os_bsd.cpp revision 8793:913d50d94180
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
132
133////////////////////////////////////////////////////////////////////////////////
134// global variables
135julong os::Bsd::_physical_memory = 0;
136
137#ifdef __APPLE__
138mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
139volatile uint64_t         os::Bsd::_max_abstime   = 0;
140#else
141int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
142#endif
143pthread_t os::Bsd::_main_thread;
144int os::Bsd::_page_size = -1;
145
146static jlong initial_time_count=0;
147
148static int clock_tics_per_sec = 100;
149
150// For diagnostics to print a message once. see run_periodic_checks
151static sigset_t check_signal_done;
152static bool check_signals = true;
153
154static pid_t _initial_pid = 0;
155
156// Signal number used to suspend/resume a thread
157
158// do not use any signal number less than SIGSEGV, see 4355769
159static int SR_signum = SIGUSR2;
160sigset_t SR_sigset;
161
162
163////////////////////////////////////////////////////////////////////////////////
164// utility functions
165
166static int SR_initialize();
167static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
168
169julong os::available_memory() {
170  return Bsd::available_memory();
171}
172
173// available here means free
174julong os::Bsd::available_memory() {
175  uint64_t available = physical_memory() >> 2;
176#ifdef __APPLE__
177  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
178  vm_statistics64_data_t vmstat;
179  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
180                                         (host_info64_t)&vmstat, &count);
181  assert(kerr == KERN_SUCCESS,
182         "host_statistics64 failed - check mach_host_self() and count");
183  if (kerr == KERN_SUCCESS) {
184    available = vmstat.free_count * os::vm_page_size();
185  }
186#endif
187  return available;
188}
189
190julong os::physical_memory() {
191  return Bsd::physical_memory();
192}
193
194// Return true if user is running as root.
195
196bool os::have_special_privileges() {
197  static bool init = false;
198  static bool privileges = false;
199  if (!init) {
200    privileges = (getuid() != geteuid()) || (getgid() != getegid());
201    init = true;
202  }
203  return privileges;
204}
205
206
207
208// Cpu architecture string
209#if   defined(ZERO)
210static char cpu_arch[] = ZERO_LIBARCH;
211#elif defined(IA64)
212static char cpu_arch[] = "ia64";
213#elif defined(IA32)
214static char cpu_arch[] = "i386";
215#elif defined(AMD64)
216static char cpu_arch[] = "amd64";
217#elif defined(ARM)
218static char cpu_arch[] = "arm";
219#elif defined(PPC32)
220static char cpu_arch[] = "ppc";
221#elif defined(SPARC)
222  #ifdef _LP64
223static char cpu_arch[] = "sparcv9";
224  #else
225static char cpu_arch[] = "sparc";
226  #endif
227#else
228  #error Add appropriate cpu_arch setting
229#endif
230
231// Compiler variant
232#ifdef COMPILER2
233  #define COMPILER_VARIANT "server"
234#else
235  #define COMPILER_VARIANT "client"
236#endif
237
238
239void os::Bsd::initialize_system_info() {
240  int mib[2];
241  size_t len;
242  int cpu_val;
243  julong mem_val;
244
245  // get processors count via hw.ncpus sysctl
246  mib[0] = CTL_HW;
247  mib[1] = HW_NCPU;
248  len = sizeof(cpu_val);
249  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
250    assert(len == sizeof(cpu_val), "unexpected data size");
251    set_processor_count(cpu_val);
252  } else {
253    set_processor_count(1);   // fallback
254  }
255
256  // get physical memory via hw.memsize sysctl (hw.memsize is used
257  // since it returns a 64 bit value)
258  mib[0] = CTL_HW;
259
260#if defined (HW_MEMSIZE) // Apple
261  mib[1] = HW_MEMSIZE;
262#elif defined(HW_PHYSMEM) // Most of BSD
263  mib[1] = HW_PHYSMEM;
264#elif defined(HW_REALMEM) // Old FreeBSD
265  mib[1] = HW_REALMEM;
266#else
267  #error No ways to get physmem
268#endif
269
270  len = sizeof(mem_val);
271  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
272    assert(len == sizeof(mem_val), "unexpected data size");
273    _physical_memory = mem_val;
274  } else {
275    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
276  }
277
278#ifdef __OpenBSD__
279  {
280    // limit _physical_memory memory view on OpenBSD since
281    // datasize rlimit restricts us anyway.
282    struct rlimit limits;
283    getrlimit(RLIMIT_DATA, &limits);
284    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
285  }
286#endif
287}
288
289#ifdef __APPLE__
290static const char *get_home() {
291  const char *home_dir = ::getenv("HOME");
292  if ((home_dir == NULL) || (*home_dir == '\0')) {
293    struct passwd *passwd_info = getpwuid(geteuid());
294    if (passwd_info != NULL) {
295      home_dir = passwd_info->pw_dir;
296    }
297  }
298
299  return home_dir;
300}
301#endif
302
303void os::init_system_properties_values() {
304  // The next steps are taken in the product version:
305  //
306  // Obtain the JAVA_HOME value from the location of libjvm.so.
307  // This library should be located at:
308  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
309  //
310  // If "/jre/lib/" appears at the right place in the path, then we
311  // assume libjvm.so is installed in a JDK and we use this path.
312  //
313  // Otherwise exit with message: "Could not create the Java virtual machine."
314  //
315  // The following extra steps are taken in the debugging version:
316  //
317  // If "/jre/lib/" does NOT appear at the right place in the path
318  // instead of exit check for $JAVA_HOME environment variable.
319  //
320  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
321  // then we append a fake suffix "hotspot/libjvm.so" to this path so
322  // it looks like libjvm.so is installed there
323  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
324  //
325  // Otherwise exit.
326  //
327  // Important note: if the location of libjvm.so changes this
328  // code needs to be changed accordingly.
329
330  // See ld(1):
331  //      The linker uses the following search paths to locate required
332  //      shared libraries:
333  //        1: ...
334  //        ...
335  //        7: The default directories, normally /lib and /usr/lib.
336#ifndef DEFAULT_LIBPATH
337  #define DEFAULT_LIBPATH "/lib:/usr/lib"
338#endif
339
340// Base path of extensions installed on the system.
341#define SYS_EXT_DIR     "/usr/java/packages"
342#define EXTENSIONS_DIR  "/lib/ext"
343
344#ifndef __APPLE__
345
346  // Buffer that fits several sprintfs.
347  // Note that the space for the colon and the trailing null are provided
348  // by the nulls included by the sizeof operator.
349  const size_t bufsize =
350    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
351         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
352  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
353
354  // sysclasspath, java_home, dll_dir
355  {
356    char *pslash;
357    os::jvm_path(buf, bufsize);
358
359    // Found the full path to libjvm.so.
360    // Now cut the path to <java_home>/jre if we can.
361    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
362    pslash = strrchr(buf, '/');
363    if (pslash != NULL) {
364      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
365    }
366    Arguments::set_dll_dir(buf);
367
368    if (pslash != NULL) {
369      pslash = strrchr(buf, '/');
370      if (pslash != NULL) {
371        *pslash = '\0';          // Get rid of /<arch>.
372        pslash = strrchr(buf, '/');
373        if (pslash != NULL) {
374          *pslash = '\0';        // Get rid of /lib.
375        }
376      }
377    }
378    Arguments::set_java_home(buf);
379    set_boot_path('/', ':');
380  }
381
382  // Where to look for native libraries.
383  //
384  // Note: Due to a legacy implementation, most of the library path
385  // is set in the launcher. This was to accomodate linking restrictions
386  // on legacy Bsd implementations (which are no longer supported).
387  // Eventually, all the library path setting will be done here.
388  //
389  // However, to prevent the proliferation of improperly built native
390  // libraries, the new path component /usr/java/packages is added here.
391  // Eventually, all the library path setting will be done here.
392  {
393    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
394    // should always exist (until the legacy problem cited above is
395    // addressed).
396    const char *v = ::getenv("LD_LIBRARY_PATH");
397    const char *v_colon = ":";
398    if (v == NULL) { v = ""; v_colon = ""; }
399    // That's +1 for the colon and +1 for the trailing '\0'.
400    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
401                                                     strlen(v) + 1 +
402                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
403                                                     mtInternal);
404    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
405    Arguments::set_library_path(ld_library_path);
406    FREE_C_HEAP_ARRAY(char, ld_library_path);
407  }
408
409  // Extensions directories.
410  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
411  Arguments::set_ext_dirs(buf);
412
413  FREE_C_HEAP_ARRAY(char, buf);
414
415#else // __APPLE__
416
417  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
418  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
419
420  const char *user_home_dir = get_home();
421  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
422  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
423    sizeof(SYS_EXTENSIONS_DIRS);
424
425  // Buffer that fits several sprintfs.
426  // Note that the space for the colon and the trailing null are provided
427  // by the nulls included by the sizeof operator.
428  const size_t bufsize =
429    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
430         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
431  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
432
433  // sysclasspath, java_home, dll_dir
434  {
435    char *pslash;
436    os::jvm_path(buf, bufsize);
437
438    // Found the full path to libjvm.so.
439    // Now cut the path to <java_home>/jre if we can.
440    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
441    pslash = strrchr(buf, '/');
442    if (pslash != NULL) {
443      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
444    }
445    Arguments::set_dll_dir(buf);
446
447    if (pslash != NULL) {
448      pslash = strrchr(buf, '/');
449      if (pslash != NULL) {
450        *pslash = '\0';          // Get rid of /lib.
451      }
452    }
453    Arguments::set_java_home(buf);
454    set_boot_path('/', ':');
455  }
456
457  // Where to look for native libraries.
458  //
459  // Note: Due to a legacy implementation, most of the library path
460  // is set in the launcher. This was to accomodate linking restrictions
461  // on legacy Bsd implementations (which are no longer supported).
462  // Eventually, all the library path setting will be done here.
463  //
464  // However, to prevent the proliferation of improperly built native
465  // libraries, the new path component /usr/java/packages is added here.
466  // Eventually, all the library path setting will be done here.
467  {
468    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
469    // should always exist (until the legacy problem cited above is
470    // addressed).
471    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
472    // can specify a directory inside an app wrapper
473    const char *l = ::getenv("JAVA_LIBRARY_PATH");
474    const char *l_colon = ":";
475    if (l == NULL) { l = ""; l_colon = ""; }
476
477    const char *v = ::getenv("DYLD_LIBRARY_PATH");
478    const char *v_colon = ":";
479    if (v == NULL) { v = ""; v_colon = ""; }
480
481    // Apple's Java6 has "." at the beginning of java.library.path.
482    // OpenJDK on Windows has "." at the end of java.library.path.
483    // OpenJDK on Linux and Solaris don't have "." in java.library.path
484    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
485    // "." is appended to the end of java.library.path. Yes, this
486    // could cause a change in behavior, but Apple's Java6 behavior
487    // can be achieved by putting "." at the beginning of the
488    // JAVA_LIBRARY_PATH environment variable.
489    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
490                                                     strlen(v) + 1 + strlen(l) + 1 +
491                                                     system_ext_size + 3,
492                                                     mtInternal);
493    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
494            v, v_colon, l, l_colon, user_home_dir);
495    Arguments::set_library_path(ld_library_path);
496    FREE_C_HEAP_ARRAY(char, ld_library_path);
497  }
498
499  // Extensions directories.
500  //
501  // Note that the space for the colon and the trailing null are provided
502  // by the nulls included by the sizeof operator (so actually one byte more
503  // than necessary is allocated).
504  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
505          user_home_dir, Arguments::get_java_home());
506  Arguments::set_ext_dirs(buf);
507
508  FREE_C_HEAP_ARRAY(char, buf);
509
510#undef SYS_EXTENSIONS_DIR
511#undef SYS_EXTENSIONS_DIRS
512
513#endif // __APPLE__
514
515#undef SYS_EXT_DIR
516#undef EXTENSIONS_DIR
517}
518
519////////////////////////////////////////////////////////////////////////////////
520// breakpoint support
521
522void os::breakpoint() {
523  BREAKPOINT;
524}
525
526extern "C" void breakpoint() {
527  // use debugger to set breakpoint here
528}
529
530////////////////////////////////////////////////////////////////////////////////
531// signal support
532
533debug_only(static bool signal_sets_initialized = false);
534static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
535
536bool os::Bsd::is_sig_ignored(int sig) {
537  struct sigaction oact;
538  sigaction(sig, (struct sigaction*)NULL, &oact);
539  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
540                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
541  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
542    return true;
543  } else {
544    return false;
545  }
546}
547
548void os::Bsd::signal_sets_init() {
549  // Should also have an assertion stating we are still single-threaded.
550  assert(!signal_sets_initialized, "Already initialized");
551  // Fill in signals that are necessarily unblocked for all threads in
552  // the VM. Currently, we unblock the following signals:
553  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
554  //                         by -Xrs (=ReduceSignalUsage));
555  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
556  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
557  // the dispositions or masks wrt these signals.
558  // Programs embedding the VM that want to use the above signals for their
559  // own purposes must, at this time, use the "-Xrs" option to prevent
560  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
561  // (See bug 4345157, and other related bugs).
562  // In reality, though, unblocking these signals is really a nop, since
563  // these signals are not blocked by default.
564  sigemptyset(&unblocked_sigs);
565  sigemptyset(&allowdebug_blocked_sigs);
566  sigaddset(&unblocked_sigs, SIGILL);
567  sigaddset(&unblocked_sigs, SIGSEGV);
568  sigaddset(&unblocked_sigs, SIGBUS);
569  sigaddset(&unblocked_sigs, SIGFPE);
570  sigaddset(&unblocked_sigs, SR_signum);
571
572  if (!ReduceSignalUsage) {
573    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
574      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
575      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
576    }
577    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
578      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
579      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
580    }
581    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
582      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
583      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
584    }
585  }
586  // Fill in signals that are blocked by all but the VM thread.
587  sigemptyset(&vm_sigs);
588  if (!ReduceSignalUsage) {
589    sigaddset(&vm_sigs, BREAK_SIGNAL);
590  }
591  debug_only(signal_sets_initialized = true);
592
593}
594
595// These are signals that are unblocked while a thread is running Java.
596// (For some reason, they get blocked by default.)
597sigset_t* os::Bsd::unblocked_signals() {
598  assert(signal_sets_initialized, "Not initialized");
599  return &unblocked_sigs;
600}
601
602// These are the signals that are blocked while a (non-VM) thread is
603// running Java. Only the VM thread handles these signals.
604sigset_t* os::Bsd::vm_signals() {
605  assert(signal_sets_initialized, "Not initialized");
606  return &vm_sigs;
607}
608
609// These are signals that are blocked during cond_wait to allow debugger in
610sigset_t* os::Bsd::allowdebug_blocked_signals() {
611  assert(signal_sets_initialized, "Not initialized");
612  return &allowdebug_blocked_sigs;
613}
614
615void os::Bsd::hotspot_sigmask(Thread* thread) {
616
617  //Save caller's signal mask before setting VM signal mask
618  sigset_t caller_sigmask;
619  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
620
621  OSThread* osthread = thread->osthread();
622  osthread->set_caller_sigmask(caller_sigmask);
623
624  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
625
626  if (!ReduceSignalUsage) {
627    if (thread->is_VM_thread()) {
628      // Only the VM thread handles BREAK_SIGNAL ...
629      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
630    } else {
631      // ... all other threads block BREAK_SIGNAL
632      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
633    }
634  }
635}
636
637
638//////////////////////////////////////////////////////////////////////////////
639// create new thread
640
641#ifdef __APPLE__
642// library handle for calling objc_registerThreadWithCollector()
643// without static linking to the libobjc library
644  #define OBJC_LIB "/usr/lib/libobjc.dylib"
645  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
646typedef void (*objc_registerThreadWithCollector_t)();
647extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
648objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
649#endif
650
651#ifdef __APPLE__
652static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
653  // Additional thread_id used to correlate threads in SA
654  thread_identifier_info_data_t     m_ident_info;
655  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
656
657  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
658              (thread_info_t) &m_ident_info, &count);
659
660  return m_ident_info.thread_id;
661}
662#endif
663
664// Thread start routine for all newly created threads
665static void *java_start(Thread *thread) {
666  // Try to randomize the cache line index of hot stack frames.
667  // This helps when threads of the same stack traces evict each other's
668  // cache lines. The threads can be either from the same JVM instance, or
669  // from different JVM instances. The benefit is especially true for
670  // processors with hyperthreading technology.
671  static int counter = 0;
672  int pid = os::current_process_id();
673  alloca(((pid ^ counter++) & 7) * 128);
674
675  ThreadLocalStorage::set_thread(thread);
676
677  OSThread* osthread = thread->osthread();
678  Monitor* sync = osthread->startThread_lock();
679
680  osthread->set_thread_id(os::Bsd::gettid());
681
682#ifdef __APPLE__
683  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
684  guarantee(unique_thread_id != 0, "unique thread id was not found");
685  osthread->set_unique_thread_id(unique_thread_id);
686#endif
687  // initialize signal mask for this thread
688  os::Bsd::hotspot_sigmask(thread);
689
690  // initialize floating point control register
691  os::Bsd::init_thread_fpu_state();
692
693#ifdef __APPLE__
694  // register thread with objc gc
695  if (objc_registerThreadWithCollectorFunction != NULL) {
696    objc_registerThreadWithCollectorFunction();
697  }
698#endif
699
700  // handshaking with parent thread
701  {
702    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
703
704    // notify parent thread
705    osthread->set_state(INITIALIZED);
706    sync->notify_all();
707
708    // wait until os::start_thread()
709    while (osthread->get_state() == INITIALIZED) {
710      sync->wait(Mutex::_no_safepoint_check_flag);
711    }
712  }
713
714  // call one more level start routine
715  thread->run();
716
717  return 0;
718}
719
720bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
721  assert(thread->osthread() == NULL, "caller responsible");
722
723  // Allocate the OSThread object
724  OSThread* osthread = new OSThread(NULL, NULL);
725  if (osthread == NULL) {
726    return false;
727  }
728
729  // set the correct thread state
730  osthread->set_thread_type(thr_type);
731
732  // Initial state is ALLOCATED but not INITIALIZED
733  osthread->set_state(ALLOCATED);
734
735  thread->set_osthread(osthread);
736
737  // init thread attributes
738  pthread_attr_t attr;
739  pthread_attr_init(&attr);
740  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
741
742  // calculate stack size if it's not specified by caller
743  if (stack_size == 0) {
744    stack_size = os::Bsd::default_stack_size(thr_type);
745
746    switch (thr_type) {
747    case os::java_thread:
748      // Java threads use ThreadStackSize which default value can be
749      // changed with the flag -Xss
750      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
751      stack_size = JavaThread::stack_size_at_create();
752      break;
753    case os::compiler_thread:
754      if (CompilerThreadStackSize > 0) {
755        stack_size = (size_t)(CompilerThreadStackSize * K);
756        break;
757      } // else fall through:
758        // use VMThreadStackSize if CompilerThreadStackSize is not defined
759    case os::vm_thread:
760    case os::pgc_thread:
761    case os::cgc_thread:
762    case os::watcher_thread:
763      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
764      break;
765    }
766  }
767
768  stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
769  pthread_attr_setstacksize(&attr, stack_size);
770
771  ThreadState state;
772
773  {
774    pthread_t tid;
775    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
776
777    pthread_attr_destroy(&attr);
778
779    if (ret != 0) {
780      if (PrintMiscellaneous && (Verbose || WizardMode)) {
781        perror("pthread_create()");
782      }
783      // Need to clean up stuff we've allocated so far
784      thread->set_osthread(NULL);
785      delete osthread;
786      return false;
787    }
788
789    // Store pthread info into the OSThread
790    osthread->set_pthread_id(tid);
791
792    // Wait until child thread is either initialized or aborted
793    {
794      Monitor* sync_with_child = osthread->startThread_lock();
795      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
796      while ((state = osthread->get_state()) == ALLOCATED) {
797        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
798      }
799    }
800
801  }
802
803  // Aborted due to thread limit being reached
804  if (state == ZOMBIE) {
805    thread->set_osthread(NULL);
806    delete osthread;
807    return false;
808  }
809
810  // The thread is returned suspended (in state INITIALIZED),
811  // and is started higher up in the call chain
812  assert(state == INITIALIZED, "race condition");
813  return true;
814}
815
816/////////////////////////////////////////////////////////////////////////////
817// attach existing thread
818
819// bootstrap the main thread
820bool os::create_main_thread(JavaThread* thread) {
821  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
822  return create_attached_thread(thread);
823}
824
825bool os::create_attached_thread(JavaThread* thread) {
826#ifdef ASSERT
827  thread->verify_not_published();
828#endif
829
830  // Allocate the OSThread object
831  OSThread* osthread = new OSThread(NULL, NULL);
832
833  if (osthread == NULL) {
834    return false;
835  }
836
837  osthread->set_thread_id(os::Bsd::gettid());
838
839  // Store pthread info into the OSThread
840#ifdef __APPLE__
841  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
842  guarantee(unique_thread_id != 0, "just checking");
843  osthread->set_unique_thread_id(unique_thread_id);
844#endif
845  osthread->set_pthread_id(::pthread_self());
846
847  // initialize floating point control register
848  os::Bsd::init_thread_fpu_state();
849
850  // Initial thread state is RUNNABLE
851  osthread->set_state(RUNNABLE);
852
853  thread->set_osthread(osthread);
854
855  // initialize signal mask for this thread
856  // and save the caller's signal mask
857  os::Bsd::hotspot_sigmask(thread);
858
859  return true;
860}
861
862void os::pd_start_thread(Thread* thread) {
863  OSThread * osthread = thread->osthread();
864  assert(osthread->get_state() != INITIALIZED, "just checking");
865  Monitor* sync_with_child = osthread->startThread_lock();
866  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
867  sync_with_child->notify();
868}
869
870// Free Bsd resources related to the OSThread
871void os::free_thread(OSThread* osthread) {
872  assert(osthread != NULL, "osthread not set");
873
874  if (Thread::current()->osthread() == osthread) {
875    // Restore caller's signal mask
876    sigset_t sigmask = osthread->caller_sigmask();
877    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
878  }
879
880  delete osthread;
881}
882
883//////////////////////////////////////////////////////////////////////////////
884// thread local storage
885
886// Restore the thread pointer if the destructor is called. This is in case
887// someone from JNI code sets up a destructor with pthread_key_create to run
888// detachCurrentThread on thread death. Unless we restore the thread pointer we
889// will hang or crash. When detachCurrentThread is called the key will be set
890// to null and we will not be called again. If detachCurrentThread is never
891// called we could loop forever depending on the pthread implementation.
892static void restore_thread_pointer(void* p) {
893  Thread* thread = (Thread*) p;
894  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
895}
896
897int os::allocate_thread_local_storage() {
898  pthread_key_t key;
899  int rslt = pthread_key_create(&key, restore_thread_pointer);
900  assert(rslt == 0, "cannot allocate thread local storage");
901  return (int)key;
902}
903
904// Note: This is currently not used by VM, as we don't destroy TLS key
905// on VM exit.
906void os::free_thread_local_storage(int index) {
907  int rslt = pthread_key_delete((pthread_key_t)index);
908  assert(rslt == 0, "invalid index");
909}
910
911void os::thread_local_storage_at_put(int index, void* value) {
912  int rslt = pthread_setspecific((pthread_key_t)index, value);
913  assert(rslt == 0, "pthread_setspecific failed");
914}
915
916extern "C" Thread* get_thread() {
917  return ThreadLocalStorage::thread();
918}
919
920
921////////////////////////////////////////////////////////////////////////////////
922// time support
923
924// Time since start-up in seconds to a fine granularity.
925// Used by VMSelfDestructTimer and the MemProfiler.
926double os::elapsedTime() {
927
928  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
929}
930
931jlong os::elapsed_counter() {
932  return javaTimeNanos() - initial_time_count;
933}
934
935jlong os::elapsed_frequency() {
936  return NANOSECS_PER_SEC; // nanosecond resolution
937}
938
939bool os::supports_vtime() { return true; }
940bool os::enable_vtime()   { return false; }
941bool os::vtime_enabled()  { return false; }
942
943double os::elapsedVTime() {
944  // better than nothing, but not much
945  return elapsedTime();
946}
947
948jlong os::javaTimeMillis() {
949  timeval time;
950  int status = gettimeofday(&time, NULL);
951  assert(status != -1, "bsd error");
952  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
953}
954
955void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
956  timeval time;
957  int status = gettimeofday(&time, NULL);
958  assert(status != -1, "bsd error");
959  seconds = jlong(time.tv_sec);
960  nanos = jlong(time.tv_usec) * 1000;
961}
962
963#ifndef __APPLE__
964  #ifndef CLOCK_MONOTONIC
965    #define CLOCK_MONOTONIC (1)
966  #endif
967#endif
968
969#ifdef __APPLE__
970void os::Bsd::clock_init() {
971  mach_timebase_info(&_timebase_info);
972}
973#else
974void os::Bsd::clock_init() {
975  struct timespec res;
976  struct timespec tp;
977  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
978      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
979    // yes, monotonic clock is supported
980    _clock_gettime = ::clock_gettime;
981  }
982}
983#endif
984
985
986
987#ifdef __APPLE__
988
989jlong os::javaTimeNanos() {
990  const uint64_t tm = mach_absolute_time();
991  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
992  const uint64_t prev = Bsd::_max_abstime;
993  if (now <= prev) {
994    return prev;   // same or retrograde time;
995  }
996  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
997  assert(obsv >= prev, "invariant");   // Monotonicity
998  // If the CAS succeeded then we're done and return "now".
999  // If the CAS failed and the observed value "obsv" is >= now then
1000  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1001  // some other thread raced this thread and installed a new value, in which case
1002  // we could either (a) retry the entire operation, (b) retry trying to install now
1003  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1004  // we might discard a higher "now" value in deference to a slightly lower but freshly
1005  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1006  // to (a) or (b) -- and greatly reduces coherence traffic.
1007  // We might also condition (c) on the magnitude of the delta between obsv and now.
1008  // Avoiding excessive CAS operations to hot RW locations is critical.
1009  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1010  return (prev == obsv) ? now : obsv;
1011}
1012
1013#else // __APPLE__
1014
1015jlong os::javaTimeNanos() {
1016  if (os::supports_monotonic_clock()) {
1017    struct timespec tp;
1018    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1019    assert(status == 0, "gettime error");
1020    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1021    return result;
1022  } else {
1023    timeval time;
1024    int status = gettimeofday(&time, NULL);
1025    assert(status != -1, "bsd error");
1026    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1027    return 1000 * usecs;
1028  }
1029}
1030
1031#endif // __APPLE__
1032
1033void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1034  if (os::supports_monotonic_clock()) {
1035    info_ptr->max_value = ALL_64_BITS;
1036
1037    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1038    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1039    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1040  } else {
1041    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1042    info_ptr->max_value = ALL_64_BITS;
1043
1044    // gettimeofday is a real time clock so it skips
1045    info_ptr->may_skip_backward = true;
1046    info_ptr->may_skip_forward = true;
1047  }
1048
1049  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1050}
1051
1052// Return the real, user, and system times in seconds from an
1053// arbitrary fixed point in the past.
1054bool os::getTimesSecs(double* process_real_time,
1055                      double* process_user_time,
1056                      double* process_system_time) {
1057  struct tms ticks;
1058  clock_t real_ticks = times(&ticks);
1059
1060  if (real_ticks == (clock_t) (-1)) {
1061    return false;
1062  } else {
1063    double ticks_per_second = (double) clock_tics_per_sec;
1064    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1065    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1066    *process_real_time = ((double) real_ticks) / ticks_per_second;
1067
1068    return true;
1069  }
1070}
1071
1072
1073char * os::local_time_string(char *buf, size_t buflen) {
1074  struct tm t;
1075  time_t long_time;
1076  time(&long_time);
1077  localtime_r(&long_time, &t);
1078  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1079               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1080               t.tm_hour, t.tm_min, t.tm_sec);
1081  return buf;
1082}
1083
1084struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1085  return localtime_r(clock, res);
1086}
1087
1088////////////////////////////////////////////////////////////////////////////////
1089// runtime exit support
1090
1091// Note: os::shutdown() might be called very early during initialization, or
1092// called from signal handler. Before adding something to os::shutdown(), make
1093// sure it is async-safe and can handle partially initialized VM.
1094void os::shutdown() {
1095
1096  // allow PerfMemory to attempt cleanup of any persistent resources
1097  perfMemory_exit();
1098
1099  // needs to remove object in file system
1100  AttachListener::abort();
1101
1102  // flush buffered output, finish log files
1103  ostream_abort();
1104
1105  // Check for abort hook
1106  abort_hook_t abort_hook = Arguments::abort_hook();
1107  if (abort_hook != NULL) {
1108    abort_hook();
1109  }
1110
1111}
1112
1113// Note: os::abort() might be called very early during initialization, or
1114// called from signal handler. Before adding something to os::abort(), make
1115// sure it is async-safe and can handle partially initialized VM.
1116void os::abort(bool dump_core, void* siginfo, void* context) {
1117  os::shutdown();
1118  if (dump_core) {
1119#ifndef PRODUCT
1120    fdStream out(defaultStream::output_fd());
1121    out.print_raw("Current thread is ");
1122    char buf[16];
1123    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1124    out.print_raw_cr(buf);
1125    out.print_raw_cr("Dumping core ...");
1126#endif
1127    ::abort(); // dump core
1128  }
1129
1130  ::exit(1);
1131}
1132
1133// Die immediately, no exit hook, no abort hook, no cleanup.
1134void os::die() {
1135  // _exit() on BsdThreads only kills current thread
1136  ::abort();
1137}
1138
1139// This method is a copy of JDK's sysGetLastErrorString
1140// from src/solaris/hpi/src/system_md.c
1141
1142size_t os::lasterror(char *buf, size_t len) {
1143  if (errno == 0)  return 0;
1144
1145  const char *s = ::strerror(errno);
1146  size_t n = ::strlen(s);
1147  if (n >= len) {
1148    n = len - 1;
1149  }
1150  ::strncpy(buf, s, n);
1151  buf[n] = '\0';
1152  return n;
1153}
1154
1155// Information of current thread in variety of formats
1156pid_t os::Bsd::gettid() {
1157  int retval = -1;
1158
1159#ifdef __APPLE__ //XNU kernel
1160  // despite the fact mach port is actually not a thread id use it
1161  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1162  retval = ::pthread_mach_thread_np(::pthread_self());
1163  guarantee(retval != 0, "just checking");
1164  return retval;
1165
1166#else
1167  #ifdef __FreeBSD__
1168  retval = syscall(SYS_thr_self);
1169  #else
1170    #ifdef __OpenBSD__
1171  retval = syscall(SYS_getthrid);
1172    #else
1173      #ifdef __NetBSD__
1174  retval = (pid_t) syscall(SYS__lwp_self);
1175      #endif
1176    #endif
1177  #endif
1178#endif
1179
1180  if (retval == -1) {
1181    return getpid();
1182  }
1183}
1184
1185intx os::current_thread_id() {
1186#ifdef __APPLE__
1187  return (intx)::pthread_mach_thread_np(::pthread_self());
1188#else
1189  return (intx)::pthread_self();
1190#endif
1191}
1192
1193int os::current_process_id() {
1194
1195  // Under the old bsd thread library, bsd gives each thread
1196  // its own process id. Because of this each thread will return
1197  // a different pid if this method were to return the result
1198  // of getpid(2). Bsd provides no api that returns the pid
1199  // of the launcher thread for the vm. This implementation
1200  // returns a unique pid, the pid of the launcher thread
1201  // that starts the vm 'process'.
1202
1203  // Under the NPTL, getpid() returns the same pid as the
1204  // launcher thread rather than a unique pid per thread.
1205  // Use gettid() if you want the old pre NPTL behaviour.
1206
1207  // if you are looking for the result of a call to getpid() that
1208  // returns a unique pid for the calling thread, then look at the
1209  // OSThread::thread_id() method in osThread_bsd.hpp file
1210
1211  return (int)(_initial_pid ? _initial_pid : getpid());
1212}
1213
1214// DLL functions
1215
1216#define JNI_LIB_PREFIX "lib"
1217#ifdef __APPLE__
1218  #define JNI_LIB_SUFFIX ".dylib"
1219#else
1220  #define JNI_LIB_SUFFIX ".so"
1221#endif
1222
1223const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1224
1225// This must be hard coded because it's the system's temporary
1226// directory not the java application's temp directory, ala java.io.tmpdir.
1227#ifdef __APPLE__
1228// macosx has a secure per-user temporary directory
1229char temp_path_storage[PATH_MAX];
1230const char* os::get_temp_directory() {
1231  static char *temp_path = NULL;
1232  if (temp_path == NULL) {
1233    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1234    if (pathSize == 0 || pathSize > PATH_MAX) {
1235      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1236    }
1237    temp_path = temp_path_storage;
1238  }
1239  return temp_path;
1240}
1241#else // __APPLE__
1242const char* os::get_temp_directory() { return "/tmp"; }
1243#endif // __APPLE__
1244
1245static bool file_exists(const char* filename) {
1246  struct stat statbuf;
1247  if (filename == NULL || strlen(filename) == 0) {
1248    return false;
1249  }
1250  return os::stat(filename, &statbuf) == 0;
1251}
1252
1253bool os::dll_build_name(char* buffer, size_t buflen,
1254                        const char* pname, const char* fname) {
1255  bool retval = false;
1256  // Copied from libhpi
1257  const size_t pnamelen = pname ? strlen(pname) : 0;
1258
1259  // Return error on buffer overflow.
1260  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1261    return retval;
1262  }
1263
1264  if (pnamelen == 0) {
1265    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1266    retval = true;
1267  } else if (strchr(pname, *os::path_separator()) != NULL) {
1268    int n;
1269    char** pelements = split_path(pname, &n);
1270    if (pelements == NULL) {
1271      return false;
1272    }
1273    for (int i = 0; i < n; i++) {
1274      // Really shouldn't be NULL, but check can't hurt
1275      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1276        continue; // skip the empty path values
1277      }
1278      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1279               pelements[i], fname);
1280      if (file_exists(buffer)) {
1281        retval = true;
1282        break;
1283      }
1284    }
1285    // release the storage
1286    for (int i = 0; i < n; i++) {
1287      if (pelements[i] != NULL) {
1288        FREE_C_HEAP_ARRAY(char, pelements[i]);
1289      }
1290    }
1291    if (pelements != NULL) {
1292      FREE_C_HEAP_ARRAY(char*, pelements);
1293    }
1294  } else {
1295    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1296    retval = true;
1297  }
1298  return retval;
1299}
1300
1301// check if addr is inside libjvm.so
1302bool os::address_is_in_vm(address addr) {
1303  static address libjvm_base_addr;
1304  Dl_info dlinfo;
1305
1306  if (libjvm_base_addr == NULL) {
1307    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1308      libjvm_base_addr = (address)dlinfo.dli_fbase;
1309    }
1310    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1311  }
1312
1313  if (dladdr((void *)addr, &dlinfo) != 0) {
1314    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1315  }
1316
1317  return false;
1318}
1319
1320
1321#define MACH_MAXSYMLEN 256
1322
1323bool os::dll_address_to_function_name(address addr, char *buf,
1324                                      int buflen, int *offset,
1325                                      bool demangle) {
1326  // buf is not optional, but offset is optional
1327  assert(buf != NULL, "sanity check");
1328
1329  Dl_info dlinfo;
1330  char localbuf[MACH_MAXSYMLEN];
1331
1332  if (dladdr((void*)addr, &dlinfo) != 0) {
1333    // see if we have a matching symbol
1334    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1335      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1336        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1337      }
1338      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1339      return true;
1340    }
1341    // no matching symbol so try for just file info
1342    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1343      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1344                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1345        return true;
1346      }
1347    }
1348
1349    // Handle non-dynamic manually:
1350    if (dlinfo.dli_fbase != NULL &&
1351        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1352                        dlinfo.dli_fbase)) {
1353      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1354        jio_snprintf(buf, buflen, "%s", localbuf);
1355      }
1356      return true;
1357    }
1358  }
1359  buf[0] = '\0';
1360  if (offset != NULL) *offset = -1;
1361  return false;
1362}
1363
1364// ported from solaris version
1365bool os::dll_address_to_library_name(address addr, char* buf,
1366                                     int buflen, int* offset) {
1367  // buf is not optional, but offset is optional
1368  assert(buf != NULL, "sanity check");
1369
1370  Dl_info dlinfo;
1371
1372  if (dladdr((void*)addr, &dlinfo) != 0) {
1373    if (dlinfo.dli_fname != NULL) {
1374      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1375    }
1376    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1377      *offset = addr - (address)dlinfo.dli_fbase;
1378    }
1379    return true;
1380  }
1381
1382  buf[0] = '\0';
1383  if (offset) *offset = -1;
1384  return false;
1385}
1386
1387// Loads .dll/.so and
1388// in case of error it checks if .dll/.so was built for the
1389// same architecture as Hotspot is running on
1390
1391#ifdef __APPLE__
1392void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1393  void * result= ::dlopen(filename, RTLD_LAZY);
1394  if (result != NULL) {
1395    // Successful loading
1396    return result;
1397  }
1398
1399  // Read system error message into ebuf
1400  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1401  ebuf[ebuflen-1]='\0';
1402
1403  return NULL;
1404}
1405#else
1406void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1407  void * result= ::dlopen(filename, RTLD_LAZY);
1408  if (result != NULL) {
1409    // Successful loading
1410    return result;
1411  }
1412
1413  Elf32_Ehdr elf_head;
1414
1415  // Read system error message into ebuf
1416  // It may or may not be overwritten below
1417  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1418  ebuf[ebuflen-1]='\0';
1419  int diag_msg_max_length=ebuflen-strlen(ebuf);
1420  char* diag_msg_buf=ebuf+strlen(ebuf);
1421
1422  if (diag_msg_max_length==0) {
1423    // No more space in ebuf for additional diagnostics message
1424    return NULL;
1425  }
1426
1427
1428  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1429
1430  if (file_descriptor < 0) {
1431    // Can't open library, report dlerror() message
1432    return NULL;
1433  }
1434
1435  bool failed_to_read_elf_head=
1436    (sizeof(elf_head)!=
1437     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1438
1439  ::close(file_descriptor);
1440  if (failed_to_read_elf_head) {
1441    // file i/o error - report dlerror() msg
1442    return NULL;
1443  }
1444
1445  typedef struct {
1446    Elf32_Half  code;         // Actual value as defined in elf.h
1447    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1448    char        elf_class;    // 32 or 64 bit
1449    char        endianess;    // MSB or LSB
1450    char*       name;         // String representation
1451  } arch_t;
1452
1453  #ifndef EM_486
1454    #define EM_486          6               /* Intel 80486 */
1455  #endif
1456
1457  #ifndef EM_MIPS_RS3_LE
1458    #define EM_MIPS_RS3_LE  10              /* MIPS */
1459  #endif
1460
1461  #ifndef EM_PPC64
1462    #define EM_PPC64        21              /* PowerPC64 */
1463  #endif
1464
1465  #ifndef EM_S390
1466    #define EM_S390         22              /* IBM System/390 */
1467  #endif
1468
1469  #ifndef EM_IA_64
1470    #define EM_IA_64        50              /* HP/Intel IA-64 */
1471  #endif
1472
1473  #ifndef EM_X86_64
1474    #define EM_X86_64       62              /* AMD x86-64 */
1475  #endif
1476
1477  static const arch_t arch_array[]={
1478    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1479    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1480    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1481    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1482    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1483    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1484    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1485    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1486    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1487    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1488    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1489    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1490    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1491    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1492    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1493    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1494  };
1495
1496  #if  (defined IA32)
1497  static  Elf32_Half running_arch_code=EM_386;
1498  #elif   (defined AMD64)
1499  static  Elf32_Half running_arch_code=EM_X86_64;
1500  #elif  (defined IA64)
1501  static  Elf32_Half running_arch_code=EM_IA_64;
1502  #elif  (defined __sparc) && (defined _LP64)
1503  static  Elf32_Half running_arch_code=EM_SPARCV9;
1504  #elif  (defined __sparc) && (!defined _LP64)
1505  static  Elf32_Half running_arch_code=EM_SPARC;
1506  #elif  (defined __powerpc64__)
1507  static  Elf32_Half running_arch_code=EM_PPC64;
1508  #elif  (defined __powerpc__)
1509  static  Elf32_Half running_arch_code=EM_PPC;
1510  #elif  (defined ARM)
1511  static  Elf32_Half running_arch_code=EM_ARM;
1512  #elif  (defined S390)
1513  static  Elf32_Half running_arch_code=EM_S390;
1514  #elif  (defined ALPHA)
1515  static  Elf32_Half running_arch_code=EM_ALPHA;
1516  #elif  (defined MIPSEL)
1517  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1518  #elif  (defined PARISC)
1519  static  Elf32_Half running_arch_code=EM_PARISC;
1520  #elif  (defined MIPS)
1521  static  Elf32_Half running_arch_code=EM_MIPS;
1522  #elif  (defined M68K)
1523  static  Elf32_Half running_arch_code=EM_68K;
1524  #else
1525    #error Method os::dll_load requires that one of following is defined:\
1526         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1527  #endif
1528
1529  // Identify compatability class for VM's architecture and library's architecture
1530  // Obtain string descriptions for architectures
1531
1532  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1533  int running_arch_index=-1;
1534
1535  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1536    if (running_arch_code == arch_array[i].code) {
1537      running_arch_index    = i;
1538    }
1539    if (lib_arch.code == arch_array[i].code) {
1540      lib_arch.compat_class = arch_array[i].compat_class;
1541      lib_arch.name         = arch_array[i].name;
1542    }
1543  }
1544
1545  assert(running_arch_index != -1,
1546         "Didn't find running architecture code (running_arch_code) in arch_array");
1547  if (running_arch_index == -1) {
1548    // Even though running architecture detection failed
1549    // we may still continue with reporting dlerror() message
1550    return NULL;
1551  }
1552
1553  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1554    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1555    return NULL;
1556  }
1557
1558#ifndef S390
1559  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1560    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1561    return NULL;
1562  }
1563#endif // !S390
1564
1565  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1566    if (lib_arch.name!=NULL) {
1567      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1568                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1569                 lib_arch.name, arch_array[running_arch_index].name);
1570    } else {
1571      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1572                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1573                 lib_arch.code,
1574                 arch_array[running_arch_index].name);
1575    }
1576  }
1577
1578  return NULL;
1579}
1580#endif // !__APPLE__
1581
1582void* os::get_default_process_handle() {
1583#ifdef __APPLE__
1584  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1585  // to avoid finding unexpected symbols on second (or later)
1586  // loads of a library.
1587  return (void*)::dlopen(NULL, RTLD_FIRST);
1588#else
1589  return (void*)::dlopen(NULL, RTLD_LAZY);
1590#endif
1591}
1592
1593// XXX: Do we need a lock around this as per Linux?
1594void* os::dll_lookup(void* handle, const char* name) {
1595  return dlsym(handle, name);
1596}
1597
1598int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1599  outputStream * out = (outputStream *) param;
1600  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1601  return 0;
1602}
1603
1604void os::print_dll_info(outputStream *st) {
1605  st->print_cr("Dynamic libraries:");
1606  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1607    st->print_cr("Error: Cannot print dynamic libraries.");
1608  }
1609}
1610
1611int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1612#ifdef RTLD_DI_LINKMAP
1613  Dl_info dli;
1614  void *handle;
1615  Link_map *map;
1616  Link_map *p;
1617
1618  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1619      dli.dli_fname == NULL) {
1620    return 1;
1621  }
1622  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1623  if (handle == NULL) {
1624    return 1;
1625  }
1626  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1627  if (map == NULL) {
1628    dlclose(handle);
1629    return 1;
1630  }
1631
1632  while (map->l_prev != NULL)
1633    map = map->l_prev;
1634
1635  while (map != NULL) {
1636    // Value for top_address is returned as 0 since we don't have any information about module size
1637    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1638      dlclose(handle);
1639      return 1;
1640    }
1641    map = map->l_next;
1642  }
1643
1644  dlclose(handle);
1645#elif defined(__APPLE__)
1646  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1647    // Value for top_address is returned as 0 since we don't have any information about module size
1648    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1649      return 1;
1650    }
1651  }
1652  return 0;
1653#else
1654  return 1;
1655#endif
1656}
1657
1658void os::get_summary_os_info(char* buf, size_t buflen) {
1659  // These buffers are small because we want this to be brief
1660  // and not use a lot of stack while generating the hs_err file.
1661  char os[100];
1662  size_t size = sizeof(os);
1663  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1664  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1665#ifdef __APPLE__
1666      strncpy(os, "Darwin", sizeof(os));
1667#elif __OpenBSD__
1668      strncpy(os, "OpenBSD", sizeof(os));
1669#else
1670      strncpy(os, "BSD", sizeof(os));
1671#endif
1672  }
1673
1674  char release[100];
1675  size = sizeof(release);
1676  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1677  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1678      // if error, leave blank
1679      strncpy(release, "", sizeof(release));
1680  }
1681  snprintf(buf, buflen, "%s %s", os, release);
1682}
1683
1684void os::print_os_info_brief(outputStream* st) {
1685  os::Posix::print_uname_info(st);
1686}
1687
1688void os::print_os_info(outputStream* st) {
1689  st->print("OS:");
1690
1691  os::Posix::print_uname_info(st);
1692
1693  os::Posix::print_rlimit_info(st);
1694
1695  os::Posix::print_load_average(st);
1696}
1697
1698void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1699  // Nothing to do for now.
1700}
1701
1702void os::get_summary_cpu_info(char* buf, size_t buflen) {
1703  unsigned int mhz;
1704  size_t size = sizeof(mhz);
1705  int mib[] = { CTL_HW, HW_CPU_FREQ };
1706  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1707    mhz = 1;  // looks like an error but can be divided by
1708  } else {
1709    mhz /= 1000000;  // reported in millions
1710  }
1711
1712  char model[100];
1713  size = sizeof(model);
1714  int mib_model[] = { CTL_HW, HW_MODEL };
1715  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1716    strncpy(model, cpu_arch, sizeof(model));
1717  }
1718
1719  char machine[100];
1720  size = sizeof(machine);
1721  int mib_machine[] = { CTL_HW, HW_MACHINE };
1722  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1723      strncpy(machine, "", sizeof(machine));
1724  }
1725
1726  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1727}
1728
1729void os::print_memory_info(outputStream* st) {
1730
1731  st->print("Memory:");
1732  st->print(" %dk page", os::vm_page_size()>>10);
1733
1734  st->print(", physical " UINT64_FORMAT "k",
1735            os::physical_memory() >> 10);
1736  st->print("(" UINT64_FORMAT "k free)",
1737            os::available_memory() >> 10);
1738  st->cr();
1739}
1740
1741void os::print_siginfo(outputStream* st, void* siginfo) {
1742  const siginfo_t* si = (const siginfo_t*)siginfo;
1743
1744  os::Posix::print_siginfo_brief(st, si);
1745
1746  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1747      UseSharedSpaces) {
1748    FileMapInfo* mapinfo = FileMapInfo::current_info();
1749    if (mapinfo->is_in_shared_space(si->si_addr)) {
1750      st->print("\n\nError accessing class data sharing archive."   \
1751                " Mapped file inaccessible during execution, "      \
1752                " possible disk/network problem.");
1753    }
1754  }
1755  st->cr();
1756}
1757
1758
1759static void print_signal_handler(outputStream* st, int sig,
1760                                 char* buf, size_t buflen);
1761
1762void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1763  st->print_cr("Signal Handlers:");
1764  print_signal_handler(st, SIGSEGV, buf, buflen);
1765  print_signal_handler(st, SIGBUS , buf, buflen);
1766  print_signal_handler(st, SIGFPE , buf, buflen);
1767  print_signal_handler(st, SIGPIPE, buf, buflen);
1768  print_signal_handler(st, SIGXFSZ, buf, buflen);
1769  print_signal_handler(st, SIGILL , buf, buflen);
1770  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1771  print_signal_handler(st, SR_signum, buf, buflen);
1772  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1773  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1774  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1775  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1776}
1777
1778static char saved_jvm_path[MAXPATHLEN] = {0};
1779
1780// Find the full path to the current module, libjvm
1781void os::jvm_path(char *buf, jint buflen) {
1782  // Error checking.
1783  if (buflen < MAXPATHLEN) {
1784    assert(false, "must use a large-enough buffer");
1785    buf[0] = '\0';
1786    return;
1787  }
1788  // Lazy resolve the path to current module.
1789  if (saved_jvm_path[0] != 0) {
1790    strcpy(buf, saved_jvm_path);
1791    return;
1792  }
1793
1794  char dli_fname[MAXPATHLEN];
1795  bool ret = dll_address_to_library_name(
1796                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1797                                         dli_fname, sizeof(dli_fname), NULL);
1798  assert(ret, "cannot locate libjvm");
1799  char *rp = NULL;
1800  if (ret && dli_fname[0] != '\0') {
1801    rp = realpath(dli_fname, buf);
1802  }
1803  if (rp == NULL) {
1804    return;
1805  }
1806
1807  if (Arguments::sun_java_launcher_is_altjvm()) {
1808    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1809    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1810    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1811    // appears at the right place in the string, then assume we are
1812    // installed in a JDK and we're done. Otherwise, check for a
1813    // JAVA_HOME environment variable and construct a path to the JVM
1814    // being overridden.
1815
1816    const char *p = buf + strlen(buf) - 1;
1817    for (int count = 0; p > buf && count < 5; ++count) {
1818      for (--p; p > buf && *p != '/'; --p)
1819        /* empty */ ;
1820    }
1821
1822    if (strncmp(p, "/jre/lib/", 9) != 0) {
1823      // Look for JAVA_HOME in the environment.
1824      char* java_home_var = ::getenv("JAVA_HOME");
1825      if (java_home_var != NULL && java_home_var[0] != 0) {
1826        char* jrelib_p;
1827        int len;
1828
1829        // Check the current module name "libjvm"
1830        p = strrchr(buf, '/');
1831        assert(strstr(p, "/libjvm") == p, "invalid library name");
1832
1833        rp = realpath(java_home_var, buf);
1834        if (rp == NULL) {
1835          return;
1836        }
1837
1838        // determine if this is a legacy image or modules image
1839        // modules image doesn't have "jre" subdirectory
1840        len = strlen(buf);
1841        assert(len < buflen, "Ran out of buffer space");
1842        jrelib_p = buf + len;
1843
1844        // Add the appropriate library subdir
1845        snprintf(jrelib_p, buflen-len, "/jre/lib");
1846        if (0 != access(buf, F_OK)) {
1847          snprintf(jrelib_p, buflen-len, "/lib");
1848        }
1849
1850        // Add the appropriate client or server subdir
1851        len = strlen(buf);
1852        jrelib_p = buf + len;
1853        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1854        if (0 != access(buf, F_OK)) {
1855          snprintf(jrelib_p, buflen-len, "%s", "");
1856        }
1857
1858        // If the path exists within JAVA_HOME, add the JVM library name
1859        // to complete the path to JVM being overridden.  Otherwise fallback
1860        // to the path to the current library.
1861        if (0 == access(buf, F_OK)) {
1862          // Use current module name "libjvm"
1863          len = strlen(buf);
1864          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1865        } else {
1866          // Fall back to path of current library
1867          rp = realpath(dli_fname, buf);
1868          if (rp == NULL) {
1869            return;
1870          }
1871        }
1872      }
1873    }
1874  }
1875
1876  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1877  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1878}
1879
1880void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1881  // no prefix required, not even "_"
1882}
1883
1884void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1885  // no suffix required
1886}
1887
1888////////////////////////////////////////////////////////////////////////////////
1889// sun.misc.Signal support
1890
1891static volatile jint sigint_count = 0;
1892
1893static void UserHandler(int sig, void *siginfo, void *context) {
1894  // 4511530 - sem_post is serialized and handled by the manager thread. When
1895  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1896  // don't want to flood the manager thread with sem_post requests.
1897  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1898    return;
1899  }
1900
1901  // Ctrl-C is pressed during error reporting, likely because the error
1902  // handler fails to abort. Let VM die immediately.
1903  if (sig == SIGINT && is_error_reported()) {
1904    os::die();
1905  }
1906
1907  os::signal_notify(sig);
1908}
1909
1910void* os::user_handler() {
1911  return CAST_FROM_FN_PTR(void*, UserHandler);
1912}
1913
1914extern "C" {
1915  typedef void (*sa_handler_t)(int);
1916  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1917}
1918
1919void* os::signal(int signal_number, void* handler) {
1920  struct sigaction sigAct, oldSigAct;
1921
1922  sigfillset(&(sigAct.sa_mask));
1923  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1924  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1925
1926  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1927    // -1 means registration failed
1928    return (void *)-1;
1929  }
1930
1931  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1932}
1933
1934void os::signal_raise(int signal_number) {
1935  ::raise(signal_number);
1936}
1937
1938// The following code is moved from os.cpp for making this
1939// code platform specific, which it is by its very nature.
1940
1941// Will be modified when max signal is changed to be dynamic
1942int os::sigexitnum_pd() {
1943  return NSIG;
1944}
1945
1946// a counter for each possible signal value
1947static volatile jint pending_signals[NSIG+1] = { 0 };
1948
1949// Bsd(POSIX) specific hand shaking semaphore.
1950#ifdef __APPLE__
1951typedef semaphore_t os_semaphore_t;
1952
1953  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1954  #define SEM_WAIT(sem)           semaphore_wait(sem)
1955  #define SEM_POST(sem)           semaphore_signal(sem)
1956  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1957#else
1958typedef sem_t os_semaphore_t;
1959
1960  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1961  #define SEM_WAIT(sem)           sem_wait(&sem)
1962  #define SEM_POST(sem)           sem_post(&sem)
1963  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1964#endif
1965
1966#ifdef __APPLE__
1967// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1968
1969static const char* sem_init_strerror(kern_return_t value) {
1970  switch (value) {
1971    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1972    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1973    default:                     return "Unknown";
1974  }
1975}
1976
1977OSXSemaphore::OSXSemaphore(uint value) {
1978  kern_return_t ret = SEM_INIT(_semaphore, value);
1979
1980  guarantee(ret == KERN_SUCCESS, err_msg("Failed to create semaphore: %s", sem_init_strerror(ret)));
1981}
1982
1983OSXSemaphore::~OSXSemaphore() {
1984  SEM_DESTROY(_semaphore);
1985}
1986
1987void OSXSemaphore::signal(uint count) {
1988  for (uint i = 0; i < count; i++) {
1989    kern_return_t ret = SEM_POST(_semaphore);
1990
1991    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1992  }
1993}
1994
1995void OSXSemaphore::wait() {
1996  kern_return_t ret;
1997  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1998    // Semaphore was interrupted. Retry.
1999  }
2000  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
2001}
2002
2003jlong OSXSemaphore::currenttime() {
2004  struct timeval tv;
2005  gettimeofday(&tv, NULL);
2006  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
2007}
2008
2009bool OSXSemaphore::trywait() {
2010  return timedwait(0, 0);
2011}
2012
2013bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
2014  kern_return_t kr = KERN_ABORTED;
2015  mach_timespec_t waitspec;
2016  waitspec.tv_sec = sec;
2017  waitspec.tv_nsec = nsec;
2018
2019  jlong starttime = currenttime();
2020
2021  kr = semaphore_timedwait(_semaphore, waitspec);
2022  while (kr == KERN_ABORTED) {
2023    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2024
2025    jlong current = currenttime();
2026    jlong passedtime = current - starttime;
2027
2028    if (passedtime >= totalwait) {
2029      waitspec.tv_sec = 0;
2030      waitspec.tv_nsec = 0;
2031    } else {
2032      jlong waittime = totalwait - (current - starttime);
2033      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2034      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2035    }
2036
2037    kr = semaphore_timedwait(_semaphore, waitspec);
2038  }
2039
2040  return kr == KERN_SUCCESS;
2041}
2042
2043#else
2044// Use POSIX implementation of semaphores.
2045
2046struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2047  struct timespec ts;
2048  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2049
2050  return ts;
2051}
2052
2053#endif // __APPLE__
2054
2055static os_semaphore_t sig_sem;
2056
2057#ifdef __APPLE__
2058static OSXSemaphore sr_semaphore;
2059#else
2060static PosixSemaphore sr_semaphore;
2061#endif
2062
2063void os::signal_init_pd() {
2064  // Initialize signal structures
2065  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2066
2067  // Initialize signal semaphore
2068  ::SEM_INIT(sig_sem, 0);
2069}
2070
2071void os::signal_notify(int sig) {
2072  Atomic::inc(&pending_signals[sig]);
2073  ::SEM_POST(sig_sem);
2074}
2075
2076static int check_pending_signals(bool wait) {
2077  Atomic::store(0, &sigint_count);
2078  for (;;) {
2079    for (int i = 0; i < NSIG + 1; i++) {
2080      jint n = pending_signals[i];
2081      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2082        return i;
2083      }
2084    }
2085    if (!wait) {
2086      return -1;
2087    }
2088    JavaThread *thread = JavaThread::current();
2089    ThreadBlockInVM tbivm(thread);
2090
2091    bool threadIsSuspended;
2092    do {
2093      thread->set_suspend_equivalent();
2094      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2095      ::SEM_WAIT(sig_sem);
2096
2097      // were we externally suspended while we were waiting?
2098      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2099      if (threadIsSuspended) {
2100        // The semaphore has been incremented, but while we were waiting
2101        // another thread suspended us. We don't want to continue running
2102        // while suspended because that would surprise the thread that
2103        // suspended us.
2104        ::SEM_POST(sig_sem);
2105
2106        thread->java_suspend_self();
2107      }
2108    } while (threadIsSuspended);
2109  }
2110}
2111
2112int os::signal_lookup() {
2113  return check_pending_signals(false);
2114}
2115
2116int os::signal_wait() {
2117  return check_pending_signals(true);
2118}
2119
2120////////////////////////////////////////////////////////////////////////////////
2121// Virtual Memory
2122
2123int os::vm_page_size() {
2124  // Seems redundant as all get out
2125  assert(os::Bsd::page_size() != -1, "must call os::init");
2126  return os::Bsd::page_size();
2127}
2128
2129// Solaris allocates memory by pages.
2130int os::vm_allocation_granularity() {
2131  assert(os::Bsd::page_size() != -1, "must call os::init");
2132  return os::Bsd::page_size();
2133}
2134
2135// Rationale behind this function:
2136//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2137//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2138//  samples for JITted code. Here we create private executable mapping over the code cache
2139//  and then we can use standard (well, almost, as mapping can change) way to provide
2140//  info for the reporting script by storing timestamp and location of symbol
2141void bsd_wrap_code(char* base, size_t size) {
2142  static volatile jint cnt = 0;
2143
2144  if (!UseOprofile) {
2145    return;
2146  }
2147
2148  char buf[PATH_MAX + 1];
2149  int num = Atomic::add(1, &cnt);
2150
2151  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2152           os::get_temp_directory(), os::current_process_id(), num);
2153  unlink(buf);
2154
2155  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2156
2157  if (fd != -1) {
2158    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2159    if (rv != (off_t)-1) {
2160      if (::write(fd, "", 1) == 1) {
2161        mmap(base, size,
2162             PROT_READ|PROT_WRITE|PROT_EXEC,
2163             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2164      }
2165    }
2166    ::close(fd);
2167    unlink(buf);
2168  }
2169}
2170
2171static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2172                                    int err) {
2173  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2174          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2175          strerror(err), err);
2176}
2177
2178// NOTE: Bsd kernel does not really reserve the pages for us.
2179//       All it does is to check if there are enough free pages
2180//       left at the time of mmap(). This could be a potential
2181//       problem.
2182bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2183  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2184#ifdef __OpenBSD__
2185  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2186  if (::mprotect(addr, size, prot) == 0) {
2187    return true;
2188  }
2189#else
2190  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2191                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2192  if (res != (uintptr_t) MAP_FAILED) {
2193    return true;
2194  }
2195#endif
2196
2197  // Warn about any commit errors we see in non-product builds just
2198  // in case mmap() doesn't work as described on the man page.
2199  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2200
2201  return false;
2202}
2203
2204bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2205                          bool exec) {
2206  // alignment_hint is ignored on this OS
2207  return pd_commit_memory(addr, size, exec);
2208}
2209
2210void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2211                                  const char* mesg) {
2212  assert(mesg != NULL, "mesg must be specified");
2213  if (!pd_commit_memory(addr, size, exec)) {
2214    // add extra info in product mode for vm_exit_out_of_memory():
2215    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2216    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2217  }
2218}
2219
2220void os::pd_commit_memory_or_exit(char* addr, size_t size,
2221                                  size_t alignment_hint, bool exec,
2222                                  const char* mesg) {
2223  // alignment_hint is ignored on this OS
2224  pd_commit_memory_or_exit(addr, size, exec, mesg);
2225}
2226
2227void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2228}
2229
2230void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2231  ::madvise(addr, bytes, MADV_DONTNEED);
2232}
2233
2234void os::numa_make_global(char *addr, size_t bytes) {
2235}
2236
2237void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2238}
2239
2240bool os::numa_topology_changed()   { return false; }
2241
2242size_t os::numa_get_groups_num() {
2243  return 1;
2244}
2245
2246int os::numa_get_group_id() {
2247  return 0;
2248}
2249
2250size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2251  if (size > 0) {
2252    ids[0] = 0;
2253    return 1;
2254  }
2255  return 0;
2256}
2257
2258bool os::get_page_info(char *start, page_info* info) {
2259  return false;
2260}
2261
2262char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2263  return end;
2264}
2265
2266
2267bool os::pd_uncommit_memory(char* addr, size_t size) {
2268#ifdef __OpenBSD__
2269  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2270  return ::mprotect(addr, size, PROT_NONE) == 0;
2271#else
2272  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2273                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2274  return res  != (uintptr_t) MAP_FAILED;
2275#endif
2276}
2277
2278bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2279  return os::commit_memory(addr, size, !ExecMem);
2280}
2281
2282// If this is a growable mapping, remove the guard pages entirely by
2283// munmap()ping them.  If not, just call uncommit_memory().
2284bool os::remove_stack_guard_pages(char* addr, size_t size) {
2285  return os::uncommit_memory(addr, size);
2286}
2287
2288// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2289// at 'requested_addr'. If there are existing memory mappings at the same
2290// location, however, they will be overwritten. If 'fixed' is false,
2291// 'requested_addr' is only treated as a hint, the return value may or
2292// may not start from the requested address. Unlike Bsd mmap(), this
2293// function returns NULL to indicate failure.
2294static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2295  char * addr;
2296  int flags;
2297
2298  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2299  if (fixed) {
2300    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2301    flags |= MAP_FIXED;
2302  }
2303
2304  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2305  // touch an uncommitted page. Otherwise, the read/write might
2306  // succeed if we have enough swap space to back the physical page.
2307  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2308                       flags, -1, 0);
2309
2310  return addr == MAP_FAILED ? NULL : addr;
2311}
2312
2313static int anon_munmap(char * addr, size_t size) {
2314  return ::munmap(addr, size) == 0;
2315}
2316
2317char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2318                            size_t alignment_hint) {
2319  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2320}
2321
2322bool os::pd_release_memory(char* addr, size_t size) {
2323  return anon_munmap(addr, size);
2324}
2325
2326static bool bsd_mprotect(char* addr, size_t size, int prot) {
2327  // Bsd wants the mprotect address argument to be page aligned.
2328  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2329
2330  // According to SUSv3, mprotect() should only be used with mappings
2331  // established by mmap(), and mmap() always maps whole pages. Unaligned
2332  // 'addr' likely indicates problem in the VM (e.g. trying to change
2333  // protection of malloc'ed or statically allocated memory). Check the
2334  // caller if you hit this assert.
2335  assert(addr == bottom, "sanity check");
2336
2337  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2338  return ::mprotect(bottom, size, prot) == 0;
2339}
2340
2341// Set protections specified
2342bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2343                        bool is_committed) {
2344  unsigned int p = 0;
2345  switch (prot) {
2346  case MEM_PROT_NONE: p = PROT_NONE; break;
2347  case MEM_PROT_READ: p = PROT_READ; break;
2348  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2349  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2350  default:
2351    ShouldNotReachHere();
2352  }
2353  // is_committed is unused.
2354  return bsd_mprotect(addr, bytes, p);
2355}
2356
2357bool os::guard_memory(char* addr, size_t size) {
2358  return bsd_mprotect(addr, size, PROT_NONE);
2359}
2360
2361bool os::unguard_memory(char* addr, size_t size) {
2362  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2363}
2364
2365bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2366  return false;
2367}
2368
2369// Large page support
2370
2371static size_t _large_page_size = 0;
2372
2373void os::large_page_init() {
2374}
2375
2376
2377char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2378  fatal("This code is not used or maintained.");
2379
2380  // "exec" is passed in but not used.  Creating the shared image for
2381  // the code cache doesn't have an SHM_X executable permission to check.
2382  assert(UseLargePages && UseSHM, "only for SHM large pages");
2383
2384  key_t key = IPC_PRIVATE;
2385  char *addr;
2386
2387  bool warn_on_failure = UseLargePages &&
2388                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2389                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2390
2391  // Create a large shared memory region to attach to based on size.
2392  // Currently, size is the total size of the heap
2393  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2394  if (shmid == -1) {
2395    // Possible reasons for shmget failure:
2396    // 1. shmmax is too small for Java heap.
2397    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2398    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2399    // 2. not enough large page memory.
2400    //    > check available large pages: cat /proc/meminfo
2401    //    > increase amount of large pages:
2402    //          echo new_value > /proc/sys/vm/nr_hugepages
2403    //      Note 1: different Bsd may use different name for this property,
2404    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2405    //      Note 2: it's possible there's enough physical memory available but
2406    //            they are so fragmented after a long run that they can't
2407    //            coalesce into large pages. Try to reserve large pages when
2408    //            the system is still "fresh".
2409    if (warn_on_failure) {
2410      warning("Failed to reserve shared memory (errno = %d).", errno);
2411    }
2412    return NULL;
2413  }
2414
2415  // attach to the region
2416  addr = (char*)shmat(shmid, req_addr, 0);
2417  int err = errno;
2418
2419  // Remove shmid. If shmat() is successful, the actual shared memory segment
2420  // will be deleted when it's detached by shmdt() or when the process
2421  // terminates. If shmat() is not successful this will remove the shared
2422  // segment immediately.
2423  shmctl(shmid, IPC_RMID, NULL);
2424
2425  if ((intptr_t)addr == -1) {
2426    if (warn_on_failure) {
2427      warning("Failed to attach shared memory (errno = %d).", err);
2428    }
2429    return NULL;
2430  }
2431
2432  // The memory is committed
2433  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2434
2435  return addr;
2436}
2437
2438bool os::release_memory_special(char* base, size_t bytes) {
2439  if (MemTracker::tracking_level() > NMT_minimal) {
2440    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2441    // detaching the SHM segment will also delete it, see reserve_memory_special()
2442    int rslt = shmdt(base);
2443    if (rslt == 0) {
2444      tkr.record((address)base, bytes);
2445      return true;
2446    } else {
2447      return false;
2448    }
2449  } else {
2450    return shmdt(base) == 0;
2451  }
2452}
2453
2454size_t os::large_page_size() {
2455  return _large_page_size;
2456}
2457
2458// HugeTLBFS allows application to commit large page memory on demand;
2459// with SysV SHM the entire memory region must be allocated as shared
2460// memory.
2461bool os::can_commit_large_page_memory() {
2462  return UseHugeTLBFS;
2463}
2464
2465bool os::can_execute_large_page_memory() {
2466  return UseHugeTLBFS;
2467}
2468
2469// Reserve memory at an arbitrary address, only if that area is
2470// available (and not reserved for something else).
2471
2472char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2473  const int max_tries = 10;
2474  char* base[max_tries];
2475  size_t size[max_tries];
2476  const size_t gap = 0x000000;
2477
2478  // Assert only that the size is a multiple of the page size, since
2479  // that's all that mmap requires, and since that's all we really know
2480  // about at this low abstraction level.  If we need higher alignment,
2481  // we can either pass an alignment to this method or verify alignment
2482  // in one of the methods further up the call chain.  See bug 5044738.
2483  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2484
2485  // Repeatedly allocate blocks until the block is allocated at the
2486  // right spot.
2487
2488  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2489  // if kernel honors the hint then we can return immediately.
2490  char * addr = anon_mmap(requested_addr, bytes, false);
2491  if (addr == requested_addr) {
2492    return requested_addr;
2493  }
2494
2495  if (addr != NULL) {
2496    // mmap() is successful but it fails to reserve at the requested address
2497    anon_munmap(addr, bytes);
2498  }
2499
2500  int i;
2501  for (i = 0; i < max_tries; ++i) {
2502    base[i] = reserve_memory(bytes);
2503
2504    if (base[i] != NULL) {
2505      // Is this the block we wanted?
2506      if (base[i] == requested_addr) {
2507        size[i] = bytes;
2508        break;
2509      }
2510
2511      // Does this overlap the block we wanted? Give back the overlapped
2512      // parts and try again.
2513
2514      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2515      if (top_overlap >= 0 && top_overlap < bytes) {
2516        unmap_memory(base[i], top_overlap);
2517        base[i] += top_overlap;
2518        size[i] = bytes - top_overlap;
2519      } else {
2520        size_t bottom_overlap = base[i] + bytes - requested_addr;
2521        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2522          unmap_memory(requested_addr, bottom_overlap);
2523          size[i] = bytes - bottom_overlap;
2524        } else {
2525          size[i] = bytes;
2526        }
2527      }
2528    }
2529  }
2530
2531  // Give back the unused reserved pieces.
2532
2533  for (int j = 0; j < i; ++j) {
2534    if (base[j] != NULL) {
2535      unmap_memory(base[j], size[j]);
2536    }
2537  }
2538
2539  if (i < max_tries) {
2540    return requested_addr;
2541  } else {
2542    return NULL;
2543  }
2544}
2545
2546size_t os::read(int fd, void *buf, unsigned int nBytes) {
2547  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2548}
2549
2550size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2551  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2552}
2553
2554void os::naked_short_sleep(jlong ms) {
2555  struct timespec req;
2556
2557  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2558  req.tv_sec = 0;
2559  if (ms > 0) {
2560    req.tv_nsec = (ms % 1000) * 1000000;
2561  } else {
2562    req.tv_nsec = 1;
2563  }
2564
2565  nanosleep(&req, NULL);
2566
2567  return;
2568}
2569
2570// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2571void os::infinite_sleep() {
2572  while (true) {    // sleep forever ...
2573    ::sleep(100);   // ... 100 seconds at a time
2574  }
2575}
2576
2577// Used to convert frequent JVM_Yield() to nops
2578bool os::dont_yield() {
2579  return DontYieldALot;
2580}
2581
2582void os::naked_yield() {
2583  sched_yield();
2584}
2585
2586////////////////////////////////////////////////////////////////////////////////
2587// thread priority support
2588
2589// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2590// only supports dynamic priority, static priority must be zero. For real-time
2591// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2592// However, for large multi-threaded applications, SCHED_RR is not only slower
2593// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2594// of 5 runs - Sep 2005).
2595//
2596// The following code actually changes the niceness of kernel-thread/LWP. It
2597// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2598// not the entire user process, and user level threads are 1:1 mapped to kernel
2599// threads. It has always been the case, but could change in the future. For
2600// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2601// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2602
2603#if !defined(__APPLE__)
2604int os::java_to_os_priority[CriticalPriority + 1] = {
2605  19,              // 0 Entry should never be used
2606
2607   0,              // 1 MinPriority
2608   3,              // 2
2609   6,              // 3
2610
2611  10,              // 4
2612  15,              // 5 NormPriority
2613  18,              // 6
2614
2615  21,              // 7
2616  25,              // 8
2617  28,              // 9 NearMaxPriority
2618
2619  31,              // 10 MaxPriority
2620
2621  31               // 11 CriticalPriority
2622};
2623#else
2624// Using Mach high-level priority assignments
2625int os::java_to_os_priority[CriticalPriority + 1] = {
2626   0,              // 0 Entry should never be used (MINPRI_USER)
2627
2628  27,              // 1 MinPriority
2629  28,              // 2
2630  29,              // 3
2631
2632  30,              // 4
2633  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2634  32,              // 6
2635
2636  33,              // 7
2637  34,              // 8
2638  35,              // 9 NearMaxPriority
2639
2640  36,              // 10 MaxPriority
2641
2642  36               // 11 CriticalPriority
2643};
2644#endif
2645
2646static int prio_init() {
2647  if (ThreadPriorityPolicy == 1) {
2648    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2649    // if effective uid is not root. Perhaps, a more elegant way of doing
2650    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2651    if (geteuid() != 0) {
2652      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2653        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2654      }
2655      ThreadPriorityPolicy = 0;
2656    }
2657  }
2658  if (UseCriticalJavaThreadPriority) {
2659    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2660  }
2661  return 0;
2662}
2663
2664OSReturn os::set_native_priority(Thread* thread, int newpri) {
2665  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2666
2667#ifdef __OpenBSD__
2668  // OpenBSD pthread_setprio starves low priority threads
2669  return OS_OK;
2670#elif defined(__FreeBSD__)
2671  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2672#elif defined(__APPLE__) || defined(__NetBSD__)
2673  struct sched_param sp;
2674  int policy;
2675  pthread_t self = pthread_self();
2676
2677  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2678    return OS_ERR;
2679  }
2680
2681  sp.sched_priority = newpri;
2682  if (pthread_setschedparam(self, policy, &sp) != 0) {
2683    return OS_ERR;
2684  }
2685
2686  return OS_OK;
2687#else
2688  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2689  return (ret == 0) ? OS_OK : OS_ERR;
2690#endif
2691}
2692
2693OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2694  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2695    *priority_ptr = java_to_os_priority[NormPriority];
2696    return OS_OK;
2697  }
2698
2699  errno = 0;
2700#if defined(__OpenBSD__) || defined(__FreeBSD__)
2701  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2702#elif defined(__APPLE__) || defined(__NetBSD__)
2703  int policy;
2704  struct sched_param sp;
2705
2706  pthread_getschedparam(pthread_self(), &policy, &sp);
2707  *priority_ptr = sp.sched_priority;
2708#else
2709  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2710#endif
2711  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2712}
2713
2714// Hint to the underlying OS that a task switch would not be good.
2715// Void return because it's a hint and can fail.
2716void os::hint_no_preempt() {}
2717
2718////////////////////////////////////////////////////////////////////////////////
2719// suspend/resume support
2720
2721//  the low-level signal-based suspend/resume support is a remnant from the
2722//  old VM-suspension that used to be for java-suspension, safepoints etc,
2723//  within hotspot. Now there is a single use-case for this:
2724//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2725//      that runs in the watcher thread.
2726//  The remaining code is greatly simplified from the more general suspension
2727//  code that used to be used.
2728//
2729//  The protocol is quite simple:
2730//  - suspend:
2731//      - sends a signal to the target thread
2732//      - polls the suspend state of the osthread using a yield loop
2733//      - target thread signal handler (SR_handler) sets suspend state
2734//        and blocks in sigsuspend until continued
2735//  - resume:
2736//      - sets target osthread state to continue
2737//      - sends signal to end the sigsuspend loop in the SR_handler
2738//
2739//  Note that the SR_lock plays no role in this suspend/resume protocol.
2740
2741static void resume_clear_context(OSThread *osthread) {
2742  osthread->set_ucontext(NULL);
2743  osthread->set_siginfo(NULL);
2744}
2745
2746static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2747  osthread->set_ucontext(context);
2748  osthread->set_siginfo(siginfo);
2749}
2750
2751// Handler function invoked when a thread's execution is suspended or
2752// resumed. We have to be careful that only async-safe functions are
2753// called here (Note: most pthread functions are not async safe and
2754// should be avoided.)
2755//
2756// Note: sigwait() is a more natural fit than sigsuspend() from an
2757// interface point of view, but sigwait() prevents the signal hander
2758// from being run. libpthread would get very confused by not having
2759// its signal handlers run and prevents sigwait()'s use with the
2760// mutex granting granting signal.
2761//
2762// Currently only ever called on the VMThread or JavaThread
2763//
2764static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2765  // Save and restore errno to avoid confusing native code with EINTR
2766  // after sigsuspend.
2767  int old_errno = errno;
2768
2769  Thread* thread = Thread::current();
2770  OSThread* osthread = thread->osthread();
2771  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2772
2773  os::SuspendResume::State current = osthread->sr.state();
2774  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2775    suspend_save_context(osthread, siginfo, context);
2776
2777    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2778    os::SuspendResume::State state = osthread->sr.suspended();
2779    if (state == os::SuspendResume::SR_SUSPENDED) {
2780      sigset_t suspend_set;  // signals for sigsuspend()
2781
2782      // get current set of blocked signals and unblock resume signal
2783      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2784      sigdelset(&suspend_set, SR_signum);
2785
2786      sr_semaphore.signal();
2787      // wait here until we are resumed
2788      while (1) {
2789        sigsuspend(&suspend_set);
2790
2791        os::SuspendResume::State result = osthread->sr.running();
2792        if (result == os::SuspendResume::SR_RUNNING) {
2793          sr_semaphore.signal();
2794          break;
2795        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2796          ShouldNotReachHere();
2797        }
2798      }
2799
2800    } else if (state == os::SuspendResume::SR_RUNNING) {
2801      // request was cancelled, continue
2802    } else {
2803      ShouldNotReachHere();
2804    }
2805
2806    resume_clear_context(osthread);
2807  } else if (current == os::SuspendResume::SR_RUNNING) {
2808    // request was cancelled, continue
2809  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2810    // ignore
2811  } else {
2812    // ignore
2813  }
2814
2815  errno = old_errno;
2816}
2817
2818
2819static int SR_initialize() {
2820  struct sigaction act;
2821  char *s;
2822  // Get signal number to use for suspend/resume
2823  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2824    int sig = ::strtol(s, 0, 10);
2825    if (sig > 0 || sig < NSIG) {
2826      SR_signum = sig;
2827    }
2828  }
2829
2830  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2831         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2832
2833  sigemptyset(&SR_sigset);
2834  sigaddset(&SR_sigset, SR_signum);
2835
2836  // Set up signal handler for suspend/resume
2837  act.sa_flags = SA_RESTART|SA_SIGINFO;
2838  act.sa_handler = (void (*)(int)) SR_handler;
2839
2840  // SR_signum is blocked by default.
2841  // 4528190 - We also need to block pthread restart signal (32 on all
2842  // supported Bsd platforms). Note that BsdThreads need to block
2843  // this signal for all threads to work properly. So we don't have
2844  // to use hard-coded signal number when setting up the mask.
2845  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2846
2847  if (sigaction(SR_signum, &act, 0) == -1) {
2848    return -1;
2849  }
2850
2851  // Save signal flag
2852  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2853  return 0;
2854}
2855
2856static int sr_notify(OSThread* osthread) {
2857  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2858  assert_status(status == 0, status, "pthread_kill");
2859  return status;
2860}
2861
2862// "Randomly" selected value for how long we want to spin
2863// before bailing out on suspending a thread, also how often
2864// we send a signal to a thread we want to resume
2865static const int RANDOMLY_LARGE_INTEGER = 1000000;
2866static const int RANDOMLY_LARGE_INTEGER2 = 100;
2867
2868// returns true on success and false on error - really an error is fatal
2869// but this seems the normal response to library errors
2870static bool do_suspend(OSThread* osthread) {
2871  assert(osthread->sr.is_running(), "thread should be running");
2872  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2873
2874  // mark as suspended and send signal
2875  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2876    // failed to switch, state wasn't running?
2877    ShouldNotReachHere();
2878    return false;
2879  }
2880
2881  if (sr_notify(osthread) != 0) {
2882    ShouldNotReachHere();
2883  }
2884
2885  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2886  while (true) {
2887    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2888      break;
2889    } else {
2890      // timeout
2891      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2892      if (cancelled == os::SuspendResume::SR_RUNNING) {
2893        return false;
2894      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2895        // make sure that we consume the signal on the semaphore as well
2896        sr_semaphore.wait();
2897        break;
2898      } else {
2899        ShouldNotReachHere();
2900        return false;
2901      }
2902    }
2903  }
2904
2905  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2906  return true;
2907}
2908
2909static void do_resume(OSThread* osthread) {
2910  assert(osthread->sr.is_suspended(), "thread should be suspended");
2911  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2912
2913  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2914    // failed to switch to WAKEUP_REQUEST
2915    ShouldNotReachHere();
2916    return;
2917  }
2918
2919  while (true) {
2920    if (sr_notify(osthread) == 0) {
2921      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2922        if (osthread->sr.is_running()) {
2923          return;
2924        }
2925      }
2926    } else {
2927      ShouldNotReachHere();
2928    }
2929  }
2930
2931  guarantee(osthread->sr.is_running(), "Must be running!");
2932}
2933
2934///////////////////////////////////////////////////////////////////////////////////
2935// signal handling (except suspend/resume)
2936
2937// This routine may be used by user applications as a "hook" to catch signals.
2938// The user-defined signal handler must pass unrecognized signals to this
2939// routine, and if it returns true (non-zero), then the signal handler must
2940// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2941// routine will never retun false (zero), but instead will execute a VM panic
2942// routine kill the process.
2943//
2944// If this routine returns false, it is OK to call it again.  This allows
2945// the user-defined signal handler to perform checks either before or after
2946// the VM performs its own checks.  Naturally, the user code would be making
2947// a serious error if it tried to handle an exception (such as a null check
2948// or breakpoint) that the VM was generating for its own correct operation.
2949//
2950// This routine may recognize any of the following kinds of signals:
2951//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2952// It should be consulted by handlers for any of those signals.
2953//
2954// The caller of this routine must pass in the three arguments supplied
2955// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2956// field of the structure passed to sigaction().  This routine assumes that
2957// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2958//
2959// Note that the VM will print warnings if it detects conflicting signal
2960// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2961//
2962extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2963                                               void* ucontext,
2964                                               int abort_if_unrecognized);
2965
2966void signalHandler(int sig, siginfo_t* info, void* uc) {
2967  assert(info != NULL && uc != NULL, "it must be old kernel");
2968  int orig_errno = errno;  // Preserve errno value over signal handler.
2969  JVM_handle_bsd_signal(sig, info, uc, true);
2970  errno = orig_errno;
2971}
2972
2973
2974// This boolean allows users to forward their own non-matching signals
2975// to JVM_handle_bsd_signal, harmlessly.
2976bool os::Bsd::signal_handlers_are_installed = false;
2977
2978// For signal-chaining
2979struct sigaction os::Bsd::sigact[MAXSIGNUM];
2980unsigned int os::Bsd::sigs = 0;
2981bool os::Bsd::libjsig_is_loaded = false;
2982typedef struct sigaction *(*get_signal_t)(int);
2983get_signal_t os::Bsd::get_signal_action = NULL;
2984
2985struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2986  struct sigaction *actp = NULL;
2987
2988  if (libjsig_is_loaded) {
2989    // Retrieve the old signal handler from libjsig
2990    actp = (*get_signal_action)(sig);
2991  }
2992  if (actp == NULL) {
2993    // Retrieve the preinstalled signal handler from jvm
2994    actp = get_preinstalled_handler(sig);
2995  }
2996
2997  return actp;
2998}
2999
3000static bool call_chained_handler(struct sigaction *actp, int sig,
3001                                 siginfo_t *siginfo, void *context) {
3002  // Call the old signal handler
3003  if (actp->sa_handler == SIG_DFL) {
3004    // It's more reasonable to let jvm treat it as an unexpected exception
3005    // instead of taking the default action.
3006    return false;
3007  } else if (actp->sa_handler != SIG_IGN) {
3008    if ((actp->sa_flags & SA_NODEFER) == 0) {
3009      // automaticlly block the signal
3010      sigaddset(&(actp->sa_mask), sig);
3011    }
3012
3013    sa_handler_t hand;
3014    sa_sigaction_t sa;
3015    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3016    // retrieve the chained handler
3017    if (siginfo_flag_set) {
3018      sa = actp->sa_sigaction;
3019    } else {
3020      hand = actp->sa_handler;
3021    }
3022
3023    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3024      actp->sa_handler = SIG_DFL;
3025    }
3026
3027    // try to honor the signal mask
3028    sigset_t oset;
3029    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3030
3031    // call into the chained handler
3032    if (siginfo_flag_set) {
3033      (*sa)(sig, siginfo, context);
3034    } else {
3035      (*hand)(sig);
3036    }
3037
3038    // restore the signal mask
3039    pthread_sigmask(SIG_SETMASK, &oset, 0);
3040  }
3041  // Tell jvm's signal handler the signal is taken care of.
3042  return true;
3043}
3044
3045bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3046  bool chained = false;
3047  // signal-chaining
3048  if (UseSignalChaining) {
3049    struct sigaction *actp = get_chained_signal_action(sig);
3050    if (actp != NULL) {
3051      chained = call_chained_handler(actp, sig, siginfo, context);
3052    }
3053  }
3054  return chained;
3055}
3056
3057struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3058  if ((((unsigned int)1 << sig) & sigs) != 0) {
3059    return &sigact[sig];
3060  }
3061  return NULL;
3062}
3063
3064void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3065  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3066  sigact[sig] = oldAct;
3067  sigs |= (unsigned int)1 << sig;
3068}
3069
3070// for diagnostic
3071int os::Bsd::sigflags[MAXSIGNUM];
3072
3073int os::Bsd::get_our_sigflags(int sig) {
3074  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3075  return sigflags[sig];
3076}
3077
3078void os::Bsd::set_our_sigflags(int sig, int flags) {
3079  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3080  sigflags[sig] = flags;
3081}
3082
3083void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3084  // Check for overwrite.
3085  struct sigaction oldAct;
3086  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3087
3088  void* oldhand = oldAct.sa_sigaction
3089                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3090                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3091  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3092      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3093      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3094    if (AllowUserSignalHandlers || !set_installed) {
3095      // Do not overwrite; user takes responsibility to forward to us.
3096      return;
3097    } else if (UseSignalChaining) {
3098      // save the old handler in jvm
3099      save_preinstalled_handler(sig, oldAct);
3100      // libjsig also interposes the sigaction() call below and saves the
3101      // old sigaction on it own.
3102    } else {
3103      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3104                    "%#lx for signal %d.", (long)oldhand, sig));
3105    }
3106  }
3107
3108  struct sigaction sigAct;
3109  sigfillset(&(sigAct.sa_mask));
3110  sigAct.sa_handler = SIG_DFL;
3111  if (!set_installed) {
3112    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3113  } else {
3114    sigAct.sa_sigaction = signalHandler;
3115    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3116  }
3117#ifdef __APPLE__
3118  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3119  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3120  // if the signal handler declares it will handle it on alternate stack.
3121  // Notice we only declare we will handle it on alt stack, but we are not
3122  // actually going to use real alt stack - this is just a workaround.
3123  // Please see ux_exception.c, method catch_mach_exception_raise for details
3124  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3125  if (sig == SIGSEGV) {
3126    sigAct.sa_flags |= SA_ONSTACK;
3127  }
3128#endif
3129
3130  // Save flags, which are set by ours
3131  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3132  sigflags[sig] = sigAct.sa_flags;
3133
3134  int ret = sigaction(sig, &sigAct, &oldAct);
3135  assert(ret == 0, "check");
3136
3137  void* oldhand2  = oldAct.sa_sigaction
3138                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3139                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3140  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3141}
3142
3143// install signal handlers for signals that HotSpot needs to
3144// handle in order to support Java-level exception handling.
3145
3146void os::Bsd::install_signal_handlers() {
3147  if (!signal_handlers_are_installed) {
3148    signal_handlers_are_installed = true;
3149
3150    // signal-chaining
3151    typedef void (*signal_setting_t)();
3152    signal_setting_t begin_signal_setting = NULL;
3153    signal_setting_t end_signal_setting = NULL;
3154    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3155                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3156    if (begin_signal_setting != NULL) {
3157      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3158                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3159      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3160                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3161      libjsig_is_loaded = true;
3162      assert(UseSignalChaining, "should enable signal-chaining");
3163    }
3164    if (libjsig_is_loaded) {
3165      // Tell libjsig jvm is setting signal handlers
3166      (*begin_signal_setting)();
3167    }
3168
3169    set_signal_handler(SIGSEGV, true);
3170    set_signal_handler(SIGPIPE, true);
3171    set_signal_handler(SIGBUS, true);
3172    set_signal_handler(SIGILL, true);
3173    set_signal_handler(SIGFPE, true);
3174    set_signal_handler(SIGXFSZ, true);
3175
3176#if defined(__APPLE__)
3177    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3178    // signals caught and handled by the JVM. To work around this, we reset the mach task
3179    // signal handler that's placed on our process by CrashReporter. This disables
3180    // CrashReporter-based reporting.
3181    //
3182    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3183    // on caught fatal signals.
3184    //
3185    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3186    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3187    // exception handling, while leaving the standard BSD signal handlers functional.
3188    kern_return_t kr;
3189    kr = task_set_exception_ports(mach_task_self(),
3190                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3191                                  MACH_PORT_NULL,
3192                                  EXCEPTION_STATE_IDENTITY,
3193                                  MACHINE_THREAD_STATE);
3194
3195    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3196#endif
3197
3198    if (libjsig_is_loaded) {
3199      // Tell libjsig jvm finishes setting signal handlers
3200      (*end_signal_setting)();
3201    }
3202
3203    // We don't activate signal checker if libjsig is in place, we trust ourselves
3204    // and if UserSignalHandler is installed all bets are off
3205    if (CheckJNICalls) {
3206      if (libjsig_is_loaded) {
3207        if (PrintJNIResolving) {
3208          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3209        }
3210        check_signals = false;
3211      }
3212      if (AllowUserSignalHandlers) {
3213        if (PrintJNIResolving) {
3214          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3215        }
3216        check_signals = false;
3217      }
3218    }
3219  }
3220}
3221
3222
3223/////
3224// glibc on Bsd platform uses non-documented flag
3225// to indicate, that some special sort of signal
3226// trampoline is used.
3227// We will never set this flag, and we should
3228// ignore this flag in our diagnostic
3229#ifdef SIGNIFICANT_SIGNAL_MASK
3230  #undef SIGNIFICANT_SIGNAL_MASK
3231#endif
3232#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3233
3234static const char* get_signal_handler_name(address handler,
3235                                           char* buf, int buflen) {
3236  int offset;
3237  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3238  if (found) {
3239    // skip directory names
3240    const char *p1, *p2;
3241    p1 = buf;
3242    size_t len = strlen(os::file_separator());
3243    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3244    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3245  } else {
3246    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3247  }
3248  return buf;
3249}
3250
3251static void print_signal_handler(outputStream* st, int sig,
3252                                 char* buf, size_t buflen) {
3253  struct sigaction sa;
3254
3255  sigaction(sig, NULL, &sa);
3256
3257  // See comment for SIGNIFICANT_SIGNAL_MASK define
3258  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3259
3260  st->print("%s: ", os::exception_name(sig, buf, buflen));
3261
3262  address handler = (sa.sa_flags & SA_SIGINFO)
3263    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3264    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3265
3266  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3267    st->print("SIG_DFL");
3268  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3269    st->print("SIG_IGN");
3270  } else {
3271    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3272  }
3273
3274  st->print(", sa_mask[0]=");
3275  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3276
3277  address rh = VMError::get_resetted_sighandler(sig);
3278  // May be, handler was resetted by VMError?
3279  if (rh != NULL) {
3280    handler = rh;
3281    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3282  }
3283
3284  st->print(", sa_flags=");
3285  os::Posix::print_sa_flags(st, sa.sa_flags);
3286
3287  // Check: is it our handler?
3288  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3289      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3290    // It is our signal handler
3291    // check for flags, reset system-used one!
3292    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3293      st->print(
3294                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3295                os::Bsd::get_our_sigflags(sig));
3296    }
3297  }
3298  st->cr();
3299}
3300
3301
3302#define DO_SIGNAL_CHECK(sig)                      \
3303  do {                                            \
3304    if (!sigismember(&check_signal_done, sig)) {  \
3305      os::Bsd::check_signal_handler(sig);         \
3306    }                                             \
3307  } while (0)
3308
3309// This method is a periodic task to check for misbehaving JNI applications
3310// under CheckJNI, we can add any periodic checks here
3311
3312void os::run_periodic_checks() {
3313
3314  if (check_signals == false) return;
3315
3316  // SEGV and BUS if overridden could potentially prevent
3317  // generation of hs*.log in the event of a crash, debugging
3318  // such a case can be very challenging, so we absolutely
3319  // check the following for a good measure:
3320  DO_SIGNAL_CHECK(SIGSEGV);
3321  DO_SIGNAL_CHECK(SIGILL);
3322  DO_SIGNAL_CHECK(SIGFPE);
3323  DO_SIGNAL_CHECK(SIGBUS);
3324  DO_SIGNAL_CHECK(SIGPIPE);
3325  DO_SIGNAL_CHECK(SIGXFSZ);
3326
3327
3328  // ReduceSignalUsage allows the user to override these handlers
3329  // see comments at the very top and jvm_solaris.h
3330  if (!ReduceSignalUsage) {
3331    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3332    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3333    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3334    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3335  }
3336
3337  DO_SIGNAL_CHECK(SR_signum);
3338  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3339}
3340
3341typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3342
3343static os_sigaction_t os_sigaction = NULL;
3344
3345void os::Bsd::check_signal_handler(int sig) {
3346  char buf[O_BUFLEN];
3347  address jvmHandler = NULL;
3348
3349
3350  struct sigaction act;
3351  if (os_sigaction == NULL) {
3352    // only trust the default sigaction, in case it has been interposed
3353    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3354    if (os_sigaction == NULL) return;
3355  }
3356
3357  os_sigaction(sig, (struct sigaction*)NULL, &act);
3358
3359
3360  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3361
3362  address thisHandler = (act.sa_flags & SA_SIGINFO)
3363    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3364    : CAST_FROM_FN_PTR(address, act.sa_handler);
3365
3366
3367  switch (sig) {
3368  case SIGSEGV:
3369  case SIGBUS:
3370  case SIGFPE:
3371  case SIGPIPE:
3372  case SIGILL:
3373  case SIGXFSZ:
3374    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3375    break;
3376
3377  case SHUTDOWN1_SIGNAL:
3378  case SHUTDOWN2_SIGNAL:
3379  case SHUTDOWN3_SIGNAL:
3380  case BREAK_SIGNAL:
3381    jvmHandler = (address)user_handler();
3382    break;
3383
3384  case INTERRUPT_SIGNAL:
3385    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3386    break;
3387
3388  default:
3389    if (sig == SR_signum) {
3390      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3391    } else {
3392      return;
3393    }
3394    break;
3395  }
3396
3397  if (thisHandler != jvmHandler) {
3398    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3399    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3400    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3401    // No need to check this sig any longer
3402    sigaddset(&check_signal_done, sig);
3403    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3404    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3405      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3406                    exception_name(sig, buf, O_BUFLEN));
3407    }
3408  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3409    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3410    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3411    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3412    // No need to check this sig any longer
3413    sigaddset(&check_signal_done, sig);
3414  }
3415
3416  // Dump all the signal
3417  if (sigismember(&check_signal_done, sig)) {
3418    print_signal_handlers(tty, buf, O_BUFLEN);
3419  }
3420}
3421
3422extern void report_error(char* file_name, int line_no, char* title,
3423                         char* format, ...);
3424
3425extern bool signal_name(int signo, char* buf, size_t len);
3426
3427const char* os::exception_name(int exception_code, char* buf, size_t size) {
3428  if (0 < exception_code && exception_code <= SIGRTMAX) {
3429    // signal
3430    if (!signal_name(exception_code, buf, size)) {
3431      jio_snprintf(buf, size, "SIG%d", exception_code);
3432    }
3433    return buf;
3434  } else {
3435    return NULL;
3436  }
3437}
3438
3439// this is called _before_ the most of global arguments have been parsed
3440void os::init(void) {
3441  char dummy;   // used to get a guess on initial stack address
3442//  first_hrtime = gethrtime();
3443
3444  // With BsdThreads the JavaMain thread pid (primordial thread)
3445  // is different than the pid of the java launcher thread.
3446  // So, on Bsd, the launcher thread pid is passed to the VM
3447  // via the sun.java.launcher.pid property.
3448  // Use this property instead of getpid() if it was correctly passed.
3449  // See bug 6351349.
3450  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3451
3452  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3453
3454  clock_tics_per_sec = CLK_TCK;
3455
3456  init_random(1234567);
3457
3458  ThreadCritical::initialize();
3459
3460  Bsd::set_page_size(getpagesize());
3461  if (Bsd::page_size() == -1) {
3462    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3463                  strerror(errno)));
3464  }
3465  init_page_sizes((size_t) Bsd::page_size());
3466
3467  Bsd::initialize_system_info();
3468
3469  // main_thread points to the aboriginal thread
3470  Bsd::_main_thread = pthread_self();
3471
3472  Bsd::clock_init();
3473  initial_time_count = javaTimeNanos();
3474
3475#ifdef __APPLE__
3476  // XXXDARWIN
3477  // Work around the unaligned VM callbacks in hotspot's
3478  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3479  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3480  // alignment when doing symbol lookup. To work around this, we force early
3481  // binding of all symbols now, thus binding when alignment is known-good.
3482  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3483#endif
3484}
3485
3486// To install functions for atexit system call
3487extern "C" {
3488  static void perfMemory_exit_helper() {
3489    perfMemory_exit();
3490  }
3491}
3492
3493// this is called _after_ the global arguments have been parsed
3494jint os::init_2(void) {
3495  // Allocate a single page and mark it as readable for safepoint polling
3496  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3497  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3498
3499  os::set_polling_page(polling_page);
3500
3501#ifndef PRODUCT
3502  if (Verbose && PrintMiscellaneous) {
3503    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3504               (intptr_t)polling_page);
3505  }
3506#endif
3507
3508  if (!UseMembar) {
3509    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3510    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3511    os::set_memory_serialize_page(mem_serialize_page);
3512
3513#ifndef PRODUCT
3514    if (Verbose && PrintMiscellaneous) {
3515      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3516                 (intptr_t)mem_serialize_page);
3517    }
3518#endif
3519  }
3520
3521  // initialize suspend/resume support - must do this before signal_sets_init()
3522  if (SR_initialize() != 0) {
3523    perror("SR_initialize failed");
3524    return JNI_ERR;
3525  }
3526
3527  Bsd::signal_sets_init();
3528  Bsd::install_signal_handlers();
3529
3530  // Check minimum allowable stack size for thread creation and to initialize
3531  // the java system classes, including StackOverflowError - depends on page
3532  // size.  Add a page for compiler2 recursion in main thread.
3533  // Add in 2*BytesPerWord times page size to account for VM stack during
3534  // class initialization depending on 32 or 64 bit VM.
3535  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3536                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3537                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3538
3539  size_t threadStackSizeInBytes = ThreadStackSize * K;
3540  if (threadStackSizeInBytes != 0 &&
3541      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3542    tty->print_cr("\nThe stack size specified is too small, "
3543                  "Specify at least %dk",
3544                  os::Bsd::min_stack_allowed/ K);
3545    return JNI_ERR;
3546  }
3547
3548  // Make the stack size a multiple of the page size so that
3549  // the yellow/red zones can be guarded.
3550  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3551                                                vm_page_size()));
3552
3553  if (MaxFDLimit) {
3554    // set the number of file descriptors to max. print out error
3555    // if getrlimit/setrlimit fails but continue regardless.
3556    struct rlimit nbr_files;
3557    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3558    if (status != 0) {
3559      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3560        perror("os::init_2 getrlimit failed");
3561      }
3562    } else {
3563      nbr_files.rlim_cur = nbr_files.rlim_max;
3564
3565#ifdef __APPLE__
3566      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3567      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3568      // be used instead
3569      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3570#endif
3571
3572      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3573      if (status != 0) {
3574        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3575          perror("os::init_2 setrlimit failed");
3576        }
3577      }
3578    }
3579  }
3580
3581  // at-exit methods are called in the reverse order of their registration.
3582  // atexit functions are called on return from main or as a result of a
3583  // call to exit(3C). There can be only 32 of these functions registered
3584  // and atexit() does not set errno.
3585
3586  if (PerfAllowAtExitRegistration) {
3587    // only register atexit functions if PerfAllowAtExitRegistration is set.
3588    // atexit functions can be delayed until process exit time, which
3589    // can be problematic for embedded VM situations. Embedded VMs should
3590    // call DestroyJavaVM() to assure that VM resources are released.
3591
3592    // note: perfMemory_exit_helper atexit function may be removed in
3593    // the future if the appropriate cleanup code can be added to the
3594    // VM_Exit VMOperation's doit method.
3595    if (atexit(perfMemory_exit_helper) != 0) {
3596      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3597    }
3598  }
3599
3600  // initialize thread priority policy
3601  prio_init();
3602
3603#ifdef __APPLE__
3604  // dynamically link to objective c gc registration
3605  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3606  if (handleLibObjc != NULL) {
3607    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3608  }
3609#endif
3610
3611  return JNI_OK;
3612}
3613
3614// Mark the polling page as unreadable
3615void os::make_polling_page_unreadable(void) {
3616  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3617    fatal("Could not disable polling page");
3618  }
3619}
3620
3621// Mark the polling page as readable
3622void os::make_polling_page_readable(void) {
3623  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3624    fatal("Could not enable polling page");
3625  }
3626}
3627
3628int os::active_processor_count() {
3629  return _processor_count;
3630}
3631
3632void os::set_native_thread_name(const char *name) {
3633#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3634  // This is only supported in Snow Leopard and beyond
3635  if (name != NULL) {
3636    // Add a "Java: " prefix to the name
3637    char buf[MAXTHREADNAMESIZE];
3638    snprintf(buf, sizeof(buf), "Java: %s", name);
3639    pthread_setname_np(buf);
3640  }
3641#endif
3642}
3643
3644bool os::distribute_processes(uint length, uint* distribution) {
3645  // Not yet implemented.
3646  return false;
3647}
3648
3649bool os::bind_to_processor(uint processor_id) {
3650  // Not yet implemented.
3651  return false;
3652}
3653
3654void os::SuspendedThreadTask::internal_do_task() {
3655  if (do_suspend(_thread->osthread())) {
3656    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3657    do_task(context);
3658    do_resume(_thread->osthread());
3659  }
3660}
3661
3662///
3663class PcFetcher : public os::SuspendedThreadTask {
3664 public:
3665  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3666  ExtendedPC result();
3667 protected:
3668  void do_task(const os::SuspendedThreadTaskContext& context);
3669 private:
3670  ExtendedPC _epc;
3671};
3672
3673ExtendedPC PcFetcher::result() {
3674  guarantee(is_done(), "task is not done yet.");
3675  return _epc;
3676}
3677
3678void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3679  Thread* thread = context.thread();
3680  OSThread* osthread = thread->osthread();
3681  if (osthread->ucontext() != NULL) {
3682    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3683  } else {
3684    // NULL context is unexpected, double-check this is the VMThread
3685    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3686  }
3687}
3688
3689// Suspends the target using the signal mechanism and then grabs the PC before
3690// resuming the target. Used by the flat-profiler only
3691ExtendedPC os::get_thread_pc(Thread* thread) {
3692  // Make sure that it is called by the watcher for the VMThread
3693  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3694  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3695
3696  PcFetcher fetcher(thread);
3697  fetcher.run();
3698  return fetcher.result();
3699}
3700
3701////////////////////////////////////////////////////////////////////////////////
3702// debug support
3703
3704bool os::find(address addr, outputStream* st) {
3705  Dl_info dlinfo;
3706  memset(&dlinfo, 0, sizeof(dlinfo));
3707  if (dladdr(addr, &dlinfo) != 0) {
3708    st->print(PTR_FORMAT ": ", addr);
3709    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3710      st->print("%s+%#x", dlinfo.dli_sname,
3711                addr - (intptr_t)dlinfo.dli_saddr);
3712    } else if (dlinfo.dli_fbase != NULL) {
3713      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3714    } else {
3715      st->print("<absolute address>");
3716    }
3717    if (dlinfo.dli_fname != NULL) {
3718      st->print(" in %s", dlinfo.dli_fname);
3719    }
3720    if (dlinfo.dli_fbase != NULL) {
3721      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3722    }
3723    st->cr();
3724
3725    if (Verbose) {
3726      // decode some bytes around the PC
3727      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3728      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3729      address       lowest = (address) dlinfo.dli_sname;
3730      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3731      if (begin < lowest)  begin = lowest;
3732      Dl_info dlinfo2;
3733      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3734          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3735        end = (address) dlinfo2.dli_saddr;
3736      }
3737      Disassembler::decode(begin, end, st);
3738    }
3739    return true;
3740  }
3741  return false;
3742}
3743
3744////////////////////////////////////////////////////////////////////////////////
3745// misc
3746
3747// This does not do anything on Bsd. This is basically a hook for being
3748// able to use structured exception handling (thread-local exception filters)
3749// on, e.g., Win32.
3750void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3751                              methodHandle* method, JavaCallArguments* args,
3752                              Thread* thread) {
3753  f(value, method, args, thread);
3754}
3755
3756void os::print_statistics() {
3757}
3758
3759int os::message_box(const char* title, const char* message) {
3760  int i;
3761  fdStream err(defaultStream::error_fd());
3762  for (i = 0; i < 78; i++) err.print_raw("=");
3763  err.cr();
3764  err.print_raw_cr(title);
3765  for (i = 0; i < 78; i++) err.print_raw("-");
3766  err.cr();
3767  err.print_raw_cr(message);
3768  for (i = 0; i < 78; i++) err.print_raw("=");
3769  err.cr();
3770
3771  char buf[16];
3772  // Prevent process from exiting upon "read error" without consuming all CPU
3773  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3774
3775  return buf[0] == 'y' || buf[0] == 'Y';
3776}
3777
3778int os::stat(const char *path, struct stat *sbuf) {
3779  char pathbuf[MAX_PATH];
3780  if (strlen(path) > MAX_PATH - 1) {
3781    errno = ENAMETOOLONG;
3782    return -1;
3783  }
3784  os::native_path(strcpy(pathbuf, path));
3785  return ::stat(pathbuf, sbuf);
3786}
3787
3788bool os::check_heap(bool force) {
3789  return true;
3790}
3791
3792// Is a (classpath) directory empty?
3793bool os::dir_is_empty(const char* path) {
3794  DIR *dir = NULL;
3795  struct dirent *ptr;
3796
3797  dir = opendir(path);
3798  if (dir == NULL) return true;
3799
3800  // Scan the directory
3801  bool result = true;
3802  char buf[sizeof(struct dirent) + MAX_PATH];
3803  while (result && (ptr = ::readdir(dir)) != NULL) {
3804    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3805      result = false;
3806    }
3807  }
3808  closedir(dir);
3809  return result;
3810}
3811
3812// This code originates from JDK's sysOpen and open64_w
3813// from src/solaris/hpi/src/system_md.c
3814
3815int os::open(const char *path, int oflag, int mode) {
3816  if (strlen(path) > MAX_PATH - 1) {
3817    errno = ENAMETOOLONG;
3818    return -1;
3819  }
3820  int fd;
3821
3822  fd = ::open(path, oflag, mode);
3823  if (fd == -1) return -1;
3824
3825  // If the open succeeded, the file might still be a directory
3826  {
3827    struct stat buf;
3828    int ret = ::fstat(fd, &buf);
3829    int st_mode = buf.st_mode;
3830
3831    if (ret != -1) {
3832      if ((st_mode & S_IFMT) == S_IFDIR) {
3833        errno = EISDIR;
3834        ::close(fd);
3835        return -1;
3836      }
3837    } else {
3838      ::close(fd);
3839      return -1;
3840    }
3841  }
3842
3843  // All file descriptors that are opened in the JVM and not
3844  // specifically destined for a subprocess should have the
3845  // close-on-exec flag set.  If we don't set it, then careless 3rd
3846  // party native code might fork and exec without closing all
3847  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3848  // UNIXProcess.c), and this in turn might:
3849  //
3850  // - cause end-of-file to fail to be detected on some file
3851  //   descriptors, resulting in mysterious hangs, or
3852  //
3853  // - might cause an fopen in the subprocess to fail on a system
3854  //   suffering from bug 1085341.
3855  //
3856  // (Yes, the default setting of the close-on-exec flag is a Unix
3857  // design flaw)
3858  //
3859  // See:
3860  // 1085341: 32-bit stdio routines should support file descriptors >255
3861  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3862  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3863  //
3864#ifdef FD_CLOEXEC
3865  {
3866    int flags = ::fcntl(fd, F_GETFD);
3867    if (flags != -1) {
3868      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3869    }
3870  }
3871#endif
3872
3873  return fd;
3874}
3875
3876
3877// create binary file, rewriting existing file if required
3878int os::create_binary_file(const char* path, bool rewrite_existing) {
3879  int oflags = O_WRONLY | O_CREAT;
3880  if (!rewrite_existing) {
3881    oflags |= O_EXCL;
3882  }
3883  return ::open(path, oflags, S_IREAD | S_IWRITE);
3884}
3885
3886// return current position of file pointer
3887jlong os::current_file_offset(int fd) {
3888  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3889}
3890
3891// move file pointer to the specified offset
3892jlong os::seek_to_file_offset(int fd, jlong offset) {
3893  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3894}
3895
3896// This code originates from JDK's sysAvailable
3897// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3898
3899int os::available(int fd, jlong *bytes) {
3900  jlong cur, end;
3901  int mode;
3902  struct stat buf;
3903
3904  if (::fstat(fd, &buf) >= 0) {
3905    mode = buf.st_mode;
3906    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3907      // XXX: is the following call interruptible? If so, this might
3908      // need to go through the INTERRUPT_IO() wrapper as for other
3909      // blocking, interruptible calls in this file.
3910      int n;
3911      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3912        *bytes = n;
3913        return 1;
3914      }
3915    }
3916  }
3917  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3918    return 0;
3919  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3920    return 0;
3921  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3922    return 0;
3923  }
3924  *bytes = end - cur;
3925  return 1;
3926}
3927
3928// Map a block of memory.
3929char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3930                        char *addr, size_t bytes, bool read_only,
3931                        bool allow_exec) {
3932  int prot;
3933  int flags;
3934
3935  if (read_only) {
3936    prot = PROT_READ;
3937    flags = MAP_SHARED;
3938  } else {
3939    prot = PROT_READ | PROT_WRITE;
3940    flags = MAP_PRIVATE;
3941  }
3942
3943  if (allow_exec) {
3944    prot |= PROT_EXEC;
3945  }
3946
3947  if (addr != NULL) {
3948    flags |= MAP_FIXED;
3949  }
3950
3951  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3952                                     fd, file_offset);
3953  if (mapped_address == MAP_FAILED) {
3954    return NULL;
3955  }
3956  return mapped_address;
3957}
3958
3959
3960// Remap a block of memory.
3961char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3962                          char *addr, size_t bytes, bool read_only,
3963                          bool allow_exec) {
3964  // same as map_memory() on this OS
3965  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3966                        allow_exec);
3967}
3968
3969
3970// Unmap a block of memory.
3971bool os::pd_unmap_memory(char* addr, size_t bytes) {
3972  return munmap(addr, bytes) == 0;
3973}
3974
3975// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3976// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3977// of a thread.
3978//
3979// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3980// the fast estimate available on the platform.
3981
3982jlong os::current_thread_cpu_time() {
3983#ifdef __APPLE__
3984  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3985#else
3986  Unimplemented();
3987  return 0;
3988#endif
3989}
3990
3991jlong os::thread_cpu_time(Thread* thread) {
3992#ifdef __APPLE__
3993  return os::thread_cpu_time(thread, true /* user + sys */);
3994#else
3995  Unimplemented();
3996  return 0;
3997#endif
3998}
3999
4000jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4001#ifdef __APPLE__
4002  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4003#else
4004  Unimplemented();
4005  return 0;
4006#endif
4007}
4008
4009jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4010#ifdef __APPLE__
4011  struct thread_basic_info tinfo;
4012  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4013  kern_return_t kr;
4014  thread_t mach_thread;
4015
4016  mach_thread = thread->osthread()->thread_id();
4017  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4018  if (kr != KERN_SUCCESS) {
4019    return -1;
4020  }
4021
4022  if (user_sys_cpu_time) {
4023    jlong nanos;
4024    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4025    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4026    return nanos;
4027  } else {
4028    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4029  }
4030#else
4031  Unimplemented();
4032  return 0;
4033#endif
4034}
4035
4036
4037void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4038  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4039  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4040  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4041  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4042}
4043
4044void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4045  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4046  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4047  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4048  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4049}
4050
4051bool os::is_thread_cpu_time_supported() {
4052#ifdef __APPLE__
4053  return true;
4054#else
4055  return false;
4056#endif
4057}
4058
4059// System loadavg support.  Returns -1 if load average cannot be obtained.
4060// Bsd doesn't yet have a (official) notion of processor sets,
4061// so just return the system wide load average.
4062int os::loadavg(double loadavg[], int nelem) {
4063  return ::getloadavg(loadavg, nelem);
4064}
4065
4066void os::pause() {
4067  char filename[MAX_PATH];
4068  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4069    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4070  } else {
4071    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4072  }
4073
4074  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4075  if (fd != -1) {
4076    struct stat buf;
4077    ::close(fd);
4078    while (::stat(filename, &buf) == 0) {
4079      (void)::poll(NULL, 0, 100);
4080    }
4081  } else {
4082    jio_fprintf(stderr,
4083                "Could not open pause file '%s', continuing immediately.\n", filename);
4084  }
4085}
4086
4087
4088// Refer to the comments in os_solaris.cpp park-unpark. The next two
4089// comment paragraphs are worth repeating here:
4090//
4091// Assumption:
4092//    Only one parker can exist on an event, which is why we allocate
4093//    them per-thread. Multiple unparkers can coexist.
4094//
4095// _Event serves as a restricted-range semaphore.
4096//   -1 : thread is blocked, i.e. there is a waiter
4097//    0 : neutral: thread is running or ready,
4098//        could have been signaled after a wait started
4099//    1 : signaled - thread is running or ready
4100//
4101// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4102// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4103// For specifics regarding the bug see GLIBC BUGID 261237 :
4104//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4105// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4106// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4107// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4108// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4109// and monitorenter when we're using 1-0 locking.  All those operations may result in
4110// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4111// of libpthread avoids the problem, but isn't practical.
4112//
4113// Possible remedies:
4114//
4115// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4116//      This is palliative and probabilistic, however.  If the thread is preempted
4117//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4118//      than the minimum period may have passed, and the abstime may be stale (in the
4119//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4120//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4121//
4122// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4123//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4124//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4125//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4126//      thread.
4127//
4128// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4129//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4130//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4131//      This also works well.  In fact it avoids kernel-level scalability impediments
4132//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4133//      timers in a graceful fashion.
4134//
4135// 4.   When the abstime value is in the past it appears that control returns
4136//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4137//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4138//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4139//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4140//      It may be possible to avoid reinitialization by checking the return
4141//      value from pthread_cond_timedwait().  In addition to reinitializing the
4142//      condvar we must establish the invariant that cond_signal() is only called
4143//      within critical sections protected by the adjunct mutex.  This prevents
4144//      cond_signal() from "seeing" a condvar that's in the midst of being
4145//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4146//      desirable signal-after-unlock optimization that avoids futile context switching.
4147//
4148//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4149//      structure when a condvar is used or initialized.  cond_destroy()  would
4150//      release the helper structure.  Our reinitialize-after-timedwait fix
4151//      put excessive stress on malloc/free and locks protecting the c-heap.
4152//
4153// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4154// It may be possible to refine (4) by checking the kernel and NTPL verisons
4155// and only enabling the work-around for vulnerable environments.
4156
4157// utility to compute the abstime argument to timedwait:
4158// millis is the relative timeout time
4159// abstime will be the absolute timeout time
4160// TODO: replace compute_abstime() with unpackTime()
4161
4162static struct timespec* compute_abstime(struct timespec* abstime,
4163                                        jlong millis) {
4164  if (millis < 0)  millis = 0;
4165  struct timeval now;
4166  int status = gettimeofday(&now, NULL);
4167  assert(status == 0, "gettimeofday");
4168  jlong seconds = millis / 1000;
4169  millis %= 1000;
4170  if (seconds > 50000000) { // see man cond_timedwait(3T)
4171    seconds = 50000000;
4172  }
4173  abstime->tv_sec = now.tv_sec  + seconds;
4174  long       usec = now.tv_usec + millis * 1000;
4175  if (usec >= 1000000) {
4176    abstime->tv_sec += 1;
4177    usec -= 1000000;
4178  }
4179  abstime->tv_nsec = usec * 1000;
4180  return abstime;
4181}
4182
4183void os::PlatformEvent::park() {       // AKA "down()"
4184  // Transitions for _Event:
4185  //   -1 => -1 : illegal
4186  //    1 =>  0 : pass - return immediately
4187  //    0 => -1 : block; then set _Event to 0 before returning
4188
4189  // Invariant: Only the thread associated with the Event/PlatformEvent
4190  // may call park().
4191  // TODO: assert that _Assoc != NULL or _Assoc == Self
4192  assert(_nParked == 0, "invariant");
4193
4194  int v;
4195  for (;;) {
4196    v = _Event;
4197    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4198  }
4199  guarantee(v >= 0, "invariant");
4200  if (v == 0) {
4201    // Do this the hard way by blocking ...
4202    int status = pthread_mutex_lock(_mutex);
4203    assert_status(status == 0, status, "mutex_lock");
4204    guarantee(_nParked == 0, "invariant");
4205    ++_nParked;
4206    while (_Event < 0) {
4207      status = pthread_cond_wait(_cond, _mutex);
4208      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4209      // Treat this the same as if the wait was interrupted
4210      if (status == ETIMEDOUT) { status = EINTR; }
4211      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4212    }
4213    --_nParked;
4214
4215    _Event = 0;
4216    status = pthread_mutex_unlock(_mutex);
4217    assert_status(status == 0, status, "mutex_unlock");
4218    // Paranoia to ensure our locked and lock-free paths interact
4219    // correctly with each other.
4220    OrderAccess::fence();
4221  }
4222  guarantee(_Event >= 0, "invariant");
4223}
4224
4225int os::PlatformEvent::park(jlong millis) {
4226  // Transitions for _Event:
4227  //   -1 => -1 : illegal
4228  //    1 =>  0 : pass - return immediately
4229  //    0 => -1 : block; then set _Event to 0 before returning
4230
4231  guarantee(_nParked == 0, "invariant");
4232
4233  int v;
4234  for (;;) {
4235    v = _Event;
4236    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4237  }
4238  guarantee(v >= 0, "invariant");
4239  if (v != 0) return OS_OK;
4240
4241  // We do this the hard way, by blocking the thread.
4242  // Consider enforcing a minimum timeout value.
4243  struct timespec abst;
4244  compute_abstime(&abst, millis);
4245
4246  int ret = OS_TIMEOUT;
4247  int status = pthread_mutex_lock(_mutex);
4248  assert_status(status == 0, status, "mutex_lock");
4249  guarantee(_nParked == 0, "invariant");
4250  ++_nParked;
4251
4252  // Object.wait(timo) will return because of
4253  // (a) notification
4254  // (b) timeout
4255  // (c) thread.interrupt
4256  //
4257  // Thread.interrupt and object.notify{All} both call Event::set.
4258  // That is, we treat thread.interrupt as a special case of notification.
4259  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4260  // We assume all ETIME returns are valid.
4261  //
4262  // TODO: properly differentiate simultaneous notify+interrupt.
4263  // In that case, we should propagate the notify to another waiter.
4264
4265  while (_Event < 0) {
4266    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4267    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4268      pthread_cond_destroy(_cond);
4269      pthread_cond_init(_cond, NULL);
4270    }
4271    assert_status(status == 0 || status == EINTR ||
4272                  status == ETIMEDOUT,
4273                  status, "cond_timedwait");
4274    if (!FilterSpuriousWakeups) break;                 // previous semantics
4275    if (status == ETIMEDOUT) break;
4276    // We consume and ignore EINTR and spurious wakeups.
4277  }
4278  --_nParked;
4279  if (_Event >= 0) {
4280    ret = OS_OK;
4281  }
4282  _Event = 0;
4283  status = pthread_mutex_unlock(_mutex);
4284  assert_status(status == 0, status, "mutex_unlock");
4285  assert(_nParked == 0, "invariant");
4286  // Paranoia to ensure our locked and lock-free paths interact
4287  // correctly with each other.
4288  OrderAccess::fence();
4289  return ret;
4290}
4291
4292void os::PlatformEvent::unpark() {
4293  // Transitions for _Event:
4294  //    0 => 1 : just return
4295  //    1 => 1 : just return
4296  //   -1 => either 0 or 1; must signal target thread
4297  //         That is, we can safely transition _Event from -1 to either
4298  //         0 or 1.
4299  // See also: "Semaphores in Plan 9" by Mullender & Cox
4300  //
4301  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4302  // that it will take two back-to-back park() calls for the owning
4303  // thread to block. This has the benefit of forcing a spurious return
4304  // from the first park() call after an unpark() call which will help
4305  // shake out uses of park() and unpark() without condition variables.
4306
4307  if (Atomic::xchg(1, &_Event) >= 0) return;
4308
4309  // Wait for the thread associated with the event to vacate
4310  int status = pthread_mutex_lock(_mutex);
4311  assert_status(status == 0, status, "mutex_lock");
4312  int AnyWaiters = _nParked;
4313  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4314  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4315    AnyWaiters = 0;
4316    pthread_cond_signal(_cond);
4317  }
4318  status = pthread_mutex_unlock(_mutex);
4319  assert_status(status == 0, status, "mutex_unlock");
4320  if (AnyWaiters != 0) {
4321    // Note that we signal() *after* dropping the lock for "immortal" Events.
4322    // This is safe and avoids a common class of  futile wakeups.  In rare
4323    // circumstances this can cause a thread to return prematurely from
4324    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4325    // will simply re-test the condition and re-park itself.
4326    // This provides particular benefit if the underlying platform does not
4327    // provide wait morphing.
4328    status = pthread_cond_signal(_cond);
4329    assert_status(status == 0, status, "cond_signal");
4330  }
4331}
4332
4333
4334// JSR166
4335// -------------------------------------------------------
4336
4337// The solaris and bsd implementations of park/unpark are fairly
4338// conservative for now, but can be improved. They currently use a
4339// mutex/condvar pair, plus a a count.
4340// Park decrements count if > 0, else does a condvar wait.  Unpark
4341// sets count to 1 and signals condvar.  Only one thread ever waits
4342// on the condvar. Contention seen when trying to park implies that someone
4343// is unparking you, so don't wait. And spurious returns are fine, so there
4344// is no need to track notifications.
4345
4346#define MAX_SECS 100000000
4347
4348// This code is common to bsd and solaris and will be moved to a
4349// common place in dolphin.
4350//
4351// The passed in time value is either a relative time in nanoseconds
4352// or an absolute time in milliseconds. Either way it has to be unpacked
4353// into suitable seconds and nanoseconds components and stored in the
4354// given timespec structure.
4355// Given time is a 64-bit value and the time_t used in the timespec is only
4356// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4357// overflow if times way in the future are given. Further on Solaris versions
4358// prior to 10 there is a restriction (see cond_timedwait) that the specified
4359// number of seconds, in abstime, is less than current_time  + 100,000,000.
4360// As it will be 28 years before "now + 100000000" will overflow we can
4361// ignore overflow and just impose a hard-limit on seconds using the value
4362// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4363// years from "now".
4364
4365static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4366  assert(time > 0, "convertTime");
4367
4368  struct timeval now;
4369  int status = gettimeofday(&now, NULL);
4370  assert(status == 0, "gettimeofday");
4371
4372  time_t max_secs = now.tv_sec + MAX_SECS;
4373
4374  if (isAbsolute) {
4375    jlong secs = time / 1000;
4376    if (secs > max_secs) {
4377      absTime->tv_sec = max_secs;
4378    } else {
4379      absTime->tv_sec = secs;
4380    }
4381    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4382  } else {
4383    jlong secs = time / NANOSECS_PER_SEC;
4384    if (secs >= MAX_SECS) {
4385      absTime->tv_sec = max_secs;
4386      absTime->tv_nsec = 0;
4387    } else {
4388      absTime->tv_sec = now.tv_sec + secs;
4389      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4390      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4391        absTime->tv_nsec -= NANOSECS_PER_SEC;
4392        ++absTime->tv_sec; // note: this must be <= max_secs
4393      }
4394    }
4395  }
4396  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4397  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4398  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4399  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4400}
4401
4402void Parker::park(bool isAbsolute, jlong time) {
4403  // Ideally we'd do something useful while spinning, such
4404  // as calling unpackTime().
4405
4406  // Optional fast-path check:
4407  // Return immediately if a permit is available.
4408  // We depend on Atomic::xchg() having full barrier semantics
4409  // since we are doing a lock-free update to _counter.
4410  if (Atomic::xchg(0, &_counter) > 0) return;
4411
4412  Thread* thread = Thread::current();
4413  assert(thread->is_Java_thread(), "Must be JavaThread");
4414  JavaThread *jt = (JavaThread *)thread;
4415
4416  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4417  // Check interrupt before trying to wait
4418  if (Thread::is_interrupted(thread, false)) {
4419    return;
4420  }
4421
4422  // Next, demultiplex/decode time arguments
4423  struct timespec absTime;
4424  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4425    return;
4426  }
4427  if (time > 0) {
4428    unpackTime(&absTime, isAbsolute, time);
4429  }
4430
4431
4432  // Enter safepoint region
4433  // Beware of deadlocks such as 6317397.
4434  // The per-thread Parker:: mutex is a classic leaf-lock.
4435  // In particular a thread must never block on the Threads_lock while
4436  // holding the Parker:: mutex.  If safepoints are pending both the
4437  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4438  ThreadBlockInVM tbivm(jt);
4439
4440  // Don't wait if cannot get lock since interference arises from
4441  // unblocking.  Also. check interrupt before trying wait
4442  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4443    return;
4444  }
4445
4446  int status;
4447  if (_counter > 0)  { // no wait needed
4448    _counter = 0;
4449    status = pthread_mutex_unlock(_mutex);
4450    assert(status == 0, "invariant");
4451    // Paranoia to ensure our locked and lock-free paths interact
4452    // correctly with each other and Java-level accesses.
4453    OrderAccess::fence();
4454    return;
4455  }
4456
4457#ifdef ASSERT
4458  // Don't catch signals while blocked; let the running threads have the signals.
4459  // (This allows a debugger to break into the running thread.)
4460  sigset_t oldsigs;
4461  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4462  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4463#endif
4464
4465  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4466  jt->set_suspend_equivalent();
4467  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4468
4469  if (time == 0) {
4470    status = pthread_cond_wait(_cond, _mutex);
4471  } else {
4472    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4473    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4474      pthread_cond_destroy(_cond);
4475      pthread_cond_init(_cond, NULL);
4476    }
4477  }
4478  assert_status(status == 0 || status == EINTR ||
4479                status == ETIMEDOUT,
4480                status, "cond_timedwait");
4481
4482#ifdef ASSERT
4483  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4484#endif
4485
4486  _counter = 0;
4487  status = pthread_mutex_unlock(_mutex);
4488  assert_status(status == 0, status, "invariant");
4489  // Paranoia to ensure our locked and lock-free paths interact
4490  // correctly with each other and Java-level accesses.
4491  OrderAccess::fence();
4492
4493  // If externally suspended while waiting, re-suspend
4494  if (jt->handle_special_suspend_equivalent_condition()) {
4495    jt->java_suspend_self();
4496  }
4497}
4498
4499void Parker::unpark() {
4500  int status = pthread_mutex_lock(_mutex);
4501  assert(status == 0, "invariant");
4502  const int s = _counter;
4503  _counter = 1;
4504  if (s < 1) {
4505    if (WorkAroundNPTLTimedWaitHang) {
4506      status = pthread_cond_signal(_cond);
4507      assert(status == 0, "invariant");
4508      status = pthread_mutex_unlock(_mutex);
4509      assert(status == 0, "invariant");
4510    } else {
4511      status = pthread_mutex_unlock(_mutex);
4512      assert(status == 0, "invariant");
4513      status = pthread_cond_signal(_cond);
4514      assert(status == 0, "invariant");
4515    }
4516  } else {
4517    pthread_mutex_unlock(_mutex);
4518    assert(status == 0, "invariant");
4519  }
4520}
4521
4522
4523// Darwin has no "environ" in a dynamic library.
4524#ifdef __APPLE__
4525  #include <crt_externs.h>
4526  #define environ (*_NSGetEnviron())
4527#else
4528extern char** environ;
4529#endif
4530
4531// Run the specified command in a separate process. Return its exit value,
4532// or -1 on failure (e.g. can't fork a new process).
4533// Unlike system(), this function can be called from signal handler. It
4534// doesn't block SIGINT et al.
4535int os::fork_and_exec(char* cmd) {
4536  const char * argv[4] = {"sh", "-c", cmd, NULL};
4537
4538  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4539  // pthread_atfork handlers and reset pthread library. All we need is a
4540  // separate process to execve. Make a direct syscall to fork process.
4541  // On IA64 there's no fork syscall, we have to use fork() and hope for
4542  // the best...
4543  pid_t pid = fork();
4544
4545  if (pid < 0) {
4546    // fork failed
4547    return -1;
4548
4549  } else if (pid == 0) {
4550    // child process
4551
4552    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4553    // first to kill every thread on the thread list. Because this list is
4554    // not reset by fork() (see notes above), execve() will instead kill
4555    // every thread in the parent process. We know this is the only thread
4556    // in the new process, so make a system call directly.
4557    // IA64 should use normal execve() from glibc to match the glibc fork()
4558    // above.
4559    execve("/bin/sh", (char* const*)argv, environ);
4560
4561    // execve failed
4562    _exit(-1);
4563
4564  } else  {
4565    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4566    // care about the actual exit code, for now.
4567
4568    int status;
4569
4570    // Wait for the child process to exit.  This returns immediately if
4571    // the child has already exited. */
4572    while (waitpid(pid, &status, 0) < 0) {
4573      switch (errno) {
4574      case ECHILD: return 0;
4575      case EINTR: break;
4576      default: return -1;
4577      }
4578    }
4579
4580    if (WIFEXITED(status)) {
4581      // The child exited normally; get its exit code.
4582      return WEXITSTATUS(status);
4583    } else if (WIFSIGNALED(status)) {
4584      // The child exited because of a signal
4585      // The best value to return is 0x80 + signal number,
4586      // because that is what all Unix shells do, and because
4587      // it allows callers to distinguish between process exit and
4588      // process death by signal.
4589      return 0x80 + WTERMSIG(status);
4590    } else {
4591      // Unknown exit code; pass it through
4592      return status;
4593    }
4594  }
4595}
4596
4597// is_headless_jre()
4598//
4599// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4600// in order to report if we are running in a headless jre
4601//
4602// Since JDK8 xawt/libmawt.so was moved into the same directory
4603// as libawt.so, and renamed libawt_xawt.so
4604//
4605bool os::is_headless_jre() {
4606#ifdef __APPLE__
4607  // We no longer build headless-only on Mac OS X
4608  return false;
4609#else
4610  struct stat statbuf;
4611  char buf[MAXPATHLEN];
4612  char libmawtpath[MAXPATHLEN];
4613  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4614  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4615  char *p;
4616
4617  // Get path to libjvm.so
4618  os::jvm_path(buf, sizeof(buf));
4619
4620  // Get rid of libjvm.so
4621  p = strrchr(buf, '/');
4622  if (p == NULL) {
4623    return false;
4624  } else {
4625    *p = '\0';
4626  }
4627
4628  // Get rid of client or server
4629  p = strrchr(buf, '/');
4630  if (p == NULL) {
4631    return false;
4632  } else {
4633    *p = '\0';
4634  }
4635
4636  // check xawt/libmawt.so
4637  strcpy(libmawtpath, buf);
4638  strcat(libmawtpath, xawtstr);
4639  if (::stat(libmawtpath, &statbuf) == 0) return false;
4640
4641  // check libawt_xawt.so
4642  strcpy(libmawtpath, buf);
4643  strcat(libmawtpath, new_xawtstr);
4644  if (::stat(libmawtpath, &statbuf) == 0) return false;
4645
4646  return true;
4647#endif
4648}
4649
4650// Get the default path to the core file
4651// Returns the length of the string
4652int os::get_core_path(char* buffer, size_t bufferSize) {
4653  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4654
4655  // Truncate if theoretical string was longer than bufferSize
4656  n = MIN2(n, (int)bufferSize);
4657
4658  return n;
4659}
4660
4661#ifndef PRODUCT
4662void TestReserveMemorySpecial_test() {
4663  // No tests available for this platform
4664}
4665#endif
4666