os_bsd.cpp revision 6554:b728cf7dfbec
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/orderAccess.inline.hpp"
52#include "runtime/osThread.hpp"
53#include "runtime/perfMemory.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/statSampler.hpp"
56#include "runtime/stubRoutines.hpp"
57#include "runtime/thread.inline.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/timer.hpp"
60#include "services/attachListener.hpp"
61#include "services/memTracker.hpp"
62#include "services/runtimeService.hpp"
63#include "utilities/decoder.hpp"
64#include "utilities/defaultStream.hpp"
65#include "utilities/events.hpp"
66#include "utilities/growableArray.hpp"
67#include "utilities/vmError.hpp"
68
69// put OS-includes here
70# include <sys/types.h>
71# include <sys/mman.h>
72# include <sys/stat.h>
73# include <sys/select.h>
74# include <pthread.h>
75# include <signal.h>
76# include <errno.h>
77# include <dlfcn.h>
78# include <stdio.h>
79# include <unistd.h>
80# include <sys/resource.h>
81# include <pthread.h>
82# include <sys/stat.h>
83# include <sys/time.h>
84# include <sys/times.h>
85# include <sys/utsname.h>
86# include <sys/socket.h>
87# include <sys/wait.h>
88# include <time.h>
89# include <pwd.h>
90# include <poll.h>
91# include <semaphore.h>
92# include <fcntl.h>
93# include <string.h>
94# include <sys/param.h>
95# include <sys/sysctl.h>
96# include <sys/ipc.h>
97# include <sys/shm.h>
98#ifndef __APPLE__
99# include <link.h>
100#endif
101# include <stdint.h>
102# include <inttypes.h>
103# include <sys/ioctl.h>
104# include <sys/syscall.h>
105
106#if defined(__FreeBSD__) || defined(__NetBSD__)
107# include <elf.h>
108#endif
109
110#ifdef __APPLE__
111# include <mach/mach.h> // semaphore_* API
112# include <mach-o/dyld.h>
113# include <sys/proc_info.h>
114# include <objc/objc-auto.h>
115#endif
116
117#ifndef MAP_ANONYMOUS
118#define MAP_ANONYMOUS MAP_ANON
119#endif
120
121#define MAX_PATH    (2 * K)
122
123// for timer info max values which include all bits
124#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
125
126#define LARGEPAGES_BIT (1 << 6)
127
128PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
129
130////////////////////////////////////////////////////////////////////////////////
131// global variables
132julong os::Bsd::_physical_memory = 0;
133
134#ifdef __APPLE__
135mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
136volatile uint64_t         os::Bsd::_max_abstime   = 0;
137#else
138int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
139#endif
140pthread_t os::Bsd::_main_thread;
141int os::Bsd::_page_size = -1;
142
143static jlong initial_time_count=0;
144
145static int clock_tics_per_sec = 100;
146
147// For diagnostics to print a message once. see run_periodic_checks
148static sigset_t check_signal_done;
149static bool check_signals = true;
150
151static pid_t _initial_pid = 0;
152
153/* Signal number used to suspend/resume a thread */
154
155/* do not use any signal number less than SIGSEGV, see 4355769 */
156static int SR_signum = SIGUSR2;
157sigset_t SR_sigset;
158
159
160////////////////////////////////////////////////////////////////////////////////
161// utility functions
162
163static int SR_initialize();
164static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
165
166julong os::available_memory() {
167  return Bsd::available_memory();
168}
169
170// available here means free
171julong os::Bsd::available_memory() {
172  uint64_t available = physical_memory() >> 2;
173#ifdef __APPLE__
174  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
175  vm_statistics64_data_t vmstat;
176  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
177                                         (host_info64_t)&vmstat, &count);
178  assert(kerr == KERN_SUCCESS,
179         "host_statistics64 failed - check mach_host_self() and count");
180  if (kerr == KERN_SUCCESS) {
181    available = vmstat.free_count * os::vm_page_size();
182  }
183#endif
184  return available;
185}
186
187julong os::physical_memory() {
188  return Bsd::physical_memory();
189}
190
191////////////////////////////////////////////////////////////////////////////////
192// environment support
193
194bool os::getenv(const char* name, char* buf, int len) {
195  const char* val = ::getenv(name);
196  if (val != NULL && strlen(val) < (size_t)len) {
197    strcpy(buf, val);
198    return true;
199  }
200  if (len > 0) buf[0] = 0;  // return a null string
201  return false;
202}
203
204
205// Return true if user is running as root.
206
207bool os::have_special_privileges() {
208  static bool init = false;
209  static bool privileges = false;
210  if (!init) {
211    privileges = (getuid() != geteuid()) || (getgid() != getegid());
212    init = true;
213  }
214  return privileges;
215}
216
217
218
219// Cpu architecture string
220#if   defined(ZERO)
221static char cpu_arch[] = ZERO_LIBARCH;
222#elif defined(IA64)
223static char cpu_arch[] = "ia64";
224#elif defined(IA32)
225static char cpu_arch[] = "i386";
226#elif defined(AMD64)
227static char cpu_arch[] = "amd64";
228#elif defined(ARM)
229static char cpu_arch[] = "arm";
230#elif defined(PPC32)
231static char cpu_arch[] = "ppc";
232#elif defined(SPARC)
233#  ifdef _LP64
234static char cpu_arch[] = "sparcv9";
235#  else
236static char cpu_arch[] = "sparc";
237#  endif
238#else
239#error Add appropriate cpu_arch setting
240#endif
241
242// Compiler variant
243#ifdef COMPILER2
244#define COMPILER_VARIANT "server"
245#else
246#define COMPILER_VARIANT "client"
247#endif
248
249
250void os::Bsd::initialize_system_info() {
251  int mib[2];
252  size_t len;
253  int cpu_val;
254  julong mem_val;
255
256  /* get processors count via hw.ncpus sysctl */
257  mib[0] = CTL_HW;
258  mib[1] = HW_NCPU;
259  len = sizeof(cpu_val);
260  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
261       assert(len == sizeof(cpu_val), "unexpected data size");
262       set_processor_count(cpu_val);
263  }
264  else {
265       set_processor_count(1);   // fallback
266  }
267
268  /* get physical memory via hw.memsize sysctl (hw.memsize is used
269   * since it returns a 64 bit value)
270   */
271  mib[0] = CTL_HW;
272
273#if defined (HW_MEMSIZE) // Apple
274  mib[1] = HW_MEMSIZE;
275#elif defined(HW_PHYSMEM) // Most of BSD
276  mib[1] = HW_PHYSMEM;
277#elif defined(HW_REALMEM) // Old FreeBSD
278  mib[1] = HW_REALMEM;
279#else
280  #error No ways to get physmem
281#endif
282
283  len = sizeof(mem_val);
284  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
285       assert(len == sizeof(mem_val), "unexpected data size");
286       _physical_memory = mem_val;
287  } else {
288       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
289  }
290
291#ifdef __OpenBSD__
292  {
293       // limit _physical_memory memory view on OpenBSD since
294       // datasize rlimit restricts us anyway.
295       struct rlimit limits;
296       getrlimit(RLIMIT_DATA, &limits);
297       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
298  }
299#endif
300}
301
302#ifdef __APPLE__
303static const char *get_home() {
304  const char *home_dir = ::getenv("HOME");
305  if ((home_dir == NULL) || (*home_dir == '\0')) {
306    struct passwd *passwd_info = getpwuid(geteuid());
307    if (passwd_info != NULL) {
308      home_dir = passwd_info->pw_dir;
309    }
310  }
311
312  return home_dir;
313}
314#endif
315
316void os::init_system_properties_values() {
317  // The next steps are taken in the product version:
318  //
319  // Obtain the JAVA_HOME value from the location of libjvm.so.
320  // This library should be located at:
321  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
322  //
323  // If "/jre/lib/" appears at the right place in the path, then we
324  // assume libjvm.so is installed in a JDK and we use this path.
325  //
326  // Otherwise exit with message: "Could not create the Java virtual machine."
327  //
328  // The following extra steps are taken in the debugging version:
329  //
330  // If "/jre/lib/" does NOT appear at the right place in the path
331  // instead of exit check for $JAVA_HOME environment variable.
332  //
333  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
334  // then we append a fake suffix "hotspot/libjvm.so" to this path so
335  // it looks like libjvm.so is installed there
336  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
337  //
338  // Otherwise exit.
339  //
340  // Important note: if the location of libjvm.so changes this
341  // code needs to be changed accordingly.
342
343// See ld(1):
344//      The linker uses the following search paths to locate required
345//      shared libraries:
346//        1: ...
347//        ...
348//        7: The default directories, normally /lib and /usr/lib.
349#ifndef DEFAULT_LIBPATH
350#define DEFAULT_LIBPATH "/lib:/usr/lib"
351#endif
352
353// Base path of extensions installed on the system.
354#define SYS_EXT_DIR     "/usr/java/packages"
355#define EXTENSIONS_DIR  "/lib/ext"
356#define ENDORSED_DIR    "/lib/endorsed"
357
358#ifndef __APPLE__
359
360  // Buffer that fits several sprintfs.
361  // Note that the space for the colon and the trailing null are provided
362  // by the nulls included by the sizeof operator.
363  const size_t bufsize =
364    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
365         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
366         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
367  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
368
369  // sysclasspath, java_home, dll_dir
370  {
371    char *pslash;
372    os::jvm_path(buf, bufsize);
373
374    // Found the full path to libjvm.so.
375    // Now cut the path to <java_home>/jre if we can.
376    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
377    pslash = strrchr(buf, '/');
378    if (pslash != NULL) {
379      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
380    }
381    Arguments::set_dll_dir(buf);
382
383    if (pslash != NULL) {
384      pslash = strrchr(buf, '/');
385      if (pslash != NULL) {
386        *pslash = '\0';          // Get rid of /<arch>.
387        pslash = strrchr(buf, '/');
388        if (pslash != NULL) {
389          *pslash = '\0';        // Get rid of /lib.
390        }
391      }
392    }
393    Arguments::set_java_home(buf);
394    set_boot_path('/', ':');
395  }
396
397  // Where to look for native libraries.
398  //
399  // Note: Due to a legacy implementation, most of the library path
400  // is set in the launcher. This was to accomodate linking restrictions
401  // on legacy Bsd implementations (which are no longer supported).
402  // Eventually, all the library path setting will be done here.
403  //
404  // However, to prevent the proliferation of improperly built native
405  // libraries, the new path component /usr/java/packages is added here.
406  // Eventually, all the library path setting will be done here.
407  {
408    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
409    // should always exist (until the legacy problem cited above is
410    // addressed).
411    const char *v = ::getenv("LD_LIBRARY_PATH");
412    const char *v_colon = ":";
413    if (v == NULL) { v = ""; v_colon = ""; }
414    // That's +1 for the colon and +1 for the trailing '\0'.
415    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
416                                                     strlen(v) + 1 +
417                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
418                                                     mtInternal);
419    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
420    Arguments::set_library_path(ld_library_path);
421    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
422  }
423
424  // Extensions directories.
425  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
426  Arguments::set_ext_dirs(buf);
427
428  // Endorsed standards default directory.
429  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
430  Arguments::set_endorsed_dirs(buf);
431
432  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
433
434#else // __APPLE__
435
436#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
437#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
438
439  const char *user_home_dir = get_home();
440  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
441  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
442    sizeof(SYS_EXTENSIONS_DIRS);
443
444  // Buffer that fits several sprintfs.
445  // Note that the space for the colon and the trailing null are provided
446  // by the nulls included by the sizeof operator.
447  const size_t bufsize =
448    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
449         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
450         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
451  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
452
453  // sysclasspath, java_home, dll_dir
454  {
455    char *pslash;
456    os::jvm_path(buf, bufsize);
457
458    // Found the full path to libjvm.so.
459    // Now cut the path to <java_home>/jre if we can.
460    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
461    pslash = strrchr(buf, '/');
462    if (pslash != NULL) {
463      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
464    }
465    Arguments::set_dll_dir(buf);
466
467    if (pslash != NULL) {
468      pslash = strrchr(buf, '/');
469      if (pslash != NULL) {
470        *pslash = '\0';          // Get rid of /lib.
471      }
472    }
473    Arguments::set_java_home(buf);
474    set_boot_path('/', ':');
475  }
476
477  // Where to look for native libraries.
478  //
479  // Note: Due to a legacy implementation, most of the library path
480  // is set in the launcher. This was to accomodate linking restrictions
481  // on legacy Bsd implementations (which are no longer supported).
482  // Eventually, all the library path setting will be done here.
483  //
484  // However, to prevent the proliferation of improperly built native
485  // libraries, the new path component /usr/java/packages is added here.
486  // Eventually, all the library path setting will be done here.
487  {
488    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
489    // should always exist (until the legacy problem cited above is
490    // addressed).
491    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
492    // can specify a directory inside an app wrapper
493    const char *l = ::getenv("JAVA_LIBRARY_PATH");
494    const char *l_colon = ":";
495    if (l == NULL) { l = ""; l_colon = ""; }
496
497    const char *v = ::getenv("DYLD_LIBRARY_PATH");
498    const char *v_colon = ":";
499    if (v == NULL) { v = ""; v_colon = ""; }
500
501    // Apple's Java6 has "." at the beginning of java.library.path.
502    // OpenJDK on Windows has "." at the end of java.library.path.
503    // OpenJDK on Linux and Solaris don't have "." in java.library.path
504    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
505    // "." is appended to the end of java.library.path. Yes, this
506    // could cause a change in behavior, but Apple's Java6 behavior
507    // can be achieved by putting "." at the beginning of the
508    // JAVA_LIBRARY_PATH environment variable.
509    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
510                                                     strlen(v) + 1 + strlen(l) + 1 +
511                                                     system_ext_size + 3,
512                                                     mtInternal);
513    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
514            v, v_colon, l, l_colon, user_home_dir);
515    Arguments::set_library_path(ld_library_path);
516    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
517  }
518
519  // Extensions directories.
520  //
521  // Note that the space for the colon and the trailing null are provided
522  // by the nulls included by the sizeof operator (so actually one byte more
523  // than necessary is allocated).
524  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
525          user_home_dir, Arguments::get_java_home());
526  Arguments::set_ext_dirs(buf);
527
528  // Endorsed standards default directory.
529  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
530  Arguments::set_endorsed_dirs(buf);
531
532  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
533
534#undef SYS_EXTENSIONS_DIR
535#undef SYS_EXTENSIONS_DIRS
536
537#endif // __APPLE__
538
539#undef SYS_EXT_DIR
540#undef EXTENSIONS_DIR
541#undef ENDORSED_DIR
542}
543
544////////////////////////////////////////////////////////////////////////////////
545// breakpoint support
546
547void os::breakpoint() {
548  BREAKPOINT;
549}
550
551extern "C" void breakpoint() {
552  // use debugger to set breakpoint here
553}
554
555////////////////////////////////////////////////////////////////////////////////
556// signal support
557
558debug_only(static bool signal_sets_initialized = false);
559static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
560
561bool os::Bsd::is_sig_ignored(int sig) {
562      struct sigaction oact;
563      sigaction(sig, (struct sigaction*)NULL, &oact);
564      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
565                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
566      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
567           return true;
568      else
569           return false;
570}
571
572void os::Bsd::signal_sets_init() {
573  // Should also have an assertion stating we are still single-threaded.
574  assert(!signal_sets_initialized, "Already initialized");
575  // Fill in signals that are necessarily unblocked for all threads in
576  // the VM. Currently, we unblock the following signals:
577  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
578  //                         by -Xrs (=ReduceSignalUsage));
579  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
580  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
581  // the dispositions or masks wrt these signals.
582  // Programs embedding the VM that want to use the above signals for their
583  // own purposes must, at this time, use the "-Xrs" option to prevent
584  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
585  // (See bug 4345157, and other related bugs).
586  // In reality, though, unblocking these signals is really a nop, since
587  // these signals are not blocked by default.
588  sigemptyset(&unblocked_sigs);
589  sigemptyset(&allowdebug_blocked_sigs);
590  sigaddset(&unblocked_sigs, SIGILL);
591  sigaddset(&unblocked_sigs, SIGSEGV);
592  sigaddset(&unblocked_sigs, SIGBUS);
593  sigaddset(&unblocked_sigs, SIGFPE);
594  sigaddset(&unblocked_sigs, SR_signum);
595
596  if (!ReduceSignalUsage) {
597   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
598      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
599      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
600   }
601   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
602      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
603      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
604   }
605   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
606      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
607      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
608   }
609  }
610  // Fill in signals that are blocked by all but the VM thread.
611  sigemptyset(&vm_sigs);
612  if (!ReduceSignalUsage)
613    sigaddset(&vm_sigs, BREAK_SIGNAL);
614  debug_only(signal_sets_initialized = true);
615
616}
617
618// These are signals that are unblocked while a thread is running Java.
619// (For some reason, they get blocked by default.)
620sigset_t* os::Bsd::unblocked_signals() {
621  assert(signal_sets_initialized, "Not initialized");
622  return &unblocked_sigs;
623}
624
625// These are the signals that are blocked while a (non-VM) thread is
626// running Java. Only the VM thread handles these signals.
627sigset_t* os::Bsd::vm_signals() {
628  assert(signal_sets_initialized, "Not initialized");
629  return &vm_sigs;
630}
631
632// These are signals that are blocked during cond_wait to allow debugger in
633sigset_t* os::Bsd::allowdebug_blocked_signals() {
634  assert(signal_sets_initialized, "Not initialized");
635  return &allowdebug_blocked_sigs;
636}
637
638void os::Bsd::hotspot_sigmask(Thread* thread) {
639
640  //Save caller's signal mask before setting VM signal mask
641  sigset_t caller_sigmask;
642  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
643
644  OSThread* osthread = thread->osthread();
645  osthread->set_caller_sigmask(caller_sigmask);
646
647  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
648
649  if (!ReduceSignalUsage) {
650    if (thread->is_VM_thread()) {
651      // Only the VM thread handles BREAK_SIGNAL ...
652      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
653    } else {
654      // ... all other threads block BREAK_SIGNAL
655      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
656    }
657  }
658}
659
660
661//////////////////////////////////////////////////////////////////////////////
662// create new thread
663
664// check if it's safe to start a new thread
665static bool _thread_safety_check(Thread* thread) {
666  return true;
667}
668
669#ifdef __APPLE__
670// library handle for calling objc_registerThreadWithCollector()
671// without static linking to the libobjc library
672#define OBJC_LIB "/usr/lib/libobjc.dylib"
673#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
674typedef void (*objc_registerThreadWithCollector_t)();
675extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
676objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
677#endif
678
679#ifdef __APPLE__
680static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
681  // Additional thread_id used to correlate threads in SA
682  thread_identifier_info_data_t     m_ident_info;
683  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
684
685  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
686              (thread_info_t) &m_ident_info, &count);
687
688  return m_ident_info.thread_id;
689}
690#endif
691
692// Thread start routine for all newly created threads
693static void *java_start(Thread *thread) {
694  // Try to randomize the cache line index of hot stack frames.
695  // This helps when threads of the same stack traces evict each other's
696  // cache lines. The threads can be either from the same JVM instance, or
697  // from different JVM instances. The benefit is especially true for
698  // processors with hyperthreading technology.
699  static int counter = 0;
700  int pid = os::current_process_id();
701  alloca(((pid ^ counter++) & 7) * 128);
702
703  ThreadLocalStorage::set_thread(thread);
704
705  OSThread* osthread = thread->osthread();
706  Monitor* sync = osthread->startThread_lock();
707
708  // non floating stack BsdThreads needs extra check, see above
709  if (!_thread_safety_check(thread)) {
710    // notify parent thread
711    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
712    osthread->set_state(ZOMBIE);
713    sync->notify_all();
714    return NULL;
715  }
716
717  osthread->set_thread_id(os::Bsd::gettid());
718
719#ifdef __APPLE__
720  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
721  guarantee(unique_thread_id != 0, "unique thread id was not found");
722  osthread->set_unique_thread_id(unique_thread_id);
723#endif
724  // initialize signal mask for this thread
725  os::Bsd::hotspot_sigmask(thread);
726
727  // initialize floating point control register
728  os::Bsd::init_thread_fpu_state();
729
730#ifdef __APPLE__
731  // register thread with objc gc
732  if (objc_registerThreadWithCollectorFunction != NULL) {
733    objc_registerThreadWithCollectorFunction();
734  }
735#endif
736
737  // handshaking with parent thread
738  {
739    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
740
741    // notify parent thread
742    osthread->set_state(INITIALIZED);
743    sync->notify_all();
744
745    // wait until os::start_thread()
746    while (osthread->get_state() == INITIALIZED) {
747      sync->wait(Mutex::_no_safepoint_check_flag);
748    }
749  }
750
751  // call one more level start routine
752  thread->run();
753
754  return 0;
755}
756
757bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
758  assert(thread->osthread() == NULL, "caller responsible");
759
760  // Allocate the OSThread object
761  OSThread* osthread = new OSThread(NULL, NULL);
762  if (osthread == NULL) {
763    return false;
764  }
765
766  // set the correct thread state
767  osthread->set_thread_type(thr_type);
768
769  // Initial state is ALLOCATED but not INITIALIZED
770  osthread->set_state(ALLOCATED);
771
772  thread->set_osthread(osthread);
773
774  // init thread attributes
775  pthread_attr_t attr;
776  pthread_attr_init(&attr);
777  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
778
779  // stack size
780  if (os::Bsd::supports_variable_stack_size()) {
781    // calculate stack size if it's not specified by caller
782    if (stack_size == 0) {
783      stack_size = os::Bsd::default_stack_size(thr_type);
784
785      switch (thr_type) {
786      case os::java_thread:
787        // Java threads use ThreadStackSize which default value can be
788        // changed with the flag -Xss
789        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
790        stack_size = JavaThread::stack_size_at_create();
791        break;
792      case os::compiler_thread:
793        if (CompilerThreadStackSize > 0) {
794          stack_size = (size_t)(CompilerThreadStackSize * K);
795          break;
796        } // else fall through:
797          // use VMThreadStackSize if CompilerThreadStackSize is not defined
798      case os::vm_thread:
799      case os::pgc_thread:
800      case os::cgc_thread:
801      case os::watcher_thread:
802        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
803        break;
804      }
805    }
806
807    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
808    pthread_attr_setstacksize(&attr, stack_size);
809  } else {
810    // let pthread_create() pick the default value.
811  }
812
813  ThreadState state;
814
815  {
816    pthread_t tid;
817    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
818
819    pthread_attr_destroy(&attr);
820
821    if (ret != 0) {
822      if (PrintMiscellaneous && (Verbose || WizardMode)) {
823        perror("pthread_create()");
824      }
825      // Need to clean up stuff we've allocated so far
826      thread->set_osthread(NULL);
827      delete osthread;
828      return false;
829    }
830
831    // Store pthread info into the OSThread
832    osthread->set_pthread_id(tid);
833
834    // Wait until child thread is either initialized or aborted
835    {
836      Monitor* sync_with_child = osthread->startThread_lock();
837      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
838      while ((state = osthread->get_state()) == ALLOCATED) {
839        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
840      }
841    }
842
843  }
844
845  // Aborted due to thread limit being reached
846  if (state == ZOMBIE) {
847      thread->set_osthread(NULL);
848      delete osthread;
849      return false;
850  }
851
852  // The thread is returned suspended (in state INITIALIZED),
853  // and is started higher up in the call chain
854  assert(state == INITIALIZED, "race condition");
855  return true;
856}
857
858/////////////////////////////////////////////////////////////////////////////
859// attach existing thread
860
861// bootstrap the main thread
862bool os::create_main_thread(JavaThread* thread) {
863  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
864  return create_attached_thread(thread);
865}
866
867bool os::create_attached_thread(JavaThread* thread) {
868#ifdef ASSERT
869    thread->verify_not_published();
870#endif
871
872  // Allocate the OSThread object
873  OSThread* osthread = new OSThread(NULL, NULL);
874
875  if (osthread == NULL) {
876    return false;
877  }
878
879  osthread->set_thread_id(os::Bsd::gettid());
880
881  // Store pthread info into the OSThread
882#ifdef __APPLE__
883  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
884  guarantee(unique_thread_id != 0, "just checking");
885  osthread->set_unique_thread_id(unique_thread_id);
886#endif
887  osthread->set_pthread_id(::pthread_self());
888
889  // initialize floating point control register
890  os::Bsd::init_thread_fpu_state();
891
892  // Initial thread state is RUNNABLE
893  osthread->set_state(RUNNABLE);
894
895  thread->set_osthread(osthread);
896
897  // initialize signal mask for this thread
898  // and save the caller's signal mask
899  os::Bsd::hotspot_sigmask(thread);
900
901  return true;
902}
903
904void os::pd_start_thread(Thread* thread) {
905  OSThread * osthread = thread->osthread();
906  assert(osthread->get_state() != INITIALIZED, "just checking");
907  Monitor* sync_with_child = osthread->startThread_lock();
908  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
909  sync_with_child->notify();
910}
911
912// Free Bsd resources related to the OSThread
913void os::free_thread(OSThread* osthread) {
914  assert(osthread != NULL, "osthread not set");
915
916  if (Thread::current()->osthread() == osthread) {
917    // Restore caller's signal mask
918    sigset_t sigmask = osthread->caller_sigmask();
919    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
920   }
921
922  delete osthread;
923}
924
925//////////////////////////////////////////////////////////////////////////////
926// thread local storage
927
928// Restore the thread pointer if the destructor is called. This is in case
929// someone from JNI code sets up a destructor with pthread_key_create to run
930// detachCurrentThread on thread death. Unless we restore the thread pointer we
931// will hang or crash. When detachCurrentThread is called the key will be set
932// to null and we will not be called again. If detachCurrentThread is never
933// called we could loop forever depending on the pthread implementation.
934static void restore_thread_pointer(void* p) {
935  Thread* thread = (Thread*) p;
936  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
937}
938
939int os::allocate_thread_local_storage() {
940  pthread_key_t key;
941  int rslt = pthread_key_create(&key, restore_thread_pointer);
942  assert(rslt == 0, "cannot allocate thread local storage");
943  return (int)key;
944}
945
946// Note: This is currently not used by VM, as we don't destroy TLS key
947// on VM exit.
948void os::free_thread_local_storage(int index) {
949  int rslt = pthread_key_delete((pthread_key_t)index);
950  assert(rslt == 0, "invalid index");
951}
952
953void os::thread_local_storage_at_put(int index, void* value) {
954  int rslt = pthread_setspecific((pthread_key_t)index, value);
955  assert(rslt == 0, "pthread_setspecific failed");
956}
957
958extern "C" Thread* get_thread() {
959  return ThreadLocalStorage::thread();
960}
961
962
963////////////////////////////////////////////////////////////////////////////////
964// time support
965
966// Time since start-up in seconds to a fine granularity.
967// Used by VMSelfDestructTimer and the MemProfiler.
968double os::elapsedTime() {
969
970  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
971}
972
973jlong os::elapsed_counter() {
974  return javaTimeNanos() - initial_time_count;
975}
976
977jlong os::elapsed_frequency() {
978  return NANOSECS_PER_SEC; // nanosecond resolution
979}
980
981bool os::supports_vtime() { return true; }
982bool os::enable_vtime()   { return false; }
983bool os::vtime_enabled()  { return false; }
984
985double os::elapsedVTime() {
986  // better than nothing, but not much
987  return elapsedTime();
988}
989
990jlong os::javaTimeMillis() {
991  timeval time;
992  int status = gettimeofday(&time, NULL);
993  assert(status != -1, "bsd error");
994  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
995}
996
997#ifndef __APPLE__
998#ifndef CLOCK_MONOTONIC
999#define CLOCK_MONOTONIC (1)
1000#endif
1001#endif
1002
1003#ifdef __APPLE__
1004void os::Bsd::clock_init() {
1005  mach_timebase_info(&_timebase_info);
1006}
1007#else
1008void os::Bsd::clock_init() {
1009  struct timespec res;
1010  struct timespec tp;
1011  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1012      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1013    // yes, monotonic clock is supported
1014    _clock_gettime = ::clock_gettime;
1015  }
1016}
1017#endif
1018
1019
1020
1021#ifdef __APPLE__
1022
1023jlong os::javaTimeNanos() {
1024    const uint64_t tm = mach_absolute_time();
1025    const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1026    const uint64_t prev = Bsd::_max_abstime;
1027    if (now <= prev) {
1028      return prev;   // same or retrograde time;
1029    }
1030    const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1031    assert(obsv >= prev, "invariant");   // Monotonicity
1032    // If the CAS succeeded then we're done and return "now".
1033    // If the CAS failed and the observed value "obsv" is >= now then
1034    // we should return "obsv".  If the CAS failed and now > obsv > prv then
1035    // some other thread raced this thread and installed a new value, in which case
1036    // we could either (a) retry the entire operation, (b) retry trying to install now
1037    // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1038    // we might discard a higher "now" value in deference to a slightly lower but freshly
1039    // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1040    // to (a) or (b) -- and greatly reduces coherence traffic.
1041    // We might also condition (c) on the magnitude of the delta between obsv and now.
1042    // Avoiding excessive CAS operations to hot RW locations is critical.
1043    // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1044    return (prev == obsv) ? now : obsv;
1045}
1046
1047#else // __APPLE__
1048
1049jlong os::javaTimeNanos() {
1050  if (os::supports_monotonic_clock()) {
1051    struct timespec tp;
1052    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1053    assert(status == 0, "gettime error");
1054    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1055    return result;
1056  } else {
1057    timeval time;
1058    int status = gettimeofday(&time, NULL);
1059    assert(status != -1, "bsd error");
1060    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1061    return 1000 * usecs;
1062  }
1063}
1064
1065#endif // __APPLE__
1066
1067void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1068  if (os::supports_monotonic_clock()) {
1069    info_ptr->max_value = ALL_64_BITS;
1070
1071    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1072    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1073    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1074  } else {
1075    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1076    info_ptr->max_value = ALL_64_BITS;
1077
1078    // gettimeofday is a real time clock so it skips
1079    info_ptr->may_skip_backward = true;
1080    info_ptr->may_skip_forward = true;
1081  }
1082
1083  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1084}
1085
1086// Return the real, user, and system times in seconds from an
1087// arbitrary fixed point in the past.
1088bool os::getTimesSecs(double* process_real_time,
1089                      double* process_user_time,
1090                      double* process_system_time) {
1091  struct tms ticks;
1092  clock_t real_ticks = times(&ticks);
1093
1094  if (real_ticks == (clock_t) (-1)) {
1095    return false;
1096  } else {
1097    double ticks_per_second = (double) clock_tics_per_sec;
1098    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1099    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1100    *process_real_time = ((double) real_ticks) / ticks_per_second;
1101
1102    return true;
1103  }
1104}
1105
1106
1107char * os::local_time_string(char *buf, size_t buflen) {
1108  struct tm t;
1109  time_t long_time;
1110  time(&long_time);
1111  localtime_r(&long_time, &t);
1112  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1113               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1114               t.tm_hour, t.tm_min, t.tm_sec);
1115  return buf;
1116}
1117
1118struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1119  return localtime_r(clock, res);
1120}
1121
1122////////////////////////////////////////////////////////////////////////////////
1123// runtime exit support
1124
1125// Note: os::shutdown() might be called very early during initialization, or
1126// called from signal handler. Before adding something to os::shutdown(), make
1127// sure it is async-safe and can handle partially initialized VM.
1128void os::shutdown() {
1129
1130  // allow PerfMemory to attempt cleanup of any persistent resources
1131  perfMemory_exit();
1132
1133  // needs to remove object in file system
1134  AttachListener::abort();
1135
1136  // flush buffered output, finish log files
1137  ostream_abort();
1138
1139  // Check for abort hook
1140  abort_hook_t abort_hook = Arguments::abort_hook();
1141  if (abort_hook != NULL) {
1142    abort_hook();
1143  }
1144
1145}
1146
1147// Note: os::abort() might be called very early during initialization, or
1148// called from signal handler. Before adding something to os::abort(), make
1149// sure it is async-safe and can handle partially initialized VM.
1150void os::abort(bool dump_core) {
1151  os::shutdown();
1152  if (dump_core) {
1153#ifndef PRODUCT
1154    fdStream out(defaultStream::output_fd());
1155    out.print_raw("Current thread is ");
1156    char buf[16];
1157    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1158    out.print_raw_cr(buf);
1159    out.print_raw_cr("Dumping core ...");
1160#endif
1161    ::abort(); // dump core
1162  }
1163
1164  ::exit(1);
1165}
1166
1167// Die immediately, no exit hook, no abort hook, no cleanup.
1168void os::die() {
1169  // _exit() on BsdThreads only kills current thread
1170  ::abort();
1171}
1172
1173// unused on bsd for now.
1174void os::set_error_file(const char *logfile) {}
1175
1176
1177// This method is a copy of JDK's sysGetLastErrorString
1178// from src/solaris/hpi/src/system_md.c
1179
1180size_t os::lasterror(char *buf, size_t len) {
1181
1182  if (errno == 0)  return 0;
1183
1184  const char *s = ::strerror(errno);
1185  size_t n = ::strlen(s);
1186  if (n >= len) {
1187    n = len - 1;
1188  }
1189  ::strncpy(buf, s, n);
1190  buf[n] = '\0';
1191  return n;
1192}
1193
1194// Information of current thread in variety of formats
1195pid_t os::Bsd::gettid() {
1196  int retval = -1;
1197
1198#ifdef __APPLE__ //XNU kernel
1199  // despite the fact mach port is actually not a thread id use it
1200  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1201  retval = ::pthread_mach_thread_np(::pthread_self());
1202  guarantee(retval != 0, "just checking");
1203  return retval;
1204
1205#elif __FreeBSD__
1206  retval = syscall(SYS_thr_self);
1207#elif __OpenBSD__
1208  retval = syscall(SYS_getthrid);
1209#elif __NetBSD__
1210  retval = (pid_t) syscall(SYS__lwp_self);
1211#endif
1212
1213  if (retval == -1) {
1214    return getpid();
1215  }
1216}
1217
1218intx os::current_thread_id() {
1219#ifdef __APPLE__
1220  return (intx)::pthread_mach_thread_np(::pthread_self());
1221#else
1222  return (intx)::pthread_self();
1223#endif
1224}
1225
1226int os::current_process_id() {
1227
1228  // Under the old bsd thread library, bsd gives each thread
1229  // its own process id. Because of this each thread will return
1230  // a different pid if this method were to return the result
1231  // of getpid(2). Bsd provides no api that returns the pid
1232  // of the launcher thread for the vm. This implementation
1233  // returns a unique pid, the pid of the launcher thread
1234  // that starts the vm 'process'.
1235
1236  // Under the NPTL, getpid() returns the same pid as the
1237  // launcher thread rather than a unique pid per thread.
1238  // Use gettid() if you want the old pre NPTL behaviour.
1239
1240  // if you are looking for the result of a call to getpid() that
1241  // returns a unique pid for the calling thread, then look at the
1242  // OSThread::thread_id() method in osThread_bsd.hpp file
1243
1244  return (int)(_initial_pid ? _initial_pid : getpid());
1245}
1246
1247// DLL functions
1248
1249#define JNI_LIB_PREFIX "lib"
1250#ifdef __APPLE__
1251#define JNI_LIB_SUFFIX ".dylib"
1252#else
1253#define JNI_LIB_SUFFIX ".so"
1254#endif
1255
1256const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1257
1258// This must be hard coded because it's the system's temporary
1259// directory not the java application's temp directory, ala java.io.tmpdir.
1260#ifdef __APPLE__
1261// macosx has a secure per-user temporary directory
1262char temp_path_storage[PATH_MAX];
1263const char* os::get_temp_directory() {
1264  static char *temp_path = NULL;
1265  if (temp_path == NULL) {
1266    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1267    if (pathSize == 0 || pathSize > PATH_MAX) {
1268      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1269    }
1270    temp_path = temp_path_storage;
1271  }
1272  return temp_path;
1273}
1274#else /* __APPLE__ */
1275const char* os::get_temp_directory() { return "/tmp"; }
1276#endif /* __APPLE__ */
1277
1278static bool file_exists(const char* filename) {
1279  struct stat statbuf;
1280  if (filename == NULL || strlen(filename) == 0) {
1281    return false;
1282  }
1283  return os::stat(filename, &statbuf) == 0;
1284}
1285
1286bool os::dll_build_name(char* buffer, size_t buflen,
1287                        const char* pname, const char* fname) {
1288  bool retval = false;
1289  // Copied from libhpi
1290  const size_t pnamelen = pname ? strlen(pname) : 0;
1291
1292  // Return error on buffer overflow.
1293  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1294    return retval;
1295  }
1296
1297  if (pnamelen == 0) {
1298    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1299    retval = true;
1300  } else if (strchr(pname, *os::path_separator()) != NULL) {
1301    int n;
1302    char** pelements = split_path(pname, &n);
1303    if (pelements == NULL) {
1304      return false;
1305    }
1306    for (int i = 0 ; i < n ; i++) {
1307      // Really shouldn't be NULL, but check can't hurt
1308      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1309        continue; // skip the empty path values
1310      }
1311      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1312          pelements[i], fname);
1313      if (file_exists(buffer)) {
1314        retval = true;
1315        break;
1316      }
1317    }
1318    // release the storage
1319    for (int i = 0 ; i < n ; i++) {
1320      if (pelements[i] != NULL) {
1321        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1322      }
1323    }
1324    if (pelements != NULL) {
1325      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1326    }
1327  } else {
1328    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1329    retval = true;
1330  }
1331  return retval;
1332}
1333
1334// check if addr is inside libjvm.so
1335bool os::address_is_in_vm(address addr) {
1336  static address libjvm_base_addr;
1337  Dl_info dlinfo;
1338
1339  if (libjvm_base_addr == NULL) {
1340    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1341      libjvm_base_addr = (address)dlinfo.dli_fbase;
1342    }
1343    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1344  }
1345
1346  if (dladdr((void *)addr, &dlinfo) != 0) {
1347    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1348  }
1349
1350  return false;
1351}
1352
1353
1354#define MACH_MAXSYMLEN 256
1355
1356bool os::dll_address_to_function_name(address addr, char *buf,
1357                                      int buflen, int *offset) {
1358  // buf is not optional, but offset is optional
1359  assert(buf != NULL, "sanity check");
1360
1361  Dl_info dlinfo;
1362  char localbuf[MACH_MAXSYMLEN];
1363
1364  if (dladdr((void*)addr, &dlinfo) != 0) {
1365    // see if we have a matching symbol
1366    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1367      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1368        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1369      }
1370      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1371      return true;
1372    }
1373    // no matching symbol so try for just file info
1374    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1375      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1376                          buf, buflen, offset, dlinfo.dli_fname)) {
1377         return true;
1378      }
1379    }
1380
1381    // Handle non-dynamic manually:
1382    if (dlinfo.dli_fbase != NULL &&
1383        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1384                        dlinfo.dli_fbase)) {
1385      if (!Decoder::demangle(localbuf, buf, buflen)) {
1386        jio_snprintf(buf, buflen, "%s", localbuf);
1387      }
1388      return true;
1389    }
1390  }
1391  buf[0] = '\0';
1392  if (offset != NULL) *offset = -1;
1393  return false;
1394}
1395
1396// ported from solaris version
1397bool os::dll_address_to_library_name(address addr, char* buf,
1398                                     int buflen, int* offset) {
1399  // buf is not optional, but offset is optional
1400  assert(buf != NULL, "sanity check");
1401
1402  Dl_info dlinfo;
1403
1404  if (dladdr((void*)addr, &dlinfo) != 0) {
1405    if (dlinfo.dli_fname != NULL) {
1406      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1407    }
1408    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1409      *offset = addr - (address)dlinfo.dli_fbase;
1410    }
1411    return true;
1412  }
1413
1414  buf[0] = '\0';
1415  if (offset) *offset = -1;
1416  return false;
1417}
1418
1419// Loads .dll/.so and
1420// in case of error it checks if .dll/.so was built for the
1421// same architecture as Hotspot is running on
1422
1423#ifdef __APPLE__
1424void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1425  void * result= ::dlopen(filename, RTLD_LAZY);
1426  if (result != NULL) {
1427    // Successful loading
1428    return result;
1429  }
1430
1431  // Read system error message into ebuf
1432  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1433  ebuf[ebuflen-1]='\0';
1434
1435  return NULL;
1436}
1437#else
1438void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1439{
1440  void * result= ::dlopen(filename, RTLD_LAZY);
1441  if (result != NULL) {
1442    // Successful loading
1443    return result;
1444  }
1445
1446  Elf32_Ehdr elf_head;
1447
1448  // Read system error message into ebuf
1449  // It may or may not be overwritten below
1450  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1451  ebuf[ebuflen-1]='\0';
1452  int diag_msg_max_length=ebuflen-strlen(ebuf);
1453  char* diag_msg_buf=ebuf+strlen(ebuf);
1454
1455  if (diag_msg_max_length==0) {
1456    // No more space in ebuf for additional diagnostics message
1457    return NULL;
1458  }
1459
1460
1461  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1462
1463  if (file_descriptor < 0) {
1464    // Can't open library, report dlerror() message
1465    return NULL;
1466  }
1467
1468  bool failed_to_read_elf_head=
1469    (sizeof(elf_head)!=
1470        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1471
1472  ::close(file_descriptor);
1473  if (failed_to_read_elf_head) {
1474    // file i/o error - report dlerror() msg
1475    return NULL;
1476  }
1477
1478  typedef struct {
1479    Elf32_Half  code;         // Actual value as defined in elf.h
1480    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1481    char        elf_class;    // 32 or 64 bit
1482    char        endianess;    // MSB or LSB
1483    char*       name;         // String representation
1484  } arch_t;
1485
1486  #ifndef EM_486
1487  #define EM_486          6               /* Intel 80486 */
1488  #endif
1489
1490  #ifndef EM_MIPS_RS3_LE
1491  #define EM_MIPS_RS3_LE  10              /* MIPS */
1492  #endif
1493
1494  #ifndef EM_PPC64
1495  #define EM_PPC64        21              /* PowerPC64 */
1496  #endif
1497
1498  #ifndef EM_S390
1499  #define EM_S390         22              /* IBM System/390 */
1500  #endif
1501
1502  #ifndef EM_IA_64
1503  #define EM_IA_64        50              /* HP/Intel IA-64 */
1504  #endif
1505
1506  #ifndef EM_X86_64
1507  #define EM_X86_64       62              /* AMD x86-64 */
1508  #endif
1509
1510  static const arch_t arch_array[]={
1511    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1512    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1513    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1514    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1515    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1516    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1517    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1518    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1519    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1520    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1521    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1522    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1523    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1524    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1525    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1526    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1527  };
1528
1529  #if  (defined IA32)
1530    static  Elf32_Half running_arch_code=EM_386;
1531  #elif   (defined AMD64)
1532    static  Elf32_Half running_arch_code=EM_X86_64;
1533  #elif  (defined IA64)
1534    static  Elf32_Half running_arch_code=EM_IA_64;
1535  #elif  (defined __sparc) && (defined _LP64)
1536    static  Elf32_Half running_arch_code=EM_SPARCV9;
1537  #elif  (defined __sparc) && (!defined _LP64)
1538    static  Elf32_Half running_arch_code=EM_SPARC;
1539  #elif  (defined __powerpc64__)
1540    static  Elf32_Half running_arch_code=EM_PPC64;
1541  #elif  (defined __powerpc__)
1542    static  Elf32_Half running_arch_code=EM_PPC;
1543  #elif  (defined ARM)
1544    static  Elf32_Half running_arch_code=EM_ARM;
1545  #elif  (defined S390)
1546    static  Elf32_Half running_arch_code=EM_S390;
1547  #elif  (defined ALPHA)
1548    static  Elf32_Half running_arch_code=EM_ALPHA;
1549  #elif  (defined MIPSEL)
1550    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1551  #elif  (defined PARISC)
1552    static  Elf32_Half running_arch_code=EM_PARISC;
1553  #elif  (defined MIPS)
1554    static  Elf32_Half running_arch_code=EM_MIPS;
1555  #elif  (defined M68K)
1556    static  Elf32_Half running_arch_code=EM_68K;
1557  #else
1558    #error Method os::dll_load requires that one of following is defined:\
1559         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1560  #endif
1561
1562  // Identify compatability class for VM's architecture and library's architecture
1563  // Obtain string descriptions for architectures
1564
1565  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1566  int running_arch_index=-1;
1567
1568  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1569    if (running_arch_code == arch_array[i].code) {
1570      running_arch_index    = i;
1571    }
1572    if (lib_arch.code == arch_array[i].code) {
1573      lib_arch.compat_class = arch_array[i].compat_class;
1574      lib_arch.name         = arch_array[i].name;
1575    }
1576  }
1577
1578  assert(running_arch_index != -1,
1579    "Didn't find running architecture code (running_arch_code) in arch_array");
1580  if (running_arch_index == -1) {
1581    // Even though running architecture detection failed
1582    // we may still continue with reporting dlerror() message
1583    return NULL;
1584  }
1585
1586  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1587    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1588    return NULL;
1589  }
1590
1591#ifndef S390
1592  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1593    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1594    return NULL;
1595  }
1596#endif // !S390
1597
1598  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1599    if ( lib_arch.name!=NULL ) {
1600      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1601        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1602        lib_arch.name, arch_array[running_arch_index].name);
1603    } else {
1604      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1605      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1606        lib_arch.code,
1607        arch_array[running_arch_index].name);
1608    }
1609  }
1610
1611  return NULL;
1612}
1613#endif /* !__APPLE__ */
1614
1615void* os::get_default_process_handle() {
1616#ifdef __APPLE__
1617  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1618  // to avoid finding unexpected symbols on second (or later)
1619  // loads of a library.
1620  return (void*)::dlopen(NULL, RTLD_FIRST);
1621#else
1622  return (void*)::dlopen(NULL, RTLD_LAZY);
1623#endif
1624}
1625
1626// XXX: Do we need a lock around this as per Linux?
1627void* os::dll_lookup(void* handle, const char* name) {
1628  return dlsym(handle, name);
1629}
1630
1631
1632static bool _print_ascii_file(const char* filename, outputStream* st) {
1633  int fd = ::open(filename, O_RDONLY);
1634  if (fd == -1) {
1635     return false;
1636  }
1637
1638  char buf[32];
1639  int bytes;
1640  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1641    st->print_raw(buf, bytes);
1642  }
1643
1644  ::close(fd);
1645
1646  return true;
1647}
1648
1649void os::print_dll_info(outputStream *st) {
1650  st->print_cr("Dynamic libraries:");
1651#ifdef RTLD_DI_LINKMAP
1652  Dl_info dli;
1653  void *handle;
1654  Link_map *map;
1655  Link_map *p;
1656
1657  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1658      dli.dli_fname == NULL) {
1659    st->print_cr("Error: Cannot print dynamic libraries.");
1660    return;
1661  }
1662  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1663  if (handle == NULL) {
1664    st->print_cr("Error: Cannot print dynamic libraries.");
1665    return;
1666  }
1667  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1668  if (map == NULL) {
1669    st->print_cr("Error: Cannot print dynamic libraries.");
1670    return;
1671  }
1672
1673  while (map->l_prev != NULL)
1674    map = map->l_prev;
1675
1676  while (map != NULL) {
1677    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1678    map = map->l_next;
1679  }
1680
1681  dlclose(handle);
1682#elif defined(__APPLE__)
1683  uint32_t count;
1684  uint32_t i;
1685
1686  count = _dyld_image_count();
1687  for (i = 1; i < count; i++) {
1688    const char *name = _dyld_get_image_name(i);
1689    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1690    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1691  }
1692#else
1693  st->print_cr("Error: Cannot print dynamic libraries.");
1694#endif
1695}
1696
1697void os::print_os_info_brief(outputStream* st) {
1698  st->print("Bsd");
1699
1700  os::Posix::print_uname_info(st);
1701}
1702
1703void os::print_os_info(outputStream* st) {
1704  st->print("OS:");
1705  st->print("Bsd");
1706
1707  os::Posix::print_uname_info(st);
1708
1709  os::Posix::print_rlimit_info(st);
1710
1711  os::Posix::print_load_average(st);
1712}
1713
1714void os::pd_print_cpu_info(outputStream* st) {
1715  // Nothing to do for now.
1716}
1717
1718void os::print_memory_info(outputStream* st) {
1719
1720  st->print("Memory:");
1721  st->print(" %dk page", os::vm_page_size()>>10);
1722
1723  st->print(", physical " UINT64_FORMAT "k",
1724            os::physical_memory() >> 10);
1725  st->print("(" UINT64_FORMAT "k free)",
1726            os::available_memory() >> 10);
1727  st->cr();
1728
1729  // meminfo
1730  st->print("\n/proc/meminfo:\n");
1731  _print_ascii_file("/proc/meminfo", st);
1732  st->cr();
1733}
1734
1735void os::print_siginfo(outputStream* st, void* siginfo) {
1736  const siginfo_t* si = (const siginfo_t*)siginfo;
1737
1738  os::Posix::print_siginfo_brief(st, si);
1739
1740  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1741      UseSharedSpaces) {
1742    FileMapInfo* mapinfo = FileMapInfo::current_info();
1743    if (mapinfo->is_in_shared_space(si->si_addr)) {
1744      st->print("\n\nError accessing class data sharing archive."   \
1745                " Mapped file inaccessible during execution, "      \
1746                " possible disk/network problem.");
1747    }
1748  }
1749  st->cr();
1750}
1751
1752
1753static void print_signal_handler(outputStream* st, int sig,
1754                                 char* buf, size_t buflen);
1755
1756void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1757  st->print_cr("Signal Handlers:");
1758  print_signal_handler(st, SIGSEGV, buf, buflen);
1759  print_signal_handler(st, SIGBUS , buf, buflen);
1760  print_signal_handler(st, SIGFPE , buf, buflen);
1761  print_signal_handler(st, SIGPIPE, buf, buflen);
1762  print_signal_handler(st, SIGXFSZ, buf, buflen);
1763  print_signal_handler(st, SIGILL , buf, buflen);
1764  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1765  print_signal_handler(st, SR_signum, buf, buflen);
1766  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1767  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1768  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1769  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1770}
1771
1772static char saved_jvm_path[MAXPATHLEN] = {0};
1773
1774// Find the full path to the current module, libjvm
1775void os::jvm_path(char *buf, jint buflen) {
1776  // Error checking.
1777  if (buflen < MAXPATHLEN) {
1778    assert(false, "must use a large-enough buffer");
1779    buf[0] = '\0';
1780    return;
1781  }
1782  // Lazy resolve the path to current module.
1783  if (saved_jvm_path[0] != 0) {
1784    strcpy(buf, saved_jvm_path);
1785    return;
1786  }
1787
1788  char dli_fname[MAXPATHLEN];
1789  bool ret = dll_address_to_library_name(
1790                CAST_FROM_FN_PTR(address, os::jvm_path),
1791                dli_fname, sizeof(dli_fname), NULL);
1792  assert(ret, "cannot locate libjvm");
1793  char *rp = NULL;
1794  if (ret && dli_fname[0] != '\0') {
1795    rp = realpath(dli_fname, buf);
1796  }
1797  if (rp == NULL)
1798    return;
1799
1800  if (Arguments::sun_java_launcher_is_altjvm()) {
1801    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1802    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1803    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1804    // appears at the right place in the string, then assume we are
1805    // installed in a JDK and we're done. Otherwise, check for a
1806    // JAVA_HOME environment variable and construct a path to the JVM
1807    // being overridden.
1808
1809    const char *p = buf + strlen(buf) - 1;
1810    for (int count = 0; p > buf && count < 5; ++count) {
1811      for (--p; p > buf && *p != '/'; --p)
1812        /* empty */ ;
1813    }
1814
1815    if (strncmp(p, "/jre/lib/", 9) != 0) {
1816      // Look for JAVA_HOME in the environment.
1817      char* java_home_var = ::getenv("JAVA_HOME");
1818      if (java_home_var != NULL && java_home_var[0] != 0) {
1819        char* jrelib_p;
1820        int len;
1821
1822        // Check the current module name "libjvm"
1823        p = strrchr(buf, '/');
1824        assert(strstr(p, "/libjvm") == p, "invalid library name");
1825
1826        rp = realpath(java_home_var, buf);
1827        if (rp == NULL)
1828          return;
1829
1830        // determine if this is a legacy image or modules image
1831        // modules image doesn't have "jre" subdirectory
1832        len = strlen(buf);
1833        jrelib_p = buf + len;
1834
1835        // Add the appropriate library subdir
1836        snprintf(jrelib_p, buflen-len, "/jre/lib");
1837        if (0 != access(buf, F_OK)) {
1838          snprintf(jrelib_p, buflen-len, "/lib");
1839        }
1840
1841        // Add the appropriate client or server subdir
1842        len = strlen(buf);
1843        jrelib_p = buf + len;
1844        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1845        if (0 != access(buf, F_OK)) {
1846          snprintf(jrelib_p, buflen-len, "%s", "");
1847        }
1848
1849        // If the path exists within JAVA_HOME, add the JVM library name
1850        // to complete the path to JVM being overridden.  Otherwise fallback
1851        // to the path to the current library.
1852        if (0 == access(buf, F_OK)) {
1853          // Use current module name "libjvm"
1854          len = strlen(buf);
1855          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1856        } else {
1857          // Fall back to path of current library
1858          rp = realpath(dli_fname, buf);
1859          if (rp == NULL)
1860            return;
1861        }
1862      }
1863    }
1864  }
1865
1866  strcpy(saved_jvm_path, buf);
1867}
1868
1869void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1870  // no prefix required, not even "_"
1871}
1872
1873void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1874  // no suffix required
1875}
1876
1877////////////////////////////////////////////////////////////////////////////////
1878// sun.misc.Signal support
1879
1880static volatile jint sigint_count = 0;
1881
1882static void
1883UserHandler(int sig, void *siginfo, void *context) {
1884  // 4511530 - sem_post is serialized and handled by the manager thread. When
1885  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1886  // don't want to flood the manager thread with sem_post requests.
1887  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1888      return;
1889
1890  // Ctrl-C is pressed during error reporting, likely because the error
1891  // handler fails to abort. Let VM die immediately.
1892  if (sig == SIGINT && is_error_reported()) {
1893     os::die();
1894  }
1895
1896  os::signal_notify(sig);
1897}
1898
1899void* os::user_handler() {
1900  return CAST_FROM_FN_PTR(void*, UserHandler);
1901}
1902
1903extern "C" {
1904  typedef void (*sa_handler_t)(int);
1905  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1906}
1907
1908void* os::signal(int signal_number, void* handler) {
1909  struct sigaction sigAct, oldSigAct;
1910
1911  sigfillset(&(sigAct.sa_mask));
1912  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1913  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1914
1915  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1916    // -1 means registration failed
1917    return (void *)-1;
1918  }
1919
1920  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1921}
1922
1923void os::signal_raise(int signal_number) {
1924  ::raise(signal_number);
1925}
1926
1927/*
1928 * The following code is moved from os.cpp for making this
1929 * code platform specific, which it is by its very nature.
1930 */
1931
1932// Will be modified when max signal is changed to be dynamic
1933int os::sigexitnum_pd() {
1934  return NSIG;
1935}
1936
1937// a counter for each possible signal value
1938static volatile jint pending_signals[NSIG+1] = { 0 };
1939
1940// Bsd(POSIX) specific hand shaking semaphore.
1941#ifdef __APPLE__
1942typedef semaphore_t os_semaphore_t;
1943#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1944#define SEM_WAIT(sem)           semaphore_wait(sem)
1945#define SEM_POST(sem)           semaphore_signal(sem)
1946#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1947#else
1948typedef sem_t os_semaphore_t;
1949#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1950#define SEM_WAIT(sem)           sem_wait(&sem)
1951#define SEM_POST(sem)           sem_post(&sem)
1952#define SEM_DESTROY(sem)        sem_destroy(&sem)
1953#endif
1954
1955class Semaphore : public StackObj {
1956  public:
1957    Semaphore();
1958    ~Semaphore();
1959    void signal();
1960    void wait();
1961    bool trywait();
1962    bool timedwait(unsigned int sec, int nsec);
1963  private:
1964    jlong currenttime() const;
1965    os_semaphore_t _semaphore;
1966};
1967
1968Semaphore::Semaphore() : _semaphore(0) {
1969  SEM_INIT(_semaphore, 0);
1970}
1971
1972Semaphore::~Semaphore() {
1973  SEM_DESTROY(_semaphore);
1974}
1975
1976void Semaphore::signal() {
1977  SEM_POST(_semaphore);
1978}
1979
1980void Semaphore::wait() {
1981  SEM_WAIT(_semaphore);
1982}
1983
1984jlong Semaphore::currenttime() const {
1985    struct timeval tv;
1986    gettimeofday(&tv, NULL);
1987    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1988}
1989
1990#ifdef __APPLE__
1991bool Semaphore::trywait() {
1992  return timedwait(0, 0);
1993}
1994
1995bool Semaphore::timedwait(unsigned int sec, int nsec) {
1996  kern_return_t kr = KERN_ABORTED;
1997  mach_timespec_t waitspec;
1998  waitspec.tv_sec = sec;
1999  waitspec.tv_nsec = nsec;
2000
2001  jlong starttime = currenttime();
2002
2003  kr = semaphore_timedwait(_semaphore, waitspec);
2004  while (kr == KERN_ABORTED) {
2005    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2006
2007    jlong current = currenttime();
2008    jlong passedtime = current - starttime;
2009
2010    if (passedtime >= totalwait) {
2011      waitspec.tv_sec = 0;
2012      waitspec.tv_nsec = 0;
2013    } else {
2014      jlong waittime = totalwait - (current - starttime);
2015      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2016      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2017    }
2018
2019    kr = semaphore_timedwait(_semaphore, waitspec);
2020  }
2021
2022  return kr == KERN_SUCCESS;
2023}
2024
2025#else
2026
2027bool Semaphore::trywait() {
2028  return sem_trywait(&_semaphore) == 0;
2029}
2030
2031bool Semaphore::timedwait(unsigned int sec, int nsec) {
2032  struct timespec ts;
2033  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2034
2035  while (1) {
2036    int result = sem_timedwait(&_semaphore, &ts);
2037    if (result == 0) {
2038      return true;
2039    } else if (errno == EINTR) {
2040      continue;
2041    } else if (errno == ETIMEDOUT) {
2042      return false;
2043    } else {
2044      return false;
2045    }
2046  }
2047}
2048
2049#endif // __APPLE__
2050
2051static os_semaphore_t sig_sem;
2052static Semaphore sr_semaphore;
2053
2054void os::signal_init_pd() {
2055  // Initialize signal structures
2056  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2057
2058  // Initialize signal semaphore
2059  ::SEM_INIT(sig_sem, 0);
2060}
2061
2062void os::signal_notify(int sig) {
2063  Atomic::inc(&pending_signals[sig]);
2064  ::SEM_POST(sig_sem);
2065}
2066
2067static int check_pending_signals(bool wait) {
2068  Atomic::store(0, &sigint_count);
2069  for (;;) {
2070    for (int i = 0; i < NSIG + 1; i++) {
2071      jint n = pending_signals[i];
2072      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2073        return i;
2074      }
2075    }
2076    if (!wait) {
2077      return -1;
2078    }
2079    JavaThread *thread = JavaThread::current();
2080    ThreadBlockInVM tbivm(thread);
2081
2082    bool threadIsSuspended;
2083    do {
2084      thread->set_suspend_equivalent();
2085      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2086      ::SEM_WAIT(sig_sem);
2087
2088      // were we externally suspended while we were waiting?
2089      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2090      if (threadIsSuspended) {
2091        //
2092        // The semaphore has been incremented, but while we were waiting
2093        // another thread suspended us. We don't want to continue running
2094        // while suspended because that would surprise the thread that
2095        // suspended us.
2096        //
2097        ::SEM_POST(sig_sem);
2098
2099        thread->java_suspend_self();
2100      }
2101    } while (threadIsSuspended);
2102  }
2103}
2104
2105int os::signal_lookup() {
2106  return check_pending_signals(false);
2107}
2108
2109int os::signal_wait() {
2110  return check_pending_signals(true);
2111}
2112
2113////////////////////////////////////////////////////////////////////////////////
2114// Virtual Memory
2115
2116int os::vm_page_size() {
2117  // Seems redundant as all get out
2118  assert(os::Bsd::page_size() != -1, "must call os::init");
2119  return os::Bsd::page_size();
2120}
2121
2122// Solaris allocates memory by pages.
2123int os::vm_allocation_granularity() {
2124  assert(os::Bsd::page_size() != -1, "must call os::init");
2125  return os::Bsd::page_size();
2126}
2127
2128// Rationale behind this function:
2129//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2130//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2131//  samples for JITted code. Here we create private executable mapping over the code cache
2132//  and then we can use standard (well, almost, as mapping can change) way to provide
2133//  info for the reporting script by storing timestamp and location of symbol
2134void bsd_wrap_code(char* base, size_t size) {
2135  static volatile jint cnt = 0;
2136
2137  if (!UseOprofile) {
2138    return;
2139  }
2140
2141  char buf[PATH_MAX + 1];
2142  int num = Atomic::add(1, &cnt);
2143
2144  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2145           os::get_temp_directory(), os::current_process_id(), num);
2146  unlink(buf);
2147
2148  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2149
2150  if (fd != -1) {
2151    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2152    if (rv != (off_t)-1) {
2153      if (::write(fd, "", 1) == 1) {
2154        mmap(base, size,
2155             PROT_READ|PROT_WRITE|PROT_EXEC,
2156             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2157      }
2158    }
2159    ::close(fd);
2160    unlink(buf);
2161  }
2162}
2163
2164static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2165                                    int err) {
2166  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2167          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2168          strerror(err), err);
2169}
2170
2171// NOTE: Bsd kernel does not really reserve the pages for us.
2172//       All it does is to check if there are enough free pages
2173//       left at the time of mmap(). This could be a potential
2174//       problem.
2175bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2176  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2177#ifdef __OpenBSD__
2178  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2179  if (::mprotect(addr, size, prot) == 0) {
2180    return true;
2181  }
2182#else
2183  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2184                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2185  if (res != (uintptr_t) MAP_FAILED) {
2186    return true;
2187  }
2188#endif
2189
2190  // Warn about any commit errors we see in non-product builds just
2191  // in case mmap() doesn't work as described on the man page.
2192  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2193
2194  return false;
2195}
2196
2197bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2198                       bool exec) {
2199  // alignment_hint is ignored on this OS
2200  return pd_commit_memory(addr, size, exec);
2201}
2202
2203void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2204                                  const char* mesg) {
2205  assert(mesg != NULL, "mesg must be specified");
2206  if (!pd_commit_memory(addr, size, exec)) {
2207    // add extra info in product mode for vm_exit_out_of_memory():
2208    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2209    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2210  }
2211}
2212
2213void os::pd_commit_memory_or_exit(char* addr, size_t size,
2214                                  size_t alignment_hint, bool exec,
2215                                  const char* mesg) {
2216  // alignment_hint is ignored on this OS
2217  pd_commit_memory_or_exit(addr, size, exec, mesg);
2218}
2219
2220void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2221}
2222
2223void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2224  ::madvise(addr, bytes, MADV_DONTNEED);
2225}
2226
2227void os::numa_make_global(char *addr, size_t bytes) {
2228}
2229
2230void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2231}
2232
2233bool os::numa_topology_changed()   { return false; }
2234
2235size_t os::numa_get_groups_num() {
2236  return 1;
2237}
2238
2239int os::numa_get_group_id() {
2240  return 0;
2241}
2242
2243size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2244  if (size > 0) {
2245    ids[0] = 0;
2246    return 1;
2247  }
2248  return 0;
2249}
2250
2251bool os::get_page_info(char *start, page_info* info) {
2252  return false;
2253}
2254
2255char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2256  return end;
2257}
2258
2259
2260bool os::pd_uncommit_memory(char* addr, size_t size) {
2261#ifdef __OpenBSD__
2262  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2263  return ::mprotect(addr, size, PROT_NONE) == 0;
2264#else
2265  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2266                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2267  return res  != (uintptr_t) MAP_FAILED;
2268#endif
2269}
2270
2271bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2272  return os::commit_memory(addr, size, !ExecMem);
2273}
2274
2275// If this is a growable mapping, remove the guard pages entirely by
2276// munmap()ping them.  If not, just call uncommit_memory().
2277bool os::remove_stack_guard_pages(char* addr, size_t size) {
2278  return os::uncommit_memory(addr, size);
2279}
2280
2281static address _highest_vm_reserved_address = NULL;
2282
2283// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2284// at 'requested_addr'. If there are existing memory mappings at the same
2285// location, however, they will be overwritten. If 'fixed' is false,
2286// 'requested_addr' is only treated as a hint, the return value may or
2287// may not start from the requested address. Unlike Bsd mmap(), this
2288// function returns NULL to indicate failure.
2289static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2290  char * addr;
2291  int flags;
2292
2293  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2294  if (fixed) {
2295    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2296    flags |= MAP_FIXED;
2297  }
2298
2299  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2300  // touch an uncommitted page. Otherwise, the read/write might
2301  // succeed if we have enough swap space to back the physical page.
2302  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2303                       flags, -1, 0);
2304
2305  if (addr != MAP_FAILED) {
2306    // anon_mmap() should only get called during VM initialization,
2307    // don't need lock (actually we can skip locking even it can be called
2308    // from multiple threads, because _highest_vm_reserved_address is just a
2309    // hint about the upper limit of non-stack memory regions.)
2310    if ((address)addr + bytes > _highest_vm_reserved_address) {
2311      _highest_vm_reserved_address = (address)addr + bytes;
2312    }
2313  }
2314
2315  return addr == MAP_FAILED ? NULL : addr;
2316}
2317
2318// Don't update _highest_vm_reserved_address, because there might be memory
2319// regions above addr + size. If so, releasing a memory region only creates
2320// a hole in the address space, it doesn't help prevent heap-stack collision.
2321//
2322static int anon_munmap(char * addr, size_t size) {
2323  return ::munmap(addr, size) == 0;
2324}
2325
2326char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2327                         size_t alignment_hint) {
2328  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2329}
2330
2331bool os::pd_release_memory(char* addr, size_t size) {
2332  return anon_munmap(addr, size);
2333}
2334
2335static bool bsd_mprotect(char* addr, size_t size, int prot) {
2336  // Bsd wants the mprotect address argument to be page aligned.
2337  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2338
2339  // According to SUSv3, mprotect() should only be used with mappings
2340  // established by mmap(), and mmap() always maps whole pages. Unaligned
2341  // 'addr' likely indicates problem in the VM (e.g. trying to change
2342  // protection of malloc'ed or statically allocated memory). Check the
2343  // caller if you hit this assert.
2344  assert(addr == bottom, "sanity check");
2345
2346  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2347  return ::mprotect(bottom, size, prot) == 0;
2348}
2349
2350// Set protections specified
2351bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2352                        bool is_committed) {
2353  unsigned int p = 0;
2354  switch (prot) {
2355  case MEM_PROT_NONE: p = PROT_NONE; break;
2356  case MEM_PROT_READ: p = PROT_READ; break;
2357  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2358  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2359  default:
2360    ShouldNotReachHere();
2361  }
2362  // is_committed is unused.
2363  return bsd_mprotect(addr, bytes, p);
2364}
2365
2366bool os::guard_memory(char* addr, size_t size) {
2367  return bsd_mprotect(addr, size, PROT_NONE);
2368}
2369
2370bool os::unguard_memory(char* addr, size_t size) {
2371  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2372}
2373
2374bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2375  return false;
2376}
2377
2378// Large page support
2379
2380static size_t _large_page_size = 0;
2381
2382void os::large_page_init() {
2383}
2384
2385
2386char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2387  fatal("This code is not used or maintained.");
2388
2389  // "exec" is passed in but not used.  Creating the shared image for
2390  // the code cache doesn't have an SHM_X executable permission to check.
2391  assert(UseLargePages && UseSHM, "only for SHM large pages");
2392
2393  key_t key = IPC_PRIVATE;
2394  char *addr;
2395
2396  bool warn_on_failure = UseLargePages &&
2397                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2398                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2399                        );
2400
2401  // Create a large shared memory region to attach to based on size.
2402  // Currently, size is the total size of the heap
2403  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2404  if (shmid == -1) {
2405     // Possible reasons for shmget failure:
2406     // 1. shmmax is too small for Java heap.
2407     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2408     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2409     // 2. not enough large page memory.
2410     //    > check available large pages: cat /proc/meminfo
2411     //    > increase amount of large pages:
2412     //          echo new_value > /proc/sys/vm/nr_hugepages
2413     //      Note 1: different Bsd may use different name for this property,
2414     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2415     //      Note 2: it's possible there's enough physical memory available but
2416     //            they are so fragmented after a long run that they can't
2417     //            coalesce into large pages. Try to reserve large pages when
2418     //            the system is still "fresh".
2419     if (warn_on_failure) {
2420       warning("Failed to reserve shared memory (errno = %d).", errno);
2421     }
2422     return NULL;
2423  }
2424
2425  // attach to the region
2426  addr = (char*)shmat(shmid, req_addr, 0);
2427  int err = errno;
2428
2429  // Remove shmid. If shmat() is successful, the actual shared memory segment
2430  // will be deleted when it's detached by shmdt() or when the process
2431  // terminates. If shmat() is not successful this will remove the shared
2432  // segment immediately.
2433  shmctl(shmid, IPC_RMID, NULL);
2434
2435  if ((intptr_t)addr == -1) {
2436     if (warn_on_failure) {
2437       warning("Failed to attach shared memory (errno = %d).", err);
2438     }
2439     return NULL;
2440  }
2441
2442  // The memory is committed
2443  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2444
2445  return addr;
2446}
2447
2448bool os::release_memory_special(char* base, size_t bytes) {
2449  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2450  // detaching the SHM segment will also delete it, see reserve_memory_special()
2451  int rslt = shmdt(base);
2452  if (rslt == 0) {
2453    tkr.record((address)base, bytes);
2454    return true;
2455  } else {
2456    tkr.discard();
2457    return false;
2458  }
2459
2460}
2461
2462size_t os::large_page_size() {
2463  return _large_page_size;
2464}
2465
2466// HugeTLBFS allows application to commit large page memory on demand;
2467// with SysV SHM the entire memory region must be allocated as shared
2468// memory.
2469bool os::can_commit_large_page_memory() {
2470  return UseHugeTLBFS;
2471}
2472
2473bool os::can_execute_large_page_memory() {
2474  return UseHugeTLBFS;
2475}
2476
2477// Reserve memory at an arbitrary address, only if that area is
2478// available (and not reserved for something else).
2479
2480char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2481  const int max_tries = 10;
2482  char* base[max_tries];
2483  size_t size[max_tries];
2484  const size_t gap = 0x000000;
2485
2486  // Assert only that the size is a multiple of the page size, since
2487  // that's all that mmap requires, and since that's all we really know
2488  // about at this low abstraction level.  If we need higher alignment,
2489  // we can either pass an alignment to this method or verify alignment
2490  // in one of the methods further up the call chain.  See bug 5044738.
2491  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2492
2493  // Repeatedly allocate blocks until the block is allocated at the
2494  // right spot. Give up after max_tries. Note that reserve_memory() will
2495  // automatically update _highest_vm_reserved_address if the call is
2496  // successful. The variable tracks the highest memory address every reserved
2497  // by JVM. It is used to detect heap-stack collision if running with
2498  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2499  // space than needed, it could confuse the collision detecting code. To
2500  // solve the problem, save current _highest_vm_reserved_address and
2501  // calculate the correct value before return.
2502  address old_highest = _highest_vm_reserved_address;
2503
2504  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2505  // if kernel honors the hint then we can return immediately.
2506  char * addr = anon_mmap(requested_addr, bytes, false);
2507  if (addr == requested_addr) {
2508     return requested_addr;
2509  }
2510
2511  if (addr != NULL) {
2512     // mmap() is successful but it fails to reserve at the requested address
2513     anon_munmap(addr, bytes);
2514  }
2515
2516  int i;
2517  for (i = 0; i < max_tries; ++i) {
2518    base[i] = reserve_memory(bytes);
2519
2520    if (base[i] != NULL) {
2521      // Is this the block we wanted?
2522      if (base[i] == requested_addr) {
2523        size[i] = bytes;
2524        break;
2525      }
2526
2527      // Does this overlap the block we wanted? Give back the overlapped
2528      // parts and try again.
2529
2530      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2531      if (top_overlap >= 0 && top_overlap < bytes) {
2532        unmap_memory(base[i], top_overlap);
2533        base[i] += top_overlap;
2534        size[i] = bytes - top_overlap;
2535      } else {
2536        size_t bottom_overlap = base[i] + bytes - requested_addr;
2537        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2538          unmap_memory(requested_addr, bottom_overlap);
2539          size[i] = bytes - bottom_overlap;
2540        } else {
2541          size[i] = bytes;
2542        }
2543      }
2544    }
2545  }
2546
2547  // Give back the unused reserved pieces.
2548
2549  for (int j = 0; j < i; ++j) {
2550    if (base[j] != NULL) {
2551      unmap_memory(base[j], size[j]);
2552    }
2553  }
2554
2555  if (i < max_tries) {
2556    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2557    return requested_addr;
2558  } else {
2559    _highest_vm_reserved_address = old_highest;
2560    return NULL;
2561  }
2562}
2563
2564size_t os::read(int fd, void *buf, unsigned int nBytes) {
2565  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2566}
2567
2568void os::naked_short_sleep(jlong ms) {
2569  struct timespec req;
2570
2571  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2572  req.tv_sec = 0;
2573  if (ms > 0) {
2574    req.tv_nsec = (ms % 1000) * 1000000;
2575  }
2576  else {
2577    req.tv_nsec = 1;
2578  }
2579
2580  nanosleep(&req, NULL);
2581
2582  return;
2583}
2584
2585// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2586void os::infinite_sleep() {
2587  while (true) {    // sleep forever ...
2588    ::sleep(100);   // ... 100 seconds at a time
2589  }
2590}
2591
2592// Used to convert frequent JVM_Yield() to nops
2593bool os::dont_yield() {
2594  return DontYieldALot;
2595}
2596
2597void os::yield() {
2598  sched_yield();
2599}
2600
2601os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2602
2603void os::yield_all() {
2604  // Yields to all threads, including threads with lower priorities
2605  // Threads on Bsd are all with same priority. The Solaris style
2606  // os::yield_all() with nanosleep(1ms) is not necessary.
2607  sched_yield();
2608}
2609
2610////////////////////////////////////////////////////////////////////////////////
2611// thread priority support
2612
2613// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2614// only supports dynamic priority, static priority must be zero. For real-time
2615// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2616// However, for large multi-threaded applications, SCHED_RR is not only slower
2617// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2618// of 5 runs - Sep 2005).
2619//
2620// The following code actually changes the niceness of kernel-thread/LWP. It
2621// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2622// not the entire user process, and user level threads are 1:1 mapped to kernel
2623// threads. It has always been the case, but could change in the future. For
2624// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2625// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2626
2627#if !defined(__APPLE__)
2628int os::java_to_os_priority[CriticalPriority + 1] = {
2629  19,              // 0 Entry should never be used
2630
2631   0,              // 1 MinPriority
2632   3,              // 2
2633   6,              // 3
2634
2635  10,              // 4
2636  15,              // 5 NormPriority
2637  18,              // 6
2638
2639  21,              // 7
2640  25,              // 8
2641  28,              // 9 NearMaxPriority
2642
2643  31,              // 10 MaxPriority
2644
2645  31               // 11 CriticalPriority
2646};
2647#else
2648/* Using Mach high-level priority assignments */
2649int os::java_to_os_priority[CriticalPriority + 1] = {
2650   0,              // 0 Entry should never be used (MINPRI_USER)
2651
2652  27,              // 1 MinPriority
2653  28,              // 2
2654  29,              // 3
2655
2656  30,              // 4
2657  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2658  32,              // 6
2659
2660  33,              // 7
2661  34,              // 8
2662  35,              // 9 NearMaxPriority
2663
2664  36,              // 10 MaxPriority
2665
2666  36               // 11 CriticalPriority
2667};
2668#endif
2669
2670static int prio_init() {
2671  if (ThreadPriorityPolicy == 1) {
2672    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2673    // if effective uid is not root. Perhaps, a more elegant way of doing
2674    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2675    if (geteuid() != 0) {
2676      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2677        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2678      }
2679      ThreadPriorityPolicy = 0;
2680    }
2681  }
2682  if (UseCriticalJavaThreadPriority) {
2683    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2684  }
2685  return 0;
2686}
2687
2688OSReturn os::set_native_priority(Thread* thread, int newpri) {
2689  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2690
2691#ifdef __OpenBSD__
2692  // OpenBSD pthread_setprio starves low priority threads
2693  return OS_OK;
2694#elif defined(__FreeBSD__)
2695  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2696#elif defined(__APPLE__) || defined(__NetBSD__)
2697  struct sched_param sp;
2698  int policy;
2699  pthread_t self = pthread_self();
2700
2701  if (pthread_getschedparam(self, &policy, &sp) != 0)
2702    return OS_ERR;
2703
2704  sp.sched_priority = newpri;
2705  if (pthread_setschedparam(self, policy, &sp) != 0)
2706    return OS_ERR;
2707
2708  return OS_OK;
2709#else
2710  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2711  return (ret == 0) ? OS_OK : OS_ERR;
2712#endif
2713}
2714
2715OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2716  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2717    *priority_ptr = java_to_os_priority[NormPriority];
2718    return OS_OK;
2719  }
2720
2721  errno = 0;
2722#if defined(__OpenBSD__) || defined(__FreeBSD__)
2723  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2724#elif defined(__APPLE__) || defined(__NetBSD__)
2725  int policy;
2726  struct sched_param sp;
2727
2728  pthread_getschedparam(pthread_self(), &policy, &sp);
2729  *priority_ptr = sp.sched_priority;
2730#else
2731  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2732#endif
2733  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2734}
2735
2736// Hint to the underlying OS that a task switch would not be good.
2737// Void return because it's a hint and can fail.
2738void os::hint_no_preempt() {}
2739
2740////////////////////////////////////////////////////////////////////////////////
2741// suspend/resume support
2742
2743//  the low-level signal-based suspend/resume support is a remnant from the
2744//  old VM-suspension that used to be for java-suspension, safepoints etc,
2745//  within hotspot. Now there is a single use-case for this:
2746//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2747//      that runs in the watcher thread.
2748//  The remaining code is greatly simplified from the more general suspension
2749//  code that used to be used.
2750//
2751//  The protocol is quite simple:
2752//  - suspend:
2753//      - sends a signal to the target thread
2754//      - polls the suspend state of the osthread using a yield loop
2755//      - target thread signal handler (SR_handler) sets suspend state
2756//        and blocks in sigsuspend until continued
2757//  - resume:
2758//      - sets target osthread state to continue
2759//      - sends signal to end the sigsuspend loop in the SR_handler
2760//
2761//  Note that the SR_lock plays no role in this suspend/resume protocol.
2762//
2763
2764static void resume_clear_context(OSThread *osthread) {
2765  osthread->set_ucontext(NULL);
2766  osthread->set_siginfo(NULL);
2767}
2768
2769static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2770  osthread->set_ucontext(context);
2771  osthread->set_siginfo(siginfo);
2772}
2773
2774//
2775// Handler function invoked when a thread's execution is suspended or
2776// resumed. We have to be careful that only async-safe functions are
2777// called here (Note: most pthread functions are not async safe and
2778// should be avoided.)
2779//
2780// Note: sigwait() is a more natural fit than sigsuspend() from an
2781// interface point of view, but sigwait() prevents the signal hander
2782// from being run. libpthread would get very confused by not having
2783// its signal handlers run and prevents sigwait()'s use with the
2784// mutex granting granting signal.
2785//
2786// Currently only ever called on the VMThread or JavaThread
2787//
2788static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2789  // Save and restore errno to avoid confusing native code with EINTR
2790  // after sigsuspend.
2791  int old_errno = errno;
2792
2793  Thread* thread = Thread::current();
2794  OSThread* osthread = thread->osthread();
2795  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2796
2797  os::SuspendResume::State current = osthread->sr.state();
2798  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2799    suspend_save_context(osthread, siginfo, context);
2800
2801    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2802    os::SuspendResume::State state = osthread->sr.suspended();
2803    if (state == os::SuspendResume::SR_SUSPENDED) {
2804      sigset_t suspend_set;  // signals for sigsuspend()
2805
2806      // get current set of blocked signals and unblock resume signal
2807      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2808      sigdelset(&suspend_set, SR_signum);
2809
2810      sr_semaphore.signal();
2811      // wait here until we are resumed
2812      while (1) {
2813        sigsuspend(&suspend_set);
2814
2815        os::SuspendResume::State result = osthread->sr.running();
2816        if (result == os::SuspendResume::SR_RUNNING) {
2817          sr_semaphore.signal();
2818          break;
2819        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2820          ShouldNotReachHere();
2821        }
2822      }
2823
2824    } else if (state == os::SuspendResume::SR_RUNNING) {
2825      // request was cancelled, continue
2826    } else {
2827      ShouldNotReachHere();
2828    }
2829
2830    resume_clear_context(osthread);
2831  } else if (current == os::SuspendResume::SR_RUNNING) {
2832    // request was cancelled, continue
2833  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2834    // ignore
2835  } else {
2836    // ignore
2837  }
2838
2839  errno = old_errno;
2840}
2841
2842
2843static int SR_initialize() {
2844  struct sigaction act;
2845  char *s;
2846  /* Get signal number to use for suspend/resume */
2847  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2848    int sig = ::strtol(s, 0, 10);
2849    if (sig > 0 || sig < NSIG) {
2850        SR_signum = sig;
2851    }
2852  }
2853
2854  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2855        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2856
2857  sigemptyset(&SR_sigset);
2858  sigaddset(&SR_sigset, SR_signum);
2859
2860  /* Set up signal handler for suspend/resume */
2861  act.sa_flags = SA_RESTART|SA_SIGINFO;
2862  act.sa_handler = (void (*)(int)) SR_handler;
2863
2864  // SR_signum is blocked by default.
2865  // 4528190 - We also need to block pthread restart signal (32 on all
2866  // supported Bsd platforms). Note that BsdThreads need to block
2867  // this signal for all threads to work properly. So we don't have
2868  // to use hard-coded signal number when setting up the mask.
2869  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2870
2871  if (sigaction(SR_signum, &act, 0) == -1) {
2872    return -1;
2873  }
2874
2875  // Save signal flag
2876  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2877  return 0;
2878}
2879
2880static int sr_notify(OSThread* osthread) {
2881  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2882  assert_status(status == 0, status, "pthread_kill");
2883  return status;
2884}
2885
2886// "Randomly" selected value for how long we want to spin
2887// before bailing out on suspending a thread, also how often
2888// we send a signal to a thread we want to resume
2889static const int RANDOMLY_LARGE_INTEGER = 1000000;
2890static const int RANDOMLY_LARGE_INTEGER2 = 100;
2891
2892// returns true on success and false on error - really an error is fatal
2893// but this seems the normal response to library errors
2894static bool do_suspend(OSThread* osthread) {
2895  assert(osthread->sr.is_running(), "thread should be running");
2896  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2897
2898  // mark as suspended and send signal
2899  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2900    // failed to switch, state wasn't running?
2901    ShouldNotReachHere();
2902    return false;
2903  }
2904
2905  if (sr_notify(osthread) != 0) {
2906    ShouldNotReachHere();
2907  }
2908
2909  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2910  while (true) {
2911    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2912      break;
2913    } else {
2914      // timeout
2915      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2916      if (cancelled == os::SuspendResume::SR_RUNNING) {
2917        return false;
2918      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2919        // make sure that we consume the signal on the semaphore as well
2920        sr_semaphore.wait();
2921        break;
2922      } else {
2923        ShouldNotReachHere();
2924        return false;
2925      }
2926    }
2927  }
2928
2929  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2930  return true;
2931}
2932
2933static void do_resume(OSThread* osthread) {
2934  assert(osthread->sr.is_suspended(), "thread should be suspended");
2935  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2936
2937  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2938    // failed to switch to WAKEUP_REQUEST
2939    ShouldNotReachHere();
2940    return;
2941  }
2942
2943  while (true) {
2944    if (sr_notify(osthread) == 0) {
2945      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2946        if (osthread->sr.is_running()) {
2947          return;
2948        }
2949      }
2950    } else {
2951      ShouldNotReachHere();
2952    }
2953  }
2954
2955  guarantee(osthread->sr.is_running(), "Must be running!");
2956}
2957
2958///////////////////////////////////////////////////////////////////////////////////
2959// signal handling (except suspend/resume)
2960
2961// This routine may be used by user applications as a "hook" to catch signals.
2962// The user-defined signal handler must pass unrecognized signals to this
2963// routine, and if it returns true (non-zero), then the signal handler must
2964// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2965// routine will never retun false (zero), but instead will execute a VM panic
2966// routine kill the process.
2967//
2968// If this routine returns false, it is OK to call it again.  This allows
2969// the user-defined signal handler to perform checks either before or after
2970// the VM performs its own checks.  Naturally, the user code would be making
2971// a serious error if it tried to handle an exception (such as a null check
2972// or breakpoint) that the VM was generating for its own correct operation.
2973//
2974// This routine may recognize any of the following kinds of signals:
2975//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2976// It should be consulted by handlers for any of those signals.
2977//
2978// The caller of this routine must pass in the three arguments supplied
2979// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2980// field of the structure passed to sigaction().  This routine assumes that
2981// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2982//
2983// Note that the VM will print warnings if it detects conflicting signal
2984// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2985//
2986extern "C" JNIEXPORT int
2987JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2988                        void* ucontext, int abort_if_unrecognized);
2989
2990void signalHandler(int sig, siginfo_t* info, void* uc) {
2991  assert(info != NULL && uc != NULL, "it must be old kernel");
2992  int orig_errno = errno;  // Preserve errno value over signal handler.
2993  JVM_handle_bsd_signal(sig, info, uc, true);
2994  errno = orig_errno;
2995}
2996
2997
2998// This boolean allows users to forward their own non-matching signals
2999// to JVM_handle_bsd_signal, harmlessly.
3000bool os::Bsd::signal_handlers_are_installed = false;
3001
3002// For signal-chaining
3003struct sigaction os::Bsd::sigact[MAXSIGNUM];
3004unsigned int os::Bsd::sigs = 0;
3005bool os::Bsd::libjsig_is_loaded = false;
3006typedef struct sigaction *(*get_signal_t)(int);
3007get_signal_t os::Bsd::get_signal_action = NULL;
3008
3009struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3010  struct sigaction *actp = NULL;
3011
3012  if (libjsig_is_loaded) {
3013    // Retrieve the old signal handler from libjsig
3014    actp = (*get_signal_action)(sig);
3015  }
3016  if (actp == NULL) {
3017    // Retrieve the preinstalled signal handler from jvm
3018    actp = get_preinstalled_handler(sig);
3019  }
3020
3021  return actp;
3022}
3023
3024static bool call_chained_handler(struct sigaction *actp, int sig,
3025                                 siginfo_t *siginfo, void *context) {
3026  // Call the old signal handler
3027  if (actp->sa_handler == SIG_DFL) {
3028    // It's more reasonable to let jvm treat it as an unexpected exception
3029    // instead of taking the default action.
3030    return false;
3031  } else if (actp->sa_handler != SIG_IGN) {
3032    if ((actp->sa_flags & SA_NODEFER) == 0) {
3033      // automaticlly block the signal
3034      sigaddset(&(actp->sa_mask), sig);
3035    }
3036
3037    sa_handler_t hand;
3038    sa_sigaction_t sa;
3039    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3040    // retrieve the chained handler
3041    if (siginfo_flag_set) {
3042      sa = actp->sa_sigaction;
3043    } else {
3044      hand = actp->sa_handler;
3045    }
3046
3047    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3048      actp->sa_handler = SIG_DFL;
3049    }
3050
3051    // try to honor the signal mask
3052    sigset_t oset;
3053    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3054
3055    // call into the chained handler
3056    if (siginfo_flag_set) {
3057      (*sa)(sig, siginfo, context);
3058    } else {
3059      (*hand)(sig);
3060    }
3061
3062    // restore the signal mask
3063    pthread_sigmask(SIG_SETMASK, &oset, 0);
3064  }
3065  // Tell jvm's signal handler the signal is taken care of.
3066  return true;
3067}
3068
3069bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3070  bool chained = false;
3071  // signal-chaining
3072  if (UseSignalChaining) {
3073    struct sigaction *actp = get_chained_signal_action(sig);
3074    if (actp != NULL) {
3075      chained = call_chained_handler(actp, sig, siginfo, context);
3076    }
3077  }
3078  return chained;
3079}
3080
3081struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3082  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3083    return &sigact[sig];
3084  }
3085  return NULL;
3086}
3087
3088void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3089  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3090  sigact[sig] = oldAct;
3091  sigs |= (unsigned int)1 << sig;
3092}
3093
3094// for diagnostic
3095int os::Bsd::sigflags[MAXSIGNUM];
3096
3097int os::Bsd::get_our_sigflags(int sig) {
3098  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3099  return sigflags[sig];
3100}
3101
3102void os::Bsd::set_our_sigflags(int sig, int flags) {
3103  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3104  sigflags[sig] = flags;
3105}
3106
3107void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3108  // Check for overwrite.
3109  struct sigaction oldAct;
3110  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3111
3112  void* oldhand = oldAct.sa_sigaction
3113                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3114                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3115  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3116      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3117      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3118    if (AllowUserSignalHandlers || !set_installed) {
3119      // Do not overwrite; user takes responsibility to forward to us.
3120      return;
3121    } else if (UseSignalChaining) {
3122      // save the old handler in jvm
3123      save_preinstalled_handler(sig, oldAct);
3124      // libjsig also interposes the sigaction() call below and saves the
3125      // old sigaction on it own.
3126    } else {
3127      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3128                    "%#lx for signal %d.", (long)oldhand, sig));
3129    }
3130  }
3131
3132  struct sigaction sigAct;
3133  sigfillset(&(sigAct.sa_mask));
3134  sigAct.sa_handler = SIG_DFL;
3135  if (!set_installed) {
3136    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3137  } else {
3138    sigAct.sa_sigaction = signalHandler;
3139    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3140  }
3141#ifdef __APPLE__
3142  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3143  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3144  // if the signal handler declares it will handle it on alternate stack.
3145  // Notice we only declare we will handle it on alt stack, but we are not
3146  // actually going to use real alt stack - this is just a workaround.
3147  // Please see ux_exception.c, method catch_mach_exception_raise for details
3148  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3149  if (sig == SIGSEGV) {
3150    sigAct.sa_flags |= SA_ONSTACK;
3151  }
3152#endif
3153
3154  // Save flags, which are set by ours
3155  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3156  sigflags[sig] = sigAct.sa_flags;
3157
3158  int ret = sigaction(sig, &sigAct, &oldAct);
3159  assert(ret == 0, "check");
3160
3161  void* oldhand2  = oldAct.sa_sigaction
3162                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3163                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3164  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3165}
3166
3167// install signal handlers for signals that HotSpot needs to
3168// handle in order to support Java-level exception handling.
3169
3170void os::Bsd::install_signal_handlers() {
3171  if (!signal_handlers_are_installed) {
3172    signal_handlers_are_installed = true;
3173
3174    // signal-chaining
3175    typedef void (*signal_setting_t)();
3176    signal_setting_t begin_signal_setting = NULL;
3177    signal_setting_t end_signal_setting = NULL;
3178    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3179                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3180    if (begin_signal_setting != NULL) {
3181      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3182                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3183      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3184                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3185      libjsig_is_loaded = true;
3186      assert(UseSignalChaining, "should enable signal-chaining");
3187    }
3188    if (libjsig_is_loaded) {
3189      // Tell libjsig jvm is setting signal handlers
3190      (*begin_signal_setting)();
3191    }
3192
3193    set_signal_handler(SIGSEGV, true);
3194    set_signal_handler(SIGPIPE, true);
3195    set_signal_handler(SIGBUS, true);
3196    set_signal_handler(SIGILL, true);
3197    set_signal_handler(SIGFPE, true);
3198    set_signal_handler(SIGXFSZ, true);
3199
3200#if defined(__APPLE__)
3201    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3202    // signals caught and handled by the JVM. To work around this, we reset the mach task
3203    // signal handler that's placed on our process by CrashReporter. This disables
3204    // CrashReporter-based reporting.
3205    //
3206    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3207    // on caught fatal signals.
3208    //
3209    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3210    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3211    // exception handling, while leaving the standard BSD signal handlers functional.
3212    kern_return_t kr;
3213    kr = task_set_exception_ports(mach_task_self(),
3214        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3215        MACH_PORT_NULL,
3216        EXCEPTION_STATE_IDENTITY,
3217        MACHINE_THREAD_STATE);
3218
3219    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3220#endif
3221
3222    if (libjsig_is_loaded) {
3223      // Tell libjsig jvm finishes setting signal handlers
3224      (*end_signal_setting)();
3225    }
3226
3227    // We don't activate signal checker if libjsig is in place, we trust ourselves
3228    // and if UserSignalHandler is installed all bets are off
3229    if (CheckJNICalls) {
3230      if (libjsig_is_loaded) {
3231        if (PrintJNIResolving) {
3232          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3233        }
3234        check_signals = false;
3235      }
3236      if (AllowUserSignalHandlers) {
3237        if (PrintJNIResolving) {
3238          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3239        }
3240        check_signals = false;
3241      }
3242    }
3243  }
3244}
3245
3246
3247/////
3248// glibc on Bsd platform uses non-documented flag
3249// to indicate, that some special sort of signal
3250// trampoline is used.
3251// We will never set this flag, and we should
3252// ignore this flag in our diagnostic
3253#ifdef SIGNIFICANT_SIGNAL_MASK
3254#undef SIGNIFICANT_SIGNAL_MASK
3255#endif
3256#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3257
3258static const char* get_signal_handler_name(address handler,
3259                                           char* buf, int buflen) {
3260  int offset;
3261  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3262  if (found) {
3263    // skip directory names
3264    const char *p1, *p2;
3265    p1 = buf;
3266    size_t len = strlen(os::file_separator());
3267    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3268    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3269  } else {
3270    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3271  }
3272  return buf;
3273}
3274
3275static void print_signal_handler(outputStream* st, int sig,
3276                                 char* buf, size_t buflen) {
3277  struct sigaction sa;
3278
3279  sigaction(sig, NULL, &sa);
3280
3281  // See comment for SIGNIFICANT_SIGNAL_MASK define
3282  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3283
3284  st->print("%s: ", os::exception_name(sig, buf, buflen));
3285
3286  address handler = (sa.sa_flags & SA_SIGINFO)
3287    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3288    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3289
3290  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3291    st->print("SIG_DFL");
3292  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3293    st->print("SIG_IGN");
3294  } else {
3295    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3296  }
3297
3298  st->print(", sa_mask[0]=");
3299  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3300
3301  address rh = VMError::get_resetted_sighandler(sig);
3302  // May be, handler was resetted by VMError?
3303  if(rh != NULL) {
3304    handler = rh;
3305    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3306  }
3307
3308  st->print(", sa_flags=");
3309  os::Posix::print_sa_flags(st, sa.sa_flags);
3310
3311  // Check: is it our handler?
3312  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3313     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3314    // It is our signal handler
3315    // check for flags, reset system-used one!
3316    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3317      st->print(
3318                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3319                os::Bsd::get_our_sigflags(sig));
3320    }
3321  }
3322  st->cr();
3323}
3324
3325
3326#define DO_SIGNAL_CHECK(sig) \
3327  if (!sigismember(&check_signal_done, sig)) \
3328    os::Bsd::check_signal_handler(sig)
3329
3330// This method is a periodic task to check for misbehaving JNI applications
3331// under CheckJNI, we can add any periodic checks here
3332
3333void os::run_periodic_checks() {
3334
3335  if (check_signals == false) return;
3336
3337  // SEGV and BUS if overridden could potentially prevent
3338  // generation of hs*.log in the event of a crash, debugging
3339  // such a case can be very challenging, so we absolutely
3340  // check the following for a good measure:
3341  DO_SIGNAL_CHECK(SIGSEGV);
3342  DO_SIGNAL_CHECK(SIGILL);
3343  DO_SIGNAL_CHECK(SIGFPE);
3344  DO_SIGNAL_CHECK(SIGBUS);
3345  DO_SIGNAL_CHECK(SIGPIPE);
3346  DO_SIGNAL_CHECK(SIGXFSZ);
3347
3348
3349  // ReduceSignalUsage allows the user to override these handlers
3350  // see comments at the very top and jvm_solaris.h
3351  if (!ReduceSignalUsage) {
3352    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3353    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3354    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3355    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3356  }
3357
3358  DO_SIGNAL_CHECK(SR_signum);
3359  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3360}
3361
3362typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3363
3364static os_sigaction_t os_sigaction = NULL;
3365
3366void os::Bsd::check_signal_handler(int sig) {
3367  char buf[O_BUFLEN];
3368  address jvmHandler = NULL;
3369
3370
3371  struct sigaction act;
3372  if (os_sigaction == NULL) {
3373    // only trust the default sigaction, in case it has been interposed
3374    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3375    if (os_sigaction == NULL) return;
3376  }
3377
3378  os_sigaction(sig, (struct sigaction*)NULL, &act);
3379
3380
3381  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3382
3383  address thisHandler = (act.sa_flags & SA_SIGINFO)
3384    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3385    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3386
3387
3388  switch(sig) {
3389  case SIGSEGV:
3390  case SIGBUS:
3391  case SIGFPE:
3392  case SIGPIPE:
3393  case SIGILL:
3394  case SIGXFSZ:
3395    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3396    break;
3397
3398  case SHUTDOWN1_SIGNAL:
3399  case SHUTDOWN2_SIGNAL:
3400  case SHUTDOWN3_SIGNAL:
3401  case BREAK_SIGNAL:
3402    jvmHandler = (address)user_handler();
3403    break;
3404
3405  case INTERRUPT_SIGNAL:
3406    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3407    break;
3408
3409  default:
3410    if (sig == SR_signum) {
3411      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3412    } else {
3413      return;
3414    }
3415    break;
3416  }
3417
3418  if (thisHandler != jvmHandler) {
3419    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3420    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3421    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3422    // No need to check this sig any longer
3423    sigaddset(&check_signal_done, sig);
3424    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3425    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3426      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3427                    exception_name(sig, buf, O_BUFLEN));
3428    }
3429  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3430    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3431    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3432    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3433    // No need to check this sig any longer
3434    sigaddset(&check_signal_done, sig);
3435  }
3436
3437  // Dump all the signal
3438  if (sigismember(&check_signal_done, sig)) {
3439    print_signal_handlers(tty, buf, O_BUFLEN);
3440  }
3441}
3442
3443extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3444
3445extern bool signal_name(int signo, char* buf, size_t len);
3446
3447const char* os::exception_name(int exception_code, char* buf, size_t size) {
3448  if (0 < exception_code && exception_code <= SIGRTMAX) {
3449    // signal
3450    if (!signal_name(exception_code, buf, size)) {
3451      jio_snprintf(buf, size, "SIG%d", exception_code);
3452    }
3453    return buf;
3454  } else {
3455    return NULL;
3456  }
3457}
3458
3459// this is called _before_ the most of global arguments have been parsed
3460void os::init(void) {
3461  char dummy;   /* used to get a guess on initial stack address */
3462//  first_hrtime = gethrtime();
3463
3464  // With BsdThreads the JavaMain thread pid (primordial thread)
3465  // is different than the pid of the java launcher thread.
3466  // So, on Bsd, the launcher thread pid is passed to the VM
3467  // via the sun.java.launcher.pid property.
3468  // Use this property instead of getpid() if it was correctly passed.
3469  // See bug 6351349.
3470  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3471
3472  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3473
3474  clock_tics_per_sec = CLK_TCK;
3475
3476  init_random(1234567);
3477
3478  ThreadCritical::initialize();
3479
3480  Bsd::set_page_size(getpagesize());
3481  if (Bsd::page_size() == -1) {
3482    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3483                  strerror(errno)));
3484  }
3485  init_page_sizes((size_t) Bsd::page_size());
3486
3487  Bsd::initialize_system_info();
3488
3489  // main_thread points to the aboriginal thread
3490  Bsd::_main_thread = pthread_self();
3491
3492  Bsd::clock_init();
3493  initial_time_count = javaTimeNanos();
3494
3495#ifdef __APPLE__
3496  // XXXDARWIN
3497  // Work around the unaligned VM callbacks in hotspot's
3498  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3499  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3500  // alignment when doing symbol lookup. To work around this, we force early
3501  // binding of all symbols now, thus binding when alignment is known-good.
3502  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3503#endif
3504}
3505
3506// To install functions for atexit system call
3507extern "C" {
3508  static void perfMemory_exit_helper() {
3509    perfMemory_exit();
3510  }
3511}
3512
3513// this is called _after_ the global arguments have been parsed
3514jint os::init_2(void)
3515{
3516  // Allocate a single page and mark it as readable for safepoint polling
3517  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3518  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3519
3520  os::set_polling_page( polling_page );
3521
3522#ifndef PRODUCT
3523  if(Verbose && PrintMiscellaneous)
3524    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3525#endif
3526
3527  if (!UseMembar) {
3528    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3529    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3530    os::set_memory_serialize_page( mem_serialize_page );
3531
3532#ifndef PRODUCT
3533    if(Verbose && PrintMiscellaneous)
3534      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3535#endif
3536  }
3537
3538  // initialize suspend/resume support - must do this before signal_sets_init()
3539  if (SR_initialize() != 0) {
3540    perror("SR_initialize failed");
3541    return JNI_ERR;
3542  }
3543
3544  Bsd::signal_sets_init();
3545  Bsd::install_signal_handlers();
3546
3547  // Check minimum allowable stack size for thread creation and to initialize
3548  // the java system classes, including StackOverflowError - depends on page
3549  // size.  Add a page for compiler2 recursion in main thread.
3550  // Add in 2*BytesPerWord times page size to account for VM stack during
3551  // class initialization depending on 32 or 64 bit VM.
3552  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3553            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3554                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3555
3556  size_t threadStackSizeInBytes = ThreadStackSize * K;
3557  if (threadStackSizeInBytes != 0 &&
3558      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3559        tty->print_cr("\nThe stack size specified is too small, "
3560                      "Specify at least %dk",
3561                      os::Bsd::min_stack_allowed/ K);
3562        return JNI_ERR;
3563  }
3564
3565  // Make the stack size a multiple of the page size so that
3566  // the yellow/red zones can be guarded.
3567  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3568        vm_page_size()));
3569
3570  if (MaxFDLimit) {
3571    // set the number of file descriptors to max. print out error
3572    // if getrlimit/setrlimit fails but continue regardless.
3573    struct rlimit nbr_files;
3574    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3575    if (status != 0) {
3576      if (PrintMiscellaneous && (Verbose || WizardMode))
3577        perror("os::init_2 getrlimit failed");
3578    } else {
3579      nbr_files.rlim_cur = nbr_files.rlim_max;
3580
3581#ifdef __APPLE__
3582      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3583      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3584      // be used instead
3585      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3586#endif
3587
3588      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3589      if (status != 0) {
3590        if (PrintMiscellaneous && (Verbose || WizardMode))
3591          perror("os::init_2 setrlimit failed");
3592      }
3593    }
3594  }
3595
3596  // at-exit methods are called in the reverse order of their registration.
3597  // atexit functions are called on return from main or as a result of a
3598  // call to exit(3C). There can be only 32 of these functions registered
3599  // and atexit() does not set errno.
3600
3601  if (PerfAllowAtExitRegistration) {
3602    // only register atexit functions if PerfAllowAtExitRegistration is set.
3603    // atexit functions can be delayed until process exit time, which
3604    // can be problematic for embedded VM situations. Embedded VMs should
3605    // call DestroyJavaVM() to assure that VM resources are released.
3606
3607    // note: perfMemory_exit_helper atexit function may be removed in
3608    // the future if the appropriate cleanup code can be added to the
3609    // VM_Exit VMOperation's doit method.
3610    if (atexit(perfMemory_exit_helper) != 0) {
3611      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3612    }
3613  }
3614
3615  // initialize thread priority policy
3616  prio_init();
3617
3618#ifdef __APPLE__
3619  // dynamically link to objective c gc registration
3620  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3621  if (handleLibObjc != NULL) {
3622    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3623  }
3624#endif
3625
3626  return JNI_OK;
3627}
3628
3629// this is called at the end of vm_initialization
3630void os::init_3(void) { }
3631
3632// Mark the polling page as unreadable
3633void os::make_polling_page_unreadable(void) {
3634  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3635    fatal("Could not disable polling page");
3636};
3637
3638// Mark the polling page as readable
3639void os::make_polling_page_readable(void) {
3640  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3641    fatal("Could not enable polling page");
3642  }
3643};
3644
3645int os::active_processor_count() {
3646  return _processor_count;
3647}
3648
3649void os::set_native_thread_name(const char *name) {
3650#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3651  // This is only supported in Snow Leopard and beyond
3652  if (name != NULL) {
3653    // Add a "Java: " prefix to the name
3654    char buf[MAXTHREADNAMESIZE];
3655    snprintf(buf, sizeof(buf), "Java: %s", name);
3656    pthread_setname_np(buf);
3657  }
3658#endif
3659}
3660
3661bool os::distribute_processes(uint length, uint* distribution) {
3662  // Not yet implemented.
3663  return false;
3664}
3665
3666bool os::bind_to_processor(uint processor_id) {
3667  // Not yet implemented.
3668  return false;
3669}
3670
3671void os::SuspendedThreadTask::internal_do_task() {
3672  if (do_suspend(_thread->osthread())) {
3673    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3674    do_task(context);
3675    do_resume(_thread->osthread());
3676  }
3677}
3678
3679///
3680class PcFetcher : public os::SuspendedThreadTask {
3681public:
3682  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3683  ExtendedPC result();
3684protected:
3685  void do_task(const os::SuspendedThreadTaskContext& context);
3686private:
3687  ExtendedPC _epc;
3688};
3689
3690ExtendedPC PcFetcher::result() {
3691  guarantee(is_done(), "task is not done yet.");
3692  return _epc;
3693}
3694
3695void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3696  Thread* thread = context.thread();
3697  OSThread* osthread = thread->osthread();
3698  if (osthread->ucontext() != NULL) {
3699    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3700  } else {
3701    // NULL context is unexpected, double-check this is the VMThread
3702    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3703  }
3704}
3705
3706// Suspends the target using the signal mechanism and then grabs the PC before
3707// resuming the target. Used by the flat-profiler only
3708ExtendedPC os::get_thread_pc(Thread* thread) {
3709  // Make sure that it is called by the watcher for the VMThread
3710  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3711  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3712
3713  PcFetcher fetcher(thread);
3714  fetcher.run();
3715  return fetcher.result();
3716}
3717
3718int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3719{
3720  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3721}
3722
3723////////////////////////////////////////////////////////////////////////////////
3724// debug support
3725
3726bool os::find(address addr, outputStream* st) {
3727  Dl_info dlinfo;
3728  memset(&dlinfo, 0, sizeof(dlinfo));
3729  if (dladdr(addr, &dlinfo) != 0) {
3730    st->print(PTR_FORMAT ": ", addr);
3731    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3732      st->print("%s+%#x", dlinfo.dli_sname,
3733                 addr - (intptr_t)dlinfo.dli_saddr);
3734    } else if (dlinfo.dli_fbase != NULL) {
3735      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3736    } else {
3737      st->print("<absolute address>");
3738    }
3739    if (dlinfo.dli_fname != NULL) {
3740      st->print(" in %s", dlinfo.dli_fname);
3741    }
3742    if (dlinfo.dli_fbase != NULL) {
3743      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3744    }
3745    st->cr();
3746
3747    if (Verbose) {
3748      // decode some bytes around the PC
3749      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3750      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3751      address       lowest = (address) dlinfo.dli_sname;
3752      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3753      if (begin < lowest)  begin = lowest;
3754      Dl_info dlinfo2;
3755      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3756          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3757        end = (address) dlinfo2.dli_saddr;
3758      Disassembler::decode(begin, end, st);
3759    }
3760    return true;
3761  }
3762  return false;
3763}
3764
3765////////////////////////////////////////////////////////////////////////////////
3766// misc
3767
3768// This does not do anything on Bsd. This is basically a hook for being
3769// able to use structured exception handling (thread-local exception filters)
3770// on, e.g., Win32.
3771void
3772os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3773                         JavaCallArguments* args, Thread* thread) {
3774  f(value, method, args, thread);
3775}
3776
3777void os::print_statistics() {
3778}
3779
3780int os::message_box(const char* title, const char* message) {
3781  int i;
3782  fdStream err(defaultStream::error_fd());
3783  for (i = 0; i < 78; i++) err.print_raw("=");
3784  err.cr();
3785  err.print_raw_cr(title);
3786  for (i = 0; i < 78; i++) err.print_raw("-");
3787  err.cr();
3788  err.print_raw_cr(message);
3789  for (i = 0; i < 78; i++) err.print_raw("=");
3790  err.cr();
3791
3792  char buf[16];
3793  // Prevent process from exiting upon "read error" without consuming all CPU
3794  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3795
3796  return buf[0] == 'y' || buf[0] == 'Y';
3797}
3798
3799int os::stat(const char *path, struct stat *sbuf) {
3800  char pathbuf[MAX_PATH];
3801  if (strlen(path) > MAX_PATH - 1) {
3802    errno = ENAMETOOLONG;
3803    return -1;
3804  }
3805  os::native_path(strcpy(pathbuf, path));
3806  return ::stat(pathbuf, sbuf);
3807}
3808
3809bool os::check_heap(bool force) {
3810  return true;
3811}
3812
3813ATTRIBUTE_PRINTF(3, 0)
3814int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3815  return ::vsnprintf(buf, count, format, args);
3816}
3817
3818// Is a (classpath) directory empty?
3819bool os::dir_is_empty(const char* path) {
3820  DIR *dir = NULL;
3821  struct dirent *ptr;
3822
3823  dir = opendir(path);
3824  if (dir == NULL) return true;
3825
3826  /* Scan the directory */
3827  bool result = true;
3828  char buf[sizeof(struct dirent) + MAX_PATH];
3829  while (result && (ptr = ::readdir(dir)) != NULL) {
3830    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3831      result = false;
3832    }
3833  }
3834  closedir(dir);
3835  return result;
3836}
3837
3838// This code originates from JDK's sysOpen and open64_w
3839// from src/solaris/hpi/src/system_md.c
3840
3841#ifndef O_DELETE
3842#define O_DELETE 0x10000
3843#endif
3844
3845// Open a file. Unlink the file immediately after open returns
3846// if the specified oflag has the O_DELETE flag set.
3847// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3848
3849int os::open(const char *path, int oflag, int mode) {
3850
3851  if (strlen(path) > MAX_PATH - 1) {
3852    errno = ENAMETOOLONG;
3853    return -1;
3854  }
3855  int fd;
3856  int o_delete = (oflag & O_DELETE);
3857  oflag = oflag & ~O_DELETE;
3858
3859  fd = ::open(path, oflag, mode);
3860  if (fd == -1) return -1;
3861
3862  //If the open succeeded, the file might still be a directory
3863  {
3864    struct stat buf;
3865    int ret = ::fstat(fd, &buf);
3866    int st_mode = buf.st_mode;
3867
3868    if (ret != -1) {
3869      if ((st_mode & S_IFMT) == S_IFDIR) {
3870        errno = EISDIR;
3871        ::close(fd);
3872        return -1;
3873      }
3874    } else {
3875      ::close(fd);
3876      return -1;
3877    }
3878  }
3879
3880    /*
3881     * All file descriptors that are opened in the JVM and not
3882     * specifically destined for a subprocess should have the
3883     * close-on-exec flag set.  If we don't set it, then careless 3rd
3884     * party native code might fork and exec without closing all
3885     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3886     * UNIXProcess.c), and this in turn might:
3887     *
3888     * - cause end-of-file to fail to be detected on some file
3889     *   descriptors, resulting in mysterious hangs, or
3890     *
3891     * - might cause an fopen in the subprocess to fail on a system
3892     *   suffering from bug 1085341.
3893     *
3894     * (Yes, the default setting of the close-on-exec flag is a Unix
3895     * design flaw)
3896     *
3897     * See:
3898     * 1085341: 32-bit stdio routines should support file descriptors >255
3899     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3900     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3901     */
3902#ifdef FD_CLOEXEC
3903    {
3904        int flags = ::fcntl(fd, F_GETFD);
3905        if (flags != -1)
3906            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3907    }
3908#endif
3909
3910  if (o_delete != 0) {
3911    ::unlink(path);
3912  }
3913  return fd;
3914}
3915
3916
3917// create binary file, rewriting existing file if required
3918int os::create_binary_file(const char* path, bool rewrite_existing) {
3919  int oflags = O_WRONLY | O_CREAT;
3920  if (!rewrite_existing) {
3921    oflags |= O_EXCL;
3922  }
3923  return ::open(path, oflags, S_IREAD | S_IWRITE);
3924}
3925
3926// return current position of file pointer
3927jlong os::current_file_offset(int fd) {
3928  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3929}
3930
3931// move file pointer to the specified offset
3932jlong os::seek_to_file_offset(int fd, jlong offset) {
3933  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3934}
3935
3936// This code originates from JDK's sysAvailable
3937// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3938
3939int os::available(int fd, jlong *bytes) {
3940  jlong cur, end;
3941  int mode;
3942  struct stat buf;
3943
3944  if (::fstat(fd, &buf) >= 0) {
3945    mode = buf.st_mode;
3946    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3947      /*
3948      * XXX: is the following call interruptible? If so, this might
3949      * need to go through the INTERRUPT_IO() wrapper as for other
3950      * blocking, interruptible calls in this file.
3951      */
3952      int n;
3953      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3954        *bytes = n;
3955        return 1;
3956      }
3957    }
3958  }
3959  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3960    return 0;
3961  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3962    return 0;
3963  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3964    return 0;
3965  }
3966  *bytes = end - cur;
3967  return 1;
3968}
3969
3970int os::socket_available(int fd, jint *pbytes) {
3971   if (fd < 0)
3972     return OS_OK;
3973
3974   int ret;
3975
3976   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3977
3978   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3979   // is expected to return 0 on failure and 1 on success to the jdk.
3980
3981   return (ret == OS_ERR) ? 0 : 1;
3982}
3983
3984// Map a block of memory.
3985char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3986                     char *addr, size_t bytes, bool read_only,
3987                     bool allow_exec) {
3988  int prot;
3989  int flags;
3990
3991  if (read_only) {
3992    prot = PROT_READ;
3993    flags = MAP_SHARED;
3994  } else {
3995    prot = PROT_READ | PROT_WRITE;
3996    flags = MAP_PRIVATE;
3997  }
3998
3999  if (allow_exec) {
4000    prot |= PROT_EXEC;
4001  }
4002
4003  if (addr != NULL) {
4004    flags |= MAP_FIXED;
4005  }
4006
4007  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4008                                     fd, file_offset);
4009  if (mapped_address == MAP_FAILED) {
4010    return NULL;
4011  }
4012  return mapped_address;
4013}
4014
4015
4016// Remap a block of memory.
4017char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4018                       char *addr, size_t bytes, bool read_only,
4019                       bool allow_exec) {
4020  // same as map_memory() on this OS
4021  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4022                        allow_exec);
4023}
4024
4025
4026// Unmap a block of memory.
4027bool os::pd_unmap_memory(char* addr, size_t bytes) {
4028  return munmap(addr, bytes) == 0;
4029}
4030
4031// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4032// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4033// of a thread.
4034//
4035// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4036// the fast estimate available on the platform.
4037
4038jlong os::current_thread_cpu_time() {
4039#ifdef __APPLE__
4040  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4041#else
4042  Unimplemented();
4043  return 0;
4044#endif
4045}
4046
4047jlong os::thread_cpu_time(Thread* thread) {
4048#ifdef __APPLE__
4049  return os::thread_cpu_time(thread, true /* user + sys */);
4050#else
4051  Unimplemented();
4052  return 0;
4053#endif
4054}
4055
4056jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4057#ifdef __APPLE__
4058  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4059#else
4060  Unimplemented();
4061  return 0;
4062#endif
4063}
4064
4065jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4066#ifdef __APPLE__
4067  struct thread_basic_info tinfo;
4068  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4069  kern_return_t kr;
4070  thread_t mach_thread;
4071
4072  mach_thread = thread->osthread()->thread_id();
4073  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4074  if (kr != KERN_SUCCESS)
4075    return -1;
4076
4077  if (user_sys_cpu_time) {
4078    jlong nanos;
4079    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4080    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4081    return nanos;
4082  } else {
4083    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4084  }
4085#else
4086  Unimplemented();
4087  return 0;
4088#endif
4089}
4090
4091
4092void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4093  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4094  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4095  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4096  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4097}
4098
4099void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4100  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4101  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4102  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4103  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4104}
4105
4106bool os::is_thread_cpu_time_supported() {
4107#ifdef __APPLE__
4108  return true;
4109#else
4110  return false;
4111#endif
4112}
4113
4114// System loadavg support.  Returns -1 if load average cannot be obtained.
4115// Bsd doesn't yet have a (official) notion of processor sets,
4116// so just return the system wide load average.
4117int os::loadavg(double loadavg[], int nelem) {
4118  return ::getloadavg(loadavg, nelem);
4119}
4120
4121void os::pause() {
4122  char filename[MAX_PATH];
4123  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4124    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4125  } else {
4126    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4127  }
4128
4129  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4130  if (fd != -1) {
4131    struct stat buf;
4132    ::close(fd);
4133    while (::stat(filename, &buf) == 0) {
4134      (void)::poll(NULL, 0, 100);
4135    }
4136  } else {
4137    jio_fprintf(stderr,
4138      "Could not open pause file '%s', continuing immediately.\n", filename);
4139  }
4140}
4141
4142
4143// Refer to the comments in os_solaris.cpp park-unpark.
4144//
4145// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4146// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4147// For specifics regarding the bug see GLIBC BUGID 261237 :
4148//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4149// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4150// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4151// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4152// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4153// and monitorenter when we're using 1-0 locking.  All those operations may result in
4154// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4155// of libpthread avoids the problem, but isn't practical.
4156//
4157// Possible remedies:
4158//
4159// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4160//      This is palliative and probabilistic, however.  If the thread is preempted
4161//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4162//      than the minimum period may have passed, and the abstime may be stale (in the
4163//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4164//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4165//
4166// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4167//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4168//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4169//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4170//      thread.
4171//
4172// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4173//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4174//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4175//      This also works well.  In fact it avoids kernel-level scalability impediments
4176//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4177//      timers in a graceful fashion.
4178//
4179// 4.   When the abstime value is in the past it appears that control returns
4180//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4181//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4182//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4183//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4184//      It may be possible to avoid reinitialization by checking the return
4185//      value from pthread_cond_timedwait().  In addition to reinitializing the
4186//      condvar we must establish the invariant that cond_signal() is only called
4187//      within critical sections protected by the adjunct mutex.  This prevents
4188//      cond_signal() from "seeing" a condvar that's in the midst of being
4189//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4190//      desirable signal-after-unlock optimization that avoids futile context switching.
4191//
4192//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4193//      structure when a condvar is used or initialized.  cond_destroy()  would
4194//      release the helper structure.  Our reinitialize-after-timedwait fix
4195//      put excessive stress on malloc/free and locks protecting the c-heap.
4196//
4197// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4198// It may be possible to refine (4) by checking the kernel and NTPL verisons
4199// and only enabling the work-around for vulnerable environments.
4200
4201// utility to compute the abstime argument to timedwait:
4202// millis is the relative timeout time
4203// abstime will be the absolute timeout time
4204// TODO: replace compute_abstime() with unpackTime()
4205
4206static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4207  if (millis < 0)  millis = 0;
4208  struct timeval now;
4209  int status = gettimeofday(&now, NULL);
4210  assert(status == 0, "gettimeofday");
4211  jlong seconds = millis / 1000;
4212  millis %= 1000;
4213  if (seconds > 50000000) { // see man cond_timedwait(3T)
4214    seconds = 50000000;
4215  }
4216  abstime->tv_sec = now.tv_sec  + seconds;
4217  long       usec = now.tv_usec + millis * 1000;
4218  if (usec >= 1000000) {
4219    abstime->tv_sec += 1;
4220    usec -= 1000000;
4221  }
4222  abstime->tv_nsec = usec * 1000;
4223  return abstime;
4224}
4225
4226
4227// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4228// Conceptually TryPark() should be equivalent to park(0).
4229
4230int os::PlatformEvent::TryPark() {
4231  for (;;) {
4232    const int v = _Event ;
4233    guarantee ((v == 0) || (v == 1), "invariant") ;
4234    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4235  }
4236}
4237
4238void os::PlatformEvent::park() {       // AKA "down()"
4239  // Invariant: Only the thread associated with the Event/PlatformEvent
4240  // may call park().
4241  // TODO: assert that _Assoc != NULL or _Assoc == Self
4242  int v ;
4243  for (;;) {
4244      v = _Event ;
4245      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4246  }
4247  guarantee (v >= 0, "invariant") ;
4248  if (v == 0) {
4249     // Do this the hard way by blocking ...
4250     int status = pthread_mutex_lock(_mutex);
4251     assert_status(status == 0, status, "mutex_lock");
4252     guarantee (_nParked == 0, "invariant") ;
4253     ++ _nParked ;
4254     while (_Event < 0) {
4255        status = pthread_cond_wait(_cond, _mutex);
4256        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4257        // Treat this the same as if the wait was interrupted
4258        if (status == ETIMEDOUT) { status = EINTR; }
4259        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4260     }
4261     -- _nParked ;
4262
4263    _Event = 0 ;
4264     status = pthread_mutex_unlock(_mutex);
4265     assert_status(status == 0, status, "mutex_unlock");
4266    // Paranoia to ensure our locked and lock-free paths interact
4267    // correctly with each other.
4268    OrderAccess::fence();
4269  }
4270  guarantee (_Event >= 0, "invariant") ;
4271}
4272
4273int os::PlatformEvent::park(jlong millis) {
4274  guarantee (_nParked == 0, "invariant") ;
4275
4276  int v ;
4277  for (;;) {
4278      v = _Event ;
4279      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4280  }
4281  guarantee (v >= 0, "invariant") ;
4282  if (v != 0) return OS_OK ;
4283
4284  // We do this the hard way, by blocking the thread.
4285  // Consider enforcing a minimum timeout value.
4286  struct timespec abst;
4287  compute_abstime(&abst, millis);
4288
4289  int ret = OS_TIMEOUT;
4290  int status = pthread_mutex_lock(_mutex);
4291  assert_status(status == 0, status, "mutex_lock");
4292  guarantee (_nParked == 0, "invariant") ;
4293  ++_nParked ;
4294
4295  // Object.wait(timo) will return because of
4296  // (a) notification
4297  // (b) timeout
4298  // (c) thread.interrupt
4299  //
4300  // Thread.interrupt and object.notify{All} both call Event::set.
4301  // That is, we treat thread.interrupt as a special case of notification.
4302  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4303  // We assume all ETIME returns are valid.
4304  //
4305  // TODO: properly differentiate simultaneous notify+interrupt.
4306  // In that case, we should propagate the notify to another waiter.
4307
4308  while (_Event < 0) {
4309    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4310    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4311      pthread_cond_destroy (_cond);
4312      pthread_cond_init (_cond, NULL) ;
4313    }
4314    assert_status(status == 0 || status == EINTR ||
4315                  status == ETIMEDOUT,
4316                  status, "cond_timedwait");
4317    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4318    if (status == ETIMEDOUT) break ;
4319    // We consume and ignore EINTR and spurious wakeups.
4320  }
4321  --_nParked ;
4322  if (_Event >= 0) {
4323     ret = OS_OK;
4324  }
4325  _Event = 0 ;
4326  status = pthread_mutex_unlock(_mutex);
4327  assert_status(status == 0, status, "mutex_unlock");
4328  assert (_nParked == 0, "invariant") ;
4329  // Paranoia to ensure our locked and lock-free paths interact
4330  // correctly with each other.
4331  OrderAccess::fence();
4332  return ret;
4333}
4334
4335void os::PlatformEvent::unpark() {
4336  // Transitions for _Event:
4337  //    0 :=> 1
4338  //    1 :=> 1
4339  //   -1 :=> either 0 or 1; must signal target thread
4340  //          That is, we can safely transition _Event from -1 to either
4341  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4342  //          unpark() calls.
4343  // See also: "Semaphores in Plan 9" by Mullender & Cox
4344  //
4345  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4346  // that it will take two back-to-back park() calls for the owning
4347  // thread to block. This has the benefit of forcing a spurious return
4348  // from the first park() call after an unpark() call which will help
4349  // shake out uses of park() and unpark() without condition variables.
4350
4351  if (Atomic::xchg(1, &_Event) >= 0) return;
4352
4353  // Wait for the thread associated with the event to vacate
4354  int status = pthread_mutex_lock(_mutex);
4355  assert_status(status == 0, status, "mutex_lock");
4356  int AnyWaiters = _nParked;
4357  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4358  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4359    AnyWaiters = 0;
4360    pthread_cond_signal(_cond);
4361  }
4362  status = pthread_mutex_unlock(_mutex);
4363  assert_status(status == 0, status, "mutex_unlock");
4364  if (AnyWaiters != 0) {
4365    status = pthread_cond_signal(_cond);
4366    assert_status(status == 0, status, "cond_signal");
4367  }
4368
4369  // Note that we signal() _after dropping the lock for "immortal" Events.
4370  // This is safe and avoids a common class of  futile wakeups.  In rare
4371  // circumstances this can cause a thread to return prematurely from
4372  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4373  // simply re-test the condition and re-park itself.
4374}
4375
4376
4377// JSR166
4378// -------------------------------------------------------
4379
4380/*
4381 * The solaris and bsd implementations of park/unpark are fairly
4382 * conservative for now, but can be improved. They currently use a
4383 * mutex/condvar pair, plus a a count.
4384 * Park decrements count if > 0, else does a condvar wait.  Unpark
4385 * sets count to 1 and signals condvar.  Only one thread ever waits
4386 * on the condvar. Contention seen when trying to park implies that someone
4387 * is unparking you, so don't wait. And spurious returns are fine, so there
4388 * is no need to track notifications.
4389 */
4390
4391#define MAX_SECS 100000000
4392/*
4393 * This code is common to bsd and solaris and will be moved to a
4394 * common place in dolphin.
4395 *
4396 * The passed in time value is either a relative time in nanoseconds
4397 * or an absolute time in milliseconds. Either way it has to be unpacked
4398 * into suitable seconds and nanoseconds components and stored in the
4399 * given timespec structure.
4400 * Given time is a 64-bit value and the time_t used in the timespec is only
4401 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4402 * overflow if times way in the future are given. Further on Solaris versions
4403 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4404 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4405 * As it will be 28 years before "now + 100000000" will overflow we can
4406 * ignore overflow and just impose a hard-limit on seconds using the value
4407 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4408 * years from "now".
4409 */
4410
4411static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4412  assert (time > 0, "convertTime");
4413
4414  struct timeval now;
4415  int status = gettimeofday(&now, NULL);
4416  assert(status == 0, "gettimeofday");
4417
4418  time_t max_secs = now.tv_sec + MAX_SECS;
4419
4420  if (isAbsolute) {
4421    jlong secs = time / 1000;
4422    if (secs > max_secs) {
4423      absTime->tv_sec = max_secs;
4424    }
4425    else {
4426      absTime->tv_sec = secs;
4427    }
4428    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4429  }
4430  else {
4431    jlong secs = time / NANOSECS_PER_SEC;
4432    if (secs >= MAX_SECS) {
4433      absTime->tv_sec = max_secs;
4434      absTime->tv_nsec = 0;
4435    }
4436    else {
4437      absTime->tv_sec = now.tv_sec + secs;
4438      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4439      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4440        absTime->tv_nsec -= NANOSECS_PER_SEC;
4441        ++absTime->tv_sec; // note: this must be <= max_secs
4442      }
4443    }
4444  }
4445  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4446  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4447  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4448  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4449}
4450
4451void Parker::park(bool isAbsolute, jlong time) {
4452  // Ideally we'd do something useful while spinning, such
4453  // as calling unpackTime().
4454
4455  // Optional fast-path check:
4456  // Return immediately if a permit is available.
4457  // We depend on Atomic::xchg() having full barrier semantics
4458  // since we are doing a lock-free update to _counter.
4459  if (Atomic::xchg(0, &_counter) > 0) return;
4460
4461  Thread* thread = Thread::current();
4462  assert(thread->is_Java_thread(), "Must be JavaThread");
4463  JavaThread *jt = (JavaThread *)thread;
4464
4465  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4466  // Check interrupt before trying to wait
4467  if (Thread::is_interrupted(thread, false)) {
4468    return;
4469  }
4470
4471  // Next, demultiplex/decode time arguments
4472  struct timespec absTime;
4473  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4474    return;
4475  }
4476  if (time > 0) {
4477    unpackTime(&absTime, isAbsolute, time);
4478  }
4479
4480
4481  // Enter safepoint region
4482  // Beware of deadlocks such as 6317397.
4483  // The per-thread Parker:: mutex is a classic leaf-lock.
4484  // In particular a thread must never block on the Threads_lock while
4485  // holding the Parker:: mutex.  If safepoints are pending both the
4486  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4487  ThreadBlockInVM tbivm(jt);
4488
4489  // Don't wait if cannot get lock since interference arises from
4490  // unblocking.  Also. check interrupt before trying wait
4491  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4492    return;
4493  }
4494
4495  int status ;
4496  if (_counter > 0)  { // no wait needed
4497    _counter = 0;
4498    status = pthread_mutex_unlock(_mutex);
4499    assert (status == 0, "invariant") ;
4500    // Paranoia to ensure our locked and lock-free paths interact
4501    // correctly with each other and Java-level accesses.
4502    OrderAccess::fence();
4503    return;
4504  }
4505
4506#ifdef ASSERT
4507  // Don't catch signals while blocked; let the running threads have the signals.
4508  // (This allows a debugger to break into the running thread.)
4509  sigset_t oldsigs;
4510  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4511  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4512#endif
4513
4514  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4515  jt->set_suspend_equivalent();
4516  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4517
4518  if (time == 0) {
4519    status = pthread_cond_wait (_cond, _mutex) ;
4520  } else {
4521    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4522    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4523      pthread_cond_destroy (_cond) ;
4524      pthread_cond_init    (_cond, NULL);
4525    }
4526  }
4527  assert_status(status == 0 || status == EINTR ||
4528                status == ETIMEDOUT,
4529                status, "cond_timedwait");
4530
4531#ifdef ASSERT
4532  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4533#endif
4534
4535  _counter = 0 ;
4536  status = pthread_mutex_unlock(_mutex) ;
4537  assert_status(status == 0, status, "invariant") ;
4538  // Paranoia to ensure our locked and lock-free paths interact
4539  // correctly with each other and Java-level accesses.
4540  OrderAccess::fence();
4541
4542  // If externally suspended while waiting, re-suspend
4543  if (jt->handle_special_suspend_equivalent_condition()) {
4544    jt->java_suspend_self();
4545  }
4546}
4547
4548void Parker::unpark() {
4549  int s, status ;
4550  status = pthread_mutex_lock(_mutex);
4551  assert (status == 0, "invariant") ;
4552  s = _counter;
4553  _counter = 1;
4554  if (s < 1) {
4555     if (WorkAroundNPTLTimedWaitHang) {
4556        status = pthread_cond_signal (_cond) ;
4557        assert (status == 0, "invariant") ;
4558        status = pthread_mutex_unlock(_mutex);
4559        assert (status == 0, "invariant") ;
4560     } else {
4561        status = pthread_mutex_unlock(_mutex);
4562        assert (status == 0, "invariant") ;
4563        status = pthread_cond_signal (_cond) ;
4564        assert (status == 0, "invariant") ;
4565     }
4566  } else {
4567    pthread_mutex_unlock(_mutex);
4568    assert (status == 0, "invariant") ;
4569  }
4570}
4571
4572
4573/* Darwin has no "environ" in a dynamic library. */
4574#ifdef __APPLE__
4575#include <crt_externs.h>
4576#define environ (*_NSGetEnviron())
4577#else
4578extern char** environ;
4579#endif
4580
4581// Run the specified command in a separate process. Return its exit value,
4582// or -1 on failure (e.g. can't fork a new process).
4583// Unlike system(), this function can be called from signal handler. It
4584// doesn't block SIGINT et al.
4585int os::fork_and_exec(char* cmd) {
4586  const char * argv[4] = {"sh", "-c", cmd, NULL};
4587
4588  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4589  // pthread_atfork handlers and reset pthread library. All we need is a
4590  // separate process to execve. Make a direct syscall to fork process.
4591  // On IA64 there's no fork syscall, we have to use fork() and hope for
4592  // the best...
4593  pid_t pid = fork();
4594
4595  if (pid < 0) {
4596    // fork failed
4597    return -1;
4598
4599  } else if (pid == 0) {
4600    // child process
4601
4602    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4603    // first to kill every thread on the thread list. Because this list is
4604    // not reset by fork() (see notes above), execve() will instead kill
4605    // every thread in the parent process. We know this is the only thread
4606    // in the new process, so make a system call directly.
4607    // IA64 should use normal execve() from glibc to match the glibc fork()
4608    // above.
4609    execve("/bin/sh", (char* const*)argv, environ);
4610
4611    // execve failed
4612    _exit(-1);
4613
4614  } else  {
4615    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4616    // care about the actual exit code, for now.
4617
4618    int status;
4619
4620    // Wait for the child process to exit.  This returns immediately if
4621    // the child has already exited. */
4622    while (waitpid(pid, &status, 0) < 0) {
4623        switch (errno) {
4624        case ECHILD: return 0;
4625        case EINTR: break;
4626        default: return -1;
4627        }
4628    }
4629
4630    if (WIFEXITED(status)) {
4631       // The child exited normally; get its exit code.
4632       return WEXITSTATUS(status);
4633    } else if (WIFSIGNALED(status)) {
4634       // The child exited because of a signal
4635       // The best value to return is 0x80 + signal number,
4636       // because that is what all Unix shells do, and because
4637       // it allows callers to distinguish between process exit and
4638       // process death by signal.
4639       return 0x80 + WTERMSIG(status);
4640    } else {
4641       // Unknown exit code; pass it through
4642       return status;
4643    }
4644  }
4645}
4646
4647// is_headless_jre()
4648//
4649// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4650// in order to report if we are running in a headless jre
4651//
4652// Since JDK8 xawt/libmawt.so was moved into the same directory
4653// as libawt.so, and renamed libawt_xawt.so
4654//
4655bool os::is_headless_jre() {
4656#ifdef __APPLE__
4657    // We no longer build headless-only on Mac OS X
4658    return false;
4659#else
4660    struct stat statbuf;
4661    char buf[MAXPATHLEN];
4662    char libmawtpath[MAXPATHLEN];
4663    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4664    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4665    char *p;
4666
4667    // Get path to libjvm.so
4668    os::jvm_path(buf, sizeof(buf));
4669
4670    // Get rid of libjvm.so
4671    p = strrchr(buf, '/');
4672    if (p == NULL) return false;
4673    else *p = '\0';
4674
4675    // Get rid of client or server
4676    p = strrchr(buf, '/');
4677    if (p == NULL) return false;
4678    else *p = '\0';
4679
4680    // check xawt/libmawt.so
4681    strcpy(libmawtpath, buf);
4682    strcat(libmawtpath, xawtstr);
4683    if (::stat(libmawtpath, &statbuf) == 0) return false;
4684
4685    // check libawt_xawt.so
4686    strcpy(libmawtpath, buf);
4687    strcat(libmawtpath, new_xawtstr);
4688    if (::stat(libmawtpath, &statbuf) == 0) return false;
4689
4690    return true;
4691#endif
4692}
4693
4694// Get the default path to the core file
4695// Returns the length of the string
4696int os::get_core_path(char* buffer, size_t bufferSize) {
4697  int n = jio_snprintf(buffer, bufferSize, "/cores");
4698
4699  // Truncate if theoretical string was longer than bufferSize
4700  n = MIN2(n, (int)bufferSize);
4701
4702  return n;
4703}
4704
4705#ifndef PRODUCT
4706void TestReserveMemorySpecial_test() {
4707  // No tests available for this platform
4708}
4709#endif
4710