os_bsd.cpp revision 9651:f7dc8eebc3f5
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Bsd::_physical_memory = 0;
134
135#ifdef __APPLE__
136mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137volatile uint64_t         os::Bsd::_max_abstime   = 0;
138#else
139int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140#endif
141pthread_t os::Bsd::_main_thread;
142int os::Bsd::_page_size = -1;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167julong os::available_memory() {
168  return Bsd::available_memory();
169}
170
171// available here means free
172julong os::Bsd::available_memory() {
173  uint64_t available = physical_memory() >> 2;
174#ifdef __APPLE__
175  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176  vm_statistics64_data_t vmstat;
177  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178                                         (host_info64_t)&vmstat, &count);
179  assert(kerr == KERN_SUCCESS,
180         "host_statistics64 failed - check mach_host_self() and count");
181  if (kerr == KERN_SUCCESS) {
182    available = vmstat.free_count * os::vm_page_size();
183  }
184#endif
185  return available;
186}
187
188julong os::physical_memory() {
189  return Bsd::physical_memory();
190}
191
192// Return true if user is running as root.
193
194bool os::have_special_privileges() {
195  static bool init = false;
196  static bool privileges = false;
197  if (!init) {
198    privileges = (getuid() != geteuid()) || (getgid() != getegid());
199    init = true;
200  }
201  return privileges;
202}
203
204
205
206// Cpu architecture string
207#if   defined(ZERO)
208static char cpu_arch[] = ZERO_LIBARCH;
209#elif defined(IA64)
210static char cpu_arch[] = "ia64";
211#elif defined(IA32)
212static char cpu_arch[] = "i386";
213#elif defined(AMD64)
214static char cpu_arch[] = "amd64";
215#elif defined(ARM)
216static char cpu_arch[] = "arm";
217#elif defined(PPC32)
218static char cpu_arch[] = "ppc";
219#elif defined(SPARC)
220  #ifdef _LP64
221static char cpu_arch[] = "sparcv9";
222  #else
223static char cpu_arch[] = "sparc";
224  #endif
225#else
226  #error Add appropriate cpu_arch setting
227#endif
228
229// Compiler variant
230#ifdef COMPILER2
231  #define COMPILER_VARIANT "server"
232#else
233  #define COMPILER_VARIANT "client"
234#endif
235
236
237void os::Bsd::initialize_system_info() {
238  int mib[2];
239  size_t len;
240  int cpu_val;
241  julong mem_val;
242
243  // get processors count via hw.ncpus sysctl
244  mib[0] = CTL_HW;
245  mib[1] = HW_NCPU;
246  len = sizeof(cpu_val);
247  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
248    assert(len == sizeof(cpu_val), "unexpected data size");
249    set_processor_count(cpu_val);
250  } else {
251    set_processor_count(1);   // fallback
252  }
253
254  // get physical memory via hw.memsize sysctl (hw.memsize is used
255  // since it returns a 64 bit value)
256  mib[0] = CTL_HW;
257
258#if defined (HW_MEMSIZE) // Apple
259  mib[1] = HW_MEMSIZE;
260#elif defined(HW_PHYSMEM) // Most of BSD
261  mib[1] = HW_PHYSMEM;
262#elif defined(HW_REALMEM) // Old FreeBSD
263  mib[1] = HW_REALMEM;
264#else
265  #error No ways to get physmem
266#endif
267
268  len = sizeof(mem_val);
269  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
270    assert(len == sizeof(mem_val), "unexpected data size");
271    _physical_memory = mem_val;
272  } else {
273    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
274  }
275
276#ifdef __OpenBSD__
277  {
278    // limit _physical_memory memory view on OpenBSD since
279    // datasize rlimit restricts us anyway.
280    struct rlimit limits;
281    getrlimit(RLIMIT_DATA, &limits);
282    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
283  }
284#endif
285}
286
287#ifdef __APPLE__
288static const char *get_home() {
289  const char *home_dir = ::getenv("HOME");
290  if ((home_dir == NULL) || (*home_dir == '\0')) {
291    struct passwd *passwd_info = getpwuid(geteuid());
292    if (passwd_info != NULL) {
293      home_dir = passwd_info->pw_dir;
294    }
295  }
296
297  return home_dir;
298}
299#endif
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#ifndef DEFAULT_LIBPATH
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342#ifndef __APPLE__
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Bsd implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf);
412
413#else // __APPLE__
414
415  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
416  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
417
418  const char *user_home_dir = get_home();
419  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
420  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
421    sizeof(SYS_EXTENSIONS_DIRS);
422
423  // Buffer that fits several sprintfs.
424  // Note that the space for the colon and the trailing null are provided
425  // by the nulls included by the sizeof operator.
426  const size_t bufsize =
427    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
428         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
429  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
430
431  // sysclasspath, java_home, dll_dir
432  {
433    char *pslash;
434    os::jvm_path(buf, bufsize);
435
436    // Found the full path to libjvm.so.
437    // Now cut the path to <java_home>/jre if we can.
438    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
439    pslash = strrchr(buf, '/');
440    if (pslash != NULL) {
441      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
442    }
443#ifdef STATIC_BUILD
444    strcat(buf, "/lib");
445#endif
446
447    Arguments::set_dll_dir(buf);
448
449    if (pslash != NULL) {
450      pslash = strrchr(buf, '/');
451      if (pslash != NULL) {
452        *pslash = '\0';          // Get rid of /lib.
453      }
454    }
455    Arguments::set_java_home(buf);
456    set_boot_path('/', ':');
457  }
458
459  // Where to look for native libraries.
460  //
461  // Note: Due to a legacy implementation, most of the library path
462  // is set in the launcher. This was to accomodate linking restrictions
463  // on legacy Bsd implementations (which are no longer supported).
464  // Eventually, all the library path setting will be done here.
465  //
466  // However, to prevent the proliferation of improperly built native
467  // libraries, the new path component /usr/java/packages is added here.
468  // Eventually, all the library path setting will be done here.
469  {
470    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471    // should always exist (until the legacy problem cited above is
472    // addressed).
473    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
474    // can specify a directory inside an app wrapper
475    const char *l = ::getenv("JAVA_LIBRARY_PATH");
476    const char *l_colon = ":";
477    if (l == NULL) { l = ""; l_colon = ""; }
478
479    const char *v = ::getenv("DYLD_LIBRARY_PATH");
480    const char *v_colon = ":";
481    if (v == NULL) { v = ""; v_colon = ""; }
482
483    // Apple's Java6 has "." at the beginning of java.library.path.
484    // OpenJDK on Windows has "." at the end of java.library.path.
485    // OpenJDK on Linux and Solaris don't have "." in java.library.path
486    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
487    // "." is appended to the end of java.library.path. Yes, this
488    // could cause a change in behavior, but Apple's Java6 behavior
489    // can be achieved by putting "." at the beginning of the
490    // JAVA_LIBRARY_PATH environment variable.
491    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
492                                                     strlen(v) + 1 + strlen(l) + 1 +
493                                                     system_ext_size + 3,
494                                                     mtInternal);
495    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
496            v, v_colon, l, l_colon, user_home_dir);
497    Arguments::set_library_path(ld_library_path);
498    FREE_C_HEAP_ARRAY(char, ld_library_path);
499  }
500
501  // Extensions directories.
502  //
503  // Note that the space for the colon and the trailing null are provided
504  // by the nulls included by the sizeof operator (so actually one byte more
505  // than necessary is allocated).
506  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
507          user_home_dir, Arguments::get_java_home());
508  Arguments::set_ext_dirs(buf);
509
510  FREE_C_HEAP_ARRAY(char, buf);
511
512#undef SYS_EXTENSIONS_DIR
513#undef SYS_EXTENSIONS_DIRS
514
515#endif // __APPLE__
516
517#undef SYS_EXT_DIR
518#undef EXTENSIONS_DIR
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539  struct sigaction oact;
540  sigaction(sig, (struct sigaction*)NULL, &oact);
541  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
544    return true;
545  } else {
546    return false;
547  }
548}
549
550void os::Bsd::signal_sets_init() {
551  // Should also have an assertion stating we are still single-threaded.
552  assert(!signal_sets_initialized, "Already initialized");
553  // Fill in signals that are necessarily unblocked for all threads in
554  // the VM. Currently, we unblock the following signals:
555  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
556  //                         by -Xrs (=ReduceSignalUsage));
557  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
558  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
559  // the dispositions or masks wrt these signals.
560  // Programs embedding the VM that want to use the above signals for their
561  // own purposes must, at this time, use the "-Xrs" option to prevent
562  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
563  // (See bug 4345157, and other related bugs).
564  // In reality, though, unblocking these signals is really a nop, since
565  // these signals are not blocked by default.
566  sigemptyset(&unblocked_sigs);
567  sigemptyset(&allowdebug_blocked_sigs);
568  sigaddset(&unblocked_sigs, SIGILL);
569  sigaddset(&unblocked_sigs, SIGSEGV);
570  sigaddset(&unblocked_sigs, SIGBUS);
571  sigaddset(&unblocked_sigs, SIGFPE);
572  sigaddset(&unblocked_sigs, SR_signum);
573
574  if (!ReduceSignalUsage) {
575    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
576      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
577      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
578    }
579    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
580      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
581      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
582    }
583    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
584      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
585      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
586    }
587  }
588  // Fill in signals that are blocked by all but the VM thread.
589  sigemptyset(&vm_sigs);
590  if (!ReduceSignalUsage) {
591    sigaddset(&vm_sigs, BREAK_SIGNAL);
592  }
593  debug_only(signal_sets_initialized = true);
594
595}
596
597// These are signals that are unblocked while a thread is running Java.
598// (For some reason, they get blocked by default.)
599sigset_t* os::Bsd::unblocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &unblocked_sigs;
602}
603
604// These are the signals that are blocked while a (non-VM) thread is
605// running Java. Only the VM thread handles these signals.
606sigset_t* os::Bsd::vm_signals() {
607  assert(signal_sets_initialized, "Not initialized");
608  return &vm_sigs;
609}
610
611// These are signals that are blocked during cond_wait to allow debugger in
612sigset_t* os::Bsd::allowdebug_blocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &allowdebug_blocked_sigs;
615}
616
617void os::Bsd::hotspot_sigmask(Thread* thread) {
618
619  //Save caller's signal mask before setting VM signal mask
620  sigset_t caller_sigmask;
621  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
622
623  OSThread* osthread = thread->osthread();
624  osthread->set_caller_sigmask(caller_sigmask);
625
626  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
627
628  if (!ReduceSignalUsage) {
629    if (thread->is_VM_thread()) {
630      // Only the VM thread handles BREAK_SIGNAL ...
631      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
632    } else {
633      // ... all other threads block BREAK_SIGNAL
634      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
635    }
636  }
637}
638
639
640//////////////////////////////////////////////////////////////////////////////
641// create new thread
642
643#ifdef __APPLE__
644// library handle for calling objc_registerThreadWithCollector()
645// without static linking to the libobjc library
646  #define OBJC_LIB "/usr/lib/libobjc.dylib"
647  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
648typedef void (*objc_registerThreadWithCollector_t)();
649extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
650objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
651#endif
652
653#ifdef __APPLE__
654static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
655  // Additional thread_id used to correlate threads in SA
656  thread_identifier_info_data_t     m_ident_info;
657  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
658
659  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
660              (thread_info_t) &m_ident_info, &count);
661
662  return m_ident_info.thread_id;
663}
664#endif
665
666// Thread start routine for all newly created threads
667static void *java_start(Thread *thread) {
668  // Try to randomize the cache line index of hot stack frames.
669  // This helps when threads of the same stack traces evict each other's
670  // cache lines. The threads can be either from the same JVM instance, or
671  // from different JVM instances. The benefit is especially true for
672  // processors with hyperthreading technology.
673  static int counter = 0;
674  int pid = os::current_process_id();
675  alloca(((pid ^ counter++) & 7) * 128);
676
677  thread->initialize_thread_current();
678
679  OSThread* osthread = thread->osthread();
680  Monitor* sync = osthread->startThread_lock();
681
682  osthread->set_thread_id(os::Bsd::gettid());
683
684#ifdef __APPLE__
685  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
686  guarantee(unique_thread_id != 0, "unique thread id was not found");
687  osthread->set_unique_thread_id(unique_thread_id);
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // calculate stack size if it's not specified by caller
745  if (stack_size == 0) {
746    stack_size = os::Bsd::default_stack_size(thr_type);
747
748    switch (thr_type) {
749    case os::java_thread:
750      // Java threads use ThreadStackSize which default value can be
751      // changed with the flag -Xss
752      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
753      stack_size = JavaThread::stack_size_at_create();
754      break;
755    case os::compiler_thread:
756      if (CompilerThreadStackSize > 0) {
757        stack_size = (size_t)(CompilerThreadStackSize * K);
758        break;
759      } // else fall through:
760        // use VMThreadStackSize if CompilerThreadStackSize is not defined
761    case os::vm_thread:
762    case os::pgc_thread:
763    case os::cgc_thread:
764    case os::watcher_thread:
765      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
766      break;
767    }
768  }
769
770  stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
771  pthread_attr_setstacksize(&attr, stack_size);
772
773  ThreadState state;
774
775  {
776    pthread_t tid;
777    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
778
779    pthread_attr_destroy(&attr);
780
781    if (ret != 0) {
782      if (PrintMiscellaneous && (Verbose || WizardMode)) {
783        perror("pthread_create()");
784      }
785      // Need to clean up stuff we've allocated so far
786      thread->set_osthread(NULL);
787      delete osthread;
788      return false;
789    }
790
791    // Store pthread info into the OSThread
792    osthread->set_pthread_id(tid);
793
794    // Wait until child thread is either initialized or aborted
795    {
796      Monitor* sync_with_child = osthread->startThread_lock();
797      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
798      while ((state = osthread->get_state()) == ALLOCATED) {
799        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
800      }
801    }
802
803  }
804
805  // Aborted due to thread limit being reached
806  if (state == ZOMBIE) {
807    thread->set_osthread(NULL);
808    delete osthread;
809    return false;
810  }
811
812  // The thread is returned suspended (in state INITIALIZED),
813  // and is started higher up in the call chain
814  assert(state == INITIALIZED, "race condition");
815  return true;
816}
817
818/////////////////////////////////////////////////////////////////////////////
819// attach existing thread
820
821// bootstrap the main thread
822bool os::create_main_thread(JavaThread* thread) {
823  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
824  return create_attached_thread(thread);
825}
826
827bool os::create_attached_thread(JavaThread* thread) {
828#ifdef ASSERT
829  thread->verify_not_published();
830#endif
831
832  // Allocate the OSThread object
833  OSThread* osthread = new OSThread(NULL, NULL);
834
835  if (osthread == NULL) {
836    return false;
837  }
838
839  osthread->set_thread_id(os::Bsd::gettid());
840
841  // Store pthread info into the OSThread
842#ifdef __APPLE__
843  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
844  guarantee(unique_thread_id != 0, "just checking");
845  osthread->set_unique_thread_id(unique_thread_id);
846#endif
847  osthread->set_pthread_id(::pthread_self());
848
849  // initialize floating point control register
850  os::Bsd::init_thread_fpu_state();
851
852  // Initial thread state is RUNNABLE
853  osthread->set_state(RUNNABLE);
854
855  thread->set_osthread(osthread);
856
857  // initialize signal mask for this thread
858  // and save the caller's signal mask
859  os::Bsd::hotspot_sigmask(thread);
860
861  return true;
862}
863
864void os::pd_start_thread(Thread* thread) {
865  OSThread * osthread = thread->osthread();
866  assert(osthread->get_state() != INITIALIZED, "just checking");
867  Monitor* sync_with_child = osthread->startThread_lock();
868  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
869  sync_with_child->notify();
870}
871
872// Free Bsd resources related to the OSThread
873void os::free_thread(OSThread* osthread) {
874  assert(osthread != NULL, "osthread not set");
875
876  if (Thread::current()->osthread() == osthread) {
877    // Restore caller's signal mask
878    sigset_t sigmask = osthread->caller_sigmask();
879    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
880  }
881
882  delete osthread;
883}
884
885////////////////////////////////////////////////////////////////////////////////
886// time support
887
888// Time since start-up in seconds to a fine granularity.
889// Used by VMSelfDestructTimer and the MemProfiler.
890double os::elapsedTime() {
891
892  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
893}
894
895jlong os::elapsed_counter() {
896  return javaTimeNanos() - initial_time_count;
897}
898
899jlong os::elapsed_frequency() {
900  return NANOSECS_PER_SEC; // nanosecond resolution
901}
902
903bool os::supports_vtime() { return true; }
904bool os::enable_vtime()   { return false; }
905bool os::vtime_enabled()  { return false; }
906
907double os::elapsedVTime() {
908  // better than nothing, but not much
909  return elapsedTime();
910}
911
912jlong os::javaTimeMillis() {
913  timeval time;
914  int status = gettimeofday(&time, NULL);
915  assert(status != -1, "bsd error");
916  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
917}
918
919void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
920  timeval time;
921  int status = gettimeofday(&time, NULL);
922  assert(status != -1, "bsd error");
923  seconds = jlong(time.tv_sec);
924  nanos = jlong(time.tv_usec) * 1000;
925}
926
927#ifndef __APPLE__
928  #ifndef CLOCK_MONOTONIC
929    #define CLOCK_MONOTONIC (1)
930  #endif
931#endif
932
933#ifdef __APPLE__
934void os::Bsd::clock_init() {
935  mach_timebase_info(&_timebase_info);
936}
937#else
938void os::Bsd::clock_init() {
939  struct timespec res;
940  struct timespec tp;
941  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
942      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
943    // yes, monotonic clock is supported
944    _clock_gettime = ::clock_gettime;
945  }
946}
947#endif
948
949
950
951#ifdef __APPLE__
952
953jlong os::javaTimeNanos() {
954  const uint64_t tm = mach_absolute_time();
955  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
956  const uint64_t prev = Bsd::_max_abstime;
957  if (now <= prev) {
958    return prev;   // same or retrograde time;
959  }
960  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
961  assert(obsv >= prev, "invariant");   // Monotonicity
962  // If the CAS succeeded then we're done and return "now".
963  // If the CAS failed and the observed value "obsv" is >= now then
964  // we should return "obsv".  If the CAS failed and now > obsv > prv then
965  // some other thread raced this thread and installed a new value, in which case
966  // we could either (a) retry the entire operation, (b) retry trying to install now
967  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
968  // we might discard a higher "now" value in deference to a slightly lower but freshly
969  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
970  // to (a) or (b) -- and greatly reduces coherence traffic.
971  // We might also condition (c) on the magnitude of the delta between obsv and now.
972  // Avoiding excessive CAS operations to hot RW locations is critical.
973  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
974  return (prev == obsv) ? now : obsv;
975}
976
977#else // __APPLE__
978
979jlong os::javaTimeNanos() {
980  if (os::supports_monotonic_clock()) {
981    struct timespec tp;
982    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
983    assert(status == 0, "gettime error");
984    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
985    return result;
986  } else {
987    timeval time;
988    int status = gettimeofday(&time, NULL);
989    assert(status != -1, "bsd error");
990    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
991    return 1000 * usecs;
992  }
993}
994
995#endif // __APPLE__
996
997void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
998  if (os::supports_monotonic_clock()) {
999    info_ptr->max_value = ALL_64_BITS;
1000
1001    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1002    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1003    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1004  } else {
1005    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1006    info_ptr->max_value = ALL_64_BITS;
1007
1008    // gettimeofday is a real time clock so it skips
1009    info_ptr->may_skip_backward = true;
1010    info_ptr->may_skip_forward = true;
1011  }
1012
1013  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1014}
1015
1016// Return the real, user, and system times in seconds from an
1017// arbitrary fixed point in the past.
1018bool os::getTimesSecs(double* process_real_time,
1019                      double* process_user_time,
1020                      double* process_system_time) {
1021  struct tms ticks;
1022  clock_t real_ticks = times(&ticks);
1023
1024  if (real_ticks == (clock_t) (-1)) {
1025    return false;
1026  } else {
1027    double ticks_per_second = (double) clock_tics_per_sec;
1028    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1029    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1030    *process_real_time = ((double) real_ticks) / ticks_per_second;
1031
1032    return true;
1033  }
1034}
1035
1036
1037char * os::local_time_string(char *buf, size_t buflen) {
1038  struct tm t;
1039  time_t long_time;
1040  time(&long_time);
1041  localtime_r(&long_time, &t);
1042  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1043               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1044               t.tm_hour, t.tm_min, t.tm_sec);
1045  return buf;
1046}
1047
1048struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1049  return localtime_r(clock, res);
1050}
1051
1052////////////////////////////////////////////////////////////////////////////////
1053// runtime exit support
1054
1055// Note: os::shutdown() might be called very early during initialization, or
1056// called from signal handler. Before adding something to os::shutdown(), make
1057// sure it is async-safe and can handle partially initialized VM.
1058void os::shutdown() {
1059
1060  // allow PerfMemory to attempt cleanup of any persistent resources
1061  perfMemory_exit();
1062
1063  // needs to remove object in file system
1064  AttachListener::abort();
1065
1066  // flush buffered output, finish log files
1067  ostream_abort();
1068
1069  // Check for abort hook
1070  abort_hook_t abort_hook = Arguments::abort_hook();
1071  if (abort_hook != NULL) {
1072    abort_hook();
1073  }
1074
1075}
1076
1077// Note: os::abort() might be called very early during initialization, or
1078// called from signal handler. Before adding something to os::abort(), make
1079// sure it is async-safe and can handle partially initialized VM.
1080void os::abort(bool dump_core, void* siginfo, void* context) {
1081  os::shutdown();
1082  if (dump_core) {
1083#ifndef PRODUCT
1084    fdStream out(defaultStream::output_fd());
1085    out.print_raw("Current thread is ");
1086    char buf[16];
1087    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1088    out.print_raw_cr(buf);
1089    out.print_raw_cr("Dumping core ...");
1090#endif
1091    ::abort(); // dump core
1092  }
1093
1094  ::exit(1);
1095}
1096
1097// Die immediately, no exit hook, no abort hook, no cleanup.
1098void os::die() {
1099  // _exit() on BsdThreads only kills current thread
1100  ::abort();
1101}
1102
1103// This method is a copy of JDK's sysGetLastErrorString
1104// from src/solaris/hpi/src/system_md.c
1105
1106size_t os::lasterror(char *buf, size_t len) {
1107  if (errno == 0)  return 0;
1108
1109  const char *s = ::strerror(errno);
1110  size_t n = ::strlen(s);
1111  if (n >= len) {
1112    n = len - 1;
1113  }
1114  ::strncpy(buf, s, n);
1115  buf[n] = '\0';
1116  return n;
1117}
1118
1119// Information of current thread in variety of formats
1120pid_t os::Bsd::gettid() {
1121  int retval = -1;
1122
1123#ifdef __APPLE__ //XNU kernel
1124  // despite the fact mach port is actually not a thread id use it
1125  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1126  retval = ::pthread_mach_thread_np(::pthread_self());
1127  guarantee(retval != 0, "just checking");
1128  return retval;
1129
1130#else
1131  #ifdef __FreeBSD__
1132  retval = syscall(SYS_thr_self);
1133  #else
1134    #ifdef __OpenBSD__
1135  retval = syscall(SYS_getthrid);
1136    #else
1137      #ifdef __NetBSD__
1138  retval = (pid_t) syscall(SYS__lwp_self);
1139      #endif
1140    #endif
1141  #endif
1142#endif
1143
1144  if (retval == -1) {
1145    return getpid();
1146  }
1147}
1148
1149intx os::current_thread_id() {
1150#ifdef __APPLE__
1151  return (intx)::pthread_mach_thread_np(::pthread_self());
1152#else
1153  return (intx)::pthread_self();
1154#endif
1155}
1156
1157int os::current_process_id() {
1158
1159  // Under the old bsd thread library, bsd gives each thread
1160  // its own process id. Because of this each thread will return
1161  // a different pid if this method were to return the result
1162  // of getpid(2). Bsd provides no api that returns the pid
1163  // of the launcher thread for the vm. This implementation
1164  // returns a unique pid, the pid of the launcher thread
1165  // that starts the vm 'process'.
1166
1167  // Under the NPTL, getpid() returns the same pid as the
1168  // launcher thread rather than a unique pid per thread.
1169  // Use gettid() if you want the old pre NPTL behaviour.
1170
1171  // if you are looking for the result of a call to getpid() that
1172  // returns a unique pid for the calling thread, then look at the
1173  // OSThread::thread_id() method in osThread_bsd.hpp file
1174
1175  return (int)(_initial_pid ? _initial_pid : getpid());
1176}
1177
1178// DLL functions
1179
1180#define JNI_LIB_PREFIX "lib"
1181#ifdef __APPLE__
1182  #define JNI_LIB_SUFFIX ".dylib"
1183#else
1184  #define JNI_LIB_SUFFIX ".so"
1185#endif
1186
1187const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1188
1189// This must be hard coded because it's the system's temporary
1190// directory not the java application's temp directory, ala java.io.tmpdir.
1191#ifdef __APPLE__
1192// macosx has a secure per-user temporary directory
1193char temp_path_storage[PATH_MAX];
1194const char* os::get_temp_directory() {
1195  static char *temp_path = NULL;
1196  if (temp_path == NULL) {
1197    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1198    if (pathSize == 0 || pathSize > PATH_MAX) {
1199      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1200    }
1201    temp_path = temp_path_storage;
1202  }
1203  return temp_path;
1204}
1205#else // __APPLE__
1206const char* os::get_temp_directory() { return "/tmp"; }
1207#endif // __APPLE__
1208
1209static bool file_exists(const char* filename) {
1210  struct stat statbuf;
1211  if (filename == NULL || strlen(filename) == 0) {
1212    return false;
1213  }
1214  return os::stat(filename, &statbuf) == 0;
1215}
1216
1217bool os::dll_build_name(char* buffer, size_t buflen,
1218                        const char* pname, const char* fname) {
1219  bool retval = false;
1220  // Copied from libhpi
1221  const size_t pnamelen = pname ? strlen(pname) : 0;
1222
1223  // Return error on buffer overflow.
1224  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1225    return retval;
1226  }
1227
1228  if (pnamelen == 0) {
1229    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1230    retval = true;
1231  } else if (strchr(pname, *os::path_separator()) != NULL) {
1232    int n;
1233    char** pelements = split_path(pname, &n);
1234    if (pelements == NULL) {
1235      return false;
1236    }
1237    for (int i = 0; i < n; i++) {
1238      // Really shouldn't be NULL, but check can't hurt
1239      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1240        continue; // skip the empty path values
1241      }
1242      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1243               pelements[i], fname);
1244      if (file_exists(buffer)) {
1245        retval = true;
1246        break;
1247      }
1248    }
1249    // release the storage
1250    for (int i = 0; i < n; i++) {
1251      if (pelements[i] != NULL) {
1252        FREE_C_HEAP_ARRAY(char, pelements[i]);
1253      }
1254    }
1255    if (pelements != NULL) {
1256      FREE_C_HEAP_ARRAY(char*, pelements);
1257    }
1258  } else {
1259    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1260    retval = true;
1261  }
1262  return retval;
1263}
1264
1265// check if addr is inside libjvm.so
1266bool os::address_is_in_vm(address addr) {
1267  static address libjvm_base_addr;
1268  Dl_info dlinfo;
1269
1270  if (libjvm_base_addr == NULL) {
1271    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1272      libjvm_base_addr = (address)dlinfo.dli_fbase;
1273    }
1274    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1275  }
1276
1277  if (dladdr((void *)addr, &dlinfo) != 0) {
1278    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1279  }
1280
1281  return false;
1282}
1283
1284
1285#define MACH_MAXSYMLEN 256
1286
1287bool os::dll_address_to_function_name(address addr, char *buf,
1288                                      int buflen, int *offset,
1289                                      bool demangle) {
1290  // buf is not optional, but offset is optional
1291  assert(buf != NULL, "sanity check");
1292
1293  Dl_info dlinfo;
1294  char localbuf[MACH_MAXSYMLEN];
1295
1296  if (dladdr((void*)addr, &dlinfo) != 0) {
1297    // see if we have a matching symbol
1298    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1299      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1300        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1301      }
1302      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1303      return true;
1304    }
1305    // no matching symbol so try for just file info
1306    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1307      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1308                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1309        return true;
1310      }
1311    }
1312
1313    // Handle non-dynamic manually:
1314    if (dlinfo.dli_fbase != NULL &&
1315        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1316                        dlinfo.dli_fbase)) {
1317      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1318        jio_snprintf(buf, buflen, "%s", localbuf);
1319      }
1320      return true;
1321    }
1322  }
1323  buf[0] = '\0';
1324  if (offset != NULL) *offset = -1;
1325  return false;
1326}
1327
1328// ported from solaris version
1329bool os::dll_address_to_library_name(address addr, char* buf,
1330                                     int buflen, int* offset) {
1331  // buf is not optional, but offset is optional
1332  assert(buf != NULL, "sanity check");
1333
1334  Dl_info dlinfo;
1335
1336  if (dladdr((void*)addr, &dlinfo) != 0) {
1337    if (dlinfo.dli_fname != NULL) {
1338      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1339    }
1340    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1341      *offset = addr - (address)dlinfo.dli_fbase;
1342    }
1343    return true;
1344  }
1345
1346  buf[0] = '\0';
1347  if (offset) *offset = -1;
1348  return false;
1349}
1350
1351// Loads .dll/.so and
1352// in case of error it checks if .dll/.so was built for the
1353// same architecture as Hotspot is running on
1354
1355#ifdef __APPLE__
1356void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1357#ifdef STATIC_BUILD
1358  return os::get_default_process_handle();
1359#else
1360  void * result= ::dlopen(filename, RTLD_LAZY);
1361  if (result != NULL) {
1362    // Successful loading
1363    return result;
1364  }
1365
1366  // Read system error message into ebuf
1367  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1368  ebuf[ebuflen-1]='\0';
1369
1370  return NULL;
1371#endif // STATIC_BUILD
1372}
1373#else
1374void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1375#ifdef STATIC_BUILD
1376  return os::get_default_process_handle();
1377#else
1378  void * result= ::dlopen(filename, RTLD_LAZY);
1379  if (result != NULL) {
1380    // Successful loading
1381    return result;
1382  }
1383
1384  Elf32_Ehdr elf_head;
1385
1386  // Read system error message into ebuf
1387  // It may or may not be overwritten below
1388  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1389  ebuf[ebuflen-1]='\0';
1390  int diag_msg_max_length=ebuflen-strlen(ebuf);
1391  char* diag_msg_buf=ebuf+strlen(ebuf);
1392
1393  if (diag_msg_max_length==0) {
1394    // No more space in ebuf for additional diagnostics message
1395    return NULL;
1396  }
1397
1398
1399  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1400
1401  if (file_descriptor < 0) {
1402    // Can't open library, report dlerror() message
1403    return NULL;
1404  }
1405
1406  bool failed_to_read_elf_head=
1407    (sizeof(elf_head)!=
1408     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1409
1410  ::close(file_descriptor);
1411  if (failed_to_read_elf_head) {
1412    // file i/o error - report dlerror() msg
1413    return NULL;
1414  }
1415
1416  typedef struct {
1417    Elf32_Half  code;         // Actual value as defined in elf.h
1418    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1419    char        elf_class;    // 32 or 64 bit
1420    char        endianess;    // MSB or LSB
1421    char*       name;         // String representation
1422  } arch_t;
1423
1424  #ifndef EM_486
1425    #define EM_486          6               /* Intel 80486 */
1426  #endif
1427
1428  #ifndef EM_MIPS_RS3_LE
1429    #define EM_MIPS_RS3_LE  10              /* MIPS */
1430  #endif
1431
1432  #ifndef EM_PPC64
1433    #define EM_PPC64        21              /* PowerPC64 */
1434  #endif
1435
1436  #ifndef EM_S390
1437    #define EM_S390         22              /* IBM System/390 */
1438  #endif
1439
1440  #ifndef EM_IA_64
1441    #define EM_IA_64        50              /* HP/Intel IA-64 */
1442  #endif
1443
1444  #ifndef EM_X86_64
1445    #define EM_X86_64       62              /* AMD x86-64 */
1446  #endif
1447
1448  static const arch_t arch_array[]={
1449    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1450    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1451    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1452    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1453    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1454    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1455    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1456    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1457    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1458    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1459    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1460    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1461    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1462    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1463    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1464    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1465  };
1466
1467  #if  (defined IA32)
1468  static  Elf32_Half running_arch_code=EM_386;
1469  #elif   (defined AMD64)
1470  static  Elf32_Half running_arch_code=EM_X86_64;
1471  #elif  (defined IA64)
1472  static  Elf32_Half running_arch_code=EM_IA_64;
1473  #elif  (defined __sparc) && (defined _LP64)
1474  static  Elf32_Half running_arch_code=EM_SPARCV9;
1475  #elif  (defined __sparc) && (!defined _LP64)
1476  static  Elf32_Half running_arch_code=EM_SPARC;
1477  #elif  (defined __powerpc64__)
1478  static  Elf32_Half running_arch_code=EM_PPC64;
1479  #elif  (defined __powerpc__)
1480  static  Elf32_Half running_arch_code=EM_PPC;
1481  #elif  (defined ARM)
1482  static  Elf32_Half running_arch_code=EM_ARM;
1483  #elif  (defined S390)
1484  static  Elf32_Half running_arch_code=EM_S390;
1485  #elif  (defined ALPHA)
1486  static  Elf32_Half running_arch_code=EM_ALPHA;
1487  #elif  (defined MIPSEL)
1488  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1489  #elif  (defined PARISC)
1490  static  Elf32_Half running_arch_code=EM_PARISC;
1491  #elif  (defined MIPS)
1492  static  Elf32_Half running_arch_code=EM_MIPS;
1493  #elif  (defined M68K)
1494  static  Elf32_Half running_arch_code=EM_68K;
1495  #else
1496    #error Method os::dll_load requires that one of following is defined:\
1497         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1498  #endif
1499
1500  // Identify compatability class for VM's architecture and library's architecture
1501  // Obtain string descriptions for architectures
1502
1503  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1504  int running_arch_index=-1;
1505
1506  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1507    if (running_arch_code == arch_array[i].code) {
1508      running_arch_index    = i;
1509    }
1510    if (lib_arch.code == arch_array[i].code) {
1511      lib_arch.compat_class = arch_array[i].compat_class;
1512      lib_arch.name         = arch_array[i].name;
1513    }
1514  }
1515
1516  assert(running_arch_index != -1,
1517         "Didn't find running architecture code (running_arch_code) in arch_array");
1518  if (running_arch_index == -1) {
1519    // Even though running architecture detection failed
1520    // we may still continue with reporting dlerror() message
1521    return NULL;
1522  }
1523
1524  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1525    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1526    return NULL;
1527  }
1528
1529#ifndef S390
1530  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1531    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1532    return NULL;
1533  }
1534#endif // !S390
1535
1536  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1537    if (lib_arch.name!=NULL) {
1538      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1539                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1540                 lib_arch.name, arch_array[running_arch_index].name);
1541    } else {
1542      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1543                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1544                 lib_arch.code,
1545                 arch_array[running_arch_index].name);
1546    }
1547  }
1548
1549  return NULL;
1550#endif // STATIC_BUILD
1551}
1552#endif // !__APPLE__
1553
1554void* os::get_default_process_handle() {
1555#ifdef __APPLE__
1556  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1557  // to avoid finding unexpected symbols on second (or later)
1558  // loads of a library.
1559  return (void*)::dlopen(NULL, RTLD_FIRST);
1560#else
1561  return (void*)::dlopen(NULL, RTLD_LAZY);
1562#endif
1563}
1564
1565// XXX: Do we need a lock around this as per Linux?
1566void* os::dll_lookup(void* handle, const char* name) {
1567  return dlsym(handle, name);
1568}
1569
1570int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1571  outputStream * out = (outputStream *) param;
1572  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1573  return 0;
1574}
1575
1576void os::print_dll_info(outputStream *st) {
1577  st->print_cr("Dynamic libraries:");
1578  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1579    st->print_cr("Error: Cannot print dynamic libraries.");
1580  }
1581}
1582
1583int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1584#ifdef RTLD_DI_LINKMAP
1585  Dl_info dli;
1586  void *handle;
1587  Link_map *map;
1588  Link_map *p;
1589
1590  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1591      dli.dli_fname == NULL) {
1592    return 1;
1593  }
1594  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1595  if (handle == NULL) {
1596    return 1;
1597  }
1598  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1599  if (map == NULL) {
1600    dlclose(handle);
1601    return 1;
1602  }
1603
1604  while (map->l_prev != NULL)
1605    map = map->l_prev;
1606
1607  while (map != NULL) {
1608    // Value for top_address is returned as 0 since we don't have any information about module size
1609    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1610      dlclose(handle);
1611      return 1;
1612    }
1613    map = map->l_next;
1614  }
1615
1616  dlclose(handle);
1617#elif defined(__APPLE__)
1618  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1619    // Value for top_address is returned as 0 since we don't have any information about module size
1620    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1621      return 1;
1622    }
1623  }
1624  return 0;
1625#else
1626  return 1;
1627#endif
1628}
1629
1630void os::get_summary_os_info(char* buf, size_t buflen) {
1631  // These buffers are small because we want this to be brief
1632  // and not use a lot of stack while generating the hs_err file.
1633  char os[100];
1634  size_t size = sizeof(os);
1635  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1636  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1637#ifdef __APPLE__
1638      strncpy(os, "Darwin", sizeof(os));
1639#elif __OpenBSD__
1640      strncpy(os, "OpenBSD", sizeof(os));
1641#else
1642      strncpy(os, "BSD", sizeof(os));
1643#endif
1644  }
1645
1646  char release[100];
1647  size = sizeof(release);
1648  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1649  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1650      // if error, leave blank
1651      strncpy(release, "", sizeof(release));
1652  }
1653  snprintf(buf, buflen, "%s %s", os, release);
1654}
1655
1656void os::print_os_info_brief(outputStream* st) {
1657  os::Posix::print_uname_info(st);
1658}
1659
1660void os::print_os_info(outputStream* st) {
1661  st->print("OS:");
1662
1663  os::Posix::print_uname_info(st);
1664
1665  os::Posix::print_rlimit_info(st);
1666
1667  os::Posix::print_load_average(st);
1668}
1669
1670void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1671  // Nothing to do for now.
1672}
1673
1674void os::get_summary_cpu_info(char* buf, size_t buflen) {
1675  unsigned int mhz;
1676  size_t size = sizeof(mhz);
1677  int mib[] = { CTL_HW, HW_CPU_FREQ };
1678  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1679    mhz = 1;  // looks like an error but can be divided by
1680  } else {
1681    mhz /= 1000000;  // reported in millions
1682  }
1683
1684  char model[100];
1685  size = sizeof(model);
1686  int mib_model[] = { CTL_HW, HW_MODEL };
1687  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1688    strncpy(model, cpu_arch, sizeof(model));
1689  }
1690
1691  char machine[100];
1692  size = sizeof(machine);
1693  int mib_machine[] = { CTL_HW, HW_MACHINE };
1694  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1695      strncpy(machine, "", sizeof(machine));
1696  }
1697
1698  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1699}
1700
1701void os::print_memory_info(outputStream* st) {
1702
1703  st->print("Memory:");
1704  st->print(" %dk page", os::vm_page_size()>>10);
1705
1706  st->print(", physical " UINT64_FORMAT "k",
1707            os::physical_memory() >> 10);
1708  st->print("(" UINT64_FORMAT "k free)",
1709            os::available_memory() >> 10);
1710  st->cr();
1711}
1712
1713void os::print_siginfo(outputStream* st, void* siginfo) {
1714  const siginfo_t* si = (const siginfo_t*)siginfo;
1715
1716  os::Posix::print_siginfo_brief(st, si);
1717
1718  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1719      UseSharedSpaces) {
1720    FileMapInfo* mapinfo = FileMapInfo::current_info();
1721    if (mapinfo->is_in_shared_space(si->si_addr)) {
1722      st->print("\n\nError accessing class data sharing archive."   \
1723                " Mapped file inaccessible during execution, "      \
1724                " possible disk/network problem.");
1725    }
1726  }
1727  st->cr();
1728}
1729
1730
1731static void print_signal_handler(outputStream* st, int sig,
1732                                 char* buf, size_t buflen);
1733
1734void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1735  st->print_cr("Signal Handlers:");
1736  print_signal_handler(st, SIGSEGV, buf, buflen);
1737  print_signal_handler(st, SIGBUS , buf, buflen);
1738  print_signal_handler(st, SIGFPE , buf, buflen);
1739  print_signal_handler(st, SIGPIPE, buf, buflen);
1740  print_signal_handler(st, SIGXFSZ, buf, buflen);
1741  print_signal_handler(st, SIGILL , buf, buflen);
1742  print_signal_handler(st, SR_signum, buf, buflen);
1743  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1744  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1745  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1746  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1747}
1748
1749static char saved_jvm_path[MAXPATHLEN] = {0};
1750
1751// Find the full path to the current module, libjvm
1752void os::jvm_path(char *buf, jint buflen) {
1753  // Error checking.
1754  if (buflen < MAXPATHLEN) {
1755    assert(false, "must use a large-enough buffer");
1756    buf[0] = '\0';
1757    return;
1758  }
1759  // Lazy resolve the path to current module.
1760  if (saved_jvm_path[0] != 0) {
1761    strcpy(buf, saved_jvm_path);
1762    return;
1763  }
1764
1765  char dli_fname[MAXPATHLEN];
1766  bool ret = dll_address_to_library_name(
1767                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1768                                         dli_fname, sizeof(dli_fname), NULL);
1769  assert(ret, "cannot locate libjvm");
1770  char *rp = NULL;
1771  if (ret && dli_fname[0] != '\0') {
1772    rp = realpath(dli_fname, buf);
1773  }
1774  if (rp == NULL) {
1775    return;
1776  }
1777
1778  if (Arguments::sun_java_launcher_is_altjvm()) {
1779    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1780    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1781    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1782    // appears at the right place in the string, then assume we are
1783    // installed in a JDK and we're done. Otherwise, check for a
1784    // JAVA_HOME environment variable and construct a path to the JVM
1785    // being overridden.
1786
1787    const char *p = buf + strlen(buf) - 1;
1788    for (int count = 0; p > buf && count < 5; ++count) {
1789      for (--p; p > buf && *p != '/'; --p)
1790        /* empty */ ;
1791    }
1792
1793    if (strncmp(p, "/jre/lib/", 9) != 0) {
1794      // Look for JAVA_HOME in the environment.
1795      char* java_home_var = ::getenv("JAVA_HOME");
1796      if (java_home_var != NULL && java_home_var[0] != 0) {
1797        char* jrelib_p;
1798        int len;
1799
1800        // Check the current module name "libjvm"
1801        p = strrchr(buf, '/');
1802        assert(strstr(p, "/libjvm") == p, "invalid library name");
1803
1804        rp = realpath(java_home_var, buf);
1805        if (rp == NULL) {
1806          return;
1807        }
1808
1809        // determine if this is a legacy image or modules image
1810        // modules image doesn't have "jre" subdirectory
1811        len = strlen(buf);
1812        assert(len < buflen, "Ran out of buffer space");
1813        jrelib_p = buf + len;
1814
1815        // Add the appropriate library subdir
1816        snprintf(jrelib_p, buflen-len, "/jre/lib");
1817        if (0 != access(buf, F_OK)) {
1818          snprintf(jrelib_p, buflen-len, "/lib");
1819        }
1820
1821        // Add the appropriate client or server subdir
1822        len = strlen(buf);
1823        jrelib_p = buf + len;
1824        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1825        if (0 != access(buf, F_OK)) {
1826          snprintf(jrelib_p, buflen-len, "%s", "");
1827        }
1828
1829        // If the path exists within JAVA_HOME, add the JVM library name
1830        // to complete the path to JVM being overridden.  Otherwise fallback
1831        // to the path to the current library.
1832        if (0 == access(buf, F_OK)) {
1833          // Use current module name "libjvm"
1834          len = strlen(buf);
1835          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1836        } else {
1837          // Fall back to path of current library
1838          rp = realpath(dli_fname, buf);
1839          if (rp == NULL) {
1840            return;
1841          }
1842        }
1843      }
1844    }
1845  }
1846
1847  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1848  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1849}
1850
1851void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1852  // no prefix required, not even "_"
1853}
1854
1855void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1856  // no suffix required
1857}
1858
1859////////////////////////////////////////////////////////////////////////////////
1860// sun.misc.Signal support
1861
1862static volatile jint sigint_count = 0;
1863
1864static void UserHandler(int sig, void *siginfo, void *context) {
1865  // 4511530 - sem_post is serialized and handled by the manager thread. When
1866  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1867  // don't want to flood the manager thread with sem_post requests.
1868  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1869    return;
1870  }
1871
1872  // Ctrl-C is pressed during error reporting, likely because the error
1873  // handler fails to abort. Let VM die immediately.
1874  if (sig == SIGINT && is_error_reported()) {
1875    os::die();
1876  }
1877
1878  os::signal_notify(sig);
1879}
1880
1881void* os::user_handler() {
1882  return CAST_FROM_FN_PTR(void*, UserHandler);
1883}
1884
1885extern "C" {
1886  typedef void (*sa_handler_t)(int);
1887  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1888}
1889
1890void* os::signal(int signal_number, void* handler) {
1891  struct sigaction sigAct, oldSigAct;
1892
1893  sigfillset(&(sigAct.sa_mask));
1894  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1895  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1896
1897  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1898    // -1 means registration failed
1899    return (void *)-1;
1900  }
1901
1902  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1903}
1904
1905void os::signal_raise(int signal_number) {
1906  ::raise(signal_number);
1907}
1908
1909// The following code is moved from os.cpp for making this
1910// code platform specific, which it is by its very nature.
1911
1912// Will be modified when max signal is changed to be dynamic
1913int os::sigexitnum_pd() {
1914  return NSIG;
1915}
1916
1917// a counter for each possible signal value
1918static volatile jint pending_signals[NSIG+1] = { 0 };
1919
1920// Bsd(POSIX) specific hand shaking semaphore.
1921#ifdef __APPLE__
1922typedef semaphore_t os_semaphore_t;
1923
1924  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1925  #define SEM_WAIT(sem)           semaphore_wait(sem)
1926  #define SEM_POST(sem)           semaphore_signal(sem)
1927  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1928#else
1929typedef sem_t os_semaphore_t;
1930
1931  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1932  #define SEM_WAIT(sem)           sem_wait(&sem)
1933  #define SEM_POST(sem)           sem_post(&sem)
1934  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1935#endif
1936
1937#ifdef __APPLE__
1938// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1939
1940static const char* sem_init_strerror(kern_return_t value) {
1941  switch (value) {
1942    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1943    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1944    default:                     return "Unknown";
1945  }
1946}
1947
1948OSXSemaphore::OSXSemaphore(uint value) {
1949  kern_return_t ret = SEM_INIT(_semaphore, value);
1950
1951  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1952}
1953
1954OSXSemaphore::~OSXSemaphore() {
1955  SEM_DESTROY(_semaphore);
1956}
1957
1958void OSXSemaphore::signal(uint count) {
1959  for (uint i = 0; i < count; i++) {
1960    kern_return_t ret = SEM_POST(_semaphore);
1961
1962    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1963  }
1964}
1965
1966void OSXSemaphore::wait() {
1967  kern_return_t ret;
1968  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1969    // Semaphore was interrupted. Retry.
1970  }
1971  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1972}
1973
1974jlong OSXSemaphore::currenttime() {
1975  struct timeval tv;
1976  gettimeofday(&tv, NULL);
1977  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1978}
1979
1980bool OSXSemaphore::trywait() {
1981  return timedwait(0, 0);
1982}
1983
1984bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1985  kern_return_t kr = KERN_ABORTED;
1986  mach_timespec_t waitspec;
1987  waitspec.tv_sec = sec;
1988  waitspec.tv_nsec = nsec;
1989
1990  jlong starttime = currenttime();
1991
1992  kr = semaphore_timedwait(_semaphore, waitspec);
1993  while (kr == KERN_ABORTED) {
1994    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1995
1996    jlong current = currenttime();
1997    jlong passedtime = current - starttime;
1998
1999    if (passedtime >= totalwait) {
2000      waitspec.tv_sec = 0;
2001      waitspec.tv_nsec = 0;
2002    } else {
2003      jlong waittime = totalwait - (current - starttime);
2004      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2005      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2006    }
2007
2008    kr = semaphore_timedwait(_semaphore, waitspec);
2009  }
2010
2011  return kr == KERN_SUCCESS;
2012}
2013
2014#else
2015// Use POSIX implementation of semaphores.
2016
2017struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2018  struct timespec ts;
2019  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2020
2021  return ts;
2022}
2023
2024#endif // __APPLE__
2025
2026static os_semaphore_t sig_sem;
2027
2028#ifdef __APPLE__
2029static OSXSemaphore sr_semaphore;
2030#else
2031static PosixSemaphore sr_semaphore;
2032#endif
2033
2034void os::signal_init_pd() {
2035  // Initialize signal structures
2036  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2037
2038  // Initialize signal semaphore
2039  ::SEM_INIT(sig_sem, 0);
2040}
2041
2042void os::signal_notify(int sig) {
2043  Atomic::inc(&pending_signals[sig]);
2044  ::SEM_POST(sig_sem);
2045}
2046
2047static int check_pending_signals(bool wait) {
2048  Atomic::store(0, &sigint_count);
2049  for (;;) {
2050    for (int i = 0; i < NSIG + 1; i++) {
2051      jint n = pending_signals[i];
2052      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2053        return i;
2054      }
2055    }
2056    if (!wait) {
2057      return -1;
2058    }
2059    JavaThread *thread = JavaThread::current();
2060    ThreadBlockInVM tbivm(thread);
2061
2062    bool threadIsSuspended;
2063    do {
2064      thread->set_suspend_equivalent();
2065      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2066      ::SEM_WAIT(sig_sem);
2067
2068      // were we externally suspended while we were waiting?
2069      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2070      if (threadIsSuspended) {
2071        // The semaphore has been incremented, but while we were waiting
2072        // another thread suspended us. We don't want to continue running
2073        // while suspended because that would surprise the thread that
2074        // suspended us.
2075        ::SEM_POST(sig_sem);
2076
2077        thread->java_suspend_self();
2078      }
2079    } while (threadIsSuspended);
2080  }
2081}
2082
2083int os::signal_lookup() {
2084  return check_pending_signals(false);
2085}
2086
2087int os::signal_wait() {
2088  return check_pending_signals(true);
2089}
2090
2091////////////////////////////////////////////////////////////////////////////////
2092// Virtual Memory
2093
2094int os::vm_page_size() {
2095  // Seems redundant as all get out
2096  assert(os::Bsd::page_size() != -1, "must call os::init");
2097  return os::Bsd::page_size();
2098}
2099
2100// Solaris allocates memory by pages.
2101int os::vm_allocation_granularity() {
2102  assert(os::Bsd::page_size() != -1, "must call os::init");
2103  return os::Bsd::page_size();
2104}
2105
2106// Rationale behind this function:
2107//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2108//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2109//  samples for JITted code. Here we create private executable mapping over the code cache
2110//  and then we can use standard (well, almost, as mapping can change) way to provide
2111//  info for the reporting script by storing timestamp and location of symbol
2112void bsd_wrap_code(char* base, size_t size) {
2113  static volatile jint cnt = 0;
2114
2115  if (!UseOprofile) {
2116    return;
2117  }
2118
2119  char buf[PATH_MAX + 1];
2120  int num = Atomic::add(1, &cnt);
2121
2122  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2123           os::get_temp_directory(), os::current_process_id(), num);
2124  unlink(buf);
2125
2126  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2127
2128  if (fd != -1) {
2129    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2130    if (rv != (off_t)-1) {
2131      if (::write(fd, "", 1) == 1) {
2132        mmap(base, size,
2133             PROT_READ|PROT_WRITE|PROT_EXEC,
2134             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2135      }
2136    }
2137    ::close(fd);
2138    unlink(buf);
2139  }
2140}
2141
2142static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2143                                    int err) {
2144  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2145          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2146          strerror(err), err);
2147}
2148
2149// NOTE: Bsd kernel does not really reserve the pages for us.
2150//       All it does is to check if there are enough free pages
2151//       left at the time of mmap(). This could be a potential
2152//       problem.
2153bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2154  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2155#ifdef __OpenBSD__
2156  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2157  if (::mprotect(addr, size, prot) == 0) {
2158    return true;
2159  }
2160#else
2161  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2162                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2163  if (res != (uintptr_t) MAP_FAILED) {
2164    return true;
2165  }
2166#endif
2167
2168  // Warn about any commit errors we see in non-product builds just
2169  // in case mmap() doesn't work as described on the man page.
2170  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2171
2172  return false;
2173}
2174
2175bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2176                          bool exec) {
2177  // alignment_hint is ignored on this OS
2178  return pd_commit_memory(addr, size, exec);
2179}
2180
2181void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2182                                  const char* mesg) {
2183  assert(mesg != NULL, "mesg must be specified");
2184  if (!pd_commit_memory(addr, size, exec)) {
2185    // add extra info in product mode for vm_exit_out_of_memory():
2186    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2187    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2188  }
2189}
2190
2191void os::pd_commit_memory_or_exit(char* addr, size_t size,
2192                                  size_t alignment_hint, bool exec,
2193                                  const char* mesg) {
2194  // alignment_hint is ignored on this OS
2195  pd_commit_memory_or_exit(addr, size, exec, mesg);
2196}
2197
2198void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2199}
2200
2201void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2202  ::madvise(addr, bytes, MADV_DONTNEED);
2203}
2204
2205void os::numa_make_global(char *addr, size_t bytes) {
2206}
2207
2208void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2209}
2210
2211bool os::numa_topology_changed()   { return false; }
2212
2213size_t os::numa_get_groups_num() {
2214  return 1;
2215}
2216
2217int os::numa_get_group_id() {
2218  return 0;
2219}
2220
2221size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2222  if (size > 0) {
2223    ids[0] = 0;
2224    return 1;
2225  }
2226  return 0;
2227}
2228
2229bool os::get_page_info(char *start, page_info* info) {
2230  return false;
2231}
2232
2233char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2234  return end;
2235}
2236
2237
2238bool os::pd_uncommit_memory(char* addr, size_t size) {
2239#ifdef __OpenBSD__
2240  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2241  return ::mprotect(addr, size, PROT_NONE) == 0;
2242#else
2243  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2244                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2245  return res  != (uintptr_t) MAP_FAILED;
2246#endif
2247}
2248
2249bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2250  return os::commit_memory(addr, size, !ExecMem);
2251}
2252
2253// If this is a growable mapping, remove the guard pages entirely by
2254// munmap()ping them.  If not, just call uncommit_memory().
2255bool os::remove_stack_guard_pages(char* addr, size_t size) {
2256  return os::uncommit_memory(addr, size);
2257}
2258
2259// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2260// at 'requested_addr'. If there are existing memory mappings at the same
2261// location, however, they will be overwritten. If 'fixed' is false,
2262// 'requested_addr' is only treated as a hint, the return value may or
2263// may not start from the requested address. Unlike Bsd mmap(), this
2264// function returns NULL to indicate failure.
2265static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2266  char * addr;
2267  int flags;
2268
2269  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2270  if (fixed) {
2271    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2272    flags |= MAP_FIXED;
2273  }
2274
2275  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2276  // touch an uncommitted page. Otherwise, the read/write might
2277  // succeed if we have enough swap space to back the physical page.
2278  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2279                       flags, -1, 0);
2280
2281  return addr == MAP_FAILED ? NULL : addr;
2282}
2283
2284static int anon_munmap(char * addr, size_t size) {
2285  return ::munmap(addr, size) == 0;
2286}
2287
2288char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2289                            size_t alignment_hint) {
2290  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2291}
2292
2293bool os::pd_release_memory(char* addr, size_t size) {
2294  return anon_munmap(addr, size);
2295}
2296
2297static bool bsd_mprotect(char* addr, size_t size, int prot) {
2298  // Bsd wants the mprotect address argument to be page aligned.
2299  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2300
2301  // According to SUSv3, mprotect() should only be used with mappings
2302  // established by mmap(), and mmap() always maps whole pages. Unaligned
2303  // 'addr' likely indicates problem in the VM (e.g. trying to change
2304  // protection of malloc'ed or statically allocated memory). Check the
2305  // caller if you hit this assert.
2306  assert(addr == bottom, "sanity check");
2307
2308  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2309  return ::mprotect(bottom, size, prot) == 0;
2310}
2311
2312// Set protections specified
2313bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2314                        bool is_committed) {
2315  unsigned int p = 0;
2316  switch (prot) {
2317  case MEM_PROT_NONE: p = PROT_NONE; break;
2318  case MEM_PROT_READ: p = PROT_READ; break;
2319  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2320  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2321  default:
2322    ShouldNotReachHere();
2323  }
2324  // is_committed is unused.
2325  return bsd_mprotect(addr, bytes, p);
2326}
2327
2328bool os::guard_memory(char* addr, size_t size) {
2329  return bsd_mprotect(addr, size, PROT_NONE);
2330}
2331
2332bool os::unguard_memory(char* addr, size_t size) {
2333  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2334}
2335
2336bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2337  return false;
2338}
2339
2340// Large page support
2341
2342static size_t _large_page_size = 0;
2343
2344void os::large_page_init() {
2345}
2346
2347
2348char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2349  fatal("This code is not used or maintained.");
2350
2351  // "exec" is passed in but not used.  Creating the shared image for
2352  // the code cache doesn't have an SHM_X executable permission to check.
2353  assert(UseLargePages && UseSHM, "only for SHM large pages");
2354
2355  key_t key = IPC_PRIVATE;
2356  char *addr;
2357
2358  bool warn_on_failure = UseLargePages &&
2359                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2360                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2361
2362  // Create a large shared memory region to attach to based on size.
2363  // Currently, size is the total size of the heap
2364  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2365  if (shmid == -1) {
2366    // Possible reasons for shmget failure:
2367    // 1. shmmax is too small for Java heap.
2368    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2369    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2370    // 2. not enough large page memory.
2371    //    > check available large pages: cat /proc/meminfo
2372    //    > increase amount of large pages:
2373    //          echo new_value > /proc/sys/vm/nr_hugepages
2374    //      Note 1: different Bsd may use different name for this property,
2375    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2376    //      Note 2: it's possible there's enough physical memory available but
2377    //            they are so fragmented after a long run that they can't
2378    //            coalesce into large pages. Try to reserve large pages when
2379    //            the system is still "fresh".
2380    if (warn_on_failure) {
2381      warning("Failed to reserve shared memory (errno = %d).", errno);
2382    }
2383    return NULL;
2384  }
2385
2386  // attach to the region
2387  addr = (char*)shmat(shmid, req_addr, 0);
2388  int err = errno;
2389
2390  // Remove shmid. If shmat() is successful, the actual shared memory segment
2391  // will be deleted when it's detached by shmdt() or when the process
2392  // terminates. If shmat() is not successful this will remove the shared
2393  // segment immediately.
2394  shmctl(shmid, IPC_RMID, NULL);
2395
2396  if ((intptr_t)addr == -1) {
2397    if (warn_on_failure) {
2398      warning("Failed to attach shared memory (errno = %d).", err);
2399    }
2400    return NULL;
2401  }
2402
2403  // The memory is committed
2404  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2405
2406  return addr;
2407}
2408
2409bool os::release_memory_special(char* base, size_t bytes) {
2410  if (MemTracker::tracking_level() > NMT_minimal) {
2411    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2412    // detaching the SHM segment will also delete it, see reserve_memory_special()
2413    int rslt = shmdt(base);
2414    if (rslt == 0) {
2415      tkr.record((address)base, bytes);
2416      return true;
2417    } else {
2418      return false;
2419    }
2420  } else {
2421    return shmdt(base) == 0;
2422  }
2423}
2424
2425size_t os::large_page_size() {
2426  return _large_page_size;
2427}
2428
2429// HugeTLBFS allows application to commit large page memory on demand;
2430// with SysV SHM the entire memory region must be allocated as shared
2431// memory.
2432bool os::can_commit_large_page_memory() {
2433  return UseHugeTLBFS;
2434}
2435
2436bool os::can_execute_large_page_memory() {
2437  return UseHugeTLBFS;
2438}
2439
2440// Reserve memory at an arbitrary address, only if that area is
2441// available (and not reserved for something else).
2442
2443char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2444  const int max_tries = 10;
2445  char* base[max_tries];
2446  size_t size[max_tries];
2447  const size_t gap = 0x000000;
2448
2449  // Assert only that the size is a multiple of the page size, since
2450  // that's all that mmap requires, and since that's all we really know
2451  // about at this low abstraction level.  If we need higher alignment,
2452  // we can either pass an alignment to this method or verify alignment
2453  // in one of the methods further up the call chain.  See bug 5044738.
2454  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2455
2456  // Repeatedly allocate blocks until the block is allocated at the
2457  // right spot.
2458
2459  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2460  // if kernel honors the hint then we can return immediately.
2461  char * addr = anon_mmap(requested_addr, bytes, false);
2462  if (addr == requested_addr) {
2463    return requested_addr;
2464  }
2465
2466  if (addr != NULL) {
2467    // mmap() is successful but it fails to reserve at the requested address
2468    anon_munmap(addr, bytes);
2469  }
2470
2471  int i;
2472  for (i = 0; i < max_tries; ++i) {
2473    base[i] = reserve_memory(bytes);
2474
2475    if (base[i] != NULL) {
2476      // Is this the block we wanted?
2477      if (base[i] == requested_addr) {
2478        size[i] = bytes;
2479        break;
2480      }
2481
2482      // Does this overlap the block we wanted? Give back the overlapped
2483      // parts and try again.
2484
2485      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2486      if (top_overlap >= 0 && top_overlap < bytes) {
2487        unmap_memory(base[i], top_overlap);
2488        base[i] += top_overlap;
2489        size[i] = bytes - top_overlap;
2490      } else {
2491        size_t bottom_overlap = base[i] + bytes - requested_addr;
2492        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2493          unmap_memory(requested_addr, bottom_overlap);
2494          size[i] = bytes - bottom_overlap;
2495        } else {
2496          size[i] = bytes;
2497        }
2498      }
2499    }
2500  }
2501
2502  // Give back the unused reserved pieces.
2503
2504  for (int j = 0; j < i; ++j) {
2505    if (base[j] != NULL) {
2506      unmap_memory(base[j], size[j]);
2507    }
2508  }
2509
2510  if (i < max_tries) {
2511    return requested_addr;
2512  } else {
2513    return NULL;
2514  }
2515}
2516
2517size_t os::read(int fd, void *buf, unsigned int nBytes) {
2518  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2519}
2520
2521size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2522  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2523}
2524
2525void os::naked_short_sleep(jlong ms) {
2526  struct timespec req;
2527
2528  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2529  req.tv_sec = 0;
2530  if (ms > 0) {
2531    req.tv_nsec = (ms % 1000) * 1000000;
2532  } else {
2533    req.tv_nsec = 1;
2534  }
2535
2536  nanosleep(&req, NULL);
2537
2538  return;
2539}
2540
2541// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2542void os::infinite_sleep() {
2543  while (true) {    // sleep forever ...
2544    ::sleep(100);   // ... 100 seconds at a time
2545  }
2546}
2547
2548// Used to convert frequent JVM_Yield() to nops
2549bool os::dont_yield() {
2550  return DontYieldALot;
2551}
2552
2553void os::naked_yield() {
2554  sched_yield();
2555}
2556
2557////////////////////////////////////////////////////////////////////////////////
2558// thread priority support
2559
2560// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2561// only supports dynamic priority, static priority must be zero. For real-time
2562// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2563// However, for large multi-threaded applications, SCHED_RR is not only slower
2564// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2565// of 5 runs - Sep 2005).
2566//
2567// The following code actually changes the niceness of kernel-thread/LWP. It
2568// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2569// not the entire user process, and user level threads are 1:1 mapped to kernel
2570// threads. It has always been the case, but could change in the future. For
2571// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2572// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2573
2574#if !defined(__APPLE__)
2575int os::java_to_os_priority[CriticalPriority + 1] = {
2576  19,              // 0 Entry should never be used
2577
2578   0,              // 1 MinPriority
2579   3,              // 2
2580   6,              // 3
2581
2582  10,              // 4
2583  15,              // 5 NormPriority
2584  18,              // 6
2585
2586  21,              // 7
2587  25,              // 8
2588  28,              // 9 NearMaxPriority
2589
2590  31,              // 10 MaxPriority
2591
2592  31               // 11 CriticalPriority
2593};
2594#else
2595// Using Mach high-level priority assignments
2596int os::java_to_os_priority[CriticalPriority + 1] = {
2597   0,              // 0 Entry should never be used (MINPRI_USER)
2598
2599  27,              // 1 MinPriority
2600  28,              // 2
2601  29,              // 3
2602
2603  30,              // 4
2604  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2605  32,              // 6
2606
2607  33,              // 7
2608  34,              // 8
2609  35,              // 9 NearMaxPriority
2610
2611  36,              // 10 MaxPriority
2612
2613  36               // 11 CriticalPriority
2614};
2615#endif
2616
2617static int prio_init() {
2618  if (ThreadPriorityPolicy == 1) {
2619    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2620    // if effective uid is not root. Perhaps, a more elegant way of doing
2621    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2622    if (geteuid() != 0) {
2623      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2624        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2625      }
2626      ThreadPriorityPolicy = 0;
2627    }
2628  }
2629  if (UseCriticalJavaThreadPriority) {
2630    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2631  }
2632  return 0;
2633}
2634
2635OSReturn os::set_native_priority(Thread* thread, int newpri) {
2636  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2637
2638#ifdef __OpenBSD__
2639  // OpenBSD pthread_setprio starves low priority threads
2640  return OS_OK;
2641#elif defined(__FreeBSD__)
2642  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2643#elif defined(__APPLE__) || defined(__NetBSD__)
2644  struct sched_param sp;
2645  int policy;
2646  pthread_t self = pthread_self();
2647
2648  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2649    return OS_ERR;
2650  }
2651
2652  sp.sched_priority = newpri;
2653  if (pthread_setschedparam(self, policy, &sp) != 0) {
2654    return OS_ERR;
2655  }
2656
2657  return OS_OK;
2658#else
2659  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2660  return (ret == 0) ? OS_OK : OS_ERR;
2661#endif
2662}
2663
2664OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2665  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2666    *priority_ptr = java_to_os_priority[NormPriority];
2667    return OS_OK;
2668  }
2669
2670  errno = 0;
2671#if defined(__OpenBSD__) || defined(__FreeBSD__)
2672  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2673#elif defined(__APPLE__) || defined(__NetBSD__)
2674  int policy;
2675  struct sched_param sp;
2676
2677  pthread_getschedparam(pthread_self(), &policy, &sp);
2678  *priority_ptr = sp.sched_priority;
2679#else
2680  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2681#endif
2682  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2683}
2684
2685// Hint to the underlying OS that a task switch would not be good.
2686// Void return because it's a hint and can fail.
2687void os::hint_no_preempt() {}
2688
2689////////////////////////////////////////////////////////////////////////////////
2690// suspend/resume support
2691
2692//  the low-level signal-based suspend/resume support is a remnant from the
2693//  old VM-suspension that used to be for java-suspension, safepoints etc,
2694//  within hotspot. Now there is a single use-case for this:
2695//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2696//      that runs in the watcher thread.
2697//  The remaining code is greatly simplified from the more general suspension
2698//  code that used to be used.
2699//
2700//  The protocol is quite simple:
2701//  - suspend:
2702//      - sends a signal to the target thread
2703//      - polls the suspend state of the osthread using a yield loop
2704//      - target thread signal handler (SR_handler) sets suspend state
2705//        and blocks in sigsuspend until continued
2706//  - resume:
2707//      - sets target osthread state to continue
2708//      - sends signal to end the sigsuspend loop in the SR_handler
2709//
2710//  Note that the SR_lock plays no role in this suspend/resume protocol.
2711
2712static void resume_clear_context(OSThread *osthread) {
2713  osthread->set_ucontext(NULL);
2714  osthread->set_siginfo(NULL);
2715}
2716
2717static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2718  osthread->set_ucontext(context);
2719  osthread->set_siginfo(siginfo);
2720}
2721
2722// Handler function invoked when a thread's execution is suspended or
2723// resumed. We have to be careful that only async-safe functions are
2724// called here (Note: most pthread functions are not async safe and
2725// should be avoided.)
2726//
2727// Note: sigwait() is a more natural fit than sigsuspend() from an
2728// interface point of view, but sigwait() prevents the signal hander
2729// from being run. libpthread would get very confused by not having
2730// its signal handlers run and prevents sigwait()'s use with the
2731// mutex granting granting signal.
2732//
2733// Currently only ever called on the VMThread or JavaThread
2734//
2735static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2736  // Save and restore errno to avoid confusing native code with EINTR
2737  // after sigsuspend.
2738  int old_errno = errno;
2739
2740  Thread* thread = Thread::current();
2741  OSThread* osthread = thread->osthread();
2742  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2743
2744  os::SuspendResume::State current = osthread->sr.state();
2745  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2746    suspend_save_context(osthread, siginfo, context);
2747
2748    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2749    os::SuspendResume::State state = osthread->sr.suspended();
2750    if (state == os::SuspendResume::SR_SUSPENDED) {
2751      sigset_t suspend_set;  // signals for sigsuspend()
2752
2753      // get current set of blocked signals and unblock resume signal
2754      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2755      sigdelset(&suspend_set, SR_signum);
2756
2757      sr_semaphore.signal();
2758      // wait here until we are resumed
2759      while (1) {
2760        sigsuspend(&suspend_set);
2761
2762        os::SuspendResume::State result = osthread->sr.running();
2763        if (result == os::SuspendResume::SR_RUNNING) {
2764          sr_semaphore.signal();
2765          break;
2766        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2767          ShouldNotReachHere();
2768        }
2769      }
2770
2771    } else if (state == os::SuspendResume::SR_RUNNING) {
2772      // request was cancelled, continue
2773    } else {
2774      ShouldNotReachHere();
2775    }
2776
2777    resume_clear_context(osthread);
2778  } else if (current == os::SuspendResume::SR_RUNNING) {
2779    // request was cancelled, continue
2780  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2781    // ignore
2782  } else {
2783    // ignore
2784  }
2785
2786  errno = old_errno;
2787}
2788
2789
2790static int SR_initialize() {
2791  struct sigaction act;
2792  char *s;
2793  // Get signal number to use for suspend/resume
2794  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2795    int sig = ::strtol(s, 0, 10);
2796    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2797        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2798      SR_signum = sig;
2799    } else {
2800      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2801              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2802    }
2803  }
2804
2805  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2806         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2807
2808  sigemptyset(&SR_sigset);
2809  sigaddset(&SR_sigset, SR_signum);
2810
2811  // Set up signal handler for suspend/resume
2812  act.sa_flags = SA_RESTART|SA_SIGINFO;
2813  act.sa_handler = (void (*)(int)) SR_handler;
2814
2815  // SR_signum is blocked by default.
2816  // 4528190 - We also need to block pthread restart signal (32 on all
2817  // supported Bsd platforms). Note that BsdThreads need to block
2818  // this signal for all threads to work properly. So we don't have
2819  // to use hard-coded signal number when setting up the mask.
2820  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2821
2822  if (sigaction(SR_signum, &act, 0) == -1) {
2823    return -1;
2824  }
2825
2826  // Save signal flag
2827  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2828  return 0;
2829}
2830
2831static int sr_notify(OSThread* osthread) {
2832  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2833  assert_status(status == 0, status, "pthread_kill");
2834  return status;
2835}
2836
2837// "Randomly" selected value for how long we want to spin
2838// before bailing out on suspending a thread, also how often
2839// we send a signal to a thread we want to resume
2840static const int RANDOMLY_LARGE_INTEGER = 1000000;
2841static const int RANDOMLY_LARGE_INTEGER2 = 100;
2842
2843// returns true on success and false on error - really an error is fatal
2844// but this seems the normal response to library errors
2845static bool do_suspend(OSThread* osthread) {
2846  assert(osthread->sr.is_running(), "thread should be running");
2847  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2848
2849  // mark as suspended and send signal
2850  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2851    // failed to switch, state wasn't running?
2852    ShouldNotReachHere();
2853    return false;
2854  }
2855
2856  if (sr_notify(osthread) != 0) {
2857    ShouldNotReachHere();
2858  }
2859
2860  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2861  while (true) {
2862    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2863      break;
2864    } else {
2865      // timeout
2866      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2867      if (cancelled == os::SuspendResume::SR_RUNNING) {
2868        return false;
2869      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2870        // make sure that we consume the signal on the semaphore as well
2871        sr_semaphore.wait();
2872        break;
2873      } else {
2874        ShouldNotReachHere();
2875        return false;
2876      }
2877    }
2878  }
2879
2880  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2881  return true;
2882}
2883
2884static void do_resume(OSThread* osthread) {
2885  assert(osthread->sr.is_suspended(), "thread should be suspended");
2886  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2887
2888  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2889    // failed to switch to WAKEUP_REQUEST
2890    ShouldNotReachHere();
2891    return;
2892  }
2893
2894  while (true) {
2895    if (sr_notify(osthread) == 0) {
2896      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2897        if (osthread->sr.is_running()) {
2898          return;
2899        }
2900      }
2901    } else {
2902      ShouldNotReachHere();
2903    }
2904  }
2905
2906  guarantee(osthread->sr.is_running(), "Must be running!");
2907}
2908
2909///////////////////////////////////////////////////////////////////////////////////
2910// signal handling (except suspend/resume)
2911
2912// This routine may be used by user applications as a "hook" to catch signals.
2913// The user-defined signal handler must pass unrecognized signals to this
2914// routine, and if it returns true (non-zero), then the signal handler must
2915// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2916// routine will never retun false (zero), but instead will execute a VM panic
2917// routine kill the process.
2918//
2919// If this routine returns false, it is OK to call it again.  This allows
2920// the user-defined signal handler to perform checks either before or after
2921// the VM performs its own checks.  Naturally, the user code would be making
2922// a serious error if it tried to handle an exception (such as a null check
2923// or breakpoint) that the VM was generating for its own correct operation.
2924//
2925// This routine may recognize any of the following kinds of signals:
2926//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2927// It should be consulted by handlers for any of those signals.
2928//
2929// The caller of this routine must pass in the three arguments supplied
2930// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2931// field of the structure passed to sigaction().  This routine assumes that
2932// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2933//
2934// Note that the VM will print warnings if it detects conflicting signal
2935// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2936//
2937extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2938                                               void* ucontext,
2939                                               int abort_if_unrecognized);
2940
2941void signalHandler(int sig, siginfo_t* info, void* uc) {
2942  assert(info != NULL && uc != NULL, "it must be old kernel");
2943  int orig_errno = errno;  // Preserve errno value over signal handler.
2944  JVM_handle_bsd_signal(sig, info, uc, true);
2945  errno = orig_errno;
2946}
2947
2948
2949// This boolean allows users to forward their own non-matching signals
2950// to JVM_handle_bsd_signal, harmlessly.
2951bool os::Bsd::signal_handlers_are_installed = false;
2952
2953// For signal-chaining
2954struct sigaction sigact[NSIG];
2955uint32_t sigs = 0;
2956#if (32 < NSIG-1)
2957#error "Not all signals can be encoded in sigs. Adapt its type!"
2958#endif
2959bool os::Bsd::libjsig_is_loaded = false;
2960typedef struct sigaction *(*get_signal_t)(int);
2961get_signal_t os::Bsd::get_signal_action = NULL;
2962
2963struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2964  struct sigaction *actp = NULL;
2965
2966  if (libjsig_is_loaded) {
2967    // Retrieve the old signal handler from libjsig
2968    actp = (*get_signal_action)(sig);
2969  }
2970  if (actp == NULL) {
2971    // Retrieve the preinstalled signal handler from jvm
2972    actp = get_preinstalled_handler(sig);
2973  }
2974
2975  return actp;
2976}
2977
2978static bool call_chained_handler(struct sigaction *actp, int sig,
2979                                 siginfo_t *siginfo, void *context) {
2980  // Call the old signal handler
2981  if (actp->sa_handler == SIG_DFL) {
2982    // It's more reasonable to let jvm treat it as an unexpected exception
2983    // instead of taking the default action.
2984    return false;
2985  } else if (actp->sa_handler != SIG_IGN) {
2986    if ((actp->sa_flags & SA_NODEFER) == 0) {
2987      // automaticlly block the signal
2988      sigaddset(&(actp->sa_mask), sig);
2989    }
2990
2991    sa_handler_t hand;
2992    sa_sigaction_t sa;
2993    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2994    // retrieve the chained handler
2995    if (siginfo_flag_set) {
2996      sa = actp->sa_sigaction;
2997    } else {
2998      hand = actp->sa_handler;
2999    }
3000
3001    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3002      actp->sa_handler = SIG_DFL;
3003    }
3004
3005    // try to honor the signal mask
3006    sigset_t oset;
3007    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3008
3009    // call into the chained handler
3010    if (siginfo_flag_set) {
3011      (*sa)(sig, siginfo, context);
3012    } else {
3013      (*hand)(sig);
3014    }
3015
3016    // restore the signal mask
3017    pthread_sigmask(SIG_SETMASK, &oset, 0);
3018  }
3019  // Tell jvm's signal handler the signal is taken care of.
3020  return true;
3021}
3022
3023bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3024  bool chained = false;
3025  // signal-chaining
3026  if (UseSignalChaining) {
3027    struct sigaction *actp = get_chained_signal_action(sig);
3028    if (actp != NULL) {
3029      chained = call_chained_handler(actp, sig, siginfo, context);
3030    }
3031  }
3032  return chained;
3033}
3034
3035struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3036  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3037    return &sigact[sig];
3038  }
3039  return NULL;
3040}
3041
3042void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3043  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3044  sigact[sig] = oldAct;
3045  sigs |= (uint32_t)1 << (sig-1);
3046}
3047
3048// for diagnostic
3049int sigflags[NSIG];
3050
3051int os::Bsd::get_our_sigflags(int sig) {
3052  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3053  return sigflags[sig];
3054}
3055
3056void os::Bsd::set_our_sigflags(int sig, int flags) {
3057  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3058  if (sig > 0 && sig < NSIG) {
3059    sigflags[sig] = flags;
3060  }
3061}
3062
3063void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3064  // Check for overwrite.
3065  struct sigaction oldAct;
3066  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3067
3068  void* oldhand = oldAct.sa_sigaction
3069                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3070                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3071  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3072      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3073      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3074    if (AllowUserSignalHandlers || !set_installed) {
3075      // Do not overwrite; user takes responsibility to forward to us.
3076      return;
3077    } else if (UseSignalChaining) {
3078      // save the old handler in jvm
3079      save_preinstalled_handler(sig, oldAct);
3080      // libjsig also interposes the sigaction() call below and saves the
3081      // old sigaction on it own.
3082    } else {
3083      fatal("Encountered unexpected pre-existing sigaction handler "
3084            "%#lx for signal %d.", (long)oldhand, sig);
3085    }
3086  }
3087
3088  struct sigaction sigAct;
3089  sigfillset(&(sigAct.sa_mask));
3090  sigAct.sa_handler = SIG_DFL;
3091  if (!set_installed) {
3092    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3093  } else {
3094    sigAct.sa_sigaction = signalHandler;
3095    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3096  }
3097#ifdef __APPLE__
3098  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3099  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3100  // if the signal handler declares it will handle it on alternate stack.
3101  // Notice we only declare we will handle it on alt stack, but we are not
3102  // actually going to use real alt stack - this is just a workaround.
3103  // Please see ux_exception.c, method catch_mach_exception_raise for details
3104  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3105  if (sig == SIGSEGV) {
3106    sigAct.sa_flags |= SA_ONSTACK;
3107  }
3108#endif
3109
3110  // Save flags, which are set by ours
3111  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3112  sigflags[sig] = sigAct.sa_flags;
3113
3114  int ret = sigaction(sig, &sigAct, &oldAct);
3115  assert(ret == 0, "check");
3116
3117  void* oldhand2  = oldAct.sa_sigaction
3118                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3119                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3120  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3121}
3122
3123// install signal handlers for signals that HotSpot needs to
3124// handle in order to support Java-level exception handling.
3125
3126void os::Bsd::install_signal_handlers() {
3127  if (!signal_handlers_are_installed) {
3128    signal_handlers_are_installed = true;
3129
3130    // signal-chaining
3131    typedef void (*signal_setting_t)();
3132    signal_setting_t begin_signal_setting = NULL;
3133    signal_setting_t end_signal_setting = NULL;
3134    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3135                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3136    if (begin_signal_setting != NULL) {
3137      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3138                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3139      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3140                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3141      libjsig_is_loaded = true;
3142      assert(UseSignalChaining, "should enable signal-chaining");
3143    }
3144    if (libjsig_is_loaded) {
3145      // Tell libjsig jvm is setting signal handlers
3146      (*begin_signal_setting)();
3147    }
3148
3149    set_signal_handler(SIGSEGV, true);
3150    set_signal_handler(SIGPIPE, true);
3151    set_signal_handler(SIGBUS, true);
3152    set_signal_handler(SIGILL, true);
3153    set_signal_handler(SIGFPE, true);
3154    set_signal_handler(SIGXFSZ, true);
3155
3156#if defined(__APPLE__)
3157    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3158    // signals caught and handled by the JVM. To work around this, we reset the mach task
3159    // signal handler that's placed on our process by CrashReporter. This disables
3160    // CrashReporter-based reporting.
3161    //
3162    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3163    // on caught fatal signals.
3164    //
3165    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3166    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3167    // exception handling, while leaving the standard BSD signal handlers functional.
3168    kern_return_t kr;
3169    kr = task_set_exception_ports(mach_task_self(),
3170                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3171                                  MACH_PORT_NULL,
3172                                  EXCEPTION_STATE_IDENTITY,
3173                                  MACHINE_THREAD_STATE);
3174
3175    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3176#endif
3177
3178    if (libjsig_is_loaded) {
3179      // Tell libjsig jvm finishes setting signal handlers
3180      (*end_signal_setting)();
3181    }
3182
3183    // We don't activate signal checker if libjsig is in place, we trust ourselves
3184    // and if UserSignalHandler is installed all bets are off
3185    if (CheckJNICalls) {
3186      if (libjsig_is_loaded) {
3187        if (PrintJNIResolving) {
3188          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3189        }
3190        check_signals = false;
3191      }
3192      if (AllowUserSignalHandlers) {
3193        if (PrintJNIResolving) {
3194          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3195        }
3196        check_signals = false;
3197      }
3198    }
3199  }
3200}
3201
3202
3203/////
3204// glibc on Bsd platform uses non-documented flag
3205// to indicate, that some special sort of signal
3206// trampoline is used.
3207// We will never set this flag, and we should
3208// ignore this flag in our diagnostic
3209#ifdef SIGNIFICANT_SIGNAL_MASK
3210  #undef SIGNIFICANT_SIGNAL_MASK
3211#endif
3212#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3213
3214static const char* get_signal_handler_name(address handler,
3215                                           char* buf, int buflen) {
3216  int offset;
3217  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3218  if (found) {
3219    // skip directory names
3220    const char *p1, *p2;
3221    p1 = buf;
3222    size_t len = strlen(os::file_separator());
3223    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3224    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3225  } else {
3226    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3227  }
3228  return buf;
3229}
3230
3231static void print_signal_handler(outputStream* st, int sig,
3232                                 char* buf, size_t buflen) {
3233  struct sigaction sa;
3234
3235  sigaction(sig, NULL, &sa);
3236
3237  // See comment for SIGNIFICANT_SIGNAL_MASK define
3238  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3239
3240  st->print("%s: ", os::exception_name(sig, buf, buflen));
3241
3242  address handler = (sa.sa_flags & SA_SIGINFO)
3243    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3244    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3245
3246  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3247    st->print("SIG_DFL");
3248  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3249    st->print("SIG_IGN");
3250  } else {
3251    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3252  }
3253
3254  st->print(", sa_mask[0]=");
3255  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3256
3257  address rh = VMError::get_resetted_sighandler(sig);
3258  // May be, handler was resetted by VMError?
3259  if (rh != NULL) {
3260    handler = rh;
3261    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3262  }
3263
3264  st->print(", sa_flags=");
3265  os::Posix::print_sa_flags(st, sa.sa_flags);
3266
3267  // Check: is it our handler?
3268  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3269      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3270    // It is our signal handler
3271    // check for flags, reset system-used one!
3272    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3273      st->print(
3274                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3275                os::Bsd::get_our_sigflags(sig));
3276    }
3277  }
3278  st->cr();
3279}
3280
3281
3282#define DO_SIGNAL_CHECK(sig)                      \
3283  do {                                            \
3284    if (!sigismember(&check_signal_done, sig)) {  \
3285      os::Bsd::check_signal_handler(sig);         \
3286    }                                             \
3287  } while (0)
3288
3289// This method is a periodic task to check for misbehaving JNI applications
3290// under CheckJNI, we can add any periodic checks here
3291
3292void os::run_periodic_checks() {
3293
3294  if (check_signals == false) return;
3295
3296  // SEGV and BUS if overridden could potentially prevent
3297  // generation of hs*.log in the event of a crash, debugging
3298  // such a case can be very challenging, so we absolutely
3299  // check the following for a good measure:
3300  DO_SIGNAL_CHECK(SIGSEGV);
3301  DO_SIGNAL_CHECK(SIGILL);
3302  DO_SIGNAL_CHECK(SIGFPE);
3303  DO_SIGNAL_CHECK(SIGBUS);
3304  DO_SIGNAL_CHECK(SIGPIPE);
3305  DO_SIGNAL_CHECK(SIGXFSZ);
3306
3307
3308  // ReduceSignalUsage allows the user to override these handlers
3309  // see comments at the very top and jvm_solaris.h
3310  if (!ReduceSignalUsage) {
3311    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3312    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3313    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3314    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3315  }
3316
3317  DO_SIGNAL_CHECK(SR_signum);
3318}
3319
3320typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3321
3322static os_sigaction_t os_sigaction = NULL;
3323
3324void os::Bsd::check_signal_handler(int sig) {
3325  char buf[O_BUFLEN];
3326  address jvmHandler = NULL;
3327
3328
3329  struct sigaction act;
3330  if (os_sigaction == NULL) {
3331    // only trust the default sigaction, in case it has been interposed
3332    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3333    if (os_sigaction == NULL) return;
3334  }
3335
3336  os_sigaction(sig, (struct sigaction*)NULL, &act);
3337
3338
3339  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3340
3341  address thisHandler = (act.sa_flags & SA_SIGINFO)
3342    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3343    : CAST_FROM_FN_PTR(address, act.sa_handler);
3344
3345
3346  switch (sig) {
3347  case SIGSEGV:
3348  case SIGBUS:
3349  case SIGFPE:
3350  case SIGPIPE:
3351  case SIGILL:
3352  case SIGXFSZ:
3353    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3354    break;
3355
3356  case SHUTDOWN1_SIGNAL:
3357  case SHUTDOWN2_SIGNAL:
3358  case SHUTDOWN3_SIGNAL:
3359  case BREAK_SIGNAL:
3360    jvmHandler = (address)user_handler();
3361    break;
3362
3363  default:
3364    if (sig == SR_signum) {
3365      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3366    } else {
3367      return;
3368    }
3369    break;
3370  }
3371
3372  if (thisHandler != jvmHandler) {
3373    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3374    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3375    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3376    // No need to check this sig any longer
3377    sigaddset(&check_signal_done, sig);
3378    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3379    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3380      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3381                    exception_name(sig, buf, O_BUFLEN));
3382    }
3383  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3384    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3385    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3386    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3387    // No need to check this sig any longer
3388    sigaddset(&check_signal_done, sig);
3389  }
3390
3391  // Dump all the signal
3392  if (sigismember(&check_signal_done, sig)) {
3393    print_signal_handlers(tty, buf, O_BUFLEN);
3394  }
3395}
3396
3397extern void report_error(char* file_name, int line_no, char* title,
3398                         char* format, ...);
3399
3400// this is called _before_ the most of global arguments have been parsed
3401void os::init(void) {
3402  char dummy;   // used to get a guess on initial stack address
3403//  first_hrtime = gethrtime();
3404
3405  // With BsdThreads the JavaMain thread pid (primordial thread)
3406  // is different than the pid of the java launcher thread.
3407  // So, on Bsd, the launcher thread pid is passed to the VM
3408  // via the sun.java.launcher.pid property.
3409  // Use this property instead of getpid() if it was correctly passed.
3410  // See bug 6351349.
3411  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3412
3413  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3414
3415  clock_tics_per_sec = CLK_TCK;
3416
3417  init_random(1234567);
3418
3419  ThreadCritical::initialize();
3420
3421  Bsd::set_page_size(getpagesize());
3422  if (Bsd::page_size() == -1) {
3423    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", strerror(errno));
3424  }
3425  init_page_sizes((size_t) Bsd::page_size());
3426
3427  Bsd::initialize_system_info();
3428
3429  // main_thread points to the aboriginal thread
3430  Bsd::_main_thread = pthread_self();
3431
3432  Bsd::clock_init();
3433  initial_time_count = javaTimeNanos();
3434
3435#ifdef __APPLE__
3436  // XXXDARWIN
3437  // Work around the unaligned VM callbacks in hotspot's
3438  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3439  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3440  // alignment when doing symbol lookup. To work around this, we force early
3441  // binding of all symbols now, thus binding when alignment is known-good.
3442  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3443#endif
3444}
3445
3446// To install functions for atexit system call
3447extern "C" {
3448  static void perfMemory_exit_helper() {
3449    perfMemory_exit();
3450  }
3451}
3452
3453// this is called _after_ the global arguments have been parsed
3454jint os::init_2(void) {
3455  // Allocate a single page and mark it as readable for safepoint polling
3456  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3457  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3458
3459  os::set_polling_page(polling_page);
3460
3461#ifndef PRODUCT
3462  if (Verbose && PrintMiscellaneous) {
3463    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3464               (intptr_t)polling_page);
3465  }
3466#endif
3467
3468  if (!UseMembar) {
3469    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3470    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3471    os::set_memory_serialize_page(mem_serialize_page);
3472
3473#ifndef PRODUCT
3474    if (Verbose && PrintMiscellaneous) {
3475      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3476                 (intptr_t)mem_serialize_page);
3477    }
3478#endif
3479  }
3480
3481  // initialize suspend/resume support - must do this before signal_sets_init()
3482  if (SR_initialize() != 0) {
3483    perror("SR_initialize failed");
3484    return JNI_ERR;
3485  }
3486
3487  Bsd::signal_sets_init();
3488  Bsd::install_signal_handlers();
3489
3490  // Check minimum allowable stack size for thread creation and to initialize
3491  // the java system classes, including StackOverflowError - depends on page
3492  // size.  Add a page for compiler2 recursion in main thread.
3493  // Add in 2*BytesPerWord times page size to account for VM stack during
3494  // class initialization depending on 32 or 64 bit VM.
3495  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3496                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3497                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3498
3499  size_t threadStackSizeInBytes = ThreadStackSize * K;
3500  if (threadStackSizeInBytes != 0 &&
3501      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3502    tty->print_cr("\nThe stack size specified is too small, "
3503                  "Specify at least %dk",
3504                  os::Bsd::min_stack_allowed/ K);
3505    return JNI_ERR;
3506  }
3507
3508  // Make the stack size a multiple of the page size so that
3509  // the yellow/red zones can be guarded.
3510  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3511                                                vm_page_size()));
3512
3513  if (MaxFDLimit) {
3514    // set the number of file descriptors to max. print out error
3515    // if getrlimit/setrlimit fails but continue regardless.
3516    struct rlimit nbr_files;
3517    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3518    if (status != 0) {
3519      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3520        perror("os::init_2 getrlimit failed");
3521      }
3522    } else {
3523      nbr_files.rlim_cur = nbr_files.rlim_max;
3524
3525#ifdef __APPLE__
3526      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3527      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3528      // be used instead
3529      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3530#endif
3531
3532      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3533      if (status != 0) {
3534        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3535          perror("os::init_2 setrlimit failed");
3536        }
3537      }
3538    }
3539  }
3540
3541  // at-exit methods are called in the reverse order of their registration.
3542  // atexit functions are called on return from main or as a result of a
3543  // call to exit(3C). There can be only 32 of these functions registered
3544  // and atexit() does not set errno.
3545
3546  if (PerfAllowAtExitRegistration) {
3547    // only register atexit functions if PerfAllowAtExitRegistration is set.
3548    // atexit functions can be delayed until process exit time, which
3549    // can be problematic for embedded VM situations. Embedded VMs should
3550    // call DestroyJavaVM() to assure that VM resources are released.
3551
3552    // note: perfMemory_exit_helper atexit function may be removed in
3553    // the future if the appropriate cleanup code can be added to the
3554    // VM_Exit VMOperation's doit method.
3555    if (atexit(perfMemory_exit_helper) != 0) {
3556      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3557    }
3558  }
3559
3560  // initialize thread priority policy
3561  prio_init();
3562
3563#ifdef __APPLE__
3564  // dynamically link to objective c gc registration
3565  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3566  if (handleLibObjc != NULL) {
3567    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3568  }
3569#endif
3570
3571  return JNI_OK;
3572}
3573
3574// Mark the polling page as unreadable
3575void os::make_polling_page_unreadable(void) {
3576  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3577    fatal("Could not disable polling page");
3578  }
3579}
3580
3581// Mark the polling page as readable
3582void os::make_polling_page_readable(void) {
3583  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3584    fatal("Could not enable polling page");
3585  }
3586}
3587
3588int os::active_processor_count() {
3589  return _processor_count;
3590}
3591
3592void os::set_native_thread_name(const char *name) {
3593#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3594  // This is only supported in Snow Leopard and beyond
3595  if (name != NULL) {
3596    // Add a "Java: " prefix to the name
3597    char buf[MAXTHREADNAMESIZE];
3598    snprintf(buf, sizeof(buf), "Java: %s", name);
3599    pthread_setname_np(buf);
3600  }
3601#endif
3602}
3603
3604bool os::distribute_processes(uint length, uint* distribution) {
3605  // Not yet implemented.
3606  return false;
3607}
3608
3609bool os::bind_to_processor(uint processor_id) {
3610  // Not yet implemented.
3611  return false;
3612}
3613
3614void os::SuspendedThreadTask::internal_do_task() {
3615  if (do_suspend(_thread->osthread())) {
3616    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3617    do_task(context);
3618    do_resume(_thread->osthread());
3619  }
3620}
3621
3622///
3623class PcFetcher : public os::SuspendedThreadTask {
3624 public:
3625  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3626  ExtendedPC result();
3627 protected:
3628  void do_task(const os::SuspendedThreadTaskContext& context);
3629 private:
3630  ExtendedPC _epc;
3631};
3632
3633ExtendedPC PcFetcher::result() {
3634  guarantee(is_done(), "task is not done yet.");
3635  return _epc;
3636}
3637
3638void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3639  Thread* thread = context.thread();
3640  OSThread* osthread = thread->osthread();
3641  if (osthread->ucontext() != NULL) {
3642    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3643  } else {
3644    // NULL context is unexpected, double-check this is the VMThread
3645    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3646  }
3647}
3648
3649// Suspends the target using the signal mechanism and then grabs the PC before
3650// resuming the target. Used by the flat-profiler only
3651ExtendedPC os::get_thread_pc(Thread* thread) {
3652  // Make sure that it is called by the watcher for the VMThread
3653  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3654  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3655
3656  PcFetcher fetcher(thread);
3657  fetcher.run();
3658  return fetcher.result();
3659}
3660
3661////////////////////////////////////////////////////////////////////////////////
3662// debug support
3663
3664bool os::find(address addr, outputStream* st) {
3665  Dl_info dlinfo;
3666  memset(&dlinfo, 0, sizeof(dlinfo));
3667  if (dladdr(addr, &dlinfo) != 0) {
3668    st->print(PTR_FORMAT ": ", addr);
3669    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3670      st->print("%s+%#x", dlinfo.dli_sname,
3671                addr - (intptr_t)dlinfo.dli_saddr);
3672    } else if (dlinfo.dli_fbase != NULL) {
3673      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3674    } else {
3675      st->print("<absolute address>");
3676    }
3677    if (dlinfo.dli_fname != NULL) {
3678      st->print(" in %s", dlinfo.dli_fname);
3679    }
3680    if (dlinfo.dli_fbase != NULL) {
3681      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3682    }
3683    st->cr();
3684
3685    if (Verbose) {
3686      // decode some bytes around the PC
3687      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3688      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3689      address       lowest = (address) dlinfo.dli_sname;
3690      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3691      if (begin < lowest)  begin = lowest;
3692      Dl_info dlinfo2;
3693      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3694          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3695        end = (address) dlinfo2.dli_saddr;
3696      }
3697      Disassembler::decode(begin, end, st);
3698    }
3699    return true;
3700  }
3701  return false;
3702}
3703
3704////////////////////////////////////////////////////////////////////////////////
3705// misc
3706
3707// This does not do anything on Bsd. This is basically a hook for being
3708// able to use structured exception handling (thread-local exception filters)
3709// on, e.g., Win32.
3710void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3711                              const methodHandle& method, JavaCallArguments* args,
3712                              Thread* thread) {
3713  f(value, method, args, thread);
3714}
3715
3716void os::print_statistics() {
3717}
3718
3719bool os::message_box(const char* title, const char* message) {
3720  int i;
3721  fdStream err(defaultStream::error_fd());
3722  for (i = 0; i < 78; i++) err.print_raw("=");
3723  err.cr();
3724  err.print_raw_cr(title);
3725  for (i = 0; i < 78; i++) err.print_raw("-");
3726  err.cr();
3727  err.print_raw_cr(message);
3728  for (i = 0; i < 78; i++) err.print_raw("=");
3729  err.cr();
3730
3731  char buf[16];
3732  // Prevent process from exiting upon "read error" without consuming all CPU
3733  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3734
3735  return buf[0] == 'y' || buf[0] == 'Y';
3736}
3737
3738int os::stat(const char *path, struct stat *sbuf) {
3739  char pathbuf[MAX_PATH];
3740  if (strlen(path) > MAX_PATH - 1) {
3741    errno = ENAMETOOLONG;
3742    return -1;
3743  }
3744  os::native_path(strcpy(pathbuf, path));
3745  return ::stat(pathbuf, sbuf);
3746}
3747
3748bool os::check_heap(bool force) {
3749  return true;
3750}
3751
3752// Is a (classpath) directory empty?
3753bool os::dir_is_empty(const char* path) {
3754  DIR *dir = NULL;
3755  struct dirent *ptr;
3756
3757  dir = opendir(path);
3758  if (dir == NULL) return true;
3759
3760  // Scan the directory
3761  bool result = true;
3762  char buf[sizeof(struct dirent) + MAX_PATH];
3763  while (result && (ptr = ::readdir(dir)) != NULL) {
3764    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3765      result = false;
3766    }
3767  }
3768  closedir(dir);
3769  return result;
3770}
3771
3772// This code originates from JDK's sysOpen and open64_w
3773// from src/solaris/hpi/src/system_md.c
3774
3775int os::open(const char *path, int oflag, int mode) {
3776  if (strlen(path) > MAX_PATH - 1) {
3777    errno = ENAMETOOLONG;
3778    return -1;
3779  }
3780  int fd;
3781
3782  fd = ::open(path, oflag, mode);
3783  if (fd == -1) return -1;
3784
3785  // If the open succeeded, the file might still be a directory
3786  {
3787    struct stat buf;
3788    int ret = ::fstat(fd, &buf);
3789    int st_mode = buf.st_mode;
3790
3791    if (ret != -1) {
3792      if ((st_mode & S_IFMT) == S_IFDIR) {
3793        errno = EISDIR;
3794        ::close(fd);
3795        return -1;
3796      }
3797    } else {
3798      ::close(fd);
3799      return -1;
3800    }
3801  }
3802
3803  // All file descriptors that are opened in the JVM and not
3804  // specifically destined for a subprocess should have the
3805  // close-on-exec flag set.  If we don't set it, then careless 3rd
3806  // party native code might fork and exec without closing all
3807  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3808  // UNIXProcess.c), and this in turn might:
3809  //
3810  // - cause end-of-file to fail to be detected on some file
3811  //   descriptors, resulting in mysterious hangs, or
3812  //
3813  // - might cause an fopen in the subprocess to fail on a system
3814  //   suffering from bug 1085341.
3815  //
3816  // (Yes, the default setting of the close-on-exec flag is a Unix
3817  // design flaw)
3818  //
3819  // See:
3820  // 1085341: 32-bit stdio routines should support file descriptors >255
3821  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3822  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3823  //
3824#ifdef FD_CLOEXEC
3825  {
3826    int flags = ::fcntl(fd, F_GETFD);
3827    if (flags != -1) {
3828      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3829    }
3830  }
3831#endif
3832
3833  return fd;
3834}
3835
3836
3837// create binary file, rewriting existing file if required
3838int os::create_binary_file(const char* path, bool rewrite_existing) {
3839  int oflags = O_WRONLY | O_CREAT;
3840  if (!rewrite_existing) {
3841    oflags |= O_EXCL;
3842  }
3843  return ::open(path, oflags, S_IREAD | S_IWRITE);
3844}
3845
3846// return current position of file pointer
3847jlong os::current_file_offset(int fd) {
3848  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3849}
3850
3851// move file pointer to the specified offset
3852jlong os::seek_to_file_offset(int fd, jlong offset) {
3853  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3854}
3855
3856// This code originates from JDK's sysAvailable
3857// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3858
3859int os::available(int fd, jlong *bytes) {
3860  jlong cur, end;
3861  int mode;
3862  struct stat buf;
3863
3864  if (::fstat(fd, &buf) >= 0) {
3865    mode = buf.st_mode;
3866    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3867      int n;
3868      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3869        *bytes = n;
3870        return 1;
3871      }
3872    }
3873  }
3874  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3875    return 0;
3876  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3877    return 0;
3878  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3879    return 0;
3880  }
3881  *bytes = end - cur;
3882  return 1;
3883}
3884
3885// Map a block of memory.
3886char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3887                        char *addr, size_t bytes, bool read_only,
3888                        bool allow_exec) {
3889  int prot;
3890  int flags;
3891
3892  if (read_only) {
3893    prot = PROT_READ;
3894    flags = MAP_SHARED;
3895  } else {
3896    prot = PROT_READ | PROT_WRITE;
3897    flags = MAP_PRIVATE;
3898  }
3899
3900  if (allow_exec) {
3901    prot |= PROT_EXEC;
3902  }
3903
3904  if (addr != NULL) {
3905    flags |= MAP_FIXED;
3906  }
3907
3908  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3909                                     fd, file_offset);
3910  if (mapped_address == MAP_FAILED) {
3911    return NULL;
3912  }
3913  return mapped_address;
3914}
3915
3916
3917// Remap a block of memory.
3918char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3919                          char *addr, size_t bytes, bool read_only,
3920                          bool allow_exec) {
3921  // same as map_memory() on this OS
3922  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3923                        allow_exec);
3924}
3925
3926
3927// Unmap a block of memory.
3928bool os::pd_unmap_memory(char* addr, size_t bytes) {
3929  return munmap(addr, bytes) == 0;
3930}
3931
3932// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3933// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3934// of a thread.
3935//
3936// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3937// the fast estimate available on the platform.
3938
3939jlong os::current_thread_cpu_time() {
3940#ifdef __APPLE__
3941  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3942#else
3943  Unimplemented();
3944  return 0;
3945#endif
3946}
3947
3948jlong os::thread_cpu_time(Thread* thread) {
3949#ifdef __APPLE__
3950  return os::thread_cpu_time(thread, true /* user + sys */);
3951#else
3952  Unimplemented();
3953  return 0;
3954#endif
3955}
3956
3957jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3958#ifdef __APPLE__
3959  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3960#else
3961  Unimplemented();
3962  return 0;
3963#endif
3964}
3965
3966jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3967#ifdef __APPLE__
3968  struct thread_basic_info tinfo;
3969  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3970  kern_return_t kr;
3971  thread_t mach_thread;
3972
3973  mach_thread = thread->osthread()->thread_id();
3974  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3975  if (kr != KERN_SUCCESS) {
3976    return -1;
3977  }
3978
3979  if (user_sys_cpu_time) {
3980    jlong nanos;
3981    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3982    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3983    return nanos;
3984  } else {
3985    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3986  }
3987#else
3988  Unimplemented();
3989  return 0;
3990#endif
3991}
3992
3993
3994void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3995  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3996  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3997  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3998  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3999}
4000
4001void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4002  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4003  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4004  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4005  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4006}
4007
4008bool os::is_thread_cpu_time_supported() {
4009#ifdef __APPLE__
4010  return true;
4011#else
4012  return false;
4013#endif
4014}
4015
4016// System loadavg support.  Returns -1 if load average cannot be obtained.
4017// Bsd doesn't yet have a (official) notion of processor sets,
4018// so just return the system wide load average.
4019int os::loadavg(double loadavg[], int nelem) {
4020  return ::getloadavg(loadavg, nelem);
4021}
4022
4023void os::pause() {
4024  char filename[MAX_PATH];
4025  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4026    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4027  } else {
4028    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4029  }
4030
4031  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4032  if (fd != -1) {
4033    struct stat buf;
4034    ::close(fd);
4035    while (::stat(filename, &buf) == 0) {
4036      (void)::poll(NULL, 0, 100);
4037    }
4038  } else {
4039    jio_fprintf(stderr,
4040                "Could not open pause file '%s', continuing immediately.\n", filename);
4041  }
4042}
4043
4044
4045// Refer to the comments in os_solaris.cpp park-unpark. The next two
4046// comment paragraphs are worth repeating here:
4047//
4048// Assumption:
4049//    Only one parker can exist on an event, which is why we allocate
4050//    them per-thread. Multiple unparkers can coexist.
4051//
4052// _Event serves as a restricted-range semaphore.
4053//   -1 : thread is blocked, i.e. there is a waiter
4054//    0 : neutral: thread is running or ready,
4055//        could have been signaled after a wait started
4056//    1 : signaled - thread is running or ready
4057//
4058// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4059// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4060// For specifics regarding the bug see GLIBC BUGID 261237 :
4061//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4062// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4063// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4064// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4065// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4066// and monitorenter when we're using 1-0 locking.  All those operations may result in
4067// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4068// of libpthread avoids the problem, but isn't practical.
4069//
4070// Possible remedies:
4071//
4072// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4073//      This is palliative and probabilistic, however.  If the thread is preempted
4074//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4075//      than the minimum period may have passed, and the abstime may be stale (in the
4076//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4077//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4078//
4079// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4080//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4081//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4082//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4083//      thread.
4084//
4085// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4086//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4087//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4088//      This also works well.  In fact it avoids kernel-level scalability impediments
4089//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4090//      timers in a graceful fashion.
4091//
4092// 4.   When the abstime value is in the past it appears that control returns
4093//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4094//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4095//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4096//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4097//      It may be possible to avoid reinitialization by checking the return
4098//      value from pthread_cond_timedwait().  In addition to reinitializing the
4099//      condvar we must establish the invariant that cond_signal() is only called
4100//      within critical sections protected by the adjunct mutex.  This prevents
4101//      cond_signal() from "seeing" a condvar that's in the midst of being
4102//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4103//      desirable signal-after-unlock optimization that avoids futile context switching.
4104//
4105//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4106//      structure when a condvar is used or initialized.  cond_destroy()  would
4107//      release the helper structure.  Our reinitialize-after-timedwait fix
4108//      put excessive stress on malloc/free and locks protecting the c-heap.
4109//
4110// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4111// It may be possible to refine (4) by checking the kernel and NTPL verisons
4112// and only enabling the work-around for vulnerable environments.
4113
4114// utility to compute the abstime argument to timedwait:
4115// millis is the relative timeout time
4116// abstime will be the absolute timeout time
4117// TODO: replace compute_abstime() with unpackTime()
4118
4119static struct timespec* compute_abstime(struct timespec* abstime,
4120                                        jlong millis) {
4121  if (millis < 0)  millis = 0;
4122  struct timeval now;
4123  int status = gettimeofday(&now, NULL);
4124  assert(status == 0, "gettimeofday");
4125  jlong seconds = millis / 1000;
4126  millis %= 1000;
4127  if (seconds > 50000000) { // see man cond_timedwait(3T)
4128    seconds = 50000000;
4129  }
4130  abstime->tv_sec = now.tv_sec  + seconds;
4131  long       usec = now.tv_usec + millis * 1000;
4132  if (usec >= 1000000) {
4133    abstime->tv_sec += 1;
4134    usec -= 1000000;
4135  }
4136  abstime->tv_nsec = usec * 1000;
4137  return abstime;
4138}
4139
4140void os::PlatformEvent::park() {       // AKA "down()"
4141  // Transitions for _Event:
4142  //   -1 => -1 : illegal
4143  //    1 =>  0 : pass - return immediately
4144  //    0 => -1 : block; then set _Event to 0 before returning
4145
4146  // Invariant: Only the thread associated with the Event/PlatformEvent
4147  // may call park().
4148  // TODO: assert that _Assoc != NULL or _Assoc == Self
4149  assert(_nParked == 0, "invariant");
4150
4151  int v;
4152  for (;;) {
4153    v = _Event;
4154    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4155  }
4156  guarantee(v >= 0, "invariant");
4157  if (v == 0) {
4158    // Do this the hard way by blocking ...
4159    int status = pthread_mutex_lock(_mutex);
4160    assert_status(status == 0, status, "mutex_lock");
4161    guarantee(_nParked == 0, "invariant");
4162    ++_nParked;
4163    while (_Event < 0) {
4164      status = pthread_cond_wait(_cond, _mutex);
4165      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4166      // Treat this the same as if the wait was interrupted
4167      if (status == ETIMEDOUT) { status = EINTR; }
4168      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4169    }
4170    --_nParked;
4171
4172    _Event = 0;
4173    status = pthread_mutex_unlock(_mutex);
4174    assert_status(status == 0, status, "mutex_unlock");
4175    // Paranoia to ensure our locked and lock-free paths interact
4176    // correctly with each other.
4177    OrderAccess::fence();
4178  }
4179  guarantee(_Event >= 0, "invariant");
4180}
4181
4182int os::PlatformEvent::park(jlong millis) {
4183  // Transitions for _Event:
4184  //   -1 => -1 : illegal
4185  //    1 =>  0 : pass - return immediately
4186  //    0 => -1 : block; then set _Event to 0 before returning
4187
4188  guarantee(_nParked == 0, "invariant");
4189
4190  int v;
4191  for (;;) {
4192    v = _Event;
4193    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4194  }
4195  guarantee(v >= 0, "invariant");
4196  if (v != 0) return OS_OK;
4197
4198  // We do this the hard way, by blocking the thread.
4199  // Consider enforcing a minimum timeout value.
4200  struct timespec abst;
4201  compute_abstime(&abst, millis);
4202
4203  int ret = OS_TIMEOUT;
4204  int status = pthread_mutex_lock(_mutex);
4205  assert_status(status == 0, status, "mutex_lock");
4206  guarantee(_nParked == 0, "invariant");
4207  ++_nParked;
4208
4209  // Object.wait(timo) will return because of
4210  // (a) notification
4211  // (b) timeout
4212  // (c) thread.interrupt
4213  //
4214  // Thread.interrupt and object.notify{All} both call Event::set.
4215  // That is, we treat thread.interrupt as a special case of notification.
4216  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4217  // We assume all ETIME returns are valid.
4218  //
4219  // TODO: properly differentiate simultaneous notify+interrupt.
4220  // In that case, we should propagate the notify to another waiter.
4221
4222  while (_Event < 0) {
4223    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4224    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4225      pthread_cond_destroy(_cond);
4226      pthread_cond_init(_cond, NULL);
4227    }
4228    assert_status(status == 0 || status == EINTR ||
4229                  status == ETIMEDOUT,
4230                  status, "cond_timedwait");
4231    if (!FilterSpuriousWakeups) break;                 // previous semantics
4232    if (status == ETIMEDOUT) break;
4233    // We consume and ignore EINTR and spurious wakeups.
4234  }
4235  --_nParked;
4236  if (_Event >= 0) {
4237    ret = OS_OK;
4238  }
4239  _Event = 0;
4240  status = pthread_mutex_unlock(_mutex);
4241  assert_status(status == 0, status, "mutex_unlock");
4242  assert(_nParked == 0, "invariant");
4243  // Paranoia to ensure our locked and lock-free paths interact
4244  // correctly with each other.
4245  OrderAccess::fence();
4246  return ret;
4247}
4248
4249void os::PlatformEvent::unpark() {
4250  // Transitions for _Event:
4251  //    0 => 1 : just return
4252  //    1 => 1 : just return
4253  //   -1 => either 0 or 1; must signal target thread
4254  //         That is, we can safely transition _Event from -1 to either
4255  //         0 or 1.
4256  // See also: "Semaphores in Plan 9" by Mullender & Cox
4257  //
4258  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4259  // that it will take two back-to-back park() calls for the owning
4260  // thread to block. This has the benefit of forcing a spurious return
4261  // from the first park() call after an unpark() call which will help
4262  // shake out uses of park() and unpark() without condition variables.
4263
4264  if (Atomic::xchg(1, &_Event) >= 0) return;
4265
4266  // Wait for the thread associated with the event to vacate
4267  int status = pthread_mutex_lock(_mutex);
4268  assert_status(status == 0, status, "mutex_lock");
4269  int AnyWaiters = _nParked;
4270  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4271  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4272    AnyWaiters = 0;
4273    pthread_cond_signal(_cond);
4274  }
4275  status = pthread_mutex_unlock(_mutex);
4276  assert_status(status == 0, status, "mutex_unlock");
4277  if (AnyWaiters != 0) {
4278    // Note that we signal() *after* dropping the lock for "immortal" Events.
4279    // This is safe and avoids a common class of  futile wakeups.  In rare
4280    // circumstances this can cause a thread to return prematurely from
4281    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4282    // will simply re-test the condition and re-park itself.
4283    // This provides particular benefit if the underlying platform does not
4284    // provide wait morphing.
4285    status = pthread_cond_signal(_cond);
4286    assert_status(status == 0, status, "cond_signal");
4287  }
4288}
4289
4290
4291// JSR166
4292// -------------------------------------------------------
4293
4294// The solaris and bsd implementations of park/unpark are fairly
4295// conservative for now, but can be improved. They currently use a
4296// mutex/condvar pair, plus a a count.
4297// Park decrements count if > 0, else does a condvar wait.  Unpark
4298// sets count to 1 and signals condvar.  Only one thread ever waits
4299// on the condvar. Contention seen when trying to park implies that someone
4300// is unparking you, so don't wait. And spurious returns are fine, so there
4301// is no need to track notifications.
4302
4303#define MAX_SECS 100000000
4304
4305// This code is common to bsd and solaris and will be moved to a
4306// common place in dolphin.
4307//
4308// The passed in time value is either a relative time in nanoseconds
4309// or an absolute time in milliseconds. Either way it has to be unpacked
4310// into suitable seconds and nanoseconds components and stored in the
4311// given timespec structure.
4312// Given time is a 64-bit value and the time_t used in the timespec is only
4313// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4314// overflow if times way in the future are given. Further on Solaris versions
4315// prior to 10 there is a restriction (see cond_timedwait) that the specified
4316// number of seconds, in abstime, is less than current_time  + 100,000,000.
4317// As it will be 28 years before "now + 100000000" will overflow we can
4318// ignore overflow and just impose a hard-limit on seconds using the value
4319// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4320// years from "now".
4321
4322static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4323  assert(time > 0, "convertTime");
4324
4325  struct timeval now;
4326  int status = gettimeofday(&now, NULL);
4327  assert(status == 0, "gettimeofday");
4328
4329  time_t max_secs = now.tv_sec + MAX_SECS;
4330
4331  if (isAbsolute) {
4332    jlong secs = time / 1000;
4333    if (secs > max_secs) {
4334      absTime->tv_sec = max_secs;
4335    } else {
4336      absTime->tv_sec = secs;
4337    }
4338    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4339  } else {
4340    jlong secs = time / NANOSECS_PER_SEC;
4341    if (secs >= MAX_SECS) {
4342      absTime->tv_sec = max_secs;
4343      absTime->tv_nsec = 0;
4344    } else {
4345      absTime->tv_sec = now.tv_sec + secs;
4346      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4347      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4348        absTime->tv_nsec -= NANOSECS_PER_SEC;
4349        ++absTime->tv_sec; // note: this must be <= max_secs
4350      }
4351    }
4352  }
4353  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4354  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4355  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4356  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4357}
4358
4359void Parker::park(bool isAbsolute, jlong time) {
4360  // Ideally we'd do something useful while spinning, such
4361  // as calling unpackTime().
4362
4363  // Optional fast-path check:
4364  // Return immediately if a permit is available.
4365  // We depend on Atomic::xchg() having full barrier semantics
4366  // since we are doing a lock-free update to _counter.
4367  if (Atomic::xchg(0, &_counter) > 0) return;
4368
4369  Thread* thread = Thread::current();
4370  assert(thread->is_Java_thread(), "Must be JavaThread");
4371  JavaThread *jt = (JavaThread *)thread;
4372
4373  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4374  // Check interrupt before trying to wait
4375  if (Thread::is_interrupted(thread, false)) {
4376    return;
4377  }
4378
4379  // Next, demultiplex/decode time arguments
4380  struct timespec absTime;
4381  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4382    return;
4383  }
4384  if (time > 0) {
4385    unpackTime(&absTime, isAbsolute, time);
4386  }
4387
4388
4389  // Enter safepoint region
4390  // Beware of deadlocks such as 6317397.
4391  // The per-thread Parker:: mutex is a classic leaf-lock.
4392  // In particular a thread must never block on the Threads_lock while
4393  // holding the Parker:: mutex.  If safepoints are pending both the
4394  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4395  ThreadBlockInVM tbivm(jt);
4396
4397  // Don't wait if cannot get lock since interference arises from
4398  // unblocking.  Also. check interrupt before trying wait
4399  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4400    return;
4401  }
4402
4403  int status;
4404  if (_counter > 0)  { // no wait needed
4405    _counter = 0;
4406    status = pthread_mutex_unlock(_mutex);
4407    assert(status == 0, "invariant");
4408    // Paranoia to ensure our locked and lock-free paths interact
4409    // correctly with each other and Java-level accesses.
4410    OrderAccess::fence();
4411    return;
4412  }
4413
4414#ifdef ASSERT
4415  // Don't catch signals while blocked; let the running threads have the signals.
4416  // (This allows a debugger to break into the running thread.)
4417  sigset_t oldsigs;
4418  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4419  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4420#endif
4421
4422  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4423  jt->set_suspend_equivalent();
4424  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4425
4426  if (time == 0) {
4427    status = pthread_cond_wait(_cond, _mutex);
4428  } else {
4429    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4430    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4431      pthread_cond_destroy(_cond);
4432      pthread_cond_init(_cond, NULL);
4433    }
4434  }
4435  assert_status(status == 0 || status == EINTR ||
4436                status == ETIMEDOUT,
4437                status, "cond_timedwait");
4438
4439#ifdef ASSERT
4440  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4441#endif
4442
4443  _counter = 0;
4444  status = pthread_mutex_unlock(_mutex);
4445  assert_status(status == 0, status, "invariant");
4446  // Paranoia to ensure our locked and lock-free paths interact
4447  // correctly with each other and Java-level accesses.
4448  OrderAccess::fence();
4449
4450  // If externally suspended while waiting, re-suspend
4451  if (jt->handle_special_suspend_equivalent_condition()) {
4452    jt->java_suspend_self();
4453  }
4454}
4455
4456void Parker::unpark() {
4457  int status = pthread_mutex_lock(_mutex);
4458  assert(status == 0, "invariant");
4459  const int s = _counter;
4460  _counter = 1;
4461  if (s < 1) {
4462    if (WorkAroundNPTLTimedWaitHang) {
4463      status = pthread_cond_signal(_cond);
4464      assert(status == 0, "invariant");
4465      status = pthread_mutex_unlock(_mutex);
4466      assert(status == 0, "invariant");
4467    } else {
4468      status = pthread_mutex_unlock(_mutex);
4469      assert(status == 0, "invariant");
4470      status = pthread_cond_signal(_cond);
4471      assert(status == 0, "invariant");
4472    }
4473  } else {
4474    pthread_mutex_unlock(_mutex);
4475    assert(status == 0, "invariant");
4476  }
4477}
4478
4479
4480// Darwin has no "environ" in a dynamic library.
4481#ifdef __APPLE__
4482  #include <crt_externs.h>
4483  #define environ (*_NSGetEnviron())
4484#else
4485extern char** environ;
4486#endif
4487
4488// Run the specified command in a separate process. Return its exit value,
4489// or -1 on failure (e.g. can't fork a new process).
4490// Unlike system(), this function can be called from signal handler. It
4491// doesn't block SIGINT et al.
4492int os::fork_and_exec(char* cmd) {
4493  const char * argv[4] = {"sh", "-c", cmd, NULL};
4494
4495  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4496  // pthread_atfork handlers and reset pthread library. All we need is a
4497  // separate process to execve. Make a direct syscall to fork process.
4498  // On IA64 there's no fork syscall, we have to use fork() and hope for
4499  // the best...
4500  pid_t pid = fork();
4501
4502  if (pid < 0) {
4503    // fork failed
4504    return -1;
4505
4506  } else if (pid == 0) {
4507    // child process
4508
4509    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4510    // first to kill every thread on the thread list. Because this list is
4511    // not reset by fork() (see notes above), execve() will instead kill
4512    // every thread in the parent process. We know this is the only thread
4513    // in the new process, so make a system call directly.
4514    // IA64 should use normal execve() from glibc to match the glibc fork()
4515    // above.
4516    execve("/bin/sh", (char* const*)argv, environ);
4517
4518    // execve failed
4519    _exit(-1);
4520
4521  } else  {
4522    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4523    // care about the actual exit code, for now.
4524
4525    int status;
4526
4527    // Wait for the child process to exit.  This returns immediately if
4528    // the child has already exited. */
4529    while (waitpid(pid, &status, 0) < 0) {
4530      switch (errno) {
4531      case ECHILD: return 0;
4532      case EINTR: break;
4533      default: return -1;
4534      }
4535    }
4536
4537    if (WIFEXITED(status)) {
4538      // The child exited normally; get its exit code.
4539      return WEXITSTATUS(status);
4540    } else if (WIFSIGNALED(status)) {
4541      // The child exited because of a signal
4542      // The best value to return is 0x80 + signal number,
4543      // because that is what all Unix shells do, and because
4544      // it allows callers to distinguish between process exit and
4545      // process death by signal.
4546      return 0x80 + WTERMSIG(status);
4547    } else {
4548      // Unknown exit code; pass it through
4549      return status;
4550    }
4551  }
4552}
4553
4554// is_headless_jre()
4555//
4556// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4557// in order to report if we are running in a headless jre
4558//
4559// Since JDK8 xawt/libmawt.so was moved into the same directory
4560// as libawt.so, and renamed libawt_xawt.so
4561//
4562bool os::is_headless_jre() {
4563#ifdef __APPLE__
4564  // We no longer build headless-only on Mac OS X
4565  return false;
4566#else
4567  struct stat statbuf;
4568  char buf[MAXPATHLEN];
4569  char libmawtpath[MAXPATHLEN];
4570  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4571  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4572  char *p;
4573
4574  // Get path to libjvm.so
4575  os::jvm_path(buf, sizeof(buf));
4576
4577  // Get rid of libjvm.so
4578  p = strrchr(buf, '/');
4579  if (p == NULL) {
4580    return false;
4581  } else {
4582    *p = '\0';
4583  }
4584
4585  // Get rid of client or server
4586  p = strrchr(buf, '/');
4587  if (p == NULL) {
4588    return false;
4589  } else {
4590    *p = '\0';
4591  }
4592
4593  // check xawt/libmawt.so
4594  strcpy(libmawtpath, buf);
4595  strcat(libmawtpath, xawtstr);
4596  if (::stat(libmawtpath, &statbuf) == 0) return false;
4597
4598  // check libawt_xawt.so
4599  strcpy(libmawtpath, buf);
4600  strcat(libmawtpath, new_xawtstr);
4601  if (::stat(libmawtpath, &statbuf) == 0) return false;
4602
4603  return true;
4604#endif
4605}
4606
4607// Get the default path to the core file
4608// Returns the length of the string
4609int os::get_core_path(char* buffer, size_t bufferSize) {
4610  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4611
4612  // Truncate if theoretical string was longer than bufferSize
4613  n = MIN2(n, (int)bufferSize);
4614
4615  return n;
4616}
4617
4618#ifndef PRODUCT
4619void TestReserveMemorySpecial_test() {
4620  // No tests available for this platform
4621}
4622#endif
4623
4624bool os::start_debugging(char *buf, int buflen) {
4625  int len = (int)strlen(buf);
4626  char *p = &buf[len];
4627
4628  jio_snprintf(p, buflen-len,
4629             "\n\n"
4630             "Do you want to debug the problem?\n\n"
4631             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4632             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4633             "Otherwise, press RETURN to abort...",
4634             os::current_process_id(), os::current_process_id(),
4635             os::current_thread_id(), os::current_thread_id());
4636
4637  bool yes = os::message_box("Unexpected Error", buf);
4638
4639  if (yes) {
4640    // yes, user asked VM to launch debugger
4641    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4642                     os::current_process_id(), os::current_process_id());
4643
4644    os::fork_and_exec(buf);
4645    yes = false;
4646  }
4647  return yes;
4648}
4649