os_bsd.cpp revision 7065:3c820b8715c4
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109# include <elf.h>
110#endif
111
112#ifdef __APPLE__
113# include <mach/mach.h> // semaphore_* API
114# include <mach-o/dyld.h>
115# include <sys/proc_info.h>
116# include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120#define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155/* Signal number used to suspend/resume a thread */
156
157/* do not use any signal number less than SIGSEGV, see 4355769 */
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193////////////////////////////////////////////////////////////////////////////////
194// environment support
195
196bool os::getenv(const char* name, char* buf, int len) {
197  const char* val = ::getenv(name);
198  if (val != NULL && strlen(val) < (size_t)len) {
199    strcpy(buf, val);
200    return true;
201  }
202  if (len > 0) buf[0] = 0;  // return a null string
203  return false;
204}
205
206
207// Return true if user is running as root.
208
209bool os::have_special_privileges() {
210  static bool init = false;
211  static bool privileges = false;
212  if (!init) {
213    privileges = (getuid() != geteuid()) || (getgid() != getegid());
214    init = true;
215  }
216  return privileges;
217}
218
219
220
221// Cpu architecture string
222#if   defined(ZERO)
223static char cpu_arch[] = ZERO_LIBARCH;
224#elif defined(IA64)
225static char cpu_arch[] = "ia64";
226#elif defined(IA32)
227static char cpu_arch[] = "i386";
228#elif defined(AMD64)
229static char cpu_arch[] = "amd64";
230#elif defined(ARM)
231static char cpu_arch[] = "arm";
232#elif defined(PPC32)
233static char cpu_arch[] = "ppc";
234#elif defined(SPARC)
235#  ifdef _LP64
236static char cpu_arch[] = "sparcv9";
237#  else
238static char cpu_arch[] = "sparc";
239#  endif
240#else
241#error Add appropriate cpu_arch setting
242#endif
243
244// Compiler variant
245#ifdef COMPILER2
246#define COMPILER_VARIANT "server"
247#else
248#define COMPILER_VARIANT "client"
249#endif
250
251
252void os::Bsd::initialize_system_info() {
253  int mib[2];
254  size_t len;
255  int cpu_val;
256  julong mem_val;
257
258  /* get processors count via hw.ncpus sysctl */
259  mib[0] = CTL_HW;
260  mib[1] = HW_NCPU;
261  len = sizeof(cpu_val);
262  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
263       assert(len == sizeof(cpu_val), "unexpected data size");
264       set_processor_count(cpu_val);
265  }
266  else {
267       set_processor_count(1);   // fallback
268  }
269
270  /* get physical memory via hw.memsize sysctl (hw.memsize is used
271   * since it returns a 64 bit value)
272   */
273  mib[0] = CTL_HW;
274
275#if defined (HW_MEMSIZE) // Apple
276  mib[1] = HW_MEMSIZE;
277#elif defined(HW_PHYSMEM) // Most of BSD
278  mib[1] = HW_PHYSMEM;
279#elif defined(HW_REALMEM) // Old FreeBSD
280  mib[1] = HW_REALMEM;
281#else
282  #error No ways to get physmem
283#endif
284
285  len = sizeof(mem_val);
286  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
287       assert(len == sizeof(mem_val), "unexpected data size");
288       _physical_memory = mem_val;
289  } else {
290       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
291  }
292
293#ifdef __OpenBSD__
294  {
295       // limit _physical_memory memory view on OpenBSD since
296       // datasize rlimit restricts us anyway.
297       struct rlimit limits;
298       getrlimit(RLIMIT_DATA, &limits);
299       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
300  }
301#endif
302}
303
304#ifdef __APPLE__
305static const char *get_home() {
306  const char *home_dir = ::getenv("HOME");
307  if ((home_dir == NULL) || (*home_dir == '\0')) {
308    struct passwd *passwd_info = getpwuid(geteuid());
309    if (passwd_info != NULL) {
310      home_dir = passwd_info->pw_dir;
311    }
312  }
313
314  return home_dir;
315}
316#endif
317
318void os::init_system_properties_values() {
319  // The next steps are taken in the product version:
320  //
321  // Obtain the JAVA_HOME value from the location of libjvm.so.
322  // This library should be located at:
323  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
324  //
325  // If "/jre/lib/" appears at the right place in the path, then we
326  // assume libjvm.so is installed in a JDK and we use this path.
327  //
328  // Otherwise exit with message: "Could not create the Java virtual machine."
329  //
330  // The following extra steps are taken in the debugging version:
331  //
332  // If "/jre/lib/" does NOT appear at the right place in the path
333  // instead of exit check for $JAVA_HOME environment variable.
334  //
335  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
336  // then we append a fake suffix "hotspot/libjvm.so" to this path so
337  // it looks like libjvm.so is installed there
338  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
339  //
340  // Otherwise exit.
341  //
342  // Important note: if the location of libjvm.so changes this
343  // code needs to be changed accordingly.
344
345// See ld(1):
346//      The linker uses the following search paths to locate required
347//      shared libraries:
348//        1: ...
349//        ...
350//        7: The default directories, normally /lib and /usr/lib.
351#ifndef DEFAULT_LIBPATH
352#define DEFAULT_LIBPATH "/lib:/usr/lib"
353#endif
354
355// Base path of extensions installed on the system.
356#define SYS_EXT_DIR     "/usr/java/packages"
357#define EXTENSIONS_DIR  "/lib/ext"
358#define ENDORSED_DIR    "/lib/endorsed"
359
360#ifndef __APPLE__
361
362  // Buffer that fits several sprintfs.
363  // Note that the space for the colon and the trailing null are provided
364  // by the nulls included by the sizeof operator.
365  const size_t bufsize =
366    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
367         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
368         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
369  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
370
371  // sysclasspath, java_home, dll_dir
372  {
373    char *pslash;
374    os::jvm_path(buf, bufsize);
375
376    // Found the full path to libjvm.so.
377    // Now cut the path to <java_home>/jre if we can.
378    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
379    pslash = strrchr(buf, '/');
380    if (pslash != NULL) {
381      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
382    }
383    Arguments::set_dll_dir(buf);
384
385    if (pslash != NULL) {
386      pslash = strrchr(buf, '/');
387      if (pslash != NULL) {
388        *pslash = '\0';          // Get rid of /<arch>.
389        pslash = strrchr(buf, '/');
390        if (pslash != NULL) {
391          *pslash = '\0';        // Get rid of /lib.
392        }
393      }
394    }
395    Arguments::set_java_home(buf);
396    set_boot_path('/', ':');
397  }
398
399  // Where to look for native libraries.
400  //
401  // Note: Due to a legacy implementation, most of the library path
402  // is set in the launcher. This was to accomodate linking restrictions
403  // on legacy Bsd implementations (which are no longer supported).
404  // Eventually, all the library path setting will be done here.
405  //
406  // However, to prevent the proliferation of improperly built native
407  // libraries, the new path component /usr/java/packages is added here.
408  // Eventually, all the library path setting will be done here.
409  {
410    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
411    // should always exist (until the legacy problem cited above is
412    // addressed).
413    const char *v = ::getenv("LD_LIBRARY_PATH");
414    const char *v_colon = ":";
415    if (v == NULL) { v = ""; v_colon = ""; }
416    // That's +1 for the colon and +1 for the trailing '\0'.
417    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
418                                                     strlen(v) + 1 +
419                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
420                                                     mtInternal);
421    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
422    Arguments::set_library_path(ld_library_path);
423    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
424  }
425
426  // Extensions directories.
427  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
428  Arguments::set_ext_dirs(buf);
429
430  // Endorsed standards default directory.
431  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
432  Arguments::set_endorsed_dirs(buf);
433
434  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
435
436#else // __APPLE__
437
438#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
439#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
440
441  const char *user_home_dir = get_home();
442  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
443  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
444    sizeof(SYS_EXTENSIONS_DIRS);
445
446  // Buffer that fits several sprintfs.
447  // Note that the space for the colon and the trailing null are provided
448  // by the nulls included by the sizeof operator.
449  const size_t bufsize =
450    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
451         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
452         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
453  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
454
455  // sysclasspath, java_home, dll_dir
456  {
457    char *pslash;
458    os::jvm_path(buf, bufsize);
459
460    // Found the full path to libjvm.so.
461    // Now cut the path to <java_home>/jre if we can.
462    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
463    pslash = strrchr(buf, '/');
464    if (pslash != NULL) {
465      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
466    }
467    Arguments::set_dll_dir(buf);
468
469    if (pslash != NULL) {
470      pslash = strrchr(buf, '/');
471      if (pslash != NULL) {
472        *pslash = '\0';          // Get rid of /lib.
473      }
474    }
475    Arguments::set_java_home(buf);
476    set_boot_path('/', ':');
477  }
478
479  // Where to look for native libraries.
480  //
481  // Note: Due to a legacy implementation, most of the library path
482  // is set in the launcher. This was to accomodate linking restrictions
483  // on legacy Bsd implementations (which are no longer supported).
484  // Eventually, all the library path setting will be done here.
485  //
486  // However, to prevent the proliferation of improperly built native
487  // libraries, the new path component /usr/java/packages is added here.
488  // Eventually, all the library path setting will be done here.
489  {
490    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
491    // should always exist (until the legacy problem cited above is
492    // addressed).
493    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
494    // can specify a directory inside an app wrapper
495    const char *l = ::getenv("JAVA_LIBRARY_PATH");
496    const char *l_colon = ":";
497    if (l == NULL) { l = ""; l_colon = ""; }
498
499    const char *v = ::getenv("DYLD_LIBRARY_PATH");
500    const char *v_colon = ":";
501    if (v == NULL) { v = ""; v_colon = ""; }
502
503    // Apple's Java6 has "." at the beginning of java.library.path.
504    // OpenJDK on Windows has "." at the end of java.library.path.
505    // OpenJDK on Linux and Solaris don't have "." in java.library.path
506    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
507    // "." is appended to the end of java.library.path. Yes, this
508    // could cause a change in behavior, but Apple's Java6 behavior
509    // can be achieved by putting "." at the beginning of the
510    // JAVA_LIBRARY_PATH environment variable.
511    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
512                                                     strlen(v) + 1 + strlen(l) + 1 +
513                                                     system_ext_size + 3,
514                                                     mtInternal);
515    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
516            v, v_colon, l, l_colon, user_home_dir);
517    Arguments::set_library_path(ld_library_path);
518    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
519  }
520
521  // Extensions directories.
522  //
523  // Note that the space for the colon and the trailing null are provided
524  // by the nulls included by the sizeof operator (so actually one byte more
525  // than necessary is allocated).
526  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
527          user_home_dir, Arguments::get_java_home());
528  Arguments::set_ext_dirs(buf);
529
530  // Endorsed standards default directory.
531  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
532  Arguments::set_endorsed_dirs(buf);
533
534  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
535
536#undef SYS_EXTENSIONS_DIR
537#undef SYS_EXTENSIONS_DIRS
538
539#endif // __APPLE__
540
541#undef SYS_EXT_DIR
542#undef EXTENSIONS_DIR
543#undef ENDORSED_DIR
544}
545
546////////////////////////////////////////////////////////////////////////////////
547// breakpoint support
548
549void os::breakpoint() {
550  BREAKPOINT;
551}
552
553extern "C" void breakpoint() {
554  // use debugger to set breakpoint here
555}
556
557////////////////////////////////////////////////////////////////////////////////
558// signal support
559
560debug_only(static bool signal_sets_initialized = false);
561static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
562
563bool os::Bsd::is_sig_ignored(int sig) {
564      struct sigaction oact;
565      sigaction(sig, (struct sigaction*)NULL, &oact);
566      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
567                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
568      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
569           return true;
570      else
571           return false;
572}
573
574void os::Bsd::signal_sets_init() {
575  // Should also have an assertion stating we are still single-threaded.
576  assert(!signal_sets_initialized, "Already initialized");
577  // Fill in signals that are necessarily unblocked for all threads in
578  // the VM. Currently, we unblock the following signals:
579  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
580  //                         by -Xrs (=ReduceSignalUsage));
581  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
582  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
583  // the dispositions or masks wrt these signals.
584  // Programs embedding the VM that want to use the above signals for their
585  // own purposes must, at this time, use the "-Xrs" option to prevent
586  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
587  // (See bug 4345157, and other related bugs).
588  // In reality, though, unblocking these signals is really a nop, since
589  // these signals are not blocked by default.
590  sigemptyset(&unblocked_sigs);
591  sigemptyset(&allowdebug_blocked_sigs);
592  sigaddset(&unblocked_sigs, SIGILL);
593  sigaddset(&unblocked_sigs, SIGSEGV);
594  sigaddset(&unblocked_sigs, SIGBUS);
595  sigaddset(&unblocked_sigs, SIGFPE);
596  sigaddset(&unblocked_sigs, SR_signum);
597
598  if (!ReduceSignalUsage) {
599   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
600      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
601      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
602   }
603   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
604      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
605      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
606   }
607   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
608      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
609      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
610   }
611  }
612  // Fill in signals that are blocked by all but the VM thread.
613  sigemptyset(&vm_sigs);
614  if (!ReduceSignalUsage)
615    sigaddset(&vm_sigs, BREAK_SIGNAL);
616  debug_only(signal_sets_initialized = true);
617
618}
619
620// These are signals that are unblocked while a thread is running Java.
621// (For some reason, they get blocked by default.)
622sigset_t* os::Bsd::unblocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &unblocked_sigs;
625}
626
627// These are the signals that are blocked while a (non-VM) thread is
628// running Java. Only the VM thread handles these signals.
629sigset_t* os::Bsd::vm_signals() {
630  assert(signal_sets_initialized, "Not initialized");
631  return &vm_sigs;
632}
633
634// These are signals that are blocked during cond_wait to allow debugger in
635sigset_t* os::Bsd::allowdebug_blocked_signals() {
636  assert(signal_sets_initialized, "Not initialized");
637  return &allowdebug_blocked_sigs;
638}
639
640void os::Bsd::hotspot_sigmask(Thread* thread) {
641
642  //Save caller's signal mask before setting VM signal mask
643  sigset_t caller_sigmask;
644  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
645
646  OSThread* osthread = thread->osthread();
647  osthread->set_caller_sigmask(caller_sigmask);
648
649  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
650
651  if (!ReduceSignalUsage) {
652    if (thread->is_VM_thread()) {
653      // Only the VM thread handles BREAK_SIGNAL ...
654      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
655    } else {
656      // ... all other threads block BREAK_SIGNAL
657      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
658    }
659  }
660}
661
662
663//////////////////////////////////////////////////////////////////////////////
664// create new thread
665
666// check if it's safe to start a new thread
667static bool _thread_safety_check(Thread* thread) {
668  return true;
669}
670
671#ifdef __APPLE__
672// library handle for calling objc_registerThreadWithCollector()
673// without static linking to the libobjc library
674#define OBJC_LIB "/usr/lib/libobjc.dylib"
675#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
676typedef void (*objc_registerThreadWithCollector_t)();
677extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
678objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
679#endif
680
681#ifdef __APPLE__
682static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
683  // Additional thread_id used to correlate threads in SA
684  thread_identifier_info_data_t     m_ident_info;
685  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
686
687  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
688              (thread_info_t) &m_ident_info, &count);
689
690  return m_ident_info.thread_id;
691}
692#endif
693
694// Thread start routine for all newly created threads
695static void *java_start(Thread *thread) {
696  // Try to randomize the cache line index of hot stack frames.
697  // This helps when threads of the same stack traces evict each other's
698  // cache lines. The threads can be either from the same JVM instance, or
699  // from different JVM instances. The benefit is especially true for
700  // processors with hyperthreading technology.
701  static int counter = 0;
702  int pid = os::current_process_id();
703  alloca(((pid ^ counter++) & 7) * 128);
704
705  ThreadLocalStorage::set_thread(thread);
706
707  OSThread* osthread = thread->osthread();
708  Monitor* sync = osthread->startThread_lock();
709
710  // non floating stack BsdThreads needs extra check, see above
711  if (!_thread_safety_check(thread)) {
712    // notify parent thread
713    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
714    osthread->set_state(ZOMBIE);
715    sync->notify_all();
716    return NULL;
717  }
718
719  osthread->set_thread_id(os::Bsd::gettid());
720
721#ifdef __APPLE__
722  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
723  guarantee(unique_thread_id != 0, "unique thread id was not found");
724  osthread->set_unique_thread_id(unique_thread_id);
725#endif
726  // initialize signal mask for this thread
727  os::Bsd::hotspot_sigmask(thread);
728
729  // initialize floating point control register
730  os::Bsd::init_thread_fpu_state();
731
732#ifdef __APPLE__
733  // register thread with objc gc
734  if (objc_registerThreadWithCollectorFunction != NULL) {
735    objc_registerThreadWithCollectorFunction();
736  }
737#endif
738
739  // handshaking with parent thread
740  {
741    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
742
743    // notify parent thread
744    osthread->set_state(INITIALIZED);
745    sync->notify_all();
746
747    // wait until os::start_thread()
748    while (osthread->get_state() == INITIALIZED) {
749      sync->wait(Mutex::_no_safepoint_check_flag);
750    }
751  }
752
753  // call one more level start routine
754  thread->run();
755
756  return 0;
757}
758
759bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
760  assert(thread->osthread() == NULL, "caller responsible");
761
762  // Allocate the OSThread object
763  OSThread* osthread = new OSThread(NULL, NULL);
764  if (osthread == NULL) {
765    return false;
766  }
767
768  // set the correct thread state
769  osthread->set_thread_type(thr_type);
770
771  // Initial state is ALLOCATED but not INITIALIZED
772  osthread->set_state(ALLOCATED);
773
774  thread->set_osthread(osthread);
775
776  // init thread attributes
777  pthread_attr_t attr;
778  pthread_attr_init(&attr);
779  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
780
781  // stack size
782  if (os::Bsd::supports_variable_stack_size()) {
783    // calculate stack size if it's not specified by caller
784    if (stack_size == 0) {
785      stack_size = os::Bsd::default_stack_size(thr_type);
786
787      switch (thr_type) {
788      case os::java_thread:
789        // Java threads use ThreadStackSize which default value can be
790        // changed with the flag -Xss
791        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
792        stack_size = JavaThread::stack_size_at_create();
793        break;
794      case os::compiler_thread:
795        if (CompilerThreadStackSize > 0) {
796          stack_size = (size_t)(CompilerThreadStackSize * K);
797          break;
798        } // else fall through:
799          // use VMThreadStackSize if CompilerThreadStackSize is not defined
800      case os::vm_thread:
801      case os::pgc_thread:
802      case os::cgc_thread:
803      case os::watcher_thread:
804        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
805        break;
806      }
807    }
808
809    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
810    pthread_attr_setstacksize(&attr, stack_size);
811  } else {
812    // let pthread_create() pick the default value.
813  }
814
815  ThreadState state;
816
817  {
818    pthread_t tid;
819    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
820
821    pthread_attr_destroy(&attr);
822
823    if (ret != 0) {
824      if (PrintMiscellaneous && (Verbose || WizardMode)) {
825        perror("pthread_create()");
826      }
827      // Need to clean up stuff we've allocated so far
828      thread->set_osthread(NULL);
829      delete osthread;
830      return false;
831    }
832
833    // Store pthread info into the OSThread
834    osthread->set_pthread_id(tid);
835
836    // Wait until child thread is either initialized or aborted
837    {
838      Monitor* sync_with_child = osthread->startThread_lock();
839      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
840      while ((state = osthread->get_state()) == ALLOCATED) {
841        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
842      }
843    }
844
845  }
846
847  // Aborted due to thread limit being reached
848  if (state == ZOMBIE) {
849      thread->set_osthread(NULL);
850      delete osthread;
851      return false;
852  }
853
854  // The thread is returned suspended (in state INITIALIZED),
855  // and is started higher up in the call chain
856  assert(state == INITIALIZED, "race condition");
857  return true;
858}
859
860/////////////////////////////////////////////////////////////////////////////
861// attach existing thread
862
863// bootstrap the main thread
864bool os::create_main_thread(JavaThread* thread) {
865  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
866  return create_attached_thread(thread);
867}
868
869bool os::create_attached_thread(JavaThread* thread) {
870#ifdef ASSERT
871    thread->verify_not_published();
872#endif
873
874  // Allocate the OSThread object
875  OSThread* osthread = new OSThread(NULL, NULL);
876
877  if (osthread == NULL) {
878    return false;
879  }
880
881  osthread->set_thread_id(os::Bsd::gettid());
882
883  // Store pthread info into the OSThread
884#ifdef __APPLE__
885  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
886  guarantee(unique_thread_id != 0, "just checking");
887  osthread->set_unique_thread_id(unique_thread_id);
888#endif
889  osthread->set_pthread_id(::pthread_self());
890
891  // initialize floating point control register
892  os::Bsd::init_thread_fpu_state();
893
894  // Initial thread state is RUNNABLE
895  osthread->set_state(RUNNABLE);
896
897  thread->set_osthread(osthread);
898
899  // initialize signal mask for this thread
900  // and save the caller's signal mask
901  os::Bsd::hotspot_sigmask(thread);
902
903  return true;
904}
905
906void os::pd_start_thread(Thread* thread) {
907  OSThread * osthread = thread->osthread();
908  assert(osthread->get_state() != INITIALIZED, "just checking");
909  Monitor* sync_with_child = osthread->startThread_lock();
910  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
911  sync_with_child->notify();
912}
913
914// Free Bsd resources related to the OSThread
915void os::free_thread(OSThread* osthread) {
916  assert(osthread != NULL, "osthread not set");
917
918  if (Thread::current()->osthread() == osthread) {
919    // Restore caller's signal mask
920    sigset_t sigmask = osthread->caller_sigmask();
921    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
922   }
923
924  delete osthread;
925}
926
927//////////////////////////////////////////////////////////////////////////////
928// thread local storage
929
930// Restore the thread pointer if the destructor is called. This is in case
931// someone from JNI code sets up a destructor with pthread_key_create to run
932// detachCurrentThread on thread death. Unless we restore the thread pointer we
933// will hang or crash. When detachCurrentThread is called the key will be set
934// to null and we will not be called again. If detachCurrentThread is never
935// called we could loop forever depending on the pthread implementation.
936static void restore_thread_pointer(void* p) {
937  Thread* thread = (Thread*) p;
938  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
939}
940
941int os::allocate_thread_local_storage() {
942  pthread_key_t key;
943  int rslt = pthread_key_create(&key, restore_thread_pointer);
944  assert(rslt == 0, "cannot allocate thread local storage");
945  return (int)key;
946}
947
948// Note: This is currently not used by VM, as we don't destroy TLS key
949// on VM exit.
950void os::free_thread_local_storage(int index) {
951  int rslt = pthread_key_delete((pthread_key_t)index);
952  assert(rslt == 0, "invalid index");
953}
954
955void os::thread_local_storage_at_put(int index, void* value) {
956  int rslt = pthread_setspecific((pthread_key_t)index, value);
957  assert(rslt == 0, "pthread_setspecific failed");
958}
959
960extern "C" Thread* get_thread() {
961  return ThreadLocalStorage::thread();
962}
963
964
965////////////////////////////////////////////////////////////////////////////////
966// time support
967
968// Time since start-up in seconds to a fine granularity.
969// Used by VMSelfDestructTimer and the MemProfiler.
970double os::elapsedTime() {
971
972  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
973}
974
975jlong os::elapsed_counter() {
976  return javaTimeNanos() - initial_time_count;
977}
978
979jlong os::elapsed_frequency() {
980  return NANOSECS_PER_SEC; // nanosecond resolution
981}
982
983bool os::supports_vtime() { return true; }
984bool os::enable_vtime()   { return false; }
985bool os::vtime_enabled()  { return false; }
986
987double os::elapsedVTime() {
988  // better than nothing, but not much
989  return elapsedTime();
990}
991
992jlong os::javaTimeMillis() {
993  timeval time;
994  int status = gettimeofday(&time, NULL);
995  assert(status != -1, "bsd error");
996  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
997}
998
999#ifndef __APPLE__
1000#ifndef CLOCK_MONOTONIC
1001#define CLOCK_MONOTONIC (1)
1002#endif
1003#endif
1004
1005#ifdef __APPLE__
1006void os::Bsd::clock_init() {
1007  mach_timebase_info(&_timebase_info);
1008}
1009#else
1010void os::Bsd::clock_init() {
1011  struct timespec res;
1012  struct timespec tp;
1013  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1014      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1015    // yes, monotonic clock is supported
1016    _clock_gettime = ::clock_gettime;
1017  }
1018}
1019#endif
1020
1021
1022
1023#ifdef __APPLE__
1024
1025jlong os::javaTimeNanos() {
1026    const uint64_t tm = mach_absolute_time();
1027    const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1028    const uint64_t prev = Bsd::_max_abstime;
1029    if (now <= prev) {
1030      return prev;   // same or retrograde time;
1031    }
1032    const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1033    assert(obsv >= prev, "invariant");   // Monotonicity
1034    // If the CAS succeeded then we're done and return "now".
1035    // If the CAS failed and the observed value "obsv" is >= now then
1036    // we should return "obsv".  If the CAS failed and now > obsv > prv then
1037    // some other thread raced this thread and installed a new value, in which case
1038    // we could either (a) retry the entire operation, (b) retry trying to install now
1039    // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1040    // we might discard a higher "now" value in deference to a slightly lower but freshly
1041    // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1042    // to (a) or (b) -- and greatly reduces coherence traffic.
1043    // We might also condition (c) on the magnitude of the delta between obsv and now.
1044    // Avoiding excessive CAS operations to hot RW locations is critical.
1045    // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1046    return (prev == obsv) ? now : obsv;
1047}
1048
1049#else // __APPLE__
1050
1051jlong os::javaTimeNanos() {
1052  if (os::supports_monotonic_clock()) {
1053    struct timespec tp;
1054    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1055    assert(status == 0, "gettime error");
1056    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1057    return result;
1058  } else {
1059    timeval time;
1060    int status = gettimeofday(&time, NULL);
1061    assert(status != -1, "bsd error");
1062    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1063    return 1000 * usecs;
1064  }
1065}
1066
1067#endif // __APPLE__
1068
1069void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1070  if (os::supports_monotonic_clock()) {
1071    info_ptr->max_value = ALL_64_BITS;
1072
1073    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1074    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1075    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1076  } else {
1077    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1078    info_ptr->max_value = ALL_64_BITS;
1079
1080    // gettimeofday is a real time clock so it skips
1081    info_ptr->may_skip_backward = true;
1082    info_ptr->may_skip_forward = true;
1083  }
1084
1085  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1086}
1087
1088// Return the real, user, and system times in seconds from an
1089// arbitrary fixed point in the past.
1090bool os::getTimesSecs(double* process_real_time,
1091                      double* process_user_time,
1092                      double* process_system_time) {
1093  struct tms ticks;
1094  clock_t real_ticks = times(&ticks);
1095
1096  if (real_ticks == (clock_t) (-1)) {
1097    return false;
1098  } else {
1099    double ticks_per_second = (double) clock_tics_per_sec;
1100    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1101    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1102    *process_real_time = ((double) real_ticks) / ticks_per_second;
1103
1104    return true;
1105  }
1106}
1107
1108
1109char * os::local_time_string(char *buf, size_t buflen) {
1110  struct tm t;
1111  time_t long_time;
1112  time(&long_time);
1113  localtime_r(&long_time, &t);
1114  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1115               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1116               t.tm_hour, t.tm_min, t.tm_sec);
1117  return buf;
1118}
1119
1120struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1121  return localtime_r(clock, res);
1122}
1123
1124////////////////////////////////////////////////////////////////////////////////
1125// runtime exit support
1126
1127// Note: os::shutdown() might be called very early during initialization, or
1128// called from signal handler. Before adding something to os::shutdown(), make
1129// sure it is async-safe and can handle partially initialized VM.
1130void os::shutdown() {
1131
1132  // allow PerfMemory to attempt cleanup of any persistent resources
1133  perfMemory_exit();
1134
1135  // needs to remove object in file system
1136  AttachListener::abort();
1137
1138  // flush buffered output, finish log files
1139  ostream_abort();
1140
1141  // Check for abort hook
1142  abort_hook_t abort_hook = Arguments::abort_hook();
1143  if (abort_hook != NULL) {
1144    abort_hook();
1145  }
1146
1147}
1148
1149// Note: os::abort() might be called very early during initialization, or
1150// called from signal handler. Before adding something to os::abort(), make
1151// sure it is async-safe and can handle partially initialized VM.
1152void os::abort(bool dump_core) {
1153  os::shutdown();
1154  if (dump_core) {
1155#ifndef PRODUCT
1156    fdStream out(defaultStream::output_fd());
1157    out.print_raw("Current thread is ");
1158    char buf[16];
1159    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160    out.print_raw_cr(buf);
1161    out.print_raw_cr("Dumping core ...");
1162#endif
1163    ::abort(); // dump core
1164  }
1165
1166  ::exit(1);
1167}
1168
1169// Die immediately, no exit hook, no abort hook, no cleanup.
1170void os::die() {
1171  // _exit() on BsdThreads only kills current thread
1172  ::abort();
1173}
1174
1175// This method is a copy of JDK's sysGetLastErrorString
1176// from src/solaris/hpi/src/system_md.c
1177
1178size_t os::lasterror(char *buf, size_t len) {
1179
1180  if (errno == 0)  return 0;
1181
1182  const char *s = ::strerror(errno);
1183  size_t n = ::strlen(s);
1184  if (n >= len) {
1185    n = len - 1;
1186  }
1187  ::strncpy(buf, s, n);
1188  buf[n] = '\0';
1189  return n;
1190}
1191
1192// Information of current thread in variety of formats
1193pid_t os::Bsd::gettid() {
1194  int retval = -1;
1195
1196#ifdef __APPLE__ //XNU kernel
1197  // despite the fact mach port is actually not a thread id use it
1198  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1199  retval = ::pthread_mach_thread_np(::pthread_self());
1200  guarantee(retval != 0, "just checking");
1201  return retval;
1202
1203#elif __FreeBSD__
1204  retval = syscall(SYS_thr_self);
1205#elif __OpenBSD__
1206  retval = syscall(SYS_getthrid);
1207#elif __NetBSD__
1208  retval = (pid_t) syscall(SYS__lwp_self);
1209#endif
1210
1211  if (retval == -1) {
1212    return getpid();
1213  }
1214}
1215
1216intx os::current_thread_id() {
1217#ifdef __APPLE__
1218  return (intx)::pthread_mach_thread_np(::pthread_self());
1219#else
1220  return (intx)::pthread_self();
1221#endif
1222}
1223
1224int os::current_process_id() {
1225
1226  // Under the old bsd thread library, bsd gives each thread
1227  // its own process id. Because of this each thread will return
1228  // a different pid if this method were to return the result
1229  // of getpid(2). Bsd provides no api that returns the pid
1230  // of the launcher thread for the vm. This implementation
1231  // returns a unique pid, the pid of the launcher thread
1232  // that starts the vm 'process'.
1233
1234  // Under the NPTL, getpid() returns the same pid as the
1235  // launcher thread rather than a unique pid per thread.
1236  // Use gettid() if you want the old pre NPTL behaviour.
1237
1238  // if you are looking for the result of a call to getpid() that
1239  // returns a unique pid for the calling thread, then look at the
1240  // OSThread::thread_id() method in osThread_bsd.hpp file
1241
1242  return (int)(_initial_pid ? _initial_pid : getpid());
1243}
1244
1245// DLL functions
1246
1247#define JNI_LIB_PREFIX "lib"
1248#ifdef __APPLE__
1249#define JNI_LIB_SUFFIX ".dylib"
1250#else
1251#define JNI_LIB_SUFFIX ".so"
1252#endif
1253
1254const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1255
1256// This must be hard coded because it's the system's temporary
1257// directory not the java application's temp directory, ala java.io.tmpdir.
1258#ifdef __APPLE__
1259// macosx has a secure per-user temporary directory
1260char temp_path_storage[PATH_MAX];
1261const char* os::get_temp_directory() {
1262  static char *temp_path = NULL;
1263  if (temp_path == NULL) {
1264    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1265    if (pathSize == 0 || pathSize > PATH_MAX) {
1266      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1267    }
1268    temp_path = temp_path_storage;
1269  }
1270  return temp_path;
1271}
1272#else /* __APPLE__ */
1273const char* os::get_temp_directory() { return "/tmp"; }
1274#endif /* __APPLE__ */
1275
1276static bool file_exists(const char* filename) {
1277  struct stat statbuf;
1278  if (filename == NULL || strlen(filename) == 0) {
1279    return false;
1280  }
1281  return os::stat(filename, &statbuf) == 0;
1282}
1283
1284bool os::dll_build_name(char* buffer, size_t buflen,
1285                        const char* pname, const char* fname) {
1286  bool retval = false;
1287  // Copied from libhpi
1288  const size_t pnamelen = pname ? strlen(pname) : 0;
1289
1290  // Return error on buffer overflow.
1291  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1292    return retval;
1293  }
1294
1295  if (pnamelen == 0) {
1296    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1297    retval = true;
1298  } else if (strchr(pname, *os::path_separator()) != NULL) {
1299    int n;
1300    char** pelements = split_path(pname, &n);
1301    if (pelements == NULL) {
1302      return false;
1303    }
1304    for (int i = 0; i < n; i++) {
1305      // Really shouldn't be NULL, but check can't hurt
1306      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1307        continue; // skip the empty path values
1308      }
1309      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1310          pelements[i], fname);
1311      if (file_exists(buffer)) {
1312        retval = true;
1313        break;
1314      }
1315    }
1316    // release the storage
1317    for (int i = 0; i < n; i++) {
1318      if (pelements[i] != NULL) {
1319        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1320      }
1321    }
1322    if (pelements != NULL) {
1323      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1324    }
1325  } else {
1326    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1327    retval = true;
1328  }
1329  return retval;
1330}
1331
1332// check if addr is inside libjvm.so
1333bool os::address_is_in_vm(address addr) {
1334  static address libjvm_base_addr;
1335  Dl_info dlinfo;
1336
1337  if (libjvm_base_addr == NULL) {
1338    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1339      libjvm_base_addr = (address)dlinfo.dli_fbase;
1340    }
1341    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1342  }
1343
1344  if (dladdr((void *)addr, &dlinfo) != 0) {
1345    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1346  }
1347
1348  return false;
1349}
1350
1351
1352#define MACH_MAXSYMLEN 256
1353
1354bool os::dll_address_to_function_name(address addr, char *buf,
1355                                      int buflen, int *offset) {
1356  // buf is not optional, but offset is optional
1357  assert(buf != NULL, "sanity check");
1358
1359  Dl_info dlinfo;
1360  char localbuf[MACH_MAXSYMLEN];
1361
1362  if (dladdr((void*)addr, &dlinfo) != 0) {
1363    // see if we have a matching symbol
1364    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1365      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1366        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1367      }
1368      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1369      return true;
1370    }
1371    // no matching symbol so try for just file info
1372    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1373      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1374                          buf, buflen, offset, dlinfo.dli_fname)) {
1375         return true;
1376      }
1377    }
1378
1379    // Handle non-dynamic manually:
1380    if (dlinfo.dli_fbase != NULL &&
1381        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1382                        dlinfo.dli_fbase)) {
1383      if (!Decoder::demangle(localbuf, buf, buflen)) {
1384        jio_snprintf(buf, buflen, "%s", localbuf);
1385      }
1386      return true;
1387    }
1388  }
1389  buf[0] = '\0';
1390  if (offset != NULL) *offset = -1;
1391  return false;
1392}
1393
1394// ported from solaris version
1395bool os::dll_address_to_library_name(address addr, char* buf,
1396                                     int buflen, int* offset) {
1397  // buf is not optional, but offset is optional
1398  assert(buf != NULL, "sanity check");
1399
1400  Dl_info dlinfo;
1401
1402  if (dladdr((void*)addr, &dlinfo) != 0) {
1403    if (dlinfo.dli_fname != NULL) {
1404      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1405    }
1406    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1407      *offset = addr - (address)dlinfo.dli_fbase;
1408    }
1409    return true;
1410  }
1411
1412  buf[0] = '\0';
1413  if (offset) *offset = -1;
1414  return false;
1415}
1416
1417// Loads .dll/.so and
1418// in case of error it checks if .dll/.so was built for the
1419// same architecture as Hotspot is running on
1420
1421#ifdef __APPLE__
1422void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1423  void * result= ::dlopen(filename, RTLD_LAZY);
1424  if (result != NULL) {
1425    // Successful loading
1426    return result;
1427  }
1428
1429  // Read system error message into ebuf
1430  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1431  ebuf[ebuflen-1]='\0';
1432
1433  return NULL;
1434}
1435#else
1436void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1437{
1438  void * result= ::dlopen(filename, RTLD_LAZY);
1439  if (result != NULL) {
1440    // Successful loading
1441    return result;
1442  }
1443
1444  Elf32_Ehdr elf_head;
1445
1446  // Read system error message into ebuf
1447  // It may or may not be overwritten below
1448  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1449  ebuf[ebuflen-1]='\0';
1450  int diag_msg_max_length=ebuflen-strlen(ebuf);
1451  char* diag_msg_buf=ebuf+strlen(ebuf);
1452
1453  if (diag_msg_max_length==0) {
1454    // No more space in ebuf for additional diagnostics message
1455    return NULL;
1456  }
1457
1458
1459  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1460
1461  if (file_descriptor < 0) {
1462    // Can't open library, report dlerror() message
1463    return NULL;
1464  }
1465
1466  bool failed_to_read_elf_head=
1467    (sizeof(elf_head)!=
1468        (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1469
1470  ::close(file_descriptor);
1471  if (failed_to_read_elf_head) {
1472    // file i/o error - report dlerror() msg
1473    return NULL;
1474  }
1475
1476  typedef struct {
1477    Elf32_Half  code;         // Actual value as defined in elf.h
1478    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1479    char        elf_class;    // 32 or 64 bit
1480    char        endianess;    // MSB or LSB
1481    char*       name;         // String representation
1482  } arch_t;
1483
1484  #ifndef EM_486
1485  #define EM_486          6               /* Intel 80486 */
1486  #endif
1487
1488  #ifndef EM_MIPS_RS3_LE
1489  #define EM_MIPS_RS3_LE  10              /* MIPS */
1490  #endif
1491
1492  #ifndef EM_PPC64
1493  #define EM_PPC64        21              /* PowerPC64 */
1494  #endif
1495
1496  #ifndef EM_S390
1497  #define EM_S390         22              /* IBM System/390 */
1498  #endif
1499
1500  #ifndef EM_IA_64
1501  #define EM_IA_64        50              /* HP/Intel IA-64 */
1502  #endif
1503
1504  #ifndef EM_X86_64
1505  #define EM_X86_64       62              /* AMD x86-64 */
1506  #endif
1507
1508  static const arch_t arch_array[]={
1509    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1510    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1511    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1512    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1513    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1514    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1515    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1516    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1517    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1518    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1519    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1520    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1521    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1522    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1523    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1524    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1525  };
1526
1527  #if  (defined IA32)
1528    static  Elf32_Half running_arch_code=EM_386;
1529  #elif   (defined AMD64)
1530    static  Elf32_Half running_arch_code=EM_X86_64;
1531  #elif  (defined IA64)
1532    static  Elf32_Half running_arch_code=EM_IA_64;
1533  #elif  (defined __sparc) && (defined _LP64)
1534    static  Elf32_Half running_arch_code=EM_SPARCV9;
1535  #elif  (defined __sparc) && (!defined _LP64)
1536    static  Elf32_Half running_arch_code=EM_SPARC;
1537  #elif  (defined __powerpc64__)
1538    static  Elf32_Half running_arch_code=EM_PPC64;
1539  #elif  (defined __powerpc__)
1540    static  Elf32_Half running_arch_code=EM_PPC;
1541  #elif  (defined ARM)
1542    static  Elf32_Half running_arch_code=EM_ARM;
1543  #elif  (defined S390)
1544    static  Elf32_Half running_arch_code=EM_S390;
1545  #elif  (defined ALPHA)
1546    static  Elf32_Half running_arch_code=EM_ALPHA;
1547  #elif  (defined MIPSEL)
1548    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1549  #elif  (defined PARISC)
1550    static  Elf32_Half running_arch_code=EM_PARISC;
1551  #elif  (defined MIPS)
1552    static  Elf32_Half running_arch_code=EM_MIPS;
1553  #elif  (defined M68K)
1554    static  Elf32_Half running_arch_code=EM_68K;
1555  #else
1556    #error Method os::dll_load requires that one of following is defined:\
1557         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1558  #endif
1559
1560  // Identify compatability class for VM's architecture and library's architecture
1561  // Obtain string descriptions for architectures
1562
1563  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1564  int running_arch_index=-1;
1565
1566  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1567    if (running_arch_code == arch_array[i].code) {
1568      running_arch_index    = i;
1569    }
1570    if (lib_arch.code == arch_array[i].code) {
1571      lib_arch.compat_class = arch_array[i].compat_class;
1572      lib_arch.name         = arch_array[i].name;
1573    }
1574  }
1575
1576  assert(running_arch_index != -1,
1577    "Didn't find running architecture code (running_arch_code) in arch_array");
1578  if (running_arch_index == -1) {
1579    // Even though running architecture detection failed
1580    // we may still continue with reporting dlerror() message
1581    return NULL;
1582  }
1583
1584  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1585    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1586    return NULL;
1587  }
1588
1589#ifndef S390
1590  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1591    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1592    return NULL;
1593  }
1594#endif // !S390
1595
1596  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1597    if (lib_arch.name!=NULL) {
1598      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1599        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1600        lib_arch.name, arch_array[running_arch_index].name);
1601    } else {
1602      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1603      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1604        lib_arch.code,
1605        arch_array[running_arch_index].name);
1606    }
1607  }
1608
1609  return NULL;
1610}
1611#endif /* !__APPLE__ */
1612
1613void* os::get_default_process_handle() {
1614#ifdef __APPLE__
1615  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1616  // to avoid finding unexpected symbols on second (or later)
1617  // loads of a library.
1618  return (void*)::dlopen(NULL, RTLD_FIRST);
1619#else
1620  return (void*)::dlopen(NULL, RTLD_LAZY);
1621#endif
1622}
1623
1624// XXX: Do we need a lock around this as per Linux?
1625void* os::dll_lookup(void* handle, const char* name) {
1626  return dlsym(handle, name);
1627}
1628
1629
1630static bool _print_ascii_file(const char* filename, outputStream* st) {
1631  int fd = ::open(filename, O_RDONLY);
1632  if (fd == -1) {
1633     return false;
1634  }
1635
1636  char buf[32];
1637  int bytes;
1638  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1639    st->print_raw(buf, bytes);
1640  }
1641
1642  ::close(fd);
1643
1644  return true;
1645}
1646
1647int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1648  outputStream * out = (outputStream *) param;
1649  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1650  return 0;
1651}
1652
1653void os::print_dll_info(outputStream *st) {
1654  st->print_cr("Dynamic libraries:");
1655  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1656    st->print_cr("Error: Cannot print dynamic libraries.");
1657  }
1658}
1659
1660int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1661#ifdef RTLD_DI_LINKMAP
1662  Dl_info dli;
1663  void *handle;
1664  Link_map *map;
1665  Link_map *p;
1666
1667  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1668      dli.dli_fname == NULL) {
1669    return 1;
1670  }
1671  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1672  if (handle == NULL) {
1673    return 1;
1674  }
1675  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1676  if (map == NULL) {
1677    dlclose(handle);
1678    return 1;
1679  }
1680
1681  while (map->l_prev != NULL)
1682    map = map->l_prev;
1683
1684  while (map != NULL) {
1685    // Value for top_address is returned as 0 since we don't have any information about module size
1686    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1687      dlclose(handle);
1688      return 1;
1689    }
1690    map = map->l_next;
1691  }
1692
1693  dlclose(handle);
1694#elif defined(__APPLE__)
1695  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1696    // Value for top_address is returned as 0 since we don't have any information about module size
1697    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1698      return 1;
1699    }
1700  }
1701  return 0;
1702#else
1703  return 1;
1704#endif
1705}
1706
1707void os::print_os_info_brief(outputStream* st) {
1708  st->print("Bsd");
1709
1710  os::Posix::print_uname_info(st);
1711}
1712
1713void os::print_os_info(outputStream* st) {
1714  st->print("OS:");
1715  st->print("Bsd");
1716
1717  os::Posix::print_uname_info(st);
1718
1719  os::Posix::print_rlimit_info(st);
1720
1721  os::Posix::print_load_average(st);
1722}
1723
1724void os::pd_print_cpu_info(outputStream* st) {
1725  // Nothing to do for now.
1726}
1727
1728void os::print_memory_info(outputStream* st) {
1729
1730  st->print("Memory:");
1731  st->print(" %dk page", os::vm_page_size()>>10);
1732
1733  st->print(", physical " UINT64_FORMAT "k",
1734            os::physical_memory() >> 10);
1735  st->print("(" UINT64_FORMAT "k free)",
1736            os::available_memory() >> 10);
1737  st->cr();
1738
1739  // meminfo
1740  st->print("\n/proc/meminfo:\n");
1741  _print_ascii_file("/proc/meminfo", st);
1742  st->cr();
1743}
1744
1745void os::print_siginfo(outputStream* st, void* siginfo) {
1746  const siginfo_t* si = (const siginfo_t*)siginfo;
1747
1748  os::Posix::print_siginfo_brief(st, si);
1749
1750  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1751      UseSharedSpaces) {
1752    FileMapInfo* mapinfo = FileMapInfo::current_info();
1753    if (mapinfo->is_in_shared_space(si->si_addr)) {
1754      st->print("\n\nError accessing class data sharing archive."   \
1755                " Mapped file inaccessible during execution, "      \
1756                " possible disk/network problem.");
1757    }
1758  }
1759  st->cr();
1760}
1761
1762
1763static void print_signal_handler(outputStream* st, int sig,
1764                                 char* buf, size_t buflen);
1765
1766void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1767  st->print_cr("Signal Handlers:");
1768  print_signal_handler(st, SIGSEGV, buf, buflen);
1769  print_signal_handler(st, SIGBUS , buf, buflen);
1770  print_signal_handler(st, SIGFPE , buf, buflen);
1771  print_signal_handler(st, SIGPIPE, buf, buflen);
1772  print_signal_handler(st, SIGXFSZ, buf, buflen);
1773  print_signal_handler(st, SIGILL , buf, buflen);
1774  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1775  print_signal_handler(st, SR_signum, buf, buflen);
1776  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1777  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1778  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1779  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1780}
1781
1782static char saved_jvm_path[MAXPATHLEN] = {0};
1783
1784// Find the full path to the current module, libjvm
1785void os::jvm_path(char *buf, jint buflen) {
1786  // Error checking.
1787  if (buflen < MAXPATHLEN) {
1788    assert(false, "must use a large-enough buffer");
1789    buf[0] = '\0';
1790    return;
1791  }
1792  // Lazy resolve the path to current module.
1793  if (saved_jvm_path[0] != 0) {
1794    strcpy(buf, saved_jvm_path);
1795    return;
1796  }
1797
1798  char dli_fname[MAXPATHLEN];
1799  bool ret = dll_address_to_library_name(
1800                CAST_FROM_FN_PTR(address, os::jvm_path),
1801                dli_fname, sizeof(dli_fname), NULL);
1802  assert(ret, "cannot locate libjvm");
1803  char *rp = NULL;
1804  if (ret && dli_fname[0] != '\0') {
1805    rp = realpath(dli_fname, buf);
1806  }
1807  if (rp == NULL)
1808    return;
1809
1810  if (Arguments::sun_java_launcher_is_altjvm()) {
1811    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1812    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1813    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1814    // appears at the right place in the string, then assume we are
1815    // installed in a JDK and we're done. Otherwise, check for a
1816    // JAVA_HOME environment variable and construct a path to the JVM
1817    // being overridden.
1818
1819    const char *p = buf + strlen(buf) - 1;
1820    for (int count = 0; p > buf && count < 5; ++count) {
1821      for (--p; p > buf && *p != '/'; --p)
1822        /* empty */ ;
1823    }
1824
1825    if (strncmp(p, "/jre/lib/", 9) != 0) {
1826      // Look for JAVA_HOME in the environment.
1827      char* java_home_var = ::getenv("JAVA_HOME");
1828      if (java_home_var != NULL && java_home_var[0] != 0) {
1829        char* jrelib_p;
1830        int len;
1831
1832        // Check the current module name "libjvm"
1833        p = strrchr(buf, '/');
1834        assert(strstr(p, "/libjvm") == p, "invalid library name");
1835
1836        rp = realpath(java_home_var, buf);
1837        if (rp == NULL)
1838          return;
1839
1840        // determine if this is a legacy image or modules image
1841        // modules image doesn't have "jre" subdirectory
1842        len = strlen(buf);
1843        assert(len < buflen, "Ran out of buffer space");
1844        jrelib_p = buf + len;
1845
1846        // Add the appropriate library subdir
1847        snprintf(jrelib_p, buflen-len, "/jre/lib");
1848        if (0 != access(buf, F_OK)) {
1849          snprintf(jrelib_p, buflen-len, "/lib");
1850        }
1851
1852        // Add the appropriate client or server subdir
1853        len = strlen(buf);
1854        jrelib_p = buf + len;
1855        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1856        if (0 != access(buf, F_OK)) {
1857          snprintf(jrelib_p, buflen-len, "%s", "");
1858        }
1859
1860        // If the path exists within JAVA_HOME, add the JVM library name
1861        // to complete the path to JVM being overridden.  Otherwise fallback
1862        // to the path to the current library.
1863        if (0 == access(buf, F_OK)) {
1864          // Use current module name "libjvm"
1865          len = strlen(buf);
1866          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1867        } else {
1868          // Fall back to path of current library
1869          rp = realpath(dli_fname, buf);
1870          if (rp == NULL)
1871            return;
1872        }
1873      }
1874    }
1875  }
1876
1877  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1878}
1879
1880void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1881  // no prefix required, not even "_"
1882}
1883
1884void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1885  // no suffix required
1886}
1887
1888////////////////////////////////////////////////////////////////////////////////
1889// sun.misc.Signal support
1890
1891static volatile jint sigint_count = 0;
1892
1893static void
1894UserHandler(int sig, void *siginfo, void *context) {
1895  // 4511530 - sem_post is serialized and handled by the manager thread. When
1896  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1897  // don't want to flood the manager thread with sem_post requests.
1898  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1899      return;
1900
1901  // Ctrl-C is pressed during error reporting, likely because the error
1902  // handler fails to abort. Let VM die immediately.
1903  if (sig == SIGINT && is_error_reported()) {
1904     os::die();
1905  }
1906
1907  os::signal_notify(sig);
1908}
1909
1910void* os::user_handler() {
1911  return CAST_FROM_FN_PTR(void*, UserHandler);
1912}
1913
1914extern "C" {
1915  typedef void (*sa_handler_t)(int);
1916  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1917}
1918
1919void* os::signal(int signal_number, void* handler) {
1920  struct sigaction sigAct, oldSigAct;
1921
1922  sigfillset(&(sigAct.sa_mask));
1923  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1924  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1925
1926  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1927    // -1 means registration failed
1928    return (void *)-1;
1929  }
1930
1931  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1932}
1933
1934void os::signal_raise(int signal_number) {
1935  ::raise(signal_number);
1936}
1937
1938/*
1939 * The following code is moved from os.cpp for making this
1940 * code platform specific, which it is by its very nature.
1941 */
1942
1943// Will be modified when max signal is changed to be dynamic
1944int os::sigexitnum_pd() {
1945  return NSIG;
1946}
1947
1948// a counter for each possible signal value
1949static volatile jint pending_signals[NSIG+1] = { 0 };
1950
1951// Bsd(POSIX) specific hand shaking semaphore.
1952#ifdef __APPLE__
1953typedef semaphore_t os_semaphore_t;
1954#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1955#define SEM_WAIT(sem)           semaphore_wait(sem)
1956#define SEM_POST(sem)           semaphore_signal(sem)
1957#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1958#else
1959typedef sem_t os_semaphore_t;
1960#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1961#define SEM_WAIT(sem)           sem_wait(&sem)
1962#define SEM_POST(sem)           sem_post(&sem)
1963#define SEM_DESTROY(sem)        sem_destroy(&sem)
1964#endif
1965
1966class Semaphore : public StackObj {
1967  public:
1968    Semaphore();
1969    ~Semaphore();
1970    void signal();
1971    void wait();
1972    bool trywait();
1973    bool timedwait(unsigned int sec, int nsec);
1974  private:
1975    jlong currenttime() const;
1976    os_semaphore_t _semaphore;
1977};
1978
1979Semaphore::Semaphore() : _semaphore(0) {
1980  SEM_INIT(_semaphore, 0);
1981}
1982
1983Semaphore::~Semaphore() {
1984  SEM_DESTROY(_semaphore);
1985}
1986
1987void Semaphore::signal() {
1988  SEM_POST(_semaphore);
1989}
1990
1991void Semaphore::wait() {
1992  SEM_WAIT(_semaphore);
1993}
1994
1995jlong Semaphore::currenttime() const {
1996    struct timeval tv;
1997    gettimeofday(&tv, NULL);
1998    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1999}
2000
2001#ifdef __APPLE__
2002bool Semaphore::trywait() {
2003  return timedwait(0, 0);
2004}
2005
2006bool Semaphore::timedwait(unsigned int sec, int nsec) {
2007  kern_return_t kr = KERN_ABORTED;
2008  mach_timespec_t waitspec;
2009  waitspec.tv_sec = sec;
2010  waitspec.tv_nsec = nsec;
2011
2012  jlong starttime = currenttime();
2013
2014  kr = semaphore_timedwait(_semaphore, waitspec);
2015  while (kr == KERN_ABORTED) {
2016    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2017
2018    jlong current = currenttime();
2019    jlong passedtime = current - starttime;
2020
2021    if (passedtime >= totalwait) {
2022      waitspec.tv_sec = 0;
2023      waitspec.tv_nsec = 0;
2024    } else {
2025      jlong waittime = totalwait - (current - starttime);
2026      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2027      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2028    }
2029
2030    kr = semaphore_timedwait(_semaphore, waitspec);
2031  }
2032
2033  return kr == KERN_SUCCESS;
2034}
2035
2036#else
2037
2038bool Semaphore::trywait() {
2039  return sem_trywait(&_semaphore) == 0;
2040}
2041
2042bool Semaphore::timedwait(unsigned int sec, int nsec) {
2043  struct timespec ts;
2044  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2045
2046  while (1) {
2047    int result = sem_timedwait(&_semaphore, &ts);
2048    if (result == 0) {
2049      return true;
2050    } else if (errno == EINTR) {
2051      continue;
2052    } else if (errno == ETIMEDOUT) {
2053      return false;
2054    } else {
2055      return false;
2056    }
2057  }
2058}
2059
2060#endif // __APPLE__
2061
2062static os_semaphore_t sig_sem;
2063static Semaphore sr_semaphore;
2064
2065void os::signal_init_pd() {
2066  // Initialize signal structures
2067  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2068
2069  // Initialize signal semaphore
2070  ::SEM_INIT(sig_sem, 0);
2071}
2072
2073void os::signal_notify(int sig) {
2074  Atomic::inc(&pending_signals[sig]);
2075  ::SEM_POST(sig_sem);
2076}
2077
2078static int check_pending_signals(bool wait) {
2079  Atomic::store(0, &sigint_count);
2080  for (;;) {
2081    for (int i = 0; i < NSIG + 1; i++) {
2082      jint n = pending_signals[i];
2083      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2084        return i;
2085      }
2086    }
2087    if (!wait) {
2088      return -1;
2089    }
2090    JavaThread *thread = JavaThread::current();
2091    ThreadBlockInVM tbivm(thread);
2092
2093    bool threadIsSuspended;
2094    do {
2095      thread->set_suspend_equivalent();
2096      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2097      ::SEM_WAIT(sig_sem);
2098
2099      // were we externally suspended while we were waiting?
2100      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2101      if (threadIsSuspended) {
2102        //
2103        // The semaphore has been incremented, but while we were waiting
2104        // another thread suspended us. We don't want to continue running
2105        // while suspended because that would surprise the thread that
2106        // suspended us.
2107        //
2108        ::SEM_POST(sig_sem);
2109
2110        thread->java_suspend_self();
2111      }
2112    } while (threadIsSuspended);
2113  }
2114}
2115
2116int os::signal_lookup() {
2117  return check_pending_signals(false);
2118}
2119
2120int os::signal_wait() {
2121  return check_pending_signals(true);
2122}
2123
2124////////////////////////////////////////////////////////////////////////////////
2125// Virtual Memory
2126
2127int os::vm_page_size() {
2128  // Seems redundant as all get out
2129  assert(os::Bsd::page_size() != -1, "must call os::init");
2130  return os::Bsd::page_size();
2131}
2132
2133// Solaris allocates memory by pages.
2134int os::vm_allocation_granularity() {
2135  assert(os::Bsd::page_size() != -1, "must call os::init");
2136  return os::Bsd::page_size();
2137}
2138
2139// Rationale behind this function:
2140//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2141//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2142//  samples for JITted code. Here we create private executable mapping over the code cache
2143//  and then we can use standard (well, almost, as mapping can change) way to provide
2144//  info for the reporting script by storing timestamp and location of symbol
2145void bsd_wrap_code(char* base, size_t size) {
2146  static volatile jint cnt = 0;
2147
2148  if (!UseOprofile) {
2149    return;
2150  }
2151
2152  char buf[PATH_MAX + 1];
2153  int num = Atomic::add(1, &cnt);
2154
2155  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2156           os::get_temp_directory(), os::current_process_id(), num);
2157  unlink(buf);
2158
2159  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2160
2161  if (fd != -1) {
2162    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2163    if (rv != (off_t)-1) {
2164      if (::write(fd, "", 1) == 1) {
2165        mmap(base, size,
2166             PROT_READ|PROT_WRITE|PROT_EXEC,
2167             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2168      }
2169    }
2170    ::close(fd);
2171    unlink(buf);
2172  }
2173}
2174
2175static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2176                                    int err) {
2177  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2178          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2179          strerror(err), err);
2180}
2181
2182// NOTE: Bsd kernel does not really reserve the pages for us.
2183//       All it does is to check if there are enough free pages
2184//       left at the time of mmap(). This could be a potential
2185//       problem.
2186bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2187  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2188#ifdef __OpenBSD__
2189  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2190  if (::mprotect(addr, size, prot) == 0) {
2191    return true;
2192  }
2193#else
2194  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2195                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2196  if (res != (uintptr_t) MAP_FAILED) {
2197    return true;
2198  }
2199#endif
2200
2201  // Warn about any commit errors we see in non-product builds just
2202  // in case mmap() doesn't work as described on the man page.
2203  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2204
2205  return false;
2206}
2207
2208bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2209                       bool exec) {
2210  // alignment_hint is ignored on this OS
2211  return pd_commit_memory(addr, size, exec);
2212}
2213
2214void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2215                                  const char* mesg) {
2216  assert(mesg != NULL, "mesg must be specified");
2217  if (!pd_commit_memory(addr, size, exec)) {
2218    // add extra info in product mode for vm_exit_out_of_memory():
2219    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2220    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2221  }
2222}
2223
2224void os::pd_commit_memory_or_exit(char* addr, size_t size,
2225                                  size_t alignment_hint, bool exec,
2226                                  const char* mesg) {
2227  // alignment_hint is ignored on this OS
2228  pd_commit_memory_or_exit(addr, size, exec, mesg);
2229}
2230
2231void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2232}
2233
2234void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2235  ::madvise(addr, bytes, MADV_DONTNEED);
2236}
2237
2238void os::numa_make_global(char *addr, size_t bytes) {
2239}
2240
2241void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2242}
2243
2244bool os::numa_topology_changed()   { return false; }
2245
2246size_t os::numa_get_groups_num() {
2247  return 1;
2248}
2249
2250int os::numa_get_group_id() {
2251  return 0;
2252}
2253
2254size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2255  if (size > 0) {
2256    ids[0] = 0;
2257    return 1;
2258  }
2259  return 0;
2260}
2261
2262bool os::get_page_info(char *start, page_info* info) {
2263  return false;
2264}
2265
2266char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2267  return end;
2268}
2269
2270
2271bool os::pd_uncommit_memory(char* addr, size_t size) {
2272#ifdef __OpenBSD__
2273  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2274  return ::mprotect(addr, size, PROT_NONE) == 0;
2275#else
2276  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2277                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2278  return res  != (uintptr_t) MAP_FAILED;
2279#endif
2280}
2281
2282bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2283  return os::commit_memory(addr, size, !ExecMem);
2284}
2285
2286// If this is a growable mapping, remove the guard pages entirely by
2287// munmap()ping them.  If not, just call uncommit_memory().
2288bool os::remove_stack_guard_pages(char* addr, size_t size) {
2289  return os::uncommit_memory(addr, size);
2290}
2291
2292static address _highest_vm_reserved_address = NULL;
2293
2294// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2295// at 'requested_addr'. If there are existing memory mappings at the same
2296// location, however, they will be overwritten. If 'fixed' is false,
2297// 'requested_addr' is only treated as a hint, the return value may or
2298// may not start from the requested address. Unlike Bsd mmap(), this
2299// function returns NULL to indicate failure.
2300static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2301  char * addr;
2302  int flags;
2303
2304  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2305  if (fixed) {
2306    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2307    flags |= MAP_FIXED;
2308  }
2309
2310  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2311  // touch an uncommitted page. Otherwise, the read/write might
2312  // succeed if we have enough swap space to back the physical page.
2313  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2314                       flags, -1, 0);
2315
2316  if (addr != MAP_FAILED) {
2317    // anon_mmap() should only get called during VM initialization,
2318    // don't need lock (actually we can skip locking even it can be called
2319    // from multiple threads, because _highest_vm_reserved_address is just a
2320    // hint about the upper limit of non-stack memory regions.)
2321    if ((address)addr + bytes > _highest_vm_reserved_address) {
2322      _highest_vm_reserved_address = (address)addr + bytes;
2323    }
2324  }
2325
2326  return addr == MAP_FAILED ? NULL : addr;
2327}
2328
2329// Don't update _highest_vm_reserved_address, because there might be memory
2330// regions above addr + size. If so, releasing a memory region only creates
2331// a hole in the address space, it doesn't help prevent heap-stack collision.
2332//
2333static int anon_munmap(char * addr, size_t size) {
2334  return ::munmap(addr, size) == 0;
2335}
2336
2337char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2338                         size_t alignment_hint) {
2339  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2340}
2341
2342bool os::pd_release_memory(char* addr, size_t size) {
2343  return anon_munmap(addr, size);
2344}
2345
2346static bool bsd_mprotect(char* addr, size_t size, int prot) {
2347  // Bsd wants the mprotect address argument to be page aligned.
2348  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2349
2350  // According to SUSv3, mprotect() should only be used with mappings
2351  // established by mmap(), and mmap() always maps whole pages. Unaligned
2352  // 'addr' likely indicates problem in the VM (e.g. trying to change
2353  // protection of malloc'ed or statically allocated memory). Check the
2354  // caller if you hit this assert.
2355  assert(addr == bottom, "sanity check");
2356
2357  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2358  return ::mprotect(bottom, size, prot) == 0;
2359}
2360
2361// Set protections specified
2362bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2363                        bool is_committed) {
2364  unsigned int p = 0;
2365  switch (prot) {
2366  case MEM_PROT_NONE: p = PROT_NONE; break;
2367  case MEM_PROT_READ: p = PROT_READ; break;
2368  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2369  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2370  default:
2371    ShouldNotReachHere();
2372  }
2373  // is_committed is unused.
2374  return bsd_mprotect(addr, bytes, p);
2375}
2376
2377bool os::guard_memory(char* addr, size_t size) {
2378  return bsd_mprotect(addr, size, PROT_NONE);
2379}
2380
2381bool os::unguard_memory(char* addr, size_t size) {
2382  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2383}
2384
2385bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2386  return false;
2387}
2388
2389// Large page support
2390
2391static size_t _large_page_size = 0;
2392
2393void os::large_page_init() {
2394}
2395
2396
2397char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2398  fatal("This code is not used or maintained.");
2399
2400  // "exec" is passed in but not used.  Creating the shared image for
2401  // the code cache doesn't have an SHM_X executable permission to check.
2402  assert(UseLargePages && UseSHM, "only for SHM large pages");
2403
2404  key_t key = IPC_PRIVATE;
2405  char *addr;
2406
2407  bool warn_on_failure = UseLargePages &&
2408                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2409                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2410                        );
2411
2412  // Create a large shared memory region to attach to based on size.
2413  // Currently, size is the total size of the heap
2414  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2415  if (shmid == -1) {
2416     // Possible reasons for shmget failure:
2417     // 1. shmmax is too small for Java heap.
2418     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2419     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2420     // 2. not enough large page memory.
2421     //    > check available large pages: cat /proc/meminfo
2422     //    > increase amount of large pages:
2423     //          echo new_value > /proc/sys/vm/nr_hugepages
2424     //      Note 1: different Bsd may use different name for this property,
2425     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2426     //      Note 2: it's possible there's enough physical memory available but
2427     //            they are so fragmented after a long run that they can't
2428     //            coalesce into large pages. Try to reserve large pages when
2429     //            the system is still "fresh".
2430     if (warn_on_failure) {
2431       warning("Failed to reserve shared memory (errno = %d).", errno);
2432     }
2433     return NULL;
2434  }
2435
2436  // attach to the region
2437  addr = (char*)shmat(shmid, req_addr, 0);
2438  int err = errno;
2439
2440  // Remove shmid. If shmat() is successful, the actual shared memory segment
2441  // will be deleted when it's detached by shmdt() or when the process
2442  // terminates. If shmat() is not successful this will remove the shared
2443  // segment immediately.
2444  shmctl(shmid, IPC_RMID, NULL);
2445
2446  if ((intptr_t)addr == -1) {
2447     if (warn_on_failure) {
2448       warning("Failed to attach shared memory (errno = %d).", err);
2449     }
2450     return NULL;
2451  }
2452
2453  // The memory is committed
2454  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2455
2456  return addr;
2457}
2458
2459bool os::release_memory_special(char* base, size_t bytes) {
2460  if (MemTracker::tracking_level() > NMT_minimal) {
2461    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2462    // detaching the SHM segment will also delete it, see reserve_memory_special()
2463    int rslt = shmdt(base);
2464    if (rslt == 0) {
2465      tkr.record((address)base, bytes);
2466      return true;
2467    } else {
2468      return false;
2469    }
2470  } else {
2471    return shmdt(base) == 0;
2472  }
2473}
2474
2475size_t os::large_page_size() {
2476  return _large_page_size;
2477}
2478
2479// HugeTLBFS allows application to commit large page memory on demand;
2480// with SysV SHM the entire memory region must be allocated as shared
2481// memory.
2482bool os::can_commit_large_page_memory() {
2483  return UseHugeTLBFS;
2484}
2485
2486bool os::can_execute_large_page_memory() {
2487  return UseHugeTLBFS;
2488}
2489
2490// Reserve memory at an arbitrary address, only if that area is
2491// available (and not reserved for something else).
2492
2493char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2494  const int max_tries = 10;
2495  char* base[max_tries];
2496  size_t size[max_tries];
2497  const size_t gap = 0x000000;
2498
2499  // Assert only that the size is a multiple of the page size, since
2500  // that's all that mmap requires, and since that's all we really know
2501  // about at this low abstraction level.  If we need higher alignment,
2502  // we can either pass an alignment to this method or verify alignment
2503  // in one of the methods further up the call chain.  See bug 5044738.
2504  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2505
2506  // Repeatedly allocate blocks until the block is allocated at the
2507  // right spot. Give up after max_tries. Note that reserve_memory() will
2508  // automatically update _highest_vm_reserved_address if the call is
2509  // successful. The variable tracks the highest memory address every reserved
2510  // by JVM. It is used to detect heap-stack collision if running with
2511  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2512  // space than needed, it could confuse the collision detecting code. To
2513  // solve the problem, save current _highest_vm_reserved_address and
2514  // calculate the correct value before return.
2515  address old_highest = _highest_vm_reserved_address;
2516
2517  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2518  // if kernel honors the hint then we can return immediately.
2519  char * addr = anon_mmap(requested_addr, bytes, false);
2520  if (addr == requested_addr) {
2521     return requested_addr;
2522  }
2523
2524  if (addr != NULL) {
2525     // mmap() is successful but it fails to reserve at the requested address
2526     anon_munmap(addr, bytes);
2527  }
2528
2529  int i;
2530  for (i = 0; i < max_tries; ++i) {
2531    base[i] = reserve_memory(bytes);
2532
2533    if (base[i] != NULL) {
2534      // Is this the block we wanted?
2535      if (base[i] == requested_addr) {
2536        size[i] = bytes;
2537        break;
2538      }
2539
2540      // Does this overlap the block we wanted? Give back the overlapped
2541      // parts and try again.
2542
2543      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2544      if (top_overlap >= 0 && top_overlap < bytes) {
2545        unmap_memory(base[i], top_overlap);
2546        base[i] += top_overlap;
2547        size[i] = bytes - top_overlap;
2548      } else {
2549        size_t bottom_overlap = base[i] + bytes - requested_addr;
2550        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2551          unmap_memory(requested_addr, bottom_overlap);
2552          size[i] = bytes - bottom_overlap;
2553        } else {
2554          size[i] = bytes;
2555        }
2556      }
2557    }
2558  }
2559
2560  // Give back the unused reserved pieces.
2561
2562  for (int j = 0; j < i; ++j) {
2563    if (base[j] != NULL) {
2564      unmap_memory(base[j], size[j]);
2565    }
2566  }
2567
2568  if (i < max_tries) {
2569    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2570    return requested_addr;
2571  } else {
2572    _highest_vm_reserved_address = old_highest;
2573    return NULL;
2574  }
2575}
2576
2577size_t os::read(int fd, void *buf, unsigned int nBytes) {
2578  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2579}
2580
2581void os::naked_short_sleep(jlong ms) {
2582  struct timespec req;
2583
2584  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2585  req.tv_sec = 0;
2586  if (ms > 0) {
2587    req.tv_nsec = (ms % 1000) * 1000000;
2588  }
2589  else {
2590    req.tv_nsec = 1;
2591  }
2592
2593  nanosleep(&req, NULL);
2594
2595  return;
2596}
2597
2598// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2599void os::infinite_sleep() {
2600  while (true) {    // sleep forever ...
2601    ::sleep(100);   // ... 100 seconds at a time
2602  }
2603}
2604
2605// Used to convert frequent JVM_Yield() to nops
2606bool os::dont_yield() {
2607  return DontYieldALot;
2608}
2609
2610void os::naked_yield() {
2611  sched_yield();
2612}
2613
2614////////////////////////////////////////////////////////////////////////////////
2615// thread priority support
2616
2617// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2618// only supports dynamic priority, static priority must be zero. For real-time
2619// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2620// However, for large multi-threaded applications, SCHED_RR is not only slower
2621// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2622// of 5 runs - Sep 2005).
2623//
2624// The following code actually changes the niceness of kernel-thread/LWP. It
2625// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2626// not the entire user process, and user level threads are 1:1 mapped to kernel
2627// threads. It has always been the case, but could change in the future. For
2628// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2629// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2630
2631#if !defined(__APPLE__)
2632int os::java_to_os_priority[CriticalPriority + 1] = {
2633  19,              // 0 Entry should never be used
2634
2635   0,              // 1 MinPriority
2636   3,              // 2
2637   6,              // 3
2638
2639  10,              // 4
2640  15,              // 5 NormPriority
2641  18,              // 6
2642
2643  21,              // 7
2644  25,              // 8
2645  28,              // 9 NearMaxPriority
2646
2647  31,              // 10 MaxPriority
2648
2649  31               // 11 CriticalPriority
2650};
2651#else
2652/* Using Mach high-level priority assignments */
2653int os::java_to_os_priority[CriticalPriority + 1] = {
2654   0,              // 0 Entry should never be used (MINPRI_USER)
2655
2656  27,              // 1 MinPriority
2657  28,              // 2
2658  29,              // 3
2659
2660  30,              // 4
2661  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2662  32,              // 6
2663
2664  33,              // 7
2665  34,              // 8
2666  35,              // 9 NearMaxPriority
2667
2668  36,              // 10 MaxPriority
2669
2670  36               // 11 CriticalPriority
2671};
2672#endif
2673
2674static int prio_init() {
2675  if (ThreadPriorityPolicy == 1) {
2676    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2677    // if effective uid is not root. Perhaps, a more elegant way of doing
2678    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2679    if (geteuid() != 0) {
2680      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2681        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2682      }
2683      ThreadPriorityPolicy = 0;
2684    }
2685  }
2686  if (UseCriticalJavaThreadPriority) {
2687    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2688  }
2689  return 0;
2690}
2691
2692OSReturn os::set_native_priority(Thread* thread, int newpri) {
2693  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2694
2695#ifdef __OpenBSD__
2696  // OpenBSD pthread_setprio starves low priority threads
2697  return OS_OK;
2698#elif defined(__FreeBSD__)
2699  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2700#elif defined(__APPLE__) || defined(__NetBSD__)
2701  struct sched_param sp;
2702  int policy;
2703  pthread_t self = pthread_self();
2704
2705  if (pthread_getschedparam(self, &policy, &sp) != 0)
2706    return OS_ERR;
2707
2708  sp.sched_priority = newpri;
2709  if (pthread_setschedparam(self, policy, &sp) != 0)
2710    return OS_ERR;
2711
2712  return OS_OK;
2713#else
2714  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2715  return (ret == 0) ? OS_OK : OS_ERR;
2716#endif
2717}
2718
2719OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2720  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2721    *priority_ptr = java_to_os_priority[NormPriority];
2722    return OS_OK;
2723  }
2724
2725  errno = 0;
2726#if defined(__OpenBSD__) || defined(__FreeBSD__)
2727  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2728#elif defined(__APPLE__) || defined(__NetBSD__)
2729  int policy;
2730  struct sched_param sp;
2731
2732  pthread_getschedparam(pthread_self(), &policy, &sp);
2733  *priority_ptr = sp.sched_priority;
2734#else
2735  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2736#endif
2737  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2738}
2739
2740// Hint to the underlying OS that a task switch would not be good.
2741// Void return because it's a hint and can fail.
2742void os::hint_no_preempt() {}
2743
2744////////////////////////////////////////////////////////////////////////////////
2745// suspend/resume support
2746
2747//  the low-level signal-based suspend/resume support is a remnant from the
2748//  old VM-suspension that used to be for java-suspension, safepoints etc,
2749//  within hotspot. Now there is a single use-case for this:
2750//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2751//      that runs in the watcher thread.
2752//  The remaining code is greatly simplified from the more general suspension
2753//  code that used to be used.
2754//
2755//  The protocol is quite simple:
2756//  - suspend:
2757//      - sends a signal to the target thread
2758//      - polls the suspend state of the osthread using a yield loop
2759//      - target thread signal handler (SR_handler) sets suspend state
2760//        and blocks in sigsuspend until continued
2761//  - resume:
2762//      - sets target osthread state to continue
2763//      - sends signal to end the sigsuspend loop in the SR_handler
2764//
2765//  Note that the SR_lock plays no role in this suspend/resume protocol.
2766//
2767
2768static void resume_clear_context(OSThread *osthread) {
2769  osthread->set_ucontext(NULL);
2770  osthread->set_siginfo(NULL);
2771}
2772
2773static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2774  osthread->set_ucontext(context);
2775  osthread->set_siginfo(siginfo);
2776}
2777
2778//
2779// Handler function invoked when a thread's execution is suspended or
2780// resumed. We have to be careful that only async-safe functions are
2781// called here (Note: most pthread functions are not async safe and
2782// should be avoided.)
2783//
2784// Note: sigwait() is a more natural fit than sigsuspend() from an
2785// interface point of view, but sigwait() prevents the signal hander
2786// from being run. libpthread would get very confused by not having
2787// its signal handlers run and prevents sigwait()'s use with the
2788// mutex granting granting signal.
2789//
2790// Currently only ever called on the VMThread or JavaThread
2791//
2792static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2793  // Save and restore errno to avoid confusing native code with EINTR
2794  // after sigsuspend.
2795  int old_errno = errno;
2796
2797  Thread* thread = Thread::current();
2798  OSThread* osthread = thread->osthread();
2799  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2800
2801  os::SuspendResume::State current = osthread->sr.state();
2802  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2803    suspend_save_context(osthread, siginfo, context);
2804
2805    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2806    os::SuspendResume::State state = osthread->sr.suspended();
2807    if (state == os::SuspendResume::SR_SUSPENDED) {
2808      sigset_t suspend_set;  // signals for sigsuspend()
2809
2810      // get current set of blocked signals and unblock resume signal
2811      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2812      sigdelset(&suspend_set, SR_signum);
2813
2814      sr_semaphore.signal();
2815      // wait here until we are resumed
2816      while (1) {
2817        sigsuspend(&suspend_set);
2818
2819        os::SuspendResume::State result = osthread->sr.running();
2820        if (result == os::SuspendResume::SR_RUNNING) {
2821          sr_semaphore.signal();
2822          break;
2823        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2824          ShouldNotReachHere();
2825        }
2826      }
2827
2828    } else if (state == os::SuspendResume::SR_RUNNING) {
2829      // request was cancelled, continue
2830    } else {
2831      ShouldNotReachHere();
2832    }
2833
2834    resume_clear_context(osthread);
2835  } else if (current == os::SuspendResume::SR_RUNNING) {
2836    // request was cancelled, continue
2837  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2838    // ignore
2839  } else {
2840    // ignore
2841  }
2842
2843  errno = old_errno;
2844}
2845
2846
2847static int SR_initialize() {
2848  struct sigaction act;
2849  char *s;
2850  /* Get signal number to use for suspend/resume */
2851  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2852    int sig = ::strtol(s, 0, 10);
2853    if (sig > 0 || sig < NSIG) {
2854        SR_signum = sig;
2855    }
2856  }
2857
2858  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2859        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2860
2861  sigemptyset(&SR_sigset);
2862  sigaddset(&SR_sigset, SR_signum);
2863
2864  /* Set up signal handler for suspend/resume */
2865  act.sa_flags = SA_RESTART|SA_SIGINFO;
2866  act.sa_handler = (void (*)(int)) SR_handler;
2867
2868  // SR_signum is blocked by default.
2869  // 4528190 - We also need to block pthread restart signal (32 on all
2870  // supported Bsd platforms). Note that BsdThreads need to block
2871  // this signal for all threads to work properly. So we don't have
2872  // to use hard-coded signal number when setting up the mask.
2873  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2874
2875  if (sigaction(SR_signum, &act, 0) == -1) {
2876    return -1;
2877  }
2878
2879  // Save signal flag
2880  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2881  return 0;
2882}
2883
2884static int sr_notify(OSThread* osthread) {
2885  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2886  assert_status(status == 0, status, "pthread_kill");
2887  return status;
2888}
2889
2890// "Randomly" selected value for how long we want to spin
2891// before bailing out on suspending a thread, also how often
2892// we send a signal to a thread we want to resume
2893static const int RANDOMLY_LARGE_INTEGER = 1000000;
2894static const int RANDOMLY_LARGE_INTEGER2 = 100;
2895
2896// returns true on success and false on error - really an error is fatal
2897// but this seems the normal response to library errors
2898static bool do_suspend(OSThread* osthread) {
2899  assert(osthread->sr.is_running(), "thread should be running");
2900  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2901
2902  // mark as suspended and send signal
2903  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2904    // failed to switch, state wasn't running?
2905    ShouldNotReachHere();
2906    return false;
2907  }
2908
2909  if (sr_notify(osthread) != 0) {
2910    ShouldNotReachHere();
2911  }
2912
2913  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2914  while (true) {
2915    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2916      break;
2917    } else {
2918      // timeout
2919      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2920      if (cancelled == os::SuspendResume::SR_RUNNING) {
2921        return false;
2922      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2923        // make sure that we consume the signal on the semaphore as well
2924        sr_semaphore.wait();
2925        break;
2926      } else {
2927        ShouldNotReachHere();
2928        return false;
2929      }
2930    }
2931  }
2932
2933  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2934  return true;
2935}
2936
2937static void do_resume(OSThread* osthread) {
2938  assert(osthread->sr.is_suspended(), "thread should be suspended");
2939  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2940
2941  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2942    // failed to switch to WAKEUP_REQUEST
2943    ShouldNotReachHere();
2944    return;
2945  }
2946
2947  while (true) {
2948    if (sr_notify(osthread) == 0) {
2949      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2950        if (osthread->sr.is_running()) {
2951          return;
2952        }
2953      }
2954    } else {
2955      ShouldNotReachHere();
2956    }
2957  }
2958
2959  guarantee(osthread->sr.is_running(), "Must be running!");
2960}
2961
2962///////////////////////////////////////////////////////////////////////////////////
2963// signal handling (except suspend/resume)
2964
2965// This routine may be used by user applications as a "hook" to catch signals.
2966// The user-defined signal handler must pass unrecognized signals to this
2967// routine, and if it returns true (non-zero), then the signal handler must
2968// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2969// routine will never retun false (zero), but instead will execute a VM panic
2970// routine kill the process.
2971//
2972// If this routine returns false, it is OK to call it again.  This allows
2973// the user-defined signal handler to perform checks either before or after
2974// the VM performs its own checks.  Naturally, the user code would be making
2975// a serious error if it tried to handle an exception (such as a null check
2976// or breakpoint) that the VM was generating for its own correct operation.
2977//
2978// This routine may recognize any of the following kinds of signals:
2979//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2980// It should be consulted by handlers for any of those signals.
2981//
2982// The caller of this routine must pass in the three arguments supplied
2983// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2984// field of the structure passed to sigaction().  This routine assumes that
2985// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2986//
2987// Note that the VM will print warnings if it detects conflicting signal
2988// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2989//
2990extern "C" JNIEXPORT int
2991JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2992                        void* ucontext, int abort_if_unrecognized);
2993
2994void signalHandler(int sig, siginfo_t* info, void* uc) {
2995  assert(info != NULL && uc != NULL, "it must be old kernel");
2996  int orig_errno = errno;  // Preserve errno value over signal handler.
2997  JVM_handle_bsd_signal(sig, info, uc, true);
2998  errno = orig_errno;
2999}
3000
3001
3002// This boolean allows users to forward their own non-matching signals
3003// to JVM_handle_bsd_signal, harmlessly.
3004bool os::Bsd::signal_handlers_are_installed = false;
3005
3006// For signal-chaining
3007struct sigaction os::Bsd::sigact[MAXSIGNUM];
3008unsigned int os::Bsd::sigs = 0;
3009bool os::Bsd::libjsig_is_loaded = false;
3010typedef struct sigaction *(*get_signal_t)(int);
3011get_signal_t os::Bsd::get_signal_action = NULL;
3012
3013struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3014  struct sigaction *actp = NULL;
3015
3016  if (libjsig_is_loaded) {
3017    // Retrieve the old signal handler from libjsig
3018    actp = (*get_signal_action)(sig);
3019  }
3020  if (actp == NULL) {
3021    // Retrieve the preinstalled signal handler from jvm
3022    actp = get_preinstalled_handler(sig);
3023  }
3024
3025  return actp;
3026}
3027
3028static bool call_chained_handler(struct sigaction *actp, int sig,
3029                                 siginfo_t *siginfo, void *context) {
3030  // Call the old signal handler
3031  if (actp->sa_handler == SIG_DFL) {
3032    // It's more reasonable to let jvm treat it as an unexpected exception
3033    // instead of taking the default action.
3034    return false;
3035  } else if (actp->sa_handler != SIG_IGN) {
3036    if ((actp->sa_flags & SA_NODEFER) == 0) {
3037      // automaticlly block the signal
3038      sigaddset(&(actp->sa_mask), sig);
3039    }
3040
3041    sa_handler_t hand;
3042    sa_sigaction_t sa;
3043    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3044    // retrieve the chained handler
3045    if (siginfo_flag_set) {
3046      sa = actp->sa_sigaction;
3047    } else {
3048      hand = actp->sa_handler;
3049    }
3050
3051    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3052      actp->sa_handler = SIG_DFL;
3053    }
3054
3055    // try to honor the signal mask
3056    sigset_t oset;
3057    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3058
3059    // call into the chained handler
3060    if (siginfo_flag_set) {
3061      (*sa)(sig, siginfo, context);
3062    } else {
3063      (*hand)(sig);
3064    }
3065
3066    // restore the signal mask
3067    pthread_sigmask(SIG_SETMASK, &oset, 0);
3068  }
3069  // Tell jvm's signal handler the signal is taken care of.
3070  return true;
3071}
3072
3073bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3074  bool chained = false;
3075  // signal-chaining
3076  if (UseSignalChaining) {
3077    struct sigaction *actp = get_chained_signal_action(sig);
3078    if (actp != NULL) {
3079      chained = call_chained_handler(actp, sig, siginfo, context);
3080    }
3081  }
3082  return chained;
3083}
3084
3085struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3086  if ((((unsigned int)1 << sig) & sigs) != 0) {
3087    return &sigact[sig];
3088  }
3089  return NULL;
3090}
3091
3092void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3093  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3094  sigact[sig] = oldAct;
3095  sigs |= (unsigned int)1 << sig;
3096}
3097
3098// for diagnostic
3099int os::Bsd::sigflags[MAXSIGNUM];
3100
3101int os::Bsd::get_our_sigflags(int sig) {
3102  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3103  return sigflags[sig];
3104}
3105
3106void os::Bsd::set_our_sigflags(int sig, int flags) {
3107  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3108  sigflags[sig] = flags;
3109}
3110
3111void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3112  // Check for overwrite.
3113  struct sigaction oldAct;
3114  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3115
3116  void* oldhand = oldAct.sa_sigaction
3117                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3118                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3119  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3120      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3121      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3122    if (AllowUserSignalHandlers || !set_installed) {
3123      // Do not overwrite; user takes responsibility to forward to us.
3124      return;
3125    } else if (UseSignalChaining) {
3126      // save the old handler in jvm
3127      save_preinstalled_handler(sig, oldAct);
3128      // libjsig also interposes the sigaction() call below and saves the
3129      // old sigaction on it own.
3130    } else {
3131      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3132                    "%#lx for signal %d.", (long)oldhand, sig));
3133    }
3134  }
3135
3136  struct sigaction sigAct;
3137  sigfillset(&(sigAct.sa_mask));
3138  sigAct.sa_handler = SIG_DFL;
3139  if (!set_installed) {
3140    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3141  } else {
3142    sigAct.sa_sigaction = signalHandler;
3143    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3144  }
3145#ifdef __APPLE__
3146  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3147  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3148  // if the signal handler declares it will handle it on alternate stack.
3149  // Notice we only declare we will handle it on alt stack, but we are not
3150  // actually going to use real alt stack - this is just a workaround.
3151  // Please see ux_exception.c, method catch_mach_exception_raise for details
3152  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3153  if (sig == SIGSEGV) {
3154    sigAct.sa_flags |= SA_ONSTACK;
3155  }
3156#endif
3157
3158  // Save flags, which are set by ours
3159  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3160  sigflags[sig] = sigAct.sa_flags;
3161
3162  int ret = sigaction(sig, &sigAct, &oldAct);
3163  assert(ret == 0, "check");
3164
3165  void* oldhand2  = oldAct.sa_sigaction
3166                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3167                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3168  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3169}
3170
3171// install signal handlers for signals that HotSpot needs to
3172// handle in order to support Java-level exception handling.
3173
3174void os::Bsd::install_signal_handlers() {
3175  if (!signal_handlers_are_installed) {
3176    signal_handlers_are_installed = true;
3177
3178    // signal-chaining
3179    typedef void (*signal_setting_t)();
3180    signal_setting_t begin_signal_setting = NULL;
3181    signal_setting_t end_signal_setting = NULL;
3182    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3183                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3184    if (begin_signal_setting != NULL) {
3185      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3186                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3187      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3188                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3189      libjsig_is_loaded = true;
3190      assert(UseSignalChaining, "should enable signal-chaining");
3191    }
3192    if (libjsig_is_loaded) {
3193      // Tell libjsig jvm is setting signal handlers
3194      (*begin_signal_setting)();
3195    }
3196
3197    set_signal_handler(SIGSEGV, true);
3198    set_signal_handler(SIGPIPE, true);
3199    set_signal_handler(SIGBUS, true);
3200    set_signal_handler(SIGILL, true);
3201    set_signal_handler(SIGFPE, true);
3202    set_signal_handler(SIGXFSZ, true);
3203
3204#if defined(__APPLE__)
3205    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3206    // signals caught and handled by the JVM. To work around this, we reset the mach task
3207    // signal handler that's placed on our process by CrashReporter. This disables
3208    // CrashReporter-based reporting.
3209    //
3210    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3211    // on caught fatal signals.
3212    //
3213    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3214    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3215    // exception handling, while leaving the standard BSD signal handlers functional.
3216    kern_return_t kr;
3217    kr = task_set_exception_ports(mach_task_self(),
3218        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3219        MACH_PORT_NULL,
3220        EXCEPTION_STATE_IDENTITY,
3221        MACHINE_THREAD_STATE);
3222
3223    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3224#endif
3225
3226    if (libjsig_is_loaded) {
3227      // Tell libjsig jvm finishes setting signal handlers
3228      (*end_signal_setting)();
3229    }
3230
3231    // We don't activate signal checker if libjsig is in place, we trust ourselves
3232    // and if UserSignalHandler is installed all bets are off
3233    if (CheckJNICalls) {
3234      if (libjsig_is_loaded) {
3235        if (PrintJNIResolving) {
3236          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3237        }
3238        check_signals = false;
3239      }
3240      if (AllowUserSignalHandlers) {
3241        if (PrintJNIResolving) {
3242          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3243        }
3244        check_signals = false;
3245      }
3246    }
3247  }
3248}
3249
3250
3251/////
3252// glibc on Bsd platform uses non-documented flag
3253// to indicate, that some special sort of signal
3254// trampoline is used.
3255// We will never set this flag, and we should
3256// ignore this flag in our diagnostic
3257#ifdef SIGNIFICANT_SIGNAL_MASK
3258#undef SIGNIFICANT_SIGNAL_MASK
3259#endif
3260#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3261
3262static const char* get_signal_handler_name(address handler,
3263                                           char* buf, int buflen) {
3264  int offset;
3265  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3266  if (found) {
3267    // skip directory names
3268    const char *p1, *p2;
3269    p1 = buf;
3270    size_t len = strlen(os::file_separator());
3271    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3272    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3273  } else {
3274    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3275  }
3276  return buf;
3277}
3278
3279static void print_signal_handler(outputStream* st, int sig,
3280                                 char* buf, size_t buflen) {
3281  struct sigaction sa;
3282
3283  sigaction(sig, NULL, &sa);
3284
3285  // See comment for SIGNIFICANT_SIGNAL_MASK define
3286  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3287
3288  st->print("%s: ", os::exception_name(sig, buf, buflen));
3289
3290  address handler = (sa.sa_flags & SA_SIGINFO)
3291    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3292    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3293
3294  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3295    st->print("SIG_DFL");
3296  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3297    st->print("SIG_IGN");
3298  } else {
3299    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3300  }
3301
3302  st->print(", sa_mask[0]=");
3303  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3304
3305  address rh = VMError::get_resetted_sighandler(sig);
3306  // May be, handler was resetted by VMError?
3307  if (rh != NULL) {
3308    handler = rh;
3309    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3310  }
3311
3312  st->print(", sa_flags=");
3313  os::Posix::print_sa_flags(st, sa.sa_flags);
3314
3315  // Check: is it our handler?
3316  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3317     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3318    // It is our signal handler
3319    // check for flags, reset system-used one!
3320    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3321      st->print(
3322                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3323                os::Bsd::get_our_sigflags(sig));
3324    }
3325  }
3326  st->cr();
3327}
3328
3329
3330#define DO_SIGNAL_CHECK(sig) \
3331  if (!sigismember(&check_signal_done, sig)) \
3332    os::Bsd::check_signal_handler(sig)
3333
3334// This method is a periodic task to check for misbehaving JNI applications
3335// under CheckJNI, we can add any periodic checks here
3336
3337void os::run_periodic_checks() {
3338
3339  if (check_signals == false) return;
3340
3341  // SEGV and BUS if overridden could potentially prevent
3342  // generation of hs*.log in the event of a crash, debugging
3343  // such a case can be very challenging, so we absolutely
3344  // check the following for a good measure:
3345  DO_SIGNAL_CHECK(SIGSEGV);
3346  DO_SIGNAL_CHECK(SIGILL);
3347  DO_SIGNAL_CHECK(SIGFPE);
3348  DO_SIGNAL_CHECK(SIGBUS);
3349  DO_SIGNAL_CHECK(SIGPIPE);
3350  DO_SIGNAL_CHECK(SIGXFSZ);
3351
3352
3353  // ReduceSignalUsage allows the user to override these handlers
3354  // see comments at the very top and jvm_solaris.h
3355  if (!ReduceSignalUsage) {
3356    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3357    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3358    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3359    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3360  }
3361
3362  DO_SIGNAL_CHECK(SR_signum);
3363  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3364}
3365
3366typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3367
3368static os_sigaction_t os_sigaction = NULL;
3369
3370void os::Bsd::check_signal_handler(int sig) {
3371  char buf[O_BUFLEN];
3372  address jvmHandler = NULL;
3373
3374
3375  struct sigaction act;
3376  if (os_sigaction == NULL) {
3377    // only trust the default sigaction, in case it has been interposed
3378    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3379    if (os_sigaction == NULL) return;
3380  }
3381
3382  os_sigaction(sig, (struct sigaction*)NULL, &act);
3383
3384
3385  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3386
3387  address thisHandler = (act.sa_flags & SA_SIGINFO)
3388    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3389    : CAST_FROM_FN_PTR(address, act.sa_handler);
3390
3391
3392  switch (sig) {
3393  case SIGSEGV:
3394  case SIGBUS:
3395  case SIGFPE:
3396  case SIGPIPE:
3397  case SIGILL:
3398  case SIGXFSZ:
3399    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3400    break;
3401
3402  case SHUTDOWN1_SIGNAL:
3403  case SHUTDOWN2_SIGNAL:
3404  case SHUTDOWN3_SIGNAL:
3405  case BREAK_SIGNAL:
3406    jvmHandler = (address)user_handler();
3407    break;
3408
3409  case INTERRUPT_SIGNAL:
3410    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3411    break;
3412
3413  default:
3414    if (sig == SR_signum) {
3415      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3416    } else {
3417      return;
3418    }
3419    break;
3420  }
3421
3422  if (thisHandler != jvmHandler) {
3423    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3424    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3425    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3426    // No need to check this sig any longer
3427    sigaddset(&check_signal_done, sig);
3428    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3429    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3430      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3431                    exception_name(sig, buf, O_BUFLEN));
3432    }
3433  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3434    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3435    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3436    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3437    // No need to check this sig any longer
3438    sigaddset(&check_signal_done, sig);
3439  }
3440
3441  // Dump all the signal
3442  if (sigismember(&check_signal_done, sig)) {
3443    print_signal_handlers(tty, buf, O_BUFLEN);
3444  }
3445}
3446
3447extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3448
3449extern bool signal_name(int signo, char* buf, size_t len);
3450
3451const char* os::exception_name(int exception_code, char* buf, size_t size) {
3452  if (0 < exception_code && exception_code <= SIGRTMAX) {
3453    // signal
3454    if (!signal_name(exception_code, buf, size)) {
3455      jio_snprintf(buf, size, "SIG%d", exception_code);
3456    }
3457    return buf;
3458  } else {
3459    return NULL;
3460  }
3461}
3462
3463// this is called _before_ the most of global arguments have been parsed
3464void os::init(void) {
3465  char dummy;   /* used to get a guess on initial stack address */
3466//  first_hrtime = gethrtime();
3467
3468  // With BsdThreads the JavaMain thread pid (primordial thread)
3469  // is different than the pid of the java launcher thread.
3470  // So, on Bsd, the launcher thread pid is passed to the VM
3471  // via the sun.java.launcher.pid property.
3472  // Use this property instead of getpid() if it was correctly passed.
3473  // See bug 6351349.
3474  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3475
3476  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3477
3478  clock_tics_per_sec = CLK_TCK;
3479
3480  init_random(1234567);
3481
3482  ThreadCritical::initialize();
3483
3484  Bsd::set_page_size(getpagesize());
3485  if (Bsd::page_size() == -1) {
3486    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3487                  strerror(errno)));
3488  }
3489  init_page_sizes((size_t) Bsd::page_size());
3490
3491  Bsd::initialize_system_info();
3492
3493  // main_thread points to the aboriginal thread
3494  Bsd::_main_thread = pthread_self();
3495
3496  Bsd::clock_init();
3497  initial_time_count = javaTimeNanos();
3498
3499#ifdef __APPLE__
3500  // XXXDARWIN
3501  // Work around the unaligned VM callbacks in hotspot's
3502  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3503  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3504  // alignment when doing symbol lookup. To work around this, we force early
3505  // binding of all symbols now, thus binding when alignment is known-good.
3506  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3507#endif
3508}
3509
3510// To install functions for atexit system call
3511extern "C" {
3512  static void perfMemory_exit_helper() {
3513    perfMemory_exit();
3514  }
3515}
3516
3517// this is called _after_ the global arguments have been parsed
3518jint os::init_2(void)
3519{
3520  // Allocate a single page and mark it as readable for safepoint polling
3521  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3522  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3523
3524  os::set_polling_page(polling_page);
3525
3526#ifndef PRODUCT
3527  if (Verbose && PrintMiscellaneous)
3528    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3529#endif
3530
3531  if (!UseMembar) {
3532    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3533    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3534    os::set_memory_serialize_page(mem_serialize_page);
3535
3536#ifndef PRODUCT
3537    if (Verbose && PrintMiscellaneous)
3538      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3539#endif
3540  }
3541
3542  // initialize suspend/resume support - must do this before signal_sets_init()
3543  if (SR_initialize() != 0) {
3544    perror("SR_initialize failed");
3545    return JNI_ERR;
3546  }
3547
3548  Bsd::signal_sets_init();
3549  Bsd::install_signal_handlers();
3550
3551  // Check minimum allowable stack size for thread creation and to initialize
3552  // the java system classes, including StackOverflowError - depends on page
3553  // size.  Add a page for compiler2 recursion in main thread.
3554  // Add in 2*BytesPerWord times page size to account for VM stack during
3555  // class initialization depending on 32 or 64 bit VM.
3556  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3557            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3558                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3559
3560  size_t threadStackSizeInBytes = ThreadStackSize * K;
3561  if (threadStackSizeInBytes != 0 &&
3562      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3563        tty->print_cr("\nThe stack size specified is too small, "
3564                      "Specify at least %dk",
3565                      os::Bsd::min_stack_allowed/ K);
3566        return JNI_ERR;
3567  }
3568
3569  // Make the stack size a multiple of the page size so that
3570  // the yellow/red zones can be guarded.
3571  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3572        vm_page_size()));
3573
3574  if (MaxFDLimit) {
3575    // set the number of file descriptors to max. print out error
3576    // if getrlimit/setrlimit fails but continue regardless.
3577    struct rlimit nbr_files;
3578    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3579    if (status != 0) {
3580      if (PrintMiscellaneous && (Verbose || WizardMode))
3581        perror("os::init_2 getrlimit failed");
3582    } else {
3583      nbr_files.rlim_cur = nbr_files.rlim_max;
3584
3585#ifdef __APPLE__
3586      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3587      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3588      // be used instead
3589      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3590#endif
3591
3592      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3593      if (status != 0) {
3594        if (PrintMiscellaneous && (Verbose || WizardMode))
3595          perror("os::init_2 setrlimit failed");
3596      }
3597    }
3598  }
3599
3600  // at-exit methods are called in the reverse order of their registration.
3601  // atexit functions are called on return from main or as a result of a
3602  // call to exit(3C). There can be only 32 of these functions registered
3603  // and atexit() does not set errno.
3604
3605  if (PerfAllowAtExitRegistration) {
3606    // only register atexit functions if PerfAllowAtExitRegistration is set.
3607    // atexit functions can be delayed until process exit time, which
3608    // can be problematic for embedded VM situations. Embedded VMs should
3609    // call DestroyJavaVM() to assure that VM resources are released.
3610
3611    // note: perfMemory_exit_helper atexit function may be removed in
3612    // the future if the appropriate cleanup code can be added to the
3613    // VM_Exit VMOperation's doit method.
3614    if (atexit(perfMemory_exit_helper) != 0) {
3615      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3616    }
3617  }
3618
3619  // initialize thread priority policy
3620  prio_init();
3621
3622#ifdef __APPLE__
3623  // dynamically link to objective c gc registration
3624  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3625  if (handleLibObjc != NULL) {
3626    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3627  }
3628#endif
3629
3630  return JNI_OK;
3631}
3632
3633// this is called at the end of vm_initialization
3634void os::init_3(void) { }
3635
3636// Mark the polling page as unreadable
3637void os::make_polling_page_unreadable(void) {
3638  if (!guard_memory((char*)_polling_page, Bsd::page_size()))
3639    fatal("Could not disable polling page");
3640};
3641
3642// Mark the polling page as readable
3643void os::make_polling_page_readable(void) {
3644  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3645    fatal("Could not enable polling page");
3646  }
3647};
3648
3649int os::active_processor_count() {
3650  return _processor_count;
3651}
3652
3653void os::set_native_thread_name(const char *name) {
3654#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3655  // This is only supported in Snow Leopard and beyond
3656  if (name != NULL) {
3657    // Add a "Java: " prefix to the name
3658    char buf[MAXTHREADNAMESIZE];
3659    snprintf(buf, sizeof(buf), "Java: %s", name);
3660    pthread_setname_np(buf);
3661  }
3662#endif
3663}
3664
3665bool os::distribute_processes(uint length, uint* distribution) {
3666  // Not yet implemented.
3667  return false;
3668}
3669
3670bool os::bind_to_processor(uint processor_id) {
3671  // Not yet implemented.
3672  return false;
3673}
3674
3675void os::SuspendedThreadTask::internal_do_task() {
3676  if (do_suspend(_thread->osthread())) {
3677    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3678    do_task(context);
3679    do_resume(_thread->osthread());
3680  }
3681}
3682
3683///
3684class PcFetcher : public os::SuspendedThreadTask {
3685public:
3686  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3687  ExtendedPC result();
3688protected:
3689  void do_task(const os::SuspendedThreadTaskContext& context);
3690private:
3691  ExtendedPC _epc;
3692};
3693
3694ExtendedPC PcFetcher::result() {
3695  guarantee(is_done(), "task is not done yet.");
3696  return _epc;
3697}
3698
3699void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3700  Thread* thread = context.thread();
3701  OSThread* osthread = thread->osthread();
3702  if (osthread->ucontext() != NULL) {
3703    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3704  } else {
3705    // NULL context is unexpected, double-check this is the VMThread
3706    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3707  }
3708}
3709
3710// Suspends the target using the signal mechanism and then grabs the PC before
3711// resuming the target. Used by the flat-profiler only
3712ExtendedPC os::get_thread_pc(Thread* thread) {
3713  // Make sure that it is called by the watcher for the VMThread
3714  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3715  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3716
3717  PcFetcher fetcher(thread);
3718  fetcher.run();
3719  return fetcher.result();
3720}
3721
3722int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3723{
3724  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3725}
3726
3727////////////////////////////////////////////////////////////////////////////////
3728// debug support
3729
3730bool os::find(address addr, outputStream* st) {
3731  Dl_info dlinfo;
3732  memset(&dlinfo, 0, sizeof(dlinfo));
3733  if (dladdr(addr, &dlinfo) != 0) {
3734    st->print(PTR_FORMAT ": ", addr);
3735    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3736      st->print("%s+%#x", dlinfo.dli_sname,
3737                 addr - (intptr_t)dlinfo.dli_saddr);
3738    } else if (dlinfo.dli_fbase != NULL) {
3739      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3740    } else {
3741      st->print("<absolute address>");
3742    }
3743    if (dlinfo.dli_fname != NULL) {
3744      st->print(" in %s", dlinfo.dli_fname);
3745    }
3746    if (dlinfo.dli_fbase != NULL) {
3747      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3748    }
3749    st->cr();
3750
3751    if (Verbose) {
3752      // decode some bytes around the PC
3753      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3754      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3755      address       lowest = (address) dlinfo.dli_sname;
3756      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3757      if (begin < lowest)  begin = lowest;
3758      Dl_info dlinfo2;
3759      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3760          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3761        end = (address) dlinfo2.dli_saddr;
3762      Disassembler::decode(begin, end, st);
3763    }
3764    return true;
3765  }
3766  return false;
3767}
3768
3769////////////////////////////////////////////////////////////////////////////////
3770// misc
3771
3772// This does not do anything on Bsd. This is basically a hook for being
3773// able to use structured exception handling (thread-local exception filters)
3774// on, e.g., Win32.
3775void
3776os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3777                         JavaCallArguments* args, Thread* thread) {
3778  f(value, method, args, thread);
3779}
3780
3781void os::print_statistics() {
3782}
3783
3784int os::message_box(const char* title, const char* message) {
3785  int i;
3786  fdStream err(defaultStream::error_fd());
3787  for (i = 0; i < 78; i++) err.print_raw("=");
3788  err.cr();
3789  err.print_raw_cr(title);
3790  for (i = 0; i < 78; i++) err.print_raw("-");
3791  err.cr();
3792  err.print_raw_cr(message);
3793  for (i = 0; i < 78; i++) err.print_raw("=");
3794  err.cr();
3795
3796  char buf[16];
3797  // Prevent process from exiting upon "read error" without consuming all CPU
3798  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3799
3800  return buf[0] == 'y' || buf[0] == 'Y';
3801}
3802
3803int os::stat(const char *path, struct stat *sbuf) {
3804  char pathbuf[MAX_PATH];
3805  if (strlen(path) > MAX_PATH - 1) {
3806    errno = ENAMETOOLONG;
3807    return -1;
3808  }
3809  os::native_path(strcpy(pathbuf, path));
3810  return ::stat(pathbuf, sbuf);
3811}
3812
3813bool os::check_heap(bool force) {
3814  return true;
3815}
3816
3817// Is a (classpath) directory empty?
3818bool os::dir_is_empty(const char* path) {
3819  DIR *dir = NULL;
3820  struct dirent *ptr;
3821
3822  dir = opendir(path);
3823  if (dir == NULL) return true;
3824
3825  /* Scan the directory */
3826  bool result = true;
3827  char buf[sizeof(struct dirent) + MAX_PATH];
3828  while (result && (ptr = ::readdir(dir)) != NULL) {
3829    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3830      result = false;
3831    }
3832  }
3833  closedir(dir);
3834  return result;
3835}
3836
3837// This code originates from JDK's sysOpen and open64_w
3838// from src/solaris/hpi/src/system_md.c
3839
3840#ifndef O_DELETE
3841#define O_DELETE 0x10000
3842#endif
3843
3844// Open a file. Unlink the file immediately after open returns
3845// if the specified oflag has the O_DELETE flag set.
3846// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3847
3848int os::open(const char *path, int oflag, int mode) {
3849
3850  if (strlen(path) > MAX_PATH - 1) {
3851    errno = ENAMETOOLONG;
3852    return -1;
3853  }
3854  int fd;
3855  int o_delete = (oflag & O_DELETE);
3856  oflag = oflag & ~O_DELETE;
3857
3858  fd = ::open(path, oflag, mode);
3859  if (fd == -1) return -1;
3860
3861  //If the open succeeded, the file might still be a directory
3862  {
3863    struct stat buf;
3864    int ret = ::fstat(fd, &buf);
3865    int st_mode = buf.st_mode;
3866
3867    if (ret != -1) {
3868      if ((st_mode & S_IFMT) == S_IFDIR) {
3869        errno = EISDIR;
3870        ::close(fd);
3871        return -1;
3872      }
3873    } else {
3874      ::close(fd);
3875      return -1;
3876    }
3877  }
3878
3879    /*
3880     * All file descriptors that are opened in the JVM and not
3881     * specifically destined for a subprocess should have the
3882     * close-on-exec flag set.  If we don't set it, then careless 3rd
3883     * party native code might fork and exec without closing all
3884     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3885     * UNIXProcess.c), and this in turn might:
3886     *
3887     * - cause end-of-file to fail to be detected on some file
3888     *   descriptors, resulting in mysterious hangs, or
3889     *
3890     * - might cause an fopen in the subprocess to fail on a system
3891     *   suffering from bug 1085341.
3892     *
3893     * (Yes, the default setting of the close-on-exec flag is a Unix
3894     * design flaw)
3895     *
3896     * See:
3897     * 1085341: 32-bit stdio routines should support file descriptors >255
3898     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3899     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3900     */
3901#ifdef FD_CLOEXEC
3902    {
3903        int flags = ::fcntl(fd, F_GETFD);
3904        if (flags != -1)
3905            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3906    }
3907#endif
3908
3909  if (o_delete != 0) {
3910    ::unlink(path);
3911  }
3912  return fd;
3913}
3914
3915
3916// create binary file, rewriting existing file if required
3917int os::create_binary_file(const char* path, bool rewrite_existing) {
3918  int oflags = O_WRONLY | O_CREAT;
3919  if (!rewrite_existing) {
3920    oflags |= O_EXCL;
3921  }
3922  return ::open(path, oflags, S_IREAD | S_IWRITE);
3923}
3924
3925// return current position of file pointer
3926jlong os::current_file_offset(int fd) {
3927  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3928}
3929
3930// move file pointer to the specified offset
3931jlong os::seek_to_file_offset(int fd, jlong offset) {
3932  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3933}
3934
3935// This code originates from JDK's sysAvailable
3936// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3937
3938int os::available(int fd, jlong *bytes) {
3939  jlong cur, end;
3940  int mode;
3941  struct stat buf;
3942
3943  if (::fstat(fd, &buf) >= 0) {
3944    mode = buf.st_mode;
3945    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3946      /*
3947      * XXX: is the following call interruptible? If so, this might
3948      * need to go through the INTERRUPT_IO() wrapper as for other
3949      * blocking, interruptible calls in this file.
3950      */
3951      int n;
3952      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3953        *bytes = n;
3954        return 1;
3955      }
3956    }
3957  }
3958  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3959    return 0;
3960  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3961    return 0;
3962  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3963    return 0;
3964  }
3965  *bytes = end - cur;
3966  return 1;
3967}
3968
3969int os::socket_available(int fd, jint *pbytes) {
3970   if (fd < 0)
3971     return OS_OK;
3972
3973   int ret;
3974
3975   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3976
3977   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3978   // is expected to return 0 on failure and 1 on success to the jdk.
3979
3980   return (ret == OS_ERR) ? 0 : 1;
3981}
3982
3983// Map a block of memory.
3984char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3985                     char *addr, size_t bytes, bool read_only,
3986                     bool allow_exec) {
3987  int prot;
3988  int flags;
3989
3990  if (read_only) {
3991    prot = PROT_READ;
3992    flags = MAP_SHARED;
3993  } else {
3994    prot = PROT_READ | PROT_WRITE;
3995    flags = MAP_PRIVATE;
3996  }
3997
3998  if (allow_exec) {
3999    prot |= PROT_EXEC;
4000  }
4001
4002  if (addr != NULL) {
4003    flags |= MAP_FIXED;
4004  }
4005
4006  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4007                                     fd, file_offset);
4008  if (mapped_address == MAP_FAILED) {
4009    return NULL;
4010  }
4011  return mapped_address;
4012}
4013
4014
4015// Remap a block of memory.
4016char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4017                       char *addr, size_t bytes, bool read_only,
4018                       bool allow_exec) {
4019  // same as map_memory() on this OS
4020  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4021                        allow_exec);
4022}
4023
4024
4025// Unmap a block of memory.
4026bool os::pd_unmap_memory(char* addr, size_t bytes) {
4027  return munmap(addr, bytes) == 0;
4028}
4029
4030// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4031// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4032// of a thread.
4033//
4034// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4035// the fast estimate available on the platform.
4036
4037jlong os::current_thread_cpu_time() {
4038#ifdef __APPLE__
4039  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4040#else
4041  Unimplemented();
4042  return 0;
4043#endif
4044}
4045
4046jlong os::thread_cpu_time(Thread* thread) {
4047#ifdef __APPLE__
4048  return os::thread_cpu_time(thread, true /* user + sys */);
4049#else
4050  Unimplemented();
4051  return 0;
4052#endif
4053}
4054
4055jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4056#ifdef __APPLE__
4057  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4058#else
4059  Unimplemented();
4060  return 0;
4061#endif
4062}
4063
4064jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4065#ifdef __APPLE__
4066  struct thread_basic_info tinfo;
4067  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4068  kern_return_t kr;
4069  thread_t mach_thread;
4070
4071  mach_thread = thread->osthread()->thread_id();
4072  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4073  if (kr != KERN_SUCCESS)
4074    return -1;
4075
4076  if (user_sys_cpu_time) {
4077    jlong nanos;
4078    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4079    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4080    return nanos;
4081  } else {
4082    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4083  }
4084#else
4085  Unimplemented();
4086  return 0;
4087#endif
4088}
4089
4090
4091void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4092  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4093  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4094  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4095  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4096}
4097
4098void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4099  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4100  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4101  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4102  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4103}
4104
4105bool os::is_thread_cpu_time_supported() {
4106#ifdef __APPLE__
4107  return true;
4108#else
4109  return false;
4110#endif
4111}
4112
4113// System loadavg support.  Returns -1 if load average cannot be obtained.
4114// Bsd doesn't yet have a (official) notion of processor sets,
4115// so just return the system wide load average.
4116int os::loadavg(double loadavg[], int nelem) {
4117  return ::getloadavg(loadavg, nelem);
4118}
4119
4120void os::pause() {
4121  char filename[MAX_PATH];
4122  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4123    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4124  } else {
4125    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4126  }
4127
4128  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4129  if (fd != -1) {
4130    struct stat buf;
4131    ::close(fd);
4132    while (::stat(filename, &buf) == 0) {
4133      (void)::poll(NULL, 0, 100);
4134    }
4135  } else {
4136    jio_fprintf(stderr,
4137      "Could not open pause file '%s', continuing immediately.\n", filename);
4138  }
4139}
4140
4141
4142// Refer to the comments in os_solaris.cpp park-unpark.
4143//
4144// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4145// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4146// For specifics regarding the bug see GLIBC BUGID 261237 :
4147//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4148// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4149// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4150// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4151// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4152// and monitorenter when we're using 1-0 locking.  All those operations may result in
4153// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4154// of libpthread avoids the problem, but isn't practical.
4155//
4156// Possible remedies:
4157//
4158// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4159//      This is palliative and probabilistic, however.  If the thread is preempted
4160//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4161//      than the minimum period may have passed, and the abstime may be stale (in the
4162//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4163//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4164//
4165// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4166//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4167//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4168//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4169//      thread.
4170//
4171// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4172//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4173//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4174//      This also works well.  In fact it avoids kernel-level scalability impediments
4175//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4176//      timers in a graceful fashion.
4177//
4178// 4.   When the abstime value is in the past it appears that control returns
4179//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4180//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4181//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4182//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4183//      It may be possible to avoid reinitialization by checking the return
4184//      value from pthread_cond_timedwait().  In addition to reinitializing the
4185//      condvar we must establish the invariant that cond_signal() is only called
4186//      within critical sections protected by the adjunct mutex.  This prevents
4187//      cond_signal() from "seeing" a condvar that's in the midst of being
4188//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4189//      desirable signal-after-unlock optimization that avoids futile context switching.
4190//
4191//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4192//      structure when a condvar is used or initialized.  cond_destroy()  would
4193//      release the helper structure.  Our reinitialize-after-timedwait fix
4194//      put excessive stress on malloc/free and locks protecting the c-heap.
4195//
4196// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4197// It may be possible to refine (4) by checking the kernel and NTPL verisons
4198// and only enabling the work-around for vulnerable environments.
4199
4200// utility to compute the abstime argument to timedwait:
4201// millis is the relative timeout time
4202// abstime will be the absolute timeout time
4203// TODO: replace compute_abstime() with unpackTime()
4204
4205static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4206  if (millis < 0)  millis = 0;
4207  struct timeval now;
4208  int status = gettimeofday(&now, NULL);
4209  assert(status == 0, "gettimeofday");
4210  jlong seconds = millis / 1000;
4211  millis %= 1000;
4212  if (seconds > 50000000) { // see man cond_timedwait(3T)
4213    seconds = 50000000;
4214  }
4215  abstime->tv_sec = now.tv_sec  + seconds;
4216  long       usec = now.tv_usec + millis * 1000;
4217  if (usec >= 1000000) {
4218    abstime->tv_sec += 1;
4219    usec -= 1000000;
4220  }
4221  abstime->tv_nsec = usec * 1000;
4222  return abstime;
4223}
4224
4225void os::PlatformEvent::park() {       // AKA "down()"
4226  // Invariant: Only the thread associated with the Event/PlatformEvent
4227  // may call park().
4228  // TODO: assert that _Assoc != NULL or _Assoc == Self
4229  assert(_nParked == 0, "invariant");
4230
4231  int v;
4232  for (;;) {
4233      v = _Event;
4234      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4235  }
4236  guarantee(v >= 0, "invariant");
4237  if (v == 0) {
4238     // Do this the hard way by blocking ...
4239     int status = pthread_mutex_lock(_mutex);
4240     assert_status(status == 0, status, "mutex_lock");
4241     guarantee(_nParked == 0, "invariant");
4242     ++_nParked;
4243     while (_Event < 0) {
4244        status = pthread_cond_wait(_cond, _mutex);
4245        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4246        // Treat this the same as if the wait was interrupted
4247        if (status == ETIMEDOUT) { status = EINTR; }
4248        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4249     }
4250     --_nParked;
4251
4252    _Event = 0;
4253     status = pthread_mutex_unlock(_mutex);
4254     assert_status(status == 0, status, "mutex_unlock");
4255    // Paranoia to ensure our locked and lock-free paths interact
4256    // correctly with each other.
4257    OrderAccess::fence();
4258  }
4259  guarantee(_Event >= 0, "invariant");
4260}
4261
4262int os::PlatformEvent::park(jlong millis) {
4263  guarantee(_nParked == 0, "invariant");
4264
4265  int v;
4266  for (;;) {
4267      v = _Event;
4268      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4269  }
4270  guarantee(v >= 0, "invariant");
4271  if (v != 0) return OS_OK;
4272
4273  // We do this the hard way, by blocking the thread.
4274  // Consider enforcing a minimum timeout value.
4275  struct timespec abst;
4276  compute_abstime(&abst, millis);
4277
4278  int ret = OS_TIMEOUT;
4279  int status = pthread_mutex_lock(_mutex);
4280  assert_status(status == 0, status, "mutex_lock");
4281  guarantee(_nParked == 0, "invariant");
4282  ++_nParked;
4283
4284  // Object.wait(timo) will return because of
4285  // (a) notification
4286  // (b) timeout
4287  // (c) thread.interrupt
4288  //
4289  // Thread.interrupt and object.notify{All} both call Event::set.
4290  // That is, we treat thread.interrupt as a special case of notification.
4291  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4292  // We assume all ETIME returns are valid.
4293  //
4294  // TODO: properly differentiate simultaneous notify+interrupt.
4295  // In that case, we should propagate the notify to another waiter.
4296
4297  while (_Event < 0) {
4298    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4299    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4300      pthread_cond_destroy(_cond);
4301      pthread_cond_init(_cond, NULL);
4302    }
4303    assert_status(status == 0 || status == EINTR ||
4304                  status == ETIMEDOUT,
4305                  status, "cond_timedwait");
4306    if (!FilterSpuriousWakeups) break;                 // previous semantics
4307    if (status == ETIMEDOUT) break;
4308    // We consume and ignore EINTR and spurious wakeups.
4309  }
4310  --_nParked;
4311  if (_Event >= 0) {
4312     ret = OS_OK;
4313  }
4314  _Event = 0;
4315  status = pthread_mutex_unlock(_mutex);
4316  assert_status(status == 0, status, "mutex_unlock");
4317  assert(_nParked == 0, "invariant");
4318  // Paranoia to ensure our locked and lock-free paths interact
4319  // correctly with each other.
4320  OrderAccess::fence();
4321  return ret;
4322}
4323
4324void os::PlatformEvent::unpark() {
4325  // Transitions for _Event:
4326  //    0 :=> 1
4327  //    1 :=> 1
4328  //   -1 :=> either 0 or 1; must signal target thread
4329  //          That is, we can safely transition _Event from -1 to either
4330  //          0 or 1.
4331  // See also: "Semaphores in Plan 9" by Mullender & Cox
4332  //
4333  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4334  // that it will take two back-to-back park() calls for the owning
4335  // thread to block. This has the benefit of forcing a spurious return
4336  // from the first park() call after an unpark() call which will help
4337  // shake out uses of park() and unpark() without condition variables.
4338
4339  if (Atomic::xchg(1, &_Event) >= 0) return;
4340
4341  // Wait for the thread associated with the event to vacate
4342  int status = pthread_mutex_lock(_mutex);
4343  assert_status(status == 0, status, "mutex_lock");
4344  int AnyWaiters = _nParked;
4345  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4346  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4347    AnyWaiters = 0;
4348    pthread_cond_signal(_cond);
4349  }
4350  status = pthread_mutex_unlock(_mutex);
4351  assert_status(status == 0, status, "mutex_unlock");
4352  if (AnyWaiters != 0) {
4353    status = pthread_cond_signal(_cond);
4354    assert_status(status == 0, status, "cond_signal");
4355  }
4356
4357  // Note that we signal() _after dropping the lock for "immortal" Events.
4358  // This is safe and avoids a common class of  futile wakeups.  In rare
4359  // circumstances this can cause a thread to return prematurely from
4360  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4361  // simply re-test the condition and re-park itself.
4362}
4363
4364
4365// JSR166
4366// -------------------------------------------------------
4367
4368/*
4369 * The solaris and bsd implementations of park/unpark are fairly
4370 * conservative for now, but can be improved. They currently use a
4371 * mutex/condvar pair, plus a a count.
4372 * Park decrements count if > 0, else does a condvar wait.  Unpark
4373 * sets count to 1 and signals condvar.  Only one thread ever waits
4374 * on the condvar. Contention seen when trying to park implies that someone
4375 * is unparking you, so don't wait. And spurious returns are fine, so there
4376 * is no need to track notifications.
4377 */
4378
4379#define MAX_SECS 100000000
4380/*
4381 * This code is common to bsd and solaris and will be moved to a
4382 * common place in dolphin.
4383 *
4384 * The passed in time value is either a relative time in nanoseconds
4385 * or an absolute time in milliseconds. Either way it has to be unpacked
4386 * into suitable seconds and nanoseconds components and stored in the
4387 * given timespec structure.
4388 * Given time is a 64-bit value and the time_t used in the timespec is only
4389 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4390 * overflow if times way in the future are given. Further on Solaris versions
4391 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4392 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4393 * As it will be 28 years before "now + 100000000" will overflow we can
4394 * ignore overflow and just impose a hard-limit on seconds using the value
4395 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4396 * years from "now".
4397 */
4398
4399static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4400  assert(time > 0, "convertTime");
4401
4402  struct timeval now;
4403  int status = gettimeofday(&now, NULL);
4404  assert(status == 0, "gettimeofday");
4405
4406  time_t max_secs = now.tv_sec + MAX_SECS;
4407
4408  if (isAbsolute) {
4409    jlong secs = time / 1000;
4410    if (secs > max_secs) {
4411      absTime->tv_sec = max_secs;
4412    }
4413    else {
4414      absTime->tv_sec = secs;
4415    }
4416    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4417  }
4418  else {
4419    jlong secs = time / NANOSECS_PER_SEC;
4420    if (secs >= MAX_SECS) {
4421      absTime->tv_sec = max_secs;
4422      absTime->tv_nsec = 0;
4423    }
4424    else {
4425      absTime->tv_sec = now.tv_sec + secs;
4426      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4427      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4428        absTime->tv_nsec -= NANOSECS_PER_SEC;
4429        ++absTime->tv_sec; // note: this must be <= max_secs
4430      }
4431    }
4432  }
4433  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4434  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4435  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4436  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4437}
4438
4439void Parker::park(bool isAbsolute, jlong time) {
4440  // Ideally we'd do something useful while spinning, such
4441  // as calling unpackTime().
4442
4443  // Optional fast-path check:
4444  // Return immediately if a permit is available.
4445  // We depend on Atomic::xchg() having full barrier semantics
4446  // since we are doing a lock-free update to _counter.
4447  if (Atomic::xchg(0, &_counter) > 0) return;
4448
4449  Thread* thread = Thread::current();
4450  assert(thread->is_Java_thread(), "Must be JavaThread");
4451  JavaThread *jt = (JavaThread *)thread;
4452
4453  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4454  // Check interrupt before trying to wait
4455  if (Thread::is_interrupted(thread, false)) {
4456    return;
4457  }
4458
4459  // Next, demultiplex/decode time arguments
4460  struct timespec absTime;
4461  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4462    return;
4463  }
4464  if (time > 0) {
4465    unpackTime(&absTime, isAbsolute, time);
4466  }
4467
4468
4469  // Enter safepoint region
4470  // Beware of deadlocks such as 6317397.
4471  // The per-thread Parker:: mutex is a classic leaf-lock.
4472  // In particular a thread must never block on the Threads_lock while
4473  // holding the Parker:: mutex.  If safepoints are pending both the
4474  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4475  ThreadBlockInVM tbivm(jt);
4476
4477  // Don't wait if cannot get lock since interference arises from
4478  // unblocking.  Also. check interrupt before trying wait
4479  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4480    return;
4481  }
4482
4483  int status;
4484  if (_counter > 0)  { // no wait needed
4485    _counter = 0;
4486    status = pthread_mutex_unlock(_mutex);
4487    assert(status == 0, "invariant");
4488    // Paranoia to ensure our locked and lock-free paths interact
4489    // correctly with each other and Java-level accesses.
4490    OrderAccess::fence();
4491    return;
4492  }
4493
4494#ifdef ASSERT
4495  // Don't catch signals while blocked; let the running threads have the signals.
4496  // (This allows a debugger to break into the running thread.)
4497  sigset_t oldsigs;
4498  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4499  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4500#endif
4501
4502  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4503  jt->set_suspend_equivalent();
4504  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4505
4506  if (time == 0) {
4507    status = pthread_cond_wait(_cond, _mutex);
4508  } else {
4509    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4510    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4511      pthread_cond_destroy(_cond);
4512      pthread_cond_init(_cond, NULL);
4513    }
4514  }
4515  assert_status(status == 0 || status == EINTR ||
4516                status == ETIMEDOUT,
4517                status, "cond_timedwait");
4518
4519#ifdef ASSERT
4520  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4521#endif
4522
4523  _counter = 0;
4524  status = pthread_mutex_unlock(_mutex);
4525  assert_status(status == 0, status, "invariant");
4526  // Paranoia to ensure our locked and lock-free paths interact
4527  // correctly with each other and Java-level accesses.
4528  OrderAccess::fence();
4529
4530  // If externally suspended while waiting, re-suspend
4531  if (jt->handle_special_suspend_equivalent_condition()) {
4532    jt->java_suspend_self();
4533  }
4534}
4535
4536void Parker::unpark() {
4537  int status = pthread_mutex_lock(_mutex);
4538  assert(status == 0, "invariant");
4539  const int s = _counter;
4540  _counter = 1;
4541  if (s < 1) {
4542     if (WorkAroundNPTLTimedWaitHang) {
4543        status = pthread_cond_signal(_cond);
4544        assert(status == 0, "invariant");
4545        status = pthread_mutex_unlock(_mutex);
4546        assert(status == 0, "invariant");
4547     } else {
4548        status = pthread_mutex_unlock(_mutex);
4549        assert(status == 0, "invariant");
4550        status = pthread_cond_signal(_cond);
4551        assert(status == 0, "invariant");
4552     }
4553  } else {
4554    pthread_mutex_unlock(_mutex);
4555    assert(status == 0, "invariant");
4556  }
4557}
4558
4559
4560/* Darwin has no "environ" in a dynamic library. */
4561#ifdef __APPLE__
4562#include <crt_externs.h>
4563#define environ (*_NSGetEnviron())
4564#else
4565extern char** environ;
4566#endif
4567
4568// Run the specified command in a separate process. Return its exit value,
4569// or -1 on failure (e.g. can't fork a new process).
4570// Unlike system(), this function can be called from signal handler. It
4571// doesn't block SIGINT et al.
4572int os::fork_and_exec(char* cmd) {
4573  const char * argv[4] = {"sh", "-c", cmd, NULL};
4574
4575  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4576  // pthread_atfork handlers and reset pthread library. All we need is a
4577  // separate process to execve. Make a direct syscall to fork process.
4578  // On IA64 there's no fork syscall, we have to use fork() and hope for
4579  // the best...
4580  pid_t pid = fork();
4581
4582  if (pid < 0) {
4583    // fork failed
4584    return -1;
4585
4586  } else if (pid == 0) {
4587    // child process
4588
4589    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4590    // first to kill every thread on the thread list. Because this list is
4591    // not reset by fork() (see notes above), execve() will instead kill
4592    // every thread in the parent process. We know this is the only thread
4593    // in the new process, so make a system call directly.
4594    // IA64 should use normal execve() from glibc to match the glibc fork()
4595    // above.
4596    execve("/bin/sh", (char* const*)argv, environ);
4597
4598    // execve failed
4599    _exit(-1);
4600
4601  } else  {
4602    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4603    // care about the actual exit code, for now.
4604
4605    int status;
4606
4607    // Wait for the child process to exit.  This returns immediately if
4608    // the child has already exited. */
4609    while (waitpid(pid, &status, 0) < 0) {
4610        switch (errno) {
4611        case ECHILD: return 0;
4612        case EINTR: break;
4613        default: return -1;
4614        }
4615    }
4616
4617    if (WIFEXITED(status)) {
4618       // The child exited normally; get its exit code.
4619       return WEXITSTATUS(status);
4620    } else if (WIFSIGNALED(status)) {
4621       // The child exited because of a signal
4622       // The best value to return is 0x80 + signal number,
4623       // because that is what all Unix shells do, and because
4624       // it allows callers to distinguish between process exit and
4625       // process death by signal.
4626       return 0x80 + WTERMSIG(status);
4627    } else {
4628       // Unknown exit code; pass it through
4629       return status;
4630    }
4631  }
4632}
4633
4634// is_headless_jre()
4635//
4636// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4637// in order to report if we are running in a headless jre
4638//
4639// Since JDK8 xawt/libmawt.so was moved into the same directory
4640// as libawt.so, and renamed libawt_xawt.so
4641//
4642bool os::is_headless_jre() {
4643#ifdef __APPLE__
4644    // We no longer build headless-only on Mac OS X
4645    return false;
4646#else
4647    struct stat statbuf;
4648    char buf[MAXPATHLEN];
4649    char libmawtpath[MAXPATHLEN];
4650    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4651    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4652    char *p;
4653
4654    // Get path to libjvm.so
4655    os::jvm_path(buf, sizeof(buf));
4656
4657    // Get rid of libjvm.so
4658    p = strrchr(buf, '/');
4659    if (p == NULL) return false;
4660    else *p = '\0';
4661
4662    // Get rid of client or server
4663    p = strrchr(buf, '/');
4664    if (p == NULL) return false;
4665    else *p = '\0';
4666
4667    // check xawt/libmawt.so
4668    strcpy(libmawtpath, buf);
4669    strcat(libmawtpath, xawtstr);
4670    if (::stat(libmawtpath, &statbuf) == 0) return false;
4671
4672    // check libawt_xawt.so
4673    strcpy(libmawtpath, buf);
4674    strcat(libmawtpath, new_xawtstr);
4675    if (::stat(libmawtpath, &statbuf) == 0) return false;
4676
4677    return true;
4678#endif
4679}
4680
4681// Get the default path to the core file
4682// Returns the length of the string
4683int os::get_core_path(char* buffer, size_t bufferSize) {
4684  int n = jio_snprintf(buffer, bufferSize, "/cores");
4685
4686  // Truncate if theoretical string was longer than bufferSize
4687  n = MIN2(n, (int)bufferSize);
4688
4689  return n;
4690}
4691
4692#ifndef PRODUCT
4693void TestReserveMemorySpecial_test() {
4694  // No tests available for this platform
4695}
4696#endif
4697