os_bsd.cpp revision 7051:0420e825bb3c
1145357Ssuz/*
262655Skris * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
356668Sshin * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
456668Sshin *
556668Sshin * This code is free software; you can redistribute it and/or modify it
662655Skris * under the terms of the GNU General Public License version 2 only, as
756668Sshin * published by the Free Software Foundation.
856668Sshin *
956668Sshin * This code is distributed in the hope that it will be useful, but WITHOUT
1056668Sshin * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1156668Sshin * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1256668Sshin * version 2 for more details (a copy is included in the LICENSE file that
1356668Sshin * accompanied this code).
1456668Sshin *
1556668Sshin * You should have received a copy of the GNU General Public License version
1656668Sshin * 2 along with this work; if not, write to the Free Software Foundation,
1756668Sshin * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1862655Skris *
1956668Sshin * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2056668Sshin * or visit www.oracle.com if you need additional information or have any
2156668Sshin * questions.
2256668Sshin *
2356668Sshin */
2456668Sshin
2556668Sshin// no precompiled headers
2656668Sshin#include "classfile/classLoader.hpp"
2756668Sshin#include "classfile/systemDictionary.hpp"
2856668Sshin#include "classfile/vmSymbols.hpp"
2956668Sshin#include "code/icBuffer.hpp"
3056668Sshin#include "code/vtableStubs.hpp"
3156668Sshin#include "compiler/compileBroker.hpp"
3256668Sshin#include "compiler/disassembler.hpp"
3356668Sshin#include "interpreter/interpreter.hpp"
3456668Sshin#include "jvm_bsd.h"
3556668Sshin#include "memory/allocation.inline.hpp"
3656668Sshin#include "memory/filemap.hpp"
3756668Sshin#include "mutex_bsd.inline.hpp"
3856668Sshin#include "oops/oop.inline.hpp"
3956668Sshin#include "os_bsd.inline.hpp"
4056668Sshin#include "os_share_bsd.hpp"
4156668Sshin#include "prims/jniFastGetField.hpp"
4256668Sshin#include "prims/jvm.h"
4356668Sshin#include "prims/jvm_misc.hpp"
4456668Sshin#include "runtime/arguments.hpp"
45122679Sume#include "runtime/atomic.inline.hpp"
46122679Sume#include "runtime/extendedPC.hpp"
47122679Sume#include "runtime/globals.hpp"
4856668Sshin#include "runtime/interfaceSupport.hpp"
4956668Sshin#include "runtime/java.hpp"
5056668Sshin#include "runtime/javaCalls.hpp"
5156668Sshin#include "runtime/mutexLocker.hpp"
5256668Sshin#include "runtime/objectMonitor.hpp"
5356668Sshin#include "runtime/orderAccess.inline.hpp"
5456668Sshin#include "runtime/osThread.hpp"
5556668Sshin#include "runtime/perfMemory.hpp"
5656668Sshin#include "runtime/sharedRuntime.hpp"
5756668Sshin#include "runtime/statSampler.hpp"
5856668Sshin#include "runtime/stubRoutines.hpp"
5956668Sshin#include "runtime/thread.inline.hpp"
6056668Sshin#include "runtime/threadCritical.hpp"
6156668Sshin#include "runtime/timer.hpp"
6256668Sshin#include "services/attachListener.hpp"
6356668Sshin#include "services/memTracker.hpp"
6456668Sshin#include "services/runtimeService.hpp"
6556668Sshin#include "utilities/decoder.hpp"
6656668Sshin#include "utilities/defaultStream.hpp"
6756668Sshin#include "utilities/events.hpp"
6856668Sshin#include "utilities/growableArray.hpp"
6956668Sshin#include "utilities/vmError.hpp"
70173412Skevlo
71173412Skevlo// put OS-includes here
72173412Skevlo# include <sys/types.h>
73173412Skevlo# include <sys/mman.h>
74173412Skevlo# include <sys/stat.h>
7556668Sshin# include <sys/select.h>
7656668Sshin# include <pthread.h>
7756668Sshin# include <signal.h>
7856668Sshin# include <errno.h>
79122679Sume# include <dlfcn.h>
80122679Sume# include <stdio.h>
81122679Sume# include <unistd.h>
8256668Sshin# include <sys/resource.h>
83122679Sume# include <pthread.h>
8456668Sshin# include <sys/stat.h>
8556668Sshin# include <sys/time.h>
8656668Sshin# include <sys/times.h>
8756668Sshin# include <sys/utsname.h>
8856668Sshin# include <sys/socket.h>
8956668Sshin# include <sys/wait.h>
9056668Sshin# include <time.h>
91122679Sume# include <pwd.h>
92122679Sume# include <poll.h>
93122679Sume# include <semaphore.h>
94122679Sume# include <fcntl.h>
95122679Sume# include <string.h>
96122679Sume# include <sys/param.h>
97122679Sume# include <sys/sysctl.h>
98122679Sume# include <sys/ipc.h>
99122679Sume# include <sys/shm.h>
100122679Sume#ifndef __APPLE__
101122679Sume# include <link.h>
102122679Sume#endif
103122679Sume# include <stdint.h>
104122679Sume# include <inttypes.h>
105122679Sume# include <sys/ioctl.h>
106122679Sume# include <sys/syscall.h>
107122679Sume
108122679Sume#if defined(__FreeBSD__) || defined(__NetBSD__)
109122679Sume  #include <elf.h>
110122679Sume#endif
111122679Sume
112122679Sume#ifdef __APPLE__
113122679Sume  #include <mach/mach.h> // semaphore_* API
114122679Sume  #include <mach-o/dyld.h>
115122679Sume  #include <sys/proc_info.h>
116122679Sume  #include <objc/objc-auto.h>
117122679Sume#endif
118122679Sume
119122679Sume#ifndef MAP_ANONYMOUS
120122679Sume  #define MAP_ANONYMOUS MAP_ANON
121122679Sume#endif
122122679Sume
123122679Sume#define MAX_PATH    (2 * K)
12456668Sshin
125122679Sume// for timer info max values which include all bits
126122679Sume#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
12756668Sshin
128122679Sume#define LARGEPAGES_BIT (1 << 6)
129122679Sume
130122679SumePRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
13156668Sshin
132122679Sume////////////////////////////////////////////////////////////////////////////////
133122679Sume// global variables
134122679Sumejulong os::Bsd::_physical_memory = 0;
135122679Sume
13656668Sshin#ifdef __APPLE__
137122679Sumemach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138122679Sumevolatile uint64_t         os::Bsd::_max_abstime   = 0;
139122679Sume#else
140122679Sumeint (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141122679Sume#endif
14256668Sshinpthread_t os::Bsd::_main_thread;
143122679Sumeint os::Bsd::_page_size = -1;
144122679Sume
14556668Sshinstatic jlong initial_time_count=0;
146122679Sume
147122679Sumestatic int clock_tics_per_sec = 100;
148122679Sume
14956668Sshin// For diagnostics to print a message once. see run_periodic_checks
150122679Sumestatic sigset_t check_signal_done;
151122679Sumestatic bool check_signals = true;
152122679Sume
153122679Sumestatic pid_t _initial_pid = 0;
154122679Sume
15556668Sshin// Signal number used to suspend/resume a thread
156122679Sume
157122679Sume// do not use any signal number less than SIGSEGV, see 4355769
15856668Sshinstatic int SR_signum = SIGUSR2;
159122679Sumesigset_t SR_sigset;
16056668Sshin
16156668Sshin
16256668Sshin////////////////////////////////////////////////////////////////////////////////
163122679Sume// utility functions
164122679Sume
165122679Sumestatic int SR_initialize();
166122679Sumestatic void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167122679Sume
168122679Sumejulong os::available_memory() {
169122679Sume  return Bsd::available_memory();
170122679Sume}
171122679Sume
17295023Ssuz// available here means free
173122679Sumejulong os::Bsd::available_memory() {
174122679Sume  uint64_t available = physical_memory() >> 2;
17556668Sshin#ifdef __APPLE__
17656668Sshin  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
17756668Sshin  vm_statistics64_data_t vmstat;
17856668Sshin  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
17956668Sshin                                         (host_info64_t)&vmstat, &count);
18056668Sshin  assert(kerr == KERN_SUCCESS,
18156668Sshin         "host_statistics64 failed - check mach_host_self() and count");
18256668Sshin  if (kerr == KERN_SUCCESS) {
18356668Sshin    available = vmstat.free_count * os::vm_page_size();
184122679Sume  }
185122679Sume#endif
186122679Sume  return available;
187122679Sume}
188122679Sume
189122679Sumejulong os::physical_memory() {
19056668Sshin  return Bsd::physical_memory();
19156668Sshin}
19256668Sshin
19356668Sshin////////////////////////////////////////////////////////////////////////////////
19456668Sshin// environment support
19556668Sshin
19681981Sbrianbool os::getenv(const char* name, char* buf, int len) {
19756668Sshin  const char* val = ::getenv(name);
19881981Sbrian  if (val != NULL && strlen(val) < (size_t)len) {
19956668Sshin    strcpy(buf, val);
20056668Sshin    return true;
20156668Sshin  }
202122679Sume  if (len > 0) buf[0] = 0;  // return a null string
20356668Sshin  return false;
20456668Sshin}
205122679Sume
206122679Sume
207122679Sume// Return true if user is running as root.
208122679Sume
209122679Sumebool os::have_special_privileges() {
210122679Sume  static bool init = false;
21156668Sshin  static bool privileges = false;
21256668Sshin  if (!init) {
21356668Sshin    privileges = (getuid() != geteuid()) || (getgid() != getegid());
21456668Sshin    init = true;
21556668Sshin  }
21656668Sshin  return privileges;
21781981Sbrian}
21856668Sshin
21981981Sbrian
22056668Sshin
22156668Sshin// Cpu architecture string
22256668Sshin#if   defined(ZERO)
223122679Sumestatic char cpu_arch[] = ZERO_LIBARCH;
22456668Sshin#elif defined(IA64)
22556668Sshinstatic char cpu_arch[] = "ia64";
226122679Sume#elif defined(IA32)
227122679Sumestatic char cpu_arch[] = "i386";
228122679Sume#elif defined(AMD64)
229122679Sumestatic char cpu_arch[] = "amd64";
230122679Sume#elif defined(ARM)
231122679Sumestatic char cpu_arch[] = "arm";
23256668Sshin#elif defined(PPC32)
23356668Sshinstatic char cpu_arch[] = "ppc";
23456668Sshin#elif defined(SPARC)
23556668Sshin  #ifdef _LP64
236122679Sumestatic char cpu_arch[] = "sparcv9";
237122679Sume  #else
238122679Sumestatic char cpu_arch[] = "sparc";
23956668Sshin  #endif
240122679Sume#else
24156668Sshin  #error Add appropriate cpu_arch setting
24256668Sshin#endif
24356668Sshin
24456668Sshin// Compiler variant
24556668Sshin#ifdef COMPILER2
24656668Sshin  #define COMPILER_VARIANT "server"
24756668Sshin#else
24856668Sshin  #define COMPILER_VARIANT "client"
24956668Sshin#endif
25056668Sshin
25156668Sshin
25256668Sshinvoid os::Bsd::initialize_system_info() {
25356668Sshin  int mib[2];
25456668Sshin  size_t len;
255122679Sume  int cpu_val;
256122679Sume  julong mem_val;
257122679Sume
258122679Sume  // get processors count via hw.ncpus sysctl
259122679Sume  mib[0] = CTL_HW;
260122679Sume  mib[1] = HW_NCPU;
26156668Sshin  len = sizeof(cpu_val);
26256668Sshin  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
26356668Sshin    assert(len == sizeof(cpu_val), "unexpected data size");
26456668Sshin    set_processor_count(cpu_val);
265122679Sume  } else {
266122679Sume    set_processor_count(1);   // fallback
267122679Sume  }
26856668Sshin
269122679Sume  // get physical memory via hw.memsize sysctl (hw.memsize is used
27056668Sshin  // since it returns a 64 bit value)
27156668Sshin  mib[0] = CTL_HW;
27256668Sshin
27356668Sshin#if defined (HW_MEMSIZE) // Apple
27456668Sshin  mib[1] = HW_MEMSIZE;
27556668Sshin#elif defined(HW_PHYSMEM) // Most of BSD
27656668Sshin  mib[1] = HW_PHYSMEM;
27756668Sshin#elif defined(HW_REALMEM) // Old FreeBSD
27856668Sshin  mib[1] = HW_REALMEM;
27956668Sshin#else
28056668Sshin  #error No ways to get physmem
28156668Sshin#endif
28256668Sshin
28356668Sshin  len = sizeof(mem_val);
28456668Sshin  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
285122679Sume    assert(len == sizeof(mem_val), "unexpected data size");
286122679Sume    _physical_memory = mem_val;
287122679Sume  } else {
288122679Sume    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
289122679Sume  }
290122679Sume
29156668Sshin#ifdef __OpenBSD__
29256668Sshin  {
29356668Sshin    // limit _physical_memory memory view on OpenBSD since
29456668Sshin    // datasize rlimit restricts us anyway.
29556668Sshin    struct rlimit limits;
296122679Sume    getrlimit(RLIMIT_DATA, &limits);
297122679Sume    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
298122679Sume  }
299122679Sume#endif
300122679Sume}
301122679Sume
30256668Sshin#ifdef __APPLE__
30356668Sshinstatic const char *get_home() {
30456668Sshin  const char *home_dir = ::getenv("HOME");
30556668Sshin  if ((home_dir == NULL) || (*home_dir == '\0')) {
30656668Sshin    struct passwd *passwd_info = getpwuid(geteuid());
30756668Sshin    if (passwd_info != NULL) {
30856668Sshin      home_dir = passwd_info->pw_dir;
30956668Sshin    }
31056668Sshin  }
31195023Ssuz
31256668Sshin  return home_dir;
31356668Sshin}
31456668Sshin#endif
31556668Sshin
31656668Sshinvoid os::init_system_properties_values() {
317122679Sume  // The next steps are taken in the product version:
31856668Sshin  //
319122679Sume  // Obtain the JAVA_HOME value from the location of libjvm.so.
320122679Sume  // This library should be located at:
321122679Sume  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
32256668Sshin  //
323122679Sume  // If "/jre/lib/" appears at the right place in the path, then we
32456668Sshin  // assume libjvm.so is installed in a JDK and we use this path.
32556668Sshin  //
32656668Sshin  // Otherwise exit with message: "Could not create the Java virtual machine."
32756668Sshin  //
328122679Sume  // The following extra steps are taken in the debugging version:
329122679Sume  //
330122679Sume  // If "/jre/lib/" does NOT appear at the right place in the path
331122679Sume  // instead of exit check for $JAVA_HOME environment variable.
33256668Sshin  //
333122679Sume  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
334122679Sume  // then we append a fake suffix "hotspot/libjvm.so" to this path so
33556668Sshin  // it looks like libjvm.so is installed there
336122679Sume  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
33756668Sshin  //
338122679Sume  // Otherwise exit.
33956668Sshin  //
340122679Sume  // Important note: if the location of libjvm.so changes this
341122679Sume  // code needs to be changed accordingly.
342122679Sume
343122679Sume  // See ld(1):
344122679Sume  //      The linker uses the following search paths to locate required
345122679Sume  //      shared libraries:
346122679Sume  //        1: ...
347122679Sume  //        ...
34856668Sshin  //        7: The default directories, normally /lib and /usr/lib.
34956668Sshin#ifndef DEFAULT_LIBPATH
35056668Sshin  #define DEFAULT_LIBPATH "/lib:/usr/lib"
35156668Sshin#endif
35256668Sshin
35356668Sshin// Base path of extensions installed on the system.
35456668Sshin#define SYS_EXT_DIR     "/usr/java/packages"
35556668Sshin#define EXTENSIONS_DIR  "/lib/ext"
35656668Sshin#define ENDORSED_DIR    "/lib/endorsed"
35756668Sshin
35856668Sshin#ifndef __APPLE__
35956668Sshin
36056668Sshin  // Buffer that fits several sprintfs.
36156668Sshin  // Note that the space for the colon and the trailing null are provided
36256668Sshin  // by the nulls included by the sizeof operator.
36356668Sshin  const size_t bufsize =
36456668Sshin    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
36595355Sume         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
36656668Sshin         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
36756668Sshin  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
36856668Sshin
36956668Sshin  // sysclasspath, java_home, dll_dir
37056668Sshin  {
37156668Sshin    char *pslash;
37256668Sshin    os::jvm_path(buf, bufsize);
37356668Sshin
37456668Sshin    // Found the full path to libjvm.so.
37556668Sshin    // Now cut the path to <java_home>/jre if we can.
37656668Sshin    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
37756668Sshin    pslash = strrchr(buf, '/');
37856668Sshin    if (pslash != NULL) {
37956668Sshin      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
38056668Sshin    }
381122679Sume    Arguments::set_dll_dir(buf);
38256668Sshin
383122679Sume    if (pslash != NULL) {
384122679Sume      pslash = strrchr(buf, '/');
385122679Sume      if (pslash != NULL) {
38656668Sshin        *pslash = '\0';          // Get rid of /<arch>.
387122679Sume        pslash = strrchr(buf, '/');
38856668Sshin        if (pslash != NULL) {
38956668Sshin          *pslash = '\0';        // Get rid of /lib.
39056668Sshin        }
39156668Sshin      }
392122679Sume    }
393122679Sume    Arguments::set_java_home(buf);
394122679Sume    set_boot_path('/', ':');
395122679Sume  }
39656668Sshin
397122679Sume  // Where to look for native libraries.
398122679Sume  //
39956668Sshin  // Note: Due to a legacy implementation, most of the library path
400122679Sume  // is set in the launcher. This was to accomodate linking restrictions
40156668Sshin  // on legacy Bsd implementations (which are no longer supported).
40256668Sshin  // Eventually, all the library path setting will be done here.
403122679Sume  //
404122679Sume  // However, to prevent the proliferation of improperly built native
405122679Sume  // libraries, the new path component /usr/java/packages is added here.
406122679Sume  // Eventually, all the library path setting will be done here.
407122679Sume  {
408122679Sume    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
409122679Sume    // should always exist (until the legacy problem cited above is
410122679Sume    // addressed).
411122679Sume    const char *v = ::getenv("LD_LIBRARY_PATH");
41256668Sshin    const char *v_colon = ":";
41356668Sshin    if (v == NULL) { v = ""; v_colon = ""; }
41456668Sshin    // That's +1 for the colon and +1 for the trailing '\0'.
41556668Sshin    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
41656668Sshin                                                     strlen(v) + 1 +
41756668Sshin                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
41856668Sshin                                                     mtInternal);
41956668Sshin    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
42056668Sshin    Arguments::set_library_path(ld_library_path);
42156668Sshin    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
42256668Sshin  }
42356668Sshin
42456668Sshin  // Extensions directories.
42556668Sshin  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
42656668Sshin  Arguments::set_ext_dirs(buf);
42756668Sshin
42856668Sshin  // Endorsed standards default directory.
42995355Sume  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
43056668Sshin  Arguments::set_endorsed_dirs(buf);
43156668Sshin
43256668Sshin  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
43356668Sshin
43456668Sshin#else // __APPLE__
43556668Sshin
43656668Sshin  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
43756668Sshin  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
43856668Sshin
43956668Sshin  const char *user_home_dir = get_home();
44056668Sshin  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
44156668Sshin  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
44256668Sshin    sizeof(SYS_EXTENSIONS_DIRS);
44356668Sshin
44456668Sshin  // Buffer that fits several sprintfs.
445122679Sume  // Note that the space for the colon and the trailing null are provided
44656668Sshin  // by the nulls included by the sizeof operator.
44756668Sshin  const size_t bufsize =
44856668Sshin    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
44956668Sshin         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
45056668Sshin         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
45156668Sshin  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
45256668Sshin
45356668Sshin  // sysclasspath, java_home, dll_dir
45456668Sshin  {
45556668Sshin    char *pslash;
45656668Sshin    os::jvm_path(buf, bufsize);
45756668Sshin
45856668Sshin    // Found the full path to libjvm.so.
45956668Sshin    // Now cut the path to <java_home>/jre if we can.
46056668Sshin    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
46156668Sshin    pslash = strrchr(buf, '/');
46256668Sshin    if (pslash != NULL) {
46356668Sshin      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
46456668Sshin    }
46556668Sshin    Arguments::set_dll_dir(buf);
46656668Sshin
46756668Sshin    if (pslash != NULL) {
46856668Sshin      pslash = strrchr(buf, '/');
46956668Sshin      if (pslash != NULL) {
47056668Sshin        *pslash = '\0';          // Get rid of /lib.
47156668Sshin      }
47256668Sshin    }
47356668Sshin    Arguments::set_java_home(buf);
47495023Ssuz    set_boot_path('/', ':');
47556668Sshin  }
47656668Sshin
47756668Sshin  // Where to look for native libraries.
47856668Sshin  //
47956668Sshin  // Note: Due to a legacy implementation, most of the library path
48056668Sshin  // is set in the launcher. This was to accomodate linking restrictions
48156668Sshin  // on legacy Bsd implementations (which are no longer supported).
482122679Sume  // Eventually, all the library path setting will be done here.
483122679Sume  //
48456668Sshin  // However, to prevent the proliferation of improperly built native
48556668Sshin  // libraries, the new path component /usr/java/packages is added here.
486122679Sume  // Eventually, all the library path setting will be done here.
487122679Sume  {
48856668Sshin    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
48956668Sshin    // should always exist (until the legacy problem cited above is
49056668Sshin    // addressed).
49156668Sshin    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
49256668Sshin    // can specify a directory inside an app wrapper
49356668Sshin    const char *l = ::getenv("JAVA_LIBRARY_PATH");
49456668Sshin    const char *l_colon = ":";
49556668Sshin    if (l == NULL) { l = ""; l_colon = ""; }
49656668Sshin
49756668Sshin    const char *v = ::getenv("DYLD_LIBRARY_PATH");
49856668Sshin    const char *v_colon = ":";
49956668Sshin    if (v == NULL) { v = ""; v_colon = ""; }
50056668Sshin
50156668Sshin    // Apple's Java6 has "." at the beginning of java.library.path.
50256668Sshin    // OpenJDK on Windows has "." at the end of java.library.path.
50356668Sshin    // OpenJDK on Linux and Solaris don't have "." in java.library.path
50456668Sshin    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
50556668Sshin    // "." is appended to the end of java.library.path. Yes, this
50656668Sshin    // could cause a change in behavior, but Apple's Java6 behavior
50756668Sshin    // can be achieved by putting "." at the beginning of the
50856668Sshin    // JAVA_LIBRARY_PATH environment variable.
50956668Sshin    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
51056668Sshin                                                     strlen(v) + 1 + strlen(l) + 1 +
51156668Sshin                                                     system_ext_size + 3,
51256668Sshin                                                     mtInternal);
51356668Sshin    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
51456668Sshin            v, v_colon, l, l_colon, user_home_dir);
51556668Sshin    Arguments::set_library_path(ld_library_path);
51656668Sshin    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
51756668Sshin  }
51856668Sshin
51956668Sshin  // Extensions directories.
52056668Sshin  //
52156668Sshin  // Note that the space for the colon and the trailing null are provided
52256668Sshin  // by the nulls included by the sizeof operator (so actually one byte more
52356668Sshin  // than necessary is allocated).
52456668Sshin  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
52556668Sshin          user_home_dir, Arguments::get_java_home());
52656668Sshin  Arguments::set_ext_dirs(buf);
52756668Sshin
52856668Sshin  // Endorsed standards default directory.
52956668Sshin  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
53056668Sshin  Arguments::set_endorsed_dirs(buf);
53156668Sshin
53256668Sshin  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
53356668Sshin
53456668Sshin#undef SYS_EXTENSIONS_DIR
53556668Sshin#undef SYS_EXTENSIONS_DIRS
53656668Sshin
53756668Sshin#endif // __APPLE__
53856668Sshin
53956668Sshin#undef SYS_EXT_DIR
54062655Skris#undef EXTENSIONS_DIR
541122679Sume#undef ENDORSED_DIR
542122679Sume}
54356668Sshin
54456668Sshin////////////////////////////////////////////////////////////////////////////////
545122679Sume// breakpoint support
546122679Sume
547122679Sumevoid os::breakpoint() {
54856668Sshin  BREAKPOINT;
54956668Sshin}
55056668Sshin
55156668Sshinextern "C" void breakpoint() {
55256668Sshin  // use debugger to set breakpoint here
55356668Sshin}
55456668Sshin
55556668Sshin////////////////////////////////////////////////////////////////////////////////
55656668Sshin// signal support
55756668Sshin
55856668Sshindebug_only(static bool signal_sets_initialized = false);
55956668Sshinstatic sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
56056668Sshin
56156668Sshinbool os::Bsd::is_sig_ignored(int sig) {
56256668Sshin  struct sigaction oact;
56356668Sshin  sigaction(sig, (struct sigaction*)NULL, &oact);
56456668Sshin  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
56565994Sume                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
56665994Sume  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
56765994Sume    return true;
56865994Sume  } else {
56956668Sshin    return false;
57056668Sshin  }
57156668Sshin}
57256668Sshin
57356668Sshinvoid os::Bsd::signal_sets_init() {
57456668Sshin  // Should also have an assertion stating we are still single-threaded.
57556668Sshin  assert(!signal_sets_initialized, "Already initialized");
57656668Sshin  // Fill in signals that are necessarily unblocked for all threads in
57756668Sshin  // the VM. Currently, we unblock the following signals:
57856668Sshin  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
57956668Sshin  //                         by -Xrs (=ReduceSignalUsage));
58056668Sshin  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
58156668Sshin  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
58256668Sshin  // the dispositions or masks wrt these signals.
58356668Sshin  // Programs embedding the VM that want to use the above signals for their
58456668Sshin  // own purposes must, at this time, use the "-Xrs" option to prevent
58556668Sshin  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
58656668Sshin  // (See bug 4345157, and other related bugs).
58765994Sume  // In reality, though, unblocking these signals is really a nop, since
58856668Sshin  // these signals are not blocked by default.
58956668Sshin  sigemptyset(&unblocked_sigs);
59056668Sshin  sigemptyset(&allowdebug_blocked_sigs);
59165994Sume  sigaddset(&unblocked_sigs, SIGILL);
59265994Sume  sigaddset(&unblocked_sigs, SIGSEGV);
59356668Sshin  sigaddset(&unblocked_sigs, SIGBUS);
59456668Sshin  sigaddset(&unblocked_sigs, SIGFPE);
59556668Sshin  sigaddset(&unblocked_sigs, SR_signum);
59656668Sshin
59756668Sshin  if (!ReduceSignalUsage) {
59856668Sshin    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
59956668Sshin      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
60056668Sshin      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
60156668Sshin    }
60256668Sshin    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
60356668Sshin      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
60456668Sshin      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
60556668Sshin    }
60656668Sshin    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
60756668Sshin      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
60856668Sshin      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
60956668Sshin    }
61056668Sshin  }
61156668Sshin  // Fill in signals that are blocked by all but the VM thread.
61256668Sshin  sigemptyset(&vm_sigs);
61356668Sshin  if (!ReduceSignalUsage) {
61456668Sshin    sigaddset(&vm_sigs, BREAK_SIGNAL);
61556668Sshin  }
61656668Sshin  debug_only(signal_sets_initialized = true);
61756668Sshin
61856668Sshin}
61956668Sshin
620122679Sume// These are signals that are unblocked while a thread is running Java.
621122679Sume// (For some reason, they get blocked by default.)
622122679Sumesigset_t* os::Bsd::unblocked_signals() {
623122679Sume  assert(signal_sets_initialized, "Not initialized");
624122679Sume  return &unblocked_sigs;
62556668Sshin}
62656668Sshin
62756668Sshin// These are the signals that are blocked while a (non-VM) thread is
62856668Sshin// running Java. Only the VM thread handles these signals.
62956668Sshinsigset_t* os::Bsd::vm_signals() {
63056668Sshin  assert(signal_sets_initialized, "Not initialized");
63156668Sshin  return &vm_sigs;
63295023Ssuz}
63356668Sshin
63456668Sshin// These are signals that are blocked during cond_wait to allow debugger in
63556668Sshinsigset_t* os::Bsd::allowdebug_blocked_signals() {
63656668Sshin  assert(signal_sets_initialized, "Not initialized");
63756668Sshin  return &allowdebug_blocked_sigs;
63856668Sshin}
63956668Sshin
64056668Sshinvoid os::Bsd::hotspot_sigmask(Thread* thread) {
64156668Sshin
64256668Sshin  //Save caller's signal mask before setting VM signal mask
64356668Sshin  sigset_t caller_sigmask;
64456668Sshin  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
64556668Sshin
64656668Sshin  OSThread* osthread = thread->osthread();
64756668Sshin  osthread->set_caller_sigmask(caller_sigmask);
64856668Sshin
64956668Sshin  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
65056668Sshin
65156668Sshin  if (!ReduceSignalUsage) {
652122679Sume    if (thread->is_VM_thread()) {
653122679Sume      // Only the VM thread handles BREAK_SIGNAL ...
65456668Sshin      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
65556668Sshin    } else {
65656668Sshin      // ... all other threads block BREAK_SIGNAL
65756668Sshin      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
65856668Sshin    }
65956668Sshin  }
66056668Sshin}
66156668Sshin
662122679Sume
663122679Sume//////////////////////////////////////////////////////////////////////////////
66456668Sshin// create new thread
66556668Sshin
66656668Sshin// check if it's safe to start a new thread
66756668Sshinstatic bool _thread_safety_check(Thread* thread) {
66856668Sshin  return true;
66956668Sshin}
67056668Sshin
67156668Sshin#ifdef __APPLE__
67256668Sshin// library handle for calling objc_registerThreadWithCollector()
67356668Sshin// without static linking to the libobjc library
67456668Sshin  #define OBJC_LIB "/usr/lib/libobjc.dylib"
67556668Sshin  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
67656668Sshintypedef void (*objc_registerThreadWithCollector_t)();
67762655Skrisextern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
67862655Skrisobjc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
67962655Skris#endif
68062655Skris
68156668Sshin#ifdef __APPLE__
682122679Sumestatic uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
683122679Sume  // Additional thread_id used to correlate threads in SA
684122679Sume  thread_identifier_info_data_t     m_ident_info;
685122679Sume  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
68656668Sshin
68756668Sshin  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
68856668Sshin              (thread_info_t) &m_ident_info, &count);
68956668Sshin
69056668Sshin  return m_ident_info.thread_id;
69156668Sshin}
692122679Sume#endif
693122679Sume
694122679Sume// Thread start routine for all newly created threads
695122679Sumestatic void *java_start(Thread *thread) {
69656668Sshin  // Try to randomize the cache line index of hot stack frames.
69756668Sshin  // This helps when threads of the same stack traces evict each other's
69856668Sshin  // cache lines. The threads can be either from the same JVM instance, or
69956668Sshin  // from different JVM instances. The benefit is especially true for
70056668Sshin  // processors with hyperthreading technology.
70156668Sshin  static int counter = 0;
70256668Sshin  int pid = os::current_process_id();
70395023Ssuz  alloca(((pid ^ counter++) & 7) * 128);
70456668Sshin
70556668Sshin  ThreadLocalStorage::set_thread(thread);
70656668Sshin
70756668Sshin  OSThread* osthread = thread->osthread();
70856668Sshin  Monitor* sync = osthread->startThread_lock();
70956668Sshin
71056668Sshin  // non floating stack BsdThreads needs extra check, see above
711122679Sume  if (!_thread_safety_check(thread)) {
712122679Sume    // notify parent thread
71356668Sshin    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
714122679Sume    osthread->set_state(ZOMBIE);
71556668Sshin    sync->notify_all();
71656668Sshin    return NULL;
71756668Sshin  }
71856668Sshin
71956668Sshin  osthread->set_thread_id(os::Bsd::gettid());
720122679Sume
72156668Sshin#ifdef __APPLE__
72256668Sshin  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
72356668Sshin  guarantee(unique_thread_id != 0, "unique thread id was not found");
72456668Sshin  osthread->set_unique_thread_id(unique_thread_id);
72556668Sshin#endif
72656668Sshin  // initialize signal mask for this thread
72756668Sshin  os::Bsd::hotspot_sigmask(thread);
72856668Sshin
72956668Sshin  // initialize floating point control register
73056668Sshin  os::Bsd::init_thread_fpu_state();
73156668Sshin
73256668Sshin#ifdef __APPLE__
73356668Sshin  // register thread with objc gc
73456668Sshin  if (objc_registerThreadWithCollectorFunction != NULL) {
73556668Sshin    objc_registerThreadWithCollectorFunction();
73656668Sshin  }
73756668Sshin#endif
73856668Sshin
73956668Sshin  // handshaking with parent thread
74056668Sshin  {
74156668Sshin    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
74256668Sshin
74356668Sshin    // notify parent thread
74456668Sshin    osthread->set_state(INITIALIZED);
74556668Sshin    sync->notify_all();
74656668Sshin
74756668Sshin    // wait until os::start_thread()
74856668Sshin    while (osthread->get_state() == INITIALIZED) {
74956668Sshin      sync->wait(Mutex::_no_safepoint_check_flag);
75056668Sshin    }
75156668Sshin  }
75256668Sshin
75356668Sshin  // call one more level start routine
75456668Sshin  thread->run();
75556668Sshin
75656668Sshin  return 0;
75756668Sshin}
75856668Sshin
75956668Sshinbool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
76056668Sshin  assert(thread->osthread() == NULL, "caller responsible");
76156668Sshin
76256668Sshin  // Allocate the OSThread object
76356668Sshin  OSThread* osthread = new OSThread(NULL, NULL);
76456668Sshin  if (osthread == NULL) {
76556668Sshin    return false;
76656668Sshin  }
76756668Sshin
76856668Sshin  // set the correct thread state
76956668Sshin  osthread->set_thread_type(thr_type);
77056668Sshin
77156668Sshin  // Initial state is ALLOCATED but not INITIALIZED
77256668Sshin  osthread->set_state(ALLOCATED);
77356668Sshin
77456668Sshin  thread->set_osthread(osthread);
77556668Sshin
77656668Sshin  // init thread attributes
77756668Sshin  pthread_attr_t attr;
77856668Sshin  pthread_attr_init(&attr);
77956668Sshin  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
78056668Sshin
78156668Sshin  // stack size
78256668Sshin  if (os::Bsd::supports_variable_stack_size()) {
78356668Sshin    // calculate stack size if it's not specified by caller
78456668Sshin    if (stack_size == 0) {
78556668Sshin      stack_size = os::Bsd::default_stack_size(thr_type);
78656668Sshin
78756668Sshin      switch (thr_type) {
78856668Sshin      case os::java_thread:
78956668Sshin        // Java threads use ThreadStackSize which default value can be
79056668Sshin        // changed with the flag -Xss
79156668Sshin        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
792122679Sume        stack_size = JavaThread::stack_size_at_create();
793122679Sume        break;
794122679Sume      case os::compiler_thread:
795122679Sume        if (CompilerThreadStackSize > 0) {
796122679Sume          stack_size = (size_t)(CompilerThreadStackSize * K);
79756668Sshin          break;
79856668Sshin        } // else fall through:
79956668Sshin          // use VMThreadStackSize if CompilerThreadStackSize is not defined
80056668Sshin      case os::vm_thread:
80156668Sshin      case os::pgc_thread:
80256668Sshin      case os::cgc_thread:
80356668Sshin      case os::watcher_thread:
80456668Sshin        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
80556668Sshin        break;
80656668Sshin      }
80756668Sshin    }
80856668Sshin
809122679Sume    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
810122679Sume    pthread_attr_setstacksize(&attr, stack_size);
811122679Sume  } else {
812122679Sume    // let pthread_create() pick the default value.
813122679Sume  }
81456668Sshin
81556668Sshin  ThreadState state;
81656668Sshin
81756668Sshin  {
81856668Sshin    pthread_t tid;
81956668Sshin    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
82056668Sshin
82156668Sshin    pthread_attr_destroy(&attr);
82256668Sshin
82356668Sshin    if (ret != 0) {
82456668Sshin      if (PrintMiscellaneous && (Verbose || WizardMode)) {
82556668Sshin        perror("pthread_create()");
82656668Sshin      }
827122679Sume      // Need to clean up stuff we've allocated so far
828122679Sume      thread->set_osthread(NULL);
82956668Sshin      delete osthread;
83056668Sshin      return false;
83156668Sshin    }
83256668Sshin
833122679Sume    // Store pthread info into the OSThread
834122679Sume    osthread->set_pthread_id(tid);
835122679Sume
836122679Sume    // Wait until child thread is either initialized or aborted
837122679Sume    {
83856668Sshin      Monitor* sync_with_child = osthread->startThread_lock();
83956668Sshin      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
84056668Sshin      while ((state = osthread->get_state()) == ALLOCATED) {
84156668Sshin        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
84256668Sshin      }
84356668Sshin    }
84456668Sshin
84556668Sshin  }
84656668Sshin
84756668Sshin  // Aborted due to thread limit being reached
84856668Sshin  if (state == ZOMBIE) {
84956668Sshin    thread->set_osthread(NULL);
85056668Sshin    delete osthread;
85156668Sshin    return false;
85256668Sshin  }
85356668Sshin
85456668Sshin  // The thread is returned suspended (in state INITIALIZED),
85556668Sshin  // and is started higher up in the call chain
85656668Sshin  assert(state == INITIALIZED, "race condition");
85756668Sshin  return true;
85856668Sshin}
85956668Sshin
860122679Sume/////////////////////////////////////////////////////////////////////////////
861122679Sume// attach existing thread
86256668Sshin
86356668Sshin// bootstrap the main thread
86456668Sshinbool os::create_main_thread(JavaThread* thread) {
86556668Sshin  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
86656668Sshin  return create_attached_thread(thread);
86756668Sshin}
86856668Sshin
86956668Sshinbool os::create_attached_thread(JavaThread* thread) {
87056668Sshin#ifdef ASSERT
87156668Sshin  thread->verify_not_published();
87256668Sshin#endif
87356668Sshin
87456668Sshin  // Allocate the OSThread object
87556668Sshin  OSThread* osthread = new OSThread(NULL, NULL);
87656668Sshin
87756668Sshin  if (osthread == NULL) {
878122679Sume    return false;
879122679Sume  }
880122679Sume
881122679Sume  osthread->set_thread_id(os::Bsd::gettid());
88256668Sshin
88356668Sshin  // Store pthread info into the OSThread
88456668Sshin#ifdef __APPLE__
88556668Sshin  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
88656668Sshin  guarantee(unique_thread_id != 0, "just checking");
88756668Sshin  osthread->set_unique_thread_id(unique_thread_id);
88856668Sshin#endif
88956668Sshin  osthread->set_pthread_id(::pthread_self());
89056668Sshin
89156668Sshin  // initialize floating point control register
89256668Sshin  os::Bsd::init_thread_fpu_state();
89356668Sshin
89456668Sshin  // Initial thread state is RUNNABLE
89556668Sshin  osthread->set_state(RUNNABLE);
89656668Sshin
89756668Sshin  thread->set_osthread(osthread);
89856668Sshin
89956668Sshin  // initialize signal mask for this thread
90056668Sshin  // and save the caller's signal mask
90156668Sshin  os::Bsd::hotspot_sigmask(thread);
90256668Sshin
903122679Sume  return true;
904122679Sume}
905122679Sume
906122679Sumevoid os::pd_start_thread(Thread* thread) {
907122679Sume  OSThread * osthread = thread->osthread();
90856668Sshin  assert(osthread->get_state() != INITIALIZED, "just checking");
90956668Sshin  Monitor* sync_with_child = osthread->startThread_lock();
91056668Sshin  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
91156668Sshin  sync_with_child->notify();
91256668Sshin}
91356668Sshin
91456668Sshin// Free Bsd resources related to the OSThread
91556668Sshinvoid os::free_thread(OSThread* osthread) {
91656668Sshin  assert(osthread != NULL, "osthread not set");
91756668Sshin
91856668Sshin  if (Thread::current()->osthread() == osthread) {
919122679Sume    // Restore caller's signal mask
920122679Sume    sigset_t sigmask = osthread->caller_sigmask();
921122679Sume    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
922122679Sume  }
923122679Sume
92456668Sshin  delete osthread;
92556668Sshin}
92656668Sshin
92756668Sshin//////////////////////////////////////////////////////////////////////////////
92856668Sshin// thread local storage
92956668Sshin
93056668Sshin// Restore the thread pointer if the destructor is called. This is in case
93156668Sshin// someone from JNI code sets up a destructor with pthread_key_create to run
93256668Sshin// detachCurrentThread on thread death. Unless we restore the thread pointer we
93356668Sshin// will hang or crash. When detachCurrentThread is called the key will be set
93456668Sshin// to null and we will not be called again. If detachCurrentThread is never
93556668Sshin// called we could loop forever depending on the pthread implementation.
93656668Sshinstatic void restore_thread_pointer(void* p) {
93756668Sshin  Thread* thread = (Thread*) p;
93856668Sshin  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
93956668Sshin}
94056668Sshin
94156668Sshinint os::allocate_thread_local_storage() {
94256668Sshin  pthread_key_t key;
943122679Sume  int rslt = pthread_key_create(&key, restore_thread_pointer);
944122679Sume  assert(rslt == 0, "cannot allocate thread local storage");
945122679Sume  return (int)key;
946122679Sume}
947122679Sume
94856668Sshin// Note: This is currently not used by VM, as we don't destroy TLS key
94956668Sshin// on VM exit.
95056668Sshinvoid os::free_thread_local_storage(int index) {
95178064Sume  int rslt = pthread_key_delete((pthread_key_t)index);
952122679Sume  assert(rslt == 0, "invalid index");
95356668Sshin}
95456668Sshin
95556668Sshinvoid os::thread_local_storage_at_put(int index, void* value) {
95662655Skris  int rslt = pthread_setspecific((pthread_key_t)index, value);
957122679Sume  assert(rslt == 0, "pthread_setspecific failed");
958122679Sume}
959122679Sume
960122679Sumeextern "C" Thread* get_thread() {
961122679Sume  return ThreadLocalStorage::thread();
96256668Sshin}
96356668Sshin
96456668Sshin
96556668Sshin////////////////////////////////////////////////////////////////////////////////
966122679Sume// time support
967122679Sume
968122679Sume// Time since start-up in seconds to a fine granularity.
969122679Sume// Used by VMSelfDestructTimer and the MemProfiler.
970145357Ssuzdouble os::elapsedTime() {
971122679Sume
97256668Sshin  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
97356668Sshin}
97456668Sshin
97556668Sshinjlong os::elapsed_counter() {
976145791Ssuz  return javaTimeNanos() - initial_time_count;
97756668Sshin}
97856668Sshin
97956668Sshinjlong os::elapsed_frequency() {
98056668Sshin  return NANOSECS_PER_SEC; // nanosecond resolution
98156668Sshin}
98256668Sshin
98356668Sshinbool os::supports_vtime() { return true; }
98456668Sshinbool os::enable_vtime()   { return false; }
98556668Sshinbool os::vtime_enabled()  { return false; }
98656668Sshin
98756668Sshindouble os::elapsedVTime() {
98856668Sshin  // better than nothing, but not much
98956668Sshin  return elapsedTime();
99056668Sshin}
99156668Sshin
99256668Sshinjlong os::javaTimeMillis() {
993122679Sume  timeval time;
994122679Sume  int status = gettimeofday(&time, NULL);
995122679Sume  assert(status != -1, "bsd error");
996122679Sume  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
997122679Sume}
99856668Sshin
99956668Sshin#ifndef __APPLE__
100056668Sshin  #ifndef CLOCK_MONOTONIC
100156668Sshin    #define CLOCK_MONOTONIC (1)
1002122679Sume  #endif
1003122679Sume#endif
1004122679Sume
1005122679Sume#ifdef __APPLE__
100656668Sshinvoid os::Bsd::clock_init() {
100756668Sshin  mach_timebase_info(&_timebase_info);
100856668Sshin}
100956668Sshin#else
101056668Sshinvoid os::Bsd::clock_init() {
101156668Sshin  struct timespec res;
101256668Sshin  struct timespec tp;
101356668Sshin  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
101456668Sshin      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
101556668Sshin    // yes, monotonic clock is supported
101656668Sshin    _clock_gettime = ::clock_gettime;
101756668Sshin  }
101856668Sshin}
101956668Sshin#endif
1020122679Sume
1021122679Sume
1022122679Sume
1023122679Sume#ifdef __APPLE__
102456668Sshin
102556668Sshinjlong os::javaTimeNanos() {
102656668Sshin  const uint64_t tm = mach_absolute_time();
102756668Sshin  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
102856668Sshin  const uint64_t prev = Bsd::_max_abstime;
102956668Sshin  if (now <= prev) {
103056668Sshin    return prev;   // same or retrograde time;
103156668Sshin  }
103256668Sshin  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
103356668Sshin  assert(obsv >= prev, "invariant");   // Monotonicity
1034122679Sume  // If the CAS succeeded then we're done and return "now".
1035122679Sume  // If the CAS failed and the observed value "obsv" is >= now then
1036122679Sume  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1037122679Sume  // some other thread raced this thread and installed a new value, in which case
103856668Sshin  // we could either (a) retry the entire operation, (b) retry trying to install now
103956668Sshin  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
104056668Sshin  // we might discard a higher "now" value in deference to a slightly lower but freshly
104156668Sshin  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
104256668Sshin  // to (a) or (b) -- and greatly reduces coherence traffic.
104356668Sshin  // We might also condition (c) on the magnitude of the delta between obsv and now.
1044122679Sume  // Avoiding excessive CAS operations to hot RW locations is critical.
1045122679Sume  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1046122679Sume  return (prev == obsv) ? now : obsv;
1047122679Sume}
1048122679Sume
104956668Sshin#else // __APPLE__
105056668Sshin
105156668Sshinjlong os::javaTimeNanos() {
105256668Sshin  if (os::supports_monotonic_clock()) {
105356668Sshin    struct timespec tp;
105456668Sshin    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
105556668Sshin    assert(status == 0, "gettime error");
105656668Sshin    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
105756668Sshin    return result;
105856668Sshin  } else {
105956668Sshin    timeval time;
106056668Sshin    int status = gettimeofday(&time, NULL);
106156668Sshin    assert(status != -1, "bsd error");
106256668Sshin    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1063122679Sume    return 1000 * usecs;
1064122679Sume  }
1065122679Sume}
1066122679Sume
106756668Sshin#endif // __APPLE__
106856668Sshin
106956668Sshinvoid os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
107056668Sshin  if (os::supports_monotonic_clock()) {
107156668Sshin    info_ptr->max_value = ALL_64_BITS;
107256668Sshin
107356668Sshin    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
107456668Sshin    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
107556668Sshin    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
107656668Sshin  } else {
1077122679Sume    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1078122679Sume    info_ptr->max_value = ALL_64_BITS;
107956668Sshin
108056668Sshin    // gettimeofday is a real time clock so it skips
108156668Sshin    info_ptr->may_skip_backward = true;
108295023Ssuz    info_ptr->may_skip_forward = true;
108356668Sshin  }
108456668Sshin
108556668Sshin  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1086}
1087
1088// Return the real, user, and system times in seconds from an
1089// arbitrary fixed point in the past.
1090bool os::getTimesSecs(double* process_real_time,
1091                      double* process_user_time,
1092                      double* process_system_time) {
1093  struct tms ticks;
1094  clock_t real_ticks = times(&ticks);
1095
1096  if (real_ticks == (clock_t) (-1)) {
1097    return false;
1098  } else {
1099    double ticks_per_second = (double) clock_tics_per_sec;
1100    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1101    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1102    *process_real_time = ((double) real_ticks) / ticks_per_second;
1103
1104    return true;
1105  }
1106}
1107
1108
1109char * os::local_time_string(char *buf, size_t buflen) {
1110  struct tm t;
1111  time_t long_time;
1112  time(&long_time);
1113  localtime_r(&long_time, &t);
1114  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1115               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1116               t.tm_hour, t.tm_min, t.tm_sec);
1117  return buf;
1118}
1119
1120struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1121  return localtime_r(clock, res);
1122}
1123
1124////////////////////////////////////////////////////////////////////////////////
1125// runtime exit support
1126
1127// Note: os::shutdown() might be called very early during initialization, or
1128// called from signal handler. Before adding something to os::shutdown(), make
1129// sure it is async-safe and can handle partially initialized VM.
1130void os::shutdown() {
1131
1132  // allow PerfMemory to attempt cleanup of any persistent resources
1133  perfMemory_exit();
1134
1135  // needs to remove object in file system
1136  AttachListener::abort();
1137
1138  // flush buffered output, finish log files
1139  ostream_abort();
1140
1141  // Check for abort hook
1142  abort_hook_t abort_hook = Arguments::abort_hook();
1143  if (abort_hook != NULL) {
1144    abort_hook();
1145  }
1146
1147}
1148
1149// Note: os::abort() might be called very early during initialization, or
1150// called from signal handler. Before adding something to os::abort(), make
1151// sure it is async-safe and can handle partially initialized VM.
1152void os::abort(bool dump_core) {
1153  os::shutdown();
1154  if (dump_core) {
1155#ifndef PRODUCT
1156    fdStream out(defaultStream::output_fd());
1157    out.print_raw("Current thread is ");
1158    char buf[16];
1159    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160    out.print_raw_cr(buf);
1161    out.print_raw_cr("Dumping core ...");
1162#endif
1163    ::abort(); // dump core
1164  }
1165
1166  ::exit(1);
1167}
1168
1169// Die immediately, no exit hook, no abort hook, no cleanup.
1170void os::die() {
1171  // _exit() on BsdThreads only kills current thread
1172  ::abort();
1173}
1174
1175// This method is a copy of JDK's sysGetLastErrorString
1176// from src/solaris/hpi/src/system_md.c
1177
1178size_t os::lasterror(char *buf, size_t len) {
1179  if (errno == 0)  return 0;
1180
1181  const char *s = ::strerror(errno);
1182  size_t n = ::strlen(s);
1183  if (n >= len) {
1184    n = len - 1;
1185  }
1186  ::strncpy(buf, s, n);
1187  buf[n] = '\0';
1188  return n;
1189}
1190
1191// Information of current thread in variety of formats
1192pid_t os::Bsd::gettid() {
1193  int retval = -1;
1194
1195#ifdef __APPLE__ //XNU kernel
1196  // despite the fact mach port is actually not a thread id use it
1197  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1198  retval = ::pthread_mach_thread_np(::pthread_self());
1199  guarantee(retval != 0, "just checking");
1200  return retval;
1201
1202#elif __FreeBSD__
1203  retval = syscall(SYS_thr_self);
1204#elif __OpenBSD__
1205  retval = syscall(SYS_getthrid);
1206#elif __NetBSD__
1207  retval = (pid_t) syscall(SYS__lwp_self);
1208#endif
1209
1210  if (retval == -1) {
1211    return getpid();
1212  }
1213}
1214
1215intx os::current_thread_id() {
1216#ifdef __APPLE__
1217  return (intx)::pthread_mach_thread_np(::pthread_self());
1218#else
1219  return (intx)::pthread_self();
1220#endif
1221}
1222
1223int os::current_process_id() {
1224
1225  // Under the old bsd thread library, bsd gives each thread
1226  // its own process id. Because of this each thread will return
1227  // a different pid if this method were to return the result
1228  // of getpid(2). Bsd provides no api that returns the pid
1229  // of the launcher thread for the vm. This implementation
1230  // returns a unique pid, the pid of the launcher thread
1231  // that starts the vm 'process'.
1232
1233  // Under the NPTL, getpid() returns the same pid as the
1234  // launcher thread rather than a unique pid per thread.
1235  // Use gettid() if you want the old pre NPTL behaviour.
1236
1237  // if you are looking for the result of a call to getpid() that
1238  // returns a unique pid for the calling thread, then look at the
1239  // OSThread::thread_id() method in osThread_bsd.hpp file
1240
1241  return (int)(_initial_pid ? _initial_pid : getpid());
1242}
1243
1244// DLL functions
1245
1246#define JNI_LIB_PREFIX "lib"
1247#ifdef __APPLE__
1248  #define JNI_LIB_SUFFIX ".dylib"
1249#else
1250  #define JNI_LIB_SUFFIX ".so"
1251#endif
1252
1253const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1254
1255// This must be hard coded because it's the system's temporary
1256// directory not the java application's temp directory, ala java.io.tmpdir.
1257#ifdef __APPLE__
1258// macosx has a secure per-user temporary directory
1259char temp_path_storage[PATH_MAX];
1260const char* os::get_temp_directory() {
1261  static char *temp_path = NULL;
1262  if (temp_path == NULL) {
1263    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1264    if (pathSize == 0 || pathSize > PATH_MAX) {
1265      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1266    }
1267    temp_path = temp_path_storage;
1268  }
1269  return temp_path;
1270}
1271#else // __APPLE__
1272const char* os::get_temp_directory() { return "/tmp"; }
1273#endif // __APPLE__
1274
1275static bool file_exists(const char* filename) {
1276  struct stat statbuf;
1277  if (filename == NULL || strlen(filename) == 0) {
1278    return false;
1279  }
1280  return os::stat(filename, &statbuf) == 0;
1281}
1282
1283bool os::dll_build_name(char* buffer, size_t buflen,
1284                        const char* pname, const char* fname) {
1285  bool retval = false;
1286  // Copied from libhpi
1287  const size_t pnamelen = pname ? strlen(pname) : 0;
1288
1289  // Return error on buffer overflow.
1290  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1291    return retval;
1292  }
1293
1294  if (pnamelen == 0) {
1295    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1296    retval = true;
1297  } else if (strchr(pname, *os::path_separator()) != NULL) {
1298    int n;
1299    char** pelements = split_path(pname, &n);
1300    if (pelements == NULL) {
1301      return false;
1302    }
1303    for (int i = 0; i < n; i++) {
1304      // Really shouldn't be NULL, but check can't hurt
1305      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1306        continue; // skip the empty path values
1307      }
1308      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1309               pelements[i], fname);
1310      if (file_exists(buffer)) {
1311        retval = true;
1312        break;
1313      }
1314    }
1315    // release the storage
1316    for (int i = 0; i < n; i++) {
1317      if (pelements[i] != NULL) {
1318        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1319      }
1320    }
1321    if (pelements != NULL) {
1322      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1323    }
1324  } else {
1325    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1326    retval = true;
1327  }
1328  return retval;
1329}
1330
1331// check if addr is inside libjvm.so
1332bool os::address_is_in_vm(address addr) {
1333  static address libjvm_base_addr;
1334  Dl_info dlinfo;
1335
1336  if (libjvm_base_addr == NULL) {
1337    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1338      libjvm_base_addr = (address)dlinfo.dli_fbase;
1339    }
1340    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1341  }
1342
1343  if (dladdr((void *)addr, &dlinfo) != 0) {
1344    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1345  }
1346
1347  return false;
1348}
1349
1350
1351#define MACH_MAXSYMLEN 256
1352
1353bool os::dll_address_to_function_name(address addr, char *buf,
1354                                      int buflen, int *offset) {
1355  // buf is not optional, but offset is optional
1356  assert(buf != NULL, "sanity check");
1357
1358  Dl_info dlinfo;
1359  char localbuf[MACH_MAXSYMLEN];
1360
1361  if (dladdr((void*)addr, &dlinfo) != 0) {
1362    // see if we have a matching symbol
1363    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1364      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1365        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1366      }
1367      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1368      return true;
1369    }
1370    // no matching symbol so try for just file info
1371    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1372      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1373                          buf, buflen, offset, dlinfo.dli_fname)) {
1374        return true;
1375      }
1376    }
1377
1378    // Handle non-dynamic manually:
1379    if (dlinfo.dli_fbase != NULL &&
1380        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1381      if (!Decoder::demangle(localbuf, buf, buflen)) {
1382        jio_snprintf(buf, buflen, "%s", localbuf);
1383      }
1384      return true;
1385    }
1386  }
1387  buf[0] = '\0';
1388  if (offset != NULL) *offset = -1;
1389  return false;
1390}
1391
1392// ported from solaris version
1393bool os::dll_address_to_library_name(address addr, char* buf,
1394                                     int buflen, int* offset) {
1395  // buf is not optional, but offset is optional
1396  assert(buf != NULL, "sanity check");
1397
1398  Dl_info dlinfo;
1399
1400  if (dladdr((void*)addr, &dlinfo) != 0) {
1401    if (dlinfo.dli_fname != NULL) {
1402      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1403    }
1404    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1405      *offset = addr - (address)dlinfo.dli_fbase;
1406    }
1407    return true;
1408  }
1409
1410  buf[0] = '\0';
1411  if (offset) *offset = -1;
1412  return false;
1413}
1414
1415// Loads .dll/.so and
1416// in case of error it checks if .dll/.so was built for the
1417// same architecture as Hotspot is running on
1418
1419#ifdef __APPLE__
1420void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1421  void * result= ::dlopen(filename, RTLD_LAZY);
1422  if (result != NULL) {
1423    // Successful loading
1424    return result;
1425  }
1426
1427  // Read system error message into ebuf
1428  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1429  ebuf[ebuflen-1]='\0';
1430
1431  return NULL;
1432}
1433#else
1434void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1435  void * result= ::dlopen(filename, RTLD_LAZY);
1436  if (result != NULL) {
1437    // Successful loading
1438    return result;
1439  }
1440
1441  Elf32_Ehdr elf_head;
1442
1443  // Read system error message into ebuf
1444  // It may or may not be overwritten below
1445  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1446  ebuf[ebuflen-1]='\0';
1447  int diag_msg_max_length=ebuflen-strlen(ebuf);
1448  char* diag_msg_buf=ebuf+strlen(ebuf);
1449
1450  if (diag_msg_max_length==0) {
1451    // No more space in ebuf for additional diagnostics message
1452    return NULL;
1453  }
1454
1455
1456  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1457
1458  if (file_descriptor < 0) {
1459    // Can't open library, report dlerror() message
1460    return NULL;
1461  }
1462
1463  bool failed_to_read_elf_head=
1464    (sizeof(elf_head)!=
1465     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1466
1467  ::close(file_descriptor);
1468  if (failed_to_read_elf_head) {
1469    // file i/o error - report dlerror() msg
1470    return NULL;
1471  }
1472
1473  typedef struct {
1474    Elf32_Half  code;         // Actual value as defined in elf.h
1475    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1476    char        elf_class;    // 32 or 64 bit
1477    char        endianess;    // MSB or LSB
1478    char*       name;         // String representation
1479  } arch_t;
1480
1481  #ifndef EM_486
1482    #define EM_486          6               /* Intel 80486 */
1483  #endif
1484
1485  #ifndef EM_MIPS_RS3_LE
1486    #define EM_MIPS_RS3_LE  10              /* MIPS */
1487  #endif
1488
1489  #ifndef EM_PPC64
1490    #define EM_PPC64        21              /* PowerPC64 */
1491  #endif
1492
1493  #ifndef EM_S390
1494    #define EM_S390         22              /* IBM System/390 */
1495  #endif
1496
1497  #ifndef EM_IA_64
1498    #define EM_IA_64        50              /* HP/Intel IA-64 */
1499  #endif
1500
1501  #ifndef EM_X86_64
1502    #define EM_X86_64       62              /* AMD x86-64 */
1503  #endif
1504
1505  static const arch_t arch_array[]={
1506    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1507    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1508    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1509    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1510    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1511    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1512    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1513    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1514    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1515    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1516    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1517    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1518    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1519    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1520    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1521    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1522  };
1523
1524  #if  (defined IA32)
1525  static  Elf32_Half running_arch_code=EM_386;
1526  #elif   (defined AMD64)
1527  static  Elf32_Half running_arch_code=EM_X86_64;
1528  #elif  (defined IA64)
1529  static  Elf32_Half running_arch_code=EM_IA_64;
1530  #elif  (defined __sparc) && (defined _LP64)
1531  static  Elf32_Half running_arch_code=EM_SPARCV9;
1532  #elif  (defined __sparc) && (!defined _LP64)
1533  static  Elf32_Half running_arch_code=EM_SPARC;
1534  #elif  (defined __powerpc64__)
1535  static  Elf32_Half running_arch_code=EM_PPC64;
1536  #elif  (defined __powerpc__)
1537  static  Elf32_Half running_arch_code=EM_PPC;
1538  #elif  (defined ARM)
1539  static  Elf32_Half running_arch_code=EM_ARM;
1540  #elif  (defined S390)
1541  static  Elf32_Half running_arch_code=EM_S390;
1542  #elif  (defined ALPHA)
1543  static  Elf32_Half running_arch_code=EM_ALPHA;
1544  #elif  (defined MIPSEL)
1545  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1546  #elif  (defined PARISC)
1547  static  Elf32_Half running_arch_code=EM_PARISC;
1548  #elif  (defined MIPS)
1549  static  Elf32_Half running_arch_code=EM_MIPS;
1550  #elif  (defined M68K)
1551  static  Elf32_Half running_arch_code=EM_68K;
1552  #else
1553    #error Method os::dll_load requires that one of following is defined:\
1554         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1555  #endif
1556
1557  // Identify compatability class for VM's architecture and library's architecture
1558  // Obtain string descriptions for architectures
1559
1560  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1561  int running_arch_index=-1;
1562
1563  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1564    if (running_arch_code == arch_array[i].code) {
1565      running_arch_index    = i;
1566    }
1567    if (lib_arch.code == arch_array[i].code) {
1568      lib_arch.compat_class = arch_array[i].compat_class;
1569      lib_arch.name         = arch_array[i].name;
1570    }
1571  }
1572
1573  assert(running_arch_index != -1,
1574         "Didn't find running architecture code (running_arch_code) in arch_array");
1575  if (running_arch_index == -1) {
1576    // Even though running architecture detection failed
1577    // we may still continue with reporting dlerror() message
1578    return NULL;
1579  }
1580
1581  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1582    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1583    return NULL;
1584  }
1585
1586#ifndef S390
1587  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1588    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1589    return NULL;
1590  }
1591#endif // !S390
1592
1593  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1594    if (lib_arch.name!=NULL) {
1595      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1596                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1597                 lib_arch.name, arch_array[running_arch_index].name);
1598    } else {
1599      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1600                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1601                 lib_arch.code,
1602                 arch_array[running_arch_index].name);
1603    }
1604  }
1605
1606  return NULL;
1607}
1608#endif // !__APPLE__
1609
1610void* os::get_default_process_handle() {
1611#ifdef __APPLE__
1612  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1613  // to avoid finding unexpected symbols on second (or later)
1614  // loads of a library.
1615  return (void*)::dlopen(NULL, RTLD_FIRST);
1616#else
1617  return (void*)::dlopen(NULL, RTLD_LAZY);
1618#endif
1619}
1620
1621// XXX: Do we need a lock around this as per Linux?
1622void* os::dll_lookup(void* handle, const char* name) {
1623  return dlsym(handle, name);
1624}
1625
1626
1627static bool _print_ascii_file(const char* filename, outputStream* st) {
1628  int fd = ::open(filename, O_RDONLY);
1629  if (fd == -1) {
1630    return false;
1631  }
1632
1633  char buf[32];
1634  int bytes;
1635  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1636    st->print_raw(buf, bytes);
1637  }
1638
1639  ::close(fd);
1640
1641  return true;
1642}
1643
1644void os::print_dll_info(outputStream *st) {
1645  st->print_cr("Dynamic libraries:");
1646#ifdef RTLD_DI_LINKMAP
1647  Dl_info dli;
1648  void *handle;
1649  Link_map *map;
1650  Link_map *p;
1651
1652  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1653      dli.dli_fname == NULL) {
1654    st->print_cr("Error: Cannot print dynamic libraries.");
1655    return;
1656  }
1657  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1658  if (handle == NULL) {
1659    st->print_cr("Error: Cannot print dynamic libraries.");
1660    return;
1661  }
1662  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1663  if (map == NULL) {
1664    st->print_cr("Error: Cannot print dynamic libraries.");
1665    return;
1666  }
1667
1668  while (map->l_prev != NULL)
1669    map = map->l_prev;
1670
1671  while (map != NULL) {
1672    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1673    map = map->l_next;
1674  }
1675
1676  dlclose(handle);
1677#elif defined(__APPLE__)
1678  uint32_t count;
1679  uint32_t i;
1680
1681  count = _dyld_image_count();
1682  for (i = 1; i < count; i++) {
1683    const char *name = _dyld_get_image_name(i);
1684    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1685    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1686  }
1687#else
1688  st->print_cr("Error: Cannot print dynamic libraries.");
1689#endif
1690}
1691
1692void os::print_os_info_brief(outputStream* st) {
1693  st->print("Bsd");
1694
1695  os::Posix::print_uname_info(st);
1696}
1697
1698void os::print_os_info(outputStream* st) {
1699  st->print("OS:");
1700  st->print("Bsd");
1701
1702  os::Posix::print_uname_info(st);
1703
1704  os::Posix::print_rlimit_info(st);
1705
1706  os::Posix::print_load_average(st);
1707}
1708
1709void os::pd_print_cpu_info(outputStream* st) {
1710  // Nothing to do for now.
1711}
1712
1713void os::print_memory_info(outputStream* st) {
1714
1715  st->print("Memory:");
1716  st->print(" %dk page", os::vm_page_size()>>10);
1717
1718  st->print(", physical " UINT64_FORMAT "k",
1719            os::physical_memory() >> 10);
1720  st->print("(" UINT64_FORMAT "k free)",
1721            os::available_memory() >> 10);
1722  st->cr();
1723
1724  // meminfo
1725  st->print("\n/proc/meminfo:\n");
1726  _print_ascii_file("/proc/meminfo", st);
1727  st->cr();
1728}
1729
1730void os::print_siginfo(outputStream* st, void* siginfo) {
1731  const siginfo_t* si = (const siginfo_t*)siginfo;
1732
1733  os::Posix::print_siginfo_brief(st, si);
1734
1735  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1736      UseSharedSpaces) {
1737    FileMapInfo* mapinfo = FileMapInfo::current_info();
1738    if (mapinfo->is_in_shared_space(si->si_addr)) {
1739      st->print("\n\nError accessing class data sharing archive."   \
1740                " Mapped file inaccessible during execution, "      \
1741                " possible disk/network problem.");
1742    }
1743  }
1744  st->cr();
1745}
1746
1747
1748static void print_signal_handler(outputStream* st, int sig,
1749                                 char* buf, size_t buflen);
1750
1751void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1752  st->print_cr("Signal Handlers:");
1753  print_signal_handler(st, SIGSEGV, buf, buflen);
1754  print_signal_handler(st, SIGBUS , buf, buflen);
1755  print_signal_handler(st, SIGFPE , buf, buflen);
1756  print_signal_handler(st, SIGPIPE, buf, buflen);
1757  print_signal_handler(st, SIGXFSZ, buf, buflen);
1758  print_signal_handler(st, SIGILL , buf, buflen);
1759  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1760  print_signal_handler(st, SR_signum, buf, buflen);
1761  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1762  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1763  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1764  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1765}
1766
1767static char saved_jvm_path[MAXPATHLEN] = {0};
1768
1769// Find the full path to the current module, libjvm
1770void os::jvm_path(char *buf, jint buflen) {
1771  // Error checking.
1772  if (buflen < MAXPATHLEN) {
1773    assert(false, "must use a large-enough buffer");
1774    buf[0] = '\0';
1775    return;
1776  }
1777  // Lazy resolve the path to current module.
1778  if (saved_jvm_path[0] != 0) {
1779    strcpy(buf, saved_jvm_path);
1780    return;
1781  }
1782
1783  char dli_fname[MAXPATHLEN];
1784  bool ret = dll_address_to_library_name(
1785                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1786                                         dli_fname, sizeof(dli_fname), NULL);
1787  assert(ret, "cannot locate libjvm");
1788  char *rp = NULL;
1789  if (ret && dli_fname[0] != '\0') {
1790    rp = realpath(dli_fname, buf);
1791  }
1792  if (rp == NULL) {
1793    return;
1794  }
1795
1796  if (Arguments::sun_java_launcher_is_altjvm()) {
1797    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1798    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1799    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1800    // appears at the right place in the string, then assume we are
1801    // installed in a JDK and we're done. Otherwise, check for a
1802    // JAVA_HOME environment variable and construct a path to the JVM
1803    // being overridden.
1804
1805    const char *p = buf + strlen(buf) - 1;
1806    for (int count = 0; p > buf && count < 5; ++count) {
1807      for (--p; p > buf && *p != '/'; --p)
1808        /* empty */ ;
1809    }
1810
1811    if (strncmp(p, "/jre/lib/", 9) != 0) {
1812      // Look for JAVA_HOME in the environment.
1813      char* java_home_var = ::getenv("JAVA_HOME");
1814      if (java_home_var != NULL && java_home_var[0] != 0) {
1815        char* jrelib_p;
1816        int len;
1817
1818        // Check the current module name "libjvm"
1819        p = strrchr(buf, '/');
1820        assert(strstr(p, "/libjvm") == p, "invalid library name");
1821
1822        rp = realpath(java_home_var, buf);
1823        if (rp == NULL) {
1824          return;
1825        }
1826
1827        // determine if this is a legacy image or modules image
1828        // modules image doesn't have "jre" subdirectory
1829        len = strlen(buf);
1830        assert(len < buflen, "Ran out of buffer space");
1831        jrelib_p = buf + len;
1832
1833        // Add the appropriate library subdir
1834        snprintf(jrelib_p, buflen-len, "/jre/lib");
1835        if (0 != access(buf, F_OK)) {
1836          snprintf(jrelib_p, buflen-len, "/lib");
1837        }
1838
1839        // Add the appropriate client or server subdir
1840        len = strlen(buf);
1841        jrelib_p = buf + len;
1842        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1843        if (0 != access(buf, F_OK)) {
1844          snprintf(jrelib_p, buflen-len, "%s", "");
1845        }
1846
1847        // If the path exists within JAVA_HOME, add the JVM library name
1848        // to complete the path to JVM being overridden.  Otherwise fallback
1849        // to the path to the current library.
1850        if (0 == access(buf, F_OK)) {
1851          // Use current module name "libjvm"
1852          len = strlen(buf);
1853          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1854        } else {
1855          // Fall back to path of current library
1856          rp = realpath(dli_fname, buf);
1857          if (rp == NULL) {
1858            return;
1859          }
1860        }
1861      }
1862    }
1863  }
1864
1865  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1866}
1867
1868void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1869  // no prefix required, not even "_"
1870}
1871
1872void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1873  // no suffix required
1874}
1875
1876////////////////////////////////////////////////////////////////////////////////
1877// sun.misc.Signal support
1878
1879static volatile jint sigint_count = 0;
1880
1881static void UserHandler(int sig, void *siginfo, void *context) {
1882  // 4511530 - sem_post is serialized and handled by the manager thread. When
1883  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1884  // don't want to flood the manager thread with sem_post requests.
1885  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1886    return;
1887  }
1888
1889  // Ctrl-C is pressed during error reporting, likely because the error
1890  // handler fails to abort. Let VM die immediately.
1891  if (sig == SIGINT && is_error_reported()) {
1892    os::die();
1893  }
1894
1895  os::signal_notify(sig);
1896}
1897
1898void* os::user_handler() {
1899  return CAST_FROM_FN_PTR(void*, UserHandler);
1900}
1901
1902extern "C" {
1903  typedef void (*sa_handler_t)(int);
1904  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1905}
1906
1907void* os::signal(int signal_number, void* handler) {
1908  struct sigaction sigAct, oldSigAct;
1909
1910  sigfillset(&(sigAct.sa_mask));
1911  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1912  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1913
1914  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1915    // -1 means registration failed
1916    return (void *)-1;
1917  }
1918
1919  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1920}
1921
1922void os::signal_raise(int signal_number) {
1923  ::raise(signal_number);
1924}
1925
1926// The following code is moved from os.cpp for making this
1927// code platform specific, which it is by its very nature.
1928
1929// Will be modified when max signal is changed to be dynamic
1930int os::sigexitnum_pd() {
1931  return NSIG;
1932}
1933
1934// a counter for each possible signal value
1935static volatile jint pending_signals[NSIG+1] = { 0 };
1936
1937// Bsd(POSIX) specific hand shaking semaphore.
1938#ifdef __APPLE__
1939typedef semaphore_t os_semaphore_t;
1940
1941  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1942  #define SEM_WAIT(sem)           semaphore_wait(sem)
1943  #define SEM_POST(sem)           semaphore_signal(sem)
1944  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1945#else
1946typedef sem_t os_semaphore_t;
1947
1948  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1949  #define SEM_WAIT(sem)           sem_wait(&sem)
1950  #define SEM_POST(sem)           sem_post(&sem)
1951  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1952#endif
1953
1954class Semaphore : public StackObj {
1955 public:
1956  Semaphore();
1957  ~Semaphore();
1958  void signal();
1959  void wait();
1960  bool trywait();
1961  bool timedwait(unsigned int sec, int nsec);
1962 private:
1963  jlong currenttime() const;
1964  os_semaphore_t _semaphore;
1965};
1966
1967Semaphore::Semaphore() : _semaphore(0) {
1968  SEM_INIT(_semaphore, 0);
1969}
1970
1971Semaphore::~Semaphore() {
1972  SEM_DESTROY(_semaphore);
1973}
1974
1975void Semaphore::signal() {
1976  SEM_POST(_semaphore);
1977}
1978
1979void Semaphore::wait() {
1980  SEM_WAIT(_semaphore);
1981}
1982
1983jlong Semaphore::currenttime() const {
1984  struct timeval tv;
1985  gettimeofday(&tv, NULL);
1986  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1987}
1988
1989#ifdef __APPLE__
1990bool Semaphore::trywait() {
1991  return timedwait(0, 0);
1992}
1993
1994bool Semaphore::timedwait(unsigned int sec, int nsec) {
1995  kern_return_t kr = KERN_ABORTED;
1996  mach_timespec_t waitspec;
1997  waitspec.tv_sec = sec;
1998  waitspec.tv_nsec = nsec;
1999
2000  jlong starttime = currenttime();
2001
2002  kr = semaphore_timedwait(_semaphore, waitspec);
2003  while (kr == KERN_ABORTED) {
2004    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2005
2006    jlong current = currenttime();
2007    jlong passedtime = current - starttime;
2008
2009    if (passedtime >= totalwait) {
2010      waitspec.tv_sec = 0;
2011      waitspec.tv_nsec = 0;
2012    } else {
2013      jlong waittime = totalwait - (current - starttime);
2014      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2015      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2016    }
2017
2018    kr = semaphore_timedwait(_semaphore, waitspec);
2019  }
2020
2021  return kr == KERN_SUCCESS;
2022}
2023
2024#else
2025
2026bool Semaphore::trywait() {
2027  return sem_trywait(&_semaphore) == 0;
2028}
2029
2030bool Semaphore::timedwait(unsigned int sec, int nsec) {
2031  struct timespec ts;
2032  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2033
2034  while (1) {
2035    int result = sem_timedwait(&_semaphore, &ts);
2036    if (result == 0) {
2037      return true;
2038    } else if (errno == EINTR) {
2039      continue;
2040    } else if (errno == ETIMEDOUT) {
2041      return false;
2042    } else {
2043      return false;
2044    }
2045  }
2046}
2047
2048#endif // __APPLE__
2049
2050static os_semaphore_t sig_sem;
2051static Semaphore sr_semaphore;
2052
2053void os::signal_init_pd() {
2054  // Initialize signal structures
2055  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2056
2057  // Initialize signal semaphore
2058  ::SEM_INIT(sig_sem, 0);
2059}
2060
2061void os::signal_notify(int sig) {
2062  Atomic::inc(&pending_signals[sig]);
2063  ::SEM_POST(sig_sem);
2064}
2065
2066static int check_pending_signals(bool wait) {
2067  Atomic::store(0, &sigint_count);
2068  for (;;) {
2069    for (int i = 0; i < NSIG + 1; i++) {
2070      jint n = pending_signals[i];
2071      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2072        return i;
2073      }
2074    }
2075    if (!wait) {
2076      return -1;
2077    }
2078    JavaThread *thread = JavaThread::current();
2079    ThreadBlockInVM tbivm(thread);
2080
2081    bool threadIsSuspended;
2082    do {
2083      thread->set_suspend_equivalent();
2084      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2085      ::SEM_WAIT(sig_sem);
2086
2087      // were we externally suspended while we were waiting?
2088      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2089      if (threadIsSuspended) {
2090        // The semaphore has been incremented, but while we were waiting
2091        // another thread suspended us. We don't want to continue running
2092        // while suspended because that would surprise the thread that
2093        // suspended us.
2094        ::SEM_POST(sig_sem);
2095
2096        thread->java_suspend_self();
2097      }
2098    } while (threadIsSuspended);
2099  }
2100}
2101
2102int os::signal_lookup() {
2103  return check_pending_signals(false);
2104}
2105
2106int os::signal_wait() {
2107  return check_pending_signals(true);
2108}
2109
2110////////////////////////////////////////////////////////////////////////////////
2111// Virtual Memory
2112
2113int os::vm_page_size() {
2114  // Seems redundant as all get out
2115  assert(os::Bsd::page_size() != -1, "must call os::init");
2116  return os::Bsd::page_size();
2117}
2118
2119// Solaris allocates memory by pages.
2120int os::vm_allocation_granularity() {
2121  assert(os::Bsd::page_size() != -1, "must call os::init");
2122  return os::Bsd::page_size();
2123}
2124
2125// Rationale behind this function:
2126//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2127//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2128//  samples for JITted code. Here we create private executable mapping over the code cache
2129//  and then we can use standard (well, almost, as mapping can change) way to provide
2130//  info for the reporting script by storing timestamp and location of symbol
2131void bsd_wrap_code(char* base, size_t size) {
2132  static volatile jint cnt = 0;
2133
2134  if (!UseOprofile) {
2135    return;
2136  }
2137
2138  char buf[PATH_MAX + 1];
2139  int num = Atomic::add(1, &cnt);
2140
2141  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2142           os::get_temp_directory(), os::current_process_id(), num);
2143  unlink(buf);
2144
2145  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2146
2147  if (fd != -1) {
2148    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2149    if (rv != (off_t)-1) {
2150      if (::write(fd, "", 1) == 1) {
2151        mmap(base, size,
2152             PROT_READ|PROT_WRITE|PROT_EXEC,
2153             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2154      }
2155    }
2156    ::close(fd);
2157    unlink(buf);
2158  }
2159}
2160
2161static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2162                                    int err) {
2163  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2164          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2165          strerror(err), err);
2166}
2167
2168// NOTE: Bsd kernel does not really reserve the pages for us.
2169//       All it does is to check if there are enough free pages
2170//       left at the time of mmap(). This could be a potential
2171//       problem.
2172bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2173  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2174#ifdef __OpenBSD__
2175  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2176  if (::mprotect(addr, size, prot) == 0) {
2177    return true;
2178  }
2179#else
2180  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2181                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2182  if (res != (uintptr_t) MAP_FAILED) {
2183    return true;
2184  }
2185#endif
2186
2187  // Warn about any commit errors we see in non-product builds just
2188  // in case mmap() doesn't work as described on the man page.
2189  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2190
2191  return false;
2192}
2193
2194bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2195                          bool exec) {
2196  // alignment_hint is ignored on this OS
2197  return pd_commit_memory(addr, size, exec);
2198}
2199
2200void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2201                                  const char* mesg) {
2202  assert(mesg != NULL, "mesg must be specified");
2203  if (!pd_commit_memory(addr, size, exec)) {
2204    // add extra info in product mode for vm_exit_out_of_memory():
2205    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2206    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2207  }
2208}
2209
2210void os::pd_commit_memory_or_exit(char* addr, size_t size,
2211                                  size_t alignment_hint, bool exec,
2212                                  const char* mesg) {
2213  // alignment_hint is ignored on this OS
2214  pd_commit_memory_or_exit(addr, size, exec, mesg);
2215}
2216
2217void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2218}
2219
2220void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2221  ::madvise(addr, bytes, MADV_DONTNEED);
2222}
2223
2224void os::numa_make_global(char *addr, size_t bytes) {
2225}
2226
2227void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2228}
2229
2230bool os::numa_topology_changed()   { return false; }
2231
2232size_t os::numa_get_groups_num() {
2233  return 1;
2234}
2235
2236int os::numa_get_group_id() {
2237  return 0;
2238}
2239
2240size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2241  if (size > 0) {
2242    ids[0] = 0;
2243    return 1;
2244  }
2245  return 0;
2246}
2247
2248bool os::get_page_info(char *start, page_info* info) {
2249  return false;
2250}
2251
2252char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2253  return end;
2254}
2255
2256
2257bool os::pd_uncommit_memory(char* addr, size_t size) {
2258#ifdef __OpenBSD__
2259  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2260  return ::mprotect(addr, size, PROT_NONE) == 0;
2261#else
2262  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2263                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2264  return res  != (uintptr_t) MAP_FAILED;
2265#endif
2266}
2267
2268bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2269  return os::commit_memory(addr, size, !ExecMem);
2270}
2271
2272// If this is a growable mapping, remove the guard pages entirely by
2273// munmap()ping them.  If not, just call uncommit_memory().
2274bool os::remove_stack_guard_pages(char* addr, size_t size) {
2275  return os::uncommit_memory(addr, size);
2276}
2277
2278static address _highest_vm_reserved_address = NULL;
2279
2280// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2281// at 'requested_addr'. If there are existing memory mappings at the same
2282// location, however, they will be overwritten. If 'fixed' is false,
2283// 'requested_addr' is only treated as a hint, the return value may or
2284// may not start from the requested address. Unlike Bsd mmap(), this
2285// function returns NULL to indicate failure.
2286static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2287  char * addr;
2288  int flags;
2289
2290  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2291  if (fixed) {
2292    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2293    flags |= MAP_FIXED;
2294  }
2295
2296  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2297  // touch an uncommitted page. Otherwise, the read/write might
2298  // succeed if we have enough swap space to back the physical page.
2299  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2300                       flags, -1, 0);
2301
2302  if (addr != MAP_FAILED) {
2303    // anon_mmap() should only get called during VM initialization,
2304    // don't need lock (actually we can skip locking even it can be called
2305    // from multiple threads, because _highest_vm_reserved_address is just a
2306    // hint about the upper limit of non-stack memory regions.)
2307    if ((address)addr + bytes > _highest_vm_reserved_address) {
2308      _highest_vm_reserved_address = (address)addr + bytes;
2309    }
2310  }
2311
2312  return addr == MAP_FAILED ? NULL : addr;
2313}
2314
2315// Don't update _highest_vm_reserved_address, because there might be memory
2316// regions above addr + size. If so, releasing a memory region only creates
2317// a hole in the address space, it doesn't help prevent heap-stack collision.
2318//
2319static int anon_munmap(char * addr, size_t size) {
2320  return ::munmap(addr, size) == 0;
2321}
2322
2323char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2324                            size_t alignment_hint) {
2325  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2326}
2327
2328bool os::pd_release_memory(char* addr, size_t size) {
2329  return anon_munmap(addr, size);
2330}
2331
2332static bool bsd_mprotect(char* addr, size_t size, int prot) {
2333  // Bsd wants the mprotect address argument to be page aligned.
2334  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2335
2336  // According to SUSv3, mprotect() should only be used with mappings
2337  // established by mmap(), and mmap() always maps whole pages. Unaligned
2338  // 'addr' likely indicates problem in the VM (e.g. trying to change
2339  // protection of malloc'ed or statically allocated memory). Check the
2340  // caller if you hit this assert.
2341  assert(addr == bottom, "sanity check");
2342
2343  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2344  return ::mprotect(bottom, size, prot) == 0;
2345}
2346
2347// Set protections specified
2348bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2349                        bool is_committed) {
2350  unsigned int p = 0;
2351  switch (prot) {
2352  case MEM_PROT_NONE: p = PROT_NONE; break;
2353  case MEM_PROT_READ: p = PROT_READ; break;
2354  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2355  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2356  default:
2357    ShouldNotReachHere();
2358  }
2359  // is_committed is unused.
2360  return bsd_mprotect(addr, bytes, p);
2361}
2362
2363bool os::guard_memory(char* addr, size_t size) {
2364  return bsd_mprotect(addr, size, PROT_NONE);
2365}
2366
2367bool os::unguard_memory(char* addr, size_t size) {
2368  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2369}
2370
2371bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2372  return false;
2373}
2374
2375// Large page support
2376
2377static size_t _large_page_size = 0;
2378
2379void os::large_page_init() {
2380}
2381
2382
2383char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2384  fatal("This code is not used or maintained.");
2385
2386  // "exec" is passed in but not used.  Creating the shared image for
2387  // the code cache doesn't have an SHM_X executable permission to check.
2388  assert(UseLargePages && UseSHM, "only for SHM large pages");
2389
2390  key_t key = IPC_PRIVATE;
2391  char *addr;
2392
2393  bool warn_on_failure = UseLargePages &&
2394                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2395                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2396
2397  // Create a large shared memory region to attach to based on size.
2398  // Currently, size is the total size of the heap
2399  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2400  if (shmid == -1) {
2401    // Possible reasons for shmget failure:
2402    // 1. shmmax is too small for Java heap.
2403    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2404    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2405    // 2. not enough large page memory.
2406    //    > check available large pages: cat /proc/meminfo
2407    //    > increase amount of large pages:
2408    //          echo new_value > /proc/sys/vm/nr_hugepages
2409    //      Note 1: different Bsd may use different name for this property,
2410    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2411    //      Note 2: it's possible there's enough physical memory available but
2412    //            they are so fragmented after a long run that they can't
2413    //            coalesce into large pages. Try to reserve large pages when
2414    //            the system is still "fresh".
2415    if (warn_on_failure) {
2416      warning("Failed to reserve shared memory (errno = %d).", errno);
2417    }
2418    return NULL;
2419  }
2420
2421  // attach to the region
2422  addr = (char*)shmat(shmid, req_addr, 0);
2423  int err = errno;
2424
2425  // Remove shmid. If shmat() is successful, the actual shared memory segment
2426  // will be deleted when it's detached by shmdt() or when the process
2427  // terminates. If shmat() is not successful this will remove the shared
2428  // segment immediately.
2429  shmctl(shmid, IPC_RMID, NULL);
2430
2431  if ((intptr_t)addr == -1) {
2432    if (warn_on_failure) {
2433      warning("Failed to attach shared memory (errno = %d).", err);
2434    }
2435    return NULL;
2436  }
2437
2438  // The memory is committed
2439  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2440
2441  return addr;
2442}
2443
2444bool os::release_memory_special(char* base, size_t bytes) {
2445  if (MemTracker::tracking_level() > NMT_minimal) {
2446    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2447    // detaching the SHM segment will also delete it, see reserve_memory_special()
2448    int rslt = shmdt(base);
2449    if (rslt == 0) {
2450      tkr.record((address)base, bytes);
2451      return true;
2452    } else {
2453      return false;
2454    }
2455  } else {
2456    return shmdt(base) == 0;
2457  }
2458}
2459
2460size_t os::large_page_size() {
2461  return _large_page_size;
2462}
2463
2464// HugeTLBFS allows application to commit large page memory on demand;
2465// with SysV SHM the entire memory region must be allocated as shared
2466// memory.
2467bool os::can_commit_large_page_memory() {
2468  return UseHugeTLBFS;
2469}
2470
2471bool os::can_execute_large_page_memory() {
2472  return UseHugeTLBFS;
2473}
2474
2475// Reserve memory at an arbitrary address, only if that area is
2476// available (and not reserved for something else).
2477
2478char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2479  const int max_tries = 10;
2480  char* base[max_tries];
2481  size_t size[max_tries];
2482  const size_t gap = 0x000000;
2483
2484  // Assert only that the size is a multiple of the page size, since
2485  // that's all that mmap requires, and since that's all we really know
2486  // about at this low abstraction level.  If we need higher alignment,
2487  // we can either pass an alignment to this method or verify alignment
2488  // in one of the methods further up the call chain.  See bug 5044738.
2489  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2490
2491  // Repeatedly allocate blocks until the block is allocated at the
2492  // right spot. Give up after max_tries. Note that reserve_memory() will
2493  // automatically update _highest_vm_reserved_address if the call is
2494  // successful. The variable tracks the highest memory address every reserved
2495  // by JVM. It is used to detect heap-stack collision if running with
2496  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2497  // space than needed, it could confuse the collision detecting code. To
2498  // solve the problem, save current _highest_vm_reserved_address and
2499  // calculate the correct value before return.
2500  address old_highest = _highest_vm_reserved_address;
2501
2502  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2503  // if kernel honors the hint then we can return immediately.
2504  char * addr = anon_mmap(requested_addr, bytes, false);
2505  if (addr == requested_addr) {
2506    return requested_addr;
2507  }
2508
2509  if (addr != NULL) {
2510    // mmap() is successful but it fails to reserve at the requested address
2511    anon_munmap(addr, bytes);
2512  }
2513
2514  int i;
2515  for (i = 0; i < max_tries; ++i) {
2516    base[i] = reserve_memory(bytes);
2517
2518    if (base[i] != NULL) {
2519      // Is this the block we wanted?
2520      if (base[i] == requested_addr) {
2521        size[i] = bytes;
2522        break;
2523      }
2524
2525      // Does this overlap the block we wanted? Give back the overlapped
2526      // parts and try again.
2527
2528      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2529      if (top_overlap >= 0 && top_overlap < bytes) {
2530        unmap_memory(base[i], top_overlap);
2531        base[i] += top_overlap;
2532        size[i] = bytes - top_overlap;
2533      } else {
2534        size_t bottom_overlap = base[i] + bytes - requested_addr;
2535        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2536          unmap_memory(requested_addr, bottom_overlap);
2537          size[i] = bytes - bottom_overlap;
2538        } else {
2539          size[i] = bytes;
2540        }
2541      }
2542    }
2543  }
2544
2545  // Give back the unused reserved pieces.
2546
2547  for (int j = 0; j < i; ++j) {
2548    if (base[j] != NULL) {
2549      unmap_memory(base[j], size[j]);
2550    }
2551  }
2552
2553  if (i < max_tries) {
2554    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2555    return requested_addr;
2556  } else {
2557    _highest_vm_reserved_address = old_highest;
2558    return NULL;
2559  }
2560}
2561
2562size_t os::read(int fd, void *buf, unsigned int nBytes) {
2563  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2564}
2565
2566void os::naked_short_sleep(jlong ms) {
2567  struct timespec req;
2568
2569  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2570  req.tv_sec = 0;
2571  if (ms > 0) {
2572    req.tv_nsec = (ms % 1000) * 1000000;
2573  } else {
2574    req.tv_nsec = 1;
2575  }
2576
2577  nanosleep(&req, NULL);
2578
2579  return;
2580}
2581
2582// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2583void os::infinite_sleep() {
2584  while (true) {    // sleep forever ...
2585    ::sleep(100);   // ... 100 seconds at a time
2586  }
2587}
2588
2589// Used to convert frequent JVM_Yield() to nops
2590bool os::dont_yield() {
2591  return DontYieldALot;
2592}
2593
2594void os::naked_yield() {
2595  sched_yield();
2596}
2597
2598////////////////////////////////////////////////////////////////////////////////
2599// thread priority support
2600
2601// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2602// only supports dynamic priority, static priority must be zero. For real-time
2603// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2604// However, for large multi-threaded applications, SCHED_RR is not only slower
2605// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2606// of 5 runs - Sep 2005).
2607//
2608// The following code actually changes the niceness of kernel-thread/LWP. It
2609// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2610// not the entire user process, and user level threads are 1:1 mapped to kernel
2611// threads. It has always been the case, but could change in the future. For
2612// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2613// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2614
2615#if !defined(__APPLE__)
2616int os::java_to_os_priority[CriticalPriority + 1] = {
2617  19,              // 0 Entry should never be used
2618
2619   0,              // 1 MinPriority
2620   3,              // 2
2621   6,              // 3
2622
2623  10,              // 4
2624  15,              // 5 NormPriority
2625  18,              // 6
2626
2627  21,              // 7
2628  25,              // 8
2629  28,              // 9 NearMaxPriority
2630
2631  31,              // 10 MaxPriority
2632
2633  31               // 11 CriticalPriority
2634};
2635#else
2636// Using Mach high-level priority assignments
2637int os::java_to_os_priority[CriticalPriority + 1] = {
2638   0,              // 0 Entry should never be used (MINPRI_USER)
2639
2640  27,              // 1 MinPriority
2641  28,              // 2
2642  29,              // 3
2643
2644  30,              // 4
2645  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2646  32,              // 6
2647
2648  33,              // 7
2649  34,              // 8
2650  35,              // 9 NearMaxPriority
2651
2652  36,              // 10 MaxPriority
2653
2654  36               // 11 CriticalPriority
2655};
2656#endif
2657
2658static int prio_init() {
2659  if (ThreadPriorityPolicy == 1) {
2660    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2661    // if effective uid is not root. Perhaps, a more elegant way of doing
2662    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2663    if (geteuid() != 0) {
2664      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2665        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2666      }
2667      ThreadPriorityPolicy = 0;
2668    }
2669  }
2670  if (UseCriticalJavaThreadPriority) {
2671    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2672  }
2673  return 0;
2674}
2675
2676OSReturn os::set_native_priority(Thread* thread, int newpri) {
2677  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2678
2679#ifdef __OpenBSD__
2680  // OpenBSD pthread_setprio starves low priority threads
2681  return OS_OK;
2682#elif defined(__FreeBSD__)
2683  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2684#elif defined(__APPLE__) || defined(__NetBSD__)
2685  struct sched_param sp;
2686  int policy;
2687  pthread_t self = pthread_self();
2688
2689  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2690    return OS_ERR;
2691  }
2692
2693  sp.sched_priority = newpri;
2694  if (pthread_setschedparam(self, policy, &sp) != 0) {
2695    return OS_ERR;
2696  }
2697
2698  return OS_OK;
2699#else
2700  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2701  return (ret == 0) ? OS_OK : OS_ERR;
2702#endif
2703}
2704
2705OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2706  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2707    *priority_ptr = java_to_os_priority[NormPriority];
2708    return OS_OK;
2709  }
2710
2711  errno = 0;
2712#if defined(__OpenBSD__) || defined(__FreeBSD__)
2713  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2714#elif defined(__APPLE__) || defined(__NetBSD__)
2715  int policy;
2716  struct sched_param sp;
2717
2718  pthread_getschedparam(pthread_self(), &policy, &sp);
2719  *priority_ptr = sp.sched_priority;
2720#else
2721  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2722#endif
2723  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2724}
2725
2726// Hint to the underlying OS that a task switch would not be good.
2727// Void return because it's a hint and can fail.
2728void os::hint_no_preempt() {}
2729
2730////////////////////////////////////////////////////////////////////////////////
2731// suspend/resume support
2732
2733//  the low-level signal-based suspend/resume support is a remnant from the
2734//  old VM-suspension that used to be for java-suspension, safepoints etc,
2735//  within hotspot. Now there is a single use-case for this:
2736//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2737//      that runs in the watcher thread.
2738//  The remaining code is greatly simplified from the more general suspension
2739//  code that used to be used.
2740//
2741//  The protocol is quite simple:
2742//  - suspend:
2743//      - sends a signal to the target thread
2744//      - polls the suspend state of the osthread using a yield loop
2745//      - target thread signal handler (SR_handler) sets suspend state
2746//        and blocks in sigsuspend until continued
2747//  - resume:
2748//      - sets target osthread state to continue
2749//      - sends signal to end the sigsuspend loop in the SR_handler
2750//
2751//  Note that the SR_lock plays no role in this suspend/resume protocol.
2752
2753static void resume_clear_context(OSThread *osthread) {
2754  osthread->set_ucontext(NULL);
2755  osthread->set_siginfo(NULL);
2756}
2757
2758static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2759  osthread->set_ucontext(context);
2760  osthread->set_siginfo(siginfo);
2761}
2762
2763// Handler function invoked when a thread's execution is suspended or
2764// resumed. We have to be careful that only async-safe functions are
2765// called here (Note: most pthread functions are not async safe and
2766// should be avoided.)
2767//
2768// Note: sigwait() is a more natural fit than sigsuspend() from an
2769// interface point of view, but sigwait() prevents the signal hander
2770// from being run. libpthread would get very confused by not having
2771// its signal handlers run and prevents sigwait()'s use with the
2772// mutex granting granting signal.
2773//
2774// Currently only ever called on the VMThread or JavaThread
2775//
2776static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2777  // Save and restore errno to avoid confusing native code with EINTR
2778  // after sigsuspend.
2779  int old_errno = errno;
2780
2781  Thread* thread = Thread::current();
2782  OSThread* osthread = thread->osthread();
2783  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2784
2785  os::SuspendResume::State current = osthread->sr.state();
2786  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2787    suspend_save_context(osthread, siginfo, context);
2788
2789    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2790    os::SuspendResume::State state = osthread->sr.suspended();
2791    if (state == os::SuspendResume::SR_SUSPENDED) {
2792      sigset_t suspend_set;  // signals for sigsuspend()
2793
2794      // get current set of blocked signals and unblock resume signal
2795      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2796      sigdelset(&suspend_set, SR_signum);
2797
2798      sr_semaphore.signal();
2799      // wait here until we are resumed
2800      while (1) {
2801        sigsuspend(&suspend_set);
2802
2803        os::SuspendResume::State result = osthread->sr.running();
2804        if (result == os::SuspendResume::SR_RUNNING) {
2805          sr_semaphore.signal();
2806          break;
2807        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2808          ShouldNotReachHere();
2809        }
2810      }
2811
2812    } else if (state == os::SuspendResume::SR_RUNNING) {
2813      // request was cancelled, continue
2814    } else {
2815      ShouldNotReachHere();
2816    }
2817
2818    resume_clear_context(osthread);
2819  } else if (current == os::SuspendResume::SR_RUNNING) {
2820    // request was cancelled, continue
2821  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2822    // ignore
2823  } else {
2824    // ignore
2825  }
2826
2827  errno = old_errno;
2828}
2829
2830
2831static int SR_initialize() {
2832  struct sigaction act;
2833  char *s;
2834  // Get signal number to use for suspend/resume
2835  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2836    int sig = ::strtol(s, 0, 10);
2837    if (sig > 0 || sig < NSIG) {
2838      SR_signum = sig;
2839    }
2840  }
2841
2842  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2843         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2844
2845  sigemptyset(&SR_sigset);
2846  sigaddset(&SR_sigset, SR_signum);
2847
2848  // Set up signal handler for suspend/resume
2849  act.sa_flags = SA_RESTART|SA_SIGINFO;
2850  act.sa_handler = (void (*)(int)) SR_handler;
2851
2852  // SR_signum is blocked by default.
2853  // 4528190 - We also need to block pthread restart signal (32 on all
2854  // supported Bsd platforms). Note that BsdThreads need to block
2855  // this signal for all threads to work properly. So we don't have
2856  // to use hard-coded signal number when setting up the mask.
2857  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2858
2859  if (sigaction(SR_signum, &act, 0) == -1) {
2860    return -1;
2861  }
2862
2863  // Save signal flag
2864  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2865  return 0;
2866}
2867
2868static int sr_notify(OSThread* osthread) {
2869  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2870  assert_status(status == 0, status, "pthread_kill");
2871  return status;
2872}
2873
2874// "Randomly" selected value for how long we want to spin
2875// before bailing out on suspending a thread, also how often
2876// we send a signal to a thread we want to resume
2877static const int RANDOMLY_LARGE_INTEGER = 1000000;
2878static const int RANDOMLY_LARGE_INTEGER2 = 100;
2879
2880// returns true on success and false on error - really an error is fatal
2881// but this seems the normal response to library errors
2882static bool do_suspend(OSThread* osthread) {
2883  assert(osthread->sr.is_running(), "thread should be running");
2884  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2885
2886  // mark as suspended and send signal
2887  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2888    // failed to switch, state wasn't running?
2889    ShouldNotReachHere();
2890    return false;
2891  }
2892
2893  if (sr_notify(osthread) != 0) {
2894    ShouldNotReachHere();
2895  }
2896
2897  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2898  while (true) {
2899    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2900      break;
2901    } else {
2902      // timeout
2903      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2904      if (cancelled == os::SuspendResume::SR_RUNNING) {
2905        return false;
2906      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2907        // make sure that we consume the signal on the semaphore as well
2908        sr_semaphore.wait();
2909        break;
2910      } else {
2911        ShouldNotReachHere();
2912        return false;
2913      }
2914    }
2915  }
2916
2917  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2918  return true;
2919}
2920
2921static void do_resume(OSThread* osthread) {
2922  assert(osthread->sr.is_suspended(), "thread should be suspended");
2923  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2924
2925  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2926    // failed to switch to WAKEUP_REQUEST
2927    ShouldNotReachHere();
2928    return;
2929  }
2930
2931  while (true) {
2932    if (sr_notify(osthread) == 0) {
2933      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2934        if (osthread->sr.is_running()) {
2935          return;
2936        }
2937      }
2938    } else {
2939      ShouldNotReachHere();
2940    }
2941  }
2942
2943  guarantee(osthread->sr.is_running(), "Must be running!");
2944}
2945
2946///////////////////////////////////////////////////////////////////////////////////
2947// signal handling (except suspend/resume)
2948
2949// This routine may be used by user applications as a "hook" to catch signals.
2950// The user-defined signal handler must pass unrecognized signals to this
2951// routine, and if it returns true (non-zero), then the signal handler must
2952// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2953// routine will never retun false (zero), but instead will execute a VM panic
2954// routine kill the process.
2955//
2956// If this routine returns false, it is OK to call it again.  This allows
2957// the user-defined signal handler to perform checks either before or after
2958// the VM performs its own checks.  Naturally, the user code would be making
2959// a serious error if it tried to handle an exception (such as a null check
2960// or breakpoint) that the VM was generating for its own correct operation.
2961//
2962// This routine may recognize any of the following kinds of signals:
2963//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2964// It should be consulted by handlers for any of those signals.
2965//
2966// The caller of this routine must pass in the three arguments supplied
2967// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2968// field of the structure passed to sigaction().  This routine assumes that
2969// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2970//
2971// Note that the VM will print warnings if it detects conflicting signal
2972// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2973//
2974extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2975                                               void* ucontext,
2976                                               int abort_if_unrecognized);
2977
2978void signalHandler(int sig, siginfo_t* info, void* uc) {
2979  assert(info != NULL && uc != NULL, "it must be old kernel");
2980  int orig_errno = errno;  // Preserve errno value over signal handler.
2981  JVM_handle_bsd_signal(sig, info, uc, true);
2982  errno = orig_errno;
2983}
2984
2985
2986// This boolean allows users to forward their own non-matching signals
2987// to JVM_handle_bsd_signal, harmlessly.
2988bool os::Bsd::signal_handlers_are_installed = false;
2989
2990// For signal-chaining
2991struct sigaction os::Bsd::sigact[MAXSIGNUM];
2992unsigned int os::Bsd::sigs = 0;
2993bool os::Bsd::libjsig_is_loaded = false;
2994typedef struct sigaction *(*get_signal_t)(int);
2995get_signal_t os::Bsd::get_signal_action = NULL;
2996
2997struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2998  struct sigaction *actp = NULL;
2999
3000  if (libjsig_is_loaded) {
3001    // Retrieve the old signal handler from libjsig
3002    actp = (*get_signal_action)(sig);
3003  }
3004  if (actp == NULL) {
3005    // Retrieve the preinstalled signal handler from jvm
3006    actp = get_preinstalled_handler(sig);
3007  }
3008
3009  return actp;
3010}
3011
3012static bool call_chained_handler(struct sigaction *actp, int sig,
3013                                 siginfo_t *siginfo, void *context) {
3014  // Call the old signal handler
3015  if (actp->sa_handler == SIG_DFL) {
3016    // It's more reasonable to let jvm treat it as an unexpected exception
3017    // instead of taking the default action.
3018    return false;
3019  } else if (actp->sa_handler != SIG_IGN) {
3020    if ((actp->sa_flags & SA_NODEFER) == 0) {
3021      // automaticlly block the signal
3022      sigaddset(&(actp->sa_mask), sig);
3023    }
3024
3025    sa_handler_t hand;
3026    sa_sigaction_t sa;
3027    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3028    // retrieve the chained handler
3029    if (siginfo_flag_set) {
3030      sa = actp->sa_sigaction;
3031    } else {
3032      hand = actp->sa_handler;
3033    }
3034
3035    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3036      actp->sa_handler = SIG_DFL;
3037    }
3038
3039    // try to honor the signal mask
3040    sigset_t oset;
3041    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3042
3043    // call into the chained handler
3044    if (siginfo_flag_set) {
3045      (*sa)(sig, siginfo, context);
3046    } else {
3047      (*hand)(sig);
3048    }
3049
3050    // restore the signal mask
3051    pthread_sigmask(SIG_SETMASK, &oset, 0);
3052  }
3053  // Tell jvm's signal handler the signal is taken care of.
3054  return true;
3055}
3056
3057bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3058  bool chained = false;
3059  // signal-chaining
3060  if (UseSignalChaining) {
3061    struct sigaction *actp = get_chained_signal_action(sig);
3062    if (actp != NULL) {
3063      chained = call_chained_handler(actp, sig, siginfo, context);
3064    }
3065  }
3066  return chained;
3067}
3068
3069struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3070  if ((((unsigned int)1 << sig) & sigs) != 0) {
3071    return &sigact[sig];
3072  }
3073  return NULL;
3074}
3075
3076void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3077  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3078  sigact[sig] = oldAct;
3079  sigs |= (unsigned int)1 << sig;
3080}
3081
3082// for diagnostic
3083int os::Bsd::sigflags[MAXSIGNUM];
3084
3085int os::Bsd::get_our_sigflags(int sig) {
3086  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3087  return sigflags[sig];
3088}
3089
3090void os::Bsd::set_our_sigflags(int sig, int flags) {
3091  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3092  sigflags[sig] = flags;
3093}
3094
3095void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3096  // Check for overwrite.
3097  struct sigaction oldAct;
3098  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3099
3100  void* oldhand = oldAct.sa_sigaction
3101                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3102                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3103  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3104      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3105      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3106    if (AllowUserSignalHandlers || !set_installed) {
3107      // Do not overwrite; user takes responsibility to forward to us.
3108      return;
3109    } else if (UseSignalChaining) {
3110      // save the old handler in jvm
3111      save_preinstalled_handler(sig, oldAct);
3112      // libjsig also interposes the sigaction() call below and saves the
3113      // old sigaction on it own.
3114    } else {
3115      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3116                    "%#lx for signal %d.", (long)oldhand, sig));
3117    }
3118  }
3119
3120  struct sigaction sigAct;
3121  sigfillset(&(sigAct.sa_mask));
3122  sigAct.sa_handler = SIG_DFL;
3123  if (!set_installed) {
3124    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3125  } else {
3126    sigAct.sa_sigaction = signalHandler;
3127    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3128  }
3129#ifdef __APPLE__
3130  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3131  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3132  // if the signal handler declares it will handle it on alternate stack.
3133  // Notice we only declare we will handle it on alt stack, but we are not
3134  // actually going to use real alt stack - this is just a workaround.
3135  // Please see ux_exception.c, method catch_mach_exception_raise for details
3136  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3137  if (sig == SIGSEGV) {
3138    sigAct.sa_flags |= SA_ONSTACK;
3139  }
3140#endif
3141
3142  // Save flags, which are set by ours
3143  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3144  sigflags[sig] = sigAct.sa_flags;
3145
3146  int ret = sigaction(sig, &sigAct, &oldAct);
3147  assert(ret == 0, "check");
3148
3149  void* oldhand2  = oldAct.sa_sigaction
3150                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3151                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3152  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3153}
3154
3155// install signal handlers for signals that HotSpot needs to
3156// handle in order to support Java-level exception handling.
3157
3158void os::Bsd::install_signal_handlers() {
3159  if (!signal_handlers_are_installed) {
3160    signal_handlers_are_installed = true;
3161
3162    // signal-chaining
3163    typedef void (*signal_setting_t)();
3164    signal_setting_t begin_signal_setting = NULL;
3165    signal_setting_t end_signal_setting = NULL;
3166    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3167                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3168    if (begin_signal_setting != NULL) {
3169      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3170                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3171      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3172                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3173      libjsig_is_loaded = true;
3174      assert(UseSignalChaining, "should enable signal-chaining");
3175    }
3176    if (libjsig_is_loaded) {
3177      // Tell libjsig jvm is setting signal handlers
3178      (*begin_signal_setting)();
3179    }
3180
3181    set_signal_handler(SIGSEGV, true);
3182    set_signal_handler(SIGPIPE, true);
3183    set_signal_handler(SIGBUS, true);
3184    set_signal_handler(SIGILL, true);
3185    set_signal_handler(SIGFPE, true);
3186    set_signal_handler(SIGXFSZ, true);
3187
3188#if defined(__APPLE__)
3189    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3190    // signals caught and handled by the JVM. To work around this, we reset the mach task
3191    // signal handler that's placed on our process by CrashReporter. This disables
3192    // CrashReporter-based reporting.
3193    //
3194    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3195    // on caught fatal signals.
3196    //
3197    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3198    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3199    // exception handling, while leaving the standard BSD signal handlers functional.
3200    kern_return_t kr;
3201    kr = task_set_exception_ports(mach_task_self(),
3202                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3203                                  MACH_PORT_NULL,
3204                                  EXCEPTION_STATE_IDENTITY,
3205                                  MACHINE_THREAD_STATE);
3206
3207    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3208#endif
3209
3210    if (libjsig_is_loaded) {
3211      // Tell libjsig jvm finishes setting signal handlers
3212      (*end_signal_setting)();
3213    }
3214
3215    // We don't activate signal checker if libjsig is in place, we trust ourselves
3216    // and if UserSignalHandler is installed all bets are off
3217    if (CheckJNICalls) {
3218      if (libjsig_is_loaded) {
3219        if (PrintJNIResolving) {
3220          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3221        }
3222        check_signals = false;
3223      }
3224      if (AllowUserSignalHandlers) {
3225        if (PrintJNIResolving) {
3226          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3227        }
3228        check_signals = false;
3229      }
3230    }
3231  }
3232}
3233
3234
3235/////
3236// glibc on Bsd platform uses non-documented flag
3237// to indicate, that some special sort of signal
3238// trampoline is used.
3239// We will never set this flag, and we should
3240// ignore this flag in our diagnostic
3241#ifdef SIGNIFICANT_SIGNAL_MASK
3242  #undef SIGNIFICANT_SIGNAL_MASK
3243#endif
3244#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3245
3246static const char* get_signal_handler_name(address handler,
3247                                           char* buf, int buflen) {
3248  int offset;
3249  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3250  if (found) {
3251    // skip directory names
3252    const char *p1, *p2;
3253    p1 = buf;
3254    size_t len = strlen(os::file_separator());
3255    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3256    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3257  } else {
3258    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3259  }
3260  return buf;
3261}
3262
3263static void print_signal_handler(outputStream* st, int sig,
3264                                 char* buf, size_t buflen) {
3265  struct sigaction sa;
3266
3267  sigaction(sig, NULL, &sa);
3268
3269  // See comment for SIGNIFICANT_SIGNAL_MASK define
3270  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3271
3272  st->print("%s: ", os::exception_name(sig, buf, buflen));
3273
3274  address handler = (sa.sa_flags & SA_SIGINFO)
3275    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3276    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3277
3278  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3279    st->print("SIG_DFL");
3280  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3281    st->print("SIG_IGN");
3282  } else {
3283    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3284  }
3285
3286  st->print(", sa_mask[0]=");
3287  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3288
3289  address rh = VMError::get_resetted_sighandler(sig);
3290  // May be, handler was resetted by VMError?
3291  if (rh != NULL) {
3292    handler = rh;
3293    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3294  }
3295
3296  st->print(", sa_flags=");
3297  os::Posix::print_sa_flags(st, sa.sa_flags);
3298
3299  // Check: is it our handler?
3300  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3301      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3302    // It is our signal handler
3303    // check for flags, reset system-used one!
3304    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3305      st->print(
3306                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3307                os::Bsd::get_our_sigflags(sig));
3308    }
3309  }
3310  st->cr();
3311}
3312
3313
3314#define DO_SIGNAL_CHECK(sig)                      \
3315  do {                                            \
3316    if (!sigismember(&check_signal_done, sig)) {  \
3317      os::Bsd::check_signal_handler(sig);         \
3318    }                                             \
3319  } while (0)
3320
3321// This method is a periodic task to check for misbehaving JNI applications
3322// under CheckJNI, we can add any periodic checks here
3323
3324void os::run_periodic_checks() {
3325
3326  if (check_signals == false) return;
3327
3328  // SEGV and BUS if overridden could potentially prevent
3329  // generation of hs*.log in the event of a crash, debugging
3330  // such a case can be very challenging, so we absolutely
3331  // check the following for a good measure:
3332  DO_SIGNAL_CHECK(SIGSEGV);
3333  DO_SIGNAL_CHECK(SIGILL);
3334  DO_SIGNAL_CHECK(SIGFPE);
3335  DO_SIGNAL_CHECK(SIGBUS);
3336  DO_SIGNAL_CHECK(SIGPIPE);
3337  DO_SIGNAL_CHECK(SIGXFSZ);
3338
3339
3340  // ReduceSignalUsage allows the user to override these handlers
3341  // see comments at the very top and jvm_solaris.h
3342  if (!ReduceSignalUsage) {
3343    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3344    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3345    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3346    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3347  }
3348
3349  DO_SIGNAL_CHECK(SR_signum);
3350  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3351}
3352
3353typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3354
3355static os_sigaction_t os_sigaction = NULL;
3356
3357void os::Bsd::check_signal_handler(int sig) {
3358  char buf[O_BUFLEN];
3359  address jvmHandler = NULL;
3360
3361
3362  struct sigaction act;
3363  if (os_sigaction == NULL) {
3364    // only trust the default sigaction, in case it has been interposed
3365    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3366    if (os_sigaction == NULL) return;
3367  }
3368
3369  os_sigaction(sig, (struct sigaction*)NULL, &act);
3370
3371
3372  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3373
3374  address thisHandler = (act.sa_flags & SA_SIGINFO)
3375    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3376    : CAST_FROM_FN_PTR(address, act.sa_handler);
3377
3378
3379  switch (sig) {
3380  case SIGSEGV:
3381  case SIGBUS:
3382  case SIGFPE:
3383  case SIGPIPE:
3384  case SIGILL:
3385  case SIGXFSZ:
3386    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3387    break;
3388
3389  case SHUTDOWN1_SIGNAL:
3390  case SHUTDOWN2_SIGNAL:
3391  case SHUTDOWN3_SIGNAL:
3392  case BREAK_SIGNAL:
3393    jvmHandler = (address)user_handler();
3394    break;
3395
3396  case INTERRUPT_SIGNAL:
3397    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3398    break;
3399
3400  default:
3401    if (sig == SR_signum) {
3402      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3403    } else {
3404      return;
3405    }
3406    break;
3407  }
3408
3409  if (thisHandler != jvmHandler) {
3410    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3411    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3412    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3413    // No need to check this sig any longer
3414    sigaddset(&check_signal_done, sig);
3415    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3416    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3417      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3418                    exception_name(sig, buf, O_BUFLEN));
3419    }
3420  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3421    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3422    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3423    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3424    // No need to check this sig any longer
3425    sigaddset(&check_signal_done, sig);
3426  }
3427
3428  // Dump all the signal
3429  if (sigismember(&check_signal_done, sig)) {
3430    print_signal_handlers(tty, buf, O_BUFLEN);
3431  }
3432}
3433
3434extern void report_error(char* file_name, int line_no, char* title,
3435                         char* format, ...);
3436
3437extern bool signal_name(int signo, char* buf, size_t len);
3438
3439const char* os::exception_name(int exception_code, char* buf, size_t size) {
3440  if (0 < exception_code && exception_code <= SIGRTMAX) {
3441    // signal
3442    if (!signal_name(exception_code, buf, size)) {
3443      jio_snprintf(buf, size, "SIG%d", exception_code);
3444    }
3445    return buf;
3446  } else {
3447    return NULL;
3448  }
3449}
3450
3451// this is called _before_ the most of global arguments have been parsed
3452void os::init(void) {
3453  char dummy;   // used to get a guess on initial stack address
3454//  first_hrtime = gethrtime();
3455
3456  // With BsdThreads the JavaMain thread pid (primordial thread)
3457  // is different than the pid of the java launcher thread.
3458  // So, on Bsd, the launcher thread pid is passed to the VM
3459  // via the sun.java.launcher.pid property.
3460  // Use this property instead of getpid() if it was correctly passed.
3461  // See bug 6351349.
3462  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3463
3464  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3465
3466  clock_tics_per_sec = CLK_TCK;
3467
3468  init_random(1234567);
3469
3470  ThreadCritical::initialize();
3471
3472  Bsd::set_page_size(getpagesize());
3473  if (Bsd::page_size() == -1) {
3474    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3475                  strerror(errno)));
3476  }
3477  init_page_sizes((size_t) Bsd::page_size());
3478
3479  Bsd::initialize_system_info();
3480
3481  // main_thread points to the aboriginal thread
3482  Bsd::_main_thread = pthread_self();
3483
3484  Bsd::clock_init();
3485  initial_time_count = javaTimeNanos();
3486
3487#ifdef __APPLE__
3488  // XXXDARWIN
3489  // Work around the unaligned VM callbacks in hotspot's
3490  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3491  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3492  // alignment when doing symbol lookup. To work around this, we force early
3493  // binding of all symbols now, thus binding when alignment is known-good.
3494  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3495#endif
3496}
3497
3498// To install functions for atexit system call
3499extern "C" {
3500  static void perfMemory_exit_helper() {
3501    perfMemory_exit();
3502  }
3503}
3504
3505// this is called _after_ the global arguments have been parsed
3506jint os::init_2(void) {
3507  // Allocate a single page and mark it as readable for safepoint polling
3508  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3509  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3510
3511  os::set_polling_page(polling_page);
3512
3513#ifndef PRODUCT
3514  if (Verbose && PrintMiscellaneous) {
3515    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3516               (intptr_t)polling_page);
3517  }
3518#endif
3519
3520  if (!UseMembar) {
3521    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3522    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3523    os::set_memory_serialize_page(mem_serialize_page);
3524
3525#ifndef PRODUCT
3526    if (Verbose && PrintMiscellaneous) {
3527      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3528                 (intptr_t)mem_serialize_page);
3529    }
3530#endif
3531  }
3532
3533  // initialize suspend/resume support - must do this before signal_sets_init()
3534  if (SR_initialize() != 0) {
3535    perror("SR_initialize failed");
3536    return JNI_ERR;
3537  }
3538
3539  Bsd::signal_sets_init();
3540  Bsd::install_signal_handlers();
3541
3542  // Check minimum allowable stack size for thread creation and to initialize
3543  // the java system classes, including StackOverflowError - depends on page
3544  // size.  Add a page for compiler2 recursion in main thread.
3545  // Add in 2*BytesPerWord times page size to account for VM stack during
3546  // class initialization depending on 32 or 64 bit VM.
3547  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3548                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3549                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3550
3551  size_t threadStackSizeInBytes = ThreadStackSize * K;
3552  if (threadStackSizeInBytes != 0 &&
3553      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3554    tty->print_cr("\nThe stack size specified is too small, "
3555                  "Specify at least %dk",
3556                  os::Bsd::min_stack_allowed/ K);
3557    return JNI_ERR;
3558  }
3559
3560  // Make the stack size a multiple of the page size so that
3561  // the yellow/red zones can be guarded.
3562  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3563                                                vm_page_size()));
3564
3565  if (MaxFDLimit) {
3566    // set the number of file descriptors to max. print out error
3567    // if getrlimit/setrlimit fails but continue regardless.
3568    struct rlimit nbr_files;
3569    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3570    if (status != 0) {
3571      if (PrintMiscellaneous && (Verbose || WizardMode)) {
3572        perror("os::init_2 getrlimit failed");
3573      }
3574    } else {
3575      nbr_files.rlim_cur = nbr_files.rlim_max;
3576
3577#ifdef __APPLE__
3578      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3579      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3580      // be used instead
3581      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3582#endif
3583
3584      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3585      if (status != 0) {
3586        if (PrintMiscellaneous && (Verbose || WizardMode)) {
3587          perror("os::init_2 setrlimit failed");
3588        }
3589      }
3590    }
3591  }
3592
3593  // at-exit methods are called in the reverse order of their registration.
3594  // atexit functions are called on return from main or as a result of a
3595  // call to exit(3C). There can be only 32 of these functions registered
3596  // and atexit() does not set errno.
3597
3598  if (PerfAllowAtExitRegistration) {
3599    // only register atexit functions if PerfAllowAtExitRegistration is set.
3600    // atexit functions can be delayed until process exit time, which
3601    // can be problematic for embedded VM situations. Embedded VMs should
3602    // call DestroyJavaVM() to assure that VM resources are released.
3603
3604    // note: perfMemory_exit_helper atexit function may be removed in
3605    // the future if the appropriate cleanup code can be added to the
3606    // VM_Exit VMOperation's doit method.
3607    if (atexit(perfMemory_exit_helper) != 0) {
3608      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3609    }
3610  }
3611
3612  // initialize thread priority policy
3613  prio_init();
3614
3615#ifdef __APPLE__
3616  // dynamically link to objective c gc registration
3617  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3618  if (handleLibObjc != NULL) {
3619    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3620  }
3621#endif
3622
3623  return JNI_OK;
3624}
3625
3626// this is called at the end of vm_initialization
3627void os::init_3(void) { }
3628
3629// Mark the polling page as unreadable
3630void os::make_polling_page_unreadable(void) {
3631  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3632    fatal("Could not disable polling page");
3633  }
3634}
3635
3636// Mark the polling page as readable
3637void os::make_polling_page_readable(void) {
3638  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3639    fatal("Could not enable polling page");
3640  }
3641}
3642
3643int os::active_processor_count() {
3644  return _processor_count;
3645}
3646
3647void os::set_native_thread_name(const char *name) {
3648#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3649  // This is only supported in Snow Leopard and beyond
3650  if (name != NULL) {
3651    // Add a "Java: " prefix to the name
3652    char buf[MAXTHREADNAMESIZE];
3653    snprintf(buf, sizeof(buf), "Java: %s", name);
3654    pthread_setname_np(buf);
3655  }
3656#endif
3657}
3658
3659bool os::distribute_processes(uint length, uint* distribution) {
3660  // Not yet implemented.
3661  return false;
3662}
3663
3664bool os::bind_to_processor(uint processor_id) {
3665  // Not yet implemented.
3666  return false;
3667}
3668
3669void os::SuspendedThreadTask::internal_do_task() {
3670  if (do_suspend(_thread->osthread())) {
3671    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3672    do_task(context);
3673    do_resume(_thread->osthread());
3674  }
3675}
3676
3677///
3678class PcFetcher : public os::SuspendedThreadTask {
3679 public:
3680  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3681  ExtendedPC result();
3682 protected:
3683  void do_task(const os::SuspendedThreadTaskContext& context);
3684 private:
3685  ExtendedPC _epc;
3686};
3687
3688ExtendedPC PcFetcher::result() {
3689  guarantee(is_done(), "task is not done yet.");
3690  return _epc;
3691}
3692
3693void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3694  Thread* thread = context.thread();
3695  OSThread* osthread = thread->osthread();
3696  if (osthread->ucontext() != NULL) {
3697    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3698  } else {
3699    // NULL context is unexpected, double-check this is the VMThread
3700    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3701  }
3702}
3703
3704// Suspends the target using the signal mechanism and then grabs the PC before
3705// resuming the target. Used by the flat-profiler only
3706ExtendedPC os::get_thread_pc(Thread* thread) {
3707  // Make sure that it is called by the watcher for the VMThread
3708  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3709  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3710
3711  PcFetcher fetcher(thread);
3712  fetcher.run();
3713  return fetcher.result();
3714}
3715
3716int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond,
3717                                 pthread_mutex_t *_mutex,
3718                                 const struct timespec *_abstime) {
3719  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3720}
3721
3722////////////////////////////////////////////////////////////////////////////////
3723// debug support
3724
3725bool os::find(address addr, outputStream* st) {
3726  Dl_info dlinfo;
3727  memset(&dlinfo, 0, sizeof(dlinfo));
3728  if (dladdr(addr, &dlinfo) != 0) {
3729    st->print(PTR_FORMAT ": ", addr);
3730    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3731      st->print("%s+%#x", dlinfo.dli_sname,
3732                addr - (intptr_t)dlinfo.dli_saddr);
3733    } else if (dlinfo.dli_fbase != NULL) {
3734      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3735    } else {
3736      st->print("<absolute address>");
3737    }
3738    if (dlinfo.dli_fname != NULL) {
3739      st->print(" in %s", dlinfo.dli_fname);
3740    }
3741    if (dlinfo.dli_fbase != NULL) {
3742      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3743    }
3744    st->cr();
3745
3746    if (Verbose) {
3747      // decode some bytes around the PC
3748      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3749      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3750      address       lowest = (address) dlinfo.dli_sname;
3751      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3752      if (begin < lowest)  begin = lowest;
3753      Dl_info dlinfo2;
3754      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3755          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3756        end = (address) dlinfo2.dli_saddr;
3757      }
3758      Disassembler::decode(begin, end, st);
3759    }
3760    return true;
3761  }
3762  return false;
3763}
3764
3765////////////////////////////////////////////////////////////////////////////////
3766// misc
3767
3768// This does not do anything on Bsd. This is basically a hook for being
3769// able to use structured exception handling (thread-local exception filters)
3770// on, e.g., Win32.
3771void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3772                              methodHandle* method, JavaCallArguments* args,
3773                              Thread* thread) {
3774  f(value, method, args, thread);
3775}
3776
3777void os::print_statistics() {
3778}
3779
3780int os::message_box(const char* title, const char* message) {
3781  int i;
3782  fdStream err(defaultStream::error_fd());
3783  for (i = 0; i < 78; i++) err.print_raw("=");
3784  err.cr();
3785  err.print_raw_cr(title);
3786  for (i = 0; i < 78; i++) err.print_raw("-");
3787  err.cr();
3788  err.print_raw_cr(message);
3789  for (i = 0; i < 78; i++) err.print_raw("=");
3790  err.cr();
3791
3792  char buf[16];
3793  // Prevent process from exiting upon "read error" without consuming all CPU
3794  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3795
3796  return buf[0] == 'y' || buf[0] == 'Y';
3797}
3798
3799int os::stat(const char *path, struct stat *sbuf) {
3800  char pathbuf[MAX_PATH];
3801  if (strlen(path) > MAX_PATH - 1) {
3802    errno = ENAMETOOLONG;
3803    return -1;
3804  }
3805  os::native_path(strcpy(pathbuf, path));
3806  return ::stat(pathbuf, sbuf);
3807}
3808
3809bool os::check_heap(bool force) {
3810  return true;
3811}
3812
3813ATTRIBUTE_PRINTF(3, 0)
3814int local_vsnprintf(char* buf, size_t count, const char* format,
3815                    va_list args) {
3816  return ::vsnprintf(buf, count, format, args);
3817}
3818
3819// Is a (classpath) directory empty?
3820bool os::dir_is_empty(const char* path) {
3821  DIR *dir = NULL;
3822  struct dirent *ptr;
3823
3824  dir = opendir(path);
3825  if (dir == NULL) return true;
3826
3827  // Scan the directory
3828  bool result = true;
3829  char buf[sizeof(struct dirent) + MAX_PATH];
3830  while (result && (ptr = ::readdir(dir)) != NULL) {
3831    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3832      result = false;
3833    }
3834  }
3835  closedir(dir);
3836  return result;
3837}
3838
3839// This code originates from JDK's sysOpen and open64_w
3840// from src/solaris/hpi/src/system_md.c
3841
3842#ifndef O_DELETE
3843  #define O_DELETE 0x10000
3844#endif
3845
3846// Open a file. Unlink the file immediately after open returns
3847// if the specified oflag has the O_DELETE flag set.
3848// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3849
3850int os::open(const char *path, int oflag, int mode) {
3851  if (strlen(path) > MAX_PATH - 1) {
3852    errno = ENAMETOOLONG;
3853    return -1;
3854  }
3855  int fd;
3856  int o_delete = (oflag & O_DELETE);
3857  oflag = oflag & ~O_DELETE;
3858
3859  fd = ::open(path, oflag, mode);
3860  if (fd == -1) return -1;
3861
3862  // If the open succeeded, the file might still be a directory
3863  {
3864    struct stat buf;
3865    int ret = ::fstat(fd, &buf);
3866    int st_mode = buf.st_mode;
3867
3868    if (ret != -1) {
3869      if ((st_mode & S_IFMT) == S_IFDIR) {
3870        errno = EISDIR;
3871        ::close(fd);
3872        return -1;
3873      }
3874    } else {
3875      ::close(fd);
3876      return -1;
3877    }
3878  }
3879
3880  // All file descriptors that are opened in the JVM and not
3881  // specifically destined for a subprocess should have the
3882  // close-on-exec flag set.  If we don't set it, then careless 3rd
3883  // party native code might fork and exec without closing all
3884  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3885  // UNIXProcess.c), and this in turn might:
3886  //
3887  // - cause end-of-file to fail to be detected on some file
3888  //   descriptors, resulting in mysterious hangs, or
3889  //
3890  // - might cause an fopen in the subprocess to fail on a system
3891  //   suffering from bug 1085341.
3892  //
3893  // (Yes, the default setting of the close-on-exec flag is a Unix
3894  // design flaw)
3895  //
3896  // See:
3897  // 1085341: 32-bit stdio routines should support file descriptors >255
3898  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3899  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3900  //
3901#ifdef FD_CLOEXEC
3902  {
3903    int flags = ::fcntl(fd, F_GETFD);
3904    if (flags != -1) {
3905      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3906    }
3907  }
3908#endif
3909
3910  if (o_delete != 0) {
3911    ::unlink(path);
3912  }
3913  return fd;
3914}
3915
3916
3917// create binary file, rewriting existing file if required
3918int os::create_binary_file(const char* path, bool rewrite_existing) {
3919  int oflags = O_WRONLY | O_CREAT;
3920  if (!rewrite_existing) {
3921    oflags |= O_EXCL;
3922  }
3923  return ::open(path, oflags, S_IREAD | S_IWRITE);
3924}
3925
3926// return current position of file pointer
3927jlong os::current_file_offset(int fd) {
3928  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3929}
3930
3931// move file pointer to the specified offset
3932jlong os::seek_to_file_offset(int fd, jlong offset) {
3933  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3934}
3935
3936// This code originates from JDK's sysAvailable
3937// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3938
3939int os::available(int fd, jlong *bytes) {
3940  jlong cur, end;
3941  int mode;
3942  struct stat buf;
3943
3944  if (::fstat(fd, &buf) >= 0) {
3945    mode = buf.st_mode;
3946    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3947      // XXX: is the following call interruptible? If so, this might
3948      // need to go through the INTERRUPT_IO() wrapper as for other
3949      // blocking, interruptible calls in this file.
3950      int n;
3951      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3952        *bytes = n;
3953        return 1;
3954      }
3955    }
3956  }
3957  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3958    return 0;
3959  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3960    return 0;
3961  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3962    return 0;
3963  }
3964  *bytes = end - cur;
3965  return 1;
3966}
3967
3968int os::socket_available(int fd, jint *pbytes) {
3969  if (fd < 0) {
3970    return OS_OK;
3971  }
3972
3973  int ret;
3974
3975  RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3976
3977  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3978  // is expected to return 0 on failure and 1 on success to the jdk.
3979
3980  return (ret == OS_ERR) ? 0 : 1;
3981}
3982
3983// Map a block of memory.
3984char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3985                        char *addr, size_t bytes, bool read_only,
3986                        bool allow_exec) {
3987  int prot;
3988  int flags;
3989
3990  if (read_only) {
3991    prot = PROT_READ;
3992    flags = MAP_SHARED;
3993  } else {
3994    prot = PROT_READ | PROT_WRITE;
3995    flags = MAP_PRIVATE;
3996  }
3997
3998  if (allow_exec) {
3999    prot |= PROT_EXEC;
4000  }
4001
4002  if (addr != NULL) {
4003    flags |= MAP_FIXED;
4004  }
4005
4006  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4007                                     fd, file_offset);
4008  if (mapped_address == MAP_FAILED) {
4009    return NULL;
4010  }
4011  return mapped_address;
4012}
4013
4014
4015// Remap a block of memory.
4016char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4017                          char *addr, size_t bytes, bool read_only,
4018                          bool allow_exec) {
4019  // same as map_memory() on this OS
4020  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4021                        allow_exec);
4022}
4023
4024
4025// Unmap a block of memory.
4026bool os::pd_unmap_memory(char* addr, size_t bytes) {
4027  return munmap(addr, bytes) == 0;
4028}
4029
4030// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4031// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4032// of a thread.
4033//
4034// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4035// the fast estimate available on the platform.
4036
4037jlong os::current_thread_cpu_time() {
4038#ifdef __APPLE__
4039  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4040#else
4041  Unimplemented();
4042  return 0;
4043#endif
4044}
4045
4046jlong os::thread_cpu_time(Thread* thread) {
4047#ifdef __APPLE__
4048  return os::thread_cpu_time(thread, true /* user + sys */);
4049#else
4050  Unimplemented();
4051  return 0;
4052#endif
4053}
4054
4055jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4056#ifdef __APPLE__
4057  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4058#else
4059  Unimplemented();
4060  return 0;
4061#endif
4062}
4063
4064jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4065#ifdef __APPLE__
4066  struct thread_basic_info tinfo;
4067  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4068  kern_return_t kr;
4069  thread_t mach_thread;
4070
4071  mach_thread = thread->osthread()->thread_id();
4072  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4073  if (kr != KERN_SUCCESS) {
4074    return -1;
4075  }
4076
4077  if (user_sys_cpu_time) {
4078    jlong nanos;
4079    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4080    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4081    return nanos;
4082  } else {
4083    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4084  }
4085#else
4086  Unimplemented();
4087  return 0;
4088#endif
4089}
4090
4091
4092void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4093  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4094  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4095  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4096  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4097}
4098
4099void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4100  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4101  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4102  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4103  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4104}
4105
4106bool os::is_thread_cpu_time_supported() {
4107#ifdef __APPLE__
4108  return true;
4109#else
4110  return false;
4111#endif
4112}
4113
4114// System loadavg support.  Returns -1 if load average cannot be obtained.
4115// Bsd doesn't yet have a (official) notion of processor sets,
4116// so just return the system wide load average.
4117int os::loadavg(double loadavg[], int nelem) {
4118  return ::getloadavg(loadavg, nelem);
4119}
4120
4121void os::pause() {
4122  char filename[MAX_PATH];
4123  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4124    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4125  } else {
4126    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4127  }
4128
4129  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4130  if (fd != -1) {
4131    struct stat buf;
4132    ::close(fd);
4133    while (::stat(filename, &buf) == 0) {
4134      (void)::poll(NULL, 0, 100);
4135    }
4136  } else {
4137    jio_fprintf(stderr,
4138                "Could not open pause file '%s', continuing immediately.\n", filename);
4139  }
4140}
4141
4142
4143// Refer to the comments in os_solaris.cpp park-unpark.
4144//
4145// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4146// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4147// For specifics regarding the bug see GLIBC BUGID 261237 :
4148//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4149// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4150// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4151// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4152// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4153// and monitorenter when we're using 1-0 locking.  All those operations may result in
4154// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4155// of libpthread avoids the problem, but isn't practical.
4156//
4157// Possible remedies:
4158//
4159// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4160//      This is palliative and probabilistic, however.  If the thread is preempted
4161//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4162//      than the minimum period may have passed, and the abstime may be stale (in the
4163//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4164//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4165//
4166// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4167//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4168//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4169//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4170//      thread.
4171//
4172// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4173//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4174//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4175//      This also works well.  In fact it avoids kernel-level scalability impediments
4176//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4177//      timers in a graceful fashion.
4178//
4179// 4.   When the abstime value is in the past it appears that control returns
4180//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4181//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4182//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4183//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4184//      It may be possible to avoid reinitialization by checking the return
4185//      value from pthread_cond_timedwait().  In addition to reinitializing the
4186//      condvar we must establish the invariant that cond_signal() is only called
4187//      within critical sections protected by the adjunct mutex.  This prevents
4188//      cond_signal() from "seeing" a condvar that's in the midst of being
4189//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4190//      desirable signal-after-unlock optimization that avoids futile context switching.
4191//
4192//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4193//      structure when a condvar is used or initialized.  cond_destroy()  would
4194//      release the helper structure.  Our reinitialize-after-timedwait fix
4195//      put excessive stress on malloc/free and locks protecting the c-heap.
4196//
4197// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4198// It may be possible to refine (4) by checking the kernel and NTPL verisons
4199// and only enabling the work-around for vulnerable environments.
4200
4201// utility to compute the abstime argument to timedwait:
4202// millis is the relative timeout time
4203// abstime will be the absolute timeout time
4204// TODO: replace compute_abstime() with unpackTime()
4205
4206static struct timespec* compute_abstime(struct timespec* abstime,
4207                                        jlong millis) {
4208  if (millis < 0)  millis = 0;
4209  struct timeval now;
4210  int status = gettimeofday(&now, NULL);
4211  assert(status == 0, "gettimeofday");
4212  jlong seconds = millis / 1000;
4213  millis %= 1000;
4214  if (seconds > 50000000) { // see man cond_timedwait(3T)
4215    seconds = 50000000;
4216  }
4217  abstime->tv_sec = now.tv_sec  + seconds;
4218  long       usec = now.tv_usec + millis * 1000;
4219  if (usec >= 1000000) {
4220    abstime->tv_sec += 1;
4221    usec -= 1000000;
4222  }
4223  abstime->tv_nsec = usec * 1000;
4224  return abstime;
4225}
4226
4227void os::PlatformEvent::park() {       // AKA "down()"
4228  // Invariant: Only the thread associated with the Event/PlatformEvent
4229  // may call park().
4230  // TODO: assert that _Assoc != NULL or _Assoc == Self
4231  assert(_nParked == 0, "invariant");
4232
4233  int v;
4234  for (;;) {
4235    v = _Event;
4236    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4237  }
4238  guarantee(v >= 0, "invariant");
4239  if (v == 0) {
4240    // Do this the hard way by blocking ...
4241    int status = pthread_mutex_lock(_mutex);
4242    assert_status(status == 0, status, "mutex_lock");
4243    guarantee(_nParked == 0, "invariant");
4244    ++_nParked;
4245    while (_Event < 0) {
4246      status = pthread_cond_wait(_cond, _mutex);
4247      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4248      // Treat this the same as if the wait was interrupted
4249      if (status == ETIMEDOUT) { status = EINTR; }
4250      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4251    }
4252    --_nParked;
4253
4254    _Event = 0;
4255    status = pthread_mutex_unlock(_mutex);
4256    assert_status(status == 0, status, "mutex_unlock");
4257    // Paranoia to ensure our locked and lock-free paths interact
4258    // correctly with each other.
4259    OrderAccess::fence();
4260  }
4261  guarantee(_Event >= 0, "invariant");
4262}
4263
4264int os::PlatformEvent::park(jlong millis) {
4265  guarantee(_nParked == 0, "invariant");
4266
4267  int v;
4268  for (;;) {
4269    v = _Event;
4270    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4271  }
4272  guarantee(v >= 0, "invariant");
4273  if (v != 0) return OS_OK;
4274
4275  // We do this the hard way, by blocking the thread.
4276  // Consider enforcing a minimum timeout value.
4277  struct timespec abst;
4278  compute_abstime(&abst, millis);
4279
4280  int ret = OS_TIMEOUT;
4281  int status = pthread_mutex_lock(_mutex);
4282  assert_status(status == 0, status, "mutex_lock");
4283  guarantee(_nParked == 0, "invariant");
4284  ++_nParked;
4285
4286  // Object.wait(timo) will return because of
4287  // (a) notification
4288  // (b) timeout
4289  // (c) thread.interrupt
4290  //
4291  // Thread.interrupt and object.notify{All} both call Event::set.
4292  // That is, we treat thread.interrupt as a special case of notification.
4293  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4294  // We assume all ETIME returns are valid.
4295  //
4296  // TODO: properly differentiate simultaneous notify+interrupt.
4297  // In that case, we should propagate the notify to another waiter.
4298
4299  while (_Event < 0) {
4300    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4301    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4302      pthread_cond_destroy(_cond);
4303      pthread_cond_init(_cond, NULL);
4304    }
4305    assert_status(status == 0 || status == EINTR ||
4306                  status == ETIMEDOUT,
4307                  status, "cond_timedwait");
4308    if (!FilterSpuriousWakeups) break;                 // previous semantics
4309    if (status == ETIMEDOUT) break;
4310    // We consume and ignore EINTR and spurious wakeups.
4311  }
4312  --_nParked;
4313  if (_Event >= 0) {
4314    ret = OS_OK;
4315  }
4316  _Event = 0;
4317  status = pthread_mutex_unlock(_mutex);
4318  assert_status(status == 0, status, "mutex_unlock");
4319  assert(_nParked == 0, "invariant");
4320  // Paranoia to ensure our locked and lock-free paths interact
4321  // correctly with each other.
4322  OrderAccess::fence();
4323  return ret;
4324}
4325
4326void os::PlatformEvent::unpark() {
4327  // Transitions for _Event:
4328  //    0 :=> 1
4329  //    1 :=> 1
4330  //   -1 :=> either 0 or 1; must signal target thread
4331  //          That is, we can safely transition _Event from -1 to either
4332  //          0 or 1.
4333  // See also: "Semaphores in Plan 9" by Mullender & Cox
4334  //
4335  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4336  // that it will take two back-to-back park() calls for the owning
4337  // thread to block. This has the benefit of forcing a spurious return
4338  // from the first park() call after an unpark() call which will help
4339  // shake out uses of park() and unpark() without condition variables.
4340
4341  if (Atomic::xchg(1, &_Event) >= 0) return;
4342
4343  // Wait for the thread associated with the event to vacate
4344  int status = pthread_mutex_lock(_mutex);
4345  assert_status(status == 0, status, "mutex_lock");
4346  int AnyWaiters = _nParked;
4347  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4348  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4349    AnyWaiters = 0;
4350    pthread_cond_signal(_cond);
4351  }
4352  status = pthread_mutex_unlock(_mutex);
4353  assert_status(status == 0, status, "mutex_unlock");
4354  if (AnyWaiters != 0) {
4355    status = pthread_cond_signal(_cond);
4356    assert_status(status == 0, status, "cond_signal");
4357  }
4358
4359  // Note that we signal() _after dropping the lock for "immortal" Events.
4360  // This is safe and avoids a common class of  futile wakeups.  In rare
4361  // circumstances this can cause a thread to return prematurely from
4362  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4363  // simply re-test the condition and re-park itself.
4364}
4365
4366
4367// JSR166
4368// -------------------------------------------------------
4369
4370// The solaris and bsd implementations of park/unpark are fairly
4371// conservative for now, but can be improved. They currently use a
4372// mutex/condvar pair, plus a a count.
4373// Park decrements count if > 0, else does a condvar wait.  Unpark
4374// sets count to 1 and signals condvar.  Only one thread ever waits
4375// on the condvar. Contention seen when trying to park implies that someone
4376// is unparking you, so don't wait. And spurious returns are fine, so there
4377// is no need to track notifications.
4378
4379#define MAX_SECS 100000000
4380
4381// This code is common to bsd and solaris and will be moved to a
4382// common place in dolphin.
4383//
4384// The passed in time value is either a relative time in nanoseconds
4385// or an absolute time in milliseconds. Either way it has to be unpacked
4386// into suitable seconds and nanoseconds components and stored in the
4387// given timespec structure.
4388// Given time is a 64-bit value and the time_t used in the timespec is only
4389// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4390// overflow if times way in the future are given. Further on Solaris versions
4391// prior to 10 there is a restriction (see cond_timedwait) that the specified
4392// number of seconds, in abstime, is less than current_time  + 100,000,000.
4393// As it will be 28 years before "now + 100000000" will overflow we can
4394// ignore overflow and just impose a hard-limit on seconds using the value
4395// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4396// years from "now".
4397
4398static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4399  assert(time > 0, "convertTime");
4400
4401  struct timeval now;
4402  int status = gettimeofday(&now, NULL);
4403  assert(status == 0, "gettimeofday");
4404
4405  time_t max_secs = now.tv_sec + MAX_SECS;
4406
4407  if (isAbsolute) {
4408    jlong secs = time / 1000;
4409    if (secs > max_secs) {
4410      absTime->tv_sec = max_secs;
4411    } else {
4412      absTime->tv_sec = secs;
4413    }
4414    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4415  } else {
4416    jlong secs = time / NANOSECS_PER_SEC;
4417    if (secs >= MAX_SECS) {
4418      absTime->tv_sec = max_secs;
4419      absTime->tv_nsec = 0;
4420    } else {
4421      absTime->tv_sec = now.tv_sec + secs;
4422      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4423      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4424        absTime->tv_nsec -= NANOSECS_PER_SEC;
4425        ++absTime->tv_sec; // note: this must be <= max_secs
4426      }
4427    }
4428  }
4429  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4430  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4431  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4432  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4433}
4434
4435void Parker::park(bool isAbsolute, jlong time) {
4436  // Ideally we'd do something useful while spinning, such
4437  // as calling unpackTime().
4438
4439  // Optional fast-path check:
4440  // Return immediately if a permit is available.
4441  // We depend on Atomic::xchg() having full barrier semantics
4442  // since we are doing a lock-free update to _counter.
4443  if (Atomic::xchg(0, &_counter) > 0) return;
4444
4445  Thread* thread = Thread::current();
4446  assert(thread->is_Java_thread(), "Must be JavaThread");
4447  JavaThread *jt = (JavaThread *)thread;
4448
4449  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4450  // Check interrupt before trying to wait
4451  if (Thread::is_interrupted(thread, false)) {
4452    return;
4453  }
4454
4455  // Next, demultiplex/decode time arguments
4456  struct timespec absTime;
4457  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4458    return;
4459  }
4460  if (time > 0) {
4461    unpackTime(&absTime, isAbsolute, time);
4462  }
4463
4464
4465  // Enter safepoint region
4466  // Beware of deadlocks such as 6317397.
4467  // The per-thread Parker:: mutex is a classic leaf-lock.
4468  // In particular a thread must never block on the Threads_lock while
4469  // holding the Parker:: mutex.  If safepoints are pending both the
4470  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4471  ThreadBlockInVM tbivm(jt);
4472
4473  // Don't wait if cannot get lock since interference arises from
4474  // unblocking.  Also. check interrupt before trying wait
4475  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4476    return;
4477  }
4478
4479  int status;
4480  if (_counter > 0)  { // no wait needed
4481    _counter = 0;
4482    status = pthread_mutex_unlock(_mutex);
4483    assert(status == 0, "invariant");
4484    // Paranoia to ensure our locked and lock-free paths interact
4485    // correctly with each other and Java-level accesses.
4486    OrderAccess::fence();
4487    return;
4488  }
4489
4490#ifdef ASSERT
4491  // Don't catch signals while blocked; let the running threads have the signals.
4492  // (This allows a debugger to break into the running thread.)
4493  sigset_t oldsigs;
4494  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4495  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4496#endif
4497
4498  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4499  jt->set_suspend_equivalent();
4500  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4501
4502  if (time == 0) {
4503    status = pthread_cond_wait(_cond, _mutex);
4504  } else {
4505    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4506    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4507      pthread_cond_destroy(_cond);
4508      pthread_cond_init(_cond, NULL);
4509    }
4510  }
4511  assert_status(status == 0 || status == EINTR ||
4512                status == ETIMEDOUT,
4513                status, "cond_timedwait");
4514
4515#ifdef ASSERT
4516  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4517#endif
4518
4519  _counter = 0;
4520  status = pthread_mutex_unlock(_mutex);
4521  assert_status(status == 0, status, "invariant");
4522  // Paranoia to ensure our locked and lock-free paths interact
4523  // correctly with each other and Java-level accesses.
4524  OrderAccess::fence();
4525
4526  // If externally suspended while waiting, re-suspend
4527  if (jt->handle_special_suspend_equivalent_condition()) {
4528    jt->java_suspend_self();
4529  }
4530}
4531
4532void Parker::unpark() {
4533  int status = pthread_mutex_lock(_mutex);
4534  assert(status == 0, "invariant");
4535  const int s = _counter;
4536  _counter = 1;
4537  if (s < 1) {
4538    if (WorkAroundNPTLTimedWaitHang) {
4539      status = pthread_cond_signal(_cond);
4540      assert(status == 0, "invariant");
4541      status = pthread_mutex_unlock(_mutex);
4542      assert(status == 0, "invariant");
4543    } else {
4544      status = pthread_mutex_unlock(_mutex);
4545      assert(status == 0, "invariant");
4546      status = pthread_cond_signal(_cond);
4547      assert(status == 0, "invariant");
4548    }
4549  } else {
4550    pthread_mutex_unlock(_mutex);
4551    assert(status == 0, "invariant");
4552  }
4553}
4554
4555
4556// Darwin has no "environ" in a dynamic library.
4557#ifdef __APPLE__
4558  #include <crt_externs.h>
4559  #define environ (*_NSGetEnviron())
4560#else
4561extern char** environ;
4562#endif
4563
4564// Run the specified command in a separate process. Return its exit value,
4565// or -1 on failure (e.g. can't fork a new process).
4566// Unlike system(), this function can be called from signal handler. It
4567// doesn't block SIGINT et al.
4568int os::fork_and_exec(char* cmd) {
4569  const char * argv[4] = {"sh", "-c", cmd, NULL};
4570
4571  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4572  // pthread_atfork handlers and reset pthread library. All we need is a
4573  // separate process to execve. Make a direct syscall to fork process.
4574  // On IA64 there's no fork syscall, we have to use fork() and hope for
4575  // the best...
4576  pid_t pid = fork();
4577
4578  if (pid < 0) {
4579    // fork failed
4580    return -1;
4581
4582  } else if (pid == 0) {
4583    // child process
4584
4585    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4586    // first to kill every thread on the thread list. Because this list is
4587    // not reset by fork() (see notes above), execve() will instead kill
4588    // every thread in the parent process. We know this is the only thread
4589    // in the new process, so make a system call directly.
4590    // IA64 should use normal execve() from glibc to match the glibc fork()
4591    // above.
4592    execve("/bin/sh", (char* const*)argv, environ);
4593
4594    // execve failed
4595    _exit(-1);
4596
4597  } else  {
4598    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4599    // care about the actual exit code, for now.
4600
4601    int status;
4602
4603    // Wait for the child process to exit.  This returns immediately if
4604    // the child has already exited. */
4605    while (waitpid(pid, &status, 0) < 0) {
4606      switch (errno) {
4607      case ECHILD: return 0;
4608      case EINTR: break;
4609      default: return -1;
4610      }
4611    }
4612
4613    if (WIFEXITED(status)) {
4614      // The child exited normally; get its exit code.
4615      return WEXITSTATUS(status);
4616    } else if (WIFSIGNALED(status)) {
4617      // The child exited because of a signal
4618      // The best value to return is 0x80 + signal number,
4619      // because that is what all Unix shells do, and because
4620      // it allows callers to distinguish between process exit and
4621      // process death by signal.
4622      return 0x80 + WTERMSIG(status);
4623    } else {
4624      // Unknown exit code; pass it through
4625      return status;
4626    }
4627  }
4628}
4629
4630// is_headless_jre()
4631//
4632// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4633// in order to report if we are running in a headless jre
4634//
4635// Since JDK8 xawt/libmawt.so was moved into the same directory
4636// as libawt.so, and renamed libawt_xawt.so
4637//
4638bool os::is_headless_jre() {
4639#ifdef __APPLE__
4640  // We no longer build headless-only on Mac OS X
4641  return false;
4642#else
4643  struct stat statbuf;
4644  char buf[MAXPATHLEN];
4645  char libmawtpath[MAXPATHLEN];
4646  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4647  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4648  char *p;
4649
4650  // Get path to libjvm.so
4651  os::jvm_path(buf, sizeof(buf));
4652
4653  // Get rid of libjvm.so
4654  p = strrchr(buf, '/');
4655  if (p == NULL) {
4656    return false;
4657  } else {
4658    *p = '\0';
4659  }
4660
4661  // Get rid of client or server
4662  p = strrchr(buf, '/');
4663  if (p == NULL) {
4664    return false;
4665  } else {
4666    *p = '\0';
4667  }
4668
4669  // check xawt/libmawt.so
4670  strcpy(libmawtpath, buf);
4671  strcat(libmawtpath, xawtstr);
4672  if (::stat(libmawtpath, &statbuf) == 0) return false;
4673
4674  // check libawt_xawt.so
4675  strcpy(libmawtpath, buf);
4676  strcat(libmawtpath, new_xawtstr);
4677  if (::stat(libmawtpath, &statbuf) == 0) return false;
4678
4679  return true;
4680#endif
4681}
4682
4683// Get the default path to the core file
4684// Returns the length of the string
4685int os::get_core_path(char* buffer, size_t bufferSize) {
4686  int n = jio_snprintf(buffer, bufferSize, "/cores");
4687
4688  // Truncate if theoretical string was longer than bufferSize
4689  n = MIN2(n, (int)bufferSize);
4690
4691  return n;
4692}
4693
4694#ifndef PRODUCT
4695void TestReserveMemorySpecial_test() {
4696  // No tests available for this platform
4697}
4698#endif
4699