os_bsd.cpp revision 7344:1d29b13e8a51
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109  #include <elf.h>
110#endif
111
112#ifdef __APPLE__
113  #include <mach/mach.h> // semaphore_* API
114  #include <mach-o/dyld.h>
115  #include <sys/proc_info.h>
116  #include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120  #define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193////////////////////////////////////////////////////////////////////////////////
194// environment support
195
196bool os::getenv(const char* name, char* buf, int len) {
197  const char* val = ::getenv(name);
198  if (val != NULL && strlen(val) < (size_t)len) {
199    strcpy(buf, val);
200    return true;
201  }
202  if (len > 0) buf[0] = 0;  // return a null string
203  return false;
204}
205
206
207// Return true if user is running as root.
208
209bool os::have_special_privileges() {
210  static bool init = false;
211  static bool privileges = false;
212  if (!init) {
213    privileges = (getuid() != geteuid()) || (getgid() != getegid());
214    init = true;
215  }
216  return privileges;
217}
218
219
220
221// Cpu architecture string
222#if   defined(ZERO)
223static char cpu_arch[] = ZERO_LIBARCH;
224#elif defined(IA64)
225static char cpu_arch[] = "ia64";
226#elif defined(IA32)
227static char cpu_arch[] = "i386";
228#elif defined(AMD64)
229static char cpu_arch[] = "amd64";
230#elif defined(ARM)
231static char cpu_arch[] = "arm";
232#elif defined(PPC32)
233static char cpu_arch[] = "ppc";
234#elif defined(SPARC)
235  #ifdef _LP64
236static char cpu_arch[] = "sparcv9";
237  #else
238static char cpu_arch[] = "sparc";
239  #endif
240#else
241  #error Add appropriate cpu_arch setting
242#endif
243
244// Compiler variant
245#ifdef COMPILER2
246  #define COMPILER_VARIANT "server"
247#else
248  #define COMPILER_VARIANT "client"
249#endif
250
251
252void os::Bsd::initialize_system_info() {
253  int mib[2];
254  size_t len;
255  int cpu_val;
256  julong mem_val;
257
258  // get processors count via hw.ncpus sysctl
259  mib[0] = CTL_HW;
260  mib[1] = HW_NCPU;
261  len = sizeof(cpu_val);
262  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
263    assert(len == sizeof(cpu_val), "unexpected data size");
264    set_processor_count(cpu_val);
265  } else {
266    set_processor_count(1);   // fallback
267  }
268
269  // get physical memory via hw.memsize sysctl (hw.memsize is used
270  // since it returns a 64 bit value)
271  mib[0] = CTL_HW;
272
273#if defined (HW_MEMSIZE) // Apple
274  mib[1] = HW_MEMSIZE;
275#elif defined(HW_PHYSMEM) // Most of BSD
276  mib[1] = HW_PHYSMEM;
277#elif defined(HW_REALMEM) // Old FreeBSD
278  mib[1] = HW_REALMEM;
279#else
280  #error No ways to get physmem
281#endif
282
283  len = sizeof(mem_val);
284  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
285    assert(len == sizeof(mem_val), "unexpected data size");
286    _physical_memory = mem_val;
287  } else {
288    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
289  }
290
291#ifdef __OpenBSD__
292  {
293    // limit _physical_memory memory view on OpenBSD since
294    // datasize rlimit restricts us anyway.
295    struct rlimit limits;
296    getrlimit(RLIMIT_DATA, &limits);
297    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
298  }
299#endif
300}
301
302#ifdef __APPLE__
303static const char *get_home() {
304  const char *home_dir = ::getenv("HOME");
305  if ((home_dir == NULL) || (*home_dir == '\0')) {
306    struct passwd *passwd_info = getpwuid(geteuid());
307    if (passwd_info != NULL) {
308      home_dir = passwd_info->pw_dir;
309    }
310  }
311
312  return home_dir;
313}
314#endif
315
316void os::init_system_properties_values() {
317  // The next steps are taken in the product version:
318  //
319  // Obtain the JAVA_HOME value from the location of libjvm.so.
320  // This library should be located at:
321  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
322  //
323  // If "/jre/lib/" appears at the right place in the path, then we
324  // assume libjvm.so is installed in a JDK and we use this path.
325  //
326  // Otherwise exit with message: "Could not create the Java virtual machine."
327  //
328  // The following extra steps are taken in the debugging version:
329  //
330  // If "/jre/lib/" does NOT appear at the right place in the path
331  // instead of exit check for $JAVA_HOME environment variable.
332  //
333  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
334  // then we append a fake suffix "hotspot/libjvm.so" to this path so
335  // it looks like libjvm.so is installed there
336  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
337  //
338  // Otherwise exit.
339  //
340  // Important note: if the location of libjvm.so changes this
341  // code needs to be changed accordingly.
342
343  // See ld(1):
344  //      The linker uses the following search paths to locate required
345  //      shared libraries:
346  //        1: ...
347  //        ...
348  //        7: The default directories, normally /lib and /usr/lib.
349#ifndef DEFAULT_LIBPATH
350  #define DEFAULT_LIBPATH "/lib:/usr/lib"
351#endif
352
353// Base path of extensions installed on the system.
354#define SYS_EXT_DIR     "/usr/java/packages"
355#define EXTENSIONS_DIR  "/lib/ext"
356
357#ifndef __APPLE__
358
359  // Buffer that fits several sprintfs.
360  // Note that the space for the colon and the trailing null are provided
361  // by the nulls included by the sizeof operator.
362  const size_t bufsize =
363    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
364         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
365  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
366
367  // sysclasspath, java_home, dll_dir
368  {
369    char *pslash;
370    os::jvm_path(buf, bufsize);
371
372    // Found the full path to libjvm.so.
373    // Now cut the path to <java_home>/jre if we can.
374    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
375    pslash = strrchr(buf, '/');
376    if (pslash != NULL) {
377      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
378    }
379    Arguments::set_dll_dir(buf);
380
381    if (pslash != NULL) {
382      pslash = strrchr(buf, '/');
383      if (pslash != NULL) {
384        *pslash = '\0';          // Get rid of /<arch>.
385        pslash = strrchr(buf, '/');
386        if (pslash != NULL) {
387          *pslash = '\0';        // Get rid of /lib.
388        }
389      }
390    }
391    Arguments::set_java_home(buf);
392    set_boot_path('/', ':');
393  }
394
395  // Where to look for native libraries.
396  //
397  // Note: Due to a legacy implementation, most of the library path
398  // is set in the launcher. This was to accomodate linking restrictions
399  // on legacy Bsd implementations (which are no longer supported).
400  // Eventually, all the library path setting will be done here.
401  //
402  // However, to prevent the proliferation of improperly built native
403  // libraries, the new path component /usr/java/packages is added here.
404  // Eventually, all the library path setting will be done here.
405  {
406    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
407    // should always exist (until the legacy problem cited above is
408    // addressed).
409    const char *v = ::getenv("LD_LIBRARY_PATH");
410    const char *v_colon = ":";
411    if (v == NULL) { v = ""; v_colon = ""; }
412    // That's +1 for the colon and +1 for the trailing '\0'.
413    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
414                                                     strlen(v) + 1 +
415                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
416                                                     mtInternal);
417    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
418    Arguments::set_library_path(ld_library_path);
419    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
420  }
421
422  // Extensions directories.
423  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
424  Arguments::set_ext_dirs(buf);
425
426  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
427
428#else // __APPLE__
429
430  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
431  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
432
433  const char *user_home_dir = get_home();
434  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
435  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
436    sizeof(SYS_EXTENSIONS_DIRS);
437
438  // Buffer that fits several sprintfs.
439  // Note that the space for the colon and the trailing null are provided
440  // by the nulls included by the sizeof operator.
441  const size_t bufsize =
442    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
443         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
444  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
445
446  // sysclasspath, java_home, dll_dir
447  {
448    char *pslash;
449    os::jvm_path(buf, bufsize);
450
451    // Found the full path to libjvm.so.
452    // Now cut the path to <java_home>/jre if we can.
453    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
454    pslash = strrchr(buf, '/');
455    if (pslash != NULL) {
456      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
457    }
458    Arguments::set_dll_dir(buf);
459
460    if (pslash != NULL) {
461      pslash = strrchr(buf, '/');
462      if (pslash != NULL) {
463        *pslash = '\0';          // Get rid of /lib.
464      }
465    }
466    Arguments::set_java_home(buf);
467    set_boot_path('/', ':');
468  }
469
470  // Where to look for native libraries.
471  //
472  // Note: Due to a legacy implementation, most of the library path
473  // is set in the launcher. This was to accomodate linking restrictions
474  // on legacy Bsd implementations (which are no longer supported).
475  // Eventually, all the library path setting will be done here.
476  //
477  // However, to prevent the proliferation of improperly built native
478  // libraries, the new path component /usr/java/packages is added here.
479  // Eventually, all the library path setting will be done here.
480  {
481    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
482    // should always exist (until the legacy problem cited above is
483    // addressed).
484    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
485    // can specify a directory inside an app wrapper
486    const char *l = ::getenv("JAVA_LIBRARY_PATH");
487    const char *l_colon = ":";
488    if (l == NULL) { l = ""; l_colon = ""; }
489
490    const char *v = ::getenv("DYLD_LIBRARY_PATH");
491    const char *v_colon = ":";
492    if (v == NULL) { v = ""; v_colon = ""; }
493
494    // Apple's Java6 has "." at the beginning of java.library.path.
495    // OpenJDK on Windows has "." at the end of java.library.path.
496    // OpenJDK on Linux and Solaris don't have "." in java.library.path
497    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
498    // "." is appended to the end of java.library.path. Yes, this
499    // could cause a change in behavior, but Apple's Java6 behavior
500    // can be achieved by putting "." at the beginning of the
501    // JAVA_LIBRARY_PATH environment variable.
502    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
503                                                     strlen(v) + 1 + strlen(l) + 1 +
504                                                     system_ext_size + 3,
505                                                     mtInternal);
506    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
507            v, v_colon, l, l_colon, user_home_dir);
508    Arguments::set_library_path(ld_library_path);
509    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
510  }
511
512  // Extensions directories.
513  //
514  // Note that the space for the colon and the trailing null are provided
515  // by the nulls included by the sizeof operator (so actually one byte more
516  // than necessary is allocated).
517  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
518          user_home_dir, Arguments::get_java_home());
519  Arguments::set_ext_dirs(buf);
520
521  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
522
523#undef SYS_EXTENSIONS_DIR
524#undef SYS_EXTENSIONS_DIRS
525
526#endif // __APPLE__
527
528#undef SYS_EXT_DIR
529#undef EXTENSIONS_DIR
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// breakpoint support
534
535void os::breakpoint() {
536  BREAKPOINT;
537}
538
539extern "C" void breakpoint() {
540  // use debugger to set breakpoint here
541}
542
543////////////////////////////////////////////////////////////////////////////////
544// signal support
545
546debug_only(static bool signal_sets_initialized = false);
547static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
548
549bool os::Bsd::is_sig_ignored(int sig) {
550  struct sigaction oact;
551  sigaction(sig, (struct sigaction*)NULL, &oact);
552  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
553                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
554  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
555    return true;
556  } else {
557    return false;
558  }
559}
560
561void os::Bsd::signal_sets_init() {
562  // Should also have an assertion stating we are still single-threaded.
563  assert(!signal_sets_initialized, "Already initialized");
564  // Fill in signals that are necessarily unblocked for all threads in
565  // the VM. Currently, we unblock the following signals:
566  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
567  //                         by -Xrs (=ReduceSignalUsage));
568  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
569  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
570  // the dispositions or masks wrt these signals.
571  // Programs embedding the VM that want to use the above signals for their
572  // own purposes must, at this time, use the "-Xrs" option to prevent
573  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
574  // (See bug 4345157, and other related bugs).
575  // In reality, though, unblocking these signals is really a nop, since
576  // these signals are not blocked by default.
577  sigemptyset(&unblocked_sigs);
578  sigemptyset(&allowdebug_blocked_sigs);
579  sigaddset(&unblocked_sigs, SIGILL);
580  sigaddset(&unblocked_sigs, SIGSEGV);
581  sigaddset(&unblocked_sigs, SIGBUS);
582  sigaddset(&unblocked_sigs, SIGFPE);
583  sigaddset(&unblocked_sigs, SR_signum);
584
585  if (!ReduceSignalUsage) {
586    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
587      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
588      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
589    }
590    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
591      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
592      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
593    }
594    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
595      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
596      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
597    }
598  }
599  // Fill in signals that are blocked by all but the VM thread.
600  sigemptyset(&vm_sigs);
601  if (!ReduceSignalUsage) {
602    sigaddset(&vm_sigs, BREAK_SIGNAL);
603  }
604  debug_only(signal_sets_initialized = true);
605
606}
607
608// These are signals that are unblocked while a thread is running Java.
609// (For some reason, they get blocked by default.)
610sigset_t* os::Bsd::unblocked_signals() {
611  assert(signal_sets_initialized, "Not initialized");
612  return &unblocked_sigs;
613}
614
615// These are the signals that are blocked while a (non-VM) thread is
616// running Java. Only the VM thread handles these signals.
617sigset_t* os::Bsd::vm_signals() {
618  assert(signal_sets_initialized, "Not initialized");
619  return &vm_sigs;
620}
621
622// These are signals that are blocked during cond_wait to allow debugger in
623sigset_t* os::Bsd::allowdebug_blocked_signals() {
624  assert(signal_sets_initialized, "Not initialized");
625  return &allowdebug_blocked_sigs;
626}
627
628void os::Bsd::hotspot_sigmask(Thread* thread) {
629
630  //Save caller's signal mask before setting VM signal mask
631  sigset_t caller_sigmask;
632  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
633
634  OSThread* osthread = thread->osthread();
635  osthread->set_caller_sigmask(caller_sigmask);
636
637  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
638
639  if (!ReduceSignalUsage) {
640    if (thread->is_VM_thread()) {
641      // Only the VM thread handles BREAK_SIGNAL ...
642      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
643    } else {
644      // ... all other threads block BREAK_SIGNAL
645      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
646    }
647  }
648}
649
650
651//////////////////////////////////////////////////////////////////////////////
652// create new thread
653
654// check if it's safe to start a new thread
655static bool _thread_safety_check(Thread* thread) {
656  return true;
657}
658
659#ifdef __APPLE__
660// library handle for calling objc_registerThreadWithCollector()
661// without static linking to the libobjc library
662  #define OBJC_LIB "/usr/lib/libobjc.dylib"
663  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
664typedef void (*objc_registerThreadWithCollector_t)();
665extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
666objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
667#endif
668
669#ifdef __APPLE__
670static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
671  // Additional thread_id used to correlate threads in SA
672  thread_identifier_info_data_t     m_ident_info;
673  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
674
675  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
676              (thread_info_t) &m_ident_info, &count);
677
678  return m_ident_info.thread_id;
679}
680#endif
681
682// Thread start routine for all newly created threads
683static void *java_start(Thread *thread) {
684  // Try to randomize the cache line index of hot stack frames.
685  // This helps when threads of the same stack traces evict each other's
686  // cache lines. The threads can be either from the same JVM instance, or
687  // from different JVM instances. The benefit is especially true for
688  // processors with hyperthreading technology.
689  static int counter = 0;
690  int pid = os::current_process_id();
691  alloca(((pid ^ counter++) & 7) * 128);
692
693  ThreadLocalStorage::set_thread(thread);
694
695  OSThread* osthread = thread->osthread();
696  Monitor* sync = osthread->startThread_lock();
697
698  // non floating stack BsdThreads needs extra check, see above
699  if (!_thread_safety_check(thread)) {
700    // notify parent thread
701    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
702    osthread->set_state(ZOMBIE);
703    sync->notify_all();
704    return NULL;
705  }
706
707  osthread->set_thread_id(os::Bsd::gettid());
708
709#ifdef __APPLE__
710  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
711  guarantee(unique_thread_id != 0, "unique thread id was not found");
712  osthread->set_unique_thread_id(unique_thread_id);
713#endif
714  // initialize signal mask for this thread
715  os::Bsd::hotspot_sigmask(thread);
716
717  // initialize floating point control register
718  os::Bsd::init_thread_fpu_state();
719
720#ifdef __APPLE__
721  // register thread with objc gc
722  if (objc_registerThreadWithCollectorFunction != NULL) {
723    objc_registerThreadWithCollectorFunction();
724  }
725#endif
726
727  // handshaking with parent thread
728  {
729    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
730
731    // notify parent thread
732    osthread->set_state(INITIALIZED);
733    sync->notify_all();
734
735    // wait until os::start_thread()
736    while (osthread->get_state() == INITIALIZED) {
737      sync->wait(Mutex::_no_safepoint_check_flag);
738    }
739  }
740
741  // call one more level start routine
742  thread->run();
743
744  return 0;
745}
746
747bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
748  assert(thread->osthread() == NULL, "caller responsible");
749
750  // Allocate the OSThread object
751  OSThread* osthread = new OSThread(NULL, NULL);
752  if (osthread == NULL) {
753    return false;
754  }
755
756  // set the correct thread state
757  osthread->set_thread_type(thr_type);
758
759  // Initial state is ALLOCATED but not INITIALIZED
760  osthread->set_state(ALLOCATED);
761
762  thread->set_osthread(osthread);
763
764  // init thread attributes
765  pthread_attr_t attr;
766  pthread_attr_init(&attr);
767  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
768
769  // stack size
770  if (os::Bsd::supports_variable_stack_size()) {
771    // calculate stack size if it's not specified by caller
772    if (stack_size == 0) {
773      stack_size = os::Bsd::default_stack_size(thr_type);
774
775      switch (thr_type) {
776      case os::java_thread:
777        // Java threads use ThreadStackSize which default value can be
778        // changed with the flag -Xss
779        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
780        stack_size = JavaThread::stack_size_at_create();
781        break;
782      case os::compiler_thread:
783        if (CompilerThreadStackSize > 0) {
784          stack_size = (size_t)(CompilerThreadStackSize * K);
785          break;
786        } // else fall through:
787          // use VMThreadStackSize if CompilerThreadStackSize is not defined
788      case os::vm_thread:
789      case os::pgc_thread:
790      case os::cgc_thread:
791      case os::watcher_thread:
792        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
793        break;
794      }
795    }
796
797    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
798    pthread_attr_setstacksize(&attr, stack_size);
799  } else {
800    // let pthread_create() pick the default value.
801  }
802
803  ThreadState state;
804
805  {
806    pthread_t tid;
807    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
808
809    pthread_attr_destroy(&attr);
810
811    if (ret != 0) {
812      if (PrintMiscellaneous && (Verbose || WizardMode)) {
813        perror("pthread_create()");
814      }
815      // Need to clean up stuff we've allocated so far
816      thread->set_osthread(NULL);
817      delete osthread;
818      return false;
819    }
820
821    // Store pthread info into the OSThread
822    osthread->set_pthread_id(tid);
823
824    // Wait until child thread is either initialized or aborted
825    {
826      Monitor* sync_with_child = osthread->startThread_lock();
827      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
828      while ((state = osthread->get_state()) == ALLOCATED) {
829        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
830      }
831    }
832
833  }
834
835  // Aborted due to thread limit being reached
836  if (state == ZOMBIE) {
837    thread->set_osthread(NULL);
838    delete osthread;
839    return false;
840  }
841
842  // The thread is returned suspended (in state INITIALIZED),
843  // and is started higher up in the call chain
844  assert(state == INITIALIZED, "race condition");
845  return true;
846}
847
848/////////////////////////////////////////////////////////////////////////////
849// attach existing thread
850
851// bootstrap the main thread
852bool os::create_main_thread(JavaThread* thread) {
853  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
854  return create_attached_thread(thread);
855}
856
857bool os::create_attached_thread(JavaThread* thread) {
858#ifdef ASSERT
859  thread->verify_not_published();
860#endif
861
862  // Allocate the OSThread object
863  OSThread* osthread = new OSThread(NULL, NULL);
864
865  if (osthread == NULL) {
866    return false;
867  }
868
869  osthread->set_thread_id(os::Bsd::gettid());
870
871  // Store pthread info into the OSThread
872#ifdef __APPLE__
873  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
874  guarantee(unique_thread_id != 0, "just checking");
875  osthread->set_unique_thread_id(unique_thread_id);
876#endif
877  osthread->set_pthread_id(::pthread_self());
878
879  // initialize floating point control register
880  os::Bsd::init_thread_fpu_state();
881
882  // Initial thread state is RUNNABLE
883  osthread->set_state(RUNNABLE);
884
885  thread->set_osthread(osthread);
886
887  // initialize signal mask for this thread
888  // and save the caller's signal mask
889  os::Bsd::hotspot_sigmask(thread);
890
891  return true;
892}
893
894void os::pd_start_thread(Thread* thread) {
895  OSThread * osthread = thread->osthread();
896  assert(osthread->get_state() != INITIALIZED, "just checking");
897  Monitor* sync_with_child = osthread->startThread_lock();
898  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
899  sync_with_child->notify();
900}
901
902// Free Bsd resources related to the OSThread
903void os::free_thread(OSThread* osthread) {
904  assert(osthread != NULL, "osthread not set");
905
906  if (Thread::current()->osthread() == osthread) {
907    // Restore caller's signal mask
908    sigset_t sigmask = osthread->caller_sigmask();
909    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
910  }
911
912  delete osthread;
913}
914
915//////////////////////////////////////////////////////////////////////////////
916// thread local storage
917
918// Restore the thread pointer if the destructor is called. This is in case
919// someone from JNI code sets up a destructor with pthread_key_create to run
920// detachCurrentThread on thread death. Unless we restore the thread pointer we
921// will hang or crash. When detachCurrentThread is called the key will be set
922// to null and we will not be called again. If detachCurrentThread is never
923// called we could loop forever depending on the pthread implementation.
924static void restore_thread_pointer(void* p) {
925  Thread* thread = (Thread*) p;
926  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
927}
928
929int os::allocate_thread_local_storage() {
930  pthread_key_t key;
931  int rslt = pthread_key_create(&key, restore_thread_pointer);
932  assert(rslt == 0, "cannot allocate thread local storage");
933  return (int)key;
934}
935
936// Note: This is currently not used by VM, as we don't destroy TLS key
937// on VM exit.
938void os::free_thread_local_storage(int index) {
939  int rslt = pthread_key_delete((pthread_key_t)index);
940  assert(rslt == 0, "invalid index");
941}
942
943void os::thread_local_storage_at_put(int index, void* value) {
944  int rslt = pthread_setspecific((pthread_key_t)index, value);
945  assert(rslt == 0, "pthread_setspecific failed");
946}
947
948extern "C" Thread* get_thread() {
949  return ThreadLocalStorage::thread();
950}
951
952
953////////////////////////////////////////////////////////////////////////////////
954// time support
955
956// Time since start-up in seconds to a fine granularity.
957// Used by VMSelfDestructTimer and the MemProfiler.
958double os::elapsedTime() {
959
960  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
961}
962
963jlong os::elapsed_counter() {
964  return javaTimeNanos() - initial_time_count;
965}
966
967jlong os::elapsed_frequency() {
968  return NANOSECS_PER_SEC; // nanosecond resolution
969}
970
971bool os::supports_vtime() { return true; }
972bool os::enable_vtime()   { return false; }
973bool os::vtime_enabled()  { return false; }
974
975double os::elapsedVTime() {
976  // better than nothing, but not much
977  return elapsedTime();
978}
979
980jlong os::javaTimeMillis() {
981  timeval time;
982  int status = gettimeofday(&time, NULL);
983  assert(status != -1, "bsd error");
984  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
985}
986
987#ifndef __APPLE__
988  #ifndef CLOCK_MONOTONIC
989    #define CLOCK_MONOTONIC (1)
990  #endif
991#endif
992
993#ifdef __APPLE__
994void os::Bsd::clock_init() {
995  mach_timebase_info(&_timebase_info);
996}
997#else
998void os::Bsd::clock_init() {
999  struct timespec res;
1000  struct timespec tp;
1001  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1002      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1003    // yes, monotonic clock is supported
1004    _clock_gettime = ::clock_gettime;
1005  }
1006}
1007#endif
1008
1009
1010
1011#ifdef __APPLE__
1012
1013jlong os::javaTimeNanos() {
1014  const uint64_t tm = mach_absolute_time();
1015  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1016  const uint64_t prev = Bsd::_max_abstime;
1017  if (now <= prev) {
1018    return prev;   // same or retrograde time;
1019  }
1020  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1021  assert(obsv >= prev, "invariant");   // Monotonicity
1022  // If the CAS succeeded then we're done and return "now".
1023  // If the CAS failed and the observed value "obsv" is >= now then
1024  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1025  // some other thread raced this thread and installed a new value, in which case
1026  // we could either (a) retry the entire operation, (b) retry trying to install now
1027  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1028  // we might discard a higher "now" value in deference to a slightly lower but freshly
1029  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1030  // to (a) or (b) -- and greatly reduces coherence traffic.
1031  // We might also condition (c) on the magnitude of the delta between obsv and now.
1032  // Avoiding excessive CAS operations to hot RW locations is critical.
1033  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1034  return (prev == obsv) ? now : obsv;
1035}
1036
1037#else // __APPLE__
1038
1039jlong os::javaTimeNanos() {
1040  if (os::supports_monotonic_clock()) {
1041    struct timespec tp;
1042    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1043    assert(status == 0, "gettime error");
1044    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1045    return result;
1046  } else {
1047    timeval time;
1048    int status = gettimeofday(&time, NULL);
1049    assert(status != -1, "bsd error");
1050    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1051    return 1000 * usecs;
1052  }
1053}
1054
1055#endif // __APPLE__
1056
1057void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1058  if (os::supports_monotonic_clock()) {
1059    info_ptr->max_value = ALL_64_BITS;
1060
1061    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1062    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1063    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1064  } else {
1065    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1066    info_ptr->max_value = ALL_64_BITS;
1067
1068    // gettimeofday is a real time clock so it skips
1069    info_ptr->may_skip_backward = true;
1070    info_ptr->may_skip_forward = true;
1071  }
1072
1073  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1074}
1075
1076// Return the real, user, and system times in seconds from an
1077// arbitrary fixed point in the past.
1078bool os::getTimesSecs(double* process_real_time,
1079                      double* process_user_time,
1080                      double* process_system_time) {
1081  struct tms ticks;
1082  clock_t real_ticks = times(&ticks);
1083
1084  if (real_ticks == (clock_t) (-1)) {
1085    return false;
1086  } else {
1087    double ticks_per_second = (double) clock_tics_per_sec;
1088    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1089    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1090    *process_real_time = ((double) real_ticks) / ticks_per_second;
1091
1092    return true;
1093  }
1094}
1095
1096
1097char * os::local_time_string(char *buf, size_t buflen) {
1098  struct tm t;
1099  time_t long_time;
1100  time(&long_time);
1101  localtime_r(&long_time, &t);
1102  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1103               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1104               t.tm_hour, t.tm_min, t.tm_sec);
1105  return buf;
1106}
1107
1108struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1109  return localtime_r(clock, res);
1110}
1111
1112////////////////////////////////////////////////////////////////////////////////
1113// runtime exit support
1114
1115// Note: os::shutdown() might be called very early during initialization, or
1116// called from signal handler. Before adding something to os::shutdown(), make
1117// sure it is async-safe and can handle partially initialized VM.
1118void os::shutdown() {
1119
1120  // allow PerfMemory to attempt cleanup of any persistent resources
1121  perfMemory_exit();
1122
1123  // needs to remove object in file system
1124  AttachListener::abort();
1125
1126  // flush buffered output, finish log files
1127  ostream_abort();
1128
1129  // Check for abort hook
1130  abort_hook_t abort_hook = Arguments::abort_hook();
1131  if (abort_hook != NULL) {
1132    abort_hook();
1133  }
1134
1135}
1136
1137// Note: os::abort() might be called very early during initialization, or
1138// called from signal handler. Before adding something to os::abort(), make
1139// sure it is async-safe and can handle partially initialized VM.
1140void os::abort(bool dump_core) {
1141  os::shutdown();
1142  if (dump_core) {
1143#ifndef PRODUCT
1144    fdStream out(defaultStream::output_fd());
1145    out.print_raw("Current thread is ");
1146    char buf[16];
1147    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1148    out.print_raw_cr(buf);
1149    out.print_raw_cr("Dumping core ...");
1150#endif
1151    ::abort(); // dump core
1152  }
1153
1154  ::exit(1);
1155}
1156
1157// Die immediately, no exit hook, no abort hook, no cleanup.
1158void os::die() {
1159  // _exit() on BsdThreads only kills current thread
1160  ::abort();
1161}
1162
1163// This method is a copy of JDK's sysGetLastErrorString
1164// from src/solaris/hpi/src/system_md.c
1165
1166size_t os::lasterror(char *buf, size_t len) {
1167  if (errno == 0)  return 0;
1168
1169  const char *s = ::strerror(errno);
1170  size_t n = ::strlen(s);
1171  if (n >= len) {
1172    n = len - 1;
1173  }
1174  ::strncpy(buf, s, n);
1175  buf[n] = '\0';
1176  return n;
1177}
1178
1179// Information of current thread in variety of formats
1180pid_t os::Bsd::gettid() {
1181  int retval = -1;
1182
1183#ifdef __APPLE__ //XNU kernel
1184  // despite the fact mach port is actually not a thread id use it
1185  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1186  retval = ::pthread_mach_thread_np(::pthread_self());
1187  guarantee(retval != 0, "just checking");
1188  return retval;
1189
1190#elif __FreeBSD__
1191  retval = syscall(SYS_thr_self);
1192#elif __OpenBSD__
1193  retval = syscall(SYS_getthrid);
1194#elif __NetBSD__
1195  retval = (pid_t) syscall(SYS__lwp_self);
1196#endif
1197
1198  if (retval == -1) {
1199    return getpid();
1200  }
1201}
1202
1203intx os::current_thread_id() {
1204#ifdef __APPLE__
1205  return (intx)::pthread_mach_thread_np(::pthread_self());
1206#else
1207  return (intx)::pthread_self();
1208#endif
1209}
1210
1211int os::current_process_id() {
1212
1213  // Under the old bsd thread library, bsd gives each thread
1214  // its own process id. Because of this each thread will return
1215  // a different pid if this method were to return the result
1216  // of getpid(2). Bsd provides no api that returns the pid
1217  // of the launcher thread for the vm. This implementation
1218  // returns a unique pid, the pid of the launcher thread
1219  // that starts the vm 'process'.
1220
1221  // Under the NPTL, getpid() returns the same pid as the
1222  // launcher thread rather than a unique pid per thread.
1223  // Use gettid() if you want the old pre NPTL behaviour.
1224
1225  // if you are looking for the result of a call to getpid() that
1226  // returns a unique pid for the calling thread, then look at the
1227  // OSThread::thread_id() method in osThread_bsd.hpp file
1228
1229  return (int)(_initial_pid ? _initial_pid : getpid());
1230}
1231
1232// DLL functions
1233
1234#define JNI_LIB_PREFIX "lib"
1235#ifdef __APPLE__
1236  #define JNI_LIB_SUFFIX ".dylib"
1237#else
1238  #define JNI_LIB_SUFFIX ".so"
1239#endif
1240
1241const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1242
1243// This must be hard coded because it's the system's temporary
1244// directory not the java application's temp directory, ala java.io.tmpdir.
1245#ifdef __APPLE__
1246// macosx has a secure per-user temporary directory
1247char temp_path_storage[PATH_MAX];
1248const char* os::get_temp_directory() {
1249  static char *temp_path = NULL;
1250  if (temp_path == NULL) {
1251    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1252    if (pathSize == 0 || pathSize > PATH_MAX) {
1253      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1254    }
1255    temp_path = temp_path_storage;
1256  }
1257  return temp_path;
1258}
1259#else // __APPLE__
1260const char* os::get_temp_directory() { return "/tmp"; }
1261#endif // __APPLE__
1262
1263static bool file_exists(const char* filename) {
1264  struct stat statbuf;
1265  if (filename == NULL || strlen(filename) == 0) {
1266    return false;
1267  }
1268  return os::stat(filename, &statbuf) == 0;
1269}
1270
1271bool os::dll_build_name(char* buffer, size_t buflen,
1272                        const char* pname, const char* fname) {
1273  bool retval = false;
1274  // Copied from libhpi
1275  const size_t pnamelen = pname ? strlen(pname) : 0;
1276
1277  // Return error on buffer overflow.
1278  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1279    return retval;
1280  }
1281
1282  if (pnamelen == 0) {
1283    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1284    retval = true;
1285  } else if (strchr(pname, *os::path_separator()) != NULL) {
1286    int n;
1287    char** pelements = split_path(pname, &n);
1288    if (pelements == NULL) {
1289      return false;
1290    }
1291    for (int i = 0; i < n; i++) {
1292      // Really shouldn't be NULL, but check can't hurt
1293      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1294        continue; // skip the empty path values
1295      }
1296      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1297               pelements[i], fname);
1298      if (file_exists(buffer)) {
1299        retval = true;
1300        break;
1301      }
1302    }
1303    // release the storage
1304    for (int i = 0; i < n; i++) {
1305      if (pelements[i] != NULL) {
1306        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1307      }
1308    }
1309    if (pelements != NULL) {
1310      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1311    }
1312  } else {
1313    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1314    retval = true;
1315  }
1316  return retval;
1317}
1318
1319// check if addr is inside libjvm.so
1320bool os::address_is_in_vm(address addr) {
1321  static address libjvm_base_addr;
1322  Dl_info dlinfo;
1323
1324  if (libjvm_base_addr == NULL) {
1325    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1326      libjvm_base_addr = (address)dlinfo.dli_fbase;
1327    }
1328    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1329  }
1330
1331  if (dladdr((void *)addr, &dlinfo) != 0) {
1332    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1333  }
1334
1335  return false;
1336}
1337
1338
1339#define MACH_MAXSYMLEN 256
1340
1341bool os::dll_address_to_function_name(address addr, char *buf,
1342                                      int buflen, int *offset) {
1343  // buf is not optional, but offset is optional
1344  assert(buf != NULL, "sanity check");
1345
1346  Dl_info dlinfo;
1347  char localbuf[MACH_MAXSYMLEN];
1348
1349  if (dladdr((void*)addr, &dlinfo) != 0) {
1350    // see if we have a matching symbol
1351    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1352      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1353        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1354      }
1355      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1356      return true;
1357    }
1358    // no matching symbol so try for just file info
1359    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1360      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1361                          buf, buflen, offset, dlinfo.dli_fname)) {
1362        return true;
1363      }
1364    }
1365
1366    // Handle non-dynamic manually:
1367    if (dlinfo.dli_fbase != NULL &&
1368        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1369      if (!Decoder::demangle(localbuf, buf, buflen)) {
1370        jio_snprintf(buf, buflen, "%s", localbuf);
1371      }
1372      return true;
1373    }
1374  }
1375  buf[0] = '\0';
1376  if (offset != NULL) *offset = -1;
1377  return false;
1378}
1379
1380// ported from solaris version
1381bool os::dll_address_to_library_name(address addr, char* buf,
1382                                     int buflen, int* offset) {
1383  // buf is not optional, but offset is optional
1384  assert(buf != NULL, "sanity check");
1385
1386  Dl_info dlinfo;
1387
1388  if (dladdr((void*)addr, &dlinfo) != 0) {
1389    if (dlinfo.dli_fname != NULL) {
1390      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1391    }
1392    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1393      *offset = addr - (address)dlinfo.dli_fbase;
1394    }
1395    return true;
1396  }
1397
1398  buf[0] = '\0';
1399  if (offset) *offset = -1;
1400  return false;
1401}
1402
1403// Loads .dll/.so and
1404// in case of error it checks if .dll/.so was built for the
1405// same architecture as Hotspot is running on
1406
1407#ifdef __APPLE__
1408void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1409  void * result= ::dlopen(filename, RTLD_LAZY);
1410  if (result != NULL) {
1411    // Successful loading
1412    return result;
1413  }
1414
1415  // Read system error message into ebuf
1416  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1417  ebuf[ebuflen-1]='\0';
1418
1419  return NULL;
1420}
1421#else
1422void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1423  void * result= ::dlopen(filename, RTLD_LAZY);
1424  if (result != NULL) {
1425    // Successful loading
1426    return result;
1427  }
1428
1429  Elf32_Ehdr elf_head;
1430
1431  // Read system error message into ebuf
1432  // It may or may not be overwritten below
1433  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1434  ebuf[ebuflen-1]='\0';
1435  int diag_msg_max_length=ebuflen-strlen(ebuf);
1436  char* diag_msg_buf=ebuf+strlen(ebuf);
1437
1438  if (diag_msg_max_length==0) {
1439    // No more space in ebuf for additional diagnostics message
1440    return NULL;
1441  }
1442
1443
1444  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1445
1446  if (file_descriptor < 0) {
1447    // Can't open library, report dlerror() message
1448    return NULL;
1449  }
1450
1451  bool failed_to_read_elf_head=
1452    (sizeof(elf_head)!=
1453     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1454
1455  ::close(file_descriptor);
1456  if (failed_to_read_elf_head) {
1457    // file i/o error - report dlerror() msg
1458    return NULL;
1459  }
1460
1461  typedef struct {
1462    Elf32_Half  code;         // Actual value as defined in elf.h
1463    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1464    char        elf_class;    // 32 or 64 bit
1465    char        endianess;    // MSB or LSB
1466    char*       name;         // String representation
1467  } arch_t;
1468
1469  #ifndef EM_486
1470    #define EM_486          6               /* Intel 80486 */
1471  #endif
1472
1473  #ifndef EM_MIPS_RS3_LE
1474    #define EM_MIPS_RS3_LE  10              /* MIPS */
1475  #endif
1476
1477  #ifndef EM_PPC64
1478    #define EM_PPC64        21              /* PowerPC64 */
1479  #endif
1480
1481  #ifndef EM_S390
1482    #define EM_S390         22              /* IBM System/390 */
1483  #endif
1484
1485  #ifndef EM_IA_64
1486    #define EM_IA_64        50              /* HP/Intel IA-64 */
1487  #endif
1488
1489  #ifndef EM_X86_64
1490    #define EM_X86_64       62              /* AMD x86-64 */
1491  #endif
1492
1493  static const arch_t arch_array[]={
1494    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1495    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1496    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1497    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1498    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1499    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1500    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1501    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1502    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1503    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1504    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1505    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1506    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1507    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1508    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1509    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1510  };
1511
1512  #if  (defined IA32)
1513  static  Elf32_Half running_arch_code=EM_386;
1514  #elif   (defined AMD64)
1515  static  Elf32_Half running_arch_code=EM_X86_64;
1516  #elif  (defined IA64)
1517  static  Elf32_Half running_arch_code=EM_IA_64;
1518  #elif  (defined __sparc) && (defined _LP64)
1519  static  Elf32_Half running_arch_code=EM_SPARCV9;
1520  #elif  (defined __sparc) && (!defined _LP64)
1521  static  Elf32_Half running_arch_code=EM_SPARC;
1522  #elif  (defined __powerpc64__)
1523  static  Elf32_Half running_arch_code=EM_PPC64;
1524  #elif  (defined __powerpc__)
1525  static  Elf32_Half running_arch_code=EM_PPC;
1526  #elif  (defined ARM)
1527  static  Elf32_Half running_arch_code=EM_ARM;
1528  #elif  (defined S390)
1529  static  Elf32_Half running_arch_code=EM_S390;
1530  #elif  (defined ALPHA)
1531  static  Elf32_Half running_arch_code=EM_ALPHA;
1532  #elif  (defined MIPSEL)
1533  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1534  #elif  (defined PARISC)
1535  static  Elf32_Half running_arch_code=EM_PARISC;
1536  #elif  (defined MIPS)
1537  static  Elf32_Half running_arch_code=EM_MIPS;
1538  #elif  (defined M68K)
1539  static  Elf32_Half running_arch_code=EM_68K;
1540  #else
1541    #error Method os::dll_load requires that one of following is defined:\
1542         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1543  #endif
1544
1545  // Identify compatability class for VM's architecture and library's architecture
1546  // Obtain string descriptions for architectures
1547
1548  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1549  int running_arch_index=-1;
1550
1551  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1552    if (running_arch_code == arch_array[i].code) {
1553      running_arch_index    = i;
1554    }
1555    if (lib_arch.code == arch_array[i].code) {
1556      lib_arch.compat_class = arch_array[i].compat_class;
1557      lib_arch.name         = arch_array[i].name;
1558    }
1559  }
1560
1561  assert(running_arch_index != -1,
1562         "Didn't find running architecture code (running_arch_code) in arch_array");
1563  if (running_arch_index == -1) {
1564    // Even though running architecture detection failed
1565    // we may still continue with reporting dlerror() message
1566    return NULL;
1567  }
1568
1569  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1570    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1571    return NULL;
1572  }
1573
1574#ifndef S390
1575  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1576    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1577    return NULL;
1578  }
1579#endif // !S390
1580
1581  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1582    if (lib_arch.name!=NULL) {
1583      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1584                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1585                 lib_arch.name, arch_array[running_arch_index].name);
1586    } else {
1587      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1588                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1589                 lib_arch.code,
1590                 arch_array[running_arch_index].name);
1591    }
1592  }
1593
1594  return NULL;
1595}
1596#endif // !__APPLE__
1597
1598void* os::get_default_process_handle() {
1599#ifdef __APPLE__
1600  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1601  // to avoid finding unexpected symbols on second (or later)
1602  // loads of a library.
1603  return (void*)::dlopen(NULL, RTLD_FIRST);
1604#else
1605  return (void*)::dlopen(NULL, RTLD_LAZY);
1606#endif
1607}
1608
1609// XXX: Do we need a lock around this as per Linux?
1610void* os::dll_lookup(void* handle, const char* name) {
1611  return dlsym(handle, name);
1612}
1613
1614
1615static bool _print_ascii_file(const char* filename, outputStream* st) {
1616  int fd = ::open(filename, O_RDONLY);
1617  if (fd == -1) {
1618    return false;
1619  }
1620
1621  char buf[32];
1622  int bytes;
1623  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1624    st->print_raw(buf, bytes);
1625  }
1626
1627  ::close(fd);
1628
1629  return true;
1630}
1631
1632int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1633  outputStream * out = (outputStream *) param;
1634  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1635  return 0;
1636}
1637
1638void os::print_dll_info(outputStream *st) {
1639  st->print_cr("Dynamic libraries:");
1640  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1641    st->print_cr("Error: Cannot print dynamic libraries.");
1642  }
1643}
1644
1645int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1646#ifdef RTLD_DI_LINKMAP
1647  Dl_info dli;
1648  void *handle;
1649  Link_map *map;
1650  Link_map *p;
1651
1652  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1653      dli.dli_fname == NULL) {
1654    return 1;
1655  }
1656  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1657  if (handle == NULL) {
1658    return 1;
1659  }
1660  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1661  if (map == NULL) {
1662    dlclose(handle);
1663    return 1;
1664  }
1665
1666  while (map->l_prev != NULL)
1667    map = map->l_prev;
1668
1669  while (map != NULL) {
1670    // Value for top_address is returned as 0 since we don't have any information about module size
1671    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1672      dlclose(handle);
1673      return 1;
1674    }
1675    map = map->l_next;
1676  }
1677
1678  dlclose(handle);
1679#elif defined(__APPLE__)
1680  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1681    // Value for top_address is returned as 0 since we don't have any information about module size
1682    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1683      return 1;
1684    }
1685  }
1686  return 0;
1687#else
1688  return 1;
1689#endif
1690}
1691
1692void os::print_os_info_brief(outputStream* st) {
1693  st->print("Bsd");
1694
1695  os::Posix::print_uname_info(st);
1696}
1697
1698void os::print_os_info(outputStream* st) {
1699  st->print("OS:");
1700  st->print("Bsd");
1701
1702  os::Posix::print_uname_info(st);
1703
1704  os::Posix::print_rlimit_info(st);
1705
1706  os::Posix::print_load_average(st);
1707}
1708
1709void os::pd_print_cpu_info(outputStream* st) {
1710  // Nothing to do for now.
1711}
1712
1713void os::print_memory_info(outputStream* st) {
1714
1715  st->print("Memory:");
1716  st->print(" %dk page", os::vm_page_size()>>10);
1717
1718  st->print(", physical " UINT64_FORMAT "k",
1719            os::physical_memory() >> 10);
1720  st->print("(" UINT64_FORMAT "k free)",
1721            os::available_memory() >> 10);
1722  st->cr();
1723
1724  // meminfo
1725  st->print("\n/proc/meminfo:\n");
1726  _print_ascii_file("/proc/meminfo", st);
1727  st->cr();
1728}
1729
1730void os::print_siginfo(outputStream* st, void* siginfo) {
1731  const siginfo_t* si = (const siginfo_t*)siginfo;
1732
1733  os::Posix::print_siginfo_brief(st, si);
1734
1735  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1736      UseSharedSpaces) {
1737    FileMapInfo* mapinfo = FileMapInfo::current_info();
1738    if (mapinfo->is_in_shared_space(si->si_addr)) {
1739      st->print("\n\nError accessing class data sharing archive."   \
1740                " Mapped file inaccessible during execution, "      \
1741                " possible disk/network problem.");
1742    }
1743  }
1744  st->cr();
1745}
1746
1747
1748static void print_signal_handler(outputStream* st, int sig,
1749                                 char* buf, size_t buflen);
1750
1751void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1752  st->print_cr("Signal Handlers:");
1753  print_signal_handler(st, SIGSEGV, buf, buflen);
1754  print_signal_handler(st, SIGBUS , buf, buflen);
1755  print_signal_handler(st, SIGFPE , buf, buflen);
1756  print_signal_handler(st, SIGPIPE, buf, buflen);
1757  print_signal_handler(st, SIGXFSZ, buf, buflen);
1758  print_signal_handler(st, SIGILL , buf, buflen);
1759  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1760  print_signal_handler(st, SR_signum, buf, buflen);
1761  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1762  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1763  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1764  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1765}
1766
1767static char saved_jvm_path[MAXPATHLEN] = {0};
1768
1769// Find the full path to the current module, libjvm
1770void os::jvm_path(char *buf, jint buflen) {
1771  // Error checking.
1772  if (buflen < MAXPATHLEN) {
1773    assert(false, "must use a large-enough buffer");
1774    buf[0] = '\0';
1775    return;
1776  }
1777  // Lazy resolve the path to current module.
1778  if (saved_jvm_path[0] != 0) {
1779    strcpy(buf, saved_jvm_path);
1780    return;
1781  }
1782
1783  char dli_fname[MAXPATHLEN];
1784  bool ret = dll_address_to_library_name(
1785                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1786                                         dli_fname, sizeof(dli_fname), NULL);
1787  assert(ret, "cannot locate libjvm");
1788  char *rp = NULL;
1789  if (ret && dli_fname[0] != '\0') {
1790    rp = realpath(dli_fname, buf);
1791  }
1792  if (rp == NULL) {
1793    return;
1794  }
1795
1796  if (Arguments::sun_java_launcher_is_altjvm()) {
1797    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1798    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1799    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1800    // appears at the right place in the string, then assume we are
1801    // installed in a JDK and we're done. Otherwise, check for a
1802    // JAVA_HOME environment variable and construct a path to the JVM
1803    // being overridden.
1804
1805    const char *p = buf + strlen(buf) - 1;
1806    for (int count = 0; p > buf && count < 5; ++count) {
1807      for (--p; p > buf && *p != '/'; --p)
1808        /* empty */ ;
1809    }
1810
1811    if (strncmp(p, "/jre/lib/", 9) != 0) {
1812      // Look for JAVA_HOME in the environment.
1813      char* java_home_var = ::getenv("JAVA_HOME");
1814      if (java_home_var != NULL && java_home_var[0] != 0) {
1815        char* jrelib_p;
1816        int len;
1817
1818        // Check the current module name "libjvm"
1819        p = strrchr(buf, '/');
1820        assert(strstr(p, "/libjvm") == p, "invalid library name");
1821
1822        rp = realpath(java_home_var, buf);
1823        if (rp == NULL) {
1824          return;
1825        }
1826
1827        // determine if this is a legacy image or modules image
1828        // modules image doesn't have "jre" subdirectory
1829        len = strlen(buf);
1830        assert(len < buflen, "Ran out of buffer space");
1831        jrelib_p = buf + len;
1832
1833        // Add the appropriate library subdir
1834        snprintf(jrelib_p, buflen-len, "/jre/lib");
1835        if (0 != access(buf, F_OK)) {
1836          snprintf(jrelib_p, buflen-len, "/lib");
1837        }
1838
1839        // Add the appropriate client or server subdir
1840        len = strlen(buf);
1841        jrelib_p = buf + len;
1842        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1843        if (0 != access(buf, F_OK)) {
1844          snprintf(jrelib_p, buflen-len, "%s", "");
1845        }
1846
1847        // If the path exists within JAVA_HOME, add the JVM library name
1848        // to complete the path to JVM being overridden.  Otherwise fallback
1849        // to the path to the current library.
1850        if (0 == access(buf, F_OK)) {
1851          // Use current module name "libjvm"
1852          len = strlen(buf);
1853          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1854        } else {
1855          // Fall back to path of current library
1856          rp = realpath(dli_fname, buf);
1857          if (rp == NULL) {
1858            return;
1859          }
1860        }
1861      }
1862    }
1863  }
1864
1865  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1866  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1867}
1868
1869void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1870  // no prefix required, not even "_"
1871}
1872
1873void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1874  // no suffix required
1875}
1876
1877////////////////////////////////////////////////////////////////////////////////
1878// sun.misc.Signal support
1879
1880static volatile jint sigint_count = 0;
1881
1882static void UserHandler(int sig, void *siginfo, void *context) {
1883  // 4511530 - sem_post is serialized and handled by the manager thread. When
1884  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1885  // don't want to flood the manager thread with sem_post requests.
1886  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1887    return;
1888  }
1889
1890  // Ctrl-C is pressed during error reporting, likely because the error
1891  // handler fails to abort. Let VM die immediately.
1892  if (sig == SIGINT && is_error_reported()) {
1893    os::die();
1894  }
1895
1896  os::signal_notify(sig);
1897}
1898
1899void* os::user_handler() {
1900  return CAST_FROM_FN_PTR(void*, UserHandler);
1901}
1902
1903extern "C" {
1904  typedef void (*sa_handler_t)(int);
1905  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1906}
1907
1908void* os::signal(int signal_number, void* handler) {
1909  struct sigaction sigAct, oldSigAct;
1910
1911  sigfillset(&(sigAct.sa_mask));
1912  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1913  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1914
1915  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1916    // -1 means registration failed
1917    return (void *)-1;
1918  }
1919
1920  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1921}
1922
1923void os::signal_raise(int signal_number) {
1924  ::raise(signal_number);
1925}
1926
1927// The following code is moved from os.cpp for making this
1928// code platform specific, which it is by its very nature.
1929
1930// Will be modified when max signal is changed to be dynamic
1931int os::sigexitnum_pd() {
1932  return NSIG;
1933}
1934
1935// a counter for each possible signal value
1936static volatile jint pending_signals[NSIG+1] = { 0 };
1937
1938// Bsd(POSIX) specific hand shaking semaphore.
1939#ifdef __APPLE__
1940typedef semaphore_t os_semaphore_t;
1941
1942  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1943  #define SEM_WAIT(sem)           semaphore_wait(sem)
1944  #define SEM_POST(sem)           semaphore_signal(sem)
1945  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1946#else
1947typedef sem_t os_semaphore_t;
1948
1949  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1950  #define SEM_WAIT(sem)           sem_wait(&sem)
1951  #define SEM_POST(sem)           sem_post(&sem)
1952  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1953#endif
1954
1955class Semaphore : public StackObj {
1956 public:
1957  Semaphore();
1958  ~Semaphore();
1959  void signal();
1960  void wait();
1961  bool trywait();
1962  bool timedwait(unsigned int sec, int nsec);
1963 private:
1964  jlong currenttime() const;
1965  os_semaphore_t _semaphore;
1966};
1967
1968Semaphore::Semaphore() : _semaphore(0) {
1969  SEM_INIT(_semaphore, 0);
1970}
1971
1972Semaphore::~Semaphore() {
1973  SEM_DESTROY(_semaphore);
1974}
1975
1976void Semaphore::signal() {
1977  SEM_POST(_semaphore);
1978}
1979
1980void Semaphore::wait() {
1981  SEM_WAIT(_semaphore);
1982}
1983
1984jlong Semaphore::currenttime() const {
1985  struct timeval tv;
1986  gettimeofday(&tv, NULL);
1987  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1988}
1989
1990#ifdef __APPLE__
1991bool Semaphore::trywait() {
1992  return timedwait(0, 0);
1993}
1994
1995bool Semaphore::timedwait(unsigned int sec, int nsec) {
1996  kern_return_t kr = KERN_ABORTED;
1997  mach_timespec_t waitspec;
1998  waitspec.tv_sec = sec;
1999  waitspec.tv_nsec = nsec;
2000
2001  jlong starttime = currenttime();
2002
2003  kr = semaphore_timedwait(_semaphore, waitspec);
2004  while (kr == KERN_ABORTED) {
2005    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2006
2007    jlong current = currenttime();
2008    jlong passedtime = current - starttime;
2009
2010    if (passedtime >= totalwait) {
2011      waitspec.tv_sec = 0;
2012      waitspec.tv_nsec = 0;
2013    } else {
2014      jlong waittime = totalwait - (current - starttime);
2015      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2016      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2017    }
2018
2019    kr = semaphore_timedwait(_semaphore, waitspec);
2020  }
2021
2022  return kr == KERN_SUCCESS;
2023}
2024
2025#else
2026
2027bool Semaphore::trywait() {
2028  return sem_trywait(&_semaphore) == 0;
2029}
2030
2031bool Semaphore::timedwait(unsigned int sec, int nsec) {
2032  struct timespec ts;
2033  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2034
2035  while (1) {
2036    int result = sem_timedwait(&_semaphore, &ts);
2037    if (result == 0) {
2038      return true;
2039    } else if (errno == EINTR) {
2040      continue;
2041    } else if (errno == ETIMEDOUT) {
2042      return false;
2043    } else {
2044      return false;
2045    }
2046  }
2047}
2048
2049#endif // __APPLE__
2050
2051static os_semaphore_t sig_sem;
2052static Semaphore sr_semaphore;
2053
2054void os::signal_init_pd() {
2055  // Initialize signal structures
2056  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2057
2058  // Initialize signal semaphore
2059  ::SEM_INIT(sig_sem, 0);
2060}
2061
2062void os::signal_notify(int sig) {
2063  Atomic::inc(&pending_signals[sig]);
2064  ::SEM_POST(sig_sem);
2065}
2066
2067static int check_pending_signals(bool wait) {
2068  Atomic::store(0, &sigint_count);
2069  for (;;) {
2070    for (int i = 0; i < NSIG + 1; i++) {
2071      jint n = pending_signals[i];
2072      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2073        return i;
2074      }
2075    }
2076    if (!wait) {
2077      return -1;
2078    }
2079    JavaThread *thread = JavaThread::current();
2080    ThreadBlockInVM tbivm(thread);
2081
2082    bool threadIsSuspended;
2083    do {
2084      thread->set_suspend_equivalent();
2085      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2086      ::SEM_WAIT(sig_sem);
2087
2088      // were we externally suspended while we were waiting?
2089      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2090      if (threadIsSuspended) {
2091        // The semaphore has been incremented, but while we were waiting
2092        // another thread suspended us. We don't want to continue running
2093        // while suspended because that would surprise the thread that
2094        // suspended us.
2095        ::SEM_POST(sig_sem);
2096
2097        thread->java_suspend_self();
2098      }
2099    } while (threadIsSuspended);
2100  }
2101}
2102
2103int os::signal_lookup() {
2104  return check_pending_signals(false);
2105}
2106
2107int os::signal_wait() {
2108  return check_pending_signals(true);
2109}
2110
2111////////////////////////////////////////////////////////////////////////////////
2112// Virtual Memory
2113
2114int os::vm_page_size() {
2115  // Seems redundant as all get out
2116  assert(os::Bsd::page_size() != -1, "must call os::init");
2117  return os::Bsd::page_size();
2118}
2119
2120// Solaris allocates memory by pages.
2121int os::vm_allocation_granularity() {
2122  assert(os::Bsd::page_size() != -1, "must call os::init");
2123  return os::Bsd::page_size();
2124}
2125
2126// Rationale behind this function:
2127//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2128//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2129//  samples for JITted code. Here we create private executable mapping over the code cache
2130//  and then we can use standard (well, almost, as mapping can change) way to provide
2131//  info for the reporting script by storing timestamp and location of symbol
2132void bsd_wrap_code(char* base, size_t size) {
2133  static volatile jint cnt = 0;
2134
2135  if (!UseOprofile) {
2136    return;
2137  }
2138
2139  char buf[PATH_MAX + 1];
2140  int num = Atomic::add(1, &cnt);
2141
2142  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2143           os::get_temp_directory(), os::current_process_id(), num);
2144  unlink(buf);
2145
2146  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2147
2148  if (fd != -1) {
2149    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2150    if (rv != (off_t)-1) {
2151      if (::write(fd, "", 1) == 1) {
2152        mmap(base, size,
2153             PROT_READ|PROT_WRITE|PROT_EXEC,
2154             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2155      }
2156    }
2157    ::close(fd);
2158    unlink(buf);
2159  }
2160}
2161
2162static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2163                                    int err) {
2164  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2165          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2166          strerror(err), err);
2167}
2168
2169// NOTE: Bsd kernel does not really reserve the pages for us.
2170//       All it does is to check if there are enough free pages
2171//       left at the time of mmap(). This could be a potential
2172//       problem.
2173bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2174  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2175#ifdef __OpenBSD__
2176  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2177  if (::mprotect(addr, size, prot) == 0) {
2178    return true;
2179  }
2180#else
2181  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2182                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2183  if (res != (uintptr_t) MAP_FAILED) {
2184    return true;
2185  }
2186#endif
2187
2188  // Warn about any commit errors we see in non-product builds just
2189  // in case mmap() doesn't work as described on the man page.
2190  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2191
2192  return false;
2193}
2194
2195bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2196                          bool exec) {
2197  // alignment_hint is ignored on this OS
2198  return pd_commit_memory(addr, size, exec);
2199}
2200
2201void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2202                                  const char* mesg) {
2203  assert(mesg != NULL, "mesg must be specified");
2204  if (!pd_commit_memory(addr, size, exec)) {
2205    // add extra info in product mode for vm_exit_out_of_memory():
2206    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2207    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2208  }
2209}
2210
2211void os::pd_commit_memory_or_exit(char* addr, size_t size,
2212                                  size_t alignment_hint, bool exec,
2213                                  const char* mesg) {
2214  // alignment_hint is ignored on this OS
2215  pd_commit_memory_or_exit(addr, size, exec, mesg);
2216}
2217
2218void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2219}
2220
2221void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2222  ::madvise(addr, bytes, MADV_DONTNEED);
2223}
2224
2225void os::numa_make_global(char *addr, size_t bytes) {
2226}
2227
2228void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2229}
2230
2231bool os::numa_topology_changed()   { return false; }
2232
2233size_t os::numa_get_groups_num() {
2234  return 1;
2235}
2236
2237int os::numa_get_group_id() {
2238  return 0;
2239}
2240
2241size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2242  if (size > 0) {
2243    ids[0] = 0;
2244    return 1;
2245  }
2246  return 0;
2247}
2248
2249bool os::get_page_info(char *start, page_info* info) {
2250  return false;
2251}
2252
2253char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2254  return end;
2255}
2256
2257
2258bool os::pd_uncommit_memory(char* addr, size_t size) {
2259#ifdef __OpenBSD__
2260  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2261  return ::mprotect(addr, size, PROT_NONE) == 0;
2262#else
2263  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2264                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2265  return res  != (uintptr_t) MAP_FAILED;
2266#endif
2267}
2268
2269bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2270  return os::commit_memory(addr, size, !ExecMem);
2271}
2272
2273// If this is a growable mapping, remove the guard pages entirely by
2274// munmap()ping them.  If not, just call uncommit_memory().
2275bool os::remove_stack_guard_pages(char* addr, size_t size) {
2276  return os::uncommit_memory(addr, size);
2277}
2278
2279static address _highest_vm_reserved_address = NULL;
2280
2281// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2282// at 'requested_addr'. If there are existing memory mappings at the same
2283// location, however, they will be overwritten. If 'fixed' is false,
2284// 'requested_addr' is only treated as a hint, the return value may or
2285// may not start from the requested address. Unlike Bsd mmap(), this
2286// function returns NULL to indicate failure.
2287static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2288  char * addr;
2289  int flags;
2290
2291  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2292  if (fixed) {
2293    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2294    flags |= MAP_FIXED;
2295  }
2296
2297  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2298  // touch an uncommitted page. Otherwise, the read/write might
2299  // succeed if we have enough swap space to back the physical page.
2300  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2301                       flags, -1, 0);
2302
2303  if (addr != MAP_FAILED) {
2304    // anon_mmap() should only get called during VM initialization,
2305    // don't need lock (actually we can skip locking even it can be called
2306    // from multiple threads, because _highest_vm_reserved_address is just a
2307    // hint about the upper limit of non-stack memory regions.)
2308    if ((address)addr + bytes > _highest_vm_reserved_address) {
2309      _highest_vm_reserved_address = (address)addr + bytes;
2310    }
2311  }
2312
2313  return addr == MAP_FAILED ? NULL : addr;
2314}
2315
2316// Don't update _highest_vm_reserved_address, because there might be memory
2317// regions above addr + size. If so, releasing a memory region only creates
2318// a hole in the address space, it doesn't help prevent heap-stack collision.
2319//
2320static int anon_munmap(char * addr, size_t size) {
2321  return ::munmap(addr, size) == 0;
2322}
2323
2324char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2325                            size_t alignment_hint) {
2326  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2327}
2328
2329bool os::pd_release_memory(char* addr, size_t size) {
2330  return anon_munmap(addr, size);
2331}
2332
2333static bool bsd_mprotect(char* addr, size_t size, int prot) {
2334  // Bsd wants the mprotect address argument to be page aligned.
2335  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2336
2337  // According to SUSv3, mprotect() should only be used with mappings
2338  // established by mmap(), and mmap() always maps whole pages. Unaligned
2339  // 'addr' likely indicates problem in the VM (e.g. trying to change
2340  // protection of malloc'ed or statically allocated memory). Check the
2341  // caller if you hit this assert.
2342  assert(addr == bottom, "sanity check");
2343
2344  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2345  return ::mprotect(bottom, size, prot) == 0;
2346}
2347
2348// Set protections specified
2349bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2350                        bool is_committed) {
2351  unsigned int p = 0;
2352  switch (prot) {
2353  case MEM_PROT_NONE: p = PROT_NONE; break;
2354  case MEM_PROT_READ: p = PROT_READ; break;
2355  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2356  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2357  default:
2358    ShouldNotReachHere();
2359  }
2360  // is_committed is unused.
2361  return bsd_mprotect(addr, bytes, p);
2362}
2363
2364bool os::guard_memory(char* addr, size_t size) {
2365  return bsd_mprotect(addr, size, PROT_NONE);
2366}
2367
2368bool os::unguard_memory(char* addr, size_t size) {
2369  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2370}
2371
2372bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2373  return false;
2374}
2375
2376// Large page support
2377
2378static size_t _large_page_size = 0;
2379
2380void os::large_page_init() {
2381}
2382
2383
2384char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2385  fatal("This code is not used or maintained.");
2386
2387  // "exec" is passed in but not used.  Creating the shared image for
2388  // the code cache doesn't have an SHM_X executable permission to check.
2389  assert(UseLargePages && UseSHM, "only for SHM large pages");
2390
2391  key_t key = IPC_PRIVATE;
2392  char *addr;
2393
2394  bool warn_on_failure = UseLargePages &&
2395                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2396                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2397
2398  // Create a large shared memory region to attach to based on size.
2399  // Currently, size is the total size of the heap
2400  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2401  if (shmid == -1) {
2402    // Possible reasons for shmget failure:
2403    // 1. shmmax is too small for Java heap.
2404    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2405    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2406    // 2. not enough large page memory.
2407    //    > check available large pages: cat /proc/meminfo
2408    //    > increase amount of large pages:
2409    //          echo new_value > /proc/sys/vm/nr_hugepages
2410    //      Note 1: different Bsd may use different name for this property,
2411    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2412    //      Note 2: it's possible there's enough physical memory available but
2413    //            they are so fragmented after a long run that they can't
2414    //            coalesce into large pages. Try to reserve large pages when
2415    //            the system is still "fresh".
2416    if (warn_on_failure) {
2417      warning("Failed to reserve shared memory (errno = %d).", errno);
2418    }
2419    return NULL;
2420  }
2421
2422  // attach to the region
2423  addr = (char*)shmat(shmid, req_addr, 0);
2424  int err = errno;
2425
2426  // Remove shmid. If shmat() is successful, the actual shared memory segment
2427  // will be deleted when it's detached by shmdt() or when the process
2428  // terminates. If shmat() is not successful this will remove the shared
2429  // segment immediately.
2430  shmctl(shmid, IPC_RMID, NULL);
2431
2432  if ((intptr_t)addr == -1) {
2433    if (warn_on_failure) {
2434      warning("Failed to attach shared memory (errno = %d).", err);
2435    }
2436    return NULL;
2437  }
2438
2439  // The memory is committed
2440  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2441
2442  return addr;
2443}
2444
2445bool os::release_memory_special(char* base, size_t bytes) {
2446  if (MemTracker::tracking_level() > NMT_minimal) {
2447    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2448    // detaching the SHM segment will also delete it, see reserve_memory_special()
2449    int rslt = shmdt(base);
2450    if (rslt == 0) {
2451      tkr.record((address)base, bytes);
2452      return true;
2453    } else {
2454      return false;
2455    }
2456  } else {
2457    return shmdt(base) == 0;
2458  }
2459}
2460
2461size_t os::large_page_size() {
2462  return _large_page_size;
2463}
2464
2465// HugeTLBFS allows application to commit large page memory on demand;
2466// with SysV SHM the entire memory region must be allocated as shared
2467// memory.
2468bool os::can_commit_large_page_memory() {
2469  return UseHugeTLBFS;
2470}
2471
2472bool os::can_execute_large_page_memory() {
2473  return UseHugeTLBFS;
2474}
2475
2476// Reserve memory at an arbitrary address, only if that area is
2477// available (and not reserved for something else).
2478
2479char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2480  const int max_tries = 10;
2481  char* base[max_tries];
2482  size_t size[max_tries];
2483  const size_t gap = 0x000000;
2484
2485  // Assert only that the size is a multiple of the page size, since
2486  // that's all that mmap requires, and since that's all we really know
2487  // about at this low abstraction level.  If we need higher alignment,
2488  // we can either pass an alignment to this method or verify alignment
2489  // in one of the methods further up the call chain.  See bug 5044738.
2490  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2491
2492  // Repeatedly allocate blocks until the block is allocated at the
2493  // right spot. Give up after max_tries. Note that reserve_memory() will
2494  // automatically update _highest_vm_reserved_address if the call is
2495  // successful. The variable tracks the highest memory address every reserved
2496  // by JVM. It is used to detect heap-stack collision if running with
2497  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2498  // space than needed, it could confuse the collision detecting code. To
2499  // solve the problem, save current _highest_vm_reserved_address and
2500  // calculate the correct value before return.
2501  address old_highest = _highest_vm_reserved_address;
2502
2503  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2504  // if kernel honors the hint then we can return immediately.
2505  char * addr = anon_mmap(requested_addr, bytes, false);
2506  if (addr == requested_addr) {
2507    return requested_addr;
2508  }
2509
2510  if (addr != NULL) {
2511    // mmap() is successful but it fails to reserve at the requested address
2512    anon_munmap(addr, bytes);
2513  }
2514
2515  int i;
2516  for (i = 0; i < max_tries; ++i) {
2517    base[i] = reserve_memory(bytes);
2518
2519    if (base[i] != NULL) {
2520      // Is this the block we wanted?
2521      if (base[i] == requested_addr) {
2522        size[i] = bytes;
2523        break;
2524      }
2525
2526      // Does this overlap the block we wanted? Give back the overlapped
2527      // parts and try again.
2528
2529      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2530      if (top_overlap >= 0 && top_overlap < bytes) {
2531        unmap_memory(base[i], top_overlap);
2532        base[i] += top_overlap;
2533        size[i] = bytes - top_overlap;
2534      } else {
2535        size_t bottom_overlap = base[i] + bytes - requested_addr;
2536        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2537          unmap_memory(requested_addr, bottom_overlap);
2538          size[i] = bytes - bottom_overlap;
2539        } else {
2540          size[i] = bytes;
2541        }
2542      }
2543    }
2544  }
2545
2546  // Give back the unused reserved pieces.
2547
2548  for (int j = 0; j < i; ++j) {
2549    if (base[j] != NULL) {
2550      unmap_memory(base[j], size[j]);
2551    }
2552  }
2553
2554  if (i < max_tries) {
2555    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2556    return requested_addr;
2557  } else {
2558    _highest_vm_reserved_address = old_highest;
2559    return NULL;
2560  }
2561}
2562
2563size_t os::read(int fd, void *buf, unsigned int nBytes) {
2564  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2565}
2566
2567size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2568  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2569}
2570
2571void os::naked_short_sleep(jlong ms) {
2572  struct timespec req;
2573
2574  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2575  req.tv_sec = 0;
2576  if (ms > 0) {
2577    req.tv_nsec = (ms % 1000) * 1000000;
2578  } else {
2579    req.tv_nsec = 1;
2580  }
2581
2582  nanosleep(&req, NULL);
2583
2584  return;
2585}
2586
2587// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2588void os::infinite_sleep() {
2589  while (true) {    // sleep forever ...
2590    ::sleep(100);   // ... 100 seconds at a time
2591  }
2592}
2593
2594// Used to convert frequent JVM_Yield() to nops
2595bool os::dont_yield() {
2596  return DontYieldALot;
2597}
2598
2599void os::naked_yield() {
2600  sched_yield();
2601}
2602
2603////////////////////////////////////////////////////////////////////////////////
2604// thread priority support
2605
2606// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2607// only supports dynamic priority, static priority must be zero. For real-time
2608// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2609// However, for large multi-threaded applications, SCHED_RR is not only slower
2610// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2611// of 5 runs - Sep 2005).
2612//
2613// The following code actually changes the niceness of kernel-thread/LWP. It
2614// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2615// not the entire user process, and user level threads are 1:1 mapped to kernel
2616// threads. It has always been the case, but could change in the future. For
2617// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2618// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2619
2620#if !defined(__APPLE__)
2621int os::java_to_os_priority[CriticalPriority + 1] = {
2622  19,              // 0 Entry should never be used
2623
2624   0,              // 1 MinPriority
2625   3,              // 2
2626   6,              // 3
2627
2628  10,              // 4
2629  15,              // 5 NormPriority
2630  18,              // 6
2631
2632  21,              // 7
2633  25,              // 8
2634  28,              // 9 NearMaxPriority
2635
2636  31,              // 10 MaxPriority
2637
2638  31               // 11 CriticalPriority
2639};
2640#else
2641// Using Mach high-level priority assignments
2642int os::java_to_os_priority[CriticalPriority + 1] = {
2643   0,              // 0 Entry should never be used (MINPRI_USER)
2644
2645  27,              // 1 MinPriority
2646  28,              // 2
2647  29,              // 3
2648
2649  30,              // 4
2650  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2651  32,              // 6
2652
2653  33,              // 7
2654  34,              // 8
2655  35,              // 9 NearMaxPriority
2656
2657  36,              // 10 MaxPriority
2658
2659  36               // 11 CriticalPriority
2660};
2661#endif
2662
2663static int prio_init() {
2664  if (ThreadPriorityPolicy == 1) {
2665    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2666    // if effective uid is not root. Perhaps, a more elegant way of doing
2667    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2668    if (geteuid() != 0) {
2669      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2670        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2671      }
2672      ThreadPriorityPolicy = 0;
2673    }
2674  }
2675  if (UseCriticalJavaThreadPriority) {
2676    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2677  }
2678  return 0;
2679}
2680
2681OSReturn os::set_native_priority(Thread* thread, int newpri) {
2682  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2683
2684#ifdef __OpenBSD__
2685  // OpenBSD pthread_setprio starves low priority threads
2686  return OS_OK;
2687#elif defined(__FreeBSD__)
2688  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2689#elif defined(__APPLE__) || defined(__NetBSD__)
2690  struct sched_param sp;
2691  int policy;
2692  pthread_t self = pthread_self();
2693
2694  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2695    return OS_ERR;
2696  }
2697
2698  sp.sched_priority = newpri;
2699  if (pthread_setschedparam(self, policy, &sp) != 0) {
2700    return OS_ERR;
2701  }
2702
2703  return OS_OK;
2704#else
2705  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2706  return (ret == 0) ? OS_OK : OS_ERR;
2707#endif
2708}
2709
2710OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2711  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2712    *priority_ptr = java_to_os_priority[NormPriority];
2713    return OS_OK;
2714  }
2715
2716  errno = 0;
2717#if defined(__OpenBSD__) || defined(__FreeBSD__)
2718  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2719#elif defined(__APPLE__) || defined(__NetBSD__)
2720  int policy;
2721  struct sched_param sp;
2722
2723  pthread_getschedparam(pthread_self(), &policy, &sp);
2724  *priority_ptr = sp.sched_priority;
2725#else
2726  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2727#endif
2728  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2729}
2730
2731// Hint to the underlying OS that a task switch would not be good.
2732// Void return because it's a hint and can fail.
2733void os::hint_no_preempt() {}
2734
2735////////////////////////////////////////////////////////////////////////////////
2736// suspend/resume support
2737
2738//  the low-level signal-based suspend/resume support is a remnant from the
2739//  old VM-suspension that used to be for java-suspension, safepoints etc,
2740//  within hotspot. Now there is a single use-case for this:
2741//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2742//      that runs in the watcher thread.
2743//  The remaining code is greatly simplified from the more general suspension
2744//  code that used to be used.
2745//
2746//  The protocol is quite simple:
2747//  - suspend:
2748//      - sends a signal to the target thread
2749//      - polls the suspend state of the osthread using a yield loop
2750//      - target thread signal handler (SR_handler) sets suspend state
2751//        and blocks in sigsuspend until continued
2752//  - resume:
2753//      - sets target osthread state to continue
2754//      - sends signal to end the sigsuspend loop in the SR_handler
2755//
2756//  Note that the SR_lock plays no role in this suspend/resume protocol.
2757
2758static void resume_clear_context(OSThread *osthread) {
2759  osthread->set_ucontext(NULL);
2760  osthread->set_siginfo(NULL);
2761}
2762
2763static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2764  osthread->set_ucontext(context);
2765  osthread->set_siginfo(siginfo);
2766}
2767
2768// Handler function invoked when a thread's execution is suspended or
2769// resumed. We have to be careful that only async-safe functions are
2770// called here (Note: most pthread functions are not async safe and
2771// should be avoided.)
2772//
2773// Note: sigwait() is a more natural fit than sigsuspend() from an
2774// interface point of view, but sigwait() prevents the signal hander
2775// from being run. libpthread would get very confused by not having
2776// its signal handlers run and prevents sigwait()'s use with the
2777// mutex granting granting signal.
2778//
2779// Currently only ever called on the VMThread or JavaThread
2780//
2781static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2782  // Save and restore errno to avoid confusing native code with EINTR
2783  // after sigsuspend.
2784  int old_errno = errno;
2785
2786  Thread* thread = Thread::current();
2787  OSThread* osthread = thread->osthread();
2788  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2789
2790  os::SuspendResume::State current = osthread->sr.state();
2791  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2792    suspend_save_context(osthread, siginfo, context);
2793
2794    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2795    os::SuspendResume::State state = osthread->sr.suspended();
2796    if (state == os::SuspendResume::SR_SUSPENDED) {
2797      sigset_t suspend_set;  // signals for sigsuspend()
2798
2799      // get current set of blocked signals and unblock resume signal
2800      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2801      sigdelset(&suspend_set, SR_signum);
2802
2803      sr_semaphore.signal();
2804      // wait here until we are resumed
2805      while (1) {
2806        sigsuspend(&suspend_set);
2807
2808        os::SuspendResume::State result = osthread->sr.running();
2809        if (result == os::SuspendResume::SR_RUNNING) {
2810          sr_semaphore.signal();
2811          break;
2812        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2813          ShouldNotReachHere();
2814        }
2815      }
2816
2817    } else if (state == os::SuspendResume::SR_RUNNING) {
2818      // request was cancelled, continue
2819    } else {
2820      ShouldNotReachHere();
2821    }
2822
2823    resume_clear_context(osthread);
2824  } else if (current == os::SuspendResume::SR_RUNNING) {
2825    // request was cancelled, continue
2826  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2827    // ignore
2828  } else {
2829    // ignore
2830  }
2831
2832  errno = old_errno;
2833}
2834
2835
2836static int SR_initialize() {
2837  struct sigaction act;
2838  char *s;
2839  // Get signal number to use for suspend/resume
2840  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2841    int sig = ::strtol(s, 0, 10);
2842    if (sig > 0 || sig < NSIG) {
2843      SR_signum = sig;
2844    }
2845  }
2846
2847  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2848         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2849
2850  sigemptyset(&SR_sigset);
2851  sigaddset(&SR_sigset, SR_signum);
2852
2853  // Set up signal handler for suspend/resume
2854  act.sa_flags = SA_RESTART|SA_SIGINFO;
2855  act.sa_handler = (void (*)(int)) SR_handler;
2856
2857  // SR_signum is blocked by default.
2858  // 4528190 - We also need to block pthread restart signal (32 on all
2859  // supported Bsd platforms). Note that BsdThreads need to block
2860  // this signal for all threads to work properly. So we don't have
2861  // to use hard-coded signal number when setting up the mask.
2862  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2863
2864  if (sigaction(SR_signum, &act, 0) == -1) {
2865    return -1;
2866  }
2867
2868  // Save signal flag
2869  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2870  return 0;
2871}
2872
2873static int sr_notify(OSThread* osthread) {
2874  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2875  assert_status(status == 0, status, "pthread_kill");
2876  return status;
2877}
2878
2879// "Randomly" selected value for how long we want to spin
2880// before bailing out on suspending a thread, also how often
2881// we send a signal to a thread we want to resume
2882static const int RANDOMLY_LARGE_INTEGER = 1000000;
2883static const int RANDOMLY_LARGE_INTEGER2 = 100;
2884
2885// returns true on success and false on error - really an error is fatal
2886// but this seems the normal response to library errors
2887static bool do_suspend(OSThread* osthread) {
2888  assert(osthread->sr.is_running(), "thread should be running");
2889  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2890
2891  // mark as suspended and send signal
2892  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2893    // failed to switch, state wasn't running?
2894    ShouldNotReachHere();
2895    return false;
2896  }
2897
2898  if (sr_notify(osthread) != 0) {
2899    ShouldNotReachHere();
2900  }
2901
2902  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2903  while (true) {
2904    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2905      break;
2906    } else {
2907      // timeout
2908      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2909      if (cancelled == os::SuspendResume::SR_RUNNING) {
2910        return false;
2911      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2912        // make sure that we consume the signal on the semaphore as well
2913        sr_semaphore.wait();
2914        break;
2915      } else {
2916        ShouldNotReachHere();
2917        return false;
2918      }
2919    }
2920  }
2921
2922  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2923  return true;
2924}
2925
2926static void do_resume(OSThread* osthread) {
2927  assert(osthread->sr.is_suspended(), "thread should be suspended");
2928  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2929
2930  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2931    // failed to switch to WAKEUP_REQUEST
2932    ShouldNotReachHere();
2933    return;
2934  }
2935
2936  while (true) {
2937    if (sr_notify(osthread) == 0) {
2938      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2939        if (osthread->sr.is_running()) {
2940          return;
2941        }
2942      }
2943    } else {
2944      ShouldNotReachHere();
2945    }
2946  }
2947
2948  guarantee(osthread->sr.is_running(), "Must be running!");
2949}
2950
2951///////////////////////////////////////////////////////////////////////////////////
2952// signal handling (except suspend/resume)
2953
2954// This routine may be used by user applications as a "hook" to catch signals.
2955// The user-defined signal handler must pass unrecognized signals to this
2956// routine, and if it returns true (non-zero), then the signal handler must
2957// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2958// routine will never retun false (zero), but instead will execute a VM panic
2959// routine kill the process.
2960//
2961// If this routine returns false, it is OK to call it again.  This allows
2962// the user-defined signal handler to perform checks either before or after
2963// the VM performs its own checks.  Naturally, the user code would be making
2964// a serious error if it tried to handle an exception (such as a null check
2965// or breakpoint) that the VM was generating for its own correct operation.
2966//
2967// This routine may recognize any of the following kinds of signals:
2968//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2969// It should be consulted by handlers for any of those signals.
2970//
2971// The caller of this routine must pass in the three arguments supplied
2972// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2973// field of the structure passed to sigaction().  This routine assumes that
2974// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2975//
2976// Note that the VM will print warnings if it detects conflicting signal
2977// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2978//
2979extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2980                                               void* ucontext,
2981                                               int abort_if_unrecognized);
2982
2983void signalHandler(int sig, siginfo_t* info, void* uc) {
2984  assert(info != NULL && uc != NULL, "it must be old kernel");
2985  int orig_errno = errno;  // Preserve errno value over signal handler.
2986  JVM_handle_bsd_signal(sig, info, uc, true);
2987  errno = orig_errno;
2988}
2989
2990
2991// This boolean allows users to forward their own non-matching signals
2992// to JVM_handle_bsd_signal, harmlessly.
2993bool os::Bsd::signal_handlers_are_installed = false;
2994
2995// For signal-chaining
2996struct sigaction os::Bsd::sigact[MAXSIGNUM];
2997unsigned int os::Bsd::sigs = 0;
2998bool os::Bsd::libjsig_is_loaded = false;
2999typedef struct sigaction *(*get_signal_t)(int);
3000get_signal_t os::Bsd::get_signal_action = NULL;
3001
3002struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3003  struct sigaction *actp = NULL;
3004
3005  if (libjsig_is_loaded) {
3006    // Retrieve the old signal handler from libjsig
3007    actp = (*get_signal_action)(sig);
3008  }
3009  if (actp == NULL) {
3010    // Retrieve the preinstalled signal handler from jvm
3011    actp = get_preinstalled_handler(sig);
3012  }
3013
3014  return actp;
3015}
3016
3017static bool call_chained_handler(struct sigaction *actp, int sig,
3018                                 siginfo_t *siginfo, void *context) {
3019  // Call the old signal handler
3020  if (actp->sa_handler == SIG_DFL) {
3021    // It's more reasonable to let jvm treat it as an unexpected exception
3022    // instead of taking the default action.
3023    return false;
3024  } else if (actp->sa_handler != SIG_IGN) {
3025    if ((actp->sa_flags & SA_NODEFER) == 0) {
3026      // automaticlly block the signal
3027      sigaddset(&(actp->sa_mask), sig);
3028    }
3029
3030    sa_handler_t hand;
3031    sa_sigaction_t sa;
3032    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3033    // retrieve the chained handler
3034    if (siginfo_flag_set) {
3035      sa = actp->sa_sigaction;
3036    } else {
3037      hand = actp->sa_handler;
3038    }
3039
3040    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3041      actp->sa_handler = SIG_DFL;
3042    }
3043
3044    // try to honor the signal mask
3045    sigset_t oset;
3046    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3047
3048    // call into the chained handler
3049    if (siginfo_flag_set) {
3050      (*sa)(sig, siginfo, context);
3051    } else {
3052      (*hand)(sig);
3053    }
3054
3055    // restore the signal mask
3056    pthread_sigmask(SIG_SETMASK, &oset, 0);
3057  }
3058  // Tell jvm's signal handler the signal is taken care of.
3059  return true;
3060}
3061
3062bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3063  bool chained = false;
3064  // signal-chaining
3065  if (UseSignalChaining) {
3066    struct sigaction *actp = get_chained_signal_action(sig);
3067    if (actp != NULL) {
3068      chained = call_chained_handler(actp, sig, siginfo, context);
3069    }
3070  }
3071  return chained;
3072}
3073
3074struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3075  if ((((unsigned int)1 << sig) & sigs) != 0) {
3076    return &sigact[sig];
3077  }
3078  return NULL;
3079}
3080
3081void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3082  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3083  sigact[sig] = oldAct;
3084  sigs |= (unsigned int)1 << sig;
3085}
3086
3087// for diagnostic
3088int os::Bsd::sigflags[MAXSIGNUM];
3089
3090int os::Bsd::get_our_sigflags(int sig) {
3091  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3092  return sigflags[sig];
3093}
3094
3095void os::Bsd::set_our_sigflags(int sig, int flags) {
3096  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3097  sigflags[sig] = flags;
3098}
3099
3100void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3101  // Check for overwrite.
3102  struct sigaction oldAct;
3103  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3104
3105  void* oldhand = oldAct.sa_sigaction
3106                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3107                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3108  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3109      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3110      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3111    if (AllowUserSignalHandlers || !set_installed) {
3112      // Do not overwrite; user takes responsibility to forward to us.
3113      return;
3114    } else if (UseSignalChaining) {
3115      // save the old handler in jvm
3116      save_preinstalled_handler(sig, oldAct);
3117      // libjsig also interposes the sigaction() call below and saves the
3118      // old sigaction on it own.
3119    } else {
3120      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3121                    "%#lx for signal %d.", (long)oldhand, sig));
3122    }
3123  }
3124
3125  struct sigaction sigAct;
3126  sigfillset(&(sigAct.sa_mask));
3127  sigAct.sa_handler = SIG_DFL;
3128  if (!set_installed) {
3129    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3130  } else {
3131    sigAct.sa_sigaction = signalHandler;
3132    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3133  }
3134#ifdef __APPLE__
3135  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3136  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3137  // if the signal handler declares it will handle it on alternate stack.
3138  // Notice we only declare we will handle it on alt stack, but we are not
3139  // actually going to use real alt stack - this is just a workaround.
3140  // Please see ux_exception.c, method catch_mach_exception_raise for details
3141  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3142  if (sig == SIGSEGV) {
3143    sigAct.sa_flags |= SA_ONSTACK;
3144  }
3145#endif
3146
3147  // Save flags, which are set by ours
3148  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3149  sigflags[sig] = sigAct.sa_flags;
3150
3151  int ret = sigaction(sig, &sigAct, &oldAct);
3152  assert(ret == 0, "check");
3153
3154  void* oldhand2  = oldAct.sa_sigaction
3155                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3156                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3157  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3158}
3159
3160// install signal handlers for signals that HotSpot needs to
3161// handle in order to support Java-level exception handling.
3162
3163void os::Bsd::install_signal_handlers() {
3164  if (!signal_handlers_are_installed) {
3165    signal_handlers_are_installed = true;
3166
3167    // signal-chaining
3168    typedef void (*signal_setting_t)();
3169    signal_setting_t begin_signal_setting = NULL;
3170    signal_setting_t end_signal_setting = NULL;
3171    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3172                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3173    if (begin_signal_setting != NULL) {
3174      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3175                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3176      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3177                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3178      libjsig_is_loaded = true;
3179      assert(UseSignalChaining, "should enable signal-chaining");
3180    }
3181    if (libjsig_is_loaded) {
3182      // Tell libjsig jvm is setting signal handlers
3183      (*begin_signal_setting)();
3184    }
3185
3186    set_signal_handler(SIGSEGV, true);
3187    set_signal_handler(SIGPIPE, true);
3188    set_signal_handler(SIGBUS, true);
3189    set_signal_handler(SIGILL, true);
3190    set_signal_handler(SIGFPE, true);
3191    set_signal_handler(SIGXFSZ, true);
3192
3193#if defined(__APPLE__)
3194    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3195    // signals caught and handled by the JVM. To work around this, we reset the mach task
3196    // signal handler that's placed on our process by CrashReporter. This disables
3197    // CrashReporter-based reporting.
3198    //
3199    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3200    // on caught fatal signals.
3201    //
3202    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3203    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3204    // exception handling, while leaving the standard BSD signal handlers functional.
3205    kern_return_t kr;
3206    kr = task_set_exception_ports(mach_task_self(),
3207                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3208                                  MACH_PORT_NULL,
3209                                  EXCEPTION_STATE_IDENTITY,
3210                                  MACHINE_THREAD_STATE);
3211
3212    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3213#endif
3214
3215    if (libjsig_is_loaded) {
3216      // Tell libjsig jvm finishes setting signal handlers
3217      (*end_signal_setting)();
3218    }
3219
3220    // We don't activate signal checker if libjsig is in place, we trust ourselves
3221    // and if UserSignalHandler is installed all bets are off
3222    if (CheckJNICalls) {
3223      if (libjsig_is_loaded) {
3224        if (PrintJNIResolving) {
3225          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3226        }
3227        check_signals = false;
3228      }
3229      if (AllowUserSignalHandlers) {
3230        if (PrintJNIResolving) {
3231          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3232        }
3233        check_signals = false;
3234      }
3235    }
3236  }
3237}
3238
3239
3240/////
3241// glibc on Bsd platform uses non-documented flag
3242// to indicate, that some special sort of signal
3243// trampoline is used.
3244// We will never set this flag, and we should
3245// ignore this flag in our diagnostic
3246#ifdef SIGNIFICANT_SIGNAL_MASK
3247  #undef SIGNIFICANT_SIGNAL_MASK
3248#endif
3249#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3250
3251static const char* get_signal_handler_name(address handler,
3252                                           char* buf, int buflen) {
3253  int offset;
3254  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3255  if (found) {
3256    // skip directory names
3257    const char *p1, *p2;
3258    p1 = buf;
3259    size_t len = strlen(os::file_separator());
3260    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3261    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3262  } else {
3263    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3264  }
3265  return buf;
3266}
3267
3268static void print_signal_handler(outputStream* st, int sig,
3269                                 char* buf, size_t buflen) {
3270  struct sigaction sa;
3271
3272  sigaction(sig, NULL, &sa);
3273
3274  // See comment for SIGNIFICANT_SIGNAL_MASK define
3275  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3276
3277  st->print("%s: ", os::exception_name(sig, buf, buflen));
3278
3279  address handler = (sa.sa_flags & SA_SIGINFO)
3280    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3281    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3282
3283  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3284    st->print("SIG_DFL");
3285  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3286    st->print("SIG_IGN");
3287  } else {
3288    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3289  }
3290
3291  st->print(", sa_mask[0]=");
3292  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3293
3294  address rh = VMError::get_resetted_sighandler(sig);
3295  // May be, handler was resetted by VMError?
3296  if (rh != NULL) {
3297    handler = rh;
3298    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3299  }
3300
3301  st->print(", sa_flags=");
3302  os::Posix::print_sa_flags(st, sa.sa_flags);
3303
3304  // Check: is it our handler?
3305  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3306      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3307    // It is our signal handler
3308    // check for flags, reset system-used one!
3309    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3310      st->print(
3311                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3312                os::Bsd::get_our_sigflags(sig));
3313    }
3314  }
3315  st->cr();
3316}
3317
3318
3319#define DO_SIGNAL_CHECK(sig)                      \
3320  do {                                            \
3321    if (!sigismember(&check_signal_done, sig)) {  \
3322      os::Bsd::check_signal_handler(sig);         \
3323    }                                             \
3324  } while (0)
3325
3326// This method is a periodic task to check for misbehaving JNI applications
3327// under CheckJNI, we can add any periodic checks here
3328
3329void os::run_periodic_checks() {
3330
3331  if (check_signals == false) return;
3332
3333  // SEGV and BUS if overridden could potentially prevent
3334  // generation of hs*.log in the event of a crash, debugging
3335  // such a case can be very challenging, so we absolutely
3336  // check the following for a good measure:
3337  DO_SIGNAL_CHECK(SIGSEGV);
3338  DO_SIGNAL_CHECK(SIGILL);
3339  DO_SIGNAL_CHECK(SIGFPE);
3340  DO_SIGNAL_CHECK(SIGBUS);
3341  DO_SIGNAL_CHECK(SIGPIPE);
3342  DO_SIGNAL_CHECK(SIGXFSZ);
3343
3344
3345  // ReduceSignalUsage allows the user to override these handlers
3346  // see comments at the very top and jvm_solaris.h
3347  if (!ReduceSignalUsage) {
3348    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3349    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3350    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3351    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3352  }
3353
3354  DO_SIGNAL_CHECK(SR_signum);
3355  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3356}
3357
3358typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3359
3360static os_sigaction_t os_sigaction = NULL;
3361
3362void os::Bsd::check_signal_handler(int sig) {
3363  char buf[O_BUFLEN];
3364  address jvmHandler = NULL;
3365
3366
3367  struct sigaction act;
3368  if (os_sigaction == NULL) {
3369    // only trust the default sigaction, in case it has been interposed
3370    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3371    if (os_sigaction == NULL) return;
3372  }
3373
3374  os_sigaction(sig, (struct sigaction*)NULL, &act);
3375
3376
3377  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3378
3379  address thisHandler = (act.sa_flags & SA_SIGINFO)
3380    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3381    : CAST_FROM_FN_PTR(address, act.sa_handler);
3382
3383
3384  switch (sig) {
3385  case SIGSEGV:
3386  case SIGBUS:
3387  case SIGFPE:
3388  case SIGPIPE:
3389  case SIGILL:
3390  case SIGXFSZ:
3391    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3392    break;
3393
3394  case SHUTDOWN1_SIGNAL:
3395  case SHUTDOWN2_SIGNAL:
3396  case SHUTDOWN3_SIGNAL:
3397  case BREAK_SIGNAL:
3398    jvmHandler = (address)user_handler();
3399    break;
3400
3401  case INTERRUPT_SIGNAL:
3402    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3403    break;
3404
3405  default:
3406    if (sig == SR_signum) {
3407      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3408    } else {
3409      return;
3410    }
3411    break;
3412  }
3413
3414  if (thisHandler != jvmHandler) {
3415    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3416    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3417    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3418    // No need to check this sig any longer
3419    sigaddset(&check_signal_done, sig);
3420    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3421    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3422      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3423                    exception_name(sig, buf, O_BUFLEN));
3424    }
3425  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3426    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3427    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3428    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3429    // No need to check this sig any longer
3430    sigaddset(&check_signal_done, sig);
3431  }
3432
3433  // Dump all the signal
3434  if (sigismember(&check_signal_done, sig)) {
3435    print_signal_handlers(tty, buf, O_BUFLEN);
3436  }
3437}
3438
3439extern void report_error(char* file_name, int line_no, char* title,
3440                         char* format, ...);
3441
3442extern bool signal_name(int signo, char* buf, size_t len);
3443
3444const char* os::exception_name(int exception_code, char* buf, size_t size) {
3445  if (0 < exception_code && exception_code <= SIGRTMAX) {
3446    // signal
3447    if (!signal_name(exception_code, buf, size)) {
3448      jio_snprintf(buf, size, "SIG%d", exception_code);
3449    }
3450    return buf;
3451  } else {
3452    return NULL;
3453  }
3454}
3455
3456// this is called _before_ the most of global arguments have been parsed
3457void os::init(void) {
3458  char dummy;   // used to get a guess on initial stack address
3459//  first_hrtime = gethrtime();
3460
3461  // With BsdThreads the JavaMain thread pid (primordial thread)
3462  // is different than the pid of the java launcher thread.
3463  // So, on Bsd, the launcher thread pid is passed to the VM
3464  // via the sun.java.launcher.pid property.
3465  // Use this property instead of getpid() if it was correctly passed.
3466  // See bug 6351349.
3467  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3468
3469  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3470
3471  clock_tics_per_sec = CLK_TCK;
3472
3473  init_random(1234567);
3474
3475  ThreadCritical::initialize();
3476
3477  Bsd::set_page_size(getpagesize());
3478  if (Bsd::page_size() == -1) {
3479    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3480                  strerror(errno)));
3481  }
3482  init_page_sizes((size_t) Bsd::page_size());
3483
3484  Bsd::initialize_system_info();
3485
3486  // main_thread points to the aboriginal thread
3487  Bsd::_main_thread = pthread_self();
3488
3489  Bsd::clock_init();
3490  initial_time_count = javaTimeNanos();
3491
3492#ifdef __APPLE__
3493  // XXXDARWIN
3494  // Work around the unaligned VM callbacks in hotspot's
3495  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3496  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3497  // alignment when doing symbol lookup. To work around this, we force early
3498  // binding of all symbols now, thus binding when alignment is known-good.
3499  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3500#endif
3501}
3502
3503// To install functions for atexit system call
3504extern "C" {
3505  static void perfMemory_exit_helper() {
3506    perfMemory_exit();
3507  }
3508}
3509
3510// this is called _after_ the global arguments have been parsed
3511jint os::init_2(void) {
3512  // Allocate a single page and mark it as readable for safepoint polling
3513  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3514  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3515
3516  os::set_polling_page(polling_page);
3517
3518#ifndef PRODUCT
3519  if (Verbose && PrintMiscellaneous) {
3520    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3521               (intptr_t)polling_page);
3522  }
3523#endif
3524
3525  if (!UseMembar) {
3526    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3527    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3528    os::set_memory_serialize_page(mem_serialize_page);
3529
3530#ifndef PRODUCT
3531    if (Verbose && PrintMiscellaneous) {
3532      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3533                 (intptr_t)mem_serialize_page);
3534    }
3535#endif
3536  }
3537
3538  // initialize suspend/resume support - must do this before signal_sets_init()
3539  if (SR_initialize() != 0) {
3540    perror("SR_initialize failed");
3541    return JNI_ERR;
3542  }
3543
3544  Bsd::signal_sets_init();
3545  Bsd::install_signal_handlers();
3546
3547  // Check minimum allowable stack size for thread creation and to initialize
3548  // the java system classes, including StackOverflowError - depends on page
3549  // size.  Add a page for compiler2 recursion in main thread.
3550  // Add in 2*BytesPerWord times page size to account for VM stack during
3551  // class initialization depending on 32 or 64 bit VM.
3552  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3553                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3554                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3555
3556  size_t threadStackSizeInBytes = ThreadStackSize * K;
3557  if (threadStackSizeInBytes != 0 &&
3558      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3559    tty->print_cr("\nThe stack size specified is too small, "
3560                  "Specify at least %dk",
3561                  os::Bsd::min_stack_allowed/ K);
3562    return JNI_ERR;
3563  }
3564
3565  // Make the stack size a multiple of the page size so that
3566  // the yellow/red zones can be guarded.
3567  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3568                                                vm_page_size()));
3569
3570  if (MaxFDLimit) {
3571    // set the number of file descriptors to max. print out error
3572    // if getrlimit/setrlimit fails but continue regardless.
3573    struct rlimit nbr_files;
3574    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3575    if (status != 0) {
3576      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3577        perror("os::init_2 getrlimit failed");
3578      }
3579    } else {
3580      nbr_files.rlim_cur = nbr_files.rlim_max;
3581
3582#ifdef __APPLE__
3583      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3584      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3585      // be used instead
3586      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3587#endif
3588
3589      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3590      if (status != 0) {
3591        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3592          perror("os::init_2 setrlimit failed");
3593        }
3594      }
3595    }
3596  }
3597
3598  // at-exit methods are called in the reverse order of their registration.
3599  // atexit functions are called on return from main or as a result of a
3600  // call to exit(3C). There can be only 32 of these functions registered
3601  // and atexit() does not set errno.
3602
3603  if (PerfAllowAtExitRegistration) {
3604    // only register atexit functions if PerfAllowAtExitRegistration is set.
3605    // atexit functions can be delayed until process exit time, which
3606    // can be problematic for embedded VM situations. Embedded VMs should
3607    // call DestroyJavaVM() to assure that VM resources are released.
3608
3609    // note: perfMemory_exit_helper atexit function may be removed in
3610    // the future if the appropriate cleanup code can be added to the
3611    // VM_Exit VMOperation's doit method.
3612    if (atexit(perfMemory_exit_helper) != 0) {
3613      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3614    }
3615  }
3616
3617  // initialize thread priority policy
3618  prio_init();
3619
3620#ifdef __APPLE__
3621  // dynamically link to objective c gc registration
3622  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3623  if (handleLibObjc != NULL) {
3624    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3625  }
3626#endif
3627
3628  return JNI_OK;
3629}
3630
3631// Mark the polling page as unreadable
3632void os::make_polling_page_unreadable(void) {
3633  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3634    fatal("Could not disable polling page");
3635  }
3636}
3637
3638// Mark the polling page as readable
3639void os::make_polling_page_readable(void) {
3640  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3641    fatal("Could not enable polling page");
3642  }
3643}
3644
3645int os::active_processor_count() {
3646  return _processor_count;
3647}
3648
3649void os::set_native_thread_name(const char *name) {
3650#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3651  // This is only supported in Snow Leopard and beyond
3652  if (name != NULL) {
3653    // Add a "Java: " prefix to the name
3654    char buf[MAXTHREADNAMESIZE];
3655    snprintf(buf, sizeof(buf), "Java: %s", name);
3656    pthread_setname_np(buf);
3657  }
3658#endif
3659}
3660
3661bool os::distribute_processes(uint length, uint* distribution) {
3662  // Not yet implemented.
3663  return false;
3664}
3665
3666bool os::bind_to_processor(uint processor_id) {
3667  // Not yet implemented.
3668  return false;
3669}
3670
3671void os::SuspendedThreadTask::internal_do_task() {
3672  if (do_suspend(_thread->osthread())) {
3673    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3674    do_task(context);
3675    do_resume(_thread->osthread());
3676  }
3677}
3678
3679///
3680class PcFetcher : public os::SuspendedThreadTask {
3681 public:
3682  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3683  ExtendedPC result();
3684 protected:
3685  void do_task(const os::SuspendedThreadTaskContext& context);
3686 private:
3687  ExtendedPC _epc;
3688};
3689
3690ExtendedPC PcFetcher::result() {
3691  guarantee(is_done(), "task is not done yet.");
3692  return _epc;
3693}
3694
3695void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3696  Thread* thread = context.thread();
3697  OSThread* osthread = thread->osthread();
3698  if (osthread->ucontext() != NULL) {
3699    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3700  } else {
3701    // NULL context is unexpected, double-check this is the VMThread
3702    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3703  }
3704}
3705
3706// Suspends the target using the signal mechanism and then grabs the PC before
3707// resuming the target. Used by the flat-profiler only
3708ExtendedPC os::get_thread_pc(Thread* thread) {
3709  // Make sure that it is called by the watcher for the VMThread
3710  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3711  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3712
3713  PcFetcher fetcher(thread);
3714  fetcher.run();
3715  return fetcher.result();
3716}
3717
3718int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3719                                 pthread_mutex_t *_mutex,
3720                                 const struct timespec *_abstime) {
3721  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3722}
3723
3724////////////////////////////////////////////////////////////////////////////////
3725// debug support
3726
3727bool os::find(address addr, outputStream* st) {
3728  Dl_info dlinfo;
3729  memset(&dlinfo, 0, sizeof(dlinfo));
3730  if (dladdr(addr, &dlinfo) != 0) {
3731    st->print(PTR_FORMAT ": ", addr);
3732    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3733      st->print("%s+%#x", dlinfo.dli_sname,
3734                addr - (intptr_t)dlinfo.dli_saddr);
3735    } else if (dlinfo.dli_fbase != NULL) {
3736      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3737    } else {
3738      st->print("<absolute address>");
3739    }
3740    if (dlinfo.dli_fname != NULL) {
3741      st->print(" in %s", dlinfo.dli_fname);
3742    }
3743    if (dlinfo.dli_fbase != NULL) {
3744      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3745    }
3746    st->cr();
3747
3748    if (Verbose) {
3749      // decode some bytes around the PC
3750      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3751      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3752      address       lowest = (address) dlinfo.dli_sname;
3753      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3754      if (begin < lowest)  begin = lowest;
3755      Dl_info dlinfo2;
3756      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3757          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3758        end = (address) dlinfo2.dli_saddr;
3759      }
3760      Disassembler::decode(begin, end, st);
3761    }
3762    return true;
3763  }
3764  return false;
3765}
3766
3767////////////////////////////////////////////////////////////////////////////////
3768// misc
3769
3770// This does not do anything on Bsd. This is basically a hook for being
3771// able to use structured exception handling (thread-local exception filters)
3772// on, e.g., Win32.
3773void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3774                              methodHandle* method, JavaCallArguments* args,
3775                              Thread* thread) {
3776  f(value, method, args, thread);
3777}
3778
3779void os::print_statistics() {
3780}
3781
3782int os::message_box(const char* title, const char* message) {
3783  int i;
3784  fdStream err(defaultStream::error_fd());
3785  for (i = 0; i < 78; i++) err.print_raw("=");
3786  err.cr();
3787  err.print_raw_cr(title);
3788  for (i = 0; i < 78; i++) err.print_raw("-");
3789  err.cr();
3790  err.print_raw_cr(message);
3791  for (i = 0; i < 78; i++) err.print_raw("=");
3792  err.cr();
3793
3794  char buf[16];
3795  // Prevent process from exiting upon "read error" without consuming all CPU
3796  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3797
3798  return buf[0] == 'y' || buf[0] == 'Y';
3799}
3800
3801int os::stat(const char *path, struct stat *sbuf) {
3802  char pathbuf[MAX_PATH];
3803  if (strlen(path) > MAX_PATH - 1) {
3804    errno = ENAMETOOLONG;
3805    return -1;
3806  }
3807  os::native_path(strcpy(pathbuf, path));
3808  return ::stat(pathbuf, sbuf);
3809}
3810
3811bool os::check_heap(bool force) {
3812  return true;
3813}
3814
3815// Is a (classpath) directory empty?
3816bool os::dir_is_empty(const char* path) {
3817  DIR *dir = NULL;
3818  struct dirent *ptr;
3819
3820  dir = opendir(path);
3821  if (dir == NULL) return true;
3822
3823  // Scan the directory
3824  bool result = true;
3825  char buf[sizeof(struct dirent) + MAX_PATH];
3826  while (result && (ptr = ::readdir(dir)) != NULL) {
3827    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3828      result = false;
3829    }
3830  }
3831  closedir(dir);
3832  return result;
3833}
3834
3835// This code originates from JDK's sysOpen and open64_w
3836// from src/solaris/hpi/src/system_md.c
3837
3838int os::open(const char *path, int oflag, int mode) {
3839  if (strlen(path) > MAX_PATH - 1) {
3840    errno = ENAMETOOLONG;
3841    return -1;
3842  }
3843  int fd;
3844
3845  fd = ::open(path, oflag, mode);
3846  if (fd == -1) return -1;
3847
3848  // If the open succeeded, the file might still be a directory
3849  {
3850    struct stat buf;
3851    int ret = ::fstat(fd, &buf);
3852    int st_mode = buf.st_mode;
3853
3854    if (ret != -1) {
3855      if ((st_mode & S_IFMT) == S_IFDIR) {
3856        errno = EISDIR;
3857        ::close(fd);
3858        return -1;
3859      }
3860    } else {
3861      ::close(fd);
3862      return -1;
3863    }
3864  }
3865
3866  // All file descriptors that are opened in the JVM and not
3867  // specifically destined for a subprocess should have the
3868  // close-on-exec flag set.  If we don't set it, then careless 3rd
3869  // party native code might fork and exec without closing all
3870  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3871  // UNIXProcess.c), and this in turn might:
3872  //
3873  // - cause end-of-file to fail to be detected on some file
3874  //   descriptors, resulting in mysterious hangs, or
3875  //
3876  // - might cause an fopen in the subprocess to fail on a system
3877  //   suffering from bug 1085341.
3878  //
3879  // (Yes, the default setting of the close-on-exec flag is a Unix
3880  // design flaw)
3881  //
3882  // See:
3883  // 1085341: 32-bit stdio routines should support file descriptors >255
3884  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3885  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3886  //
3887#ifdef FD_CLOEXEC
3888  {
3889    int flags = ::fcntl(fd, F_GETFD);
3890    if (flags != -1) {
3891      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3892    }
3893  }
3894#endif
3895
3896  return fd;
3897}
3898
3899
3900// create binary file, rewriting existing file if required
3901int os::create_binary_file(const char* path, bool rewrite_existing) {
3902  int oflags = O_WRONLY | O_CREAT;
3903  if (!rewrite_existing) {
3904    oflags |= O_EXCL;
3905  }
3906  return ::open(path, oflags, S_IREAD | S_IWRITE);
3907}
3908
3909// return current position of file pointer
3910jlong os::current_file_offset(int fd) {
3911  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3912}
3913
3914// move file pointer to the specified offset
3915jlong os::seek_to_file_offset(int fd, jlong offset) {
3916  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3917}
3918
3919// This code originates from JDK's sysAvailable
3920// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3921
3922int os::available(int fd, jlong *bytes) {
3923  jlong cur, end;
3924  int mode;
3925  struct stat buf;
3926
3927  if (::fstat(fd, &buf) >= 0) {
3928    mode = buf.st_mode;
3929    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3930      // XXX: is the following call interruptible? If so, this might
3931      // need to go through the INTERRUPT_IO() wrapper as for other
3932      // blocking, interruptible calls in this file.
3933      int n;
3934      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3935        *bytes = n;
3936        return 1;
3937      }
3938    }
3939  }
3940  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3941    return 0;
3942  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3943    return 0;
3944  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3945    return 0;
3946  }
3947  *bytes = end - cur;
3948  return 1;
3949}
3950
3951// Map a block of memory.
3952char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3953                        char *addr, size_t bytes, bool read_only,
3954                        bool allow_exec) {
3955  int prot;
3956  int flags;
3957
3958  if (read_only) {
3959    prot = PROT_READ;
3960    flags = MAP_SHARED;
3961  } else {
3962    prot = PROT_READ | PROT_WRITE;
3963    flags = MAP_PRIVATE;
3964  }
3965
3966  if (allow_exec) {
3967    prot |= PROT_EXEC;
3968  }
3969
3970  if (addr != NULL) {
3971    flags |= MAP_FIXED;
3972  }
3973
3974  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3975                                     fd, file_offset);
3976  if (mapped_address == MAP_FAILED) {
3977    return NULL;
3978  }
3979  return mapped_address;
3980}
3981
3982
3983// Remap a block of memory.
3984char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3985                          char *addr, size_t bytes, bool read_only,
3986                          bool allow_exec) {
3987  // same as map_memory() on this OS
3988  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3989                        allow_exec);
3990}
3991
3992
3993// Unmap a block of memory.
3994bool os::pd_unmap_memory(char* addr, size_t bytes) {
3995  return munmap(addr, bytes) == 0;
3996}
3997
3998// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3999// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4000// of a thread.
4001//
4002// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4003// the fast estimate available on the platform.
4004
4005jlong os::current_thread_cpu_time() {
4006#ifdef __APPLE__
4007  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4008#else
4009  Unimplemented();
4010  return 0;
4011#endif
4012}
4013
4014jlong os::thread_cpu_time(Thread* thread) {
4015#ifdef __APPLE__
4016  return os::thread_cpu_time(thread, true /* user + sys */);
4017#else
4018  Unimplemented();
4019  return 0;
4020#endif
4021}
4022
4023jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4024#ifdef __APPLE__
4025  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4026#else
4027  Unimplemented();
4028  return 0;
4029#endif
4030}
4031
4032jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4033#ifdef __APPLE__
4034  struct thread_basic_info tinfo;
4035  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4036  kern_return_t kr;
4037  thread_t mach_thread;
4038
4039  mach_thread = thread->osthread()->thread_id();
4040  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4041  if (kr != KERN_SUCCESS) {
4042    return -1;
4043  }
4044
4045  if (user_sys_cpu_time) {
4046    jlong nanos;
4047    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4048    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4049    return nanos;
4050  } else {
4051    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4052  }
4053#else
4054  Unimplemented();
4055  return 0;
4056#endif
4057}
4058
4059
4060void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4061  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4062  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4063  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4064  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4065}
4066
4067void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4068  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4069  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4070  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4071  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4072}
4073
4074bool os::is_thread_cpu_time_supported() {
4075#ifdef __APPLE__
4076  return true;
4077#else
4078  return false;
4079#endif
4080}
4081
4082// System loadavg support.  Returns -1 if load average cannot be obtained.
4083// Bsd doesn't yet have a (official) notion of processor sets,
4084// so just return the system wide load average.
4085int os::loadavg(double loadavg[], int nelem) {
4086  return ::getloadavg(loadavg, nelem);
4087}
4088
4089void os::pause() {
4090  char filename[MAX_PATH];
4091  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4092    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4093  } else {
4094    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4095  }
4096
4097  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4098  if (fd != -1) {
4099    struct stat buf;
4100    ::close(fd);
4101    while (::stat(filename, &buf) == 0) {
4102      (void)::poll(NULL, 0, 100);
4103    }
4104  } else {
4105    jio_fprintf(stderr,
4106                "Could not open pause file '%s', continuing immediately.\n", filename);
4107  }
4108}
4109
4110
4111// Refer to the comments in os_solaris.cpp park-unpark. The next two
4112// comment paragraphs are worth repeating here:
4113//
4114// Assumption:
4115//    Only one parker can exist on an event, which is why we allocate
4116//    them per-thread. Multiple unparkers can coexist.
4117//
4118// _Event serves as a restricted-range semaphore.
4119//   -1 : thread is blocked, i.e. there is a waiter
4120//    0 : neutral: thread is running or ready,
4121//        could have been signaled after a wait started
4122//    1 : signaled - thread is running or ready
4123//
4124// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4125// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4126// For specifics regarding the bug see GLIBC BUGID 261237 :
4127//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4128// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4129// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4130// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4131// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4132// and monitorenter when we're using 1-0 locking.  All those operations may result in
4133// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4134// of libpthread avoids the problem, but isn't practical.
4135//
4136// Possible remedies:
4137//
4138// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4139//      This is palliative and probabilistic, however.  If the thread is preempted
4140//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4141//      than the minimum period may have passed, and the abstime may be stale (in the
4142//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4143//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4144//
4145// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4146//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4147//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4148//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4149//      thread.
4150//
4151// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4152//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4153//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4154//      This also works well.  In fact it avoids kernel-level scalability impediments
4155//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4156//      timers in a graceful fashion.
4157//
4158// 4.   When the abstime value is in the past it appears that control returns
4159//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4160//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4161//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4162//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4163//      It may be possible to avoid reinitialization by checking the return
4164//      value from pthread_cond_timedwait().  In addition to reinitializing the
4165//      condvar we must establish the invariant that cond_signal() is only called
4166//      within critical sections protected by the adjunct mutex.  This prevents
4167//      cond_signal() from "seeing" a condvar that's in the midst of being
4168//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4169//      desirable signal-after-unlock optimization that avoids futile context switching.
4170//
4171//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4172//      structure when a condvar is used or initialized.  cond_destroy()  would
4173//      release the helper structure.  Our reinitialize-after-timedwait fix
4174//      put excessive stress on malloc/free and locks protecting the c-heap.
4175//
4176// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4177// It may be possible to refine (4) by checking the kernel and NTPL verisons
4178// and only enabling the work-around for vulnerable environments.
4179
4180// utility to compute the abstime argument to timedwait:
4181// millis is the relative timeout time
4182// abstime will be the absolute timeout time
4183// TODO: replace compute_abstime() with unpackTime()
4184
4185static struct timespec* compute_abstime(struct timespec* abstime,
4186                                        jlong millis) {
4187  if (millis < 0)  millis = 0;
4188  struct timeval now;
4189  int status = gettimeofday(&now, NULL);
4190  assert(status == 0, "gettimeofday");
4191  jlong seconds = millis / 1000;
4192  millis %= 1000;
4193  if (seconds > 50000000) { // see man cond_timedwait(3T)
4194    seconds = 50000000;
4195  }
4196  abstime->tv_sec = now.tv_sec  + seconds;
4197  long       usec = now.tv_usec + millis * 1000;
4198  if (usec >= 1000000) {
4199    abstime->tv_sec += 1;
4200    usec -= 1000000;
4201  }
4202  abstime->tv_nsec = usec * 1000;
4203  return abstime;
4204}
4205
4206void os::PlatformEvent::park() {       // AKA "down()"
4207  // Transitions for _Event:
4208  //   -1 => -1 : illegal
4209  //    1 =>  0 : pass - return immediately
4210  //    0 => -1 : block; then set _Event to 0 before returning
4211
4212  // Invariant: Only the thread associated with the Event/PlatformEvent
4213  // may call park().
4214  // TODO: assert that _Assoc != NULL or _Assoc == Self
4215  assert(_nParked == 0, "invariant");
4216
4217  int v;
4218  for (;;) {
4219    v = _Event;
4220    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4221  }
4222  guarantee(v >= 0, "invariant");
4223  if (v == 0) {
4224    // Do this the hard way by blocking ...
4225    int status = pthread_mutex_lock(_mutex);
4226    assert_status(status == 0, status, "mutex_lock");
4227    guarantee(_nParked == 0, "invariant");
4228    ++_nParked;
4229    while (_Event < 0) {
4230      status = pthread_cond_wait(_cond, _mutex);
4231      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4232      // Treat this the same as if the wait was interrupted
4233      if (status == ETIMEDOUT) { status = EINTR; }
4234      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4235    }
4236    --_nParked;
4237
4238    _Event = 0;
4239    status = pthread_mutex_unlock(_mutex);
4240    assert_status(status == 0, status, "mutex_unlock");
4241    // Paranoia to ensure our locked and lock-free paths interact
4242    // correctly with each other.
4243    OrderAccess::fence();
4244  }
4245  guarantee(_Event >= 0, "invariant");
4246}
4247
4248int os::PlatformEvent::park(jlong millis) {
4249  // Transitions for _Event:
4250  //   -1 => -1 : illegal
4251  //    1 =>  0 : pass - return immediately
4252  //    0 => -1 : block; then set _Event to 0 before returning
4253
4254  guarantee(_nParked == 0, "invariant");
4255
4256  int v;
4257  for (;;) {
4258    v = _Event;
4259    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4260  }
4261  guarantee(v >= 0, "invariant");
4262  if (v != 0) return OS_OK;
4263
4264  // We do this the hard way, by blocking the thread.
4265  // Consider enforcing a minimum timeout value.
4266  struct timespec abst;
4267  compute_abstime(&abst, millis);
4268
4269  int ret = OS_TIMEOUT;
4270  int status = pthread_mutex_lock(_mutex);
4271  assert_status(status == 0, status, "mutex_lock");
4272  guarantee(_nParked == 0, "invariant");
4273  ++_nParked;
4274
4275  // Object.wait(timo) will return because of
4276  // (a) notification
4277  // (b) timeout
4278  // (c) thread.interrupt
4279  //
4280  // Thread.interrupt and object.notify{All} both call Event::set.
4281  // That is, we treat thread.interrupt as a special case of notification.
4282  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4283  // We assume all ETIME returns are valid.
4284  //
4285  // TODO: properly differentiate simultaneous notify+interrupt.
4286  // In that case, we should propagate the notify to another waiter.
4287
4288  while (_Event < 0) {
4289    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4290    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4291      pthread_cond_destroy(_cond);
4292      pthread_cond_init(_cond, NULL);
4293    }
4294    assert_status(status == 0 || status == EINTR ||
4295                  status == ETIMEDOUT,
4296                  status, "cond_timedwait");
4297    if (!FilterSpuriousWakeups) break;                 // previous semantics
4298    if (status == ETIMEDOUT) break;
4299    // We consume and ignore EINTR and spurious wakeups.
4300  }
4301  --_nParked;
4302  if (_Event >= 0) {
4303    ret = OS_OK;
4304  }
4305  _Event = 0;
4306  status = pthread_mutex_unlock(_mutex);
4307  assert_status(status == 0, status, "mutex_unlock");
4308  assert(_nParked == 0, "invariant");
4309  // Paranoia to ensure our locked and lock-free paths interact
4310  // correctly with each other.
4311  OrderAccess::fence();
4312  return ret;
4313}
4314
4315void os::PlatformEvent::unpark() {
4316  // Transitions for _Event:
4317  //    0 => 1 : just return
4318  //    1 => 1 : just return
4319  //   -1 => either 0 or 1; must signal target thread
4320  //         That is, we can safely transition _Event from -1 to either
4321  //         0 or 1.
4322  // See also: "Semaphores in Plan 9" by Mullender & Cox
4323  //
4324  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4325  // that it will take two back-to-back park() calls for the owning
4326  // thread to block. This has the benefit of forcing a spurious return
4327  // from the first park() call after an unpark() call which will help
4328  // shake out uses of park() and unpark() without condition variables.
4329
4330  if (Atomic::xchg(1, &_Event) >= 0) return;
4331
4332  // Wait for the thread associated with the event to vacate
4333  int status = pthread_mutex_lock(_mutex);
4334  assert_status(status == 0, status, "mutex_lock");
4335  int AnyWaiters = _nParked;
4336  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4337  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4338    AnyWaiters = 0;
4339    pthread_cond_signal(_cond);
4340  }
4341  status = pthread_mutex_unlock(_mutex);
4342  assert_status(status == 0, status, "mutex_unlock");
4343  if (AnyWaiters != 0) {
4344    // Note that we signal() *after* dropping the lock for "immortal" Events.
4345    // This is safe and avoids a common class of  futile wakeups.  In rare
4346    // circumstances this can cause a thread to return prematurely from
4347    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4348    // will simply re-test the condition and re-park itself.
4349    // This provides particular benefit if the underlying platform does not
4350    // provide wait morphing.
4351    status = pthread_cond_signal(_cond);
4352    assert_status(status == 0, status, "cond_signal");
4353  }
4354}
4355
4356
4357// JSR166
4358// -------------------------------------------------------
4359
4360// The solaris and bsd implementations of park/unpark are fairly
4361// conservative for now, but can be improved. They currently use a
4362// mutex/condvar pair, plus a a count.
4363// Park decrements count if > 0, else does a condvar wait.  Unpark
4364// sets count to 1 and signals condvar.  Only one thread ever waits
4365// on the condvar. Contention seen when trying to park implies that someone
4366// is unparking you, so don't wait. And spurious returns are fine, so there
4367// is no need to track notifications.
4368
4369#define MAX_SECS 100000000
4370
4371// This code is common to bsd and solaris and will be moved to a
4372// common place in dolphin.
4373//
4374// The passed in time value is either a relative time in nanoseconds
4375// or an absolute time in milliseconds. Either way it has to be unpacked
4376// into suitable seconds and nanoseconds components and stored in the
4377// given timespec structure.
4378// Given time is a 64-bit value and the time_t used in the timespec is only
4379// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4380// overflow if times way in the future are given. Further on Solaris versions
4381// prior to 10 there is a restriction (see cond_timedwait) that the specified
4382// number of seconds, in abstime, is less than current_time  + 100,000,000.
4383// As it will be 28 years before "now + 100000000" will overflow we can
4384// ignore overflow and just impose a hard-limit on seconds using the value
4385// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4386// years from "now".
4387
4388static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4389  assert(time > 0, "convertTime");
4390
4391  struct timeval now;
4392  int status = gettimeofday(&now, NULL);
4393  assert(status == 0, "gettimeofday");
4394
4395  time_t max_secs = now.tv_sec + MAX_SECS;
4396
4397  if (isAbsolute) {
4398    jlong secs = time / 1000;
4399    if (secs > max_secs) {
4400      absTime->tv_sec = max_secs;
4401    } else {
4402      absTime->tv_sec = secs;
4403    }
4404    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4405  } else {
4406    jlong secs = time / NANOSECS_PER_SEC;
4407    if (secs >= MAX_SECS) {
4408      absTime->tv_sec = max_secs;
4409      absTime->tv_nsec = 0;
4410    } else {
4411      absTime->tv_sec = now.tv_sec + secs;
4412      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4413      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4414        absTime->tv_nsec -= NANOSECS_PER_SEC;
4415        ++absTime->tv_sec; // note: this must be <= max_secs
4416      }
4417    }
4418  }
4419  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4420  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4421  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4422  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4423}
4424
4425void Parker::park(bool isAbsolute, jlong time) {
4426  // Ideally we'd do something useful while spinning, such
4427  // as calling unpackTime().
4428
4429  // Optional fast-path check:
4430  // Return immediately if a permit is available.
4431  // We depend on Atomic::xchg() having full barrier semantics
4432  // since we are doing a lock-free update to _counter.
4433  if (Atomic::xchg(0, &_counter) > 0) return;
4434
4435  Thread* thread = Thread::current();
4436  assert(thread->is_Java_thread(), "Must be JavaThread");
4437  JavaThread *jt = (JavaThread *)thread;
4438
4439  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4440  // Check interrupt before trying to wait
4441  if (Thread::is_interrupted(thread, false)) {
4442    return;
4443  }
4444
4445  // Next, demultiplex/decode time arguments
4446  struct timespec absTime;
4447  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4448    return;
4449  }
4450  if (time > 0) {
4451    unpackTime(&absTime, isAbsolute, time);
4452  }
4453
4454
4455  // Enter safepoint region
4456  // Beware of deadlocks such as 6317397.
4457  // The per-thread Parker:: mutex is a classic leaf-lock.
4458  // In particular a thread must never block on the Threads_lock while
4459  // holding the Parker:: mutex.  If safepoints are pending both the
4460  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4461  ThreadBlockInVM tbivm(jt);
4462
4463  // Don't wait if cannot get lock since interference arises from
4464  // unblocking.  Also. check interrupt before trying wait
4465  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4466    return;
4467  }
4468
4469  int status;
4470  if (_counter > 0)  { // no wait needed
4471    _counter = 0;
4472    status = pthread_mutex_unlock(_mutex);
4473    assert(status == 0, "invariant");
4474    // Paranoia to ensure our locked and lock-free paths interact
4475    // correctly with each other and Java-level accesses.
4476    OrderAccess::fence();
4477    return;
4478  }
4479
4480#ifdef ASSERT
4481  // Don't catch signals while blocked; let the running threads have the signals.
4482  // (This allows a debugger to break into the running thread.)
4483  sigset_t oldsigs;
4484  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4485  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4486#endif
4487
4488  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4489  jt->set_suspend_equivalent();
4490  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4491
4492  if (time == 0) {
4493    status = pthread_cond_wait(_cond, _mutex);
4494  } else {
4495    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4496    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4497      pthread_cond_destroy(_cond);
4498      pthread_cond_init(_cond, NULL);
4499    }
4500  }
4501  assert_status(status == 0 || status == EINTR ||
4502                status == ETIMEDOUT,
4503                status, "cond_timedwait");
4504
4505#ifdef ASSERT
4506  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4507#endif
4508
4509  _counter = 0;
4510  status = pthread_mutex_unlock(_mutex);
4511  assert_status(status == 0, status, "invariant");
4512  // Paranoia to ensure our locked and lock-free paths interact
4513  // correctly with each other and Java-level accesses.
4514  OrderAccess::fence();
4515
4516  // If externally suspended while waiting, re-suspend
4517  if (jt->handle_special_suspend_equivalent_condition()) {
4518    jt->java_suspend_self();
4519  }
4520}
4521
4522void Parker::unpark() {
4523  int status = pthread_mutex_lock(_mutex);
4524  assert(status == 0, "invariant");
4525  const int s = _counter;
4526  _counter = 1;
4527  if (s < 1) {
4528    if (WorkAroundNPTLTimedWaitHang) {
4529      status = pthread_cond_signal(_cond);
4530      assert(status == 0, "invariant");
4531      status = pthread_mutex_unlock(_mutex);
4532      assert(status == 0, "invariant");
4533    } else {
4534      status = pthread_mutex_unlock(_mutex);
4535      assert(status == 0, "invariant");
4536      status = pthread_cond_signal(_cond);
4537      assert(status == 0, "invariant");
4538    }
4539  } else {
4540    pthread_mutex_unlock(_mutex);
4541    assert(status == 0, "invariant");
4542  }
4543}
4544
4545
4546// Darwin has no "environ" in a dynamic library.
4547#ifdef __APPLE__
4548  #include <crt_externs.h>
4549  #define environ (*_NSGetEnviron())
4550#else
4551extern char** environ;
4552#endif
4553
4554// Run the specified command in a separate process. Return its exit value,
4555// or -1 on failure (e.g. can't fork a new process).
4556// Unlike system(), this function can be called from signal handler. It
4557// doesn't block SIGINT et al.
4558int os::fork_and_exec(char* cmd) {
4559  const char * argv[4] = {"sh", "-c", cmd, NULL};
4560
4561  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4562  // pthread_atfork handlers and reset pthread library. All we need is a
4563  // separate process to execve. Make a direct syscall to fork process.
4564  // On IA64 there's no fork syscall, we have to use fork() and hope for
4565  // the best...
4566  pid_t pid = fork();
4567
4568  if (pid < 0) {
4569    // fork failed
4570    return -1;
4571
4572  } else if (pid == 0) {
4573    // child process
4574
4575    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4576    // first to kill every thread on the thread list. Because this list is
4577    // not reset by fork() (see notes above), execve() will instead kill
4578    // every thread in the parent process. We know this is the only thread
4579    // in the new process, so make a system call directly.
4580    // IA64 should use normal execve() from glibc to match the glibc fork()
4581    // above.
4582    execve("/bin/sh", (char* const*)argv, environ);
4583
4584    // execve failed
4585    _exit(-1);
4586
4587  } else  {
4588    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4589    // care about the actual exit code, for now.
4590
4591    int status;
4592
4593    // Wait for the child process to exit.  This returns immediately if
4594    // the child has already exited. */
4595    while (waitpid(pid, &status, 0) < 0) {
4596      switch (errno) {
4597      case ECHILD: return 0;
4598      case EINTR: break;
4599      default: return -1;
4600      }
4601    }
4602
4603    if (WIFEXITED(status)) {
4604      // The child exited normally; get its exit code.
4605      return WEXITSTATUS(status);
4606    } else if (WIFSIGNALED(status)) {
4607      // The child exited because of a signal
4608      // The best value to return is 0x80 + signal number,
4609      // because that is what all Unix shells do, and because
4610      // it allows callers to distinguish between process exit and
4611      // process death by signal.
4612      return 0x80 + WTERMSIG(status);
4613    } else {
4614      // Unknown exit code; pass it through
4615      return status;
4616    }
4617  }
4618}
4619
4620// is_headless_jre()
4621//
4622// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4623// in order to report if we are running in a headless jre
4624//
4625// Since JDK8 xawt/libmawt.so was moved into the same directory
4626// as libawt.so, and renamed libawt_xawt.so
4627//
4628bool os::is_headless_jre() {
4629#ifdef __APPLE__
4630  // We no longer build headless-only on Mac OS X
4631  return false;
4632#else
4633  struct stat statbuf;
4634  char buf[MAXPATHLEN];
4635  char libmawtpath[MAXPATHLEN];
4636  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4637  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4638  char *p;
4639
4640  // Get path to libjvm.so
4641  os::jvm_path(buf, sizeof(buf));
4642
4643  // Get rid of libjvm.so
4644  p = strrchr(buf, '/');
4645  if (p == NULL) {
4646    return false;
4647  } else {
4648    *p = '\0';
4649  }
4650
4651  // Get rid of client or server
4652  p = strrchr(buf, '/');
4653  if (p == NULL) {
4654    return false;
4655  } else {
4656    *p = '\0';
4657  }
4658
4659  // check xawt/libmawt.so
4660  strcpy(libmawtpath, buf);
4661  strcat(libmawtpath, xawtstr);
4662  if (::stat(libmawtpath, &statbuf) == 0) return false;
4663
4664  // check libawt_xawt.so
4665  strcpy(libmawtpath, buf);
4666  strcat(libmawtpath, new_xawtstr);
4667  if (::stat(libmawtpath, &statbuf) == 0) return false;
4668
4669  return true;
4670#endif
4671}
4672
4673// Get the default path to the core file
4674// Returns the length of the string
4675int os::get_core_path(char* buffer, size_t bufferSize) {
4676  int n = jio_snprintf(buffer, bufferSize, "/cores");
4677
4678  // Truncate if theoretical string was longer than bufferSize
4679  n = MIN2(n, (int)bufferSize);
4680
4681  return n;
4682}
4683
4684#ifndef PRODUCT
4685void TestReserveMemorySpecial_test() {
4686  // No tests available for this platform
4687}
4688#endif
4689