os_bsd.cpp revision 6649:01ab9db4584f
1185029Spjd/*
2185029Spjd * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3185029Spjd * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4185029Spjd *
5185029Spjd * This code is free software; you can redistribute it and/or modify it
6185029Spjd * under the terms of the GNU General Public License version 2 only, as
7185029Spjd * published by the Free Software Foundation.
8185029Spjd *
9185029Spjd * This code is distributed in the hope that it will be useful, but WITHOUT
10185029Spjd * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11185029Spjd * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12185029Spjd * version 2 for more details (a copy is included in the LICENSE file that
13185029Spjd * accompanied this code).
14185029Spjd *
15185029Spjd * You should have received a copy of the GNU General Public License version
16185029Spjd * 2 along with this work; if not, write to the Free Software Foundation,
17185029Spjd * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18185029Spjd *
19185029Spjd * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20185029Spjd * or visit www.oracle.com if you need additional information or have any
21185029Spjd * questions.
22219089Spjd *
23247265Smm */
24185029Spjd
25185029Spjd// no precompiled headers
26185029Spjd#include "classfile/classLoader.hpp"
27185029Spjd#include "classfile/systemDictionary.hpp"
28185029Spjd#include "classfile/vmSymbols.hpp"
29185029Spjd#include "code/icBuffer.hpp"
30185029Spjd#include "code/vtableStubs.hpp"
31185029Spjd#include "compiler/compileBroker.hpp"
32185029Spjd#include "compiler/disassembler.hpp"
33185029Spjd#include "interpreter/interpreter.hpp"
34185029Spjd#include "jvm_bsd.h"
35185029Spjd#include "memory/allocation.inline.hpp"
36185029Spjd#include "memory/filemap.hpp"
37185029Spjd#include "mutex_bsd.inline.hpp"
38185029Spjd#include "oops/oop.inline.hpp"
39185029Spjd#include "os_share_bsd.hpp"
40185029Spjd#include "prims/jniFastGetField.hpp"
41185029Spjd#include "prims/jvm.h"
42185029Spjd#include "prims/jvm_misc.hpp"
43185029Spjd#include "runtime/arguments.hpp"
44185029Spjd#include "runtime/atomic.inline.hpp"
45219089Spjd#include "runtime/extendedPC.hpp"
46219089Spjd#include "runtime/globals.hpp"
47185029Spjd#include "runtime/interfaceSupport.hpp"
48185029Spjd#include "runtime/java.hpp"
49185029Spjd#include "runtime/javaCalls.hpp"
50219089Spjd#include "runtime/mutexLocker.hpp"
51185029Spjd#include "runtime/objectMonitor.hpp"
52185029Spjd#include "runtime/orderAccess.inline.hpp"
53185029Spjd#include "runtime/osThread.hpp"
54185029Spjd#include "runtime/perfMemory.hpp"
55185029Spjd#include "runtime/sharedRuntime.hpp"
56185029Spjd#include "runtime/statSampler.hpp"
57185029Spjd#include "runtime/stubRoutines.hpp"
58185029Spjd#include "runtime/thread.inline.hpp"
59185029Spjd#include "runtime/threadCritical.hpp"
60185029Spjd#include "runtime/timer.hpp"
61185029Spjd#include "services/attachListener.hpp"
62185029Spjd#include "services/memTracker.hpp"
63185029Spjd#include "services/runtimeService.hpp"
64185029Spjd#include "utilities/decoder.hpp"
65185029Spjd#include "utilities/defaultStream.hpp"
66185029Spjd#include "utilities/events.hpp"
67185029Spjd#include "utilities/growableArray.hpp"
68185029Spjd#include "utilities/vmError.hpp"
69185029Spjd
70185029Spjd// put OS-includes here
71185029Spjd# include <sys/types.h>
72185029Spjd# include <sys/mman.h>
73219089Spjd# include <sys/stat.h>
74185029Spjd# include <sys/select.h>
75185029Spjd# include <pthread.h>
76185029Spjd# include <signal.h>
77185029Spjd# include <errno.h>
78185029Spjd# include <dlfcn.h>
79185029Spjd# include <stdio.h>
80185029Spjd# include <unistd.h>
81185029Spjd# include <sys/resource.h>
82185029Spjd# include <pthread.h>
83185029Spjd# include <sys/stat.h>
84185029Spjd# include <sys/time.h>
85185029Spjd# include <sys/times.h>
86185029Spjd# include <sys/utsname.h>
87185029Spjd# include <sys/socket.h>
88185029Spjd# include <sys/wait.h>
89185029Spjd# include <time.h>
90185029Spjd# include <pwd.h>
91185029Spjd# include <poll.h>
92185029Spjd# include <semaphore.h>
93185029Spjd# include <fcntl.h>
94185029Spjd# include <string.h>
95185029Spjd# include <sys/param.h>
96185029Spjd# include <sys/sysctl.h>
97185029Spjd# include <sys/ipc.h>
98185029Spjd# include <sys/shm.h>
99185029Spjd#ifndef __APPLE__
100185029Spjd# include <link.h>
101185029Spjd#endif
102185029Spjd# include <stdint.h>
103185029Spjd# include <inttypes.h>
104185029Spjd# include <sys/ioctl.h>
105185029Spjd# include <sys/syscall.h>
106185029Spjd
107185029Spjd#if defined(__FreeBSD__) || defined(__NetBSD__)
108185029Spjd# include <elf.h>
109185029Spjd#endif
110185029Spjd
111185029Spjd#ifdef __APPLE__
112185029Spjd# include <mach/mach.h> // semaphore_* API
113185029Spjd# include <mach-o/dyld.h>
114185029Spjd# include <sys/proc_info.h>
115185029Spjd# include <objc/objc-auto.h>
116185029Spjd#endif
117185029Spjd
118185029Spjd#ifndef MAP_ANONYMOUS
119185029Spjd#define MAP_ANONYMOUS MAP_ANON
120185029Spjd#endif
121185029Spjd
122185029Spjd#define MAX_PATH    (2 * K)
123185029Spjd
124185029Spjd// for timer info max values which include all bits
125185029Spjd#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
126185029Spjd
127185029Spjd#define LARGEPAGES_BIT (1 << 6)
128185029Spjd
129185029SpjdPRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
130185029Spjd
131185029Spjd////////////////////////////////////////////////////////////////////////////////
132185029Spjd// global variables
133185029Spjdjulong os::Bsd::_physical_memory = 0;
134185029Spjd
135185029Spjd#ifdef __APPLE__
136185029Spjdmach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137185029Spjdvolatile uint64_t         os::Bsd::_max_abstime   = 0;
138185029Spjd#else
139185029Spjdint (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140185029Spjd#endif
141185029Spjdpthread_t os::Bsd::_main_thread;
142185029Spjdint os::Bsd::_page_size = -1;
143185029Spjd
144185029Spjdstatic jlong initial_time_count=0;
145185029Spjd
146185029Spjdstatic int clock_tics_per_sec = 100;
147186568Srwatson
148185029Spjd// For diagnostics to print a message once. see run_periodic_checks
149185029Spjdstatic sigset_t check_signal_done;
150185029Spjdstatic bool check_signals = true;
151185029Spjd
152185029Spjdstatic pid_t _initial_pid = 0;
153185029Spjd
154185029Spjd/* Signal number used to suspend/resume a thread */
155185029Spjd
156185029Spjd/* do not use any signal number less than SIGSEGV, see 4355769 */
157185029Spjdstatic int SR_signum = SIGUSR2;
158185029Spjdsigset_t SR_sigset;
159185029Spjd
160185029Spjd
161185029Spjd////////////////////////////////////////////////////////////////////////////////
162185029Spjd// utility functions
163185029Spjd
164185029Spjdstatic int SR_initialize();
165185029Spjdstatic void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166185029Spjd
167185029Spjdjulong os::available_memory() {
168185029Spjd  return Bsd::available_memory();
169185029Spjd}
170219089Spjd
171185029Spjd// available here means free
172185029Spjdjulong os::Bsd::available_memory() {
173185029Spjd  uint64_t available = physical_memory() >> 2;
174219089Spjd#ifdef __APPLE__
175219089Spjd  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176219089Spjd  vm_statistics64_data_t vmstat;
177185029Spjd  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178185029Spjd                                         (host_info64_t)&vmstat, &count);
179185029Spjd  assert(kerr == KERN_SUCCESS,
180185029Spjd         "host_statistics64 failed - check mach_host_self() and count");
181185029Spjd  if (kerr == KERN_SUCCESS) {
182185029Spjd    available = vmstat.free_count * os::vm_page_size();
183185029Spjd  }
184185029Spjd#endif
185185029Spjd  return available;
186185029Spjd}
187185029Spjd
188185029Spjdjulong os::physical_memory() {
189185029Spjd  return Bsd::physical_memory();
190185029Spjd}
191185029Spjd
192185029Spjd////////////////////////////////////////////////////////////////////////////////
193185029Spjd// environment support
194185029Spjd
195185029Spjdbool os::getenv(const char* name, char* buf, int len) {
196185029Spjd  const char* val = ::getenv(name);
197185029Spjd  if (val != NULL && strlen(val) < (size_t)len) {
198185029Spjd    strcpy(buf, val);
199185029Spjd    return true;
200219089Spjd  }
201219089Spjd  if (len > 0) buf[0] = 0;  // return a null string
202185029Spjd  return false;
203185029Spjd}
204185029Spjd
205185029Spjd
206185029Spjd// Return true if user is running as root.
207185029Spjd
208185029Spjdbool os::have_special_privileges() {
209185029Spjd  static bool init = false;
210185029Spjd  static bool privileges = false;
211185029Spjd  if (!init) {
212185029Spjd    privileges = (getuid() != geteuid()) || (getgid() != getegid());
213185029Spjd    init = true;
214185029Spjd  }
215185029Spjd  return privileges;
216185029Spjd}
217185029Spjd
218185029Spjd
219185029Spjd
220185029Spjd// Cpu architecture string
221185029Spjd#if   defined(ZERO)
222185029Spjdstatic char cpu_arch[] = ZERO_LIBARCH;
223185029Spjd#elif defined(IA64)
224185029Spjdstatic char cpu_arch[] = "ia64";
225185029Spjd#elif defined(IA32)
226185029Spjdstatic char cpu_arch[] = "i386";
227185029Spjd#elif defined(AMD64)
228185029Spjdstatic char cpu_arch[] = "amd64";
229185029Spjd#elif defined(ARM)
230219089Spjdstatic char cpu_arch[] = "arm";
231219089Spjd#elif defined(PPC32)
232219089Spjdstatic char cpu_arch[] = "ppc";
233219089Spjd#elif defined(SPARC)
234219089Spjd#  ifdef _LP64
235219089Spjdstatic char cpu_arch[] = "sparcv9";
236219089Spjd#  else
237185029Spjdstatic char cpu_arch[] = "sparc";
238219089Spjd#  endif
239219089Spjd#else
240219089Spjd#error Add appropriate cpu_arch setting
241185029Spjd#endif
242219089Spjd
243219089Spjd// Compiler variant
244219089Spjd#ifdef COMPILER2
245219089Spjd#define COMPILER_VARIANT "server"
246219089Spjd#else
247219089Spjd#define COMPILER_VARIANT "client"
248219089Spjd#endif
249219089Spjd
250219089Spjd
251219089Spjdvoid os::Bsd::initialize_system_info() {
252185029Spjd  int mib[2];
253185029Spjd  size_t len;
254185029Spjd  int cpu_val;
255185029Spjd  julong mem_val;
256185029Spjd
257185029Spjd  /* get processors count via hw.ncpus sysctl */
258185029Spjd  mib[0] = CTL_HW;
259185029Spjd  mib[1] = HW_NCPU;
260185029Spjd  len = sizeof(cpu_val);
261185029Spjd  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
262185029Spjd       assert(len == sizeof(cpu_val), "unexpected data size");
263185029Spjd       set_processor_count(cpu_val);
264185029Spjd  }
265185029Spjd  else {
266185029Spjd       set_processor_count(1);   // fallback
267185029Spjd  }
268185029Spjd
269185029Spjd  /* get physical memory via hw.memsize sysctl (hw.memsize is used
270185029Spjd   * since it returns a 64 bit value)
271185029Spjd   */
272185029Spjd  mib[0] = CTL_HW;
273185029Spjd
274185029Spjd#if defined (HW_MEMSIZE) // Apple
275185029Spjd  mib[1] = HW_MEMSIZE;
276185029Spjd#elif defined(HW_PHYSMEM) // Most of BSD
277185029Spjd  mib[1] = HW_PHYSMEM;
278185029Spjd#elif defined(HW_REALMEM) // Old FreeBSD
279185029Spjd  mib[1] = HW_REALMEM;
280185029Spjd#else
281185029Spjd  #error No ways to get physmem
282185029Spjd#endif
283185029Spjd
284185029Spjd  len = sizeof(mem_val);
285185029Spjd  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
286185029Spjd       assert(len == sizeof(mem_val), "unexpected data size");
287185029Spjd       _physical_memory = mem_val;
288185029Spjd  } else {
289185029Spjd       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
290185029Spjd  }
291185029Spjd
292219089Spjd#ifdef __OpenBSD__
293185029Spjd  {
294185029Spjd       // limit _physical_memory memory view on OpenBSD since
295185029Spjd       // datasize rlimit restricts us anyway.
296185029Spjd       struct rlimit limits;
297185029Spjd       getrlimit(RLIMIT_DATA, &limits);
298185029Spjd       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
299185029Spjd  }
300185029Spjd#endif
301239774Smm}
302185029Spjd
303185029Spjd#ifdef __APPLE__
304185029Spjdstatic const char *get_home() {
305185029Spjd  const char *home_dir = ::getenv("HOME");
306185029Spjd  if ((home_dir == NULL) || (*home_dir == '\0')) {
307185029Spjd    struct passwd *passwd_info = getpwuid(geteuid());
308185029Spjd    if (passwd_info != NULL) {
309219089Spjd      home_dir = passwd_info->pw_dir;
310219089Spjd    }
311219089Spjd  }
312219089Spjd
313219089Spjd  return home_dir;
314219089Spjd}
315185029Spjd#endif
316185029Spjd
317185029Spjdvoid os::init_system_properties_values() {
318185029Spjd  // The next steps are taken in the product version:
319185029Spjd  //
320185029Spjd  // Obtain the JAVA_HOME value from the location of libjvm.so.
321185029Spjd  // This library should be located at:
322185029Spjd  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
323185029Spjd  //
324219089Spjd  // If "/jre/lib/" appears at the right place in the path, then we
325185029Spjd  // assume libjvm.so is installed in a JDK and we use this path.
326185029Spjd  //
327185029Spjd  // Otherwise exit with message: "Could not create the Java virtual machine."
328185029Spjd  //
329185029Spjd  // The following extra steps are taken in the debugging version:
330185029Spjd  //
331185029Spjd  // If "/jre/lib/" does NOT appear at the right place in the path
332185029Spjd  // instead of exit check for $JAVA_HOME environment variable.
333185029Spjd  //
334185029Spjd  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
335185029Spjd  // then we append a fake suffix "hotspot/libjvm.so" to this path so
336185029Spjd  // it looks like libjvm.so is installed there
337185029Spjd  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
338185029Spjd  //
339185029Spjd  // Otherwise exit.
340185029Spjd  //
341185029Spjd  // Important note: if the location of libjvm.so changes this
342185029Spjd  // code needs to be changed accordingly.
343185029Spjd
344185029Spjd// See ld(1):
345185029Spjd//      The linker uses the following search paths to locate required
346185029Spjd//      shared libraries:
347185029Spjd//        1: ...
348185029Spjd//        ...
349185029Spjd//        7: The default directories, normally /lib and /usr/lib.
350185029Spjd#ifndef DEFAULT_LIBPATH
351185029Spjd#define DEFAULT_LIBPATH "/lib:/usr/lib"
352185029Spjd#endif
353185029Spjd
354185029Spjd// Base path of extensions installed on the system.
355185029Spjd#define SYS_EXT_DIR     "/usr/java/packages"
356219089Spjd#define EXTENSIONS_DIR  "/lib/ext"
357185029Spjd#define ENDORSED_DIR    "/lib/endorsed"
358185029Spjd
359185029Spjd#ifndef __APPLE__
360185029Spjd
361185029Spjd  // Buffer that fits several sprintfs.
362185029Spjd  // Note that the space for the colon and the trailing null are provided
363185029Spjd  // by the nulls included by the sizeof operator.
364185029Spjd  const size_t bufsize =
365185029Spjd    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
366185029Spjd         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
367185029Spjd         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
368185029Spjd  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
369185029Spjd
370185029Spjd  // sysclasspath, java_home, dll_dir
371185029Spjd  {
372219089Spjd    char *pslash;
373219089Spjd    os::jvm_path(buf, bufsize);
374219089Spjd
375219089Spjd    // Found the full path to libjvm.so.
376219089Spjd    // Now cut the path to <java_home>/jre if we can.
377219089Spjd    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
378219089Spjd    pslash = strrchr(buf, '/');
379219089Spjd    if (pslash != NULL) {
380219089Spjd      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
381219089Spjd    }
382219089Spjd    Arguments::set_dll_dir(buf);
383219089Spjd
384219089Spjd    if (pslash != NULL) {
385219089Spjd      pslash = strrchr(buf, '/');
386219089Spjd      if (pslash != NULL) {
387219089Spjd        *pslash = '\0';          // Get rid of /<arch>.
388219089Spjd        pslash = strrchr(buf, '/');
389219089Spjd        if (pslash != NULL) {
390219089Spjd          *pslash = '\0';        // Get rid of /lib.
391219089Spjd        }
392219089Spjd      }
393185029Spjd    }
394185029Spjd    Arguments::set_java_home(buf);
395185029Spjd    set_boot_path('/', ':');
396185029Spjd  }
397185029Spjd
398185029Spjd  // Where to look for native libraries.
399185029Spjd  //
400219089Spjd  // Note: Due to a legacy implementation, most of the library path
401185029Spjd  // is set in the launcher. This was to accomodate linking restrictions
402185029Spjd  // on legacy Bsd implementations (which are no longer supported).
403219089Spjd  // Eventually, all the library path setting will be done here.
404219089Spjd  //
405219089Spjd  // However, to prevent the proliferation of improperly built native
406219089Spjd  // libraries, the new path component /usr/java/packages is added here.
407219089Spjd  // Eventually, all the library path setting will be done here.
408219089Spjd  {
409185029Spjd    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
410219089Spjd    // should always exist (until the legacy problem cited above is
411219089Spjd    // addressed).
412219089Spjd    const char *v = ::getenv("LD_LIBRARY_PATH");
413219089Spjd    const char *v_colon = ":";
414219089Spjd    if (v == NULL) { v = ""; v_colon = ""; }
415185029Spjd    // That's +1 for the colon and +1 for the trailing '\0'.
416219089Spjd    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
417219089Spjd                                                     strlen(v) + 1 +
418219089Spjd                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
419185029Spjd                                                     mtInternal);
420185029Spjd    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
421185029Spjd    Arguments::set_library_path(ld_library_path);
422185029Spjd    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
423185029Spjd  }
424185029Spjd
425185029Spjd  // Extensions directories.
426239774Smm  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
427185029Spjd  Arguments::set_ext_dirs(buf);
428185029Spjd
429185029Spjd  // Endorsed standards default directory.
430185029Spjd  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
431185029Spjd  Arguments::set_endorsed_dirs(buf);
432185029Spjd
433185029Spjd  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
434185029Spjd
435185029Spjd#else // __APPLE__
436185029Spjd
437185029Spjd#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
438185029Spjd#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
439185029Spjd
440185029Spjd  const char *user_home_dir = get_home();
441185029Spjd  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
442185029Spjd  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
443185029Spjd    sizeof(SYS_EXTENSIONS_DIRS);
444185029Spjd
445185029Spjd  // Buffer that fits several sprintfs.
446185029Spjd  // Note that the space for the colon and the trailing null are provided
447219089Spjd  // by the nulls included by the sizeof operator.
448219089Spjd  const size_t bufsize =
449185029Spjd    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
450185029Spjd         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
451185029Spjd         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
452185029Spjd  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
453185029Spjd
454185029Spjd  // sysclasspath, java_home, dll_dir
455185029Spjd  {
456185029Spjd    char *pslash;
457185029Spjd    os::jvm_path(buf, bufsize);
458185029Spjd
459239774Smm    // Found the full path to libjvm.so.
460185029Spjd    // Now cut the path to <java_home>/jre if we can.
461185029Spjd    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
462185029Spjd    pslash = strrchr(buf, '/');
463185029Spjd    if (pslash != NULL) {
464185029Spjd      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
465185029Spjd    }
466185029Spjd    Arguments::set_dll_dir(buf);
467185029Spjd
468185029Spjd    if (pslash != NULL) {
469185029Spjd      pslash = strrchr(buf, '/');
470185029Spjd      if (pslash != NULL) {
471185029Spjd        *pslash = '\0';          // Get rid of /lib.
472185029Spjd      }
473185029Spjd    }
474185029Spjd    Arguments::set_java_home(buf);
475185029Spjd    set_boot_path('/', ':');
476185029Spjd  }
477185029Spjd
478185029Spjd  // Where to look for native libraries.
479185029Spjd  //
480185029Spjd  // Note: Due to a legacy implementation, most of the library path
481239774Smm  // is set in the launcher. This was to accomodate linking restrictions
482185029Spjd  // on legacy Bsd implementations (which are no longer supported).
483185029Spjd  // Eventually, all the library path setting will be done here.
484185029Spjd  //
485185029Spjd  // However, to prevent the proliferation of improperly built native
486185029Spjd  // libraries, the new path component /usr/java/packages is added here.
487185029Spjd  // Eventually, all the library path setting will be done here.
488185029Spjd  {
489185029Spjd    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
490185029Spjd    // should always exist (until the legacy problem cited above is
491185029Spjd    // addressed).
492185029Spjd    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
493185029Spjd    // can specify a directory inside an app wrapper
494185029Spjd    const char *l = ::getenv("JAVA_LIBRARY_PATH");
495185029Spjd    const char *l_colon = ":";
496185029Spjd    if (l == NULL) { l = ""; l_colon = ""; }
497185029Spjd
498185029Spjd    const char *v = ::getenv("DYLD_LIBRARY_PATH");
499185029Spjd    const char *v_colon = ":";
500185029Spjd    if (v == NULL) { v = ""; v_colon = ""; }
501185029Spjd
502185029Spjd    // Apple's Java6 has "." at the beginning of java.library.path.
503185029Spjd    // OpenJDK on Windows has "." at the end of java.library.path.
504185029Spjd    // OpenJDK on Linux and Solaris don't have "." in java.library.path
505219089Spjd    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
506219089Spjd    // "." is appended to the end of java.library.path. Yes, this
507219089Spjd    // could cause a change in behavior, but Apple's Java6 behavior
508219089Spjd    // can be achieved by putting "." at the beginning of the
509219089Spjd    // JAVA_LIBRARY_PATH environment variable.
510219089Spjd    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
511219089Spjd                                                     strlen(v) + 1 + strlen(l) + 1 +
512219089Spjd                                                     system_ext_size + 3,
513219089Spjd                                                     mtInternal);
514185029Spjd    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
515185029Spjd            v, v_colon, l, l_colon, user_home_dir);
516185029Spjd    Arguments::set_library_path(ld_library_path);
517185029Spjd    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
518185029Spjd  }
519185029Spjd
520185029Spjd  // Extensions directories.
521185029Spjd  //
522185029Spjd  // Note that the space for the colon and the trailing null are provided
523185029Spjd  // by the nulls included by the sizeof operator (so actually one byte more
524185029Spjd  // than necessary is allocated).
525185029Spjd  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
526185029Spjd          user_home_dir, Arguments::get_java_home());
527185029Spjd  Arguments::set_ext_dirs(buf);
528185029Spjd
529185029Spjd  // Endorsed standards default directory.
530185029Spjd  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
531185029Spjd  Arguments::set_endorsed_dirs(buf);
532185029Spjd
533185029Spjd  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
534185029Spjd
535185029Spjd#undef SYS_EXTENSIONS_DIR
536219089Spjd#undef SYS_EXTENSIONS_DIRS
537219089Spjd
538239774Smm#endif // __APPLE__
539219089Spjd
540219089Spjd#undef SYS_EXT_DIR
541219089Spjd#undef EXTENSIONS_DIR
542219089Spjd#undef ENDORSED_DIR
543219089Spjd}
544219089Spjd
545219089Spjd////////////////////////////////////////////////////////////////////////////////
546219089Spjd// breakpoint support
547219089Spjd
548219089Spjdvoid os::breakpoint() {
549219089Spjd  BREAKPOINT;
550219089Spjd}
551219089Spjd
552185029Spjdextern "C" void breakpoint() {
553185029Spjd  // use debugger to set breakpoint here
554185029Spjd}
555185029Spjd
556185029Spjd////////////////////////////////////////////////////////////////////////////////
557185029Spjd// signal support
558185029Spjd
559185029Spjddebug_only(static bool signal_sets_initialized = false);
560185029Spjdstatic sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
561185029Spjd
562185029Spjdbool os::Bsd::is_sig_ignored(int sig) {
563185029Spjd      struct sigaction oact;
564219089Spjd      sigaction(sig, (struct sigaction*)NULL, &oact);
565219089Spjd      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
566185029Spjd                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
567185029Spjd      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
568185029Spjd           return true;
569185029Spjd      else
570185029Spjd           return false;
571185029Spjd}
572219089Spjd
573219089Spjdvoid os::Bsd::signal_sets_init() {
574219089Spjd  // Should also have an assertion stating we are still single-threaded.
575185029Spjd  assert(!signal_sets_initialized, "Already initialized");
576185029Spjd  // Fill in signals that are necessarily unblocked for all threads in
577185029Spjd  // the VM. Currently, we unblock the following signals:
578185029Spjd  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
579185029Spjd  //                         by -Xrs (=ReduceSignalUsage));
580185029Spjd  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
581185029Spjd  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
582185029Spjd  // the dispositions or masks wrt these signals.
583185029Spjd  // Programs embedding the VM that want to use the above signals for their
584185029Spjd  // own purposes must, at this time, use the "-Xrs" option to prevent
585185029Spjd  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
586185029Spjd  // (See bug 4345157, and other related bugs).
587185029Spjd  // In reality, though, unblocking these signals is really a nop, since
588185029Spjd  // these signals are not blocked by default.
589185029Spjd  sigemptyset(&unblocked_sigs);
590185029Spjd  sigemptyset(&allowdebug_blocked_sigs);
591185029Spjd  sigaddset(&unblocked_sigs, SIGILL);
592185029Spjd  sigaddset(&unblocked_sigs, SIGSEGV);
593185029Spjd  sigaddset(&unblocked_sigs, SIGBUS);
594185029Spjd  sigaddset(&unblocked_sigs, SIGFPE);
595185029Spjd  sigaddset(&unblocked_sigs, SR_signum);
596185029Spjd
597185029Spjd  if (!ReduceSignalUsage) {
598185029Spjd   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
599185029Spjd      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
600185029Spjd      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
601185029Spjd   }
602185029Spjd   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
603185029Spjd      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
604185029Spjd      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
605185029Spjd   }
606219089Spjd   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
607247265Smm      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
608185029Spjd      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
609185029Spjd   }
610185029Spjd  }
611185029Spjd  // Fill in signals that are blocked by all but the VM thread.
612219089Spjd  sigemptyset(&vm_sigs);
613219089Spjd  if (!ReduceSignalUsage)
614219089Spjd    sigaddset(&vm_sigs, BREAK_SIGNAL);
615219089Spjd  debug_only(signal_sets_initialized = true);
616219089Spjd
617219089Spjd}
618219089Spjd
619219089Spjd// These are signals that are unblocked while a thread is running Java.
620219089Spjd// (For some reason, they get blocked by default.)
621219089Spjdsigset_t* os::Bsd::unblocked_signals() {
622219089Spjd  assert(signal_sets_initialized, "Not initialized");
623219089Spjd  return &unblocked_sigs;
624185029Spjd}
625185029Spjd
626185029Spjd// These are the signals that are blocked while a (non-VM) thread is
627185029Spjd// running Java. Only the VM thread handles these signals.
628185029Spjdsigset_t* os::Bsd::vm_signals() {
629185029Spjd  assert(signal_sets_initialized, "Not initialized");
630185029Spjd  return &vm_sigs;
631185029Spjd}
632185029Spjd
633247265Smm// These are signals that are blocked during cond_wait to allow debugger in
634247265Smmsigset_t* os::Bsd::allowdebug_blocked_signals() {
635247265Smm  assert(signal_sets_initialized, "Not initialized");
636247265Smm  return &allowdebug_blocked_sigs;
637247265Smm}
638247265Smm
639247265Smmvoid os::Bsd::hotspot_sigmask(Thread* thread) {
640247265Smm
641247265Smm  //Save caller's signal mask before setting VM signal mask
642185029Spjd  sigset_t caller_sigmask;
643185029Spjd  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
644185029Spjd
645185029Spjd  OSThread* osthread = thread->osthread();
646185029Spjd  osthread->set_caller_sigmask(caller_sigmask);
647185029Spjd
648185029Spjd  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
649219089Spjd
650219089Spjd  if (!ReduceSignalUsage) {
651185029Spjd    if (thread->is_VM_thread()) {
652185029Spjd      // Only the VM thread handles BREAK_SIGNAL ...
653185029Spjd      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
654185029Spjd    } else {
655185029Spjd      // ... all other threads block BREAK_SIGNAL
656185029Spjd      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
657185029Spjd    }
658185029Spjd  }
659185029Spjd}
660185029Spjd
661185029Spjd
662185029Spjd//////////////////////////////////////////////////////////////////////////////
663185029Spjd// create new thread
664185029Spjd
665185029Spjd// check if it's safe to start a new thread
666185029Spjdstatic bool _thread_safety_check(Thread* thread) {
667213198Smm  return true;
668213198Smm}
669213198Smm
670219089Spjd#ifdef __APPLE__
671219089Spjd// library handle for calling objc_registerThreadWithCollector()
672219089Spjd// without static linking to the libobjc library
673219089Spjd#define OBJC_LIB "/usr/lib/libobjc.dylib"
674219089Spjd#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
675219089Spjdtypedef void (*objc_registerThreadWithCollector_t)();
676219089Spjdextern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
677219089Spjdobjc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
678219089Spjd#endif
679219089Spjd
680219089Spjd#ifdef __APPLE__
681219089Spjdstatic uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
682185029Spjd  // Additional thread_id used to correlate threads in SA
683185029Spjd  thread_identifier_info_data_t     m_ident_info;
684185029Spjd  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
685219089Spjd
686219089Spjd  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
687219089Spjd              (thread_info_t) &m_ident_info, &count);
688219089Spjd
689219089Spjd  return m_ident_info.thread_id;
690219089Spjd}
691185029Spjd#endif
692185029Spjd
693185029Spjd// Thread start routine for all newly created threads
694185029Spjdstatic void *java_start(Thread *thread) {
695185029Spjd  // Try to randomize the cache line index of hot stack frames.
696185029Spjd  // This helps when threads of the same stack traces evict each other's
697185029Spjd  // cache lines. The threads can be either from the same JVM instance, or
698185029Spjd  // from different JVM instances. The benefit is especially true for
699185029Spjd  // processors with hyperthreading technology.
700185029Spjd  static int counter = 0;
701185029Spjd  int pid = os::current_process_id();
702185029Spjd  alloca(((pid ^ counter++) & 7) * 128);
703219089Spjd
704219089Spjd  ThreadLocalStorage::set_thread(thread);
705219089Spjd
706247265Smm  OSThread* osthread = thread->osthread();
707219089Spjd  Monitor* sync = osthread->startThread_lock();
708185029Spjd
709185029Spjd  // non floating stack BsdThreads needs extra check, see above
710185029Spjd  if (!_thread_safety_check(thread)) {
711185029Spjd    // notify parent thread
712185029Spjd    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
713185029Spjd    osthread->set_state(ZOMBIE);
714219089Spjd    sync->notify_all();
715219089Spjd    return NULL;
716219089Spjd  }
717219089Spjd
718219089Spjd  osthread->set_thread_id(os::Bsd::gettid());
719219089Spjd
720219089Spjd#ifdef __APPLE__
721219089Spjd  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
722219089Spjd  guarantee(unique_thread_id != 0, "unique thread id was not found");
723219089Spjd  osthread->set_unique_thread_id(unique_thread_id);
724219089Spjd#endif
725219089Spjd  // initialize signal mask for this thread
726219089Spjd  os::Bsd::hotspot_sigmask(thread);
727219089Spjd
728219089Spjd  // initialize floating point control register
729219089Spjd  os::Bsd::init_thread_fpu_state();
730219089Spjd
731219089Spjd#ifdef __APPLE__
732219089Spjd  // register thread with objc gc
733219089Spjd  if (objc_registerThreadWithCollectorFunction != NULL) {
734219089Spjd    objc_registerThreadWithCollectorFunction();
735219089Spjd  }
736219089Spjd#endif
737219089Spjd
738219089Spjd  // handshaking with parent thread
739219089Spjd  {
740219089Spjd    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
741219089Spjd
742219089Spjd    // notify parent thread
743185029Spjd    osthread->set_state(INITIALIZED);
744185029Spjd    sync->notify_all();
745185029Spjd
746185029Spjd    // wait until os::start_thread()
747185029Spjd    while (osthread->get_state() == INITIALIZED) {
748185029Spjd      sync->wait(Mutex::_no_safepoint_check_flag);
749185029Spjd    }
750185029Spjd  }
751185029Spjd
752185029Spjd  // call one more level start routine
753185029Spjd  thread->run();
754185029Spjd
755185029Spjd  return 0;
756185029Spjd}
757185029Spjd
758185029Spjdbool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
759185029Spjd  assert(thread->osthread() == NULL, "caller responsible");
760185029Spjd
761185029Spjd  // Allocate the OSThread object
762185029Spjd  OSThread* osthread = new OSThread(NULL, NULL);
763185029Spjd  if (osthread == NULL) {
764185029Spjd    return false;
765185029Spjd  }
766185029Spjd
767185029Spjd  // set the correct thread state
768185029Spjd  osthread->set_thread_type(thr_type);
769185029Spjd
770185029Spjd  // Initial state is ALLOCATED but not INITIALIZED
771185029Spjd  osthread->set_state(ALLOCATED);
772185029Spjd
773185029Spjd  thread->set_osthread(osthread);
774185029Spjd
775185029Spjd  // init thread attributes
776185029Spjd  pthread_attr_t attr;
777185029Spjd  pthread_attr_init(&attr);
778185029Spjd  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
779185029Spjd
780247265Smm  // stack size
781247265Smm  if (os::Bsd::supports_variable_stack_size()) {
782247265Smm    // calculate stack size if it's not specified by caller
783185029Spjd    if (stack_size == 0) {
784185029Spjd      stack_size = os::Bsd::default_stack_size(thr_type);
785185029Spjd
786185029Spjd      switch (thr_type) {
787185029Spjd      case os::java_thread:
788247265Smm        // Java threads use ThreadStackSize which default value can be
789185029Spjd        // changed with the flag -Xss
790185029Spjd        assert(JavaThread::stack_size_at_create() > 0, "this should be set");
791185029Spjd        stack_size = JavaThread::stack_size_at_create();
792185029Spjd        break;
793185029Spjd      case os::compiler_thread:
794185029Spjd        if (CompilerThreadStackSize > 0) {
795185029Spjd          stack_size = (size_t)(CompilerThreadStackSize * K);
796185029Spjd          break;
797185029Spjd        } // else fall through:
798185029Spjd          // use VMThreadStackSize if CompilerThreadStackSize is not defined
799185029Spjd      case os::vm_thread:
800185029Spjd      case os::pgc_thread:
801185029Spjd      case os::cgc_thread:
802185029Spjd      case os::watcher_thread:
803185029Spjd        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
804185029Spjd        break;
805185029Spjd      }
806185029Spjd    }
807185029Spjd
808185029Spjd    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
809185029Spjd    pthread_attr_setstacksize(&attr, stack_size);
810185029Spjd  } else {
811185029Spjd    // let pthread_create() pick the default value.
812185029Spjd  }
813185029Spjd
814185029Spjd  ThreadState state;
815185029Spjd
816185029Spjd  {
817185029Spjd    pthread_t tid;
818185029Spjd    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
819185029Spjd
820247265Smm    pthread_attr_destroy(&attr);
821185029Spjd
822185029Spjd    if (ret != 0) {
823185029Spjd      if (PrintMiscellaneous && (Verbose || WizardMode)) {
824185029Spjd        perror("pthread_create()");
825185029Spjd      }
826185029Spjd      // Need to clean up stuff we've allocated so far
827185029Spjd      thread->set_osthread(NULL);
828185029Spjd      delete osthread;
829185029Spjd      return false;
830185029Spjd    }
831185029Spjd
832185029Spjd    // Store pthread info into the OSThread
833185029Spjd    osthread->set_pthread_id(tid);
834185029Spjd
835185029Spjd    // Wait until child thread is either initialized or aborted
836185029Spjd    {
837185029Spjd      Monitor* sync_with_child = osthread->startThread_lock();
838185029Spjd      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
839185029Spjd      while ((state = osthread->get_state()) == ALLOCATED) {
840185029Spjd        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
841185029Spjd      }
842185029Spjd    }
843219089Spjd
844185029Spjd  }
845185029Spjd
846185029Spjd  // Aborted due to thread limit being reached
847185029Spjd  if (state == ZOMBIE) {
848219089Spjd      thread->set_osthread(NULL);
849219089Spjd      delete osthread;
850219089Spjd      return false;
851219089Spjd  }
852185029Spjd
853219089Spjd  // The thread is returned suspended (in state INITIALIZED),
854247265Smm  // and is started higher up in the call chain
855185029Spjd  assert(state == INITIALIZED, "race condition");
856185029Spjd  return true;
857185029Spjd}
858185029Spjd
859185029Spjd/////////////////////////////////////////////////////////////////////////////
860185029Spjd// attach existing thread
861185029Spjd
862185029Spjd// bootstrap the main thread
863185029Spjdbool os::create_main_thread(JavaThread* thread) {
864185029Spjd  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
865185029Spjd  return create_attached_thread(thread);
866185029Spjd}
867185029Spjd
868185029Spjdbool os::create_attached_thread(JavaThread* thread) {
869185029Spjd#ifdef ASSERT
870185029Spjd    thread->verify_not_published();
871185029Spjd#endif
872185029Spjd
873185029Spjd  // Allocate the OSThread object
874185029Spjd  OSThread* osthread = new OSThread(NULL, NULL);
875185029Spjd
876185029Spjd  if (osthread == NULL) {
877247265Smm    return false;
878185029Spjd  }
879185029Spjd
880185029Spjd  osthread->set_thread_id(os::Bsd::gettid());
881185029Spjd
882247265Smm  // Store pthread info into the OSThread
883219089Spjd#ifdef __APPLE__
884247265Smm  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
885219089Spjd  guarantee(unique_thread_id != 0, "just checking");
886219089Spjd  osthread->set_unique_thread_id(unique_thread_id);
887219089Spjd#endif
888219089Spjd  osthread->set_pthread_id(::pthread_self());
889219089Spjd
890219089Spjd  // initialize floating point control register
891219089Spjd  os::Bsd::init_thread_fpu_state();
892219089Spjd
893219089Spjd  // Initial thread state is RUNNABLE
894219089Spjd  osthread->set_state(RUNNABLE);
895219089Spjd
896219089Spjd  thread->set_osthread(osthread);
897219089Spjd
898219089Spjd  // initialize signal mask for this thread
899219089Spjd  // and save the caller's signal mask
900219089Spjd  os::Bsd::hotspot_sigmask(thread);
901219089Spjd
902247265Smm  return true;
903219089Spjd}
904219089Spjd
905219089Spjdvoid os::pd_start_thread(Thread* thread) {
906219089Spjd  OSThread * osthread = thread->osthread();
907219089Spjd  assert(osthread->get_state() != INITIALIZED, "just checking");
908219089Spjd  Monitor* sync_with_child = osthread->startThread_lock();
909219089Spjd  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
910219089Spjd  sync_with_child->notify();
911219089Spjd}
912219089Spjd
913219089Spjd// Free Bsd resources related to the OSThread
914219089Spjdvoid os::free_thread(OSThread* osthread) {
915219089Spjd  assert(osthread != NULL, "osthread not set");
916219089Spjd
917219089Spjd  if (Thread::current()->osthread() == osthread) {
918219089Spjd    // Restore caller's signal mask
919219089Spjd    sigset_t sigmask = osthread->caller_sigmask();
920219089Spjd    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
921219089Spjd   }
922219089Spjd
923185029Spjd  delete osthread;
924185029Spjd}
925185029Spjd
926219089Spjd//////////////////////////////////////////////////////////////////////////////
927219089Spjd// thread local storage
928185029Spjd
929185029Spjd// Restore the thread pointer if the destructor is called. This is in case
930185029Spjd// someone from JNI code sets up a destructor with pthread_key_create to run
931185029Spjd// detachCurrentThread on thread death. Unless we restore the thread pointer we
932185029Spjd// will hang or crash. When detachCurrentThread is called the key will be set
933185029Spjd// to null and we will not be called again. If detachCurrentThread is never
934185029Spjd// called we could loop forever depending on the pthread implementation.
935185029Spjdstatic void restore_thread_pointer(void* p) {
936185029Spjd  Thread* thread = (Thread*) p;
937185029Spjd  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
938185029Spjd}
939185029Spjd
940185029Spjdint os::allocate_thread_local_storage() {
941185029Spjd  pthread_key_t key;
942185029Spjd  int rslt = pthread_key_create(&key, restore_thread_pointer);
943185029Spjd  assert(rslt == 0, "cannot allocate thread local storage");
944185029Spjd  return (int)key;
945185029Spjd}
946185029Spjd
947185029Spjd// Note: This is currently not used by VM, as we don't destroy TLS key
948185029Spjd// on VM exit.
949185029Spjdvoid os::free_thread_local_storage(int index) {
950185029Spjd  int rslt = pthread_key_delete((pthread_key_t)index);
951185029Spjd  assert(rslt == 0, "invalid index");
952185029Spjd}
953185029Spjd
954185029Spjdvoid os::thread_local_storage_at_put(int index, void* value) {
955185029Spjd  int rslt = pthread_setspecific((pthread_key_t)index, value);
956247265Smm  assert(rslt == 0, "pthread_setspecific failed");
957185029Spjd}
958185029Spjd
959185029Spjdextern "C" Thread* get_thread() {
960185029Spjd  return ThreadLocalStorage::thread();
961185029Spjd}
962185029Spjd
963185029Spjd
964185029Spjd////////////////////////////////////////////////////////////////////////////////
965185029Spjd// time support
966185029Spjd
967185029Spjd// Time since start-up in seconds to a fine granularity.
968185029Spjd// Used by VMSelfDestructTimer and the MemProfiler.
969185029Spjddouble os::elapsedTime() {
970185029Spjd
971185029Spjd  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
972185029Spjd}
973185029Spjd
974185029Spjdjlong os::elapsed_counter() {
975185029Spjd  return javaTimeNanos() - initial_time_count;
976185029Spjd}
977185029Spjd
978185029Spjdjlong os::elapsed_frequency() {
979185029Spjd  return NANOSECS_PER_SEC; // nanosecond resolution
980185029Spjd}
981185029Spjd
982185029Spjdbool os::supports_vtime() { return true; }
983185029Spjdbool os::enable_vtime()   { return false; }
984185029Spjdbool os::vtime_enabled()  { return false; }
985185029Spjd
986185029Spjddouble os::elapsedVTime() {
987185029Spjd  // better than nothing, but not much
988  return elapsedTime();
989}
990
991jlong os::javaTimeMillis() {
992  timeval time;
993  int status = gettimeofday(&time, NULL);
994  assert(status != -1, "bsd error");
995  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
996}
997
998#ifndef __APPLE__
999#ifndef CLOCK_MONOTONIC
1000#define CLOCK_MONOTONIC (1)
1001#endif
1002#endif
1003
1004#ifdef __APPLE__
1005void os::Bsd::clock_init() {
1006  mach_timebase_info(&_timebase_info);
1007}
1008#else
1009void os::Bsd::clock_init() {
1010  struct timespec res;
1011  struct timespec tp;
1012  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1013      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1014    // yes, monotonic clock is supported
1015    _clock_gettime = ::clock_gettime;
1016  }
1017}
1018#endif
1019
1020
1021
1022#ifdef __APPLE__
1023
1024jlong os::javaTimeNanos() {
1025    const uint64_t tm = mach_absolute_time();
1026    const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1027    const uint64_t prev = Bsd::_max_abstime;
1028    if (now <= prev) {
1029      return prev;   // same or retrograde time;
1030    }
1031    const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1032    assert(obsv >= prev, "invariant");   // Monotonicity
1033    // If the CAS succeeded then we're done and return "now".
1034    // If the CAS failed and the observed value "obsv" is >= now then
1035    // we should return "obsv".  If the CAS failed and now > obsv > prv then
1036    // some other thread raced this thread and installed a new value, in which case
1037    // we could either (a) retry the entire operation, (b) retry trying to install now
1038    // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1039    // we might discard a higher "now" value in deference to a slightly lower but freshly
1040    // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1041    // to (a) or (b) -- and greatly reduces coherence traffic.
1042    // We might also condition (c) on the magnitude of the delta between obsv and now.
1043    // Avoiding excessive CAS operations to hot RW locations is critical.
1044    // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1045    return (prev == obsv) ? now : obsv;
1046}
1047
1048#else // __APPLE__
1049
1050jlong os::javaTimeNanos() {
1051  if (os::supports_monotonic_clock()) {
1052    struct timespec tp;
1053    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1054    assert(status == 0, "gettime error");
1055    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1056    return result;
1057  } else {
1058    timeval time;
1059    int status = gettimeofday(&time, NULL);
1060    assert(status != -1, "bsd error");
1061    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1062    return 1000 * usecs;
1063  }
1064}
1065
1066#endif // __APPLE__
1067
1068void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1069  if (os::supports_monotonic_clock()) {
1070    info_ptr->max_value = ALL_64_BITS;
1071
1072    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1073    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1074    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1075  } else {
1076    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1077    info_ptr->max_value = ALL_64_BITS;
1078
1079    // gettimeofday is a real time clock so it skips
1080    info_ptr->may_skip_backward = true;
1081    info_ptr->may_skip_forward = true;
1082  }
1083
1084  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1085}
1086
1087// Return the real, user, and system times in seconds from an
1088// arbitrary fixed point in the past.
1089bool os::getTimesSecs(double* process_real_time,
1090                      double* process_user_time,
1091                      double* process_system_time) {
1092  struct tms ticks;
1093  clock_t real_ticks = times(&ticks);
1094
1095  if (real_ticks == (clock_t) (-1)) {
1096    return false;
1097  } else {
1098    double ticks_per_second = (double) clock_tics_per_sec;
1099    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1100    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1101    *process_real_time = ((double) real_ticks) / ticks_per_second;
1102
1103    return true;
1104  }
1105}
1106
1107
1108char * os::local_time_string(char *buf, size_t buflen) {
1109  struct tm t;
1110  time_t long_time;
1111  time(&long_time);
1112  localtime_r(&long_time, &t);
1113  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1114               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1115               t.tm_hour, t.tm_min, t.tm_sec);
1116  return buf;
1117}
1118
1119struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1120  return localtime_r(clock, res);
1121}
1122
1123////////////////////////////////////////////////////////////////////////////////
1124// runtime exit support
1125
1126// Note: os::shutdown() might be called very early during initialization, or
1127// called from signal handler. Before adding something to os::shutdown(), make
1128// sure it is async-safe and can handle partially initialized VM.
1129void os::shutdown() {
1130
1131  // allow PerfMemory to attempt cleanup of any persistent resources
1132  perfMemory_exit();
1133
1134  // needs to remove object in file system
1135  AttachListener::abort();
1136
1137  // flush buffered output, finish log files
1138  ostream_abort();
1139
1140  // Check for abort hook
1141  abort_hook_t abort_hook = Arguments::abort_hook();
1142  if (abort_hook != NULL) {
1143    abort_hook();
1144  }
1145
1146}
1147
1148// Note: os::abort() might be called very early during initialization, or
1149// called from signal handler. Before adding something to os::abort(), make
1150// sure it is async-safe and can handle partially initialized VM.
1151void os::abort(bool dump_core) {
1152  os::shutdown();
1153  if (dump_core) {
1154#ifndef PRODUCT
1155    fdStream out(defaultStream::output_fd());
1156    out.print_raw("Current thread is ");
1157    char buf[16];
1158    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1159    out.print_raw_cr(buf);
1160    out.print_raw_cr("Dumping core ...");
1161#endif
1162    ::abort(); // dump core
1163  }
1164
1165  ::exit(1);
1166}
1167
1168// Die immediately, no exit hook, no abort hook, no cleanup.
1169void os::die() {
1170  // _exit() on BsdThreads only kills current thread
1171  ::abort();
1172}
1173
1174// unused on bsd for now.
1175void os::set_error_file(const char *logfile) {}
1176
1177
1178// This method is a copy of JDK's sysGetLastErrorString
1179// from src/solaris/hpi/src/system_md.c
1180
1181size_t os::lasterror(char *buf, size_t len) {
1182
1183  if (errno == 0)  return 0;
1184
1185  const char *s = ::strerror(errno);
1186  size_t n = ::strlen(s);
1187  if (n >= len) {
1188    n = len - 1;
1189  }
1190  ::strncpy(buf, s, n);
1191  buf[n] = '\0';
1192  return n;
1193}
1194
1195// Information of current thread in variety of formats
1196pid_t os::Bsd::gettid() {
1197  int retval = -1;
1198
1199#ifdef __APPLE__ //XNU kernel
1200  // despite the fact mach port is actually not a thread id use it
1201  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1202  retval = ::pthread_mach_thread_np(::pthread_self());
1203  guarantee(retval != 0, "just checking");
1204  return retval;
1205
1206#elif __FreeBSD__
1207  retval = syscall(SYS_thr_self);
1208#elif __OpenBSD__
1209  retval = syscall(SYS_getthrid);
1210#elif __NetBSD__
1211  retval = (pid_t) syscall(SYS__lwp_self);
1212#endif
1213
1214  if (retval == -1) {
1215    return getpid();
1216  }
1217}
1218
1219intx os::current_thread_id() {
1220#ifdef __APPLE__
1221  return (intx)::pthread_mach_thread_np(::pthread_self());
1222#else
1223  return (intx)::pthread_self();
1224#endif
1225}
1226
1227int os::current_process_id() {
1228
1229  // Under the old bsd thread library, bsd gives each thread
1230  // its own process id. Because of this each thread will return
1231  // a different pid if this method were to return the result
1232  // of getpid(2). Bsd provides no api that returns the pid
1233  // of the launcher thread for the vm. This implementation
1234  // returns a unique pid, the pid of the launcher thread
1235  // that starts the vm 'process'.
1236
1237  // Under the NPTL, getpid() returns the same pid as the
1238  // launcher thread rather than a unique pid per thread.
1239  // Use gettid() if you want the old pre NPTL behaviour.
1240
1241  // if you are looking for the result of a call to getpid() that
1242  // returns a unique pid for the calling thread, then look at the
1243  // OSThread::thread_id() method in osThread_bsd.hpp file
1244
1245  return (int)(_initial_pid ? _initial_pid : getpid());
1246}
1247
1248// DLL functions
1249
1250#define JNI_LIB_PREFIX "lib"
1251#ifdef __APPLE__
1252#define JNI_LIB_SUFFIX ".dylib"
1253#else
1254#define JNI_LIB_SUFFIX ".so"
1255#endif
1256
1257const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1258
1259// This must be hard coded because it's the system's temporary
1260// directory not the java application's temp directory, ala java.io.tmpdir.
1261#ifdef __APPLE__
1262// macosx has a secure per-user temporary directory
1263char temp_path_storage[PATH_MAX];
1264const char* os::get_temp_directory() {
1265  static char *temp_path = NULL;
1266  if (temp_path == NULL) {
1267    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1268    if (pathSize == 0 || pathSize > PATH_MAX) {
1269      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1270    }
1271    temp_path = temp_path_storage;
1272  }
1273  return temp_path;
1274}
1275#else /* __APPLE__ */
1276const char* os::get_temp_directory() { return "/tmp"; }
1277#endif /* __APPLE__ */
1278
1279static bool file_exists(const char* filename) {
1280  struct stat statbuf;
1281  if (filename == NULL || strlen(filename) == 0) {
1282    return false;
1283  }
1284  return os::stat(filename, &statbuf) == 0;
1285}
1286
1287bool os::dll_build_name(char* buffer, size_t buflen,
1288                        const char* pname, const char* fname) {
1289  bool retval = false;
1290  // Copied from libhpi
1291  const size_t pnamelen = pname ? strlen(pname) : 0;
1292
1293  // Return error on buffer overflow.
1294  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1295    return retval;
1296  }
1297
1298  if (pnamelen == 0) {
1299    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1300    retval = true;
1301  } else if (strchr(pname, *os::path_separator()) != NULL) {
1302    int n;
1303    char** pelements = split_path(pname, &n);
1304    if (pelements == NULL) {
1305      return false;
1306    }
1307    for (int i = 0; i < n; i++) {
1308      // Really shouldn't be NULL, but check can't hurt
1309      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1310        continue; // skip the empty path values
1311      }
1312      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1313          pelements[i], fname);
1314      if (file_exists(buffer)) {
1315        retval = true;
1316        break;
1317      }
1318    }
1319    // release the storage
1320    for (int i = 0; i < n; i++) {
1321      if (pelements[i] != NULL) {
1322        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1323      }
1324    }
1325    if (pelements != NULL) {
1326      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1327    }
1328  } else {
1329    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1330    retval = true;
1331  }
1332  return retval;
1333}
1334
1335// check if addr is inside libjvm.so
1336bool os::address_is_in_vm(address addr) {
1337  static address libjvm_base_addr;
1338  Dl_info dlinfo;
1339
1340  if (libjvm_base_addr == NULL) {
1341    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1342      libjvm_base_addr = (address)dlinfo.dli_fbase;
1343    }
1344    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1345  }
1346
1347  if (dladdr((void *)addr, &dlinfo) != 0) {
1348    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1349  }
1350
1351  return false;
1352}
1353
1354
1355#define MACH_MAXSYMLEN 256
1356
1357bool os::dll_address_to_function_name(address addr, char *buf,
1358                                      int buflen, int *offset) {
1359  // buf is not optional, but offset is optional
1360  assert(buf != NULL, "sanity check");
1361
1362  Dl_info dlinfo;
1363  char localbuf[MACH_MAXSYMLEN];
1364
1365  if (dladdr((void*)addr, &dlinfo) != 0) {
1366    // see if we have a matching symbol
1367    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1368      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1369        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1370      }
1371      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1372      return true;
1373    }
1374    // no matching symbol so try for just file info
1375    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1376      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1377                          buf, buflen, offset, dlinfo.dli_fname)) {
1378         return true;
1379      }
1380    }
1381
1382    // Handle non-dynamic manually:
1383    if (dlinfo.dli_fbase != NULL &&
1384        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1385                        dlinfo.dli_fbase)) {
1386      if (!Decoder::demangle(localbuf, buf, buflen)) {
1387        jio_snprintf(buf, buflen, "%s", localbuf);
1388      }
1389      return true;
1390    }
1391  }
1392  buf[0] = '\0';
1393  if (offset != NULL) *offset = -1;
1394  return false;
1395}
1396
1397// ported from solaris version
1398bool os::dll_address_to_library_name(address addr, char* buf,
1399                                     int buflen, int* offset) {
1400  // buf is not optional, but offset is optional
1401  assert(buf != NULL, "sanity check");
1402
1403  Dl_info dlinfo;
1404
1405  if (dladdr((void*)addr, &dlinfo) != 0) {
1406    if (dlinfo.dli_fname != NULL) {
1407      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1408    }
1409    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1410      *offset = addr - (address)dlinfo.dli_fbase;
1411    }
1412    return true;
1413  }
1414
1415  buf[0] = '\0';
1416  if (offset) *offset = -1;
1417  return false;
1418}
1419
1420// Loads .dll/.so and
1421// in case of error it checks if .dll/.so was built for the
1422// same architecture as Hotspot is running on
1423
1424#ifdef __APPLE__
1425void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1426  void * result= ::dlopen(filename, RTLD_LAZY);
1427  if (result != NULL) {
1428    // Successful loading
1429    return result;
1430  }
1431
1432  // Read system error message into ebuf
1433  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1434  ebuf[ebuflen-1]='\0';
1435
1436  return NULL;
1437}
1438#else
1439void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1440{
1441  void * result= ::dlopen(filename, RTLD_LAZY);
1442  if (result != NULL) {
1443    // Successful loading
1444    return result;
1445  }
1446
1447  Elf32_Ehdr elf_head;
1448
1449  // Read system error message into ebuf
1450  // It may or may not be overwritten below
1451  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1452  ebuf[ebuflen-1]='\0';
1453  int diag_msg_max_length=ebuflen-strlen(ebuf);
1454  char* diag_msg_buf=ebuf+strlen(ebuf);
1455
1456  if (diag_msg_max_length==0) {
1457    // No more space in ebuf for additional diagnostics message
1458    return NULL;
1459  }
1460
1461
1462  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1463
1464  if (file_descriptor < 0) {
1465    // Can't open library, report dlerror() message
1466    return NULL;
1467  }
1468
1469  bool failed_to_read_elf_head=
1470    (sizeof(elf_head)!=
1471        (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1472
1473  ::close(file_descriptor);
1474  if (failed_to_read_elf_head) {
1475    // file i/o error - report dlerror() msg
1476    return NULL;
1477  }
1478
1479  typedef struct {
1480    Elf32_Half  code;         // Actual value as defined in elf.h
1481    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1482    char        elf_class;    // 32 or 64 bit
1483    char        endianess;    // MSB or LSB
1484    char*       name;         // String representation
1485  } arch_t;
1486
1487  #ifndef EM_486
1488  #define EM_486          6               /* Intel 80486 */
1489  #endif
1490
1491  #ifndef EM_MIPS_RS3_LE
1492  #define EM_MIPS_RS3_LE  10              /* MIPS */
1493  #endif
1494
1495  #ifndef EM_PPC64
1496  #define EM_PPC64        21              /* PowerPC64 */
1497  #endif
1498
1499  #ifndef EM_S390
1500  #define EM_S390         22              /* IBM System/390 */
1501  #endif
1502
1503  #ifndef EM_IA_64
1504  #define EM_IA_64        50              /* HP/Intel IA-64 */
1505  #endif
1506
1507  #ifndef EM_X86_64
1508  #define EM_X86_64       62              /* AMD x86-64 */
1509  #endif
1510
1511  static const arch_t arch_array[]={
1512    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1513    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1514    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1515    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1516    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1517    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1518    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1519    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1520    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1521    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1522    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1523    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1524    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1525    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1526    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1527    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1528  };
1529
1530  #if  (defined IA32)
1531    static  Elf32_Half running_arch_code=EM_386;
1532  #elif   (defined AMD64)
1533    static  Elf32_Half running_arch_code=EM_X86_64;
1534  #elif  (defined IA64)
1535    static  Elf32_Half running_arch_code=EM_IA_64;
1536  #elif  (defined __sparc) && (defined _LP64)
1537    static  Elf32_Half running_arch_code=EM_SPARCV9;
1538  #elif  (defined __sparc) && (!defined _LP64)
1539    static  Elf32_Half running_arch_code=EM_SPARC;
1540  #elif  (defined __powerpc64__)
1541    static  Elf32_Half running_arch_code=EM_PPC64;
1542  #elif  (defined __powerpc__)
1543    static  Elf32_Half running_arch_code=EM_PPC;
1544  #elif  (defined ARM)
1545    static  Elf32_Half running_arch_code=EM_ARM;
1546  #elif  (defined S390)
1547    static  Elf32_Half running_arch_code=EM_S390;
1548  #elif  (defined ALPHA)
1549    static  Elf32_Half running_arch_code=EM_ALPHA;
1550  #elif  (defined MIPSEL)
1551    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1552  #elif  (defined PARISC)
1553    static  Elf32_Half running_arch_code=EM_PARISC;
1554  #elif  (defined MIPS)
1555    static  Elf32_Half running_arch_code=EM_MIPS;
1556  #elif  (defined M68K)
1557    static  Elf32_Half running_arch_code=EM_68K;
1558  #else
1559    #error Method os::dll_load requires that one of following is defined:\
1560         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1561  #endif
1562
1563  // Identify compatability class for VM's architecture and library's architecture
1564  // Obtain string descriptions for architectures
1565
1566  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1567  int running_arch_index=-1;
1568
1569  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1570    if (running_arch_code == arch_array[i].code) {
1571      running_arch_index    = i;
1572    }
1573    if (lib_arch.code == arch_array[i].code) {
1574      lib_arch.compat_class = arch_array[i].compat_class;
1575      lib_arch.name         = arch_array[i].name;
1576    }
1577  }
1578
1579  assert(running_arch_index != -1,
1580    "Didn't find running architecture code (running_arch_code) in arch_array");
1581  if (running_arch_index == -1) {
1582    // Even though running architecture detection failed
1583    // we may still continue with reporting dlerror() message
1584    return NULL;
1585  }
1586
1587  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1588    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1589    return NULL;
1590  }
1591
1592#ifndef S390
1593  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1594    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1595    return NULL;
1596  }
1597#endif // !S390
1598
1599  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1600    if (lib_arch.name!=NULL) {
1601      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1602        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1603        lib_arch.name, arch_array[running_arch_index].name);
1604    } else {
1605      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1606      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1607        lib_arch.code,
1608        arch_array[running_arch_index].name);
1609    }
1610  }
1611
1612  return NULL;
1613}
1614#endif /* !__APPLE__ */
1615
1616void* os::get_default_process_handle() {
1617#ifdef __APPLE__
1618  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1619  // to avoid finding unexpected symbols on second (or later)
1620  // loads of a library.
1621  return (void*)::dlopen(NULL, RTLD_FIRST);
1622#else
1623  return (void*)::dlopen(NULL, RTLD_LAZY);
1624#endif
1625}
1626
1627// XXX: Do we need a lock around this as per Linux?
1628void* os::dll_lookup(void* handle, const char* name) {
1629  return dlsym(handle, name);
1630}
1631
1632
1633static bool _print_ascii_file(const char* filename, outputStream* st) {
1634  int fd = ::open(filename, O_RDONLY);
1635  if (fd == -1) {
1636     return false;
1637  }
1638
1639  char buf[32];
1640  int bytes;
1641  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1642    st->print_raw(buf, bytes);
1643  }
1644
1645  ::close(fd);
1646
1647  return true;
1648}
1649
1650void os::print_dll_info(outputStream *st) {
1651  st->print_cr("Dynamic libraries:");
1652#ifdef RTLD_DI_LINKMAP
1653  Dl_info dli;
1654  void *handle;
1655  Link_map *map;
1656  Link_map *p;
1657
1658  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1659      dli.dli_fname == NULL) {
1660    st->print_cr("Error: Cannot print dynamic libraries.");
1661    return;
1662  }
1663  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1664  if (handle == NULL) {
1665    st->print_cr("Error: Cannot print dynamic libraries.");
1666    return;
1667  }
1668  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1669  if (map == NULL) {
1670    st->print_cr("Error: Cannot print dynamic libraries.");
1671    return;
1672  }
1673
1674  while (map->l_prev != NULL)
1675    map = map->l_prev;
1676
1677  while (map != NULL) {
1678    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1679    map = map->l_next;
1680  }
1681
1682  dlclose(handle);
1683#elif defined(__APPLE__)
1684  uint32_t count;
1685  uint32_t i;
1686
1687  count = _dyld_image_count();
1688  for (i = 1; i < count; i++) {
1689    const char *name = _dyld_get_image_name(i);
1690    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1691    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1692  }
1693#else
1694  st->print_cr("Error: Cannot print dynamic libraries.");
1695#endif
1696}
1697
1698void os::print_os_info_brief(outputStream* st) {
1699  st->print("Bsd");
1700
1701  os::Posix::print_uname_info(st);
1702}
1703
1704void os::print_os_info(outputStream* st) {
1705  st->print("OS:");
1706  st->print("Bsd");
1707
1708  os::Posix::print_uname_info(st);
1709
1710  os::Posix::print_rlimit_info(st);
1711
1712  os::Posix::print_load_average(st);
1713}
1714
1715void os::pd_print_cpu_info(outputStream* st) {
1716  // Nothing to do for now.
1717}
1718
1719void os::print_memory_info(outputStream* st) {
1720
1721  st->print("Memory:");
1722  st->print(" %dk page", os::vm_page_size()>>10);
1723
1724  st->print(", physical " UINT64_FORMAT "k",
1725            os::physical_memory() >> 10);
1726  st->print("(" UINT64_FORMAT "k free)",
1727            os::available_memory() >> 10);
1728  st->cr();
1729
1730  // meminfo
1731  st->print("\n/proc/meminfo:\n");
1732  _print_ascii_file("/proc/meminfo", st);
1733  st->cr();
1734}
1735
1736void os::print_siginfo(outputStream* st, void* siginfo) {
1737  const siginfo_t* si = (const siginfo_t*)siginfo;
1738
1739  os::Posix::print_siginfo_brief(st, si);
1740
1741  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1742      UseSharedSpaces) {
1743    FileMapInfo* mapinfo = FileMapInfo::current_info();
1744    if (mapinfo->is_in_shared_space(si->si_addr)) {
1745      st->print("\n\nError accessing class data sharing archive."   \
1746                " Mapped file inaccessible during execution, "      \
1747                " possible disk/network problem.");
1748    }
1749  }
1750  st->cr();
1751}
1752
1753
1754static void print_signal_handler(outputStream* st, int sig,
1755                                 char* buf, size_t buflen);
1756
1757void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1758  st->print_cr("Signal Handlers:");
1759  print_signal_handler(st, SIGSEGV, buf, buflen);
1760  print_signal_handler(st, SIGBUS , buf, buflen);
1761  print_signal_handler(st, SIGFPE , buf, buflen);
1762  print_signal_handler(st, SIGPIPE, buf, buflen);
1763  print_signal_handler(st, SIGXFSZ, buf, buflen);
1764  print_signal_handler(st, SIGILL , buf, buflen);
1765  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1766  print_signal_handler(st, SR_signum, buf, buflen);
1767  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1768  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1769  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1770  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1771}
1772
1773static char saved_jvm_path[MAXPATHLEN] = {0};
1774
1775// Find the full path to the current module, libjvm
1776void os::jvm_path(char *buf, jint buflen) {
1777  // Error checking.
1778  if (buflen < MAXPATHLEN) {
1779    assert(false, "must use a large-enough buffer");
1780    buf[0] = '\0';
1781    return;
1782  }
1783  // Lazy resolve the path to current module.
1784  if (saved_jvm_path[0] != 0) {
1785    strcpy(buf, saved_jvm_path);
1786    return;
1787  }
1788
1789  char dli_fname[MAXPATHLEN];
1790  bool ret = dll_address_to_library_name(
1791                CAST_FROM_FN_PTR(address, os::jvm_path),
1792                dli_fname, sizeof(dli_fname), NULL);
1793  assert(ret, "cannot locate libjvm");
1794  char *rp = NULL;
1795  if (ret && dli_fname[0] != '\0') {
1796    rp = realpath(dli_fname, buf);
1797  }
1798  if (rp == NULL)
1799    return;
1800
1801  if (Arguments::sun_java_launcher_is_altjvm()) {
1802    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1803    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1804    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1805    // appears at the right place in the string, then assume we are
1806    // installed in a JDK and we're done. Otherwise, check for a
1807    // JAVA_HOME environment variable and construct a path to the JVM
1808    // being overridden.
1809
1810    const char *p = buf + strlen(buf) - 1;
1811    for (int count = 0; p > buf && count < 5; ++count) {
1812      for (--p; p > buf && *p != '/'; --p)
1813        /* empty */ ;
1814    }
1815
1816    if (strncmp(p, "/jre/lib/", 9) != 0) {
1817      // Look for JAVA_HOME in the environment.
1818      char* java_home_var = ::getenv("JAVA_HOME");
1819      if (java_home_var != NULL && java_home_var[0] != 0) {
1820        char* jrelib_p;
1821        int len;
1822
1823        // Check the current module name "libjvm"
1824        p = strrchr(buf, '/');
1825        assert(strstr(p, "/libjvm") == p, "invalid library name");
1826
1827        rp = realpath(java_home_var, buf);
1828        if (rp == NULL)
1829          return;
1830
1831        // determine if this is a legacy image or modules image
1832        // modules image doesn't have "jre" subdirectory
1833        len = strlen(buf);
1834        jrelib_p = buf + len;
1835
1836        // Add the appropriate library subdir
1837        snprintf(jrelib_p, buflen-len, "/jre/lib");
1838        if (0 != access(buf, F_OK)) {
1839          snprintf(jrelib_p, buflen-len, "/lib");
1840        }
1841
1842        // Add the appropriate client or server subdir
1843        len = strlen(buf);
1844        jrelib_p = buf + len;
1845        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1846        if (0 != access(buf, F_OK)) {
1847          snprintf(jrelib_p, buflen-len, "%s", "");
1848        }
1849
1850        // If the path exists within JAVA_HOME, add the JVM library name
1851        // to complete the path to JVM being overridden.  Otherwise fallback
1852        // to the path to the current library.
1853        if (0 == access(buf, F_OK)) {
1854          // Use current module name "libjvm"
1855          len = strlen(buf);
1856          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1857        } else {
1858          // Fall back to path of current library
1859          rp = realpath(dli_fname, buf);
1860          if (rp == NULL)
1861            return;
1862        }
1863      }
1864    }
1865  }
1866
1867  strcpy(saved_jvm_path, buf);
1868}
1869
1870void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1871  // no prefix required, not even "_"
1872}
1873
1874void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1875  // no suffix required
1876}
1877
1878////////////////////////////////////////////////////////////////////////////////
1879// sun.misc.Signal support
1880
1881static volatile jint sigint_count = 0;
1882
1883static void
1884UserHandler(int sig, void *siginfo, void *context) {
1885  // 4511530 - sem_post is serialized and handled by the manager thread. When
1886  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1887  // don't want to flood the manager thread with sem_post requests.
1888  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1889      return;
1890
1891  // Ctrl-C is pressed during error reporting, likely because the error
1892  // handler fails to abort. Let VM die immediately.
1893  if (sig == SIGINT && is_error_reported()) {
1894     os::die();
1895  }
1896
1897  os::signal_notify(sig);
1898}
1899
1900void* os::user_handler() {
1901  return CAST_FROM_FN_PTR(void*, UserHandler);
1902}
1903
1904extern "C" {
1905  typedef void (*sa_handler_t)(int);
1906  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1907}
1908
1909void* os::signal(int signal_number, void* handler) {
1910  struct sigaction sigAct, oldSigAct;
1911
1912  sigfillset(&(sigAct.sa_mask));
1913  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1914  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1915
1916  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1917    // -1 means registration failed
1918    return (void *)-1;
1919  }
1920
1921  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1922}
1923
1924void os::signal_raise(int signal_number) {
1925  ::raise(signal_number);
1926}
1927
1928/*
1929 * The following code is moved from os.cpp for making this
1930 * code platform specific, which it is by its very nature.
1931 */
1932
1933// Will be modified when max signal is changed to be dynamic
1934int os::sigexitnum_pd() {
1935  return NSIG;
1936}
1937
1938// a counter for each possible signal value
1939static volatile jint pending_signals[NSIG+1] = { 0 };
1940
1941// Bsd(POSIX) specific hand shaking semaphore.
1942#ifdef __APPLE__
1943typedef semaphore_t os_semaphore_t;
1944#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1945#define SEM_WAIT(sem)           semaphore_wait(sem)
1946#define SEM_POST(sem)           semaphore_signal(sem)
1947#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1948#else
1949typedef sem_t os_semaphore_t;
1950#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1951#define SEM_WAIT(sem)           sem_wait(&sem)
1952#define SEM_POST(sem)           sem_post(&sem)
1953#define SEM_DESTROY(sem)        sem_destroy(&sem)
1954#endif
1955
1956class Semaphore : public StackObj {
1957  public:
1958    Semaphore();
1959    ~Semaphore();
1960    void signal();
1961    void wait();
1962    bool trywait();
1963    bool timedwait(unsigned int sec, int nsec);
1964  private:
1965    jlong currenttime() const;
1966    os_semaphore_t _semaphore;
1967};
1968
1969Semaphore::Semaphore() : _semaphore(0) {
1970  SEM_INIT(_semaphore, 0);
1971}
1972
1973Semaphore::~Semaphore() {
1974  SEM_DESTROY(_semaphore);
1975}
1976
1977void Semaphore::signal() {
1978  SEM_POST(_semaphore);
1979}
1980
1981void Semaphore::wait() {
1982  SEM_WAIT(_semaphore);
1983}
1984
1985jlong Semaphore::currenttime() const {
1986    struct timeval tv;
1987    gettimeofday(&tv, NULL);
1988    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1989}
1990
1991#ifdef __APPLE__
1992bool Semaphore::trywait() {
1993  return timedwait(0, 0);
1994}
1995
1996bool Semaphore::timedwait(unsigned int sec, int nsec) {
1997  kern_return_t kr = KERN_ABORTED;
1998  mach_timespec_t waitspec;
1999  waitspec.tv_sec = sec;
2000  waitspec.tv_nsec = nsec;
2001
2002  jlong starttime = currenttime();
2003
2004  kr = semaphore_timedwait(_semaphore, waitspec);
2005  while (kr == KERN_ABORTED) {
2006    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2007
2008    jlong current = currenttime();
2009    jlong passedtime = current - starttime;
2010
2011    if (passedtime >= totalwait) {
2012      waitspec.tv_sec = 0;
2013      waitspec.tv_nsec = 0;
2014    } else {
2015      jlong waittime = totalwait - (current - starttime);
2016      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2017      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2018    }
2019
2020    kr = semaphore_timedwait(_semaphore, waitspec);
2021  }
2022
2023  return kr == KERN_SUCCESS;
2024}
2025
2026#else
2027
2028bool Semaphore::trywait() {
2029  return sem_trywait(&_semaphore) == 0;
2030}
2031
2032bool Semaphore::timedwait(unsigned int sec, int nsec) {
2033  struct timespec ts;
2034  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2035
2036  while (1) {
2037    int result = sem_timedwait(&_semaphore, &ts);
2038    if (result == 0) {
2039      return true;
2040    } else if (errno == EINTR) {
2041      continue;
2042    } else if (errno == ETIMEDOUT) {
2043      return false;
2044    } else {
2045      return false;
2046    }
2047  }
2048}
2049
2050#endif // __APPLE__
2051
2052static os_semaphore_t sig_sem;
2053static Semaphore sr_semaphore;
2054
2055void os::signal_init_pd() {
2056  // Initialize signal structures
2057  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2058
2059  // Initialize signal semaphore
2060  ::SEM_INIT(sig_sem, 0);
2061}
2062
2063void os::signal_notify(int sig) {
2064  Atomic::inc(&pending_signals[sig]);
2065  ::SEM_POST(sig_sem);
2066}
2067
2068static int check_pending_signals(bool wait) {
2069  Atomic::store(0, &sigint_count);
2070  for (;;) {
2071    for (int i = 0; i < NSIG + 1; i++) {
2072      jint n = pending_signals[i];
2073      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2074        return i;
2075      }
2076    }
2077    if (!wait) {
2078      return -1;
2079    }
2080    JavaThread *thread = JavaThread::current();
2081    ThreadBlockInVM tbivm(thread);
2082
2083    bool threadIsSuspended;
2084    do {
2085      thread->set_suspend_equivalent();
2086      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2087      ::SEM_WAIT(sig_sem);
2088
2089      // were we externally suspended while we were waiting?
2090      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2091      if (threadIsSuspended) {
2092        //
2093        // The semaphore has been incremented, but while we were waiting
2094        // another thread suspended us. We don't want to continue running
2095        // while suspended because that would surprise the thread that
2096        // suspended us.
2097        //
2098        ::SEM_POST(sig_sem);
2099
2100        thread->java_suspend_self();
2101      }
2102    } while (threadIsSuspended);
2103  }
2104}
2105
2106int os::signal_lookup() {
2107  return check_pending_signals(false);
2108}
2109
2110int os::signal_wait() {
2111  return check_pending_signals(true);
2112}
2113
2114////////////////////////////////////////////////////////////////////////////////
2115// Virtual Memory
2116
2117int os::vm_page_size() {
2118  // Seems redundant as all get out
2119  assert(os::Bsd::page_size() != -1, "must call os::init");
2120  return os::Bsd::page_size();
2121}
2122
2123// Solaris allocates memory by pages.
2124int os::vm_allocation_granularity() {
2125  assert(os::Bsd::page_size() != -1, "must call os::init");
2126  return os::Bsd::page_size();
2127}
2128
2129// Rationale behind this function:
2130//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2131//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2132//  samples for JITted code. Here we create private executable mapping over the code cache
2133//  and then we can use standard (well, almost, as mapping can change) way to provide
2134//  info for the reporting script by storing timestamp and location of symbol
2135void bsd_wrap_code(char* base, size_t size) {
2136  static volatile jint cnt = 0;
2137
2138  if (!UseOprofile) {
2139    return;
2140  }
2141
2142  char buf[PATH_MAX + 1];
2143  int num = Atomic::add(1, &cnt);
2144
2145  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2146           os::get_temp_directory(), os::current_process_id(), num);
2147  unlink(buf);
2148
2149  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2150
2151  if (fd != -1) {
2152    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2153    if (rv != (off_t)-1) {
2154      if (::write(fd, "", 1) == 1) {
2155        mmap(base, size,
2156             PROT_READ|PROT_WRITE|PROT_EXEC,
2157             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2158      }
2159    }
2160    ::close(fd);
2161    unlink(buf);
2162  }
2163}
2164
2165static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2166                                    int err) {
2167  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2168          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2169          strerror(err), err);
2170}
2171
2172// NOTE: Bsd kernel does not really reserve the pages for us.
2173//       All it does is to check if there are enough free pages
2174//       left at the time of mmap(). This could be a potential
2175//       problem.
2176bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2177  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2178#ifdef __OpenBSD__
2179  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2180  if (::mprotect(addr, size, prot) == 0) {
2181    return true;
2182  }
2183#else
2184  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2185                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2186  if (res != (uintptr_t) MAP_FAILED) {
2187    return true;
2188  }
2189#endif
2190
2191  // Warn about any commit errors we see in non-product builds just
2192  // in case mmap() doesn't work as described on the man page.
2193  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2194
2195  return false;
2196}
2197
2198bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2199                       bool exec) {
2200  // alignment_hint is ignored on this OS
2201  return pd_commit_memory(addr, size, exec);
2202}
2203
2204void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2205                                  const char* mesg) {
2206  assert(mesg != NULL, "mesg must be specified");
2207  if (!pd_commit_memory(addr, size, exec)) {
2208    // add extra info in product mode for vm_exit_out_of_memory():
2209    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2210    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2211  }
2212}
2213
2214void os::pd_commit_memory_or_exit(char* addr, size_t size,
2215                                  size_t alignment_hint, bool exec,
2216                                  const char* mesg) {
2217  // alignment_hint is ignored on this OS
2218  pd_commit_memory_or_exit(addr, size, exec, mesg);
2219}
2220
2221void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2222}
2223
2224void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2225  ::madvise(addr, bytes, MADV_DONTNEED);
2226}
2227
2228void os::numa_make_global(char *addr, size_t bytes) {
2229}
2230
2231void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2232}
2233
2234bool os::numa_topology_changed()   { return false; }
2235
2236size_t os::numa_get_groups_num() {
2237  return 1;
2238}
2239
2240int os::numa_get_group_id() {
2241  return 0;
2242}
2243
2244size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2245  if (size > 0) {
2246    ids[0] = 0;
2247    return 1;
2248  }
2249  return 0;
2250}
2251
2252bool os::get_page_info(char *start, page_info* info) {
2253  return false;
2254}
2255
2256char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2257  return end;
2258}
2259
2260
2261bool os::pd_uncommit_memory(char* addr, size_t size) {
2262#ifdef __OpenBSD__
2263  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2264  return ::mprotect(addr, size, PROT_NONE) == 0;
2265#else
2266  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2267                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2268  return res  != (uintptr_t) MAP_FAILED;
2269#endif
2270}
2271
2272bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2273  return os::commit_memory(addr, size, !ExecMem);
2274}
2275
2276// If this is a growable mapping, remove the guard pages entirely by
2277// munmap()ping them.  If not, just call uncommit_memory().
2278bool os::remove_stack_guard_pages(char* addr, size_t size) {
2279  return os::uncommit_memory(addr, size);
2280}
2281
2282static address _highest_vm_reserved_address = NULL;
2283
2284// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2285// at 'requested_addr'. If there are existing memory mappings at the same
2286// location, however, they will be overwritten. If 'fixed' is false,
2287// 'requested_addr' is only treated as a hint, the return value may or
2288// may not start from the requested address. Unlike Bsd mmap(), this
2289// function returns NULL to indicate failure.
2290static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2291  char * addr;
2292  int flags;
2293
2294  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2295  if (fixed) {
2296    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2297    flags |= MAP_FIXED;
2298  }
2299
2300  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2301  // touch an uncommitted page. Otherwise, the read/write might
2302  // succeed if we have enough swap space to back the physical page.
2303  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2304                       flags, -1, 0);
2305
2306  if (addr != MAP_FAILED) {
2307    // anon_mmap() should only get called during VM initialization,
2308    // don't need lock (actually we can skip locking even it can be called
2309    // from multiple threads, because _highest_vm_reserved_address is just a
2310    // hint about the upper limit of non-stack memory regions.)
2311    if ((address)addr + bytes > _highest_vm_reserved_address) {
2312      _highest_vm_reserved_address = (address)addr + bytes;
2313    }
2314  }
2315
2316  return addr == MAP_FAILED ? NULL : addr;
2317}
2318
2319// Don't update _highest_vm_reserved_address, because there might be memory
2320// regions above addr + size. If so, releasing a memory region only creates
2321// a hole in the address space, it doesn't help prevent heap-stack collision.
2322//
2323static int anon_munmap(char * addr, size_t size) {
2324  return ::munmap(addr, size) == 0;
2325}
2326
2327char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2328                         size_t alignment_hint) {
2329  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2330}
2331
2332bool os::pd_release_memory(char* addr, size_t size) {
2333  return anon_munmap(addr, size);
2334}
2335
2336static bool bsd_mprotect(char* addr, size_t size, int prot) {
2337  // Bsd wants the mprotect address argument to be page aligned.
2338  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2339
2340  // According to SUSv3, mprotect() should only be used with mappings
2341  // established by mmap(), and mmap() always maps whole pages. Unaligned
2342  // 'addr' likely indicates problem in the VM (e.g. trying to change
2343  // protection of malloc'ed or statically allocated memory). Check the
2344  // caller if you hit this assert.
2345  assert(addr == bottom, "sanity check");
2346
2347  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2348  return ::mprotect(bottom, size, prot) == 0;
2349}
2350
2351// Set protections specified
2352bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2353                        bool is_committed) {
2354  unsigned int p = 0;
2355  switch (prot) {
2356  case MEM_PROT_NONE: p = PROT_NONE; break;
2357  case MEM_PROT_READ: p = PROT_READ; break;
2358  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2359  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2360  default:
2361    ShouldNotReachHere();
2362  }
2363  // is_committed is unused.
2364  return bsd_mprotect(addr, bytes, p);
2365}
2366
2367bool os::guard_memory(char* addr, size_t size) {
2368  return bsd_mprotect(addr, size, PROT_NONE);
2369}
2370
2371bool os::unguard_memory(char* addr, size_t size) {
2372  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2373}
2374
2375bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2376  return false;
2377}
2378
2379// Large page support
2380
2381static size_t _large_page_size = 0;
2382
2383void os::large_page_init() {
2384}
2385
2386
2387char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2388  fatal("This code is not used or maintained.");
2389
2390  // "exec" is passed in but not used.  Creating the shared image for
2391  // the code cache doesn't have an SHM_X executable permission to check.
2392  assert(UseLargePages && UseSHM, "only for SHM large pages");
2393
2394  key_t key = IPC_PRIVATE;
2395  char *addr;
2396
2397  bool warn_on_failure = UseLargePages &&
2398                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2399                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2400                        );
2401
2402  // Create a large shared memory region to attach to based on size.
2403  // Currently, size is the total size of the heap
2404  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2405  if (shmid == -1) {
2406     // Possible reasons for shmget failure:
2407     // 1. shmmax is too small for Java heap.
2408     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2409     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2410     // 2. not enough large page memory.
2411     //    > check available large pages: cat /proc/meminfo
2412     //    > increase amount of large pages:
2413     //          echo new_value > /proc/sys/vm/nr_hugepages
2414     //      Note 1: different Bsd may use different name for this property,
2415     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2416     //      Note 2: it's possible there's enough physical memory available but
2417     //            they are so fragmented after a long run that they can't
2418     //            coalesce into large pages. Try to reserve large pages when
2419     //            the system is still "fresh".
2420     if (warn_on_failure) {
2421       warning("Failed to reserve shared memory (errno = %d).", errno);
2422     }
2423     return NULL;
2424  }
2425
2426  // attach to the region
2427  addr = (char*)shmat(shmid, req_addr, 0);
2428  int err = errno;
2429
2430  // Remove shmid. If shmat() is successful, the actual shared memory segment
2431  // will be deleted when it's detached by shmdt() or when the process
2432  // terminates. If shmat() is not successful this will remove the shared
2433  // segment immediately.
2434  shmctl(shmid, IPC_RMID, NULL);
2435
2436  if ((intptr_t)addr == -1) {
2437     if (warn_on_failure) {
2438       warning("Failed to attach shared memory (errno = %d).", err);
2439     }
2440     return NULL;
2441  }
2442
2443  // The memory is committed
2444  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2445
2446  return addr;
2447}
2448
2449bool os::release_memory_special(char* base, size_t bytes) {
2450  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2451  // detaching the SHM segment will also delete it, see reserve_memory_special()
2452  int rslt = shmdt(base);
2453  if (rslt == 0) {
2454    tkr.record((address)base, bytes);
2455    return true;
2456  } else {
2457    tkr.discard();
2458    return false;
2459  }
2460
2461}
2462
2463size_t os::large_page_size() {
2464  return _large_page_size;
2465}
2466
2467// HugeTLBFS allows application to commit large page memory on demand;
2468// with SysV SHM the entire memory region must be allocated as shared
2469// memory.
2470bool os::can_commit_large_page_memory() {
2471  return UseHugeTLBFS;
2472}
2473
2474bool os::can_execute_large_page_memory() {
2475  return UseHugeTLBFS;
2476}
2477
2478// Reserve memory at an arbitrary address, only if that area is
2479// available (and not reserved for something else).
2480
2481char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2482  const int max_tries = 10;
2483  char* base[max_tries];
2484  size_t size[max_tries];
2485  const size_t gap = 0x000000;
2486
2487  // Assert only that the size is a multiple of the page size, since
2488  // that's all that mmap requires, and since that's all we really know
2489  // about at this low abstraction level.  If we need higher alignment,
2490  // we can either pass an alignment to this method or verify alignment
2491  // in one of the methods further up the call chain.  See bug 5044738.
2492  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2493
2494  // Repeatedly allocate blocks until the block is allocated at the
2495  // right spot. Give up after max_tries. Note that reserve_memory() will
2496  // automatically update _highest_vm_reserved_address if the call is
2497  // successful. The variable tracks the highest memory address every reserved
2498  // by JVM. It is used to detect heap-stack collision if running with
2499  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2500  // space than needed, it could confuse the collision detecting code. To
2501  // solve the problem, save current _highest_vm_reserved_address and
2502  // calculate the correct value before return.
2503  address old_highest = _highest_vm_reserved_address;
2504
2505  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2506  // if kernel honors the hint then we can return immediately.
2507  char * addr = anon_mmap(requested_addr, bytes, false);
2508  if (addr == requested_addr) {
2509     return requested_addr;
2510  }
2511
2512  if (addr != NULL) {
2513     // mmap() is successful but it fails to reserve at the requested address
2514     anon_munmap(addr, bytes);
2515  }
2516
2517  int i;
2518  for (i = 0; i < max_tries; ++i) {
2519    base[i] = reserve_memory(bytes);
2520
2521    if (base[i] != NULL) {
2522      // Is this the block we wanted?
2523      if (base[i] == requested_addr) {
2524        size[i] = bytes;
2525        break;
2526      }
2527
2528      // Does this overlap the block we wanted? Give back the overlapped
2529      // parts and try again.
2530
2531      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2532      if (top_overlap >= 0 && top_overlap < bytes) {
2533        unmap_memory(base[i], top_overlap);
2534        base[i] += top_overlap;
2535        size[i] = bytes - top_overlap;
2536      } else {
2537        size_t bottom_overlap = base[i] + bytes - requested_addr;
2538        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2539          unmap_memory(requested_addr, bottom_overlap);
2540          size[i] = bytes - bottom_overlap;
2541        } else {
2542          size[i] = bytes;
2543        }
2544      }
2545    }
2546  }
2547
2548  // Give back the unused reserved pieces.
2549
2550  for (int j = 0; j < i; ++j) {
2551    if (base[j] != NULL) {
2552      unmap_memory(base[j], size[j]);
2553    }
2554  }
2555
2556  if (i < max_tries) {
2557    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2558    return requested_addr;
2559  } else {
2560    _highest_vm_reserved_address = old_highest;
2561    return NULL;
2562  }
2563}
2564
2565size_t os::read(int fd, void *buf, unsigned int nBytes) {
2566  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2567}
2568
2569void os::naked_short_sleep(jlong ms) {
2570  struct timespec req;
2571
2572  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2573  req.tv_sec = 0;
2574  if (ms > 0) {
2575    req.tv_nsec = (ms % 1000) * 1000000;
2576  }
2577  else {
2578    req.tv_nsec = 1;
2579  }
2580
2581  nanosleep(&req, NULL);
2582
2583  return;
2584}
2585
2586// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2587void os::infinite_sleep() {
2588  while (true) {    // sleep forever ...
2589    ::sleep(100);   // ... 100 seconds at a time
2590  }
2591}
2592
2593// Used to convert frequent JVM_Yield() to nops
2594bool os::dont_yield() {
2595  return DontYieldALot;
2596}
2597
2598void os::yield() {
2599  sched_yield();
2600}
2601
2602os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN; }
2603
2604////////////////////////////////////////////////////////////////////////////////
2605// thread priority support
2606
2607// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2608// only supports dynamic priority, static priority must be zero. For real-time
2609// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2610// However, for large multi-threaded applications, SCHED_RR is not only slower
2611// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2612// of 5 runs - Sep 2005).
2613//
2614// The following code actually changes the niceness of kernel-thread/LWP. It
2615// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2616// not the entire user process, and user level threads are 1:1 mapped to kernel
2617// threads. It has always been the case, but could change in the future. For
2618// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2619// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2620
2621#if !defined(__APPLE__)
2622int os::java_to_os_priority[CriticalPriority + 1] = {
2623  19,              // 0 Entry should never be used
2624
2625   0,              // 1 MinPriority
2626   3,              // 2
2627   6,              // 3
2628
2629  10,              // 4
2630  15,              // 5 NormPriority
2631  18,              // 6
2632
2633  21,              // 7
2634  25,              // 8
2635  28,              // 9 NearMaxPriority
2636
2637  31,              // 10 MaxPriority
2638
2639  31               // 11 CriticalPriority
2640};
2641#else
2642/* Using Mach high-level priority assignments */
2643int os::java_to_os_priority[CriticalPriority + 1] = {
2644   0,              // 0 Entry should never be used (MINPRI_USER)
2645
2646  27,              // 1 MinPriority
2647  28,              // 2
2648  29,              // 3
2649
2650  30,              // 4
2651  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2652  32,              // 6
2653
2654  33,              // 7
2655  34,              // 8
2656  35,              // 9 NearMaxPriority
2657
2658  36,              // 10 MaxPriority
2659
2660  36               // 11 CriticalPriority
2661};
2662#endif
2663
2664static int prio_init() {
2665  if (ThreadPriorityPolicy == 1) {
2666    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2667    // if effective uid is not root. Perhaps, a more elegant way of doing
2668    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2669    if (geteuid() != 0) {
2670      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2671        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2672      }
2673      ThreadPriorityPolicy = 0;
2674    }
2675  }
2676  if (UseCriticalJavaThreadPriority) {
2677    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2678  }
2679  return 0;
2680}
2681
2682OSReturn os::set_native_priority(Thread* thread, int newpri) {
2683  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2684
2685#ifdef __OpenBSD__
2686  // OpenBSD pthread_setprio starves low priority threads
2687  return OS_OK;
2688#elif defined(__FreeBSD__)
2689  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2690#elif defined(__APPLE__) || defined(__NetBSD__)
2691  struct sched_param sp;
2692  int policy;
2693  pthread_t self = pthread_self();
2694
2695  if (pthread_getschedparam(self, &policy, &sp) != 0)
2696    return OS_ERR;
2697
2698  sp.sched_priority = newpri;
2699  if (pthread_setschedparam(self, policy, &sp) != 0)
2700    return OS_ERR;
2701
2702  return OS_OK;
2703#else
2704  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2705  return (ret == 0) ? OS_OK : OS_ERR;
2706#endif
2707}
2708
2709OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2710  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2711    *priority_ptr = java_to_os_priority[NormPriority];
2712    return OS_OK;
2713  }
2714
2715  errno = 0;
2716#if defined(__OpenBSD__) || defined(__FreeBSD__)
2717  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2718#elif defined(__APPLE__) || defined(__NetBSD__)
2719  int policy;
2720  struct sched_param sp;
2721
2722  pthread_getschedparam(pthread_self(), &policy, &sp);
2723  *priority_ptr = sp.sched_priority;
2724#else
2725  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2726#endif
2727  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2728}
2729
2730// Hint to the underlying OS that a task switch would not be good.
2731// Void return because it's a hint and can fail.
2732void os::hint_no_preempt() {}
2733
2734////////////////////////////////////////////////////////////////////////////////
2735// suspend/resume support
2736
2737//  the low-level signal-based suspend/resume support is a remnant from the
2738//  old VM-suspension that used to be for java-suspension, safepoints etc,
2739//  within hotspot. Now there is a single use-case for this:
2740//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2741//      that runs in the watcher thread.
2742//  The remaining code is greatly simplified from the more general suspension
2743//  code that used to be used.
2744//
2745//  The protocol is quite simple:
2746//  - suspend:
2747//      - sends a signal to the target thread
2748//      - polls the suspend state of the osthread using a yield loop
2749//      - target thread signal handler (SR_handler) sets suspend state
2750//        and blocks in sigsuspend until continued
2751//  - resume:
2752//      - sets target osthread state to continue
2753//      - sends signal to end the sigsuspend loop in the SR_handler
2754//
2755//  Note that the SR_lock plays no role in this suspend/resume protocol.
2756//
2757
2758static void resume_clear_context(OSThread *osthread) {
2759  osthread->set_ucontext(NULL);
2760  osthread->set_siginfo(NULL);
2761}
2762
2763static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2764  osthread->set_ucontext(context);
2765  osthread->set_siginfo(siginfo);
2766}
2767
2768//
2769// Handler function invoked when a thread's execution is suspended or
2770// resumed. We have to be careful that only async-safe functions are
2771// called here (Note: most pthread functions are not async safe and
2772// should be avoided.)
2773//
2774// Note: sigwait() is a more natural fit than sigsuspend() from an
2775// interface point of view, but sigwait() prevents the signal hander
2776// from being run. libpthread would get very confused by not having
2777// its signal handlers run and prevents sigwait()'s use with the
2778// mutex granting granting signal.
2779//
2780// Currently only ever called on the VMThread or JavaThread
2781//
2782static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2783  // Save and restore errno to avoid confusing native code with EINTR
2784  // after sigsuspend.
2785  int old_errno = errno;
2786
2787  Thread* thread = Thread::current();
2788  OSThread* osthread = thread->osthread();
2789  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2790
2791  os::SuspendResume::State current = osthread->sr.state();
2792  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2793    suspend_save_context(osthread, siginfo, context);
2794
2795    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2796    os::SuspendResume::State state = osthread->sr.suspended();
2797    if (state == os::SuspendResume::SR_SUSPENDED) {
2798      sigset_t suspend_set;  // signals for sigsuspend()
2799
2800      // get current set of blocked signals and unblock resume signal
2801      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2802      sigdelset(&suspend_set, SR_signum);
2803
2804      sr_semaphore.signal();
2805      // wait here until we are resumed
2806      while (1) {
2807        sigsuspend(&suspend_set);
2808
2809        os::SuspendResume::State result = osthread->sr.running();
2810        if (result == os::SuspendResume::SR_RUNNING) {
2811          sr_semaphore.signal();
2812          break;
2813        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2814          ShouldNotReachHere();
2815        }
2816      }
2817
2818    } else if (state == os::SuspendResume::SR_RUNNING) {
2819      // request was cancelled, continue
2820    } else {
2821      ShouldNotReachHere();
2822    }
2823
2824    resume_clear_context(osthread);
2825  } else if (current == os::SuspendResume::SR_RUNNING) {
2826    // request was cancelled, continue
2827  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2828    // ignore
2829  } else {
2830    // ignore
2831  }
2832
2833  errno = old_errno;
2834}
2835
2836
2837static int SR_initialize() {
2838  struct sigaction act;
2839  char *s;
2840  /* Get signal number to use for suspend/resume */
2841  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2842    int sig = ::strtol(s, 0, 10);
2843    if (sig > 0 || sig < NSIG) {
2844        SR_signum = sig;
2845    }
2846  }
2847
2848  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2849        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2850
2851  sigemptyset(&SR_sigset);
2852  sigaddset(&SR_sigset, SR_signum);
2853
2854  /* Set up signal handler for suspend/resume */
2855  act.sa_flags = SA_RESTART|SA_SIGINFO;
2856  act.sa_handler = (void (*)(int)) SR_handler;
2857
2858  // SR_signum is blocked by default.
2859  // 4528190 - We also need to block pthread restart signal (32 on all
2860  // supported Bsd platforms). Note that BsdThreads need to block
2861  // this signal for all threads to work properly. So we don't have
2862  // to use hard-coded signal number when setting up the mask.
2863  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2864
2865  if (sigaction(SR_signum, &act, 0) == -1) {
2866    return -1;
2867  }
2868
2869  // Save signal flag
2870  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2871  return 0;
2872}
2873
2874static int sr_notify(OSThread* osthread) {
2875  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2876  assert_status(status == 0, status, "pthread_kill");
2877  return status;
2878}
2879
2880// "Randomly" selected value for how long we want to spin
2881// before bailing out on suspending a thread, also how often
2882// we send a signal to a thread we want to resume
2883static const int RANDOMLY_LARGE_INTEGER = 1000000;
2884static const int RANDOMLY_LARGE_INTEGER2 = 100;
2885
2886// returns true on success and false on error - really an error is fatal
2887// but this seems the normal response to library errors
2888static bool do_suspend(OSThread* osthread) {
2889  assert(osthread->sr.is_running(), "thread should be running");
2890  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2891
2892  // mark as suspended and send signal
2893  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2894    // failed to switch, state wasn't running?
2895    ShouldNotReachHere();
2896    return false;
2897  }
2898
2899  if (sr_notify(osthread) != 0) {
2900    ShouldNotReachHere();
2901  }
2902
2903  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2904  while (true) {
2905    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2906      break;
2907    } else {
2908      // timeout
2909      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2910      if (cancelled == os::SuspendResume::SR_RUNNING) {
2911        return false;
2912      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2913        // make sure that we consume the signal on the semaphore as well
2914        sr_semaphore.wait();
2915        break;
2916      } else {
2917        ShouldNotReachHere();
2918        return false;
2919      }
2920    }
2921  }
2922
2923  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2924  return true;
2925}
2926
2927static void do_resume(OSThread* osthread) {
2928  assert(osthread->sr.is_suspended(), "thread should be suspended");
2929  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2930
2931  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2932    // failed to switch to WAKEUP_REQUEST
2933    ShouldNotReachHere();
2934    return;
2935  }
2936
2937  while (true) {
2938    if (sr_notify(osthread) == 0) {
2939      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2940        if (osthread->sr.is_running()) {
2941          return;
2942        }
2943      }
2944    } else {
2945      ShouldNotReachHere();
2946    }
2947  }
2948
2949  guarantee(osthread->sr.is_running(), "Must be running!");
2950}
2951
2952///////////////////////////////////////////////////////////////////////////////////
2953// signal handling (except suspend/resume)
2954
2955// This routine may be used by user applications as a "hook" to catch signals.
2956// The user-defined signal handler must pass unrecognized signals to this
2957// routine, and if it returns true (non-zero), then the signal handler must
2958// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2959// routine will never retun false (zero), but instead will execute a VM panic
2960// routine kill the process.
2961//
2962// If this routine returns false, it is OK to call it again.  This allows
2963// the user-defined signal handler to perform checks either before or after
2964// the VM performs its own checks.  Naturally, the user code would be making
2965// a serious error if it tried to handle an exception (such as a null check
2966// or breakpoint) that the VM was generating for its own correct operation.
2967//
2968// This routine may recognize any of the following kinds of signals:
2969//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2970// It should be consulted by handlers for any of those signals.
2971//
2972// The caller of this routine must pass in the three arguments supplied
2973// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2974// field of the structure passed to sigaction().  This routine assumes that
2975// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2976//
2977// Note that the VM will print warnings if it detects conflicting signal
2978// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2979//
2980extern "C" JNIEXPORT int
2981JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2982                        void* ucontext, int abort_if_unrecognized);
2983
2984void signalHandler(int sig, siginfo_t* info, void* uc) {
2985  assert(info != NULL && uc != NULL, "it must be old kernel");
2986  int orig_errno = errno;  // Preserve errno value over signal handler.
2987  JVM_handle_bsd_signal(sig, info, uc, true);
2988  errno = orig_errno;
2989}
2990
2991
2992// This boolean allows users to forward their own non-matching signals
2993// to JVM_handle_bsd_signal, harmlessly.
2994bool os::Bsd::signal_handlers_are_installed = false;
2995
2996// For signal-chaining
2997struct sigaction os::Bsd::sigact[MAXSIGNUM];
2998unsigned int os::Bsd::sigs = 0;
2999bool os::Bsd::libjsig_is_loaded = false;
3000typedef struct sigaction *(*get_signal_t)(int);
3001get_signal_t os::Bsd::get_signal_action = NULL;
3002
3003struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3004  struct sigaction *actp = NULL;
3005
3006  if (libjsig_is_loaded) {
3007    // Retrieve the old signal handler from libjsig
3008    actp = (*get_signal_action)(sig);
3009  }
3010  if (actp == NULL) {
3011    // Retrieve the preinstalled signal handler from jvm
3012    actp = get_preinstalled_handler(sig);
3013  }
3014
3015  return actp;
3016}
3017
3018static bool call_chained_handler(struct sigaction *actp, int sig,
3019                                 siginfo_t *siginfo, void *context) {
3020  // Call the old signal handler
3021  if (actp->sa_handler == SIG_DFL) {
3022    // It's more reasonable to let jvm treat it as an unexpected exception
3023    // instead of taking the default action.
3024    return false;
3025  } else if (actp->sa_handler != SIG_IGN) {
3026    if ((actp->sa_flags & SA_NODEFER) == 0) {
3027      // automaticlly block the signal
3028      sigaddset(&(actp->sa_mask), sig);
3029    }
3030
3031    sa_handler_t hand;
3032    sa_sigaction_t sa;
3033    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3034    // retrieve the chained handler
3035    if (siginfo_flag_set) {
3036      sa = actp->sa_sigaction;
3037    } else {
3038      hand = actp->sa_handler;
3039    }
3040
3041    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3042      actp->sa_handler = SIG_DFL;
3043    }
3044
3045    // try to honor the signal mask
3046    sigset_t oset;
3047    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3048
3049    // call into the chained handler
3050    if (siginfo_flag_set) {
3051      (*sa)(sig, siginfo, context);
3052    } else {
3053      (*hand)(sig);
3054    }
3055
3056    // restore the signal mask
3057    pthread_sigmask(SIG_SETMASK, &oset, 0);
3058  }
3059  // Tell jvm's signal handler the signal is taken care of.
3060  return true;
3061}
3062
3063bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3064  bool chained = false;
3065  // signal-chaining
3066  if (UseSignalChaining) {
3067    struct sigaction *actp = get_chained_signal_action(sig);
3068    if (actp != NULL) {
3069      chained = call_chained_handler(actp, sig, siginfo, context);
3070    }
3071  }
3072  return chained;
3073}
3074
3075struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3076  if ((((unsigned int)1 << sig) & sigs) != 0) {
3077    return &sigact[sig];
3078  }
3079  return NULL;
3080}
3081
3082void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3083  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3084  sigact[sig] = oldAct;
3085  sigs |= (unsigned int)1 << sig;
3086}
3087
3088// for diagnostic
3089int os::Bsd::sigflags[MAXSIGNUM];
3090
3091int os::Bsd::get_our_sigflags(int sig) {
3092  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3093  return sigflags[sig];
3094}
3095
3096void os::Bsd::set_our_sigflags(int sig, int flags) {
3097  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3098  sigflags[sig] = flags;
3099}
3100
3101void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3102  // Check for overwrite.
3103  struct sigaction oldAct;
3104  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3105
3106  void* oldhand = oldAct.sa_sigaction
3107                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3108                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3109  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3110      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3111      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3112    if (AllowUserSignalHandlers || !set_installed) {
3113      // Do not overwrite; user takes responsibility to forward to us.
3114      return;
3115    } else if (UseSignalChaining) {
3116      // save the old handler in jvm
3117      save_preinstalled_handler(sig, oldAct);
3118      // libjsig also interposes the sigaction() call below and saves the
3119      // old sigaction on it own.
3120    } else {
3121      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3122                    "%#lx for signal %d.", (long)oldhand, sig));
3123    }
3124  }
3125
3126  struct sigaction sigAct;
3127  sigfillset(&(sigAct.sa_mask));
3128  sigAct.sa_handler = SIG_DFL;
3129  if (!set_installed) {
3130    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3131  } else {
3132    sigAct.sa_sigaction = signalHandler;
3133    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3134  }
3135#ifdef __APPLE__
3136  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3137  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3138  // if the signal handler declares it will handle it on alternate stack.
3139  // Notice we only declare we will handle it on alt stack, but we are not
3140  // actually going to use real alt stack - this is just a workaround.
3141  // Please see ux_exception.c, method catch_mach_exception_raise for details
3142  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3143  if (sig == SIGSEGV) {
3144    sigAct.sa_flags |= SA_ONSTACK;
3145  }
3146#endif
3147
3148  // Save flags, which are set by ours
3149  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3150  sigflags[sig] = sigAct.sa_flags;
3151
3152  int ret = sigaction(sig, &sigAct, &oldAct);
3153  assert(ret == 0, "check");
3154
3155  void* oldhand2  = oldAct.sa_sigaction
3156                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3157                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3158  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3159}
3160
3161// install signal handlers for signals that HotSpot needs to
3162// handle in order to support Java-level exception handling.
3163
3164void os::Bsd::install_signal_handlers() {
3165  if (!signal_handlers_are_installed) {
3166    signal_handlers_are_installed = true;
3167
3168    // signal-chaining
3169    typedef void (*signal_setting_t)();
3170    signal_setting_t begin_signal_setting = NULL;
3171    signal_setting_t end_signal_setting = NULL;
3172    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3173                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3174    if (begin_signal_setting != NULL) {
3175      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3176                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3177      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3178                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3179      libjsig_is_loaded = true;
3180      assert(UseSignalChaining, "should enable signal-chaining");
3181    }
3182    if (libjsig_is_loaded) {
3183      // Tell libjsig jvm is setting signal handlers
3184      (*begin_signal_setting)();
3185    }
3186
3187    set_signal_handler(SIGSEGV, true);
3188    set_signal_handler(SIGPIPE, true);
3189    set_signal_handler(SIGBUS, true);
3190    set_signal_handler(SIGILL, true);
3191    set_signal_handler(SIGFPE, true);
3192    set_signal_handler(SIGXFSZ, true);
3193
3194#if defined(__APPLE__)
3195    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3196    // signals caught and handled by the JVM. To work around this, we reset the mach task
3197    // signal handler that's placed on our process by CrashReporter. This disables
3198    // CrashReporter-based reporting.
3199    //
3200    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3201    // on caught fatal signals.
3202    //
3203    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3204    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3205    // exception handling, while leaving the standard BSD signal handlers functional.
3206    kern_return_t kr;
3207    kr = task_set_exception_ports(mach_task_self(),
3208        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3209        MACH_PORT_NULL,
3210        EXCEPTION_STATE_IDENTITY,
3211        MACHINE_THREAD_STATE);
3212
3213    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3214#endif
3215
3216    if (libjsig_is_loaded) {
3217      // Tell libjsig jvm finishes setting signal handlers
3218      (*end_signal_setting)();
3219    }
3220
3221    // We don't activate signal checker if libjsig is in place, we trust ourselves
3222    // and if UserSignalHandler is installed all bets are off
3223    if (CheckJNICalls) {
3224      if (libjsig_is_loaded) {
3225        if (PrintJNIResolving) {
3226          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3227        }
3228        check_signals = false;
3229      }
3230      if (AllowUserSignalHandlers) {
3231        if (PrintJNIResolving) {
3232          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3233        }
3234        check_signals = false;
3235      }
3236    }
3237  }
3238}
3239
3240
3241/////
3242// glibc on Bsd platform uses non-documented flag
3243// to indicate, that some special sort of signal
3244// trampoline is used.
3245// We will never set this flag, and we should
3246// ignore this flag in our diagnostic
3247#ifdef SIGNIFICANT_SIGNAL_MASK
3248#undef SIGNIFICANT_SIGNAL_MASK
3249#endif
3250#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3251
3252static const char* get_signal_handler_name(address handler,
3253                                           char* buf, int buflen) {
3254  int offset;
3255  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3256  if (found) {
3257    // skip directory names
3258    const char *p1, *p2;
3259    p1 = buf;
3260    size_t len = strlen(os::file_separator());
3261    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3262    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3263  } else {
3264    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3265  }
3266  return buf;
3267}
3268
3269static void print_signal_handler(outputStream* st, int sig,
3270                                 char* buf, size_t buflen) {
3271  struct sigaction sa;
3272
3273  sigaction(sig, NULL, &sa);
3274
3275  // See comment for SIGNIFICANT_SIGNAL_MASK define
3276  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3277
3278  st->print("%s: ", os::exception_name(sig, buf, buflen));
3279
3280  address handler = (sa.sa_flags & SA_SIGINFO)
3281    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3282    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3283
3284  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3285    st->print("SIG_DFL");
3286  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3287    st->print("SIG_IGN");
3288  } else {
3289    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3290  }
3291
3292  st->print(", sa_mask[0]=");
3293  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3294
3295  address rh = VMError::get_resetted_sighandler(sig);
3296  // May be, handler was resetted by VMError?
3297  if (rh != NULL) {
3298    handler = rh;
3299    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3300  }
3301
3302  st->print(", sa_flags=");
3303  os::Posix::print_sa_flags(st, sa.sa_flags);
3304
3305  // Check: is it our handler?
3306  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3307     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3308    // It is our signal handler
3309    // check for flags, reset system-used one!
3310    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3311      st->print(
3312                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3313                os::Bsd::get_our_sigflags(sig));
3314    }
3315  }
3316  st->cr();
3317}
3318
3319
3320#define DO_SIGNAL_CHECK(sig) \
3321  if (!sigismember(&check_signal_done, sig)) \
3322    os::Bsd::check_signal_handler(sig)
3323
3324// This method is a periodic task to check for misbehaving JNI applications
3325// under CheckJNI, we can add any periodic checks here
3326
3327void os::run_periodic_checks() {
3328
3329  if (check_signals == false) return;
3330
3331  // SEGV and BUS if overridden could potentially prevent
3332  // generation of hs*.log in the event of a crash, debugging
3333  // such a case can be very challenging, so we absolutely
3334  // check the following for a good measure:
3335  DO_SIGNAL_CHECK(SIGSEGV);
3336  DO_SIGNAL_CHECK(SIGILL);
3337  DO_SIGNAL_CHECK(SIGFPE);
3338  DO_SIGNAL_CHECK(SIGBUS);
3339  DO_SIGNAL_CHECK(SIGPIPE);
3340  DO_SIGNAL_CHECK(SIGXFSZ);
3341
3342
3343  // ReduceSignalUsage allows the user to override these handlers
3344  // see comments at the very top and jvm_solaris.h
3345  if (!ReduceSignalUsage) {
3346    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3347    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3348    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3349    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3350  }
3351
3352  DO_SIGNAL_CHECK(SR_signum);
3353  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3354}
3355
3356typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3357
3358static os_sigaction_t os_sigaction = NULL;
3359
3360void os::Bsd::check_signal_handler(int sig) {
3361  char buf[O_BUFLEN];
3362  address jvmHandler = NULL;
3363
3364
3365  struct sigaction act;
3366  if (os_sigaction == NULL) {
3367    // only trust the default sigaction, in case it has been interposed
3368    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3369    if (os_sigaction == NULL) return;
3370  }
3371
3372  os_sigaction(sig, (struct sigaction*)NULL, &act);
3373
3374
3375  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3376
3377  address thisHandler = (act.sa_flags & SA_SIGINFO)
3378    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3379    : CAST_FROM_FN_PTR(address, act.sa_handler);
3380
3381
3382  switch (sig) {
3383  case SIGSEGV:
3384  case SIGBUS:
3385  case SIGFPE:
3386  case SIGPIPE:
3387  case SIGILL:
3388  case SIGXFSZ:
3389    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3390    break;
3391
3392  case SHUTDOWN1_SIGNAL:
3393  case SHUTDOWN2_SIGNAL:
3394  case SHUTDOWN3_SIGNAL:
3395  case BREAK_SIGNAL:
3396    jvmHandler = (address)user_handler();
3397    break;
3398
3399  case INTERRUPT_SIGNAL:
3400    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3401    break;
3402
3403  default:
3404    if (sig == SR_signum) {
3405      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3406    } else {
3407      return;
3408    }
3409    break;
3410  }
3411
3412  if (thisHandler != jvmHandler) {
3413    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3414    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3415    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3416    // No need to check this sig any longer
3417    sigaddset(&check_signal_done, sig);
3418    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3419    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3420      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3421                    exception_name(sig, buf, O_BUFLEN));
3422    }
3423  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3424    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3425    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3426    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3427    // No need to check this sig any longer
3428    sigaddset(&check_signal_done, sig);
3429  }
3430
3431  // Dump all the signal
3432  if (sigismember(&check_signal_done, sig)) {
3433    print_signal_handlers(tty, buf, O_BUFLEN);
3434  }
3435}
3436
3437extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3438
3439extern bool signal_name(int signo, char* buf, size_t len);
3440
3441const char* os::exception_name(int exception_code, char* buf, size_t size) {
3442  if (0 < exception_code && exception_code <= SIGRTMAX) {
3443    // signal
3444    if (!signal_name(exception_code, buf, size)) {
3445      jio_snprintf(buf, size, "SIG%d", exception_code);
3446    }
3447    return buf;
3448  } else {
3449    return NULL;
3450  }
3451}
3452
3453// this is called _before_ the most of global arguments have been parsed
3454void os::init(void) {
3455  char dummy;   /* used to get a guess on initial stack address */
3456//  first_hrtime = gethrtime();
3457
3458  // With BsdThreads the JavaMain thread pid (primordial thread)
3459  // is different than the pid of the java launcher thread.
3460  // So, on Bsd, the launcher thread pid is passed to the VM
3461  // via the sun.java.launcher.pid property.
3462  // Use this property instead of getpid() if it was correctly passed.
3463  // See bug 6351349.
3464  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3465
3466  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3467
3468  clock_tics_per_sec = CLK_TCK;
3469
3470  init_random(1234567);
3471
3472  ThreadCritical::initialize();
3473
3474  Bsd::set_page_size(getpagesize());
3475  if (Bsd::page_size() == -1) {
3476    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3477                  strerror(errno)));
3478  }
3479  init_page_sizes((size_t) Bsd::page_size());
3480
3481  Bsd::initialize_system_info();
3482
3483  // main_thread points to the aboriginal thread
3484  Bsd::_main_thread = pthread_self();
3485
3486  Bsd::clock_init();
3487  initial_time_count = javaTimeNanos();
3488
3489#ifdef __APPLE__
3490  // XXXDARWIN
3491  // Work around the unaligned VM callbacks in hotspot's
3492  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3493  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3494  // alignment when doing symbol lookup. To work around this, we force early
3495  // binding of all symbols now, thus binding when alignment is known-good.
3496  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3497#endif
3498}
3499
3500// To install functions for atexit system call
3501extern "C" {
3502  static void perfMemory_exit_helper() {
3503    perfMemory_exit();
3504  }
3505}
3506
3507// this is called _after_ the global arguments have been parsed
3508jint os::init_2(void)
3509{
3510  // Allocate a single page and mark it as readable for safepoint polling
3511  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3512  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3513
3514  os::set_polling_page(polling_page);
3515
3516#ifndef PRODUCT
3517  if (Verbose && PrintMiscellaneous)
3518    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3519#endif
3520
3521  if (!UseMembar) {
3522    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3523    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3524    os::set_memory_serialize_page(mem_serialize_page);
3525
3526#ifndef PRODUCT
3527    if (Verbose && PrintMiscellaneous)
3528      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3529#endif
3530  }
3531
3532  // initialize suspend/resume support - must do this before signal_sets_init()
3533  if (SR_initialize() != 0) {
3534    perror("SR_initialize failed");
3535    return JNI_ERR;
3536  }
3537
3538  Bsd::signal_sets_init();
3539  Bsd::install_signal_handlers();
3540
3541  // Check minimum allowable stack size for thread creation and to initialize
3542  // the java system classes, including StackOverflowError - depends on page
3543  // size.  Add a page for compiler2 recursion in main thread.
3544  // Add in 2*BytesPerWord times page size to account for VM stack during
3545  // class initialization depending on 32 or 64 bit VM.
3546  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3547            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3548                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3549
3550  size_t threadStackSizeInBytes = ThreadStackSize * K;
3551  if (threadStackSizeInBytes != 0 &&
3552      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3553        tty->print_cr("\nThe stack size specified is too small, "
3554                      "Specify at least %dk",
3555                      os::Bsd::min_stack_allowed/ K);
3556        return JNI_ERR;
3557  }
3558
3559  // Make the stack size a multiple of the page size so that
3560  // the yellow/red zones can be guarded.
3561  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3562        vm_page_size()));
3563
3564  if (MaxFDLimit) {
3565    // set the number of file descriptors to max. print out error
3566    // if getrlimit/setrlimit fails but continue regardless.
3567    struct rlimit nbr_files;
3568    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3569    if (status != 0) {
3570      if (PrintMiscellaneous && (Verbose || WizardMode))
3571        perror("os::init_2 getrlimit failed");
3572    } else {
3573      nbr_files.rlim_cur = nbr_files.rlim_max;
3574
3575#ifdef __APPLE__
3576      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3577      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3578      // be used instead
3579      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3580#endif
3581
3582      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3583      if (status != 0) {
3584        if (PrintMiscellaneous && (Verbose || WizardMode))
3585          perror("os::init_2 setrlimit failed");
3586      }
3587    }
3588  }
3589
3590  // at-exit methods are called in the reverse order of their registration.
3591  // atexit functions are called on return from main or as a result of a
3592  // call to exit(3C). There can be only 32 of these functions registered
3593  // and atexit() does not set errno.
3594
3595  if (PerfAllowAtExitRegistration) {
3596    // only register atexit functions if PerfAllowAtExitRegistration is set.
3597    // atexit functions can be delayed until process exit time, which
3598    // can be problematic for embedded VM situations. Embedded VMs should
3599    // call DestroyJavaVM() to assure that VM resources are released.
3600
3601    // note: perfMemory_exit_helper atexit function may be removed in
3602    // the future if the appropriate cleanup code can be added to the
3603    // VM_Exit VMOperation's doit method.
3604    if (atexit(perfMemory_exit_helper) != 0) {
3605      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3606    }
3607  }
3608
3609  // initialize thread priority policy
3610  prio_init();
3611
3612#ifdef __APPLE__
3613  // dynamically link to objective c gc registration
3614  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3615  if (handleLibObjc != NULL) {
3616    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3617  }
3618#endif
3619
3620  return JNI_OK;
3621}
3622
3623// this is called at the end of vm_initialization
3624void os::init_3(void) { }
3625
3626// Mark the polling page as unreadable
3627void os::make_polling_page_unreadable(void) {
3628  if (!guard_memory((char*)_polling_page, Bsd::page_size()))
3629    fatal("Could not disable polling page");
3630};
3631
3632// Mark the polling page as readable
3633void os::make_polling_page_readable(void) {
3634  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3635    fatal("Could not enable polling page");
3636  }
3637};
3638
3639int os::active_processor_count() {
3640  return _processor_count;
3641}
3642
3643void os::set_native_thread_name(const char *name) {
3644#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3645  // This is only supported in Snow Leopard and beyond
3646  if (name != NULL) {
3647    // Add a "Java: " prefix to the name
3648    char buf[MAXTHREADNAMESIZE];
3649    snprintf(buf, sizeof(buf), "Java: %s", name);
3650    pthread_setname_np(buf);
3651  }
3652#endif
3653}
3654
3655bool os::distribute_processes(uint length, uint* distribution) {
3656  // Not yet implemented.
3657  return false;
3658}
3659
3660bool os::bind_to_processor(uint processor_id) {
3661  // Not yet implemented.
3662  return false;
3663}
3664
3665void os::SuspendedThreadTask::internal_do_task() {
3666  if (do_suspend(_thread->osthread())) {
3667    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3668    do_task(context);
3669    do_resume(_thread->osthread());
3670  }
3671}
3672
3673///
3674class PcFetcher : public os::SuspendedThreadTask {
3675public:
3676  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3677  ExtendedPC result();
3678protected:
3679  void do_task(const os::SuspendedThreadTaskContext& context);
3680private:
3681  ExtendedPC _epc;
3682};
3683
3684ExtendedPC PcFetcher::result() {
3685  guarantee(is_done(), "task is not done yet.");
3686  return _epc;
3687}
3688
3689void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3690  Thread* thread = context.thread();
3691  OSThread* osthread = thread->osthread();
3692  if (osthread->ucontext() != NULL) {
3693    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3694  } else {
3695    // NULL context is unexpected, double-check this is the VMThread
3696    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3697  }
3698}
3699
3700// Suspends the target using the signal mechanism and then grabs the PC before
3701// resuming the target. Used by the flat-profiler only
3702ExtendedPC os::get_thread_pc(Thread* thread) {
3703  // Make sure that it is called by the watcher for the VMThread
3704  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3705  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3706
3707  PcFetcher fetcher(thread);
3708  fetcher.run();
3709  return fetcher.result();
3710}
3711
3712int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3713{
3714  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3715}
3716
3717////////////////////////////////////////////////////////////////////////////////
3718// debug support
3719
3720bool os::find(address addr, outputStream* st) {
3721  Dl_info dlinfo;
3722  memset(&dlinfo, 0, sizeof(dlinfo));
3723  if (dladdr(addr, &dlinfo) != 0) {
3724    st->print(PTR_FORMAT ": ", addr);
3725    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3726      st->print("%s+%#x", dlinfo.dli_sname,
3727                 addr - (intptr_t)dlinfo.dli_saddr);
3728    } else if (dlinfo.dli_fbase != NULL) {
3729      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3730    } else {
3731      st->print("<absolute address>");
3732    }
3733    if (dlinfo.dli_fname != NULL) {
3734      st->print(" in %s", dlinfo.dli_fname);
3735    }
3736    if (dlinfo.dli_fbase != NULL) {
3737      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3738    }
3739    st->cr();
3740
3741    if (Verbose) {
3742      // decode some bytes around the PC
3743      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3744      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3745      address       lowest = (address) dlinfo.dli_sname;
3746      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3747      if (begin < lowest)  begin = lowest;
3748      Dl_info dlinfo2;
3749      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3750          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3751        end = (address) dlinfo2.dli_saddr;
3752      Disassembler::decode(begin, end, st);
3753    }
3754    return true;
3755  }
3756  return false;
3757}
3758
3759////////////////////////////////////////////////////////////////////////////////
3760// misc
3761
3762// This does not do anything on Bsd. This is basically a hook for being
3763// able to use structured exception handling (thread-local exception filters)
3764// on, e.g., Win32.
3765void
3766os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3767                         JavaCallArguments* args, Thread* thread) {
3768  f(value, method, args, thread);
3769}
3770
3771void os::print_statistics() {
3772}
3773
3774int os::message_box(const char* title, const char* message) {
3775  int i;
3776  fdStream err(defaultStream::error_fd());
3777  for (i = 0; i < 78; i++) err.print_raw("=");
3778  err.cr();
3779  err.print_raw_cr(title);
3780  for (i = 0; i < 78; i++) err.print_raw("-");
3781  err.cr();
3782  err.print_raw_cr(message);
3783  for (i = 0; i < 78; i++) err.print_raw("=");
3784  err.cr();
3785
3786  char buf[16];
3787  // Prevent process from exiting upon "read error" without consuming all CPU
3788  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3789
3790  return buf[0] == 'y' || buf[0] == 'Y';
3791}
3792
3793int os::stat(const char *path, struct stat *sbuf) {
3794  char pathbuf[MAX_PATH];
3795  if (strlen(path) > MAX_PATH - 1) {
3796    errno = ENAMETOOLONG;
3797    return -1;
3798  }
3799  os::native_path(strcpy(pathbuf, path));
3800  return ::stat(pathbuf, sbuf);
3801}
3802
3803bool os::check_heap(bool force) {
3804  return true;
3805}
3806
3807ATTRIBUTE_PRINTF(3, 0)
3808int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3809  return ::vsnprintf(buf, count, format, args);
3810}
3811
3812// Is a (classpath) directory empty?
3813bool os::dir_is_empty(const char* path) {
3814  DIR *dir = NULL;
3815  struct dirent *ptr;
3816
3817  dir = opendir(path);
3818  if (dir == NULL) return true;
3819
3820  /* Scan the directory */
3821  bool result = true;
3822  char buf[sizeof(struct dirent) + MAX_PATH];
3823  while (result && (ptr = ::readdir(dir)) != NULL) {
3824    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3825      result = false;
3826    }
3827  }
3828  closedir(dir);
3829  return result;
3830}
3831
3832// This code originates from JDK's sysOpen and open64_w
3833// from src/solaris/hpi/src/system_md.c
3834
3835#ifndef O_DELETE
3836#define O_DELETE 0x10000
3837#endif
3838
3839// Open a file. Unlink the file immediately after open returns
3840// if the specified oflag has the O_DELETE flag set.
3841// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3842
3843int os::open(const char *path, int oflag, int mode) {
3844
3845  if (strlen(path) > MAX_PATH - 1) {
3846    errno = ENAMETOOLONG;
3847    return -1;
3848  }
3849  int fd;
3850  int o_delete = (oflag & O_DELETE);
3851  oflag = oflag & ~O_DELETE;
3852
3853  fd = ::open(path, oflag, mode);
3854  if (fd == -1) return -1;
3855
3856  //If the open succeeded, the file might still be a directory
3857  {
3858    struct stat buf;
3859    int ret = ::fstat(fd, &buf);
3860    int st_mode = buf.st_mode;
3861
3862    if (ret != -1) {
3863      if ((st_mode & S_IFMT) == S_IFDIR) {
3864        errno = EISDIR;
3865        ::close(fd);
3866        return -1;
3867      }
3868    } else {
3869      ::close(fd);
3870      return -1;
3871    }
3872  }
3873
3874    /*
3875     * All file descriptors that are opened in the JVM and not
3876     * specifically destined for a subprocess should have the
3877     * close-on-exec flag set.  If we don't set it, then careless 3rd
3878     * party native code might fork and exec without closing all
3879     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3880     * UNIXProcess.c), and this in turn might:
3881     *
3882     * - cause end-of-file to fail to be detected on some file
3883     *   descriptors, resulting in mysterious hangs, or
3884     *
3885     * - might cause an fopen in the subprocess to fail on a system
3886     *   suffering from bug 1085341.
3887     *
3888     * (Yes, the default setting of the close-on-exec flag is a Unix
3889     * design flaw)
3890     *
3891     * See:
3892     * 1085341: 32-bit stdio routines should support file descriptors >255
3893     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3894     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3895     */
3896#ifdef FD_CLOEXEC
3897    {
3898        int flags = ::fcntl(fd, F_GETFD);
3899        if (flags != -1)
3900            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3901    }
3902#endif
3903
3904  if (o_delete != 0) {
3905    ::unlink(path);
3906  }
3907  return fd;
3908}
3909
3910
3911// create binary file, rewriting existing file if required
3912int os::create_binary_file(const char* path, bool rewrite_existing) {
3913  int oflags = O_WRONLY | O_CREAT;
3914  if (!rewrite_existing) {
3915    oflags |= O_EXCL;
3916  }
3917  return ::open(path, oflags, S_IREAD | S_IWRITE);
3918}
3919
3920// return current position of file pointer
3921jlong os::current_file_offset(int fd) {
3922  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3923}
3924
3925// move file pointer to the specified offset
3926jlong os::seek_to_file_offset(int fd, jlong offset) {
3927  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3928}
3929
3930// This code originates from JDK's sysAvailable
3931// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3932
3933int os::available(int fd, jlong *bytes) {
3934  jlong cur, end;
3935  int mode;
3936  struct stat buf;
3937
3938  if (::fstat(fd, &buf) >= 0) {
3939    mode = buf.st_mode;
3940    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3941      /*
3942      * XXX: is the following call interruptible? If so, this might
3943      * need to go through the INTERRUPT_IO() wrapper as for other
3944      * blocking, interruptible calls in this file.
3945      */
3946      int n;
3947      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3948        *bytes = n;
3949        return 1;
3950      }
3951    }
3952  }
3953  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3954    return 0;
3955  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3956    return 0;
3957  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3958    return 0;
3959  }
3960  *bytes = end - cur;
3961  return 1;
3962}
3963
3964int os::socket_available(int fd, jint *pbytes) {
3965   if (fd < 0)
3966     return OS_OK;
3967
3968   int ret;
3969
3970   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3971
3972   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3973   // is expected to return 0 on failure and 1 on success to the jdk.
3974
3975   return (ret == OS_ERR) ? 0 : 1;
3976}
3977
3978// Map a block of memory.
3979char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3980                     char *addr, size_t bytes, bool read_only,
3981                     bool allow_exec) {
3982  int prot;
3983  int flags;
3984
3985  if (read_only) {
3986    prot = PROT_READ;
3987    flags = MAP_SHARED;
3988  } else {
3989    prot = PROT_READ | PROT_WRITE;
3990    flags = MAP_PRIVATE;
3991  }
3992
3993  if (allow_exec) {
3994    prot |= PROT_EXEC;
3995  }
3996
3997  if (addr != NULL) {
3998    flags |= MAP_FIXED;
3999  }
4000
4001  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4002                                     fd, file_offset);
4003  if (mapped_address == MAP_FAILED) {
4004    return NULL;
4005  }
4006  return mapped_address;
4007}
4008
4009
4010// Remap a block of memory.
4011char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4012                       char *addr, size_t bytes, bool read_only,
4013                       bool allow_exec) {
4014  // same as map_memory() on this OS
4015  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4016                        allow_exec);
4017}
4018
4019
4020// Unmap a block of memory.
4021bool os::pd_unmap_memory(char* addr, size_t bytes) {
4022  return munmap(addr, bytes) == 0;
4023}
4024
4025// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4026// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4027// of a thread.
4028//
4029// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4030// the fast estimate available on the platform.
4031
4032jlong os::current_thread_cpu_time() {
4033#ifdef __APPLE__
4034  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4035#else
4036  Unimplemented();
4037  return 0;
4038#endif
4039}
4040
4041jlong os::thread_cpu_time(Thread* thread) {
4042#ifdef __APPLE__
4043  return os::thread_cpu_time(thread, true /* user + sys */);
4044#else
4045  Unimplemented();
4046  return 0;
4047#endif
4048}
4049
4050jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4051#ifdef __APPLE__
4052  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4053#else
4054  Unimplemented();
4055  return 0;
4056#endif
4057}
4058
4059jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4060#ifdef __APPLE__
4061  struct thread_basic_info tinfo;
4062  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4063  kern_return_t kr;
4064  thread_t mach_thread;
4065
4066  mach_thread = thread->osthread()->thread_id();
4067  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4068  if (kr != KERN_SUCCESS)
4069    return -1;
4070
4071  if (user_sys_cpu_time) {
4072    jlong nanos;
4073    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4074    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4075    return nanos;
4076  } else {
4077    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4078  }
4079#else
4080  Unimplemented();
4081  return 0;
4082#endif
4083}
4084
4085
4086void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4087  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4088  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4089  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4090  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4091}
4092
4093void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4094  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4095  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4096  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4097  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4098}
4099
4100bool os::is_thread_cpu_time_supported() {
4101#ifdef __APPLE__
4102  return true;
4103#else
4104  return false;
4105#endif
4106}
4107
4108// System loadavg support.  Returns -1 if load average cannot be obtained.
4109// Bsd doesn't yet have a (official) notion of processor sets,
4110// so just return the system wide load average.
4111int os::loadavg(double loadavg[], int nelem) {
4112  return ::getloadavg(loadavg, nelem);
4113}
4114
4115void os::pause() {
4116  char filename[MAX_PATH];
4117  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4118    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4119  } else {
4120    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4121  }
4122
4123  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4124  if (fd != -1) {
4125    struct stat buf;
4126    ::close(fd);
4127    while (::stat(filename, &buf) == 0) {
4128      (void)::poll(NULL, 0, 100);
4129    }
4130  } else {
4131    jio_fprintf(stderr,
4132      "Could not open pause file '%s', continuing immediately.\n", filename);
4133  }
4134}
4135
4136
4137// Refer to the comments in os_solaris.cpp park-unpark.
4138//
4139// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4140// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4141// For specifics regarding the bug see GLIBC BUGID 261237 :
4142//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4143// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4144// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4145// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4146// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4147// and monitorenter when we're using 1-0 locking.  All those operations may result in
4148// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4149// of libpthread avoids the problem, but isn't practical.
4150//
4151// Possible remedies:
4152//
4153// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4154//      This is palliative and probabilistic, however.  If the thread is preempted
4155//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4156//      than the minimum period may have passed, and the abstime may be stale (in the
4157//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4158//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4159//
4160// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4161//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4162//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4163//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4164//      thread.
4165//
4166// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4167//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4168//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4169//      This also works well.  In fact it avoids kernel-level scalability impediments
4170//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4171//      timers in a graceful fashion.
4172//
4173// 4.   When the abstime value is in the past it appears that control returns
4174//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4175//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4176//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4177//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4178//      It may be possible to avoid reinitialization by checking the return
4179//      value from pthread_cond_timedwait().  In addition to reinitializing the
4180//      condvar we must establish the invariant that cond_signal() is only called
4181//      within critical sections protected by the adjunct mutex.  This prevents
4182//      cond_signal() from "seeing" a condvar that's in the midst of being
4183//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4184//      desirable signal-after-unlock optimization that avoids futile context switching.
4185//
4186//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4187//      structure when a condvar is used or initialized.  cond_destroy()  would
4188//      release the helper structure.  Our reinitialize-after-timedwait fix
4189//      put excessive stress on malloc/free and locks protecting the c-heap.
4190//
4191// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4192// It may be possible to refine (4) by checking the kernel and NTPL verisons
4193// and only enabling the work-around for vulnerable environments.
4194
4195// utility to compute the abstime argument to timedwait:
4196// millis is the relative timeout time
4197// abstime will be the absolute timeout time
4198// TODO: replace compute_abstime() with unpackTime()
4199
4200static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4201  if (millis < 0)  millis = 0;
4202  struct timeval now;
4203  int status = gettimeofday(&now, NULL);
4204  assert(status == 0, "gettimeofday");
4205  jlong seconds = millis / 1000;
4206  millis %= 1000;
4207  if (seconds > 50000000) { // see man cond_timedwait(3T)
4208    seconds = 50000000;
4209  }
4210  abstime->tv_sec = now.tv_sec  + seconds;
4211  long       usec = now.tv_usec + millis * 1000;
4212  if (usec >= 1000000) {
4213    abstime->tv_sec += 1;
4214    usec -= 1000000;
4215  }
4216  abstime->tv_nsec = usec * 1000;
4217  return abstime;
4218}
4219
4220
4221// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4222// Conceptually TryPark() should be equivalent to park(0).
4223
4224int os::PlatformEvent::TryPark() {
4225  for (;;) {
4226    const int v = _Event;
4227    guarantee((v == 0) || (v == 1), "invariant");
4228    if (Atomic::cmpxchg(0, &_Event, v) == v) return v;
4229  }
4230}
4231
4232void os::PlatformEvent::park() {       // AKA "down()"
4233  // Invariant: Only the thread associated with the Event/PlatformEvent
4234  // may call park().
4235  // TODO: assert that _Assoc != NULL or _Assoc == Self
4236  int v;
4237  for (;;) {
4238      v = _Event;
4239      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4240  }
4241  guarantee(v >= 0, "invariant");
4242  if (v == 0) {
4243     // Do this the hard way by blocking ...
4244     int status = pthread_mutex_lock(_mutex);
4245     assert_status(status == 0, status, "mutex_lock");
4246     guarantee(_nParked == 0, "invariant");
4247     ++_nParked;
4248     while (_Event < 0) {
4249        status = pthread_cond_wait(_cond, _mutex);
4250        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4251        // Treat this the same as if the wait was interrupted
4252        if (status == ETIMEDOUT) { status = EINTR; }
4253        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4254     }
4255     --_nParked;
4256
4257    _Event = 0;
4258     status = pthread_mutex_unlock(_mutex);
4259     assert_status(status == 0, status, "mutex_unlock");
4260    // Paranoia to ensure our locked and lock-free paths interact
4261    // correctly with each other.
4262    OrderAccess::fence();
4263  }
4264  guarantee(_Event >= 0, "invariant");
4265}
4266
4267int os::PlatformEvent::park(jlong millis) {
4268  guarantee(_nParked == 0, "invariant");
4269
4270  int v;
4271  for (;;) {
4272      v = _Event;
4273      if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4274  }
4275  guarantee(v >= 0, "invariant");
4276  if (v != 0) return OS_OK;
4277
4278  // We do this the hard way, by blocking the thread.
4279  // Consider enforcing a minimum timeout value.
4280  struct timespec abst;
4281  compute_abstime(&abst, millis);
4282
4283  int ret = OS_TIMEOUT;
4284  int status = pthread_mutex_lock(_mutex);
4285  assert_status(status == 0, status, "mutex_lock");
4286  guarantee(_nParked == 0, "invariant");
4287  ++_nParked;
4288
4289  // Object.wait(timo) will return because of
4290  // (a) notification
4291  // (b) timeout
4292  // (c) thread.interrupt
4293  //
4294  // Thread.interrupt and object.notify{All} both call Event::set.
4295  // That is, we treat thread.interrupt as a special case of notification.
4296  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4297  // We assume all ETIME returns are valid.
4298  //
4299  // TODO: properly differentiate simultaneous notify+interrupt.
4300  // In that case, we should propagate the notify to another waiter.
4301
4302  while (_Event < 0) {
4303    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4304    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4305      pthread_cond_destroy(_cond);
4306      pthread_cond_init(_cond, NULL);
4307    }
4308    assert_status(status == 0 || status == EINTR ||
4309                  status == ETIMEDOUT,
4310                  status, "cond_timedwait");
4311    if (!FilterSpuriousWakeups) break;                 // previous semantics
4312    if (status == ETIMEDOUT) break;
4313    // We consume and ignore EINTR and spurious wakeups.
4314  }
4315  --_nParked;
4316  if (_Event >= 0) {
4317     ret = OS_OK;
4318  }
4319  _Event = 0;
4320  status = pthread_mutex_unlock(_mutex);
4321  assert_status(status == 0, status, "mutex_unlock");
4322  assert(_nParked == 0, "invariant");
4323  // Paranoia to ensure our locked and lock-free paths interact
4324  // correctly with each other.
4325  OrderAccess::fence();
4326  return ret;
4327}
4328
4329void os::PlatformEvent::unpark() {
4330  // Transitions for _Event:
4331  //    0 :=> 1
4332  //    1 :=> 1
4333  //   -1 :=> either 0 or 1; must signal target thread
4334  //          That is, we can safely transition _Event from -1 to either
4335  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4336  //          unpark() calls.
4337  // See also: "Semaphores in Plan 9" by Mullender & Cox
4338  //
4339  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4340  // that it will take two back-to-back park() calls for the owning
4341  // thread to block. This has the benefit of forcing a spurious return
4342  // from the first park() call after an unpark() call which will help
4343  // shake out uses of park() and unpark() without condition variables.
4344
4345  if (Atomic::xchg(1, &_Event) >= 0) return;
4346
4347  // Wait for the thread associated with the event to vacate
4348  int status = pthread_mutex_lock(_mutex);
4349  assert_status(status == 0, status, "mutex_lock");
4350  int AnyWaiters = _nParked;
4351  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4352  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4353    AnyWaiters = 0;
4354    pthread_cond_signal(_cond);
4355  }
4356  status = pthread_mutex_unlock(_mutex);
4357  assert_status(status == 0, status, "mutex_unlock");
4358  if (AnyWaiters != 0) {
4359    status = pthread_cond_signal(_cond);
4360    assert_status(status == 0, status, "cond_signal");
4361  }
4362
4363  // Note that we signal() _after dropping the lock for "immortal" Events.
4364  // This is safe and avoids a common class of  futile wakeups.  In rare
4365  // circumstances this can cause a thread to return prematurely from
4366  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4367  // simply re-test the condition and re-park itself.
4368}
4369
4370
4371// JSR166
4372// -------------------------------------------------------
4373
4374/*
4375 * The solaris and bsd implementations of park/unpark are fairly
4376 * conservative for now, but can be improved. They currently use a
4377 * mutex/condvar pair, plus a a count.
4378 * Park decrements count if > 0, else does a condvar wait.  Unpark
4379 * sets count to 1 and signals condvar.  Only one thread ever waits
4380 * on the condvar. Contention seen when trying to park implies that someone
4381 * is unparking you, so don't wait. And spurious returns are fine, so there
4382 * is no need to track notifications.
4383 */
4384
4385#define MAX_SECS 100000000
4386/*
4387 * This code is common to bsd and solaris and will be moved to a
4388 * common place in dolphin.
4389 *
4390 * The passed in time value is either a relative time in nanoseconds
4391 * or an absolute time in milliseconds. Either way it has to be unpacked
4392 * into suitable seconds and nanoseconds components and stored in the
4393 * given timespec structure.
4394 * Given time is a 64-bit value and the time_t used in the timespec is only
4395 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4396 * overflow if times way in the future are given. Further on Solaris versions
4397 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4398 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4399 * As it will be 28 years before "now + 100000000" will overflow we can
4400 * ignore overflow and just impose a hard-limit on seconds using the value
4401 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4402 * years from "now".
4403 */
4404
4405static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4406  assert(time > 0, "convertTime");
4407
4408  struct timeval now;
4409  int status = gettimeofday(&now, NULL);
4410  assert(status == 0, "gettimeofday");
4411
4412  time_t max_secs = now.tv_sec + MAX_SECS;
4413
4414  if (isAbsolute) {
4415    jlong secs = time / 1000;
4416    if (secs > max_secs) {
4417      absTime->tv_sec = max_secs;
4418    }
4419    else {
4420      absTime->tv_sec = secs;
4421    }
4422    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4423  }
4424  else {
4425    jlong secs = time / NANOSECS_PER_SEC;
4426    if (secs >= MAX_SECS) {
4427      absTime->tv_sec = max_secs;
4428      absTime->tv_nsec = 0;
4429    }
4430    else {
4431      absTime->tv_sec = now.tv_sec + secs;
4432      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4433      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4434        absTime->tv_nsec -= NANOSECS_PER_SEC;
4435        ++absTime->tv_sec; // note: this must be <= max_secs
4436      }
4437    }
4438  }
4439  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4440  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4441  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4442  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4443}
4444
4445void Parker::park(bool isAbsolute, jlong time) {
4446  // Ideally we'd do something useful while spinning, such
4447  // as calling unpackTime().
4448
4449  // Optional fast-path check:
4450  // Return immediately if a permit is available.
4451  // We depend on Atomic::xchg() having full barrier semantics
4452  // since we are doing a lock-free update to _counter.
4453  if (Atomic::xchg(0, &_counter) > 0) return;
4454
4455  Thread* thread = Thread::current();
4456  assert(thread->is_Java_thread(), "Must be JavaThread");
4457  JavaThread *jt = (JavaThread *)thread;
4458
4459  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4460  // Check interrupt before trying to wait
4461  if (Thread::is_interrupted(thread, false)) {
4462    return;
4463  }
4464
4465  // Next, demultiplex/decode time arguments
4466  struct timespec absTime;
4467  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4468    return;
4469  }
4470  if (time > 0) {
4471    unpackTime(&absTime, isAbsolute, time);
4472  }
4473
4474
4475  // Enter safepoint region
4476  // Beware of deadlocks such as 6317397.
4477  // The per-thread Parker:: mutex is a classic leaf-lock.
4478  // In particular a thread must never block on the Threads_lock while
4479  // holding the Parker:: mutex.  If safepoints are pending both the
4480  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4481  ThreadBlockInVM tbivm(jt);
4482
4483  // Don't wait if cannot get lock since interference arises from
4484  // unblocking.  Also. check interrupt before trying wait
4485  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4486    return;
4487  }
4488
4489  int status;
4490  if (_counter > 0)  { // no wait needed
4491    _counter = 0;
4492    status = pthread_mutex_unlock(_mutex);
4493    assert(status == 0, "invariant");
4494    // Paranoia to ensure our locked and lock-free paths interact
4495    // correctly with each other and Java-level accesses.
4496    OrderAccess::fence();
4497    return;
4498  }
4499
4500#ifdef ASSERT
4501  // Don't catch signals while blocked; let the running threads have the signals.
4502  // (This allows a debugger to break into the running thread.)
4503  sigset_t oldsigs;
4504  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4505  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4506#endif
4507
4508  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4509  jt->set_suspend_equivalent();
4510  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4511
4512  if (time == 0) {
4513    status = pthread_cond_wait(_cond, _mutex);
4514  } else {
4515    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &absTime);
4516    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4517      pthread_cond_destroy(_cond);
4518      pthread_cond_init(_cond, NULL);
4519    }
4520  }
4521  assert_status(status == 0 || status == EINTR ||
4522                status == ETIMEDOUT,
4523                status, "cond_timedwait");
4524
4525#ifdef ASSERT
4526  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4527#endif
4528
4529  _counter = 0;
4530  status = pthread_mutex_unlock(_mutex);
4531  assert_status(status == 0, status, "invariant");
4532  // Paranoia to ensure our locked and lock-free paths interact
4533  // correctly with each other and Java-level accesses.
4534  OrderAccess::fence();
4535
4536  // If externally suspended while waiting, re-suspend
4537  if (jt->handle_special_suspend_equivalent_condition()) {
4538    jt->java_suspend_self();
4539  }
4540}
4541
4542void Parker::unpark() {
4543  int s, status;
4544  status = pthread_mutex_lock(_mutex);
4545  assert(status == 0, "invariant");
4546  s = _counter;
4547  _counter = 1;
4548  if (s < 1) {
4549     if (WorkAroundNPTLTimedWaitHang) {
4550        status = pthread_cond_signal(_cond);
4551        assert(status == 0, "invariant");
4552        status = pthread_mutex_unlock(_mutex);
4553        assert(status == 0, "invariant");
4554     } else {
4555        status = pthread_mutex_unlock(_mutex);
4556        assert(status == 0, "invariant");
4557        status = pthread_cond_signal(_cond);
4558        assert(status == 0, "invariant");
4559     }
4560  } else {
4561    pthread_mutex_unlock(_mutex);
4562    assert(status == 0, "invariant");
4563  }
4564}
4565
4566
4567/* Darwin has no "environ" in a dynamic library. */
4568#ifdef __APPLE__
4569#include <crt_externs.h>
4570#define environ (*_NSGetEnviron())
4571#else
4572extern char** environ;
4573#endif
4574
4575// Run the specified command in a separate process. Return its exit value,
4576// or -1 on failure (e.g. can't fork a new process).
4577// Unlike system(), this function can be called from signal handler. It
4578// doesn't block SIGINT et al.
4579int os::fork_and_exec(char* cmd) {
4580  const char * argv[4] = {"sh", "-c", cmd, NULL};
4581
4582  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4583  // pthread_atfork handlers and reset pthread library. All we need is a
4584  // separate process to execve. Make a direct syscall to fork process.
4585  // On IA64 there's no fork syscall, we have to use fork() and hope for
4586  // the best...
4587  pid_t pid = fork();
4588
4589  if (pid < 0) {
4590    // fork failed
4591    return -1;
4592
4593  } else if (pid == 0) {
4594    // child process
4595
4596    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4597    // first to kill every thread on the thread list. Because this list is
4598    // not reset by fork() (see notes above), execve() will instead kill
4599    // every thread in the parent process. We know this is the only thread
4600    // in the new process, so make a system call directly.
4601    // IA64 should use normal execve() from glibc to match the glibc fork()
4602    // above.
4603    execve("/bin/sh", (char* const*)argv, environ);
4604
4605    // execve failed
4606    _exit(-1);
4607
4608  } else  {
4609    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4610    // care about the actual exit code, for now.
4611
4612    int status;
4613
4614    // Wait for the child process to exit.  This returns immediately if
4615    // the child has already exited. */
4616    while (waitpid(pid, &status, 0) < 0) {
4617        switch (errno) {
4618        case ECHILD: return 0;
4619        case EINTR: break;
4620        default: return -1;
4621        }
4622    }
4623
4624    if (WIFEXITED(status)) {
4625       // The child exited normally; get its exit code.
4626       return WEXITSTATUS(status);
4627    } else if (WIFSIGNALED(status)) {
4628       // The child exited because of a signal
4629       // The best value to return is 0x80 + signal number,
4630       // because that is what all Unix shells do, and because
4631       // it allows callers to distinguish between process exit and
4632       // process death by signal.
4633       return 0x80 + WTERMSIG(status);
4634    } else {
4635       // Unknown exit code; pass it through
4636       return status;
4637    }
4638  }
4639}
4640
4641// is_headless_jre()
4642//
4643// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4644// in order to report if we are running in a headless jre
4645//
4646// Since JDK8 xawt/libmawt.so was moved into the same directory
4647// as libawt.so, and renamed libawt_xawt.so
4648//
4649bool os::is_headless_jre() {
4650#ifdef __APPLE__
4651    // We no longer build headless-only on Mac OS X
4652    return false;
4653#else
4654    struct stat statbuf;
4655    char buf[MAXPATHLEN];
4656    char libmawtpath[MAXPATHLEN];
4657    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4658    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4659    char *p;
4660
4661    // Get path to libjvm.so
4662    os::jvm_path(buf, sizeof(buf));
4663
4664    // Get rid of libjvm.so
4665    p = strrchr(buf, '/');
4666    if (p == NULL) return false;
4667    else *p = '\0';
4668
4669    // Get rid of client or server
4670    p = strrchr(buf, '/');
4671    if (p == NULL) return false;
4672    else *p = '\0';
4673
4674    // check xawt/libmawt.so
4675    strcpy(libmawtpath, buf);
4676    strcat(libmawtpath, xawtstr);
4677    if (::stat(libmawtpath, &statbuf) == 0) return false;
4678
4679    // check libawt_xawt.so
4680    strcpy(libmawtpath, buf);
4681    strcat(libmawtpath, new_xawtstr);
4682    if (::stat(libmawtpath, &statbuf) == 0) return false;
4683
4684    return true;
4685#endif
4686}
4687
4688// Get the default path to the core file
4689// Returns the length of the string
4690int os::get_core_path(char* buffer, size_t bufferSize) {
4691  int n = jio_snprintf(buffer, bufferSize, "/cores");
4692
4693  // Truncate if theoretical string was longer than bufferSize
4694  n = MIN2(n, (int)bufferSize);
4695
4696  return n;
4697}
4698
4699#ifndef PRODUCT
4700void TestReserveMemorySpecial_test() {
4701  // No tests available for this platform
4702}
4703#endif
4704