os_bsd.cpp revision 9842:4055f3ec41cd
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Bsd::_physical_memory = 0;
134
135#ifdef __APPLE__
136mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137volatile uint64_t         os::Bsd::_max_abstime   = 0;
138#else
139int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140#endif
141pthread_t os::Bsd::_main_thread;
142int os::Bsd::_page_size = -1;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167julong os::available_memory() {
168  return Bsd::available_memory();
169}
170
171// available here means free
172julong os::Bsd::available_memory() {
173  uint64_t available = physical_memory() >> 2;
174#ifdef __APPLE__
175  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176  vm_statistics64_data_t vmstat;
177  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178                                         (host_info64_t)&vmstat, &count);
179  assert(kerr == KERN_SUCCESS,
180         "host_statistics64 failed - check mach_host_self() and count");
181  if (kerr == KERN_SUCCESS) {
182    available = vmstat.free_count * os::vm_page_size();
183  }
184#endif
185  return available;
186}
187
188julong os::physical_memory() {
189  return Bsd::physical_memory();
190}
191
192// Return true if user is running as root.
193
194bool os::have_special_privileges() {
195  static bool init = false;
196  static bool privileges = false;
197  if (!init) {
198    privileges = (getuid() != geteuid()) || (getgid() != getegid());
199    init = true;
200  }
201  return privileges;
202}
203
204
205
206// Cpu architecture string
207#if   defined(ZERO)
208static char cpu_arch[] = ZERO_LIBARCH;
209#elif defined(IA64)
210static char cpu_arch[] = "ia64";
211#elif defined(IA32)
212static char cpu_arch[] = "i386";
213#elif defined(AMD64)
214static char cpu_arch[] = "amd64";
215#elif defined(ARM)
216static char cpu_arch[] = "arm";
217#elif defined(PPC32)
218static char cpu_arch[] = "ppc";
219#elif defined(SPARC)
220  #ifdef _LP64
221static char cpu_arch[] = "sparcv9";
222  #else
223static char cpu_arch[] = "sparc";
224  #endif
225#else
226  #error Add appropriate cpu_arch setting
227#endif
228
229// Compiler variant
230#ifdef COMPILER2
231  #define COMPILER_VARIANT "server"
232#else
233  #define COMPILER_VARIANT "client"
234#endif
235
236
237void os::Bsd::initialize_system_info() {
238  int mib[2];
239  size_t len;
240  int cpu_val;
241  julong mem_val;
242
243  // get processors count via hw.ncpus sysctl
244  mib[0] = CTL_HW;
245  mib[1] = HW_NCPU;
246  len = sizeof(cpu_val);
247  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
248    assert(len == sizeof(cpu_val), "unexpected data size");
249    set_processor_count(cpu_val);
250  } else {
251    set_processor_count(1);   // fallback
252  }
253
254  // get physical memory via hw.memsize sysctl (hw.memsize is used
255  // since it returns a 64 bit value)
256  mib[0] = CTL_HW;
257
258#if defined (HW_MEMSIZE) // Apple
259  mib[1] = HW_MEMSIZE;
260#elif defined(HW_PHYSMEM) // Most of BSD
261  mib[1] = HW_PHYSMEM;
262#elif defined(HW_REALMEM) // Old FreeBSD
263  mib[1] = HW_REALMEM;
264#else
265  #error No ways to get physmem
266#endif
267
268  len = sizeof(mem_val);
269  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
270    assert(len == sizeof(mem_val), "unexpected data size");
271    _physical_memory = mem_val;
272  } else {
273    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
274  }
275
276#ifdef __OpenBSD__
277  {
278    // limit _physical_memory memory view on OpenBSD since
279    // datasize rlimit restricts us anyway.
280    struct rlimit limits;
281    getrlimit(RLIMIT_DATA, &limits);
282    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
283  }
284#endif
285}
286
287#ifdef __APPLE__
288static const char *get_home() {
289  const char *home_dir = ::getenv("HOME");
290  if ((home_dir == NULL) || (*home_dir == '\0')) {
291    struct passwd *passwd_info = getpwuid(geteuid());
292    if (passwd_info != NULL) {
293      home_dir = passwd_info->pw_dir;
294    }
295  }
296
297  return home_dir;
298}
299#endif
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#ifndef DEFAULT_LIBPATH
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342#ifndef __APPLE__
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Bsd implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf);
412
413#else // __APPLE__
414
415  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
416  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
417
418  const char *user_home_dir = get_home();
419  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
420  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
421    sizeof(SYS_EXTENSIONS_DIRS);
422
423  // Buffer that fits several sprintfs.
424  // Note that the space for the colon and the trailing null are provided
425  // by the nulls included by the sizeof operator.
426  const size_t bufsize =
427    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
428         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
429  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
430
431  // sysclasspath, java_home, dll_dir
432  {
433    char *pslash;
434    os::jvm_path(buf, bufsize);
435
436    // Found the full path to libjvm.so.
437    // Now cut the path to <java_home>/jre if we can.
438    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
439    pslash = strrchr(buf, '/');
440    if (pslash != NULL) {
441      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
442    }
443#ifdef STATIC_BUILD
444    strcat(buf, "/lib");
445#endif
446
447    Arguments::set_dll_dir(buf);
448
449    if (pslash != NULL) {
450      pslash = strrchr(buf, '/');
451      if (pslash != NULL) {
452        *pslash = '\0';          // Get rid of /lib.
453      }
454    }
455    Arguments::set_java_home(buf);
456    set_boot_path('/', ':');
457  }
458
459  // Where to look for native libraries.
460  //
461  // Note: Due to a legacy implementation, most of the library path
462  // is set in the launcher. This was to accomodate linking restrictions
463  // on legacy Bsd implementations (which are no longer supported).
464  // Eventually, all the library path setting will be done here.
465  //
466  // However, to prevent the proliferation of improperly built native
467  // libraries, the new path component /usr/java/packages is added here.
468  // Eventually, all the library path setting will be done here.
469  {
470    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471    // should always exist (until the legacy problem cited above is
472    // addressed).
473    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
474    // can specify a directory inside an app wrapper
475    const char *l = ::getenv("JAVA_LIBRARY_PATH");
476    const char *l_colon = ":";
477    if (l == NULL) { l = ""; l_colon = ""; }
478
479    const char *v = ::getenv("DYLD_LIBRARY_PATH");
480    const char *v_colon = ":";
481    if (v == NULL) { v = ""; v_colon = ""; }
482
483    // Apple's Java6 has "." at the beginning of java.library.path.
484    // OpenJDK on Windows has "." at the end of java.library.path.
485    // OpenJDK on Linux and Solaris don't have "." in java.library.path
486    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
487    // "." is appended to the end of java.library.path. Yes, this
488    // could cause a change in behavior, but Apple's Java6 behavior
489    // can be achieved by putting "." at the beginning of the
490    // JAVA_LIBRARY_PATH environment variable.
491    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
492                                                     strlen(v) + 1 + strlen(l) + 1 +
493                                                     system_ext_size + 3,
494                                                     mtInternal);
495    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
496            v, v_colon, l, l_colon, user_home_dir);
497    Arguments::set_library_path(ld_library_path);
498    FREE_C_HEAP_ARRAY(char, ld_library_path);
499  }
500
501  // Extensions directories.
502  //
503  // Note that the space for the colon and the trailing null are provided
504  // by the nulls included by the sizeof operator (so actually one byte more
505  // than necessary is allocated).
506  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
507          user_home_dir, Arguments::get_java_home());
508  Arguments::set_ext_dirs(buf);
509
510  FREE_C_HEAP_ARRAY(char, buf);
511
512#undef SYS_EXTENSIONS_DIR
513#undef SYS_EXTENSIONS_DIRS
514
515#endif // __APPLE__
516
517#undef SYS_EXT_DIR
518#undef EXTENSIONS_DIR
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539  struct sigaction oact;
540  sigaction(sig, (struct sigaction*)NULL, &oact);
541  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
544    return true;
545  } else {
546    return false;
547  }
548}
549
550void os::Bsd::signal_sets_init() {
551  // Should also have an assertion stating we are still single-threaded.
552  assert(!signal_sets_initialized, "Already initialized");
553  // Fill in signals that are necessarily unblocked for all threads in
554  // the VM. Currently, we unblock the following signals:
555  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
556  //                         by -Xrs (=ReduceSignalUsage));
557  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
558  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
559  // the dispositions or masks wrt these signals.
560  // Programs embedding the VM that want to use the above signals for their
561  // own purposes must, at this time, use the "-Xrs" option to prevent
562  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
563  // (See bug 4345157, and other related bugs).
564  // In reality, though, unblocking these signals is really a nop, since
565  // these signals are not blocked by default.
566  sigemptyset(&unblocked_sigs);
567  sigemptyset(&allowdebug_blocked_sigs);
568  sigaddset(&unblocked_sigs, SIGILL);
569  sigaddset(&unblocked_sigs, SIGSEGV);
570  sigaddset(&unblocked_sigs, SIGBUS);
571  sigaddset(&unblocked_sigs, SIGFPE);
572  sigaddset(&unblocked_sigs, SR_signum);
573
574  if (!ReduceSignalUsage) {
575    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
576      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
577      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
578    }
579    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
580      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
581      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
582    }
583    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
584      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
585      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
586    }
587  }
588  // Fill in signals that are blocked by all but the VM thread.
589  sigemptyset(&vm_sigs);
590  if (!ReduceSignalUsage) {
591    sigaddset(&vm_sigs, BREAK_SIGNAL);
592  }
593  debug_only(signal_sets_initialized = true);
594
595}
596
597// These are signals that are unblocked while a thread is running Java.
598// (For some reason, they get blocked by default.)
599sigset_t* os::Bsd::unblocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &unblocked_sigs;
602}
603
604// These are the signals that are blocked while a (non-VM) thread is
605// running Java. Only the VM thread handles these signals.
606sigset_t* os::Bsd::vm_signals() {
607  assert(signal_sets_initialized, "Not initialized");
608  return &vm_sigs;
609}
610
611// These are signals that are blocked during cond_wait to allow debugger in
612sigset_t* os::Bsd::allowdebug_blocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &allowdebug_blocked_sigs;
615}
616
617void os::Bsd::hotspot_sigmask(Thread* thread) {
618
619  //Save caller's signal mask before setting VM signal mask
620  sigset_t caller_sigmask;
621  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
622
623  OSThread* osthread = thread->osthread();
624  osthread->set_caller_sigmask(caller_sigmask);
625
626  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
627
628  if (!ReduceSignalUsage) {
629    if (thread->is_VM_thread()) {
630      // Only the VM thread handles BREAK_SIGNAL ...
631      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
632    } else {
633      // ... all other threads block BREAK_SIGNAL
634      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
635    }
636  }
637}
638
639
640//////////////////////////////////////////////////////////////////////////////
641// create new thread
642
643#ifdef __APPLE__
644// library handle for calling objc_registerThreadWithCollector()
645// without static linking to the libobjc library
646  #define OBJC_LIB "/usr/lib/libobjc.dylib"
647  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
648typedef void (*objc_registerThreadWithCollector_t)();
649extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
650objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
651#endif
652
653#ifdef __APPLE__
654static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
655  // Additional thread_id used to correlate threads in SA
656  thread_identifier_info_data_t     m_ident_info;
657  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
658
659  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
660              (thread_info_t) &m_ident_info, &count);
661
662  return m_ident_info.thread_id;
663}
664#endif
665
666// Thread start routine for all newly created threads
667static void *java_start(Thread *thread) {
668  // Try to randomize the cache line index of hot stack frames.
669  // This helps when threads of the same stack traces evict each other's
670  // cache lines. The threads can be either from the same JVM instance, or
671  // from different JVM instances. The benefit is especially true for
672  // processors with hyperthreading technology.
673  static int counter = 0;
674  int pid = os::current_process_id();
675  alloca(((pid ^ counter++) & 7) * 128);
676
677  thread->initialize_thread_current();
678
679  OSThread* osthread = thread->osthread();
680  Monitor* sync = osthread->startThread_lock();
681
682  osthread->set_thread_id(os::Bsd::gettid());
683
684#ifdef __APPLE__
685  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
686  guarantee(unique_thread_id != 0, "unique thread id was not found");
687  osthread->set_unique_thread_id(unique_thread_id);
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // calculate stack size if it's not specified by caller
745  if (stack_size == 0) {
746    stack_size = os::Bsd::default_stack_size(thr_type);
747
748    switch (thr_type) {
749    case os::java_thread:
750      // Java threads use ThreadStackSize which default value can be
751      // changed with the flag -Xss
752      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
753      stack_size = JavaThread::stack_size_at_create();
754      break;
755    case os::compiler_thread:
756      if (CompilerThreadStackSize > 0) {
757        stack_size = (size_t)(CompilerThreadStackSize * K);
758        break;
759      } // else fall through:
760        // use VMThreadStackSize if CompilerThreadStackSize is not defined
761    case os::vm_thread:
762    case os::pgc_thread:
763    case os::cgc_thread:
764    case os::watcher_thread:
765      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
766      break;
767    }
768  }
769
770  stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
771  pthread_attr_setstacksize(&attr, stack_size);
772
773  ThreadState state;
774
775  {
776    pthread_t tid;
777    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
778
779    pthread_attr_destroy(&attr);
780
781    if (ret != 0) {
782      if (PrintMiscellaneous && (Verbose || WizardMode)) {
783        perror("pthread_create()");
784      }
785      // Need to clean up stuff we've allocated so far
786      thread->set_osthread(NULL);
787      delete osthread;
788      return false;
789    }
790
791    // Store pthread info into the OSThread
792    osthread->set_pthread_id(tid);
793
794    // Wait until child thread is either initialized or aborted
795    {
796      Monitor* sync_with_child = osthread->startThread_lock();
797      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
798      while ((state = osthread->get_state()) == ALLOCATED) {
799        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
800      }
801    }
802
803  }
804
805  // Aborted due to thread limit being reached
806  if (state == ZOMBIE) {
807    thread->set_osthread(NULL);
808    delete osthread;
809    return false;
810  }
811
812  // The thread is returned suspended (in state INITIALIZED),
813  // and is started higher up in the call chain
814  assert(state == INITIALIZED, "race condition");
815  return true;
816}
817
818/////////////////////////////////////////////////////////////////////////////
819// attach existing thread
820
821// bootstrap the main thread
822bool os::create_main_thread(JavaThread* thread) {
823  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
824  return create_attached_thread(thread);
825}
826
827bool os::create_attached_thread(JavaThread* thread) {
828#ifdef ASSERT
829  thread->verify_not_published();
830#endif
831
832  // Allocate the OSThread object
833  OSThread* osthread = new OSThread(NULL, NULL);
834
835  if (osthread == NULL) {
836    return false;
837  }
838
839  osthread->set_thread_id(os::Bsd::gettid());
840
841  // Store pthread info into the OSThread
842#ifdef __APPLE__
843  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
844  guarantee(unique_thread_id != 0, "just checking");
845  osthread->set_unique_thread_id(unique_thread_id);
846#endif
847  osthread->set_pthread_id(::pthread_self());
848
849  // initialize floating point control register
850  os::Bsd::init_thread_fpu_state();
851
852  // Initial thread state is RUNNABLE
853  osthread->set_state(RUNNABLE);
854
855  thread->set_osthread(osthread);
856
857  // initialize signal mask for this thread
858  // and save the caller's signal mask
859  os::Bsd::hotspot_sigmask(thread);
860
861  return true;
862}
863
864void os::pd_start_thread(Thread* thread) {
865  OSThread * osthread = thread->osthread();
866  assert(osthread->get_state() != INITIALIZED, "just checking");
867  Monitor* sync_with_child = osthread->startThread_lock();
868  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
869  sync_with_child->notify();
870}
871
872// Free Bsd resources related to the OSThread
873void os::free_thread(OSThread* osthread) {
874  assert(osthread != NULL, "osthread not set");
875
876  if (Thread::current()->osthread() == osthread) {
877    // Restore caller's signal mask
878    sigset_t sigmask = osthread->caller_sigmask();
879    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
880  }
881
882  delete osthread;
883}
884
885////////////////////////////////////////////////////////////////////////////////
886// time support
887
888// Time since start-up in seconds to a fine granularity.
889// Used by VMSelfDestructTimer and the MemProfiler.
890double os::elapsedTime() {
891
892  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
893}
894
895jlong os::elapsed_counter() {
896  return javaTimeNanos() - initial_time_count;
897}
898
899jlong os::elapsed_frequency() {
900  return NANOSECS_PER_SEC; // nanosecond resolution
901}
902
903bool os::supports_vtime() { return true; }
904bool os::enable_vtime()   { return false; }
905bool os::vtime_enabled()  { return false; }
906
907double os::elapsedVTime() {
908  // better than nothing, but not much
909  return elapsedTime();
910}
911
912jlong os::javaTimeMillis() {
913  timeval time;
914  int status = gettimeofday(&time, NULL);
915  assert(status != -1, "bsd error");
916  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
917}
918
919void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
920  timeval time;
921  int status = gettimeofday(&time, NULL);
922  assert(status != -1, "bsd error");
923  seconds = jlong(time.tv_sec);
924  nanos = jlong(time.tv_usec) * 1000;
925}
926
927#ifndef __APPLE__
928  #ifndef CLOCK_MONOTONIC
929    #define CLOCK_MONOTONIC (1)
930  #endif
931#endif
932
933#ifdef __APPLE__
934void os::Bsd::clock_init() {
935  mach_timebase_info(&_timebase_info);
936}
937#else
938void os::Bsd::clock_init() {
939  struct timespec res;
940  struct timespec tp;
941  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
942      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
943    // yes, monotonic clock is supported
944    _clock_gettime = ::clock_gettime;
945  }
946}
947#endif
948
949
950
951#ifdef __APPLE__
952
953jlong os::javaTimeNanos() {
954  const uint64_t tm = mach_absolute_time();
955  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
956  const uint64_t prev = Bsd::_max_abstime;
957  if (now <= prev) {
958    return prev;   // same or retrograde time;
959  }
960  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
961  assert(obsv >= prev, "invariant");   // Monotonicity
962  // If the CAS succeeded then we're done and return "now".
963  // If the CAS failed and the observed value "obsv" is >= now then
964  // we should return "obsv".  If the CAS failed and now > obsv > prv then
965  // some other thread raced this thread and installed a new value, in which case
966  // we could either (a) retry the entire operation, (b) retry trying to install now
967  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
968  // we might discard a higher "now" value in deference to a slightly lower but freshly
969  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
970  // to (a) or (b) -- and greatly reduces coherence traffic.
971  // We might also condition (c) on the magnitude of the delta between obsv and now.
972  // Avoiding excessive CAS operations to hot RW locations is critical.
973  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
974  return (prev == obsv) ? now : obsv;
975}
976
977#else // __APPLE__
978
979jlong os::javaTimeNanos() {
980  if (os::supports_monotonic_clock()) {
981    struct timespec tp;
982    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
983    assert(status == 0, "gettime error");
984    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
985    return result;
986  } else {
987    timeval time;
988    int status = gettimeofday(&time, NULL);
989    assert(status != -1, "bsd error");
990    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
991    return 1000 * usecs;
992  }
993}
994
995#endif // __APPLE__
996
997void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
998  if (os::supports_monotonic_clock()) {
999    info_ptr->max_value = ALL_64_BITS;
1000
1001    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1002    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1003    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1004  } else {
1005    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1006    info_ptr->max_value = ALL_64_BITS;
1007
1008    // gettimeofday is a real time clock so it skips
1009    info_ptr->may_skip_backward = true;
1010    info_ptr->may_skip_forward = true;
1011  }
1012
1013  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1014}
1015
1016// Return the real, user, and system times in seconds from an
1017// arbitrary fixed point in the past.
1018bool os::getTimesSecs(double* process_real_time,
1019                      double* process_user_time,
1020                      double* process_system_time) {
1021  struct tms ticks;
1022  clock_t real_ticks = times(&ticks);
1023
1024  if (real_ticks == (clock_t) (-1)) {
1025    return false;
1026  } else {
1027    double ticks_per_second = (double) clock_tics_per_sec;
1028    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1029    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1030    *process_real_time = ((double) real_ticks) / ticks_per_second;
1031
1032    return true;
1033  }
1034}
1035
1036
1037char * os::local_time_string(char *buf, size_t buflen) {
1038  struct tm t;
1039  time_t long_time;
1040  time(&long_time);
1041  localtime_r(&long_time, &t);
1042  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1043               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1044               t.tm_hour, t.tm_min, t.tm_sec);
1045  return buf;
1046}
1047
1048struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1049  return localtime_r(clock, res);
1050}
1051
1052////////////////////////////////////////////////////////////////////////////////
1053// runtime exit support
1054
1055// Note: os::shutdown() might be called very early during initialization, or
1056// called from signal handler. Before adding something to os::shutdown(), make
1057// sure it is async-safe and can handle partially initialized VM.
1058void os::shutdown() {
1059
1060  // allow PerfMemory to attempt cleanup of any persistent resources
1061  perfMemory_exit();
1062
1063  // needs to remove object in file system
1064  AttachListener::abort();
1065
1066  // flush buffered output, finish log files
1067  ostream_abort();
1068
1069  // Check for abort hook
1070  abort_hook_t abort_hook = Arguments::abort_hook();
1071  if (abort_hook != NULL) {
1072    abort_hook();
1073  }
1074
1075}
1076
1077// Note: os::abort() might be called very early during initialization, or
1078// called from signal handler. Before adding something to os::abort(), make
1079// sure it is async-safe and can handle partially initialized VM.
1080void os::abort(bool dump_core, void* siginfo, const void* context) {
1081  os::shutdown();
1082  if (dump_core) {
1083#ifndef PRODUCT
1084    fdStream out(defaultStream::output_fd());
1085    out.print_raw("Current thread is ");
1086    char buf[16];
1087    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1088    out.print_raw_cr(buf);
1089    out.print_raw_cr("Dumping core ...");
1090#endif
1091    ::abort(); // dump core
1092  }
1093
1094  ::exit(1);
1095}
1096
1097// Die immediately, no exit hook, no abort hook, no cleanup.
1098void os::die() {
1099  // _exit() on BsdThreads only kills current thread
1100  ::abort();
1101}
1102
1103// This method is a copy of JDK's sysGetLastErrorString
1104// from src/solaris/hpi/src/system_md.c
1105
1106size_t os::lasterror(char *buf, size_t len) {
1107  if (errno == 0)  return 0;
1108
1109  const char *s = ::strerror(errno);
1110  size_t n = ::strlen(s);
1111  if (n >= len) {
1112    n = len - 1;
1113  }
1114  ::strncpy(buf, s, n);
1115  buf[n] = '\0';
1116  return n;
1117}
1118
1119// Information of current thread in variety of formats
1120pid_t os::Bsd::gettid() {
1121  int retval = -1;
1122
1123#ifdef __APPLE__ //XNU kernel
1124  // despite the fact mach port is actually not a thread id use it
1125  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1126  retval = ::pthread_mach_thread_np(::pthread_self());
1127  guarantee(retval != 0, "just checking");
1128  return retval;
1129
1130#else
1131  #ifdef __FreeBSD__
1132  retval = syscall(SYS_thr_self);
1133  #else
1134    #ifdef __OpenBSD__
1135  retval = syscall(SYS_getthrid);
1136    #else
1137      #ifdef __NetBSD__
1138  retval = (pid_t) syscall(SYS__lwp_self);
1139      #endif
1140    #endif
1141  #endif
1142#endif
1143
1144  if (retval == -1) {
1145    return getpid();
1146  }
1147}
1148
1149intx os::current_thread_id() {
1150#ifdef __APPLE__
1151  return (intx)::pthread_mach_thread_np(::pthread_self());
1152#else
1153  return (intx)::pthread_self();
1154#endif
1155}
1156
1157int os::current_process_id() {
1158
1159  // Under the old bsd thread library, bsd gives each thread
1160  // its own process id. Because of this each thread will return
1161  // a different pid if this method were to return the result
1162  // of getpid(2). Bsd provides no api that returns the pid
1163  // of the launcher thread for the vm. This implementation
1164  // returns a unique pid, the pid of the launcher thread
1165  // that starts the vm 'process'.
1166
1167  // Under the NPTL, getpid() returns the same pid as the
1168  // launcher thread rather than a unique pid per thread.
1169  // Use gettid() if you want the old pre NPTL behaviour.
1170
1171  // if you are looking for the result of a call to getpid() that
1172  // returns a unique pid for the calling thread, then look at the
1173  // OSThread::thread_id() method in osThread_bsd.hpp file
1174
1175  return (int)(_initial_pid ? _initial_pid : getpid());
1176}
1177
1178// DLL functions
1179
1180#define JNI_LIB_PREFIX "lib"
1181#ifdef __APPLE__
1182  #define JNI_LIB_SUFFIX ".dylib"
1183#else
1184  #define JNI_LIB_SUFFIX ".so"
1185#endif
1186
1187const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1188
1189// This must be hard coded because it's the system's temporary
1190// directory not the java application's temp directory, ala java.io.tmpdir.
1191#ifdef __APPLE__
1192// macosx has a secure per-user temporary directory
1193char temp_path_storage[PATH_MAX];
1194const char* os::get_temp_directory() {
1195  static char *temp_path = NULL;
1196  if (temp_path == NULL) {
1197    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1198    if (pathSize == 0 || pathSize > PATH_MAX) {
1199      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1200    }
1201    temp_path = temp_path_storage;
1202  }
1203  return temp_path;
1204}
1205#else // __APPLE__
1206const char* os::get_temp_directory() { return "/tmp"; }
1207#endif // __APPLE__
1208
1209static bool file_exists(const char* filename) {
1210  struct stat statbuf;
1211  if (filename == NULL || strlen(filename) == 0) {
1212    return false;
1213  }
1214  return os::stat(filename, &statbuf) == 0;
1215}
1216
1217bool os::dll_build_name(char* buffer, size_t buflen,
1218                        const char* pname, const char* fname) {
1219  bool retval = false;
1220  // Copied from libhpi
1221  const size_t pnamelen = pname ? strlen(pname) : 0;
1222
1223  // Return error on buffer overflow.
1224  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1225    return retval;
1226  }
1227
1228  if (pnamelen == 0) {
1229    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1230    retval = true;
1231  } else if (strchr(pname, *os::path_separator()) != NULL) {
1232    int n;
1233    char** pelements = split_path(pname, &n);
1234    if (pelements == NULL) {
1235      return false;
1236    }
1237    for (int i = 0; i < n; i++) {
1238      // Really shouldn't be NULL, but check can't hurt
1239      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1240        continue; // skip the empty path values
1241      }
1242      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1243               pelements[i], fname);
1244      if (file_exists(buffer)) {
1245        retval = true;
1246        break;
1247      }
1248    }
1249    // release the storage
1250    for (int i = 0; i < n; i++) {
1251      if (pelements[i] != NULL) {
1252        FREE_C_HEAP_ARRAY(char, pelements[i]);
1253      }
1254    }
1255    if (pelements != NULL) {
1256      FREE_C_HEAP_ARRAY(char*, pelements);
1257    }
1258  } else {
1259    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1260    retval = true;
1261  }
1262  return retval;
1263}
1264
1265// check if addr is inside libjvm.so
1266bool os::address_is_in_vm(address addr) {
1267  static address libjvm_base_addr;
1268  Dl_info dlinfo;
1269
1270  if (libjvm_base_addr == NULL) {
1271    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1272      libjvm_base_addr = (address)dlinfo.dli_fbase;
1273    }
1274    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1275  }
1276
1277  if (dladdr((void *)addr, &dlinfo) != 0) {
1278    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1279  }
1280
1281  return false;
1282}
1283
1284
1285#define MACH_MAXSYMLEN 256
1286
1287bool os::dll_address_to_function_name(address addr, char *buf,
1288                                      int buflen, int *offset,
1289                                      bool demangle) {
1290  // buf is not optional, but offset is optional
1291  assert(buf != NULL, "sanity check");
1292
1293  Dl_info dlinfo;
1294  char localbuf[MACH_MAXSYMLEN];
1295
1296  if (dladdr((void*)addr, &dlinfo) != 0) {
1297    // see if we have a matching symbol
1298    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1299      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1300        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1301      }
1302      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1303      return true;
1304    }
1305    // no matching symbol so try for just file info
1306    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1307      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1308                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1309        return true;
1310      }
1311    }
1312
1313    // Handle non-dynamic manually:
1314    if (dlinfo.dli_fbase != NULL &&
1315        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1316                        dlinfo.dli_fbase)) {
1317      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1318        jio_snprintf(buf, buflen, "%s", localbuf);
1319      }
1320      return true;
1321    }
1322  }
1323  buf[0] = '\0';
1324  if (offset != NULL) *offset = -1;
1325  return false;
1326}
1327
1328// ported from solaris version
1329bool os::dll_address_to_library_name(address addr, char* buf,
1330                                     int buflen, int* offset) {
1331  // buf is not optional, but offset is optional
1332  assert(buf != NULL, "sanity check");
1333
1334  Dl_info dlinfo;
1335
1336  if (dladdr((void*)addr, &dlinfo) != 0) {
1337    if (dlinfo.dli_fname != NULL) {
1338      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1339    }
1340    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1341      *offset = addr - (address)dlinfo.dli_fbase;
1342    }
1343    return true;
1344  }
1345
1346  buf[0] = '\0';
1347  if (offset) *offset = -1;
1348  return false;
1349}
1350
1351// Loads .dll/.so and
1352// in case of error it checks if .dll/.so was built for the
1353// same architecture as Hotspot is running on
1354
1355#ifdef __APPLE__
1356void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1357#ifdef STATIC_BUILD
1358  return os::get_default_process_handle();
1359#else
1360  void * result= ::dlopen(filename, RTLD_LAZY);
1361  if (result != NULL) {
1362    // Successful loading
1363    return result;
1364  }
1365
1366  // Read system error message into ebuf
1367  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1368  ebuf[ebuflen-1]='\0';
1369
1370  return NULL;
1371#endif // STATIC_BUILD
1372}
1373#else
1374void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1375#ifdef STATIC_BUILD
1376  return os::get_default_process_handle();
1377#else
1378  void * result= ::dlopen(filename, RTLD_LAZY);
1379  if (result != NULL) {
1380    // Successful loading
1381    return result;
1382  }
1383
1384  Elf32_Ehdr elf_head;
1385
1386  // Read system error message into ebuf
1387  // It may or may not be overwritten below
1388  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1389  ebuf[ebuflen-1]='\0';
1390  int diag_msg_max_length=ebuflen-strlen(ebuf);
1391  char* diag_msg_buf=ebuf+strlen(ebuf);
1392
1393  if (diag_msg_max_length==0) {
1394    // No more space in ebuf for additional diagnostics message
1395    return NULL;
1396  }
1397
1398
1399  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1400
1401  if (file_descriptor < 0) {
1402    // Can't open library, report dlerror() message
1403    return NULL;
1404  }
1405
1406  bool failed_to_read_elf_head=
1407    (sizeof(elf_head)!=
1408     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1409
1410  ::close(file_descriptor);
1411  if (failed_to_read_elf_head) {
1412    // file i/o error - report dlerror() msg
1413    return NULL;
1414  }
1415
1416  typedef struct {
1417    Elf32_Half  code;         // Actual value as defined in elf.h
1418    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1419    char        elf_class;    // 32 or 64 bit
1420    char        endianess;    // MSB or LSB
1421    char*       name;         // String representation
1422  } arch_t;
1423
1424  #ifndef EM_486
1425    #define EM_486          6               /* Intel 80486 */
1426  #endif
1427
1428  #ifndef EM_MIPS_RS3_LE
1429    #define EM_MIPS_RS3_LE  10              /* MIPS */
1430  #endif
1431
1432  #ifndef EM_PPC64
1433    #define EM_PPC64        21              /* PowerPC64 */
1434  #endif
1435
1436  #ifndef EM_S390
1437    #define EM_S390         22              /* IBM System/390 */
1438  #endif
1439
1440  #ifndef EM_IA_64
1441    #define EM_IA_64        50              /* HP/Intel IA-64 */
1442  #endif
1443
1444  #ifndef EM_X86_64
1445    #define EM_X86_64       62              /* AMD x86-64 */
1446  #endif
1447
1448  static const arch_t arch_array[]={
1449    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1450    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1451    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1452    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1453    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1454    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1455    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1456    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1457    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1458    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1459    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1460    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1461    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1462    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1463    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1464    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1465  };
1466
1467  #if  (defined IA32)
1468  static  Elf32_Half running_arch_code=EM_386;
1469  #elif   (defined AMD64)
1470  static  Elf32_Half running_arch_code=EM_X86_64;
1471  #elif  (defined IA64)
1472  static  Elf32_Half running_arch_code=EM_IA_64;
1473  #elif  (defined __sparc) && (defined _LP64)
1474  static  Elf32_Half running_arch_code=EM_SPARCV9;
1475  #elif  (defined __sparc) && (!defined _LP64)
1476  static  Elf32_Half running_arch_code=EM_SPARC;
1477  #elif  (defined __powerpc64__)
1478  static  Elf32_Half running_arch_code=EM_PPC64;
1479  #elif  (defined __powerpc__)
1480  static  Elf32_Half running_arch_code=EM_PPC;
1481  #elif  (defined ARM)
1482  static  Elf32_Half running_arch_code=EM_ARM;
1483  #elif  (defined S390)
1484  static  Elf32_Half running_arch_code=EM_S390;
1485  #elif  (defined ALPHA)
1486  static  Elf32_Half running_arch_code=EM_ALPHA;
1487  #elif  (defined MIPSEL)
1488  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1489  #elif  (defined PARISC)
1490  static  Elf32_Half running_arch_code=EM_PARISC;
1491  #elif  (defined MIPS)
1492  static  Elf32_Half running_arch_code=EM_MIPS;
1493  #elif  (defined M68K)
1494  static  Elf32_Half running_arch_code=EM_68K;
1495  #else
1496    #error Method os::dll_load requires that one of following is defined:\
1497         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1498  #endif
1499
1500  // Identify compatability class for VM's architecture and library's architecture
1501  // Obtain string descriptions for architectures
1502
1503  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1504  int running_arch_index=-1;
1505
1506  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1507    if (running_arch_code == arch_array[i].code) {
1508      running_arch_index    = i;
1509    }
1510    if (lib_arch.code == arch_array[i].code) {
1511      lib_arch.compat_class = arch_array[i].compat_class;
1512      lib_arch.name         = arch_array[i].name;
1513    }
1514  }
1515
1516  assert(running_arch_index != -1,
1517         "Didn't find running architecture code (running_arch_code) in arch_array");
1518  if (running_arch_index == -1) {
1519    // Even though running architecture detection failed
1520    // we may still continue with reporting dlerror() message
1521    return NULL;
1522  }
1523
1524  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1525    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1526    return NULL;
1527  }
1528
1529#ifndef S390
1530  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1531    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1532    return NULL;
1533  }
1534#endif // !S390
1535
1536  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1537    if (lib_arch.name!=NULL) {
1538      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1539                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1540                 lib_arch.name, arch_array[running_arch_index].name);
1541    } else {
1542      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1543                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1544                 lib_arch.code,
1545                 arch_array[running_arch_index].name);
1546    }
1547  }
1548
1549  return NULL;
1550#endif // STATIC_BUILD
1551}
1552#endif // !__APPLE__
1553
1554void* os::get_default_process_handle() {
1555#ifdef __APPLE__
1556  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1557  // to avoid finding unexpected symbols on second (or later)
1558  // loads of a library.
1559  return (void*)::dlopen(NULL, RTLD_FIRST);
1560#else
1561  return (void*)::dlopen(NULL, RTLD_LAZY);
1562#endif
1563}
1564
1565// XXX: Do we need a lock around this as per Linux?
1566void* os::dll_lookup(void* handle, const char* name) {
1567  return dlsym(handle, name);
1568}
1569
1570int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1571  outputStream * out = (outputStream *) param;
1572  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1573  return 0;
1574}
1575
1576void os::print_dll_info(outputStream *st) {
1577  st->print_cr("Dynamic libraries:");
1578  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1579    st->print_cr("Error: Cannot print dynamic libraries.");
1580  }
1581}
1582
1583int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1584#ifdef RTLD_DI_LINKMAP
1585  Dl_info dli;
1586  void *handle;
1587  Link_map *map;
1588  Link_map *p;
1589
1590  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1591      dli.dli_fname == NULL) {
1592    return 1;
1593  }
1594  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1595  if (handle == NULL) {
1596    return 1;
1597  }
1598  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1599  if (map == NULL) {
1600    dlclose(handle);
1601    return 1;
1602  }
1603
1604  while (map->l_prev != NULL)
1605    map = map->l_prev;
1606
1607  while (map != NULL) {
1608    // Value for top_address is returned as 0 since we don't have any information about module size
1609    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1610      dlclose(handle);
1611      return 1;
1612    }
1613    map = map->l_next;
1614  }
1615
1616  dlclose(handle);
1617#elif defined(__APPLE__)
1618  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1619    // Value for top_address is returned as 0 since we don't have any information about module size
1620    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1621      return 1;
1622    }
1623  }
1624  return 0;
1625#else
1626  return 1;
1627#endif
1628}
1629
1630void os::get_summary_os_info(char* buf, size_t buflen) {
1631  // These buffers are small because we want this to be brief
1632  // and not use a lot of stack while generating the hs_err file.
1633  char os[100];
1634  size_t size = sizeof(os);
1635  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1636  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1637#ifdef __APPLE__
1638      strncpy(os, "Darwin", sizeof(os));
1639#elif __OpenBSD__
1640      strncpy(os, "OpenBSD", sizeof(os));
1641#else
1642      strncpy(os, "BSD", sizeof(os));
1643#endif
1644  }
1645
1646  char release[100];
1647  size = sizeof(release);
1648  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1649  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1650      // if error, leave blank
1651      strncpy(release, "", sizeof(release));
1652  }
1653  snprintf(buf, buflen, "%s %s", os, release);
1654}
1655
1656void os::print_os_info_brief(outputStream* st) {
1657  os::Posix::print_uname_info(st);
1658}
1659
1660void os::print_os_info(outputStream* st) {
1661  st->print("OS:");
1662
1663  os::Posix::print_uname_info(st);
1664
1665  os::Posix::print_rlimit_info(st);
1666
1667  os::Posix::print_load_average(st);
1668}
1669
1670void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1671  // Nothing to do for now.
1672}
1673
1674void os::get_summary_cpu_info(char* buf, size_t buflen) {
1675  unsigned int mhz;
1676  size_t size = sizeof(mhz);
1677  int mib[] = { CTL_HW, HW_CPU_FREQ };
1678  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1679    mhz = 1;  // looks like an error but can be divided by
1680  } else {
1681    mhz /= 1000000;  // reported in millions
1682  }
1683
1684  char model[100];
1685  size = sizeof(model);
1686  int mib_model[] = { CTL_HW, HW_MODEL };
1687  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1688    strncpy(model, cpu_arch, sizeof(model));
1689  }
1690
1691  char machine[100];
1692  size = sizeof(machine);
1693  int mib_machine[] = { CTL_HW, HW_MACHINE };
1694  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1695      strncpy(machine, "", sizeof(machine));
1696  }
1697
1698  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1699}
1700
1701void os::print_memory_info(outputStream* st) {
1702
1703  st->print("Memory:");
1704  st->print(" %dk page", os::vm_page_size()>>10);
1705
1706  st->print(", physical " UINT64_FORMAT "k",
1707            os::physical_memory() >> 10);
1708  st->print("(" UINT64_FORMAT "k free)",
1709            os::available_memory() >> 10);
1710  st->cr();
1711}
1712
1713static void print_signal_handler(outputStream* st, int sig,
1714                                 char* buf, size_t buflen);
1715
1716void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1717  st->print_cr("Signal Handlers:");
1718  print_signal_handler(st, SIGSEGV, buf, buflen);
1719  print_signal_handler(st, SIGBUS , buf, buflen);
1720  print_signal_handler(st, SIGFPE , buf, buflen);
1721  print_signal_handler(st, SIGPIPE, buf, buflen);
1722  print_signal_handler(st, SIGXFSZ, buf, buflen);
1723  print_signal_handler(st, SIGILL , buf, buflen);
1724  print_signal_handler(st, SR_signum, buf, buflen);
1725  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1726  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1727  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1728  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1729}
1730
1731static char saved_jvm_path[MAXPATHLEN] = {0};
1732
1733// Find the full path to the current module, libjvm
1734void os::jvm_path(char *buf, jint buflen) {
1735  // Error checking.
1736  if (buflen < MAXPATHLEN) {
1737    assert(false, "must use a large-enough buffer");
1738    buf[0] = '\0';
1739    return;
1740  }
1741  // Lazy resolve the path to current module.
1742  if (saved_jvm_path[0] != 0) {
1743    strcpy(buf, saved_jvm_path);
1744    return;
1745  }
1746
1747  char dli_fname[MAXPATHLEN];
1748  bool ret = dll_address_to_library_name(
1749                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1750                                         dli_fname, sizeof(dli_fname), NULL);
1751  assert(ret, "cannot locate libjvm");
1752  char *rp = NULL;
1753  if (ret && dli_fname[0] != '\0') {
1754    rp = realpath(dli_fname, buf);
1755  }
1756  if (rp == NULL) {
1757    return;
1758  }
1759
1760  if (Arguments::sun_java_launcher_is_altjvm()) {
1761    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1762    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1763    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1764    // appears at the right place in the string, then assume we are
1765    // installed in a JDK and we're done. Otherwise, check for a
1766    // JAVA_HOME environment variable and construct a path to the JVM
1767    // being overridden.
1768
1769    const char *p = buf + strlen(buf) - 1;
1770    for (int count = 0; p > buf && count < 5; ++count) {
1771      for (--p; p > buf && *p != '/'; --p)
1772        /* empty */ ;
1773    }
1774
1775    if (strncmp(p, "/jre/lib/", 9) != 0) {
1776      // Look for JAVA_HOME in the environment.
1777      char* java_home_var = ::getenv("JAVA_HOME");
1778      if (java_home_var != NULL && java_home_var[0] != 0) {
1779        char* jrelib_p;
1780        int len;
1781
1782        // Check the current module name "libjvm"
1783        p = strrchr(buf, '/');
1784        assert(strstr(p, "/libjvm") == p, "invalid library name");
1785
1786        rp = realpath(java_home_var, buf);
1787        if (rp == NULL) {
1788          return;
1789        }
1790
1791        // determine if this is a legacy image or modules image
1792        // modules image doesn't have "jre" subdirectory
1793        len = strlen(buf);
1794        assert(len < buflen, "Ran out of buffer space");
1795        jrelib_p = buf + len;
1796
1797        // Add the appropriate library subdir
1798        snprintf(jrelib_p, buflen-len, "/jre/lib");
1799        if (0 != access(buf, F_OK)) {
1800          snprintf(jrelib_p, buflen-len, "/lib");
1801        }
1802
1803        // Add the appropriate client or server subdir
1804        len = strlen(buf);
1805        jrelib_p = buf + len;
1806        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1807        if (0 != access(buf, F_OK)) {
1808          snprintf(jrelib_p, buflen-len, "%s", "");
1809        }
1810
1811        // If the path exists within JAVA_HOME, add the JVM library name
1812        // to complete the path to JVM being overridden.  Otherwise fallback
1813        // to the path to the current library.
1814        if (0 == access(buf, F_OK)) {
1815          // Use current module name "libjvm"
1816          len = strlen(buf);
1817          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1818        } else {
1819          // Fall back to path of current library
1820          rp = realpath(dli_fname, buf);
1821          if (rp == NULL) {
1822            return;
1823          }
1824        }
1825      }
1826    }
1827  }
1828
1829  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1830  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1831}
1832
1833void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1834  // no prefix required, not even "_"
1835}
1836
1837void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1838  // no suffix required
1839}
1840
1841////////////////////////////////////////////////////////////////////////////////
1842// sun.misc.Signal support
1843
1844static volatile jint sigint_count = 0;
1845
1846static void UserHandler(int sig, void *siginfo, void *context) {
1847  // 4511530 - sem_post is serialized and handled by the manager thread. When
1848  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1849  // don't want to flood the manager thread with sem_post requests.
1850  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1851    return;
1852  }
1853
1854  // Ctrl-C is pressed during error reporting, likely because the error
1855  // handler fails to abort. Let VM die immediately.
1856  if (sig == SIGINT && is_error_reported()) {
1857    os::die();
1858  }
1859
1860  os::signal_notify(sig);
1861}
1862
1863void* os::user_handler() {
1864  return CAST_FROM_FN_PTR(void*, UserHandler);
1865}
1866
1867extern "C" {
1868  typedef void (*sa_handler_t)(int);
1869  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1870}
1871
1872void* os::signal(int signal_number, void* handler) {
1873  struct sigaction sigAct, oldSigAct;
1874
1875  sigfillset(&(sigAct.sa_mask));
1876  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1877  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1878
1879  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1880    // -1 means registration failed
1881    return (void *)-1;
1882  }
1883
1884  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1885}
1886
1887void os::signal_raise(int signal_number) {
1888  ::raise(signal_number);
1889}
1890
1891// The following code is moved from os.cpp for making this
1892// code platform specific, which it is by its very nature.
1893
1894// Will be modified when max signal is changed to be dynamic
1895int os::sigexitnum_pd() {
1896  return NSIG;
1897}
1898
1899// a counter for each possible signal value
1900static volatile jint pending_signals[NSIG+1] = { 0 };
1901
1902// Bsd(POSIX) specific hand shaking semaphore.
1903#ifdef __APPLE__
1904typedef semaphore_t os_semaphore_t;
1905
1906  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1907  #define SEM_WAIT(sem)           semaphore_wait(sem)
1908  #define SEM_POST(sem)           semaphore_signal(sem)
1909  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1910#else
1911typedef sem_t os_semaphore_t;
1912
1913  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1914  #define SEM_WAIT(sem)           sem_wait(&sem)
1915  #define SEM_POST(sem)           sem_post(&sem)
1916  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1917#endif
1918
1919#ifdef __APPLE__
1920// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1921
1922static const char* sem_init_strerror(kern_return_t value) {
1923  switch (value) {
1924    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1925    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1926    default:                     return "Unknown";
1927  }
1928}
1929
1930OSXSemaphore::OSXSemaphore(uint value) {
1931  kern_return_t ret = SEM_INIT(_semaphore, value);
1932
1933  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1934}
1935
1936OSXSemaphore::~OSXSemaphore() {
1937  SEM_DESTROY(_semaphore);
1938}
1939
1940void OSXSemaphore::signal(uint count) {
1941  for (uint i = 0; i < count; i++) {
1942    kern_return_t ret = SEM_POST(_semaphore);
1943
1944    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1945  }
1946}
1947
1948void OSXSemaphore::wait() {
1949  kern_return_t ret;
1950  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1951    // Semaphore was interrupted. Retry.
1952  }
1953  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1954}
1955
1956jlong OSXSemaphore::currenttime() {
1957  struct timeval tv;
1958  gettimeofday(&tv, NULL);
1959  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1960}
1961
1962bool OSXSemaphore::trywait() {
1963  return timedwait(0, 0);
1964}
1965
1966bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1967  kern_return_t kr = KERN_ABORTED;
1968  mach_timespec_t waitspec;
1969  waitspec.tv_sec = sec;
1970  waitspec.tv_nsec = nsec;
1971
1972  jlong starttime = currenttime();
1973
1974  kr = semaphore_timedwait(_semaphore, waitspec);
1975  while (kr == KERN_ABORTED) {
1976    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1977
1978    jlong current = currenttime();
1979    jlong passedtime = current - starttime;
1980
1981    if (passedtime >= totalwait) {
1982      waitspec.tv_sec = 0;
1983      waitspec.tv_nsec = 0;
1984    } else {
1985      jlong waittime = totalwait - (current - starttime);
1986      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1987      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1988    }
1989
1990    kr = semaphore_timedwait(_semaphore, waitspec);
1991  }
1992
1993  return kr == KERN_SUCCESS;
1994}
1995
1996#else
1997// Use POSIX implementation of semaphores.
1998
1999struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2000  struct timespec ts;
2001  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2002
2003  return ts;
2004}
2005
2006#endif // __APPLE__
2007
2008static os_semaphore_t sig_sem;
2009
2010#ifdef __APPLE__
2011static OSXSemaphore sr_semaphore;
2012#else
2013static PosixSemaphore sr_semaphore;
2014#endif
2015
2016void os::signal_init_pd() {
2017  // Initialize signal structures
2018  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2019
2020  // Initialize signal semaphore
2021  ::SEM_INIT(sig_sem, 0);
2022}
2023
2024void os::signal_notify(int sig) {
2025  Atomic::inc(&pending_signals[sig]);
2026  ::SEM_POST(sig_sem);
2027}
2028
2029static int check_pending_signals(bool wait) {
2030  Atomic::store(0, &sigint_count);
2031  for (;;) {
2032    for (int i = 0; i < NSIG + 1; i++) {
2033      jint n = pending_signals[i];
2034      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2035        return i;
2036      }
2037    }
2038    if (!wait) {
2039      return -1;
2040    }
2041    JavaThread *thread = JavaThread::current();
2042    ThreadBlockInVM tbivm(thread);
2043
2044    bool threadIsSuspended;
2045    do {
2046      thread->set_suspend_equivalent();
2047      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2048      ::SEM_WAIT(sig_sem);
2049
2050      // were we externally suspended while we were waiting?
2051      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2052      if (threadIsSuspended) {
2053        // The semaphore has been incremented, but while we were waiting
2054        // another thread suspended us. We don't want to continue running
2055        // while suspended because that would surprise the thread that
2056        // suspended us.
2057        ::SEM_POST(sig_sem);
2058
2059        thread->java_suspend_self();
2060      }
2061    } while (threadIsSuspended);
2062  }
2063}
2064
2065int os::signal_lookup() {
2066  return check_pending_signals(false);
2067}
2068
2069int os::signal_wait() {
2070  return check_pending_signals(true);
2071}
2072
2073////////////////////////////////////////////////////////////////////////////////
2074// Virtual Memory
2075
2076int os::vm_page_size() {
2077  // Seems redundant as all get out
2078  assert(os::Bsd::page_size() != -1, "must call os::init");
2079  return os::Bsd::page_size();
2080}
2081
2082// Solaris allocates memory by pages.
2083int os::vm_allocation_granularity() {
2084  assert(os::Bsd::page_size() != -1, "must call os::init");
2085  return os::Bsd::page_size();
2086}
2087
2088// Rationale behind this function:
2089//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2090//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2091//  samples for JITted code. Here we create private executable mapping over the code cache
2092//  and then we can use standard (well, almost, as mapping can change) way to provide
2093//  info for the reporting script by storing timestamp and location of symbol
2094void bsd_wrap_code(char* base, size_t size) {
2095  static volatile jint cnt = 0;
2096
2097  if (!UseOprofile) {
2098    return;
2099  }
2100
2101  char buf[PATH_MAX + 1];
2102  int num = Atomic::add(1, &cnt);
2103
2104  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2105           os::get_temp_directory(), os::current_process_id(), num);
2106  unlink(buf);
2107
2108  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2109
2110  if (fd != -1) {
2111    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2112    if (rv != (off_t)-1) {
2113      if (::write(fd, "", 1) == 1) {
2114        mmap(base, size,
2115             PROT_READ|PROT_WRITE|PROT_EXEC,
2116             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2117      }
2118    }
2119    ::close(fd);
2120    unlink(buf);
2121  }
2122}
2123
2124static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2125                                    int err) {
2126  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2127          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2128          strerror(err), err);
2129}
2130
2131// NOTE: Bsd kernel does not really reserve the pages for us.
2132//       All it does is to check if there are enough free pages
2133//       left at the time of mmap(). This could be a potential
2134//       problem.
2135bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2136  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2137#ifdef __OpenBSD__
2138  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2139  if (::mprotect(addr, size, prot) == 0) {
2140    return true;
2141  }
2142#else
2143  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2144                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2145  if (res != (uintptr_t) MAP_FAILED) {
2146    return true;
2147  }
2148#endif
2149
2150  // Warn about any commit errors we see in non-product builds just
2151  // in case mmap() doesn't work as described on the man page.
2152  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2153
2154  return false;
2155}
2156
2157bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2158                          bool exec) {
2159  // alignment_hint is ignored on this OS
2160  return pd_commit_memory(addr, size, exec);
2161}
2162
2163void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2164                                  const char* mesg) {
2165  assert(mesg != NULL, "mesg must be specified");
2166  if (!pd_commit_memory(addr, size, exec)) {
2167    // add extra info in product mode for vm_exit_out_of_memory():
2168    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2169    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2170  }
2171}
2172
2173void os::pd_commit_memory_or_exit(char* addr, size_t size,
2174                                  size_t alignment_hint, bool exec,
2175                                  const char* mesg) {
2176  // alignment_hint is ignored on this OS
2177  pd_commit_memory_or_exit(addr, size, exec, mesg);
2178}
2179
2180void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2181}
2182
2183void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2184  ::madvise(addr, bytes, MADV_DONTNEED);
2185}
2186
2187void os::numa_make_global(char *addr, size_t bytes) {
2188}
2189
2190void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2191}
2192
2193bool os::numa_topology_changed()   { return false; }
2194
2195size_t os::numa_get_groups_num() {
2196  return 1;
2197}
2198
2199int os::numa_get_group_id() {
2200  return 0;
2201}
2202
2203size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2204  if (size > 0) {
2205    ids[0] = 0;
2206    return 1;
2207  }
2208  return 0;
2209}
2210
2211bool os::get_page_info(char *start, page_info* info) {
2212  return false;
2213}
2214
2215char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2216  return end;
2217}
2218
2219
2220bool os::pd_uncommit_memory(char* addr, size_t size) {
2221#ifdef __OpenBSD__
2222  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2223  return ::mprotect(addr, size, PROT_NONE) == 0;
2224#else
2225  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2226                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2227  return res  != (uintptr_t) MAP_FAILED;
2228#endif
2229}
2230
2231bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2232  return os::commit_memory(addr, size, !ExecMem);
2233}
2234
2235// If this is a growable mapping, remove the guard pages entirely by
2236// munmap()ping them.  If not, just call uncommit_memory().
2237bool os::remove_stack_guard_pages(char* addr, size_t size) {
2238  return os::uncommit_memory(addr, size);
2239}
2240
2241// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2242// at 'requested_addr'. If there are existing memory mappings at the same
2243// location, however, they will be overwritten. If 'fixed' is false,
2244// 'requested_addr' is only treated as a hint, the return value may or
2245// may not start from the requested address. Unlike Bsd mmap(), this
2246// function returns NULL to indicate failure.
2247static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2248  char * addr;
2249  int flags;
2250
2251  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2252  if (fixed) {
2253    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2254    flags |= MAP_FIXED;
2255  }
2256
2257  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2258  // touch an uncommitted page. Otherwise, the read/write might
2259  // succeed if we have enough swap space to back the physical page.
2260  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2261                       flags, -1, 0);
2262
2263  return addr == MAP_FAILED ? NULL : addr;
2264}
2265
2266static int anon_munmap(char * addr, size_t size) {
2267  return ::munmap(addr, size) == 0;
2268}
2269
2270char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2271                            size_t alignment_hint) {
2272  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2273}
2274
2275bool os::pd_release_memory(char* addr, size_t size) {
2276  return anon_munmap(addr, size);
2277}
2278
2279static bool bsd_mprotect(char* addr, size_t size, int prot) {
2280  // Bsd wants the mprotect address argument to be page aligned.
2281  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2282
2283  // According to SUSv3, mprotect() should only be used with mappings
2284  // established by mmap(), and mmap() always maps whole pages. Unaligned
2285  // 'addr' likely indicates problem in the VM (e.g. trying to change
2286  // protection of malloc'ed or statically allocated memory). Check the
2287  // caller if you hit this assert.
2288  assert(addr == bottom, "sanity check");
2289
2290  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2291  return ::mprotect(bottom, size, prot) == 0;
2292}
2293
2294// Set protections specified
2295bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2296                        bool is_committed) {
2297  unsigned int p = 0;
2298  switch (prot) {
2299  case MEM_PROT_NONE: p = PROT_NONE; break;
2300  case MEM_PROT_READ: p = PROT_READ; break;
2301  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2302  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2303  default:
2304    ShouldNotReachHere();
2305  }
2306  // is_committed is unused.
2307  return bsd_mprotect(addr, bytes, p);
2308}
2309
2310bool os::guard_memory(char* addr, size_t size) {
2311  return bsd_mprotect(addr, size, PROT_NONE);
2312}
2313
2314bool os::unguard_memory(char* addr, size_t size) {
2315  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2316}
2317
2318bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2319  return false;
2320}
2321
2322// Large page support
2323
2324static size_t _large_page_size = 0;
2325
2326void os::large_page_init() {
2327}
2328
2329
2330char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2331  fatal("This code is not used or maintained.");
2332
2333  // "exec" is passed in but not used.  Creating the shared image for
2334  // the code cache doesn't have an SHM_X executable permission to check.
2335  assert(UseLargePages && UseSHM, "only for SHM large pages");
2336
2337  key_t key = IPC_PRIVATE;
2338  char *addr;
2339
2340  bool warn_on_failure = UseLargePages &&
2341                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2342                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2343
2344  // Create a large shared memory region to attach to based on size.
2345  // Currently, size is the total size of the heap
2346  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2347  if (shmid == -1) {
2348    // Possible reasons for shmget failure:
2349    // 1. shmmax is too small for Java heap.
2350    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2351    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2352    // 2. not enough large page memory.
2353    //    > check available large pages: cat /proc/meminfo
2354    //    > increase amount of large pages:
2355    //          echo new_value > /proc/sys/vm/nr_hugepages
2356    //      Note 1: different Bsd may use different name for this property,
2357    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2358    //      Note 2: it's possible there's enough physical memory available but
2359    //            they are so fragmented after a long run that they can't
2360    //            coalesce into large pages. Try to reserve large pages when
2361    //            the system is still "fresh".
2362    if (warn_on_failure) {
2363      warning("Failed to reserve shared memory (errno = %d).", errno);
2364    }
2365    return NULL;
2366  }
2367
2368  // attach to the region
2369  addr = (char*)shmat(shmid, req_addr, 0);
2370  int err = errno;
2371
2372  // Remove shmid. If shmat() is successful, the actual shared memory segment
2373  // will be deleted when it's detached by shmdt() or when the process
2374  // terminates. If shmat() is not successful this will remove the shared
2375  // segment immediately.
2376  shmctl(shmid, IPC_RMID, NULL);
2377
2378  if ((intptr_t)addr == -1) {
2379    if (warn_on_failure) {
2380      warning("Failed to attach shared memory (errno = %d).", err);
2381    }
2382    return NULL;
2383  }
2384
2385  // The memory is committed
2386  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2387
2388  return addr;
2389}
2390
2391bool os::release_memory_special(char* base, size_t bytes) {
2392  if (MemTracker::tracking_level() > NMT_minimal) {
2393    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2394    // detaching the SHM segment will also delete it, see reserve_memory_special()
2395    int rslt = shmdt(base);
2396    if (rslt == 0) {
2397      tkr.record((address)base, bytes);
2398      return true;
2399    } else {
2400      return false;
2401    }
2402  } else {
2403    return shmdt(base) == 0;
2404  }
2405}
2406
2407size_t os::large_page_size() {
2408  return _large_page_size;
2409}
2410
2411// HugeTLBFS allows application to commit large page memory on demand;
2412// with SysV SHM the entire memory region must be allocated as shared
2413// memory.
2414bool os::can_commit_large_page_memory() {
2415  return UseHugeTLBFS;
2416}
2417
2418bool os::can_execute_large_page_memory() {
2419  return UseHugeTLBFS;
2420}
2421
2422// Reserve memory at an arbitrary address, only if that area is
2423// available (and not reserved for something else).
2424
2425char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2426  const int max_tries = 10;
2427  char* base[max_tries];
2428  size_t size[max_tries];
2429  const size_t gap = 0x000000;
2430
2431  // Assert only that the size is a multiple of the page size, since
2432  // that's all that mmap requires, and since that's all we really know
2433  // about at this low abstraction level.  If we need higher alignment,
2434  // we can either pass an alignment to this method or verify alignment
2435  // in one of the methods further up the call chain.  See bug 5044738.
2436  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2437
2438  // Repeatedly allocate blocks until the block is allocated at the
2439  // right spot.
2440
2441  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2442  // if kernel honors the hint then we can return immediately.
2443  char * addr = anon_mmap(requested_addr, bytes, false);
2444  if (addr == requested_addr) {
2445    return requested_addr;
2446  }
2447
2448  if (addr != NULL) {
2449    // mmap() is successful but it fails to reserve at the requested address
2450    anon_munmap(addr, bytes);
2451  }
2452
2453  int i;
2454  for (i = 0; i < max_tries; ++i) {
2455    base[i] = reserve_memory(bytes);
2456
2457    if (base[i] != NULL) {
2458      // Is this the block we wanted?
2459      if (base[i] == requested_addr) {
2460        size[i] = bytes;
2461        break;
2462      }
2463
2464      // Does this overlap the block we wanted? Give back the overlapped
2465      // parts and try again.
2466
2467      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2468      if (top_overlap >= 0 && top_overlap < bytes) {
2469        unmap_memory(base[i], top_overlap);
2470        base[i] += top_overlap;
2471        size[i] = bytes - top_overlap;
2472      } else {
2473        size_t bottom_overlap = base[i] + bytes - requested_addr;
2474        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2475          unmap_memory(requested_addr, bottom_overlap);
2476          size[i] = bytes - bottom_overlap;
2477        } else {
2478          size[i] = bytes;
2479        }
2480      }
2481    }
2482  }
2483
2484  // Give back the unused reserved pieces.
2485
2486  for (int j = 0; j < i; ++j) {
2487    if (base[j] != NULL) {
2488      unmap_memory(base[j], size[j]);
2489    }
2490  }
2491
2492  if (i < max_tries) {
2493    return requested_addr;
2494  } else {
2495    return NULL;
2496  }
2497}
2498
2499size_t os::read(int fd, void *buf, unsigned int nBytes) {
2500  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2501}
2502
2503size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2504  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2505}
2506
2507void os::naked_short_sleep(jlong ms) {
2508  struct timespec req;
2509
2510  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2511  req.tv_sec = 0;
2512  if (ms > 0) {
2513    req.tv_nsec = (ms % 1000) * 1000000;
2514  } else {
2515    req.tv_nsec = 1;
2516  }
2517
2518  nanosleep(&req, NULL);
2519
2520  return;
2521}
2522
2523// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2524void os::infinite_sleep() {
2525  while (true) {    // sleep forever ...
2526    ::sleep(100);   // ... 100 seconds at a time
2527  }
2528}
2529
2530// Used to convert frequent JVM_Yield() to nops
2531bool os::dont_yield() {
2532  return DontYieldALot;
2533}
2534
2535void os::naked_yield() {
2536  sched_yield();
2537}
2538
2539////////////////////////////////////////////////////////////////////////////////
2540// thread priority support
2541
2542// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2543// only supports dynamic priority, static priority must be zero. For real-time
2544// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2545// However, for large multi-threaded applications, SCHED_RR is not only slower
2546// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2547// of 5 runs - Sep 2005).
2548//
2549// The following code actually changes the niceness of kernel-thread/LWP. It
2550// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2551// not the entire user process, and user level threads are 1:1 mapped to kernel
2552// threads. It has always been the case, but could change in the future. For
2553// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2554// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2555
2556#if !defined(__APPLE__)
2557int os::java_to_os_priority[CriticalPriority + 1] = {
2558  19,              // 0 Entry should never be used
2559
2560   0,              // 1 MinPriority
2561   3,              // 2
2562   6,              // 3
2563
2564  10,              // 4
2565  15,              // 5 NormPriority
2566  18,              // 6
2567
2568  21,              // 7
2569  25,              // 8
2570  28,              // 9 NearMaxPriority
2571
2572  31,              // 10 MaxPriority
2573
2574  31               // 11 CriticalPriority
2575};
2576#else
2577// Using Mach high-level priority assignments
2578int os::java_to_os_priority[CriticalPriority + 1] = {
2579   0,              // 0 Entry should never be used (MINPRI_USER)
2580
2581  27,              // 1 MinPriority
2582  28,              // 2
2583  29,              // 3
2584
2585  30,              // 4
2586  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2587  32,              // 6
2588
2589  33,              // 7
2590  34,              // 8
2591  35,              // 9 NearMaxPriority
2592
2593  36,              // 10 MaxPriority
2594
2595  36               // 11 CriticalPriority
2596};
2597#endif
2598
2599static int prio_init() {
2600  if (ThreadPriorityPolicy == 1) {
2601    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2602    // if effective uid is not root. Perhaps, a more elegant way of doing
2603    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2604    if (geteuid() != 0) {
2605      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2606        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2607      }
2608      ThreadPriorityPolicy = 0;
2609    }
2610  }
2611  if (UseCriticalJavaThreadPriority) {
2612    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2613  }
2614  return 0;
2615}
2616
2617OSReturn os::set_native_priority(Thread* thread, int newpri) {
2618  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2619
2620#ifdef __OpenBSD__
2621  // OpenBSD pthread_setprio starves low priority threads
2622  return OS_OK;
2623#elif defined(__FreeBSD__)
2624  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2625#elif defined(__APPLE__) || defined(__NetBSD__)
2626  struct sched_param sp;
2627  int policy;
2628  pthread_t self = pthread_self();
2629
2630  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2631    return OS_ERR;
2632  }
2633
2634  sp.sched_priority = newpri;
2635  if (pthread_setschedparam(self, policy, &sp) != 0) {
2636    return OS_ERR;
2637  }
2638
2639  return OS_OK;
2640#else
2641  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2642  return (ret == 0) ? OS_OK : OS_ERR;
2643#endif
2644}
2645
2646OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2647  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2648    *priority_ptr = java_to_os_priority[NormPriority];
2649    return OS_OK;
2650  }
2651
2652  errno = 0;
2653#if defined(__OpenBSD__) || defined(__FreeBSD__)
2654  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2655#elif defined(__APPLE__) || defined(__NetBSD__)
2656  int policy;
2657  struct sched_param sp;
2658
2659  pthread_getschedparam(pthread_self(), &policy, &sp);
2660  *priority_ptr = sp.sched_priority;
2661#else
2662  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2663#endif
2664  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2665}
2666
2667// Hint to the underlying OS that a task switch would not be good.
2668// Void return because it's a hint and can fail.
2669void os::hint_no_preempt() {}
2670
2671////////////////////////////////////////////////////////////////////////////////
2672// suspend/resume support
2673
2674//  the low-level signal-based suspend/resume support is a remnant from the
2675//  old VM-suspension that used to be for java-suspension, safepoints etc,
2676//  within hotspot. Now there is a single use-case for this:
2677//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2678//      that runs in the watcher thread.
2679//  The remaining code is greatly simplified from the more general suspension
2680//  code that used to be used.
2681//
2682//  The protocol is quite simple:
2683//  - suspend:
2684//      - sends a signal to the target thread
2685//      - polls the suspend state of the osthread using a yield loop
2686//      - target thread signal handler (SR_handler) sets suspend state
2687//        and blocks in sigsuspend until continued
2688//  - resume:
2689//      - sets target osthread state to continue
2690//      - sends signal to end the sigsuspend loop in the SR_handler
2691//
2692//  Note that the SR_lock plays no role in this suspend/resume protocol.
2693
2694static void resume_clear_context(OSThread *osthread) {
2695  osthread->set_ucontext(NULL);
2696  osthread->set_siginfo(NULL);
2697}
2698
2699static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2700  osthread->set_ucontext(context);
2701  osthread->set_siginfo(siginfo);
2702}
2703
2704// Handler function invoked when a thread's execution is suspended or
2705// resumed. We have to be careful that only async-safe functions are
2706// called here (Note: most pthread functions are not async safe and
2707// should be avoided.)
2708//
2709// Note: sigwait() is a more natural fit than sigsuspend() from an
2710// interface point of view, but sigwait() prevents the signal hander
2711// from being run. libpthread would get very confused by not having
2712// its signal handlers run and prevents sigwait()'s use with the
2713// mutex granting granting signal.
2714//
2715// Currently only ever called on the VMThread or JavaThread
2716//
2717static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2718  // Save and restore errno to avoid confusing native code with EINTR
2719  // after sigsuspend.
2720  int old_errno = errno;
2721
2722  Thread* thread = Thread::current();
2723  OSThread* osthread = thread->osthread();
2724  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2725
2726  os::SuspendResume::State current = osthread->sr.state();
2727  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2728    suspend_save_context(osthread, siginfo, context);
2729
2730    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2731    os::SuspendResume::State state = osthread->sr.suspended();
2732    if (state == os::SuspendResume::SR_SUSPENDED) {
2733      sigset_t suspend_set;  // signals for sigsuspend()
2734
2735      // get current set of blocked signals and unblock resume signal
2736      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2737      sigdelset(&suspend_set, SR_signum);
2738
2739      sr_semaphore.signal();
2740      // wait here until we are resumed
2741      while (1) {
2742        sigsuspend(&suspend_set);
2743
2744        os::SuspendResume::State result = osthread->sr.running();
2745        if (result == os::SuspendResume::SR_RUNNING) {
2746          sr_semaphore.signal();
2747          break;
2748        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2749          ShouldNotReachHere();
2750        }
2751      }
2752
2753    } else if (state == os::SuspendResume::SR_RUNNING) {
2754      // request was cancelled, continue
2755    } else {
2756      ShouldNotReachHere();
2757    }
2758
2759    resume_clear_context(osthread);
2760  } else if (current == os::SuspendResume::SR_RUNNING) {
2761    // request was cancelled, continue
2762  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2763    // ignore
2764  } else {
2765    // ignore
2766  }
2767
2768  errno = old_errno;
2769}
2770
2771
2772static int SR_initialize() {
2773  struct sigaction act;
2774  char *s;
2775  // Get signal number to use for suspend/resume
2776  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2777    int sig = ::strtol(s, 0, 10);
2778    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2779        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2780      SR_signum = sig;
2781    } else {
2782      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2783              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2784    }
2785  }
2786
2787  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2788         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2789
2790  sigemptyset(&SR_sigset);
2791  sigaddset(&SR_sigset, SR_signum);
2792
2793  // Set up signal handler for suspend/resume
2794  act.sa_flags = SA_RESTART|SA_SIGINFO;
2795  act.sa_handler = (void (*)(int)) SR_handler;
2796
2797  // SR_signum is blocked by default.
2798  // 4528190 - We also need to block pthread restart signal (32 on all
2799  // supported Bsd platforms). Note that BsdThreads need to block
2800  // this signal for all threads to work properly. So we don't have
2801  // to use hard-coded signal number when setting up the mask.
2802  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2803
2804  if (sigaction(SR_signum, &act, 0) == -1) {
2805    return -1;
2806  }
2807
2808  // Save signal flag
2809  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2810  return 0;
2811}
2812
2813static int sr_notify(OSThread* osthread) {
2814  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2815  assert_status(status == 0, status, "pthread_kill");
2816  return status;
2817}
2818
2819// "Randomly" selected value for how long we want to spin
2820// before bailing out on suspending a thread, also how often
2821// we send a signal to a thread we want to resume
2822static const int RANDOMLY_LARGE_INTEGER = 1000000;
2823static const int RANDOMLY_LARGE_INTEGER2 = 100;
2824
2825// returns true on success and false on error - really an error is fatal
2826// but this seems the normal response to library errors
2827static bool do_suspend(OSThread* osthread) {
2828  assert(osthread->sr.is_running(), "thread should be running");
2829  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2830
2831  // mark as suspended and send signal
2832  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2833    // failed to switch, state wasn't running?
2834    ShouldNotReachHere();
2835    return false;
2836  }
2837
2838  if (sr_notify(osthread) != 0) {
2839    ShouldNotReachHere();
2840  }
2841
2842  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2843  while (true) {
2844    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2845      break;
2846    } else {
2847      // timeout
2848      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2849      if (cancelled == os::SuspendResume::SR_RUNNING) {
2850        return false;
2851      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2852        // make sure that we consume the signal on the semaphore as well
2853        sr_semaphore.wait();
2854        break;
2855      } else {
2856        ShouldNotReachHere();
2857        return false;
2858      }
2859    }
2860  }
2861
2862  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2863  return true;
2864}
2865
2866static void do_resume(OSThread* osthread) {
2867  assert(osthread->sr.is_suspended(), "thread should be suspended");
2868  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2869
2870  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2871    // failed to switch to WAKEUP_REQUEST
2872    ShouldNotReachHere();
2873    return;
2874  }
2875
2876  while (true) {
2877    if (sr_notify(osthread) == 0) {
2878      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2879        if (osthread->sr.is_running()) {
2880          return;
2881        }
2882      }
2883    } else {
2884      ShouldNotReachHere();
2885    }
2886  }
2887
2888  guarantee(osthread->sr.is_running(), "Must be running!");
2889}
2890
2891///////////////////////////////////////////////////////////////////////////////////
2892// signal handling (except suspend/resume)
2893
2894// This routine may be used by user applications as a "hook" to catch signals.
2895// The user-defined signal handler must pass unrecognized signals to this
2896// routine, and if it returns true (non-zero), then the signal handler must
2897// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2898// routine will never retun false (zero), but instead will execute a VM panic
2899// routine kill the process.
2900//
2901// If this routine returns false, it is OK to call it again.  This allows
2902// the user-defined signal handler to perform checks either before or after
2903// the VM performs its own checks.  Naturally, the user code would be making
2904// a serious error if it tried to handle an exception (such as a null check
2905// or breakpoint) that the VM was generating for its own correct operation.
2906//
2907// This routine may recognize any of the following kinds of signals:
2908//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2909// It should be consulted by handlers for any of those signals.
2910//
2911// The caller of this routine must pass in the three arguments supplied
2912// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2913// field of the structure passed to sigaction().  This routine assumes that
2914// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2915//
2916// Note that the VM will print warnings if it detects conflicting signal
2917// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2918//
2919extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2920                                               void* ucontext,
2921                                               int abort_if_unrecognized);
2922
2923void signalHandler(int sig, siginfo_t* info, void* uc) {
2924  assert(info != NULL && uc != NULL, "it must be old kernel");
2925  int orig_errno = errno;  // Preserve errno value over signal handler.
2926  JVM_handle_bsd_signal(sig, info, uc, true);
2927  errno = orig_errno;
2928}
2929
2930
2931// This boolean allows users to forward their own non-matching signals
2932// to JVM_handle_bsd_signal, harmlessly.
2933bool os::Bsd::signal_handlers_are_installed = false;
2934
2935// For signal-chaining
2936struct sigaction sigact[NSIG];
2937uint32_t sigs = 0;
2938#if (32 < NSIG-1)
2939#error "Not all signals can be encoded in sigs. Adapt its type!"
2940#endif
2941bool os::Bsd::libjsig_is_loaded = false;
2942typedef struct sigaction *(*get_signal_t)(int);
2943get_signal_t os::Bsd::get_signal_action = NULL;
2944
2945struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2946  struct sigaction *actp = NULL;
2947
2948  if (libjsig_is_loaded) {
2949    // Retrieve the old signal handler from libjsig
2950    actp = (*get_signal_action)(sig);
2951  }
2952  if (actp == NULL) {
2953    // Retrieve the preinstalled signal handler from jvm
2954    actp = get_preinstalled_handler(sig);
2955  }
2956
2957  return actp;
2958}
2959
2960static bool call_chained_handler(struct sigaction *actp, int sig,
2961                                 siginfo_t *siginfo, void *context) {
2962  // Call the old signal handler
2963  if (actp->sa_handler == SIG_DFL) {
2964    // It's more reasonable to let jvm treat it as an unexpected exception
2965    // instead of taking the default action.
2966    return false;
2967  } else if (actp->sa_handler != SIG_IGN) {
2968    if ((actp->sa_flags & SA_NODEFER) == 0) {
2969      // automaticlly block the signal
2970      sigaddset(&(actp->sa_mask), sig);
2971    }
2972
2973    sa_handler_t hand;
2974    sa_sigaction_t sa;
2975    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2976    // retrieve the chained handler
2977    if (siginfo_flag_set) {
2978      sa = actp->sa_sigaction;
2979    } else {
2980      hand = actp->sa_handler;
2981    }
2982
2983    if ((actp->sa_flags & SA_RESETHAND) != 0) {
2984      actp->sa_handler = SIG_DFL;
2985    }
2986
2987    // try to honor the signal mask
2988    sigset_t oset;
2989    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2990
2991    // call into the chained handler
2992    if (siginfo_flag_set) {
2993      (*sa)(sig, siginfo, context);
2994    } else {
2995      (*hand)(sig);
2996    }
2997
2998    // restore the signal mask
2999    pthread_sigmask(SIG_SETMASK, &oset, 0);
3000  }
3001  // Tell jvm's signal handler the signal is taken care of.
3002  return true;
3003}
3004
3005bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3006  bool chained = false;
3007  // signal-chaining
3008  if (UseSignalChaining) {
3009    struct sigaction *actp = get_chained_signal_action(sig);
3010    if (actp != NULL) {
3011      chained = call_chained_handler(actp, sig, siginfo, context);
3012    }
3013  }
3014  return chained;
3015}
3016
3017struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3018  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3019    return &sigact[sig];
3020  }
3021  return NULL;
3022}
3023
3024void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3025  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3026  sigact[sig] = oldAct;
3027  sigs |= (uint32_t)1 << (sig-1);
3028}
3029
3030// for diagnostic
3031int sigflags[NSIG];
3032
3033int os::Bsd::get_our_sigflags(int sig) {
3034  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3035  return sigflags[sig];
3036}
3037
3038void os::Bsd::set_our_sigflags(int sig, int flags) {
3039  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3040  if (sig > 0 && sig < NSIG) {
3041    sigflags[sig] = flags;
3042  }
3043}
3044
3045void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3046  // Check for overwrite.
3047  struct sigaction oldAct;
3048  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3049
3050  void* oldhand = oldAct.sa_sigaction
3051                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3052                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3053  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3054      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3055      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3056    if (AllowUserSignalHandlers || !set_installed) {
3057      // Do not overwrite; user takes responsibility to forward to us.
3058      return;
3059    } else if (UseSignalChaining) {
3060      // save the old handler in jvm
3061      save_preinstalled_handler(sig, oldAct);
3062      // libjsig also interposes the sigaction() call below and saves the
3063      // old sigaction on it own.
3064    } else {
3065      fatal("Encountered unexpected pre-existing sigaction handler "
3066            "%#lx for signal %d.", (long)oldhand, sig);
3067    }
3068  }
3069
3070  struct sigaction sigAct;
3071  sigfillset(&(sigAct.sa_mask));
3072  sigAct.sa_handler = SIG_DFL;
3073  if (!set_installed) {
3074    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3075  } else {
3076    sigAct.sa_sigaction = signalHandler;
3077    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3078  }
3079#ifdef __APPLE__
3080  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3081  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3082  // if the signal handler declares it will handle it on alternate stack.
3083  // Notice we only declare we will handle it on alt stack, but we are not
3084  // actually going to use real alt stack - this is just a workaround.
3085  // Please see ux_exception.c, method catch_mach_exception_raise for details
3086  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3087  if (sig == SIGSEGV) {
3088    sigAct.sa_flags |= SA_ONSTACK;
3089  }
3090#endif
3091
3092  // Save flags, which are set by ours
3093  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3094  sigflags[sig] = sigAct.sa_flags;
3095
3096  int ret = sigaction(sig, &sigAct, &oldAct);
3097  assert(ret == 0, "check");
3098
3099  void* oldhand2  = oldAct.sa_sigaction
3100                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3101                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3102  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3103}
3104
3105// install signal handlers for signals that HotSpot needs to
3106// handle in order to support Java-level exception handling.
3107
3108void os::Bsd::install_signal_handlers() {
3109  if (!signal_handlers_are_installed) {
3110    signal_handlers_are_installed = true;
3111
3112    // signal-chaining
3113    typedef void (*signal_setting_t)();
3114    signal_setting_t begin_signal_setting = NULL;
3115    signal_setting_t end_signal_setting = NULL;
3116    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3117                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3118    if (begin_signal_setting != NULL) {
3119      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3120                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3121      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3122                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3123      libjsig_is_loaded = true;
3124      assert(UseSignalChaining, "should enable signal-chaining");
3125    }
3126    if (libjsig_is_loaded) {
3127      // Tell libjsig jvm is setting signal handlers
3128      (*begin_signal_setting)();
3129    }
3130
3131    set_signal_handler(SIGSEGV, true);
3132    set_signal_handler(SIGPIPE, true);
3133    set_signal_handler(SIGBUS, true);
3134    set_signal_handler(SIGILL, true);
3135    set_signal_handler(SIGFPE, true);
3136    set_signal_handler(SIGXFSZ, true);
3137
3138#if defined(__APPLE__)
3139    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3140    // signals caught and handled by the JVM. To work around this, we reset the mach task
3141    // signal handler that's placed on our process by CrashReporter. This disables
3142    // CrashReporter-based reporting.
3143    //
3144    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3145    // on caught fatal signals.
3146    //
3147    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3148    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3149    // exception handling, while leaving the standard BSD signal handlers functional.
3150    kern_return_t kr;
3151    kr = task_set_exception_ports(mach_task_self(),
3152                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3153                                  MACH_PORT_NULL,
3154                                  EXCEPTION_STATE_IDENTITY,
3155                                  MACHINE_THREAD_STATE);
3156
3157    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3158#endif
3159
3160    if (libjsig_is_loaded) {
3161      // Tell libjsig jvm finishes setting signal handlers
3162      (*end_signal_setting)();
3163    }
3164
3165    // We don't activate signal checker if libjsig is in place, we trust ourselves
3166    // and if UserSignalHandler is installed all bets are off
3167    if (CheckJNICalls) {
3168      if (libjsig_is_loaded) {
3169        if (PrintJNIResolving) {
3170          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3171        }
3172        check_signals = false;
3173      }
3174      if (AllowUserSignalHandlers) {
3175        if (PrintJNIResolving) {
3176          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3177        }
3178        check_signals = false;
3179      }
3180    }
3181  }
3182}
3183
3184
3185/////
3186// glibc on Bsd platform uses non-documented flag
3187// to indicate, that some special sort of signal
3188// trampoline is used.
3189// We will never set this flag, and we should
3190// ignore this flag in our diagnostic
3191#ifdef SIGNIFICANT_SIGNAL_MASK
3192  #undef SIGNIFICANT_SIGNAL_MASK
3193#endif
3194#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3195
3196static const char* get_signal_handler_name(address handler,
3197                                           char* buf, int buflen) {
3198  int offset;
3199  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3200  if (found) {
3201    // skip directory names
3202    const char *p1, *p2;
3203    p1 = buf;
3204    size_t len = strlen(os::file_separator());
3205    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3206    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3207  } else {
3208    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3209  }
3210  return buf;
3211}
3212
3213static void print_signal_handler(outputStream* st, int sig,
3214                                 char* buf, size_t buflen) {
3215  struct sigaction sa;
3216
3217  sigaction(sig, NULL, &sa);
3218
3219  // See comment for SIGNIFICANT_SIGNAL_MASK define
3220  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3221
3222  st->print("%s: ", os::exception_name(sig, buf, buflen));
3223
3224  address handler = (sa.sa_flags & SA_SIGINFO)
3225    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3226    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3227
3228  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3229    st->print("SIG_DFL");
3230  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3231    st->print("SIG_IGN");
3232  } else {
3233    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3234  }
3235
3236  st->print(", sa_mask[0]=");
3237  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3238
3239  address rh = VMError::get_resetted_sighandler(sig);
3240  // May be, handler was resetted by VMError?
3241  if (rh != NULL) {
3242    handler = rh;
3243    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3244  }
3245
3246  st->print(", sa_flags=");
3247  os::Posix::print_sa_flags(st, sa.sa_flags);
3248
3249  // Check: is it our handler?
3250  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3251      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3252    // It is our signal handler
3253    // check for flags, reset system-used one!
3254    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3255      st->print(
3256                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3257                os::Bsd::get_our_sigflags(sig));
3258    }
3259  }
3260  st->cr();
3261}
3262
3263
3264#define DO_SIGNAL_CHECK(sig)                      \
3265  do {                                            \
3266    if (!sigismember(&check_signal_done, sig)) {  \
3267      os::Bsd::check_signal_handler(sig);         \
3268    }                                             \
3269  } while (0)
3270
3271// This method is a periodic task to check for misbehaving JNI applications
3272// under CheckJNI, we can add any periodic checks here
3273
3274void os::run_periodic_checks() {
3275
3276  if (check_signals == false) return;
3277
3278  // SEGV and BUS if overridden could potentially prevent
3279  // generation of hs*.log in the event of a crash, debugging
3280  // such a case can be very challenging, so we absolutely
3281  // check the following for a good measure:
3282  DO_SIGNAL_CHECK(SIGSEGV);
3283  DO_SIGNAL_CHECK(SIGILL);
3284  DO_SIGNAL_CHECK(SIGFPE);
3285  DO_SIGNAL_CHECK(SIGBUS);
3286  DO_SIGNAL_CHECK(SIGPIPE);
3287  DO_SIGNAL_CHECK(SIGXFSZ);
3288
3289
3290  // ReduceSignalUsage allows the user to override these handlers
3291  // see comments at the very top and jvm_solaris.h
3292  if (!ReduceSignalUsage) {
3293    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3294    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3295    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3296    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3297  }
3298
3299  DO_SIGNAL_CHECK(SR_signum);
3300}
3301
3302typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3303
3304static os_sigaction_t os_sigaction = NULL;
3305
3306void os::Bsd::check_signal_handler(int sig) {
3307  char buf[O_BUFLEN];
3308  address jvmHandler = NULL;
3309
3310
3311  struct sigaction act;
3312  if (os_sigaction == NULL) {
3313    // only trust the default sigaction, in case it has been interposed
3314    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3315    if (os_sigaction == NULL) return;
3316  }
3317
3318  os_sigaction(sig, (struct sigaction*)NULL, &act);
3319
3320
3321  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3322
3323  address thisHandler = (act.sa_flags & SA_SIGINFO)
3324    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3325    : CAST_FROM_FN_PTR(address, act.sa_handler);
3326
3327
3328  switch (sig) {
3329  case SIGSEGV:
3330  case SIGBUS:
3331  case SIGFPE:
3332  case SIGPIPE:
3333  case SIGILL:
3334  case SIGXFSZ:
3335    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3336    break;
3337
3338  case SHUTDOWN1_SIGNAL:
3339  case SHUTDOWN2_SIGNAL:
3340  case SHUTDOWN3_SIGNAL:
3341  case BREAK_SIGNAL:
3342    jvmHandler = (address)user_handler();
3343    break;
3344
3345  default:
3346    if (sig == SR_signum) {
3347      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3348    } else {
3349      return;
3350    }
3351    break;
3352  }
3353
3354  if (thisHandler != jvmHandler) {
3355    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3356    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3357    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3358    // No need to check this sig any longer
3359    sigaddset(&check_signal_done, sig);
3360    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3361    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3362      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3363                    exception_name(sig, buf, O_BUFLEN));
3364    }
3365  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3366    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3367    tty->print("expected:");
3368    os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3369    tty->cr();
3370    tty->print("  found:");
3371    os::Posix::print_sa_flags(tty, act.sa_flags);
3372    tty->cr();
3373    // No need to check this sig any longer
3374    sigaddset(&check_signal_done, sig);
3375  }
3376
3377  // Dump all the signal
3378  if (sigismember(&check_signal_done, sig)) {
3379    print_signal_handlers(tty, buf, O_BUFLEN);
3380  }
3381}
3382
3383extern void report_error(char* file_name, int line_no, char* title,
3384                         char* format, ...);
3385
3386// this is called _before_ the most of global arguments have been parsed
3387void os::init(void) {
3388  char dummy;   // used to get a guess on initial stack address
3389//  first_hrtime = gethrtime();
3390
3391  // With BsdThreads the JavaMain thread pid (primordial thread)
3392  // is different than the pid of the java launcher thread.
3393  // So, on Bsd, the launcher thread pid is passed to the VM
3394  // via the sun.java.launcher.pid property.
3395  // Use this property instead of getpid() if it was correctly passed.
3396  // See bug 6351349.
3397  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3398
3399  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3400
3401  clock_tics_per_sec = CLK_TCK;
3402
3403  init_random(1234567);
3404
3405  ThreadCritical::initialize();
3406
3407  Bsd::set_page_size(getpagesize());
3408  if (Bsd::page_size() == -1) {
3409    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", strerror(errno));
3410  }
3411  init_page_sizes((size_t) Bsd::page_size());
3412
3413  Bsd::initialize_system_info();
3414
3415  // main_thread points to the aboriginal thread
3416  Bsd::_main_thread = pthread_self();
3417
3418  Bsd::clock_init();
3419  initial_time_count = javaTimeNanos();
3420
3421#ifdef __APPLE__
3422  // XXXDARWIN
3423  // Work around the unaligned VM callbacks in hotspot's
3424  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3425  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3426  // alignment when doing symbol lookup. To work around this, we force early
3427  // binding of all symbols now, thus binding when alignment is known-good.
3428  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3429#endif
3430}
3431
3432// To install functions for atexit system call
3433extern "C" {
3434  static void perfMemory_exit_helper() {
3435    perfMemory_exit();
3436  }
3437}
3438
3439// this is called _after_ the global arguments have been parsed
3440jint os::init_2(void) {
3441  // Allocate a single page and mark it as readable for safepoint polling
3442  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3443  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3444
3445  os::set_polling_page(polling_page);
3446
3447#ifndef PRODUCT
3448  if (Verbose && PrintMiscellaneous) {
3449    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3450               (intptr_t)polling_page);
3451  }
3452#endif
3453
3454  if (!UseMembar) {
3455    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3456    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3457    os::set_memory_serialize_page(mem_serialize_page);
3458
3459#ifndef PRODUCT
3460    if (Verbose && PrintMiscellaneous) {
3461      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3462                 (intptr_t)mem_serialize_page);
3463    }
3464#endif
3465  }
3466
3467  // initialize suspend/resume support - must do this before signal_sets_init()
3468  if (SR_initialize() != 0) {
3469    perror("SR_initialize failed");
3470    return JNI_ERR;
3471  }
3472
3473  Bsd::signal_sets_init();
3474  Bsd::install_signal_handlers();
3475
3476  // Check minimum allowable stack size for thread creation and to initialize
3477  // the java system classes, including StackOverflowError - depends on page
3478  // size.  Add a page for compiler2 recursion in main thread.
3479  // Add in 2*BytesPerWord times page size to account for VM stack during
3480  // class initialization depending on 32 or 64 bit VM.
3481  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3482                                    (size_t)(StackReservedPages+StackYellowPages+StackRedPages+StackShadowPages+
3483                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3484
3485  size_t threadStackSizeInBytes = ThreadStackSize * K;
3486  if (threadStackSizeInBytes != 0 &&
3487      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3488    tty->print_cr("\nThe stack size specified is too small, "
3489                  "Specify at least %dk",
3490                  os::Bsd::min_stack_allowed/ K);
3491    return JNI_ERR;
3492  }
3493
3494  // Make the stack size a multiple of the page size so that
3495  // the yellow/red zones can be guarded.
3496  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3497                                                vm_page_size()));
3498
3499  if (MaxFDLimit) {
3500    // set the number of file descriptors to max. print out error
3501    // if getrlimit/setrlimit fails but continue regardless.
3502    struct rlimit nbr_files;
3503    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3504    if (status != 0) {
3505      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3506        perror("os::init_2 getrlimit failed");
3507      }
3508    } else {
3509      nbr_files.rlim_cur = nbr_files.rlim_max;
3510
3511#ifdef __APPLE__
3512      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3513      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3514      // be used instead
3515      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3516#endif
3517
3518      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3519      if (status != 0) {
3520        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3521          perror("os::init_2 setrlimit failed");
3522        }
3523      }
3524    }
3525  }
3526
3527  // at-exit methods are called in the reverse order of their registration.
3528  // atexit functions are called on return from main or as a result of a
3529  // call to exit(3C). There can be only 32 of these functions registered
3530  // and atexit() does not set errno.
3531
3532  if (PerfAllowAtExitRegistration) {
3533    // only register atexit functions if PerfAllowAtExitRegistration is set.
3534    // atexit functions can be delayed until process exit time, which
3535    // can be problematic for embedded VM situations. Embedded VMs should
3536    // call DestroyJavaVM() to assure that VM resources are released.
3537
3538    // note: perfMemory_exit_helper atexit function may be removed in
3539    // the future if the appropriate cleanup code can be added to the
3540    // VM_Exit VMOperation's doit method.
3541    if (atexit(perfMemory_exit_helper) != 0) {
3542      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3543    }
3544  }
3545
3546  // initialize thread priority policy
3547  prio_init();
3548
3549#ifdef __APPLE__
3550  // dynamically link to objective c gc registration
3551  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3552  if (handleLibObjc != NULL) {
3553    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3554  }
3555#endif
3556
3557  return JNI_OK;
3558}
3559
3560// Mark the polling page as unreadable
3561void os::make_polling_page_unreadable(void) {
3562  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3563    fatal("Could not disable polling page");
3564  }
3565}
3566
3567// Mark the polling page as readable
3568void os::make_polling_page_readable(void) {
3569  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3570    fatal("Could not enable polling page");
3571  }
3572}
3573
3574int os::active_processor_count() {
3575  return _processor_count;
3576}
3577
3578void os::set_native_thread_name(const char *name) {
3579#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3580  // This is only supported in Snow Leopard and beyond
3581  if (name != NULL) {
3582    // Add a "Java: " prefix to the name
3583    char buf[MAXTHREADNAMESIZE];
3584    snprintf(buf, sizeof(buf), "Java: %s", name);
3585    pthread_setname_np(buf);
3586  }
3587#endif
3588}
3589
3590bool os::distribute_processes(uint length, uint* distribution) {
3591  // Not yet implemented.
3592  return false;
3593}
3594
3595bool os::bind_to_processor(uint processor_id) {
3596  // Not yet implemented.
3597  return false;
3598}
3599
3600void os::SuspendedThreadTask::internal_do_task() {
3601  if (do_suspend(_thread->osthread())) {
3602    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3603    do_task(context);
3604    do_resume(_thread->osthread());
3605  }
3606}
3607
3608///
3609class PcFetcher : public os::SuspendedThreadTask {
3610 public:
3611  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3612  ExtendedPC result();
3613 protected:
3614  void do_task(const os::SuspendedThreadTaskContext& context);
3615 private:
3616  ExtendedPC _epc;
3617};
3618
3619ExtendedPC PcFetcher::result() {
3620  guarantee(is_done(), "task is not done yet.");
3621  return _epc;
3622}
3623
3624void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3625  Thread* thread = context.thread();
3626  OSThread* osthread = thread->osthread();
3627  if (osthread->ucontext() != NULL) {
3628    _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3629  } else {
3630    // NULL context is unexpected, double-check this is the VMThread
3631    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3632  }
3633}
3634
3635// Suspends the target using the signal mechanism and then grabs the PC before
3636// resuming the target. Used by the flat-profiler only
3637ExtendedPC os::get_thread_pc(Thread* thread) {
3638  // Make sure that it is called by the watcher for the VMThread
3639  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3640  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3641
3642  PcFetcher fetcher(thread);
3643  fetcher.run();
3644  return fetcher.result();
3645}
3646
3647////////////////////////////////////////////////////////////////////////////////
3648// debug support
3649
3650bool os::find(address addr, outputStream* st) {
3651  Dl_info dlinfo;
3652  memset(&dlinfo, 0, sizeof(dlinfo));
3653  if (dladdr(addr, &dlinfo) != 0) {
3654    st->print(PTR_FORMAT ": ", addr);
3655    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3656      st->print("%s+%#x", dlinfo.dli_sname,
3657                addr - (intptr_t)dlinfo.dli_saddr);
3658    } else if (dlinfo.dli_fbase != NULL) {
3659      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3660    } else {
3661      st->print("<absolute address>");
3662    }
3663    if (dlinfo.dli_fname != NULL) {
3664      st->print(" in %s", dlinfo.dli_fname);
3665    }
3666    if (dlinfo.dli_fbase != NULL) {
3667      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3668    }
3669    st->cr();
3670
3671    if (Verbose) {
3672      // decode some bytes around the PC
3673      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3674      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3675      address       lowest = (address) dlinfo.dli_sname;
3676      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3677      if (begin < lowest)  begin = lowest;
3678      Dl_info dlinfo2;
3679      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3680          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3681        end = (address) dlinfo2.dli_saddr;
3682      }
3683      Disassembler::decode(begin, end, st);
3684    }
3685    return true;
3686  }
3687  return false;
3688}
3689
3690////////////////////////////////////////////////////////////////////////////////
3691// misc
3692
3693// This does not do anything on Bsd. This is basically a hook for being
3694// able to use structured exception handling (thread-local exception filters)
3695// on, e.g., Win32.
3696void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3697                              const methodHandle& method, JavaCallArguments* args,
3698                              Thread* thread) {
3699  f(value, method, args, thread);
3700}
3701
3702void os::print_statistics() {
3703}
3704
3705bool os::message_box(const char* title, const char* message) {
3706  int i;
3707  fdStream err(defaultStream::error_fd());
3708  for (i = 0; i < 78; i++) err.print_raw("=");
3709  err.cr();
3710  err.print_raw_cr(title);
3711  for (i = 0; i < 78; i++) err.print_raw("-");
3712  err.cr();
3713  err.print_raw_cr(message);
3714  for (i = 0; i < 78; i++) err.print_raw("=");
3715  err.cr();
3716
3717  char buf[16];
3718  // Prevent process from exiting upon "read error" without consuming all CPU
3719  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3720
3721  return buf[0] == 'y' || buf[0] == 'Y';
3722}
3723
3724int os::stat(const char *path, struct stat *sbuf) {
3725  char pathbuf[MAX_PATH];
3726  if (strlen(path) > MAX_PATH - 1) {
3727    errno = ENAMETOOLONG;
3728    return -1;
3729  }
3730  os::native_path(strcpy(pathbuf, path));
3731  return ::stat(pathbuf, sbuf);
3732}
3733
3734bool os::check_heap(bool force) {
3735  return true;
3736}
3737
3738// Is a (classpath) directory empty?
3739bool os::dir_is_empty(const char* path) {
3740  DIR *dir = NULL;
3741  struct dirent *ptr;
3742
3743  dir = opendir(path);
3744  if (dir == NULL) return true;
3745
3746  // Scan the directory
3747  bool result = true;
3748  char buf[sizeof(struct dirent) + MAX_PATH];
3749  while (result && (ptr = ::readdir(dir)) != NULL) {
3750    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3751      result = false;
3752    }
3753  }
3754  closedir(dir);
3755  return result;
3756}
3757
3758// This code originates from JDK's sysOpen and open64_w
3759// from src/solaris/hpi/src/system_md.c
3760
3761int os::open(const char *path, int oflag, int mode) {
3762  if (strlen(path) > MAX_PATH - 1) {
3763    errno = ENAMETOOLONG;
3764    return -1;
3765  }
3766  int fd;
3767
3768  fd = ::open(path, oflag, mode);
3769  if (fd == -1) return -1;
3770
3771  // If the open succeeded, the file might still be a directory
3772  {
3773    struct stat buf;
3774    int ret = ::fstat(fd, &buf);
3775    int st_mode = buf.st_mode;
3776
3777    if (ret != -1) {
3778      if ((st_mode & S_IFMT) == S_IFDIR) {
3779        errno = EISDIR;
3780        ::close(fd);
3781        return -1;
3782      }
3783    } else {
3784      ::close(fd);
3785      return -1;
3786    }
3787  }
3788
3789  // All file descriptors that are opened in the JVM and not
3790  // specifically destined for a subprocess should have the
3791  // close-on-exec flag set.  If we don't set it, then careless 3rd
3792  // party native code might fork and exec without closing all
3793  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3794  // UNIXProcess.c), and this in turn might:
3795  //
3796  // - cause end-of-file to fail to be detected on some file
3797  //   descriptors, resulting in mysterious hangs, or
3798  //
3799  // - might cause an fopen in the subprocess to fail on a system
3800  //   suffering from bug 1085341.
3801  //
3802  // (Yes, the default setting of the close-on-exec flag is a Unix
3803  // design flaw)
3804  //
3805  // See:
3806  // 1085341: 32-bit stdio routines should support file descriptors >255
3807  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3808  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3809  //
3810#ifdef FD_CLOEXEC
3811  {
3812    int flags = ::fcntl(fd, F_GETFD);
3813    if (flags != -1) {
3814      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3815    }
3816  }
3817#endif
3818
3819  return fd;
3820}
3821
3822
3823// create binary file, rewriting existing file if required
3824int os::create_binary_file(const char* path, bool rewrite_existing) {
3825  int oflags = O_WRONLY | O_CREAT;
3826  if (!rewrite_existing) {
3827    oflags |= O_EXCL;
3828  }
3829  return ::open(path, oflags, S_IREAD | S_IWRITE);
3830}
3831
3832// return current position of file pointer
3833jlong os::current_file_offset(int fd) {
3834  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3835}
3836
3837// move file pointer to the specified offset
3838jlong os::seek_to_file_offset(int fd, jlong offset) {
3839  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3840}
3841
3842// This code originates from JDK's sysAvailable
3843// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3844
3845int os::available(int fd, jlong *bytes) {
3846  jlong cur, end;
3847  int mode;
3848  struct stat buf;
3849
3850  if (::fstat(fd, &buf) >= 0) {
3851    mode = buf.st_mode;
3852    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3853      int n;
3854      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3855        *bytes = n;
3856        return 1;
3857      }
3858    }
3859  }
3860  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3861    return 0;
3862  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3863    return 0;
3864  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3865    return 0;
3866  }
3867  *bytes = end - cur;
3868  return 1;
3869}
3870
3871// Map a block of memory.
3872char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3873                        char *addr, size_t bytes, bool read_only,
3874                        bool allow_exec) {
3875  int prot;
3876  int flags;
3877
3878  if (read_only) {
3879    prot = PROT_READ;
3880    flags = MAP_SHARED;
3881  } else {
3882    prot = PROT_READ | PROT_WRITE;
3883    flags = MAP_PRIVATE;
3884  }
3885
3886  if (allow_exec) {
3887    prot |= PROT_EXEC;
3888  }
3889
3890  if (addr != NULL) {
3891    flags |= MAP_FIXED;
3892  }
3893
3894  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3895                                     fd, file_offset);
3896  if (mapped_address == MAP_FAILED) {
3897    return NULL;
3898  }
3899  return mapped_address;
3900}
3901
3902
3903// Remap a block of memory.
3904char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3905                          char *addr, size_t bytes, bool read_only,
3906                          bool allow_exec) {
3907  // same as map_memory() on this OS
3908  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3909                        allow_exec);
3910}
3911
3912
3913// Unmap a block of memory.
3914bool os::pd_unmap_memory(char* addr, size_t bytes) {
3915  return munmap(addr, bytes) == 0;
3916}
3917
3918// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3919// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3920// of a thread.
3921//
3922// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3923// the fast estimate available on the platform.
3924
3925jlong os::current_thread_cpu_time() {
3926#ifdef __APPLE__
3927  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3928#else
3929  Unimplemented();
3930  return 0;
3931#endif
3932}
3933
3934jlong os::thread_cpu_time(Thread* thread) {
3935#ifdef __APPLE__
3936  return os::thread_cpu_time(thread, true /* user + sys */);
3937#else
3938  Unimplemented();
3939  return 0;
3940#endif
3941}
3942
3943jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3944#ifdef __APPLE__
3945  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3946#else
3947  Unimplemented();
3948  return 0;
3949#endif
3950}
3951
3952jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3953#ifdef __APPLE__
3954  struct thread_basic_info tinfo;
3955  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3956  kern_return_t kr;
3957  thread_t mach_thread;
3958
3959  mach_thread = thread->osthread()->thread_id();
3960  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3961  if (kr != KERN_SUCCESS) {
3962    return -1;
3963  }
3964
3965  if (user_sys_cpu_time) {
3966    jlong nanos;
3967    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3968    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3969    return nanos;
3970  } else {
3971    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3972  }
3973#else
3974  Unimplemented();
3975  return 0;
3976#endif
3977}
3978
3979
3980void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3981  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3982  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3983  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3984  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3985}
3986
3987void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3988  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3989  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3990  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3991  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3992}
3993
3994bool os::is_thread_cpu_time_supported() {
3995#ifdef __APPLE__
3996  return true;
3997#else
3998  return false;
3999#endif
4000}
4001
4002// System loadavg support.  Returns -1 if load average cannot be obtained.
4003// Bsd doesn't yet have a (official) notion of processor sets,
4004// so just return the system wide load average.
4005int os::loadavg(double loadavg[], int nelem) {
4006  return ::getloadavg(loadavg, nelem);
4007}
4008
4009void os::pause() {
4010  char filename[MAX_PATH];
4011  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4012    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4013  } else {
4014    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4015  }
4016
4017  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4018  if (fd != -1) {
4019    struct stat buf;
4020    ::close(fd);
4021    while (::stat(filename, &buf) == 0) {
4022      (void)::poll(NULL, 0, 100);
4023    }
4024  } else {
4025    jio_fprintf(stderr,
4026                "Could not open pause file '%s', continuing immediately.\n", filename);
4027  }
4028}
4029
4030
4031// Refer to the comments in os_solaris.cpp park-unpark. The next two
4032// comment paragraphs are worth repeating here:
4033//
4034// Assumption:
4035//    Only one parker can exist on an event, which is why we allocate
4036//    them per-thread. Multiple unparkers can coexist.
4037//
4038// _Event serves as a restricted-range semaphore.
4039//   -1 : thread is blocked, i.e. there is a waiter
4040//    0 : neutral: thread is running or ready,
4041//        could have been signaled after a wait started
4042//    1 : signaled - thread is running or ready
4043//
4044// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4045// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4046// For specifics regarding the bug see GLIBC BUGID 261237 :
4047//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4048// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4049// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4050// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4051// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4052// and monitorenter when we're using 1-0 locking.  All those operations may result in
4053// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4054// of libpthread avoids the problem, but isn't practical.
4055//
4056// Possible remedies:
4057//
4058// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4059//      This is palliative and probabilistic, however.  If the thread is preempted
4060//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4061//      than the minimum period may have passed, and the abstime may be stale (in the
4062//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4063//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4064//
4065// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4066//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4067//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4068//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4069//      thread.
4070//
4071// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4072//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4073//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4074//      This also works well.  In fact it avoids kernel-level scalability impediments
4075//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4076//      timers in a graceful fashion.
4077//
4078// 4.   When the abstime value is in the past it appears that control returns
4079//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4080//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4081//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4082//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4083//      It may be possible to avoid reinitialization by checking the return
4084//      value from pthread_cond_timedwait().  In addition to reinitializing the
4085//      condvar we must establish the invariant that cond_signal() is only called
4086//      within critical sections protected by the adjunct mutex.  This prevents
4087//      cond_signal() from "seeing" a condvar that's in the midst of being
4088//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4089//      desirable signal-after-unlock optimization that avoids futile context switching.
4090//
4091//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4092//      structure when a condvar is used or initialized.  cond_destroy()  would
4093//      release the helper structure.  Our reinitialize-after-timedwait fix
4094//      put excessive stress on malloc/free and locks protecting the c-heap.
4095//
4096// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4097// It may be possible to refine (4) by checking the kernel and NTPL verisons
4098// and only enabling the work-around for vulnerable environments.
4099
4100// utility to compute the abstime argument to timedwait:
4101// millis is the relative timeout time
4102// abstime will be the absolute timeout time
4103// TODO: replace compute_abstime() with unpackTime()
4104
4105static struct timespec* compute_abstime(struct timespec* abstime,
4106                                        jlong millis) {
4107  if (millis < 0)  millis = 0;
4108  struct timeval now;
4109  int status = gettimeofday(&now, NULL);
4110  assert(status == 0, "gettimeofday");
4111  jlong seconds = millis / 1000;
4112  millis %= 1000;
4113  if (seconds > 50000000) { // see man cond_timedwait(3T)
4114    seconds = 50000000;
4115  }
4116  abstime->tv_sec = now.tv_sec  + seconds;
4117  long       usec = now.tv_usec + millis * 1000;
4118  if (usec >= 1000000) {
4119    abstime->tv_sec += 1;
4120    usec -= 1000000;
4121  }
4122  abstime->tv_nsec = usec * 1000;
4123  return abstime;
4124}
4125
4126void os::PlatformEvent::park() {       // AKA "down()"
4127  // Transitions for _Event:
4128  //   -1 => -1 : illegal
4129  //    1 =>  0 : pass - return immediately
4130  //    0 => -1 : block; then set _Event to 0 before returning
4131
4132  // Invariant: Only the thread associated with the Event/PlatformEvent
4133  // may call park().
4134  // TODO: assert that _Assoc != NULL or _Assoc == Self
4135  assert(_nParked == 0, "invariant");
4136
4137  int v;
4138  for (;;) {
4139    v = _Event;
4140    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4141  }
4142  guarantee(v >= 0, "invariant");
4143  if (v == 0) {
4144    // Do this the hard way by blocking ...
4145    int status = pthread_mutex_lock(_mutex);
4146    assert_status(status == 0, status, "mutex_lock");
4147    guarantee(_nParked == 0, "invariant");
4148    ++_nParked;
4149    while (_Event < 0) {
4150      status = pthread_cond_wait(_cond, _mutex);
4151      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4152      // Treat this the same as if the wait was interrupted
4153      if (status == ETIMEDOUT) { status = EINTR; }
4154      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4155    }
4156    --_nParked;
4157
4158    _Event = 0;
4159    status = pthread_mutex_unlock(_mutex);
4160    assert_status(status == 0, status, "mutex_unlock");
4161    // Paranoia to ensure our locked and lock-free paths interact
4162    // correctly with each other.
4163    OrderAccess::fence();
4164  }
4165  guarantee(_Event >= 0, "invariant");
4166}
4167
4168int os::PlatformEvent::park(jlong millis) {
4169  // Transitions for _Event:
4170  //   -1 => -1 : illegal
4171  //    1 =>  0 : pass - return immediately
4172  //    0 => -1 : block; then set _Event to 0 before returning
4173
4174  guarantee(_nParked == 0, "invariant");
4175
4176  int v;
4177  for (;;) {
4178    v = _Event;
4179    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4180  }
4181  guarantee(v >= 0, "invariant");
4182  if (v != 0) return OS_OK;
4183
4184  // We do this the hard way, by blocking the thread.
4185  // Consider enforcing a minimum timeout value.
4186  struct timespec abst;
4187  compute_abstime(&abst, millis);
4188
4189  int ret = OS_TIMEOUT;
4190  int status = pthread_mutex_lock(_mutex);
4191  assert_status(status == 0, status, "mutex_lock");
4192  guarantee(_nParked == 0, "invariant");
4193  ++_nParked;
4194
4195  // Object.wait(timo) will return because of
4196  // (a) notification
4197  // (b) timeout
4198  // (c) thread.interrupt
4199  //
4200  // Thread.interrupt and object.notify{All} both call Event::set.
4201  // That is, we treat thread.interrupt as a special case of notification.
4202  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4203  // We assume all ETIME returns are valid.
4204  //
4205  // TODO: properly differentiate simultaneous notify+interrupt.
4206  // In that case, we should propagate the notify to another waiter.
4207
4208  while (_Event < 0) {
4209    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4210    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4211      pthread_cond_destroy(_cond);
4212      pthread_cond_init(_cond, NULL);
4213    }
4214    assert_status(status == 0 || status == EINTR ||
4215                  status == ETIMEDOUT,
4216                  status, "cond_timedwait");
4217    if (!FilterSpuriousWakeups) break;                 // previous semantics
4218    if (status == ETIMEDOUT) break;
4219    // We consume and ignore EINTR and spurious wakeups.
4220  }
4221  --_nParked;
4222  if (_Event >= 0) {
4223    ret = OS_OK;
4224  }
4225  _Event = 0;
4226  status = pthread_mutex_unlock(_mutex);
4227  assert_status(status == 0, status, "mutex_unlock");
4228  assert(_nParked == 0, "invariant");
4229  // Paranoia to ensure our locked and lock-free paths interact
4230  // correctly with each other.
4231  OrderAccess::fence();
4232  return ret;
4233}
4234
4235void os::PlatformEvent::unpark() {
4236  // Transitions for _Event:
4237  //    0 => 1 : just return
4238  //    1 => 1 : just return
4239  //   -1 => either 0 or 1; must signal target thread
4240  //         That is, we can safely transition _Event from -1 to either
4241  //         0 or 1.
4242  // See also: "Semaphores in Plan 9" by Mullender & Cox
4243  //
4244  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4245  // that it will take two back-to-back park() calls for the owning
4246  // thread to block. This has the benefit of forcing a spurious return
4247  // from the first park() call after an unpark() call which will help
4248  // shake out uses of park() and unpark() without condition variables.
4249
4250  if (Atomic::xchg(1, &_Event) >= 0) return;
4251
4252  // Wait for the thread associated with the event to vacate
4253  int status = pthread_mutex_lock(_mutex);
4254  assert_status(status == 0, status, "mutex_lock");
4255  int AnyWaiters = _nParked;
4256  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4257  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4258    AnyWaiters = 0;
4259    pthread_cond_signal(_cond);
4260  }
4261  status = pthread_mutex_unlock(_mutex);
4262  assert_status(status == 0, status, "mutex_unlock");
4263  if (AnyWaiters != 0) {
4264    // Note that we signal() *after* dropping the lock for "immortal" Events.
4265    // This is safe and avoids a common class of  futile wakeups.  In rare
4266    // circumstances this can cause a thread to return prematurely from
4267    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4268    // will simply re-test the condition and re-park itself.
4269    // This provides particular benefit if the underlying platform does not
4270    // provide wait morphing.
4271    status = pthread_cond_signal(_cond);
4272    assert_status(status == 0, status, "cond_signal");
4273  }
4274}
4275
4276
4277// JSR166
4278// -------------------------------------------------------
4279
4280// The solaris and bsd implementations of park/unpark are fairly
4281// conservative for now, but can be improved. They currently use a
4282// mutex/condvar pair, plus a a count.
4283// Park decrements count if > 0, else does a condvar wait.  Unpark
4284// sets count to 1 and signals condvar.  Only one thread ever waits
4285// on the condvar. Contention seen when trying to park implies that someone
4286// is unparking you, so don't wait. And spurious returns are fine, so there
4287// is no need to track notifications.
4288
4289#define MAX_SECS 100000000
4290
4291// This code is common to bsd and solaris and will be moved to a
4292// common place in dolphin.
4293//
4294// The passed in time value is either a relative time in nanoseconds
4295// or an absolute time in milliseconds. Either way it has to be unpacked
4296// into suitable seconds and nanoseconds components and stored in the
4297// given timespec structure.
4298// Given time is a 64-bit value and the time_t used in the timespec is only
4299// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4300// overflow if times way in the future are given. Further on Solaris versions
4301// prior to 10 there is a restriction (see cond_timedwait) that the specified
4302// number of seconds, in abstime, is less than current_time  + 100,000,000.
4303// As it will be 28 years before "now + 100000000" will overflow we can
4304// ignore overflow and just impose a hard-limit on seconds using the value
4305// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4306// years from "now".
4307
4308static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4309  assert(time > 0, "convertTime");
4310
4311  struct timeval now;
4312  int status = gettimeofday(&now, NULL);
4313  assert(status == 0, "gettimeofday");
4314
4315  time_t max_secs = now.tv_sec + MAX_SECS;
4316
4317  if (isAbsolute) {
4318    jlong secs = time / 1000;
4319    if (secs > max_secs) {
4320      absTime->tv_sec = max_secs;
4321    } else {
4322      absTime->tv_sec = secs;
4323    }
4324    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4325  } else {
4326    jlong secs = time / NANOSECS_PER_SEC;
4327    if (secs >= MAX_SECS) {
4328      absTime->tv_sec = max_secs;
4329      absTime->tv_nsec = 0;
4330    } else {
4331      absTime->tv_sec = now.tv_sec + secs;
4332      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4333      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4334        absTime->tv_nsec -= NANOSECS_PER_SEC;
4335        ++absTime->tv_sec; // note: this must be <= max_secs
4336      }
4337    }
4338  }
4339  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4340  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4341  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4342  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4343}
4344
4345void Parker::park(bool isAbsolute, jlong time) {
4346  // Ideally we'd do something useful while spinning, such
4347  // as calling unpackTime().
4348
4349  // Optional fast-path check:
4350  // Return immediately if a permit is available.
4351  // We depend on Atomic::xchg() having full barrier semantics
4352  // since we are doing a lock-free update to _counter.
4353  if (Atomic::xchg(0, &_counter) > 0) return;
4354
4355  Thread* thread = Thread::current();
4356  assert(thread->is_Java_thread(), "Must be JavaThread");
4357  JavaThread *jt = (JavaThread *)thread;
4358
4359  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4360  // Check interrupt before trying to wait
4361  if (Thread::is_interrupted(thread, false)) {
4362    return;
4363  }
4364
4365  // Next, demultiplex/decode time arguments
4366  struct timespec absTime;
4367  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4368    return;
4369  }
4370  if (time > 0) {
4371    unpackTime(&absTime, isAbsolute, time);
4372  }
4373
4374
4375  // Enter safepoint region
4376  // Beware of deadlocks such as 6317397.
4377  // The per-thread Parker:: mutex is a classic leaf-lock.
4378  // In particular a thread must never block on the Threads_lock while
4379  // holding the Parker:: mutex.  If safepoints are pending both the
4380  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4381  ThreadBlockInVM tbivm(jt);
4382
4383  // Don't wait if cannot get lock since interference arises from
4384  // unblocking.  Also. check interrupt before trying wait
4385  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4386    return;
4387  }
4388
4389  int status;
4390  if (_counter > 0)  { // no wait needed
4391    _counter = 0;
4392    status = pthread_mutex_unlock(_mutex);
4393    assert(status == 0, "invariant");
4394    // Paranoia to ensure our locked and lock-free paths interact
4395    // correctly with each other and Java-level accesses.
4396    OrderAccess::fence();
4397    return;
4398  }
4399
4400#ifdef ASSERT
4401  // Don't catch signals while blocked; let the running threads have the signals.
4402  // (This allows a debugger to break into the running thread.)
4403  sigset_t oldsigs;
4404  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4405  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4406#endif
4407
4408  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4409  jt->set_suspend_equivalent();
4410  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4411
4412  if (time == 0) {
4413    status = pthread_cond_wait(_cond, _mutex);
4414  } else {
4415    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4416    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4417      pthread_cond_destroy(_cond);
4418      pthread_cond_init(_cond, NULL);
4419    }
4420  }
4421  assert_status(status == 0 || status == EINTR ||
4422                status == ETIMEDOUT,
4423                status, "cond_timedwait");
4424
4425#ifdef ASSERT
4426  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4427#endif
4428
4429  _counter = 0;
4430  status = pthread_mutex_unlock(_mutex);
4431  assert_status(status == 0, status, "invariant");
4432  // Paranoia to ensure our locked and lock-free paths interact
4433  // correctly with each other and Java-level accesses.
4434  OrderAccess::fence();
4435
4436  // If externally suspended while waiting, re-suspend
4437  if (jt->handle_special_suspend_equivalent_condition()) {
4438    jt->java_suspend_self();
4439  }
4440}
4441
4442void Parker::unpark() {
4443  int status = pthread_mutex_lock(_mutex);
4444  assert(status == 0, "invariant");
4445  const int s = _counter;
4446  _counter = 1;
4447  if (s < 1) {
4448    if (WorkAroundNPTLTimedWaitHang) {
4449      status = pthread_cond_signal(_cond);
4450      assert(status == 0, "invariant");
4451      status = pthread_mutex_unlock(_mutex);
4452      assert(status == 0, "invariant");
4453    } else {
4454      status = pthread_mutex_unlock(_mutex);
4455      assert(status == 0, "invariant");
4456      status = pthread_cond_signal(_cond);
4457      assert(status == 0, "invariant");
4458    }
4459  } else {
4460    pthread_mutex_unlock(_mutex);
4461    assert(status == 0, "invariant");
4462  }
4463}
4464
4465
4466// Darwin has no "environ" in a dynamic library.
4467#ifdef __APPLE__
4468  #include <crt_externs.h>
4469  #define environ (*_NSGetEnviron())
4470#else
4471extern char** environ;
4472#endif
4473
4474// Run the specified command in a separate process. Return its exit value,
4475// or -1 on failure (e.g. can't fork a new process).
4476// Unlike system(), this function can be called from signal handler. It
4477// doesn't block SIGINT et al.
4478int os::fork_and_exec(char* cmd) {
4479  const char * argv[4] = {"sh", "-c", cmd, NULL};
4480
4481  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4482  // pthread_atfork handlers and reset pthread library. All we need is a
4483  // separate process to execve. Make a direct syscall to fork process.
4484  // On IA64 there's no fork syscall, we have to use fork() and hope for
4485  // the best...
4486  pid_t pid = fork();
4487
4488  if (pid < 0) {
4489    // fork failed
4490    return -1;
4491
4492  } else if (pid == 0) {
4493    // child process
4494
4495    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4496    // first to kill every thread on the thread list. Because this list is
4497    // not reset by fork() (see notes above), execve() will instead kill
4498    // every thread in the parent process. We know this is the only thread
4499    // in the new process, so make a system call directly.
4500    // IA64 should use normal execve() from glibc to match the glibc fork()
4501    // above.
4502    execve("/bin/sh", (char* const*)argv, environ);
4503
4504    // execve failed
4505    _exit(-1);
4506
4507  } else  {
4508    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4509    // care about the actual exit code, for now.
4510
4511    int status;
4512
4513    // Wait for the child process to exit.  This returns immediately if
4514    // the child has already exited. */
4515    while (waitpid(pid, &status, 0) < 0) {
4516      switch (errno) {
4517      case ECHILD: return 0;
4518      case EINTR: break;
4519      default: return -1;
4520      }
4521    }
4522
4523    if (WIFEXITED(status)) {
4524      // The child exited normally; get its exit code.
4525      return WEXITSTATUS(status);
4526    } else if (WIFSIGNALED(status)) {
4527      // The child exited because of a signal
4528      // The best value to return is 0x80 + signal number,
4529      // because that is what all Unix shells do, and because
4530      // it allows callers to distinguish between process exit and
4531      // process death by signal.
4532      return 0x80 + WTERMSIG(status);
4533    } else {
4534      // Unknown exit code; pass it through
4535      return status;
4536    }
4537  }
4538}
4539
4540// is_headless_jre()
4541//
4542// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4543// in order to report if we are running in a headless jre
4544//
4545// Since JDK8 xawt/libmawt.so was moved into the same directory
4546// as libawt.so, and renamed libawt_xawt.so
4547//
4548bool os::is_headless_jre() {
4549#ifdef __APPLE__
4550  // We no longer build headless-only on Mac OS X
4551  return false;
4552#else
4553  struct stat statbuf;
4554  char buf[MAXPATHLEN];
4555  char libmawtpath[MAXPATHLEN];
4556  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4557  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4558  char *p;
4559
4560  // Get path to libjvm.so
4561  os::jvm_path(buf, sizeof(buf));
4562
4563  // Get rid of libjvm.so
4564  p = strrchr(buf, '/');
4565  if (p == NULL) {
4566    return false;
4567  } else {
4568    *p = '\0';
4569  }
4570
4571  // Get rid of client or server
4572  p = strrchr(buf, '/');
4573  if (p == NULL) {
4574    return false;
4575  } else {
4576    *p = '\0';
4577  }
4578
4579  // check xawt/libmawt.so
4580  strcpy(libmawtpath, buf);
4581  strcat(libmawtpath, xawtstr);
4582  if (::stat(libmawtpath, &statbuf) == 0) return false;
4583
4584  // check libawt_xawt.so
4585  strcpy(libmawtpath, buf);
4586  strcat(libmawtpath, new_xawtstr);
4587  if (::stat(libmawtpath, &statbuf) == 0) return false;
4588
4589  return true;
4590#endif
4591}
4592
4593// Get the default path to the core file
4594// Returns the length of the string
4595int os::get_core_path(char* buffer, size_t bufferSize) {
4596  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4597
4598  // Truncate if theoretical string was longer than bufferSize
4599  n = MIN2(n, (int)bufferSize);
4600
4601  return n;
4602}
4603
4604#ifndef PRODUCT
4605void TestReserveMemorySpecial_test() {
4606  // No tests available for this platform
4607}
4608#endif
4609
4610bool os::start_debugging(char *buf, int buflen) {
4611  int len = (int)strlen(buf);
4612  char *p = &buf[len];
4613
4614  jio_snprintf(p, buflen-len,
4615             "\n\n"
4616             "Do you want to debug the problem?\n\n"
4617             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4618             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4619             "Otherwise, press RETURN to abort...",
4620             os::current_process_id(), os::current_process_id(),
4621             os::current_thread_id(), os::current_thread_id());
4622
4623  bool yes = os::message_box("Unexpected Error", buf);
4624
4625  if (yes) {
4626    // yes, user asked VM to launch debugger
4627    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4628                     os::current_process_id(), os::current_process_id());
4629
4630    os::fork_and_exec(buf);
4631    yes = false;
4632  }
4633  return yes;
4634}
4635