os_bsd.cpp revision 6683:08a2164660fb
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.inline.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "services/attachListener.hpp"
63#include "services/memTracker.hpp"
64#include "services/runtimeService.hpp"
65#include "utilities/decoder.hpp"
66#include "utilities/defaultStream.hpp"
67#include "utilities/events.hpp"
68#include "utilities/growableArray.hpp"
69#include "utilities/vmError.hpp"
70
71// put OS-includes here
72# include <sys/types.h>
73# include <sys/mman.h>
74# include <sys/stat.h>
75# include <sys/select.h>
76# include <pthread.h>
77# include <signal.h>
78# include <errno.h>
79# include <dlfcn.h>
80# include <stdio.h>
81# include <unistd.h>
82# include <sys/resource.h>
83# include <pthread.h>
84# include <sys/stat.h>
85# include <sys/time.h>
86# include <sys/times.h>
87# include <sys/utsname.h>
88# include <sys/socket.h>
89# include <sys/wait.h>
90# include <time.h>
91# include <pwd.h>
92# include <poll.h>
93# include <semaphore.h>
94# include <fcntl.h>
95# include <string.h>
96# include <sys/param.h>
97# include <sys/sysctl.h>
98# include <sys/ipc.h>
99# include <sys/shm.h>
100#ifndef __APPLE__
101# include <link.h>
102#endif
103# include <stdint.h>
104# include <inttypes.h>
105# include <sys/ioctl.h>
106# include <sys/syscall.h>
107
108#if defined(__FreeBSD__) || defined(__NetBSD__)
109# include <elf.h>
110#endif
111
112#ifdef __APPLE__
113# include <mach/mach.h> // semaphore_* API
114# include <mach-o/dyld.h>
115# include <sys/proc_info.h>
116# include <objc/objc-auto.h>
117#endif
118
119#ifndef MAP_ANONYMOUS
120#define MAP_ANONYMOUS MAP_ANON
121#endif
122
123#define MAX_PATH    (2 * K)
124
125// for timer info max values which include all bits
126#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
127
128#define LARGEPAGES_BIT (1 << 6)
129
130PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
131
132////////////////////////////////////////////////////////////////////////////////
133// global variables
134julong os::Bsd::_physical_memory = 0;
135
136#ifdef __APPLE__
137mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
138volatile uint64_t         os::Bsd::_max_abstime   = 0;
139#else
140int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
141#endif
142pthread_t os::Bsd::_main_thread;
143int os::Bsd::_page_size = -1;
144
145static jlong initial_time_count=0;
146
147static int clock_tics_per_sec = 100;
148
149// For diagnostics to print a message once. see run_periodic_checks
150static sigset_t check_signal_done;
151static bool check_signals = true;
152
153static pid_t _initial_pid = 0;
154
155/* Signal number used to suspend/resume a thread */
156
157/* do not use any signal number less than SIGSEGV, see 4355769 */
158static int SR_signum = SIGUSR2;
159sigset_t SR_sigset;
160
161
162////////////////////////////////////////////////////////////////////////////////
163// utility functions
164
165static int SR_initialize();
166static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
167
168julong os::available_memory() {
169  return Bsd::available_memory();
170}
171
172// available here means free
173julong os::Bsd::available_memory() {
174  uint64_t available = physical_memory() >> 2;
175#ifdef __APPLE__
176  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
177  vm_statistics64_data_t vmstat;
178  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
179                                         (host_info64_t)&vmstat, &count);
180  assert(kerr == KERN_SUCCESS,
181         "host_statistics64 failed - check mach_host_self() and count");
182  if (kerr == KERN_SUCCESS) {
183    available = vmstat.free_count * os::vm_page_size();
184  }
185#endif
186  return available;
187}
188
189julong os::physical_memory() {
190  return Bsd::physical_memory();
191}
192
193////////////////////////////////////////////////////////////////////////////////
194// environment support
195
196bool os::getenv(const char* name, char* buf, int len) {
197  const char* val = ::getenv(name);
198  if (val != NULL && strlen(val) < (size_t)len) {
199    strcpy(buf, val);
200    return true;
201  }
202  if (len > 0) buf[0] = 0;  // return a null string
203  return false;
204}
205
206
207// Return true if user is running as root.
208
209bool os::have_special_privileges() {
210  static bool init = false;
211  static bool privileges = false;
212  if (!init) {
213    privileges = (getuid() != geteuid()) || (getgid() != getegid());
214    init = true;
215  }
216  return privileges;
217}
218
219
220
221// Cpu architecture string
222#if   defined(ZERO)
223static char cpu_arch[] = ZERO_LIBARCH;
224#elif defined(IA64)
225static char cpu_arch[] = "ia64";
226#elif defined(IA32)
227static char cpu_arch[] = "i386";
228#elif defined(AMD64)
229static char cpu_arch[] = "amd64";
230#elif defined(ARM)
231static char cpu_arch[] = "arm";
232#elif defined(PPC32)
233static char cpu_arch[] = "ppc";
234#elif defined(SPARC)
235#  ifdef _LP64
236static char cpu_arch[] = "sparcv9";
237#  else
238static char cpu_arch[] = "sparc";
239#  endif
240#else
241#error Add appropriate cpu_arch setting
242#endif
243
244// Compiler variant
245#ifdef COMPILER2
246#define COMPILER_VARIANT "server"
247#else
248#define COMPILER_VARIANT "client"
249#endif
250
251
252void os::Bsd::initialize_system_info() {
253  int mib[2];
254  size_t len;
255  int cpu_val;
256  julong mem_val;
257
258  /* get processors count via hw.ncpus sysctl */
259  mib[0] = CTL_HW;
260  mib[1] = HW_NCPU;
261  len = sizeof(cpu_val);
262  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
263       assert(len == sizeof(cpu_val), "unexpected data size");
264       set_processor_count(cpu_val);
265  }
266  else {
267       set_processor_count(1);   // fallback
268  }
269
270  /* get physical memory via hw.memsize sysctl (hw.memsize is used
271   * since it returns a 64 bit value)
272   */
273  mib[0] = CTL_HW;
274
275#if defined (HW_MEMSIZE) // Apple
276  mib[1] = HW_MEMSIZE;
277#elif defined(HW_PHYSMEM) // Most of BSD
278  mib[1] = HW_PHYSMEM;
279#elif defined(HW_REALMEM) // Old FreeBSD
280  mib[1] = HW_REALMEM;
281#else
282  #error No ways to get physmem
283#endif
284
285  len = sizeof(mem_val);
286  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
287       assert(len == sizeof(mem_val), "unexpected data size");
288       _physical_memory = mem_val;
289  } else {
290       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
291  }
292
293#ifdef __OpenBSD__
294  {
295       // limit _physical_memory memory view on OpenBSD since
296       // datasize rlimit restricts us anyway.
297       struct rlimit limits;
298       getrlimit(RLIMIT_DATA, &limits);
299       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
300  }
301#endif
302}
303
304#ifdef __APPLE__
305static const char *get_home() {
306  const char *home_dir = ::getenv("HOME");
307  if ((home_dir == NULL) || (*home_dir == '\0')) {
308    struct passwd *passwd_info = getpwuid(geteuid());
309    if (passwd_info != NULL) {
310      home_dir = passwd_info->pw_dir;
311    }
312  }
313
314  return home_dir;
315}
316#endif
317
318void os::init_system_properties_values() {
319  // The next steps are taken in the product version:
320  //
321  // Obtain the JAVA_HOME value from the location of libjvm.so.
322  // This library should be located at:
323  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
324  //
325  // If "/jre/lib/" appears at the right place in the path, then we
326  // assume libjvm.so is installed in a JDK and we use this path.
327  //
328  // Otherwise exit with message: "Could not create the Java virtual machine."
329  //
330  // The following extra steps are taken in the debugging version:
331  //
332  // If "/jre/lib/" does NOT appear at the right place in the path
333  // instead of exit check for $JAVA_HOME environment variable.
334  //
335  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
336  // then we append a fake suffix "hotspot/libjvm.so" to this path so
337  // it looks like libjvm.so is installed there
338  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
339  //
340  // Otherwise exit.
341  //
342  // Important note: if the location of libjvm.so changes this
343  // code needs to be changed accordingly.
344
345// See ld(1):
346//      The linker uses the following search paths to locate required
347//      shared libraries:
348//        1: ...
349//        ...
350//        7: The default directories, normally /lib and /usr/lib.
351#ifndef DEFAULT_LIBPATH
352#define DEFAULT_LIBPATH "/lib:/usr/lib"
353#endif
354
355// Base path of extensions installed on the system.
356#define SYS_EXT_DIR     "/usr/java/packages"
357#define EXTENSIONS_DIR  "/lib/ext"
358#define ENDORSED_DIR    "/lib/endorsed"
359
360#ifndef __APPLE__
361
362  // Buffer that fits several sprintfs.
363  // Note that the space for the colon and the trailing null are provided
364  // by the nulls included by the sizeof operator.
365  const size_t bufsize =
366    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
367         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
368         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
369  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
370
371  // sysclasspath, java_home, dll_dir
372  {
373    char *pslash;
374    os::jvm_path(buf, bufsize);
375
376    // Found the full path to libjvm.so.
377    // Now cut the path to <java_home>/jre if we can.
378    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
379    pslash = strrchr(buf, '/');
380    if (pslash != NULL) {
381      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
382    }
383    Arguments::set_dll_dir(buf);
384
385    if (pslash != NULL) {
386      pslash = strrchr(buf, '/');
387      if (pslash != NULL) {
388        *pslash = '\0';          // Get rid of /<arch>.
389        pslash = strrchr(buf, '/');
390        if (pslash != NULL) {
391          *pslash = '\0';        // Get rid of /lib.
392        }
393      }
394    }
395    Arguments::set_java_home(buf);
396    set_boot_path('/', ':');
397  }
398
399  // Where to look for native libraries.
400  //
401  // Note: Due to a legacy implementation, most of the library path
402  // is set in the launcher. This was to accomodate linking restrictions
403  // on legacy Bsd implementations (which are no longer supported).
404  // Eventually, all the library path setting will be done here.
405  //
406  // However, to prevent the proliferation of improperly built native
407  // libraries, the new path component /usr/java/packages is added here.
408  // Eventually, all the library path setting will be done here.
409  {
410    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
411    // should always exist (until the legacy problem cited above is
412    // addressed).
413    const char *v = ::getenv("LD_LIBRARY_PATH");
414    const char *v_colon = ":";
415    if (v == NULL) { v = ""; v_colon = ""; }
416    // That's +1 for the colon and +1 for the trailing '\0'.
417    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
418                                                     strlen(v) + 1 +
419                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
420                                                     mtInternal);
421    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
422    Arguments::set_library_path(ld_library_path);
423    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
424  }
425
426  // Extensions directories.
427  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
428  Arguments::set_ext_dirs(buf);
429
430  // Endorsed standards default directory.
431  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
432  Arguments::set_endorsed_dirs(buf);
433
434  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
435
436#else // __APPLE__
437
438#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
439#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
440
441  const char *user_home_dir = get_home();
442  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
443  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
444    sizeof(SYS_EXTENSIONS_DIRS);
445
446  // Buffer that fits several sprintfs.
447  // Note that the space for the colon and the trailing null are provided
448  // by the nulls included by the sizeof operator.
449  const size_t bufsize =
450    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
451         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
452         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
453  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
454
455  // sysclasspath, java_home, dll_dir
456  {
457    char *pslash;
458    os::jvm_path(buf, bufsize);
459
460    // Found the full path to libjvm.so.
461    // Now cut the path to <java_home>/jre if we can.
462    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
463    pslash = strrchr(buf, '/');
464    if (pslash != NULL) {
465      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
466    }
467    Arguments::set_dll_dir(buf);
468
469    if (pslash != NULL) {
470      pslash = strrchr(buf, '/');
471      if (pslash != NULL) {
472        *pslash = '\0';          // Get rid of /lib.
473      }
474    }
475    Arguments::set_java_home(buf);
476    set_boot_path('/', ':');
477  }
478
479  // Where to look for native libraries.
480  //
481  // Note: Due to a legacy implementation, most of the library path
482  // is set in the launcher. This was to accomodate linking restrictions
483  // on legacy Bsd implementations (which are no longer supported).
484  // Eventually, all the library path setting will be done here.
485  //
486  // However, to prevent the proliferation of improperly built native
487  // libraries, the new path component /usr/java/packages is added here.
488  // Eventually, all the library path setting will be done here.
489  {
490    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
491    // should always exist (until the legacy problem cited above is
492    // addressed).
493    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
494    // can specify a directory inside an app wrapper
495    const char *l = ::getenv("JAVA_LIBRARY_PATH");
496    const char *l_colon = ":";
497    if (l == NULL) { l = ""; l_colon = ""; }
498
499    const char *v = ::getenv("DYLD_LIBRARY_PATH");
500    const char *v_colon = ":";
501    if (v == NULL) { v = ""; v_colon = ""; }
502
503    // Apple's Java6 has "." at the beginning of java.library.path.
504    // OpenJDK on Windows has "." at the end of java.library.path.
505    // OpenJDK on Linux and Solaris don't have "." in java.library.path
506    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
507    // "." is appended to the end of java.library.path. Yes, this
508    // could cause a change in behavior, but Apple's Java6 behavior
509    // can be achieved by putting "." at the beginning of the
510    // JAVA_LIBRARY_PATH environment variable.
511    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
512                                                     strlen(v) + 1 + strlen(l) + 1 +
513                                                     system_ext_size + 3,
514                                                     mtInternal);
515    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
516            v, v_colon, l, l_colon, user_home_dir);
517    Arguments::set_library_path(ld_library_path);
518    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
519  }
520
521  // Extensions directories.
522  //
523  // Note that the space for the colon and the trailing null are provided
524  // by the nulls included by the sizeof operator (so actually one byte more
525  // than necessary is allocated).
526  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
527          user_home_dir, Arguments::get_java_home());
528  Arguments::set_ext_dirs(buf);
529
530  // Endorsed standards default directory.
531  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
532  Arguments::set_endorsed_dirs(buf);
533
534  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
535
536#undef SYS_EXTENSIONS_DIR
537#undef SYS_EXTENSIONS_DIRS
538
539#endif // __APPLE__
540
541#undef SYS_EXT_DIR
542#undef EXTENSIONS_DIR
543#undef ENDORSED_DIR
544}
545
546////////////////////////////////////////////////////////////////////////////////
547// breakpoint support
548
549void os::breakpoint() {
550  BREAKPOINT;
551}
552
553extern "C" void breakpoint() {
554  // use debugger to set breakpoint here
555}
556
557////////////////////////////////////////////////////////////////////////////////
558// signal support
559
560debug_only(static bool signal_sets_initialized = false);
561static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
562
563bool os::Bsd::is_sig_ignored(int sig) {
564      struct sigaction oact;
565      sigaction(sig, (struct sigaction*)NULL, &oact);
566      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
567                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
568      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
569           return true;
570      else
571           return false;
572}
573
574void os::Bsd::signal_sets_init() {
575  // Should also have an assertion stating we are still single-threaded.
576  assert(!signal_sets_initialized, "Already initialized");
577  // Fill in signals that are necessarily unblocked for all threads in
578  // the VM. Currently, we unblock the following signals:
579  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
580  //                         by -Xrs (=ReduceSignalUsage));
581  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
582  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
583  // the dispositions or masks wrt these signals.
584  // Programs embedding the VM that want to use the above signals for their
585  // own purposes must, at this time, use the "-Xrs" option to prevent
586  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
587  // (See bug 4345157, and other related bugs).
588  // In reality, though, unblocking these signals is really a nop, since
589  // these signals are not blocked by default.
590  sigemptyset(&unblocked_sigs);
591  sigemptyset(&allowdebug_blocked_sigs);
592  sigaddset(&unblocked_sigs, SIGILL);
593  sigaddset(&unblocked_sigs, SIGSEGV);
594  sigaddset(&unblocked_sigs, SIGBUS);
595  sigaddset(&unblocked_sigs, SIGFPE);
596  sigaddset(&unblocked_sigs, SR_signum);
597
598  if (!ReduceSignalUsage) {
599   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
600      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
601      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
602   }
603   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
604      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
605      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
606   }
607   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
608      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
609      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
610   }
611  }
612  // Fill in signals that are blocked by all but the VM thread.
613  sigemptyset(&vm_sigs);
614  if (!ReduceSignalUsage)
615    sigaddset(&vm_sigs, BREAK_SIGNAL);
616  debug_only(signal_sets_initialized = true);
617
618}
619
620// These are signals that are unblocked while a thread is running Java.
621// (For some reason, they get blocked by default.)
622sigset_t* os::Bsd::unblocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &unblocked_sigs;
625}
626
627// These are the signals that are blocked while a (non-VM) thread is
628// running Java. Only the VM thread handles these signals.
629sigset_t* os::Bsd::vm_signals() {
630  assert(signal_sets_initialized, "Not initialized");
631  return &vm_sigs;
632}
633
634// These are signals that are blocked during cond_wait to allow debugger in
635sigset_t* os::Bsd::allowdebug_blocked_signals() {
636  assert(signal_sets_initialized, "Not initialized");
637  return &allowdebug_blocked_sigs;
638}
639
640void os::Bsd::hotspot_sigmask(Thread* thread) {
641
642  //Save caller's signal mask before setting VM signal mask
643  sigset_t caller_sigmask;
644  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
645
646  OSThread* osthread = thread->osthread();
647  osthread->set_caller_sigmask(caller_sigmask);
648
649  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
650
651  if (!ReduceSignalUsage) {
652    if (thread->is_VM_thread()) {
653      // Only the VM thread handles BREAK_SIGNAL ...
654      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
655    } else {
656      // ... all other threads block BREAK_SIGNAL
657      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
658    }
659  }
660}
661
662
663//////////////////////////////////////////////////////////////////////////////
664// create new thread
665
666// check if it's safe to start a new thread
667static bool _thread_safety_check(Thread* thread) {
668  return true;
669}
670
671#ifdef __APPLE__
672// library handle for calling objc_registerThreadWithCollector()
673// without static linking to the libobjc library
674#define OBJC_LIB "/usr/lib/libobjc.dylib"
675#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
676typedef void (*objc_registerThreadWithCollector_t)();
677extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
678objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
679#endif
680
681#ifdef __APPLE__
682static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
683  // Additional thread_id used to correlate threads in SA
684  thread_identifier_info_data_t     m_ident_info;
685  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
686
687  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
688              (thread_info_t) &m_ident_info, &count);
689
690  return m_ident_info.thread_id;
691}
692#endif
693
694// Thread start routine for all newly created threads
695static void *java_start(Thread *thread) {
696  // Try to randomize the cache line index of hot stack frames.
697  // This helps when threads of the same stack traces evict each other's
698  // cache lines. The threads can be either from the same JVM instance, or
699  // from different JVM instances. The benefit is especially true for
700  // processors with hyperthreading technology.
701  static int counter = 0;
702  int pid = os::current_process_id();
703  alloca(((pid ^ counter++) & 7) * 128);
704
705  ThreadLocalStorage::set_thread(thread);
706
707  OSThread* osthread = thread->osthread();
708  Monitor* sync = osthread->startThread_lock();
709
710  // non floating stack BsdThreads needs extra check, see above
711  if (!_thread_safety_check(thread)) {
712    // notify parent thread
713    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
714    osthread->set_state(ZOMBIE);
715    sync->notify_all();
716    return NULL;
717  }
718
719  osthread->set_thread_id(os::Bsd::gettid());
720
721#ifdef __APPLE__
722  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
723  guarantee(unique_thread_id != 0, "unique thread id was not found");
724  osthread->set_unique_thread_id(unique_thread_id);
725#endif
726  // initialize signal mask for this thread
727  os::Bsd::hotspot_sigmask(thread);
728
729  // initialize floating point control register
730  os::Bsd::init_thread_fpu_state();
731
732#ifdef __APPLE__
733  // register thread with objc gc
734  if (objc_registerThreadWithCollectorFunction != NULL) {
735    objc_registerThreadWithCollectorFunction();
736  }
737#endif
738
739  // handshaking with parent thread
740  {
741    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
742
743    // notify parent thread
744    osthread->set_state(INITIALIZED);
745    sync->notify_all();
746
747    // wait until os::start_thread()
748    while (osthread->get_state() == INITIALIZED) {
749      sync->wait(Mutex::_no_safepoint_check_flag);
750    }
751  }
752
753  // call one more level start routine
754  thread->run();
755
756  return 0;
757}
758
759bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
760  assert(thread->osthread() == NULL, "caller responsible");
761
762  // Allocate the OSThread object
763  OSThread* osthread = new OSThread(NULL, NULL);
764  if (osthread == NULL) {
765    return false;
766  }
767
768  // set the correct thread state
769  osthread->set_thread_type(thr_type);
770
771  // Initial state is ALLOCATED but not INITIALIZED
772  osthread->set_state(ALLOCATED);
773
774  thread->set_osthread(osthread);
775
776  // init thread attributes
777  pthread_attr_t attr;
778  pthread_attr_init(&attr);
779  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
780
781  // stack size
782  if (os::Bsd::supports_variable_stack_size()) {
783    // calculate stack size if it's not specified by caller
784    if (stack_size == 0) {
785      stack_size = os::Bsd::default_stack_size(thr_type);
786
787      switch (thr_type) {
788      case os::java_thread:
789        // Java threads use ThreadStackSize which default value can be
790        // changed with the flag -Xss
791        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
792        stack_size = JavaThread::stack_size_at_create();
793        break;
794      case os::compiler_thread:
795        if (CompilerThreadStackSize > 0) {
796          stack_size = (size_t)(CompilerThreadStackSize * K);
797          break;
798        } // else fall through:
799          // use VMThreadStackSize if CompilerThreadStackSize is not defined
800      case os::vm_thread:
801      case os::pgc_thread:
802      case os::cgc_thread:
803      case os::watcher_thread:
804        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
805        break;
806      }
807    }
808
809    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
810    pthread_attr_setstacksize(&attr, stack_size);
811  } else {
812    // let pthread_create() pick the default value.
813  }
814
815  ThreadState state;
816
817  {
818    pthread_t tid;
819    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
820
821    pthread_attr_destroy(&attr);
822
823    if (ret != 0) {
824      if (PrintMiscellaneous && (Verbose || WizardMode)) {
825        perror("pthread_create()");
826      }
827      // Need to clean up stuff we've allocated so far
828      thread->set_osthread(NULL);
829      delete osthread;
830      return false;
831    }
832
833    // Store pthread info into the OSThread
834    osthread->set_pthread_id(tid);
835
836    // Wait until child thread is either initialized or aborted
837    {
838      Monitor* sync_with_child = osthread->startThread_lock();
839      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
840      while ((state = osthread->get_state()) == ALLOCATED) {
841        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
842      }
843    }
844
845  }
846
847  // Aborted due to thread limit being reached
848  if (state == ZOMBIE) {
849      thread->set_osthread(NULL);
850      delete osthread;
851      return false;
852  }
853
854  // The thread is returned suspended (in state INITIALIZED),
855  // and is started higher up in the call chain
856  assert(state == INITIALIZED, "race condition");
857  return true;
858}
859
860/////////////////////////////////////////////////////////////////////////////
861// attach existing thread
862
863// bootstrap the main thread
864bool os::create_main_thread(JavaThread* thread) {
865  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
866  return create_attached_thread(thread);
867}
868
869bool os::create_attached_thread(JavaThread* thread) {
870#ifdef ASSERT
871    thread->verify_not_published();
872#endif
873
874  // Allocate the OSThread object
875  OSThread* osthread = new OSThread(NULL, NULL);
876
877  if (osthread == NULL) {
878    return false;
879  }
880
881  osthread->set_thread_id(os::Bsd::gettid());
882
883  // Store pthread info into the OSThread
884#ifdef __APPLE__
885  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
886  guarantee(unique_thread_id != 0, "just checking");
887  osthread->set_unique_thread_id(unique_thread_id);
888#endif
889  osthread->set_pthread_id(::pthread_self());
890
891  // initialize floating point control register
892  os::Bsd::init_thread_fpu_state();
893
894  // Initial thread state is RUNNABLE
895  osthread->set_state(RUNNABLE);
896
897  thread->set_osthread(osthread);
898
899  // initialize signal mask for this thread
900  // and save the caller's signal mask
901  os::Bsd::hotspot_sigmask(thread);
902
903  return true;
904}
905
906void os::pd_start_thread(Thread* thread) {
907  OSThread * osthread = thread->osthread();
908  assert(osthread->get_state() != INITIALIZED, "just checking");
909  Monitor* sync_with_child = osthread->startThread_lock();
910  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
911  sync_with_child->notify();
912}
913
914// Free Bsd resources related to the OSThread
915void os::free_thread(OSThread* osthread) {
916  assert(osthread != NULL, "osthread not set");
917
918  if (Thread::current()->osthread() == osthread) {
919    // Restore caller's signal mask
920    sigset_t sigmask = osthread->caller_sigmask();
921    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
922   }
923
924  delete osthread;
925}
926
927//////////////////////////////////////////////////////////////////////////////
928// thread local storage
929
930// Restore the thread pointer if the destructor is called. This is in case
931// someone from JNI code sets up a destructor with pthread_key_create to run
932// detachCurrentThread on thread death. Unless we restore the thread pointer we
933// will hang or crash. When detachCurrentThread is called the key will be set
934// to null and we will not be called again. If detachCurrentThread is never
935// called we could loop forever depending on the pthread implementation.
936static void restore_thread_pointer(void* p) {
937  Thread* thread = (Thread*) p;
938  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
939}
940
941int os::allocate_thread_local_storage() {
942  pthread_key_t key;
943  int rslt = pthread_key_create(&key, restore_thread_pointer);
944  assert(rslt == 0, "cannot allocate thread local storage");
945  return (int)key;
946}
947
948// Note: This is currently not used by VM, as we don't destroy TLS key
949// on VM exit.
950void os::free_thread_local_storage(int index) {
951  int rslt = pthread_key_delete((pthread_key_t)index);
952  assert(rslt == 0, "invalid index");
953}
954
955void os::thread_local_storage_at_put(int index, void* value) {
956  int rslt = pthread_setspecific((pthread_key_t)index, value);
957  assert(rslt == 0, "pthread_setspecific failed");
958}
959
960extern "C" Thread* get_thread() {
961  return ThreadLocalStorage::thread();
962}
963
964
965////////////////////////////////////////////////////////////////////////////////
966// time support
967
968// Time since start-up in seconds to a fine granularity.
969// Used by VMSelfDestructTimer and the MemProfiler.
970double os::elapsedTime() {
971
972  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
973}
974
975jlong os::elapsed_counter() {
976  return javaTimeNanos() - initial_time_count;
977}
978
979jlong os::elapsed_frequency() {
980  return NANOSECS_PER_SEC; // nanosecond resolution
981}
982
983bool os::supports_vtime() { return true; }
984bool os::enable_vtime()   { return false; }
985bool os::vtime_enabled()  { return false; }
986
987double os::elapsedVTime() {
988  // better than nothing, but not much
989  return elapsedTime();
990}
991
992jlong os::javaTimeMillis() {
993  timeval time;
994  int status = gettimeofday(&time, NULL);
995  assert(status != -1, "bsd error");
996  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
997}
998
999#ifndef __APPLE__
1000#ifndef CLOCK_MONOTONIC
1001#define CLOCK_MONOTONIC (1)
1002#endif
1003#endif
1004
1005#ifdef __APPLE__
1006void os::Bsd::clock_init() {
1007  mach_timebase_info(&_timebase_info);
1008}
1009#else
1010void os::Bsd::clock_init() {
1011  struct timespec res;
1012  struct timespec tp;
1013  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1014      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1015    // yes, monotonic clock is supported
1016    _clock_gettime = ::clock_gettime;
1017  }
1018}
1019#endif
1020
1021
1022
1023#ifdef __APPLE__
1024
1025jlong os::javaTimeNanos() {
1026    const uint64_t tm = mach_absolute_time();
1027    const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1028    const uint64_t prev = Bsd::_max_abstime;
1029    if (now <= prev) {
1030      return prev;   // same or retrograde time;
1031    }
1032    const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1033    assert(obsv >= prev, "invariant");   // Monotonicity
1034    // If the CAS succeeded then we're done and return "now".
1035    // If the CAS failed and the observed value "obsv" is >= now then
1036    // we should return "obsv".  If the CAS failed and now > obsv > prv then
1037    // some other thread raced this thread and installed a new value, in which case
1038    // we could either (a) retry the entire operation, (b) retry trying to install now
1039    // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1040    // we might discard a higher "now" value in deference to a slightly lower but freshly
1041    // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1042    // to (a) or (b) -- and greatly reduces coherence traffic.
1043    // We might also condition (c) on the magnitude of the delta between obsv and now.
1044    // Avoiding excessive CAS operations to hot RW locations is critical.
1045    // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1046    return (prev == obsv) ? now : obsv;
1047}
1048
1049#else // __APPLE__
1050
1051jlong os::javaTimeNanos() {
1052  if (os::supports_monotonic_clock()) {
1053    struct timespec tp;
1054    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1055    assert(status == 0, "gettime error");
1056    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1057    return result;
1058  } else {
1059    timeval time;
1060    int status = gettimeofday(&time, NULL);
1061    assert(status != -1, "bsd error");
1062    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1063    return 1000 * usecs;
1064  }
1065}
1066
1067#endif // __APPLE__
1068
1069void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1070  if (os::supports_monotonic_clock()) {
1071    info_ptr->max_value = ALL_64_BITS;
1072
1073    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1074    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1075    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1076  } else {
1077    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1078    info_ptr->max_value = ALL_64_BITS;
1079
1080    // gettimeofday is a real time clock so it skips
1081    info_ptr->may_skip_backward = true;
1082    info_ptr->may_skip_forward = true;
1083  }
1084
1085  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1086}
1087
1088// Return the real, user, and system times in seconds from an
1089// arbitrary fixed point in the past.
1090bool os::getTimesSecs(double* process_real_time,
1091                      double* process_user_time,
1092                      double* process_system_time) {
1093  struct tms ticks;
1094  clock_t real_ticks = times(&ticks);
1095
1096  if (real_ticks == (clock_t) (-1)) {
1097    return false;
1098  } else {
1099    double ticks_per_second = (double) clock_tics_per_sec;
1100    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1101    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1102    *process_real_time = ((double) real_ticks) / ticks_per_second;
1103
1104    return true;
1105  }
1106}
1107
1108
1109char * os::local_time_string(char *buf, size_t buflen) {
1110  struct tm t;
1111  time_t long_time;
1112  time(&long_time);
1113  localtime_r(&long_time, &t);
1114  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1115               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1116               t.tm_hour, t.tm_min, t.tm_sec);
1117  return buf;
1118}
1119
1120struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1121  return localtime_r(clock, res);
1122}
1123
1124////////////////////////////////////////////////////////////////////////////////
1125// runtime exit support
1126
1127// Note: os::shutdown() might be called very early during initialization, or
1128// called from signal handler. Before adding something to os::shutdown(), make
1129// sure it is async-safe and can handle partially initialized VM.
1130void os::shutdown() {
1131
1132  // allow PerfMemory to attempt cleanup of any persistent resources
1133  perfMemory_exit();
1134
1135  // needs to remove object in file system
1136  AttachListener::abort();
1137
1138  // flush buffered output, finish log files
1139  ostream_abort();
1140
1141  // Check for abort hook
1142  abort_hook_t abort_hook = Arguments::abort_hook();
1143  if (abort_hook != NULL) {
1144    abort_hook();
1145  }
1146
1147}
1148
1149// Note: os::abort() might be called very early during initialization, or
1150// called from signal handler. Before adding something to os::abort(), make
1151// sure it is async-safe and can handle partially initialized VM.
1152void os::abort(bool dump_core) {
1153  os::shutdown();
1154  if (dump_core) {
1155#ifndef PRODUCT
1156    fdStream out(defaultStream::output_fd());
1157    out.print_raw("Current thread is ");
1158    char buf[16];
1159    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1160    out.print_raw_cr(buf);
1161    out.print_raw_cr("Dumping core ...");
1162#endif
1163    ::abort(); // dump core
1164  }
1165
1166  ::exit(1);
1167}
1168
1169// Die immediately, no exit hook, no abort hook, no cleanup.
1170void os::die() {
1171  // _exit() on BsdThreads only kills current thread
1172  ::abort();
1173}
1174
1175// unused on bsd for now.
1176void os::set_error_file(const char *logfile) {}
1177
1178
1179// This method is a copy of JDK's sysGetLastErrorString
1180// from src/solaris/hpi/src/system_md.c
1181
1182size_t os::lasterror(char *buf, size_t len) {
1183
1184  if (errno == 0)  return 0;
1185
1186  const char *s = ::strerror(errno);
1187  size_t n = ::strlen(s);
1188  if (n >= len) {
1189    n = len - 1;
1190  }
1191  ::strncpy(buf, s, n);
1192  buf[n] = '\0';
1193  return n;
1194}
1195
1196// Information of current thread in variety of formats
1197pid_t os::Bsd::gettid() {
1198  int retval = -1;
1199
1200#ifdef __APPLE__ //XNU kernel
1201  // despite the fact mach port is actually not a thread id use it
1202  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1203  retval = ::pthread_mach_thread_np(::pthread_self());
1204  guarantee(retval != 0, "just checking");
1205  return retval;
1206
1207#elif __FreeBSD__
1208  retval = syscall(SYS_thr_self);
1209#elif __OpenBSD__
1210  retval = syscall(SYS_getthrid);
1211#elif __NetBSD__
1212  retval = (pid_t) syscall(SYS__lwp_self);
1213#endif
1214
1215  if (retval == -1) {
1216    return getpid();
1217  }
1218}
1219
1220intx os::current_thread_id() {
1221#ifdef __APPLE__
1222  return (intx)::pthread_mach_thread_np(::pthread_self());
1223#else
1224  return (intx)::pthread_self();
1225#endif
1226}
1227
1228int os::current_process_id() {
1229
1230  // Under the old bsd thread library, bsd gives each thread
1231  // its own process id. Because of this each thread will return
1232  // a different pid if this method were to return the result
1233  // of getpid(2). Bsd provides no api that returns the pid
1234  // of the launcher thread for the vm. This implementation
1235  // returns a unique pid, the pid of the launcher thread
1236  // that starts the vm 'process'.
1237
1238  // Under the NPTL, getpid() returns the same pid as the
1239  // launcher thread rather than a unique pid per thread.
1240  // Use gettid() if you want the old pre NPTL behaviour.
1241
1242  // if you are looking for the result of a call to getpid() that
1243  // returns a unique pid for the calling thread, then look at the
1244  // OSThread::thread_id() method in osThread_bsd.hpp file
1245
1246  return (int)(_initial_pid ? _initial_pid : getpid());
1247}
1248
1249// DLL functions
1250
1251#define JNI_LIB_PREFIX "lib"
1252#ifdef __APPLE__
1253#define JNI_LIB_SUFFIX ".dylib"
1254#else
1255#define JNI_LIB_SUFFIX ".so"
1256#endif
1257
1258const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1259
1260// This must be hard coded because it's the system's temporary
1261// directory not the java application's temp directory, ala java.io.tmpdir.
1262#ifdef __APPLE__
1263// macosx has a secure per-user temporary directory
1264char temp_path_storage[PATH_MAX];
1265const char* os::get_temp_directory() {
1266  static char *temp_path = NULL;
1267  if (temp_path == NULL) {
1268    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1269    if (pathSize == 0 || pathSize > PATH_MAX) {
1270      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1271    }
1272    temp_path = temp_path_storage;
1273  }
1274  return temp_path;
1275}
1276#else /* __APPLE__ */
1277const char* os::get_temp_directory() { return "/tmp"; }
1278#endif /* __APPLE__ */
1279
1280static bool file_exists(const char* filename) {
1281  struct stat statbuf;
1282  if (filename == NULL || strlen(filename) == 0) {
1283    return false;
1284  }
1285  return os::stat(filename, &statbuf) == 0;
1286}
1287
1288bool os::dll_build_name(char* buffer, size_t buflen,
1289                        const char* pname, const char* fname) {
1290  bool retval = false;
1291  // Copied from libhpi
1292  const size_t pnamelen = pname ? strlen(pname) : 0;
1293
1294  // Return error on buffer overflow.
1295  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1296    return retval;
1297  }
1298
1299  if (pnamelen == 0) {
1300    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1301    retval = true;
1302  } else if (strchr(pname, *os::path_separator()) != NULL) {
1303    int n;
1304    char** pelements = split_path(pname, &n);
1305    if (pelements == NULL) {
1306      return false;
1307    }
1308    for (int i = 0; i < n; i++) {
1309      // Really shouldn't be NULL, but check can't hurt
1310      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1311        continue; // skip the empty path values
1312      }
1313      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1314          pelements[i], fname);
1315      if (file_exists(buffer)) {
1316        retval = true;
1317        break;
1318      }
1319    }
1320    // release the storage
1321    for (int i = 0; i < n; i++) {
1322      if (pelements[i] != NULL) {
1323        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1324      }
1325    }
1326    if (pelements != NULL) {
1327      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1328    }
1329  } else {
1330    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1331    retval = true;
1332  }
1333  return retval;
1334}
1335
1336// check if addr is inside libjvm.so
1337bool os::address_is_in_vm(address addr) {
1338  static address libjvm_base_addr;
1339  Dl_info dlinfo;
1340
1341  if (libjvm_base_addr == NULL) {
1342    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1343      libjvm_base_addr = (address)dlinfo.dli_fbase;
1344    }
1345    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1346  }
1347
1348  if (dladdr((void *)addr, &dlinfo) != 0) {
1349    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1350  }
1351
1352  return false;
1353}
1354
1355
1356#define MACH_MAXSYMLEN 256
1357
1358bool os::dll_address_to_function_name(address addr, char *buf,
1359                                      int buflen, int *offset) {
1360  // buf is not optional, but offset is optional
1361  assert(buf != NULL, "sanity check");
1362
1363  Dl_info dlinfo;
1364  char localbuf[MACH_MAXSYMLEN];
1365
1366  if (dladdr((void*)addr, &dlinfo) != 0) {
1367    // see if we have a matching symbol
1368    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1369      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1370        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1371      }
1372      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1373      return true;
1374    }
1375    // no matching symbol so try for just file info
1376    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1377      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1378                          buf, buflen, offset, dlinfo.dli_fname)) {
1379         return true;
1380      }
1381    }
1382
1383    // Handle non-dynamic manually:
1384    if (dlinfo.dli_fbase != NULL &&
1385        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1386                        dlinfo.dli_fbase)) {
1387      if (!Decoder::demangle(localbuf, buf, buflen)) {
1388        jio_snprintf(buf, buflen, "%s", localbuf);
1389      }
1390      return true;
1391    }
1392  }
1393  buf[0] = '\0';
1394  if (offset != NULL) *offset = -1;
1395  return false;
1396}
1397
1398// ported from solaris version
1399bool os::dll_address_to_library_name(address addr, char* buf,
1400                                     int buflen, int* offset) {
1401  // buf is not optional, but offset is optional
1402  assert(buf != NULL, "sanity check");
1403
1404  Dl_info dlinfo;
1405
1406  if (dladdr((void*)addr, &dlinfo) != 0) {
1407    if (dlinfo.dli_fname != NULL) {
1408      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1409    }
1410    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1411      *offset = addr - (address)dlinfo.dli_fbase;
1412    }
1413    return true;
1414  }
1415
1416  buf[0] = '\0';
1417  if (offset) *offset = -1;
1418  return false;
1419}
1420
1421// Loads .dll/.so and
1422// in case of error it checks if .dll/.so was built for the
1423// same architecture as Hotspot is running on
1424
1425#ifdef __APPLE__
1426void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1427  void * result= ::dlopen(filename, RTLD_LAZY);
1428  if (result != NULL) {
1429    // Successful loading
1430    return result;
1431  }
1432
1433  // Read system error message into ebuf
1434  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1435  ebuf[ebuflen-1]='\0';
1436
1437  return NULL;
1438}
1439#else
1440void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1441{
1442  void * result= ::dlopen(filename, RTLD_LAZY);
1443  if (result != NULL) {
1444    // Successful loading
1445    return result;
1446  }
1447
1448  Elf32_Ehdr elf_head;
1449
1450  // Read system error message into ebuf
1451  // It may or may not be overwritten below
1452  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1453  ebuf[ebuflen-1]='\0';
1454  int diag_msg_max_length=ebuflen-strlen(ebuf);
1455  char* diag_msg_buf=ebuf+strlen(ebuf);
1456
1457  if (diag_msg_max_length==0) {
1458    // No more space in ebuf for additional diagnostics message
1459    return NULL;
1460  }
1461
1462
1463  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1464
1465  if (file_descriptor < 0) {
1466    // Can't open library, report dlerror() message
1467    return NULL;
1468  }
1469
1470  bool failed_to_read_elf_head=
1471    (sizeof(elf_head)!=
1472        (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1473
1474  ::close(file_descriptor);
1475  if (failed_to_read_elf_head) {
1476    // file i/o error - report dlerror() msg
1477    return NULL;
1478  }
1479
1480  typedef struct {
1481    Elf32_Half  code;         // Actual value as defined in elf.h
1482    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1483    char        elf_class;    // 32 or 64 bit
1484    char        endianess;    // MSB or LSB
1485    char*       name;         // String representation
1486  } arch_t;
1487
1488  #ifndef EM_486
1489  #define EM_486          6               /* Intel 80486 */
1490  #endif
1491
1492  #ifndef EM_MIPS_RS3_LE
1493  #define EM_MIPS_RS3_LE  10              /* MIPS */
1494  #endif
1495
1496  #ifndef EM_PPC64
1497  #define EM_PPC64        21              /* PowerPC64 */
1498  #endif
1499
1500  #ifndef EM_S390
1501  #define EM_S390         22              /* IBM System/390 */
1502  #endif
1503
1504  #ifndef EM_IA_64
1505  #define EM_IA_64        50              /* HP/Intel IA-64 */
1506  #endif
1507
1508  #ifndef EM_X86_64
1509  #define EM_X86_64       62              /* AMD x86-64 */
1510  #endif
1511
1512  static const arch_t arch_array[]={
1513    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1514    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1515    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1516    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1517    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1518    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1519    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1520    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1521    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1522    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1523    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1524    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1525    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1526    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1527    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1528    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1529  };
1530
1531  #if  (defined IA32)
1532    static  Elf32_Half running_arch_code=EM_386;
1533  #elif   (defined AMD64)
1534    static  Elf32_Half running_arch_code=EM_X86_64;
1535  #elif  (defined IA64)
1536    static  Elf32_Half running_arch_code=EM_IA_64;
1537  #elif  (defined __sparc) && (defined _LP64)
1538    static  Elf32_Half running_arch_code=EM_SPARCV9;
1539  #elif  (defined __sparc) && (!defined _LP64)
1540    static  Elf32_Half running_arch_code=EM_SPARC;
1541  #elif  (defined __powerpc64__)
1542    static  Elf32_Half running_arch_code=EM_PPC64;
1543  #elif  (defined __powerpc__)
1544    static  Elf32_Half running_arch_code=EM_PPC;
1545  #elif  (defined ARM)
1546    static  Elf32_Half running_arch_code=EM_ARM;
1547  #elif  (defined S390)
1548    static  Elf32_Half running_arch_code=EM_S390;
1549  #elif  (defined ALPHA)
1550    static  Elf32_Half running_arch_code=EM_ALPHA;
1551  #elif  (defined MIPSEL)
1552    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1553  #elif  (defined PARISC)
1554    static  Elf32_Half running_arch_code=EM_PARISC;
1555  #elif  (defined MIPS)
1556    static  Elf32_Half running_arch_code=EM_MIPS;
1557  #elif  (defined M68K)
1558    static  Elf32_Half running_arch_code=EM_68K;
1559  #else
1560    #error Method os::dll_load requires that one of following is defined:\
1561         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1562  #endif
1563
1564  // Identify compatability class for VM's architecture and library's architecture
1565  // Obtain string descriptions for architectures
1566
1567  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1568  int running_arch_index=-1;
1569
1570  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1571    if (running_arch_code == arch_array[i].code) {
1572      running_arch_index    = i;
1573    }
1574    if (lib_arch.code == arch_array[i].code) {
1575      lib_arch.compat_class = arch_array[i].compat_class;
1576      lib_arch.name         = arch_array[i].name;
1577    }
1578  }
1579
1580  assert(running_arch_index != -1,
1581    "Didn't find running architecture code (running_arch_code) in arch_array");
1582  if (running_arch_index == -1) {
1583    // Even though running architecture detection failed
1584    // we may still continue with reporting dlerror() message
1585    return NULL;
1586  }
1587
1588  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1589    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1590    return NULL;
1591  }
1592
1593#ifndef S390
1594  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1595    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1596    return NULL;
1597  }
1598#endif // !S390
1599
1600  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1601    if (lib_arch.name!=NULL) {
1602      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1603        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1604        lib_arch.name, arch_array[running_arch_index].name);
1605    } else {
1606      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1607      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1608        lib_arch.code,
1609        arch_array[running_arch_index].name);
1610    }
1611  }
1612
1613  return NULL;
1614}
1615#endif /* !__APPLE__ */
1616
1617void* os::get_default_process_handle() {
1618#ifdef __APPLE__
1619  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1620  // to avoid finding unexpected symbols on second (or later)
1621  // loads of a library.
1622  return (void*)::dlopen(NULL, RTLD_FIRST);
1623#else
1624  return (void*)::dlopen(NULL, RTLD_LAZY);
1625#endif
1626}
1627
1628// XXX: Do we need a lock around this as per Linux?
1629void* os::dll_lookup(void* handle, const char* name) {
1630  return dlsym(handle, name);
1631}
1632
1633
1634static bool _print_ascii_file(const char* filename, outputStream* st) {
1635  int fd = ::open(filename, O_RDONLY);
1636  if (fd == -1) {
1637     return false;
1638  }
1639
1640  char buf[32];
1641  int bytes;
1642  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1643    st->print_raw(buf, bytes);
1644  }
1645
1646  ::close(fd);
1647
1648  return true;
1649}
1650
1651void os::print_dll_info(outputStream *st) {
1652  st->print_cr("Dynamic libraries:");
1653#ifdef RTLD_DI_LINKMAP
1654  Dl_info dli;
1655  void *handle;
1656  Link_map *map;
1657  Link_map *p;
1658
1659  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1660      dli.dli_fname == NULL) {
1661    st->print_cr("Error: Cannot print dynamic libraries.");
1662    return;
1663  }
1664  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1665  if (handle == NULL) {
1666    st->print_cr("Error: Cannot print dynamic libraries.");
1667    return;
1668  }
1669  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1670  if (map == NULL) {
1671    st->print_cr("Error: Cannot print dynamic libraries.");
1672    return;
1673  }
1674
1675  while (map->l_prev != NULL)
1676    map = map->l_prev;
1677
1678  while (map != NULL) {
1679    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1680    map = map->l_next;
1681  }
1682
1683  dlclose(handle);
1684#elif defined(__APPLE__)
1685  uint32_t count;
1686  uint32_t i;
1687
1688  count = _dyld_image_count();
1689  for (i = 1; i < count; i++) {
1690    const char *name = _dyld_get_image_name(i);
1691    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1692    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1693  }
1694#else
1695  st->print_cr("Error: Cannot print dynamic libraries.");
1696#endif
1697}
1698
1699void os::print_os_info_brief(outputStream* st) {
1700  st->print("Bsd");
1701
1702  os::Posix::print_uname_info(st);
1703}
1704
1705void os::print_os_info(outputStream* st) {
1706  st->print("OS:");
1707  st->print("Bsd");
1708
1709  os::Posix::print_uname_info(st);
1710
1711  os::Posix::print_rlimit_info(st);
1712
1713  os::Posix::print_load_average(st);
1714}
1715
1716void os::pd_print_cpu_info(outputStream* st) {
1717  // Nothing to do for now.
1718}
1719
1720void os::print_memory_info(outputStream* st) {
1721
1722  st->print("Memory:");
1723  st->print(" %dk page", os::vm_page_size()>>10);
1724
1725  st->print(", physical " UINT64_FORMAT "k",
1726            os::physical_memory() >> 10);
1727  st->print("(" UINT64_FORMAT "k free)",
1728            os::available_memory() >> 10);
1729  st->cr();
1730
1731  // meminfo
1732  st->print("\n/proc/meminfo:\n");
1733  _print_ascii_file("/proc/meminfo", st);
1734  st->cr();
1735}
1736
1737void os::print_siginfo(outputStream* st, void* siginfo) {
1738  const siginfo_t* si = (const siginfo_t*)siginfo;
1739
1740  os::Posix::print_siginfo_brief(st, si);
1741
1742  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1743      UseSharedSpaces) {
1744    FileMapInfo* mapinfo = FileMapInfo::current_info();
1745    if (mapinfo->is_in_shared_space(si->si_addr)) {
1746      st->print("\n\nError accessing class data sharing archive."   \
1747                " Mapped file inaccessible during execution, "      \
1748                " possible disk/network problem.");
1749    }
1750  }
1751  st->cr();
1752}
1753
1754
1755static void print_signal_handler(outputStream* st, int sig,
1756                                 char* buf, size_t buflen);
1757
1758void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1759  st->print_cr("Signal Handlers:");
1760  print_signal_handler(st, SIGSEGV, buf, buflen);
1761  print_signal_handler(st, SIGBUS , buf, buflen);
1762  print_signal_handler(st, SIGFPE , buf, buflen);
1763  print_signal_handler(st, SIGPIPE, buf, buflen);
1764  print_signal_handler(st, SIGXFSZ, buf, buflen);
1765  print_signal_handler(st, SIGILL , buf, buflen);
1766  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1767  print_signal_handler(st, SR_signum, buf, buflen);
1768  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1769  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1770  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1771  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1772}
1773
1774static char saved_jvm_path[MAXPATHLEN] = {0};
1775
1776// Find the full path to the current module, libjvm
1777void os::jvm_path(char *buf, jint buflen) {
1778  // Error checking.
1779  if (buflen < MAXPATHLEN) {
1780    assert(false, "must use a large-enough buffer");
1781    buf[0] = '\0';
1782    return;
1783  }
1784  // Lazy resolve the path to current module.
1785  if (saved_jvm_path[0] != 0) {
1786    strcpy(buf, saved_jvm_path);
1787    return;
1788  }
1789
1790  char dli_fname[MAXPATHLEN];
1791  bool ret = dll_address_to_library_name(
1792                CAST_FROM_FN_PTR(address, os::jvm_path),
1793                dli_fname, sizeof(dli_fname), NULL);
1794  assert(ret, "cannot locate libjvm");
1795  char *rp = NULL;
1796  if (ret && dli_fname[0] != '\0') {
1797    rp = realpath(dli_fname, buf);
1798  }
1799  if (rp == NULL)
1800    return;
1801
1802  if (Arguments::sun_java_launcher_is_altjvm()) {
1803    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1804    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1805    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1806    // appears at the right place in the string, then assume we are
1807    // installed in a JDK and we're done. Otherwise, check for a
1808    // JAVA_HOME environment variable and construct a path to the JVM
1809    // being overridden.
1810
1811    const char *p = buf + strlen(buf) - 1;
1812    for (int count = 0; p > buf && count < 5; ++count) {
1813      for (--p; p > buf && *p != '/'; --p)
1814        /* empty */ ;
1815    }
1816
1817    if (strncmp(p, "/jre/lib/", 9) != 0) {
1818      // Look for JAVA_HOME in the environment.
1819      char* java_home_var = ::getenv("JAVA_HOME");
1820      if (java_home_var != NULL && java_home_var[0] != 0) {
1821        char* jrelib_p;
1822        int len;
1823
1824        // Check the current module name "libjvm"
1825        p = strrchr(buf, '/');
1826        assert(strstr(p, "/libjvm") == p, "invalid library name");
1827
1828        rp = realpath(java_home_var, buf);
1829        if (rp == NULL)
1830          return;
1831
1832        // determine if this is a legacy image or modules image
1833        // modules image doesn't have "jre" subdirectory
1834        len = strlen(buf);
1835        jrelib_p = buf + len;
1836
1837        // Add the appropriate library subdir
1838        snprintf(jrelib_p, buflen-len, "/jre/lib");
1839        if (0 != access(buf, F_OK)) {
1840          snprintf(jrelib_p, buflen-len, "/lib");
1841        }
1842
1843        // Add the appropriate client or server subdir
1844        len = strlen(buf);
1845        jrelib_p = buf + len;
1846        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1847        if (0 != access(buf, F_OK)) {
1848          snprintf(jrelib_p, buflen-len, "%s", "");
1849        }
1850
1851        // If the path exists within JAVA_HOME, add the JVM library name
1852        // to complete the path to JVM being overridden.  Otherwise fallback
1853        // to the path to the current library.
1854        if (0 == access(buf, F_OK)) {
1855          // Use current module name "libjvm"
1856          len = strlen(buf);
1857          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1858        } else {
1859          // Fall back to path of current library
1860          rp = realpath(dli_fname, buf);
1861          if (rp == NULL)
1862            return;
1863        }
1864      }
1865    }
1866  }
1867
1868  strcpy(saved_jvm_path, buf);
1869}
1870
1871void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1872  // no prefix required, not even "_"
1873}
1874
1875void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1876  // no suffix required
1877}
1878
1879////////////////////////////////////////////////////////////////////////////////
1880// sun.misc.Signal support
1881
1882static volatile jint sigint_count = 0;
1883
1884static void
1885UserHandler(int sig, void *siginfo, void *context) {
1886  // 4511530 - sem_post is serialized and handled by the manager thread. When
1887  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1888  // don't want to flood the manager thread with sem_post requests.
1889  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1890      return;
1891
1892  // Ctrl-C is pressed during error reporting, likely because the error
1893  // handler fails to abort. Let VM die immediately.
1894  if (sig == SIGINT && is_error_reported()) {
1895     os::die();
1896  }
1897
1898  os::signal_notify(sig);
1899}
1900
1901void* os::user_handler() {
1902  return CAST_FROM_FN_PTR(void*, UserHandler);
1903}
1904
1905extern "C" {
1906  typedef void (*sa_handler_t)(int);
1907  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1908}
1909
1910void* os::signal(int signal_number, void* handler) {
1911  struct sigaction sigAct, oldSigAct;
1912
1913  sigfillset(&(sigAct.sa_mask));
1914  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1915  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1916
1917  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1918    // -1 means registration failed
1919    return (void *)-1;
1920  }
1921
1922  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1923}
1924
1925void os::signal_raise(int signal_number) {
1926  ::raise(signal_number);
1927}
1928
1929/*
1930 * The following code is moved from os.cpp for making this
1931 * code platform specific, which it is by its very nature.
1932 */
1933
1934// Will be modified when max signal is changed to be dynamic
1935int os::sigexitnum_pd() {
1936  return NSIG;
1937}
1938
1939// a counter for each possible signal value
1940static volatile jint pending_signals[NSIG+1] = { 0 };
1941
1942// Bsd(POSIX) specific hand shaking semaphore.
1943#ifdef __APPLE__
1944typedef semaphore_t os_semaphore_t;
1945#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1946#define SEM_WAIT(sem)           semaphore_wait(sem)
1947#define SEM_POST(sem)           semaphore_signal(sem)
1948#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1949#else
1950typedef sem_t os_semaphore_t;
1951#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1952#define SEM_WAIT(sem)           sem_wait(&sem)
1953#define SEM_POST(sem)           sem_post(&sem)
1954#define SEM_DESTROY(sem)        sem_destroy(&sem)
1955#endif
1956
1957class Semaphore : public StackObj {
1958  public:
1959    Semaphore();
1960    ~Semaphore();
1961    void signal();
1962    void wait();
1963    bool trywait();
1964    bool timedwait(unsigned int sec, int nsec);
1965  private:
1966    jlong currenttime() const;
1967    os_semaphore_t _semaphore;
1968};
1969
1970Semaphore::Semaphore() : _semaphore(0) {
1971  SEM_INIT(_semaphore, 0);
1972}
1973
1974Semaphore::~Semaphore() {
1975  SEM_DESTROY(_semaphore);
1976}
1977
1978void Semaphore::signal() {
1979  SEM_POST(_semaphore);
1980}
1981
1982void Semaphore::wait() {
1983  SEM_WAIT(_semaphore);
1984}
1985
1986jlong Semaphore::currenttime() const {
1987    struct timeval tv;
1988    gettimeofday(&tv, NULL);
1989    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1990}
1991
1992#ifdef __APPLE__
1993bool Semaphore::trywait() {
1994  return timedwait(0, 0);
1995}
1996
1997bool Semaphore::timedwait(unsigned int sec, int nsec) {
1998  kern_return_t kr = KERN_ABORTED;
1999  mach_timespec_t waitspec;
2000  waitspec.tv_sec = sec;
2001  waitspec.tv_nsec = nsec;
2002
2003  jlong starttime = currenttime();
2004
2005  kr = semaphore_timedwait(_semaphore, waitspec);
2006  while (kr == KERN_ABORTED) {
2007    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2008
2009    jlong current = currenttime();
2010    jlong passedtime = current - starttime;
2011
2012    if (passedtime >= totalwait) {
2013      waitspec.tv_sec = 0;
2014      waitspec.tv_nsec = 0;
2015    } else {
2016      jlong waittime = totalwait - (current - starttime);
2017      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2018      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2019    }
2020
2021    kr = semaphore_timedwait(_semaphore, waitspec);
2022  }
2023
2024  return kr == KERN_SUCCESS;
2025}
2026
2027#else
2028
2029bool Semaphore::trywait() {
2030  return sem_trywait(&_semaphore) == 0;
2031}
2032
2033bool Semaphore::timedwait(unsigned int sec, int nsec) {
2034  struct timespec ts;
2035  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2036
2037  while (1) {
2038    int result = sem_timedwait(&_semaphore, &ts);
2039    if (result == 0) {
2040      return true;
2041    } else if (errno == EINTR) {
2042      continue;
2043    } else if (errno == ETIMEDOUT) {
2044      return false;
2045    } else {
2046      return false;
2047    }
2048  }
2049}
2050
2051#endif // __APPLE__
2052
2053static os_semaphore_t sig_sem;
2054static Semaphore sr_semaphore;
2055
2056void os::signal_init_pd() {
2057  // Initialize signal structures
2058  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2059
2060  // Initialize signal semaphore
2061  ::SEM_INIT(sig_sem, 0);
2062}
2063
2064void os::signal_notify(int sig) {
2065  Atomic::inc(&pending_signals[sig]);
2066  ::SEM_POST(sig_sem);
2067}
2068
2069static int check_pending_signals(bool wait) {
2070  Atomic::store(0, &sigint_count);
2071  for (;;) {
2072    for (int i = 0; i < NSIG + 1; i++) {
2073      jint n = pending_signals[i];
2074      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2075        return i;
2076      }
2077    }
2078    if (!wait) {
2079      return -1;
2080    }
2081    JavaThread *thread = JavaThread::current();
2082    ThreadBlockInVM tbivm(thread);
2083
2084    bool threadIsSuspended;
2085    do {
2086      thread->set_suspend_equivalent();
2087      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2088      ::SEM_WAIT(sig_sem);
2089
2090      // were we externally suspended while we were waiting?
2091      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2092      if (threadIsSuspended) {
2093        //
2094        // The semaphore has been incremented, but while we were waiting
2095        // another thread suspended us. We don't want to continue running
2096        // while suspended because that would surprise the thread that
2097        // suspended us.
2098        //
2099        ::SEM_POST(sig_sem);
2100
2101        thread->java_suspend_self();
2102      }
2103    } while (threadIsSuspended);
2104  }
2105}
2106
2107int os::signal_lookup() {
2108  return check_pending_signals(false);
2109}
2110
2111int os::signal_wait() {
2112  return check_pending_signals(true);
2113}
2114
2115////////////////////////////////////////////////////////////////////////////////
2116// Virtual Memory
2117
2118int os::vm_page_size() {
2119  // Seems redundant as all get out
2120  assert(os::Bsd::page_size() != -1, "must call os::init");
2121  return os::Bsd::page_size();
2122}
2123
2124// Solaris allocates memory by pages.
2125int os::vm_allocation_granularity() {
2126  assert(os::Bsd::page_size() != -1, "must call os::init");
2127  return os::Bsd::page_size();
2128}
2129
2130// Rationale behind this function:
2131//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2132//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2133//  samples for JITted code. Here we create private executable mapping over the code cache
2134//  and then we can use standard (well, almost, as mapping can change) way to provide
2135//  info for the reporting script by storing timestamp and location of symbol
2136void bsd_wrap_code(char* base, size_t size) {
2137  static volatile jint cnt = 0;
2138
2139  if (!UseOprofile) {
2140    return;
2141  }
2142
2143  char buf[PATH_MAX + 1];
2144  int num = Atomic::add(1, &cnt);
2145
2146  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2147           os::get_temp_directory(), os::current_process_id(), num);
2148  unlink(buf);
2149
2150  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2151
2152  if (fd != -1) {
2153    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2154    if (rv != (off_t)-1) {
2155      if (::write(fd, "", 1) == 1) {
2156        mmap(base, size,
2157             PROT_READ|PROT_WRITE|PROT_EXEC,
2158             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2159      }
2160    }
2161    ::close(fd);
2162    unlink(buf);
2163  }
2164}
2165
2166static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2167                                    int err) {
2168  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2169          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2170          strerror(err), err);
2171}
2172
2173// NOTE: Bsd kernel does not really reserve the pages for us.
2174//       All it does is to check if there are enough free pages
2175//       left at the time of mmap(). This could be a potential
2176//       problem.
2177bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2178  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2179#ifdef __OpenBSD__
2180  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2181  if (::mprotect(addr, size, prot) == 0) {
2182    return true;
2183  }
2184#else
2185  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2186                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2187  if (res != (uintptr_t) MAP_FAILED) {
2188    return true;
2189  }
2190#endif
2191
2192  // Warn about any commit errors we see in non-product builds just
2193  // in case mmap() doesn't work as described on the man page.
2194  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2195
2196  return false;
2197}
2198
2199bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2200                       bool exec) {
2201  // alignment_hint is ignored on this OS
2202  return pd_commit_memory(addr, size, exec);
2203}
2204
2205void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2206                                  const char* mesg) {
2207  assert(mesg != NULL, "mesg must be specified");
2208  if (!pd_commit_memory(addr, size, exec)) {
2209    // add extra info in product mode for vm_exit_out_of_memory():
2210    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2211    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2212  }
2213}
2214
2215void os::pd_commit_memory_or_exit(char* addr, size_t size,
2216                                  size_t alignment_hint, bool exec,
2217                                  const char* mesg) {
2218  // alignment_hint is ignored on this OS
2219  pd_commit_memory_or_exit(addr, size, exec, mesg);
2220}
2221
2222void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2223}
2224
2225void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2226  ::madvise(addr, bytes, MADV_DONTNEED);
2227}
2228
2229void os::numa_make_global(char *addr, size_t bytes) {
2230}
2231
2232void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2233}
2234
2235bool os::numa_topology_changed()   { return false; }
2236
2237size_t os::numa_get_groups_num() {
2238  return 1;
2239}
2240
2241int os::numa_get_group_id() {
2242  return 0;
2243}
2244
2245size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2246  if (size > 0) {
2247    ids[0] = 0;
2248    return 1;
2249  }
2250  return 0;
2251}
2252
2253bool os::get_page_info(char *start, page_info* info) {
2254  return false;
2255}
2256
2257char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2258  return end;
2259}
2260
2261
2262bool os::pd_uncommit_memory(char* addr, size_t size) {
2263#ifdef __OpenBSD__
2264  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2265  return ::mprotect(addr, size, PROT_NONE) == 0;
2266#else
2267  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2268                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2269  return res  != (uintptr_t) MAP_FAILED;
2270#endif
2271}
2272
2273bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2274  return os::commit_memory(addr, size, !ExecMem);
2275}
2276
2277// If this is a growable mapping, remove the guard pages entirely by
2278// munmap()ping them.  If not, just call uncommit_memory().
2279bool os::remove_stack_guard_pages(char* addr, size_t size) {
2280  return os::uncommit_memory(addr, size);
2281}
2282
2283static address _highest_vm_reserved_address = NULL;
2284
2285// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2286// at 'requested_addr'. If there are existing memory mappings at the same
2287// location, however, they will be overwritten. If 'fixed' is false,
2288// 'requested_addr' is only treated as a hint, the return value may or
2289// may not start from the requested address. Unlike Bsd mmap(), this
2290// function returns NULL to indicate failure.
2291static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2292  char * addr;
2293  int flags;
2294
2295  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2296  if (fixed) {
2297    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2298    flags |= MAP_FIXED;
2299  }
2300
2301  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2302  // touch an uncommitted page. Otherwise, the read/write might
2303  // succeed if we have enough swap space to back the physical page.
2304  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2305                       flags, -1, 0);
2306
2307  if (addr != MAP_FAILED) {
2308    // anon_mmap() should only get called during VM initialization,
2309    // don't need lock (actually we can skip locking even it can be called
2310    // from multiple threads, because _highest_vm_reserved_address is just a
2311    // hint about the upper limit of non-stack memory regions.)
2312    if ((address)addr + bytes > _highest_vm_reserved_address) {
2313      _highest_vm_reserved_address = (address)addr + bytes;
2314    }
2315  }
2316
2317  return addr == MAP_FAILED ? NULL : addr;
2318}
2319
2320// Don't update _highest_vm_reserved_address, because there might be memory
2321// regions above addr + size. If so, releasing a memory region only creates
2322// a hole in the address space, it doesn't help prevent heap-stack collision.
2323//
2324static int anon_munmap(char * addr, size_t size) {
2325  return ::munmap(addr, size) == 0;
2326}
2327
2328char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2329                         size_t alignment_hint) {
2330  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2331}
2332
2333bool os::pd_release_memory(char* addr, size_t size) {
2334  return anon_munmap(addr, size);
2335}
2336
2337static bool bsd_mprotect(char* addr, size_t size, int prot) {
2338  // Bsd wants the mprotect address argument to be page aligned.
2339  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2340
2341  // According to SUSv3, mprotect() should only be used with mappings
2342  // established by mmap(), and mmap() always maps whole pages. Unaligned
2343  // 'addr' likely indicates problem in the VM (e.g. trying to change
2344  // protection of malloc'ed or statically allocated memory). Check the
2345  // caller if you hit this assert.
2346  assert(addr == bottom, "sanity check");
2347
2348  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2349  return ::mprotect(bottom, size, prot) == 0;
2350}
2351
2352// Set protections specified
2353bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2354                        bool is_committed) {
2355  unsigned int p = 0;
2356  switch (prot) {
2357  case MEM_PROT_NONE: p = PROT_NONE; break;
2358  case MEM_PROT_READ: p = PROT_READ; break;
2359  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2360  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2361  default:
2362    ShouldNotReachHere();
2363  }
2364  // is_committed is unused.
2365  return bsd_mprotect(addr, bytes, p);
2366}
2367
2368bool os::guard_memory(char* addr, size_t size) {
2369  return bsd_mprotect(addr, size, PROT_NONE);
2370}
2371
2372bool os::unguard_memory(char* addr, size_t size) {
2373  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2374}
2375
2376bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2377  return false;
2378}
2379
2380// Large page support
2381
2382static size_t _large_page_size = 0;
2383
2384void os::large_page_init() {
2385}
2386
2387
2388char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2389  fatal("This code is not used or maintained.");
2390
2391  // "exec" is passed in but not used.  Creating the shared image for
2392  // the code cache doesn't have an SHM_X executable permission to check.
2393  assert(UseLargePages && UseSHM, "only for SHM large pages");
2394
2395  key_t key = IPC_PRIVATE;
2396  char *addr;
2397
2398  bool warn_on_failure = UseLargePages &&
2399                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2400                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2401                        );
2402
2403  // Create a large shared memory region to attach to based on size.
2404  // Currently, size is the total size of the heap
2405  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2406  if (shmid == -1) {
2407     // Possible reasons for shmget failure:
2408     // 1. shmmax is too small for Java heap.
2409     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2410     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2411     // 2. not enough large page memory.
2412     //    > check available large pages: cat /proc/meminfo
2413     //    > increase amount of large pages:
2414     //          echo new_value > /proc/sys/vm/nr_hugepages
2415     //      Note 1: different Bsd may use different name for this property,
2416     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2417     //      Note 2: it's possible there's enough physical memory available but
2418     //            they are so fragmented after a long run that they can't
2419     //            coalesce into large pages. Try to reserve large pages when
2420     //            the system is still "fresh".
2421     if (warn_on_failure) {
2422       warning("Failed to reserve shared memory (errno = %d).", errno);
2423     }
2424     return NULL;
2425  }
2426
2427  // attach to the region
2428  addr = (char*)shmat(shmid, req_addr, 0);
2429  int err = errno;
2430
2431  // Remove shmid. If shmat() is successful, the actual shared memory segment
2432  // will be deleted when it's detached by shmdt() or when the process
2433  // terminates. If shmat() is not successful this will remove the shared
2434  // segment immediately.
2435  shmctl(shmid, IPC_RMID, NULL);
2436
2437  if ((intptr_t)addr == -1) {
2438     if (warn_on_failure) {
2439       warning("Failed to attach shared memory (errno = %d).", err);
2440     }
2441     return NULL;
2442  }
2443
2444  // The memory is committed
2445  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2446
2447  return addr;
2448}
2449
2450bool os::release_memory_special(char* base, size_t bytes) {
2451  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2452  // detaching the SHM segment will also delete it, see reserve_memory_special()
2453  int rslt = shmdt(base);
2454  if (rslt == 0) {
2455    tkr.record((address)base, bytes);
2456    return true;
2457  } else {
2458    tkr.discard();
2459    return false;
2460  }
2461
2462}
2463
2464size_t os::large_page_size() {
2465  return _large_page_size;
2466}
2467
2468// HugeTLBFS allows application to commit large page memory on demand;
2469// with SysV SHM the entire memory region must be allocated as shared
2470// memory.
2471bool os::can_commit_large_page_memory() {
2472  return UseHugeTLBFS;
2473}
2474
2475bool os::can_execute_large_page_memory() {
2476  return UseHugeTLBFS;
2477}
2478
2479// Reserve memory at an arbitrary address, only if that area is
2480// available (and not reserved for something else).
2481
2482char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2483  const int max_tries = 10;
2484  char* base[max_tries];
2485  size_t size[max_tries];
2486  const size_t gap = 0x000000;
2487
2488  // Assert only that the size is a multiple of the page size, since
2489  // that's all that mmap requires, and since that's all we really know
2490  // about at this low abstraction level.  If we need higher alignment,
2491  // we can either pass an alignment to this method or verify alignment
2492  // in one of the methods further up the call chain.  See bug 5044738.
2493  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2494
2495  // Repeatedly allocate blocks until the block is allocated at the
2496  // right spot. Give up after max_tries. Note that reserve_memory() will
2497  // automatically update _highest_vm_reserved_address if the call is
2498  // successful. The variable tracks the highest memory address every reserved
2499  // by JVM. It is used to detect heap-stack collision if running with
2500  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2501  // space than needed, it could confuse the collision detecting code. To
2502  // solve the problem, save current _highest_vm_reserved_address and
2503  // calculate the correct value before return.
2504  address old_highest = _highest_vm_reserved_address;
2505
2506  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2507  // if kernel honors the hint then we can return immediately.
2508  char * addr = anon_mmap(requested_addr, bytes, false);
2509  if (addr == requested_addr) {
2510     return requested_addr;
2511  }
2512
2513  if (addr != NULL) {
2514     // mmap() is successful but it fails to reserve at the requested address
2515     anon_munmap(addr, bytes);
2516  }
2517
2518  int i;
2519  for (i = 0; i < max_tries; ++i) {
2520    base[i] = reserve_memory(bytes);
2521
2522    if (base[i] != NULL) {
2523      // Is this the block we wanted?
2524      if (base[i] == requested_addr) {
2525        size[i] = bytes;
2526        break;
2527      }
2528
2529      // Does this overlap the block we wanted? Give back the overlapped
2530      // parts and try again.
2531
2532      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2533      if (top_overlap >= 0 && top_overlap < bytes) {
2534        unmap_memory(base[i], top_overlap);
2535        base[i] += top_overlap;
2536        size[i] = bytes - top_overlap;
2537      } else {
2538        size_t bottom_overlap = base[i] + bytes - requested_addr;
2539        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2540          unmap_memory(requested_addr, bottom_overlap);
2541          size[i] = bytes - bottom_overlap;
2542        } else {
2543          size[i] = bytes;
2544        }
2545      }
2546    }
2547  }
2548
2549  // Give back the unused reserved pieces.
2550
2551  for (int j = 0; j < i; ++j) {
2552    if (base[j] != NULL) {
2553      unmap_memory(base[j], size[j]);
2554    }
2555  }
2556
2557  if (i < max_tries) {
2558    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2559    return requested_addr;
2560  } else {
2561    _highest_vm_reserved_address = old_highest;
2562    return NULL;
2563  }
2564}
2565
2566size_t os::read(int fd, void *buf, unsigned int nBytes) {
2567  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2568}
2569
2570void os::naked_short_sleep(jlong ms) {
2571  struct timespec req;
2572
2573  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2574  req.tv_sec = 0;
2575  if (ms > 0) {
2576    req.tv_nsec = (ms % 1000) * 1000000;
2577  }
2578  else {
2579    req.tv_nsec = 1;
2580  }
2581
2582  nanosleep(&req, NULL);
2583
2584  return;
2585}
2586
2587// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2588void os::infinite_sleep() {
2589  while (true) {    // sleep forever ...
2590    ::sleep(100);   // ... 100 seconds at a time
2591  }
2592}
2593
2594// Used to convert frequent JVM_Yield() to nops
2595bool os::dont_yield() {
2596  return DontYieldALot;
2597}
2598
2599void os::yield() {
2600  sched_yield();
2601}
2602
2603os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
2604
2605////////////////////////////////////////////////////////////////////////////////
2606// thread priority support
2607
2608// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2609// only supports dynamic priority, static priority must be zero. For real-time
2610// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2611// However, for large multi-threaded applications, SCHED_RR is not only slower
2612// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2613// of 5 runs - Sep 2005).
2614//
2615// The following code actually changes the niceness of kernel-thread/LWP. It
2616// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2617// not the entire user process, and user level threads are 1:1 mapped to kernel
2618// threads. It has always been the case, but could change in the future. For
2619// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2620// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2621
2622#if !defined(__APPLE__)
2623int os::java_to_os_priority[CriticalPriority + 1] = {
2624  19,              // 0 Entry should never be used
2625
2626   0,              // 1 MinPriority
2627   3,              // 2
2628   6,              // 3
2629
2630  10,              // 4
2631  15,              // 5 NormPriority
2632  18,              // 6
2633
2634  21,              // 7
2635  25,              // 8
2636  28,              // 9 NearMaxPriority
2637
2638  31,              // 10 MaxPriority
2639
2640  31               // 11 CriticalPriority
2641};
2642#else
2643/* Using Mach high-level priority assignments */
2644int os::java_to_os_priority[CriticalPriority + 1] = {
2645   0,              // 0 Entry should never be used (MINPRI_USER)
2646
2647  27,              // 1 MinPriority
2648  28,              // 2
2649  29,              // 3
2650
2651  30,              // 4
2652  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2653  32,              // 6
2654
2655  33,              // 7
2656  34,              // 8
2657  35,              // 9 NearMaxPriority
2658
2659  36,              // 10 MaxPriority
2660
2661  36               // 11 CriticalPriority
2662};
2663#endif
2664
2665static int prio_init() {
2666  if (ThreadPriorityPolicy == 1) {
2667    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2668    // if effective uid is not root. Perhaps, a more elegant way of doing
2669    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2670    if (geteuid() != 0) {
2671      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2672        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2673      }
2674      ThreadPriorityPolicy = 0;
2675    }
2676  }
2677  if (UseCriticalJavaThreadPriority) {
2678    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2679  }
2680  return 0;
2681}
2682
2683OSReturn os::set_native_priority(Thread* thread, int newpri) {
2684  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2685
2686#ifdef __OpenBSD__
2687  // OpenBSD pthread_setprio starves low priority threads
2688  return OS_OK;
2689#elif defined(__FreeBSD__)
2690  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2691#elif defined(__APPLE__) || defined(__NetBSD__)
2692  struct sched_param sp;
2693  int policy;
2694  pthread_t self = pthread_self();
2695
2696  if (pthread_getschedparam(self, &policy, &sp) != 0)
2697    return OS_ERR;
2698
2699  sp.sched_priority = newpri;
2700  if (pthread_setschedparam(self, policy, &sp) != 0)
2701    return OS_ERR;
2702
2703  return OS_OK;
2704#else
2705  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2706  return (ret == 0) ? OS_OK : OS_ERR;
2707#endif
2708}
2709
2710OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2711  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2712    *priority_ptr = java_to_os_priority[NormPriority];
2713    return OS_OK;
2714  }
2715
2716  errno = 0;
2717#if defined(__OpenBSD__) || defined(__FreeBSD__)
2718  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2719#elif defined(__APPLE__) || defined(__NetBSD__)
2720  int policy;
2721  struct sched_param sp;
2722
2723  pthread_getschedparam(pthread_self(), &policy, &sp);
2724  *priority_ptr = sp.sched_priority;
2725#else
2726  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2727#endif
2728  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2729}
2730
2731// Hint to the underlying OS that a task switch would not be good.
2732// Void return because it's a hint and can fail.
2733void os::hint_no_preempt() {}
2734
2735////////////////////////////////////////////////////////////////////////////////
2736// suspend/resume support
2737
2738//  the low-level signal-based suspend/resume support is a remnant from the
2739//  old VM-suspension that used to be for java-suspension, safepoints etc,
2740//  within hotspot. Now there is a single use-case for this:
2741//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2742//      that runs in the watcher thread.
2743//  The remaining code is greatly simplified from the more general suspension
2744//  code that used to be used.
2745//
2746//  The protocol is quite simple:
2747//  - suspend:
2748//      - sends a signal to the target thread
2749//      - polls the suspend state of the osthread using a yield loop
2750//      - target thread signal handler (SR_handler) sets suspend state
2751//        and blocks in sigsuspend until continued
2752//  - resume:
2753//      - sets target osthread state to continue
2754//      - sends signal to end the sigsuspend loop in the SR_handler
2755//
2756//  Note that the SR_lock plays no role in this suspend/resume protocol.
2757//
2758
2759static void resume_clear_context(OSThread *osthread) {
2760  osthread->set_ucontext(NULL);
2761  osthread->set_siginfo(NULL);
2762}
2763
2764static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2765  osthread->set_ucontext(context);
2766  osthread->set_siginfo(siginfo);
2767}
2768
2769//
2770// Handler function invoked when a thread's execution is suspended or
2771// resumed. We have to be careful that only async-safe functions are
2772// called here (Note: most pthread functions are not async safe and
2773// should be avoided.)
2774//
2775// Note: sigwait() is a more natural fit than sigsuspend() from an
2776// interface point of view, but sigwait() prevents the signal hander
2777// from being run. libpthread would get very confused by not having
2778// its signal handlers run and prevents sigwait()'s use with the
2779// mutex granting granting signal.
2780//
2781// Currently only ever called on the VMThread or JavaThread
2782//
2783static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2784  // Save and restore errno to avoid confusing native code with EINTR
2785  // after sigsuspend.
2786  int old_errno = errno;
2787
2788  Thread* thread = Thread::current();
2789  OSThread* osthread = thread->osthread();
2790  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2791
2792  os::SuspendResume::State current = osthread->sr.state();
2793  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2794    suspend_save_context(osthread, siginfo, context);
2795
2796    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2797    os::SuspendResume::State state = osthread->sr.suspended();
2798    if (state == os::SuspendResume::SR_SUSPENDED) {
2799      sigset_t suspend_set;  // signals for sigsuspend()
2800
2801      // get current set of blocked signals and unblock resume signal
2802      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2803      sigdelset(&suspend_set, SR_signum);
2804
2805      sr_semaphore.signal();
2806      // wait here until we are resumed
2807      while (1) {
2808        sigsuspend(&suspend_set);
2809
2810        os::SuspendResume::State result = osthread->sr.running();
2811        if (result == os::SuspendResume::SR_RUNNING) {
2812          sr_semaphore.signal();
2813          break;
2814        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2815          ShouldNotReachHere();
2816        }
2817      }
2818
2819    } else if (state == os::SuspendResume::SR_RUNNING) {
2820      // request was cancelled, continue
2821    } else {
2822      ShouldNotReachHere();
2823    }
2824
2825    resume_clear_context(osthread);
2826  } else if (current == os::SuspendResume::SR_RUNNING) {
2827    // request was cancelled, continue
2828  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2829    // ignore
2830  } else {
2831    // ignore
2832  }
2833
2834  errno = old_errno;
2835}
2836
2837
2838static int SR_initialize() {
2839  struct sigaction act;
2840  char *s;
2841  /* Get signal number to use for suspend/resume */
2842  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2843    int sig = ::strtol(s, 0, 10);
2844    if (sig > 0 || sig < NSIG) {
2845        SR_signum = sig;
2846    }
2847  }
2848
2849  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2850        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2851
2852  sigemptyset(&SR_sigset);
2853  sigaddset(&SR_sigset, SR_signum);
2854
2855  /* Set up signal handler for suspend/resume */
2856  act.sa_flags = SA_RESTART|SA_SIGINFO;
2857  act.sa_handler = (void (*)(int)) SR_handler;
2858
2859  // SR_signum is blocked by default.
2860  // 4528190 - We also need to block pthread restart signal (32 on all
2861  // supported Bsd platforms). Note that BsdThreads need to block
2862  // this signal for all threads to work properly. So we don't have
2863  // to use hard-coded signal number when setting up the mask.
2864  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2865
2866  if (sigaction(SR_signum, &act, 0) == -1) {
2867    return -1;
2868  }
2869
2870  // Save signal flag
2871  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2872  return 0;
2873}
2874
2875static int sr_notify(OSThread* osthread) {
2876  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2877  assert_status(status == 0, status, "pthread_kill");
2878  return status;
2879}
2880
2881// "Randomly" selected value for how long we want to spin
2882// before bailing out on suspending a thread, also how often
2883// we send a signal to a thread we want to resume
2884static const int RANDOMLY_LARGE_INTEGER = 1000000;
2885static const int RANDOMLY_LARGE_INTEGER2 = 100;
2886
2887// returns true on success and false on error - really an error is fatal
2888// but this seems the normal response to library errors
2889static bool do_suspend(OSThread* osthread) {
2890  assert(osthread->sr.is_running(), "thread should be running");
2891  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2892
2893  // mark as suspended and send signal
2894  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2895    // failed to switch, state wasn't running?
2896    ShouldNotReachHere();
2897    return false;
2898  }
2899
2900  if (sr_notify(osthread) != 0) {
2901    ShouldNotReachHere();
2902  }
2903
2904  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2905  while (true) {
2906    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2907      break;
2908    } else {
2909      // timeout
2910      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2911      if (cancelled == os::SuspendResume::SR_RUNNING) {
2912        return false;
2913      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2914        // make sure that we consume the signal on the semaphore as well
2915        sr_semaphore.wait();
2916        break;
2917      } else {
2918        ShouldNotReachHere();
2919        return false;
2920      }
2921    }
2922  }
2923
2924  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2925  return true;
2926}
2927
2928static void do_resume(OSThread* osthread) {
2929  assert(osthread->sr.is_suspended(), "thread should be suspended");
2930  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2931
2932  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2933    // failed to switch to WAKEUP_REQUEST
2934    ShouldNotReachHere();
2935    return;
2936  }
2937
2938  while (true) {
2939    if (sr_notify(osthread) == 0) {
2940      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2941        if (osthread->sr.is_running()) {
2942          return;
2943        }
2944      }
2945    } else {
2946      ShouldNotReachHere();
2947    }
2948  }
2949
2950  guarantee(osthread->sr.is_running(), "Must be running!");
2951}
2952
2953///////////////////////////////////////////////////////////////////////////////////
2954// signal handling (except suspend/resume)
2955
2956// This routine may be used by user applications as a "hook" to catch signals.
2957// The user-defined signal handler must pass unrecognized signals to this
2958// routine, and if it returns true (non-zero), then the signal handler must
2959// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2960// routine will never retun false (zero), but instead will execute a VM panic
2961// routine kill the process.
2962//
2963// If this routine returns false, it is OK to call it again.  This allows
2964// the user-defined signal handler to perform checks either before or after
2965// the VM performs its own checks.  Naturally, the user code would be making
2966// a serious error if it tried to handle an exception (such as a null check
2967// or breakpoint) that the VM was generating for its own correct operation.
2968//
2969// This routine may recognize any of the following kinds of signals:
2970//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2971// It should be consulted by handlers for any of those signals.
2972//
2973// The caller of this routine must pass in the three arguments supplied
2974// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2975// field of the structure passed to sigaction().  This routine assumes that
2976// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2977//
2978// Note that the VM will print warnings if it detects conflicting signal
2979// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2980//
2981extern "C" JNIEXPORT int
2982JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2983                        void* ucontext, int abort_if_unrecognized);
2984
2985void signalHandler(int sig, siginfo_t* info, void* uc) {
2986  assert(info != NULL && uc != NULL, "it must be old kernel");
2987  int orig_errno = errno;  // Preserve errno value over signal handler.
2988  JVM_handle_bsd_signal(sig, info, uc, true);
2989  errno = orig_errno;
2990}
2991
2992
2993// This boolean allows users to forward their own non-matching signals
2994// to JVM_handle_bsd_signal, harmlessly.
2995bool os::Bsd::signal_handlers_are_installed = false;
2996
2997// For signal-chaining
2998struct sigaction os::Bsd::sigact[MAXSIGNUM];
2999unsigned int os::Bsd::sigs = 0;
3000bool os::Bsd::libjsig_is_loaded = false;
3001typedef struct sigaction *(*get_signal_t)(int);
3002get_signal_t os::Bsd::get_signal_action = NULL;
3003
3004struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3005  struct sigaction *actp = NULL;
3006
3007  if (libjsig_is_loaded) {
3008    // Retrieve the old signal handler from libjsig
3009    actp = (*get_signal_action)(sig);
3010  }
3011  if (actp == NULL) {
3012    // Retrieve the preinstalled signal handler from jvm
3013    actp = get_preinstalled_handler(sig);
3014  }
3015
3016  return actp;
3017}
3018
3019static bool call_chained_handler(struct sigaction *actp, int sig,
3020                                 siginfo_t *siginfo, void *context) {
3021  // Call the old signal handler
3022  if (actp->sa_handler == SIG_DFL) {
3023    // It's more reasonable to let jvm treat it as an unexpected exception
3024    // instead of taking the default action.
3025    return false;
3026  } else if (actp->sa_handler != SIG_IGN) {
3027    if ((actp->sa_flags & SA_NODEFER) == 0) {
3028      // automaticlly block the signal
3029      sigaddset(&(actp->sa_mask), sig);
3030    }
3031
3032    sa_handler_t hand;
3033    sa_sigaction_t sa;
3034    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3035    // retrieve the chained handler
3036    if (siginfo_flag_set) {
3037      sa = actp->sa_sigaction;
3038    } else {
3039      hand = actp->sa_handler;
3040    }
3041
3042    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3043      actp->sa_handler = SIG_DFL;
3044    }
3045
3046    // try to honor the signal mask
3047    sigset_t oset;
3048    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3049
3050    // call into the chained handler
3051    if (siginfo_flag_set) {
3052      (*sa)(sig, siginfo, context);
3053    } else {
3054      (*hand)(sig);
3055    }
3056
3057    // restore the signal mask
3058    pthread_sigmask(SIG_SETMASK, &oset, 0);
3059  }
3060  // Tell jvm's signal handler the signal is taken care of.
3061  return true;
3062}
3063
3064bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3065  bool chained = false;
3066  // signal-chaining
3067  if (UseSignalChaining) {
3068    struct sigaction *actp = get_chained_signal_action(sig);
3069    if (actp != NULL) {
3070      chained = call_chained_handler(actp, sig, siginfo, context);
3071    }
3072  }
3073  return chained;
3074}
3075
3076struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3077  if ((((unsigned int)1 << sig) & sigs) != 0) {
3078    return &sigact[sig];
3079  }
3080  return NULL;
3081}
3082
3083void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3084  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3085  sigact[sig] = oldAct;
3086  sigs |= (unsigned int)1 << sig;
3087}
3088
3089// for diagnostic
3090int os::Bsd::sigflags[MAXSIGNUM];
3091
3092int os::Bsd::get_our_sigflags(int sig) {
3093  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3094  return sigflags[sig];
3095}
3096
3097void os::Bsd::set_our_sigflags(int sig, int flags) {
3098  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3099  sigflags[sig] = flags;
3100}
3101
3102void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3103  // Check for overwrite.
3104  struct sigaction oldAct;
3105  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3106
3107  void* oldhand = oldAct.sa_sigaction
3108                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3109                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3110  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3111      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3112      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3113    if (AllowUserSignalHandlers || !set_installed) {
3114      // Do not overwrite; user takes responsibility to forward to us.
3115      return;
3116    } else if (UseSignalChaining) {
3117      // save the old handler in jvm
3118      save_preinstalled_handler(sig, oldAct);
3119      // libjsig also interposes the sigaction() call below and saves the
3120      // old sigaction on it own.
3121    } else {
3122      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3123                    "%#lx for signal %d.", (long)oldhand, sig));
3124    }
3125  }
3126
3127  struct sigaction sigAct;
3128  sigfillset(&(sigAct.sa_mask));
3129  sigAct.sa_handler = SIG_DFL;
3130  if (!set_installed) {
3131    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3132  } else {
3133    sigAct.sa_sigaction = signalHandler;
3134    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3135  }
3136#ifdef __APPLE__
3137  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3138  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3139  // if the signal handler declares it will handle it on alternate stack.
3140  // Notice we only declare we will handle it on alt stack, but we are not
3141  // actually going to use real alt stack - this is just a workaround.
3142  // Please see ux_exception.c, method catch_mach_exception_raise for details
3143  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3144  if (sig == SIGSEGV) {
3145    sigAct.sa_flags |= SA_ONSTACK;
3146  }
3147#endif
3148
3149  // Save flags, which are set by ours
3150  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3151  sigflags[sig] = sigAct.sa_flags;
3152
3153  int ret = sigaction(sig, &sigAct, &oldAct);
3154  assert(ret == 0, "check");
3155
3156  void* oldhand2  = oldAct.sa_sigaction
3157                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3158                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3159  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3160}
3161
3162// install signal handlers for signals that HotSpot needs to
3163// handle in order to support Java-level exception handling.
3164
3165void os::Bsd::install_signal_handlers() {
3166  if (!signal_handlers_are_installed) {
3167    signal_handlers_are_installed = true;
3168
3169    // signal-chaining
3170    typedef void (*signal_setting_t)();
3171    signal_setting_t begin_signal_setting = NULL;
3172    signal_setting_t end_signal_setting = NULL;
3173    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3174                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3175    if (begin_signal_setting != NULL) {
3176      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3177                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3178      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3179                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3180      libjsig_is_loaded = true;
3181      assert(UseSignalChaining, "should enable signal-chaining");
3182    }
3183    if (libjsig_is_loaded) {
3184      // Tell libjsig jvm is setting signal handlers
3185      (*begin_signal_setting)();
3186    }
3187
3188    set_signal_handler(SIGSEGV, true);
3189    set_signal_handler(SIGPIPE, true);
3190    set_signal_handler(SIGBUS, true);
3191    set_signal_handler(SIGILL, true);
3192    set_signal_handler(SIGFPE, true);
3193    set_signal_handler(SIGXFSZ, true);
3194
3195#if defined(__APPLE__)
3196    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3197    // signals caught and handled by the JVM. To work around this, we reset the mach task
3198    // signal handler that's placed on our process by CrashReporter. This disables
3199    // CrashReporter-based reporting.
3200    //
3201    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3202    // on caught fatal signals.
3203    //
3204    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3205    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3206    // exception handling, while leaving the standard BSD signal handlers functional.
3207    kern_return_t kr;
3208    kr = task_set_exception_ports(mach_task_self(),
3209        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3210        MACH_PORT_NULL,
3211        EXCEPTION_STATE_IDENTITY,
3212        MACHINE_THREAD_STATE);
3213
3214    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3215#endif
3216
3217    if (libjsig_is_loaded) {
3218      // Tell libjsig jvm finishes setting signal handlers
3219      (*end_signal_setting)();
3220    }
3221
3222    // We don't activate signal checker if libjsig is in place, we trust ourselves
3223    // and if UserSignalHandler is installed all bets are off
3224    if (CheckJNICalls) {
3225      if (libjsig_is_loaded) {
3226        if (PrintJNIResolving) {
3227          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3228        }
3229        check_signals = false;
3230      }
3231      if (AllowUserSignalHandlers) {
3232        if (PrintJNIResolving) {
3233          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3234        }
3235        check_signals = false;
3236      }
3237    }
3238  }
3239}
3240
3241
3242/////
3243// glibc on Bsd platform uses non-documented flag
3244// to indicate, that some special sort of signal
3245// trampoline is used.
3246// We will never set this flag, and we should
3247// ignore this flag in our diagnostic
3248#ifdef SIGNIFICANT_SIGNAL_MASK
3249#undef SIGNIFICANT_SIGNAL_MASK
3250#endif
3251#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3252
3253static const char* get_signal_handler_name(address handler,
3254                                           char* buf, int buflen) {
3255  int offset;
3256  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3257  if (found) {
3258    // skip directory names
3259    const char *p1, *p2;
3260    p1 = buf;
3261    size_t len = strlen(os::file_separator());
3262    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3263    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3264  } else {
3265    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3266  }
3267  return buf;
3268}
3269
3270static void print_signal_handler(outputStream* st, int sig,
3271                                 char* buf, size_t buflen) {
3272  struct sigaction sa;
3273
3274  sigaction(sig, NULL, &sa);
3275
3276  // See comment for SIGNIFICANT_SIGNAL_MASK define
3277  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3278
3279  st->print("%s: ", os::exception_name(sig, buf, buflen));
3280
3281  address handler = (sa.sa_flags & SA_SIGINFO)
3282    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3283    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3284
3285  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3286    st->print("SIG_DFL");
3287  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3288    st->print("SIG_IGN");
3289  } else {
3290    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3291  }
3292
3293  st->print(", sa_mask[0]=");
3294  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3295
3296  address rh = VMError::get_resetted_sighandler(sig);
3297  // May be, handler was resetted by VMError?
3298  if (rh != NULL) {
3299    handler = rh;
3300    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3301  }
3302
3303  st->print(", sa_flags=");
3304  os::Posix::print_sa_flags(st, sa.sa_flags);
3305
3306  // Check: is it our handler?
3307  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3308     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3309    // It is our signal handler
3310    // check for flags, reset system-used one!
3311    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3312      st->print(
3313                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3314                os::Bsd::get_our_sigflags(sig));
3315    }
3316  }
3317  st->cr();
3318}
3319
3320
3321#define DO_SIGNAL_CHECK(sig) \
3322  if (!sigismember(&check_signal_done, sig)) \
3323    os::Bsd::check_signal_handler(sig)
3324
3325// This method is a periodic task to check for misbehaving JNI applications
3326// under CheckJNI, we can add any periodic checks here
3327
3328void os::run_periodic_checks() {
3329
3330  if (check_signals == false) return;
3331
3332  // SEGV and BUS if overridden could potentially prevent
3333  // generation of hs*.log in the event of a crash, debugging
3334  // such a case can be very challenging, so we absolutely
3335  // check the following for a good measure:
3336  DO_SIGNAL_CHECK(SIGSEGV);
3337  DO_SIGNAL_CHECK(SIGILL);
3338  DO_SIGNAL_CHECK(SIGFPE);
3339  DO_SIGNAL_CHECK(SIGBUS);
3340  DO_SIGNAL_CHECK(SIGPIPE);
3341  DO_SIGNAL_CHECK(SIGXFSZ);
3342
3343
3344  // ReduceSignalUsage allows the user to override these handlers
3345  // see comments at the very top and jvm_solaris.h
3346  if (!ReduceSignalUsage) {
3347    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3348    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3349    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3350    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3351  }
3352
3353  DO_SIGNAL_CHECK(SR_signum);
3354  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3355}
3356
3357typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3358
3359static os_sigaction_t os_sigaction = NULL;
3360
3361void os::Bsd::check_signal_handler(int sig) {
3362  char buf[O_BUFLEN];
3363  address jvmHandler = NULL;
3364
3365
3366  struct sigaction act;
3367  if (os_sigaction == NULL) {
3368    // only trust the default sigaction, in case it has been interposed
3369    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3370    if (os_sigaction == NULL) return;
3371  }
3372
3373  os_sigaction(sig, (struct sigaction*)NULL, &act);
3374
3375
3376  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3377
3378  address thisHandler = (act.sa_flags & SA_SIGINFO)
3379    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3380    : CAST_FROM_FN_PTR(address, act.sa_handler);
3381
3382
3383  switch (sig) {
3384  case SIGSEGV:
3385  case SIGBUS:
3386  case SIGFPE:
3387  case SIGPIPE:
3388  case SIGILL:
3389  case SIGXFSZ:
3390    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3391    break;
3392
3393  case SHUTDOWN1_SIGNAL:
3394  case SHUTDOWN2_SIGNAL:
3395  case SHUTDOWN3_SIGNAL:
3396  case BREAK_SIGNAL:
3397    jvmHandler = (address)user_handler();
3398    break;
3399
3400  case INTERRUPT_SIGNAL:
3401    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3402    break;
3403
3404  default:
3405    if (sig == SR_signum) {
3406      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3407    } else {
3408      return;
3409    }
3410    break;
3411  }
3412
3413  if (thisHandler != jvmHandler) {
3414    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3415    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3416    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3417    // No need to check this sig any longer
3418    sigaddset(&check_signal_done, sig);
3419    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3420    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3421      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3422                    exception_name(sig, buf, O_BUFLEN));
3423    }
3424  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3425    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3426    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3427    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3428    // No need to check this sig any longer
3429    sigaddset(&check_signal_done, sig);
3430  }
3431
3432  // Dump all the signal
3433  if (sigismember(&check_signal_done, sig)) {
3434    print_signal_handlers(tty, buf, O_BUFLEN);
3435  }
3436}
3437
3438extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3439
3440extern bool signal_name(int signo, char* buf, size_t len);
3441
3442const char* os::exception_name(int exception_code, char* buf, size_t size) {
3443  if (0 < exception_code && exception_code <= SIGRTMAX) {
3444    // signal
3445    if (!signal_name(exception_code, buf, size)) {
3446      jio_snprintf(buf, size, "SIG%d", exception_code);
3447    }
3448    return buf;
3449  } else {
3450    return NULL;
3451  }
3452}
3453
3454// this is called _before_ the most of global arguments have been parsed
3455void os::init(void) {
3456  char dummy;   /* used to get a guess on initial stack address */
3457//  first_hrtime = gethrtime();
3458
3459  // With BsdThreads the JavaMain thread pid (primordial thread)
3460  // is different than the pid of the java launcher thread.
3461  // So, on Bsd, the launcher thread pid is passed to the VM
3462  // via the sun.java.launcher.pid property.
3463  // Use this property instead of getpid() if it was correctly passed.
3464  // See bug 6351349.
3465  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3466
3467  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3468
3469  clock_tics_per_sec = CLK_TCK;
3470
3471  init_random(1234567);
3472
3473  ThreadCritical::initialize();
3474
3475  Bsd::set_page_size(getpagesize());
3476  if (Bsd::page_size() == -1) {
3477    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3478                  strerror(errno)));
3479  }
3480  init_page_sizes((size_t) Bsd::page_size());
3481
3482  Bsd::initialize_system_info();
3483
3484  // main_thread points to the aboriginal thread
3485  Bsd::_main_thread = pthread_self();
3486
3487  Bsd::clock_init();
3488  initial_time_count = javaTimeNanos();
3489
3490#ifdef __APPLE__
3491  // XXXDARWIN
3492  // Work around the unaligned VM callbacks in hotspot's
3493  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3494  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3495  // alignment when doing symbol lookup. To work around this, we force early
3496  // binding of all symbols now, thus binding when alignment is known-good.
3497  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3498#endif
3499}
3500
3501// To install functions for atexit system call
3502extern "C" {
3503  static void perfMemory_exit_helper() {
3504    perfMemory_exit();
3505  }
3506}
3507
3508// this is called _after_ the global arguments have been parsed
3509jint os::init_2(void)
3510{
3511  // Allocate a single page and mark it as readable for safepoint polling
3512  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3513  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3514
3515  os::set_polling_page(polling_page);
3516
3517#ifndef PRODUCT
3518  if (Verbose && PrintMiscellaneous)
3519    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3520#endif
3521
3522  if (!UseMembar) {
3523    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3524    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3525    os::set_memory_serialize_page(mem_serialize_page);
3526
3527#ifndef PRODUCT
3528    if (Verbose && PrintMiscellaneous)
3529      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3530#endif
3531  }
3532
3533  // initialize suspend/resume support - must do this before signal_sets_init()
3534  if (SR_initialize() != 0) {
3535    perror("SR_initialize failed");
3536    return JNI_ERR;
3537  }
3538
3539  Bsd::signal_sets_init();
3540  Bsd::install_signal_handlers();
3541
3542  // Check minimum allowable stack size for thread creation and to initialize
3543  // the java system classes, including StackOverflowError - depends on page
3544  // size.  Add a page for compiler2 recursion in main thread.
3545  // Add in 2*BytesPerWord times page size to account for VM stack during
3546  // class initialization depending on 32 or 64 bit VM.
3547  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3548            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3549                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3550
3551  size_t threadStackSizeInBytes = ThreadStackSize * K;
3552  if (threadStackSizeInBytes != 0 &&
3553      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3554        tty->print_cr("\nThe stack size specified is too small, "
3555                      "Specify at least %dk",
3556                      os::Bsd::min_stack_allowed/ K);
3557        return JNI_ERR;
3558  }
3559
3560  // Make the stack size a multiple of the page size so that
3561  // the yellow/red zones can be guarded.
3562  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3563        vm_page_size()));
3564
3565  if (MaxFDLimit) {
3566    // set the number of file descriptors to max. print out error
3567    // if getrlimit/setrlimit fails but continue regardless.
3568    struct rlimit nbr_files;
3569    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3570    if (status != 0) {
3571      if (PrintMiscellaneous && (Verbose || WizardMode))
3572        perror("os::init_2 getrlimit failed");
3573    } else {
3574      nbr_files.rlim_cur = nbr_files.rlim_max;
3575
3576#ifdef __APPLE__
3577      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3578      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3579      // be used instead
3580      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3581#endif
3582
3583      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3584      if (status != 0) {
3585        if (PrintMiscellaneous && (Verbose || WizardMode))
3586          perror("os::init_2 setrlimit failed");
3587      }
3588    }
3589  }
3590
3591  // at-exit methods are called in the reverse order of their registration.
3592  // atexit functions are called on return from main or as a result of a
3593  // call to exit(3C). There can be only 32 of these functions registered
3594  // and atexit() does not set errno.
3595
3596  if (PerfAllowAtExitRegistration) {
3597    // only register atexit functions if PerfAllowAtExitRegistration is set.
3598    // atexit functions can be delayed until process exit time, which
3599    // can be problematic for embedded VM situations. Embedded VMs should
3600    // call DestroyJavaVM() to assure that VM resources are released.
3601
3602    // note: perfMemory_exit_helper atexit function may be removed in
3603    // the future if the appropriate cleanup code can be added to the
3604    // VM_Exit VMOperation's doit method.
3605    if (atexit(perfMemory_exit_helper) != 0) {
3606      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3607    }
3608  }
3609
3610  // initialize thread priority policy
3611  prio_init();
3612
3613#ifdef __APPLE__
3614  // dynamically link to objective c gc registration
3615  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3616  if (handleLibObjc != NULL) {
3617    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3618  }
3619#endif
3620
3621  return JNI_OK;
3622}
3623
3624// this is called at the end of vm_initialization
3625void os::init_3(void) { }
3626
3627// Mark the polling page as unreadable
3628void os::make_polling_page_unreadable(void) {
3629  if (!guard_memory((char*)_polling_page, Bsd::page_size()))
3630    fatal("Could not disable polling page");
3631};
3632
3633// Mark the polling page as readable
3634void os::make_polling_page_readable(void) {
3635  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3636    fatal("Could not enable polling page");
3637  }
3638};
3639
3640int os::active_processor_count() {
3641  return _processor_count;
3642}
3643
3644void os::set_native_thread_name(const char *name) {
3645#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3646  // This is only supported in Snow Leopard and beyond
3647  if (name != NULL) {
3648    // Add a "Java: " prefix to the name
3649    char buf[MAXTHREADNAMESIZE];
3650    snprintf(buf, sizeof(buf), "Java: %s", name);
3651    pthread_setname_np(buf);
3652  }
3653#endif
3654}
3655
3656bool os::distribute_processes(uint length, uint* distribution) {
3657  // Not yet implemented.
3658  return false;
3659}
3660
3661bool os::bind_to_processor(uint processor_id) {
3662  // Not yet implemented.
3663  return false;
3664}
3665
3666void os::SuspendedThreadTask::internal_do_task() {
3667  if (do_suspend(_thread->osthread())) {
3668    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3669    do_task(context);
3670    do_resume(_thread->osthread());
3671  }
3672}
3673
3674///
3675class PcFetcher : public os::SuspendedThreadTask {
3676public:
3677  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3678  ExtendedPC result();
3679protected:
3680  void do_task(const os::SuspendedThreadTaskContext& context);
3681private:
3682  ExtendedPC _epc;
3683};
3684
3685ExtendedPC PcFetcher::result() {
3686  guarantee(is_done(), "task is not done yet.");
3687  return _epc;
3688}
3689
3690void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3691  Thread* thread = context.thread();
3692  OSThread* osthread = thread->osthread();
3693  if (osthread->ucontext() != NULL) {
3694    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3695  } else {
3696    // NULL context is unexpected, double-check this is the VMThread
3697    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3698  }
3699}
3700
3701// Suspends the target using the signal mechanism and then grabs the PC before
3702// resuming the target. Used by the flat-profiler only
3703ExtendedPC os::get_thread_pc(Thread* thread) {
3704  // Make sure that it is called by the watcher for the VMThread
3705  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3706  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3707
3708  PcFetcher fetcher(thread);
3709  fetcher.run();
3710  return fetcher.result();
3711}
3712
3713int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3714{
3715  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3716}
3717
3718////////////////////////////////////////////////////////////////////////////////
3719// debug support
3720
3721bool os::find(address addr, outputStream* st) {
3722  Dl_info dlinfo;
3723  memset(&dlinfo, 0, sizeof(dlinfo));
3724  if (dladdr(addr, &dlinfo) != 0) {
3725    st->print(PTR_FORMAT ": ", addr);
3726    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3727      st->print("%s+%#x", dlinfo.dli_sname,
3728                 addr - (intptr_t)dlinfo.dli_saddr);
3729    } else if (dlinfo.dli_fbase != NULL) {
3730      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3731    } else {
3732      st->print("<absolute address>");
3733    }
3734    if (dlinfo.dli_fname != NULL) {
3735      st->print(" in %s", dlinfo.dli_fname);
3736    }
3737    if (dlinfo.dli_fbase != NULL) {
3738      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3739    }
3740    st->cr();
3741
3742    if (Verbose) {
3743      // decode some bytes around the PC
3744      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3745      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3746      address       lowest = (address) dlinfo.dli_sname;
3747      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3748      if (begin < lowest)  begin = lowest;
3749      Dl_info dlinfo2;
3750      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3751          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3752        end = (address) dlinfo2.dli_saddr;
3753      Disassembler::decode(begin, end, st);
3754    }
3755    return true;
3756  }
3757  return false;
3758}
3759
3760////////////////////////////////////////////////////////////////////////////////
3761// misc
3762
3763// This does not do anything on Bsd. This is basically a hook for being
3764// able to use structured exception handling (thread-local exception filters)
3765// on, e.g., Win32.
3766void
3767os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3768                         JavaCallArguments* args, Thread* thread) {
3769  f(value, method, args, thread);
3770}
3771
3772void os::print_statistics() {
3773}
3774
3775int os::message_box(const char* title, const char* message) {
3776  int i;
3777  fdStream err(defaultStream::error_fd());
3778  for (i = 0; i < 78; i++) err.print_raw("=");
3779  err.cr();
3780  err.print_raw_cr(title);
3781  for (i = 0; i < 78; i++) err.print_raw("-");
3782  err.cr();
3783  err.print_raw_cr(message);
3784  for (i = 0; i < 78; i++) err.print_raw("=");
3785  err.cr();
3786
3787  char buf[16];
3788  // Prevent process from exiting upon "read error" without consuming all CPU
3789  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3790
3791  return buf[0] == 'y' || buf[0] == 'Y';
3792}
3793
3794int os::stat(const char *path, struct stat *sbuf) {
3795  char pathbuf[MAX_PATH];
3796  if (strlen(path) > MAX_PATH - 1) {
3797    errno = ENAMETOOLONG;
3798    return -1;
3799  }
3800  os::native_path(strcpy(pathbuf, path));
3801  return ::stat(pathbuf, sbuf);
3802}
3803
3804bool os::check_heap(bool force) {
3805  return true;
3806}
3807
3808ATTRIBUTE_PRINTF(3, 0)
3809int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3810  return ::vsnprintf(buf, count, format, args);
3811}
3812
3813// Is a (classpath) directory empty?
3814bool os::dir_is_empty(const char* path) {
3815  DIR *dir = NULL;
3816  struct dirent *ptr;
3817
3818  dir = opendir(path);
3819  if (dir == NULL) return true;
3820
3821  /* Scan the directory */
3822  bool result = true;
3823  char buf[sizeof(struct dirent) + MAX_PATH];
3824  while (result && (ptr = ::readdir(dir)) != NULL) {
3825    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3826      result = false;
3827    }
3828  }
3829  closedir(dir);
3830  return result;
3831}
3832
3833// This code originates from JDK's sysOpen and open64_w
3834// from src/solaris/hpi/src/system_md.c
3835
3836#ifndef O_DELETE
3837#define O_DELETE 0x10000
3838#endif
3839
3840// Open a file. Unlink the file immediately after open returns
3841// if the specified oflag has the O_DELETE flag set.
3842// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3843
3844int os::open(const char *path, int oflag, int mode) {
3845
3846  if (strlen(path) > MAX_PATH - 1) {
3847    errno = ENAMETOOLONG;
3848    return -1;
3849  }
3850  int fd;
3851  int o_delete = (oflag & O_DELETE);
3852  oflag = oflag & ~O_DELETE;
3853
3854  fd = ::open(path, oflag, mode);
3855  if (fd == -1) return -1;
3856
3857  //If the open succeeded, the file might still be a directory
3858  {
3859    struct stat buf;
3860    int ret = ::fstat(fd, &buf);
3861    int st_mode = buf.st_mode;
3862
3863    if (ret != -1) {
3864      if ((st_mode & S_IFMT) == S_IFDIR) {
3865        errno = EISDIR;
3866        ::close(fd);
3867        return -1;
3868      }
3869    } else {
3870      ::close(fd);
3871      return -1;
3872    }
3873  }
3874
3875    /*
3876     * All file descriptors that are opened in the JVM and not
3877     * specifically destined for a subprocess should have the
3878     * close-on-exec flag set.  If we don't set it, then careless 3rd
3879     * party native code might fork and exec without closing all
3880     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3881     * UNIXProcess.c), and this in turn might:
3882     *
3883     * - cause end-of-file to fail to be detected on some file
3884     *   descriptors, resulting in mysterious hangs, or
3885     *
3886     * - might cause an fopen in the subprocess to fail on a system
3887     *   suffering from bug 1085341.
3888     *
3889     * (Yes, the default setting of the close-on-exec flag is a Unix
3890     * design flaw)
3891     *
3892     * See:
3893     * 1085341: 32-bit stdio routines should support file descriptors >255
3894     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3895     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3896     */
3897#ifdef FD_CLOEXEC
3898    {
3899        int flags = ::fcntl(fd, F_GETFD);
3900        if (flags != -1)
3901            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3902    }
3903#endif
3904
3905  if (o_delete != 0) {
3906    ::unlink(path);
3907  }
3908  return fd;
3909}
3910
3911
3912// create binary file, rewriting existing file if required
3913int os::create_binary_file(const char* path, bool rewrite_existing) {
3914  int oflags = O_WRONLY | O_CREAT;
3915  if (!rewrite_existing) {
3916    oflags |= O_EXCL;
3917  }
3918  return ::open(path, oflags, S_IREAD | S_IWRITE);
3919}
3920
3921// return current position of file pointer
3922jlong os::current_file_offset(int fd) {
3923  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3924}
3925
3926// move file pointer to the specified offset
3927jlong os::seek_to_file_offset(int fd, jlong offset) {
3928  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3929}
3930
3931// This code originates from JDK's sysAvailable
3932// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3933
3934int os::available(int fd, jlong *bytes) {
3935  jlong cur, end;
3936  int mode;
3937  struct stat buf;
3938
3939  if (::fstat(fd, &buf) >= 0) {
3940    mode = buf.st_mode;
3941    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3942      /*
3943      * XXX: is the following call interruptible? If so, this might
3944      * need to go through the INTERRUPT_IO() wrapper as for other
3945      * blocking, interruptible calls in this file.
3946      */
3947      int n;
3948      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3949        *bytes = n;
3950        return 1;
3951      }
3952    }
3953  }
3954  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3955    return 0;
3956  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3957    return 0;
3958  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3959    return 0;
3960  }
3961  *bytes = end - cur;
3962  return 1;
3963}
3964
3965int os::socket_available(int fd, jint *pbytes) {
3966   if (fd < 0)
3967     return OS_OK;
3968
3969   int ret;
3970
3971   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3972
3973   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3974   // is expected to return 0 on failure and 1 on success to the jdk.
3975
3976   return (ret == OS_ERR) ? 0 : 1;
3977}
3978
3979// Map a block of memory.
3980char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3981                     char *addr, size_t bytes, bool read_only,
3982                     bool allow_exec) {
3983  int prot;
3984  int flags;
3985
3986  if (read_only) {
3987    prot = PROT_READ;
3988    flags = MAP_SHARED;
3989  } else {
3990    prot = PROT_READ | PROT_WRITE;
3991    flags = MAP_PRIVATE;
3992  }
3993
3994  if (allow_exec) {
3995    prot |= PROT_EXEC;
3996  }
3997
3998  if (addr != NULL) {
3999    flags |= MAP_FIXED;
4000  }
4001
4002  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4003                                     fd, file_offset);
4004  if (mapped_address == MAP_FAILED) {
4005    return NULL;
4006  }
4007  return mapped_address;
4008}
4009
4010
4011// Remap a block of memory.
4012char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4013                       char *addr, size_t bytes, bool read_only,
4014                       bool allow_exec) {
4015  // same as map_memory() on this OS
4016  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4017                        allow_exec);
4018}
4019
4020
4021// Unmap a block of memory.
4022bool os::pd_unmap_memory(char* addr, size_t bytes) {
4023  return munmap(addr, bytes) == 0;
4024}
4025
4026// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4027// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4028// of a thread.
4029//
4030// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4031// the fast estimate available on the platform.
4032
4033jlong os::current_thread_cpu_time() {
4034#ifdef __APPLE__
4035  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4036#else
4037  Unimplemented();
4038  return 0;
4039#endif
4040}
4041
4042jlong os::thread_cpu_time(Thread* thread) {
4043#ifdef __APPLE__
4044  return os::thread_cpu_time(thread, true /* user + sys */);
4045#else
4046  Unimplemented();
4047  return 0;
4048#endif
4049}
4050
4051jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4052#ifdef __APPLE__
4053  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4054#else
4055  Unimplemented();
4056  return 0;
4057#endif
4058}
4059
4060jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4061#ifdef __APPLE__
4062  struct thread_basic_info tinfo;
4063  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4064  kern_return_t kr;
4065  thread_t mach_thread;
4066
4067  mach_thread = thread->osthread()->thread_id();
4068  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4069  if (kr != KERN_SUCCESS)
4070    return -1;
4071
4072  if (user_sys_cpu_time) {
4073    jlong nanos;
4074    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4075    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4076    return nanos;
4077  } else {
4078    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4079  }
4080#else
4081  Unimplemented();
4082  return 0;
4083#endif
4084}
4085
4086
4087void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4088  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4089  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4090  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4091  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4092}
4093
4094void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4095  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4096  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4097  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4098  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4099}
4100
4101bool os::is_thread_cpu_time_supported() {
4102#ifdef __APPLE__
4103  return true;
4104#else
4105  return false;
4106#endif
4107}
4108
4109// System loadavg support.  Returns -1 if load average cannot be obtained.
4110// Bsd doesn't yet have a (official) notion of processor sets,
4111// so just return the system wide load average.
4112int os::loadavg(double loadavg[], int nelem) {
4113  return ::getloadavg(loadavg, nelem);
4114}
4115
4116void os::pause() {
4117  char filename[MAX_PATH];
4118  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4119    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4120  } else {
4121    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4122  }
4123
4124  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4125  if (fd != -1) {
4126    struct stat buf;
4127    ::close(fd);
4128    while (::stat(filename, &buf) == 0) {
4129      (void)::poll(NULL, 0, 100);
4130    }
4131  } else {
4132    jio_fprintf(stderr,
4133      "Could not open pause file '%s', continuing immediately.\n", filename);
4134  }
4135}
4136
4137
4138// Refer to the comments in os_solaris.cpp park-unpark.
4139//
4140// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4141// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4142// For specifics regarding the bug see GLIBC BUGID 261237 :
4143//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4144// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4145// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4146// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4147// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4148// and monitorenter when we're using 1-0 locking.  All those operations may result in
4149// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4150// of libpthread avoids the problem, but isn't practical.
4151//
4152// Possible remedies:
4153//
4154// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4155//      This is palliative and probabilistic, however.  If the thread is preempted
4156//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4157//      than the minimum period may have passed, and the abstime may be stale (in the
4158//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4159//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4160//
4161// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4162//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4163//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4164//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4165//      thread.
4166//
4167// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4168//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4169//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4170//      This also works well.  In fact it avoids kernel-level scalability impediments
4171//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4172//      timers in a graceful fashion.
4173//
4174// 4.   When the abstime value is in the past it appears that control returns
4175//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4176//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4177//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4178//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4179//      It may be possible to avoid reinitialization by checking the return
4180//      value from pthread_cond_timedwait().  In addition to reinitializing the
4181//      condvar we must establish the invariant that cond_signal() is only called
4182//      within critical sections protected by the adjunct mutex.  This prevents
4183//      cond_signal() from "seeing" a condvar that's in the midst of being
4184//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4185//      desirable signal-after-unlock optimization that avoids futile context switching.
4186//
4187//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4188//      structure when a condvar is used or initialized.  cond_destroy()  would
4189//      release the helper structure.  Our reinitialize-after-timedwait fix
4190//      put excessive stress on malloc/free and locks protecting the c-heap.
4191//
4192// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4193// It may be possible to refine (4) by checking the kernel and NTPL verisons
4194// and only enabling the work-around for vulnerable environments.
4195
4196// utility to compute the abstime argument to timedwait:
4197// millis is the relative timeout time
4198// abstime will be the absolute timeout time
4199// TODO: replace compute_abstime() with unpackTime()
4200
4201static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4202  if (millis < 0)  millis = 0;
4203  struct timeval now;
4204  int status = gettimeofday(&now, NULL);
4205  assert(status == 0, "gettimeofday");
4206  jlong seconds = millis / 1000;
4207  millis %= 1000;
4208  if (seconds > 50000000) { // see man cond_timedwait(3T)
4209    seconds = 50000000;
4210  }
4211  abstime->tv_sec = now.tv_sec  + seconds;
4212  long       usec = now.tv_usec + millis * 1000;
4213  if (usec >= 1000000) {
4214    abstime->tv_sec += 1;
4215    usec -= 1000000;
4216  }
4217  abstime->tv_nsec = usec * 1000;
4218  return abstime;
4219}
4220
4221
4222// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4223// Conceptually TryPark() should be equivalent to park(0).
4224
4225int os::PlatformEvent::TryPark() {
4226  for (;;) {
4227    const int v = _Event;
4228    guarantee((v == 0) || (v == 1), "invariant");
4229    if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
4230  }
4231}
4232
4233void os::PlatformEvent::park() {       // AKA "down()"
4234  // Invariant: Only the thread associated with the Event/PlatformEvent
4235  // may call park().
4236  // TODO: assert that _Assoc != NULL or _Assoc == Self
4237  int v;
4238  for (;;) {
4239      v = _Event;
4240      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4241  }
4242  guarantee(v >= 0, "invariant");
4243  if (v == 0) {
4244     // Do this the hard way by blocking ...
4245     int status = pthread_mutex_lock(_mutex);
4246     assert_status(status == 0, status, "mutex_lock");
4247     guarantee(_nParked == 0, "invariant");
4248     ++_nParked;
4249     while (_Event < 0) {
4250        status = pthread_cond_wait(_cond, _mutex);
4251        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4252        // Treat this the same as if the wait was interrupted
4253        if (status == ETIMEDOUT) { status = EINTR; }
4254        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4255     }
4256     --_nParked;
4257
4258    _Event = 0;
4259     status = pthread_mutex_unlock(_mutex);
4260     assert_status(status == 0, status, "mutex_unlock");
4261    // Paranoia to ensure our locked and lock-free paths interact
4262    // correctly with each other.
4263    OrderAccess::fence();
4264  }
4265  guarantee(_Event >= 0, "invariant");
4266}
4267
4268int os::PlatformEvent::park(jlong millis) {
4269  guarantee(_nParked == 0, "invariant");
4270
4271  int v;
4272  for (;;) {
4273      v = _Event;
4274      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4275  }
4276  guarantee(v >= 0, "invariant");
4277  if (v != 0) return OS_OK;
4278
4279  // We do this the hard way, by blocking the thread.
4280  // Consider enforcing a minimum timeout value.
4281  struct timespec abst;
4282  compute_abstime(&abst, millis);
4283
4284  int ret = OS_TIMEOUT;
4285  int status = pthread_mutex_lock(_mutex);
4286  assert_status(status == 0, status, "mutex_lock");
4287  guarantee(_nParked == 0, "invariant");
4288  ++_nParked;
4289
4290  // Object.wait(timo) will return because of
4291  // (a) notification
4292  // (b) timeout
4293  // (c) thread.interrupt
4294  //
4295  // Thread.interrupt and object.notify{All} both call Event::set.
4296  // That is, we treat thread.interrupt as a special case of notification.
4297  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4298  // We assume all ETIME returns are valid.
4299  //
4300  // TODO: properly differentiate simultaneous notify+interrupt.
4301  // In that case, we should propagate the notify to another waiter.
4302
4303  while (_Event < 0) {
4304    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4305    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4306      pthread_cond_destroy(_cond);
4307      pthread_cond_init(_cond, NULL);
4308    }
4309    assert_status(status == 0 || status == EINTR ||
4310                  status == ETIMEDOUT,
4311                  status, "cond_timedwait");
4312    if (!FilterSpuriousWakeups) break;                 // previous semantics
4313    if (status == ETIMEDOUT) break;
4314    // We consume and ignore EINTR and spurious wakeups.
4315  }
4316  --_nParked;
4317  if (_Event >= 0) {
4318     ret = OS_OK;
4319  }
4320  _Event = 0;
4321  status = pthread_mutex_unlock(_mutex);
4322  assert_status(status == 0, status, "mutex_unlock");
4323  assert(_nParked == 0, "invariant");
4324  // Paranoia to ensure our locked and lock-free paths interact
4325  // correctly with each other.
4326  OrderAccess::fence();
4327  return ret;
4328}
4329
4330void os::PlatformEvent::unpark() {
4331  // Transitions for _Event:
4332  //    0 :=> 1
4333  //    1 :=> 1
4334  //   -1 :=> either 0 or 1; must signal target thread
4335  //          That is, we can safely transition _Event from -1 to either
4336  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4337  //          unpark() calls.
4338  // See also: "Semaphores in Plan 9" by Mullender & Cox
4339  //
4340  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4341  // that it will take two back-to-back park() calls for the owning
4342  // thread to block. This has the benefit of forcing a spurious return
4343  // from the first park() call after an unpark() call which will help
4344  // shake out uses of park() and unpark() without condition variables.
4345
4346  if (Atomic::xchg(1, &_Event) >= 0) return;
4347
4348  // Wait for the thread associated with the event to vacate
4349  int status = pthread_mutex_lock(_mutex);
4350  assert_status(status == 0, status, "mutex_lock");
4351  int AnyWaiters = _nParked;
4352  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4353  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4354    AnyWaiters = 0;
4355    pthread_cond_signal(_cond);
4356  }
4357  status = pthread_mutex_unlock(_mutex);
4358  assert_status(status == 0, status, "mutex_unlock");
4359  if (AnyWaiters != 0) {
4360    status = pthread_cond_signal(_cond);
4361    assert_status(status == 0, status, "cond_signal");
4362  }
4363
4364  // Note that we signal() _after dropping the lock for "immortal" Events.
4365  // This is safe and avoids a common class of  futile wakeups.  In rare
4366  // circumstances this can cause a thread to return prematurely from
4367  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4368  // simply re-test the condition and re-park itself.
4369}
4370
4371
4372// JSR166
4373// -------------------------------------------------------
4374
4375/*
4376 * The solaris and bsd implementations of park/unpark are fairly
4377 * conservative for now, but can be improved. They currently use a
4378 * mutex/condvar pair, plus a a count.
4379 * Park decrements count if > 0, else does a condvar wait.  Unpark
4380 * sets count to 1 and signals condvar.  Only one thread ever waits
4381 * on the condvar. Contention seen when trying to park implies that someone
4382 * is unparking you, so don't wait. And spurious returns are fine, so there
4383 * is no need to track notifications.
4384 */
4385
4386#define MAX_SECS 100000000
4387/*
4388 * This code is common to bsd and solaris and will be moved to a
4389 * common place in dolphin.
4390 *
4391 * The passed in time value is either a relative time in nanoseconds
4392 * or an absolute time in milliseconds. Either way it has to be unpacked
4393 * into suitable seconds and nanoseconds components and stored in the
4394 * given timespec structure.
4395 * Given time is a 64-bit value and the time_t used in the timespec is only
4396 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4397 * overflow if times way in the future are given. Further on Solaris versions
4398 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4399 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4400 * As it will be 28 years before "now + 100000000" will overflow we can
4401 * ignore overflow and just impose a hard-limit on seconds using the value
4402 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4403 * years from "now".
4404 */
4405
4406static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4407  assert(time > 0, "convertTime");
4408
4409  struct timeval now;
4410  int status = gettimeofday(&now, NULL);
4411  assert(status == 0, "gettimeofday");
4412
4413  time_t max_secs = now.tv_sec + MAX_SECS;
4414
4415  if (isAbsolute) {
4416    jlong secs = time / 1000;
4417    if (secs > max_secs) {
4418      absTime->tv_sec = max_secs;
4419    }
4420    else {
4421      absTime->tv_sec = secs;
4422    }
4423    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4424  }
4425  else {
4426    jlong secs = time / NANOSECS_PER_SEC;
4427    if (secs >= MAX_SECS) {
4428      absTime->tv_sec = max_secs;
4429      absTime->tv_nsec = 0;
4430    }
4431    else {
4432      absTime->tv_sec = now.tv_sec + secs;
4433      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4434      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4435        absTime->tv_nsec -= NANOSECS_PER_SEC;
4436        ++absTime->tv_sec; // note: this must be <= max_secs
4437      }
4438    }
4439  }
4440  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4441  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4442  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4443  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4444}
4445
4446void Parker::park(bool isAbsolute, jlong time) {
4447  // Ideally we'd do something useful while spinning, such
4448  // as calling unpackTime().
4449
4450  // Optional fast-path check:
4451  // Return immediately if a permit is available.
4452  // We depend on Atomic::xchg() having full barrier semantics
4453  // since we are doing a lock-free update to _counter.
4454  if (Atomic::xchg(0, &_counter) > 0) return;
4455
4456  Thread* thread = Thread::current();
4457  assert(thread->is_Java_thread(), "Must be JavaThread");
4458  JavaThread *jt = (JavaThread *)thread;
4459
4460  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4461  // Check interrupt before trying to wait
4462  if (Thread::is_interrupted(thread, false)) {
4463    return;
4464  }
4465
4466  // Next, demultiplex/decode time arguments
4467  struct timespec absTime;
4468  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4469    return;
4470  }
4471  if (time > 0) {
4472    unpackTime(&absTime, isAbsolute, time);
4473  }
4474
4475
4476  // Enter safepoint region
4477  // Beware of deadlocks such as 6317397.
4478  // The per-thread Parker:: mutex is a classic leaf-lock.
4479  // In particular a thread must never block on the Threads_lock while
4480  // holding the Parker:: mutex.  If safepoints are pending both the
4481  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4482  ThreadBlockInVM tbivm(jt);
4483
4484  // Don't wait if cannot get lock since interference arises from
4485  // unblocking.  Also. check interrupt before trying wait
4486  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4487    return;
4488  }
4489
4490  int status;
4491  if (_counter > 0)  { // no wait needed
4492    _counter = 0;
4493    status = pthread_mutex_unlock(_mutex);
4494    assert(status == 0, "invariant");
4495    // Paranoia to ensure our locked and lock-free paths interact
4496    // correctly with each other and Java-level accesses.
4497    OrderAccess::fence();
4498    return;
4499  }
4500
4501#ifdef ASSERT
4502  // Don't catch signals while blocked; let the running threads have the signals.
4503  // (This allows a debugger to break into the running thread.)
4504  sigset_t oldsigs;
4505  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4506  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4507#endif
4508
4509  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4510  jt->set_suspend_equivalent();
4511  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4512
4513  if (time == 0) {
4514    status = pthread_cond_wait(_cond, _mutex);
4515  } else {
4516    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4517    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4518      pthread_cond_destroy(_cond);
4519      pthread_cond_init(_cond, NULL);
4520    }
4521  }
4522  assert_status(status == 0 || status == EINTR ||
4523                status == ETIMEDOUT,
4524                status, "cond_timedwait");
4525
4526#ifdef ASSERT
4527  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4528#endif
4529
4530  _counter = 0;
4531  status = pthread_mutex_unlock(_mutex);
4532  assert_status(status == 0, status, "invariant");
4533  // Paranoia to ensure our locked and lock-free paths interact
4534  // correctly with each other and Java-level accesses.
4535  OrderAccess::fence();
4536
4537  // If externally suspended while waiting, re-suspend
4538  if (jt->handle_special_suspend_equivalent_condition()) {
4539    jt->java_suspend_self();
4540  }
4541}
4542
4543void Parker::unpark() {
4544  int s, status;
4545  status = pthread_mutex_lock(_mutex);
4546  assert(status == 0, "invariant");
4547  s = _counter;
4548  _counter = 1;
4549  if (s < 1) {
4550     if (WorkAroundNPTLTimedWaitHang) {
4551        status = pthread_cond_signal(_cond);
4552        assert(status == 0, "invariant");
4553        status = pthread_mutex_unlock(_mutex);
4554        assert(status == 0, "invariant");
4555     } else {
4556        status = pthread_mutex_unlock(_mutex);
4557        assert(status == 0, "invariant");
4558        status = pthread_cond_signal(_cond);
4559        assert(status == 0, "invariant");
4560     }
4561  } else {
4562    pthread_mutex_unlock(_mutex);
4563    assert(status == 0, "invariant");
4564  }
4565}
4566
4567
4568/* Darwin has no "environ" in a dynamic library. */
4569#ifdef __APPLE__
4570#include <crt_externs.h>
4571#define environ (*_NSGetEnviron())
4572#else
4573extern char** environ;
4574#endif
4575
4576// Run the specified command in a separate process. Return its exit value,
4577// or -1 on failure (e.g. can't fork a new process).
4578// Unlike system(), this function can be called from signal handler. It
4579// doesn't block SIGINT et al.
4580int os::fork_and_exec(char* cmd) {
4581  const char * argv[4] = {"sh", "-c", cmd, NULL};
4582
4583  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4584  // pthread_atfork handlers and reset pthread library. All we need is a
4585  // separate process to execve. Make a direct syscall to fork process.
4586  // On IA64 there's no fork syscall, we have to use fork() and hope for
4587  // the best...
4588  pid_t pid = fork();
4589
4590  if (pid < 0) {
4591    // fork failed
4592    return -1;
4593
4594  } else if (pid == 0) {
4595    // child process
4596
4597    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4598    // first to kill every thread on the thread list. Because this list is
4599    // not reset by fork() (see notes above), execve() will instead kill
4600    // every thread in the parent process. We know this is the only thread
4601    // in the new process, so make a system call directly.
4602    // IA64 should use normal execve() from glibc to match the glibc fork()
4603    // above.
4604    execve("/bin/sh", (char* const*)argv, environ);
4605
4606    // execve failed
4607    _exit(-1);
4608
4609  } else  {
4610    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4611    // care about the actual exit code, for now.
4612
4613    int status;
4614
4615    // Wait for the child process to exit.  This returns immediately if
4616    // the child has already exited. */
4617    while (waitpid(pid, &status, 0) < 0) {
4618        switch (errno) {
4619        case ECHILD: return 0;
4620        case EINTR: break;
4621        default: return -1;
4622        }
4623    }
4624
4625    if (WIFEXITED(status)) {
4626       // The child exited normally; get its exit code.
4627       return WEXITSTATUS(status);
4628    } else if (WIFSIGNALED(status)) {
4629       // The child exited because of a signal
4630       // The best value to return is 0x80 + signal number,
4631       // because that is what all Unix shells do, and because
4632       // it allows callers to distinguish between process exit and
4633       // process death by signal.
4634       return 0x80 + WTERMSIG(status);
4635    } else {
4636       // Unknown exit code; pass it through
4637       return status;
4638    }
4639  }
4640}
4641
4642// is_headless_jre()
4643//
4644// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4645// in order to report if we are running in a headless jre
4646//
4647// Since JDK8 xawt/libmawt.so was moved into the same directory
4648// as libawt.so, and renamed libawt_xawt.so
4649//
4650bool os::is_headless_jre() {
4651#ifdef __APPLE__
4652    // We no longer build headless-only on Mac OS X
4653    return false;
4654#else
4655    struct stat statbuf;
4656    char buf[MAXPATHLEN];
4657    char libmawtpath[MAXPATHLEN];
4658    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4659    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4660    char *p;
4661
4662    // Get path to libjvm.so
4663    os::jvm_path(buf, sizeof(buf));
4664
4665    // Get rid of libjvm.so
4666    p = strrchr(buf, '/');
4667    if (p == NULL) return false;
4668    else *p = '\0';
4669
4670    // Get rid of client or server
4671    p = strrchr(buf, '/');
4672    if (p == NULL) return false;
4673    else *p = '\0';
4674
4675    // check xawt/libmawt.so
4676    strcpy(libmawtpath, buf);
4677    strcat(libmawtpath, xawtstr);
4678    if (::stat(libmawtpath, &statbuf) == 0) return false;
4679
4680    // check libawt_xawt.so
4681    strcpy(libmawtpath, buf);
4682    strcat(libmawtpath, new_xawtstr);
4683    if (::stat(libmawtpath, &statbuf) == 0) return false;
4684
4685    return true;
4686#endif
4687}
4688
4689// Get the default path to the core file
4690// Returns the length of the string
4691int os::get_core_path(char* buffer, size_t bufferSize) {
4692  int n = jio_snprintf(buffer, bufferSize, "/cores");
4693
4694  // Truncate if theoretical string was longer than bufferSize
4695  n = MIN2(n, (int)bufferSize);
4696
4697  return n;
4698}
4699
4700#ifndef PRODUCT
4701void TestReserveMemorySpecial_test() {
4702  // No tests available for this platform
4703}
4704#endif
4705