os_bsd.cpp revision 9593:ca793dd85e06
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Bsd::_physical_memory = 0;
134
135#ifdef __APPLE__
136mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137volatile uint64_t         os::Bsd::_max_abstime   = 0;
138#else
139int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140#endif
141pthread_t os::Bsd::_main_thread;
142int os::Bsd::_page_size = -1;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167julong os::available_memory() {
168  return Bsd::available_memory();
169}
170
171// available here means free
172julong os::Bsd::available_memory() {
173  uint64_t available = physical_memory() >> 2;
174#ifdef __APPLE__
175  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176  vm_statistics64_data_t vmstat;
177  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178                                         (host_info64_t)&vmstat, &count);
179  assert(kerr == KERN_SUCCESS,
180         "host_statistics64 failed - check mach_host_self() and count");
181  if (kerr == KERN_SUCCESS) {
182    available = vmstat.free_count * os::vm_page_size();
183  }
184#endif
185  return available;
186}
187
188julong os::physical_memory() {
189  return Bsd::physical_memory();
190}
191
192// Return true if user is running as root.
193
194bool os::have_special_privileges() {
195  static bool init = false;
196  static bool privileges = false;
197  if (!init) {
198    privileges = (getuid() != geteuid()) || (getgid() != getegid());
199    init = true;
200  }
201  return privileges;
202}
203
204
205
206// Cpu architecture string
207#if   defined(ZERO)
208static char cpu_arch[] = ZERO_LIBARCH;
209#elif defined(IA64)
210static char cpu_arch[] = "ia64";
211#elif defined(IA32)
212static char cpu_arch[] = "i386";
213#elif defined(AMD64)
214static char cpu_arch[] = "amd64";
215#elif defined(ARM)
216static char cpu_arch[] = "arm";
217#elif defined(PPC32)
218static char cpu_arch[] = "ppc";
219#elif defined(SPARC)
220  #ifdef _LP64
221static char cpu_arch[] = "sparcv9";
222  #else
223static char cpu_arch[] = "sparc";
224  #endif
225#else
226  #error Add appropriate cpu_arch setting
227#endif
228
229// Compiler variant
230#ifdef COMPILER2
231  #define COMPILER_VARIANT "server"
232#else
233  #define COMPILER_VARIANT "client"
234#endif
235
236
237void os::Bsd::initialize_system_info() {
238  int mib[2];
239  size_t len;
240  int cpu_val;
241  julong mem_val;
242
243  // get processors count via hw.ncpus sysctl
244  mib[0] = CTL_HW;
245  mib[1] = HW_NCPU;
246  len = sizeof(cpu_val);
247  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
248    assert(len == sizeof(cpu_val), "unexpected data size");
249    set_processor_count(cpu_val);
250  } else {
251    set_processor_count(1);   // fallback
252  }
253
254  // get physical memory via hw.memsize sysctl (hw.memsize is used
255  // since it returns a 64 bit value)
256  mib[0] = CTL_HW;
257
258#if defined (HW_MEMSIZE) // Apple
259  mib[1] = HW_MEMSIZE;
260#elif defined(HW_PHYSMEM) // Most of BSD
261  mib[1] = HW_PHYSMEM;
262#elif defined(HW_REALMEM) // Old FreeBSD
263  mib[1] = HW_REALMEM;
264#else
265  #error No ways to get physmem
266#endif
267
268  len = sizeof(mem_val);
269  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
270    assert(len == sizeof(mem_val), "unexpected data size");
271    _physical_memory = mem_val;
272  } else {
273    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
274  }
275
276#ifdef __OpenBSD__
277  {
278    // limit _physical_memory memory view on OpenBSD since
279    // datasize rlimit restricts us anyway.
280    struct rlimit limits;
281    getrlimit(RLIMIT_DATA, &limits);
282    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
283  }
284#endif
285}
286
287#ifdef __APPLE__
288static const char *get_home() {
289  const char *home_dir = ::getenv("HOME");
290  if ((home_dir == NULL) || (*home_dir == '\0')) {
291    struct passwd *passwd_info = getpwuid(geteuid());
292    if (passwd_info != NULL) {
293      home_dir = passwd_info->pw_dir;
294    }
295  }
296
297  return home_dir;
298}
299#endif
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#ifndef DEFAULT_LIBPATH
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342#ifndef __APPLE__
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Bsd implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf);
412
413#else // __APPLE__
414
415  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
416  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
417
418  const char *user_home_dir = get_home();
419  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
420  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
421    sizeof(SYS_EXTENSIONS_DIRS);
422
423  // Buffer that fits several sprintfs.
424  // Note that the space for the colon and the trailing null are provided
425  // by the nulls included by the sizeof operator.
426  const size_t bufsize =
427    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
428         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
429  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
430
431  // sysclasspath, java_home, dll_dir
432  {
433    char *pslash;
434    os::jvm_path(buf, bufsize);
435
436    // Found the full path to libjvm.so.
437    // Now cut the path to <java_home>/jre if we can.
438    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
439    pslash = strrchr(buf, '/');
440    if (pslash != NULL) {
441      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
442    }
443#ifdef STATIC_BUILD
444    strcat(buf, "/lib");
445#endif
446
447    Arguments::set_dll_dir(buf);
448
449    if (pslash != NULL) {
450      pslash = strrchr(buf, '/');
451      if (pslash != NULL) {
452        *pslash = '\0';          // Get rid of /lib.
453      }
454    }
455    Arguments::set_java_home(buf);
456    set_boot_path('/', ':');
457  }
458
459  // Where to look for native libraries.
460  //
461  // Note: Due to a legacy implementation, most of the library path
462  // is set in the launcher. This was to accomodate linking restrictions
463  // on legacy Bsd implementations (which are no longer supported).
464  // Eventually, all the library path setting will be done here.
465  //
466  // However, to prevent the proliferation of improperly built native
467  // libraries, the new path component /usr/java/packages is added here.
468  // Eventually, all the library path setting will be done here.
469  {
470    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471    // should always exist (until the legacy problem cited above is
472    // addressed).
473    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
474    // can specify a directory inside an app wrapper
475    const char *l = ::getenv("JAVA_LIBRARY_PATH");
476    const char *l_colon = ":";
477    if (l == NULL) { l = ""; l_colon = ""; }
478
479    const char *v = ::getenv("DYLD_LIBRARY_PATH");
480    const char *v_colon = ":";
481    if (v == NULL) { v = ""; v_colon = ""; }
482
483    // Apple's Java6 has "." at the beginning of java.library.path.
484    // OpenJDK on Windows has "." at the end of java.library.path.
485    // OpenJDK on Linux and Solaris don't have "." in java.library.path
486    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
487    // "." is appended to the end of java.library.path. Yes, this
488    // could cause a change in behavior, but Apple's Java6 behavior
489    // can be achieved by putting "." at the beginning of the
490    // JAVA_LIBRARY_PATH environment variable.
491    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
492                                                     strlen(v) + 1 + strlen(l) + 1 +
493                                                     system_ext_size + 3,
494                                                     mtInternal);
495    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
496            v, v_colon, l, l_colon, user_home_dir);
497    Arguments::set_library_path(ld_library_path);
498    FREE_C_HEAP_ARRAY(char, ld_library_path);
499  }
500
501  // Extensions directories.
502  //
503  // Note that the space for the colon and the trailing null are provided
504  // by the nulls included by the sizeof operator (so actually one byte more
505  // than necessary is allocated).
506  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
507          user_home_dir, Arguments::get_java_home());
508  Arguments::set_ext_dirs(buf);
509
510  FREE_C_HEAP_ARRAY(char, buf);
511
512#undef SYS_EXTENSIONS_DIR
513#undef SYS_EXTENSIONS_DIRS
514
515#endif // __APPLE__
516
517#undef SYS_EXT_DIR
518#undef EXTENSIONS_DIR
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539  struct sigaction oact;
540  sigaction(sig, (struct sigaction*)NULL, &oact);
541  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
544    return true;
545  } else {
546    return false;
547  }
548}
549
550void os::Bsd::signal_sets_init() {
551  // Should also have an assertion stating we are still single-threaded.
552  assert(!signal_sets_initialized, "Already initialized");
553  // Fill in signals that are necessarily unblocked for all threads in
554  // the VM. Currently, we unblock the following signals:
555  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
556  //                         by -Xrs (=ReduceSignalUsage));
557  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
558  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
559  // the dispositions or masks wrt these signals.
560  // Programs embedding the VM that want to use the above signals for their
561  // own purposes must, at this time, use the "-Xrs" option to prevent
562  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
563  // (See bug 4345157, and other related bugs).
564  // In reality, though, unblocking these signals is really a nop, since
565  // these signals are not blocked by default.
566  sigemptyset(&unblocked_sigs);
567  sigemptyset(&allowdebug_blocked_sigs);
568  sigaddset(&unblocked_sigs, SIGILL);
569  sigaddset(&unblocked_sigs, SIGSEGV);
570  sigaddset(&unblocked_sigs, SIGBUS);
571  sigaddset(&unblocked_sigs, SIGFPE);
572  sigaddset(&unblocked_sigs, SR_signum);
573
574  if (!ReduceSignalUsage) {
575    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
576      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
577      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
578    }
579    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
580      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
581      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
582    }
583    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
584      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
585      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
586    }
587  }
588  // Fill in signals that are blocked by all but the VM thread.
589  sigemptyset(&vm_sigs);
590  if (!ReduceSignalUsage) {
591    sigaddset(&vm_sigs, BREAK_SIGNAL);
592  }
593  debug_only(signal_sets_initialized = true);
594
595}
596
597// These are signals that are unblocked while a thread is running Java.
598// (For some reason, they get blocked by default.)
599sigset_t* os::Bsd::unblocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &unblocked_sigs;
602}
603
604// These are the signals that are blocked while a (non-VM) thread is
605// running Java. Only the VM thread handles these signals.
606sigset_t* os::Bsd::vm_signals() {
607  assert(signal_sets_initialized, "Not initialized");
608  return &vm_sigs;
609}
610
611// These are signals that are blocked during cond_wait to allow debugger in
612sigset_t* os::Bsd::allowdebug_blocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &allowdebug_blocked_sigs;
615}
616
617void os::Bsd::hotspot_sigmask(Thread* thread) {
618
619  //Save caller's signal mask before setting VM signal mask
620  sigset_t caller_sigmask;
621  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
622
623  OSThread* osthread = thread->osthread();
624  osthread->set_caller_sigmask(caller_sigmask);
625
626  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
627
628  if (!ReduceSignalUsage) {
629    if (thread->is_VM_thread()) {
630      // Only the VM thread handles BREAK_SIGNAL ...
631      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
632    } else {
633      // ... all other threads block BREAK_SIGNAL
634      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
635    }
636  }
637}
638
639
640//////////////////////////////////////////////////////////////////////////////
641// create new thread
642
643#ifdef __APPLE__
644// library handle for calling objc_registerThreadWithCollector()
645// without static linking to the libobjc library
646  #define OBJC_LIB "/usr/lib/libobjc.dylib"
647  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
648typedef void (*objc_registerThreadWithCollector_t)();
649extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
650objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
651#endif
652
653#ifdef __APPLE__
654static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
655  // Additional thread_id used to correlate threads in SA
656  thread_identifier_info_data_t     m_ident_info;
657  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
658
659  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
660              (thread_info_t) &m_ident_info, &count);
661
662  return m_ident_info.thread_id;
663}
664#endif
665
666// Thread start routine for all newly created threads
667static void *java_start(Thread *thread) {
668  // Try to randomize the cache line index of hot stack frames.
669  // This helps when threads of the same stack traces evict each other's
670  // cache lines. The threads can be either from the same JVM instance, or
671  // from different JVM instances. The benefit is especially true for
672  // processors with hyperthreading technology.
673  static int counter = 0;
674  int pid = os::current_process_id();
675  alloca(((pid ^ counter++) & 7) * 128);
676
677  ThreadLocalStorage::set_thread(thread);
678
679  OSThread* osthread = thread->osthread();
680  Monitor* sync = osthread->startThread_lock();
681
682  osthread->set_thread_id(os::Bsd::gettid());
683
684#ifdef __APPLE__
685  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
686  guarantee(unique_thread_id != 0, "unique thread id was not found");
687  osthread->set_unique_thread_id(unique_thread_id);
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // calculate stack size if it's not specified by caller
745  if (stack_size == 0) {
746    stack_size = os::Bsd::default_stack_size(thr_type);
747
748    switch (thr_type) {
749    case os::java_thread:
750      // Java threads use ThreadStackSize which default value can be
751      // changed with the flag -Xss
752      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
753      stack_size = JavaThread::stack_size_at_create();
754      break;
755    case os::compiler_thread:
756      if (CompilerThreadStackSize > 0) {
757        stack_size = (size_t)(CompilerThreadStackSize * K);
758        break;
759      } // else fall through:
760        // use VMThreadStackSize if CompilerThreadStackSize is not defined
761    case os::vm_thread:
762    case os::pgc_thread:
763    case os::cgc_thread:
764    case os::watcher_thread:
765      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
766      break;
767    }
768  }
769
770  stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
771  pthread_attr_setstacksize(&attr, stack_size);
772
773  ThreadState state;
774
775  {
776    pthread_t tid;
777    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
778
779    pthread_attr_destroy(&attr);
780
781    if (ret != 0) {
782      if (PrintMiscellaneous && (Verbose || WizardMode)) {
783        perror("pthread_create()");
784      }
785      // Need to clean up stuff we've allocated so far
786      thread->set_osthread(NULL);
787      delete osthread;
788      return false;
789    }
790
791    // Store pthread info into the OSThread
792    osthread->set_pthread_id(tid);
793
794    // Wait until child thread is either initialized or aborted
795    {
796      Monitor* sync_with_child = osthread->startThread_lock();
797      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
798      while ((state = osthread->get_state()) == ALLOCATED) {
799        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
800      }
801    }
802
803  }
804
805  // Aborted due to thread limit being reached
806  if (state == ZOMBIE) {
807    thread->set_osthread(NULL);
808    delete osthread;
809    return false;
810  }
811
812  // The thread is returned suspended (in state INITIALIZED),
813  // and is started higher up in the call chain
814  assert(state == INITIALIZED, "race condition");
815  return true;
816}
817
818/////////////////////////////////////////////////////////////////////////////
819// attach existing thread
820
821// bootstrap the main thread
822bool os::create_main_thread(JavaThread* thread) {
823  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
824  return create_attached_thread(thread);
825}
826
827bool os::create_attached_thread(JavaThread* thread) {
828#ifdef ASSERT
829  thread->verify_not_published();
830#endif
831
832  // Allocate the OSThread object
833  OSThread* osthread = new OSThread(NULL, NULL);
834
835  if (osthread == NULL) {
836    return false;
837  }
838
839  osthread->set_thread_id(os::Bsd::gettid());
840
841  // Store pthread info into the OSThread
842#ifdef __APPLE__
843  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
844  guarantee(unique_thread_id != 0, "just checking");
845  osthread->set_unique_thread_id(unique_thread_id);
846#endif
847  osthread->set_pthread_id(::pthread_self());
848
849  // initialize floating point control register
850  os::Bsd::init_thread_fpu_state();
851
852  // Initial thread state is RUNNABLE
853  osthread->set_state(RUNNABLE);
854
855  thread->set_osthread(osthread);
856
857  // initialize signal mask for this thread
858  // and save the caller's signal mask
859  os::Bsd::hotspot_sigmask(thread);
860
861  return true;
862}
863
864void os::pd_start_thread(Thread* thread) {
865  OSThread * osthread = thread->osthread();
866  assert(osthread->get_state() != INITIALIZED, "just checking");
867  Monitor* sync_with_child = osthread->startThread_lock();
868  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
869  sync_with_child->notify();
870}
871
872// Free Bsd resources related to the OSThread
873void os::free_thread(OSThread* osthread) {
874  assert(osthread != NULL, "osthread not set");
875
876  if (Thread::current()->osthread() == osthread) {
877    // Restore caller's signal mask
878    sigset_t sigmask = osthread->caller_sigmask();
879    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
880  }
881
882  delete osthread;
883}
884
885//////////////////////////////////////////////////////////////////////////////
886// thread local storage
887
888// Restore the thread pointer if the destructor is called. This is in case
889// someone from JNI code sets up a destructor with pthread_key_create to run
890// detachCurrentThread on thread death. Unless we restore the thread pointer we
891// will hang or crash. When detachCurrentThread is called the key will be set
892// to null and we will not be called again. If detachCurrentThread is never
893// called we could loop forever depending on the pthread implementation.
894static void restore_thread_pointer(void* p) {
895  Thread* thread = (Thread*) p;
896  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
897}
898
899int os::allocate_thread_local_storage() {
900  pthread_key_t key;
901  int rslt = pthread_key_create(&key, restore_thread_pointer);
902  assert(rslt == 0, "cannot allocate thread local storage");
903  return (int)key;
904}
905
906// Note: This is currently not used by VM, as we don't destroy TLS key
907// on VM exit.
908void os::free_thread_local_storage(int index) {
909  int rslt = pthread_key_delete((pthread_key_t)index);
910  assert(rslt == 0, "invalid index");
911}
912
913void os::thread_local_storage_at_put(int index, void* value) {
914  int rslt = pthread_setspecific((pthread_key_t)index, value);
915  assert(rslt == 0, "pthread_setspecific failed");
916}
917
918extern "C" Thread* get_thread() {
919  return ThreadLocalStorage::thread();
920}
921
922
923////////////////////////////////////////////////////////////////////////////////
924// time support
925
926// Time since start-up in seconds to a fine granularity.
927// Used by VMSelfDestructTimer and the MemProfiler.
928double os::elapsedTime() {
929
930  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
931}
932
933jlong os::elapsed_counter() {
934  return javaTimeNanos() - initial_time_count;
935}
936
937jlong os::elapsed_frequency() {
938  return NANOSECS_PER_SEC; // nanosecond resolution
939}
940
941bool os::supports_vtime() { return true; }
942bool os::enable_vtime()   { return false; }
943bool os::vtime_enabled()  { return false; }
944
945double os::elapsedVTime() {
946  // better than nothing, but not much
947  return elapsedTime();
948}
949
950jlong os::javaTimeMillis() {
951  timeval time;
952  int status = gettimeofday(&time, NULL);
953  assert(status != -1, "bsd error");
954  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
955}
956
957void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
958  timeval time;
959  int status = gettimeofday(&time, NULL);
960  assert(status != -1, "bsd error");
961  seconds = jlong(time.tv_sec);
962  nanos = jlong(time.tv_usec) * 1000;
963}
964
965#ifndef __APPLE__
966  #ifndef CLOCK_MONOTONIC
967    #define CLOCK_MONOTONIC (1)
968  #endif
969#endif
970
971#ifdef __APPLE__
972void os::Bsd::clock_init() {
973  mach_timebase_info(&_timebase_info);
974}
975#else
976void os::Bsd::clock_init() {
977  struct timespec res;
978  struct timespec tp;
979  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
980      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
981    // yes, monotonic clock is supported
982    _clock_gettime = ::clock_gettime;
983  }
984}
985#endif
986
987
988
989#ifdef __APPLE__
990
991jlong os::javaTimeNanos() {
992  const uint64_t tm = mach_absolute_time();
993  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
994  const uint64_t prev = Bsd::_max_abstime;
995  if (now <= prev) {
996    return prev;   // same or retrograde time;
997  }
998  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
999  assert(obsv >= prev, "invariant");   // Monotonicity
1000  // If the CAS succeeded then we're done and return "now".
1001  // If the CAS failed and the observed value "obsv" is >= now then
1002  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1003  // some other thread raced this thread and installed a new value, in which case
1004  // we could either (a) retry the entire operation, (b) retry trying to install now
1005  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1006  // we might discard a higher "now" value in deference to a slightly lower but freshly
1007  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1008  // to (a) or (b) -- and greatly reduces coherence traffic.
1009  // We might also condition (c) on the magnitude of the delta between obsv and now.
1010  // Avoiding excessive CAS operations to hot RW locations is critical.
1011  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1012  return (prev == obsv) ? now : obsv;
1013}
1014
1015#else // __APPLE__
1016
1017jlong os::javaTimeNanos() {
1018  if (os::supports_monotonic_clock()) {
1019    struct timespec tp;
1020    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1021    assert(status == 0, "gettime error");
1022    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1023    return result;
1024  } else {
1025    timeval time;
1026    int status = gettimeofday(&time, NULL);
1027    assert(status != -1, "bsd error");
1028    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1029    return 1000 * usecs;
1030  }
1031}
1032
1033#endif // __APPLE__
1034
1035void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1036  if (os::supports_monotonic_clock()) {
1037    info_ptr->max_value = ALL_64_BITS;
1038
1039    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1040    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1041    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1042  } else {
1043    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1044    info_ptr->max_value = ALL_64_BITS;
1045
1046    // gettimeofday is a real time clock so it skips
1047    info_ptr->may_skip_backward = true;
1048    info_ptr->may_skip_forward = true;
1049  }
1050
1051  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1052}
1053
1054// Return the real, user, and system times in seconds from an
1055// arbitrary fixed point in the past.
1056bool os::getTimesSecs(double* process_real_time,
1057                      double* process_user_time,
1058                      double* process_system_time) {
1059  struct tms ticks;
1060  clock_t real_ticks = times(&ticks);
1061
1062  if (real_ticks == (clock_t) (-1)) {
1063    return false;
1064  } else {
1065    double ticks_per_second = (double) clock_tics_per_sec;
1066    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1067    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1068    *process_real_time = ((double) real_ticks) / ticks_per_second;
1069
1070    return true;
1071  }
1072}
1073
1074
1075char * os::local_time_string(char *buf, size_t buflen) {
1076  struct tm t;
1077  time_t long_time;
1078  time(&long_time);
1079  localtime_r(&long_time, &t);
1080  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1081               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1082               t.tm_hour, t.tm_min, t.tm_sec);
1083  return buf;
1084}
1085
1086struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1087  return localtime_r(clock, res);
1088}
1089
1090////////////////////////////////////////////////////////////////////////////////
1091// runtime exit support
1092
1093// Note: os::shutdown() might be called very early during initialization, or
1094// called from signal handler. Before adding something to os::shutdown(), make
1095// sure it is async-safe and can handle partially initialized VM.
1096void os::shutdown() {
1097
1098  // allow PerfMemory to attempt cleanup of any persistent resources
1099  perfMemory_exit();
1100
1101  // needs to remove object in file system
1102  AttachListener::abort();
1103
1104  // flush buffered output, finish log files
1105  ostream_abort();
1106
1107  // Check for abort hook
1108  abort_hook_t abort_hook = Arguments::abort_hook();
1109  if (abort_hook != NULL) {
1110    abort_hook();
1111  }
1112
1113}
1114
1115// Note: os::abort() might be called very early during initialization, or
1116// called from signal handler. Before adding something to os::abort(), make
1117// sure it is async-safe and can handle partially initialized VM.
1118void os::abort(bool dump_core, void* siginfo, void* context) {
1119  os::shutdown();
1120  if (dump_core) {
1121#ifndef PRODUCT
1122    fdStream out(defaultStream::output_fd());
1123    out.print_raw("Current thread is ");
1124    char buf[16];
1125    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1126    out.print_raw_cr(buf);
1127    out.print_raw_cr("Dumping core ...");
1128#endif
1129    ::abort(); // dump core
1130  }
1131
1132  ::exit(1);
1133}
1134
1135// Die immediately, no exit hook, no abort hook, no cleanup.
1136void os::die() {
1137  // _exit() on BsdThreads only kills current thread
1138  ::abort();
1139}
1140
1141// This method is a copy of JDK's sysGetLastErrorString
1142// from src/solaris/hpi/src/system_md.c
1143
1144size_t os::lasterror(char *buf, size_t len) {
1145  if (errno == 0)  return 0;
1146
1147  const char *s = ::strerror(errno);
1148  size_t n = ::strlen(s);
1149  if (n >= len) {
1150    n = len - 1;
1151  }
1152  ::strncpy(buf, s, n);
1153  buf[n] = '\0';
1154  return n;
1155}
1156
1157// Information of current thread in variety of formats
1158pid_t os::Bsd::gettid() {
1159  int retval = -1;
1160
1161#ifdef __APPLE__ //XNU kernel
1162  // despite the fact mach port is actually not a thread id use it
1163  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1164  retval = ::pthread_mach_thread_np(::pthread_self());
1165  guarantee(retval != 0, "just checking");
1166  return retval;
1167
1168#else
1169  #ifdef __FreeBSD__
1170  retval = syscall(SYS_thr_self);
1171  #else
1172    #ifdef __OpenBSD__
1173  retval = syscall(SYS_getthrid);
1174    #else
1175      #ifdef __NetBSD__
1176  retval = (pid_t) syscall(SYS__lwp_self);
1177      #endif
1178    #endif
1179  #endif
1180#endif
1181
1182  if (retval == -1) {
1183    return getpid();
1184  }
1185}
1186
1187intx os::current_thread_id() {
1188#ifdef __APPLE__
1189  return (intx)::pthread_mach_thread_np(::pthread_self());
1190#else
1191  return (intx)::pthread_self();
1192#endif
1193}
1194
1195int os::current_process_id() {
1196
1197  // Under the old bsd thread library, bsd gives each thread
1198  // its own process id. Because of this each thread will return
1199  // a different pid if this method were to return the result
1200  // of getpid(2). Bsd provides no api that returns the pid
1201  // of the launcher thread for the vm. This implementation
1202  // returns a unique pid, the pid of the launcher thread
1203  // that starts the vm 'process'.
1204
1205  // Under the NPTL, getpid() returns the same pid as the
1206  // launcher thread rather than a unique pid per thread.
1207  // Use gettid() if you want the old pre NPTL behaviour.
1208
1209  // if you are looking for the result of a call to getpid() that
1210  // returns a unique pid for the calling thread, then look at the
1211  // OSThread::thread_id() method in osThread_bsd.hpp file
1212
1213  return (int)(_initial_pid ? _initial_pid : getpid());
1214}
1215
1216// DLL functions
1217
1218#define JNI_LIB_PREFIX "lib"
1219#ifdef __APPLE__
1220  #define JNI_LIB_SUFFIX ".dylib"
1221#else
1222  #define JNI_LIB_SUFFIX ".so"
1223#endif
1224
1225const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1226
1227// This must be hard coded because it's the system's temporary
1228// directory not the java application's temp directory, ala java.io.tmpdir.
1229#ifdef __APPLE__
1230// macosx has a secure per-user temporary directory
1231char temp_path_storage[PATH_MAX];
1232const char* os::get_temp_directory() {
1233  static char *temp_path = NULL;
1234  if (temp_path == NULL) {
1235    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1236    if (pathSize == 0 || pathSize > PATH_MAX) {
1237      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1238    }
1239    temp_path = temp_path_storage;
1240  }
1241  return temp_path;
1242}
1243#else // __APPLE__
1244const char* os::get_temp_directory() { return "/tmp"; }
1245#endif // __APPLE__
1246
1247static bool file_exists(const char* filename) {
1248  struct stat statbuf;
1249  if (filename == NULL || strlen(filename) == 0) {
1250    return false;
1251  }
1252  return os::stat(filename, &statbuf) == 0;
1253}
1254
1255bool os::dll_build_name(char* buffer, size_t buflen,
1256                        const char* pname, const char* fname) {
1257  bool retval = false;
1258  // Copied from libhpi
1259  const size_t pnamelen = pname ? strlen(pname) : 0;
1260
1261  // Return error on buffer overflow.
1262  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1263    return retval;
1264  }
1265
1266  if (pnamelen == 0) {
1267    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1268    retval = true;
1269  } else if (strchr(pname, *os::path_separator()) != NULL) {
1270    int n;
1271    char** pelements = split_path(pname, &n);
1272    if (pelements == NULL) {
1273      return false;
1274    }
1275    for (int i = 0; i < n; i++) {
1276      // Really shouldn't be NULL, but check can't hurt
1277      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1278        continue; // skip the empty path values
1279      }
1280      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1281               pelements[i], fname);
1282      if (file_exists(buffer)) {
1283        retval = true;
1284        break;
1285      }
1286    }
1287    // release the storage
1288    for (int i = 0; i < n; i++) {
1289      if (pelements[i] != NULL) {
1290        FREE_C_HEAP_ARRAY(char, pelements[i]);
1291      }
1292    }
1293    if (pelements != NULL) {
1294      FREE_C_HEAP_ARRAY(char*, pelements);
1295    }
1296  } else {
1297    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1298    retval = true;
1299  }
1300  return retval;
1301}
1302
1303// check if addr is inside libjvm.so
1304bool os::address_is_in_vm(address addr) {
1305  static address libjvm_base_addr;
1306  Dl_info dlinfo;
1307
1308  if (libjvm_base_addr == NULL) {
1309    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1310      libjvm_base_addr = (address)dlinfo.dli_fbase;
1311    }
1312    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1313  }
1314
1315  if (dladdr((void *)addr, &dlinfo) != 0) {
1316    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1317  }
1318
1319  return false;
1320}
1321
1322
1323#define MACH_MAXSYMLEN 256
1324
1325bool os::dll_address_to_function_name(address addr, char *buf,
1326                                      int buflen, int *offset,
1327                                      bool demangle) {
1328  // buf is not optional, but offset is optional
1329  assert(buf != NULL, "sanity check");
1330
1331  Dl_info dlinfo;
1332  char localbuf[MACH_MAXSYMLEN];
1333
1334  if (dladdr((void*)addr, &dlinfo) != 0) {
1335    // see if we have a matching symbol
1336    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1337      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1338        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1339      }
1340      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1341      return true;
1342    }
1343    // no matching symbol so try for just file info
1344    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1345      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1346                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1347        return true;
1348      }
1349    }
1350
1351    // Handle non-dynamic manually:
1352    if (dlinfo.dli_fbase != NULL &&
1353        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1354                        dlinfo.dli_fbase)) {
1355      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1356        jio_snprintf(buf, buflen, "%s", localbuf);
1357      }
1358      return true;
1359    }
1360  }
1361  buf[0] = '\0';
1362  if (offset != NULL) *offset = -1;
1363  return false;
1364}
1365
1366// ported from solaris version
1367bool os::dll_address_to_library_name(address addr, char* buf,
1368                                     int buflen, int* offset) {
1369  // buf is not optional, but offset is optional
1370  assert(buf != NULL, "sanity check");
1371
1372  Dl_info dlinfo;
1373
1374  if (dladdr((void*)addr, &dlinfo) != 0) {
1375    if (dlinfo.dli_fname != NULL) {
1376      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1377    }
1378    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1379      *offset = addr - (address)dlinfo.dli_fbase;
1380    }
1381    return true;
1382  }
1383
1384  buf[0] = '\0';
1385  if (offset) *offset = -1;
1386  return false;
1387}
1388
1389// Loads .dll/.so and
1390// in case of error it checks if .dll/.so was built for the
1391// same architecture as Hotspot is running on
1392
1393#ifdef __APPLE__
1394void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1395#ifdef STATIC_BUILD
1396  return os::get_default_process_handle();
1397#else
1398  void * result= ::dlopen(filename, RTLD_LAZY);
1399  if (result != NULL) {
1400    // Successful loading
1401    return result;
1402  }
1403
1404  // Read system error message into ebuf
1405  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1406  ebuf[ebuflen-1]='\0';
1407
1408  return NULL;
1409#endif // STATIC_BUILD
1410}
1411#else
1412void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1413#ifdef STATIC_BUILD
1414  return os::get_default_process_handle();
1415#else
1416  void * result= ::dlopen(filename, RTLD_LAZY);
1417  if (result != NULL) {
1418    // Successful loading
1419    return result;
1420  }
1421
1422  Elf32_Ehdr elf_head;
1423
1424  // Read system error message into ebuf
1425  // It may or may not be overwritten below
1426  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1427  ebuf[ebuflen-1]='\0';
1428  int diag_msg_max_length=ebuflen-strlen(ebuf);
1429  char* diag_msg_buf=ebuf+strlen(ebuf);
1430
1431  if (diag_msg_max_length==0) {
1432    // No more space in ebuf for additional diagnostics message
1433    return NULL;
1434  }
1435
1436
1437  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1438
1439  if (file_descriptor < 0) {
1440    // Can't open library, report dlerror() message
1441    return NULL;
1442  }
1443
1444  bool failed_to_read_elf_head=
1445    (sizeof(elf_head)!=
1446     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1447
1448  ::close(file_descriptor);
1449  if (failed_to_read_elf_head) {
1450    // file i/o error - report dlerror() msg
1451    return NULL;
1452  }
1453
1454  typedef struct {
1455    Elf32_Half  code;         // Actual value as defined in elf.h
1456    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1457    char        elf_class;    // 32 or 64 bit
1458    char        endianess;    // MSB or LSB
1459    char*       name;         // String representation
1460  } arch_t;
1461
1462  #ifndef EM_486
1463    #define EM_486          6               /* Intel 80486 */
1464  #endif
1465
1466  #ifndef EM_MIPS_RS3_LE
1467    #define EM_MIPS_RS3_LE  10              /* MIPS */
1468  #endif
1469
1470  #ifndef EM_PPC64
1471    #define EM_PPC64        21              /* PowerPC64 */
1472  #endif
1473
1474  #ifndef EM_S390
1475    #define EM_S390         22              /* IBM System/390 */
1476  #endif
1477
1478  #ifndef EM_IA_64
1479    #define EM_IA_64        50              /* HP/Intel IA-64 */
1480  #endif
1481
1482  #ifndef EM_X86_64
1483    #define EM_X86_64       62              /* AMD x86-64 */
1484  #endif
1485
1486  static const arch_t arch_array[]={
1487    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1488    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1489    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1490    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1491    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1492    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1493    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1494    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1495    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1496    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1497    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1498    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1499    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1500    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1501    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1502    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1503  };
1504
1505  #if  (defined IA32)
1506  static  Elf32_Half running_arch_code=EM_386;
1507  #elif   (defined AMD64)
1508  static  Elf32_Half running_arch_code=EM_X86_64;
1509  #elif  (defined IA64)
1510  static  Elf32_Half running_arch_code=EM_IA_64;
1511  #elif  (defined __sparc) && (defined _LP64)
1512  static  Elf32_Half running_arch_code=EM_SPARCV9;
1513  #elif  (defined __sparc) && (!defined _LP64)
1514  static  Elf32_Half running_arch_code=EM_SPARC;
1515  #elif  (defined __powerpc64__)
1516  static  Elf32_Half running_arch_code=EM_PPC64;
1517  #elif  (defined __powerpc__)
1518  static  Elf32_Half running_arch_code=EM_PPC;
1519  #elif  (defined ARM)
1520  static  Elf32_Half running_arch_code=EM_ARM;
1521  #elif  (defined S390)
1522  static  Elf32_Half running_arch_code=EM_S390;
1523  #elif  (defined ALPHA)
1524  static  Elf32_Half running_arch_code=EM_ALPHA;
1525  #elif  (defined MIPSEL)
1526  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1527  #elif  (defined PARISC)
1528  static  Elf32_Half running_arch_code=EM_PARISC;
1529  #elif  (defined MIPS)
1530  static  Elf32_Half running_arch_code=EM_MIPS;
1531  #elif  (defined M68K)
1532  static  Elf32_Half running_arch_code=EM_68K;
1533  #else
1534    #error Method os::dll_load requires that one of following is defined:\
1535         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1536  #endif
1537
1538  // Identify compatability class for VM's architecture and library's architecture
1539  // Obtain string descriptions for architectures
1540
1541  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1542  int running_arch_index=-1;
1543
1544  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1545    if (running_arch_code == arch_array[i].code) {
1546      running_arch_index    = i;
1547    }
1548    if (lib_arch.code == arch_array[i].code) {
1549      lib_arch.compat_class = arch_array[i].compat_class;
1550      lib_arch.name         = arch_array[i].name;
1551    }
1552  }
1553
1554  assert(running_arch_index != -1,
1555         "Didn't find running architecture code (running_arch_code) in arch_array");
1556  if (running_arch_index == -1) {
1557    // Even though running architecture detection failed
1558    // we may still continue with reporting dlerror() message
1559    return NULL;
1560  }
1561
1562  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1563    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1564    return NULL;
1565  }
1566
1567#ifndef S390
1568  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1569    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1570    return NULL;
1571  }
1572#endif // !S390
1573
1574  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1575    if (lib_arch.name!=NULL) {
1576      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1577                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1578                 lib_arch.name, arch_array[running_arch_index].name);
1579    } else {
1580      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1581                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1582                 lib_arch.code,
1583                 arch_array[running_arch_index].name);
1584    }
1585  }
1586
1587  return NULL;
1588#endif // STATIC_BUILD
1589}
1590#endif // !__APPLE__
1591
1592void* os::get_default_process_handle() {
1593#ifdef __APPLE__
1594  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1595  // to avoid finding unexpected symbols on second (or later)
1596  // loads of a library.
1597  return (void*)::dlopen(NULL, RTLD_FIRST);
1598#else
1599  return (void*)::dlopen(NULL, RTLD_LAZY);
1600#endif
1601}
1602
1603// XXX: Do we need a lock around this as per Linux?
1604void* os::dll_lookup(void* handle, const char* name) {
1605  return dlsym(handle, name);
1606}
1607
1608int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1609  outputStream * out = (outputStream *) param;
1610  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1611  return 0;
1612}
1613
1614void os::print_dll_info(outputStream *st) {
1615  st->print_cr("Dynamic libraries:");
1616  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1617    st->print_cr("Error: Cannot print dynamic libraries.");
1618  }
1619}
1620
1621int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1622#ifdef RTLD_DI_LINKMAP
1623  Dl_info dli;
1624  void *handle;
1625  Link_map *map;
1626  Link_map *p;
1627
1628  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1629      dli.dli_fname == NULL) {
1630    return 1;
1631  }
1632  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1633  if (handle == NULL) {
1634    return 1;
1635  }
1636  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1637  if (map == NULL) {
1638    dlclose(handle);
1639    return 1;
1640  }
1641
1642  while (map->l_prev != NULL)
1643    map = map->l_prev;
1644
1645  while (map != NULL) {
1646    // Value for top_address is returned as 0 since we don't have any information about module size
1647    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1648      dlclose(handle);
1649      return 1;
1650    }
1651    map = map->l_next;
1652  }
1653
1654  dlclose(handle);
1655#elif defined(__APPLE__)
1656  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1657    // Value for top_address is returned as 0 since we don't have any information about module size
1658    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1659      return 1;
1660    }
1661  }
1662  return 0;
1663#else
1664  return 1;
1665#endif
1666}
1667
1668void os::get_summary_os_info(char* buf, size_t buflen) {
1669  // These buffers are small because we want this to be brief
1670  // and not use a lot of stack while generating the hs_err file.
1671  char os[100];
1672  size_t size = sizeof(os);
1673  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1674  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1675#ifdef __APPLE__
1676      strncpy(os, "Darwin", sizeof(os));
1677#elif __OpenBSD__
1678      strncpy(os, "OpenBSD", sizeof(os));
1679#else
1680      strncpy(os, "BSD", sizeof(os));
1681#endif
1682  }
1683
1684  char release[100];
1685  size = sizeof(release);
1686  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1687  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1688      // if error, leave blank
1689      strncpy(release, "", sizeof(release));
1690  }
1691  snprintf(buf, buflen, "%s %s", os, release);
1692}
1693
1694void os::print_os_info_brief(outputStream* st) {
1695  os::Posix::print_uname_info(st);
1696}
1697
1698void os::print_os_info(outputStream* st) {
1699  st->print("OS:");
1700
1701  os::Posix::print_uname_info(st);
1702
1703  os::Posix::print_rlimit_info(st);
1704
1705  os::Posix::print_load_average(st);
1706}
1707
1708void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1709  // Nothing to do for now.
1710}
1711
1712void os::get_summary_cpu_info(char* buf, size_t buflen) {
1713  unsigned int mhz;
1714  size_t size = sizeof(mhz);
1715  int mib[] = { CTL_HW, HW_CPU_FREQ };
1716  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1717    mhz = 1;  // looks like an error but can be divided by
1718  } else {
1719    mhz /= 1000000;  // reported in millions
1720  }
1721
1722  char model[100];
1723  size = sizeof(model);
1724  int mib_model[] = { CTL_HW, HW_MODEL };
1725  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1726    strncpy(model, cpu_arch, sizeof(model));
1727  }
1728
1729  char machine[100];
1730  size = sizeof(machine);
1731  int mib_machine[] = { CTL_HW, HW_MACHINE };
1732  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1733      strncpy(machine, "", sizeof(machine));
1734  }
1735
1736  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1737}
1738
1739void os::print_memory_info(outputStream* st) {
1740
1741  st->print("Memory:");
1742  st->print(" %dk page", os::vm_page_size()>>10);
1743
1744  st->print(", physical " UINT64_FORMAT "k",
1745            os::physical_memory() >> 10);
1746  st->print("(" UINT64_FORMAT "k free)",
1747            os::available_memory() >> 10);
1748  st->cr();
1749}
1750
1751void os::print_siginfo(outputStream* st, void* siginfo) {
1752  const siginfo_t* si = (const siginfo_t*)siginfo;
1753
1754  os::Posix::print_siginfo_brief(st, si);
1755
1756  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1757      UseSharedSpaces) {
1758    FileMapInfo* mapinfo = FileMapInfo::current_info();
1759    if (mapinfo->is_in_shared_space(si->si_addr)) {
1760      st->print("\n\nError accessing class data sharing archive."   \
1761                " Mapped file inaccessible during execution, "      \
1762                " possible disk/network problem.");
1763    }
1764  }
1765  st->cr();
1766}
1767
1768
1769static void print_signal_handler(outputStream* st, int sig,
1770                                 char* buf, size_t buflen);
1771
1772void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1773  st->print_cr("Signal Handlers:");
1774  print_signal_handler(st, SIGSEGV, buf, buflen);
1775  print_signal_handler(st, SIGBUS , buf, buflen);
1776  print_signal_handler(st, SIGFPE , buf, buflen);
1777  print_signal_handler(st, SIGPIPE, buf, buflen);
1778  print_signal_handler(st, SIGXFSZ, buf, buflen);
1779  print_signal_handler(st, SIGILL , buf, buflen);
1780  print_signal_handler(st, SR_signum, buf, buflen);
1781  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1782  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1783  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1784  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1785}
1786
1787static char saved_jvm_path[MAXPATHLEN] = {0};
1788
1789// Find the full path to the current module, libjvm
1790void os::jvm_path(char *buf, jint buflen) {
1791  // Error checking.
1792  if (buflen < MAXPATHLEN) {
1793    assert(false, "must use a large-enough buffer");
1794    buf[0] = '\0';
1795    return;
1796  }
1797  // Lazy resolve the path to current module.
1798  if (saved_jvm_path[0] != 0) {
1799    strcpy(buf, saved_jvm_path);
1800    return;
1801  }
1802
1803  char dli_fname[MAXPATHLEN];
1804  bool ret = dll_address_to_library_name(
1805                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1806                                         dli_fname, sizeof(dli_fname), NULL);
1807  assert(ret, "cannot locate libjvm");
1808  char *rp = NULL;
1809  if (ret && dli_fname[0] != '\0') {
1810    rp = realpath(dli_fname, buf);
1811  }
1812  if (rp == NULL) {
1813    return;
1814  }
1815
1816  if (Arguments::sun_java_launcher_is_altjvm()) {
1817    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1818    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1819    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1820    // appears at the right place in the string, then assume we are
1821    // installed in a JDK and we're done. Otherwise, check for a
1822    // JAVA_HOME environment variable and construct a path to the JVM
1823    // being overridden.
1824
1825    const char *p = buf + strlen(buf) - 1;
1826    for (int count = 0; p > buf && count < 5; ++count) {
1827      for (--p; p > buf && *p != '/'; --p)
1828        /* empty */ ;
1829    }
1830
1831    if (strncmp(p, "/jre/lib/", 9) != 0) {
1832      // Look for JAVA_HOME in the environment.
1833      char* java_home_var = ::getenv("JAVA_HOME");
1834      if (java_home_var != NULL && java_home_var[0] != 0) {
1835        char* jrelib_p;
1836        int len;
1837
1838        // Check the current module name "libjvm"
1839        p = strrchr(buf, '/');
1840        assert(strstr(p, "/libjvm") == p, "invalid library name");
1841
1842        rp = realpath(java_home_var, buf);
1843        if (rp == NULL) {
1844          return;
1845        }
1846
1847        // determine if this is a legacy image or modules image
1848        // modules image doesn't have "jre" subdirectory
1849        len = strlen(buf);
1850        assert(len < buflen, "Ran out of buffer space");
1851        jrelib_p = buf + len;
1852
1853        // Add the appropriate library subdir
1854        snprintf(jrelib_p, buflen-len, "/jre/lib");
1855        if (0 != access(buf, F_OK)) {
1856          snprintf(jrelib_p, buflen-len, "/lib");
1857        }
1858
1859        // Add the appropriate client or server subdir
1860        len = strlen(buf);
1861        jrelib_p = buf + len;
1862        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1863        if (0 != access(buf, F_OK)) {
1864          snprintf(jrelib_p, buflen-len, "%s", "");
1865        }
1866
1867        // If the path exists within JAVA_HOME, add the JVM library name
1868        // to complete the path to JVM being overridden.  Otherwise fallback
1869        // to the path to the current library.
1870        if (0 == access(buf, F_OK)) {
1871          // Use current module name "libjvm"
1872          len = strlen(buf);
1873          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1874        } else {
1875          // Fall back to path of current library
1876          rp = realpath(dli_fname, buf);
1877          if (rp == NULL) {
1878            return;
1879          }
1880        }
1881      }
1882    }
1883  }
1884
1885  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1886  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1887}
1888
1889void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1890  // no prefix required, not even "_"
1891}
1892
1893void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1894  // no suffix required
1895}
1896
1897////////////////////////////////////////////////////////////////////////////////
1898// sun.misc.Signal support
1899
1900static volatile jint sigint_count = 0;
1901
1902static void UserHandler(int sig, void *siginfo, void *context) {
1903  // 4511530 - sem_post is serialized and handled by the manager thread. When
1904  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1905  // don't want to flood the manager thread with sem_post requests.
1906  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1907    return;
1908  }
1909
1910  // Ctrl-C is pressed during error reporting, likely because the error
1911  // handler fails to abort. Let VM die immediately.
1912  if (sig == SIGINT && is_error_reported()) {
1913    os::die();
1914  }
1915
1916  os::signal_notify(sig);
1917}
1918
1919void* os::user_handler() {
1920  return CAST_FROM_FN_PTR(void*, UserHandler);
1921}
1922
1923extern "C" {
1924  typedef void (*sa_handler_t)(int);
1925  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1926}
1927
1928void* os::signal(int signal_number, void* handler) {
1929  struct sigaction sigAct, oldSigAct;
1930
1931  sigfillset(&(sigAct.sa_mask));
1932  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1933  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1934
1935  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1936    // -1 means registration failed
1937    return (void *)-1;
1938  }
1939
1940  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1941}
1942
1943void os::signal_raise(int signal_number) {
1944  ::raise(signal_number);
1945}
1946
1947// The following code is moved from os.cpp for making this
1948// code platform specific, which it is by its very nature.
1949
1950// Will be modified when max signal is changed to be dynamic
1951int os::sigexitnum_pd() {
1952  return NSIG;
1953}
1954
1955// a counter for each possible signal value
1956static volatile jint pending_signals[NSIG+1] = { 0 };
1957
1958// Bsd(POSIX) specific hand shaking semaphore.
1959#ifdef __APPLE__
1960typedef semaphore_t os_semaphore_t;
1961
1962  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1963  #define SEM_WAIT(sem)           semaphore_wait(sem)
1964  #define SEM_POST(sem)           semaphore_signal(sem)
1965  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1966#else
1967typedef sem_t os_semaphore_t;
1968
1969  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1970  #define SEM_WAIT(sem)           sem_wait(&sem)
1971  #define SEM_POST(sem)           sem_post(&sem)
1972  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1973#endif
1974
1975#ifdef __APPLE__
1976// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1977
1978static const char* sem_init_strerror(kern_return_t value) {
1979  switch (value) {
1980    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1981    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1982    default:                     return "Unknown";
1983  }
1984}
1985
1986OSXSemaphore::OSXSemaphore(uint value) {
1987  kern_return_t ret = SEM_INIT(_semaphore, value);
1988
1989  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1990}
1991
1992OSXSemaphore::~OSXSemaphore() {
1993  SEM_DESTROY(_semaphore);
1994}
1995
1996void OSXSemaphore::signal(uint count) {
1997  for (uint i = 0; i < count; i++) {
1998    kern_return_t ret = SEM_POST(_semaphore);
1999
2000    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
2001  }
2002}
2003
2004void OSXSemaphore::wait() {
2005  kern_return_t ret;
2006  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
2007    // Semaphore was interrupted. Retry.
2008  }
2009  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
2010}
2011
2012jlong OSXSemaphore::currenttime() {
2013  struct timeval tv;
2014  gettimeofday(&tv, NULL);
2015  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
2016}
2017
2018bool OSXSemaphore::trywait() {
2019  return timedwait(0, 0);
2020}
2021
2022bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
2023  kern_return_t kr = KERN_ABORTED;
2024  mach_timespec_t waitspec;
2025  waitspec.tv_sec = sec;
2026  waitspec.tv_nsec = nsec;
2027
2028  jlong starttime = currenttime();
2029
2030  kr = semaphore_timedwait(_semaphore, waitspec);
2031  while (kr == KERN_ABORTED) {
2032    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2033
2034    jlong current = currenttime();
2035    jlong passedtime = current - starttime;
2036
2037    if (passedtime >= totalwait) {
2038      waitspec.tv_sec = 0;
2039      waitspec.tv_nsec = 0;
2040    } else {
2041      jlong waittime = totalwait - (current - starttime);
2042      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2043      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2044    }
2045
2046    kr = semaphore_timedwait(_semaphore, waitspec);
2047  }
2048
2049  return kr == KERN_SUCCESS;
2050}
2051
2052#else
2053// Use POSIX implementation of semaphores.
2054
2055struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2056  struct timespec ts;
2057  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2058
2059  return ts;
2060}
2061
2062#endif // __APPLE__
2063
2064static os_semaphore_t sig_sem;
2065
2066#ifdef __APPLE__
2067static OSXSemaphore sr_semaphore;
2068#else
2069static PosixSemaphore sr_semaphore;
2070#endif
2071
2072void os::signal_init_pd() {
2073  // Initialize signal structures
2074  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2075
2076  // Initialize signal semaphore
2077  ::SEM_INIT(sig_sem, 0);
2078}
2079
2080void os::signal_notify(int sig) {
2081  Atomic::inc(&pending_signals[sig]);
2082  ::SEM_POST(sig_sem);
2083}
2084
2085static int check_pending_signals(bool wait) {
2086  Atomic::store(0, &sigint_count);
2087  for (;;) {
2088    for (int i = 0; i < NSIG + 1; i++) {
2089      jint n = pending_signals[i];
2090      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2091        return i;
2092      }
2093    }
2094    if (!wait) {
2095      return -1;
2096    }
2097    JavaThread *thread = JavaThread::current();
2098    ThreadBlockInVM tbivm(thread);
2099
2100    bool threadIsSuspended;
2101    do {
2102      thread->set_suspend_equivalent();
2103      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2104      ::SEM_WAIT(sig_sem);
2105
2106      // were we externally suspended while we were waiting?
2107      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2108      if (threadIsSuspended) {
2109        // The semaphore has been incremented, but while we were waiting
2110        // another thread suspended us. We don't want to continue running
2111        // while suspended because that would surprise the thread that
2112        // suspended us.
2113        ::SEM_POST(sig_sem);
2114
2115        thread->java_suspend_self();
2116      }
2117    } while (threadIsSuspended);
2118  }
2119}
2120
2121int os::signal_lookup() {
2122  return check_pending_signals(false);
2123}
2124
2125int os::signal_wait() {
2126  return check_pending_signals(true);
2127}
2128
2129////////////////////////////////////////////////////////////////////////////////
2130// Virtual Memory
2131
2132int os::vm_page_size() {
2133  // Seems redundant as all get out
2134  assert(os::Bsd::page_size() != -1, "must call os::init");
2135  return os::Bsd::page_size();
2136}
2137
2138// Solaris allocates memory by pages.
2139int os::vm_allocation_granularity() {
2140  assert(os::Bsd::page_size() != -1, "must call os::init");
2141  return os::Bsd::page_size();
2142}
2143
2144// Rationale behind this function:
2145//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2146//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2147//  samples for JITted code. Here we create private executable mapping over the code cache
2148//  and then we can use standard (well, almost, as mapping can change) way to provide
2149//  info for the reporting script by storing timestamp and location of symbol
2150void bsd_wrap_code(char* base, size_t size) {
2151  static volatile jint cnt = 0;
2152
2153  if (!UseOprofile) {
2154    return;
2155  }
2156
2157  char buf[PATH_MAX + 1];
2158  int num = Atomic::add(1, &cnt);
2159
2160  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2161           os::get_temp_directory(), os::current_process_id(), num);
2162  unlink(buf);
2163
2164  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2165
2166  if (fd != -1) {
2167    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2168    if (rv != (off_t)-1) {
2169      if (::write(fd, "", 1) == 1) {
2170        mmap(base, size,
2171             PROT_READ|PROT_WRITE|PROT_EXEC,
2172             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2173      }
2174    }
2175    ::close(fd);
2176    unlink(buf);
2177  }
2178}
2179
2180static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2181                                    int err) {
2182  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2183          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2184          strerror(err), err);
2185}
2186
2187// NOTE: Bsd kernel does not really reserve the pages for us.
2188//       All it does is to check if there are enough free pages
2189//       left at the time of mmap(). This could be a potential
2190//       problem.
2191bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2192  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2193#ifdef __OpenBSD__
2194  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2195  if (::mprotect(addr, size, prot) == 0) {
2196    return true;
2197  }
2198#else
2199  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2200                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2201  if (res != (uintptr_t) MAP_FAILED) {
2202    return true;
2203  }
2204#endif
2205
2206  // Warn about any commit errors we see in non-product builds just
2207  // in case mmap() doesn't work as described on the man page.
2208  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2209
2210  return false;
2211}
2212
2213bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2214                          bool exec) {
2215  // alignment_hint is ignored on this OS
2216  return pd_commit_memory(addr, size, exec);
2217}
2218
2219void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2220                                  const char* mesg) {
2221  assert(mesg != NULL, "mesg must be specified");
2222  if (!pd_commit_memory(addr, size, exec)) {
2223    // add extra info in product mode for vm_exit_out_of_memory():
2224    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2225    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2226  }
2227}
2228
2229void os::pd_commit_memory_or_exit(char* addr, size_t size,
2230                                  size_t alignment_hint, bool exec,
2231                                  const char* mesg) {
2232  // alignment_hint is ignored on this OS
2233  pd_commit_memory_or_exit(addr, size, exec, mesg);
2234}
2235
2236void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2237}
2238
2239void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2240  ::madvise(addr, bytes, MADV_DONTNEED);
2241}
2242
2243void os::numa_make_global(char *addr, size_t bytes) {
2244}
2245
2246void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2247}
2248
2249bool os::numa_topology_changed()   { return false; }
2250
2251size_t os::numa_get_groups_num() {
2252  return 1;
2253}
2254
2255int os::numa_get_group_id() {
2256  return 0;
2257}
2258
2259size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2260  if (size > 0) {
2261    ids[0] = 0;
2262    return 1;
2263  }
2264  return 0;
2265}
2266
2267bool os::get_page_info(char *start, page_info* info) {
2268  return false;
2269}
2270
2271char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2272  return end;
2273}
2274
2275
2276bool os::pd_uncommit_memory(char* addr, size_t size) {
2277#ifdef __OpenBSD__
2278  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2279  return ::mprotect(addr, size, PROT_NONE) == 0;
2280#else
2281  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2282                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2283  return res  != (uintptr_t) MAP_FAILED;
2284#endif
2285}
2286
2287bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2288  return os::commit_memory(addr, size, !ExecMem);
2289}
2290
2291// If this is a growable mapping, remove the guard pages entirely by
2292// munmap()ping them.  If not, just call uncommit_memory().
2293bool os::remove_stack_guard_pages(char* addr, size_t size) {
2294  return os::uncommit_memory(addr, size);
2295}
2296
2297// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2298// at 'requested_addr'. If there are existing memory mappings at the same
2299// location, however, they will be overwritten. If 'fixed' is false,
2300// 'requested_addr' is only treated as a hint, the return value may or
2301// may not start from the requested address. Unlike Bsd mmap(), this
2302// function returns NULL to indicate failure.
2303static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2304  char * addr;
2305  int flags;
2306
2307  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2308  if (fixed) {
2309    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2310    flags |= MAP_FIXED;
2311  }
2312
2313  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2314  // touch an uncommitted page. Otherwise, the read/write might
2315  // succeed if we have enough swap space to back the physical page.
2316  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2317                       flags, -1, 0);
2318
2319  return addr == MAP_FAILED ? NULL : addr;
2320}
2321
2322static int anon_munmap(char * addr, size_t size) {
2323  return ::munmap(addr, size) == 0;
2324}
2325
2326char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2327                            size_t alignment_hint) {
2328  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2329}
2330
2331bool os::pd_release_memory(char* addr, size_t size) {
2332  return anon_munmap(addr, size);
2333}
2334
2335static bool bsd_mprotect(char* addr, size_t size, int prot) {
2336  // Bsd wants the mprotect address argument to be page aligned.
2337  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2338
2339  // According to SUSv3, mprotect() should only be used with mappings
2340  // established by mmap(), and mmap() always maps whole pages. Unaligned
2341  // 'addr' likely indicates problem in the VM (e.g. trying to change
2342  // protection of malloc'ed or statically allocated memory). Check the
2343  // caller if you hit this assert.
2344  assert(addr == bottom, "sanity check");
2345
2346  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2347  return ::mprotect(bottom, size, prot) == 0;
2348}
2349
2350// Set protections specified
2351bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2352                        bool is_committed) {
2353  unsigned int p = 0;
2354  switch (prot) {
2355  case MEM_PROT_NONE: p = PROT_NONE; break;
2356  case MEM_PROT_READ: p = PROT_READ; break;
2357  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2358  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2359  default:
2360    ShouldNotReachHere();
2361  }
2362  // is_committed is unused.
2363  return bsd_mprotect(addr, bytes, p);
2364}
2365
2366bool os::guard_memory(char* addr, size_t size) {
2367  return bsd_mprotect(addr, size, PROT_NONE);
2368}
2369
2370bool os::unguard_memory(char* addr, size_t size) {
2371  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2372}
2373
2374bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2375  return false;
2376}
2377
2378// Large page support
2379
2380static size_t _large_page_size = 0;
2381
2382void os::large_page_init() {
2383}
2384
2385
2386char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2387  fatal("This code is not used or maintained.");
2388
2389  // "exec" is passed in but not used.  Creating the shared image for
2390  // the code cache doesn't have an SHM_X executable permission to check.
2391  assert(UseLargePages && UseSHM, "only for SHM large pages");
2392
2393  key_t key = IPC_PRIVATE;
2394  char *addr;
2395
2396  bool warn_on_failure = UseLargePages &&
2397                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2398                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2399
2400  // Create a large shared memory region to attach to based on size.
2401  // Currently, size is the total size of the heap
2402  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2403  if (shmid == -1) {
2404    // Possible reasons for shmget failure:
2405    // 1. shmmax is too small for Java heap.
2406    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2407    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2408    // 2. not enough large page memory.
2409    //    > check available large pages: cat /proc/meminfo
2410    //    > increase amount of large pages:
2411    //          echo new_value > /proc/sys/vm/nr_hugepages
2412    //      Note 1: different Bsd may use different name for this property,
2413    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2414    //      Note 2: it's possible there's enough physical memory available but
2415    //            they are so fragmented after a long run that they can't
2416    //            coalesce into large pages. Try to reserve large pages when
2417    //            the system is still "fresh".
2418    if (warn_on_failure) {
2419      warning("Failed to reserve shared memory (errno = %d).", errno);
2420    }
2421    return NULL;
2422  }
2423
2424  // attach to the region
2425  addr = (char*)shmat(shmid, req_addr, 0);
2426  int err = errno;
2427
2428  // Remove shmid. If shmat() is successful, the actual shared memory segment
2429  // will be deleted when it's detached by shmdt() or when the process
2430  // terminates. If shmat() is not successful this will remove the shared
2431  // segment immediately.
2432  shmctl(shmid, IPC_RMID, NULL);
2433
2434  if ((intptr_t)addr == -1) {
2435    if (warn_on_failure) {
2436      warning("Failed to attach shared memory (errno = %d).", err);
2437    }
2438    return NULL;
2439  }
2440
2441  // The memory is committed
2442  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2443
2444  return addr;
2445}
2446
2447bool os::release_memory_special(char* base, size_t bytes) {
2448  if (MemTracker::tracking_level() > NMT_minimal) {
2449    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2450    // detaching the SHM segment will also delete it, see reserve_memory_special()
2451    int rslt = shmdt(base);
2452    if (rslt == 0) {
2453      tkr.record((address)base, bytes);
2454      return true;
2455    } else {
2456      return false;
2457    }
2458  } else {
2459    return shmdt(base) == 0;
2460  }
2461}
2462
2463size_t os::large_page_size() {
2464  return _large_page_size;
2465}
2466
2467// HugeTLBFS allows application to commit large page memory on demand;
2468// with SysV SHM the entire memory region must be allocated as shared
2469// memory.
2470bool os::can_commit_large_page_memory() {
2471  return UseHugeTLBFS;
2472}
2473
2474bool os::can_execute_large_page_memory() {
2475  return UseHugeTLBFS;
2476}
2477
2478// Reserve memory at an arbitrary address, only if that area is
2479// available (and not reserved for something else).
2480
2481char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2482  const int max_tries = 10;
2483  char* base[max_tries];
2484  size_t size[max_tries];
2485  const size_t gap = 0x000000;
2486
2487  // Assert only that the size is a multiple of the page size, since
2488  // that's all that mmap requires, and since that's all we really know
2489  // about at this low abstraction level.  If we need higher alignment,
2490  // we can either pass an alignment to this method or verify alignment
2491  // in one of the methods further up the call chain.  See bug 5044738.
2492  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2493
2494  // Repeatedly allocate blocks until the block is allocated at the
2495  // right spot.
2496
2497  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2498  // if kernel honors the hint then we can return immediately.
2499  char * addr = anon_mmap(requested_addr, bytes, false);
2500  if (addr == requested_addr) {
2501    return requested_addr;
2502  }
2503
2504  if (addr != NULL) {
2505    // mmap() is successful but it fails to reserve at the requested address
2506    anon_munmap(addr, bytes);
2507  }
2508
2509  int i;
2510  for (i = 0; i < max_tries; ++i) {
2511    base[i] = reserve_memory(bytes);
2512
2513    if (base[i] != NULL) {
2514      // Is this the block we wanted?
2515      if (base[i] == requested_addr) {
2516        size[i] = bytes;
2517        break;
2518      }
2519
2520      // Does this overlap the block we wanted? Give back the overlapped
2521      // parts and try again.
2522
2523      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2524      if (top_overlap >= 0 && top_overlap < bytes) {
2525        unmap_memory(base[i], top_overlap);
2526        base[i] += top_overlap;
2527        size[i] = bytes - top_overlap;
2528      } else {
2529        size_t bottom_overlap = base[i] + bytes - requested_addr;
2530        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2531          unmap_memory(requested_addr, bottom_overlap);
2532          size[i] = bytes - bottom_overlap;
2533        } else {
2534          size[i] = bytes;
2535        }
2536      }
2537    }
2538  }
2539
2540  // Give back the unused reserved pieces.
2541
2542  for (int j = 0; j < i; ++j) {
2543    if (base[j] != NULL) {
2544      unmap_memory(base[j], size[j]);
2545    }
2546  }
2547
2548  if (i < max_tries) {
2549    return requested_addr;
2550  } else {
2551    return NULL;
2552  }
2553}
2554
2555size_t os::read(int fd, void *buf, unsigned int nBytes) {
2556  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2557}
2558
2559size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2560  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2561}
2562
2563void os::naked_short_sleep(jlong ms) {
2564  struct timespec req;
2565
2566  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2567  req.tv_sec = 0;
2568  if (ms > 0) {
2569    req.tv_nsec = (ms % 1000) * 1000000;
2570  } else {
2571    req.tv_nsec = 1;
2572  }
2573
2574  nanosleep(&req, NULL);
2575
2576  return;
2577}
2578
2579// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2580void os::infinite_sleep() {
2581  while (true) {    // sleep forever ...
2582    ::sleep(100);   // ... 100 seconds at a time
2583  }
2584}
2585
2586// Used to convert frequent JVM_Yield() to nops
2587bool os::dont_yield() {
2588  return DontYieldALot;
2589}
2590
2591void os::naked_yield() {
2592  sched_yield();
2593}
2594
2595////////////////////////////////////////////////////////////////////////////////
2596// thread priority support
2597
2598// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2599// only supports dynamic priority, static priority must be zero. For real-time
2600// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2601// However, for large multi-threaded applications, SCHED_RR is not only slower
2602// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2603// of 5 runs - Sep 2005).
2604//
2605// The following code actually changes the niceness of kernel-thread/LWP. It
2606// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2607// not the entire user process, and user level threads are 1:1 mapped to kernel
2608// threads. It has always been the case, but could change in the future. For
2609// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2610// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2611
2612#if !defined(__APPLE__)
2613int os::java_to_os_priority[CriticalPriority + 1] = {
2614  19,              // 0 Entry should never be used
2615
2616   0,              // 1 MinPriority
2617   3,              // 2
2618   6,              // 3
2619
2620  10,              // 4
2621  15,              // 5 NormPriority
2622  18,              // 6
2623
2624  21,              // 7
2625  25,              // 8
2626  28,              // 9 NearMaxPriority
2627
2628  31,              // 10 MaxPriority
2629
2630  31               // 11 CriticalPriority
2631};
2632#else
2633// Using Mach high-level priority assignments
2634int os::java_to_os_priority[CriticalPriority + 1] = {
2635   0,              // 0 Entry should never be used (MINPRI_USER)
2636
2637  27,              // 1 MinPriority
2638  28,              // 2
2639  29,              // 3
2640
2641  30,              // 4
2642  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2643  32,              // 6
2644
2645  33,              // 7
2646  34,              // 8
2647  35,              // 9 NearMaxPriority
2648
2649  36,              // 10 MaxPriority
2650
2651  36               // 11 CriticalPriority
2652};
2653#endif
2654
2655static int prio_init() {
2656  if (ThreadPriorityPolicy == 1) {
2657    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2658    // if effective uid is not root. Perhaps, a more elegant way of doing
2659    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2660    if (geteuid() != 0) {
2661      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2662        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2663      }
2664      ThreadPriorityPolicy = 0;
2665    }
2666  }
2667  if (UseCriticalJavaThreadPriority) {
2668    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2669  }
2670  return 0;
2671}
2672
2673OSReturn os::set_native_priority(Thread* thread, int newpri) {
2674  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2675
2676#ifdef __OpenBSD__
2677  // OpenBSD pthread_setprio starves low priority threads
2678  return OS_OK;
2679#elif defined(__FreeBSD__)
2680  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2681#elif defined(__APPLE__) || defined(__NetBSD__)
2682  struct sched_param sp;
2683  int policy;
2684  pthread_t self = pthread_self();
2685
2686  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2687    return OS_ERR;
2688  }
2689
2690  sp.sched_priority = newpri;
2691  if (pthread_setschedparam(self, policy, &sp) != 0) {
2692    return OS_ERR;
2693  }
2694
2695  return OS_OK;
2696#else
2697  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2698  return (ret == 0) ? OS_OK : OS_ERR;
2699#endif
2700}
2701
2702OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2703  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2704    *priority_ptr = java_to_os_priority[NormPriority];
2705    return OS_OK;
2706  }
2707
2708  errno = 0;
2709#if defined(__OpenBSD__) || defined(__FreeBSD__)
2710  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2711#elif defined(__APPLE__) || defined(__NetBSD__)
2712  int policy;
2713  struct sched_param sp;
2714
2715  pthread_getschedparam(pthread_self(), &policy, &sp);
2716  *priority_ptr = sp.sched_priority;
2717#else
2718  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2719#endif
2720  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2721}
2722
2723// Hint to the underlying OS that a task switch would not be good.
2724// Void return because it's a hint and can fail.
2725void os::hint_no_preempt() {}
2726
2727////////////////////////////////////////////////////////////////////////////////
2728// suspend/resume support
2729
2730//  the low-level signal-based suspend/resume support is a remnant from the
2731//  old VM-suspension that used to be for java-suspension, safepoints etc,
2732//  within hotspot. Now there is a single use-case for this:
2733//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2734//      that runs in the watcher thread.
2735//  The remaining code is greatly simplified from the more general suspension
2736//  code that used to be used.
2737//
2738//  The protocol is quite simple:
2739//  - suspend:
2740//      - sends a signal to the target thread
2741//      - polls the suspend state of the osthread using a yield loop
2742//      - target thread signal handler (SR_handler) sets suspend state
2743//        and blocks in sigsuspend until continued
2744//  - resume:
2745//      - sets target osthread state to continue
2746//      - sends signal to end the sigsuspend loop in the SR_handler
2747//
2748//  Note that the SR_lock plays no role in this suspend/resume protocol.
2749
2750static void resume_clear_context(OSThread *osthread) {
2751  osthread->set_ucontext(NULL);
2752  osthread->set_siginfo(NULL);
2753}
2754
2755static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2756  osthread->set_ucontext(context);
2757  osthread->set_siginfo(siginfo);
2758}
2759
2760// Handler function invoked when a thread's execution is suspended or
2761// resumed. We have to be careful that only async-safe functions are
2762// called here (Note: most pthread functions are not async safe and
2763// should be avoided.)
2764//
2765// Note: sigwait() is a more natural fit than sigsuspend() from an
2766// interface point of view, but sigwait() prevents the signal hander
2767// from being run. libpthread would get very confused by not having
2768// its signal handlers run and prevents sigwait()'s use with the
2769// mutex granting granting signal.
2770//
2771// Currently only ever called on the VMThread or JavaThread
2772//
2773static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2774  // Save and restore errno to avoid confusing native code with EINTR
2775  // after sigsuspend.
2776  int old_errno = errno;
2777
2778  Thread* thread = Thread::current();
2779  OSThread* osthread = thread->osthread();
2780  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2781
2782  os::SuspendResume::State current = osthread->sr.state();
2783  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2784    suspend_save_context(osthread, siginfo, context);
2785
2786    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2787    os::SuspendResume::State state = osthread->sr.suspended();
2788    if (state == os::SuspendResume::SR_SUSPENDED) {
2789      sigset_t suspend_set;  // signals for sigsuspend()
2790
2791      // get current set of blocked signals and unblock resume signal
2792      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2793      sigdelset(&suspend_set, SR_signum);
2794
2795      sr_semaphore.signal();
2796      // wait here until we are resumed
2797      while (1) {
2798        sigsuspend(&suspend_set);
2799
2800        os::SuspendResume::State result = osthread->sr.running();
2801        if (result == os::SuspendResume::SR_RUNNING) {
2802          sr_semaphore.signal();
2803          break;
2804        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2805          ShouldNotReachHere();
2806        }
2807      }
2808
2809    } else if (state == os::SuspendResume::SR_RUNNING) {
2810      // request was cancelled, continue
2811    } else {
2812      ShouldNotReachHere();
2813    }
2814
2815    resume_clear_context(osthread);
2816  } else if (current == os::SuspendResume::SR_RUNNING) {
2817    // request was cancelled, continue
2818  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2819    // ignore
2820  } else {
2821    // ignore
2822  }
2823
2824  errno = old_errno;
2825}
2826
2827
2828static int SR_initialize() {
2829  struct sigaction act;
2830  char *s;
2831  // Get signal number to use for suspend/resume
2832  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2833    int sig = ::strtol(s, 0, 10);
2834    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2835        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2836      SR_signum = sig;
2837    } else {
2838      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2839              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2840    }
2841  }
2842
2843  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2844         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2845
2846  sigemptyset(&SR_sigset);
2847  sigaddset(&SR_sigset, SR_signum);
2848
2849  // Set up signal handler for suspend/resume
2850  act.sa_flags = SA_RESTART|SA_SIGINFO;
2851  act.sa_handler = (void (*)(int)) SR_handler;
2852
2853  // SR_signum is blocked by default.
2854  // 4528190 - We also need to block pthread restart signal (32 on all
2855  // supported Bsd platforms). Note that BsdThreads need to block
2856  // this signal for all threads to work properly. So we don't have
2857  // to use hard-coded signal number when setting up the mask.
2858  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2859
2860  if (sigaction(SR_signum, &act, 0) == -1) {
2861    return -1;
2862  }
2863
2864  // Save signal flag
2865  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2866  return 0;
2867}
2868
2869static int sr_notify(OSThread* osthread) {
2870  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2871  assert_status(status == 0, status, "pthread_kill");
2872  return status;
2873}
2874
2875// "Randomly" selected value for how long we want to spin
2876// before bailing out on suspending a thread, also how often
2877// we send a signal to a thread we want to resume
2878static const int RANDOMLY_LARGE_INTEGER = 1000000;
2879static const int RANDOMLY_LARGE_INTEGER2 = 100;
2880
2881// returns true on success and false on error - really an error is fatal
2882// but this seems the normal response to library errors
2883static bool do_suspend(OSThread* osthread) {
2884  assert(osthread->sr.is_running(), "thread should be running");
2885  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2886
2887  // mark as suspended and send signal
2888  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2889    // failed to switch, state wasn't running?
2890    ShouldNotReachHere();
2891    return false;
2892  }
2893
2894  if (sr_notify(osthread) != 0) {
2895    ShouldNotReachHere();
2896  }
2897
2898  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2899  while (true) {
2900    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2901      break;
2902    } else {
2903      // timeout
2904      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2905      if (cancelled == os::SuspendResume::SR_RUNNING) {
2906        return false;
2907      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2908        // make sure that we consume the signal on the semaphore as well
2909        sr_semaphore.wait();
2910        break;
2911      } else {
2912        ShouldNotReachHere();
2913        return false;
2914      }
2915    }
2916  }
2917
2918  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2919  return true;
2920}
2921
2922static void do_resume(OSThread* osthread) {
2923  assert(osthread->sr.is_suspended(), "thread should be suspended");
2924  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2925
2926  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2927    // failed to switch to WAKEUP_REQUEST
2928    ShouldNotReachHere();
2929    return;
2930  }
2931
2932  while (true) {
2933    if (sr_notify(osthread) == 0) {
2934      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2935        if (osthread->sr.is_running()) {
2936          return;
2937        }
2938      }
2939    } else {
2940      ShouldNotReachHere();
2941    }
2942  }
2943
2944  guarantee(osthread->sr.is_running(), "Must be running!");
2945}
2946
2947///////////////////////////////////////////////////////////////////////////////////
2948// signal handling (except suspend/resume)
2949
2950// This routine may be used by user applications as a "hook" to catch signals.
2951// The user-defined signal handler must pass unrecognized signals to this
2952// routine, and if it returns true (non-zero), then the signal handler must
2953// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2954// routine will never retun false (zero), but instead will execute a VM panic
2955// routine kill the process.
2956//
2957// If this routine returns false, it is OK to call it again.  This allows
2958// the user-defined signal handler to perform checks either before or after
2959// the VM performs its own checks.  Naturally, the user code would be making
2960// a serious error if it tried to handle an exception (such as a null check
2961// or breakpoint) that the VM was generating for its own correct operation.
2962//
2963// This routine may recognize any of the following kinds of signals:
2964//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2965// It should be consulted by handlers for any of those signals.
2966//
2967// The caller of this routine must pass in the three arguments supplied
2968// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2969// field of the structure passed to sigaction().  This routine assumes that
2970// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2971//
2972// Note that the VM will print warnings if it detects conflicting signal
2973// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2974//
2975extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2976                                               void* ucontext,
2977                                               int abort_if_unrecognized);
2978
2979void signalHandler(int sig, siginfo_t* info, void* uc) {
2980  assert(info != NULL && uc != NULL, "it must be old kernel");
2981  int orig_errno = errno;  // Preserve errno value over signal handler.
2982  JVM_handle_bsd_signal(sig, info, uc, true);
2983  errno = orig_errno;
2984}
2985
2986
2987// This boolean allows users to forward their own non-matching signals
2988// to JVM_handle_bsd_signal, harmlessly.
2989bool os::Bsd::signal_handlers_are_installed = false;
2990
2991// For signal-chaining
2992struct sigaction sigact[NSIG];
2993uint32_t sigs = 0;
2994#if (32 < NSIG-1)
2995#error "Not all signals can be encoded in sigs. Adapt its type!"
2996#endif
2997bool os::Bsd::libjsig_is_loaded = false;
2998typedef struct sigaction *(*get_signal_t)(int);
2999get_signal_t os::Bsd::get_signal_action = NULL;
3000
3001struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3002  struct sigaction *actp = NULL;
3003
3004  if (libjsig_is_loaded) {
3005    // Retrieve the old signal handler from libjsig
3006    actp = (*get_signal_action)(sig);
3007  }
3008  if (actp == NULL) {
3009    // Retrieve the preinstalled signal handler from jvm
3010    actp = get_preinstalled_handler(sig);
3011  }
3012
3013  return actp;
3014}
3015
3016static bool call_chained_handler(struct sigaction *actp, int sig,
3017                                 siginfo_t *siginfo, void *context) {
3018  // Call the old signal handler
3019  if (actp->sa_handler == SIG_DFL) {
3020    // It's more reasonable to let jvm treat it as an unexpected exception
3021    // instead of taking the default action.
3022    return false;
3023  } else if (actp->sa_handler != SIG_IGN) {
3024    if ((actp->sa_flags & SA_NODEFER) == 0) {
3025      // automaticlly block the signal
3026      sigaddset(&(actp->sa_mask), sig);
3027    }
3028
3029    sa_handler_t hand;
3030    sa_sigaction_t sa;
3031    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3032    // retrieve the chained handler
3033    if (siginfo_flag_set) {
3034      sa = actp->sa_sigaction;
3035    } else {
3036      hand = actp->sa_handler;
3037    }
3038
3039    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3040      actp->sa_handler = SIG_DFL;
3041    }
3042
3043    // try to honor the signal mask
3044    sigset_t oset;
3045    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3046
3047    // call into the chained handler
3048    if (siginfo_flag_set) {
3049      (*sa)(sig, siginfo, context);
3050    } else {
3051      (*hand)(sig);
3052    }
3053
3054    // restore the signal mask
3055    pthread_sigmask(SIG_SETMASK, &oset, 0);
3056  }
3057  // Tell jvm's signal handler the signal is taken care of.
3058  return true;
3059}
3060
3061bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3062  bool chained = false;
3063  // signal-chaining
3064  if (UseSignalChaining) {
3065    struct sigaction *actp = get_chained_signal_action(sig);
3066    if (actp != NULL) {
3067      chained = call_chained_handler(actp, sig, siginfo, context);
3068    }
3069  }
3070  return chained;
3071}
3072
3073struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3074  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3075    return &sigact[sig];
3076  }
3077  return NULL;
3078}
3079
3080void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3081  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3082  sigact[sig] = oldAct;
3083  sigs |= (uint32_t)1 << (sig-1);
3084}
3085
3086// for diagnostic
3087int sigflags[NSIG];
3088
3089int os::Bsd::get_our_sigflags(int sig) {
3090  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3091  return sigflags[sig];
3092}
3093
3094void os::Bsd::set_our_sigflags(int sig, int flags) {
3095  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3096  if (sig > 0 && sig < NSIG) {
3097    sigflags[sig] = flags;
3098  }
3099}
3100
3101void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3102  // Check for overwrite.
3103  struct sigaction oldAct;
3104  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3105
3106  void* oldhand = oldAct.sa_sigaction
3107                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3108                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3109  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3110      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3111      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3112    if (AllowUserSignalHandlers || !set_installed) {
3113      // Do not overwrite; user takes responsibility to forward to us.
3114      return;
3115    } else if (UseSignalChaining) {
3116      // save the old handler in jvm
3117      save_preinstalled_handler(sig, oldAct);
3118      // libjsig also interposes the sigaction() call below and saves the
3119      // old sigaction on it own.
3120    } else {
3121      fatal("Encountered unexpected pre-existing sigaction handler "
3122            "%#lx for signal %d.", (long)oldhand, sig);
3123    }
3124  }
3125
3126  struct sigaction sigAct;
3127  sigfillset(&(sigAct.sa_mask));
3128  sigAct.sa_handler = SIG_DFL;
3129  if (!set_installed) {
3130    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3131  } else {
3132    sigAct.sa_sigaction = signalHandler;
3133    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3134  }
3135#ifdef __APPLE__
3136  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3137  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3138  // if the signal handler declares it will handle it on alternate stack.
3139  // Notice we only declare we will handle it on alt stack, but we are not
3140  // actually going to use real alt stack - this is just a workaround.
3141  // Please see ux_exception.c, method catch_mach_exception_raise for details
3142  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3143  if (sig == SIGSEGV) {
3144    sigAct.sa_flags |= SA_ONSTACK;
3145  }
3146#endif
3147
3148  // Save flags, which are set by ours
3149  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3150  sigflags[sig] = sigAct.sa_flags;
3151
3152  int ret = sigaction(sig, &sigAct, &oldAct);
3153  assert(ret == 0, "check");
3154
3155  void* oldhand2  = oldAct.sa_sigaction
3156                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3157                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3158  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3159}
3160
3161// install signal handlers for signals that HotSpot needs to
3162// handle in order to support Java-level exception handling.
3163
3164void os::Bsd::install_signal_handlers() {
3165  if (!signal_handlers_are_installed) {
3166    signal_handlers_are_installed = true;
3167
3168    // signal-chaining
3169    typedef void (*signal_setting_t)();
3170    signal_setting_t begin_signal_setting = NULL;
3171    signal_setting_t end_signal_setting = NULL;
3172    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3173                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3174    if (begin_signal_setting != NULL) {
3175      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3176                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3177      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3178                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3179      libjsig_is_loaded = true;
3180      assert(UseSignalChaining, "should enable signal-chaining");
3181    }
3182    if (libjsig_is_loaded) {
3183      // Tell libjsig jvm is setting signal handlers
3184      (*begin_signal_setting)();
3185    }
3186
3187    set_signal_handler(SIGSEGV, true);
3188    set_signal_handler(SIGPIPE, true);
3189    set_signal_handler(SIGBUS, true);
3190    set_signal_handler(SIGILL, true);
3191    set_signal_handler(SIGFPE, true);
3192    set_signal_handler(SIGXFSZ, true);
3193
3194#if defined(__APPLE__)
3195    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3196    // signals caught and handled by the JVM. To work around this, we reset the mach task
3197    // signal handler that's placed on our process by CrashReporter. This disables
3198    // CrashReporter-based reporting.
3199    //
3200    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3201    // on caught fatal signals.
3202    //
3203    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3204    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3205    // exception handling, while leaving the standard BSD signal handlers functional.
3206    kern_return_t kr;
3207    kr = task_set_exception_ports(mach_task_self(),
3208                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3209                                  MACH_PORT_NULL,
3210                                  EXCEPTION_STATE_IDENTITY,
3211                                  MACHINE_THREAD_STATE);
3212
3213    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3214#endif
3215
3216    if (libjsig_is_loaded) {
3217      // Tell libjsig jvm finishes setting signal handlers
3218      (*end_signal_setting)();
3219    }
3220
3221    // We don't activate signal checker if libjsig is in place, we trust ourselves
3222    // and if UserSignalHandler is installed all bets are off
3223    if (CheckJNICalls) {
3224      if (libjsig_is_loaded) {
3225        if (PrintJNIResolving) {
3226          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3227        }
3228        check_signals = false;
3229      }
3230      if (AllowUserSignalHandlers) {
3231        if (PrintJNIResolving) {
3232          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3233        }
3234        check_signals = false;
3235      }
3236    }
3237  }
3238}
3239
3240
3241/////
3242// glibc on Bsd platform uses non-documented flag
3243// to indicate, that some special sort of signal
3244// trampoline is used.
3245// We will never set this flag, and we should
3246// ignore this flag in our diagnostic
3247#ifdef SIGNIFICANT_SIGNAL_MASK
3248  #undef SIGNIFICANT_SIGNAL_MASK
3249#endif
3250#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3251
3252static const char* get_signal_handler_name(address handler,
3253                                           char* buf, int buflen) {
3254  int offset;
3255  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3256  if (found) {
3257    // skip directory names
3258    const char *p1, *p2;
3259    p1 = buf;
3260    size_t len = strlen(os::file_separator());
3261    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3262    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3263  } else {
3264    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3265  }
3266  return buf;
3267}
3268
3269static void print_signal_handler(outputStream* st, int sig,
3270                                 char* buf, size_t buflen) {
3271  struct sigaction sa;
3272
3273  sigaction(sig, NULL, &sa);
3274
3275  // See comment for SIGNIFICANT_SIGNAL_MASK define
3276  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3277
3278  st->print("%s: ", os::exception_name(sig, buf, buflen));
3279
3280  address handler = (sa.sa_flags & SA_SIGINFO)
3281    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3282    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3283
3284  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3285    st->print("SIG_DFL");
3286  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3287    st->print("SIG_IGN");
3288  } else {
3289    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3290  }
3291
3292  st->print(", sa_mask[0]=");
3293  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3294
3295  address rh = VMError::get_resetted_sighandler(sig);
3296  // May be, handler was resetted by VMError?
3297  if (rh != NULL) {
3298    handler = rh;
3299    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3300  }
3301
3302  st->print(", sa_flags=");
3303  os::Posix::print_sa_flags(st, sa.sa_flags);
3304
3305  // Check: is it our handler?
3306  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3307      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3308    // It is our signal handler
3309    // check for flags, reset system-used one!
3310    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3311      st->print(
3312                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3313                os::Bsd::get_our_sigflags(sig));
3314    }
3315  }
3316  st->cr();
3317}
3318
3319
3320#define DO_SIGNAL_CHECK(sig)                      \
3321  do {                                            \
3322    if (!sigismember(&check_signal_done, sig)) {  \
3323      os::Bsd::check_signal_handler(sig);         \
3324    }                                             \
3325  } while (0)
3326
3327// This method is a periodic task to check for misbehaving JNI applications
3328// under CheckJNI, we can add any periodic checks here
3329
3330void os::run_periodic_checks() {
3331
3332  if (check_signals == false) return;
3333
3334  // SEGV and BUS if overridden could potentially prevent
3335  // generation of hs*.log in the event of a crash, debugging
3336  // such a case can be very challenging, so we absolutely
3337  // check the following for a good measure:
3338  DO_SIGNAL_CHECK(SIGSEGV);
3339  DO_SIGNAL_CHECK(SIGILL);
3340  DO_SIGNAL_CHECK(SIGFPE);
3341  DO_SIGNAL_CHECK(SIGBUS);
3342  DO_SIGNAL_CHECK(SIGPIPE);
3343  DO_SIGNAL_CHECK(SIGXFSZ);
3344
3345
3346  // ReduceSignalUsage allows the user to override these handlers
3347  // see comments at the very top and jvm_solaris.h
3348  if (!ReduceSignalUsage) {
3349    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3350    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3351    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3352    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3353  }
3354
3355  DO_SIGNAL_CHECK(SR_signum);
3356}
3357
3358typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3359
3360static os_sigaction_t os_sigaction = NULL;
3361
3362void os::Bsd::check_signal_handler(int sig) {
3363  char buf[O_BUFLEN];
3364  address jvmHandler = NULL;
3365
3366
3367  struct sigaction act;
3368  if (os_sigaction == NULL) {
3369    // only trust the default sigaction, in case it has been interposed
3370    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3371    if (os_sigaction == NULL) return;
3372  }
3373
3374  os_sigaction(sig, (struct sigaction*)NULL, &act);
3375
3376
3377  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3378
3379  address thisHandler = (act.sa_flags & SA_SIGINFO)
3380    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3381    : CAST_FROM_FN_PTR(address, act.sa_handler);
3382
3383
3384  switch (sig) {
3385  case SIGSEGV:
3386  case SIGBUS:
3387  case SIGFPE:
3388  case SIGPIPE:
3389  case SIGILL:
3390  case SIGXFSZ:
3391    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3392    break;
3393
3394  case SHUTDOWN1_SIGNAL:
3395  case SHUTDOWN2_SIGNAL:
3396  case SHUTDOWN3_SIGNAL:
3397  case BREAK_SIGNAL:
3398    jvmHandler = (address)user_handler();
3399    break;
3400
3401  default:
3402    if (sig == SR_signum) {
3403      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3404    } else {
3405      return;
3406    }
3407    break;
3408  }
3409
3410  if (thisHandler != jvmHandler) {
3411    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3412    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3413    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3414    // No need to check this sig any longer
3415    sigaddset(&check_signal_done, sig);
3416    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3417    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3418      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3419                    exception_name(sig, buf, O_BUFLEN));
3420    }
3421  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3422    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3423    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3424    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3425    // No need to check this sig any longer
3426    sigaddset(&check_signal_done, sig);
3427  }
3428
3429  // Dump all the signal
3430  if (sigismember(&check_signal_done, sig)) {
3431    print_signal_handlers(tty, buf, O_BUFLEN);
3432  }
3433}
3434
3435extern void report_error(char* file_name, int line_no, char* title,
3436                         char* format, ...);
3437
3438extern bool signal_name(int signo, char* buf, size_t len);
3439
3440const char* os::exception_name(int exception_code, char* buf, size_t size) {
3441  if (0 < exception_code && exception_code <= SIGRTMAX) {
3442    // signal
3443    if (!signal_name(exception_code, buf, size)) {
3444      jio_snprintf(buf, size, "SIG%d", exception_code);
3445    }
3446    return buf;
3447  } else {
3448    return NULL;
3449  }
3450}
3451
3452// this is called _before_ the most of global arguments have been parsed
3453void os::init(void) {
3454  char dummy;   // used to get a guess on initial stack address
3455//  first_hrtime = gethrtime();
3456
3457  // With BsdThreads the JavaMain thread pid (primordial thread)
3458  // is different than the pid of the java launcher thread.
3459  // So, on Bsd, the launcher thread pid is passed to the VM
3460  // via the sun.java.launcher.pid property.
3461  // Use this property instead of getpid() if it was correctly passed.
3462  // See bug 6351349.
3463  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3464
3465  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3466
3467  clock_tics_per_sec = CLK_TCK;
3468
3469  init_random(1234567);
3470
3471  ThreadCritical::initialize();
3472
3473  Bsd::set_page_size(getpagesize());
3474  if (Bsd::page_size() == -1) {
3475    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", strerror(errno));
3476  }
3477  init_page_sizes((size_t) Bsd::page_size());
3478
3479  Bsd::initialize_system_info();
3480
3481  // main_thread points to the aboriginal thread
3482  Bsd::_main_thread = pthread_self();
3483
3484  Bsd::clock_init();
3485  initial_time_count = javaTimeNanos();
3486
3487#ifdef __APPLE__
3488  // XXXDARWIN
3489  // Work around the unaligned VM callbacks in hotspot's
3490  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3491  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3492  // alignment when doing symbol lookup. To work around this, we force early
3493  // binding of all symbols now, thus binding when alignment is known-good.
3494  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3495#endif
3496}
3497
3498// To install functions for atexit system call
3499extern "C" {
3500  static void perfMemory_exit_helper() {
3501    perfMemory_exit();
3502  }
3503}
3504
3505// this is called _after_ the global arguments have been parsed
3506jint os::init_2(void) {
3507  // Allocate a single page and mark it as readable for safepoint polling
3508  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3509  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3510
3511  os::set_polling_page(polling_page);
3512
3513#ifndef PRODUCT
3514  if (Verbose && PrintMiscellaneous) {
3515    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3516               (intptr_t)polling_page);
3517  }
3518#endif
3519
3520  if (!UseMembar) {
3521    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3522    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3523    os::set_memory_serialize_page(mem_serialize_page);
3524
3525#ifndef PRODUCT
3526    if (Verbose && PrintMiscellaneous) {
3527      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3528                 (intptr_t)mem_serialize_page);
3529    }
3530#endif
3531  }
3532
3533  // initialize suspend/resume support - must do this before signal_sets_init()
3534  if (SR_initialize() != 0) {
3535    perror("SR_initialize failed");
3536    return JNI_ERR;
3537  }
3538
3539  Bsd::signal_sets_init();
3540  Bsd::install_signal_handlers();
3541
3542  // Check minimum allowable stack size for thread creation and to initialize
3543  // the java system classes, including StackOverflowError - depends on page
3544  // size.  Add a page for compiler2 recursion in main thread.
3545  // Add in 2*BytesPerWord times page size to account for VM stack during
3546  // class initialization depending on 32 or 64 bit VM.
3547  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3548                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3549                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3550
3551  size_t threadStackSizeInBytes = ThreadStackSize * K;
3552  if (threadStackSizeInBytes != 0 &&
3553      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3554    tty->print_cr("\nThe stack size specified is too small, "
3555                  "Specify at least %dk",
3556                  os::Bsd::min_stack_allowed/ K);
3557    return JNI_ERR;
3558  }
3559
3560  // Make the stack size a multiple of the page size so that
3561  // the yellow/red zones can be guarded.
3562  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3563                                                vm_page_size()));
3564
3565  if (MaxFDLimit) {
3566    // set the number of file descriptors to max. print out error
3567    // if getrlimit/setrlimit fails but continue regardless.
3568    struct rlimit nbr_files;
3569    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3570    if (status != 0) {
3571      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3572        perror("os::init_2 getrlimit failed");
3573      }
3574    } else {
3575      nbr_files.rlim_cur = nbr_files.rlim_max;
3576
3577#ifdef __APPLE__
3578      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3579      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3580      // be used instead
3581      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3582#endif
3583
3584      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3585      if (status != 0) {
3586        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3587          perror("os::init_2 setrlimit failed");
3588        }
3589      }
3590    }
3591  }
3592
3593  // at-exit methods are called in the reverse order of their registration.
3594  // atexit functions are called on return from main or as a result of a
3595  // call to exit(3C). There can be only 32 of these functions registered
3596  // and atexit() does not set errno.
3597
3598  if (PerfAllowAtExitRegistration) {
3599    // only register atexit functions if PerfAllowAtExitRegistration is set.
3600    // atexit functions can be delayed until process exit time, which
3601    // can be problematic for embedded VM situations. Embedded VMs should
3602    // call DestroyJavaVM() to assure that VM resources are released.
3603
3604    // note: perfMemory_exit_helper atexit function may be removed in
3605    // the future if the appropriate cleanup code can be added to the
3606    // VM_Exit VMOperation's doit method.
3607    if (atexit(perfMemory_exit_helper) != 0) {
3608      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3609    }
3610  }
3611
3612  // initialize thread priority policy
3613  prio_init();
3614
3615#ifdef __APPLE__
3616  // dynamically link to objective c gc registration
3617  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3618  if (handleLibObjc != NULL) {
3619    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3620  }
3621#endif
3622
3623  return JNI_OK;
3624}
3625
3626// Mark the polling page as unreadable
3627void os::make_polling_page_unreadable(void) {
3628  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3629    fatal("Could not disable polling page");
3630  }
3631}
3632
3633// Mark the polling page as readable
3634void os::make_polling_page_readable(void) {
3635  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3636    fatal("Could not enable polling page");
3637  }
3638}
3639
3640int os::active_processor_count() {
3641  return _processor_count;
3642}
3643
3644void os::set_native_thread_name(const char *name) {
3645#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3646  // This is only supported in Snow Leopard and beyond
3647  if (name != NULL) {
3648    // Add a "Java: " prefix to the name
3649    char buf[MAXTHREADNAMESIZE];
3650    snprintf(buf, sizeof(buf), "Java: %s", name);
3651    pthread_setname_np(buf);
3652  }
3653#endif
3654}
3655
3656bool os::distribute_processes(uint length, uint* distribution) {
3657  // Not yet implemented.
3658  return false;
3659}
3660
3661bool os::bind_to_processor(uint processor_id) {
3662  // Not yet implemented.
3663  return false;
3664}
3665
3666void os::SuspendedThreadTask::internal_do_task() {
3667  if (do_suspend(_thread->osthread())) {
3668    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3669    do_task(context);
3670    do_resume(_thread->osthread());
3671  }
3672}
3673
3674///
3675class PcFetcher : public os::SuspendedThreadTask {
3676 public:
3677  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3678  ExtendedPC result();
3679 protected:
3680  void do_task(const os::SuspendedThreadTaskContext& context);
3681 private:
3682  ExtendedPC _epc;
3683};
3684
3685ExtendedPC PcFetcher::result() {
3686  guarantee(is_done(), "task is not done yet.");
3687  return _epc;
3688}
3689
3690void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3691  Thread* thread = context.thread();
3692  OSThread* osthread = thread->osthread();
3693  if (osthread->ucontext() != NULL) {
3694    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3695  } else {
3696    // NULL context is unexpected, double-check this is the VMThread
3697    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3698  }
3699}
3700
3701// Suspends the target using the signal mechanism and then grabs the PC before
3702// resuming the target. Used by the flat-profiler only
3703ExtendedPC os::get_thread_pc(Thread* thread) {
3704  // Make sure that it is called by the watcher for the VMThread
3705  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3706  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3707
3708  PcFetcher fetcher(thread);
3709  fetcher.run();
3710  return fetcher.result();
3711}
3712
3713////////////////////////////////////////////////////////////////////////////////
3714// debug support
3715
3716bool os::find(address addr, outputStream* st) {
3717  Dl_info dlinfo;
3718  memset(&dlinfo, 0, sizeof(dlinfo));
3719  if (dladdr(addr, &dlinfo) != 0) {
3720    st->print(PTR_FORMAT ": ", addr);
3721    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3722      st->print("%s+%#x", dlinfo.dli_sname,
3723                addr - (intptr_t)dlinfo.dli_saddr);
3724    } else if (dlinfo.dli_fbase != NULL) {
3725      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3726    } else {
3727      st->print("<absolute address>");
3728    }
3729    if (dlinfo.dli_fname != NULL) {
3730      st->print(" in %s", dlinfo.dli_fname);
3731    }
3732    if (dlinfo.dli_fbase != NULL) {
3733      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3734    }
3735    st->cr();
3736
3737    if (Verbose) {
3738      // decode some bytes around the PC
3739      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3740      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3741      address       lowest = (address) dlinfo.dli_sname;
3742      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3743      if (begin < lowest)  begin = lowest;
3744      Dl_info dlinfo2;
3745      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3746          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3747        end = (address) dlinfo2.dli_saddr;
3748      }
3749      Disassembler::decode(begin, end, st);
3750    }
3751    return true;
3752  }
3753  return false;
3754}
3755
3756////////////////////////////////////////////////////////////////////////////////
3757// misc
3758
3759// This does not do anything on Bsd. This is basically a hook for being
3760// able to use structured exception handling (thread-local exception filters)
3761// on, e.g., Win32.
3762void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3763                              const methodHandle& method, JavaCallArguments* args,
3764                              Thread* thread) {
3765  f(value, method, args, thread);
3766}
3767
3768void os::print_statistics() {
3769}
3770
3771bool os::message_box(const char* title, const char* message) {
3772  int i;
3773  fdStream err(defaultStream::error_fd());
3774  for (i = 0; i < 78; i++) err.print_raw("=");
3775  err.cr();
3776  err.print_raw_cr(title);
3777  for (i = 0; i < 78; i++) err.print_raw("-");
3778  err.cr();
3779  err.print_raw_cr(message);
3780  for (i = 0; i < 78; i++) err.print_raw("=");
3781  err.cr();
3782
3783  char buf[16];
3784  // Prevent process from exiting upon "read error" without consuming all CPU
3785  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3786
3787  return buf[0] == 'y' || buf[0] == 'Y';
3788}
3789
3790int os::stat(const char *path, struct stat *sbuf) {
3791  char pathbuf[MAX_PATH];
3792  if (strlen(path) > MAX_PATH - 1) {
3793    errno = ENAMETOOLONG;
3794    return -1;
3795  }
3796  os::native_path(strcpy(pathbuf, path));
3797  return ::stat(pathbuf, sbuf);
3798}
3799
3800bool os::check_heap(bool force) {
3801  return true;
3802}
3803
3804// Is a (classpath) directory empty?
3805bool os::dir_is_empty(const char* path) {
3806  DIR *dir = NULL;
3807  struct dirent *ptr;
3808
3809  dir = opendir(path);
3810  if (dir == NULL) return true;
3811
3812  // Scan the directory
3813  bool result = true;
3814  char buf[sizeof(struct dirent) + MAX_PATH];
3815  while (result && (ptr = ::readdir(dir)) != NULL) {
3816    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3817      result = false;
3818    }
3819  }
3820  closedir(dir);
3821  return result;
3822}
3823
3824// This code originates from JDK's sysOpen and open64_w
3825// from src/solaris/hpi/src/system_md.c
3826
3827int os::open(const char *path, int oflag, int mode) {
3828  if (strlen(path) > MAX_PATH - 1) {
3829    errno = ENAMETOOLONG;
3830    return -1;
3831  }
3832  int fd;
3833
3834  fd = ::open(path, oflag, mode);
3835  if (fd == -1) return -1;
3836
3837  // If the open succeeded, the file might still be a directory
3838  {
3839    struct stat buf;
3840    int ret = ::fstat(fd, &buf);
3841    int st_mode = buf.st_mode;
3842
3843    if (ret != -1) {
3844      if ((st_mode & S_IFMT) == S_IFDIR) {
3845        errno = EISDIR;
3846        ::close(fd);
3847        return -1;
3848      }
3849    } else {
3850      ::close(fd);
3851      return -1;
3852    }
3853  }
3854
3855  // All file descriptors that are opened in the JVM and not
3856  // specifically destined for a subprocess should have the
3857  // close-on-exec flag set.  If we don't set it, then careless 3rd
3858  // party native code might fork and exec without closing all
3859  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3860  // UNIXProcess.c), and this in turn might:
3861  //
3862  // - cause end-of-file to fail to be detected on some file
3863  //   descriptors, resulting in mysterious hangs, or
3864  //
3865  // - might cause an fopen in the subprocess to fail on a system
3866  //   suffering from bug 1085341.
3867  //
3868  // (Yes, the default setting of the close-on-exec flag is a Unix
3869  // design flaw)
3870  //
3871  // See:
3872  // 1085341: 32-bit stdio routines should support file descriptors >255
3873  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3874  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3875  //
3876#ifdef FD_CLOEXEC
3877  {
3878    int flags = ::fcntl(fd, F_GETFD);
3879    if (flags != -1) {
3880      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3881    }
3882  }
3883#endif
3884
3885  return fd;
3886}
3887
3888
3889// create binary file, rewriting existing file if required
3890int os::create_binary_file(const char* path, bool rewrite_existing) {
3891  int oflags = O_WRONLY | O_CREAT;
3892  if (!rewrite_existing) {
3893    oflags |= O_EXCL;
3894  }
3895  return ::open(path, oflags, S_IREAD | S_IWRITE);
3896}
3897
3898// return current position of file pointer
3899jlong os::current_file_offset(int fd) {
3900  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3901}
3902
3903// move file pointer to the specified offset
3904jlong os::seek_to_file_offset(int fd, jlong offset) {
3905  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3906}
3907
3908// This code originates from JDK's sysAvailable
3909// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3910
3911int os::available(int fd, jlong *bytes) {
3912  jlong cur, end;
3913  int mode;
3914  struct stat buf;
3915
3916  if (::fstat(fd, &buf) >= 0) {
3917    mode = buf.st_mode;
3918    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3919      int n;
3920      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3921        *bytes = n;
3922        return 1;
3923      }
3924    }
3925  }
3926  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3927    return 0;
3928  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3929    return 0;
3930  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3931    return 0;
3932  }
3933  *bytes = end - cur;
3934  return 1;
3935}
3936
3937// Map a block of memory.
3938char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3939                        char *addr, size_t bytes, bool read_only,
3940                        bool allow_exec) {
3941  int prot;
3942  int flags;
3943
3944  if (read_only) {
3945    prot = PROT_READ;
3946    flags = MAP_SHARED;
3947  } else {
3948    prot = PROT_READ | PROT_WRITE;
3949    flags = MAP_PRIVATE;
3950  }
3951
3952  if (allow_exec) {
3953    prot |= PROT_EXEC;
3954  }
3955
3956  if (addr != NULL) {
3957    flags |= MAP_FIXED;
3958  }
3959
3960  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3961                                     fd, file_offset);
3962  if (mapped_address == MAP_FAILED) {
3963    return NULL;
3964  }
3965  return mapped_address;
3966}
3967
3968
3969// Remap a block of memory.
3970char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3971                          char *addr, size_t bytes, bool read_only,
3972                          bool allow_exec) {
3973  // same as map_memory() on this OS
3974  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3975                        allow_exec);
3976}
3977
3978
3979// Unmap a block of memory.
3980bool os::pd_unmap_memory(char* addr, size_t bytes) {
3981  return munmap(addr, bytes) == 0;
3982}
3983
3984// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3985// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3986// of a thread.
3987//
3988// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3989// the fast estimate available on the platform.
3990
3991jlong os::current_thread_cpu_time() {
3992#ifdef __APPLE__
3993  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3994#else
3995  Unimplemented();
3996  return 0;
3997#endif
3998}
3999
4000jlong os::thread_cpu_time(Thread* thread) {
4001#ifdef __APPLE__
4002  return os::thread_cpu_time(thread, true /* user + sys */);
4003#else
4004  Unimplemented();
4005  return 0;
4006#endif
4007}
4008
4009jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4010#ifdef __APPLE__
4011  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4012#else
4013  Unimplemented();
4014  return 0;
4015#endif
4016}
4017
4018jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4019#ifdef __APPLE__
4020  struct thread_basic_info tinfo;
4021  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4022  kern_return_t kr;
4023  thread_t mach_thread;
4024
4025  mach_thread = thread->osthread()->thread_id();
4026  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4027  if (kr != KERN_SUCCESS) {
4028    return -1;
4029  }
4030
4031  if (user_sys_cpu_time) {
4032    jlong nanos;
4033    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4034    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4035    return nanos;
4036  } else {
4037    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4038  }
4039#else
4040  Unimplemented();
4041  return 0;
4042#endif
4043}
4044
4045
4046void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4047  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4048  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4049  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4050  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4051}
4052
4053void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4054  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4055  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4056  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4057  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4058}
4059
4060bool os::is_thread_cpu_time_supported() {
4061#ifdef __APPLE__
4062  return true;
4063#else
4064  return false;
4065#endif
4066}
4067
4068// System loadavg support.  Returns -1 if load average cannot be obtained.
4069// Bsd doesn't yet have a (official) notion of processor sets,
4070// so just return the system wide load average.
4071int os::loadavg(double loadavg[], int nelem) {
4072  return ::getloadavg(loadavg, nelem);
4073}
4074
4075void os::pause() {
4076  char filename[MAX_PATH];
4077  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4078    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4079  } else {
4080    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4081  }
4082
4083  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4084  if (fd != -1) {
4085    struct stat buf;
4086    ::close(fd);
4087    while (::stat(filename, &buf) == 0) {
4088      (void)::poll(NULL, 0, 100);
4089    }
4090  } else {
4091    jio_fprintf(stderr,
4092                "Could not open pause file '%s', continuing immediately.\n", filename);
4093  }
4094}
4095
4096
4097// Refer to the comments in os_solaris.cpp park-unpark. The next two
4098// comment paragraphs are worth repeating here:
4099//
4100// Assumption:
4101//    Only one parker can exist on an event, which is why we allocate
4102//    them per-thread. Multiple unparkers can coexist.
4103//
4104// _Event serves as a restricted-range semaphore.
4105//   -1 : thread is blocked, i.e. there is a waiter
4106//    0 : neutral: thread is running or ready,
4107//        could have been signaled after a wait started
4108//    1 : signaled - thread is running or ready
4109//
4110// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4111// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4112// For specifics regarding the bug see GLIBC BUGID 261237 :
4113//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4114// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4115// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4116// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4117// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4118// and monitorenter when we're using 1-0 locking.  All those operations may result in
4119// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4120// of libpthread avoids the problem, but isn't practical.
4121//
4122// Possible remedies:
4123//
4124// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4125//      This is palliative and probabilistic, however.  If the thread is preempted
4126//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4127//      than the minimum period may have passed, and the abstime may be stale (in the
4128//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4129//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4130//
4131// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4132//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4133//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4134//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4135//      thread.
4136//
4137// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4138//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4139//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4140//      This also works well.  In fact it avoids kernel-level scalability impediments
4141//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4142//      timers in a graceful fashion.
4143//
4144// 4.   When the abstime value is in the past it appears that control returns
4145//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4146//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4147//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4148//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4149//      It may be possible to avoid reinitialization by checking the return
4150//      value from pthread_cond_timedwait().  In addition to reinitializing the
4151//      condvar we must establish the invariant that cond_signal() is only called
4152//      within critical sections protected by the adjunct mutex.  This prevents
4153//      cond_signal() from "seeing" a condvar that's in the midst of being
4154//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4155//      desirable signal-after-unlock optimization that avoids futile context switching.
4156//
4157//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4158//      structure when a condvar is used or initialized.  cond_destroy()  would
4159//      release the helper structure.  Our reinitialize-after-timedwait fix
4160//      put excessive stress on malloc/free and locks protecting the c-heap.
4161//
4162// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4163// It may be possible to refine (4) by checking the kernel and NTPL verisons
4164// and only enabling the work-around for vulnerable environments.
4165
4166// utility to compute the abstime argument to timedwait:
4167// millis is the relative timeout time
4168// abstime will be the absolute timeout time
4169// TODO: replace compute_abstime() with unpackTime()
4170
4171static struct timespec* compute_abstime(struct timespec* abstime,
4172                                        jlong millis) {
4173  if (millis < 0)  millis = 0;
4174  struct timeval now;
4175  int status = gettimeofday(&now, NULL);
4176  assert(status == 0, "gettimeofday");
4177  jlong seconds = millis / 1000;
4178  millis %= 1000;
4179  if (seconds > 50000000) { // see man cond_timedwait(3T)
4180    seconds = 50000000;
4181  }
4182  abstime->tv_sec = now.tv_sec  + seconds;
4183  long       usec = now.tv_usec + millis * 1000;
4184  if (usec >= 1000000) {
4185    abstime->tv_sec += 1;
4186    usec -= 1000000;
4187  }
4188  abstime->tv_nsec = usec * 1000;
4189  return abstime;
4190}
4191
4192void os::PlatformEvent::park() {       // AKA "down()"
4193  // Transitions for _Event:
4194  //   -1 => -1 : illegal
4195  //    1 =>  0 : pass - return immediately
4196  //    0 => -1 : block; then set _Event to 0 before returning
4197
4198  // Invariant: Only the thread associated with the Event/PlatformEvent
4199  // may call park().
4200  // TODO: assert that _Assoc != NULL or _Assoc == Self
4201  assert(_nParked == 0, "invariant");
4202
4203  int v;
4204  for (;;) {
4205    v = _Event;
4206    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4207  }
4208  guarantee(v >= 0, "invariant");
4209  if (v == 0) {
4210    // Do this the hard way by blocking ...
4211    int status = pthread_mutex_lock(_mutex);
4212    assert_status(status == 0, status, "mutex_lock");
4213    guarantee(_nParked == 0, "invariant");
4214    ++_nParked;
4215    while (_Event < 0) {
4216      status = pthread_cond_wait(_cond, _mutex);
4217      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4218      // Treat this the same as if the wait was interrupted
4219      if (status == ETIMEDOUT) { status = EINTR; }
4220      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4221    }
4222    --_nParked;
4223
4224    _Event = 0;
4225    status = pthread_mutex_unlock(_mutex);
4226    assert_status(status == 0, status, "mutex_unlock");
4227    // Paranoia to ensure our locked and lock-free paths interact
4228    // correctly with each other.
4229    OrderAccess::fence();
4230  }
4231  guarantee(_Event >= 0, "invariant");
4232}
4233
4234int os::PlatformEvent::park(jlong millis) {
4235  // Transitions for _Event:
4236  //   -1 => -1 : illegal
4237  //    1 =>  0 : pass - return immediately
4238  //    0 => -1 : block; then set _Event to 0 before returning
4239
4240  guarantee(_nParked == 0, "invariant");
4241
4242  int v;
4243  for (;;) {
4244    v = _Event;
4245    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4246  }
4247  guarantee(v >= 0, "invariant");
4248  if (v != 0) return OS_OK;
4249
4250  // We do this the hard way, by blocking the thread.
4251  // Consider enforcing a minimum timeout value.
4252  struct timespec abst;
4253  compute_abstime(&abst, millis);
4254
4255  int ret = OS_TIMEOUT;
4256  int status = pthread_mutex_lock(_mutex);
4257  assert_status(status == 0, status, "mutex_lock");
4258  guarantee(_nParked == 0, "invariant");
4259  ++_nParked;
4260
4261  // Object.wait(timo) will return because of
4262  // (a) notification
4263  // (b) timeout
4264  // (c) thread.interrupt
4265  //
4266  // Thread.interrupt and object.notify{All} both call Event::set.
4267  // That is, we treat thread.interrupt as a special case of notification.
4268  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4269  // We assume all ETIME returns are valid.
4270  //
4271  // TODO: properly differentiate simultaneous notify+interrupt.
4272  // In that case, we should propagate the notify to another waiter.
4273
4274  while (_Event < 0) {
4275    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4276    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4277      pthread_cond_destroy(_cond);
4278      pthread_cond_init(_cond, NULL);
4279    }
4280    assert_status(status == 0 || status == EINTR ||
4281                  status == ETIMEDOUT,
4282                  status, "cond_timedwait");
4283    if (!FilterSpuriousWakeups) break;                 // previous semantics
4284    if (status == ETIMEDOUT) break;
4285    // We consume and ignore EINTR and spurious wakeups.
4286  }
4287  --_nParked;
4288  if (_Event >= 0) {
4289    ret = OS_OK;
4290  }
4291  _Event = 0;
4292  status = pthread_mutex_unlock(_mutex);
4293  assert_status(status == 0, status, "mutex_unlock");
4294  assert(_nParked == 0, "invariant");
4295  // Paranoia to ensure our locked and lock-free paths interact
4296  // correctly with each other.
4297  OrderAccess::fence();
4298  return ret;
4299}
4300
4301void os::PlatformEvent::unpark() {
4302  // Transitions for _Event:
4303  //    0 => 1 : just return
4304  //    1 => 1 : just return
4305  //   -1 => either 0 or 1; must signal target thread
4306  //         That is, we can safely transition _Event from -1 to either
4307  //         0 or 1.
4308  // See also: "Semaphores in Plan 9" by Mullender & Cox
4309  //
4310  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4311  // that it will take two back-to-back park() calls for the owning
4312  // thread to block. This has the benefit of forcing a spurious return
4313  // from the first park() call after an unpark() call which will help
4314  // shake out uses of park() and unpark() without condition variables.
4315
4316  if (Atomic::xchg(1, &_Event) >= 0) return;
4317
4318  // Wait for the thread associated with the event to vacate
4319  int status = pthread_mutex_lock(_mutex);
4320  assert_status(status == 0, status, "mutex_lock");
4321  int AnyWaiters = _nParked;
4322  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4323  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4324    AnyWaiters = 0;
4325    pthread_cond_signal(_cond);
4326  }
4327  status = pthread_mutex_unlock(_mutex);
4328  assert_status(status == 0, status, "mutex_unlock");
4329  if (AnyWaiters != 0) {
4330    // Note that we signal() *after* dropping the lock for "immortal" Events.
4331    // This is safe and avoids a common class of  futile wakeups.  In rare
4332    // circumstances this can cause a thread to return prematurely from
4333    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4334    // will simply re-test the condition and re-park itself.
4335    // This provides particular benefit if the underlying platform does not
4336    // provide wait morphing.
4337    status = pthread_cond_signal(_cond);
4338    assert_status(status == 0, status, "cond_signal");
4339  }
4340}
4341
4342
4343// JSR166
4344// -------------------------------------------------------
4345
4346// The solaris and bsd implementations of park/unpark are fairly
4347// conservative for now, but can be improved. They currently use a
4348// mutex/condvar pair, plus a a count.
4349// Park decrements count if > 0, else does a condvar wait.  Unpark
4350// sets count to 1 and signals condvar.  Only one thread ever waits
4351// on the condvar. Contention seen when trying to park implies that someone
4352// is unparking you, so don't wait. And spurious returns are fine, so there
4353// is no need to track notifications.
4354
4355#define MAX_SECS 100000000
4356
4357// This code is common to bsd and solaris and will be moved to a
4358// common place in dolphin.
4359//
4360// The passed in time value is either a relative time in nanoseconds
4361// or an absolute time in milliseconds. Either way it has to be unpacked
4362// into suitable seconds and nanoseconds components and stored in the
4363// given timespec structure.
4364// Given time is a 64-bit value and the time_t used in the timespec is only
4365// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4366// overflow if times way in the future are given. Further on Solaris versions
4367// prior to 10 there is a restriction (see cond_timedwait) that the specified
4368// number of seconds, in abstime, is less than current_time  + 100,000,000.
4369// As it will be 28 years before "now + 100000000" will overflow we can
4370// ignore overflow and just impose a hard-limit on seconds using the value
4371// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4372// years from "now".
4373
4374static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4375  assert(time > 0, "convertTime");
4376
4377  struct timeval now;
4378  int status = gettimeofday(&now, NULL);
4379  assert(status == 0, "gettimeofday");
4380
4381  time_t max_secs = now.tv_sec + MAX_SECS;
4382
4383  if (isAbsolute) {
4384    jlong secs = time / 1000;
4385    if (secs > max_secs) {
4386      absTime->tv_sec = max_secs;
4387    } else {
4388      absTime->tv_sec = secs;
4389    }
4390    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4391  } else {
4392    jlong secs = time / NANOSECS_PER_SEC;
4393    if (secs >= MAX_SECS) {
4394      absTime->tv_sec = max_secs;
4395      absTime->tv_nsec = 0;
4396    } else {
4397      absTime->tv_sec = now.tv_sec + secs;
4398      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4399      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4400        absTime->tv_nsec -= NANOSECS_PER_SEC;
4401        ++absTime->tv_sec; // note: this must be <= max_secs
4402      }
4403    }
4404  }
4405  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4406  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4407  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4408  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4409}
4410
4411void Parker::park(bool isAbsolute, jlong time) {
4412  // Ideally we'd do something useful while spinning, such
4413  // as calling unpackTime().
4414
4415  // Optional fast-path check:
4416  // Return immediately if a permit is available.
4417  // We depend on Atomic::xchg() having full barrier semantics
4418  // since we are doing a lock-free update to _counter.
4419  if (Atomic::xchg(0, &_counter) > 0) return;
4420
4421  Thread* thread = Thread::current();
4422  assert(thread->is_Java_thread(), "Must be JavaThread");
4423  JavaThread *jt = (JavaThread *)thread;
4424
4425  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4426  // Check interrupt before trying to wait
4427  if (Thread::is_interrupted(thread, false)) {
4428    return;
4429  }
4430
4431  // Next, demultiplex/decode time arguments
4432  struct timespec absTime;
4433  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4434    return;
4435  }
4436  if (time > 0) {
4437    unpackTime(&absTime, isAbsolute, time);
4438  }
4439
4440
4441  // Enter safepoint region
4442  // Beware of deadlocks such as 6317397.
4443  // The per-thread Parker:: mutex is a classic leaf-lock.
4444  // In particular a thread must never block on the Threads_lock while
4445  // holding the Parker:: mutex.  If safepoints are pending both the
4446  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4447  ThreadBlockInVM tbivm(jt);
4448
4449  // Don't wait if cannot get lock since interference arises from
4450  // unblocking.  Also. check interrupt before trying wait
4451  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4452    return;
4453  }
4454
4455  int status;
4456  if (_counter > 0)  { // no wait needed
4457    _counter = 0;
4458    status = pthread_mutex_unlock(_mutex);
4459    assert(status == 0, "invariant");
4460    // Paranoia to ensure our locked and lock-free paths interact
4461    // correctly with each other and Java-level accesses.
4462    OrderAccess::fence();
4463    return;
4464  }
4465
4466#ifdef ASSERT
4467  // Don't catch signals while blocked; let the running threads have the signals.
4468  // (This allows a debugger to break into the running thread.)
4469  sigset_t oldsigs;
4470  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4471  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4472#endif
4473
4474  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4475  jt->set_suspend_equivalent();
4476  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4477
4478  if (time == 0) {
4479    status = pthread_cond_wait(_cond, _mutex);
4480  } else {
4481    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4482    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4483      pthread_cond_destroy(_cond);
4484      pthread_cond_init(_cond, NULL);
4485    }
4486  }
4487  assert_status(status == 0 || status == EINTR ||
4488                status == ETIMEDOUT,
4489                status, "cond_timedwait");
4490
4491#ifdef ASSERT
4492  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4493#endif
4494
4495  _counter = 0;
4496  status = pthread_mutex_unlock(_mutex);
4497  assert_status(status == 0, status, "invariant");
4498  // Paranoia to ensure our locked and lock-free paths interact
4499  // correctly with each other and Java-level accesses.
4500  OrderAccess::fence();
4501
4502  // If externally suspended while waiting, re-suspend
4503  if (jt->handle_special_suspend_equivalent_condition()) {
4504    jt->java_suspend_self();
4505  }
4506}
4507
4508void Parker::unpark() {
4509  int status = pthread_mutex_lock(_mutex);
4510  assert(status == 0, "invariant");
4511  const int s = _counter;
4512  _counter = 1;
4513  if (s < 1) {
4514    if (WorkAroundNPTLTimedWaitHang) {
4515      status = pthread_cond_signal(_cond);
4516      assert(status == 0, "invariant");
4517      status = pthread_mutex_unlock(_mutex);
4518      assert(status == 0, "invariant");
4519    } else {
4520      status = pthread_mutex_unlock(_mutex);
4521      assert(status == 0, "invariant");
4522      status = pthread_cond_signal(_cond);
4523      assert(status == 0, "invariant");
4524    }
4525  } else {
4526    pthread_mutex_unlock(_mutex);
4527    assert(status == 0, "invariant");
4528  }
4529}
4530
4531
4532// Darwin has no "environ" in a dynamic library.
4533#ifdef __APPLE__
4534  #include <crt_externs.h>
4535  #define environ (*_NSGetEnviron())
4536#else
4537extern char** environ;
4538#endif
4539
4540// Run the specified command in a separate process. Return its exit value,
4541// or -1 on failure (e.g. can't fork a new process).
4542// Unlike system(), this function can be called from signal handler. It
4543// doesn't block SIGINT et al.
4544int os::fork_and_exec(char* cmd) {
4545  const char * argv[4] = {"sh", "-c", cmd, NULL};
4546
4547  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4548  // pthread_atfork handlers and reset pthread library. All we need is a
4549  // separate process to execve. Make a direct syscall to fork process.
4550  // On IA64 there's no fork syscall, we have to use fork() and hope for
4551  // the best...
4552  pid_t pid = fork();
4553
4554  if (pid < 0) {
4555    // fork failed
4556    return -1;
4557
4558  } else if (pid == 0) {
4559    // child process
4560
4561    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4562    // first to kill every thread on the thread list. Because this list is
4563    // not reset by fork() (see notes above), execve() will instead kill
4564    // every thread in the parent process. We know this is the only thread
4565    // in the new process, so make a system call directly.
4566    // IA64 should use normal execve() from glibc to match the glibc fork()
4567    // above.
4568    execve("/bin/sh", (char* const*)argv, environ);
4569
4570    // execve failed
4571    _exit(-1);
4572
4573  } else  {
4574    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4575    // care about the actual exit code, for now.
4576
4577    int status;
4578
4579    // Wait for the child process to exit.  This returns immediately if
4580    // the child has already exited. */
4581    while (waitpid(pid, &status, 0) < 0) {
4582      switch (errno) {
4583      case ECHILD: return 0;
4584      case EINTR: break;
4585      default: return -1;
4586      }
4587    }
4588
4589    if (WIFEXITED(status)) {
4590      // The child exited normally; get its exit code.
4591      return WEXITSTATUS(status);
4592    } else if (WIFSIGNALED(status)) {
4593      // The child exited because of a signal
4594      // The best value to return is 0x80 + signal number,
4595      // because that is what all Unix shells do, and because
4596      // it allows callers to distinguish between process exit and
4597      // process death by signal.
4598      return 0x80 + WTERMSIG(status);
4599    } else {
4600      // Unknown exit code; pass it through
4601      return status;
4602    }
4603  }
4604}
4605
4606// is_headless_jre()
4607//
4608// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4609// in order to report if we are running in a headless jre
4610//
4611// Since JDK8 xawt/libmawt.so was moved into the same directory
4612// as libawt.so, and renamed libawt_xawt.so
4613//
4614bool os::is_headless_jre() {
4615#ifdef __APPLE__
4616  // We no longer build headless-only on Mac OS X
4617  return false;
4618#else
4619  struct stat statbuf;
4620  char buf[MAXPATHLEN];
4621  char libmawtpath[MAXPATHLEN];
4622  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4623  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4624  char *p;
4625
4626  // Get path to libjvm.so
4627  os::jvm_path(buf, sizeof(buf));
4628
4629  // Get rid of libjvm.so
4630  p = strrchr(buf, '/');
4631  if (p == NULL) {
4632    return false;
4633  } else {
4634    *p = '\0';
4635  }
4636
4637  // Get rid of client or server
4638  p = strrchr(buf, '/');
4639  if (p == NULL) {
4640    return false;
4641  } else {
4642    *p = '\0';
4643  }
4644
4645  // check xawt/libmawt.so
4646  strcpy(libmawtpath, buf);
4647  strcat(libmawtpath, xawtstr);
4648  if (::stat(libmawtpath, &statbuf) == 0) return false;
4649
4650  // check libawt_xawt.so
4651  strcpy(libmawtpath, buf);
4652  strcat(libmawtpath, new_xawtstr);
4653  if (::stat(libmawtpath, &statbuf) == 0) return false;
4654
4655  return true;
4656#endif
4657}
4658
4659// Get the default path to the core file
4660// Returns the length of the string
4661int os::get_core_path(char* buffer, size_t bufferSize) {
4662  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4663
4664  // Truncate if theoretical string was longer than bufferSize
4665  n = MIN2(n, (int)bufferSize);
4666
4667  return n;
4668}
4669
4670#ifndef PRODUCT
4671void TestReserveMemorySpecial_test() {
4672  // No tests available for this platform
4673}
4674#endif
4675
4676bool os::start_debugging(char *buf, int buflen) {
4677  int len = (int)strlen(buf);
4678  char *p = &buf[len];
4679
4680  jio_snprintf(p, buflen-len,
4681             "\n\n"
4682             "Do you want to debug the problem?\n\n"
4683             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4684             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4685             "Otherwise, press RETURN to abort...",
4686             os::current_process_id(), os::current_process_id(),
4687             os::current_thread_id(), os::current_thread_id());
4688
4689  bool yes = os::message_box("Unexpected Error", buf);
4690
4691  if (yes) {
4692    // yes, user asked VM to launch debugger
4693    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4694                     os::current_process_id(), os::current_process_id());
4695
4696    os::fork_and_exec(buf);
4697    yes = false;
4698  }
4699  return yes;
4700}
4701