os_bsd.cpp revision 7052:0990a645d215
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109  #include <elf.h>
110#endif
111
112#ifdef __APPLE__
113  #include <mach/mach.h> // semaphore_* API
114  #include <mach-o/dyld.h>
115  #include <sys/proc_info.h>
116  #include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120  #define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155// Signal number used to suspend/resume a thread
156
157// do not use any signal number less than SIGSEGV, see 4355769
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193////////////////////////////////////////////////////////////////////////////////
194// environment support
195
196bool os::getenv(const char* name, char* buf, int len) {
197  const char* val = ::getenv(name);
198  if (val != NULL && strlen(val) < (size_t)len) {
199    strcpy(buf, val);
200    return true;
201  }
202  if (len > 0) buf[0] = 0;  // return a null string
203  return false;
204}
205
206
207// Return true if user is running as root.
208
209bool os::have_special_privileges() {
210  static bool init = false;
211  static bool privileges = false;
212  if (!init) {
213    privileges = (getuid() != geteuid()) || (getgid() != getegid());
214    init = true;
215  }
216  return privileges;
217}
218
219
220
221// Cpu architecture string
222#if   defined(ZERO)
223static char cpu_arch[] = ZERO_LIBARCH;
224#elif defined(IA64)
225static char cpu_arch[] = "ia64";
226#elif defined(IA32)
227static char cpu_arch[] = "i386";
228#elif defined(AMD64)
229static char cpu_arch[] = "amd64";
230#elif defined(ARM)
231static char cpu_arch[] = "arm";
232#elif defined(PPC32)
233static char cpu_arch[] = "ppc";
234#elif defined(SPARC)
235  #ifdef _LP64
236static char cpu_arch[] = "sparcv9";
237  #else
238static char cpu_arch[] = "sparc";
239  #endif
240#else
241  #error Add appropriate cpu_arch setting
242#endif
243
244// Compiler variant
245#ifdef COMPILER2
246  #define COMPILER_VARIANT "server"
247#else
248  #define COMPILER_VARIANT "client"
249#endif
250
251
252void os::Bsd::initialize_system_info() {
253  int mib[2];
254  size_t len;
255  int cpu_val;
256  julong mem_val;
257
258  // get processors count via hw.ncpus sysctl
259  mib[0] = CTL_HW;
260  mib[1] = HW_NCPU;
261  len = sizeof(cpu_val);
262  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
263    assert(len == sizeof(cpu_val), "unexpected data size");
264    set_processor_count(cpu_val);
265  } else {
266    set_processor_count(1);   // fallback
267  }
268
269  // get physical memory via hw.memsize sysctl (hw.memsize is used
270  // since it returns a 64 bit value)
271  mib[0] = CTL_HW;
272
273#if defined (HW_MEMSIZE) // Apple
274  mib[1] = HW_MEMSIZE;
275#elif defined(HW_PHYSMEM) // Most of BSD
276  mib[1] = HW_PHYSMEM;
277#elif defined(HW_REALMEM) // Old FreeBSD
278  mib[1] = HW_REALMEM;
279#else
280  #error No ways to get physmem
281#endif
282
283  len = sizeof(mem_val);
284  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
285    assert(len == sizeof(mem_val), "unexpected data size");
286    _physical_memory = mem_val;
287  } else {
288    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
289  }
290
291#ifdef __OpenBSD__
292  {
293    // limit _physical_memory memory view on OpenBSD since
294    // datasize rlimit restricts us anyway.
295    struct rlimit limits;
296    getrlimit(RLIMIT_DATA, &limits);
297    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
298  }
299#endif
300}
301
302#ifdef __APPLE__
303static const char *get_home() {
304  const char *home_dir = ::getenv("HOME");
305  if ((home_dir == NULL) || (*home_dir == '\0')) {
306    struct passwd *passwd_info = getpwuid(geteuid());
307    if (passwd_info != NULL) {
308      home_dir = passwd_info->pw_dir;
309    }
310  }
311
312  return home_dir;
313}
314#endif
315
316void os::init_system_properties_values() {
317  // The next steps are taken in the product version:
318  //
319  // Obtain the JAVA_HOME value from the location of libjvm.so.
320  // This library should be located at:
321  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
322  //
323  // If "/jre/lib/" appears at the right place in the path, then we
324  // assume libjvm.so is installed in a JDK and we use this path.
325  //
326  // Otherwise exit with message: "Could not create the Java virtual machine."
327  //
328  // The following extra steps are taken in the debugging version:
329  //
330  // If "/jre/lib/" does NOT appear at the right place in the path
331  // instead of exit check for $JAVA_HOME environment variable.
332  //
333  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
334  // then we append a fake suffix "hotspot/libjvm.so" to this path so
335  // it looks like libjvm.so is installed there
336  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
337  //
338  // Otherwise exit.
339  //
340  // Important note: if the location of libjvm.so changes this
341  // code needs to be changed accordingly.
342
343  // See ld(1):
344  //      The linker uses the following search paths to locate required
345  //      shared libraries:
346  //        1: ...
347  //        ...
348  //        7: The default directories, normally /lib and /usr/lib.
349#ifndef DEFAULT_LIBPATH
350  #define DEFAULT_LIBPATH "/lib:/usr/lib"
351#endif
352
353// Base path of extensions installed on the system.
354#define SYS_EXT_DIR     "/usr/java/packages"
355#define EXTENSIONS_DIR  "/lib/ext"
356#define ENDORSED_DIR    "/lib/endorsed"
357
358#ifndef __APPLE__
359
360  // Buffer that fits several sprintfs.
361  // Note that the space for the colon and the trailing null are provided
362  // by the nulls included by the sizeof operator.
363  const size_t bufsize =
364    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
365         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
366         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
367  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
368
369  // sysclasspath, java_home, dll_dir
370  {
371    char *pslash;
372    os::jvm_path(buf, bufsize);
373
374    // Found the full path to libjvm.so.
375    // Now cut the path to <java_home>/jre if we can.
376    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
377    pslash = strrchr(buf, '/');
378    if (pslash != NULL) {
379      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
380    }
381    Arguments::set_dll_dir(buf);
382
383    if (pslash != NULL) {
384      pslash = strrchr(buf, '/');
385      if (pslash != NULL) {
386        *pslash = '\0';          // Get rid of /<arch>.
387        pslash = strrchr(buf, '/');
388        if (pslash != NULL) {
389          *pslash = '\0';        // Get rid of /lib.
390        }
391      }
392    }
393    Arguments::set_java_home(buf);
394    set_boot_path('/', ':');
395  }
396
397  // Where to look for native libraries.
398  //
399  // Note: Due to a legacy implementation, most of the library path
400  // is set in the launcher. This was to accomodate linking restrictions
401  // on legacy Bsd implementations (which are no longer supported).
402  // Eventually, all the library path setting will be done here.
403  //
404  // However, to prevent the proliferation of improperly built native
405  // libraries, the new path component /usr/java/packages is added here.
406  // Eventually, all the library path setting will be done here.
407  {
408    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
409    // should always exist (until the legacy problem cited above is
410    // addressed).
411    const char *v = ::getenv("LD_LIBRARY_PATH");
412    const char *v_colon = ":";
413    if (v == NULL) { v = ""; v_colon = ""; }
414    // That's +1 for the colon and +1 for the trailing '\0'.
415    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
416                                                     strlen(v) + 1 +
417                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
418                                                     mtInternal);
419    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
420    Arguments::set_library_path(ld_library_path);
421    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
422  }
423
424  // Extensions directories.
425  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
426  Arguments::set_ext_dirs(buf);
427
428  // Endorsed standards default directory.
429  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
430  Arguments::set_endorsed_dirs(buf);
431
432  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
433
434#else // __APPLE__
435
436  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
437  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
438
439  const char *user_home_dir = get_home();
440  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
441  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
442    sizeof(SYS_EXTENSIONS_DIRS);
443
444  // Buffer that fits several sprintfs.
445  // Note that the space for the colon and the trailing null are provided
446  // by the nulls included by the sizeof operator.
447  const size_t bufsize =
448    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
449         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
450         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
451  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
452
453  // sysclasspath, java_home, dll_dir
454  {
455    char *pslash;
456    os::jvm_path(buf, bufsize);
457
458    // Found the full path to libjvm.so.
459    // Now cut the path to <java_home>/jre if we can.
460    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
461    pslash = strrchr(buf, '/');
462    if (pslash != NULL) {
463      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
464    }
465    Arguments::set_dll_dir(buf);
466
467    if (pslash != NULL) {
468      pslash = strrchr(buf, '/');
469      if (pslash != NULL) {
470        *pslash = '\0';          // Get rid of /lib.
471      }
472    }
473    Arguments::set_java_home(buf);
474    set_boot_path('/', ':');
475  }
476
477  // Where to look for native libraries.
478  //
479  // Note: Due to a legacy implementation, most of the library path
480  // is set in the launcher. This was to accomodate linking restrictions
481  // on legacy Bsd implementations (which are no longer supported).
482  // Eventually, all the library path setting will be done here.
483  //
484  // However, to prevent the proliferation of improperly built native
485  // libraries, the new path component /usr/java/packages is added here.
486  // Eventually, all the library path setting will be done here.
487  {
488    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
489    // should always exist (until the legacy problem cited above is
490    // addressed).
491    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
492    // can specify a directory inside an app wrapper
493    const char *l = ::getenv("JAVA_LIBRARY_PATH");
494    const char *l_colon = ":";
495    if (l == NULL) { l = ""; l_colon = ""; }
496
497    const char *v = ::getenv("DYLD_LIBRARY_PATH");
498    const char *v_colon = ":";
499    if (v == NULL) { v = ""; v_colon = ""; }
500
501    // Apple's Java6 has "." at the beginning of java.library.path.
502    // OpenJDK on Windows has "." at the end of java.library.path.
503    // OpenJDK on Linux and Solaris don't have "." in java.library.path
504    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
505    // "." is appended to the end of java.library.path. Yes, this
506    // could cause a change in behavior, but Apple's Java6 behavior
507    // can be achieved by putting "." at the beginning of the
508    // JAVA_LIBRARY_PATH environment variable.
509    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
510                                                     strlen(v) + 1 + strlen(l) + 1 +
511                                                     system_ext_size + 3,
512                                                     mtInternal);
513    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
514            v, v_colon, l, l_colon, user_home_dir);
515    Arguments::set_library_path(ld_library_path);
516    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
517  }
518
519  // Extensions directories.
520  //
521  // Note that the space for the colon and the trailing null are provided
522  // by the nulls included by the sizeof operator (so actually one byte more
523  // than necessary is allocated).
524  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
525          user_home_dir, Arguments::get_java_home());
526  Arguments::set_ext_dirs(buf);
527
528  // Endorsed standards default directory.
529  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
530  Arguments::set_endorsed_dirs(buf);
531
532  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
533
534#undef SYS_EXTENSIONS_DIR
535#undef SYS_EXTENSIONS_DIRS
536
537#endif // __APPLE__
538
539#undef SYS_EXT_DIR
540#undef EXTENSIONS_DIR
541#undef ENDORSED_DIR
542}
543
544////////////////////////////////////////////////////////////////////////////////
545// breakpoint support
546
547void os::breakpoint() {
548  BREAKPOINT;
549}
550
551extern "C" void breakpoint() {
552  // use debugger to set breakpoint here
553}
554
555////////////////////////////////////////////////////////////////////////////////
556// signal support
557
558debug_only(static bool signal_sets_initialized = false);
559static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
560
561bool os::Bsd::is_sig_ignored(int sig) {
562  struct sigaction oact;
563  sigaction(sig, (struct sigaction*)NULL, &oact);
564  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
565                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
566  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
567    return true;
568  } else {
569    return false;
570  }
571}
572
573void os::Bsd::signal_sets_init() {
574  // Should also have an assertion stating we are still single-threaded.
575  assert(!signal_sets_initialized, "Already initialized");
576  // Fill in signals that are necessarily unblocked for all threads in
577  // the VM. Currently, we unblock the following signals:
578  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
579  //                         by -Xrs (=ReduceSignalUsage));
580  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
581  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
582  // the dispositions or masks wrt these signals.
583  // Programs embedding the VM that want to use the above signals for their
584  // own purposes must, at this time, use the "-Xrs" option to prevent
585  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
586  // (See bug 4345157, and other related bugs).
587  // In reality, though, unblocking these signals is really a nop, since
588  // these signals are not blocked by default.
589  sigemptyset(&unblocked_sigs);
590  sigemptyset(&allowdebug_blocked_sigs);
591  sigaddset(&unblocked_sigs, SIGILL);
592  sigaddset(&unblocked_sigs, SIGSEGV);
593  sigaddset(&unblocked_sigs, SIGBUS);
594  sigaddset(&unblocked_sigs, SIGFPE);
595  sigaddset(&unblocked_sigs, SR_signum);
596
597  if (!ReduceSignalUsage) {
598    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
599      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
600      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
601    }
602    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
603      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
604      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
605    }
606    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
607      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
608      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
609    }
610  }
611  // Fill in signals that are blocked by all but the VM thread.
612  sigemptyset(&vm_sigs);
613  if (!ReduceSignalUsage) {
614    sigaddset(&vm_sigs, BREAK_SIGNAL);
615  }
616  debug_only(signal_sets_initialized = true);
617
618}
619
620// These are signals that are unblocked while a thread is running Java.
621// (For some reason, they get blocked by default.)
622sigset_t* os::Bsd::unblocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &unblocked_sigs;
625}
626
627// These are the signals that are blocked while a (non-VM) thread is
628// running Java. Only the VM thread handles these signals.
629sigset_t* os::Bsd::vm_signals() {
630  assert(signal_sets_initialized, "Not initialized");
631  return &vm_sigs;
632}
633
634// These are signals that are blocked during cond_wait to allow debugger in
635sigset_t* os::Bsd::allowdebug_blocked_signals() {
636  assert(signal_sets_initialized, "Not initialized");
637  return &allowdebug_blocked_sigs;
638}
639
640void os::Bsd::hotspot_sigmask(Thread* thread) {
641
642  //Save caller's signal mask before setting VM signal mask
643  sigset_t caller_sigmask;
644  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
645
646  OSThread* osthread = thread->osthread();
647  osthread->set_caller_sigmask(caller_sigmask);
648
649  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
650
651  if (!ReduceSignalUsage) {
652    if (thread->is_VM_thread()) {
653      // Only the VM thread handles BREAK_SIGNAL ...
654      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
655    } else {
656      // ... all other threads block BREAK_SIGNAL
657      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
658    }
659  }
660}
661
662
663//////////////////////////////////////////////////////////////////////////////
664// create new thread
665
666// check if it's safe to start a new thread
667static bool _thread_safety_check(Thread* thread) {
668  return true;
669}
670
671#ifdef __APPLE__
672// library handle for calling objc_registerThreadWithCollector()
673// without static linking to the libobjc library
674  #define OBJC_LIB "/usr/lib/libobjc.dylib"
675  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
676typedef void (*objc_registerThreadWithCollector_t)();
677extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
678objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
679#endif
680
681#ifdef __APPLE__
682static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
683  // Additional thread_id used to correlate threads in SA
684  thread_identifier_info_data_t     m_ident_info;
685  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
686
687  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
688              (thread_info_t) &m_ident_info, &count);
689
690  return m_ident_info.thread_id;
691}
692#endif
693
694// Thread start routine for all newly created threads
695static void *java_start(Thread *thread) {
696  // Try to randomize the cache line index of hot stack frames.
697  // This helps when threads of the same stack traces evict each other's
698  // cache lines. The threads can be either from the same JVM instance, or
699  // from different JVM instances. The benefit is especially true for
700  // processors with hyperthreading technology.
701  static int counter = 0;
702  int pid = os::current_process_id();
703  alloca(((pid ^ counter++) & 7) * 128);
704
705  ThreadLocalStorage::set_thread(thread);
706
707  OSThread* osthread = thread->osthread();
708  Monitor* sync = osthread->startThread_lock();
709
710  // non floating stack BsdThreads needs extra check, see above
711  if (!_thread_safety_check(thread)) {
712    // notify parent thread
713    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
714    osthread->set_state(ZOMBIE);
715    sync->notify_all();
716    return NULL;
717  }
718
719  osthread->set_thread_id(os::Bsd::gettid());
720
721#ifdef __APPLE__
722  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
723  guarantee(unique_thread_id != 0, "unique thread id was not found");
724  osthread->set_unique_thread_id(unique_thread_id);
725#endif
726  // initialize signal mask for this thread
727  os::Bsd::hotspot_sigmask(thread);
728
729  // initialize floating point control register
730  os::Bsd::init_thread_fpu_state();
731
732#ifdef __APPLE__
733  // register thread with objc gc
734  if (objc_registerThreadWithCollectorFunction != NULL) {
735    objc_registerThreadWithCollectorFunction();
736  }
737#endif
738
739  // handshaking with parent thread
740  {
741    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
742
743    // notify parent thread
744    osthread->set_state(INITIALIZED);
745    sync->notify_all();
746
747    // wait until os::start_thread()
748    while (osthread->get_state() == INITIALIZED) {
749      sync->wait(Mutex::_no_safepoint_check_flag);
750    }
751  }
752
753  // call one more level start routine
754  thread->run();
755
756  return 0;
757}
758
759bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
760  assert(thread->osthread() == NULL, "caller responsible");
761
762  // Allocate the OSThread object
763  OSThread* osthread = new OSThread(NULL, NULL);
764  if (osthread == NULL) {
765    return false;
766  }
767
768  // set the correct thread state
769  osthread->set_thread_type(thr_type);
770
771  // Initial state is ALLOCATED but not INITIALIZED
772  osthread->set_state(ALLOCATED);
773
774  thread->set_osthread(osthread);
775
776  // init thread attributes
777  pthread_attr_t attr;
778  pthread_attr_init(&attr);
779  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
780
781  // stack size
782  if (os::Bsd::supports_variable_stack_size()) {
783    // calculate stack size if it's not specified by caller
784    if (stack_size == 0) {
785      stack_size = os::Bsd::default_stack_size(thr_type);
786
787      switch (thr_type) {
788      case os::java_thread:
789        // Java threads use ThreadStackSize which default value can be
790        // changed with the flag -Xss
791        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
792        stack_size = JavaThread::stack_size_at_create();
793        break;
794      case os::compiler_thread:
795        if (CompilerThreadStackSize > 0) {
796          stack_size = (size_t)(CompilerThreadStackSize * K);
797          break;
798        } // else fall through:
799          // use VMThreadStackSize if CompilerThreadStackSize is not defined
800      case os::vm_thread:
801      case os::pgc_thread:
802      case os::cgc_thread:
803      case os::watcher_thread:
804        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
805        break;
806      }
807    }
808
809    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
810    pthread_attr_setstacksize(&attr, stack_size);
811  } else {
812    // let pthread_create() pick the default value.
813  }
814
815  ThreadState state;
816
817  {
818    pthread_t tid;
819    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
820
821    pthread_attr_destroy(&attr);
822
823    if (ret != 0) {
824      if (PrintMiscellaneous && (Verbose || WizardMode)) {
825        perror("pthread_create()");
826      }
827      // Need to clean up stuff we've allocated so far
828      thread->set_osthread(NULL);
829      delete osthread;
830      return false;
831    }
832
833    // Store pthread info into the OSThread
834    osthread->set_pthread_id(tid);
835
836    // Wait until child thread is either initialized or aborted
837    {
838      Monitor* sync_with_child = osthread->startThread_lock();
839      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
840      while ((state = osthread->get_state()) == ALLOCATED) {
841        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
842      }
843    }
844
845  }
846
847  // Aborted due to thread limit being reached
848  if (state == ZOMBIE) {
849    thread->set_osthread(NULL);
850    delete osthread;
851    return false;
852  }
853
854  // The thread is returned suspended (in state INITIALIZED),
855  // and is started higher up in the call chain
856  assert(state == INITIALIZED, "race condition");
857  return true;
858}
859
860/////////////////////////////////////////////////////////////////////////////
861// attach existing thread
862
863// bootstrap the main thread
864bool os::create_main_thread(JavaThread* thread) {
865  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
866  return create_attached_thread(thread);
867}
868
869bool os::create_attached_thread(JavaThread* thread) {
870#ifdef ASSERT
871  thread->verify_not_published();
872#endif
873
874  // Allocate the OSThread object
875  OSThread* osthread = new OSThread(NULL, NULL);
876
877  if (osthread == NULL) {
878    return false;
879  }
880
881  osthread->set_thread_id(os::Bsd::gettid());
882
883  // Store pthread info into the OSThread
884#ifdef __APPLE__
885  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
886  guarantee(unique_thread_id != 0, "just checking");
887  osthread->set_unique_thread_id(unique_thread_id);
888#endif
889  osthread->set_pthread_id(::pthread_self());
890
891  // initialize floating point control register
892  os::Bsd::init_thread_fpu_state();
893
894  // Initial thread state is RUNNABLE
895  osthread->set_state(RUNNABLE);
896
897  thread->set_osthread(osthread);
898
899  // initialize signal mask for this thread
900  // and save the caller's signal mask
901  os::Bsd::hotspot_sigmask(thread);
902
903  return true;
904}
905
906void os::pd_start_thread(Thread* thread) {
907  OSThread * osthread = thread->osthread();
908  assert(osthread->get_state() != INITIALIZED, "just checking");
909  Monitor* sync_with_child = osthread->startThread_lock();
910  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
911  sync_with_child->notify();
912}
913
914// Free Bsd resources related to the OSThread
915void os::free_thread(OSThread* osthread) {
916  assert(osthread != NULL, "osthread not set");
917
918  if (Thread::current()->osthread() == osthread) {
919    // Restore caller's signal mask
920    sigset_t sigmask = osthread->caller_sigmask();
921    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
922  }
923
924  delete osthread;
925}
926
927//////////////////////////////////////////////////////////////////////////////
928// thread local storage
929
930// Restore the thread pointer if the destructor is called. This is in case
931// someone from JNI code sets up a destructor with pthread_key_create to run
932// detachCurrentThread on thread death. Unless we restore the thread pointer we
933// will hang or crash. When detachCurrentThread is called the key will be set
934// to null and we will not be called again. If detachCurrentThread is never
935// called we could loop forever depending on the pthread implementation.
936static void restore_thread_pointer(void* p) {
937  Thread* thread = (Thread*) p;
938  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
939}
940
941int os::allocate_thread_local_storage() {
942  pthread_key_t key;
943  int rslt = pthread_key_create(&key, restore_thread_pointer);
944  assert(rslt == 0, "cannot allocate thread local storage");
945  return (int)key;
946}
947
948// Note: This is currently not used by VM, as we don't destroy TLS key
949// on VM exit.
950void os::free_thread_local_storage(int index) {
951  int rslt = pthread_key_delete((pthread_key_t)index);
952  assert(rslt == 0, "invalid index");
953}
954
955void os::thread_local_storage_at_put(int index, void* value) {
956  int rslt = pthread_setspecific((pthread_key_t)index, value);
957  assert(rslt == 0, "pthread_setspecific failed");
958}
959
960extern "C" Thread* get_thread() {
961  return ThreadLocalStorage::thread();
962}
963
964
965////////////////////////////////////////////////////////////////////////////////
966// time support
967
968// Time since start-up in seconds to a fine granularity.
969// Used by VMSelfDestructTimer and the MemProfiler.
970double os::elapsedTime() {
971
972  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
973}
974
975jlong os::elapsed_counter() {
976  return javaTimeNanos() - initial_time_count;
977}
978
979jlong os::elapsed_frequency() {
980  return NANOSECS_PER_SEC; // nanosecond resolution
981}
982
983bool os::supports_vtime() { return true; }
984bool os::enable_vtime()   { return false; }
985bool os::vtime_enabled()  { return false; }
986
987double os::elapsedVTime() {
988  // better than nothing, but not much
989  return elapsedTime();
990}
991
992jlong os::javaTimeMillis() {
993  timeval time;
994  int status = gettimeofday(&time, NULL);
995  assert(status != -1, "bsd error");
996  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
997}
998
999#ifndef __APPLE__
1000  #ifndef CLOCK_MONOTONIC
1001    #define CLOCK_MONOTONIC (1)
1002  #endif
1003#endif
1004
1005#ifdef __APPLE__
1006void os::Bsd::clock_init() {
1007  mach_timebase_info(&_timebase_info);
1008}
1009#else
1010void os::Bsd::clock_init() {
1011  struct timespec res;
1012  struct timespec tp;
1013  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1014      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1015    // yes, monotonic clock is supported
1016    _clock_gettime = ::clock_gettime;
1017  }
1018}
1019#endif
1020
1021
1022
1023#ifdef __APPLE__
1024
1025jlong os::javaTimeNanos() {
1026  const uint64_t tm = mach_absolute_time();
1027  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1028  const uint64_t prev = Bsd::_max_abstime;
1029  if (now <= prev) {
1030    return prev;   // same or retrograde time;
1031  }
1032  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1033  assert(obsv >= prev, "invariant");   // Monotonicity
1034  // If the CAS succeeded then we're done and return "now".
1035  // If the CAS failed and the observed value "obsv" is >= now then
1036  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1037  // some other thread raced this thread and installed a new value, in which case
1038  // we could either (a) retry the entire operation, (b) retry trying to install now
1039  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1040  // we might discard a higher "now" value in deference to a slightly lower but freshly
1041  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1042  // to (a) or (b) -- and greatly reduces coherence traffic.
1043  // We might also condition (c) on the magnitude of the delta between obsv and now.
1044  // Avoiding excessive CAS operations to hot RW locations is critical.
1045  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1046  return (prev == obsv) ? now : obsv;
1047}
1048
1049#else // __APPLE__
1050
1051jlong os::javaTimeNanos() {
1052  if (os::supports_monotonic_clock()) {
1053    struct timespec tp;
1054    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1055    assert(status == 0, "gettime error");
1056    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1057    return result;
1058  } else {
1059    timeval time;
1060    int status = gettimeofday(&time, NULL);
1061    assert(status != -1, "bsd error");
1062    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1063    return 1000 * usecs;
1064  }
1065}
1066
1067#endif // __APPLE__
1068
1069void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1070  if (os::supports_monotonic_clock()) {
1071    info_ptr->max_value = ALL_64_BITS;
1072
1073    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1074    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1075    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1076  } else {
1077    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1078    info_ptr->max_value = ALL_64_BITS;
1079
1080    // gettimeofday is a real time clock so it skips
1081    info_ptr->may_skip_backward = true;
1082    info_ptr->may_skip_forward = true;
1083  }
1084
1085  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1086}
1087
1088// Return the real, user, and system times in seconds from an
1089// arbitrary fixed point in the past.
1090bool os::getTimesSecs(double* process_real_time,
1091                      double* process_user_time,
1092                      double* process_system_time) {
1093  struct tms ticks;
1094  clock_t real_ticks = times(&ticks);
1095
1096  if (real_ticks == (clock_t) (-1)) {
1097    return false;
1098  } else {
1099    double ticks_per_second = (double) clock_tics_per_sec;
1100    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1101    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1102    *process_real_time = ((double) real_ticks) / ticks_per_second;
1103
1104    return true;
1105  }
1106}
1107
1108
1109char * os::local_time_string(char *buf, size_t buflen) {
1110  struct tm t;
1111  time_t long_time;
1112  time(&long_time);
1113  localtime_r(&long_time, &t);
1114  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1115               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1116               t.tm_hour, t.tm_min, t.tm_sec);
1117  return buf;
1118}
1119
1120struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1121  return localtime_r(clock, res);
1122}
1123
1124////////////////////////////////////////////////////////////////////////////////
1125// runtime exit support
1126
1127// Note: os::shutdown() might be called very early during initialization, or
1128// called from signal handler. Before adding something to os::shutdown(), make
1129// sure it is async-safe and can handle partially initialized VM.
1130void os::shutdown() {
1131
1132  // allow PerfMemory to attempt cleanup of any persistent resources
1133  perfMemory_exit();
1134
1135  // needs to remove object in file system
1136  AttachListener::abort();
1137
1138  // flush buffered output, finish log files
1139  ostream_abort();
1140
1141  // Check for abort hook
1142  abort_hook_t abort_hook = Arguments::abort_hook();
1143  if (abort_hook != NULL) {
1144    abort_hook();
1145  }
1146
1147}
1148
1149// Note: os::abort() might be called very early during initialization, or
1150// called from signal handler. Before adding something to os::abort(), make
1151// sure it is async-safe and can handle partially initialized VM.
1152void os::abort(bool dump_core) {
1153  os::shutdown();
1154  if (dump_core) {
1155#ifndef PRODUCT
1156    fdStream out(defaultStream::output_fd());
1157    out.print_raw("Current thread is ");
1158    char buf[16];
1159    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160    out.print_raw_cr(buf);
1161    out.print_raw_cr("Dumping core ...");
1162#endif
1163    ::abort(); // dump core
1164  }
1165
1166  ::exit(1);
1167}
1168
1169// Die immediately, no exit hook, no abort hook, no cleanup.
1170void os::die() {
1171  // _exit() on BsdThreads only kills current thread
1172  ::abort();
1173}
1174
1175// This method is a copy of JDK's sysGetLastErrorString
1176// from src/solaris/hpi/src/system_md.c
1177
1178size_t os::lasterror(char *buf, size_t len) {
1179  if (errno == 0)  return 0;
1180
1181  const char *s = ::strerror(errno);
1182  size_t n = ::strlen(s);
1183  if (n >= len) {
1184    n = len - 1;
1185  }
1186  ::strncpy(buf, s, n);
1187  buf[n] = '\0';
1188  return n;
1189}
1190
1191// Information of current thread in variety of formats
1192pid_t os::Bsd::gettid() {
1193  int retval = -1;
1194
1195#ifdef __APPLE__ //XNU kernel
1196  // despite the fact mach port is actually not a thread id use it
1197  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1198  retval = ::pthread_mach_thread_np(::pthread_self());
1199  guarantee(retval != 0, "just checking");
1200  return retval;
1201
1202#elif __FreeBSD__
1203  retval = syscall(SYS_thr_self);
1204#elif __OpenBSD__
1205  retval = syscall(SYS_getthrid);
1206#elif __NetBSD__
1207  retval = (pid_t) syscall(SYS__lwp_self);
1208#endif
1209
1210  if (retval == -1) {
1211    return getpid();
1212  }
1213}
1214
1215intx os::current_thread_id() {
1216#ifdef __APPLE__
1217  return (intx)::pthread_mach_thread_np(::pthread_self());
1218#else
1219  return (intx)::pthread_self();
1220#endif
1221}
1222
1223int os::current_process_id() {
1224
1225  // Under the old bsd thread library, bsd gives each thread
1226  // its own process id. Because of this each thread will return
1227  // a different pid if this method were to return the result
1228  // of getpid(2). Bsd provides no api that returns the pid
1229  // of the launcher thread for the vm. This implementation
1230  // returns a unique pid, the pid of the launcher thread
1231  // that starts the vm 'process'.
1232
1233  // Under the NPTL, getpid() returns the same pid as the
1234  // launcher thread rather than a unique pid per thread.
1235  // Use gettid() if you want the old pre NPTL behaviour.
1236
1237  // if you are looking for the result of a call to getpid() that
1238  // returns a unique pid for the calling thread, then look at the
1239  // OSThread::thread_id() method in osThread_bsd.hpp file
1240
1241  return (int)(_initial_pid ? _initial_pid : getpid());
1242}
1243
1244// DLL functions
1245
1246#define JNI_LIB_PREFIX "lib"
1247#ifdef __APPLE__
1248  #define JNI_LIB_SUFFIX ".dylib"
1249#else
1250  #define JNI_LIB_SUFFIX ".so"
1251#endif
1252
1253const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1254
1255// This must be hard coded because it's the system's temporary
1256// directory not the java application's temp directory, ala java.io.tmpdir.
1257#ifdef __APPLE__
1258// macosx has a secure per-user temporary directory
1259char temp_path_storage[PATH_MAX];
1260const char* os::get_temp_directory() {
1261  static char *temp_path = NULL;
1262  if (temp_path == NULL) {
1263    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1264    if (pathSize == 0 || pathSize > PATH_MAX) {
1265      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1266    }
1267    temp_path = temp_path_storage;
1268  }
1269  return temp_path;
1270}
1271#else // __APPLE__
1272const char* os::get_temp_directory() { return "/tmp"; }
1273#endif // __APPLE__
1274
1275static bool file_exists(const char* filename) {
1276  struct stat statbuf;
1277  if (filename == NULL || strlen(filename) == 0) {
1278    return false;
1279  }
1280  return os::stat(filename, &statbuf) == 0;
1281}
1282
1283bool os::dll_build_name(char* buffer, size_t buflen,
1284                        const char* pname, const char* fname) {
1285  bool retval = false;
1286  // Copied from libhpi
1287  const size_t pnamelen = pname ? strlen(pname) : 0;
1288
1289  // Return error on buffer overflow.
1290  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1291    return retval;
1292  }
1293
1294  if (pnamelen == 0) {
1295    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1296    retval = true;
1297  } else if (strchr(pname, *os::path_separator()) != NULL) {
1298    int n;
1299    char** pelements = split_path(pname, &n);
1300    if (pelements == NULL) {
1301      return false;
1302    }
1303    for (int i = 0; i < n; i++) {
1304      // Really shouldn't be NULL, but check can't hurt
1305      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1306        continue; // skip the empty path values
1307      }
1308      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1309               pelements[i], fname);
1310      if (file_exists(buffer)) {
1311        retval = true;
1312        break;
1313      }
1314    }
1315    // release the storage
1316    for (int i = 0; i < n; i++) {
1317      if (pelements[i] != NULL) {
1318        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1319      }
1320    }
1321    if (pelements != NULL) {
1322      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1323    }
1324  } else {
1325    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1326    retval = true;
1327  }
1328  return retval;
1329}
1330
1331// check if addr is inside libjvm.so
1332bool os::address_is_in_vm(address addr) {
1333  static address libjvm_base_addr;
1334  Dl_info dlinfo;
1335
1336  if (libjvm_base_addr == NULL) {
1337    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1338      libjvm_base_addr = (address)dlinfo.dli_fbase;
1339    }
1340    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1341  }
1342
1343  if (dladdr((void *)addr, &dlinfo) != 0) {
1344    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1345  }
1346
1347  return false;
1348}
1349
1350
1351#define MACH_MAXSYMLEN 256
1352
1353bool os::dll_address_to_function_name(address addr, char *buf,
1354                                      int buflen, int *offset) {
1355  // buf is not optional, but offset is optional
1356  assert(buf != NULL, "sanity check");
1357
1358  Dl_info dlinfo;
1359  char localbuf[MACH_MAXSYMLEN];
1360
1361  if (dladdr((void*)addr, &dlinfo) != 0) {
1362    // see if we have a matching symbol
1363    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1364      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1365        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1366      }
1367      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1368      return true;
1369    }
1370    // no matching symbol so try for just file info
1371    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1372      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1373                          buf, buflen, offset, dlinfo.dli_fname)) {
1374        return true;
1375      }
1376    }
1377
1378    // Handle non-dynamic manually:
1379    if (dlinfo.dli_fbase != NULL &&
1380        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1381      if (!Decoder::demangle(localbuf, buf, buflen)) {
1382        jio_snprintf(buf, buflen, "%s", localbuf);
1383      }
1384      return true;
1385    }
1386  }
1387  buf[0] = '\0';
1388  if (offset != NULL) *offset = -1;
1389  return false;
1390}
1391
1392// ported from solaris version
1393bool os::dll_address_to_library_name(address addr, char* buf,
1394                                     int buflen, int* offset) {
1395  // buf is not optional, but offset is optional
1396  assert(buf != NULL, "sanity check");
1397
1398  Dl_info dlinfo;
1399
1400  if (dladdr((void*)addr, &dlinfo) != 0) {
1401    if (dlinfo.dli_fname != NULL) {
1402      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1403    }
1404    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1405      *offset = addr - (address)dlinfo.dli_fbase;
1406    }
1407    return true;
1408  }
1409
1410  buf[0] = '\0';
1411  if (offset) *offset = -1;
1412  return false;
1413}
1414
1415// Loads .dll/.so and
1416// in case of error it checks if .dll/.so was built for the
1417// same architecture as Hotspot is running on
1418
1419#ifdef __APPLE__
1420void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1421  void * result= ::dlopen(filename, RTLD_LAZY);
1422  if (result != NULL) {
1423    // Successful loading
1424    return result;
1425  }
1426
1427  // Read system error message into ebuf
1428  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1429  ebuf[ebuflen-1]='\0';
1430
1431  return NULL;
1432}
1433#else
1434void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1435  void * result= ::dlopen(filename, RTLD_LAZY);
1436  if (result != NULL) {
1437    // Successful loading
1438    return result;
1439  }
1440
1441  Elf32_Ehdr elf_head;
1442
1443  // Read system error message into ebuf
1444  // It may or may not be overwritten below
1445  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1446  ebuf[ebuflen-1]='\0';
1447  int diag_msg_max_length=ebuflen-strlen(ebuf);
1448  char* diag_msg_buf=ebuf+strlen(ebuf);
1449
1450  if (diag_msg_max_length==0) {
1451    // No more space in ebuf for additional diagnostics message
1452    return NULL;
1453  }
1454
1455
1456  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1457
1458  if (file_descriptor < 0) {
1459    // Can't open library, report dlerror() message
1460    return NULL;
1461  }
1462
1463  bool failed_to_read_elf_head=
1464    (sizeof(elf_head)!=
1465     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1466
1467  ::close(file_descriptor);
1468  if (failed_to_read_elf_head) {
1469    // file i/o error - report dlerror() msg
1470    return NULL;
1471  }
1472
1473  typedef struct {
1474    Elf32_Half  code;         // Actual value as defined in elf.h
1475    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1476    char        elf_class;    // 32 or 64 bit
1477    char        endianess;    // MSB or LSB
1478    char*       name;         // String representation
1479  } arch_t;
1480
1481  #ifndef EM_486
1482    #define EM_486          6               /* Intel 80486 */
1483  #endif
1484
1485  #ifndef EM_MIPS_RS3_LE
1486    #define EM_MIPS_RS3_LE  10              /* MIPS */
1487  #endif
1488
1489  #ifndef EM_PPC64
1490    #define EM_PPC64        21              /* PowerPC64 */
1491  #endif
1492
1493  #ifndef EM_S390
1494    #define EM_S390         22              /* IBM System/390 */
1495  #endif
1496
1497  #ifndef EM_IA_64
1498    #define EM_IA_64        50              /* HP/Intel IA-64 */
1499  #endif
1500
1501  #ifndef EM_X86_64
1502    #define EM_X86_64       62              /* AMD x86-64 */
1503  #endif
1504
1505  static const arch_t arch_array[]={
1506    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1507    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1508    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1509    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1510    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1511    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1512    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1513    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1514    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1515    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1516    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1517    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1518    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1519    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1520    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1521    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1522  };
1523
1524  #if  (defined IA32)
1525  static  Elf32_Half running_arch_code=EM_386;
1526  #elif   (defined AMD64)
1527  static  Elf32_Half running_arch_code=EM_X86_64;
1528  #elif  (defined IA64)
1529  static  Elf32_Half running_arch_code=EM_IA_64;
1530  #elif  (defined __sparc) && (defined _LP64)
1531  static  Elf32_Half running_arch_code=EM_SPARCV9;
1532  #elif  (defined __sparc) && (!defined _LP64)
1533  static  Elf32_Half running_arch_code=EM_SPARC;
1534  #elif  (defined __powerpc64__)
1535  static  Elf32_Half running_arch_code=EM_PPC64;
1536  #elif  (defined __powerpc__)
1537  static  Elf32_Half running_arch_code=EM_PPC;
1538  #elif  (defined ARM)
1539  static  Elf32_Half running_arch_code=EM_ARM;
1540  #elif  (defined S390)
1541  static  Elf32_Half running_arch_code=EM_S390;
1542  #elif  (defined ALPHA)
1543  static  Elf32_Half running_arch_code=EM_ALPHA;
1544  #elif  (defined MIPSEL)
1545  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1546  #elif  (defined PARISC)
1547  static  Elf32_Half running_arch_code=EM_PARISC;
1548  #elif  (defined MIPS)
1549  static  Elf32_Half running_arch_code=EM_MIPS;
1550  #elif  (defined M68K)
1551  static  Elf32_Half running_arch_code=EM_68K;
1552  #else
1553    #error Method os::dll_load requires that one of following is defined:\
1554         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1555  #endif
1556
1557  // Identify compatability class for VM's architecture and library's architecture
1558  // Obtain string descriptions for architectures
1559
1560  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1561  int running_arch_index=-1;
1562
1563  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1564    if (running_arch_code == arch_array[i].code) {
1565      running_arch_index    = i;
1566    }
1567    if (lib_arch.code == arch_array[i].code) {
1568      lib_arch.compat_class = arch_array[i].compat_class;
1569      lib_arch.name         = arch_array[i].name;
1570    }
1571  }
1572
1573  assert(running_arch_index != -1,
1574         "Didn't find running architecture code (running_arch_code) in arch_array");
1575  if (running_arch_index == -1) {
1576    // Even though running architecture detection failed
1577    // we may still continue with reporting dlerror() message
1578    return NULL;
1579  }
1580
1581  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1582    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1583    return NULL;
1584  }
1585
1586#ifndef S390
1587  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1588    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1589    return NULL;
1590  }
1591#endif // !S390
1592
1593  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1594    if (lib_arch.name!=NULL) {
1595      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1596                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1597                 lib_arch.name, arch_array[running_arch_index].name);
1598    } else {
1599      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1600                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1601                 lib_arch.code,
1602                 arch_array[running_arch_index].name);
1603    }
1604  }
1605
1606  return NULL;
1607}
1608#endif // !__APPLE__
1609
1610void* os::get_default_process_handle() {
1611#ifdef __APPLE__
1612  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1613  // to avoid finding unexpected symbols on second (or later)
1614  // loads of a library.
1615  return (void*)::dlopen(NULL, RTLD_FIRST);
1616#else
1617  return (void*)::dlopen(NULL, RTLD_LAZY);
1618#endif
1619}
1620
1621// XXX: Do we need a lock around this as per Linux?
1622void* os::dll_lookup(void* handle, const char* name) {
1623  return dlsym(handle, name);
1624}
1625
1626
1627static bool _print_ascii_file(const char* filename, outputStream* st) {
1628  int fd = ::open(filename, O_RDONLY);
1629  if (fd == -1) {
1630    return false;
1631  }
1632
1633  char buf[32];
1634  int bytes;
1635  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1636    st->print_raw(buf, bytes);
1637  }
1638
1639  ::close(fd);
1640
1641  return true;
1642}
1643
1644int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1645  outputStream * out = (outputStream *) param;
1646  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1647  return 0;
1648}
1649
1650void os::print_dll_info(outputStream *st) {
1651  st->print_cr("Dynamic libraries:");
1652  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1653    st->print_cr("Error: Cannot print dynamic libraries.");
1654  }
1655}
1656
1657int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1658#ifdef RTLD_DI_LINKMAP
1659  Dl_info dli;
1660  void *handle;
1661  Link_map *map;
1662  Link_map *p;
1663
1664  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1665      dli.dli_fname == NULL) {
1666    return 1;
1667  }
1668  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1669  if (handle == NULL) {
1670    return 1;
1671  }
1672  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1673  if (map == NULL) {
1674    dlclose(handle);
1675    return 1;
1676  }
1677
1678  while (map->l_prev != NULL)
1679    map = map->l_prev;
1680
1681  while (map != NULL) {
1682    // Value for top_address is returned as 0 since we don't have any information about module size
1683    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1684      dlclose(handle);
1685      return 1;
1686    }
1687    map = map->l_next;
1688  }
1689
1690  dlclose(handle);
1691#elif defined(__APPLE__)
1692  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1693    // Value for top_address is returned as 0 since we don't have any information about module size
1694    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1695      return 1;
1696    }
1697  }
1698  return 0;
1699#else
1700  return 1;
1701#endif
1702}
1703
1704void os::print_os_info_brief(outputStream* st) {
1705  st->print("Bsd");
1706
1707  os::Posix::print_uname_info(st);
1708}
1709
1710void os::print_os_info(outputStream* st) {
1711  st->print("OS:");
1712  st->print("Bsd");
1713
1714  os::Posix::print_uname_info(st);
1715
1716  os::Posix::print_rlimit_info(st);
1717
1718  os::Posix::print_load_average(st);
1719}
1720
1721void os::pd_print_cpu_info(outputStream* st) {
1722  // Nothing to do for now.
1723}
1724
1725void os::print_memory_info(outputStream* st) {
1726
1727  st->print("Memory:");
1728  st->print(" %dk page", os::vm_page_size()>>10);
1729
1730  st->print(", physical " UINT64_FORMAT "k",
1731            os::physical_memory() >> 10);
1732  st->print("(" UINT64_FORMAT "k free)",
1733            os::available_memory() >> 10);
1734  st->cr();
1735
1736  // meminfo
1737  st->print("\n/proc/meminfo:\n");
1738  _print_ascii_file("/proc/meminfo", st);
1739  st->cr();
1740}
1741
1742void os::print_siginfo(outputStream* st, void* siginfo) {
1743  const siginfo_t* si = (const siginfo_t*)siginfo;
1744
1745  os::Posix::print_siginfo_brief(st, si);
1746
1747  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1748      UseSharedSpaces) {
1749    FileMapInfo* mapinfo = FileMapInfo::current_info();
1750    if (mapinfo->is_in_shared_space(si->si_addr)) {
1751      st->print("\n\nError accessing class data sharing archive."   \
1752                " Mapped file inaccessible during execution, "      \
1753                " possible disk/network problem.");
1754    }
1755  }
1756  st->cr();
1757}
1758
1759
1760static void print_signal_handler(outputStream* st, int sig,
1761                                 char* buf, size_t buflen);
1762
1763void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1764  st->print_cr("Signal Handlers:");
1765  print_signal_handler(st, SIGSEGV, buf, buflen);
1766  print_signal_handler(st, SIGBUS , buf, buflen);
1767  print_signal_handler(st, SIGFPE , buf, buflen);
1768  print_signal_handler(st, SIGPIPE, buf, buflen);
1769  print_signal_handler(st, SIGXFSZ, buf, buflen);
1770  print_signal_handler(st, SIGILL , buf, buflen);
1771  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1772  print_signal_handler(st, SR_signum, buf, buflen);
1773  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1774  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1775  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1776  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1777}
1778
1779static char saved_jvm_path[MAXPATHLEN] = {0};
1780
1781// Find the full path to the current module, libjvm
1782void os::jvm_path(char *buf, jint buflen) {
1783  // Error checking.
1784  if (buflen < MAXPATHLEN) {
1785    assert(false, "must use a large-enough buffer");
1786    buf[0] = '\0';
1787    return;
1788  }
1789  // Lazy resolve the path to current module.
1790  if (saved_jvm_path[0] != 0) {
1791    strcpy(buf, saved_jvm_path);
1792    return;
1793  }
1794
1795  char dli_fname[MAXPATHLEN];
1796  bool ret = dll_address_to_library_name(
1797                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1798                                         dli_fname, sizeof(dli_fname), NULL);
1799  assert(ret, "cannot locate libjvm");
1800  char *rp = NULL;
1801  if (ret && dli_fname[0] != '\0') {
1802    rp = realpath(dli_fname, buf);
1803  }
1804  if (rp == NULL) {
1805    return;
1806  }
1807
1808  if (Arguments::sun_java_launcher_is_altjvm()) {
1809    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1810    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1811    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1812    // appears at the right place in the string, then assume we are
1813    // installed in a JDK and we're done. Otherwise, check for a
1814    // JAVA_HOME environment variable and construct a path to the JVM
1815    // being overridden.
1816
1817    const char *p = buf + strlen(buf) - 1;
1818    for (int count = 0; p > buf && count < 5; ++count) {
1819      for (--p; p > buf && *p != '/'; --p)
1820        /* empty */ ;
1821    }
1822
1823    if (strncmp(p, "/jre/lib/", 9) != 0) {
1824      // Look for JAVA_HOME in the environment.
1825      char* java_home_var = ::getenv("JAVA_HOME");
1826      if (java_home_var != NULL && java_home_var[0] != 0) {
1827        char* jrelib_p;
1828        int len;
1829
1830        // Check the current module name "libjvm"
1831        p = strrchr(buf, '/');
1832        assert(strstr(p, "/libjvm") == p, "invalid library name");
1833
1834        rp = realpath(java_home_var, buf);
1835        if (rp == NULL) {
1836          return;
1837        }
1838
1839        // determine if this is a legacy image or modules image
1840        // modules image doesn't have "jre" subdirectory
1841        len = strlen(buf);
1842        assert(len < buflen, "Ran out of buffer space");
1843        jrelib_p = buf + len;
1844
1845        // Add the appropriate library subdir
1846        snprintf(jrelib_p, buflen-len, "/jre/lib");
1847        if (0 != access(buf, F_OK)) {
1848          snprintf(jrelib_p, buflen-len, "/lib");
1849        }
1850
1851        // Add the appropriate client or server subdir
1852        len = strlen(buf);
1853        jrelib_p = buf + len;
1854        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1855        if (0 != access(buf, F_OK)) {
1856          snprintf(jrelib_p, buflen-len, "%s", "");
1857        }
1858
1859        // If the path exists within JAVA_HOME, add the JVM library name
1860        // to complete the path to JVM being overridden.  Otherwise fallback
1861        // to the path to the current library.
1862        if (0 == access(buf, F_OK)) {
1863          // Use current module name "libjvm"
1864          len = strlen(buf);
1865          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1866        } else {
1867          // Fall back to path of current library
1868          rp = realpath(dli_fname, buf);
1869          if (rp == NULL) {
1870            return;
1871          }
1872        }
1873      }
1874    }
1875  }
1876
1877  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1878}
1879
1880void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1881  // no prefix required, not even "_"
1882}
1883
1884void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1885  // no suffix required
1886}
1887
1888////////////////////////////////////////////////////////////////////////////////
1889// sun.misc.Signal support
1890
1891static volatile jint sigint_count = 0;
1892
1893static void UserHandler(int sig, void *siginfo, void *context) {
1894  // 4511530 - sem_post is serialized and handled by the manager thread. When
1895  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1896  // don't want to flood the manager thread with sem_post requests.
1897  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1898    return;
1899  }
1900
1901  // Ctrl-C is pressed during error reporting, likely because the error
1902  // handler fails to abort. Let VM die immediately.
1903  if (sig == SIGINT && is_error_reported()) {
1904    os::die();
1905  }
1906
1907  os::signal_notify(sig);
1908}
1909
1910void* os::user_handler() {
1911  return CAST_FROM_FN_PTR(void*, UserHandler);
1912}
1913
1914extern "C" {
1915  typedef void (*sa_handler_t)(int);
1916  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1917}
1918
1919void* os::signal(int signal_number, void* handler) {
1920  struct sigaction sigAct, oldSigAct;
1921
1922  sigfillset(&(sigAct.sa_mask));
1923  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1924  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1925
1926  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1927    // -1 means registration failed
1928    return (void *)-1;
1929  }
1930
1931  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1932}
1933
1934void os::signal_raise(int signal_number) {
1935  ::raise(signal_number);
1936}
1937
1938// The following code is moved from os.cpp for making this
1939// code platform specific, which it is by its very nature.
1940
1941// Will be modified when max signal is changed to be dynamic
1942int os::sigexitnum_pd() {
1943  return NSIG;
1944}
1945
1946// a counter for each possible signal value
1947static volatile jint pending_signals[NSIG+1] = { 0 };
1948
1949// Bsd(POSIX) specific hand shaking semaphore.
1950#ifdef __APPLE__
1951typedef semaphore_t os_semaphore_t;
1952
1953  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1954  #define SEM_WAIT(sem)           semaphore_wait(sem)
1955  #define SEM_POST(sem)           semaphore_signal(sem)
1956  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1957#else
1958typedef sem_t os_semaphore_t;
1959
1960  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1961  #define SEM_WAIT(sem)           sem_wait(&sem)
1962  #define SEM_POST(sem)           sem_post(&sem)
1963  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1964#endif
1965
1966class Semaphore : public StackObj {
1967 public:
1968  Semaphore();
1969  ~Semaphore();
1970  void signal();
1971  void wait();
1972  bool trywait();
1973  bool timedwait(unsigned int sec, int nsec);
1974 private:
1975  jlong currenttime() const;
1976  os_semaphore_t _semaphore;
1977};
1978
1979Semaphore::Semaphore() : _semaphore(0) {
1980  SEM_INIT(_semaphore, 0);
1981}
1982
1983Semaphore::~Semaphore() {
1984  SEM_DESTROY(_semaphore);
1985}
1986
1987void Semaphore::signal() {
1988  SEM_POST(_semaphore);
1989}
1990
1991void Semaphore::wait() {
1992  SEM_WAIT(_semaphore);
1993}
1994
1995jlong Semaphore::currenttime() const {
1996  struct timeval tv;
1997  gettimeofday(&tv, NULL);
1998  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1999}
2000
2001#ifdef __APPLE__
2002bool Semaphore::trywait() {
2003  return timedwait(0, 0);
2004}
2005
2006bool Semaphore::timedwait(unsigned int sec, int nsec) {
2007  kern_return_t kr = KERN_ABORTED;
2008  mach_timespec_t waitspec;
2009  waitspec.tv_sec = sec;
2010  waitspec.tv_nsec = nsec;
2011
2012  jlong starttime = currenttime();
2013
2014  kr = semaphore_timedwait(_semaphore, waitspec);
2015  while (kr == KERN_ABORTED) {
2016    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2017
2018    jlong current = currenttime();
2019    jlong passedtime = current - starttime;
2020
2021    if (passedtime >= totalwait) {
2022      waitspec.tv_sec = 0;
2023      waitspec.tv_nsec = 0;
2024    } else {
2025      jlong waittime = totalwait - (current - starttime);
2026      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2027      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2028    }
2029
2030    kr = semaphore_timedwait(_semaphore, waitspec);
2031  }
2032
2033  return kr == KERN_SUCCESS;
2034}
2035
2036#else
2037
2038bool Semaphore::trywait() {
2039  return sem_trywait(&_semaphore) == 0;
2040}
2041
2042bool Semaphore::timedwait(unsigned int sec, int nsec) {
2043  struct timespec ts;
2044  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2045
2046  while (1) {
2047    int result = sem_timedwait(&_semaphore, &ts);
2048    if (result == 0) {
2049      return true;
2050    } else if (errno == EINTR) {
2051      continue;
2052    } else if (errno == ETIMEDOUT) {
2053      return false;
2054    } else {
2055      return false;
2056    }
2057  }
2058}
2059
2060#endif // __APPLE__
2061
2062static os_semaphore_t sig_sem;
2063static Semaphore sr_semaphore;
2064
2065void os::signal_init_pd() {
2066  // Initialize signal structures
2067  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2068
2069  // Initialize signal semaphore
2070  ::SEM_INIT(sig_sem, 0);
2071}
2072
2073void os::signal_notify(int sig) {
2074  Atomic::inc(&pending_signals[sig]);
2075  ::SEM_POST(sig_sem);
2076}
2077
2078static int check_pending_signals(bool wait) {
2079  Atomic::store(0, &sigint_count);
2080  for (;;) {
2081    for (int i = 0; i < NSIG + 1; i++) {
2082      jint n = pending_signals[i];
2083      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2084        return i;
2085      }
2086    }
2087    if (!wait) {
2088      return -1;
2089    }
2090    JavaThread *thread = JavaThread::current();
2091    ThreadBlockInVM tbivm(thread);
2092
2093    bool threadIsSuspended;
2094    do {
2095      thread->set_suspend_equivalent();
2096      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2097      ::SEM_WAIT(sig_sem);
2098
2099      // were we externally suspended while we were waiting?
2100      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2101      if (threadIsSuspended) {
2102        // The semaphore has been incremented, but while we were waiting
2103        // another thread suspended us. We don't want to continue running
2104        // while suspended because that would surprise the thread that
2105        // suspended us.
2106        ::SEM_POST(sig_sem);
2107
2108        thread->java_suspend_self();
2109      }
2110    } while (threadIsSuspended);
2111  }
2112}
2113
2114int os::signal_lookup() {
2115  return check_pending_signals(false);
2116}
2117
2118int os::signal_wait() {
2119  return check_pending_signals(true);
2120}
2121
2122////////////////////////////////////////////////////////////////////////////////
2123// Virtual Memory
2124
2125int os::vm_page_size() {
2126  // Seems redundant as all get out
2127  assert(os::Bsd::page_size() != -1, "must call os::init");
2128  return os::Bsd::page_size();
2129}
2130
2131// Solaris allocates memory by pages.
2132int os::vm_allocation_granularity() {
2133  assert(os::Bsd::page_size() != -1, "must call os::init");
2134  return os::Bsd::page_size();
2135}
2136
2137// Rationale behind this function:
2138//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2139//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2140//  samples for JITted code. Here we create private executable mapping over the code cache
2141//  and then we can use standard (well, almost, as mapping can change) way to provide
2142//  info for the reporting script by storing timestamp and location of symbol
2143void bsd_wrap_code(char* base, size_t size) {
2144  static volatile jint cnt = 0;
2145
2146  if (!UseOprofile) {
2147    return;
2148  }
2149
2150  char buf[PATH_MAX + 1];
2151  int num = Atomic::add(1, &cnt);
2152
2153  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2154           os::get_temp_directory(), os::current_process_id(), num);
2155  unlink(buf);
2156
2157  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2158
2159  if (fd != -1) {
2160    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2161    if (rv != (off_t)-1) {
2162      if (::write(fd, "", 1) == 1) {
2163        mmap(base, size,
2164             PROT_READ|PROT_WRITE|PROT_EXEC,
2165             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2166      }
2167    }
2168    ::close(fd);
2169    unlink(buf);
2170  }
2171}
2172
2173static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2174                                    int err) {
2175  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2176          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2177          strerror(err), err);
2178}
2179
2180// NOTE: Bsd kernel does not really reserve the pages for us.
2181//       All it does is to check if there are enough free pages
2182//       left at the time of mmap(). This could be a potential
2183//       problem.
2184bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2185  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2186#ifdef __OpenBSD__
2187  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2188  if (::mprotect(addr, size, prot) == 0) {
2189    return true;
2190  }
2191#else
2192  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2193                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2194  if (res != (uintptr_t) MAP_FAILED) {
2195    return true;
2196  }
2197#endif
2198
2199  // Warn about any commit errors we see in non-product builds just
2200  // in case mmap() doesn't work as described on the man page.
2201  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2202
2203  return false;
2204}
2205
2206bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2207                          bool exec) {
2208  // alignment_hint is ignored on this OS
2209  return pd_commit_memory(addr, size, exec);
2210}
2211
2212void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2213                                  const char* mesg) {
2214  assert(mesg != NULL, "mesg must be specified");
2215  if (!pd_commit_memory(addr, size, exec)) {
2216    // add extra info in product mode for vm_exit_out_of_memory():
2217    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2218    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2219  }
2220}
2221
2222void os::pd_commit_memory_or_exit(char* addr, size_t size,
2223                                  size_t alignment_hint, bool exec,
2224                                  const char* mesg) {
2225  // alignment_hint is ignored on this OS
2226  pd_commit_memory_or_exit(addr, size, exec, mesg);
2227}
2228
2229void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2230}
2231
2232void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2233  ::madvise(addr, bytes, MADV_DONTNEED);
2234}
2235
2236void os::numa_make_global(char *addr, size_t bytes) {
2237}
2238
2239void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2240}
2241
2242bool os::numa_topology_changed()   { return false; }
2243
2244size_t os::numa_get_groups_num() {
2245  return 1;
2246}
2247
2248int os::numa_get_group_id() {
2249  return 0;
2250}
2251
2252size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2253  if (size > 0) {
2254    ids[0] = 0;
2255    return 1;
2256  }
2257  return 0;
2258}
2259
2260bool os::get_page_info(char *start, page_info* info) {
2261  return false;
2262}
2263
2264char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2265  return end;
2266}
2267
2268
2269bool os::pd_uncommit_memory(char* addr, size_t size) {
2270#ifdef __OpenBSD__
2271  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2272  return ::mprotect(addr, size, PROT_NONE) == 0;
2273#else
2274  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2275                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2276  return res  != (uintptr_t) MAP_FAILED;
2277#endif
2278}
2279
2280bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2281  return os::commit_memory(addr, size, !ExecMem);
2282}
2283
2284// If this is a growable mapping, remove the guard pages entirely by
2285// munmap()ping them.  If not, just call uncommit_memory().
2286bool os::remove_stack_guard_pages(char* addr, size_t size) {
2287  return os::uncommit_memory(addr, size);
2288}
2289
2290static address _highest_vm_reserved_address = NULL;
2291
2292// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2293// at 'requested_addr'. If there are existing memory mappings at the same
2294// location, however, they will be overwritten. If 'fixed' is false,
2295// 'requested_addr' is only treated as a hint, the return value may or
2296// may not start from the requested address. Unlike Bsd mmap(), this
2297// function returns NULL to indicate failure.
2298static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2299  char * addr;
2300  int flags;
2301
2302  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2303  if (fixed) {
2304    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2305    flags |= MAP_FIXED;
2306  }
2307
2308  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2309  // touch an uncommitted page. Otherwise, the read/write might
2310  // succeed if we have enough swap space to back the physical page.
2311  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2312                       flags, -1, 0);
2313
2314  if (addr != MAP_FAILED) {
2315    // anon_mmap() should only get called during VM initialization,
2316    // don't need lock (actually we can skip locking even it can be called
2317    // from multiple threads, because _highest_vm_reserved_address is just a
2318    // hint about the upper limit of non-stack memory regions.)
2319    if ((address)addr + bytes > _highest_vm_reserved_address) {
2320      _highest_vm_reserved_address = (address)addr + bytes;
2321    }
2322  }
2323
2324  return addr == MAP_FAILED ? NULL : addr;
2325}
2326
2327// Don't update _highest_vm_reserved_address, because there might be memory
2328// regions above addr + size. If so, releasing a memory region only creates
2329// a hole in the address space, it doesn't help prevent heap-stack collision.
2330//
2331static int anon_munmap(char * addr, size_t size) {
2332  return ::munmap(addr, size) == 0;
2333}
2334
2335char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2336                            size_t alignment_hint) {
2337  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2338}
2339
2340bool os::pd_release_memory(char* addr, size_t size) {
2341  return anon_munmap(addr, size);
2342}
2343
2344static bool bsd_mprotect(char* addr, size_t size, int prot) {
2345  // Bsd wants the mprotect address argument to be page aligned.
2346  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2347
2348  // According to SUSv3, mprotect() should only be used with mappings
2349  // established by mmap(), and mmap() always maps whole pages. Unaligned
2350  // 'addr' likely indicates problem in the VM (e.g. trying to change
2351  // protection of malloc'ed or statically allocated memory). Check the
2352  // caller if you hit this assert.
2353  assert(addr == bottom, "sanity check");
2354
2355  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2356  return ::mprotect(bottom, size, prot) == 0;
2357}
2358
2359// Set protections specified
2360bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2361                        bool is_committed) {
2362  unsigned int p = 0;
2363  switch (prot) {
2364  case MEM_PROT_NONE: p = PROT_NONE; break;
2365  case MEM_PROT_READ: p = PROT_READ; break;
2366  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2367  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2368  default:
2369    ShouldNotReachHere();
2370  }
2371  // is_committed is unused.
2372  return bsd_mprotect(addr, bytes, p);
2373}
2374
2375bool os::guard_memory(char* addr, size_t size) {
2376  return bsd_mprotect(addr, size, PROT_NONE);
2377}
2378
2379bool os::unguard_memory(char* addr, size_t size) {
2380  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2381}
2382
2383bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2384  return false;
2385}
2386
2387// Large page support
2388
2389static size_t _large_page_size = 0;
2390
2391void os::large_page_init() {
2392}
2393
2394
2395char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2396  fatal("This code is not used or maintained.");
2397
2398  // "exec" is passed in but not used.  Creating the shared image for
2399  // the code cache doesn't have an SHM_X executable permission to check.
2400  assert(UseLargePages && UseSHM, "only for SHM large pages");
2401
2402  key_t key = IPC_PRIVATE;
2403  char *addr;
2404
2405  bool warn_on_failure = UseLargePages &&
2406                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2407                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2408
2409  // Create a large shared memory region to attach to based on size.
2410  // Currently, size is the total size of the heap
2411  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2412  if (shmid == -1) {
2413    // Possible reasons for shmget failure:
2414    // 1. shmmax is too small for Java heap.
2415    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2416    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2417    // 2. not enough large page memory.
2418    //    > check available large pages: cat /proc/meminfo
2419    //    > increase amount of large pages:
2420    //          echo new_value > /proc/sys/vm/nr_hugepages
2421    //      Note 1: different Bsd may use different name for this property,
2422    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2423    //      Note 2: it's possible there's enough physical memory available but
2424    //            they are so fragmented after a long run that they can't
2425    //            coalesce into large pages. Try to reserve large pages when
2426    //            the system is still "fresh".
2427    if (warn_on_failure) {
2428      warning("Failed to reserve shared memory (errno = %d).", errno);
2429    }
2430    return NULL;
2431  }
2432
2433  // attach to the region
2434  addr = (char*)shmat(shmid, req_addr, 0);
2435  int err = errno;
2436
2437  // Remove shmid. If shmat() is successful, the actual shared memory segment
2438  // will be deleted when it's detached by shmdt() or when the process
2439  // terminates. If shmat() is not successful this will remove the shared
2440  // segment immediately.
2441  shmctl(shmid, IPC_RMID, NULL);
2442
2443  if ((intptr_t)addr == -1) {
2444    if (warn_on_failure) {
2445      warning("Failed to attach shared memory (errno = %d).", err);
2446    }
2447    return NULL;
2448  }
2449
2450  // The memory is committed
2451  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2452
2453  return addr;
2454}
2455
2456bool os::release_memory_special(char* base, size_t bytes) {
2457  if (MemTracker::tracking_level() > NMT_minimal) {
2458    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2459    // detaching the SHM segment will also delete it, see reserve_memory_special()
2460    int rslt = shmdt(base);
2461    if (rslt == 0) {
2462      tkr.record((address)base, bytes);
2463      return true;
2464    } else {
2465      return false;
2466    }
2467  } else {
2468    return shmdt(base) == 0;
2469  }
2470}
2471
2472size_t os::large_page_size() {
2473  return _large_page_size;
2474}
2475
2476// HugeTLBFS allows application to commit large page memory on demand;
2477// with SysV SHM the entire memory region must be allocated as shared
2478// memory.
2479bool os::can_commit_large_page_memory() {
2480  return UseHugeTLBFS;
2481}
2482
2483bool os::can_execute_large_page_memory() {
2484  return UseHugeTLBFS;
2485}
2486
2487// Reserve memory at an arbitrary address, only if that area is
2488// available (and not reserved for something else).
2489
2490char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2491  const int max_tries = 10;
2492  char* base[max_tries];
2493  size_t size[max_tries];
2494  const size_t gap = 0x000000;
2495
2496  // Assert only that the size is a multiple of the page size, since
2497  // that's all that mmap requires, and since that's all we really know
2498  // about at this low abstraction level.  If we need higher alignment,
2499  // we can either pass an alignment to this method or verify alignment
2500  // in one of the methods further up the call chain.  See bug 5044738.
2501  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2502
2503  // Repeatedly allocate blocks until the block is allocated at the
2504  // right spot. Give up after max_tries. Note that reserve_memory() will
2505  // automatically update _highest_vm_reserved_address if the call is
2506  // successful. The variable tracks the highest memory address every reserved
2507  // by JVM. It is used to detect heap-stack collision if running with
2508  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2509  // space than needed, it could confuse the collision detecting code. To
2510  // solve the problem, save current _highest_vm_reserved_address and
2511  // calculate the correct value before return.
2512  address old_highest = _highest_vm_reserved_address;
2513
2514  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2515  // if kernel honors the hint then we can return immediately.
2516  char * addr = anon_mmap(requested_addr, bytes, false);
2517  if (addr == requested_addr) {
2518    return requested_addr;
2519  }
2520
2521  if (addr != NULL) {
2522    // mmap() is successful but it fails to reserve at the requested address
2523    anon_munmap(addr, bytes);
2524  }
2525
2526  int i;
2527  for (i = 0; i < max_tries; ++i) {
2528    base[i] = reserve_memory(bytes);
2529
2530    if (base[i] != NULL) {
2531      // Is this the block we wanted?
2532      if (base[i] == requested_addr) {
2533        size[i] = bytes;
2534        break;
2535      }
2536
2537      // Does this overlap the block we wanted? Give back the overlapped
2538      // parts and try again.
2539
2540      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2541      if (top_overlap >= 0 && top_overlap < bytes) {
2542        unmap_memory(base[i], top_overlap);
2543        base[i] += top_overlap;
2544        size[i] = bytes - top_overlap;
2545      } else {
2546        size_t bottom_overlap = base[i] + bytes - requested_addr;
2547        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2548          unmap_memory(requested_addr, bottom_overlap);
2549          size[i] = bytes - bottom_overlap;
2550        } else {
2551          size[i] = bytes;
2552        }
2553      }
2554    }
2555  }
2556
2557  // Give back the unused reserved pieces.
2558
2559  for (int j = 0; j < i; ++j) {
2560    if (base[j] != NULL) {
2561      unmap_memory(base[j], size[j]);
2562    }
2563  }
2564
2565  if (i < max_tries) {
2566    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2567    return requested_addr;
2568  } else {
2569    _highest_vm_reserved_address = old_highest;
2570    return NULL;
2571  }
2572}
2573
2574size_t os::read(int fd, void *buf, unsigned int nBytes) {
2575  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2576}
2577
2578void os::naked_short_sleep(jlong ms) {
2579  struct timespec req;
2580
2581  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2582  req.tv_sec = 0;
2583  if (ms > 0) {
2584    req.tv_nsec = (ms % 1000) * 1000000;
2585  } else {
2586    req.tv_nsec = 1;
2587  }
2588
2589  nanosleep(&req, NULL);
2590
2591  return;
2592}
2593
2594// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2595void os::infinite_sleep() {
2596  while (true) {    // sleep forever ...
2597    ::sleep(100);   // ... 100 seconds at a time
2598  }
2599}
2600
2601// Used to convert frequent JVM_Yield() to nops
2602bool os::dont_yield() {
2603  return DontYieldALot;
2604}
2605
2606void os::naked_yield() {
2607  sched_yield();
2608}
2609
2610////////////////////////////////////////////////////////////////////////////////
2611// thread priority support
2612
2613// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2614// only supports dynamic priority, static priority must be zero. For real-time
2615// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2616// However, for large multi-threaded applications, SCHED_RR is not only slower
2617// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2618// of 5 runs - Sep 2005).
2619//
2620// The following code actually changes the niceness of kernel-thread/LWP. It
2621// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2622// not the entire user process, and user level threads are 1:1 mapped to kernel
2623// threads. It has always been the case, but could change in the future. For
2624// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2625// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2626
2627#if !defined(__APPLE__)
2628int os::java_to_os_priority[CriticalPriority + 1] = {
2629  19,              // 0 Entry should never be used
2630
2631   0,              // 1 MinPriority
2632   3,              // 2
2633   6,              // 3
2634
2635  10,              // 4
2636  15,              // 5 NormPriority
2637  18,              // 6
2638
2639  21,              // 7
2640  25,              // 8
2641  28,              // 9 NearMaxPriority
2642
2643  31,              // 10 MaxPriority
2644
2645  31               // 11 CriticalPriority
2646};
2647#else
2648// Using Mach high-level priority assignments
2649int os::java_to_os_priority[CriticalPriority + 1] = {
2650   0,              // 0 Entry should never be used (MINPRI_USER)
2651
2652  27,              // 1 MinPriority
2653  28,              // 2
2654  29,              // 3
2655
2656  30,              // 4
2657  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2658  32,              // 6
2659
2660  33,              // 7
2661  34,              // 8
2662  35,              // 9 NearMaxPriority
2663
2664  36,              // 10 MaxPriority
2665
2666  36               // 11 CriticalPriority
2667};
2668#endif
2669
2670static int prio_init() {
2671  if (ThreadPriorityPolicy == 1) {
2672    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2673    // if effective uid is not root. Perhaps, a more elegant way of doing
2674    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2675    if (geteuid() != 0) {
2676      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2677        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2678      }
2679      ThreadPriorityPolicy = 0;
2680    }
2681  }
2682  if (UseCriticalJavaThreadPriority) {
2683    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2684  }
2685  return 0;
2686}
2687
2688OSReturn os::set_native_priority(Thread* thread, int newpri) {
2689  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2690
2691#ifdef __OpenBSD__
2692  // OpenBSD pthread_setprio starves low priority threads
2693  return OS_OK;
2694#elif defined(__FreeBSD__)
2695  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2696#elif defined(__APPLE__) || defined(__NetBSD__)
2697  struct sched_param sp;
2698  int policy;
2699  pthread_t self = pthread_self();
2700
2701  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2702    return OS_ERR;
2703  }
2704
2705  sp.sched_priority = newpri;
2706  if (pthread_setschedparam(self, policy, &sp) != 0) {
2707    return OS_ERR;
2708  }
2709
2710  return OS_OK;
2711#else
2712  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2713  return (ret == 0) ? OS_OK : OS_ERR;
2714#endif
2715}
2716
2717OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2718  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2719    *priority_ptr = java_to_os_priority[NormPriority];
2720    return OS_OK;
2721  }
2722
2723  errno = 0;
2724#if defined(__OpenBSD__) || defined(__FreeBSD__)
2725  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2726#elif defined(__APPLE__) || defined(__NetBSD__)
2727  int policy;
2728  struct sched_param sp;
2729
2730  pthread_getschedparam(pthread_self(), &policy, &sp);
2731  *priority_ptr = sp.sched_priority;
2732#else
2733  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2734#endif
2735  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2736}
2737
2738// Hint to the underlying OS that a task switch would not be good.
2739// Void return because it's a hint and can fail.
2740void os::hint_no_preempt() {}
2741
2742////////////////////////////////////////////////////////////////////////////////
2743// suspend/resume support
2744
2745//  the low-level signal-based suspend/resume support is a remnant from the
2746//  old VM-suspension that used to be for java-suspension, safepoints etc,
2747//  within hotspot. Now there is a single use-case for this:
2748//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2749//      that runs in the watcher thread.
2750//  The remaining code is greatly simplified from the more general suspension
2751//  code that used to be used.
2752//
2753//  The protocol is quite simple:
2754//  - suspend:
2755//      - sends a signal to the target thread
2756//      - polls the suspend state of the osthread using a yield loop
2757//      - target thread signal handler (SR_handler) sets suspend state
2758//        and blocks in sigsuspend until continued
2759//  - resume:
2760//      - sets target osthread state to continue
2761//      - sends signal to end the sigsuspend loop in the SR_handler
2762//
2763//  Note that the SR_lock plays no role in this suspend/resume protocol.
2764
2765static void resume_clear_context(OSThread *osthread) {
2766  osthread->set_ucontext(NULL);
2767  osthread->set_siginfo(NULL);
2768}
2769
2770static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2771  osthread->set_ucontext(context);
2772  osthread->set_siginfo(siginfo);
2773}
2774
2775// Handler function invoked when a thread's execution is suspended or
2776// resumed. We have to be careful that only async-safe functions are
2777// called here (Note: most pthread functions are not async safe and
2778// should be avoided.)
2779//
2780// Note: sigwait() is a more natural fit than sigsuspend() from an
2781// interface point of view, but sigwait() prevents the signal hander
2782// from being run. libpthread would get very confused by not having
2783// its signal handlers run and prevents sigwait()'s use with the
2784// mutex granting granting signal.
2785//
2786// Currently only ever called on the VMThread or JavaThread
2787//
2788static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2789  // Save and restore errno to avoid confusing native code with EINTR
2790  // after sigsuspend.
2791  int old_errno = errno;
2792
2793  Thread* thread = Thread::current();
2794  OSThread* osthread = thread->osthread();
2795  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2796
2797  os::SuspendResume::State current = osthread->sr.state();
2798  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2799    suspend_save_context(osthread, siginfo, context);
2800
2801    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2802    os::SuspendResume::State state = osthread->sr.suspended();
2803    if (state == os::SuspendResume::SR_SUSPENDED) {
2804      sigset_t suspend_set;  // signals for sigsuspend()
2805
2806      // get current set of blocked signals and unblock resume signal
2807      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2808      sigdelset(&suspend_set, SR_signum);
2809
2810      sr_semaphore.signal();
2811      // wait here until we are resumed
2812      while (1) {
2813        sigsuspend(&suspend_set);
2814
2815        os::SuspendResume::State result = osthread->sr.running();
2816        if (result == os::SuspendResume::SR_RUNNING) {
2817          sr_semaphore.signal();
2818          break;
2819        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2820          ShouldNotReachHere();
2821        }
2822      }
2823
2824    } else if (state == os::SuspendResume::SR_RUNNING) {
2825      // request was cancelled, continue
2826    } else {
2827      ShouldNotReachHere();
2828    }
2829
2830    resume_clear_context(osthread);
2831  } else if (current == os::SuspendResume::SR_RUNNING) {
2832    // request was cancelled, continue
2833  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2834    // ignore
2835  } else {
2836    // ignore
2837  }
2838
2839  errno = old_errno;
2840}
2841
2842
2843static int SR_initialize() {
2844  struct sigaction act;
2845  char *s;
2846  // Get signal number to use for suspend/resume
2847  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2848    int sig = ::strtol(s, 0, 10);
2849    if (sig > 0 || sig < NSIG) {
2850      SR_signum = sig;
2851    }
2852  }
2853
2854  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2855         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2856
2857  sigemptyset(&SR_sigset);
2858  sigaddset(&SR_sigset, SR_signum);
2859
2860  // Set up signal handler for suspend/resume
2861  act.sa_flags = SA_RESTART|SA_SIGINFO;
2862  act.sa_handler = (void (*)(int)) SR_handler;
2863
2864  // SR_signum is blocked by default.
2865  // 4528190 - We also need to block pthread restart signal (32 on all
2866  // supported Bsd platforms). Note that BsdThreads need to block
2867  // this signal for all threads to work properly. So we don't have
2868  // to use hard-coded signal number when setting up the mask.
2869  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2870
2871  if (sigaction(SR_signum, &act, 0) == -1) {
2872    return -1;
2873  }
2874
2875  // Save signal flag
2876  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2877  return 0;
2878}
2879
2880static int sr_notify(OSThread* osthread) {
2881  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2882  assert_status(status == 0, status, "pthread_kill");
2883  return status;
2884}
2885
2886// "Randomly" selected value for how long we want to spin
2887// before bailing out on suspending a thread, also how often
2888// we send a signal to a thread we want to resume
2889static const int RANDOMLY_LARGE_INTEGER = 1000000;
2890static const int RANDOMLY_LARGE_INTEGER2 = 100;
2891
2892// returns true on success and false on error - really an error is fatal
2893// but this seems the normal response to library errors
2894static bool do_suspend(OSThread* osthread) {
2895  assert(osthread->sr.is_running(), "thread should be running");
2896  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2897
2898  // mark as suspended and send signal
2899  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2900    // failed to switch, state wasn't running?
2901    ShouldNotReachHere();
2902    return false;
2903  }
2904
2905  if (sr_notify(osthread) != 0) {
2906    ShouldNotReachHere();
2907  }
2908
2909  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2910  while (true) {
2911    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2912      break;
2913    } else {
2914      // timeout
2915      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2916      if (cancelled == os::SuspendResume::SR_RUNNING) {
2917        return false;
2918      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2919        // make sure that we consume the signal on the semaphore as well
2920        sr_semaphore.wait();
2921        break;
2922      } else {
2923        ShouldNotReachHere();
2924        return false;
2925      }
2926    }
2927  }
2928
2929  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2930  return true;
2931}
2932
2933static void do_resume(OSThread* osthread) {
2934  assert(osthread->sr.is_suspended(), "thread should be suspended");
2935  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2936
2937  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2938    // failed to switch to WAKEUP_REQUEST
2939    ShouldNotReachHere();
2940    return;
2941  }
2942
2943  while (true) {
2944    if (sr_notify(osthread) == 0) {
2945      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2946        if (osthread->sr.is_running()) {
2947          return;
2948        }
2949      }
2950    } else {
2951      ShouldNotReachHere();
2952    }
2953  }
2954
2955  guarantee(osthread->sr.is_running(), "Must be running!");
2956}
2957
2958///////////////////////////////////////////////////////////////////////////////////
2959// signal handling (except suspend/resume)
2960
2961// This routine may be used by user applications as a "hook" to catch signals.
2962// The user-defined signal handler must pass unrecognized signals to this
2963// routine, and if it returns true (non-zero), then the signal handler must
2964// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2965// routine will never retun false (zero), but instead will execute a VM panic
2966// routine kill the process.
2967//
2968// If this routine returns false, it is OK to call it again.  This allows
2969// the user-defined signal handler to perform checks either before or after
2970// the VM performs its own checks.  Naturally, the user code would be making
2971// a serious error if it tried to handle an exception (such as a null check
2972// or breakpoint) that the VM was generating for its own correct operation.
2973//
2974// This routine may recognize any of the following kinds of signals:
2975//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2976// It should be consulted by handlers for any of those signals.
2977//
2978// The caller of this routine must pass in the three arguments supplied
2979// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2980// field of the structure passed to sigaction().  This routine assumes that
2981// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2982//
2983// Note that the VM will print warnings if it detects conflicting signal
2984// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2985//
2986extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2987                                               void* ucontext,
2988                                               int abort_if_unrecognized);
2989
2990void signalHandler(int sig, siginfo_t* info, void* uc) {
2991  assert(info != NULL && uc != NULL, "it must be old kernel");
2992  int orig_errno = errno;  // Preserve errno value over signal handler.
2993  JVM_handle_bsd_signal(sig, info, uc, true);
2994  errno = orig_errno;
2995}
2996
2997
2998// This boolean allows users to forward their own non-matching signals
2999// to JVM_handle_bsd_signal, harmlessly.
3000bool os::Bsd::signal_handlers_are_installed = false;
3001
3002// For signal-chaining
3003struct sigaction os::Bsd::sigact[MAXSIGNUM];
3004unsigned int os::Bsd::sigs = 0;
3005bool os::Bsd::libjsig_is_loaded = false;
3006typedef struct sigaction *(*get_signal_t)(int);
3007get_signal_t os::Bsd::get_signal_action = NULL;
3008
3009struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3010  struct sigaction *actp = NULL;
3011
3012  if (libjsig_is_loaded) {
3013    // Retrieve the old signal handler from libjsig
3014    actp = (*get_signal_action)(sig);
3015  }
3016  if (actp == NULL) {
3017    // Retrieve the preinstalled signal handler from jvm
3018    actp = get_preinstalled_handler(sig);
3019  }
3020
3021  return actp;
3022}
3023
3024static bool call_chained_handler(struct sigaction *actp, int sig,
3025                                 siginfo_t *siginfo, void *context) {
3026  // Call the old signal handler
3027  if (actp->sa_handler == SIG_DFL) {
3028    // It's more reasonable to let jvm treat it as an unexpected exception
3029    // instead of taking the default action.
3030    return false;
3031  } else if (actp->sa_handler != SIG_IGN) {
3032    if ((actp->sa_flags & SA_NODEFER) == 0) {
3033      // automaticlly block the signal
3034      sigaddset(&(actp->sa_mask), sig);
3035    }
3036
3037    sa_handler_t hand;
3038    sa_sigaction_t sa;
3039    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3040    // retrieve the chained handler
3041    if (siginfo_flag_set) {
3042      sa = actp->sa_sigaction;
3043    } else {
3044      hand = actp->sa_handler;
3045    }
3046
3047    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3048      actp->sa_handler = SIG_DFL;
3049    }
3050
3051    // try to honor the signal mask
3052    sigset_t oset;
3053    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3054
3055    // call into the chained handler
3056    if (siginfo_flag_set) {
3057      (*sa)(sig, siginfo, context);
3058    } else {
3059      (*hand)(sig);
3060    }
3061
3062    // restore the signal mask
3063    pthread_sigmask(SIG_SETMASK, &oset, 0);
3064  }
3065  // Tell jvm's signal handler the signal is taken care of.
3066  return true;
3067}
3068
3069bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3070  bool chained = false;
3071  // signal-chaining
3072  if (UseSignalChaining) {
3073    struct sigaction *actp = get_chained_signal_action(sig);
3074    if (actp != NULL) {
3075      chained = call_chained_handler(actp, sig, siginfo, context);
3076    }
3077  }
3078  return chained;
3079}
3080
3081struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3082  if ((((unsigned int)1 << sig) & sigs) != 0) {
3083    return &sigact[sig];
3084  }
3085  return NULL;
3086}
3087
3088void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3089  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3090  sigact[sig] = oldAct;
3091  sigs |= (unsigned int)1 << sig;
3092}
3093
3094// for diagnostic
3095int os::Bsd::sigflags[MAXSIGNUM];
3096
3097int os::Bsd::get_our_sigflags(int sig) {
3098  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3099  return sigflags[sig];
3100}
3101
3102void os::Bsd::set_our_sigflags(int sig, int flags) {
3103  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3104  sigflags[sig] = flags;
3105}
3106
3107void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3108  // Check for overwrite.
3109  struct sigaction oldAct;
3110  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3111
3112  void* oldhand = oldAct.sa_sigaction
3113                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3114                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3115  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3116      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3117      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3118    if (AllowUserSignalHandlers || !set_installed) {
3119      // Do not overwrite; user takes responsibility to forward to us.
3120      return;
3121    } else if (UseSignalChaining) {
3122      // save the old handler in jvm
3123      save_preinstalled_handler(sig, oldAct);
3124      // libjsig also interposes the sigaction() call below and saves the
3125      // old sigaction on it own.
3126    } else {
3127      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3128                    "%#lx for signal %d.", (long)oldhand, sig));
3129    }
3130  }
3131
3132  struct sigaction sigAct;
3133  sigfillset(&(sigAct.sa_mask));
3134  sigAct.sa_handler = SIG_DFL;
3135  if (!set_installed) {
3136    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3137  } else {
3138    sigAct.sa_sigaction = signalHandler;
3139    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3140  }
3141#ifdef __APPLE__
3142  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3143  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3144  // if the signal handler declares it will handle it on alternate stack.
3145  // Notice we only declare we will handle it on alt stack, but we are not
3146  // actually going to use real alt stack - this is just a workaround.
3147  // Please see ux_exception.c, method catch_mach_exception_raise for details
3148  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3149  if (sig == SIGSEGV) {
3150    sigAct.sa_flags |= SA_ONSTACK;
3151  }
3152#endif
3153
3154  // Save flags, which are set by ours
3155  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3156  sigflags[sig] = sigAct.sa_flags;
3157
3158  int ret = sigaction(sig, &sigAct, &oldAct);
3159  assert(ret == 0, "check");
3160
3161  void* oldhand2  = oldAct.sa_sigaction
3162                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3163                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3164  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3165}
3166
3167// install signal handlers for signals that HotSpot needs to
3168// handle in order to support Java-level exception handling.
3169
3170void os::Bsd::install_signal_handlers() {
3171  if (!signal_handlers_are_installed) {
3172    signal_handlers_are_installed = true;
3173
3174    // signal-chaining
3175    typedef void (*signal_setting_t)();
3176    signal_setting_t begin_signal_setting = NULL;
3177    signal_setting_t end_signal_setting = NULL;
3178    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3179                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3180    if (begin_signal_setting != NULL) {
3181      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3182                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3183      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3184                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3185      libjsig_is_loaded = true;
3186      assert(UseSignalChaining, "should enable signal-chaining");
3187    }
3188    if (libjsig_is_loaded) {
3189      // Tell libjsig jvm is setting signal handlers
3190      (*begin_signal_setting)();
3191    }
3192
3193    set_signal_handler(SIGSEGV, true);
3194    set_signal_handler(SIGPIPE, true);
3195    set_signal_handler(SIGBUS, true);
3196    set_signal_handler(SIGILL, true);
3197    set_signal_handler(SIGFPE, true);
3198    set_signal_handler(SIGXFSZ, true);
3199
3200#if defined(__APPLE__)
3201    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3202    // signals caught and handled by the JVM. To work around this, we reset the mach task
3203    // signal handler that's placed on our process by CrashReporter. This disables
3204    // CrashReporter-based reporting.
3205    //
3206    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3207    // on caught fatal signals.
3208    //
3209    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3210    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3211    // exception handling, while leaving the standard BSD signal handlers functional.
3212    kern_return_t kr;
3213    kr = task_set_exception_ports(mach_task_self(),
3214                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3215                                  MACH_PORT_NULL,
3216                                  EXCEPTION_STATE_IDENTITY,
3217                                  MACHINE_THREAD_STATE);
3218
3219    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3220#endif
3221
3222    if (libjsig_is_loaded) {
3223      // Tell libjsig jvm finishes setting signal handlers
3224      (*end_signal_setting)();
3225    }
3226
3227    // We don't activate signal checker if libjsig is in place, we trust ourselves
3228    // and if UserSignalHandler is installed all bets are off
3229    if (CheckJNICalls) {
3230      if (libjsig_is_loaded) {
3231        if (PrintJNIResolving) {
3232          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3233        }
3234        check_signals = false;
3235      }
3236      if (AllowUserSignalHandlers) {
3237        if (PrintJNIResolving) {
3238          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3239        }
3240        check_signals = false;
3241      }
3242    }
3243  }
3244}
3245
3246
3247/////
3248// glibc on Bsd platform uses non-documented flag
3249// to indicate, that some special sort of signal
3250// trampoline is used.
3251// We will never set this flag, and we should
3252// ignore this flag in our diagnostic
3253#ifdef SIGNIFICANT_SIGNAL_MASK
3254  #undef SIGNIFICANT_SIGNAL_MASK
3255#endif
3256#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3257
3258static const char* get_signal_handler_name(address handler,
3259                                           char* buf, int buflen) {
3260  int offset;
3261  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3262  if (found) {
3263    // skip directory names
3264    const char *p1, *p2;
3265    p1 = buf;
3266    size_t len = strlen(os::file_separator());
3267    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3268    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3269  } else {
3270    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3271  }
3272  return buf;
3273}
3274
3275static void print_signal_handler(outputStream* st, int sig,
3276                                 char* buf, size_t buflen) {
3277  struct sigaction sa;
3278
3279  sigaction(sig, NULL, &sa);
3280
3281  // See comment for SIGNIFICANT_SIGNAL_MASK define
3282  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3283
3284  st->print("%s: ", os::exception_name(sig, buf, buflen));
3285
3286  address handler = (sa.sa_flags & SA_SIGINFO)
3287    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3288    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3289
3290  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3291    st->print("SIG_DFL");
3292  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3293    st->print("SIG_IGN");
3294  } else {
3295    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3296  }
3297
3298  st->print(", sa_mask[0]=");
3299  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3300
3301  address rh = VMError::get_resetted_sighandler(sig);
3302  // May be, handler was resetted by VMError?
3303  if (rh != NULL) {
3304    handler = rh;
3305    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3306  }
3307
3308  st->print(", sa_flags=");
3309  os::Posix::print_sa_flags(st, sa.sa_flags);
3310
3311  // Check: is it our handler?
3312  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3313      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3314    // It is our signal handler
3315    // check for flags, reset system-used one!
3316    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3317      st->print(
3318                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3319                os::Bsd::get_our_sigflags(sig));
3320    }
3321  }
3322  st->cr();
3323}
3324
3325
3326#define DO_SIGNAL_CHECK(sig)                      \
3327  do {                                            \
3328    if (!sigismember(&check_signal_done, sig)) {  \
3329      os::Bsd::check_signal_handler(sig);         \
3330    }                                             \
3331  } while (0)
3332
3333// This method is a periodic task to check for misbehaving JNI applications
3334// under CheckJNI, we can add any periodic checks here
3335
3336void os::run_periodic_checks() {
3337
3338  if (check_signals == false) return;
3339
3340  // SEGV and BUS if overridden could potentially prevent
3341  // generation of hs*.log in the event of a crash, debugging
3342  // such a case can be very challenging, so we absolutely
3343  // check the following for a good measure:
3344  DO_SIGNAL_CHECK(SIGSEGV);
3345  DO_SIGNAL_CHECK(SIGILL);
3346  DO_SIGNAL_CHECK(SIGFPE);
3347  DO_SIGNAL_CHECK(SIGBUS);
3348  DO_SIGNAL_CHECK(SIGPIPE);
3349  DO_SIGNAL_CHECK(SIGXFSZ);
3350
3351
3352  // ReduceSignalUsage allows the user to override these handlers
3353  // see comments at the very top and jvm_solaris.h
3354  if (!ReduceSignalUsage) {
3355    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3356    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3357    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3358    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3359  }
3360
3361  DO_SIGNAL_CHECK(SR_signum);
3362  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3363}
3364
3365typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3366
3367static os_sigaction_t os_sigaction = NULL;
3368
3369void os::Bsd::check_signal_handler(int sig) {
3370  char buf[O_BUFLEN];
3371  address jvmHandler = NULL;
3372
3373
3374  struct sigaction act;
3375  if (os_sigaction == NULL) {
3376    // only trust the default sigaction, in case it has been interposed
3377    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3378    if (os_sigaction == NULL) return;
3379  }
3380
3381  os_sigaction(sig, (struct sigaction*)NULL, &act);
3382
3383
3384  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3385
3386  address thisHandler = (act.sa_flags & SA_SIGINFO)
3387    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3388    : CAST_FROM_FN_PTR(address, act.sa_handler);
3389
3390
3391  switch (sig) {
3392  case SIGSEGV:
3393  case SIGBUS:
3394  case SIGFPE:
3395  case SIGPIPE:
3396  case SIGILL:
3397  case SIGXFSZ:
3398    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3399    break;
3400
3401  case SHUTDOWN1_SIGNAL:
3402  case SHUTDOWN2_SIGNAL:
3403  case SHUTDOWN3_SIGNAL:
3404  case BREAK_SIGNAL:
3405    jvmHandler = (address)user_handler();
3406    break;
3407
3408  case INTERRUPT_SIGNAL:
3409    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3410    break;
3411
3412  default:
3413    if (sig == SR_signum) {
3414      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3415    } else {
3416      return;
3417    }
3418    break;
3419  }
3420
3421  if (thisHandler != jvmHandler) {
3422    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3423    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3424    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3425    // No need to check this sig any longer
3426    sigaddset(&check_signal_done, sig);
3427    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3428    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3429      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3430                    exception_name(sig, buf, O_BUFLEN));
3431    }
3432  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3433    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3434    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3435    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3436    // No need to check this sig any longer
3437    sigaddset(&check_signal_done, sig);
3438  }
3439
3440  // Dump all the signal
3441  if (sigismember(&check_signal_done, sig)) {
3442    print_signal_handlers(tty, buf, O_BUFLEN);
3443  }
3444}
3445
3446extern void report_error(char* file_name, int line_no, char* title,
3447                         char* format, ...);
3448
3449extern bool signal_name(int signo, char* buf, size_t len);
3450
3451const char* os::exception_name(int exception_code, char* buf, size_t size) {
3452  if (0 < exception_code && exception_code <= SIGRTMAX) {
3453    // signal
3454    if (!signal_name(exception_code, buf, size)) {
3455      jio_snprintf(buf, size, "SIG%d", exception_code);
3456    }
3457    return buf;
3458  } else {
3459    return NULL;
3460  }
3461}
3462
3463// this is called _before_ the most of global arguments have been parsed
3464void os::init(void) {
3465  char dummy;   // used to get a guess on initial stack address
3466//  first_hrtime = gethrtime();
3467
3468  // With BsdThreads the JavaMain thread pid (primordial thread)
3469  // is different than the pid of the java launcher thread.
3470  // So, on Bsd, the launcher thread pid is passed to the VM
3471  // via the sun.java.launcher.pid property.
3472  // Use this property instead of getpid() if it was correctly passed.
3473  // See bug 6351349.
3474  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3475
3476  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3477
3478  clock_tics_per_sec = CLK_TCK;
3479
3480  init_random(1234567);
3481
3482  ThreadCritical::initialize();
3483
3484  Bsd::set_page_size(getpagesize());
3485  if (Bsd::page_size() == -1) {
3486    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3487                  strerror(errno)));
3488  }
3489  init_page_sizes((size_t) Bsd::page_size());
3490
3491  Bsd::initialize_system_info();
3492
3493  // main_thread points to the aboriginal thread
3494  Bsd::_main_thread = pthread_self();
3495
3496  Bsd::clock_init();
3497  initial_time_count = javaTimeNanos();
3498
3499#ifdef __APPLE__
3500  // XXXDARWIN
3501  // Work around the unaligned VM callbacks in hotspot's
3502  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3503  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3504  // alignment when doing symbol lookup. To work around this, we force early
3505  // binding of all symbols now, thus binding when alignment is known-good.
3506  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3507#endif
3508}
3509
3510// To install functions for atexit system call
3511extern "C" {
3512  static void perfMemory_exit_helper() {
3513    perfMemory_exit();
3514  }
3515}
3516
3517// this is called _after_ the global arguments have been parsed
3518jint os::init_2(void) {
3519  // Allocate a single page and mark it as readable for safepoint polling
3520  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3521  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3522
3523  os::set_polling_page(polling_page);
3524
3525#ifndef PRODUCT
3526  if (Verbose && PrintMiscellaneous) {
3527    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3528               (intptr_t)polling_page);
3529  }
3530#endif
3531
3532  if (!UseMembar) {
3533    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3534    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3535    os::set_memory_serialize_page(mem_serialize_page);
3536
3537#ifndef PRODUCT
3538    if (Verbose && PrintMiscellaneous) {
3539      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3540                 (intptr_t)mem_serialize_page);
3541    }
3542#endif
3543  }
3544
3545  // initialize suspend/resume support - must do this before signal_sets_init()
3546  if (SR_initialize() != 0) {
3547    perror("SR_initialize failed");
3548    return JNI_ERR;
3549  }
3550
3551  Bsd::signal_sets_init();
3552  Bsd::install_signal_handlers();
3553
3554  // Check minimum allowable stack size for thread creation and to initialize
3555  // the java system classes, including StackOverflowError - depends on page
3556  // size.  Add a page for compiler2 recursion in main thread.
3557  // Add in 2*BytesPerWord times page size to account for VM stack during
3558  // class initialization depending on 32 or 64 bit VM.
3559  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3560                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3561                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3562
3563  size_t threadStackSizeInBytes = ThreadStackSize * K;
3564  if (threadStackSizeInBytes != 0 &&
3565      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3566    tty->print_cr("\nThe stack size specified is too small, "
3567                  "Specify at least %dk",
3568                  os::Bsd::min_stack_allowed/ K);
3569    return JNI_ERR;
3570  }
3571
3572  // Make the stack size a multiple of the page size so that
3573  // the yellow/red zones can be guarded.
3574  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3575                                                vm_page_size()));
3576
3577  if (MaxFDLimit) {
3578    // set the number of file descriptors to max. print out error
3579    // if getrlimit/setrlimit fails but continue regardless.
3580    struct rlimit nbr_files;
3581    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3582    if (status != 0) {
3583      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3584        perror("os::init_2 getrlimit failed");
3585      }
3586    } else {
3587      nbr_files.rlim_cur = nbr_files.rlim_max;
3588
3589#ifdef __APPLE__
3590      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3591      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3592      // be used instead
3593      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3594#endif
3595
3596      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3597      if (status != 0) {
3598        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3599          perror("os::init_2 setrlimit failed");
3600        }
3601      }
3602    }
3603  }
3604
3605  // at-exit methods are called in the reverse order of their registration.
3606  // atexit functions are called on return from main or as a result of a
3607  // call to exit(3C). There can be only 32 of these functions registered
3608  // and atexit() does not set errno.
3609
3610  if (PerfAllowAtExitRegistration) {
3611    // only register atexit functions if PerfAllowAtExitRegistration is set.
3612    // atexit functions can be delayed until process exit time, which
3613    // can be problematic for embedded VM situations. Embedded VMs should
3614    // call DestroyJavaVM() to assure that VM resources are released.
3615
3616    // note: perfMemory_exit_helper atexit function may be removed in
3617    // the future if the appropriate cleanup code can be added to the
3618    // VM_Exit VMOperation's doit method.
3619    if (atexit(perfMemory_exit_helper) != 0) {
3620      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3621    }
3622  }
3623
3624  // initialize thread priority policy
3625  prio_init();
3626
3627#ifdef __APPLE__
3628  // dynamically link to objective c gc registration
3629  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3630  if (handleLibObjc != NULL) {
3631    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3632  }
3633#endif
3634
3635  return JNI_OK;
3636}
3637
3638// this is called at the end of vm_initialization
3639void os::init_3(void) { }
3640
3641// Mark the polling page as unreadable
3642void os::make_polling_page_unreadable(void) {
3643  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3644    fatal("Could not disable polling page");
3645  }
3646}
3647
3648// Mark the polling page as readable
3649void os::make_polling_page_readable(void) {
3650  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3651    fatal("Could not enable polling page");
3652  }
3653}
3654
3655int os::active_processor_count() {
3656  return _processor_count;
3657}
3658
3659void os::set_native_thread_name(const char *name) {
3660#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3661  // This is only supported in Snow Leopard and beyond
3662  if (name != NULL) {
3663    // Add a "Java: " prefix to the name
3664    char buf[MAXTHREADNAMESIZE];
3665    snprintf(buf, sizeof(buf), "Java: %s", name);
3666    pthread_setname_np(buf);
3667  }
3668#endif
3669}
3670
3671bool os::distribute_processes(uint length, uint* distribution) {
3672  // Not yet implemented.
3673  return false;
3674}
3675
3676bool os::bind_to_processor(uint processor_id) {
3677  // Not yet implemented.
3678  return false;
3679}
3680
3681void os::SuspendedThreadTask::internal_do_task() {
3682  if (do_suspend(_thread->osthread())) {
3683    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3684    do_task(context);
3685    do_resume(_thread->osthread());
3686  }
3687}
3688
3689///
3690class PcFetcher : public os::SuspendedThreadTask {
3691 public:
3692  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3693  ExtendedPC result();
3694 protected:
3695  void do_task(const os::SuspendedThreadTaskContext& context);
3696 private:
3697  ExtendedPC _epc;
3698};
3699
3700ExtendedPC PcFetcher::result() {
3701  guarantee(is_done(), "task is not done yet.");
3702  return _epc;
3703}
3704
3705void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3706  Thread* thread = context.thread();
3707  OSThread* osthread = thread->osthread();
3708  if (osthread->ucontext() != NULL) {
3709    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3710  } else {
3711    // NULL context is unexpected, double-check this is the VMThread
3712    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3713  }
3714}
3715
3716// Suspends the target using the signal mechanism and then grabs the PC before
3717// resuming the target. Used by the flat-profiler only
3718ExtendedPC os::get_thread_pc(Thread* thread) {
3719  // Make sure that it is called by the watcher for the VMThread
3720  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3721  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3722
3723  PcFetcher fetcher(thread);
3724  fetcher.run();
3725  return fetcher.result();
3726}
3727
3728int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3729                                 pthread_mutex_t *_mutex,
3730                                 const struct timespec *_abstime) {
3731  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3732}
3733
3734////////////////////////////////////////////////////////////////////////////////
3735// debug support
3736
3737bool os::find(address addr, outputStream* st) {
3738  Dl_info dlinfo;
3739  memset(&dlinfo, 0, sizeof(dlinfo));
3740  if (dladdr(addr, &dlinfo) != 0) {
3741    st->print(PTR_FORMAT ": ", addr);
3742    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3743      st->print("%s+%#x", dlinfo.dli_sname,
3744                addr - (intptr_t)dlinfo.dli_saddr);
3745    } else if (dlinfo.dli_fbase != NULL) {
3746      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3747    } else {
3748      st->print("<absolute address>");
3749    }
3750    if (dlinfo.dli_fname != NULL) {
3751      st->print(" in %s", dlinfo.dli_fname);
3752    }
3753    if (dlinfo.dli_fbase != NULL) {
3754      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3755    }
3756    st->cr();
3757
3758    if (Verbose) {
3759      // decode some bytes around the PC
3760      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3761      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3762      address       lowest = (address) dlinfo.dli_sname;
3763      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3764      if (begin < lowest)  begin = lowest;
3765      Dl_info dlinfo2;
3766      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3767          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3768        end = (address) dlinfo2.dli_saddr;
3769      }
3770      Disassembler::decode(begin, end, st);
3771    }
3772    return true;
3773  }
3774  return false;
3775}
3776
3777////////////////////////////////////////////////////////////////////////////////
3778// misc
3779
3780// This does not do anything on Bsd. This is basically a hook for being
3781// able to use structured exception handling (thread-local exception filters)
3782// on, e.g., Win32.
3783void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3784                              methodHandle* method, JavaCallArguments* args,
3785                              Thread* thread) {
3786  f(value, method, args, thread);
3787}
3788
3789void os::print_statistics() {
3790}
3791
3792int os::message_box(const char* title, const char* message) {
3793  int i;
3794  fdStream err(defaultStream::error_fd());
3795  for (i = 0; i < 78; i++) err.print_raw("=");
3796  err.cr();
3797  err.print_raw_cr(title);
3798  for (i = 0; i < 78; i++) err.print_raw("-");
3799  err.cr();
3800  err.print_raw_cr(message);
3801  for (i = 0; i < 78; i++) err.print_raw("=");
3802  err.cr();
3803
3804  char buf[16];
3805  // Prevent process from exiting upon "read error" without consuming all CPU
3806  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3807
3808  return buf[0] == 'y' || buf[0] == 'Y';
3809}
3810
3811int os::stat(const char *path, struct stat *sbuf) {
3812  char pathbuf[MAX_PATH];
3813  if (strlen(path) > MAX_PATH - 1) {
3814    errno = ENAMETOOLONG;
3815    return -1;
3816  }
3817  os::native_path(strcpy(pathbuf, path));
3818  return ::stat(pathbuf, sbuf);
3819}
3820
3821bool os::check_heap(bool force) {
3822  return true;
3823}
3824
3825ATTRIBUTE_PRINTF(3, 0)
3826int local_vsnprintf(char* buf, size_t count, const char* format,
3827                    va_list args) {
3828  return ::vsnprintf(buf, count, format, args);
3829}
3830
3831// Is a (classpath) directory empty?
3832bool os::dir_is_empty(const char* path) {
3833  DIR *dir = NULL;
3834  struct dirent *ptr;
3835
3836  dir = opendir(path);
3837  if (dir == NULL) return true;
3838
3839  // Scan the directory
3840  bool result = true;
3841  char buf[sizeof(struct dirent) + MAX_PATH];
3842  while (result && (ptr = ::readdir(dir)) != NULL) {
3843    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3844      result = false;
3845    }
3846  }
3847  closedir(dir);
3848  return result;
3849}
3850
3851// This code originates from JDK's sysOpen and open64_w
3852// from src/solaris/hpi/src/system_md.c
3853
3854#ifndef O_DELETE
3855  #define O_DELETE 0x10000
3856#endif
3857
3858// Open a file. Unlink the file immediately after open returns
3859// if the specified oflag has the O_DELETE flag set.
3860// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3861
3862int os::open(const char *path, int oflag, int mode) {
3863  if (strlen(path) > MAX_PATH - 1) {
3864    errno = ENAMETOOLONG;
3865    return -1;
3866  }
3867  int fd;
3868  int o_delete = (oflag & O_DELETE);
3869  oflag = oflag & ~O_DELETE;
3870
3871  fd = ::open(path, oflag, mode);
3872  if (fd == -1) return -1;
3873
3874  // If the open succeeded, the file might still be a directory
3875  {
3876    struct stat buf;
3877    int ret = ::fstat(fd, &buf);
3878    int st_mode = buf.st_mode;
3879
3880    if (ret != -1) {
3881      if ((st_mode & S_IFMT) == S_IFDIR) {
3882        errno = EISDIR;
3883        ::close(fd);
3884        return -1;
3885      }
3886    } else {
3887      ::close(fd);
3888      return -1;
3889    }
3890  }
3891
3892  // All file descriptors that are opened in the JVM and not
3893  // specifically destined for a subprocess should have the
3894  // close-on-exec flag set.  If we don't set it, then careless 3rd
3895  // party native code might fork and exec without closing all
3896  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3897  // UNIXProcess.c), and this in turn might:
3898  //
3899  // - cause end-of-file to fail to be detected on some file
3900  //   descriptors, resulting in mysterious hangs, or
3901  //
3902  // - might cause an fopen in the subprocess to fail on a system
3903  //   suffering from bug 1085341.
3904  //
3905  // (Yes, the default setting of the close-on-exec flag is a Unix
3906  // design flaw)
3907  //
3908  // See:
3909  // 1085341: 32-bit stdio routines should support file descriptors >255
3910  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3911  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3912  //
3913#ifdef FD_CLOEXEC
3914  {
3915    int flags = ::fcntl(fd, F_GETFD);
3916    if (flags != -1) {
3917      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3918    }
3919  }
3920#endif
3921
3922  if (o_delete != 0) {
3923    ::unlink(path);
3924  }
3925  return fd;
3926}
3927
3928
3929// create binary file, rewriting existing file if required
3930int os::create_binary_file(const char* path, bool rewrite_existing) {
3931  int oflags = O_WRONLY | O_CREAT;
3932  if (!rewrite_existing) {
3933    oflags |= O_EXCL;
3934  }
3935  return ::open(path, oflags, S_IREAD | S_IWRITE);
3936}
3937
3938// return current position of file pointer
3939jlong os::current_file_offset(int fd) {
3940  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3941}
3942
3943// move file pointer to the specified offset
3944jlong os::seek_to_file_offset(int fd, jlong offset) {
3945  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3946}
3947
3948// This code originates from JDK's sysAvailable
3949// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3950
3951int os::available(int fd, jlong *bytes) {
3952  jlong cur, end;
3953  int mode;
3954  struct stat buf;
3955
3956  if (::fstat(fd, &buf) >= 0) {
3957    mode = buf.st_mode;
3958    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3959      // XXX: is the following call interruptible? If so, this might
3960      // need to go through the INTERRUPT_IO() wrapper as for other
3961      // blocking, interruptible calls in this file.
3962      int n;
3963      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3964        *bytes = n;
3965        return 1;
3966      }
3967    }
3968  }
3969  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3970    return 0;
3971  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3972    return 0;
3973  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3974    return 0;
3975  }
3976  *bytes = end - cur;
3977  return 1;
3978}
3979
3980int os::socket_available(int fd, jint *pbytes) {
3981  if (fd < 0) {
3982    return OS_OK;
3983  }
3984
3985  int ret;
3986
3987  RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3988
3989  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3990  // is expected to return 0 on failure and 1 on success to the jdk.
3991
3992  return (ret == OS_ERR) ? 0 : 1;
3993}
3994
3995// Map a block of memory.
3996char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3997                        char *addr, size_t bytes, bool read_only,
3998                        bool allow_exec) {
3999  int prot;
4000  int flags;
4001
4002  if (read_only) {
4003    prot = PROT_READ;
4004    flags = MAP_SHARED;
4005  } else {
4006    prot = PROT_READ | PROT_WRITE;
4007    flags = MAP_PRIVATE;
4008  }
4009
4010  if (allow_exec) {
4011    prot |= PROT_EXEC;
4012  }
4013
4014  if (addr != NULL) {
4015    flags |= MAP_FIXED;
4016  }
4017
4018  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4019                                     fd, file_offset);
4020  if (mapped_address == MAP_FAILED) {
4021    return NULL;
4022  }
4023  return mapped_address;
4024}
4025
4026
4027// Remap a block of memory.
4028char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4029                          char *addr, size_t bytes, bool read_only,
4030                          bool allow_exec) {
4031  // same as map_memory() on this OS
4032  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4033                        allow_exec);
4034}
4035
4036
4037// Unmap a block of memory.
4038bool os::pd_unmap_memory(char* addr, size_t bytes) {
4039  return munmap(addr, bytes) == 0;
4040}
4041
4042// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4043// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4044// of a thread.
4045//
4046// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4047// the fast estimate available on the platform.
4048
4049jlong os::current_thread_cpu_time() {
4050#ifdef __APPLE__
4051  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4052#else
4053  Unimplemented();
4054  return 0;
4055#endif
4056}
4057
4058jlong os::thread_cpu_time(Thread* thread) {
4059#ifdef __APPLE__
4060  return os::thread_cpu_time(thread, true /* user + sys */);
4061#else
4062  Unimplemented();
4063  return 0;
4064#endif
4065}
4066
4067jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4068#ifdef __APPLE__
4069  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4070#else
4071  Unimplemented();
4072  return 0;
4073#endif
4074}
4075
4076jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4077#ifdef __APPLE__
4078  struct thread_basic_info tinfo;
4079  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4080  kern_return_t kr;
4081  thread_t mach_thread;
4082
4083  mach_thread = thread->osthread()->thread_id();
4084  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4085  if (kr != KERN_SUCCESS) {
4086    return -1;
4087  }
4088
4089  if (user_sys_cpu_time) {
4090    jlong nanos;
4091    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4092    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4093    return nanos;
4094  } else {
4095    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4096  }
4097#else
4098  Unimplemented();
4099  return 0;
4100#endif
4101}
4102
4103
4104void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4105  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4106  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4107  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4108  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4109}
4110
4111void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4112  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4113  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4114  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4115  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4116}
4117
4118bool os::is_thread_cpu_time_supported() {
4119#ifdef __APPLE__
4120  return true;
4121#else
4122  return false;
4123#endif
4124}
4125
4126// System loadavg support.  Returns -1 if load average cannot be obtained.
4127// Bsd doesn't yet have a (official) notion of processor sets,
4128// so just return the system wide load average.
4129int os::loadavg(double loadavg[], int nelem) {
4130  return ::getloadavg(loadavg, nelem);
4131}
4132
4133void os::pause() {
4134  char filename[MAX_PATH];
4135  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4136    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4137  } else {
4138    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4139  }
4140
4141  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4142  if (fd != -1) {
4143    struct stat buf;
4144    ::close(fd);
4145    while (::stat(filename, &buf) == 0) {
4146      (void)::poll(NULL, 0, 100);
4147    }
4148  } else {
4149    jio_fprintf(stderr,
4150                "Could not open pause file '%s', continuing immediately.\n", filename);
4151  }
4152}
4153
4154
4155// Refer to the comments in os_solaris.cpp park-unpark.
4156//
4157// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4158// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4159// For specifics regarding the bug see GLIBC BUGID 261237 :
4160//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4161// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4162// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4163// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4164// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4165// and monitorenter when we're using 1-0 locking.  All those operations may result in
4166// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4167// of libpthread avoids the problem, but isn't practical.
4168//
4169// Possible remedies:
4170//
4171// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4172//      This is palliative and probabilistic, however.  If the thread is preempted
4173//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4174//      than the minimum period may have passed, and the abstime may be stale (in the
4175//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4176//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4177//
4178// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4179//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4180//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4181//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4182//      thread.
4183//
4184// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4185//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4186//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4187//      This also works well.  In fact it avoids kernel-level scalability impediments
4188//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4189//      timers in a graceful fashion.
4190//
4191// 4.   When the abstime value is in the past it appears that control returns
4192//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4193//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4194//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4195//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4196//      It may be possible to avoid reinitialization by checking the return
4197//      value from pthread_cond_timedwait().  In addition to reinitializing the
4198//      condvar we must establish the invariant that cond_signal() is only called
4199//      within critical sections protected by the adjunct mutex.  This prevents
4200//      cond_signal() from "seeing" a condvar that's in the midst of being
4201//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4202//      desirable signal-after-unlock optimization that avoids futile context switching.
4203//
4204//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4205//      structure when a condvar is used or initialized.  cond_destroy()  would
4206//      release the helper structure.  Our reinitialize-after-timedwait fix
4207//      put excessive stress on malloc/free and locks protecting the c-heap.
4208//
4209// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4210// It may be possible to refine (4) by checking the kernel and NTPL verisons
4211// and only enabling the work-around for vulnerable environments.
4212
4213// utility to compute the abstime argument to timedwait:
4214// millis is the relative timeout time
4215// abstime will be the absolute timeout time
4216// TODO: replace compute_abstime() with unpackTime()
4217
4218static struct timespec* compute_abstime(struct timespec* abstime,
4219                                        jlong millis) {
4220  if (millis < 0)  millis = 0;
4221  struct timeval now;
4222  int status = gettimeofday(&now, NULL);
4223  assert(status == 0, "gettimeofday");
4224  jlong seconds = millis / 1000;
4225  millis %= 1000;
4226  if (seconds > 50000000) { // see man cond_timedwait(3T)
4227    seconds = 50000000;
4228  }
4229  abstime->tv_sec = now.tv_sec  + seconds;
4230  long       usec = now.tv_usec + millis * 1000;
4231  if (usec >= 1000000) {
4232    abstime->tv_sec += 1;
4233    usec -= 1000000;
4234  }
4235  abstime->tv_nsec = usec * 1000;
4236  return abstime;
4237}
4238
4239void os::PlatformEvent::park() {       // AKA "down()"
4240  // Invariant: Only the thread associated with the Event/PlatformEvent
4241  // may call park().
4242  // TODO: assert that _Assoc != NULL or _Assoc == Self
4243  assert(_nParked == 0, "invariant");
4244
4245  int v;
4246  for (;;) {
4247    v = _Event;
4248    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4249  }
4250  guarantee(v >= 0, "invariant");
4251  if (v == 0) {
4252    // Do this the hard way by blocking ...
4253    int status = pthread_mutex_lock(_mutex);
4254    assert_status(status == 0, status, "mutex_lock");
4255    guarantee(_nParked == 0, "invariant");
4256    ++_nParked;
4257    while (_Event < 0) {
4258      status = pthread_cond_wait(_cond, _mutex);
4259      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4260      // Treat this the same as if the wait was interrupted
4261      if (status == ETIMEDOUT) { status = EINTR; }
4262      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4263    }
4264    --_nParked;
4265
4266    _Event = 0;
4267    status = pthread_mutex_unlock(_mutex);
4268    assert_status(status == 0, status, "mutex_unlock");
4269    // Paranoia to ensure our locked and lock-free paths interact
4270    // correctly with each other.
4271    OrderAccess::fence();
4272  }
4273  guarantee(_Event >= 0, "invariant");
4274}
4275
4276int os::PlatformEvent::park(jlong millis) {
4277  guarantee(_nParked == 0, "invariant");
4278
4279  int v;
4280  for (;;) {
4281    v = _Event;
4282    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4283  }
4284  guarantee(v >= 0, "invariant");
4285  if (v != 0) return OS_OK;
4286
4287  // We do this the hard way, by blocking the thread.
4288  // Consider enforcing a minimum timeout value.
4289  struct timespec abst;
4290  compute_abstime(&abst, millis);
4291
4292  int ret = OS_TIMEOUT;
4293  int status = pthread_mutex_lock(_mutex);
4294  assert_status(status == 0, status, "mutex_lock");
4295  guarantee(_nParked == 0, "invariant");
4296  ++_nParked;
4297
4298  // Object.wait(timo) will return because of
4299  // (a) notification
4300  // (b) timeout
4301  // (c) thread.interrupt
4302  //
4303  // Thread.interrupt and object.notify{All} both call Event::set.
4304  // That is, we treat thread.interrupt as a special case of notification.
4305  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4306  // We assume all ETIME returns are valid.
4307  //
4308  // TODO: properly differentiate simultaneous notify+interrupt.
4309  // In that case, we should propagate the notify to another waiter.
4310
4311  while (_Event < 0) {
4312    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4313    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4314      pthread_cond_destroy(_cond);
4315      pthread_cond_init(_cond, NULL);
4316    }
4317    assert_status(status == 0 || status == EINTR ||
4318                  status == ETIMEDOUT,
4319                  status, "cond_timedwait");
4320    if (!FilterSpuriousWakeups) break;                 // previous semantics
4321    if (status == ETIMEDOUT) break;
4322    // We consume and ignore EINTR and spurious wakeups.
4323  }
4324  --_nParked;
4325  if (_Event >= 0) {
4326    ret = OS_OK;
4327  }
4328  _Event = 0;
4329  status = pthread_mutex_unlock(_mutex);
4330  assert_status(status == 0, status, "mutex_unlock");
4331  assert(_nParked == 0, "invariant");
4332  // Paranoia to ensure our locked and lock-free paths interact
4333  // correctly with each other.
4334  OrderAccess::fence();
4335  return ret;
4336}
4337
4338void os::PlatformEvent::unpark() {
4339  // Transitions for _Event:
4340  //    0 :=> 1
4341  //    1 :=> 1
4342  //   -1 :=> either 0 or 1; must signal target thread
4343  //          That is, we can safely transition _Event from -1 to either
4344  //          0 or 1.
4345  // See also: "Semaphores in Plan 9" by Mullender & Cox
4346  //
4347  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4348  // that it will take two back-to-back park() calls for the owning
4349  // thread to block. This has the benefit of forcing a spurious return
4350  // from the first park() call after an unpark() call which will help
4351  // shake out uses of park() and unpark() without condition variables.
4352
4353  if (Atomic::xchg(1, &_Event) >= 0) return;
4354
4355  // Wait for the thread associated with the event to vacate
4356  int status = pthread_mutex_lock(_mutex);
4357  assert_status(status == 0, status, "mutex_lock");
4358  int AnyWaiters = _nParked;
4359  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4360  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4361    AnyWaiters = 0;
4362    pthread_cond_signal(_cond);
4363  }
4364  status = pthread_mutex_unlock(_mutex);
4365  assert_status(status == 0, status, "mutex_unlock");
4366  if (AnyWaiters != 0) {
4367    status = pthread_cond_signal(_cond);
4368    assert_status(status == 0, status, "cond_signal");
4369  }
4370
4371  // Note that we signal() _after dropping the lock for "immortal" Events.
4372  // This is safe and avoids a common class of  futile wakeups.  In rare
4373  // circumstances this can cause a thread to return prematurely from
4374  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4375  // simply re-test the condition and re-park itself.
4376}
4377
4378
4379// JSR166
4380// -------------------------------------------------------
4381
4382// The solaris and bsd implementations of park/unpark are fairly
4383// conservative for now, but can be improved. They currently use a
4384// mutex/condvar pair, plus a a count.
4385// Park decrements count if > 0, else does a condvar wait.  Unpark
4386// sets count to 1 and signals condvar.  Only one thread ever waits
4387// on the condvar. Contention seen when trying to park implies that someone
4388// is unparking you, so don't wait. And spurious returns are fine, so there
4389// is no need to track notifications.
4390
4391#define MAX_SECS 100000000
4392
4393// This code is common to bsd and solaris and will be moved to a
4394// common place in dolphin.
4395//
4396// The passed in time value is either a relative time in nanoseconds
4397// or an absolute time in milliseconds. Either way it has to be unpacked
4398// into suitable seconds and nanoseconds components and stored in the
4399// given timespec structure.
4400// Given time is a 64-bit value and the time_t used in the timespec is only
4401// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4402// overflow if times way in the future are given. Further on Solaris versions
4403// prior to 10 there is a restriction (see cond_timedwait) that the specified
4404// number of seconds, in abstime, is less than current_time  + 100,000,000.
4405// As it will be 28 years before "now + 100000000" will overflow we can
4406// ignore overflow and just impose a hard-limit on seconds using the value
4407// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4408// years from "now".
4409
4410static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4411  assert(time > 0, "convertTime");
4412
4413  struct timeval now;
4414  int status = gettimeofday(&now, NULL);
4415  assert(status == 0, "gettimeofday");
4416
4417  time_t max_secs = now.tv_sec + MAX_SECS;
4418
4419  if (isAbsolute) {
4420    jlong secs = time / 1000;
4421    if (secs > max_secs) {
4422      absTime->tv_sec = max_secs;
4423    } else {
4424      absTime->tv_sec = secs;
4425    }
4426    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4427  } else {
4428    jlong secs = time / NANOSECS_PER_SEC;
4429    if (secs >= MAX_SECS) {
4430      absTime->tv_sec = max_secs;
4431      absTime->tv_nsec = 0;
4432    } else {
4433      absTime->tv_sec = now.tv_sec + secs;
4434      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4435      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4436        absTime->tv_nsec -= NANOSECS_PER_SEC;
4437        ++absTime->tv_sec; // note: this must be <= max_secs
4438      }
4439    }
4440  }
4441  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4442  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4443  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4444  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4445}
4446
4447void Parker::park(bool isAbsolute, jlong time) {
4448  // Ideally we'd do something useful while spinning, such
4449  // as calling unpackTime().
4450
4451  // Optional fast-path check:
4452  // Return immediately if a permit is available.
4453  // We depend on Atomic::xchg() having full barrier semantics
4454  // since we are doing a lock-free update to _counter.
4455  if (Atomic::xchg(0, &_counter) > 0) return;
4456
4457  Thread* thread = Thread::current();
4458  assert(thread->is_Java_thread(), "Must be JavaThread");
4459  JavaThread *jt = (JavaThread *)thread;
4460
4461  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4462  // Check interrupt before trying to wait
4463  if (Thread::is_interrupted(thread, false)) {
4464    return;
4465  }
4466
4467  // Next, demultiplex/decode time arguments
4468  struct timespec absTime;
4469  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4470    return;
4471  }
4472  if (time > 0) {
4473    unpackTime(&absTime, isAbsolute, time);
4474  }
4475
4476
4477  // Enter safepoint region
4478  // Beware of deadlocks such as 6317397.
4479  // The per-thread Parker:: mutex is a classic leaf-lock.
4480  // In particular a thread must never block on the Threads_lock while
4481  // holding the Parker:: mutex.  If safepoints are pending both the
4482  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4483  ThreadBlockInVM tbivm(jt);
4484
4485  // Don't wait if cannot get lock since interference arises from
4486  // unblocking.  Also. check interrupt before trying wait
4487  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4488    return;
4489  }
4490
4491  int status;
4492  if (_counter > 0)  { // no wait needed
4493    _counter = 0;
4494    status = pthread_mutex_unlock(_mutex);
4495    assert(status == 0, "invariant");
4496    // Paranoia to ensure our locked and lock-free paths interact
4497    // correctly with each other and Java-level accesses.
4498    OrderAccess::fence();
4499    return;
4500  }
4501
4502#ifdef ASSERT
4503  // Don't catch signals while blocked; let the running threads have the signals.
4504  // (This allows a debugger to break into the running thread.)
4505  sigset_t oldsigs;
4506  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4507  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4508#endif
4509
4510  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4511  jt->set_suspend_equivalent();
4512  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4513
4514  if (time == 0) {
4515    status = pthread_cond_wait(_cond, _mutex);
4516  } else {
4517    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4518    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4519      pthread_cond_destroy(_cond);
4520      pthread_cond_init(_cond, NULL);
4521    }
4522  }
4523  assert_status(status == 0 || status == EINTR ||
4524                status == ETIMEDOUT,
4525                status, "cond_timedwait");
4526
4527#ifdef ASSERT
4528  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4529#endif
4530
4531  _counter = 0;
4532  status = pthread_mutex_unlock(_mutex);
4533  assert_status(status == 0, status, "invariant");
4534  // Paranoia to ensure our locked and lock-free paths interact
4535  // correctly with each other and Java-level accesses.
4536  OrderAccess::fence();
4537
4538  // If externally suspended while waiting, re-suspend
4539  if (jt->handle_special_suspend_equivalent_condition()) {
4540    jt->java_suspend_self();
4541  }
4542}
4543
4544void Parker::unpark() {
4545  int status = pthread_mutex_lock(_mutex);
4546  assert(status == 0, "invariant");
4547  const int s = _counter;
4548  _counter = 1;
4549  if (s < 1) {
4550    if (WorkAroundNPTLTimedWaitHang) {
4551      status = pthread_cond_signal(_cond);
4552      assert(status == 0, "invariant");
4553      status = pthread_mutex_unlock(_mutex);
4554      assert(status == 0, "invariant");
4555    } else {
4556      status = pthread_mutex_unlock(_mutex);
4557      assert(status == 0, "invariant");
4558      status = pthread_cond_signal(_cond);
4559      assert(status == 0, "invariant");
4560    }
4561  } else {
4562    pthread_mutex_unlock(_mutex);
4563    assert(status == 0, "invariant");
4564  }
4565}
4566
4567
4568// Darwin has no "environ" in a dynamic library.
4569#ifdef __APPLE__
4570  #include <crt_externs.h>
4571  #define environ (*_NSGetEnviron())
4572#else
4573extern char** environ;
4574#endif
4575
4576// Run the specified command in a separate process. Return its exit value,
4577// or -1 on failure (e.g. can't fork a new process).
4578// Unlike system(), this function can be called from signal handler. It
4579// doesn't block SIGINT et al.
4580int os::fork_and_exec(char* cmd) {
4581  const char * argv[4] = {"sh", "-c", cmd, NULL};
4582
4583  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4584  // pthread_atfork handlers and reset pthread library. All we need is a
4585  // separate process to execve. Make a direct syscall to fork process.
4586  // On IA64 there's no fork syscall, we have to use fork() and hope for
4587  // the best...
4588  pid_t pid = fork();
4589
4590  if (pid < 0) {
4591    // fork failed
4592    return -1;
4593
4594  } else if (pid == 0) {
4595    // child process
4596
4597    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4598    // first to kill every thread on the thread list. Because this list is
4599    // not reset by fork() (see notes above), execve() will instead kill
4600    // every thread in the parent process. We know this is the only thread
4601    // in the new process, so make a system call directly.
4602    // IA64 should use normal execve() from glibc to match the glibc fork()
4603    // above.
4604    execve("/bin/sh", (char* const*)argv, environ);
4605
4606    // execve failed
4607    _exit(-1);
4608
4609  } else  {
4610    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4611    // care about the actual exit code, for now.
4612
4613    int status;
4614
4615    // Wait for the child process to exit.  This returns immediately if
4616    // the child has already exited. */
4617    while (waitpid(pid, &status, 0) < 0) {
4618      switch (errno) {
4619      case ECHILD: return 0;
4620      case EINTR: break;
4621      default: return -1;
4622      }
4623    }
4624
4625    if (WIFEXITED(status)) {
4626      // The child exited normally; get its exit code.
4627      return WEXITSTATUS(status);
4628    } else if (WIFSIGNALED(status)) {
4629      // The child exited because of a signal
4630      // The best value to return is 0x80 + signal number,
4631      // because that is what all Unix shells do, and because
4632      // it allows callers to distinguish between process exit and
4633      // process death by signal.
4634      return 0x80 + WTERMSIG(status);
4635    } else {
4636      // Unknown exit code; pass it through
4637      return status;
4638    }
4639  }
4640}
4641
4642// is_headless_jre()
4643//
4644// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4645// in order to report if we are running in a headless jre
4646//
4647// Since JDK8 xawt/libmawt.so was moved into the same directory
4648// as libawt.so, and renamed libawt_xawt.so
4649//
4650bool os::is_headless_jre() {
4651#ifdef __APPLE__
4652  // We no longer build headless-only on Mac OS X
4653  return false;
4654#else
4655  struct stat statbuf;
4656  char buf[MAXPATHLEN];
4657  char libmawtpath[MAXPATHLEN];
4658  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4659  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4660  char *p;
4661
4662  // Get path to libjvm.so
4663  os::jvm_path(buf, sizeof(buf));
4664
4665  // Get rid of libjvm.so
4666  p = strrchr(buf, '/');
4667  if (p == NULL) {
4668    return false;
4669  } else {
4670    *p = '\0';
4671  }
4672
4673  // Get rid of client or server
4674  p = strrchr(buf, '/');
4675  if (p == NULL) {
4676    return false;
4677  } else {
4678    *p = '\0';
4679  }
4680
4681  // check xawt/libmawt.so
4682  strcpy(libmawtpath, buf);
4683  strcat(libmawtpath, xawtstr);
4684  if (::stat(libmawtpath, &statbuf) == 0) return false;
4685
4686  // check libawt_xawt.so
4687  strcpy(libmawtpath, buf);
4688  strcat(libmawtpath, new_xawtstr);
4689  if (::stat(libmawtpath, &statbuf) == 0) return false;
4690
4691  return true;
4692#endif
4693}
4694
4695// Get the default path to the core file
4696// Returns the length of the string
4697int os::get_core_path(char* buffer, size_t bufferSize) {
4698  int n = jio_snprintf(buffer, bufferSize, "/cores");
4699
4700  // Truncate if theoretical string was longer than bufferSize
4701  n = MIN2(n, (int)bufferSize);
4702
4703  return n;
4704}
4705
4706#ifndef PRODUCT
4707void TestReserveMemorySpecial_test() {
4708  // No tests available for this platform
4709}
4710#endif
4711