os_bsd.cpp revision 8225:eb02bcd73927
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109  #include <elf.h>
110#endif
111
112#ifdef __APPLE__
113  #include <mach/mach.h> // semaphore_* API
114  #include <mach-o/dyld.h>
115  #include <sys/proc_info.h>
116  #include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120  #define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193// Return true if user is running as root.
194
195bool os::have_special_privileges() {
196  static bool init = false;
197  static bool privileges = false;
198  if (!init) {
199    privileges = (getuid() != geteuid()) || (getgid() != getegid());
200    init = true;
201  }
202  return privileges;
203}
204
205
206
207// Cpu architecture string
208#if   defined(ZERO)
209static char cpu_arch[] = ZERO_LIBARCH;
210#elif defined(IA64)
211static char cpu_arch[] = "ia64";
212#elif defined(IA32)
213static char cpu_arch[] = "i386";
214#elif defined(AMD64)
215static char cpu_arch[] = "amd64";
216#elif defined(ARM)
217static char cpu_arch[] = "arm";
218#elif defined(PPC32)
219static char cpu_arch[] = "ppc";
220#elif defined(SPARC)
221  #ifdef _LP64
222static char cpu_arch[] = "sparcv9";
223  #else
224static char cpu_arch[] = "sparc";
225  #endif
226#else
227  #error Add appropriate cpu_arch setting
228#endif
229
230// Compiler variant
231#ifdef COMPILER2
232  #define COMPILER_VARIANT "server"
233#else
234  #define COMPILER_VARIANT "client"
235#endif
236
237
238void os::Bsd::initialize_system_info() {
239  int mib[2];
240  size_t len;
241  int cpu_val;
242  julong mem_val;
243
244  // get processors count via hw.ncpus sysctl
245  mib[0] = CTL_HW;
246  mib[1] = HW_NCPU;
247  len = sizeof(cpu_val);
248  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
249    assert(len == sizeof(cpu_val), "unexpected data size");
250    set_processor_count(cpu_val);
251  } else {
252    set_processor_count(1);   // fallback
253  }
254
255  // get physical memory via hw.memsize sysctl (hw.memsize is used
256  // since it returns a 64 bit value)
257  mib[0] = CTL_HW;
258
259#if defined (HW_MEMSIZE) // Apple
260  mib[1] = HW_MEMSIZE;
261#elif defined(HW_PHYSMEM) // Most of BSD
262  mib[1] = HW_PHYSMEM;
263#elif defined(HW_REALMEM) // Old FreeBSD
264  mib[1] = HW_REALMEM;
265#else
266  #error No ways to get physmem
267#endif
268
269  len = sizeof(mem_val);
270  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
271    assert(len == sizeof(mem_val), "unexpected data size");
272    _physical_memory = mem_val;
273  } else {
274    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
275  }
276
277#ifdef __OpenBSD__
278  {
279    // limit _physical_memory memory view on OpenBSD since
280    // datasize rlimit restricts us anyway.
281    struct rlimit limits;
282    getrlimit(RLIMIT_DATA, &limits);
283    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
284  }
285#endif
286}
287
288#ifdef __APPLE__
289static const char *get_home() {
290  const char *home_dir = ::getenv("HOME");
291  if ((home_dir == NULL) || (*home_dir == '\0')) {
292    struct passwd *passwd_info = getpwuid(geteuid());
293    if (passwd_info != NULL) {
294      home_dir = passwd_info->pw_dir;
295    }
296  }
297
298  return home_dir;
299}
300#endif
301
302void os::init_system_properties_values() {
303  // The next steps are taken in the product version:
304  //
305  // Obtain the JAVA_HOME value from the location of libjvm.so.
306  // This library should be located at:
307  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
308  //
309  // If "/jre/lib/" appears at the right place in the path, then we
310  // assume libjvm.so is installed in a JDK and we use this path.
311  //
312  // Otherwise exit with message: "Could not create the Java virtual machine."
313  //
314  // The following extra steps are taken in the debugging version:
315  //
316  // If "/jre/lib/" does NOT appear at the right place in the path
317  // instead of exit check for $JAVA_HOME environment variable.
318  //
319  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
320  // then we append a fake suffix "hotspot/libjvm.so" to this path so
321  // it looks like libjvm.so is installed there
322  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
323  //
324  // Otherwise exit.
325  //
326  // Important note: if the location of libjvm.so changes this
327  // code needs to be changed accordingly.
328
329  // See ld(1):
330  //      The linker uses the following search paths to locate required
331  //      shared libraries:
332  //        1: ...
333  //        ...
334  //        7: The default directories, normally /lib and /usr/lib.
335#ifndef DEFAULT_LIBPATH
336  #define DEFAULT_LIBPATH "/lib:/usr/lib"
337#endif
338
339// Base path of extensions installed on the system.
340#define SYS_EXT_DIR     "/usr/java/packages"
341#define EXTENSIONS_DIR  "/lib/ext"
342
343#ifndef __APPLE__
344
345  // Buffer that fits several sprintfs.
346  // Note that the space for the colon and the trailing null are provided
347  // by the nulls included by the sizeof operator.
348  const size_t bufsize =
349    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
350         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
351  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
352
353  // sysclasspath, java_home, dll_dir
354  {
355    char *pslash;
356    os::jvm_path(buf, bufsize);
357
358    // Found the full path to libjvm.so.
359    // Now cut the path to <java_home>/jre if we can.
360    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
361    pslash = strrchr(buf, '/');
362    if (pslash != NULL) {
363      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
364    }
365    Arguments::set_dll_dir(buf);
366
367    if (pslash != NULL) {
368      pslash = strrchr(buf, '/');
369      if (pslash != NULL) {
370        *pslash = '\0';          // Get rid of /<arch>.
371        pslash = strrchr(buf, '/');
372        if (pslash != NULL) {
373          *pslash = '\0';        // Get rid of /lib.
374        }
375      }
376    }
377    Arguments::set_java_home(buf);
378    set_boot_path('/', ':');
379  }
380
381  // Where to look for native libraries.
382  //
383  // Note: Due to a legacy implementation, most of the library path
384  // is set in the launcher. This was to accomodate linking restrictions
385  // on legacy Bsd implementations (which are no longer supported).
386  // Eventually, all the library path setting will be done here.
387  //
388  // However, to prevent the proliferation of improperly built native
389  // libraries, the new path component /usr/java/packages is added here.
390  // Eventually, all the library path setting will be done here.
391  {
392    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
393    // should always exist (until the legacy problem cited above is
394    // addressed).
395    const char *v = ::getenv("LD_LIBRARY_PATH");
396    const char *v_colon = ":";
397    if (v == NULL) { v = ""; v_colon = ""; }
398    // That's +1 for the colon and +1 for the trailing '\0'.
399    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
400                                                     strlen(v) + 1 +
401                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
402                                                     mtInternal);
403    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
404    Arguments::set_library_path(ld_library_path);
405    FREE_C_HEAP_ARRAY(char, ld_library_path);
406  }
407
408  // Extensions directories.
409  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
410  Arguments::set_ext_dirs(buf);
411
412  FREE_C_HEAP_ARRAY(char, buf);
413
414#else // __APPLE__
415
416  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
417  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
418
419  const char *user_home_dir = get_home();
420  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
421  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
422    sizeof(SYS_EXTENSIONS_DIRS);
423
424  // Buffer that fits several sprintfs.
425  // Note that the space for the colon and the trailing null are provided
426  // by the nulls included by the sizeof operator.
427  const size_t bufsize =
428    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
429         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
430  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
431
432  // sysclasspath, java_home, dll_dir
433  {
434    char *pslash;
435    os::jvm_path(buf, bufsize);
436
437    // Found the full path to libjvm.so.
438    // Now cut the path to <java_home>/jre if we can.
439    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
440    pslash = strrchr(buf, '/');
441    if (pslash != NULL) {
442      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
443    }
444    Arguments::set_dll_dir(buf);
445
446    if (pslash != NULL) {
447      pslash = strrchr(buf, '/');
448      if (pslash != NULL) {
449        *pslash = '\0';          // Get rid of /lib.
450      }
451    }
452    Arguments::set_java_home(buf);
453    set_boot_path('/', ':');
454  }
455
456  // Where to look for native libraries.
457  //
458  // Note: Due to a legacy implementation, most of the library path
459  // is set in the launcher. This was to accomodate linking restrictions
460  // on legacy Bsd implementations (which are no longer supported).
461  // Eventually, all the library path setting will be done here.
462  //
463  // However, to prevent the proliferation of improperly built native
464  // libraries, the new path component /usr/java/packages is added here.
465  // Eventually, all the library path setting will be done here.
466  {
467    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
468    // should always exist (until the legacy problem cited above is
469    // addressed).
470    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
471    // can specify a directory inside an app wrapper
472    const char *l = ::getenv("JAVA_LIBRARY_PATH");
473    const char *l_colon = ":";
474    if (l == NULL) { l = ""; l_colon = ""; }
475
476    const char *v = ::getenv("DYLD_LIBRARY_PATH");
477    const char *v_colon = ":";
478    if (v == NULL) { v = ""; v_colon = ""; }
479
480    // Apple's Java6 has "." at the beginning of java.library.path.
481    // OpenJDK on Windows has "." at the end of java.library.path.
482    // OpenJDK on Linux and Solaris don't have "." in java.library.path
483    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
484    // "." is appended to the end of java.library.path. Yes, this
485    // could cause a change in behavior, but Apple's Java6 behavior
486    // can be achieved by putting "." at the beginning of the
487    // JAVA_LIBRARY_PATH environment variable.
488    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
489                                                     strlen(v) + 1 + strlen(l) + 1 +
490                                                     system_ext_size + 3,
491                                                     mtInternal);
492    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
493            v, v_colon, l, l_colon, user_home_dir);
494    Arguments::set_library_path(ld_library_path);
495    FREE_C_HEAP_ARRAY(char, ld_library_path);
496  }
497
498  // Extensions directories.
499  //
500  // Note that the space for the colon and the trailing null are provided
501  // by the nulls included by the sizeof operator (so actually one byte more
502  // than necessary is allocated).
503  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
504          user_home_dir, Arguments::get_java_home());
505  Arguments::set_ext_dirs(buf);
506
507  FREE_C_HEAP_ARRAY(char, buf);
508
509#undef SYS_EXTENSIONS_DIR
510#undef SYS_EXTENSIONS_DIRS
511
512#endif // __APPLE__
513
514#undef SYS_EXT_DIR
515#undef EXTENSIONS_DIR
516}
517
518////////////////////////////////////////////////////////////////////////////////
519// breakpoint support
520
521void os::breakpoint() {
522  BREAKPOINT;
523}
524
525extern "C" void breakpoint() {
526  // use debugger to set breakpoint here
527}
528
529////////////////////////////////////////////////////////////////////////////////
530// signal support
531
532debug_only(static bool signal_sets_initialized = false);
533static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
534
535bool os::Bsd::is_sig_ignored(int sig) {
536  struct sigaction oact;
537  sigaction(sig, (struct sigaction*)NULL, &oact);
538  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
539                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
540  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
541    return true;
542  } else {
543    return false;
544  }
545}
546
547void os::Bsd::signal_sets_init() {
548  // Should also have an assertion stating we are still single-threaded.
549  assert(!signal_sets_initialized, "Already initialized");
550  // Fill in signals that are necessarily unblocked for all threads in
551  // the VM. Currently, we unblock the following signals:
552  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
553  //                         by -Xrs (=ReduceSignalUsage));
554  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
555  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
556  // the dispositions or masks wrt these signals.
557  // Programs embedding the VM that want to use the above signals for their
558  // own purposes must, at this time, use the "-Xrs" option to prevent
559  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
560  // (See bug 4345157, and other related bugs).
561  // In reality, though, unblocking these signals is really a nop, since
562  // these signals are not blocked by default.
563  sigemptyset(&unblocked_sigs);
564  sigemptyset(&allowdebug_blocked_sigs);
565  sigaddset(&unblocked_sigs, SIGILL);
566  sigaddset(&unblocked_sigs, SIGSEGV);
567  sigaddset(&unblocked_sigs, SIGBUS);
568  sigaddset(&unblocked_sigs, SIGFPE);
569  sigaddset(&unblocked_sigs, SR_signum);
570
571  if (!ReduceSignalUsage) {
572    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
573      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
574      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
575    }
576    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
577      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
578      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
579    }
580    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
581      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
582      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
583    }
584  }
585  // Fill in signals that are blocked by all but the VM thread.
586  sigemptyset(&vm_sigs);
587  if (!ReduceSignalUsage) {
588    sigaddset(&vm_sigs, BREAK_SIGNAL);
589  }
590  debug_only(signal_sets_initialized = true);
591
592}
593
594// These are signals that are unblocked while a thread is running Java.
595// (For some reason, they get blocked by default.)
596sigset_t* os::Bsd::unblocked_signals() {
597  assert(signal_sets_initialized, "Not initialized");
598  return &unblocked_sigs;
599}
600
601// These are the signals that are blocked while a (non-VM) thread is
602// running Java. Only the VM thread handles these signals.
603sigset_t* os::Bsd::vm_signals() {
604  assert(signal_sets_initialized, "Not initialized");
605  return &vm_sigs;
606}
607
608// These are signals that are blocked during cond_wait to allow debugger in
609sigset_t* os::Bsd::allowdebug_blocked_signals() {
610  assert(signal_sets_initialized, "Not initialized");
611  return &allowdebug_blocked_sigs;
612}
613
614void os::Bsd::hotspot_sigmask(Thread* thread) {
615
616  //Save caller's signal mask before setting VM signal mask
617  sigset_t caller_sigmask;
618  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
619
620  OSThread* osthread = thread->osthread();
621  osthread->set_caller_sigmask(caller_sigmask);
622
623  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
624
625  if (!ReduceSignalUsage) {
626    if (thread->is_VM_thread()) {
627      // Only the VM thread handles BREAK_SIGNAL ...
628      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
629    } else {
630      // ... all other threads block BREAK_SIGNAL
631      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
632    }
633  }
634}
635
636
637//////////////////////////////////////////////////////////////////////////////
638// create new thread
639
640// check if it's safe to start a new thread
641static bool _thread_safety_check(Thread* thread) {
642  return true;
643}
644
645#ifdef __APPLE__
646// library handle for calling objc_registerThreadWithCollector()
647// without static linking to the libobjc library
648  #define OBJC_LIB "/usr/lib/libobjc.dylib"
649  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
650typedef void (*objc_registerThreadWithCollector_t)();
651extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
652objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
653#endif
654
655#ifdef __APPLE__
656static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
657  // Additional thread_id used to correlate threads in SA
658  thread_identifier_info_data_t     m_ident_info;
659  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
660
661  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
662              (thread_info_t) &m_ident_info, &count);
663
664  return m_ident_info.thread_id;
665}
666#endif
667
668// Thread start routine for all newly created threads
669static void *java_start(Thread *thread) {
670  // Try to randomize the cache line index of hot stack frames.
671  // This helps when threads of the same stack traces evict each other's
672  // cache lines. The threads can be either from the same JVM instance, or
673  // from different JVM instances. The benefit is especially true for
674  // processors with hyperthreading technology.
675  static int counter = 0;
676  int pid = os::current_process_id();
677  alloca(((pid ^ counter++) & 7) * 128);
678
679  ThreadLocalStorage::set_thread(thread);
680
681  OSThread* osthread = thread->osthread();
682  Monitor* sync = osthread->startThread_lock();
683
684  // non floating stack BsdThreads needs extra check, see above
685  if (!_thread_safety_check(thread)) {
686    // notify parent thread
687    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
688    osthread->set_state(ZOMBIE);
689    sync->notify_all();
690    return NULL;
691  }
692
693  osthread->set_thread_id(os::Bsd::gettid());
694
695#ifdef __APPLE__
696  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
697  guarantee(unique_thread_id != 0, "unique thread id was not found");
698  osthread->set_unique_thread_id(unique_thread_id);
699#endif
700  // initialize signal mask for this thread
701  os::Bsd::hotspot_sigmask(thread);
702
703  // initialize floating point control register
704  os::Bsd::init_thread_fpu_state();
705
706#ifdef __APPLE__
707  // register thread with objc gc
708  if (objc_registerThreadWithCollectorFunction != NULL) {
709    objc_registerThreadWithCollectorFunction();
710  }
711#endif
712
713  // handshaking with parent thread
714  {
715    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
716
717    // notify parent thread
718    osthread->set_state(INITIALIZED);
719    sync->notify_all();
720
721    // wait until os::start_thread()
722    while (osthread->get_state() == INITIALIZED) {
723      sync->wait(Mutex::_no_safepoint_check_flag);
724    }
725  }
726
727  // call one more level start routine
728  thread->run();
729
730  return 0;
731}
732
733bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
734  assert(thread->osthread() == NULL, "caller responsible");
735
736  // Allocate the OSThread object
737  OSThread* osthread = new OSThread(NULL, NULL);
738  if (osthread == NULL) {
739    return false;
740  }
741
742  // set the correct thread state
743  osthread->set_thread_type(thr_type);
744
745  // Initial state is ALLOCATED but not INITIALIZED
746  osthread->set_state(ALLOCATED);
747
748  thread->set_osthread(osthread);
749
750  // init thread attributes
751  pthread_attr_t attr;
752  pthread_attr_init(&attr);
753  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
754
755  // stack size
756  if (os::Bsd::supports_variable_stack_size()) {
757    // calculate stack size if it's not specified by caller
758    if (stack_size == 0) {
759      stack_size = os::Bsd::default_stack_size(thr_type);
760
761      switch (thr_type) {
762      case os::java_thread:
763        // Java threads use ThreadStackSize which default value can be
764        // changed with the flag -Xss
765        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
766        stack_size = JavaThread::stack_size_at_create();
767        break;
768      case os::compiler_thread:
769        if (CompilerThreadStackSize > 0) {
770          stack_size = (size_t)(CompilerThreadStackSize * K);
771          break;
772        } // else fall through:
773          // use VMThreadStackSize if CompilerThreadStackSize is not defined
774      case os::vm_thread:
775      case os::pgc_thread:
776      case os::cgc_thread:
777      case os::watcher_thread:
778        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
779        break;
780      }
781    }
782
783    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
784    pthread_attr_setstacksize(&attr, stack_size);
785  } else {
786    // let pthread_create() pick the default value.
787  }
788
789  ThreadState state;
790
791  {
792    pthread_t tid;
793    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
794
795    pthread_attr_destroy(&attr);
796
797    if (ret != 0) {
798      if (PrintMiscellaneous && (Verbose || WizardMode)) {
799        perror("pthread_create()");
800      }
801      // Need to clean up stuff we've allocated so far
802      thread->set_osthread(NULL);
803      delete osthread;
804      return false;
805    }
806
807    // Store pthread info into the OSThread
808    osthread->set_pthread_id(tid);
809
810    // Wait until child thread is either initialized or aborted
811    {
812      Monitor* sync_with_child = osthread->startThread_lock();
813      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
814      while ((state = osthread->get_state()) == ALLOCATED) {
815        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
816      }
817    }
818
819  }
820
821  // Aborted due to thread limit being reached
822  if (state == ZOMBIE) {
823    thread->set_osthread(NULL);
824    delete osthread;
825    return false;
826  }
827
828  // The thread is returned suspended (in state INITIALIZED),
829  // and is started higher up in the call chain
830  assert(state == INITIALIZED, "race condition");
831  return true;
832}
833
834/////////////////////////////////////////////////////////////////////////////
835// attach existing thread
836
837// bootstrap the main thread
838bool os::create_main_thread(JavaThread* thread) {
839  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
840  return create_attached_thread(thread);
841}
842
843bool os::create_attached_thread(JavaThread* thread) {
844#ifdef ASSERT
845  thread->verify_not_published();
846#endif
847
848  // Allocate the OSThread object
849  OSThread* osthread = new OSThread(NULL, NULL);
850
851  if (osthread == NULL) {
852    return false;
853  }
854
855  osthread->set_thread_id(os::Bsd::gettid());
856
857  // Store pthread info into the OSThread
858#ifdef __APPLE__
859  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
860  guarantee(unique_thread_id != 0, "just checking");
861  osthread->set_unique_thread_id(unique_thread_id);
862#endif
863  osthread->set_pthread_id(::pthread_self());
864
865  // initialize floating point control register
866  os::Bsd::init_thread_fpu_state();
867
868  // Initial thread state is RUNNABLE
869  osthread->set_state(RUNNABLE);
870
871  thread->set_osthread(osthread);
872
873  // initialize signal mask for this thread
874  // and save the caller's signal mask
875  os::Bsd::hotspot_sigmask(thread);
876
877  return true;
878}
879
880void os::pd_start_thread(Thread* thread) {
881  OSThread * osthread = thread->osthread();
882  assert(osthread->get_state() != INITIALIZED, "just checking");
883  Monitor* sync_with_child = osthread->startThread_lock();
884  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
885  sync_with_child->notify();
886}
887
888// Free Bsd resources related to the OSThread
889void os::free_thread(OSThread* osthread) {
890  assert(osthread != NULL, "osthread not set");
891
892  if (Thread::current()->osthread() == osthread) {
893    // Restore caller's signal mask
894    sigset_t sigmask = osthread->caller_sigmask();
895    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
896  }
897
898  delete osthread;
899}
900
901//////////////////////////////////////////////////////////////////////////////
902// thread local storage
903
904// Restore the thread pointer if the destructor is called. This is in case
905// someone from JNI code sets up a destructor with pthread_key_create to run
906// detachCurrentThread on thread death. Unless we restore the thread pointer we
907// will hang or crash. When detachCurrentThread is called the key will be set
908// to null and we will not be called again. If detachCurrentThread is never
909// called we could loop forever depending on the pthread implementation.
910static void restore_thread_pointer(void* p) {
911  Thread* thread = (Thread*) p;
912  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
913}
914
915int os::allocate_thread_local_storage() {
916  pthread_key_t key;
917  int rslt = pthread_key_create(&key, restore_thread_pointer);
918  assert(rslt == 0, "cannot allocate thread local storage");
919  return (int)key;
920}
921
922// Note: This is currently not used by VM, as we don't destroy TLS key
923// on VM exit.
924void os::free_thread_local_storage(int index) {
925  int rslt = pthread_key_delete((pthread_key_t)index);
926  assert(rslt == 0, "invalid index");
927}
928
929void os::thread_local_storage_at_put(int index, void* value) {
930  int rslt = pthread_setspecific((pthread_key_t)index, value);
931  assert(rslt == 0, "pthread_setspecific failed");
932}
933
934extern "C" Thread* get_thread() {
935  return ThreadLocalStorage::thread();
936}
937
938
939////////////////////////////////////////////////////////////////////////////////
940// time support
941
942// Time since start-up in seconds to a fine granularity.
943// Used by VMSelfDestructTimer and the MemProfiler.
944double os::elapsedTime() {
945
946  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
947}
948
949jlong os::elapsed_counter() {
950  return javaTimeNanos() - initial_time_count;
951}
952
953jlong os::elapsed_frequency() {
954  return NANOSECS_PER_SEC; // nanosecond resolution
955}
956
957bool os::supports_vtime() { return true; }
958bool os::enable_vtime()   { return false; }
959bool os::vtime_enabled()  { return false; }
960
961double os::elapsedVTime() {
962  // better than nothing, but not much
963  return elapsedTime();
964}
965
966jlong os::javaTimeMillis() {
967  timeval time;
968  int status = gettimeofday(&time, NULL);
969  assert(status != -1, "bsd error");
970  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
971}
972
973void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
974  timeval time;
975  int status = gettimeofday(&time, NULL);
976  assert(status != -1, "bsd error");
977  seconds = jlong(time.tv_sec);
978  nanos = jlong(time.tv_usec) * 1000;
979}
980
981#ifndef __APPLE__
982  #ifndef CLOCK_MONOTONIC
983    #define CLOCK_MONOTONIC (1)
984  #endif
985#endif
986
987#ifdef __APPLE__
988void os::Bsd::clock_init() {
989  mach_timebase_info(&_timebase_info);
990}
991#else
992void os::Bsd::clock_init() {
993  struct timespec res;
994  struct timespec tp;
995  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
996      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
997    // yes, monotonic clock is supported
998    _clock_gettime = ::clock_gettime;
999  }
1000}
1001#endif
1002
1003
1004
1005#ifdef __APPLE__
1006
1007jlong os::javaTimeNanos() {
1008  const uint64_t tm = mach_absolute_time();
1009  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1010  const uint64_t prev = Bsd::_max_abstime;
1011  if (now <= prev) {
1012    return prev;   // same or retrograde time;
1013  }
1014  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1015  assert(obsv >= prev, "invariant");   // Monotonicity
1016  // If the CAS succeeded then we're done and return "now".
1017  // If the CAS failed and the observed value "obsv" is >= now then
1018  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1019  // some other thread raced this thread and installed a new value, in which case
1020  // we could either (a) retry the entire operation, (b) retry trying to install now
1021  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1022  // we might discard a higher "now" value in deference to a slightly lower but freshly
1023  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1024  // to (a) or (b) -- and greatly reduces coherence traffic.
1025  // We might also condition (c) on the magnitude of the delta between obsv and now.
1026  // Avoiding excessive CAS operations to hot RW locations is critical.
1027  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1028  return (prev == obsv) ? now : obsv;
1029}
1030
1031#else // __APPLE__
1032
1033jlong os::javaTimeNanos() {
1034  if (os::supports_monotonic_clock()) {
1035    struct timespec tp;
1036    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1037    assert(status == 0, "gettime error");
1038    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1039    return result;
1040  } else {
1041    timeval time;
1042    int status = gettimeofday(&time, NULL);
1043    assert(status != -1, "bsd error");
1044    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1045    return 1000 * usecs;
1046  }
1047}
1048
1049#endif // __APPLE__
1050
1051void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1052  if (os::supports_monotonic_clock()) {
1053    info_ptr->max_value = ALL_64_BITS;
1054
1055    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1056    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1057    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1058  } else {
1059    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1060    info_ptr->max_value = ALL_64_BITS;
1061
1062    // gettimeofday is a real time clock so it skips
1063    info_ptr->may_skip_backward = true;
1064    info_ptr->may_skip_forward = true;
1065  }
1066
1067  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1068}
1069
1070// Return the real, user, and system times in seconds from an
1071// arbitrary fixed point in the past.
1072bool os::getTimesSecs(double* process_real_time,
1073                      double* process_user_time,
1074                      double* process_system_time) {
1075  struct tms ticks;
1076  clock_t real_ticks = times(&ticks);
1077
1078  if (real_ticks == (clock_t) (-1)) {
1079    return false;
1080  } else {
1081    double ticks_per_second = (double) clock_tics_per_sec;
1082    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1083    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1084    *process_real_time = ((double) real_ticks) / ticks_per_second;
1085
1086    return true;
1087  }
1088}
1089
1090
1091char * os::local_time_string(char *buf, size_t buflen) {
1092  struct tm t;
1093  time_t long_time;
1094  time(&long_time);
1095  localtime_r(&long_time, &t);
1096  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1097               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1098               t.tm_hour, t.tm_min, t.tm_sec);
1099  return buf;
1100}
1101
1102struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1103  return localtime_r(clock, res);
1104}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// runtime exit support
1108
1109// Note: os::shutdown() might be called very early during initialization, or
1110// called from signal handler. Before adding something to os::shutdown(), make
1111// sure it is async-safe and can handle partially initialized VM.
1112void os::shutdown() {
1113
1114  // allow PerfMemory to attempt cleanup of any persistent resources
1115  perfMemory_exit();
1116
1117  // needs to remove object in file system
1118  AttachListener::abort();
1119
1120  // flush buffered output, finish log files
1121  ostream_abort();
1122
1123  // Check for abort hook
1124  abort_hook_t abort_hook = Arguments::abort_hook();
1125  if (abort_hook != NULL) {
1126    abort_hook();
1127  }
1128
1129}
1130
1131// Note: os::abort() might be called very early during initialization, or
1132// called from signal handler. Before adding something to os::abort(), make
1133// sure it is async-safe and can handle partially initialized VM.
1134void os::abort(bool dump_core) {
1135  abort(dump_core, NULL, NULL);
1136}
1137
1138void os::abort(bool dump_core, void* siginfo, void* context) {
1139  os::shutdown();
1140  if (dump_core) {
1141#ifndef PRODUCT
1142    fdStream out(defaultStream::output_fd());
1143    out.print_raw("Current thread is ");
1144    char buf[16];
1145    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1146    out.print_raw_cr(buf);
1147    out.print_raw_cr("Dumping core ...");
1148#endif
1149    ::abort(); // dump core
1150  }
1151
1152  ::exit(1);
1153}
1154
1155// Die immediately, no exit hook, no abort hook, no cleanup.
1156void os::die() {
1157  // _exit() on BsdThreads only kills current thread
1158  ::abort();
1159}
1160
1161// This method is a copy of JDK's sysGetLastErrorString
1162// from src/solaris/hpi/src/system_md.c
1163
1164size_t os::lasterror(char *buf, size_t len) {
1165  if (errno == 0)  return 0;
1166
1167  const char *s = ::strerror(errno);
1168  size_t n = ::strlen(s);
1169  if (n >= len) {
1170    n = len - 1;
1171  }
1172  ::strncpy(buf, s, n);
1173  buf[n] = '\0';
1174  return n;
1175}
1176
1177// Information of current thread in variety of formats
1178pid_t os::Bsd::gettid() {
1179  int retval = -1;
1180
1181#ifdef __APPLE__ //XNU kernel
1182  // despite the fact mach port is actually not a thread id use it
1183  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1184  retval = ::pthread_mach_thread_np(::pthread_self());
1185  guarantee(retval != 0, "just checking");
1186  return retval;
1187
1188#elif __FreeBSD__
1189  retval = syscall(SYS_thr_self);
1190#elif __OpenBSD__
1191  retval = syscall(SYS_getthrid);
1192#elif __NetBSD__
1193  retval = (pid_t) syscall(SYS__lwp_self);
1194#endif
1195
1196  if (retval == -1) {
1197    return getpid();
1198  }
1199}
1200
1201intx os::current_thread_id() {
1202#ifdef __APPLE__
1203  return (intx)::pthread_mach_thread_np(::pthread_self());
1204#else
1205  return (intx)::pthread_self();
1206#endif
1207}
1208
1209int os::current_process_id() {
1210
1211  // Under the old bsd thread library, bsd gives each thread
1212  // its own process id. Because of this each thread will return
1213  // a different pid if this method were to return the result
1214  // of getpid(2). Bsd provides no api that returns the pid
1215  // of the launcher thread for the vm. This implementation
1216  // returns a unique pid, the pid of the launcher thread
1217  // that starts the vm 'process'.
1218
1219  // Under the NPTL, getpid() returns the same pid as the
1220  // launcher thread rather than a unique pid per thread.
1221  // Use gettid() if you want the old pre NPTL behaviour.
1222
1223  // if you are looking for the result of a call to getpid() that
1224  // returns a unique pid for the calling thread, then look at the
1225  // OSThread::thread_id() method in osThread_bsd.hpp file
1226
1227  return (int)(_initial_pid ? _initial_pid : getpid());
1228}
1229
1230// DLL functions
1231
1232#define JNI_LIB_PREFIX "lib"
1233#ifdef __APPLE__
1234  #define JNI_LIB_SUFFIX ".dylib"
1235#else
1236  #define JNI_LIB_SUFFIX ".so"
1237#endif
1238
1239const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1240
1241// This must be hard coded because it's the system's temporary
1242// directory not the java application's temp directory, ala java.io.tmpdir.
1243#ifdef __APPLE__
1244// macosx has a secure per-user temporary directory
1245char temp_path_storage[PATH_MAX];
1246const char* os::get_temp_directory() {
1247  static char *temp_path = NULL;
1248  if (temp_path == NULL) {
1249    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1250    if (pathSize == 0 || pathSize > PATH_MAX) {
1251      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1252    }
1253    temp_path = temp_path_storage;
1254  }
1255  return temp_path;
1256}
1257#else // __APPLE__
1258const char* os::get_temp_directory() { return "/tmp"; }
1259#endif // __APPLE__
1260
1261static bool file_exists(const char* filename) {
1262  struct stat statbuf;
1263  if (filename == NULL || strlen(filename) == 0) {
1264    return false;
1265  }
1266  return os::stat(filename, &statbuf) == 0;
1267}
1268
1269bool os::dll_build_name(char* buffer, size_t buflen,
1270                        const char* pname, const char* fname) {
1271  bool retval = false;
1272  // Copied from libhpi
1273  const size_t pnamelen = pname ? strlen(pname) : 0;
1274
1275  // Return error on buffer overflow.
1276  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1277    return retval;
1278  }
1279
1280  if (pnamelen == 0) {
1281    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1282    retval = true;
1283  } else if (strchr(pname, *os::path_separator()) != NULL) {
1284    int n;
1285    char** pelements = split_path(pname, &n);
1286    if (pelements == NULL) {
1287      return false;
1288    }
1289    for (int i = 0; i < n; i++) {
1290      // Really shouldn't be NULL, but check can't hurt
1291      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1292        continue; // skip the empty path values
1293      }
1294      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1295               pelements[i], fname);
1296      if (file_exists(buffer)) {
1297        retval = true;
1298        break;
1299      }
1300    }
1301    // release the storage
1302    for (int i = 0; i < n; i++) {
1303      if (pelements[i] != NULL) {
1304        FREE_C_HEAP_ARRAY(char, pelements[i]);
1305      }
1306    }
1307    if (pelements != NULL) {
1308      FREE_C_HEAP_ARRAY(char*, pelements);
1309    }
1310  } else {
1311    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1312    retval = true;
1313  }
1314  return retval;
1315}
1316
1317// check if addr is inside libjvm.so
1318bool os::address_is_in_vm(address addr) {
1319  static address libjvm_base_addr;
1320  Dl_info dlinfo;
1321
1322  if (libjvm_base_addr == NULL) {
1323    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1324      libjvm_base_addr = (address)dlinfo.dli_fbase;
1325    }
1326    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1327  }
1328
1329  if (dladdr((void *)addr, &dlinfo) != 0) {
1330    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1331  }
1332
1333  return false;
1334}
1335
1336
1337#define MACH_MAXSYMLEN 256
1338
1339bool os::dll_address_to_function_name(address addr, char *buf,
1340                                      int buflen, int *offset) {
1341  // buf is not optional, but offset is optional
1342  assert(buf != NULL, "sanity check");
1343
1344  Dl_info dlinfo;
1345  char localbuf[MACH_MAXSYMLEN];
1346
1347  if (dladdr((void*)addr, &dlinfo) != 0) {
1348    // see if we have a matching symbol
1349    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1350      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1351        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1352      }
1353      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1354      return true;
1355    }
1356    // no matching symbol so try for just file info
1357    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1358      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1359                          buf, buflen, offset, dlinfo.dli_fname)) {
1360        return true;
1361      }
1362    }
1363
1364    // Handle non-dynamic manually:
1365    if (dlinfo.dli_fbase != NULL &&
1366        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1367      if (!Decoder::demangle(localbuf, buf, buflen)) {
1368        jio_snprintf(buf, buflen, "%s", localbuf);
1369      }
1370      return true;
1371    }
1372  }
1373  buf[0] = '\0';
1374  if (offset != NULL) *offset = -1;
1375  return false;
1376}
1377
1378// ported from solaris version
1379bool os::dll_address_to_library_name(address addr, char* buf,
1380                                     int buflen, int* offset) {
1381  // buf is not optional, but offset is optional
1382  assert(buf != NULL, "sanity check");
1383
1384  Dl_info dlinfo;
1385
1386  if (dladdr((void*)addr, &dlinfo) != 0) {
1387    if (dlinfo.dli_fname != NULL) {
1388      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1389    }
1390    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1391      *offset = addr - (address)dlinfo.dli_fbase;
1392    }
1393    return true;
1394  }
1395
1396  buf[0] = '\0';
1397  if (offset) *offset = -1;
1398  return false;
1399}
1400
1401// Loads .dll/.so and
1402// in case of error it checks if .dll/.so was built for the
1403// same architecture as Hotspot is running on
1404
1405#ifdef __APPLE__
1406void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1407  void * result= ::dlopen(filename, RTLD_LAZY);
1408  if (result != NULL) {
1409    // Successful loading
1410    return result;
1411  }
1412
1413  // Read system error message into ebuf
1414  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1415  ebuf[ebuflen-1]='\0';
1416
1417  return NULL;
1418}
1419#else
1420void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1421  void * result= ::dlopen(filename, RTLD_LAZY);
1422  if (result != NULL) {
1423    // Successful loading
1424    return result;
1425  }
1426
1427  Elf32_Ehdr elf_head;
1428
1429  // Read system error message into ebuf
1430  // It may or may not be overwritten below
1431  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1432  ebuf[ebuflen-1]='\0';
1433  int diag_msg_max_length=ebuflen-strlen(ebuf);
1434  char* diag_msg_buf=ebuf+strlen(ebuf);
1435
1436  if (diag_msg_max_length==0) {
1437    // No more space in ebuf for additional diagnostics message
1438    return NULL;
1439  }
1440
1441
1442  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1443
1444  if (file_descriptor < 0) {
1445    // Can't open library, report dlerror() message
1446    return NULL;
1447  }
1448
1449  bool failed_to_read_elf_head=
1450    (sizeof(elf_head)!=
1451     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1452
1453  ::close(file_descriptor);
1454  if (failed_to_read_elf_head) {
1455    // file i/o error - report dlerror() msg
1456    return NULL;
1457  }
1458
1459  typedef struct {
1460    Elf32_Half  code;         // Actual value as defined in elf.h
1461    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1462    char        elf_class;    // 32 or 64 bit
1463    char        endianess;    // MSB or LSB
1464    char*       name;         // String representation
1465  } arch_t;
1466
1467  #ifndef EM_486
1468    #define EM_486          6               /* Intel 80486 */
1469  #endif
1470
1471  #ifndef EM_MIPS_RS3_LE
1472    #define EM_MIPS_RS3_LE  10              /* MIPS */
1473  #endif
1474
1475  #ifndef EM_PPC64
1476    #define EM_PPC64        21              /* PowerPC64 */
1477  #endif
1478
1479  #ifndef EM_S390
1480    #define EM_S390         22              /* IBM System/390 */
1481  #endif
1482
1483  #ifndef EM_IA_64
1484    #define EM_IA_64        50              /* HP/Intel IA-64 */
1485  #endif
1486
1487  #ifndef EM_X86_64
1488    #define EM_X86_64       62              /* AMD x86-64 */
1489  #endif
1490
1491  static const arch_t arch_array[]={
1492    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1493    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1494    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1495    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1496    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1497    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1498    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1499    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1500    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1501    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1502    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1503    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1504    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1505    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1506    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1507    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1508  };
1509
1510  #if  (defined IA32)
1511  static  Elf32_Half running_arch_code=EM_386;
1512  #elif   (defined AMD64)
1513  static  Elf32_Half running_arch_code=EM_X86_64;
1514  #elif  (defined IA64)
1515  static  Elf32_Half running_arch_code=EM_IA_64;
1516  #elif  (defined __sparc) && (defined _LP64)
1517  static  Elf32_Half running_arch_code=EM_SPARCV9;
1518  #elif  (defined __sparc) && (!defined _LP64)
1519  static  Elf32_Half running_arch_code=EM_SPARC;
1520  #elif  (defined __powerpc64__)
1521  static  Elf32_Half running_arch_code=EM_PPC64;
1522  #elif  (defined __powerpc__)
1523  static  Elf32_Half running_arch_code=EM_PPC;
1524  #elif  (defined ARM)
1525  static  Elf32_Half running_arch_code=EM_ARM;
1526  #elif  (defined S390)
1527  static  Elf32_Half running_arch_code=EM_S390;
1528  #elif  (defined ALPHA)
1529  static  Elf32_Half running_arch_code=EM_ALPHA;
1530  #elif  (defined MIPSEL)
1531  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1532  #elif  (defined PARISC)
1533  static  Elf32_Half running_arch_code=EM_PARISC;
1534  #elif  (defined MIPS)
1535  static  Elf32_Half running_arch_code=EM_MIPS;
1536  #elif  (defined M68K)
1537  static  Elf32_Half running_arch_code=EM_68K;
1538  #else
1539    #error Method os::dll_load requires that one of following is defined:\
1540         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1541  #endif
1542
1543  // Identify compatability class for VM's architecture and library's architecture
1544  // Obtain string descriptions for architectures
1545
1546  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1547  int running_arch_index=-1;
1548
1549  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1550    if (running_arch_code == arch_array[i].code) {
1551      running_arch_index    = i;
1552    }
1553    if (lib_arch.code == arch_array[i].code) {
1554      lib_arch.compat_class = arch_array[i].compat_class;
1555      lib_arch.name         = arch_array[i].name;
1556    }
1557  }
1558
1559  assert(running_arch_index != -1,
1560         "Didn't find running architecture code (running_arch_code) in arch_array");
1561  if (running_arch_index == -1) {
1562    // Even though running architecture detection failed
1563    // we may still continue with reporting dlerror() message
1564    return NULL;
1565  }
1566
1567  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1568    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1569    return NULL;
1570  }
1571
1572#ifndef S390
1573  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1574    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1575    return NULL;
1576  }
1577#endif // !S390
1578
1579  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1580    if (lib_arch.name!=NULL) {
1581      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1582                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1583                 lib_arch.name, arch_array[running_arch_index].name);
1584    } else {
1585      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1586                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1587                 lib_arch.code,
1588                 arch_array[running_arch_index].name);
1589    }
1590  }
1591
1592  return NULL;
1593}
1594#endif // !__APPLE__
1595
1596void* os::get_default_process_handle() {
1597#ifdef __APPLE__
1598  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1599  // to avoid finding unexpected symbols on second (or later)
1600  // loads of a library.
1601  return (void*)::dlopen(NULL, RTLD_FIRST);
1602#else
1603  return (void*)::dlopen(NULL, RTLD_LAZY);
1604#endif
1605}
1606
1607// XXX: Do we need a lock around this as per Linux?
1608void* os::dll_lookup(void* handle, const char* name) {
1609  return dlsym(handle, name);
1610}
1611
1612
1613static bool _print_ascii_file(const char* filename, outputStream* st) {
1614  int fd = ::open(filename, O_RDONLY);
1615  if (fd == -1) {
1616    return false;
1617  }
1618
1619  char buf[32];
1620  int bytes;
1621  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1622    st->print_raw(buf, bytes);
1623  }
1624
1625  ::close(fd);
1626
1627  return true;
1628}
1629
1630int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1631  outputStream * out = (outputStream *) param;
1632  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1633  return 0;
1634}
1635
1636void os::print_dll_info(outputStream *st) {
1637  st->print_cr("Dynamic libraries:");
1638  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1639    st->print_cr("Error: Cannot print dynamic libraries.");
1640  }
1641}
1642
1643int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1644#ifdef RTLD_DI_LINKMAP
1645  Dl_info dli;
1646  void *handle;
1647  Link_map *map;
1648  Link_map *p;
1649
1650  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1651      dli.dli_fname == NULL) {
1652    return 1;
1653  }
1654  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1655  if (handle == NULL) {
1656    return 1;
1657  }
1658  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1659  if (map == NULL) {
1660    dlclose(handle);
1661    return 1;
1662  }
1663
1664  while (map->l_prev != NULL)
1665    map = map->l_prev;
1666
1667  while (map != NULL) {
1668    // Value for top_address is returned as 0 since we don't have any information about module size
1669    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1670      dlclose(handle);
1671      return 1;
1672    }
1673    map = map->l_next;
1674  }
1675
1676  dlclose(handle);
1677#elif defined(__APPLE__)
1678  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1679    // Value for top_address is returned as 0 since we don't have any information about module size
1680    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1681      return 1;
1682    }
1683  }
1684  return 0;
1685#else
1686  return 1;
1687#endif
1688}
1689
1690void os::print_os_info_brief(outputStream* st) {
1691  st->print("Bsd");
1692
1693  os::Posix::print_uname_info(st);
1694}
1695
1696void os::print_os_info(outputStream* st) {
1697  st->print("OS:");
1698  st->print("Bsd");
1699
1700  os::Posix::print_uname_info(st);
1701
1702  os::Posix::print_rlimit_info(st);
1703
1704  os::Posix::print_load_average(st);
1705}
1706
1707void os::pd_print_cpu_info(outputStream* st) {
1708  // Nothing to do for now.
1709}
1710
1711void os::print_memory_info(outputStream* st) {
1712
1713  st->print("Memory:");
1714  st->print(" %dk page", os::vm_page_size()>>10);
1715
1716  st->print(", physical " UINT64_FORMAT "k",
1717            os::physical_memory() >> 10);
1718  st->print("(" UINT64_FORMAT "k free)",
1719            os::available_memory() >> 10);
1720  st->cr();
1721
1722  // meminfo
1723  st->print("\n/proc/meminfo:\n");
1724  _print_ascii_file("/proc/meminfo", st);
1725  st->cr();
1726}
1727
1728void os::print_siginfo(outputStream* st, void* siginfo) {
1729  const siginfo_t* si = (const siginfo_t*)siginfo;
1730
1731  os::Posix::print_siginfo_brief(st, si);
1732
1733  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1734      UseSharedSpaces) {
1735    FileMapInfo* mapinfo = FileMapInfo::current_info();
1736    if (mapinfo->is_in_shared_space(si->si_addr)) {
1737      st->print("\n\nError accessing class data sharing archive."   \
1738                " Mapped file inaccessible during execution, "      \
1739                " possible disk/network problem.");
1740    }
1741  }
1742  st->cr();
1743}
1744
1745
1746static void print_signal_handler(outputStream* st, int sig,
1747                                 char* buf, size_t buflen);
1748
1749void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1750  st->print_cr("Signal Handlers:");
1751  print_signal_handler(st, SIGSEGV, buf, buflen);
1752  print_signal_handler(st, SIGBUS , buf, buflen);
1753  print_signal_handler(st, SIGFPE , buf, buflen);
1754  print_signal_handler(st, SIGPIPE, buf, buflen);
1755  print_signal_handler(st, SIGXFSZ, buf, buflen);
1756  print_signal_handler(st, SIGILL , buf, buflen);
1757  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1758  print_signal_handler(st, SR_signum, buf, buflen);
1759  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1760  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1761  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1762  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1763}
1764
1765static char saved_jvm_path[MAXPATHLEN] = {0};
1766
1767// Find the full path to the current module, libjvm
1768void os::jvm_path(char *buf, jint buflen) {
1769  // Error checking.
1770  if (buflen < MAXPATHLEN) {
1771    assert(false, "must use a large-enough buffer");
1772    buf[0] = '\0';
1773    return;
1774  }
1775  // Lazy resolve the path to current module.
1776  if (saved_jvm_path[0] != 0) {
1777    strcpy(buf, saved_jvm_path);
1778    return;
1779  }
1780
1781  char dli_fname[MAXPATHLEN];
1782  bool ret = dll_address_to_library_name(
1783                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1784                                         dli_fname, sizeof(dli_fname), NULL);
1785  assert(ret, "cannot locate libjvm");
1786  char *rp = NULL;
1787  if (ret && dli_fname[0] != '\0') {
1788    rp = realpath(dli_fname, buf);
1789  }
1790  if (rp == NULL) {
1791    return;
1792  }
1793
1794  if (Arguments::sun_java_launcher_is_altjvm()) {
1795    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1796    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1797    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1798    // appears at the right place in the string, then assume we are
1799    // installed in a JDK and we're done. Otherwise, check for a
1800    // JAVA_HOME environment variable and construct a path to the JVM
1801    // being overridden.
1802
1803    const char *p = buf + strlen(buf) - 1;
1804    for (int count = 0; p > buf && count < 5; ++count) {
1805      for (--p; p > buf && *p != '/'; --p)
1806        /* empty */ ;
1807    }
1808
1809    if (strncmp(p, "/jre/lib/", 9) != 0) {
1810      // Look for JAVA_HOME in the environment.
1811      char* java_home_var = ::getenv("JAVA_HOME");
1812      if (java_home_var != NULL && java_home_var[0] != 0) {
1813        char* jrelib_p;
1814        int len;
1815
1816        // Check the current module name "libjvm"
1817        p = strrchr(buf, '/');
1818        assert(strstr(p, "/libjvm") == p, "invalid library name");
1819
1820        rp = realpath(java_home_var, buf);
1821        if (rp == NULL) {
1822          return;
1823        }
1824
1825        // determine if this is a legacy image or modules image
1826        // modules image doesn't have "jre" subdirectory
1827        len = strlen(buf);
1828        assert(len < buflen, "Ran out of buffer space");
1829        jrelib_p = buf + len;
1830
1831        // Add the appropriate library subdir
1832        snprintf(jrelib_p, buflen-len, "/jre/lib");
1833        if (0 != access(buf, F_OK)) {
1834          snprintf(jrelib_p, buflen-len, "/lib");
1835        }
1836
1837        // Add the appropriate client or server subdir
1838        len = strlen(buf);
1839        jrelib_p = buf + len;
1840        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1841        if (0 != access(buf, F_OK)) {
1842          snprintf(jrelib_p, buflen-len, "%s", "");
1843        }
1844
1845        // If the path exists within JAVA_HOME, add the JVM library name
1846        // to complete the path to JVM being overridden.  Otherwise fallback
1847        // to the path to the current library.
1848        if (0 == access(buf, F_OK)) {
1849          // Use current module name "libjvm"
1850          len = strlen(buf);
1851          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1852        } else {
1853          // Fall back to path of current library
1854          rp = realpath(dli_fname, buf);
1855          if (rp == NULL) {
1856            return;
1857          }
1858        }
1859      }
1860    }
1861  }
1862
1863  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1864  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1865}
1866
1867void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1868  // no prefix required, not even "_"
1869}
1870
1871void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1872  // no suffix required
1873}
1874
1875////////////////////////////////////////////////////////////////////////////////
1876// sun.misc.Signal support
1877
1878static volatile jint sigint_count = 0;
1879
1880static void UserHandler(int sig, void *siginfo, void *context) {
1881  // 4511530 - sem_post is serialized and handled by the manager thread. When
1882  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1883  // don't want to flood the manager thread with sem_post requests.
1884  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1885    return;
1886  }
1887
1888  // Ctrl-C is pressed during error reporting, likely because the error
1889  // handler fails to abort. Let VM die immediately.
1890  if (sig == SIGINT && is_error_reported()) {
1891    os::die();
1892  }
1893
1894  os::signal_notify(sig);
1895}
1896
1897void* os::user_handler() {
1898  return CAST_FROM_FN_PTR(void*, UserHandler);
1899}
1900
1901extern "C" {
1902  typedef void (*sa_handler_t)(int);
1903  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1904}
1905
1906void* os::signal(int signal_number, void* handler) {
1907  struct sigaction sigAct, oldSigAct;
1908
1909  sigfillset(&(sigAct.sa_mask));
1910  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1911  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1912
1913  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1914    // -1 means registration failed
1915    return (void *)-1;
1916  }
1917
1918  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1919}
1920
1921void os::signal_raise(int signal_number) {
1922  ::raise(signal_number);
1923}
1924
1925// The following code is moved from os.cpp for making this
1926// code platform specific, which it is by its very nature.
1927
1928// Will be modified when max signal is changed to be dynamic
1929int os::sigexitnum_pd() {
1930  return NSIG;
1931}
1932
1933// a counter for each possible signal value
1934static volatile jint pending_signals[NSIG+1] = { 0 };
1935
1936// Bsd(POSIX) specific hand shaking semaphore.
1937#ifdef __APPLE__
1938typedef semaphore_t os_semaphore_t;
1939
1940  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1941  #define SEM_WAIT(sem)           semaphore_wait(sem)
1942  #define SEM_POST(sem)           semaphore_signal(sem)
1943  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1944#else
1945typedef sem_t os_semaphore_t;
1946
1947  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1948  #define SEM_WAIT(sem)           sem_wait(&sem)
1949  #define SEM_POST(sem)           sem_post(&sem)
1950  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1951#endif
1952
1953class Semaphore : public StackObj {
1954 public:
1955  Semaphore();
1956  ~Semaphore();
1957  void signal();
1958  void wait();
1959  bool trywait();
1960  bool timedwait(unsigned int sec, int nsec);
1961 private:
1962  jlong currenttime() const;
1963  os_semaphore_t _semaphore;
1964};
1965
1966Semaphore::Semaphore() : _semaphore(0) {
1967  SEM_INIT(_semaphore, 0);
1968}
1969
1970Semaphore::~Semaphore() {
1971  SEM_DESTROY(_semaphore);
1972}
1973
1974void Semaphore::signal() {
1975  SEM_POST(_semaphore);
1976}
1977
1978void Semaphore::wait() {
1979  SEM_WAIT(_semaphore);
1980}
1981
1982jlong Semaphore::currenttime() const {
1983  struct timeval tv;
1984  gettimeofday(&tv, NULL);
1985  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1986}
1987
1988#ifdef __APPLE__
1989bool Semaphore::trywait() {
1990  return timedwait(0, 0);
1991}
1992
1993bool Semaphore::timedwait(unsigned int sec, int nsec) {
1994  kern_return_t kr = KERN_ABORTED;
1995  mach_timespec_t waitspec;
1996  waitspec.tv_sec = sec;
1997  waitspec.tv_nsec = nsec;
1998
1999  jlong starttime = currenttime();
2000
2001  kr = semaphore_timedwait(_semaphore, waitspec);
2002  while (kr == KERN_ABORTED) {
2003    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2004
2005    jlong current = currenttime();
2006    jlong passedtime = current - starttime;
2007
2008    if (passedtime >= totalwait) {
2009      waitspec.tv_sec = 0;
2010      waitspec.tv_nsec = 0;
2011    } else {
2012      jlong waittime = totalwait - (current - starttime);
2013      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2014      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2015    }
2016
2017    kr = semaphore_timedwait(_semaphore, waitspec);
2018  }
2019
2020  return kr == KERN_SUCCESS;
2021}
2022
2023#else
2024
2025bool Semaphore::trywait() {
2026  return sem_trywait(&_semaphore) == 0;
2027}
2028
2029bool Semaphore::timedwait(unsigned int sec, int nsec) {
2030  struct timespec ts;
2031  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2032
2033  while (1) {
2034    int result = sem_timedwait(&_semaphore, &ts);
2035    if (result == 0) {
2036      return true;
2037    } else if (errno == EINTR) {
2038      continue;
2039    } else if (errno == ETIMEDOUT) {
2040      return false;
2041    } else {
2042      return false;
2043    }
2044  }
2045}
2046
2047#endif // __APPLE__
2048
2049static os_semaphore_t sig_sem;
2050static Semaphore sr_semaphore;
2051
2052void os::signal_init_pd() {
2053  // Initialize signal structures
2054  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2055
2056  // Initialize signal semaphore
2057  ::SEM_INIT(sig_sem, 0);
2058}
2059
2060void os::signal_notify(int sig) {
2061  Atomic::inc(&pending_signals[sig]);
2062  ::SEM_POST(sig_sem);
2063}
2064
2065static int check_pending_signals(bool wait) {
2066  Atomic::store(0, &sigint_count);
2067  for (;;) {
2068    for (int i = 0; i < NSIG + 1; i++) {
2069      jint n = pending_signals[i];
2070      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2071        return i;
2072      }
2073    }
2074    if (!wait) {
2075      return -1;
2076    }
2077    JavaThread *thread = JavaThread::current();
2078    ThreadBlockInVM tbivm(thread);
2079
2080    bool threadIsSuspended;
2081    do {
2082      thread->set_suspend_equivalent();
2083      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2084      ::SEM_WAIT(sig_sem);
2085
2086      // were we externally suspended while we were waiting?
2087      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2088      if (threadIsSuspended) {
2089        // The semaphore has been incremented, but while we were waiting
2090        // another thread suspended us. We don't want to continue running
2091        // while suspended because that would surprise the thread that
2092        // suspended us.
2093        ::SEM_POST(sig_sem);
2094
2095        thread->java_suspend_self();
2096      }
2097    } while (threadIsSuspended);
2098  }
2099}
2100
2101int os::signal_lookup() {
2102  return check_pending_signals(false);
2103}
2104
2105int os::signal_wait() {
2106  return check_pending_signals(true);
2107}
2108
2109////////////////////////////////////////////////////////////////////////////////
2110// Virtual Memory
2111
2112int os::vm_page_size() {
2113  // Seems redundant as all get out
2114  assert(os::Bsd::page_size() != -1, "must call os::init");
2115  return os::Bsd::page_size();
2116}
2117
2118// Solaris allocates memory by pages.
2119int os::vm_allocation_granularity() {
2120  assert(os::Bsd::page_size() != -1, "must call os::init");
2121  return os::Bsd::page_size();
2122}
2123
2124// Rationale behind this function:
2125//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2126//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2127//  samples for JITted code. Here we create private executable mapping over the code cache
2128//  and then we can use standard (well, almost, as mapping can change) way to provide
2129//  info for the reporting script by storing timestamp and location of symbol
2130void bsd_wrap_code(char* base, size_t size) {
2131  static volatile jint cnt = 0;
2132
2133  if (!UseOprofile) {
2134    return;
2135  }
2136
2137  char buf[PATH_MAX + 1];
2138  int num = Atomic::add(1, &cnt);
2139
2140  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2141           os::get_temp_directory(), os::current_process_id(), num);
2142  unlink(buf);
2143
2144  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2145
2146  if (fd != -1) {
2147    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2148    if (rv != (off_t)-1) {
2149      if (::write(fd, "", 1) == 1) {
2150        mmap(base, size,
2151             PROT_READ|PROT_WRITE|PROT_EXEC,
2152             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2153      }
2154    }
2155    ::close(fd);
2156    unlink(buf);
2157  }
2158}
2159
2160static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2161                                    int err) {
2162  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2163          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2164          strerror(err), err);
2165}
2166
2167// NOTE: Bsd kernel does not really reserve the pages for us.
2168//       All it does is to check if there are enough free pages
2169//       left at the time of mmap(). This could be a potential
2170//       problem.
2171bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2172  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2173#ifdef __OpenBSD__
2174  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2175  if (::mprotect(addr, size, prot) == 0) {
2176    return true;
2177  }
2178#else
2179  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2180                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2181  if (res != (uintptr_t) MAP_FAILED) {
2182    return true;
2183  }
2184#endif
2185
2186  // Warn about any commit errors we see in non-product builds just
2187  // in case mmap() doesn't work as described on the man page.
2188  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2189
2190  return false;
2191}
2192
2193bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2194                          bool exec) {
2195  // alignment_hint is ignored on this OS
2196  return pd_commit_memory(addr, size, exec);
2197}
2198
2199void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2200                                  const char* mesg) {
2201  assert(mesg != NULL, "mesg must be specified");
2202  if (!pd_commit_memory(addr, size, exec)) {
2203    // add extra info in product mode for vm_exit_out_of_memory():
2204    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2205    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2206  }
2207}
2208
2209void os::pd_commit_memory_or_exit(char* addr, size_t size,
2210                                  size_t alignment_hint, bool exec,
2211                                  const char* mesg) {
2212  // alignment_hint is ignored on this OS
2213  pd_commit_memory_or_exit(addr, size, exec, mesg);
2214}
2215
2216void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2217}
2218
2219void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2220  ::madvise(addr, bytes, MADV_DONTNEED);
2221}
2222
2223void os::numa_make_global(char *addr, size_t bytes) {
2224}
2225
2226void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2227}
2228
2229bool os::numa_topology_changed()   { return false; }
2230
2231size_t os::numa_get_groups_num() {
2232  return 1;
2233}
2234
2235int os::numa_get_group_id() {
2236  return 0;
2237}
2238
2239size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2240  if (size > 0) {
2241    ids[0] = 0;
2242    return 1;
2243  }
2244  return 0;
2245}
2246
2247bool os::get_page_info(char *start, page_info* info) {
2248  return false;
2249}
2250
2251char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2252  return end;
2253}
2254
2255
2256bool os::pd_uncommit_memory(char* addr, size_t size) {
2257#ifdef __OpenBSD__
2258  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2259  return ::mprotect(addr, size, PROT_NONE) == 0;
2260#else
2261  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2262                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2263  return res  != (uintptr_t) MAP_FAILED;
2264#endif
2265}
2266
2267bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2268  return os::commit_memory(addr, size, !ExecMem);
2269}
2270
2271// If this is a growable mapping, remove the guard pages entirely by
2272// munmap()ping them.  If not, just call uncommit_memory().
2273bool os::remove_stack_guard_pages(char* addr, size_t size) {
2274  return os::uncommit_memory(addr, size);
2275}
2276
2277static address _highest_vm_reserved_address = NULL;
2278
2279// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2280// at 'requested_addr'. If there are existing memory mappings at the same
2281// location, however, they will be overwritten. If 'fixed' is false,
2282// 'requested_addr' is only treated as a hint, the return value may or
2283// may not start from the requested address. Unlike Bsd mmap(), this
2284// function returns NULL to indicate failure.
2285static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2286  char * addr;
2287  int flags;
2288
2289  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2290  if (fixed) {
2291    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2292    flags |= MAP_FIXED;
2293  }
2294
2295  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2296  // touch an uncommitted page. Otherwise, the read/write might
2297  // succeed if we have enough swap space to back the physical page.
2298  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2299                       flags, -1, 0);
2300
2301  if (addr != MAP_FAILED) {
2302    // anon_mmap() should only get called during VM initialization,
2303    // don't need lock (actually we can skip locking even it can be called
2304    // from multiple threads, because _highest_vm_reserved_address is just a
2305    // hint about the upper limit of non-stack memory regions.)
2306    if ((address)addr + bytes > _highest_vm_reserved_address) {
2307      _highest_vm_reserved_address = (address)addr + bytes;
2308    }
2309  }
2310
2311  return addr == MAP_FAILED ? NULL : addr;
2312}
2313
2314// Don't update _highest_vm_reserved_address, because there might be memory
2315// regions above addr + size. If so, releasing a memory region only creates
2316// a hole in the address space, it doesn't help prevent heap-stack collision.
2317//
2318static int anon_munmap(char * addr, size_t size) {
2319  return ::munmap(addr, size) == 0;
2320}
2321
2322char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2323                            size_t alignment_hint) {
2324  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2325}
2326
2327bool os::pd_release_memory(char* addr, size_t size) {
2328  return anon_munmap(addr, size);
2329}
2330
2331static bool bsd_mprotect(char* addr, size_t size, int prot) {
2332  // Bsd wants the mprotect address argument to be page aligned.
2333  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2334
2335  // According to SUSv3, mprotect() should only be used with mappings
2336  // established by mmap(), and mmap() always maps whole pages. Unaligned
2337  // 'addr' likely indicates problem in the VM (e.g. trying to change
2338  // protection of malloc'ed or statically allocated memory). Check the
2339  // caller if you hit this assert.
2340  assert(addr == bottom, "sanity check");
2341
2342  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2343  return ::mprotect(bottom, size, prot) == 0;
2344}
2345
2346// Set protections specified
2347bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2348                        bool is_committed) {
2349  unsigned int p = 0;
2350  switch (prot) {
2351  case MEM_PROT_NONE: p = PROT_NONE; break;
2352  case MEM_PROT_READ: p = PROT_READ; break;
2353  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2354  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2355  default:
2356    ShouldNotReachHere();
2357  }
2358  // is_committed is unused.
2359  return bsd_mprotect(addr, bytes, p);
2360}
2361
2362bool os::guard_memory(char* addr, size_t size) {
2363  return bsd_mprotect(addr, size, PROT_NONE);
2364}
2365
2366bool os::unguard_memory(char* addr, size_t size) {
2367  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2368}
2369
2370bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2371  return false;
2372}
2373
2374// Large page support
2375
2376static size_t _large_page_size = 0;
2377
2378void os::large_page_init() {
2379}
2380
2381
2382char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2383  fatal("This code is not used or maintained.");
2384
2385  // "exec" is passed in but not used.  Creating the shared image for
2386  // the code cache doesn't have an SHM_X executable permission to check.
2387  assert(UseLargePages && UseSHM, "only for SHM large pages");
2388
2389  key_t key = IPC_PRIVATE;
2390  char *addr;
2391
2392  bool warn_on_failure = UseLargePages &&
2393                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2394                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2395
2396  // Create a large shared memory region to attach to based on size.
2397  // Currently, size is the total size of the heap
2398  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2399  if (shmid == -1) {
2400    // Possible reasons for shmget failure:
2401    // 1. shmmax is too small for Java heap.
2402    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2403    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2404    // 2. not enough large page memory.
2405    //    > check available large pages: cat /proc/meminfo
2406    //    > increase amount of large pages:
2407    //          echo new_value > /proc/sys/vm/nr_hugepages
2408    //      Note 1: different Bsd may use different name for this property,
2409    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2410    //      Note 2: it's possible there's enough physical memory available but
2411    //            they are so fragmented after a long run that they can't
2412    //            coalesce into large pages. Try to reserve large pages when
2413    //            the system is still "fresh".
2414    if (warn_on_failure) {
2415      warning("Failed to reserve shared memory (errno = %d).", errno);
2416    }
2417    return NULL;
2418  }
2419
2420  // attach to the region
2421  addr = (char*)shmat(shmid, req_addr, 0);
2422  int err = errno;
2423
2424  // Remove shmid. If shmat() is successful, the actual shared memory segment
2425  // will be deleted when it's detached by shmdt() or when the process
2426  // terminates. If shmat() is not successful this will remove the shared
2427  // segment immediately.
2428  shmctl(shmid, IPC_RMID, NULL);
2429
2430  if ((intptr_t)addr == -1) {
2431    if (warn_on_failure) {
2432      warning("Failed to attach shared memory (errno = %d).", err);
2433    }
2434    return NULL;
2435  }
2436
2437  // The memory is committed
2438  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2439
2440  return addr;
2441}
2442
2443bool os::release_memory_special(char* base, size_t bytes) {
2444  if (MemTracker::tracking_level() > NMT_minimal) {
2445    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2446    // detaching the SHM segment will also delete it, see reserve_memory_special()
2447    int rslt = shmdt(base);
2448    if (rslt == 0) {
2449      tkr.record((address)base, bytes);
2450      return true;
2451    } else {
2452      return false;
2453    }
2454  } else {
2455    return shmdt(base) == 0;
2456  }
2457}
2458
2459size_t os::large_page_size() {
2460  return _large_page_size;
2461}
2462
2463// HugeTLBFS allows application to commit large page memory on demand;
2464// with SysV SHM the entire memory region must be allocated as shared
2465// memory.
2466bool os::can_commit_large_page_memory() {
2467  return UseHugeTLBFS;
2468}
2469
2470bool os::can_execute_large_page_memory() {
2471  return UseHugeTLBFS;
2472}
2473
2474// Reserve memory at an arbitrary address, only if that area is
2475// available (and not reserved for something else).
2476
2477char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2478  const int max_tries = 10;
2479  char* base[max_tries];
2480  size_t size[max_tries];
2481  const size_t gap = 0x000000;
2482
2483  // Assert only that the size is a multiple of the page size, since
2484  // that's all that mmap requires, and since that's all we really know
2485  // about at this low abstraction level.  If we need higher alignment,
2486  // we can either pass an alignment to this method or verify alignment
2487  // in one of the methods further up the call chain.  See bug 5044738.
2488  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2489
2490  // Repeatedly allocate blocks until the block is allocated at the
2491  // right spot. Give up after max_tries. Note that reserve_memory() will
2492  // automatically update _highest_vm_reserved_address if the call is
2493  // successful. The variable tracks the highest memory address every reserved
2494  // by JVM. It is used to detect heap-stack collision if running with
2495  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2496  // space than needed, it could confuse the collision detecting code. To
2497  // solve the problem, save current _highest_vm_reserved_address and
2498  // calculate the correct value before return.
2499  address old_highest = _highest_vm_reserved_address;
2500
2501  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2502  // if kernel honors the hint then we can return immediately.
2503  char * addr = anon_mmap(requested_addr, bytes, false);
2504  if (addr == requested_addr) {
2505    return requested_addr;
2506  }
2507
2508  if (addr != NULL) {
2509    // mmap() is successful but it fails to reserve at the requested address
2510    anon_munmap(addr, bytes);
2511  }
2512
2513  int i;
2514  for (i = 0; i < max_tries; ++i) {
2515    base[i] = reserve_memory(bytes);
2516
2517    if (base[i] != NULL) {
2518      // Is this the block we wanted?
2519      if (base[i] == requested_addr) {
2520        size[i] = bytes;
2521        break;
2522      }
2523
2524      // Does this overlap the block we wanted? Give back the overlapped
2525      // parts and try again.
2526
2527      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2528      if (top_overlap >= 0 && top_overlap < bytes) {
2529        unmap_memory(base[i], top_overlap);
2530        base[i] += top_overlap;
2531        size[i] = bytes - top_overlap;
2532      } else {
2533        size_t bottom_overlap = base[i] + bytes - requested_addr;
2534        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2535          unmap_memory(requested_addr, bottom_overlap);
2536          size[i] = bytes - bottom_overlap;
2537        } else {
2538          size[i] = bytes;
2539        }
2540      }
2541    }
2542  }
2543
2544  // Give back the unused reserved pieces.
2545
2546  for (int j = 0; j < i; ++j) {
2547    if (base[j] != NULL) {
2548      unmap_memory(base[j], size[j]);
2549    }
2550  }
2551
2552  if (i < max_tries) {
2553    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2554    return requested_addr;
2555  } else {
2556    _highest_vm_reserved_address = old_highest;
2557    return NULL;
2558  }
2559}
2560
2561size_t os::read(int fd, void *buf, unsigned int nBytes) {
2562  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2563}
2564
2565size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2566  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2567}
2568
2569void os::naked_short_sleep(jlong ms) {
2570  struct timespec req;
2571
2572  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2573  req.tv_sec = 0;
2574  if (ms > 0) {
2575    req.tv_nsec = (ms % 1000) * 1000000;
2576  } else {
2577    req.tv_nsec = 1;
2578  }
2579
2580  nanosleep(&req, NULL);
2581
2582  return;
2583}
2584
2585// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2586void os::infinite_sleep() {
2587  while (true) {    // sleep forever ...
2588    ::sleep(100);   // ... 100 seconds at a time
2589  }
2590}
2591
2592// Used to convert frequent JVM_Yield() to nops
2593bool os::dont_yield() {
2594  return DontYieldALot;
2595}
2596
2597void os::naked_yield() {
2598  sched_yield();
2599}
2600
2601////////////////////////////////////////////////////////////////////////////////
2602// thread priority support
2603
2604// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2605// only supports dynamic priority, static priority must be zero. For real-time
2606// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2607// However, for large multi-threaded applications, SCHED_RR is not only slower
2608// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2609// of 5 runs - Sep 2005).
2610//
2611// The following code actually changes the niceness of kernel-thread/LWP. It
2612// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2613// not the entire user process, and user level threads are 1:1 mapped to kernel
2614// threads. It has always been the case, but could change in the future. For
2615// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2616// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2617
2618#if !defined(__APPLE__)
2619int os::java_to_os_priority[CriticalPriority + 1] = {
2620  19,              // 0 Entry should never be used
2621
2622   0,              // 1 MinPriority
2623   3,              // 2
2624   6,              // 3
2625
2626  10,              // 4
2627  15,              // 5 NormPriority
2628  18,              // 6
2629
2630  21,              // 7
2631  25,              // 8
2632  28,              // 9 NearMaxPriority
2633
2634  31,              // 10 MaxPriority
2635
2636  31               // 11 CriticalPriority
2637};
2638#else
2639// Using Mach high-level priority assignments
2640int os::java_to_os_priority[CriticalPriority + 1] = {
2641   0,              // 0 Entry should never be used (MINPRI_USER)
2642
2643  27,              // 1 MinPriority
2644  28,              // 2
2645  29,              // 3
2646
2647  30,              // 4
2648  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2649  32,              // 6
2650
2651  33,              // 7
2652  34,              // 8
2653  35,              // 9 NearMaxPriority
2654
2655  36,              // 10 MaxPriority
2656
2657  36               // 11 CriticalPriority
2658};
2659#endif
2660
2661static int prio_init() {
2662  if (ThreadPriorityPolicy == 1) {
2663    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2664    // if effective uid is not root. Perhaps, a more elegant way of doing
2665    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2666    if (geteuid() != 0) {
2667      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2668        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2669      }
2670      ThreadPriorityPolicy = 0;
2671    }
2672  }
2673  if (UseCriticalJavaThreadPriority) {
2674    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2675  }
2676  return 0;
2677}
2678
2679OSReturn os::set_native_priority(Thread* thread, int newpri) {
2680  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2681
2682#ifdef __OpenBSD__
2683  // OpenBSD pthread_setprio starves low priority threads
2684  return OS_OK;
2685#elif defined(__FreeBSD__)
2686  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2687#elif defined(__APPLE__) || defined(__NetBSD__)
2688  struct sched_param sp;
2689  int policy;
2690  pthread_t self = pthread_self();
2691
2692  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2693    return OS_ERR;
2694  }
2695
2696  sp.sched_priority = newpri;
2697  if (pthread_setschedparam(self, policy, &sp) != 0) {
2698    return OS_ERR;
2699  }
2700
2701  return OS_OK;
2702#else
2703  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2704  return (ret == 0) ? OS_OK : OS_ERR;
2705#endif
2706}
2707
2708OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2709  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2710    *priority_ptr = java_to_os_priority[NormPriority];
2711    return OS_OK;
2712  }
2713
2714  errno = 0;
2715#if defined(__OpenBSD__) || defined(__FreeBSD__)
2716  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2717#elif defined(__APPLE__) || defined(__NetBSD__)
2718  int policy;
2719  struct sched_param sp;
2720
2721  pthread_getschedparam(pthread_self(), &policy, &sp);
2722  *priority_ptr = sp.sched_priority;
2723#else
2724  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2725#endif
2726  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2727}
2728
2729// Hint to the underlying OS that a task switch would not be good.
2730// Void return because it's a hint and can fail.
2731void os::hint_no_preempt() {}
2732
2733////////////////////////////////////////////////////////////////////////////////
2734// suspend/resume support
2735
2736//  the low-level signal-based suspend/resume support is a remnant from the
2737//  old VM-suspension that used to be for java-suspension, safepoints etc,
2738//  within hotspot. Now there is a single use-case for this:
2739//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2740//      that runs in the watcher thread.
2741//  The remaining code is greatly simplified from the more general suspension
2742//  code that used to be used.
2743//
2744//  The protocol is quite simple:
2745//  - suspend:
2746//      - sends a signal to the target thread
2747//      - polls the suspend state of the osthread using a yield loop
2748//      - target thread signal handler (SR_handler) sets suspend state
2749//        and blocks in sigsuspend until continued
2750//  - resume:
2751//      - sets target osthread state to continue
2752//      - sends signal to end the sigsuspend loop in the SR_handler
2753//
2754//  Note that the SR_lock plays no role in this suspend/resume protocol.
2755
2756static void resume_clear_context(OSThread *osthread) {
2757  osthread->set_ucontext(NULL);
2758  osthread->set_siginfo(NULL);
2759}
2760
2761static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2762  osthread->set_ucontext(context);
2763  osthread->set_siginfo(siginfo);
2764}
2765
2766// Handler function invoked when a thread's execution is suspended or
2767// resumed. We have to be careful that only async-safe functions are
2768// called here (Note: most pthread functions are not async safe and
2769// should be avoided.)
2770//
2771// Note: sigwait() is a more natural fit than sigsuspend() from an
2772// interface point of view, but sigwait() prevents the signal hander
2773// from being run. libpthread would get very confused by not having
2774// its signal handlers run and prevents sigwait()'s use with the
2775// mutex granting granting signal.
2776//
2777// Currently only ever called on the VMThread or JavaThread
2778//
2779static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2780  // Save and restore errno to avoid confusing native code with EINTR
2781  // after sigsuspend.
2782  int old_errno = errno;
2783
2784  Thread* thread = Thread::current();
2785  OSThread* osthread = thread->osthread();
2786  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2787
2788  os::SuspendResume::State current = osthread->sr.state();
2789  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2790    suspend_save_context(osthread, siginfo, context);
2791
2792    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2793    os::SuspendResume::State state = osthread->sr.suspended();
2794    if (state == os::SuspendResume::SR_SUSPENDED) {
2795      sigset_t suspend_set;  // signals for sigsuspend()
2796
2797      // get current set of blocked signals and unblock resume signal
2798      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2799      sigdelset(&suspend_set, SR_signum);
2800
2801      sr_semaphore.signal();
2802      // wait here until we are resumed
2803      while (1) {
2804        sigsuspend(&suspend_set);
2805
2806        os::SuspendResume::State result = osthread->sr.running();
2807        if (result == os::SuspendResume::SR_RUNNING) {
2808          sr_semaphore.signal();
2809          break;
2810        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2811          ShouldNotReachHere();
2812        }
2813      }
2814
2815    } else if (state == os::SuspendResume::SR_RUNNING) {
2816      // request was cancelled, continue
2817    } else {
2818      ShouldNotReachHere();
2819    }
2820
2821    resume_clear_context(osthread);
2822  } else if (current == os::SuspendResume::SR_RUNNING) {
2823    // request was cancelled, continue
2824  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2825    // ignore
2826  } else {
2827    // ignore
2828  }
2829
2830  errno = old_errno;
2831}
2832
2833
2834static int SR_initialize() {
2835  struct sigaction act;
2836  char *s;
2837  // Get signal number to use for suspend/resume
2838  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2839    int sig = ::strtol(s, 0, 10);
2840    if (sig > 0 || sig < NSIG) {
2841      SR_signum = sig;
2842    }
2843  }
2844
2845  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2846         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2847
2848  sigemptyset(&SR_sigset);
2849  sigaddset(&SR_sigset, SR_signum);
2850
2851  // Set up signal handler for suspend/resume
2852  act.sa_flags = SA_RESTART|SA_SIGINFO;
2853  act.sa_handler = (void (*)(int)) SR_handler;
2854
2855  // SR_signum is blocked by default.
2856  // 4528190 - We also need to block pthread restart signal (32 on all
2857  // supported Bsd platforms). Note that BsdThreads need to block
2858  // this signal for all threads to work properly. So we don't have
2859  // to use hard-coded signal number when setting up the mask.
2860  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2861
2862  if (sigaction(SR_signum, &act, 0) == -1) {
2863    return -1;
2864  }
2865
2866  // Save signal flag
2867  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2868  return 0;
2869}
2870
2871static int sr_notify(OSThread* osthread) {
2872  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2873  assert_status(status == 0, status, "pthread_kill");
2874  return status;
2875}
2876
2877// "Randomly" selected value for how long we want to spin
2878// before bailing out on suspending a thread, also how often
2879// we send a signal to a thread we want to resume
2880static const int RANDOMLY_LARGE_INTEGER = 1000000;
2881static const int RANDOMLY_LARGE_INTEGER2 = 100;
2882
2883// returns true on success and false on error - really an error is fatal
2884// but this seems the normal response to library errors
2885static bool do_suspend(OSThread* osthread) {
2886  assert(osthread->sr.is_running(), "thread should be running");
2887  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2888
2889  // mark as suspended and send signal
2890  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2891    // failed to switch, state wasn't running?
2892    ShouldNotReachHere();
2893    return false;
2894  }
2895
2896  if (sr_notify(osthread) != 0) {
2897    ShouldNotReachHere();
2898  }
2899
2900  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2901  while (true) {
2902    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2903      break;
2904    } else {
2905      // timeout
2906      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2907      if (cancelled == os::SuspendResume::SR_RUNNING) {
2908        return false;
2909      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2910        // make sure that we consume the signal on the semaphore as well
2911        sr_semaphore.wait();
2912        break;
2913      } else {
2914        ShouldNotReachHere();
2915        return false;
2916      }
2917    }
2918  }
2919
2920  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2921  return true;
2922}
2923
2924static void do_resume(OSThread* osthread) {
2925  assert(osthread->sr.is_suspended(), "thread should be suspended");
2926  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2927
2928  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2929    // failed to switch to WAKEUP_REQUEST
2930    ShouldNotReachHere();
2931    return;
2932  }
2933
2934  while (true) {
2935    if (sr_notify(osthread) == 0) {
2936      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2937        if (osthread->sr.is_running()) {
2938          return;
2939        }
2940      }
2941    } else {
2942      ShouldNotReachHere();
2943    }
2944  }
2945
2946  guarantee(osthread->sr.is_running(), "Must be running!");
2947}
2948
2949///////////////////////////////////////////////////////////////////////////////////
2950// signal handling (except suspend/resume)
2951
2952// This routine may be used by user applications as a "hook" to catch signals.
2953// The user-defined signal handler must pass unrecognized signals to this
2954// routine, and if it returns true (non-zero), then the signal handler must
2955// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2956// routine will never retun false (zero), but instead will execute a VM panic
2957// routine kill the process.
2958//
2959// If this routine returns false, it is OK to call it again.  This allows
2960// the user-defined signal handler to perform checks either before or after
2961// the VM performs its own checks.  Naturally, the user code would be making
2962// a serious error if it tried to handle an exception (such as a null check
2963// or breakpoint) that the VM was generating for its own correct operation.
2964//
2965// This routine may recognize any of the following kinds of signals:
2966//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2967// It should be consulted by handlers for any of those signals.
2968//
2969// The caller of this routine must pass in the three arguments supplied
2970// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2971// field of the structure passed to sigaction().  This routine assumes that
2972// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2973//
2974// Note that the VM will print warnings if it detects conflicting signal
2975// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2976//
2977extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2978                                               void* ucontext,
2979                                               int abort_if_unrecognized);
2980
2981void signalHandler(int sig, siginfo_t* info, void* uc) {
2982  assert(info != NULL && uc != NULL, "it must be old kernel");
2983  int orig_errno = errno;  // Preserve errno value over signal handler.
2984  JVM_handle_bsd_signal(sig, info, uc, true);
2985  errno = orig_errno;
2986}
2987
2988
2989// This boolean allows users to forward their own non-matching signals
2990// to JVM_handle_bsd_signal, harmlessly.
2991bool os::Bsd::signal_handlers_are_installed = false;
2992
2993// For signal-chaining
2994struct sigaction os::Bsd::sigact[MAXSIGNUM];
2995unsigned int os::Bsd::sigs = 0;
2996bool os::Bsd::libjsig_is_loaded = false;
2997typedef struct sigaction *(*get_signal_t)(int);
2998get_signal_t os::Bsd::get_signal_action = NULL;
2999
3000struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3001  struct sigaction *actp = NULL;
3002
3003  if (libjsig_is_loaded) {
3004    // Retrieve the old signal handler from libjsig
3005    actp = (*get_signal_action)(sig);
3006  }
3007  if (actp == NULL) {
3008    // Retrieve the preinstalled signal handler from jvm
3009    actp = get_preinstalled_handler(sig);
3010  }
3011
3012  return actp;
3013}
3014
3015static bool call_chained_handler(struct sigaction *actp, int sig,
3016                                 siginfo_t *siginfo, void *context) {
3017  // Call the old signal handler
3018  if (actp->sa_handler == SIG_DFL) {
3019    // It's more reasonable to let jvm treat it as an unexpected exception
3020    // instead of taking the default action.
3021    return false;
3022  } else if (actp->sa_handler != SIG_IGN) {
3023    if ((actp->sa_flags & SA_NODEFER) == 0) {
3024      // automaticlly block the signal
3025      sigaddset(&(actp->sa_mask), sig);
3026    }
3027
3028    sa_handler_t hand;
3029    sa_sigaction_t sa;
3030    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3031    // retrieve the chained handler
3032    if (siginfo_flag_set) {
3033      sa = actp->sa_sigaction;
3034    } else {
3035      hand = actp->sa_handler;
3036    }
3037
3038    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3039      actp->sa_handler = SIG_DFL;
3040    }
3041
3042    // try to honor the signal mask
3043    sigset_t oset;
3044    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3045
3046    // call into the chained handler
3047    if (siginfo_flag_set) {
3048      (*sa)(sig, siginfo, context);
3049    } else {
3050      (*hand)(sig);
3051    }
3052
3053    // restore the signal mask
3054    pthread_sigmask(SIG_SETMASK, &oset, 0);
3055  }
3056  // Tell jvm's signal handler the signal is taken care of.
3057  return true;
3058}
3059
3060bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3061  bool chained = false;
3062  // signal-chaining
3063  if (UseSignalChaining) {
3064    struct sigaction *actp = get_chained_signal_action(sig);
3065    if (actp != NULL) {
3066      chained = call_chained_handler(actp, sig, siginfo, context);
3067    }
3068  }
3069  return chained;
3070}
3071
3072struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3073  if ((((unsigned int)1 << sig) & sigs) != 0) {
3074    return &sigact[sig];
3075  }
3076  return NULL;
3077}
3078
3079void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3080  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3081  sigact[sig] = oldAct;
3082  sigs |= (unsigned int)1 << sig;
3083}
3084
3085// for diagnostic
3086int os::Bsd::sigflags[MAXSIGNUM];
3087
3088int os::Bsd::get_our_sigflags(int sig) {
3089  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3090  return sigflags[sig];
3091}
3092
3093void os::Bsd::set_our_sigflags(int sig, int flags) {
3094  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3095  sigflags[sig] = flags;
3096}
3097
3098void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3099  // Check for overwrite.
3100  struct sigaction oldAct;
3101  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3102
3103  void* oldhand = oldAct.sa_sigaction
3104                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3105                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3106  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3107      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3108      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3109    if (AllowUserSignalHandlers || !set_installed) {
3110      // Do not overwrite; user takes responsibility to forward to us.
3111      return;
3112    } else if (UseSignalChaining) {
3113      // save the old handler in jvm
3114      save_preinstalled_handler(sig, oldAct);
3115      // libjsig also interposes the sigaction() call below and saves the
3116      // old sigaction on it own.
3117    } else {
3118      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3119                    "%#lx for signal %d.", (long)oldhand, sig));
3120    }
3121  }
3122
3123  struct sigaction sigAct;
3124  sigfillset(&(sigAct.sa_mask));
3125  sigAct.sa_handler = SIG_DFL;
3126  if (!set_installed) {
3127    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3128  } else {
3129    sigAct.sa_sigaction = signalHandler;
3130    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3131  }
3132#ifdef __APPLE__
3133  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3134  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3135  // if the signal handler declares it will handle it on alternate stack.
3136  // Notice we only declare we will handle it on alt stack, but we are not
3137  // actually going to use real alt stack - this is just a workaround.
3138  // Please see ux_exception.c, method catch_mach_exception_raise for details
3139  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3140  if (sig == SIGSEGV) {
3141    sigAct.sa_flags |= SA_ONSTACK;
3142  }
3143#endif
3144
3145  // Save flags, which are set by ours
3146  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3147  sigflags[sig] = sigAct.sa_flags;
3148
3149  int ret = sigaction(sig, &sigAct, &oldAct);
3150  assert(ret == 0, "check");
3151
3152  void* oldhand2  = oldAct.sa_sigaction
3153                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3154                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3155  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3156}
3157
3158// install signal handlers for signals that HotSpot needs to
3159// handle in order to support Java-level exception handling.
3160
3161void os::Bsd::install_signal_handlers() {
3162  if (!signal_handlers_are_installed) {
3163    signal_handlers_are_installed = true;
3164
3165    // signal-chaining
3166    typedef void (*signal_setting_t)();
3167    signal_setting_t begin_signal_setting = NULL;
3168    signal_setting_t end_signal_setting = NULL;
3169    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3170                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3171    if (begin_signal_setting != NULL) {
3172      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3173                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3174      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3175                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3176      libjsig_is_loaded = true;
3177      assert(UseSignalChaining, "should enable signal-chaining");
3178    }
3179    if (libjsig_is_loaded) {
3180      // Tell libjsig jvm is setting signal handlers
3181      (*begin_signal_setting)();
3182    }
3183
3184    set_signal_handler(SIGSEGV, true);
3185    set_signal_handler(SIGPIPE, true);
3186    set_signal_handler(SIGBUS, true);
3187    set_signal_handler(SIGILL, true);
3188    set_signal_handler(SIGFPE, true);
3189    set_signal_handler(SIGXFSZ, true);
3190
3191#if defined(__APPLE__)
3192    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3193    // signals caught and handled by the JVM. To work around this, we reset the mach task
3194    // signal handler that's placed on our process by CrashReporter. This disables
3195    // CrashReporter-based reporting.
3196    //
3197    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3198    // on caught fatal signals.
3199    //
3200    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3201    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3202    // exception handling, while leaving the standard BSD signal handlers functional.
3203    kern_return_t kr;
3204    kr = task_set_exception_ports(mach_task_self(),
3205                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3206                                  MACH_PORT_NULL,
3207                                  EXCEPTION_STATE_IDENTITY,
3208                                  MACHINE_THREAD_STATE);
3209
3210    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3211#endif
3212
3213    if (libjsig_is_loaded) {
3214      // Tell libjsig jvm finishes setting signal handlers
3215      (*end_signal_setting)();
3216    }
3217
3218    // We don't activate signal checker if libjsig is in place, we trust ourselves
3219    // and if UserSignalHandler is installed all bets are off
3220    if (CheckJNICalls) {
3221      if (libjsig_is_loaded) {
3222        if (PrintJNIResolving) {
3223          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3224        }
3225        check_signals = false;
3226      }
3227      if (AllowUserSignalHandlers) {
3228        if (PrintJNIResolving) {
3229          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3230        }
3231        check_signals = false;
3232      }
3233    }
3234  }
3235}
3236
3237
3238/////
3239// glibc on Bsd platform uses non-documented flag
3240// to indicate, that some special sort of signal
3241// trampoline is used.
3242// We will never set this flag, and we should
3243// ignore this flag in our diagnostic
3244#ifdef SIGNIFICANT_SIGNAL_MASK
3245  #undef SIGNIFICANT_SIGNAL_MASK
3246#endif
3247#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3248
3249static const char* get_signal_handler_name(address handler,
3250                                           char* buf, int buflen) {
3251  int offset;
3252  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3253  if (found) {
3254    // skip directory names
3255    const char *p1, *p2;
3256    p1 = buf;
3257    size_t len = strlen(os::file_separator());
3258    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3259    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3260  } else {
3261    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3262  }
3263  return buf;
3264}
3265
3266static void print_signal_handler(outputStream* st, int sig,
3267                                 char* buf, size_t buflen) {
3268  struct sigaction sa;
3269
3270  sigaction(sig, NULL, &sa);
3271
3272  // See comment for SIGNIFICANT_SIGNAL_MASK define
3273  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3274
3275  st->print("%s: ", os::exception_name(sig, buf, buflen));
3276
3277  address handler = (sa.sa_flags & SA_SIGINFO)
3278    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3279    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3280
3281  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3282    st->print("SIG_DFL");
3283  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3284    st->print("SIG_IGN");
3285  } else {
3286    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3287  }
3288
3289  st->print(", sa_mask[0]=");
3290  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3291
3292  address rh = VMError::get_resetted_sighandler(sig);
3293  // May be, handler was resetted by VMError?
3294  if (rh != NULL) {
3295    handler = rh;
3296    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3297  }
3298
3299  st->print(", sa_flags=");
3300  os::Posix::print_sa_flags(st, sa.sa_flags);
3301
3302  // Check: is it our handler?
3303  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3304      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3305    // It is our signal handler
3306    // check for flags, reset system-used one!
3307    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3308      st->print(
3309                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3310                os::Bsd::get_our_sigflags(sig));
3311    }
3312  }
3313  st->cr();
3314}
3315
3316
3317#define DO_SIGNAL_CHECK(sig)                      \
3318  do {                                            \
3319    if (!sigismember(&check_signal_done, sig)) {  \
3320      os::Bsd::check_signal_handler(sig);         \
3321    }                                             \
3322  } while (0)
3323
3324// This method is a periodic task to check for misbehaving JNI applications
3325// under CheckJNI, we can add any periodic checks here
3326
3327void os::run_periodic_checks() {
3328
3329  if (check_signals == false) return;
3330
3331  // SEGV and BUS if overridden could potentially prevent
3332  // generation of hs*.log in the event of a crash, debugging
3333  // such a case can be very challenging, so we absolutely
3334  // check the following for a good measure:
3335  DO_SIGNAL_CHECK(SIGSEGV);
3336  DO_SIGNAL_CHECK(SIGILL);
3337  DO_SIGNAL_CHECK(SIGFPE);
3338  DO_SIGNAL_CHECK(SIGBUS);
3339  DO_SIGNAL_CHECK(SIGPIPE);
3340  DO_SIGNAL_CHECK(SIGXFSZ);
3341
3342
3343  // ReduceSignalUsage allows the user to override these handlers
3344  // see comments at the very top and jvm_solaris.h
3345  if (!ReduceSignalUsage) {
3346    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3347    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3348    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3349    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3350  }
3351
3352  DO_SIGNAL_CHECK(SR_signum);
3353  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3354}
3355
3356typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3357
3358static os_sigaction_t os_sigaction = NULL;
3359
3360void os::Bsd::check_signal_handler(int sig) {
3361  char buf[O_BUFLEN];
3362  address jvmHandler = NULL;
3363
3364
3365  struct sigaction act;
3366  if (os_sigaction == NULL) {
3367    // only trust the default sigaction, in case it has been interposed
3368    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3369    if (os_sigaction == NULL) return;
3370  }
3371
3372  os_sigaction(sig, (struct sigaction*)NULL, &act);
3373
3374
3375  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3376
3377  address thisHandler = (act.sa_flags & SA_SIGINFO)
3378    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3379    : CAST_FROM_FN_PTR(address, act.sa_handler);
3380
3381
3382  switch (sig) {
3383  case SIGSEGV:
3384  case SIGBUS:
3385  case SIGFPE:
3386  case SIGPIPE:
3387  case SIGILL:
3388  case SIGXFSZ:
3389    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3390    break;
3391
3392  case SHUTDOWN1_SIGNAL:
3393  case SHUTDOWN2_SIGNAL:
3394  case SHUTDOWN3_SIGNAL:
3395  case BREAK_SIGNAL:
3396    jvmHandler = (address)user_handler();
3397    break;
3398
3399  case INTERRUPT_SIGNAL:
3400    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3401    break;
3402
3403  default:
3404    if (sig == SR_signum) {
3405      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3406    } else {
3407      return;
3408    }
3409    break;
3410  }
3411
3412  if (thisHandler != jvmHandler) {
3413    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3414    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3415    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3416    // No need to check this sig any longer
3417    sigaddset(&check_signal_done, sig);
3418    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3419    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3420      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3421                    exception_name(sig, buf, O_BUFLEN));
3422    }
3423  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3424    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3425    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3426    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3427    // No need to check this sig any longer
3428    sigaddset(&check_signal_done, sig);
3429  }
3430
3431  // Dump all the signal
3432  if (sigismember(&check_signal_done, sig)) {
3433    print_signal_handlers(tty, buf, O_BUFLEN);
3434  }
3435}
3436
3437extern void report_error(char* file_name, int line_no, char* title,
3438                         char* format, ...);
3439
3440extern bool signal_name(int signo, char* buf, size_t len);
3441
3442const char* os::exception_name(int exception_code, char* buf, size_t size) {
3443  if (0 < exception_code && exception_code <= SIGRTMAX) {
3444    // signal
3445    if (!signal_name(exception_code, buf, size)) {
3446      jio_snprintf(buf, size, "SIG%d", exception_code);
3447    }
3448    return buf;
3449  } else {
3450    return NULL;
3451  }
3452}
3453
3454// this is called _before_ the most of global arguments have been parsed
3455void os::init(void) {
3456  char dummy;   // used to get a guess on initial stack address
3457//  first_hrtime = gethrtime();
3458
3459  // With BsdThreads the JavaMain thread pid (primordial thread)
3460  // is different than the pid of the java launcher thread.
3461  // So, on Bsd, the launcher thread pid is passed to the VM
3462  // via the sun.java.launcher.pid property.
3463  // Use this property instead of getpid() if it was correctly passed.
3464  // See bug 6351349.
3465  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3466
3467  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3468
3469  clock_tics_per_sec = CLK_TCK;
3470
3471  init_random(1234567);
3472
3473  ThreadCritical::initialize();
3474
3475  Bsd::set_page_size(getpagesize());
3476  if (Bsd::page_size() == -1) {
3477    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3478                  strerror(errno)));
3479  }
3480  init_page_sizes((size_t) Bsd::page_size());
3481
3482  Bsd::initialize_system_info();
3483
3484  // main_thread points to the aboriginal thread
3485  Bsd::_main_thread = pthread_self();
3486
3487  Bsd::clock_init();
3488  initial_time_count = javaTimeNanos();
3489
3490#ifdef __APPLE__
3491  // XXXDARWIN
3492  // Work around the unaligned VM callbacks in hotspot's
3493  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3494  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3495  // alignment when doing symbol lookup. To work around this, we force early
3496  // binding of all symbols now, thus binding when alignment is known-good.
3497  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3498#endif
3499}
3500
3501// To install functions for atexit system call
3502extern "C" {
3503  static void perfMemory_exit_helper() {
3504    perfMemory_exit();
3505  }
3506}
3507
3508// this is called _after_ the global arguments have been parsed
3509jint os::init_2(void) {
3510  // Allocate a single page and mark it as readable for safepoint polling
3511  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3512  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3513
3514  os::set_polling_page(polling_page);
3515
3516#ifndef PRODUCT
3517  if (Verbose && PrintMiscellaneous) {
3518    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3519               (intptr_t)polling_page);
3520  }
3521#endif
3522
3523  if (!UseMembar) {
3524    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3525    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3526    os::set_memory_serialize_page(mem_serialize_page);
3527
3528#ifndef PRODUCT
3529    if (Verbose && PrintMiscellaneous) {
3530      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3531                 (intptr_t)mem_serialize_page);
3532    }
3533#endif
3534  }
3535
3536  // initialize suspend/resume support - must do this before signal_sets_init()
3537  if (SR_initialize() != 0) {
3538    perror("SR_initialize failed");
3539    return JNI_ERR;
3540  }
3541
3542  Bsd::signal_sets_init();
3543  Bsd::install_signal_handlers();
3544
3545  // Check minimum allowable stack size for thread creation and to initialize
3546  // the java system classes, including StackOverflowError - depends on page
3547  // size.  Add a page for compiler2 recursion in main thread.
3548  // Add in 2*BytesPerWord times page size to account for VM stack during
3549  // class initialization depending on 32 or 64 bit VM.
3550  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3551                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3552                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3553
3554  size_t threadStackSizeInBytes = ThreadStackSize * K;
3555  if (threadStackSizeInBytes != 0 &&
3556      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3557    tty->print_cr("\nThe stack size specified is too small, "
3558                  "Specify at least %dk",
3559                  os::Bsd::min_stack_allowed/ K);
3560    return JNI_ERR;
3561  }
3562
3563  // Make the stack size a multiple of the page size so that
3564  // the yellow/red zones can be guarded.
3565  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3566                                                vm_page_size()));
3567
3568  if (MaxFDLimit) {
3569    // set the number of file descriptors to max. print out error
3570    // if getrlimit/setrlimit fails but continue regardless.
3571    struct rlimit nbr_files;
3572    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3573    if (status != 0) {
3574      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3575        perror("os::init_2 getrlimit failed");
3576      }
3577    } else {
3578      nbr_files.rlim_cur = nbr_files.rlim_max;
3579
3580#ifdef __APPLE__
3581      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3582      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3583      // be used instead
3584      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3585#endif
3586
3587      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3588      if (status != 0) {
3589        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3590          perror("os::init_2 setrlimit failed");
3591        }
3592      }
3593    }
3594  }
3595
3596  // at-exit methods are called in the reverse order of their registration.
3597  // atexit functions are called on return from main or as a result of a
3598  // call to exit(3C). There can be only 32 of these functions registered
3599  // and atexit() does not set errno.
3600
3601  if (PerfAllowAtExitRegistration) {
3602    // only register atexit functions if PerfAllowAtExitRegistration is set.
3603    // atexit functions can be delayed until process exit time, which
3604    // can be problematic for embedded VM situations. Embedded VMs should
3605    // call DestroyJavaVM() to assure that VM resources are released.
3606
3607    // note: perfMemory_exit_helper atexit function may be removed in
3608    // the future if the appropriate cleanup code can be added to the
3609    // VM_Exit VMOperation's doit method.
3610    if (atexit(perfMemory_exit_helper) != 0) {
3611      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3612    }
3613  }
3614
3615  // initialize thread priority policy
3616  prio_init();
3617
3618#ifdef __APPLE__
3619  // dynamically link to objective c gc registration
3620  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3621  if (handleLibObjc != NULL) {
3622    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3623  }
3624#endif
3625
3626  return JNI_OK;
3627}
3628
3629// Mark the polling page as unreadable
3630void os::make_polling_page_unreadable(void) {
3631  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3632    fatal("Could not disable polling page");
3633  }
3634}
3635
3636// Mark the polling page as readable
3637void os::make_polling_page_readable(void) {
3638  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3639    fatal("Could not enable polling page");
3640  }
3641}
3642
3643int os::active_processor_count() {
3644  return _processor_count;
3645}
3646
3647void os::set_native_thread_name(const char *name) {
3648#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3649  // This is only supported in Snow Leopard and beyond
3650  if (name != NULL) {
3651    // Add a "Java: " prefix to the name
3652    char buf[MAXTHREADNAMESIZE];
3653    snprintf(buf, sizeof(buf), "Java: %s", name);
3654    pthread_setname_np(buf);
3655  }
3656#endif
3657}
3658
3659bool os::distribute_processes(uint length, uint* distribution) {
3660  // Not yet implemented.
3661  return false;
3662}
3663
3664bool os::bind_to_processor(uint processor_id) {
3665  // Not yet implemented.
3666  return false;
3667}
3668
3669void os::SuspendedThreadTask::internal_do_task() {
3670  if (do_suspend(_thread->osthread())) {
3671    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3672    do_task(context);
3673    do_resume(_thread->osthread());
3674  }
3675}
3676
3677///
3678class PcFetcher : public os::SuspendedThreadTask {
3679 public:
3680  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3681  ExtendedPC result();
3682 protected:
3683  void do_task(const os::SuspendedThreadTaskContext& context);
3684 private:
3685  ExtendedPC _epc;
3686};
3687
3688ExtendedPC PcFetcher::result() {
3689  guarantee(is_done(), "task is not done yet.");
3690  return _epc;
3691}
3692
3693void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3694  Thread* thread = context.thread();
3695  OSThread* osthread = thread->osthread();
3696  if (osthread->ucontext() != NULL) {
3697    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3698  } else {
3699    // NULL context is unexpected, double-check this is the VMThread
3700    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3701  }
3702}
3703
3704// Suspends the target using the signal mechanism and then grabs the PC before
3705// resuming the target. Used by the flat-profiler only
3706ExtendedPC os::get_thread_pc(Thread* thread) {
3707  // Make sure that it is called by the watcher for the VMThread
3708  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3709  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3710
3711  PcFetcher fetcher(thread);
3712  fetcher.run();
3713  return fetcher.result();
3714}
3715
3716int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3717                                 pthread_mutex_t *_mutex,
3718                                 const struct timespec *_abstime) {
3719  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3720}
3721
3722////////////////////////////////////////////////////////////////////////////////
3723// debug support
3724
3725bool os::find(address addr, outputStream* st) {
3726  Dl_info dlinfo;
3727  memset(&dlinfo, 0, sizeof(dlinfo));
3728  if (dladdr(addr, &dlinfo) != 0) {
3729    st->print(PTR_FORMAT ": ", addr);
3730    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3731      st->print("%s+%#x", dlinfo.dli_sname,
3732                addr - (intptr_t)dlinfo.dli_saddr);
3733    } else if (dlinfo.dli_fbase != NULL) {
3734      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3735    } else {
3736      st->print("<absolute address>");
3737    }
3738    if (dlinfo.dli_fname != NULL) {
3739      st->print(" in %s", dlinfo.dli_fname);
3740    }
3741    if (dlinfo.dli_fbase != NULL) {
3742      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3743    }
3744    st->cr();
3745
3746    if (Verbose) {
3747      // decode some bytes around the PC
3748      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3749      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3750      address       lowest = (address) dlinfo.dli_sname;
3751      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3752      if (begin < lowest)  begin = lowest;
3753      Dl_info dlinfo2;
3754      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3755          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3756        end = (address) dlinfo2.dli_saddr;
3757      }
3758      Disassembler::decode(begin, end, st);
3759    }
3760    return true;
3761  }
3762  return false;
3763}
3764
3765////////////////////////////////////////////////////////////////////////////////
3766// misc
3767
3768// This does not do anything on Bsd. This is basically a hook for being
3769// able to use structured exception handling (thread-local exception filters)
3770// on, e.g., Win32.
3771void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3772                              methodHandle* method, JavaCallArguments* args,
3773                              Thread* thread) {
3774  f(value, method, args, thread);
3775}
3776
3777void os::print_statistics() {
3778}
3779
3780int os::message_box(const char* title, const char* message) {
3781  int i;
3782  fdStream err(defaultStream::error_fd());
3783  for (i = 0; i < 78; i++) err.print_raw("=");
3784  err.cr();
3785  err.print_raw_cr(title);
3786  for (i = 0; i < 78; i++) err.print_raw("-");
3787  err.cr();
3788  err.print_raw_cr(message);
3789  for (i = 0; i < 78; i++) err.print_raw("=");
3790  err.cr();
3791
3792  char buf[16];
3793  // Prevent process from exiting upon "read error" without consuming all CPU
3794  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3795
3796  return buf[0] == 'y' || buf[0] == 'Y';
3797}
3798
3799int os::stat(const char *path, struct stat *sbuf) {
3800  char pathbuf[MAX_PATH];
3801  if (strlen(path) > MAX_PATH - 1) {
3802    errno = ENAMETOOLONG;
3803    return -1;
3804  }
3805  os::native_path(strcpy(pathbuf, path));
3806  return ::stat(pathbuf, sbuf);
3807}
3808
3809bool os::check_heap(bool force) {
3810  return true;
3811}
3812
3813// Is a (classpath) directory empty?
3814bool os::dir_is_empty(const char* path) {
3815  DIR *dir = NULL;
3816  struct dirent *ptr;
3817
3818  dir = opendir(path);
3819  if (dir == NULL) return true;
3820
3821  // Scan the directory
3822  bool result = true;
3823  char buf[sizeof(struct dirent) + MAX_PATH];
3824  while (result && (ptr = ::readdir(dir)) != NULL) {
3825    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3826      result = false;
3827    }
3828  }
3829  closedir(dir);
3830  return result;
3831}
3832
3833// This code originates from JDK's sysOpen and open64_w
3834// from src/solaris/hpi/src/system_md.c
3835
3836int os::open(const char *path, int oflag, int mode) {
3837  if (strlen(path) > MAX_PATH - 1) {
3838    errno = ENAMETOOLONG;
3839    return -1;
3840  }
3841  int fd;
3842
3843  fd = ::open(path, oflag, mode);
3844  if (fd == -1) return -1;
3845
3846  // If the open succeeded, the file might still be a directory
3847  {
3848    struct stat buf;
3849    int ret = ::fstat(fd, &buf);
3850    int st_mode = buf.st_mode;
3851
3852    if (ret != -1) {
3853      if ((st_mode & S_IFMT) == S_IFDIR) {
3854        errno = EISDIR;
3855        ::close(fd);
3856        return -1;
3857      }
3858    } else {
3859      ::close(fd);
3860      return -1;
3861    }
3862  }
3863
3864  // All file descriptors that are opened in the JVM and not
3865  // specifically destined for a subprocess should have the
3866  // close-on-exec flag set.  If we don't set it, then careless 3rd
3867  // party native code might fork and exec without closing all
3868  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3869  // UNIXProcess.c), and this in turn might:
3870  //
3871  // - cause end-of-file to fail to be detected on some file
3872  //   descriptors, resulting in mysterious hangs, or
3873  //
3874  // - might cause an fopen in the subprocess to fail on a system
3875  //   suffering from bug 1085341.
3876  //
3877  // (Yes, the default setting of the close-on-exec flag is a Unix
3878  // design flaw)
3879  //
3880  // See:
3881  // 1085341: 32-bit stdio routines should support file descriptors >255
3882  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3883  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3884  //
3885#ifdef FD_CLOEXEC
3886  {
3887    int flags = ::fcntl(fd, F_GETFD);
3888    if (flags != -1) {
3889      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3890    }
3891  }
3892#endif
3893
3894  return fd;
3895}
3896
3897
3898// create binary file, rewriting existing file if required
3899int os::create_binary_file(const char* path, bool rewrite_existing) {
3900  int oflags = O_WRONLY | O_CREAT;
3901  if (!rewrite_existing) {
3902    oflags |= O_EXCL;
3903  }
3904  return ::open(path, oflags, S_IREAD | S_IWRITE);
3905}
3906
3907// return current position of file pointer
3908jlong os::current_file_offset(int fd) {
3909  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3910}
3911
3912// move file pointer to the specified offset
3913jlong os::seek_to_file_offset(int fd, jlong offset) {
3914  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3915}
3916
3917// This code originates from JDK's sysAvailable
3918// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3919
3920int os::available(int fd, jlong *bytes) {
3921  jlong cur, end;
3922  int mode;
3923  struct stat buf;
3924
3925  if (::fstat(fd, &buf) >= 0) {
3926    mode = buf.st_mode;
3927    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3928      // XXX: is the following call interruptible? If so, this might
3929      // need to go through the INTERRUPT_IO() wrapper as for other
3930      // blocking, interruptible calls in this file.
3931      int n;
3932      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3933        *bytes = n;
3934        return 1;
3935      }
3936    }
3937  }
3938  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3939    return 0;
3940  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3941    return 0;
3942  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3943    return 0;
3944  }
3945  *bytes = end - cur;
3946  return 1;
3947}
3948
3949// Map a block of memory.
3950char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3951                        char *addr, size_t bytes, bool read_only,
3952                        bool allow_exec) {
3953  int prot;
3954  int flags;
3955
3956  if (read_only) {
3957    prot = PROT_READ;
3958    flags = MAP_SHARED;
3959  } else {
3960    prot = PROT_READ | PROT_WRITE;
3961    flags = MAP_PRIVATE;
3962  }
3963
3964  if (allow_exec) {
3965    prot |= PROT_EXEC;
3966  }
3967
3968  if (addr != NULL) {
3969    flags |= MAP_FIXED;
3970  }
3971
3972  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3973                                     fd, file_offset);
3974  if (mapped_address == MAP_FAILED) {
3975    return NULL;
3976  }
3977  return mapped_address;
3978}
3979
3980
3981// Remap a block of memory.
3982char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3983                          char *addr, size_t bytes, bool read_only,
3984                          bool allow_exec) {
3985  // same as map_memory() on this OS
3986  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3987                        allow_exec);
3988}
3989
3990
3991// Unmap a block of memory.
3992bool os::pd_unmap_memory(char* addr, size_t bytes) {
3993  return munmap(addr, bytes) == 0;
3994}
3995
3996// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3997// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3998// of a thread.
3999//
4000// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4001// the fast estimate available on the platform.
4002
4003jlong os::current_thread_cpu_time() {
4004#ifdef __APPLE__
4005  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4006#else
4007  Unimplemented();
4008  return 0;
4009#endif
4010}
4011
4012jlong os::thread_cpu_time(Thread* thread) {
4013#ifdef __APPLE__
4014  return os::thread_cpu_time(thread, true /* user + sys */);
4015#else
4016  Unimplemented();
4017  return 0;
4018#endif
4019}
4020
4021jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4022#ifdef __APPLE__
4023  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4024#else
4025  Unimplemented();
4026  return 0;
4027#endif
4028}
4029
4030jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4031#ifdef __APPLE__
4032  struct thread_basic_info tinfo;
4033  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4034  kern_return_t kr;
4035  thread_t mach_thread;
4036
4037  mach_thread = thread->osthread()->thread_id();
4038  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4039  if (kr != KERN_SUCCESS) {
4040    return -1;
4041  }
4042
4043  if (user_sys_cpu_time) {
4044    jlong nanos;
4045    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4046    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4047    return nanos;
4048  } else {
4049    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4050  }
4051#else
4052  Unimplemented();
4053  return 0;
4054#endif
4055}
4056
4057
4058void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4059  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4060  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4061  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4062  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4063}
4064
4065void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4066  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4067  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4068  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4069  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4070}
4071
4072bool os::is_thread_cpu_time_supported() {
4073#ifdef __APPLE__
4074  return true;
4075#else
4076  return false;
4077#endif
4078}
4079
4080// System loadavg support.  Returns -1 if load average cannot be obtained.
4081// Bsd doesn't yet have a (official) notion of processor sets,
4082// so just return the system wide load average.
4083int os::loadavg(double loadavg[], int nelem) {
4084  return ::getloadavg(loadavg, nelem);
4085}
4086
4087void os::pause() {
4088  char filename[MAX_PATH];
4089  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4090    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4091  } else {
4092    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4093  }
4094
4095  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4096  if (fd != -1) {
4097    struct stat buf;
4098    ::close(fd);
4099    while (::stat(filename, &buf) == 0) {
4100      (void)::poll(NULL, 0, 100);
4101    }
4102  } else {
4103    jio_fprintf(stderr,
4104                "Could not open pause file '%s', continuing immediately.\n", filename);
4105  }
4106}
4107
4108
4109// Refer to the comments in os_solaris.cpp park-unpark. The next two
4110// comment paragraphs are worth repeating here:
4111//
4112// Assumption:
4113//    Only one parker can exist on an event, which is why we allocate
4114//    them per-thread. Multiple unparkers can coexist.
4115//
4116// _Event serves as a restricted-range semaphore.
4117//   -1 : thread is blocked, i.e. there is a waiter
4118//    0 : neutral: thread is running or ready,
4119//        could have been signaled after a wait started
4120//    1 : signaled - thread is running or ready
4121//
4122// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4123// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4124// For specifics regarding the bug see GLIBC BUGID 261237 :
4125//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4126// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4127// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4128// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4129// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4130// and monitorenter when we're using 1-0 locking.  All those operations may result in
4131// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4132// of libpthread avoids the problem, but isn't practical.
4133//
4134// Possible remedies:
4135//
4136// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4137//      This is palliative and probabilistic, however.  If the thread is preempted
4138//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4139//      than the minimum period may have passed, and the abstime may be stale (in the
4140//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4141//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4142//
4143// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4144//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4145//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4146//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4147//      thread.
4148//
4149// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4150//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4151//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4152//      This also works well.  In fact it avoids kernel-level scalability impediments
4153//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4154//      timers in a graceful fashion.
4155//
4156// 4.   When the abstime value is in the past it appears that control returns
4157//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4158//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4159//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4160//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4161//      It may be possible to avoid reinitialization by checking the return
4162//      value from pthread_cond_timedwait().  In addition to reinitializing the
4163//      condvar we must establish the invariant that cond_signal() is only called
4164//      within critical sections protected by the adjunct mutex.  This prevents
4165//      cond_signal() from "seeing" a condvar that's in the midst of being
4166//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4167//      desirable signal-after-unlock optimization that avoids futile context switching.
4168//
4169//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4170//      structure when a condvar is used or initialized.  cond_destroy()  would
4171//      release the helper structure.  Our reinitialize-after-timedwait fix
4172//      put excessive stress on malloc/free and locks protecting the c-heap.
4173//
4174// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4175// It may be possible to refine (4) by checking the kernel and NTPL verisons
4176// and only enabling the work-around for vulnerable environments.
4177
4178// utility to compute the abstime argument to timedwait:
4179// millis is the relative timeout time
4180// abstime will be the absolute timeout time
4181// TODO: replace compute_abstime() with unpackTime()
4182
4183static struct timespec* compute_abstime(struct timespec* abstime,
4184                                        jlong millis) {
4185  if (millis < 0)  millis = 0;
4186  struct timeval now;
4187  int status = gettimeofday(&now, NULL);
4188  assert(status == 0, "gettimeofday");
4189  jlong seconds = millis / 1000;
4190  millis %= 1000;
4191  if (seconds > 50000000) { // see man cond_timedwait(3T)
4192    seconds = 50000000;
4193  }
4194  abstime->tv_sec = now.tv_sec  + seconds;
4195  long       usec = now.tv_usec + millis * 1000;
4196  if (usec >= 1000000) {
4197    abstime->tv_sec += 1;
4198    usec -= 1000000;
4199  }
4200  abstime->tv_nsec = usec * 1000;
4201  return abstime;
4202}
4203
4204void os::PlatformEvent::park() {       // AKA "down()"
4205  // Transitions for _Event:
4206  //   -1 => -1 : illegal
4207  //    1 =>  0 : pass - return immediately
4208  //    0 => -1 : block; then set _Event to 0 before returning
4209
4210  // Invariant: Only the thread associated with the Event/PlatformEvent
4211  // may call park().
4212  // TODO: assert that _Assoc != NULL or _Assoc == Self
4213  assert(_nParked == 0, "invariant");
4214
4215  int v;
4216  for (;;) {
4217    v = _Event;
4218    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4219  }
4220  guarantee(v >= 0, "invariant");
4221  if (v == 0) {
4222    // Do this the hard way by blocking ...
4223    int status = pthread_mutex_lock(_mutex);
4224    assert_status(status == 0, status, "mutex_lock");
4225    guarantee(_nParked == 0, "invariant");
4226    ++_nParked;
4227    while (_Event < 0) {
4228      status = pthread_cond_wait(_cond, _mutex);
4229      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4230      // Treat this the same as if the wait was interrupted
4231      if (status == ETIMEDOUT) { status = EINTR; }
4232      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4233    }
4234    --_nParked;
4235
4236    _Event = 0;
4237    status = pthread_mutex_unlock(_mutex);
4238    assert_status(status == 0, status, "mutex_unlock");
4239    // Paranoia to ensure our locked and lock-free paths interact
4240    // correctly with each other.
4241    OrderAccess::fence();
4242  }
4243  guarantee(_Event >= 0, "invariant");
4244}
4245
4246int os::PlatformEvent::park(jlong millis) {
4247  // Transitions for _Event:
4248  //   -1 => -1 : illegal
4249  //    1 =>  0 : pass - return immediately
4250  //    0 => -1 : block; then set _Event to 0 before returning
4251
4252  guarantee(_nParked == 0, "invariant");
4253
4254  int v;
4255  for (;;) {
4256    v = _Event;
4257    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4258  }
4259  guarantee(v >= 0, "invariant");
4260  if (v != 0) return OS_OK;
4261
4262  // We do this the hard way, by blocking the thread.
4263  // Consider enforcing a minimum timeout value.
4264  struct timespec abst;
4265  compute_abstime(&abst, millis);
4266
4267  int ret = OS_TIMEOUT;
4268  int status = pthread_mutex_lock(_mutex);
4269  assert_status(status == 0, status, "mutex_lock");
4270  guarantee(_nParked == 0, "invariant");
4271  ++_nParked;
4272
4273  // Object.wait(timo) will return because of
4274  // (a) notification
4275  // (b) timeout
4276  // (c) thread.interrupt
4277  //
4278  // Thread.interrupt and object.notify{All} both call Event::set.
4279  // That is, we treat thread.interrupt as a special case of notification.
4280  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4281  // We assume all ETIME returns are valid.
4282  //
4283  // TODO: properly differentiate simultaneous notify+interrupt.
4284  // In that case, we should propagate the notify to another waiter.
4285
4286  while (_Event < 0) {
4287    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4288    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4289      pthread_cond_destroy(_cond);
4290      pthread_cond_init(_cond, NULL);
4291    }
4292    assert_status(status == 0 || status == EINTR ||
4293                  status == ETIMEDOUT,
4294                  status, "cond_timedwait");
4295    if (!FilterSpuriousWakeups) break;                 // previous semantics
4296    if (status == ETIMEDOUT) break;
4297    // We consume and ignore EINTR and spurious wakeups.
4298  }
4299  --_nParked;
4300  if (_Event >= 0) {
4301    ret = OS_OK;
4302  }
4303  _Event = 0;
4304  status = pthread_mutex_unlock(_mutex);
4305  assert_status(status == 0, status, "mutex_unlock");
4306  assert(_nParked == 0, "invariant");
4307  // Paranoia to ensure our locked and lock-free paths interact
4308  // correctly with each other.
4309  OrderAccess::fence();
4310  return ret;
4311}
4312
4313void os::PlatformEvent::unpark() {
4314  // Transitions for _Event:
4315  //    0 => 1 : just return
4316  //    1 => 1 : just return
4317  //   -1 => either 0 or 1; must signal target thread
4318  //         That is, we can safely transition _Event from -1 to either
4319  //         0 or 1.
4320  // See also: "Semaphores in Plan 9" by Mullender & Cox
4321  //
4322  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4323  // that it will take two back-to-back park() calls for the owning
4324  // thread to block. This has the benefit of forcing a spurious return
4325  // from the first park() call after an unpark() call which will help
4326  // shake out uses of park() and unpark() without condition variables.
4327
4328  if (Atomic::xchg(1, &_Event) >= 0) return;
4329
4330  // Wait for the thread associated with the event to vacate
4331  int status = pthread_mutex_lock(_mutex);
4332  assert_status(status == 0, status, "mutex_lock");
4333  int AnyWaiters = _nParked;
4334  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4335  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4336    AnyWaiters = 0;
4337    pthread_cond_signal(_cond);
4338  }
4339  status = pthread_mutex_unlock(_mutex);
4340  assert_status(status == 0, status, "mutex_unlock");
4341  if (AnyWaiters != 0) {
4342    // Note that we signal() *after* dropping the lock for "immortal" Events.
4343    // This is safe and avoids a common class of  futile wakeups.  In rare
4344    // circumstances this can cause a thread to return prematurely from
4345    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4346    // will simply re-test the condition and re-park itself.
4347    // This provides particular benefit if the underlying platform does not
4348    // provide wait morphing.
4349    status = pthread_cond_signal(_cond);
4350    assert_status(status == 0, status, "cond_signal");
4351  }
4352}
4353
4354
4355// JSR166
4356// -------------------------------------------------------
4357
4358// The solaris and bsd implementations of park/unpark are fairly
4359// conservative for now, but can be improved. They currently use a
4360// mutex/condvar pair, plus a a count.
4361// Park decrements count if > 0, else does a condvar wait.  Unpark
4362// sets count to 1 and signals condvar.  Only one thread ever waits
4363// on the condvar. Contention seen when trying to park implies that someone
4364// is unparking you, so don't wait. And spurious returns are fine, so there
4365// is no need to track notifications.
4366
4367#define MAX_SECS 100000000
4368
4369// This code is common to bsd and solaris and will be moved to a
4370// common place in dolphin.
4371//
4372// The passed in time value is either a relative time in nanoseconds
4373// or an absolute time in milliseconds. Either way it has to be unpacked
4374// into suitable seconds and nanoseconds components and stored in the
4375// given timespec structure.
4376// Given time is a 64-bit value and the time_t used in the timespec is only
4377// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4378// overflow if times way in the future are given. Further on Solaris versions
4379// prior to 10 there is a restriction (see cond_timedwait) that the specified
4380// number of seconds, in abstime, is less than current_time  + 100,000,000.
4381// As it will be 28 years before "now + 100000000" will overflow we can
4382// ignore overflow and just impose a hard-limit on seconds using the value
4383// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4384// years from "now".
4385
4386static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4387  assert(time > 0, "convertTime");
4388
4389  struct timeval now;
4390  int status = gettimeofday(&now, NULL);
4391  assert(status == 0, "gettimeofday");
4392
4393  time_t max_secs = now.tv_sec + MAX_SECS;
4394
4395  if (isAbsolute) {
4396    jlong secs = time / 1000;
4397    if (secs > max_secs) {
4398      absTime->tv_sec = max_secs;
4399    } else {
4400      absTime->tv_sec = secs;
4401    }
4402    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4403  } else {
4404    jlong secs = time / NANOSECS_PER_SEC;
4405    if (secs >= MAX_SECS) {
4406      absTime->tv_sec = max_secs;
4407      absTime->tv_nsec = 0;
4408    } else {
4409      absTime->tv_sec = now.tv_sec + secs;
4410      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4411      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4412        absTime->tv_nsec -= NANOSECS_PER_SEC;
4413        ++absTime->tv_sec; // note: this must be <= max_secs
4414      }
4415    }
4416  }
4417  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4418  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4419  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4420  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4421}
4422
4423void Parker::park(bool isAbsolute, jlong time) {
4424  // Ideally we'd do something useful while spinning, such
4425  // as calling unpackTime().
4426
4427  // Optional fast-path check:
4428  // Return immediately if a permit is available.
4429  // We depend on Atomic::xchg() having full barrier semantics
4430  // since we are doing a lock-free update to _counter.
4431  if (Atomic::xchg(0, &_counter) > 0) return;
4432
4433  Thread* thread = Thread::current();
4434  assert(thread->is_Java_thread(), "Must be JavaThread");
4435  JavaThread *jt = (JavaThread *)thread;
4436
4437  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4438  // Check interrupt before trying to wait
4439  if (Thread::is_interrupted(thread, false)) {
4440    return;
4441  }
4442
4443  // Next, demultiplex/decode time arguments
4444  struct timespec absTime;
4445  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4446    return;
4447  }
4448  if (time > 0) {
4449    unpackTime(&absTime, isAbsolute, time);
4450  }
4451
4452
4453  // Enter safepoint region
4454  // Beware of deadlocks such as 6317397.
4455  // The per-thread Parker:: mutex is a classic leaf-lock.
4456  // In particular a thread must never block on the Threads_lock while
4457  // holding the Parker:: mutex.  If safepoints are pending both the
4458  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4459  ThreadBlockInVM tbivm(jt);
4460
4461  // Don't wait if cannot get lock since interference arises from
4462  // unblocking.  Also. check interrupt before trying wait
4463  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4464    return;
4465  }
4466
4467  int status;
4468  if (_counter > 0)  { // no wait needed
4469    _counter = 0;
4470    status = pthread_mutex_unlock(_mutex);
4471    assert(status == 0, "invariant");
4472    // Paranoia to ensure our locked and lock-free paths interact
4473    // correctly with each other and Java-level accesses.
4474    OrderAccess::fence();
4475    return;
4476  }
4477
4478#ifdef ASSERT
4479  // Don't catch signals while blocked; let the running threads have the signals.
4480  // (This allows a debugger to break into the running thread.)
4481  sigset_t oldsigs;
4482  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4483  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4484#endif
4485
4486  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4487  jt->set_suspend_equivalent();
4488  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4489
4490  if (time == 0) {
4491    status = pthread_cond_wait(_cond, _mutex);
4492  } else {
4493    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4494    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4495      pthread_cond_destroy(_cond);
4496      pthread_cond_init(_cond, NULL);
4497    }
4498  }
4499  assert_status(status == 0 || status == EINTR ||
4500                status == ETIMEDOUT,
4501                status, "cond_timedwait");
4502
4503#ifdef ASSERT
4504  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4505#endif
4506
4507  _counter = 0;
4508  status = pthread_mutex_unlock(_mutex);
4509  assert_status(status == 0, status, "invariant");
4510  // Paranoia to ensure our locked and lock-free paths interact
4511  // correctly with each other and Java-level accesses.
4512  OrderAccess::fence();
4513
4514  // If externally suspended while waiting, re-suspend
4515  if (jt->handle_special_suspend_equivalent_condition()) {
4516    jt->java_suspend_self();
4517  }
4518}
4519
4520void Parker::unpark() {
4521  int status = pthread_mutex_lock(_mutex);
4522  assert(status == 0, "invariant");
4523  const int s = _counter;
4524  _counter = 1;
4525  if (s < 1) {
4526    if (WorkAroundNPTLTimedWaitHang) {
4527      status = pthread_cond_signal(_cond);
4528      assert(status == 0, "invariant");
4529      status = pthread_mutex_unlock(_mutex);
4530      assert(status == 0, "invariant");
4531    } else {
4532      status = pthread_mutex_unlock(_mutex);
4533      assert(status == 0, "invariant");
4534      status = pthread_cond_signal(_cond);
4535      assert(status == 0, "invariant");
4536    }
4537  } else {
4538    pthread_mutex_unlock(_mutex);
4539    assert(status == 0, "invariant");
4540  }
4541}
4542
4543
4544// Darwin has no "environ" in a dynamic library.
4545#ifdef __APPLE__
4546  #include <crt_externs.h>
4547  #define environ (*_NSGetEnviron())
4548#else
4549extern char** environ;
4550#endif
4551
4552// Run the specified command in a separate process. Return its exit value,
4553// or -1 on failure (e.g. can't fork a new process).
4554// Unlike system(), this function can be called from signal handler. It
4555// doesn't block SIGINT et al.
4556int os::fork_and_exec(char* cmd) {
4557  const char * argv[4] = {"sh", "-c", cmd, NULL};
4558
4559  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4560  // pthread_atfork handlers and reset pthread library. All we need is a
4561  // separate process to execve. Make a direct syscall to fork process.
4562  // On IA64 there's no fork syscall, we have to use fork() and hope for
4563  // the best...
4564  pid_t pid = fork();
4565
4566  if (pid < 0) {
4567    // fork failed
4568    return -1;
4569
4570  } else if (pid == 0) {
4571    // child process
4572
4573    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4574    // first to kill every thread on the thread list. Because this list is
4575    // not reset by fork() (see notes above), execve() will instead kill
4576    // every thread in the parent process. We know this is the only thread
4577    // in the new process, so make a system call directly.
4578    // IA64 should use normal execve() from glibc to match the glibc fork()
4579    // above.
4580    execve("/bin/sh", (char* const*)argv, environ);
4581
4582    // execve failed
4583    _exit(-1);
4584
4585  } else  {
4586    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4587    // care about the actual exit code, for now.
4588
4589    int status;
4590
4591    // Wait for the child process to exit.  This returns immediately if
4592    // the child has already exited. */
4593    while (waitpid(pid, &status, 0) < 0) {
4594      switch (errno) {
4595      case ECHILD: return 0;
4596      case EINTR: break;
4597      default: return -1;
4598      }
4599    }
4600
4601    if (WIFEXITED(status)) {
4602      // The child exited normally; get its exit code.
4603      return WEXITSTATUS(status);
4604    } else if (WIFSIGNALED(status)) {
4605      // The child exited because of a signal
4606      // The best value to return is 0x80 + signal number,
4607      // because that is what all Unix shells do, and because
4608      // it allows callers to distinguish between process exit and
4609      // process death by signal.
4610      return 0x80 + WTERMSIG(status);
4611    } else {
4612      // Unknown exit code; pass it through
4613      return status;
4614    }
4615  }
4616}
4617
4618// is_headless_jre()
4619//
4620// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4621// in order to report if we are running in a headless jre
4622//
4623// Since JDK8 xawt/libmawt.so was moved into the same directory
4624// as libawt.so, and renamed libawt_xawt.so
4625//
4626bool os::is_headless_jre() {
4627#ifdef __APPLE__
4628  // We no longer build headless-only on Mac OS X
4629  return false;
4630#else
4631  struct stat statbuf;
4632  char buf[MAXPATHLEN];
4633  char libmawtpath[MAXPATHLEN];
4634  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4635  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4636  char *p;
4637
4638  // Get path to libjvm.so
4639  os::jvm_path(buf, sizeof(buf));
4640
4641  // Get rid of libjvm.so
4642  p = strrchr(buf, '/');
4643  if (p == NULL) {
4644    return false;
4645  } else {
4646    *p = '\0';
4647  }
4648
4649  // Get rid of client or server
4650  p = strrchr(buf, '/');
4651  if (p == NULL) {
4652    return false;
4653  } else {
4654    *p = '\0';
4655  }
4656
4657  // check xawt/libmawt.so
4658  strcpy(libmawtpath, buf);
4659  strcat(libmawtpath, xawtstr);
4660  if (::stat(libmawtpath, &statbuf) == 0) return false;
4661
4662  // check libawt_xawt.so
4663  strcpy(libmawtpath, buf);
4664  strcat(libmawtpath, new_xawtstr);
4665  if (::stat(libmawtpath, &statbuf) == 0) return false;
4666
4667  return true;
4668#endif
4669}
4670
4671// Get the default path to the core file
4672// Returns the length of the string
4673int os::get_core_path(char* buffer, size_t bufferSize) {
4674  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4675
4676  // Truncate if theoretical string was longer than bufferSize
4677  n = MIN2(n, (int)bufferSize);
4678
4679  return n;
4680}
4681
4682#ifndef PRODUCT
4683void TestReserveMemorySpecial_test() {
4684  // No tests available for this platform
4685}
4686#endif
4687