os_bsd.cpp revision 7050:03835eaaab2d
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109# include <elf.h>
110#endif
111
112#ifdef __APPLE__
113# include <mach/mach.h> // semaphore_* API
114# include <mach-o/dyld.h>
115# include <sys/proc_info.h>
116# include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120#define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155/* Signal number used to suspend/resume a thread */
156
157/* do not use any signal number less than SIGSEGV, see 4355769 */
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193////////////////////////////////////////////////////////////////////////////////
194// environment support
195
196bool os::getenv(const char* name, char* buf, int len) {
197  const char* val = ::getenv(name);
198  if (val != NULL && strlen(val) < (size_t)len) {
199    strcpy(buf, val);
200    return true;
201  }
202  if (len > 0) buf[0] = 0;  // return a null string
203  return false;
204}
205
206
207// Return true if user is running as root.
208
209bool os::have_special_privileges() {
210  static bool init = false;
211  static bool privileges = false;
212  if (!init) {
213    privileges = (getuid() != geteuid()) || (getgid() != getegid());
214    init = true;
215  }
216  return privileges;
217}
218
219
220
221// Cpu architecture string
222#if   defined(ZERO)
223static char cpu_arch[] = ZERO_LIBARCH;
224#elif defined(IA64)
225static char cpu_arch[] = "ia64";
226#elif defined(IA32)
227static char cpu_arch[] = "i386";
228#elif defined(AMD64)
229static char cpu_arch[] = "amd64";
230#elif defined(ARM)
231static char cpu_arch[] = "arm";
232#elif defined(PPC32)
233static char cpu_arch[] = "ppc";
234#elif defined(SPARC)
235#  ifdef _LP64
236static char cpu_arch[] = "sparcv9";
237#  else
238static char cpu_arch[] = "sparc";
239#  endif
240#else
241#error Add appropriate cpu_arch setting
242#endif
243
244// Compiler variant
245#ifdef COMPILER2
246#define COMPILER_VARIANT "server"
247#else
248#define COMPILER_VARIANT "client"
249#endif
250
251
252void os::Bsd::initialize_system_info() {
253  int mib[2];
254  size_t len;
255  int cpu_val;
256  julong mem_val;
257
258  /* get processors count via hw.ncpus sysctl */
259  mib[0] = CTL_HW;
260  mib[1] = HW_NCPU;
261  len = sizeof(cpu_val);
262  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
263    assert(len == sizeof(cpu_val), "unexpected data size");
264    set_processor_count(cpu_val);
265  }
266  else {
267    set_processor_count(1);   // fallback
268  }
269
270  /* get physical memory via hw.memsize sysctl (hw.memsize is used
271   * since it returns a 64 bit value)
272   */
273  mib[0] = CTL_HW;
274
275#if defined (HW_MEMSIZE) // Apple
276  mib[1] = HW_MEMSIZE;
277#elif defined(HW_PHYSMEM) // Most of BSD
278  mib[1] = HW_PHYSMEM;
279#elif defined(HW_REALMEM) // Old FreeBSD
280  mib[1] = HW_REALMEM;
281#else
282  #error No ways to get physmem
283#endif
284
285  len = sizeof(mem_val);
286  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
287    assert(len == sizeof(mem_val), "unexpected data size");
288    _physical_memory = mem_val;
289  } else {
290    _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
291  }
292
293#ifdef __OpenBSD__
294  {
295    // limit _physical_memory memory view on OpenBSD since
296    // datasize rlimit restricts us anyway.
297    struct rlimit limits;
298    getrlimit(RLIMIT_DATA, &limits);
299    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
300  }
301#endif
302}
303
304#ifdef __APPLE__
305static const char *get_home() {
306  const char *home_dir = ::getenv("HOME");
307  if ((home_dir == NULL) || (*home_dir == '\0')) {
308    struct passwd *passwd_info = getpwuid(geteuid());
309    if (passwd_info != NULL) {
310      home_dir = passwd_info->pw_dir;
311    }
312  }
313
314  return home_dir;
315}
316#endif
317
318void os::init_system_properties_values() {
319  // The next steps are taken in the product version:
320  //
321  // Obtain the JAVA_HOME value from the location of libjvm.so.
322  // This library should be located at:
323  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
324  //
325  // If "/jre/lib/" appears at the right place in the path, then we
326  // assume libjvm.so is installed in a JDK and we use this path.
327  //
328  // Otherwise exit with message: "Could not create the Java virtual machine."
329  //
330  // The following extra steps are taken in the debugging version:
331  //
332  // If "/jre/lib/" does NOT appear at the right place in the path
333  // instead of exit check for $JAVA_HOME environment variable.
334  //
335  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
336  // then we append a fake suffix "hotspot/libjvm.so" to this path so
337  // it looks like libjvm.so is installed there
338  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
339  //
340  // Otherwise exit.
341  //
342  // Important note: if the location of libjvm.so changes this
343  // code needs to be changed accordingly.
344
345// See ld(1):
346//      The linker uses the following search paths to locate required
347//      shared libraries:
348//        1: ...
349//        ...
350//        7: The default directories, normally /lib and /usr/lib.
351#ifndef DEFAULT_LIBPATH
352#define DEFAULT_LIBPATH "/lib:/usr/lib"
353#endif
354
355// Base path of extensions installed on the system.
356#define SYS_EXT_DIR     "/usr/java/packages"
357#define EXTENSIONS_DIR  "/lib/ext"
358#define ENDORSED_DIR    "/lib/endorsed"
359
360#ifndef __APPLE__
361
362  // Buffer that fits several sprintfs.
363  // Note that the space for the colon and the trailing null are provided
364  // by the nulls included by the sizeof operator.
365  const size_t bufsize =
366    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
367         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
368         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
369  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
370
371  // sysclasspath, java_home, dll_dir
372  {
373    char *pslash;
374    os::jvm_path(buf, bufsize);
375
376    // Found the full path to libjvm.so.
377    // Now cut the path to <java_home>/jre if we can.
378    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
379    pslash = strrchr(buf, '/');
380    if (pslash != NULL) {
381      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
382    }
383    Arguments::set_dll_dir(buf);
384
385    if (pslash != NULL) {
386      pslash = strrchr(buf, '/');
387      if (pslash != NULL) {
388        *pslash = '\0';          // Get rid of /<arch>.
389        pslash = strrchr(buf, '/');
390        if (pslash != NULL) {
391          *pslash = '\0';        // Get rid of /lib.
392        }
393      }
394    }
395    Arguments::set_java_home(buf);
396    set_boot_path('/', ':');
397  }
398
399  // Where to look for native libraries.
400  //
401  // Note: Due to a legacy implementation, most of the library path
402  // is set in the launcher. This was to accomodate linking restrictions
403  // on legacy Bsd implementations (which are no longer supported).
404  // Eventually, all the library path setting will be done here.
405  //
406  // However, to prevent the proliferation of improperly built native
407  // libraries, the new path component /usr/java/packages is added here.
408  // Eventually, all the library path setting will be done here.
409  {
410    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
411    // should always exist (until the legacy problem cited above is
412    // addressed).
413    const char *v = ::getenv("LD_LIBRARY_PATH");
414    const char *v_colon = ":";
415    if (v == NULL) { v = ""; v_colon = ""; }
416    // That's +1 for the colon and +1 for the trailing '\0'.
417    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
418                                                     strlen(v) + 1 +
419                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
420                                                     mtInternal);
421    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
422    Arguments::set_library_path(ld_library_path);
423    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
424  }
425
426  // Extensions directories.
427  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
428  Arguments::set_ext_dirs(buf);
429
430  // Endorsed standards default directory.
431  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
432  Arguments::set_endorsed_dirs(buf);
433
434  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
435
436#else // __APPLE__
437
438#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
439#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
440
441  const char *user_home_dir = get_home();
442  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
443  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
444    sizeof(SYS_EXTENSIONS_DIRS);
445
446  // Buffer that fits several sprintfs.
447  // Note that the space for the colon and the trailing null are provided
448  // by the nulls included by the sizeof operator.
449  const size_t bufsize =
450    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
451         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
452         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
453  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
454
455  // sysclasspath, java_home, dll_dir
456  {
457    char *pslash;
458    os::jvm_path(buf, bufsize);
459
460    // Found the full path to libjvm.so.
461    // Now cut the path to <java_home>/jre if we can.
462    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
463    pslash = strrchr(buf, '/');
464    if (pslash != NULL) {
465      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
466    }
467    Arguments::set_dll_dir(buf);
468
469    if (pslash != NULL) {
470      pslash = strrchr(buf, '/');
471      if (pslash != NULL) {
472        *pslash = '\0';          // Get rid of /lib.
473      }
474    }
475    Arguments::set_java_home(buf);
476    set_boot_path('/', ':');
477  }
478
479  // Where to look for native libraries.
480  //
481  // Note: Due to a legacy implementation, most of the library path
482  // is set in the launcher. This was to accomodate linking restrictions
483  // on legacy Bsd implementations (which are no longer supported).
484  // Eventually, all the library path setting will be done here.
485  //
486  // However, to prevent the proliferation of improperly built native
487  // libraries, the new path component /usr/java/packages is added here.
488  // Eventually, all the library path setting will be done here.
489  {
490    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
491    // should always exist (until the legacy problem cited above is
492    // addressed).
493    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
494    // can specify a directory inside an app wrapper
495    const char *l = ::getenv("JAVA_LIBRARY_PATH");
496    const char *l_colon = ":";
497    if (l == NULL) { l = ""; l_colon = ""; }
498
499    const char *v = ::getenv("DYLD_LIBRARY_PATH");
500    const char *v_colon = ":";
501    if (v == NULL) { v = ""; v_colon = ""; }
502
503    // Apple's Java6 has "." at the beginning of java.library.path.
504    // OpenJDK on Windows has "." at the end of java.library.path.
505    // OpenJDK on Linux and Solaris don't have "." in java.library.path
506    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
507    // "." is appended to the end of java.library.path. Yes, this
508    // could cause a change in behavior, but Apple's Java6 behavior
509    // can be achieved by putting "." at the beginning of the
510    // JAVA_LIBRARY_PATH environment variable.
511    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
512                                                     strlen(v) + 1 + strlen(l) + 1 +
513                                                     system_ext_size + 3,
514                                                     mtInternal);
515    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
516            v, v_colon, l, l_colon, user_home_dir);
517    Arguments::set_library_path(ld_library_path);
518    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
519  }
520
521  // Extensions directories.
522  //
523  // Note that the space for the colon and the trailing null are provided
524  // by the nulls included by the sizeof operator (so actually one byte more
525  // than necessary is allocated).
526  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
527          user_home_dir, Arguments::get_java_home());
528  Arguments::set_ext_dirs(buf);
529
530  // Endorsed standards default directory.
531  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
532  Arguments::set_endorsed_dirs(buf);
533
534  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
535
536#undef SYS_EXTENSIONS_DIR
537#undef SYS_EXTENSIONS_DIRS
538
539#endif // __APPLE__
540
541#undef SYS_EXT_DIR
542#undef EXTENSIONS_DIR
543#undef ENDORSED_DIR
544}
545
546////////////////////////////////////////////////////////////////////////////////
547// breakpoint support
548
549void os::breakpoint() {
550  BREAKPOINT;
551}
552
553extern "C" void breakpoint() {
554  // use debugger to set breakpoint here
555}
556
557////////////////////////////////////////////////////////////////////////////////
558// signal support
559
560debug_only(static bool signal_sets_initialized = false);
561static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
562
563bool os::Bsd::is_sig_ignored(int sig) {
564  struct sigaction oact;
565  sigaction(sig, (struct sigaction*)NULL, &oact);
566  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
567                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
568  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
569    return true;
570  else
571    return false;
572}
573
574void os::Bsd::signal_sets_init() {
575  // Should also have an assertion stating we are still single-threaded.
576  assert(!signal_sets_initialized, "Already initialized");
577  // Fill in signals that are necessarily unblocked for all threads in
578  // the VM. Currently, we unblock the following signals:
579  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
580  //                         by -Xrs (=ReduceSignalUsage));
581  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
582  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
583  // the dispositions or masks wrt these signals.
584  // Programs embedding the VM that want to use the above signals for their
585  // own purposes must, at this time, use the "-Xrs" option to prevent
586  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
587  // (See bug 4345157, and other related bugs).
588  // In reality, though, unblocking these signals is really a nop, since
589  // these signals are not blocked by default.
590  sigemptyset(&unblocked_sigs);
591  sigemptyset(&allowdebug_blocked_sigs);
592  sigaddset(&unblocked_sigs, SIGILL);
593  sigaddset(&unblocked_sigs, SIGSEGV);
594  sigaddset(&unblocked_sigs, SIGBUS);
595  sigaddset(&unblocked_sigs, SIGFPE);
596  sigaddset(&unblocked_sigs, SR_signum);
597
598  if (!ReduceSignalUsage) {
599    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
600      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
601      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
602    }
603    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
604      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
605      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
606    }
607    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
608      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
609      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
610    }
611  }
612  // Fill in signals that are blocked by all but the VM thread.
613  sigemptyset(&vm_sigs);
614  if (!ReduceSignalUsage)
615    sigaddset(&vm_sigs, BREAK_SIGNAL);
616  debug_only(signal_sets_initialized = true);
617
618}
619
620// These are signals that are unblocked while a thread is running Java.
621// (For some reason, they get blocked by default.)
622sigset_t* os::Bsd::unblocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &unblocked_sigs;
625}
626
627// These are the signals that are blocked while a (non-VM) thread is
628// running Java. Only the VM thread handles these signals.
629sigset_t* os::Bsd::vm_signals() {
630  assert(signal_sets_initialized, "Not initialized");
631  return &vm_sigs;
632}
633
634// These are signals that are blocked during cond_wait to allow debugger in
635sigset_t* os::Bsd::allowdebug_blocked_signals() {
636  assert(signal_sets_initialized, "Not initialized");
637  return &allowdebug_blocked_sigs;
638}
639
640void os::Bsd::hotspot_sigmask(Thread* thread) {
641
642  //Save caller's signal mask before setting VM signal mask
643  sigset_t caller_sigmask;
644  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
645
646  OSThread* osthread = thread->osthread();
647  osthread->set_caller_sigmask(caller_sigmask);
648
649  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
650
651  if (!ReduceSignalUsage) {
652    if (thread->is_VM_thread()) {
653      // Only the VM thread handles BREAK_SIGNAL ...
654      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
655    } else {
656      // ... all other threads block BREAK_SIGNAL
657      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
658    }
659  }
660}
661
662
663//////////////////////////////////////////////////////////////////////////////
664// create new thread
665
666// check if it's safe to start a new thread
667static bool _thread_safety_check(Thread* thread) {
668  return true;
669}
670
671#ifdef __APPLE__
672// library handle for calling objc_registerThreadWithCollector()
673// without static linking to the libobjc library
674#define OBJC_LIB "/usr/lib/libobjc.dylib"
675#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
676typedef void (*objc_registerThreadWithCollector_t)();
677extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
678objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
679#endif
680
681#ifdef __APPLE__
682static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
683  // Additional thread_id used to correlate threads in SA
684  thread_identifier_info_data_t     m_ident_info;
685  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
686
687  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
688              (thread_info_t) &m_ident_info, &count);
689
690  return m_ident_info.thread_id;
691}
692#endif
693
694// Thread start routine for all newly created threads
695static void *java_start(Thread *thread) {
696  // Try to randomize the cache line index of hot stack frames.
697  // This helps when threads of the same stack traces evict each other's
698  // cache lines. The threads can be either from the same JVM instance, or
699  // from different JVM instances. The benefit is especially true for
700  // processors with hyperthreading technology.
701  static int counter = 0;
702  int pid = os::current_process_id();
703  alloca(((pid ^ counter++) & 7) * 128);
704
705  ThreadLocalStorage::set_thread(thread);
706
707  OSThread* osthread = thread->osthread();
708  Monitor* sync = osthread->startThread_lock();
709
710  // non floating stack BsdThreads needs extra check, see above
711  if (!_thread_safety_check(thread)) {
712    // notify parent thread
713    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
714    osthread->set_state(ZOMBIE);
715    sync->notify_all();
716    return NULL;
717  }
718
719  osthread->set_thread_id(os::Bsd::gettid());
720
721#ifdef __APPLE__
722  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
723  guarantee(unique_thread_id != 0, "unique thread id was not found");
724  osthread->set_unique_thread_id(unique_thread_id);
725#endif
726  // initialize signal mask for this thread
727  os::Bsd::hotspot_sigmask(thread);
728
729  // initialize floating point control register
730  os::Bsd::init_thread_fpu_state();
731
732#ifdef __APPLE__
733  // register thread with objc gc
734  if (objc_registerThreadWithCollectorFunction != NULL) {
735    objc_registerThreadWithCollectorFunction();
736  }
737#endif
738
739  // handshaking with parent thread
740  {
741    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
742
743    // notify parent thread
744    osthread->set_state(INITIALIZED);
745    sync->notify_all();
746
747    // wait until os::start_thread()
748    while (osthread->get_state() == INITIALIZED) {
749      sync->wait(Mutex::_no_safepoint_check_flag);
750    }
751  }
752
753  // call one more level start routine
754  thread->run();
755
756  return 0;
757}
758
759bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
760  assert(thread->osthread() == NULL, "caller responsible");
761
762  // Allocate the OSThread object
763  OSThread* osthread = new OSThread(NULL, NULL);
764  if (osthread == NULL) {
765    return false;
766  }
767
768  // set the correct thread state
769  osthread->set_thread_type(thr_type);
770
771  // Initial state is ALLOCATED but not INITIALIZED
772  osthread->set_state(ALLOCATED);
773
774  thread->set_osthread(osthread);
775
776  // init thread attributes
777  pthread_attr_t attr;
778  pthread_attr_init(&attr);
779  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
780
781  // stack size
782  if (os::Bsd::supports_variable_stack_size()) {
783    // calculate stack size if it's not specified by caller
784    if (stack_size == 0) {
785      stack_size = os::Bsd::default_stack_size(thr_type);
786
787      switch (thr_type) {
788      case os::java_thread:
789        // Java threads use ThreadStackSize which default value can be
790        // changed with the flag -Xss
791        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
792        stack_size = JavaThread::stack_size_at_create();
793        break;
794      case os::compiler_thread:
795        if (CompilerThreadStackSize > 0) {
796          stack_size = (size_t)(CompilerThreadStackSize * K);
797          break;
798        } // else fall through:
799          // use VMThreadStackSize if CompilerThreadStackSize is not defined
800      case os::vm_thread:
801      case os::pgc_thread:
802      case os::cgc_thread:
803      case os::watcher_thread:
804        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
805        break;
806      }
807    }
808
809    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
810    pthread_attr_setstacksize(&attr, stack_size);
811  } else {
812    // let pthread_create() pick the default value.
813  }
814
815  ThreadState state;
816
817  {
818    pthread_t tid;
819    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
820
821    pthread_attr_destroy(&attr);
822
823    if (ret != 0) {
824      if (PrintMiscellaneous && (Verbose || WizardMode)) {
825        perror("pthread_create()");
826      }
827      // Need to clean up stuff we've allocated so far
828      thread->set_osthread(NULL);
829      delete osthread;
830      return false;
831    }
832
833    // Store pthread info into the OSThread
834    osthread->set_pthread_id(tid);
835
836    // Wait until child thread is either initialized or aborted
837    {
838      Monitor* sync_with_child = osthread->startThread_lock();
839      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
840      while ((state = osthread->get_state()) == ALLOCATED) {
841        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
842      }
843    }
844
845  }
846
847  // Aborted due to thread limit being reached
848  if (state == ZOMBIE) {
849    thread->set_osthread(NULL);
850    delete osthread;
851    return false;
852  }
853
854  // The thread is returned suspended (in state INITIALIZED),
855  // and is started higher up in the call chain
856  assert(state == INITIALIZED, "race condition");
857  return true;
858}
859
860/////////////////////////////////////////////////////////////////////////////
861// attach existing thread
862
863// bootstrap the main thread
864bool os::create_main_thread(JavaThread* thread) {
865  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
866  return create_attached_thread(thread);
867}
868
869bool os::create_attached_thread(JavaThread* thread) {
870#ifdef ASSERT
871  thread->verify_not_published();
872#endif
873
874  // Allocate the OSThread object
875  OSThread* osthread = new OSThread(NULL, NULL);
876
877  if (osthread == NULL) {
878    return false;
879  }
880
881  osthread->set_thread_id(os::Bsd::gettid());
882
883  // Store pthread info into the OSThread
884#ifdef __APPLE__
885  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
886  guarantee(unique_thread_id != 0, "just checking");
887  osthread->set_unique_thread_id(unique_thread_id);
888#endif
889  osthread->set_pthread_id(::pthread_self());
890
891  // initialize floating point control register
892  os::Bsd::init_thread_fpu_state();
893
894  // Initial thread state is RUNNABLE
895  osthread->set_state(RUNNABLE);
896
897  thread->set_osthread(osthread);
898
899  // initialize signal mask for this thread
900  // and save the caller's signal mask
901  os::Bsd::hotspot_sigmask(thread);
902
903  return true;
904}
905
906void os::pd_start_thread(Thread* thread) {
907  OSThread * osthread = thread->osthread();
908  assert(osthread->get_state() != INITIALIZED, "just checking");
909  Monitor* sync_with_child = osthread->startThread_lock();
910  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
911  sync_with_child->notify();
912}
913
914// Free Bsd resources related to the OSThread
915void os::free_thread(OSThread* osthread) {
916  assert(osthread != NULL, "osthread not set");
917
918  if (Thread::current()->osthread() == osthread) {
919    // Restore caller's signal mask
920    sigset_t sigmask = osthread->caller_sigmask();
921    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
922  }
923
924  delete osthread;
925}
926
927//////////////////////////////////////////////////////////////////////////////
928// thread local storage
929
930// Restore the thread pointer if the destructor is called. This is in case
931// someone from JNI code sets up a destructor with pthread_key_create to run
932// detachCurrentThread on thread death. Unless we restore the thread pointer we
933// will hang or crash. When detachCurrentThread is called the key will be set
934// to null and we will not be called again. If detachCurrentThread is never
935// called we could loop forever depending on the pthread implementation.
936static void restore_thread_pointer(void* p) {
937  Thread* thread = (Thread*) p;
938  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
939}
940
941int os::allocate_thread_local_storage() {
942  pthread_key_t key;
943  int rslt = pthread_key_create(&key, restore_thread_pointer);
944  assert(rslt == 0, "cannot allocate thread local storage");
945  return (int)key;
946}
947
948// Note: This is currently not used by VM, as we don't destroy TLS key
949// on VM exit.
950void os::free_thread_local_storage(int index) {
951  int rslt = pthread_key_delete((pthread_key_t)index);
952  assert(rslt == 0, "invalid index");
953}
954
955void os::thread_local_storage_at_put(int index, void* value) {
956  int rslt = pthread_setspecific((pthread_key_t)index, value);
957  assert(rslt == 0, "pthread_setspecific failed");
958}
959
960extern "C" Thread* get_thread() {
961  return ThreadLocalStorage::thread();
962}
963
964
965////////////////////////////////////////////////////////////////////////////////
966// time support
967
968// Time since start-up in seconds to a fine granularity.
969// Used by VMSelfDestructTimer and the MemProfiler.
970double os::elapsedTime() {
971
972  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
973}
974
975jlong os::elapsed_counter() {
976  return javaTimeNanos() - initial_time_count;
977}
978
979jlong os::elapsed_frequency() {
980  return NANOSECS_PER_SEC; // nanosecond resolution
981}
982
983bool os::supports_vtime() { return true; }
984bool os::enable_vtime()   { return false; }
985bool os::vtime_enabled()  { return false; }
986
987double os::elapsedVTime() {
988  // better than nothing, but not much
989  return elapsedTime();
990}
991
992jlong os::javaTimeMillis() {
993  timeval time;
994  int status = gettimeofday(&time, NULL);
995  assert(status != -1, "bsd error");
996  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
997}
998
999#ifndef __APPLE__
1000#ifndef CLOCK_MONOTONIC
1001#define CLOCK_MONOTONIC (1)
1002#endif
1003#endif
1004
1005#ifdef __APPLE__
1006void os::Bsd::clock_init() {
1007  mach_timebase_info(&_timebase_info);
1008}
1009#else
1010void os::Bsd::clock_init() {
1011  struct timespec res;
1012  struct timespec tp;
1013  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1014      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1015    // yes, monotonic clock is supported
1016    _clock_gettime = ::clock_gettime;
1017  }
1018}
1019#endif
1020
1021
1022
1023#ifdef __APPLE__
1024
1025jlong os::javaTimeNanos() {
1026  const uint64_t tm = mach_absolute_time();
1027  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1028  const uint64_t prev = Bsd::_max_abstime;
1029  if (now <= prev) {
1030    return prev;   // same or retrograde time;
1031  }
1032  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1033  assert(obsv >= prev, "invariant");   // Monotonicity
1034  // If the CAS succeeded then we're done and return "now".
1035  // If the CAS failed and the observed value "obsv" is >= now then
1036  // we should return "obsv".  If the CAS failed and now > obsv > prv then
1037  // some other thread raced this thread and installed a new value, in which case
1038  // we could either (a) retry the entire operation, (b) retry trying to install now
1039  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1040  // we might discard a higher "now" value in deference to a slightly lower but freshly
1041  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1042  // to (a) or (b) -- and greatly reduces coherence traffic.
1043  // We might also condition (c) on the magnitude of the delta between obsv and now.
1044  // Avoiding excessive CAS operations to hot RW locations is critical.
1045  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1046  return (prev == obsv) ? now : obsv;
1047}
1048
1049#else // __APPLE__
1050
1051jlong os::javaTimeNanos() {
1052  if (os::supports_monotonic_clock()) {
1053    struct timespec tp;
1054    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1055    assert(status == 0, "gettime error");
1056    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1057    return result;
1058  } else {
1059    timeval time;
1060    int status = gettimeofday(&time, NULL);
1061    assert(status != -1, "bsd error");
1062    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1063    return 1000 * usecs;
1064  }
1065}
1066
1067#endif // __APPLE__
1068
1069void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1070  if (os::supports_monotonic_clock()) {
1071    info_ptr->max_value = ALL_64_BITS;
1072
1073    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1074    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1075    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1076  } else {
1077    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1078    info_ptr->max_value = ALL_64_BITS;
1079
1080    // gettimeofday is a real time clock so it skips
1081    info_ptr->may_skip_backward = true;
1082    info_ptr->may_skip_forward = true;
1083  }
1084
1085  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1086}
1087
1088// Return the real, user, and system times in seconds from an
1089// arbitrary fixed point in the past.
1090bool os::getTimesSecs(double* process_real_time,
1091                      double* process_user_time,
1092                      double* process_system_time) {
1093  struct tms ticks;
1094  clock_t real_ticks = times(&ticks);
1095
1096  if (real_ticks == (clock_t) (-1)) {
1097    return false;
1098  } else {
1099    double ticks_per_second = (double) clock_tics_per_sec;
1100    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1101    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1102    *process_real_time = ((double) real_ticks) / ticks_per_second;
1103
1104    return true;
1105  }
1106}
1107
1108
1109char * os::local_time_string(char *buf, size_t buflen) {
1110  struct tm t;
1111  time_t long_time;
1112  time(&long_time);
1113  localtime_r(&long_time, &t);
1114  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1115               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1116               t.tm_hour, t.tm_min, t.tm_sec);
1117  return buf;
1118}
1119
1120struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1121  return localtime_r(clock, res);
1122}
1123
1124////////////////////////////////////////////////////////////////////////////////
1125// runtime exit support
1126
1127// Note: os::shutdown() might be called very early during initialization, or
1128// called from signal handler. Before adding something to os::shutdown(), make
1129// sure it is async-safe and can handle partially initialized VM.
1130void os::shutdown() {
1131
1132  // allow PerfMemory to attempt cleanup of any persistent resources
1133  perfMemory_exit();
1134
1135  // needs to remove object in file system
1136  AttachListener::abort();
1137
1138  // flush buffered output, finish log files
1139  ostream_abort();
1140
1141  // Check for abort hook
1142  abort_hook_t abort_hook = Arguments::abort_hook();
1143  if (abort_hook != NULL) {
1144    abort_hook();
1145  }
1146
1147}
1148
1149// Note: os::abort() might be called very early during initialization, or
1150// called from signal handler. Before adding something to os::abort(), make
1151// sure it is async-safe and can handle partially initialized VM.
1152void os::abort(bool dump_core) {
1153  os::shutdown();
1154  if (dump_core) {
1155#ifndef PRODUCT
1156    fdStream out(defaultStream::output_fd());
1157    out.print_raw("Current thread is ");
1158    char buf[16];
1159    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160    out.print_raw_cr(buf);
1161    out.print_raw_cr("Dumping core ...");
1162#endif
1163    ::abort(); // dump core
1164  }
1165
1166  ::exit(1);
1167}
1168
1169// Die immediately, no exit hook, no abort hook, no cleanup.
1170void os::die() {
1171  // _exit() on BsdThreads only kills current thread
1172  ::abort();
1173}
1174
1175// This method is a copy of JDK's sysGetLastErrorString
1176// from src/solaris/hpi/src/system_md.c
1177
1178size_t os::lasterror(char *buf, size_t len) {
1179
1180  if (errno == 0)  return 0;
1181
1182  const char *s = ::strerror(errno);
1183  size_t n = ::strlen(s);
1184  if (n >= len) {
1185    n = len - 1;
1186  }
1187  ::strncpy(buf, s, n);
1188  buf[n] = '\0';
1189  return n;
1190}
1191
1192// Information of current thread in variety of formats
1193pid_t os::Bsd::gettid() {
1194  int retval = -1;
1195
1196#ifdef __APPLE__ //XNU kernel
1197  // despite the fact mach port is actually not a thread id use it
1198  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1199  retval = ::pthread_mach_thread_np(::pthread_self());
1200  guarantee(retval != 0, "just checking");
1201  return retval;
1202
1203#elif __FreeBSD__
1204  retval = syscall(SYS_thr_self);
1205#elif __OpenBSD__
1206  retval = syscall(SYS_getthrid);
1207#elif __NetBSD__
1208  retval = (pid_t) syscall(SYS__lwp_self);
1209#endif
1210
1211  if (retval == -1) {
1212    return getpid();
1213  }
1214}
1215
1216intx os::current_thread_id() {
1217#ifdef __APPLE__
1218  return (intx)::pthread_mach_thread_np(::pthread_self());
1219#else
1220  return (intx)::pthread_self();
1221#endif
1222}
1223
1224int os::current_process_id() {
1225
1226  // Under the old bsd thread library, bsd gives each thread
1227  // its own process id. Because of this each thread will return
1228  // a different pid if this method were to return the result
1229  // of getpid(2). Bsd provides no api that returns the pid
1230  // of the launcher thread for the vm. This implementation
1231  // returns a unique pid, the pid of the launcher thread
1232  // that starts the vm 'process'.
1233
1234  // Under the NPTL, getpid() returns the same pid as the
1235  // launcher thread rather than a unique pid per thread.
1236  // Use gettid() if you want the old pre NPTL behaviour.
1237
1238  // if you are looking for the result of a call to getpid() that
1239  // returns a unique pid for the calling thread, then look at the
1240  // OSThread::thread_id() method in osThread_bsd.hpp file
1241
1242  return (int)(_initial_pid ? _initial_pid : getpid());
1243}
1244
1245// DLL functions
1246
1247#define JNI_LIB_PREFIX "lib"
1248#ifdef __APPLE__
1249#define JNI_LIB_SUFFIX ".dylib"
1250#else
1251#define JNI_LIB_SUFFIX ".so"
1252#endif
1253
1254const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1255
1256// This must be hard coded because it's the system's temporary
1257// directory not the java application's temp directory, ala java.io.tmpdir.
1258#ifdef __APPLE__
1259// macosx has a secure per-user temporary directory
1260char temp_path_storage[PATH_MAX];
1261const char* os::get_temp_directory() {
1262  static char *temp_path = NULL;
1263  if (temp_path == NULL) {
1264    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1265    if (pathSize == 0 || pathSize > PATH_MAX) {
1266      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1267    }
1268    temp_path = temp_path_storage;
1269  }
1270  return temp_path;
1271}
1272#else /* __APPLE__ */
1273const char* os::get_temp_directory() { return "/tmp"; }
1274#endif /* __APPLE__ */
1275
1276static bool file_exists(const char* filename) {
1277  struct stat statbuf;
1278  if (filename == NULL || strlen(filename) == 0) {
1279    return false;
1280  }
1281  return os::stat(filename, &statbuf) == 0;
1282}
1283
1284bool os::dll_build_name(char* buffer, size_t buflen,
1285                        const char* pname, const char* fname) {
1286  bool retval = false;
1287  // Copied from libhpi
1288  const size_t pnamelen = pname ? strlen(pname) : 0;
1289
1290  // Return error on buffer overflow.
1291  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1292    return retval;
1293  }
1294
1295  if (pnamelen == 0) {
1296    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1297    retval = true;
1298  } else if (strchr(pname, *os::path_separator()) != NULL) {
1299    int n;
1300    char** pelements = split_path(pname, &n);
1301    if (pelements == NULL) {
1302      return false;
1303    }
1304    for (int i = 0; i < n; i++) {
1305      // Really shouldn't be NULL, but check can't hurt
1306      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1307        continue; // skip the empty path values
1308      }
1309      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1310               pelements[i], fname);
1311      if (file_exists(buffer)) {
1312        retval = true;
1313        break;
1314      }
1315    }
1316    // release the storage
1317    for (int i = 0; i < n; i++) {
1318      if (pelements[i] != NULL) {
1319        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1320      }
1321    }
1322    if (pelements != NULL) {
1323      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1324    }
1325  } else {
1326    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1327    retval = true;
1328  }
1329  return retval;
1330}
1331
1332// check if addr is inside libjvm.so
1333bool os::address_is_in_vm(address addr) {
1334  static address libjvm_base_addr;
1335  Dl_info dlinfo;
1336
1337  if (libjvm_base_addr == NULL) {
1338    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1339      libjvm_base_addr = (address)dlinfo.dli_fbase;
1340    }
1341    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1342  }
1343
1344  if (dladdr((void *)addr, &dlinfo) != 0) {
1345    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1346  }
1347
1348  return false;
1349}
1350
1351
1352#define MACH_MAXSYMLEN 256
1353
1354bool os::dll_address_to_function_name(address addr, char *buf,
1355                                      int buflen, int *offset) {
1356  // buf is not optional, but offset is optional
1357  assert(buf != NULL, "sanity check");
1358
1359  Dl_info dlinfo;
1360  char localbuf[MACH_MAXSYMLEN];
1361
1362  if (dladdr((void*)addr, &dlinfo) != 0) {
1363    // see if we have a matching symbol
1364    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1365      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1366        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1367      }
1368      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1369      return true;
1370    }
1371    // no matching symbol so try for just file info
1372    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1373      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1374                          buf, buflen, offset, dlinfo.dli_fname)) {
1375        return true;
1376      }
1377    }
1378
1379    // Handle non-dynamic manually:
1380    if (dlinfo.dli_fbase != NULL &&
1381        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1382        dlinfo.dli_fbase)) {
1383      if (!Decoder::demangle(localbuf, buf, buflen)) {
1384        jio_snprintf(buf, buflen, "%s", localbuf);
1385      }
1386      return true;
1387    }
1388  }
1389  buf[0] = '\0';
1390  if (offset != NULL) *offset = -1;
1391  return false;
1392}
1393
1394// ported from solaris version
1395bool os::dll_address_to_library_name(address addr, char* buf,
1396                                     int buflen, int* offset) {
1397  // buf is not optional, but offset is optional
1398  assert(buf != NULL, "sanity check");
1399
1400  Dl_info dlinfo;
1401
1402  if (dladdr((void*)addr, &dlinfo) != 0) {
1403    if (dlinfo.dli_fname != NULL) {
1404      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1405    }
1406    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1407      *offset = addr - (address)dlinfo.dli_fbase;
1408    }
1409    return true;
1410  }
1411
1412  buf[0] = '\0';
1413  if (offset) *offset = -1;
1414  return false;
1415}
1416
1417// Loads .dll/.so and
1418// in case of error it checks if .dll/.so was built for the
1419// same architecture as Hotspot is running on
1420
1421#ifdef __APPLE__
1422void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1423  void * result= ::dlopen(filename, RTLD_LAZY);
1424  if (result != NULL) {
1425    // Successful loading
1426    return result;
1427  }
1428
1429  // Read system error message into ebuf
1430  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1431  ebuf[ebuflen-1]='\0';
1432
1433  return NULL;
1434}
1435#else
1436void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1437{
1438  void * result= ::dlopen(filename, RTLD_LAZY);
1439  if (result != NULL) {
1440    // Successful loading
1441    return result;
1442  }
1443
1444  Elf32_Ehdr elf_head;
1445
1446  // Read system error message into ebuf
1447  // It may or may not be overwritten below
1448  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1449  ebuf[ebuflen-1]='\0';
1450  int diag_msg_max_length=ebuflen-strlen(ebuf);
1451  char* diag_msg_buf=ebuf+strlen(ebuf);
1452
1453  if (diag_msg_max_length==0) {
1454    // No more space in ebuf for additional diagnostics message
1455    return NULL;
1456  }
1457
1458
1459  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1460
1461  if (file_descriptor < 0) {
1462    // Can't open library, report dlerror() message
1463    return NULL;
1464  }
1465
1466  bool failed_to_read_elf_head=
1467    (sizeof(elf_head)!=
1468     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1469
1470  ::close(file_descriptor);
1471  if (failed_to_read_elf_head) {
1472    // file i/o error - report dlerror() msg
1473    return NULL;
1474  }
1475
1476  typedef struct {
1477    Elf32_Half  code;         // Actual value as defined in elf.h
1478    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1479    char        elf_class;    // 32 or 64 bit
1480    char        endianess;    // MSB or LSB
1481    char*       name;         // String representation
1482  } arch_t;
1483
1484  #ifndef EM_486
1485  #define EM_486          6               /* Intel 80486 */
1486  #endif
1487
1488  #ifndef EM_MIPS_RS3_LE
1489  #define EM_MIPS_RS3_LE  10              /* MIPS */
1490  #endif
1491
1492  #ifndef EM_PPC64
1493  #define EM_PPC64        21              /* PowerPC64 */
1494  #endif
1495
1496  #ifndef EM_S390
1497  #define EM_S390         22              /* IBM System/390 */
1498  #endif
1499
1500  #ifndef EM_IA_64
1501  #define EM_IA_64        50              /* HP/Intel IA-64 */
1502  #endif
1503
1504  #ifndef EM_X86_64
1505  #define EM_X86_64       62              /* AMD x86-64 */
1506  #endif
1507
1508  static const arch_t arch_array[]={
1509    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1510    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1511    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1512    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1513    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1514    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1515    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1516    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1517    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1518    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1519    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1520    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1521    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1522    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1523    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1524    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1525  };
1526
1527  #if  (defined IA32)
1528  static  Elf32_Half running_arch_code=EM_386;
1529  #elif   (defined AMD64)
1530  static  Elf32_Half running_arch_code=EM_X86_64;
1531  #elif  (defined IA64)
1532  static  Elf32_Half running_arch_code=EM_IA_64;
1533  #elif  (defined __sparc) && (defined _LP64)
1534  static  Elf32_Half running_arch_code=EM_SPARCV9;
1535  #elif  (defined __sparc) && (!defined _LP64)
1536  static  Elf32_Half running_arch_code=EM_SPARC;
1537  #elif  (defined __powerpc64__)
1538  static  Elf32_Half running_arch_code=EM_PPC64;
1539  #elif  (defined __powerpc__)
1540  static  Elf32_Half running_arch_code=EM_PPC;
1541  #elif  (defined ARM)
1542  static  Elf32_Half running_arch_code=EM_ARM;
1543  #elif  (defined S390)
1544  static  Elf32_Half running_arch_code=EM_S390;
1545  #elif  (defined ALPHA)
1546  static  Elf32_Half running_arch_code=EM_ALPHA;
1547  #elif  (defined MIPSEL)
1548  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1549  #elif  (defined PARISC)
1550  static  Elf32_Half running_arch_code=EM_PARISC;
1551  #elif  (defined MIPS)
1552  static  Elf32_Half running_arch_code=EM_MIPS;
1553  #elif  (defined M68K)
1554  static  Elf32_Half running_arch_code=EM_68K;
1555  #else
1556    #error Method os::dll_load requires that one of following is defined:\
1557         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1558  #endif
1559
1560  // Identify compatability class for VM's architecture and library's architecture
1561  // Obtain string descriptions for architectures
1562
1563  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1564  int running_arch_index=-1;
1565
1566  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1567    if (running_arch_code == arch_array[i].code) {
1568      running_arch_index    = i;
1569    }
1570    if (lib_arch.code == arch_array[i].code) {
1571      lib_arch.compat_class = arch_array[i].compat_class;
1572      lib_arch.name         = arch_array[i].name;
1573    }
1574  }
1575
1576  assert(running_arch_index != -1,
1577         "Didn't find running architecture code (running_arch_code) in arch_array");
1578  if (running_arch_index == -1) {
1579    // Even though running architecture detection failed
1580    // we may still continue with reporting dlerror() message
1581    return NULL;
1582  }
1583
1584  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1585    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1586    return NULL;
1587  }
1588
1589#ifndef S390
1590  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1591    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1592    return NULL;
1593  }
1594#endif // !S390
1595
1596  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1597    if (lib_arch.name!=NULL) {
1598      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1599                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1600                 lib_arch.name, arch_array[running_arch_index].name);
1601    } else {
1602      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1603                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1604                 lib_arch.code,
1605                 arch_array[running_arch_index].name);
1606    }
1607  }
1608
1609  return NULL;
1610}
1611#endif /* !__APPLE__ */
1612
1613void* os::get_default_process_handle() {
1614#ifdef __APPLE__
1615  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1616  // to avoid finding unexpected symbols on second (or later)
1617  // loads of a library.
1618  return (void*)::dlopen(NULL, RTLD_FIRST);
1619#else
1620  return (void*)::dlopen(NULL, RTLD_LAZY);
1621#endif
1622}
1623
1624// XXX: Do we need a lock around this as per Linux?
1625void* os::dll_lookup(void* handle, const char* name) {
1626  return dlsym(handle, name);
1627}
1628
1629
1630static bool _print_ascii_file(const char* filename, outputStream* st) {
1631  int fd = ::open(filename, O_RDONLY);
1632  if (fd == -1) {
1633    return false;
1634  }
1635
1636  char buf[32];
1637  int bytes;
1638  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1639    st->print_raw(buf, bytes);
1640  }
1641
1642  ::close(fd);
1643
1644  return true;
1645}
1646
1647void os::print_dll_info(outputStream *st) {
1648  st->print_cr("Dynamic libraries:");
1649#ifdef RTLD_DI_LINKMAP
1650  Dl_info dli;
1651  void *handle;
1652  Link_map *map;
1653  Link_map *p;
1654
1655  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1656      dli.dli_fname == NULL) {
1657    st->print_cr("Error: Cannot print dynamic libraries.");
1658    return;
1659  }
1660  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1661  if (handle == NULL) {
1662    st->print_cr("Error: Cannot print dynamic libraries.");
1663    return;
1664  }
1665  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1666  if (map == NULL) {
1667    st->print_cr("Error: Cannot print dynamic libraries.");
1668    return;
1669  }
1670
1671  while (map->l_prev != NULL)
1672    map = map->l_prev;
1673
1674  while (map != NULL) {
1675    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1676    map = map->l_next;
1677  }
1678
1679  dlclose(handle);
1680#elif defined(__APPLE__)
1681  uint32_t count;
1682  uint32_t i;
1683
1684  count = _dyld_image_count();
1685  for (i = 1; i < count; i++) {
1686    const char *name = _dyld_get_image_name(i);
1687    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1688    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1689  }
1690#else
1691  st->print_cr("Error: Cannot print dynamic libraries.");
1692#endif
1693}
1694
1695void os::print_os_info_brief(outputStream* st) {
1696  st->print("Bsd");
1697
1698  os::Posix::print_uname_info(st);
1699}
1700
1701void os::print_os_info(outputStream* st) {
1702  st->print("OS:");
1703  st->print("Bsd");
1704
1705  os::Posix::print_uname_info(st);
1706
1707  os::Posix::print_rlimit_info(st);
1708
1709  os::Posix::print_load_average(st);
1710}
1711
1712void os::pd_print_cpu_info(outputStream* st) {
1713  // Nothing to do for now.
1714}
1715
1716void os::print_memory_info(outputStream* st) {
1717
1718  st->print("Memory:");
1719  st->print(" %dk page", os::vm_page_size()>>10);
1720
1721  st->print(", physical " UINT64_FORMAT "k",
1722            os::physical_memory() >> 10);
1723  st->print("(" UINT64_FORMAT "k free)",
1724            os::available_memory() >> 10);
1725  st->cr();
1726
1727  // meminfo
1728  st->print("\n/proc/meminfo:\n");
1729  _print_ascii_file("/proc/meminfo", st);
1730  st->cr();
1731}
1732
1733void os::print_siginfo(outputStream* st, void* siginfo) {
1734  const siginfo_t* si = (const siginfo_t*)siginfo;
1735
1736  os::Posix::print_siginfo_brief(st, si);
1737
1738  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1739      UseSharedSpaces) {
1740    FileMapInfo* mapinfo = FileMapInfo::current_info();
1741    if (mapinfo->is_in_shared_space(si->si_addr)) {
1742      st->print("\n\nError accessing class data sharing archive."   \
1743                " Mapped file inaccessible during execution, "      \
1744                " possible disk/network problem.");
1745    }
1746  }
1747  st->cr();
1748}
1749
1750
1751static void print_signal_handler(outputStream* st, int sig,
1752                                 char* buf, size_t buflen);
1753
1754void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1755  st->print_cr("Signal Handlers:");
1756  print_signal_handler(st, SIGSEGV, buf, buflen);
1757  print_signal_handler(st, SIGBUS , buf, buflen);
1758  print_signal_handler(st, SIGFPE , buf, buflen);
1759  print_signal_handler(st, SIGPIPE, buf, buflen);
1760  print_signal_handler(st, SIGXFSZ, buf, buflen);
1761  print_signal_handler(st, SIGILL , buf, buflen);
1762  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1763  print_signal_handler(st, SR_signum, buf, buflen);
1764  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1765  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1766  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1767  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1768}
1769
1770static char saved_jvm_path[MAXPATHLEN] = {0};
1771
1772// Find the full path to the current module, libjvm
1773void os::jvm_path(char *buf, jint buflen) {
1774  // Error checking.
1775  if (buflen < MAXPATHLEN) {
1776    assert(false, "must use a large-enough buffer");
1777    buf[0] = '\0';
1778    return;
1779  }
1780  // Lazy resolve the path to current module.
1781  if (saved_jvm_path[0] != 0) {
1782    strcpy(buf, saved_jvm_path);
1783    return;
1784  }
1785
1786  char dli_fname[MAXPATHLEN];
1787  bool ret = dll_address_to_library_name(
1788                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1789                                         dli_fname, sizeof(dli_fname), NULL);
1790  assert(ret, "cannot locate libjvm");
1791  char *rp = NULL;
1792  if (ret && dli_fname[0] != '\0') {
1793    rp = realpath(dli_fname, buf);
1794  }
1795  if (rp == NULL)
1796    return;
1797
1798  if (Arguments::sun_java_launcher_is_altjvm()) {
1799    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1800    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1801    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1802    // appears at the right place in the string, then assume we are
1803    // installed in a JDK and we're done. Otherwise, check for a
1804    // JAVA_HOME environment variable and construct a path to the JVM
1805    // being overridden.
1806
1807    const char *p = buf + strlen(buf) - 1;
1808    for (int count = 0; p > buf && count < 5; ++count) {
1809      for (--p; p > buf && *p != '/'; --p)
1810        /* empty */ ;
1811    }
1812
1813    if (strncmp(p, "/jre/lib/", 9) != 0) {
1814      // Look for JAVA_HOME in the environment.
1815      char* java_home_var = ::getenv("JAVA_HOME");
1816      if (java_home_var != NULL && java_home_var[0] != 0) {
1817        char* jrelib_p;
1818        int len;
1819
1820        // Check the current module name "libjvm"
1821        p = strrchr(buf, '/');
1822        assert(strstr(p, "/libjvm") == p, "invalid library name");
1823
1824        rp = realpath(java_home_var, buf);
1825        if (rp == NULL)
1826          return;
1827
1828        // determine if this is a legacy image or modules image
1829        // modules image doesn't have "jre" subdirectory
1830        len = strlen(buf);
1831        assert(len < buflen, "Ran out of buffer space");
1832        jrelib_p = buf + len;
1833
1834        // Add the appropriate library subdir
1835        snprintf(jrelib_p, buflen-len, "/jre/lib");
1836        if (0 != access(buf, F_OK)) {
1837          snprintf(jrelib_p, buflen-len, "/lib");
1838        }
1839
1840        // Add the appropriate client or server subdir
1841        len = strlen(buf);
1842        jrelib_p = buf + len;
1843        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1844        if (0 != access(buf, F_OK)) {
1845          snprintf(jrelib_p, buflen-len, "%s", "");
1846        }
1847
1848        // If the path exists within JAVA_HOME, add the JVM library name
1849        // to complete the path to JVM being overridden.  Otherwise fallback
1850        // to the path to the current library.
1851        if (0 == access(buf, F_OK)) {
1852          // Use current module name "libjvm"
1853          len = strlen(buf);
1854          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1855        } else {
1856          // Fall back to path of current library
1857          rp = realpath(dli_fname, buf);
1858          if (rp == NULL)
1859            return;
1860        }
1861      }
1862    }
1863  }
1864
1865  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1866}
1867
1868void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1869  // no prefix required, not even "_"
1870}
1871
1872void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1873  // no suffix required
1874}
1875
1876////////////////////////////////////////////////////////////////////////////////
1877// sun.misc.Signal support
1878
1879static volatile jint sigint_count = 0;
1880
1881static void
1882UserHandler(int sig, void *siginfo, void *context) {
1883  // 4511530 - sem_post is serialized and handled by the manager thread. When
1884  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1885  // don't want to flood the manager thread with sem_post requests.
1886  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1887    return;
1888
1889  // Ctrl-C is pressed during error reporting, likely because the error
1890  // handler fails to abort. Let VM die immediately.
1891  if (sig == SIGINT && is_error_reported()) {
1892    os::die();
1893  }
1894
1895  os::signal_notify(sig);
1896}
1897
1898void* os::user_handler() {
1899  return CAST_FROM_FN_PTR(void*, UserHandler);
1900}
1901
1902extern "C" {
1903  typedef void (*sa_handler_t)(int);
1904  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1905}
1906
1907void* os::signal(int signal_number, void* handler) {
1908  struct sigaction sigAct, oldSigAct;
1909
1910  sigfillset(&(sigAct.sa_mask));
1911  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1912  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1913
1914  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1915    // -1 means registration failed
1916    return (void *)-1;
1917  }
1918
1919  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1920}
1921
1922void os::signal_raise(int signal_number) {
1923  ::raise(signal_number);
1924}
1925
1926/*
1927 * The following code is moved from os.cpp for making this
1928 * code platform specific, which it is by its very nature.
1929 */
1930
1931// Will be modified when max signal is changed to be dynamic
1932int os::sigexitnum_pd() {
1933  return NSIG;
1934}
1935
1936// a counter for each possible signal value
1937static volatile jint pending_signals[NSIG+1] = { 0 };
1938
1939// Bsd(POSIX) specific hand shaking semaphore.
1940#ifdef __APPLE__
1941typedef semaphore_t os_semaphore_t;
1942#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1943#define SEM_WAIT(sem)           semaphore_wait(sem)
1944#define SEM_POST(sem)           semaphore_signal(sem)
1945#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1946#else
1947typedef sem_t os_semaphore_t;
1948#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1949#define SEM_WAIT(sem)           sem_wait(&sem)
1950#define SEM_POST(sem)           sem_post(&sem)
1951#define SEM_DESTROY(sem)        sem_destroy(&sem)
1952#endif
1953
1954class Semaphore : public StackObj {
1955 public:
1956  Semaphore();
1957  ~Semaphore();
1958  void signal();
1959  void wait();
1960  bool trywait();
1961  bool timedwait(unsigned int sec, int nsec);
1962 private:
1963  jlong currenttime() const;
1964  os_semaphore_t _semaphore;
1965};
1966
1967Semaphore::Semaphore() : _semaphore(0) {
1968  SEM_INIT(_semaphore, 0);
1969}
1970
1971Semaphore::~Semaphore() {
1972  SEM_DESTROY(_semaphore);
1973}
1974
1975void Semaphore::signal() {
1976  SEM_POST(_semaphore);
1977}
1978
1979void Semaphore::wait() {
1980  SEM_WAIT(_semaphore);
1981}
1982
1983jlong Semaphore::currenttime() const {
1984  struct timeval tv;
1985  gettimeofday(&tv, NULL);
1986  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1987}
1988
1989#ifdef __APPLE__
1990bool Semaphore::trywait() {
1991  return timedwait(0, 0);
1992}
1993
1994bool Semaphore::timedwait(unsigned int sec, int nsec) {
1995  kern_return_t kr = KERN_ABORTED;
1996  mach_timespec_t waitspec;
1997  waitspec.tv_sec = sec;
1998  waitspec.tv_nsec = nsec;
1999
2000  jlong starttime = currenttime();
2001
2002  kr = semaphore_timedwait(_semaphore, waitspec);
2003  while (kr == KERN_ABORTED) {
2004    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2005
2006    jlong current = currenttime();
2007    jlong passedtime = current - starttime;
2008
2009    if (passedtime >= totalwait) {
2010      waitspec.tv_sec = 0;
2011      waitspec.tv_nsec = 0;
2012    } else {
2013      jlong waittime = totalwait - (current - starttime);
2014      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2015      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2016    }
2017
2018    kr = semaphore_timedwait(_semaphore, waitspec);
2019  }
2020
2021  return kr == KERN_SUCCESS;
2022}
2023
2024#else
2025
2026bool Semaphore::trywait() {
2027  return sem_trywait(&_semaphore) == 0;
2028}
2029
2030bool Semaphore::timedwait(unsigned int sec, int nsec) {
2031  struct timespec ts;
2032  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2033
2034  while (1) {
2035    int result = sem_timedwait(&_semaphore, &ts);
2036    if (result == 0) {
2037      return true;
2038    } else if (errno == EINTR) {
2039      continue;
2040    } else if (errno == ETIMEDOUT) {
2041      return false;
2042    } else {
2043      return false;
2044    }
2045  }
2046}
2047
2048#endif // __APPLE__
2049
2050static os_semaphore_t sig_sem;
2051static Semaphore sr_semaphore;
2052
2053void os::signal_init_pd() {
2054  // Initialize signal structures
2055  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2056
2057  // Initialize signal semaphore
2058  ::SEM_INIT(sig_sem, 0);
2059}
2060
2061void os::signal_notify(int sig) {
2062  Atomic::inc(&pending_signals[sig]);
2063  ::SEM_POST(sig_sem);
2064}
2065
2066static int check_pending_signals(bool wait) {
2067  Atomic::store(0, &sigint_count);
2068  for (;;) {
2069    for (int i = 0; i < NSIG + 1; i++) {
2070      jint n = pending_signals[i];
2071      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2072        return i;
2073      }
2074    }
2075    if (!wait) {
2076      return -1;
2077    }
2078    JavaThread *thread = JavaThread::current();
2079    ThreadBlockInVM tbivm(thread);
2080
2081    bool threadIsSuspended;
2082    do {
2083      thread->set_suspend_equivalent();
2084      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2085      ::SEM_WAIT(sig_sem);
2086
2087      // were we externally suspended while we were waiting?
2088      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2089      if (threadIsSuspended) {
2090        //
2091        // The semaphore has been incremented, but while we were waiting
2092        // another thread suspended us. We don't want to continue running
2093        // while suspended because that would surprise the thread that
2094        // suspended us.
2095        //
2096        ::SEM_POST(sig_sem);
2097
2098        thread->java_suspend_self();
2099      }
2100    } while (threadIsSuspended);
2101  }
2102}
2103
2104int os::signal_lookup() {
2105  return check_pending_signals(false);
2106}
2107
2108int os::signal_wait() {
2109  return check_pending_signals(true);
2110}
2111
2112////////////////////////////////////////////////////////////////////////////////
2113// Virtual Memory
2114
2115int os::vm_page_size() {
2116  // Seems redundant as all get out
2117  assert(os::Bsd::page_size() != -1, "must call os::init");
2118  return os::Bsd::page_size();
2119}
2120
2121// Solaris allocates memory by pages.
2122int os::vm_allocation_granularity() {
2123  assert(os::Bsd::page_size() != -1, "must call os::init");
2124  return os::Bsd::page_size();
2125}
2126
2127// Rationale behind this function:
2128//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2129//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2130//  samples for JITted code. Here we create private executable mapping over the code cache
2131//  and then we can use standard (well, almost, as mapping can change) way to provide
2132//  info for the reporting script by storing timestamp and location of symbol
2133void bsd_wrap_code(char* base, size_t size) {
2134  static volatile jint cnt = 0;
2135
2136  if (!UseOprofile) {
2137    return;
2138  }
2139
2140  char buf[PATH_MAX + 1];
2141  int num = Atomic::add(1, &cnt);
2142
2143  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2144           os::get_temp_directory(), os::current_process_id(), num);
2145  unlink(buf);
2146
2147  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2148
2149  if (fd != -1) {
2150    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2151    if (rv != (off_t)-1) {
2152      if (::write(fd, "", 1) == 1) {
2153        mmap(base, size,
2154             PROT_READ|PROT_WRITE|PROT_EXEC,
2155             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2156      }
2157    }
2158    ::close(fd);
2159    unlink(buf);
2160  }
2161}
2162
2163static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2164                                    int err) {
2165  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2166          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2167          strerror(err), err);
2168}
2169
2170// NOTE: Bsd kernel does not really reserve the pages for us.
2171//       All it does is to check if there are enough free pages
2172//       left at the time of mmap(). This could be a potential
2173//       problem.
2174bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2175  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2176#ifdef __OpenBSD__
2177  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2178  if (::mprotect(addr, size, prot) == 0) {
2179    return true;
2180  }
2181#else
2182  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2183                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2184  if (res != (uintptr_t) MAP_FAILED) {
2185    return true;
2186  }
2187#endif
2188
2189  // Warn about any commit errors we see in non-product builds just
2190  // in case mmap() doesn't work as described on the man page.
2191  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2192
2193  return false;
2194}
2195
2196bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2197                          bool exec) {
2198  // alignment_hint is ignored on this OS
2199  return pd_commit_memory(addr, size, exec);
2200}
2201
2202void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2203                                  const char* mesg) {
2204  assert(mesg != NULL, "mesg must be specified");
2205  if (!pd_commit_memory(addr, size, exec)) {
2206    // add extra info in product mode for vm_exit_out_of_memory():
2207    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2208    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2209  }
2210}
2211
2212void os::pd_commit_memory_or_exit(char* addr, size_t size,
2213                                  size_t alignment_hint, bool exec,
2214                                  const char* mesg) {
2215  // alignment_hint is ignored on this OS
2216  pd_commit_memory_or_exit(addr, size, exec, mesg);
2217}
2218
2219void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2220}
2221
2222void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2223  ::madvise(addr, bytes, MADV_DONTNEED);
2224}
2225
2226void os::numa_make_global(char *addr, size_t bytes) {
2227}
2228
2229void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2230}
2231
2232bool os::numa_topology_changed()   { return false; }
2233
2234size_t os::numa_get_groups_num() {
2235  return 1;
2236}
2237
2238int os::numa_get_group_id() {
2239  return 0;
2240}
2241
2242size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2243  if (size > 0) {
2244    ids[0] = 0;
2245    return 1;
2246  }
2247  return 0;
2248}
2249
2250bool os::get_page_info(char *start, page_info* info) {
2251  return false;
2252}
2253
2254char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2255  return end;
2256}
2257
2258
2259bool os::pd_uncommit_memory(char* addr, size_t size) {
2260#ifdef __OpenBSD__
2261  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2262  return ::mprotect(addr, size, PROT_NONE) == 0;
2263#else
2264  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2265                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2266  return res  != (uintptr_t) MAP_FAILED;
2267#endif
2268}
2269
2270bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2271  return os::commit_memory(addr, size, !ExecMem);
2272}
2273
2274// If this is a growable mapping, remove the guard pages entirely by
2275// munmap()ping them.  If not, just call uncommit_memory().
2276bool os::remove_stack_guard_pages(char* addr, size_t size) {
2277  return os::uncommit_memory(addr, size);
2278}
2279
2280static address _highest_vm_reserved_address = NULL;
2281
2282// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2283// at 'requested_addr'. If there are existing memory mappings at the same
2284// location, however, they will be overwritten. If 'fixed' is false,
2285// 'requested_addr' is only treated as a hint, the return value may or
2286// may not start from the requested address. Unlike Bsd mmap(), this
2287// function returns NULL to indicate failure.
2288static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2289  char * addr;
2290  int flags;
2291
2292  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2293  if (fixed) {
2294    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2295    flags |= MAP_FIXED;
2296  }
2297
2298  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2299  // touch an uncommitted page. Otherwise, the read/write might
2300  // succeed if we have enough swap space to back the physical page.
2301  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2302                       flags, -1, 0);
2303
2304  if (addr != MAP_FAILED) {
2305    // anon_mmap() should only get called during VM initialization,
2306    // don't need lock (actually we can skip locking even it can be called
2307    // from multiple threads, because _highest_vm_reserved_address is just a
2308    // hint about the upper limit of non-stack memory regions.)
2309    if ((address)addr + bytes > _highest_vm_reserved_address) {
2310      _highest_vm_reserved_address = (address)addr + bytes;
2311    }
2312  }
2313
2314  return addr == MAP_FAILED ? NULL : addr;
2315}
2316
2317// Don't update _highest_vm_reserved_address, because there might be memory
2318// regions above addr + size. If so, releasing a memory region only creates
2319// a hole in the address space, it doesn't help prevent heap-stack collision.
2320//
2321static int anon_munmap(char * addr, size_t size) {
2322  return ::munmap(addr, size) == 0;
2323}
2324
2325char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2326                            size_t alignment_hint) {
2327  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2328}
2329
2330bool os::pd_release_memory(char* addr, size_t size) {
2331  return anon_munmap(addr, size);
2332}
2333
2334static bool bsd_mprotect(char* addr, size_t size, int prot) {
2335  // Bsd wants the mprotect address argument to be page aligned.
2336  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2337
2338  // According to SUSv3, mprotect() should only be used with mappings
2339  // established by mmap(), and mmap() always maps whole pages. Unaligned
2340  // 'addr' likely indicates problem in the VM (e.g. trying to change
2341  // protection of malloc'ed or statically allocated memory). Check the
2342  // caller if you hit this assert.
2343  assert(addr == bottom, "sanity check");
2344
2345  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2346  return ::mprotect(bottom, size, prot) == 0;
2347}
2348
2349// Set protections specified
2350bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2351                        bool is_committed) {
2352  unsigned int p = 0;
2353  switch (prot) {
2354  case MEM_PROT_NONE: p = PROT_NONE; break;
2355  case MEM_PROT_READ: p = PROT_READ; break;
2356  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2357  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2358  default:
2359    ShouldNotReachHere();
2360  }
2361  // is_committed is unused.
2362  return bsd_mprotect(addr, bytes, p);
2363}
2364
2365bool os::guard_memory(char* addr, size_t size) {
2366  return bsd_mprotect(addr, size, PROT_NONE);
2367}
2368
2369bool os::unguard_memory(char* addr, size_t size) {
2370  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2371}
2372
2373bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2374  return false;
2375}
2376
2377// Large page support
2378
2379static size_t _large_page_size = 0;
2380
2381void os::large_page_init() {
2382}
2383
2384
2385char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2386  fatal("This code is not used or maintained.");
2387
2388  // "exec" is passed in but not used.  Creating the shared image for
2389  // the code cache doesn't have an SHM_X executable permission to check.
2390  assert(UseLargePages && UseSHM, "only for SHM large pages");
2391
2392  key_t key = IPC_PRIVATE;
2393  char *addr;
2394
2395  bool warn_on_failure = UseLargePages &&
2396                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2397                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2398                        );
2399
2400  // Create a large shared memory region to attach to based on size.
2401  // Currently, size is the total size of the heap
2402  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2403  if (shmid == -1) {
2404    // Possible reasons for shmget failure:
2405    // 1. shmmax is too small for Java heap.
2406    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2407    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2408    // 2. not enough large page memory.
2409    //    > check available large pages: cat /proc/meminfo
2410    //    > increase amount of large pages:
2411    //          echo new_value > /proc/sys/vm/nr_hugepages
2412    //      Note 1: different Bsd may use different name for this property,
2413    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2414    //      Note 2: it's possible there's enough physical memory available but
2415    //            they are so fragmented after a long run that they can't
2416    //            coalesce into large pages. Try to reserve large pages when
2417    //            the system is still "fresh".
2418    if (warn_on_failure) {
2419      warning("Failed to reserve shared memory (errno = %d).", errno);
2420    }
2421    return NULL;
2422  }
2423
2424  // attach to the region
2425  addr = (char*)shmat(shmid, req_addr, 0);
2426  int err = errno;
2427
2428  // Remove shmid. If shmat() is successful, the actual shared memory segment
2429  // will be deleted when it's detached by shmdt() or when the process
2430  // terminates. If shmat() is not successful this will remove the shared
2431  // segment immediately.
2432  shmctl(shmid, IPC_RMID, NULL);
2433
2434  if ((intptr_t)addr == -1) {
2435    if (warn_on_failure) {
2436      warning("Failed to attach shared memory (errno = %d).", err);
2437    }
2438    return NULL;
2439  }
2440
2441  // The memory is committed
2442  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2443
2444  return addr;
2445}
2446
2447bool os::release_memory_special(char* base, size_t bytes) {
2448  if (MemTracker::tracking_level() > NMT_minimal) {
2449    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2450    // detaching the SHM segment will also delete it, see reserve_memory_special()
2451    int rslt = shmdt(base);
2452    if (rslt == 0) {
2453      tkr.record((address)base, bytes);
2454      return true;
2455    } else {
2456      return false;
2457    }
2458  } else {
2459    return shmdt(base) == 0;
2460  }
2461}
2462
2463size_t os::large_page_size() {
2464  return _large_page_size;
2465}
2466
2467// HugeTLBFS allows application to commit large page memory on demand;
2468// with SysV SHM the entire memory region must be allocated as shared
2469// memory.
2470bool os::can_commit_large_page_memory() {
2471  return UseHugeTLBFS;
2472}
2473
2474bool os::can_execute_large_page_memory() {
2475  return UseHugeTLBFS;
2476}
2477
2478// Reserve memory at an arbitrary address, only if that area is
2479// available (and not reserved for something else).
2480
2481char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2482  const int max_tries = 10;
2483  char* base[max_tries];
2484  size_t size[max_tries];
2485  const size_t gap = 0x000000;
2486
2487  // Assert only that the size is a multiple of the page size, since
2488  // that's all that mmap requires, and since that's all we really know
2489  // about at this low abstraction level.  If we need higher alignment,
2490  // we can either pass an alignment to this method or verify alignment
2491  // in one of the methods further up the call chain.  See bug 5044738.
2492  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2493
2494  // Repeatedly allocate blocks until the block is allocated at the
2495  // right spot. Give up after max_tries. Note that reserve_memory() will
2496  // automatically update _highest_vm_reserved_address if the call is
2497  // successful. The variable tracks the highest memory address every reserved
2498  // by JVM. It is used to detect heap-stack collision if running with
2499  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2500  // space than needed, it could confuse the collision detecting code. To
2501  // solve the problem, save current _highest_vm_reserved_address and
2502  // calculate the correct value before return.
2503  address old_highest = _highest_vm_reserved_address;
2504
2505  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2506  // if kernel honors the hint then we can return immediately.
2507  char * addr = anon_mmap(requested_addr, bytes, false);
2508  if (addr == requested_addr) {
2509    return requested_addr;
2510  }
2511
2512  if (addr != NULL) {
2513    // mmap() is successful but it fails to reserve at the requested address
2514    anon_munmap(addr, bytes);
2515  }
2516
2517  int i;
2518  for (i = 0; i < max_tries; ++i) {
2519    base[i] = reserve_memory(bytes);
2520
2521    if (base[i] != NULL) {
2522      // Is this the block we wanted?
2523      if (base[i] == requested_addr) {
2524        size[i] = bytes;
2525        break;
2526      }
2527
2528      // Does this overlap the block we wanted? Give back the overlapped
2529      // parts and try again.
2530
2531      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2532      if (top_overlap >= 0 && top_overlap < bytes) {
2533        unmap_memory(base[i], top_overlap);
2534        base[i] += top_overlap;
2535        size[i] = bytes - top_overlap;
2536      } else {
2537        size_t bottom_overlap = base[i] + bytes - requested_addr;
2538        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2539          unmap_memory(requested_addr, bottom_overlap);
2540          size[i] = bytes - bottom_overlap;
2541        } else {
2542          size[i] = bytes;
2543        }
2544      }
2545    }
2546  }
2547
2548  // Give back the unused reserved pieces.
2549
2550  for (int j = 0; j < i; ++j) {
2551    if (base[j] != NULL) {
2552      unmap_memory(base[j], size[j]);
2553    }
2554  }
2555
2556  if (i < max_tries) {
2557    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2558    return requested_addr;
2559  } else {
2560    _highest_vm_reserved_address = old_highest;
2561    return NULL;
2562  }
2563}
2564
2565size_t os::read(int fd, void *buf, unsigned int nBytes) {
2566  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2567}
2568
2569void os::naked_short_sleep(jlong ms) {
2570  struct timespec req;
2571
2572  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2573  req.tv_sec = 0;
2574  if (ms > 0) {
2575    req.tv_nsec = (ms % 1000) * 1000000;
2576  }
2577  else {
2578    req.tv_nsec = 1;
2579  }
2580
2581  nanosleep(&req, NULL);
2582
2583  return;
2584}
2585
2586// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2587void os::infinite_sleep() {
2588  while (true) {    // sleep forever ...
2589    ::sleep(100);   // ... 100 seconds at a time
2590  }
2591}
2592
2593// Used to convert frequent JVM_Yield() to nops
2594bool os::dont_yield() {
2595  return DontYieldALot;
2596}
2597
2598void os::naked_yield() {
2599  sched_yield();
2600}
2601
2602////////////////////////////////////////////////////////////////////////////////
2603// thread priority support
2604
2605// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2606// only supports dynamic priority, static priority must be zero. For real-time
2607// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2608// However, for large multi-threaded applications, SCHED_RR is not only slower
2609// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2610// of 5 runs - Sep 2005).
2611//
2612// The following code actually changes the niceness of kernel-thread/LWP. It
2613// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2614// not the entire user process, and user level threads are 1:1 mapped to kernel
2615// threads. It has always been the case, but could change in the future. For
2616// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2617// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2618
2619#if !defined(__APPLE__)
2620int os::java_to_os_priority[CriticalPriority + 1] = {
2621  19,              // 0 Entry should never be used
2622
2623   0,              // 1 MinPriority
2624   3,              // 2
2625   6,              // 3
2626
2627  10,              // 4
2628  15,              // 5 NormPriority
2629  18,              // 6
2630
2631  21,              // 7
2632  25,              // 8
2633  28,              // 9 NearMaxPriority
2634
2635  31,              // 10 MaxPriority
2636
2637  31               // 11 CriticalPriority
2638};
2639#else
2640/* Using Mach high-level priority assignments */
2641int os::java_to_os_priority[CriticalPriority + 1] = {
2642   0,              // 0 Entry should never be used (MINPRI_USER)
2643
2644  27,              // 1 MinPriority
2645  28,              // 2
2646  29,              // 3
2647
2648  30,              // 4
2649  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2650  32,              // 6
2651
2652  33,              // 7
2653  34,              // 8
2654  35,              // 9 NearMaxPriority
2655
2656  36,              // 10 MaxPriority
2657
2658  36               // 11 CriticalPriority
2659};
2660#endif
2661
2662static int prio_init() {
2663  if (ThreadPriorityPolicy == 1) {
2664    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2665    // if effective uid is not root. Perhaps, a more elegant way of doing
2666    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2667    if (geteuid() != 0) {
2668      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2669        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2670      }
2671      ThreadPriorityPolicy = 0;
2672    }
2673  }
2674  if (UseCriticalJavaThreadPriority) {
2675    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2676  }
2677  return 0;
2678}
2679
2680OSReturn os::set_native_priority(Thread* thread, int newpri) {
2681  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2682
2683#ifdef __OpenBSD__
2684  // OpenBSD pthread_setprio starves low priority threads
2685  return OS_OK;
2686#elif defined(__FreeBSD__)
2687  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2688#elif defined(__APPLE__) || defined(__NetBSD__)
2689  struct sched_param sp;
2690  int policy;
2691  pthread_t self = pthread_self();
2692
2693  if (pthread_getschedparam(self, &policy, &sp) != 0)
2694    return OS_ERR;
2695
2696  sp.sched_priority = newpri;
2697  if (pthread_setschedparam(self, policy, &sp) != 0)
2698    return OS_ERR;
2699
2700  return OS_OK;
2701#else
2702  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2703  return (ret == 0) ? OS_OK : OS_ERR;
2704#endif
2705}
2706
2707OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2708  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2709    *priority_ptr = java_to_os_priority[NormPriority];
2710    return OS_OK;
2711  }
2712
2713  errno = 0;
2714#if defined(__OpenBSD__) || defined(__FreeBSD__)
2715  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2716#elif defined(__APPLE__) || defined(__NetBSD__)
2717  int policy;
2718  struct sched_param sp;
2719
2720  pthread_getschedparam(pthread_self(), &policy, &sp);
2721  *priority_ptr = sp.sched_priority;
2722#else
2723  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2724#endif
2725  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2726}
2727
2728// Hint to the underlying OS that a task switch would not be good.
2729// Void return because it's a hint and can fail.
2730void os::hint_no_preempt() {}
2731
2732////////////////////////////////////////////////////////////////////////////////
2733// suspend/resume support
2734
2735//  the low-level signal-based suspend/resume support is a remnant from the
2736//  old VM-suspension that used to be for java-suspension, safepoints etc,
2737//  within hotspot. Now there is a single use-case for this:
2738//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2739//      that runs in the watcher thread.
2740//  The remaining code is greatly simplified from the more general suspension
2741//  code that used to be used.
2742//
2743//  The protocol is quite simple:
2744//  - suspend:
2745//      - sends a signal to the target thread
2746//      - polls the suspend state of the osthread using a yield loop
2747//      - target thread signal handler (SR_handler) sets suspend state
2748//        and blocks in sigsuspend until continued
2749//  - resume:
2750//      - sets target osthread state to continue
2751//      - sends signal to end the sigsuspend loop in the SR_handler
2752//
2753//  Note that the SR_lock plays no role in this suspend/resume protocol.
2754//
2755
2756static void resume_clear_context(OSThread *osthread) {
2757  osthread->set_ucontext(NULL);
2758  osthread->set_siginfo(NULL);
2759}
2760
2761static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2762  osthread->set_ucontext(context);
2763  osthread->set_siginfo(siginfo);
2764}
2765
2766//
2767// Handler function invoked when a thread's execution is suspended or
2768// resumed. We have to be careful that only async-safe functions are
2769// called here (Note: most pthread functions are not async safe and
2770// should be avoided.)
2771//
2772// Note: sigwait() is a more natural fit than sigsuspend() from an
2773// interface point of view, but sigwait() prevents the signal hander
2774// from being run. libpthread would get very confused by not having
2775// its signal handlers run and prevents sigwait()'s use with the
2776// mutex granting granting signal.
2777//
2778// Currently only ever called on the VMThread or JavaThread
2779//
2780static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2781  // Save and restore errno to avoid confusing native code with EINTR
2782  // after sigsuspend.
2783  int old_errno = errno;
2784
2785  Thread* thread = Thread::current();
2786  OSThread* osthread = thread->osthread();
2787  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2788
2789  os::SuspendResume::State current = osthread->sr.state();
2790  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2791    suspend_save_context(osthread, siginfo, context);
2792
2793    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2794    os::SuspendResume::State state = osthread->sr.suspended();
2795    if (state == os::SuspendResume::SR_SUSPENDED) {
2796      sigset_t suspend_set;  // signals for sigsuspend()
2797
2798      // get current set of blocked signals and unblock resume signal
2799      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2800      sigdelset(&suspend_set, SR_signum);
2801
2802      sr_semaphore.signal();
2803      // wait here until we are resumed
2804      while (1) {
2805        sigsuspend(&suspend_set);
2806
2807        os::SuspendResume::State result = osthread->sr.running();
2808        if (result == os::SuspendResume::SR_RUNNING) {
2809          sr_semaphore.signal();
2810          break;
2811        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2812          ShouldNotReachHere();
2813        }
2814      }
2815
2816    } else if (state == os::SuspendResume::SR_RUNNING) {
2817      // request was cancelled, continue
2818    } else {
2819      ShouldNotReachHere();
2820    }
2821
2822    resume_clear_context(osthread);
2823  } else if (current == os::SuspendResume::SR_RUNNING) {
2824    // request was cancelled, continue
2825  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2826    // ignore
2827  } else {
2828    // ignore
2829  }
2830
2831  errno = old_errno;
2832}
2833
2834
2835static int SR_initialize() {
2836  struct sigaction act;
2837  char *s;
2838  /* Get signal number to use for suspend/resume */
2839  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2840    int sig = ::strtol(s, 0, 10);
2841    if (sig > 0 || sig < NSIG) {
2842      SR_signum = sig;
2843    }
2844  }
2845
2846  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2847         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2848
2849  sigemptyset(&SR_sigset);
2850  sigaddset(&SR_sigset, SR_signum);
2851
2852  /* Set up signal handler for suspend/resume */
2853  act.sa_flags = SA_RESTART|SA_SIGINFO;
2854  act.sa_handler = (void (*)(int)) SR_handler;
2855
2856  // SR_signum is blocked by default.
2857  // 4528190 - We also need to block pthread restart signal (32 on all
2858  // supported Bsd platforms). Note that BsdThreads need to block
2859  // this signal for all threads to work properly. So we don't have
2860  // to use hard-coded signal number when setting up the mask.
2861  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2862
2863  if (sigaction(SR_signum, &act, 0) == -1) {
2864    return -1;
2865  }
2866
2867  // Save signal flag
2868  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2869  return 0;
2870}
2871
2872static int sr_notify(OSThread* osthread) {
2873  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2874  assert_status(status == 0, status, "pthread_kill");
2875  return status;
2876}
2877
2878// "Randomly" selected value for how long we want to spin
2879// before bailing out on suspending a thread, also how often
2880// we send a signal to a thread we want to resume
2881static const int RANDOMLY_LARGE_INTEGER = 1000000;
2882static const int RANDOMLY_LARGE_INTEGER2 = 100;
2883
2884// returns true on success and false on error - really an error is fatal
2885// but this seems the normal response to library errors
2886static bool do_suspend(OSThread* osthread) {
2887  assert(osthread->sr.is_running(), "thread should be running");
2888  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2889
2890  // mark as suspended and send signal
2891  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2892    // failed to switch, state wasn't running?
2893    ShouldNotReachHere();
2894    return false;
2895  }
2896
2897  if (sr_notify(osthread) != 0) {
2898    ShouldNotReachHere();
2899  }
2900
2901  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2902  while (true) {
2903    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2904      break;
2905    } else {
2906      // timeout
2907      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2908      if (cancelled == os::SuspendResume::SR_RUNNING) {
2909        return false;
2910      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2911        // make sure that we consume the signal on the semaphore as well
2912        sr_semaphore.wait();
2913        break;
2914      } else {
2915        ShouldNotReachHere();
2916        return false;
2917      }
2918    }
2919  }
2920
2921  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2922  return true;
2923}
2924
2925static void do_resume(OSThread* osthread) {
2926  assert(osthread->sr.is_suspended(), "thread should be suspended");
2927  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2928
2929  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2930    // failed to switch to WAKEUP_REQUEST
2931    ShouldNotReachHere();
2932    return;
2933  }
2934
2935  while (true) {
2936    if (sr_notify(osthread) == 0) {
2937      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2938        if (osthread->sr.is_running()) {
2939          return;
2940        }
2941      }
2942    } else {
2943      ShouldNotReachHere();
2944    }
2945  }
2946
2947  guarantee(osthread->sr.is_running(), "Must be running!");
2948}
2949
2950///////////////////////////////////////////////////////////////////////////////////
2951// signal handling (except suspend/resume)
2952
2953// This routine may be used by user applications as a "hook" to catch signals.
2954// The user-defined signal handler must pass unrecognized signals to this
2955// routine, and if it returns true (non-zero), then the signal handler must
2956// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2957// routine will never retun false (zero), but instead will execute a VM panic
2958// routine kill the process.
2959//
2960// If this routine returns false, it is OK to call it again.  This allows
2961// the user-defined signal handler to perform checks either before or after
2962// the VM performs its own checks.  Naturally, the user code would be making
2963// a serious error if it tried to handle an exception (such as a null check
2964// or breakpoint) that the VM was generating for its own correct operation.
2965//
2966// This routine may recognize any of the following kinds of signals:
2967//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2968// It should be consulted by handlers for any of those signals.
2969//
2970// The caller of this routine must pass in the three arguments supplied
2971// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2972// field of the structure passed to sigaction().  This routine assumes that
2973// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2974//
2975// Note that the VM will print warnings if it detects conflicting signal
2976// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2977//
2978extern "C" JNIEXPORT int
2979JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2980                      void* ucontext, int abort_if_unrecognized);
2981
2982void signalHandler(int sig, siginfo_t* info, void* uc) {
2983  assert(info != NULL && uc != NULL, "it must be old kernel");
2984  int orig_errno = errno;  // Preserve errno value over signal handler.
2985  JVM_handle_bsd_signal(sig, info, uc, true);
2986  errno = orig_errno;
2987}
2988
2989
2990// This boolean allows users to forward their own non-matching signals
2991// to JVM_handle_bsd_signal, harmlessly.
2992bool os::Bsd::signal_handlers_are_installed = false;
2993
2994// For signal-chaining
2995struct sigaction os::Bsd::sigact[MAXSIGNUM];
2996unsigned int os::Bsd::sigs = 0;
2997bool os::Bsd::libjsig_is_loaded = false;
2998typedef struct sigaction *(*get_signal_t)(int);
2999get_signal_t os::Bsd::get_signal_action = NULL;
3000
3001struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3002  struct sigaction *actp = NULL;
3003
3004  if (libjsig_is_loaded) {
3005    // Retrieve the old signal handler from libjsig
3006    actp = (*get_signal_action)(sig);
3007  }
3008  if (actp == NULL) {
3009    // Retrieve the preinstalled signal handler from jvm
3010    actp = get_preinstalled_handler(sig);
3011  }
3012
3013  return actp;
3014}
3015
3016static bool call_chained_handler(struct sigaction *actp, int sig,
3017                                 siginfo_t *siginfo, void *context) {
3018  // Call the old signal handler
3019  if (actp->sa_handler == SIG_DFL) {
3020    // It's more reasonable to let jvm treat it as an unexpected exception
3021    // instead of taking the default action.
3022    return false;
3023  } else if (actp->sa_handler != SIG_IGN) {
3024    if ((actp->sa_flags & SA_NODEFER) == 0) {
3025      // automaticlly block the signal
3026      sigaddset(&(actp->sa_mask), sig);
3027    }
3028
3029    sa_handler_t hand;
3030    sa_sigaction_t sa;
3031    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3032    // retrieve the chained handler
3033    if (siginfo_flag_set) {
3034      sa = actp->sa_sigaction;
3035    } else {
3036      hand = actp->sa_handler;
3037    }
3038
3039    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3040      actp->sa_handler = SIG_DFL;
3041    }
3042
3043    // try to honor the signal mask
3044    sigset_t oset;
3045    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3046
3047    // call into the chained handler
3048    if (siginfo_flag_set) {
3049      (*sa)(sig, siginfo, context);
3050    } else {
3051      (*hand)(sig);
3052    }
3053
3054    // restore the signal mask
3055    pthread_sigmask(SIG_SETMASK, &oset, 0);
3056  }
3057  // Tell jvm's signal handler the signal is taken care of.
3058  return true;
3059}
3060
3061bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3062  bool chained = false;
3063  // signal-chaining
3064  if (UseSignalChaining) {
3065    struct sigaction *actp = get_chained_signal_action(sig);
3066    if (actp != NULL) {
3067      chained = call_chained_handler(actp, sig, siginfo, context);
3068    }
3069  }
3070  return chained;
3071}
3072
3073struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3074  if ((((unsigned int)1 << sig) & sigs) != 0) {
3075    return &sigact[sig];
3076  }
3077  return NULL;
3078}
3079
3080void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3081  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3082  sigact[sig] = oldAct;
3083  sigs |= (unsigned int)1 << sig;
3084}
3085
3086// for diagnostic
3087int os::Bsd::sigflags[MAXSIGNUM];
3088
3089int os::Bsd::get_our_sigflags(int sig) {
3090  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3091  return sigflags[sig];
3092}
3093
3094void os::Bsd::set_our_sigflags(int sig, int flags) {
3095  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3096  sigflags[sig] = flags;
3097}
3098
3099void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3100  // Check for overwrite.
3101  struct sigaction oldAct;
3102  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3103
3104  void* oldhand = oldAct.sa_sigaction
3105                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3106                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3107  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3108      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3109      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3110    if (AllowUserSignalHandlers || !set_installed) {
3111      // Do not overwrite; user takes responsibility to forward to us.
3112      return;
3113    } else if (UseSignalChaining) {
3114      // save the old handler in jvm
3115      save_preinstalled_handler(sig, oldAct);
3116      // libjsig also interposes the sigaction() call below and saves the
3117      // old sigaction on it own.
3118    } else {
3119      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3120                    "%#lx for signal %d.", (long)oldhand, sig));
3121    }
3122  }
3123
3124  struct sigaction sigAct;
3125  sigfillset(&(sigAct.sa_mask));
3126  sigAct.sa_handler = SIG_DFL;
3127  if (!set_installed) {
3128    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3129  } else {
3130    sigAct.sa_sigaction = signalHandler;
3131    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3132  }
3133#ifdef __APPLE__
3134  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3135  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3136  // if the signal handler declares it will handle it on alternate stack.
3137  // Notice we only declare we will handle it on alt stack, but we are not
3138  // actually going to use real alt stack - this is just a workaround.
3139  // Please see ux_exception.c, method catch_mach_exception_raise for details
3140  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3141  if (sig == SIGSEGV) {
3142    sigAct.sa_flags |= SA_ONSTACK;
3143  }
3144#endif
3145
3146  // Save flags, which are set by ours
3147  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3148  sigflags[sig] = sigAct.sa_flags;
3149
3150  int ret = sigaction(sig, &sigAct, &oldAct);
3151  assert(ret == 0, "check");
3152
3153  void* oldhand2  = oldAct.sa_sigaction
3154                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3155                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3156  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3157}
3158
3159// install signal handlers for signals that HotSpot needs to
3160// handle in order to support Java-level exception handling.
3161
3162void os::Bsd::install_signal_handlers() {
3163  if (!signal_handlers_are_installed) {
3164    signal_handlers_are_installed = true;
3165
3166    // signal-chaining
3167    typedef void (*signal_setting_t)();
3168    signal_setting_t begin_signal_setting = NULL;
3169    signal_setting_t end_signal_setting = NULL;
3170    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3171                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3172    if (begin_signal_setting != NULL) {
3173      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3174                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3175      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3176                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3177      libjsig_is_loaded = true;
3178      assert(UseSignalChaining, "should enable signal-chaining");
3179    }
3180    if (libjsig_is_loaded) {
3181      // Tell libjsig jvm is setting signal handlers
3182      (*begin_signal_setting)();
3183    }
3184
3185    set_signal_handler(SIGSEGV, true);
3186    set_signal_handler(SIGPIPE, true);
3187    set_signal_handler(SIGBUS, true);
3188    set_signal_handler(SIGILL, true);
3189    set_signal_handler(SIGFPE, true);
3190    set_signal_handler(SIGXFSZ, true);
3191
3192#if defined(__APPLE__)
3193    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3194    // signals caught and handled by the JVM. To work around this, we reset the mach task
3195    // signal handler that's placed on our process by CrashReporter. This disables
3196    // CrashReporter-based reporting.
3197    //
3198    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3199    // on caught fatal signals.
3200    //
3201    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3202    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3203    // exception handling, while leaving the standard BSD signal handlers functional.
3204    kern_return_t kr;
3205    kr = task_set_exception_ports(mach_task_self(),
3206                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3207                                  MACH_PORT_NULL,
3208                                  EXCEPTION_STATE_IDENTITY,
3209                                  MACHINE_THREAD_STATE);
3210
3211    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3212#endif
3213
3214    if (libjsig_is_loaded) {
3215      // Tell libjsig jvm finishes setting signal handlers
3216      (*end_signal_setting)();
3217    }
3218
3219    // We don't activate signal checker if libjsig is in place, we trust ourselves
3220    // and if UserSignalHandler is installed all bets are off
3221    if (CheckJNICalls) {
3222      if (libjsig_is_loaded) {
3223        if (PrintJNIResolving) {
3224          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3225        }
3226        check_signals = false;
3227      }
3228      if (AllowUserSignalHandlers) {
3229        if (PrintJNIResolving) {
3230          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3231        }
3232        check_signals = false;
3233      }
3234    }
3235  }
3236}
3237
3238
3239/////
3240// glibc on Bsd platform uses non-documented flag
3241// to indicate, that some special sort of signal
3242// trampoline is used.
3243// We will never set this flag, and we should
3244// ignore this flag in our diagnostic
3245#ifdef SIGNIFICANT_SIGNAL_MASK
3246#undef SIGNIFICANT_SIGNAL_MASK
3247#endif
3248#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3249
3250static const char* get_signal_handler_name(address handler,
3251                                           char* buf, int buflen) {
3252  int offset;
3253  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3254  if (found) {
3255    // skip directory names
3256    const char *p1, *p2;
3257    p1 = buf;
3258    size_t len = strlen(os::file_separator());
3259    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3260    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3261  } else {
3262    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3263  }
3264  return buf;
3265}
3266
3267static void print_signal_handler(outputStream* st, int sig,
3268                                 char* buf, size_t buflen) {
3269  struct sigaction sa;
3270
3271  sigaction(sig, NULL, &sa);
3272
3273  // See comment for SIGNIFICANT_SIGNAL_MASK define
3274  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3275
3276  st->print("%s: ", os::exception_name(sig, buf, buflen));
3277
3278  address handler = (sa.sa_flags & SA_SIGINFO)
3279    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3280    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3281
3282  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3283    st->print("SIG_DFL");
3284  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3285    st->print("SIG_IGN");
3286  } else {
3287    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3288  }
3289
3290  st->print(", sa_mask[0]=");
3291  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3292
3293  address rh = VMError::get_resetted_sighandler(sig);
3294  // May be, handler was resetted by VMError?
3295  if (rh != NULL) {
3296    handler = rh;
3297    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3298  }
3299
3300  st->print(", sa_flags=");
3301  os::Posix::print_sa_flags(st, sa.sa_flags);
3302
3303  // Check: is it our handler?
3304  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3305      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3306    // It is our signal handler
3307    // check for flags, reset system-used one!
3308    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3309      st->print(
3310                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3311                os::Bsd::get_our_sigflags(sig));
3312    }
3313  }
3314  st->cr();
3315}
3316
3317
3318#define DO_SIGNAL_CHECK(sig) \
3319  if (!sigismember(&check_signal_done, sig)) \
3320    os::Bsd::check_signal_handler(sig)
3321
3322// This method is a periodic task to check for misbehaving JNI applications
3323// under CheckJNI, we can add any periodic checks here
3324
3325void os::run_periodic_checks() {
3326
3327  if (check_signals == false) return;
3328
3329  // SEGV and BUS if overridden could potentially prevent
3330  // generation of hs*.log in the event of a crash, debugging
3331  // such a case can be very challenging, so we absolutely
3332  // check the following for a good measure:
3333  DO_SIGNAL_CHECK(SIGSEGV);
3334  DO_SIGNAL_CHECK(SIGILL);
3335  DO_SIGNAL_CHECK(SIGFPE);
3336  DO_SIGNAL_CHECK(SIGBUS);
3337  DO_SIGNAL_CHECK(SIGPIPE);
3338  DO_SIGNAL_CHECK(SIGXFSZ);
3339
3340
3341  // ReduceSignalUsage allows the user to override these handlers
3342  // see comments at the very top and jvm_solaris.h
3343  if (!ReduceSignalUsage) {
3344    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3345    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3346    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3347    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3348  }
3349
3350  DO_SIGNAL_CHECK(SR_signum);
3351  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3352}
3353
3354typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3355
3356static os_sigaction_t os_sigaction = NULL;
3357
3358void os::Bsd::check_signal_handler(int sig) {
3359  char buf[O_BUFLEN];
3360  address jvmHandler = NULL;
3361
3362
3363  struct sigaction act;
3364  if (os_sigaction == NULL) {
3365    // only trust the default sigaction, in case it has been interposed
3366    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3367    if (os_sigaction == NULL) return;
3368  }
3369
3370  os_sigaction(sig, (struct sigaction*)NULL, &act);
3371
3372
3373  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3374
3375  address thisHandler = (act.sa_flags & SA_SIGINFO)
3376    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3377    : CAST_FROM_FN_PTR(address, act.sa_handler);
3378
3379
3380  switch (sig) {
3381  case SIGSEGV:
3382  case SIGBUS:
3383  case SIGFPE:
3384  case SIGPIPE:
3385  case SIGILL:
3386  case SIGXFSZ:
3387    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3388    break;
3389
3390  case SHUTDOWN1_SIGNAL:
3391  case SHUTDOWN2_SIGNAL:
3392  case SHUTDOWN3_SIGNAL:
3393  case BREAK_SIGNAL:
3394    jvmHandler = (address)user_handler();
3395    break;
3396
3397  case INTERRUPT_SIGNAL:
3398    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3399    break;
3400
3401  default:
3402    if (sig == SR_signum) {
3403      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3404    } else {
3405      return;
3406    }
3407    break;
3408  }
3409
3410  if (thisHandler != jvmHandler) {
3411    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3412    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3413    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3414    // No need to check this sig any longer
3415    sigaddset(&check_signal_done, sig);
3416    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3417    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3418      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3419                    exception_name(sig, buf, O_BUFLEN));
3420    }
3421  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3422    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3423    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3424    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3425    // No need to check this sig any longer
3426    sigaddset(&check_signal_done, sig);
3427  }
3428
3429  // Dump all the signal
3430  if (sigismember(&check_signal_done, sig)) {
3431    print_signal_handlers(tty, buf, O_BUFLEN);
3432  }
3433}
3434
3435extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3436
3437extern bool signal_name(int signo, char* buf, size_t len);
3438
3439const char* os::exception_name(int exception_code, char* buf, size_t size) {
3440  if (0 < exception_code && exception_code <= SIGRTMAX) {
3441    // signal
3442    if (!signal_name(exception_code, buf, size)) {
3443      jio_snprintf(buf, size, "SIG%d", exception_code);
3444    }
3445    return buf;
3446  } else {
3447    return NULL;
3448  }
3449}
3450
3451// this is called _before_ the most of global arguments have been parsed
3452void os::init(void) {
3453  char dummy;   /* used to get a guess on initial stack address */
3454//  first_hrtime = gethrtime();
3455
3456  // With BsdThreads the JavaMain thread pid (primordial thread)
3457  // is different than the pid of the java launcher thread.
3458  // So, on Bsd, the launcher thread pid is passed to the VM
3459  // via the sun.java.launcher.pid property.
3460  // Use this property instead of getpid() if it was correctly passed.
3461  // See bug 6351349.
3462  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3463
3464  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3465
3466  clock_tics_per_sec = CLK_TCK;
3467
3468  init_random(1234567);
3469
3470  ThreadCritical::initialize();
3471
3472  Bsd::set_page_size(getpagesize());
3473  if (Bsd::page_size() == -1) {
3474    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3475                  strerror(errno)));
3476  }
3477  init_page_sizes((size_t) Bsd::page_size());
3478
3479  Bsd::initialize_system_info();
3480
3481  // main_thread points to the aboriginal thread
3482  Bsd::_main_thread = pthread_self();
3483
3484  Bsd::clock_init();
3485  initial_time_count = javaTimeNanos();
3486
3487#ifdef __APPLE__
3488  // XXXDARWIN
3489  // Work around the unaligned VM callbacks in hotspot's
3490  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3491  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3492  // alignment when doing symbol lookup. To work around this, we force early
3493  // binding of all symbols now, thus binding when alignment is known-good.
3494  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3495#endif
3496}
3497
3498// To install functions for atexit system call
3499extern "C" {
3500  static void perfMemory_exit_helper() {
3501    perfMemory_exit();
3502  }
3503}
3504
3505// this is called _after_ the global arguments have been parsed
3506jint os::init_2(void)
3507{
3508  // Allocate a single page and mark it as readable for safepoint polling
3509  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3510  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3511
3512  os::set_polling_page(polling_page);
3513
3514#ifndef PRODUCT
3515  if (Verbose && PrintMiscellaneous)
3516    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3517#endif
3518
3519  if (!UseMembar) {
3520    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3521    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3522    os::set_memory_serialize_page(mem_serialize_page);
3523
3524#ifndef PRODUCT
3525    if (Verbose && PrintMiscellaneous)
3526      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3527#endif
3528  }
3529
3530  // initialize suspend/resume support - must do this before signal_sets_init()
3531  if (SR_initialize() != 0) {
3532    perror("SR_initialize failed");
3533    return JNI_ERR;
3534  }
3535
3536  Bsd::signal_sets_init();
3537  Bsd::install_signal_handlers();
3538
3539  // Check minimum allowable stack size for thread creation and to initialize
3540  // the java system classes, including StackOverflowError - depends on page
3541  // size.  Add a page for compiler2 recursion in main thread.
3542  // Add in 2*BytesPerWord times page size to account for VM stack during
3543  // class initialization depending on 32 or 64 bit VM.
3544  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3545                                    (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3546                                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3547
3548  size_t threadStackSizeInBytes = ThreadStackSize * K;
3549  if (threadStackSizeInBytes != 0 &&
3550      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3551    tty->print_cr("\nThe stack size specified is too small, "
3552                  "Specify at least %dk",
3553                  os::Bsd::min_stack_allowed/ K);
3554    return JNI_ERR;
3555  }
3556
3557  // Make the stack size a multiple of the page size so that
3558  // the yellow/red zones can be guarded.
3559  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3560                                                vm_page_size()));
3561
3562  if (MaxFDLimit) {
3563    // set the number of file descriptors to max. print out error
3564    // if getrlimit/setrlimit fails but continue regardless.
3565    struct rlimit nbr_files;
3566    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3567    if (status != 0) {
3568      if (PrintMiscellaneous && (Verbose || WizardMode))
3569        perror("os::init_2 getrlimit failed");
3570    } else {
3571      nbr_files.rlim_cur = nbr_files.rlim_max;
3572
3573#ifdef __APPLE__
3574      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3575      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3576      // be used instead
3577      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3578#endif
3579
3580      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3581      if (status != 0) {
3582        if (PrintMiscellaneous && (Verbose || WizardMode))
3583          perror("os::init_2 setrlimit failed");
3584      }
3585    }
3586  }
3587
3588  // at-exit methods are called in the reverse order of their registration.
3589  // atexit functions are called on return from main or as a result of a
3590  // call to exit(3C). There can be only 32 of these functions registered
3591  // and atexit() does not set errno.
3592
3593  if (PerfAllowAtExitRegistration) {
3594    // only register atexit functions if PerfAllowAtExitRegistration is set.
3595    // atexit functions can be delayed until process exit time, which
3596    // can be problematic for embedded VM situations. Embedded VMs should
3597    // call DestroyJavaVM() to assure that VM resources are released.
3598
3599    // note: perfMemory_exit_helper atexit function may be removed in
3600    // the future if the appropriate cleanup code can be added to the
3601    // VM_Exit VMOperation's doit method.
3602    if (atexit(perfMemory_exit_helper) != 0) {
3603      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3604    }
3605  }
3606
3607  // initialize thread priority policy
3608  prio_init();
3609
3610#ifdef __APPLE__
3611  // dynamically link to objective c gc registration
3612  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3613  if (handleLibObjc != NULL) {
3614    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3615  }
3616#endif
3617
3618  return JNI_OK;
3619}
3620
3621// this is called at the end of vm_initialization
3622void os::init_3(void) { }
3623
3624// Mark the polling page as unreadable
3625void os::make_polling_page_unreadable(void) {
3626  if (!guard_memory((char*)_polling_page, Bsd::page_size()))
3627    fatal("Could not disable polling page");
3628};
3629
3630// Mark the polling page as readable
3631void os::make_polling_page_readable(void) {
3632  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3633    fatal("Could not enable polling page");
3634  }
3635};
3636
3637int os::active_processor_count() {
3638  return _processor_count;
3639}
3640
3641void os::set_native_thread_name(const char *name) {
3642#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3643  // This is only supported in Snow Leopard and beyond
3644  if (name != NULL) {
3645    // Add a "Java: " prefix to the name
3646    char buf[MAXTHREADNAMESIZE];
3647    snprintf(buf, sizeof(buf), "Java: %s", name);
3648    pthread_setname_np(buf);
3649  }
3650#endif
3651}
3652
3653bool os::distribute_processes(uint length, uint* distribution) {
3654  // Not yet implemented.
3655  return false;
3656}
3657
3658bool os::bind_to_processor(uint processor_id) {
3659  // Not yet implemented.
3660  return false;
3661}
3662
3663void os::SuspendedThreadTask::internal_do_task() {
3664  if (do_suspend(_thread->osthread())) {
3665    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3666    do_task(context);
3667    do_resume(_thread->osthread());
3668  }
3669}
3670
3671///
3672class PcFetcher : public os::SuspendedThreadTask {
3673 public:
3674  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3675  ExtendedPC result();
3676 protected:
3677  void do_task(const os::SuspendedThreadTaskContext& context);
3678 private:
3679  ExtendedPC _epc;
3680};
3681
3682ExtendedPC PcFetcher::result() {
3683  guarantee(is_done(), "task is not done yet.");
3684  return _epc;
3685}
3686
3687void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3688  Thread* thread = context.thread();
3689  OSThread* osthread = thread->osthread();
3690  if (osthread->ucontext() != NULL) {
3691    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3692  } else {
3693    // NULL context is unexpected, double-check this is the VMThread
3694    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3695  }
3696}
3697
3698// Suspends the target using the signal mechanism and then grabs the PC before
3699// resuming the target. Used by the flat-profiler only
3700ExtendedPC os::get_thread_pc(Thread* thread) {
3701  // Make sure that it is called by the watcher for the VMThread
3702  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3703  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3704
3705  PcFetcher fetcher(thread);
3706  fetcher.run();
3707  return fetcher.result();
3708}
3709
3710int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3711{
3712  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3713}
3714
3715////////////////////////////////////////////////////////////////////////////////
3716// debug support
3717
3718bool os::find(address addr, outputStream* st) {
3719  Dl_info dlinfo;
3720  memset(&dlinfo, 0, sizeof(dlinfo));
3721  if (dladdr(addr, &dlinfo) != 0) {
3722    st->print(PTR_FORMAT ": ", addr);
3723    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3724      st->print("%s+%#x", dlinfo.dli_sname,
3725                addr - (intptr_t)dlinfo.dli_saddr);
3726    } else if (dlinfo.dli_fbase != NULL) {
3727      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3728    } else {
3729      st->print("<absolute address>");
3730    }
3731    if (dlinfo.dli_fname != NULL) {
3732      st->print(" in %s", dlinfo.dli_fname);
3733    }
3734    if (dlinfo.dli_fbase != NULL) {
3735      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3736    }
3737    st->cr();
3738
3739    if (Verbose) {
3740      // decode some bytes around the PC
3741      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3742      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3743      address       lowest = (address) dlinfo.dli_sname;
3744      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3745      if (begin < lowest)  begin = lowest;
3746      Dl_info dlinfo2;
3747      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3748          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3749        end = (address) dlinfo2.dli_saddr;
3750      Disassembler::decode(begin, end, st);
3751    }
3752    return true;
3753  }
3754  return false;
3755}
3756
3757////////////////////////////////////////////////////////////////////////////////
3758// misc
3759
3760// This does not do anything on Bsd. This is basically a hook for being
3761// able to use structured exception handling (thread-local exception filters)
3762// on, e.g., Win32.
3763void
3764os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3765                         JavaCallArguments* args, Thread* thread) {
3766  f(value, method, args, thread);
3767}
3768
3769void os::print_statistics() {
3770}
3771
3772int os::message_box(const char* title, const char* message) {
3773  int i;
3774  fdStream err(defaultStream::error_fd());
3775  for (i = 0; i < 78; i++) err.print_raw("=");
3776  err.cr();
3777  err.print_raw_cr(title);
3778  for (i = 0; i < 78; i++) err.print_raw("-");
3779  err.cr();
3780  err.print_raw_cr(message);
3781  for (i = 0; i < 78; i++) err.print_raw("=");
3782  err.cr();
3783
3784  char buf[16];
3785  // Prevent process from exiting upon "read error" without consuming all CPU
3786  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3787
3788  return buf[0] == 'y' || buf[0] == 'Y';
3789}
3790
3791int os::stat(const char *path, struct stat *sbuf) {
3792  char pathbuf[MAX_PATH];
3793  if (strlen(path) > MAX_PATH - 1) {
3794    errno = ENAMETOOLONG;
3795    return -1;
3796  }
3797  os::native_path(strcpy(pathbuf, path));
3798  return ::stat(pathbuf, sbuf);
3799}
3800
3801bool os::check_heap(bool force) {
3802  return true;
3803}
3804
3805ATTRIBUTE_PRINTF(3, 0)
3806int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3807  return ::vsnprintf(buf, count, format, args);
3808}
3809
3810// Is a (classpath) directory empty?
3811bool os::dir_is_empty(const char* path) {
3812  DIR *dir = NULL;
3813  struct dirent *ptr;
3814
3815  dir = opendir(path);
3816  if (dir == NULL) return true;
3817
3818  /* Scan the directory */
3819  bool result = true;
3820  char buf[sizeof(struct dirent) + MAX_PATH];
3821  while (result && (ptr = ::readdir(dir)) != NULL) {
3822    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3823      result = false;
3824    }
3825  }
3826  closedir(dir);
3827  return result;
3828}
3829
3830// This code originates from JDK's sysOpen and open64_w
3831// from src/solaris/hpi/src/system_md.c
3832
3833#ifndef O_DELETE
3834#define O_DELETE 0x10000
3835#endif
3836
3837// Open a file. Unlink the file immediately after open returns
3838// if the specified oflag has the O_DELETE flag set.
3839// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3840
3841int os::open(const char *path, int oflag, int mode) {
3842
3843  if (strlen(path) > MAX_PATH - 1) {
3844    errno = ENAMETOOLONG;
3845    return -1;
3846  }
3847  int fd;
3848  int o_delete = (oflag & O_DELETE);
3849  oflag = oflag & ~O_DELETE;
3850
3851  fd = ::open(path, oflag, mode);
3852  if (fd == -1) return -1;
3853
3854  //If the open succeeded, the file might still be a directory
3855  {
3856    struct stat buf;
3857    int ret = ::fstat(fd, &buf);
3858    int st_mode = buf.st_mode;
3859
3860    if (ret != -1) {
3861      if ((st_mode & S_IFMT) == S_IFDIR) {
3862        errno = EISDIR;
3863        ::close(fd);
3864        return -1;
3865      }
3866    } else {
3867      ::close(fd);
3868      return -1;
3869    }
3870  }
3871
3872    /*
3873     * All file descriptors that are opened in the JVM and not
3874     * specifically destined for a subprocess should have the
3875     * close-on-exec flag set.  If we don't set it, then careless 3rd
3876     * party native code might fork and exec without closing all
3877     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3878     * UNIXProcess.c), and this in turn might:
3879     *
3880     * - cause end-of-file to fail to be detected on some file
3881     *   descriptors, resulting in mysterious hangs, or
3882     *
3883     * - might cause an fopen in the subprocess to fail on a system
3884     *   suffering from bug 1085341.
3885     *
3886     * (Yes, the default setting of the close-on-exec flag is a Unix
3887     * design flaw)
3888     *
3889     * See:
3890     * 1085341: 32-bit stdio routines should support file descriptors >255
3891     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3892     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3893     */
3894#ifdef FD_CLOEXEC
3895  {
3896    int flags = ::fcntl(fd, F_GETFD);
3897    if (flags != -1)
3898      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3899  }
3900#endif
3901
3902  if (o_delete != 0) {
3903    ::unlink(path);
3904  }
3905  return fd;
3906}
3907
3908
3909// create binary file, rewriting existing file if required
3910int os::create_binary_file(const char* path, bool rewrite_existing) {
3911  int oflags = O_WRONLY | O_CREAT;
3912  if (!rewrite_existing) {
3913    oflags |= O_EXCL;
3914  }
3915  return ::open(path, oflags, S_IREAD | S_IWRITE);
3916}
3917
3918// return current position of file pointer
3919jlong os::current_file_offset(int fd) {
3920  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3921}
3922
3923// move file pointer to the specified offset
3924jlong os::seek_to_file_offset(int fd, jlong offset) {
3925  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3926}
3927
3928// This code originates from JDK's sysAvailable
3929// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3930
3931int os::available(int fd, jlong *bytes) {
3932  jlong cur, end;
3933  int mode;
3934  struct stat buf;
3935
3936  if (::fstat(fd, &buf) >= 0) {
3937    mode = buf.st_mode;
3938    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3939      /*
3940      * XXX: is the following call interruptible? If so, this might
3941      * need to go through the INTERRUPT_IO() wrapper as for other
3942      * blocking, interruptible calls in this file.
3943      */
3944      int n;
3945      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3946        *bytes = n;
3947        return 1;
3948      }
3949    }
3950  }
3951  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3952    return 0;
3953  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3954    return 0;
3955  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3956    return 0;
3957  }
3958  *bytes = end - cur;
3959  return 1;
3960}
3961
3962int os::socket_available(int fd, jint *pbytes) {
3963  if (fd < 0)
3964    return OS_OK;
3965
3966  int ret;
3967
3968  RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3969
3970  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3971  // is expected to return 0 on failure and 1 on success to the jdk.
3972
3973  return (ret == OS_ERR) ? 0 : 1;
3974}
3975
3976// Map a block of memory.
3977char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3978                        char *addr, size_t bytes, bool read_only,
3979                        bool allow_exec) {
3980  int prot;
3981  int flags;
3982
3983  if (read_only) {
3984    prot = PROT_READ;
3985    flags = MAP_SHARED;
3986  } else {
3987    prot = PROT_READ | PROT_WRITE;
3988    flags = MAP_PRIVATE;
3989  }
3990
3991  if (allow_exec) {
3992    prot |= PROT_EXEC;
3993  }
3994
3995  if (addr != NULL) {
3996    flags |= MAP_FIXED;
3997  }
3998
3999  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4000                                     fd, file_offset);
4001  if (mapped_address == MAP_FAILED) {
4002    return NULL;
4003  }
4004  return mapped_address;
4005}
4006
4007
4008// Remap a block of memory.
4009char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4010                          char *addr, size_t bytes, bool read_only,
4011                          bool allow_exec) {
4012  // same as map_memory() on this OS
4013  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4014                        allow_exec);
4015}
4016
4017
4018// Unmap a block of memory.
4019bool os::pd_unmap_memory(char* addr, size_t bytes) {
4020  return munmap(addr, bytes) == 0;
4021}
4022
4023// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4024// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4025// of a thread.
4026//
4027// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4028// the fast estimate available on the platform.
4029
4030jlong os::current_thread_cpu_time() {
4031#ifdef __APPLE__
4032  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4033#else
4034  Unimplemented();
4035  return 0;
4036#endif
4037}
4038
4039jlong os::thread_cpu_time(Thread* thread) {
4040#ifdef __APPLE__
4041  return os::thread_cpu_time(thread, true /* user + sys */);
4042#else
4043  Unimplemented();
4044  return 0;
4045#endif
4046}
4047
4048jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4049#ifdef __APPLE__
4050  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4051#else
4052  Unimplemented();
4053  return 0;
4054#endif
4055}
4056
4057jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4058#ifdef __APPLE__
4059  struct thread_basic_info tinfo;
4060  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4061  kern_return_t kr;
4062  thread_t mach_thread;
4063
4064  mach_thread = thread->osthread()->thread_id();
4065  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4066  if (kr != KERN_SUCCESS)
4067    return -1;
4068
4069  if (user_sys_cpu_time) {
4070    jlong nanos;
4071    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4072    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4073    return nanos;
4074  } else {
4075    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4076  }
4077#else
4078  Unimplemented();
4079  return 0;
4080#endif
4081}
4082
4083
4084void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4085  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4086  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4087  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4088  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4089}
4090
4091void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4092  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4093  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4094  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4095  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4096}
4097
4098bool os::is_thread_cpu_time_supported() {
4099#ifdef __APPLE__
4100  return true;
4101#else
4102  return false;
4103#endif
4104}
4105
4106// System loadavg support.  Returns -1 if load average cannot be obtained.
4107// Bsd doesn't yet have a (official) notion of processor sets,
4108// so just return the system wide load average.
4109int os::loadavg(double loadavg[], int nelem) {
4110  return ::getloadavg(loadavg, nelem);
4111}
4112
4113void os::pause() {
4114  char filename[MAX_PATH];
4115  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4116    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4117  } else {
4118    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4119  }
4120
4121  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4122  if (fd != -1) {
4123    struct stat buf;
4124    ::close(fd);
4125    while (::stat(filename, &buf) == 0) {
4126      (void)::poll(NULL, 0, 100);
4127    }
4128  } else {
4129    jio_fprintf(stderr,
4130                "Could not open pause file '%s', continuing immediately.\n", filename);
4131  }
4132}
4133
4134
4135// Refer to the comments in os_solaris.cpp park-unpark.
4136//
4137// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4138// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4139// For specifics regarding the bug see GLIBC BUGID 261237 :
4140//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4141// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4142// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4143// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4144// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4145// and monitorenter when we're using 1-0 locking.  All those operations may result in
4146// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4147// of libpthread avoids the problem, but isn't practical.
4148//
4149// Possible remedies:
4150//
4151// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4152//      This is palliative and probabilistic, however.  If the thread is preempted
4153//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4154//      than the minimum period may have passed, and the abstime may be stale (in the
4155//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4156//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4157//
4158// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4159//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4160//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4161//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4162//      thread.
4163//
4164// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4165//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4166//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4167//      This also works well.  In fact it avoids kernel-level scalability impediments
4168//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4169//      timers in a graceful fashion.
4170//
4171// 4.   When the abstime value is in the past it appears that control returns
4172//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4173//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4174//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4175//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4176//      It may be possible to avoid reinitialization by checking the return
4177//      value from pthread_cond_timedwait().  In addition to reinitializing the
4178//      condvar we must establish the invariant that cond_signal() is only called
4179//      within critical sections protected by the adjunct mutex.  This prevents
4180//      cond_signal() from "seeing" a condvar that's in the midst of being
4181//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4182//      desirable signal-after-unlock optimization that avoids futile context switching.
4183//
4184//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4185//      structure when a condvar is used or initialized.  cond_destroy()  would
4186//      release the helper structure.  Our reinitialize-after-timedwait fix
4187//      put excessive stress on malloc/free and locks protecting the c-heap.
4188//
4189// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4190// It may be possible to refine (4) by checking the kernel and NTPL verisons
4191// and only enabling the work-around for vulnerable environments.
4192
4193// utility to compute the abstime argument to timedwait:
4194// millis is the relative timeout time
4195// abstime will be the absolute timeout time
4196// TODO: replace compute_abstime() with unpackTime()
4197
4198static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4199  if (millis < 0)  millis = 0;
4200  struct timeval now;
4201  int status = gettimeofday(&now, NULL);
4202  assert(status == 0, "gettimeofday");
4203  jlong seconds = millis / 1000;
4204  millis %= 1000;
4205  if (seconds > 50000000) { // see man cond_timedwait(3T)
4206    seconds = 50000000;
4207  }
4208  abstime->tv_sec = now.tv_sec  + seconds;
4209  long       usec = now.tv_usec + millis * 1000;
4210  if (usec >= 1000000) {
4211    abstime->tv_sec += 1;
4212    usec -= 1000000;
4213  }
4214  abstime->tv_nsec = usec * 1000;
4215  return abstime;
4216}
4217
4218void os::PlatformEvent::park() {       // AKA "down()"
4219  // Invariant: Only the thread associated with the Event/PlatformEvent
4220  // may call park().
4221  // TODO: assert that _Assoc != NULL or _Assoc == Self
4222  assert(_nParked == 0, "invariant");
4223
4224  int v;
4225  for (;;) {
4226    v = _Event;
4227    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4228  }
4229  guarantee(v >= 0, "invariant");
4230  if (v == 0) {
4231    // Do this the hard way by blocking ...
4232    int status = pthread_mutex_lock(_mutex);
4233    assert_status(status == 0, status, "mutex_lock");
4234    guarantee(_nParked == 0, "invariant");
4235    ++_nParked;
4236    while (_Event < 0) {
4237      status = pthread_cond_wait(_cond, _mutex);
4238      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4239      // Treat this the same as if the wait was interrupted
4240      if (status == ETIMEDOUT) { status = EINTR; }
4241      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4242    }
4243    --_nParked;
4244
4245    _Event = 0;
4246    status = pthread_mutex_unlock(_mutex);
4247    assert_status(status == 0, status, "mutex_unlock");
4248    // Paranoia to ensure our locked and lock-free paths interact
4249    // correctly with each other.
4250    OrderAccess::fence();
4251  }
4252  guarantee(_Event >= 0, "invariant");
4253}
4254
4255int os::PlatformEvent::park(jlong millis) {
4256  guarantee(_nParked == 0, "invariant");
4257
4258  int v;
4259  for (;;) {
4260    v = _Event;
4261    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4262  }
4263  guarantee(v >= 0, "invariant");
4264  if (v != 0) return OS_OK;
4265
4266  // We do this the hard way, by blocking the thread.
4267  // Consider enforcing a minimum timeout value.
4268  struct timespec abst;
4269  compute_abstime(&abst, millis);
4270
4271  int ret = OS_TIMEOUT;
4272  int status = pthread_mutex_lock(_mutex);
4273  assert_status(status == 0, status, "mutex_lock");
4274  guarantee(_nParked == 0, "invariant");
4275  ++_nParked;
4276
4277  // Object.wait(timo) will return because of
4278  // (a) notification
4279  // (b) timeout
4280  // (c) thread.interrupt
4281  //
4282  // Thread.interrupt and object.notify{All} both call Event::set.
4283  // That is, we treat thread.interrupt as a special case of notification.
4284  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4285  // We assume all ETIME returns are valid.
4286  //
4287  // TODO: properly differentiate simultaneous notify+interrupt.
4288  // In that case, we should propagate the notify to another waiter.
4289
4290  while (_Event < 0) {
4291    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4292    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4293      pthread_cond_destroy(_cond);
4294      pthread_cond_init(_cond, NULL);
4295    }
4296    assert_status(status == 0 || status == EINTR ||
4297                  status == ETIMEDOUT,
4298                  status, "cond_timedwait");
4299    if (!FilterSpuriousWakeups) break;                 // previous semantics
4300    if (status == ETIMEDOUT) break;
4301    // We consume and ignore EINTR and spurious wakeups.
4302  }
4303  --_nParked;
4304  if (_Event >= 0) {
4305    ret = OS_OK;
4306  }
4307  _Event = 0;
4308  status = pthread_mutex_unlock(_mutex);
4309  assert_status(status == 0, status, "mutex_unlock");
4310  assert(_nParked == 0, "invariant");
4311  // Paranoia to ensure our locked and lock-free paths interact
4312  // correctly with each other.
4313  OrderAccess::fence();
4314  return ret;
4315}
4316
4317void os::PlatformEvent::unpark() {
4318  // Transitions for _Event:
4319  //    0 :=> 1
4320  //    1 :=> 1
4321  //   -1 :=> either 0 or 1; must signal target thread
4322  //          That is, we can safely transition _Event from -1 to either
4323  //          0 or 1.
4324  // See also: "Semaphores in Plan 9" by Mullender & Cox
4325  //
4326  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4327  // that it will take two back-to-back park() calls for the owning
4328  // thread to block. This has the benefit of forcing a spurious return
4329  // from the first park() call after an unpark() call which will help
4330  // shake out uses of park() and unpark() without condition variables.
4331
4332  if (Atomic::xchg(1, &_Event) >= 0) return;
4333
4334  // Wait for the thread associated with the event to vacate
4335  int status = pthread_mutex_lock(_mutex);
4336  assert_status(status == 0, status, "mutex_lock");
4337  int AnyWaiters = _nParked;
4338  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4339  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4340    AnyWaiters = 0;
4341    pthread_cond_signal(_cond);
4342  }
4343  status = pthread_mutex_unlock(_mutex);
4344  assert_status(status == 0, status, "mutex_unlock");
4345  if (AnyWaiters != 0) {
4346    status = pthread_cond_signal(_cond);
4347    assert_status(status == 0, status, "cond_signal");
4348  }
4349
4350  // Note that we signal() _after dropping the lock for "immortal" Events.
4351  // This is safe and avoids a common class of  futile wakeups.  In rare
4352  // circumstances this can cause a thread to return prematurely from
4353  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4354  // simply re-test the condition and re-park itself.
4355}
4356
4357
4358// JSR166
4359// -------------------------------------------------------
4360
4361/*
4362 * The solaris and bsd implementations of park/unpark are fairly
4363 * conservative for now, but can be improved. They currently use a
4364 * mutex/condvar pair, plus a a count.
4365 * Park decrements count if > 0, else does a condvar wait.  Unpark
4366 * sets count to 1 and signals condvar.  Only one thread ever waits
4367 * on the condvar. Contention seen when trying to park implies that someone
4368 * is unparking you, so don't wait. And spurious returns are fine, so there
4369 * is no need to track notifications.
4370 */
4371
4372#define MAX_SECS 100000000
4373/*
4374 * This code is common to bsd and solaris and will be moved to a
4375 * common place in dolphin.
4376 *
4377 * The passed in time value is either a relative time in nanoseconds
4378 * or an absolute time in milliseconds. Either way it has to be unpacked
4379 * into suitable seconds and nanoseconds components and stored in the
4380 * given timespec structure.
4381 * Given time is a 64-bit value and the time_t used in the timespec is only
4382 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4383 * overflow if times way in the future are given. Further on Solaris versions
4384 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4385 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4386 * As it will be 28 years before "now + 100000000" will overflow we can
4387 * ignore overflow and just impose a hard-limit on seconds using the value
4388 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4389 * years from "now".
4390 */
4391
4392static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4393  assert(time > 0, "convertTime");
4394
4395  struct timeval now;
4396  int status = gettimeofday(&now, NULL);
4397  assert(status == 0, "gettimeofday");
4398
4399  time_t max_secs = now.tv_sec + MAX_SECS;
4400
4401  if (isAbsolute) {
4402    jlong secs = time / 1000;
4403    if (secs > max_secs) {
4404      absTime->tv_sec = max_secs;
4405    }
4406    else {
4407      absTime->tv_sec = secs;
4408    }
4409    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4410  }
4411  else {
4412    jlong secs = time / NANOSECS_PER_SEC;
4413    if (secs >= MAX_SECS) {
4414      absTime->tv_sec = max_secs;
4415      absTime->tv_nsec = 0;
4416    }
4417    else {
4418      absTime->tv_sec = now.tv_sec + secs;
4419      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4420      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4421        absTime->tv_nsec -= NANOSECS_PER_SEC;
4422        ++absTime->tv_sec; // note: this must be <= max_secs
4423      }
4424    }
4425  }
4426  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4427  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4428  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4429  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4430}
4431
4432void Parker::park(bool isAbsolute, jlong time) {
4433  // Ideally we'd do something useful while spinning, such
4434  // as calling unpackTime().
4435
4436  // Optional fast-path check:
4437  // Return immediately if a permit is available.
4438  // We depend on Atomic::xchg() having full barrier semantics
4439  // since we are doing a lock-free update to _counter.
4440  if (Atomic::xchg(0, &_counter) > 0) return;
4441
4442  Thread* thread = Thread::current();
4443  assert(thread->is_Java_thread(), "Must be JavaThread");
4444  JavaThread *jt = (JavaThread *)thread;
4445
4446  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4447  // Check interrupt before trying to wait
4448  if (Thread::is_interrupted(thread, false)) {
4449    return;
4450  }
4451
4452  // Next, demultiplex/decode time arguments
4453  struct timespec absTime;
4454  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4455    return;
4456  }
4457  if (time > 0) {
4458    unpackTime(&absTime, isAbsolute, time);
4459  }
4460
4461
4462  // Enter safepoint region
4463  // Beware of deadlocks such as 6317397.
4464  // The per-thread Parker:: mutex is a classic leaf-lock.
4465  // In particular a thread must never block on the Threads_lock while
4466  // holding the Parker:: mutex.  If safepoints are pending both the
4467  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4468  ThreadBlockInVM tbivm(jt);
4469
4470  // Don't wait if cannot get lock since interference arises from
4471  // unblocking.  Also. check interrupt before trying wait
4472  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4473    return;
4474  }
4475
4476  int status;
4477  if (_counter > 0)  { // no wait needed
4478    _counter = 0;
4479    status = pthread_mutex_unlock(_mutex);
4480    assert(status == 0, "invariant");
4481    // Paranoia to ensure our locked and lock-free paths interact
4482    // correctly with each other and Java-level accesses.
4483    OrderAccess::fence();
4484    return;
4485  }
4486
4487#ifdef ASSERT
4488  // Don't catch signals while blocked; let the running threads have the signals.
4489  // (This allows a debugger to break into the running thread.)
4490  sigset_t oldsigs;
4491  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4492  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4493#endif
4494
4495  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4496  jt->set_suspend_equivalent();
4497  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4498
4499  if (time == 0) {
4500    status = pthread_cond_wait(_cond, _mutex);
4501  } else {
4502    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4503    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4504      pthread_cond_destroy(_cond);
4505      pthread_cond_init(_cond, NULL);
4506    }
4507  }
4508  assert_status(status == 0 || status == EINTR ||
4509                status == ETIMEDOUT,
4510                status, "cond_timedwait");
4511
4512#ifdef ASSERT
4513  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4514#endif
4515
4516  _counter = 0;
4517  status = pthread_mutex_unlock(_mutex);
4518  assert_status(status == 0, status, "invariant");
4519  // Paranoia to ensure our locked and lock-free paths interact
4520  // correctly with each other and Java-level accesses.
4521  OrderAccess::fence();
4522
4523  // If externally suspended while waiting, re-suspend
4524  if (jt->handle_special_suspend_equivalent_condition()) {
4525    jt->java_suspend_self();
4526  }
4527}
4528
4529void Parker::unpark() {
4530  int status = pthread_mutex_lock(_mutex);
4531  assert(status == 0, "invariant");
4532  const int s = _counter;
4533  _counter = 1;
4534  if (s < 1) {
4535    if (WorkAroundNPTLTimedWaitHang) {
4536      status = pthread_cond_signal(_cond);
4537      assert(status == 0, "invariant");
4538      status = pthread_mutex_unlock(_mutex);
4539      assert(status == 0, "invariant");
4540    } else {
4541      status = pthread_mutex_unlock(_mutex);
4542      assert(status == 0, "invariant");
4543      status = pthread_cond_signal(_cond);
4544      assert(status == 0, "invariant");
4545    }
4546  } else {
4547    pthread_mutex_unlock(_mutex);
4548    assert(status == 0, "invariant");
4549  }
4550}
4551
4552
4553/* Darwin has no "environ" in a dynamic library. */
4554#ifdef __APPLE__
4555#include <crt_externs.h>
4556#define environ (*_NSGetEnviron())
4557#else
4558extern char** environ;
4559#endif
4560
4561// Run the specified command in a separate process. Return its exit value,
4562// or -1 on failure (e.g. can't fork a new process).
4563// Unlike system(), this function can be called from signal handler. It
4564// doesn't block SIGINT et al.
4565int os::fork_and_exec(char* cmd) {
4566  const char * argv[4] = {"sh", "-c", cmd, NULL};
4567
4568  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4569  // pthread_atfork handlers and reset pthread library. All we need is a
4570  // separate process to execve. Make a direct syscall to fork process.
4571  // On IA64 there's no fork syscall, we have to use fork() and hope for
4572  // the best...
4573  pid_t pid = fork();
4574
4575  if (pid < 0) {
4576    // fork failed
4577    return -1;
4578
4579  } else if (pid == 0) {
4580    // child process
4581
4582    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4583    // first to kill every thread on the thread list. Because this list is
4584    // not reset by fork() (see notes above), execve() will instead kill
4585    // every thread in the parent process. We know this is the only thread
4586    // in the new process, so make a system call directly.
4587    // IA64 should use normal execve() from glibc to match the glibc fork()
4588    // above.
4589    execve("/bin/sh", (char* const*)argv, environ);
4590
4591    // execve failed
4592    _exit(-1);
4593
4594  } else  {
4595    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4596    // care about the actual exit code, for now.
4597
4598    int status;
4599
4600    // Wait for the child process to exit.  This returns immediately if
4601    // the child has already exited. */
4602    while (waitpid(pid, &status, 0) < 0) {
4603      switch (errno) {
4604      case ECHILD: return 0;
4605      case EINTR: break;
4606      default: return -1;
4607      }
4608    }
4609
4610    if (WIFEXITED(status)) {
4611      // The child exited normally; get its exit code.
4612      return WEXITSTATUS(status);
4613    } else if (WIFSIGNALED(status)) {
4614      // The child exited because of a signal
4615      // The best value to return is 0x80 + signal number,
4616      // because that is what all Unix shells do, and because
4617      // it allows callers to distinguish between process exit and
4618      // process death by signal.
4619      return 0x80 + WTERMSIG(status);
4620    } else {
4621      // Unknown exit code; pass it through
4622      return status;
4623    }
4624  }
4625}
4626
4627// is_headless_jre()
4628//
4629// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4630// in order to report if we are running in a headless jre
4631//
4632// Since JDK8 xawt/libmawt.so was moved into the same directory
4633// as libawt.so, and renamed libawt_xawt.so
4634//
4635bool os::is_headless_jre() {
4636#ifdef __APPLE__
4637  // We no longer build headless-only on Mac OS X
4638  return false;
4639#else
4640  struct stat statbuf;
4641  char buf[MAXPATHLEN];
4642  char libmawtpath[MAXPATHLEN];
4643  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4644  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4645  char *p;
4646
4647  // Get path to libjvm.so
4648  os::jvm_path(buf, sizeof(buf));
4649
4650  // Get rid of libjvm.so
4651  p = strrchr(buf, '/');
4652  if (p == NULL) return false;
4653  else *p = '\0';
4654
4655  // Get rid of client or server
4656  p = strrchr(buf, '/');
4657  if (p == NULL) return false;
4658  else *p = '\0';
4659
4660  // check xawt/libmawt.so
4661  strcpy(libmawtpath, buf);
4662  strcat(libmawtpath, xawtstr);
4663  if (::stat(libmawtpath, &statbuf) == 0) return false;
4664
4665  // check libawt_xawt.so
4666  strcpy(libmawtpath, buf);
4667  strcat(libmawtpath, new_xawtstr);
4668  if (::stat(libmawtpath, &statbuf) == 0) return false;
4669
4670  return true;
4671#endif
4672}
4673
4674// Get the default path to the core file
4675// Returns the length of the string
4676int os::get_core_path(char* buffer, size_t bufferSize) {
4677  int n = jio_snprintf(buffer, bufferSize, "/cores");
4678
4679  // Truncate if theoretical string was longer than bufferSize
4680  n = MIN2(n, (int)bufferSize);
4681
4682  return n;
4683}
4684
4685#ifndef PRODUCT
4686void TestReserveMemorySpecial_test() {
4687  // No tests available for this platform
4688}
4689#endif
4690