file_name, int line_no, char* title,
4544                         char* format, ...);
4545
4546// this is called _before_ the most of global arguments have been parsed
4547void os::init(void) {
4548  char dummy;   // used to get a guess on initial stack address
4549//  first_hrtime = gethrtime();
4550
4551  clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4552
4553  init_random(1234567);
4554
4555  ThreadCritical::initialize();
4556
4557  Linux::set_page_size(sysconf(_SC_PAGESIZE));
4558  if (Linux::page_size() == -1) {
4559    fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4560          strerror(errno));
4561  }
4562  init_page_sizes((size_t) Linux::page_size());
4563
4564  Linux::initialize_system_info();
4565
4566  // main_thread points to the aboriginal thread
4567  Linux::_main_thread = pthread_self();
4568
4569  Linux::clock_init();
4570  initial_time_count = javaTimeNanos();
4571
4572  // pthread_condattr initialization for monotonic clock
4573  int status;
4574  pthread_condattr_t* _condattr = os::Linux::condAttr();
4575  if ((status = pthread_condattr_init(_condattr)) != 0) {
4576    fatal("pthread_condattr_init: %s", strerror(status));
4577  }
4578  // Only set the clock if CLOCK_MONOTONIC is available
4579  if (os::supports_monotonic_clock()) {
4580    if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4581      if (status == EINVAL) {
4582        warning("Unable to use monotonic clock with relative timed-waits" \
4583                " - changes to the time-of-day clock may have adverse affects");
4584      } else {
4585        fatal("pthread_condattr_setclock: %s", strerror(status));
4586      }
4587    }
4588  }
4589  // else it defaults to CLOCK_REALTIME
4590
4591  // retrieve entry point for pthread_setname_np
4592  Linux::_pthread_setname_np =
4593    (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4594
4595}
4596
4597// To install functions for atexit system call
4598extern "C" {
4599  static void perfMemory_exit_helper() {
4600    perfMemory_exit();
4601  }
4602}
4603
4604// this is called _after_ the global arguments have been parsed
4605jint os::init_2(void) {
4606  Linux::fast_thread_clock_init();
4607
4608  // Allocate a single page and mark it as readable for safepoint polling
4609  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4610  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4611
4612  os::set_polling_page(polling_page);
4613
4614#ifndef PRODUCT
4615  if (Verbose && PrintMiscellaneous) {
4616    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4617               (intptr_t)polling_page);
4618  }
4619#endif
4620
4621  if (!UseMembar) {
4622    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4623    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4624    os::set_memory_serialize_page(mem_serialize_page);
4625
4626#ifndef PRODUCT
4627    if (Verbose && PrintMiscellaneous) {
4628      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4629                 (intptr_t)mem_serialize_page);
4630    }
4631#endif
4632  }
4633
4634  // initialize suspend/resume support - must do this before signal_sets_init()
4635  if (SR_initialize() != 0) {
4636    perror("SR_initialize failed");
4637    return JNI_ERR;
4638  }
4639
4640  Linux::signal_sets_init();
4641  Linux::install_signal_handlers();
4642
4643  // Check minimum allowable stack size for thread creation and to initialize
4644  // the java system classes, including StackOverflowError - depends on page
4645  // size.  Add a page for compiler2 recursion in main thread.
4646  // Add in 2*BytesPerWord times page size to account for VM stack during
4647  // class initialization depending on 32 or 64 bit VM.
4648  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4649                                      JavaThread::stack_guard_zone_size() +
4650                                      JavaThread::stack_shadow_zone_size() +
4651                                      (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4652
4653  size_t threadStackSizeInBytes = ThreadStackSize * K;
4654  if (threadStackSizeInBytes != 0 &&
4655      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4656    tty->print_cr("\nThe stack size specified is too small, "
4657                  "Specify at least " SIZE_FORMAT "k",
4658                  os::Linux::min_stack_allowed/ K);
4659    return JNI_ERR;
4660  }
4661
4662  // Make the stack size a multiple of the page size so that
4663  // the yellow/red zones can be guarded.
4664  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4665                                                vm_page_size()));
4666
4667  Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4668
4669#if defined(IA32)
4670  workaround_expand_exec_shield_cs_limit();
4671#endif
4672
4673  Linux::libpthread_init();
4674  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4675    tty->print_cr("[HotSpot is running with %s, %s]\n",
4676                  Linux::glibc_version(), Linux::libpthread_version());
4677  }
4678
4679  if (UseNUMA) {
4680    if (!Linux::libnuma_init()) {
4681      UseNUMA = false;
4682    } else {
4683      if ((Linux::numa_max_node() < 1)) {
4684        // There's only one node(they start from 0), disable NUMA.
4685        UseNUMA = false;
4686      }
4687    }
4688    // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4689    // we can make the adaptive lgrp chunk resizing work. If the user specified
4690    // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4691    // disable adaptive resizing.
4692    if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4693      if (FLAG_IS_DEFAULT(UseNUMA)) {
4694        UseNUMA = false;
4695      } else {
4696        if (FLAG_IS_DEFAULT(UseLargePages) &&
4697            FLAG_IS_DEFAULT(UseSHM) &&
4698            FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4699          UseLargePages = false;
4700        } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4701          warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4702          UseAdaptiveSizePolicy = false;
4703          UseAdaptiveNUMAChunkSizing = false;
4704        }
4705      }
4706    }
4707    if (!UseNUMA && ForceNUMA) {
4708      UseNUMA = true;
4709    }
4710  }
4711
4712  if (MaxFDLimit) {
4713    // set the number of file descriptors to max. print out error
4714    // if getrlimit/setrlimit fails but continue regardless.
4715    struct rlimit nbr_files;
4716    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4717    if (status != 0) {
4718      if (PrintMiscellaneous && (Verbose || WizardMode)) {
4719        perror("os::init_2 getrlimit failed");
4720      }
4721    } else {
4722      nbr_files.rlim_cur = nbr_files.rlim_max;
4723      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4724      if (status != 0) {
4725        if (PrintMiscellaneous && (Verbose || WizardMode)) {
4726          perror("os::init_2 setrlimit failed");
4727        }
4728      }
4729    }
4730  }
4731
4732  // Initialize lock used to serialize thread creation (see os::create_thread)
4733  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4734
4735  // at-exit methods are called in the reverse order of their registration.
4736  // atexit functions are called on return from main or as a result of a
4737  // call to exit(3C). There can be only 32 of these functions registered
4738  // and atexit() does not set errno.
4739
4740  if (PerfAllowAtExitRegistration) {
4741    // only register atexit functions if PerfAllowAtExitRegistration is set.
4742    // atexit functions can be delayed until process exit time, which
4743    // can be problematic for embedded VM situations. Embedded VMs should
4744    // call DestroyJavaVM() to assure that VM resources are released.
4745
4746    // note: perfMemory_exit_helper atexit function may be removed in
4747    // the future if the appropriate cleanup code can be added to the
4748    // VM_Exit VMOperation's doit method.
4749    if (atexit(perfMemory_exit_helper) != 0) {
4750      warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4751    }
4752  }
4753
4754  // initialize thread priority policy
4755  prio_init();
4756
4757  return JNI_OK;
4758}
4759
4760// Mark the polling page as unreadable
4761void os::make_polling_page_unreadable(void) {
4762  if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4763    fatal("Could not disable polling page");
4764  }
4765}
4766
4767// Mark the polling page as readable
4768void os::make_polling_page_readable(void) {
4769  if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4770    fatal("Could not enable polling page");
4771  }
4772}
4773
4774// older glibc versions don't have this macro (which expands to
4775// an optimized bit-counting function) so we have to roll our own
4776#ifndef CPU_COUNT
4777
4778static int _cpu_count(const cpu_set_t* cpus) {
4779  int count = 0;
4780  // only look up to the number of configured processors
4781  for (int i = 0; i < os::processor_count(); i++) {
4782    if (CPU_ISSET(i, cpus)) {
4783      count++;
4784    }
4785  }
4786  return count;
4787}
4788
4789#define CPU_COUNT(cpus) _cpu_count(cpus)
4790
4791#endif // CPU_COUNT
4792
4793// Get the current number of available processors for this process.
4794// This value can change at any time during a process's lifetime.
4795// sched_getaffinity gives an accurate answer as it accounts for cpusets.
4796// If it appears there may be more than 1024 processors then we do a
4797// dynamic check - see 6515172 for details.
4798// If anything goes wrong we fallback to returning the number of online
4799// processors - which can be greater than the number available to the process.
4800int os::active_processor_count() {
4801  cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4802  cpu_set_t* cpus_p = &cpus;
4803  int cpus_size = sizeof(cpu_set_t);
4804
4805  int configured_cpus = processor_count();  // upper bound on available cpus
4806  int cpu_count = 0;
4807
4808// old build platforms may not support dynamic cpu sets
4809#ifdef CPU_ALLOC
4810
4811  // To enable easy testing of the dynamic path on different platforms we
4812  // introduce a diagnostic flag: UseCpuAllocPath
4813  if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4814    // kernel may use a mask bigger than cpu_set_t
4815    log_trace(os)("active_processor_count: using dynamic path %s"
4816                  "- configured processors: %d",
4817                  UseCpuAllocPath ? "(forced) " : "",
4818                  configured_cpus);
4819    cpus_p = CPU_ALLOC(configured_cpus);
4820    if (cpus_p != NULL) {
4821      cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4822      // zero it just to be safe
4823      CPU_ZERO_S(cpus_size, cpus_p);
4824    }
4825    else {
4826       // failed to allocate so fallback to online cpus
4827       int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4828       log_trace(os)("active_processor_count: "
4829                     "CPU_ALLOC failed (%s) - using "
4830                     "online processor count: %d",
4831                     strerror(errno), online_cpus);
4832       return online_cpus;
4833    }
4834  }
4835  else {
4836    log_trace(os)("active_processor_count: using static path - configured processors: %d",
4837                  configured_cpus);
4838  }
4839#else // CPU_ALLOC
4840// these stubs won't be executed
4841#define CPU_COUNT_S(size, cpus) -1
4842#define CPU_FREE(cpus)
4843
4844  log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4845                configured_cpus);
4846#endif // CPU_ALLOC
4847
4848  // pid 0 means the current thread - which we have to assume represents the process
4849  if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4850    if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4851      cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4852    }
4853    else {
4854      cpu_count = CPU_COUNT(cpus_p);
4855    }
4856    log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4857  }
4858  else {
4859    cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4860    warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4861            "which may exceed available processors", strerror(errno), cpu_count);
4862  }
4863
4864  if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4865    CPU_FREE(cpus_p);
4866  }
4867
4868  assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4869  return cpu_count;
4870}
4871
4872void os::set_native_thread_name(const char *name) {
4873  if (Linux::_pthread_setname_np) {
4874    char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4875    snprintf(buf, sizeof(buf), "%s", name);
4876    buf[sizeof(buf) - 1] = '\0';
4877    const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4878    // ERANGE should not happen; all other errors should just be ignored.
4879    assert(rc != ERANGE, "pthread_setname_np failed");
4880  }
4881}
4882
4883bool os::distribute_processes(uint length, uint* distribution) {
4884  // Not yet implemented.
4885  return false;
4886}
4887
4888bool os::bind_to_processor(uint processor_id) {
4889  // Not yet implemented.
4890  return false;
4891}
4892
4893///
4894
4895void os::SuspendedThreadTask::internal_do_task() {
4896  if (do_suspend(_thread->osthread())) {
4897    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4898    do_task(context);
4899    do_resume(_thread->osthread());
4900  }
4901}
4902
4903class PcFetcher : public os::SuspendedThreadTask {
4904 public:
4905  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4906  ExtendedPC result();
4907 protected:
4908  void do_task(const os::SuspendedThreadTaskContext& context);
4909 private:
4910  ExtendedPC _epc;
4911};
4912
4913ExtendedPC PcFetcher::result() {
4914  guarantee(is_done(), "task is not done yet.");
4915  return _epc;
4916}
4917
4918void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4919  Thread* thread = context.thread();
4920  OSThread* osthread = thread->osthread();
4921  if (osthread->ucontext() != NULL) {
4922    _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
4923  } else {
4924    // NULL context is unexpected, double-check this is the VMThread
4925    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4926  }
4927}
4928
4929// Suspends the target using the signal mechanism and then grabs the PC before
4930// resuming the target. Used by the flat-profiler only
4931ExtendedPC os::get_thread_pc(Thread* thread) {
4932  // Make sure that it is called by the watcher for the VMThread
4933  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4934  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4935
4936  PcFetcher fetcher(thread);
4937  fetcher.run();
4938  return fetcher.result();
4939}
4940
4941////////////////////////////////////////////////////////////////////////////////
4942// debug support
4943
4944bool os::find(address addr, outputStream* st) {
4945  Dl_info dlinfo;
4946  memset(&dlinfo, 0, sizeof(dlinfo));
4947  if (dladdr(addr, &dlinfo) != 0) {
4948    st->print(PTR_FORMAT ": ", p2i(addr));
4949    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4950      st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4951                p2i(addr) - p2i(dlinfo.dli_saddr));
4952    } else if (dlinfo.dli_fbase != NULL) {
4953      st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4954    } else {
4955      st->print("<absolute address>");
4956    }
4957    if (dlinfo.dli_fname != NULL) {
4958      st->print(" in %s", dlinfo.dli_fname);
4959    }
4960    if (dlinfo.dli_fbase != NULL) {
4961      st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4962    }
4963    st->cr();
4964
4965    if (Verbose) {
4966      // decode some bytes around the PC
4967      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4968      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4969      address       lowest = (address) dlinfo.dli_sname;
4970      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4971      if (begin < lowest)  begin = lowest;
4972      Dl_info dlinfo2;
4973      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4974          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4975        end = (address) dlinfo2.dli_saddr;
4976      }
4977      Disassembler::decode(begin, end, st);
4978    }
4979    return true;
4980  }
4981  return false;
4982}
4983
4984////////////////////////////////////////////////////////////////////////////////
4985// misc
4986
4987// This does not do anything on Linux. This is basically a hook for being
4988// able to use structured exception handling (thread-local exception filters)
4989// on, e.g., Win32.
4990void
4991os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
4992                         JavaCallArguments* args, Thread* thread) {
4993  f(value, method, args, thread);
4994}
4995
4996void os::print_statistics() {
4997}
4998
4999bool os::message_box(const char* title, const char* message) {
5000  int i;
5001  fdStream err(defaultStream::error_fd());
5002  for (i = 0; i < 78; i++) err.print_raw("=");
5003  err.cr();
5004  err.print_raw_cr(title);
5005  for (i = 0; i < 78; i++) err.print_raw("-");
5006  err.cr();
5007  err.print_raw_cr(message);
5008  for (i = 0; i < 78; i++) err.print_raw("=");
5009  err.cr();
5010
5011  char buf[16];
5012  // Prevent process from exiting upon "read error" without consuming all CPU
5013  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5014
5015  return buf[0] == 'y' || buf[0] == 'Y';
5016}
5017
5018int os::stat(const char *path, struct stat *sbuf) {
5019  char pathbuf[MAX_PATH];
5020  if (strlen(path) > MAX_PATH - 1) {
5021    errno = ENAMETOOLONG;
5022    return -1;
5023  }
5024  os::native_path(strcpy(pathbuf, path));
5025  return ::stat(pathbuf, sbuf);
5026}
5027
5028bool os::check_heap(bool force) {
5029  return true;
5030}
5031
5032// Is a (classpath) directory empty?
5033bool os::dir_is_empty(const char* path) {
5034  DIR *dir = NULL;
5035  struct dirent *ptr;
5036
5037  dir = opendir(path);
5038  if (dir == NULL) return true;
5039
5040  // Scan the directory
5041  bool result = true;
5042  char buf[sizeof(struct dirent) + MAX_PATH];
5043  while (result && (ptr = ::readdir(dir)) != NULL) {
5044    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5045      result = false;
5046    }
5047  }
5048  closedir(dir);
5049  return result;
5050}
5051
5052// This code originates from JDK's sysOpen and open64_w
5053// from src/solaris/hpi/src/system_md.c
5054
5055int os::open(const char *path, int oflag, int mode) {
5056  if (strlen(path) > MAX_PATH - 1) {
5057    errno = ENAMETOOLONG;
5058    return -1;
5059  }
5060
5061  // All file descriptors that are opened in the Java process and not
5062  // specifically destined for a subprocess should have the close-on-exec
5063  // flag set.  If we don't set it, then careless 3rd party native code
5064  // might fork and exec without closing all appropriate file descriptors
5065  // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5066  // turn might:
5067  //
5068  // - cause end-of-file to fail to be detected on some file
5069  //   descriptors, resulting in mysterious hangs, or
5070  //
5071  // - might cause an fopen in the subprocess to fail on a system
5072  //   suffering from bug 1085341.
5073  //
5074  // (Yes, the default setting of the close-on-exec flag is a Unix
5075  // design flaw)
5076  //
5077  // See:
5078  // 1085341: 32-bit stdio routines should support file descriptors >255
5079  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5080  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5081  //
5082  // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5083  // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5084  // because it saves a system call and removes a small window where the flag
5085  // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5086  // and we fall back to using FD_CLOEXEC (see below).
5087#ifdef O_CLOEXEC
5088  oflag |= O_CLOEXEC;
5089#endif
5090
5091  int fd = ::open64(path, oflag, mode);
5092  if (fd == -1) return -1;
5093
5094  //If the open succeeded, the file might still be a directory
5095  {
5096    struct stat64 buf64;
5097    int ret = ::fstat64(fd, &buf64);
5098    int st_mode = buf64.st_mode;
5099
5100    if (ret != -1) {
5101      if ((st_mode & S_IFMT) == S_IFDIR) {
5102        errno = EISDIR;
5103        ::close(fd);
5104        return -1;
5105      }
5106    } else {
5107      ::close(fd);
5108      return -1;
5109    }
5110  }
5111
5112#ifdef FD_CLOEXEC
5113  // Validate that the use of the O_CLOEXEC flag on open above worked.
5114  // With recent kernels, we will perform this check exactly once.
5115  static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5116  if (!O_CLOEXEC_is_known_to_work) {
5117    int flags = ::fcntl(fd, F_GETFD);
5118    if (flags != -1) {
5119      if ((flags & FD_CLOEXEC) != 0)
5120        O_CLOEXEC_is_known_to_work = 1;
5121      else
5122        ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5123    }
5124  }
5125#endif
5126
5127  return fd;
5128}
5129
5130
5131// create binary file, rewriting existing file if required
5132int os::create_binary_file(const char* path, bool rewrite_existing) {
5133  int oflags = O_WRONLY | O_CREAT;
5134  if (!rewrite_existing) {
5135    oflags |= O_EXCL;
5136  }
5137  return ::open64(path, oflags, S_IREAD | S_IWRITE);
5138}
5139
5140// return current position of file pointer
5141jlong os::current_file_offset(int fd) {
5142  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5143}
5144
5145// move file pointer to the specified offset
5146jlong os::seek_to_file_offset(int fd, jlong offset) {
5147  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5148}
5149
5150// This code originates from JDK's sysAvailable
5151// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5152
5153int os::available(int fd, jlong *bytes) {
5154  jlong cur, end;
5155  int mode;
5156  struct stat64 buf64;
5157
5158  if (::fstat64(fd, &buf64) >= 0) {
5159    mode = buf64.st_mode;
5160    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5161      int n;
5162      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5163        *bytes = n;
5164        return 1;
5165      }
5166    }
5167  }
5168  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5169    return 0;
5170  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5171    return 0;
5172  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5173    return 0;
5174  }
5175  *bytes = end - cur;
5176  return 1;
5177}
5178
5179// Map a block of memory.
5180char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5181                        char *addr, size_t bytes, bool read_only,
5182                        bool allow_exec) {
5183  int prot;
5184  int flags = MAP_PRIVATE;
5185
5186  if (read_only) {
5187    prot = PROT_READ;
5188  } else {
5189    prot = PROT_READ | PROT_WRITE;
5190  }
5191
5192  if (allow_exec) {
5193    prot |= PROT_EXEC;
5194  }
5195
5196  if (addr != NULL) {
5197    flags |= MAP_FIXED;
5198  }
5199
5200  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5201                                     fd, file_offset);
5202  if (mapped_address == MAP_FAILED) {
5203    return NULL;
5204  }
5205  return mapped_address;
5206}
5207
5208
5209// Remap a block of memory.
5210char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5211                          char *addr, size_t bytes, bool read_only,
5212                          bool allow_exec) {
5213  // same as map_memory() on this OS
5214  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5215                        allow_exec);
5216}
5217
5218
5219// Unmap a block of memory.
5220bool os::pd_unmap_memory(char* addr, size_t bytes) {
5221  return munmap(addr, bytes) == 0;
5222}
5223
5224static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5225
5226static clockid_t thread_cpu_clockid(Thread* thread) {
5227  pthread_t tid = thread->osthread()->pthread_id();
5228  clockid_t clockid;
5229
5230  // Get thread clockid
5231  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5232  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5233  return clockid;
5234}
5235
5236// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5237// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5238// of a thread.
5239//
5240// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5241// the fast estimate available on the platform.
5242
5243jlong os::current_thread_cpu_time() {
5244  if (os::Linux::supports_fast_thread_cpu_time()) {
5245    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5246  } else {
5247    // return user + sys since the cost is the same
5248    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5249  }
5250}
5251
5252jlong os::thread_cpu_time(Thread* thread) {
5253  // consistent with what current_thread_cpu_time() returns
5254  if (os::Linux::supports_fast_thread_cpu_time()) {
5255    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5256  } else {
5257    return slow_thread_cpu_time(thread, true /* user + sys */);
5258  }
5259}
5260
5261jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5262  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5263    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5264  } else {
5265    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5266  }
5267}
5268
5269jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5270  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5271    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5272  } else {
5273    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5274  }
5275}
5276
5277//  -1 on error.
5278static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5279  pid_t  tid = thread->osthread()->thread_id();
5280  char *s;
5281  char stat[2048];
5282  int statlen;
5283  char proc_name[64];
5284  int count;
5285  long sys_time, user_time;
5286  char cdummy;
5287  int idummy;
5288  long ldummy;
5289  FILE *fp;
5290
5291  snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5292  fp = fopen(proc_name, "r");
5293  if (fp == NULL) return -1;
5294  statlen = fread(stat, 1, 2047, fp);
5295  stat[statlen] = '\0';
5296  fclose(fp);
5297
5298  // Skip pid and the command string. Note that we could be dealing with
5299  // weird command names, e.g. user could decide to rename java launcher
5300  // to "java 1.4.2 :)", then the stat file would look like
5301  //                1234 (java 1.4.2 :)) R ... ...
5302  // We don't really need to know the command string, just find the last
5303  // occurrence of ")" and then start parsing from there. See bug 4726580.
5304  s = strrchr(stat, ')');
5305  if (s == NULL) return -1;
5306
5307  // Skip blank chars
5308  do { s++; } while (s && isspace(*s));
5309
5310  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5311                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5312                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5313                 &user_time, &sys_time);
5314  if (count != 13) return -1;
5315  if (user_sys_cpu_time) {
5316    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5317  } else {
5318    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5319  }
5320}
5321
5322void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5323  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5324  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5325  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5326  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5327}
5328
5329void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5330  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5331  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5332  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5333  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5334}
5335
5336bool os::is_thread_cpu_time_supported() {
5337  return true;
5338}
5339
5340// System loadavg support.  Returns -1 if load average cannot be obtained.
5341// Linux doesn't yet have a (official) notion of processor sets,
5342// so just return the system wide load average.
5343int os::loadavg(double loadavg[], int nelem) {
5344  return ::getloadavg(loadavg, nelem);
5345}
5346
5347void os::pause() {
5348  char filename[MAX_PATH];
5349  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5350    jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5351  } else {
5352    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5353  }
5354
5355  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5356  if (fd != -1) {
5357    struct stat buf;
5358    ::close(fd);
5359    while (::stat(filename, &buf) == 0) {
5360      (void)::poll(NULL, 0, 100);
5361    }
5362  } else {
5363    jio_fprintf(stderr,
5364                "Could not open pause file '%s', continuing immediately.\n", filename);
5365  }
5366}
5367
5368
5369// Refer to the comments in os_solaris.cpp park-unpark. The next two
5370// comment paragraphs are worth repeating here:
5371//
5372// Assumption:
5373//    Only one parker can exist on an event, which is why we allocate
5374//    them per-thread. Multiple unparkers can coexist.
5375//
5376// _Event serves as a restricted-range semaphore.
5377//   -1 : thread is blocked, i.e. there is a waiter
5378//    0 : neutral: thread is running or ready,
5379//        could have been signaled after a wait started
5380//    1 : signaled - thread is running or ready
5381//
5382
5383// utility to compute the abstime argument to timedwait:
5384// millis is the relative timeout time
5385// abstime will be the absolute timeout time
5386// TODO: replace compute_abstime() with unpackTime()
5387
5388static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5389  if (millis < 0)  millis = 0;
5390
5391  jlong seconds = millis / 1000;
5392  millis %= 1000;
5393  if (seconds > 50000000) { // see man cond_timedwait(3T)
5394    seconds = 50000000;
5395  }
5396
5397  if (os::supports_monotonic_clock()) {
5398    struct timespec now;
5399    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5400    assert_status(status == 0, status, "clock_gettime");
5401    abstime->tv_sec = now.tv_sec  + seconds;
5402    long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5403    if (nanos >= NANOSECS_PER_SEC) {
5404      abstime->tv_sec += 1;
5405      nanos -= NANOSECS_PER_SEC;
5406    }
5407    abstime->tv_nsec = nanos;
5408  } else {
5409    struct timeval now;
5410    int status = gettimeofday(&now, NULL);
5411    assert(status == 0, "gettimeofday");
5412    abstime->tv_sec = now.tv_sec  + seconds;
5413    long usec = now.tv_usec + millis * 1000;
5414    if (usec >= 1000000) {
5415      abstime->tv_sec += 1;
5416      usec -= 1000000;
5417    }
5418    abstime->tv_nsec = usec * 1000;
5419  }
5420  return abstime;
5421}
5422
5423void os::PlatformEvent::park() {       // AKA "down()"
5424  // Transitions for _Event:
5425  //   -1 => -1 : illegal
5426  //    1 =>  0 : pass - return immediately
5427  //    0 => -1 : block; then set _Event to 0 before returning
5428
5429  // Invariant: Only the thread associated with the Event/PlatformEvent
5430  // may call park().
5431  // TODO: assert that _Assoc != NULL or _Assoc == Self
5432  assert(_nParked == 0, "invariant");
5433
5434  int v;
5435  for (;;) {
5436    v = _Event;
5437    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5438  }
5439  guarantee(v >= 0, "invariant");
5440  if (v == 0) {
5441    // Do this the hard way by blocking ...
5442    int status = pthread_mutex_lock(_mutex);
5443    assert_status(status == 0, status, "mutex_lock");
5444    guarantee(_nParked == 0, "invariant");
5445    ++_nParked;
5446    while (_Event < 0) {
5447      status = pthread_cond_wait(_cond, _mutex);
5448      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5449      // Treat this the same as if the wait was interrupted
5450      if (status == ETIME) { status = EINTR; }
5451      assert_status(status == 0 || status == EINTR, status, "cond_wait");
5452    }
5453    --_nParked;
5454
5455    _Event = 0;
5456    status = pthread_mutex_unlock(_mutex);
5457    assert_status(status == 0, status, "mutex_unlock");
5458    // Paranoia to ensure our locked and lock-free paths interact
5459    // correctly with each other.
5460    OrderAccess::fence();
5461  }
5462  guarantee(_Event >= 0, "invariant");
5463}
5464
5465int os::PlatformEvent::park(jlong millis) {
5466  // Transitions for _Event:
5467  //   -1 => -1 : illegal
5468  //    1 =>  0 : pass - return immediately
5469  //    0 => -1 : block; then set _Event to 0 before returning
5470
5471  guarantee(_nParked == 0, "invariant");
5472
5473  int v;
5474  for (;;) {
5475    v = _Event;
5476    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5477  }
5478  guarantee(v >= 0, "invariant");
5479  if (v != 0) return OS_OK;
5480
5481  // We do this the hard way, by blocking the thread.
5482  // Consider enforcing a minimum timeout value.
5483  struct timespec abst;
5484  compute_abstime(&abst, millis);
5485
5486  int ret = OS_TIMEOUT;
5487  int status = pthread_mutex_lock(_mutex);
5488  assert_status(status == 0, status, "mutex_lock");
5489  guarantee(_nParked == 0, "invariant");
5490  ++_nParked;
5491
5492  // Object.wait(timo) will return because of
5493  // (a) notification
5494  // (b) timeout
5495  // (c) thread.interrupt
5496  //
5497  // Thread.interrupt and object.notify{All} both call Event::set.
5498  // That is, we treat thread.interrupt as a special case of notification.
5499  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5500  // We assume all ETIME returns are valid.
5501  //
5502  // TODO: properly differentiate simultaneous notify+interrupt.
5503  // In that case, we should propagate the notify to another waiter.
5504
5505  while (_Event < 0) {
5506    status = pthread_cond_timedwait(_cond, _mutex, &abst);
5507    assert_status(status == 0 || status == EINTR ||
5508                  status == ETIME || status == ETIMEDOUT,
5509                  status, "cond_timedwait");
5510    if (!FilterSpuriousWakeups) break;                 // previous semantics
5511    if (status == ETIME || status == ETIMEDOUT) break;
5512    // We consume and ignore EINTR and spurious wakeups.
5513  }
5514  --_nParked;
5515  if (_Event >= 0) {
5516    ret = OS_OK;
5517  }
5518  _Event = 0;
5519  status = pthread_mutex_unlock(_mutex);
5520  assert_status(status == 0, status, "mutex_unlock");
5521  assert(_nParked == 0, "invariant");
5522  // Paranoia to ensure our locked and lock-free paths interact
5523  // correctly with each other.
5524  OrderAccess::fence();
5525  return ret;
5526}
5527
5528void os::PlatformEvent::unpark() {
5529  // Transitions for _Event:
5530  //    0 => 1 : just return
5531  //    1 => 1 : just return
5532  //   -1 => either 0 or 1; must signal target thread
5533  //         That is, we can safely transition _Event from -1 to either
5534  //         0 or 1.
5535  // See also: "Semaphores in Plan 9" by Mullender & Cox
5536  //
5537  // Note: Forcing a transition from "-1" to "1" on an unpark() means
5538  // that it will take two back-to-back park() calls for the owning
5539  // thread to block. This has the benefit of forcing a spurious return
5540  // from the first park() call after an unpark() call which will help
5541  // shake out uses of park() and unpark() without condition variables.
5542
5543  if (Atomic::xchg(1, &_Event) >= 0) return;
5544
5545  // Wait for the thread associated with the event to vacate
5546  int status = pthread_mutex_lock(_mutex);
5547  assert_status(status == 0, status, "mutex_lock");
5548  int AnyWaiters = _nParked;
5549  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5550  status = pthread_mutex_unlock(_mutex);
5551  assert_status(status == 0, status, "mutex_unlock");
5552  if (AnyWaiters != 0) {
5553    // Note that we signal() *after* dropping the lock for "immortal" Events.
5554    // This is safe and avoids a common class of  futile wakeups.  In rare
5555    // circumstances this can cause a thread to return prematurely from
5556    // cond_{timed}wait() but the spurious wakeup is benign and the victim
5557    // will simply re-test the condition and re-park itself.
5558    // This provides particular benefit if the underlying platform does not
5559    // provide wait morphing.
5560    status = pthread_cond_signal(_cond);
5561    assert_status(status == 0, status, "cond_signal");
5562  }
5563}
5564
5565
5566// JSR166
5567// -------------------------------------------------------
5568
5569// The solaris and linux implementations of park/unpark are fairly
5570// conservative for now, but can be improved. They currently use a
5571// mutex/condvar pair, plus a a count.
5572// Park decrements count if > 0, else does a condvar wait.  Unpark
5573// sets count to 1 and signals condvar.  Only one thread ever waits
5574// on the condvar. Contention seen when trying to park implies that someone
5575// is unparking you, so don't wait. And spurious returns are fine, so there
5576// is no need to track notifications.
5577
5578// This code is common to linux and solaris and will be moved to a
5579// common place in dolphin.
5580//
5581// The passed in time value is either a relative time in nanoseconds
5582// or an absolute time in milliseconds. Either way it has to be unpacked
5583// into suitable seconds and nanoseconds components and stored in the
5584// given timespec structure.
5585// Given time is a 64-bit value and the time_t used in the timespec is only
5586// a signed-32-bit value (except on 64-bit Linux) we have to watch for
5587// overflow if times way in the future are given. Further on Solaris versions
5588// prior to 10 there is a restriction (see cond_timedwait) that the specified
5589// number of seconds, in abstime, is less than current_time  + 100,000,000.
5590// As it will be 28 years before "now + 100000000" will overflow we can
5591// ignore overflow and just impose a hard-limit on seconds using the value
5592// of "now + 100,000,000". This places a limit on the timeout of about 3.17
5593// years from "now".
5594
5595static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5596  assert(time > 0, "convertTime");
5597  time_t max_secs = 0;
5598
5599  if (!os::supports_monotonic_clock() || isAbsolute) {
5600    struct timeval now;
5601    int status = gettimeofday(&now, NULL);
5602    assert(status == 0, "gettimeofday");
5603
5604    max_secs = now.tv_sec + MAX_SECS;
5605
5606    if (isAbsolute) {
5607      jlong secs = time / 1000;
5608      if (secs > max_secs) {
5609        absTime->tv_sec = max_secs;
5610      } else {
5611        absTime->tv_sec = secs;
5612      }
5613      absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5614    } else {
5615      jlong secs = time / NANOSECS_PER_SEC;
5616      if (secs >= MAX_SECS) {
5617        absTime->tv_sec = max_secs;
5618        absTime->tv_nsec = 0;
5619      } else {
5620        absTime->tv_sec = now.tv_sec + secs;
5621        absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5622        if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5623          absTime->tv_nsec -= NANOSECS_PER_SEC;
5624          ++absTime->tv_sec; // note: this must be <= max_secs
5625        }
5626      }
5627    }
5628  } else {
5629    // must be relative using monotonic clock
5630    struct timespec now;
5631    int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5632    assert_status(status == 0, status, "clock_gettime");
5633    max_secs = now.tv_sec + MAX_SECS;
5634    jlong secs = time / NANOSECS_PER_SEC;
5635    if (secs >= MAX_SECS) {
5636      absTime->tv_sec = max_secs;
5637      absTime->tv_nsec = 0;
5638    } else {
5639      absTime->tv_sec = now.tv_sec + secs;
5640      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5641      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5642        absTime->tv_nsec -= NANOSECS_PER_SEC;
5643        ++absTime->tv_sec; // note: this must be <= max_secs
5644      }
5645    }
5646  }
5647  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5648  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5649  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5650  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5651}
5652
5653void Parker::park(bool isAbsolute, jlong time) {
5654  // Ideally we'd do something useful while spinning, such
5655  // as calling unpackTime().
5656
5657  // Optional fast-path check:
5658  // Return immediately if a permit is available.
5659  // We depend on Atomic::xchg() having full barrier semantics
5660  // since we are doing a lock-free update to _counter.
5661  if (Atomic::xchg(0, &_counter) > 0) return;
5662
5663  Thread* thread = Thread::current();
5664  assert(thread->is_Java_thread(), "Must be JavaThread");
5665  JavaThread *jt = (JavaThread *)thread;
5666
5667  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5668  // Check interrupt before trying to wait
5669  if (Thread::is_interrupted(thread, false)) {
5670    return;
5671  }
5672
5673  // Next, demultiplex/decode time arguments
5674  timespec absTime;
5675  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5676    return;
5677  }
5678  if (time > 0) {
5679    unpackTime(&absTime, isAbsolute, time);
5680  }
5681
5682
5683  // Enter safepoint region
5684  // Beware of deadlocks such as 6317397.
5685  // The per-thread Parker:: mutex is a classic leaf-lock.
5686  // In particular a thread must never block on the Threads_lock while
5687  // holding the Parker:: mutex.  If safepoints are pending both the
5688  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5689  ThreadBlockInVM tbivm(jt);
5690
5691  // Don't wait if cannot get lock since interference arises from
5692  // unblocking.  Also. check interrupt before trying wait
5693  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5694    return;
5695  }
5696
5697  int status;
5698  if (_counter > 0)  { // no wait needed
5699    _counter = 0;
5700    status = pthread_mutex_unlock(_mutex);
5701    assert_status(status == 0, status, "invariant");
5702    // Paranoia to ensure our locked and lock-free paths interact
5703    // correctly with each other and Java-level accesses.
5704    OrderAccess::fence();
5705    return;
5706  }
5707
5708#ifdef ASSERT
5709  // Don't catch signals while blocked; let the running threads have the signals.
5710  // (This allows a debugger to break into the running thread.)
5711  sigset_t oldsigs;
5712  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5713  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5714#endif
5715
5716  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5717  jt->set_suspend_equivalent();
5718  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5719
5720  assert(_cur_index == -1, "invariant");
5721  if (time == 0) {
5722    _cur_index = REL_INDEX; // arbitrary choice when not timed
5723    status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5724  } else {
5725    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5726    status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5727  }
5728  _cur_index = -1;
5729  assert_status(status == 0 || status == EINTR ||
5730                status == ETIME || status == ETIMEDOUT,
5731                status, "cond_timedwait");
5732
5733#ifdef ASSERT
5734  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5735#endif
5736
5737  _counter = 0;
5738  status = pthread_mutex_unlock(_mutex);
5739  assert_status(status == 0, status, "invariant");
5740  // Paranoia to ensure our locked and lock-free paths interact
5741  // correctly with each other and Java-level accesses.
5742  OrderAccess::fence();
5743
5744  // If externally suspended while waiting, re-suspend
5745  if (jt->handle_special_suspend_equivalent_condition()) {
5746    jt->java_suspend_self();
5747  }
5748}
5749
5750void Parker::unpark() {
5751  int status = pthread_mutex_lock(_mutex);
5752  assert_status(status == 0, status, "invariant");
5753  const int s = _counter;
5754  _counter = 1;
5755  // must capture correct index before unlocking
5756  int index = _cur_index;
5757  status = pthread_mutex_unlock(_mutex);
5758  assert_status(status == 0, status, "invariant");
5759  if (s < 1 && index != -1) {
5760    // thread is definitely parked
5761    status = pthread_cond_signal(&_cond[index]);
5762    assert_status(status == 0, status, "invariant");
5763  }
5764}
5765
5766
5767extern char** environ;
5768
5769// Run the specified command in a separate process. Return its exit value,
5770// or -1 on failure (e.g. can't fork a new process).
5771// Unlike system(), this function can be called from signal handler. It
5772// doesn't block SIGINT et al.
5773int os::fork_and_exec(char* cmd) {
5774  const char * argv[4] = {"sh", "-c", cmd, NULL};
5775
5776  pid_t pid = fork();
5777
5778  if (pid < 0) {
5779    // fork failed
5780    return -1;
5781
5782  } else if (pid == 0) {
5783    // child process
5784
5785    execve("/bin/sh", (char* const*)argv, environ);
5786
5787    // execve failed
5788    _exit(-1);
5789
5790  } else  {
5791    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5792    // care about the actual exit code, for now.
5793
5794    int status;
5795
5796    // Wait for the child process to exit.  This returns immediately if
5797    // the child has already exited. */
5798    while (waitpid(pid, &status, 0) < 0) {
5799      switch (errno) {
5800      case ECHILD: return 0;
5801      case EINTR: break;
5802      default: return -1;
5803      }
5804    }
5805
5806    if (WIFEXITED(status)) {
5807      // The child exited normally; get its exit code.
5808      return WEXITSTATUS(status);
5809    } else if (WIFSIGNALED(status)) {
5810      // The child exited because of a signal
5811      // The best value to return is 0x80 + signal number,
5812      // because that is what all Unix shells do, and because
5813      // it allows callers to distinguish between process exit and
5814      // process death by signal.
5815      return 0x80 + WTERMSIG(status);
5816    } else {
5817      // Unknown exit code; pass it through
5818      return status;
5819    }
5820  }
5821}
5822
5823// is_headless_jre()
5824//
5825// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5826// in order to report if we are running in a headless jre
5827//
5828// Since JDK8 xawt/libmawt.so was moved into the same directory
5829// as libawt.so, and renamed libawt_xawt.so
5830//
5831bool os::is_headless_jre() {
5832  struct stat statbuf;
5833  char buf[MAXPATHLEN];
5834  char libmawtpath[MAXPATHLEN];
5835  const char *xawtstr  = "/xawt/libmawt.so";
5836  const char *new_xawtstr = "/libawt_xawt.so";
5837  char *p;
5838
5839  // Get path to libjvm.so
5840  os::jvm_path(buf, sizeof(buf));
5841
5842  // Get rid of libjvm.so
5843  p = strrchr(buf, '/');
5844  if (p == NULL) {
5845    return false;
5846  } else {
5847    *p = '\0';
5848  }
5849
5850  // Get rid of client or server
5851  p = strrchr(buf, '/');
5852  if (p == NULL) {
5853    return false;
5854  } else {
5855    *p = '\0';
5856  }
5857
5858  // check xawt/libmawt.so
5859  strcpy(libmawtpath, buf);
5860  strcat(libmawtpath, xawtstr);
5861  if (::stat(libmawtpath, &statbuf) == 0) return false;
5862
5863  // check libawt_xawt.so
5864  strcpy(libmawtpath, buf);
5865  strcat(libmawtpath, new_xawtstr);
5866  if (::stat(libmawtpath, &statbuf) == 0) return false;
5867
5868  return true;
5869}
5870
5871// Get the default path to the core file
5872// Returns the length of the string
5873int os::get_core_path(char* buffer, size_t bufferSize) {
5874  /*
5875   * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5876   * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5877   */
5878  const int core_pattern_len = 129;
5879  char core_pattern[core_pattern_len] = {0};
5880
5881  int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5882  if (core_pattern_file == -1) {
5883    return -1;
5884  }
5885
5886  ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5887  ::close(core_pattern_file);
5888  if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5889    return -1;
5890  }
5891  if (core_pattern[ret-1] == '\n') {
5892    core_pattern[ret-1] = '\0';
5893  } else {
5894    core_pattern[ret] = '\0';
5895  }
5896
5897  char *pid_pos = strstr(core_pattern, "%p");
5898  int written;
5899
5900  if (core_pattern[0] == '/') {
5901    written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5902  } else {
5903    char cwd[PATH_MAX];
5904
5905    const char* p = get_current_directory(cwd, PATH_MAX);
5906    if (p == NULL) {
5907      return -1;
5908    }
5909
5910    if (core_pattern[0] == '|') {
5911      written = jio_snprintf(buffer, bufferSize,
5912                        "\"%s\" (or dumping to %s/core.%d)",
5913                                     &core_pattern[1], p, current_process_id());
5914    } else {
5915      written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5916    }
5917  }
5918
5919  if (written < 0) {
5920    return -1;
5921  }
5922
5923  if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5924    int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5925
5926    if (core_uses_pid_file != -1) {
5927      char core_uses_pid = 0;
5928      ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5929      ::close(core_uses_pid_file);
5930
5931      if (core_uses_pid == '1') {
5932        jio_snprintf(buffer + written, bufferSize - written,
5933                                          ".%d", current_process_id());
5934      }
5935    }
5936  }
5937
5938  return strlen(buffer);
5939}
5940
5941bool os::start_debugging(char *buf, int buflen) {
5942  int len = (int)strlen(buf);
5943  char *p = &buf[len];
5944
5945  jio_snprintf(p, buflen-len,
5946             "\n\n"
5947             "Do you want to debug the problem?\n\n"
5948             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5949             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5950             "Otherwise, press RETURN to abort...",
5951             os::current_process_id(), os::current_process_id(),
5952             os::current_thread_id(), os::current_thread_id());
5953
5954  bool yes = os::message_box("Unexpected Error", buf);
5955
5956  if (yes) {
5957    // yes, user asked VM to launch debugger
5958    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
5959                     os::current_process_id(), os::current_process_id());
5960
5961    os::fork_and_exec(buf);
5962    yes = false;
5963  }
5964  return yes;
5965}
5966
5967
5968
5969/////////////// Unit tests ///////////////
5970
5971#ifndef PRODUCT
5972
5973#define test_log(...)              \
5974  do {                             \
5975    if (VerboseInternalVMTests) {  \
5976      tty->print_cr(__VA_ARGS__);  \
5977      tty->flush();                \
5978    }                              \
5979  } while (false)
5980
5981class TestReserveMemorySpecial : AllStatic {
5982 public:
5983  static void small_page_write(void* addr, size_t size) {
5984    size_t page_size = os::vm_page_size();
5985
5986    char* end = (char*)addr + size;
5987    for (char* p = (char*)addr; p < end; p += page_size) {
5988      *p = 1;
5989    }
5990  }
5991
5992  static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5993    if (!UseHugeTLBFS) {
5994      return;
5995    }
5996
5997    test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5998
5999    char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6000
6001    if (addr != NULL) {
6002      small_page_write(addr, size);
6003
6004      os::Linux::release_memory_special_huge_tlbfs(addr, size);
6005    }
6006  }
6007
6008  static void test_reserve_memory_special_huge_tlbfs_only() {
6009    if (!UseHugeTLBFS) {
6010      return;
6011    }
6012
6013    size_t lp = os::large_page_size();
6014
6015    for (size_t size = lp; size <= lp * 10; size += lp) {
6016      test_reserve_memory_special_huge_tlbfs_only(size);
6017    }
6018  }
6019
6020  static void test_reserve_memory_special_huge_tlbfs_mixed() {
6021    size_t lp = os::large_page_size();
6022    size_t ag = os::vm_allocation_granularity();
6023
6024    // sizes to test
6025    const size_t sizes[] = {
6026      lp, lp + ag, lp + lp / 2, lp * 2,
6027      lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6028      lp * 10, lp * 10 + lp / 2
6029    };
6030    const int num_sizes = sizeof(sizes) / sizeof(size_t);
6031
6032    // For each size/alignment combination, we test three scenarios:
6033    // 1) with req_addr == NULL
6034    // 2) with a non-null req_addr at which we expect to successfully allocate
6035    // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6036    //    expect the allocation to either fail or to ignore req_addr
6037
6038    // Pre-allocate two areas; they shall be as large as the largest allocation
6039    //  and aligned to the largest alignment we will be testing.
6040    const size_t mapping_size = sizes[num_sizes - 1] * 2;
6041    char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6042      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6043      -1, 0);
6044    assert(mapping1 != MAP_FAILED, "should work");
6045
6046    char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6047      PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6048      -1, 0);
6049    assert(mapping2 != MAP_FAILED, "should work");
6050
6051    // Unmap the first mapping, but leave the second mapping intact: the first
6052    // mapping will serve as a value for a "good" req_addr (case 2). The second
6053    // mapping, still intact, as "bad" req_addr (case 3).
6054    ::munmap(mapping1, mapping_size);
6055
6056    // Case 1
6057    test_log("%s, req_addr NULL:", __FUNCTION__);
6058    test_log("size            align           result");
6059
6060    for (int i = 0; i < num_sizes; i++) {
6061      const size_t size = sizes[i];
6062      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6063        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6064        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6065                 size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6066        if (p != NULL) {
6067          assert(is_ptr_aligned(p, alignment), "must be");
6068          small_page_write(p, size);
6069          os::Linux::release_memory_special_huge_tlbfs(p, size);
6070        }
6071      }
6072    }
6073
6074    // Case 2
6075    test_log("%s, req_addr non-NULL:", __FUNCTION__);
6076    test_log("size            align           req_addr         result");
6077
6078    for (int i = 0; i < num_sizes; i++) {
6079      const size_t size = sizes[i];
6080      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6081        char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6082        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6083        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6084                 size, alignment, p2i(req_addr), p2i(p),
6085                 ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6086        if (p != NULL) {
6087          assert(p == req_addr, "must be");
6088          small_page_write(p, size);
6089          os::Linux::release_memory_special_huge_tlbfs(p, size);
6090        }
6091      }
6092    }
6093
6094    // Case 3
6095    test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6096    test_log("size            align           req_addr         result");
6097
6098    for (int i = 0; i < num_sizes; i++) {
6099      const size_t size = sizes[i];
6100      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6101        char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6102        char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6103        test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6104                 size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6105        // as the area around req_addr contains already existing mappings, the API should always
6106        // return NULL (as per contract, it cannot return another address)
6107        assert(p == NULL, "must be");
6108      }
6109    }
6110
6111    ::munmap(mapping2, mapping_size);
6112
6113  }
6114
6115  static void test_reserve_memory_special_huge_tlbfs() {
6116    if (!UseHugeTLBFS) {
6117      return;
6118    }
6119
6120    test_reserve_memory_special_huge_tlbfs_only();
6121    test_reserve_memory_special_huge_tlbfs_mixed();
6122  }
6123
6124  static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6125    if (!UseSHM) {
6126      return;
6127    }
6128
6129    test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6130
6131    char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6132
6133    if (addr != NULL) {
6134      assert(is_ptr_aligned(addr, alignment), "Check");
6135      assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6136
6137      small_page_write(addr, size);
6138
6139      os::Linux::release_memory_special_shm(addr, size);
6140    }
6141  }
6142
6143  static void test_reserve_memory_special_shm() {
6144    size_t lp = os::large_page_size();
6145    size_t ag = os::vm_allocation_granularity();
6146
6147    for (size_t size = ag; size < lp * 3; size += ag) {
6148      for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6149        test_reserve_memory_special_shm(size, alignment);
6150      }
6151    }
6152  }
6153
6154  static void test() {
6155    test_reserve_memory_special_huge_tlbfs();
6156    test_reserve_memory_special_shm();
6157  }
6158};
6159
6160void TestReserveMemorySpecial_test() {
6161  TestReserveMemorySpecial::test();
6162}
6163
6164#endif
6165