os_bsd.cpp revision 6350:d11386591874
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103# include <sys/syscall.h>
104
105#if defined(__FreeBSD__) || defined(__NetBSD__)
106# include <elf.h>
107#endif
108
109#ifdef __APPLE__
110# include <mach/mach.h> // semaphore_* API
111# include <mach-o/dyld.h>
112# include <sys/proc_info.h>
113# include <objc/objc-auto.h>
114#endif
115
116#ifndef MAP_ANONYMOUS
117#define MAP_ANONYMOUS MAP_ANON
118#endif
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125#define LARGEPAGES_BIT (1 << 6)
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Bsd::_physical_memory = 0;
129
130#ifdef __APPLE__
131mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
132volatile uint64_t         os::Bsd::_max_abstime   = 0;
133#else
134int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
135#endif
136pthread_t os::Bsd::_main_thread;
137int os::Bsd::_page_size = -1;
138
139static jlong initial_time_count=0;
140
141static int clock_tics_per_sec = 100;
142
143// For diagnostics to print a message once. see run_periodic_checks
144static sigset_t check_signal_done;
145static bool check_signals = true;
146
147static pid_t _initial_pid = 0;
148
149/* Signal number used to suspend/resume a thread */
150
151/* do not use any signal number less than SIGSEGV, see 4355769 */
152static int SR_signum = SIGUSR2;
153sigset_t SR_sigset;
154
155
156////////////////////////////////////////////////////////////////////////////////
157// utility functions
158
159static int SR_initialize();
160static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
161
162julong os::available_memory() {
163  return Bsd::available_memory();
164}
165
166// available here means free
167julong os::Bsd::available_memory() {
168  uint64_t available = physical_memory() >> 2;
169#ifdef __APPLE__
170  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
171  vm_statistics64_data_t vmstat;
172  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
173                                         (host_info64_t)&vmstat, &count);
174  assert(kerr == KERN_SUCCESS,
175         "host_statistics64 failed - check mach_host_self() and count");
176  if (kerr == KERN_SUCCESS) {
177    available = vmstat.free_count * os::vm_page_size();
178  }
179#endif
180  return available;
181}
182
183julong os::physical_memory() {
184  return Bsd::physical_memory();
185}
186
187////////////////////////////////////////////////////////////////////////////////
188// environment support
189
190bool os::getenv(const char* name, char* buf, int len) {
191  const char* val = ::getenv(name);
192  if (val != NULL && strlen(val) < (size_t)len) {
193    strcpy(buf, val);
194    return true;
195  }
196  if (len > 0) buf[0] = 0;  // return a null string
197  return false;
198}
199
200
201// Return true if user is running as root.
202
203bool os::have_special_privileges() {
204  static bool init = false;
205  static bool privileges = false;
206  if (!init) {
207    privileges = (getuid() != geteuid()) || (getgid() != getegid());
208    init = true;
209  }
210  return privileges;
211}
212
213
214
215// Cpu architecture string
216#if   defined(ZERO)
217static char cpu_arch[] = ZERO_LIBARCH;
218#elif defined(IA64)
219static char cpu_arch[] = "ia64";
220#elif defined(IA32)
221static char cpu_arch[] = "i386";
222#elif defined(AMD64)
223static char cpu_arch[] = "amd64";
224#elif defined(ARM)
225static char cpu_arch[] = "arm";
226#elif defined(PPC32)
227static char cpu_arch[] = "ppc";
228#elif defined(SPARC)
229#  ifdef _LP64
230static char cpu_arch[] = "sparcv9";
231#  else
232static char cpu_arch[] = "sparc";
233#  endif
234#else
235#error Add appropriate cpu_arch setting
236#endif
237
238// Compiler variant
239#ifdef COMPILER2
240#define COMPILER_VARIANT "server"
241#else
242#define COMPILER_VARIANT "client"
243#endif
244
245
246void os::Bsd::initialize_system_info() {
247  int mib[2];
248  size_t len;
249  int cpu_val;
250  julong mem_val;
251
252  /* get processors count via hw.ncpus sysctl */
253  mib[0] = CTL_HW;
254  mib[1] = HW_NCPU;
255  len = sizeof(cpu_val);
256  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
257       assert(len == sizeof(cpu_val), "unexpected data size");
258       set_processor_count(cpu_val);
259  }
260  else {
261       set_processor_count(1);   // fallback
262  }
263
264  /* get physical memory via hw.memsize sysctl (hw.memsize is used
265   * since it returns a 64 bit value)
266   */
267  mib[0] = CTL_HW;
268
269#if defined (HW_MEMSIZE) // Apple
270  mib[1] = HW_MEMSIZE;
271#elif defined(HW_PHYSMEM) // Most of BSD
272  mib[1] = HW_PHYSMEM;
273#elif defined(HW_REALMEM) // Old FreeBSD
274  mib[1] = HW_REALMEM;
275#else
276  #error No ways to get physmem
277#endif
278
279  len = sizeof(mem_val);
280  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
281       assert(len == sizeof(mem_val), "unexpected data size");
282       _physical_memory = mem_val;
283  } else {
284       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
285  }
286
287#ifdef __OpenBSD__
288  {
289       // limit _physical_memory memory view on OpenBSD since
290       // datasize rlimit restricts us anyway.
291       struct rlimit limits;
292       getrlimit(RLIMIT_DATA, &limits);
293       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
294  }
295#endif
296}
297
298#ifdef __APPLE__
299static const char *get_home() {
300  const char *home_dir = ::getenv("HOME");
301  if ((home_dir == NULL) || (*home_dir == '\0')) {
302    struct passwd *passwd_info = getpwuid(geteuid());
303    if (passwd_info != NULL) {
304      home_dir = passwd_info->pw_dir;
305    }
306  }
307
308  return home_dir;
309}
310#endif
311
312void os::init_system_properties_values() {
313  // The next steps are taken in the product version:
314  //
315  // Obtain the JAVA_HOME value from the location of libjvm.so.
316  // This library should be located at:
317  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
318  //
319  // If "/jre/lib/" appears at the right place in the path, then we
320  // assume libjvm.so is installed in a JDK and we use this path.
321  //
322  // Otherwise exit with message: "Could not create the Java virtual machine."
323  //
324  // The following extra steps are taken in the debugging version:
325  //
326  // If "/jre/lib/" does NOT appear at the right place in the path
327  // instead of exit check for $JAVA_HOME environment variable.
328  //
329  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
330  // then we append a fake suffix "hotspot/libjvm.so" to this path so
331  // it looks like libjvm.so is installed there
332  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
333  //
334  // Otherwise exit.
335  //
336  // Important note: if the location of libjvm.so changes this
337  // code needs to be changed accordingly.
338
339// See ld(1):
340//      The linker uses the following search paths to locate required
341//      shared libraries:
342//        1: ...
343//        ...
344//        7: The default directories, normally /lib and /usr/lib.
345#ifndef DEFAULT_LIBPATH
346#define DEFAULT_LIBPATH "/lib:/usr/lib"
347#endif
348
349// Base path of extensions installed on the system.
350#define SYS_EXT_DIR     "/usr/java/packages"
351#define EXTENSIONS_DIR  "/lib/ext"
352#define ENDORSED_DIR    "/lib/endorsed"
353
354#ifndef __APPLE__
355
356  // Buffer that fits several sprintfs.
357  // Note that the space for the colon and the trailing null are provided
358  // by the nulls included by the sizeof operator.
359  const size_t bufsize =
360    MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
361         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
362         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
363  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
364
365  // sysclasspath, java_home, dll_dir
366  {
367    char *pslash;
368    os::jvm_path(buf, bufsize);
369
370    // Found the full path to libjvm.so.
371    // Now cut the path to <java_home>/jre if we can.
372    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
373    pslash = strrchr(buf, '/');
374    if (pslash != NULL) {
375      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
376    }
377    Arguments::set_dll_dir(buf);
378
379    if (pslash != NULL) {
380      pslash = strrchr(buf, '/');
381      if (pslash != NULL) {
382        *pslash = '\0';          // Get rid of /<arch>.
383        pslash = strrchr(buf, '/');
384        if (pslash != NULL) {
385          *pslash = '\0';        // Get rid of /lib.
386        }
387      }
388    }
389    Arguments::set_java_home(buf);
390    set_boot_path('/', ':');
391  }
392
393  // Where to look for native libraries.
394  //
395  // Note: Due to a legacy implementation, most of the library path
396  // is set in the launcher. This was to accomodate linking restrictions
397  // on legacy Bsd implementations (which are no longer supported).
398  // Eventually, all the library path setting will be done here.
399  //
400  // However, to prevent the proliferation of improperly built native
401  // libraries, the new path component /usr/java/packages is added here.
402  // Eventually, all the library path setting will be done here.
403  {
404    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
405    // should always exist (until the legacy problem cited above is
406    // addressed).
407    const char *v = ::getenv("LD_LIBRARY_PATH");
408    const char *v_colon = ":";
409    if (v == NULL) { v = ""; v_colon = ""; }
410    // That's +1 for the colon and +1 for the trailing '\0'.
411    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
412                                                     strlen(v) + 1 +
413                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
414                                                     mtInternal);
415    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
416    Arguments::set_library_path(ld_library_path);
417    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
418  }
419
420  // Extensions directories.
421  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
422  Arguments::set_ext_dirs(buf);
423
424  // Endorsed standards default directory.
425  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
426  Arguments::set_endorsed_dirs(buf);
427
428  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
429
430#else // __APPLE__
431
432#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
433#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
434
435  const char *user_home_dir = get_home();
436  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
437  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
438    sizeof(SYS_EXTENSIONS_DIRS);
439
440  // Buffer that fits several sprintfs.
441  // Note that the space for the colon and the trailing null are provided
442  // by the nulls included by the sizeof operator.
443  const size_t bufsize =
444    MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
445         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
446         (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
447  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
448
449  // sysclasspath, java_home, dll_dir
450  {
451    char *pslash;
452    os::jvm_path(buf, bufsize);
453
454    // Found the full path to libjvm.so.
455    // Now cut the path to <java_home>/jre if we can.
456    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
457    pslash = strrchr(buf, '/');
458    if (pslash != NULL) {
459      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
460    }
461    Arguments::set_dll_dir(buf);
462
463    if (pslash != NULL) {
464      pslash = strrchr(buf, '/');
465      if (pslash != NULL) {
466        *pslash = '\0';          // Get rid of /lib.
467      }
468    }
469    Arguments::set_java_home(buf);
470    set_boot_path('/', ':');
471  }
472
473  // Where to look for native libraries.
474  //
475  // Note: Due to a legacy implementation, most of the library path
476  // is set in the launcher. This was to accomodate linking restrictions
477  // on legacy Bsd implementations (which are no longer supported).
478  // Eventually, all the library path setting will be done here.
479  //
480  // However, to prevent the proliferation of improperly built native
481  // libraries, the new path component /usr/java/packages is added here.
482  // Eventually, all the library path setting will be done here.
483  {
484    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
485    // should always exist (until the legacy problem cited above is
486    // addressed).
487    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
488    // can specify a directory inside an app wrapper
489    const char *l = ::getenv("JAVA_LIBRARY_PATH");
490    const char *l_colon = ":";
491    if (l == NULL) { l = ""; l_colon = ""; }
492
493    const char *v = ::getenv("DYLD_LIBRARY_PATH");
494    const char *v_colon = ":";
495    if (v == NULL) { v = ""; v_colon = ""; }
496
497    // Apple's Java6 has "." at the beginning of java.library.path.
498    // OpenJDK on Windows has "." at the end of java.library.path.
499    // OpenJDK on Linux and Solaris don't have "." in java.library.path
500    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
501    // "." is appended to the end of java.library.path. Yes, this
502    // could cause a change in behavior, but Apple's Java6 behavior
503    // can be achieved by putting "." at the beginning of the
504    // JAVA_LIBRARY_PATH environment variable.
505    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
506                                                     strlen(v) + 1 + strlen(l) + 1 +
507                                                     system_ext_size + 3,
508                                                     mtInternal);
509    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
510            v, v_colon, l, l_colon, user_home_dir);
511    Arguments::set_library_path(ld_library_path);
512    FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
513  }
514
515  // Extensions directories.
516  //
517  // Note that the space for the colon and the trailing null are provided
518  // by the nulls included by the sizeof operator (so actually one byte more
519  // than necessary is allocated).
520  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
521          user_home_dir, Arguments::get_java_home());
522  Arguments::set_ext_dirs(buf);
523
524  // Endorsed standards default directory.
525  sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
526  Arguments::set_endorsed_dirs(buf);
527
528  FREE_C_HEAP_ARRAY(char, buf, mtInternal);
529
530#undef SYS_EXTENSIONS_DIR
531#undef SYS_EXTENSIONS_DIRS
532
533#endif // __APPLE__
534
535#undef SYS_EXT_DIR
536#undef EXTENSIONS_DIR
537#undef ENDORSED_DIR
538}
539
540////////////////////////////////////////////////////////////////////////////////
541// breakpoint support
542
543void os::breakpoint() {
544  BREAKPOINT;
545}
546
547extern "C" void breakpoint() {
548  // use debugger to set breakpoint here
549}
550
551////////////////////////////////////////////////////////////////////////////////
552// signal support
553
554debug_only(static bool signal_sets_initialized = false);
555static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
556
557bool os::Bsd::is_sig_ignored(int sig) {
558      struct sigaction oact;
559      sigaction(sig, (struct sigaction*)NULL, &oact);
560      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
561                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
562      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
563           return true;
564      else
565           return false;
566}
567
568void os::Bsd::signal_sets_init() {
569  // Should also have an assertion stating we are still single-threaded.
570  assert(!signal_sets_initialized, "Already initialized");
571  // Fill in signals that are necessarily unblocked for all threads in
572  // the VM. Currently, we unblock the following signals:
573  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
574  //                         by -Xrs (=ReduceSignalUsage));
575  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
576  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
577  // the dispositions or masks wrt these signals.
578  // Programs embedding the VM that want to use the above signals for their
579  // own purposes must, at this time, use the "-Xrs" option to prevent
580  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
581  // (See bug 4345157, and other related bugs).
582  // In reality, though, unblocking these signals is really a nop, since
583  // these signals are not blocked by default.
584  sigemptyset(&unblocked_sigs);
585  sigemptyset(&allowdebug_blocked_sigs);
586  sigaddset(&unblocked_sigs, SIGILL);
587  sigaddset(&unblocked_sigs, SIGSEGV);
588  sigaddset(&unblocked_sigs, SIGBUS);
589  sigaddset(&unblocked_sigs, SIGFPE);
590  sigaddset(&unblocked_sigs, SR_signum);
591
592  if (!ReduceSignalUsage) {
593   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
594      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
595      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
596   }
597   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
598      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
599      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
600   }
601   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
602      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
603      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
604   }
605  }
606  // Fill in signals that are blocked by all but the VM thread.
607  sigemptyset(&vm_sigs);
608  if (!ReduceSignalUsage)
609    sigaddset(&vm_sigs, BREAK_SIGNAL);
610  debug_only(signal_sets_initialized = true);
611
612}
613
614// These are signals that are unblocked while a thread is running Java.
615// (For some reason, they get blocked by default.)
616sigset_t* os::Bsd::unblocked_signals() {
617  assert(signal_sets_initialized, "Not initialized");
618  return &unblocked_sigs;
619}
620
621// These are the signals that are blocked while a (non-VM) thread is
622// running Java. Only the VM thread handles these signals.
623sigset_t* os::Bsd::vm_signals() {
624  assert(signal_sets_initialized, "Not initialized");
625  return &vm_sigs;
626}
627
628// These are signals that are blocked during cond_wait to allow debugger in
629sigset_t* os::Bsd::allowdebug_blocked_signals() {
630  assert(signal_sets_initialized, "Not initialized");
631  return &allowdebug_blocked_sigs;
632}
633
634void os::Bsd::hotspot_sigmask(Thread* thread) {
635
636  //Save caller's signal mask before setting VM signal mask
637  sigset_t caller_sigmask;
638  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
639
640  OSThread* osthread = thread->osthread();
641  osthread->set_caller_sigmask(caller_sigmask);
642
643  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
644
645  if (!ReduceSignalUsage) {
646    if (thread->is_VM_thread()) {
647      // Only the VM thread handles BREAK_SIGNAL ...
648      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
649    } else {
650      // ... all other threads block BREAK_SIGNAL
651      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
652    }
653  }
654}
655
656
657//////////////////////////////////////////////////////////////////////////////
658// create new thread
659
660// check if it's safe to start a new thread
661static bool _thread_safety_check(Thread* thread) {
662  return true;
663}
664
665#ifdef __APPLE__
666// library handle for calling objc_registerThreadWithCollector()
667// without static linking to the libobjc library
668#define OBJC_LIB "/usr/lib/libobjc.dylib"
669#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
670typedef void (*objc_registerThreadWithCollector_t)();
671extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
672objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
673#endif
674
675#ifdef __APPLE__
676static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
677  // Additional thread_id used to correlate threads in SA
678  thread_identifier_info_data_t     m_ident_info;
679  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
680
681  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
682              (thread_info_t) &m_ident_info, &count);
683
684  return m_ident_info.thread_id;
685}
686#endif
687
688// Thread start routine for all newly created threads
689static void *java_start(Thread *thread) {
690  // Try to randomize the cache line index of hot stack frames.
691  // This helps when threads of the same stack traces evict each other's
692  // cache lines. The threads can be either from the same JVM instance, or
693  // from different JVM instances. The benefit is especially true for
694  // processors with hyperthreading technology.
695  static int counter = 0;
696  int pid = os::current_process_id();
697  alloca(((pid ^ counter++) & 7) * 128);
698
699  ThreadLocalStorage::set_thread(thread);
700
701  OSThread* osthread = thread->osthread();
702  Monitor* sync = osthread->startThread_lock();
703
704  // non floating stack BsdThreads needs extra check, see above
705  if (!_thread_safety_check(thread)) {
706    // notify parent thread
707    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
708    osthread->set_state(ZOMBIE);
709    sync->notify_all();
710    return NULL;
711  }
712
713  osthread->set_thread_id(os::Bsd::gettid());
714
715#ifdef __APPLE__
716  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
717  guarantee(unique_thread_id != 0, "unique thread id was not found");
718  osthread->set_unique_thread_id(unique_thread_id);
719#endif
720  // initialize signal mask for this thread
721  os::Bsd::hotspot_sigmask(thread);
722
723  // initialize floating point control register
724  os::Bsd::init_thread_fpu_state();
725
726#ifdef __APPLE__
727  // register thread with objc gc
728  if (objc_registerThreadWithCollectorFunction != NULL) {
729    objc_registerThreadWithCollectorFunction();
730  }
731#endif
732
733  // handshaking with parent thread
734  {
735    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
736
737    // notify parent thread
738    osthread->set_state(INITIALIZED);
739    sync->notify_all();
740
741    // wait until os::start_thread()
742    while (osthread->get_state() == INITIALIZED) {
743      sync->wait(Mutex::_no_safepoint_check_flag);
744    }
745  }
746
747  // call one more level start routine
748  thread->run();
749
750  return 0;
751}
752
753bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
754  assert(thread->osthread() == NULL, "caller responsible");
755
756  // Allocate the OSThread object
757  OSThread* osthread = new OSThread(NULL, NULL);
758  if (osthread == NULL) {
759    return false;
760  }
761
762  // set the correct thread state
763  osthread->set_thread_type(thr_type);
764
765  // Initial state is ALLOCATED but not INITIALIZED
766  osthread->set_state(ALLOCATED);
767
768  thread->set_osthread(osthread);
769
770  // init thread attributes
771  pthread_attr_t attr;
772  pthread_attr_init(&attr);
773  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
774
775  // stack size
776  if (os::Bsd::supports_variable_stack_size()) {
777    // calculate stack size if it's not specified by caller
778    if (stack_size == 0) {
779      stack_size = os::Bsd::default_stack_size(thr_type);
780
781      switch (thr_type) {
782      case os::java_thread:
783        // Java threads use ThreadStackSize which default value can be
784        // changed with the flag -Xss
785        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
786        stack_size = JavaThread::stack_size_at_create();
787        break;
788      case os::compiler_thread:
789        if (CompilerThreadStackSize > 0) {
790          stack_size = (size_t)(CompilerThreadStackSize * K);
791          break;
792        } // else fall through:
793          // use VMThreadStackSize if CompilerThreadStackSize is not defined
794      case os::vm_thread:
795      case os::pgc_thread:
796      case os::cgc_thread:
797      case os::watcher_thread:
798        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
799        break;
800      }
801    }
802
803    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
804    pthread_attr_setstacksize(&attr, stack_size);
805  } else {
806    // let pthread_create() pick the default value.
807  }
808
809  ThreadState state;
810
811  {
812    pthread_t tid;
813    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
814
815    pthread_attr_destroy(&attr);
816
817    if (ret != 0) {
818      if (PrintMiscellaneous && (Verbose || WizardMode)) {
819        perror("pthread_create()");
820      }
821      // Need to clean up stuff we've allocated so far
822      thread->set_osthread(NULL);
823      delete osthread;
824      return false;
825    }
826
827    // Store pthread info into the OSThread
828    osthread->set_pthread_id(tid);
829
830    // Wait until child thread is either initialized or aborted
831    {
832      Monitor* sync_with_child = osthread->startThread_lock();
833      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
834      while ((state = osthread->get_state()) == ALLOCATED) {
835        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
836      }
837    }
838
839  }
840
841  // Aborted due to thread limit being reached
842  if (state == ZOMBIE) {
843      thread->set_osthread(NULL);
844      delete osthread;
845      return false;
846  }
847
848  // The thread is returned suspended (in state INITIALIZED),
849  // and is started higher up in the call chain
850  assert(state == INITIALIZED, "race condition");
851  return true;
852}
853
854/////////////////////////////////////////////////////////////////////////////
855// attach existing thread
856
857// bootstrap the main thread
858bool os::create_main_thread(JavaThread* thread) {
859  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
860  return create_attached_thread(thread);
861}
862
863bool os::create_attached_thread(JavaThread* thread) {
864#ifdef ASSERT
865    thread->verify_not_published();
866#endif
867
868  // Allocate the OSThread object
869  OSThread* osthread = new OSThread(NULL, NULL);
870
871  if (osthread == NULL) {
872    return false;
873  }
874
875  osthread->set_thread_id(os::Bsd::gettid());
876
877  // Store pthread info into the OSThread
878#ifdef __APPLE__
879  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
880  guarantee(unique_thread_id != 0, "just checking");
881  osthread->set_unique_thread_id(unique_thread_id);
882#endif
883  osthread->set_pthread_id(::pthread_self());
884
885  // initialize floating point control register
886  os::Bsd::init_thread_fpu_state();
887
888  // Initial thread state is RUNNABLE
889  osthread->set_state(RUNNABLE);
890
891  thread->set_osthread(osthread);
892
893  // initialize signal mask for this thread
894  // and save the caller's signal mask
895  os::Bsd::hotspot_sigmask(thread);
896
897  return true;
898}
899
900void os::pd_start_thread(Thread* thread) {
901  OSThread * osthread = thread->osthread();
902  assert(osthread->get_state() != INITIALIZED, "just checking");
903  Monitor* sync_with_child = osthread->startThread_lock();
904  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
905  sync_with_child->notify();
906}
907
908// Free Bsd resources related to the OSThread
909void os::free_thread(OSThread* osthread) {
910  assert(osthread != NULL, "osthread not set");
911
912  if (Thread::current()->osthread() == osthread) {
913    // Restore caller's signal mask
914    sigset_t sigmask = osthread->caller_sigmask();
915    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
916   }
917
918  delete osthread;
919}
920
921//////////////////////////////////////////////////////////////////////////////
922// thread local storage
923
924// Restore the thread pointer if the destructor is called. This is in case
925// someone from JNI code sets up a destructor with pthread_key_create to run
926// detachCurrentThread on thread death. Unless we restore the thread pointer we
927// will hang or crash. When detachCurrentThread is called the key will be set
928// to null and we will not be called again. If detachCurrentThread is never
929// called we could loop forever depending on the pthread implementation.
930static void restore_thread_pointer(void* p) {
931  Thread* thread = (Thread*) p;
932  os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
933}
934
935int os::allocate_thread_local_storage() {
936  pthread_key_t key;
937  int rslt = pthread_key_create(&key, restore_thread_pointer);
938  assert(rslt == 0, "cannot allocate thread local storage");
939  return (int)key;
940}
941
942// Note: This is currently not used by VM, as we don't destroy TLS key
943// on VM exit.
944void os::free_thread_local_storage(int index) {
945  int rslt = pthread_key_delete((pthread_key_t)index);
946  assert(rslt == 0, "invalid index");
947}
948
949void os::thread_local_storage_at_put(int index, void* value) {
950  int rslt = pthread_setspecific((pthread_key_t)index, value);
951  assert(rslt == 0, "pthread_setspecific failed");
952}
953
954extern "C" Thread* get_thread() {
955  return ThreadLocalStorage::thread();
956}
957
958
959////////////////////////////////////////////////////////////////////////////////
960// time support
961
962// Time since start-up in seconds to a fine granularity.
963// Used by VMSelfDestructTimer and the MemProfiler.
964double os::elapsedTime() {
965
966  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
967}
968
969jlong os::elapsed_counter() {
970  return javaTimeNanos() - initial_time_count;
971}
972
973jlong os::elapsed_frequency() {
974  return NANOSECS_PER_SEC; // nanosecond resolution
975}
976
977bool os::supports_vtime() { return true; }
978bool os::enable_vtime()   { return false; }
979bool os::vtime_enabled()  { return false; }
980
981double os::elapsedVTime() {
982  // better than nothing, but not much
983  return elapsedTime();
984}
985
986jlong os::javaTimeMillis() {
987  timeval time;
988  int status = gettimeofday(&time, NULL);
989  assert(status != -1, "bsd error");
990  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
991}
992
993#ifndef __APPLE__
994#ifndef CLOCK_MONOTONIC
995#define CLOCK_MONOTONIC (1)
996#endif
997#endif
998
999#ifdef __APPLE__
1000void os::Bsd::clock_init() {
1001  mach_timebase_info(&_timebase_info);
1002}
1003#else
1004void os::Bsd::clock_init() {
1005  struct timespec res;
1006  struct timespec tp;
1007  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1008      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1009    // yes, monotonic clock is supported
1010    _clock_gettime = ::clock_gettime;
1011  }
1012}
1013#endif
1014
1015
1016
1017#ifdef __APPLE__
1018
1019jlong os::javaTimeNanos() {
1020    const uint64_t tm = mach_absolute_time();
1021    const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1022    const uint64_t prev = Bsd::_max_abstime;
1023    if (now <= prev) {
1024      return prev;   // same or retrograde time;
1025    }
1026    const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1027    assert(obsv >= prev, "invariant");   // Monotonicity
1028    // If the CAS succeeded then we're done and return "now".
1029    // If the CAS failed and the observed value "obsv" is >= now then
1030    // we should return "obsv".  If the CAS failed and now > obsv > prv then
1031    // some other thread raced this thread and installed a new value, in which case
1032    // we could either (a) retry the entire operation, (b) retry trying to install now
1033    // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1034    // we might discard a higher "now" value in deference to a slightly lower but freshly
1035    // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1036    // to (a) or (b) -- and greatly reduces coherence traffic.
1037    // We might also condition (c) on the magnitude of the delta between obsv and now.
1038    // Avoiding excessive CAS operations to hot RW locations is critical.
1039    // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1040    return (prev == obsv) ? now : obsv;
1041}
1042
1043#else // __APPLE__
1044
1045jlong os::javaTimeNanos() {
1046  if (os::supports_monotonic_clock()) {
1047    struct timespec tp;
1048    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1049    assert(status == 0, "gettime error");
1050    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1051    return result;
1052  } else {
1053    timeval time;
1054    int status = gettimeofday(&time, NULL);
1055    assert(status != -1, "bsd error");
1056    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1057    return 1000 * usecs;
1058  }
1059}
1060
1061#endif // __APPLE__
1062
1063void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1064  if (os::supports_monotonic_clock()) {
1065    info_ptr->max_value = ALL_64_BITS;
1066
1067    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1068    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1069    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1070  } else {
1071    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1072    info_ptr->max_value = ALL_64_BITS;
1073
1074    // gettimeofday is a real time clock so it skips
1075    info_ptr->may_skip_backward = true;
1076    info_ptr->may_skip_forward = true;
1077  }
1078
1079  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1080}
1081
1082// Return the real, user, and system times in seconds from an
1083// arbitrary fixed point in the past.
1084bool os::getTimesSecs(double* process_real_time,
1085                      double* process_user_time,
1086                      double* process_system_time) {
1087  struct tms ticks;
1088  clock_t real_ticks = times(&ticks);
1089
1090  if (real_ticks == (clock_t) (-1)) {
1091    return false;
1092  } else {
1093    double ticks_per_second = (double) clock_tics_per_sec;
1094    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1095    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1096    *process_real_time = ((double) real_ticks) / ticks_per_second;
1097
1098    return true;
1099  }
1100}
1101
1102
1103char * os::local_time_string(char *buf, size_t buflen) {
1104  struct tm t;
1105  time_t long_time;
1106  time(&long_time);
1107  localtime_r(&long_time, &t);
1108  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1109               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1110               t.tm_hour, t.tm_min, t.tm_sec);
1111  return buf;
1112}
1113
1114struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1115  return localtime_r(clock, res);
1116}
1117
1118////////////////////////////////////////////////////////////////////////////////
1119// runtime exit support
1120
1121// Note: os::shutdown() might be called very early during initialization, or
1122// called from signal handler. Before adding something to os::shutdown(), make
1123// sure it is async-safe and can handle partially initialized VM.
1124void os::shutdown() {
1125
1126  // allow PerfMemory to attempt cleanup of any persistent resources
1127  perfMemory_exit();
1128
1129  // needs to remove object in file system
1130  AttachListener::abort();
1131
1132  // flush buffered output, finish log files
1133  ostream_abort();
1134
1135  // Check for abort hook
1136  abort_hook_t abort_hook = Arguments::abort_hook();
1137  if (abort_hook != NULL) {
1138    abort_hook();
1139  }
1140
1141}
1142
1143// Note: os::abort() might be called very early during initialization, or
1144// called from signal handler. Before adding something to os::abort(), make
1145// sure it is async-safe and can handle partially initialized VM.
1146void os::abort(bool dump_core) {
1147  os::shutdown();
1148  if (dump_core) {
1149#ifndef PRODUCT
1150    fdStream out(defaultStream::output_fd());
1151    out.print_raw("Current thread is ");
1152    char buf[16];
1153    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1154    out.print_raw_cr(buf);
1155    out.print_raw_cr("Dumping core ...");
1156#endif
1157    ::abort(); // dump core
1158  }
1159
1160  ::exit(1);
1161}
1162
1163// Die immediately, no exit hook, no abort hook, no cleanup.
1164void os::die() {
1165  // _exit() on BsdThreads only kills current thread
1166  ::abort();
1167}
1168
1169// unused on bsd for now.
1170void os::set_error_file(const char *logfile) {}
1171
1172
1173// This method is a copy of JDK's sysGetLastErrorString
1174// from src/solaris/hpi/src/system_md.c
1175
1176size_t os::lasterror(char *buf, size_t len) {
1177
1178  if (errno == 0)  return 0;
1179
1180  const char *s = ::strerror(errno);
1181  size_t n = ::strlen(s);
1182  if (n >= len) {
1183    n = len - 1;
1184  }
1185  ::strncpy(buf, s, n);
1186  buf[n] = '\0';
1187  return n;
1188}
1189
1190// Information of current thread in variety of formats
1191pid_t os::Bsd::gettid() {
1192  int retval = -1;
1193
1194#ifdef __APPLE__ //XNU kernel
1195  // despite the fact mach port is actually not a thread id use it
1196  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1197  retval = ::pthread_mach_thread_np(::pthread_self());
1198  guarantee(retval != 0, "just checking");
1199  return retval;
1200
1201#elif __FreeBSD__
1202  retval = syscall(SYS_thr_self);
1203#elif __OpenBSD__
1204  retval = syscall(SYS_getthrid);
1205#elif __NetBSD__
1206  retval = (pid_t) syscall(SYS__lwp_self);
1207#endif
1208
1209  if (retval == -1) {
1210    return getpid();
1211  }
1212}
1213
1214intx os::current_thread_id() {
1215#ifdef __APPLE__
1216  return (intx)::pthread_mach_thread_np(::pthread_self());
1217#else
1218  return (intx)::pthread_self();
1219#endif
1220}
1221
1222int os::current_process_id() {
1223
1224  // Under the old bsd thread library, bsd gives each thread
1225  // its own process id. Because of this each thread will return
1226  // a different pid if this method were to return the result
1227  // of getpid(2). Bsd provides no api that returns the pid
1228  // of the launcher thread for the vm. This implementation
1229  // returns a unique pid, the pid of the launcher thread
1230  // that starts the vm 'process'.
1231
1232  // Under the NPTL, getpid() returns the same pid as the
1233  // launcher thread rather than a unique pid per thread.
1234  // Use gettid() if you want the old pre NPTL behaviour.
1235
1236  // if you are looking for the result of a call to getpid() that
1237  // returns a unique pid for the calling thread, then look at the
1238  // OSThread::thread_id() method in osThread_bsd.hpp file
1239
1240  return (int)(_initial_pid ? _initial_pid : getpid());
1241}
1242
1243// DLL functions
1244
1245#define JNI_LIB_PREFIX "lib"
1246#ifdef __APPLE__
1247#define JNI_LIB_SUFFIX ".dylib"
1248#else
1249#define JNI_LIB_SUFFIX ".so"
1250#endif
1251
1252const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1253
1254// This must be hard coded because it's the system's temporary
1255// directory not the java application's temp directory, ala java.io.tmpdir.
1256#ifdef __APPLE__
1257// macosx has a secure per-user temporary directory
1258char temp_path_storage[PATH_MAX];
1259const char* os::get_temp_directory() {
1260  static char *temp_path = NULL;
1261  if (temp_path == NULL) {
1262    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1263    if (pathSize == 0 || pathSize > PATH_MAX) {
1264      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1265    }
1266    temp_path = temp_path_storage;
1267  }
1268  return temp_path;
1269}
1270#else /* __APPLE__ */
1271const char* os::get_temp_directory() { return "/tmp"; }
1272#endif /* __APPLE__ */
1273
1274static bool file_exists(const char* filename) {
1275  struct stat statbuf;
1276  if (filename == NULL || strlen(filename) == 0) {
1277    return false;
1278  }
1279  return os::stat(filename, &statbuf) == 0;
1280}
1281
1282bool os::dll_build_name(char* buffer, size_t buflen,
1283                        const char* pname, const char* fname) {
1284  bool retval = false;
1285  // Copied from libhpi
1286  const size_t pnamelen = pname ? strlen(pname) : 0;
1287
1288  // Return error on buffer overflow.
1289  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1290    return retval;
1291  }
1292
1293  if (pnamelen == 0) {
1294    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1295    retval = true;
1296  } else if (strchr(pname, *os::path_separator()) != NULL) {
1297    int n;
1298    char** pelements = split_path(pname, &n);
1299    if (pelements == NULL) {
1300      return false;
1301    }
1302    for (int i = 0 ; i < n ; i++) {
1303      // Really shouldn't be NULL, but check can't hurt
1304      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1305        continue; // skip the empty path values
1306      }
1307      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1308          pelements[i], fname);
1309      if (file_exists(buffer)) {
1310        retval = true;
1311        break;
1312      }
1313    }
1314    // release the storage
1315    for (int i = 0 ; i < n ; i++) {
1316      if (pelements[i] != NULL) {
1317        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1318      }
1319    }
1320    if (pelements != NULL) {
1321      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1322    }
1323  } else {
1324    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1325    retval = true;
1326  }
1327  return retval;
1328}
1329
1330// check if addr is inside libjvm.so
1331bool os::address_is_in_vm(address addr) {
1332  static address libjvm_base_addr;
1333  Dl_info dlinfo;
1334
1335  if (libjvm_base_addr == NULL) {
1336    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1337      libjvm_base_addr = (address)dlinfo.dli_fbase;
1338    }
1339    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1340  }
1341
1342  if (dladdr((void *)addr, &dlinfo) != 0) {
1343    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1344  }
1345
1346  return false;
1347}
1348
1349
1350#define MACH_MAXSYMLEN 256
1351
1352bool os::dll_address_to_function_name(address addr, char *buf,
1353                                      int buflen, int *offset) {
1354  // buf is not optional, but offset is optional
1355  assert(buf != NULL, "sanity check");
1356
1357  Dl_info dlinfo;
1358  char localbuf[MACH_MAXSYMLEN];
1359
1360  if (dladdr((void*)addr, &dlinfo) != 0) {
1361    // see if we have a matching symbol
1362    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1363      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1364        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1365      }
1366      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1367      return true;
1368    }
1369    // no matching symbol so try for just file info
1370    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1371      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1372                          buf, buflen, offset, dlinfo.dli_fname)) {
1373         return true;
1374      }
1375    }
1376
1377    // Handle non-dynamic manually:
1378    if (dlinfo.dli_fbase != NULL &&
1379        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1380                        dlinfo.dli_fbase)) {
1381      if (!Decoder::demangle(localbuf, buf, buflen)) {
1382        jio_snprintf(buf, buflen, "%s", localbuf);
1383      }
1384      return true;
1385    }
1386  }
1387  buf[0] = '\0';
1388  if (offset != NULL) *offset = -1;
1389  return false;
1390}
1391
1392// ported from solaris version
1393bool os::dll_address_to_library_name(address addr, char* buf,
1394                                     int buflen, int* offset) {
1395  // buf is not optional, but offset is optional
1396  assert(buf != NULL, "sanity check");
1397
1398  Dl_info dlinfo;
1399
1400  if (dladdr((void*)addr, &dlinfo) != 0) {
1401    if (dlinfo.dli_fname != NULL) {
1402      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1403    }
1404    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1405      *offset = addr - (address)dlinfo.dli_fbase;
1406    }
1407    return true;
1408  }
1409
1410  buf[0] = '\0';
1411  if (offset) *offset = -1;
1412  return false;
1413}
1414
1415// Loads .dll/.so and
1416// in case of error it checks if .dll/.so was built for the
1417// same architecture as Hotspot is running on
1418
1419#ifdef __APPLE__
1420void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1421  void * result= ::dlopen(filename, RTLD_LAZY);
1422  if (result != NULL) {
1423    // Successful loading
1424    return result;
1425  }
1426
1427  // Read system error message into ebuf
1428  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1429  ebuf[ebuflen-1]='\0';
1430
1431  return NULL;
1432}
1433#else
1434void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1435{
1436  void * result= ::dlopen(filename, RTLD_LAZY);
1437  if (result != NULL) {
1438    // Successful loading
1439    return result;
1440  }
1441
1442  Elf32_Ehdr elf_head;
1443
1444  // Read system error message into ebuf
1445  // It may or may not be overwritten below
1446  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1447  ebuf[ebuflen-1]='\0';
1448  int diag_msg_max_length=ebuflen-strlen(ebuf);
1449  char* diag_msg_buf=ebuf+strlen(ebuf);
1450
1451  if (diag_msg_max_length==0) {
1452    // No more space in ebuf for additional diagnostics message
1453    return NULL;
1454  }
1455
1456
1457  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1458
1459  if (file_descriptor < 0) {
1460    // Can't open library, report dlerror() message
1461    return NULL;
1462  }
1463
1464  bool failed_to_read_elf_head=
1465    (sizeof(elf_head)!=
1466        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1467
1468  ::close(file_descriptor);
1469  if (failed_to_read_elf_head) {
1470    // file i/o error - report dlerror() msg
1471    return NULL;
1472  }
1473
1474  typedef struct {
1475    Elf32_Half  code;         // Actual value as defined in elf.h
1476    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1477    char        elf_class;    // 32 or 64 bit
1478    char        endianess;    // MSB or LSB
1479    char*       name;         // String representation
1480  } arch_t;
1481
1482  #ifndef EM_486
1483  #define EM_486          6               /* Intel 80486 */
1484  #endif
1485
1486  #ifndef EM_MIPS_RS3_LE
1487  #define EM_MIPS_RS3_LE  10              /* MIPS */
1488  #endif
1489
1490  #ifndef EM_PPC64
1491  #define EM_PPC64        21              /* PowerPC64 */
1492  #endif
1493
1494  #ifndef EM_S390
1495  #define EM_S390         22              /* IBM System/390 */
1496  #endif
1497
1498  #ifndef EM_IA_64
1499  #define EM_IA_64        50              /* HP/Intel IA-64 */
1500  #endif
1501
1502  #ifndef EM_X86_64
1503  #define EM_X86_64       62              /* AMD x86-64 */
1504  #endif
1505
1506  static const arch_t arch_array[]={
1507    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1508    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1509    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1510    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1511    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1512    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1513    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1514    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1515    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1516    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1517    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1518    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1519    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1520    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1521    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1522    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1523  };
1524
1525  #if  (defined IA32)
1526    static  Elf32_Half running_arch_code=EM_386;
1527  #elif   (defined AMD64)
1528    static  Elf32_Half running_arch_code=EM_X86_64;
1529  #elif  (defined IA64)
1530    static  Elf32_Half running_arch_code=EM_IA_64;
1531  #elif  (defined __sparc) && (defined _LP64)
1532    static  Elf32_Half running_arch_code=EM_SPARCV9;
1533  #elif  (defined __sparc) && (!defined _LP64)
1534    static  Elf32_Half running_arch_code=EM_SPARC;
1535  #elif  (defined __powerpc64__)
1536    static  Elf32_Half running_arch_code=EM_PPC64;
1537  #elif  (defined __powerpc__)
1538    static  Elf32_Half running_arch_code=EM_PPC;
1539  #elif  (defined ARM)
1540    static  Elf32_Half running_arch_code=EM_ARM;
1541  #elif  (defined S390)
1542    static  Elf32_Half running_arch_code=EM_S390;
1543  #elif  (defined ALPHA)
1544    static  Elf32_Half running_arch_code=EM_ALPHA;
1545  #elif  (defined MIPSEL)
1546    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1547  #elif  (defined PARISC)
1548    static  Elf32_Half running_arch_code=EM_PARISC;
1549  #elif  (defined MIPS)
1550    static  Elf32_Half running_arch_code=EM_MIPS;
1551  #elif  (defined M68K)
1552    static  Elf32_Half running_arch_code=EM_68K;
1553  #else
1554    #error Method os::dll_load requires that one of following is defined:\
1555         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1556  #endif
1557
1558  // Identify compatability class for VM's architecture and library's architecture
1559  // Obtain string descriptions for architectures
1560
1561  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1562  int running_arch_index=-1;
1563
1564  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1565    if (running_arch_code == arch_array[i].code) {
1566      running_arch_index    = i;
1567    }
1568    if (lib_arch.code == arch_array[i].code) {
1569      lib_arch.compat_class = arch_array[i].compat_class;
1570      lib_arch.name         = arch_array[i].name;
1571    }
1572  }
1573
1574  assert(running_arch_index != -1,
1575    "Didn't find running architecture code (running_arch_code) in arch_array");
1576  if (running_arch_index == -1) {
1577    // Even though running architecture detection failed
1578    // we may still continue with reporting dlerror() message
1579    return NULL;
1580  }
1581
1582  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1583    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1584    return NULL;
1585  }
1586
1587#ifndef S390
1588  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1589    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1590    return NULL;
1591  }
1592#endif // !S390
1593
1594  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1595    if ( lib_arch.name!=NULL ) {
1596      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1597        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1598        lib_arch.name, arch_array[running_arch_index].name);
1599    } else {
1600      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1601      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1602        lib_arch.code,
1603        arch_array[running_arch_index].name);
1604    }
1605  }
1606
1607  return NULL;
1608}
1609#endif /* !__APPLE__ */
1610
1611void* os::get_default_process_handle() {
1612#ifdef __APPLE__
1613  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1614  // to avoid finding unexpected symbols on second (or later)
1615  // loads of a library.
1616  return (void*)::dlopen(NULL, RTLD_FIRST);
1617#else
1618  return (void*)::dlopen(NULL, RTLD_LAZY);
1619#endif
1620}
1621
1622// XXX: Do we need a lock around this as per Linux?
1623void* os::dll_lookup(void* handle, const char* name) {
1624  return dlsym(handle, name);
1625}
1626
1627
1628static bool _print_ascii_file(const char* filename, outputStream* st) {
1629  int fd = ::open(filename, O_RDONLY);
1630  if (fd == -1) {
1631     return false;
1632  }
1633
1634  char buf[32];
1635  int bytes;
1636  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1637    st->print_raw(buf, bytes);
1638  }
1639
1640  ::close(fd);
1641
1642  return true;
1643}
1644
1645void os::print_dll_info(outputStream *st) {
1646  st->print_cr("Dynamic libraries:");
1647#ifdef RTLD_DI_LINKMAP
1648  Dl_info dli;
1649  void *handle;
1650  Link_map *map;
1651  Link_map *p;
1652
1653  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1654      dli.dli_fname == NULL) {
1655    st->print_cr("Error: Cannot print dynamic libraries.");
1656    return;
1657  }
1658  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1659  if (handle == NULL) {
1660    st->print_cr("Error: Cannot print dynamic libraries.");
1661    return;
1662  }
1663  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1664  if (map == NULL) {
1665    st->print_cr("Error: Cannot print dynamic libraries.");
1666    return;
1667  }
1668
1669  while (map->l_prev != NULL)
1670    map = map->l_prev;
1671
1672  while (map != NULL) {
1673    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1674    map = map->l_next;
1675  }
1676
1677  dlclose(handle);
1678#elif defined(__APPLE__)
1679  uint32_t count;
1680  uint32_t i;
1681
1682  count = _dyld_image_count();
1683  for (i = 1; i < count; i++) {
1684    const char *name = _dyld_get_image_name(i);
1685    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1686    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1687  }
1688#else
1689  st->print_cr("Error: Cannot print dynamic libraries.");
1690#endif
1691}
1692
1693void os::print_os_info_brief(outputStream* st) {
1694  st->print("Bsd");
1695
1696  os::Posix::print_uname_info(st);
1697}
1698
1699void os::print_os_info(outputStream* st) {
1700  st->print("OS:");
1701  st->print("Bsd");
1702
1703  os::Posix::print_uname_info(st);
1704
1705  os::Posix::print_rlimit_info(st);
1706
1707  os::Posix::print_load_average(st);
1708}
1709
1710void os::pd_print_cpu_info(outputStream* st) {
1711  // Nothing to do for now.
1712}
1713
1714void os::print_memory_info(outputStream* st) {
1715
1716  st->print("Memory:");
1717  st->print(" %dk page", os::vm_page_size()>>10);
1718
1719  st->print(", physical " UINT64_FORMAT "k",
1720            os::physical_memory() >> 10);
1721  st->print("(" UINT64_FORMAT "k free)",
1722            os::available_memory() >> 10);
1723  st->cr();
1724
1725  // meminfo
1726  st->print("\n/proc/meminfo:\n");
1727  _print_ascii_file("/proc/meminfo", st);
1728  st->cr();
1729}
1730
1731void os::print_siginfo(outputStream* st, void* siginfo) {
1732  const siginfo_t* si = (const siginfo_t*)siginfo;
1733
1734  os::Posix::print_siginfo_brief(st, si);
1735
1736  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1737      UseSharedSpaces) {
1738    FileMapInfo* mapinfo = FileMapInfo::current_info();
1739    if (mapinfo->is_in_shared_space(si->si_addr)) {
1740      st->print("\n\nError accessing class data sharing archive."   \
1741                " Mapped file inaccessible during execution, "      \
1742                " possible disk/network problem.");
1743    }
1744  }
1745  st->cr();
1746}
1747
1748
1749static void print_signal_handler(outputStream* st, int sig,
1750                                 char* buf, size_t buflen);
1751
1752void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1753  st->print_cr("Signal Handlers:");
1754  print_signal_handler(st, SIGSEGV, buf, buflen);
1755  print_signal_handler(st, SIGBUS , buf, buflen);
1756  print_signal_handler(st, SIGFPE , buf, buflen);
1757  print_signal_handler(st, SIGPIPE, buf, buflen);
1758  print_signal_handler(st, SIGXFSZ, buf, buflen);
1759  print_signal_handler(st, SIGILL , buf, buflen);
1760  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1761  print_signal_handler(st, SR_signum, buf, buflen);
1762  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1763  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1764  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1765  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1766}
1767
1768static char saved_jvm_path[MAXPATHLEN] = {0};
1769
1770// Find the full path to the current module, libjvm
1771void os::jvm_path(char *buf, jint buflen) {
1772  // Error checking.
1773  if (buflen < MAXPATHLEN) {
1774    assert(false, "must use a large-enough buffer");
1775    buf[0] = '\0';
1776    return;
1777  }
1778  // Lazy resolve the path to current module.
1779  if (saved_jvm_path[0] != 0) {
1780    strcpy(buf, saved_jvm_path);
1781    return;
1782  }
1783
1784  char dli_fname[MAXPATHLEN];
1785  bool ret = dll_address_to_library_name(
1786                CAST_FROM_FN_PTR(address, os::jvm_path),
1787                dli_fname, sizeof(dli_fname), NULL);
1788  assert(ret, "cannot locate libjvm");
1789  char *rp = NULL;
1790  if (ret && dli_fname[0] != '\0') {
1791    rp = realpath(dli_fname, buf);
1792  }
1793  if (rp == NULL)
1794    return;
1795
1796  if (Arguments::sun_java_launcher_is_altjvm()) {
1797    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1798    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1799    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1800    // appears at the right place in the string, then assume we are
1801    // installed in a JDK and we're done. Otherwise, check for a
1802    // JAVA_HOME environment variable and construct a path to the JVM
1803    // being overridden.
1804
1805    const char *p = buf + strlen(buf) - 1;
1806    for (int count = 0; p > buf && count < 5; ++count) {
1807      for (--p; p > buf && *p != '/'; --p)
1808        /* empty */ ;
1809    }
1810
1811    if (strncmp(p, "/jre/lib/", 9) != 0) {
1812      // Look for JAVA_HOME in the environment.
1813      char* java_home_var = ::getenv("JAVA_HOME");
1814      if (java_home_var != NULL && java_home_var[0] != 0) {
1815        char* jrelib_p;
1816        int len;
1817
1818        // Check the current module name "libjvm"
1819        p = strrchr(buf, '/');
1820        assert(strstr(p, "/libjvm") == p, "invalid library name");
1821
1822        rp = realpath(java_home_var, buf);
1823        if (rp == NULL)
1824          return;
1825
1826        // determine if this is a legacy image or modules image
1827        // modules image doesn't have "jre" subdirectory
1828        len = strlen(buf);
1829        jrelib_p = buf + len;
1830
1831        // Add the appropriate library subdir
1832        snprintf(jrelib_p, buflen-len, "/jre/lib");
1833        if (0 != access(buf, F_OK)) {
1834          snprintf(jrelib_p, buflen-len, "/lib");
1835        }
1836
1837        // Add the appropriate client or server subdir
1838        len = strlen(buf);
1839        jrelib_p = buf + len;
1840        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1841        if (0 != access(buf, F_OK)) {
1842          snprintf(jrelib_p, buflen-len, "%s", "");
1843        }
1844
1845        // If the path exists within JAVA_HOME, add the JVM library name
1846        // to complete the path to JVM being overridden.  Otherwise fallback
1847        // to the path to the current library.
1848        if (0 == access(buf, F_OK)) {
1849          // Use current module name "libjvm"
1850          len = strlen(buf);
1851          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1852        } else {
1853          // Fall back to path of current library
1854          rp = realpath(dli_fname, buf);
1855          if (rp == NULL)
1856            return;
1857        }
1858      }
1859    }
1860  }
1861
1862  strcpy(saved_jvm_path, buf);
1863}
1864
1865void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1866  // no prefix required, not even "_"
1867}
1868
1869void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1870  // no suffix required
1871}
1872
1873////////////////////////////////////////////////////////////////////////////////
1874// sun.misc.Signal support
1875
1876static volatile jint sigint_count = 0;
1877
1878static void
1879UserHandler(int sig, void *siginfo, void *context) {
1880  // 4511530 - sem_post is serialized and handled by the manager thread. When
1881  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1882  // don't want to flood the manager thread with sem_post requests.
1883  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1884      return;
1885
1886  // Ctrl-C is pressed during error reporting, likely because the error
1887  // handler fails to abort. Let VM die immediately.
1888  if (sig == SIGINT && is_error_reported()) {
1889     os::die();
1890  }
1891
1892  os::signal_notify(sig);
1893}
1894
1895void* os::user_handler() {
1896  return CAST_FROM_FN_PTR(void*, UserHandler);
1897}
1898
1899extern "C" {
1900  typedef void (*sa_handler_t)(int);
1901  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1902}
1903
1904void* os::signal(int signal_number, void* handler) {
1905  struct sigaction sigAct, oldSigAct;
1906
1907  sigfillset(&(sigAct.sa_mask));
1908  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1909  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1910
1911  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1912    // -1 means registration failed
1913    return (void *)-1;
1914  }
1915
1916  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1917}
1918
1919void os::signal_raise(int signal_number) {
1920  ::raise(signal_number);
1921}
1922
1923/*
1924 * The following code is moved from os.cpp for making this
1925 * code platform specific, which it is by its very nature.
1926 */
1927
1928// Will be modified when max signal is changed to be dynamic
1929int os::sigexitnum_pd() {
1930  return NSIG;
1931}
1932
1933// a counter for each possible signal value
1934static volatile jint pending_signals[NSIG+1] = { 0 };
1935
1936// Bsd(POSIX) specific hand shaking semaphore.
1937#ifdef __APPLE__
1938typedef semaphore_t os_semaphore_t;
1939#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1940#define SEM_WAIT(sem)           semaphore_wait(sem)
1941#define SEM_POST(sem)           semaphore_signal(sem)
1942#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1943#else
1944typedef sem_t os_semaphore_t;
1945#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1946#define SEM_WAIT(sem)           sem_wait(&sem)
1947#define SEM_POST(sem)           sem_post(&sem)
1948#define SEM_DESTROY(sem)        sem_destroy(&sem)
1949#endif
1950
1951class Semaphore : public StackObj {
1952  public:
1953    Semaphore();
1954    ~Semaphore();
1955    void signal();
1956    void wait();
1957    bool trywait();
1958    bool timedwait(unsigned int sec, int nsec);
1959  private:
1960    jlong currenttime() const;
1961    os_semaphore_t _semaphore;
1962};
1963
1964Semaphore::Semaphore() : _semaphore(0) {
1965  SEM_INIT(_semaphore, 0);
1966}
1967
1968Semaphore::~Semaphore() {
1969  SEM_DESTROY(_semaphore);
1970}
1971
1972void Semaphore::signal() {
1973  SEM_POST(_semaphore);
1974}
1975
1976void Semaphore::wait() {
1977  SEM_WAIT(_semaphore);
1978}
1979
1980jlong Semaphore::currenttime() const {
1981    struct timeval tv;
1982    gettimeofday(&tv, NULL);
1983    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1984}
1985
1986#ifdef __APPLE__
1987bool Semaphore::trywait() {
1988  return timedwait(0, 0);
1989}
1990
1991bool Semaphore::timedwait(unsigned int sec, int nsec) {
1992  kern_return_t kr = KERN_ABORTED;
1993  mach_timespec_t waitspec;
1994  waitspec.tv_sec = sec;
1995  waitspec.tv_nsec = nsec;
1996
1997  jlong starttime = currenttime();
1998
1999  kr = semaphore_timedwait(_semaphore, waitspec);
2000  while (kr == KERN_ABORTED) {
2001    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2002
2003    jlong current = currenttime();
2004    jlong passedtime = current - starttime;
2005
2006    if (passedtime >= totalwait) {
2007      waitspec.tv_sec = 0;
2008      waitspec.tv_nsec = 0;
2009    } else {
2010      jlong waittime = totalwait - (current - starttime);
2011      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2012      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2013    }
2014
2015    kr = semaphore_timedwait(_semaphore, waitspec);
2016  }
2017
2018  return kr == KERN_SUCCESS;
2019}
2020
2021#else
2022
2023bool Semaphore::trywait() {
2024  return sem_trywait(&_semaphore) == 0;
2025}
2026
2027bool Semaphore::timedwait(unsigned int sec, int nsec) {
2028  struct timespec ts;
2029  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2030
2031  while (1) {
2032    int result = sem_timedwait(&_semaphore, &ts);
2033    if (result == 0) {
2034      return true;
2035    } else if (errno == EINTR) {
2036      continue;
2037    } else if (errno == ETIMEDOUT) {
2038      return false;
2039    } else {
2040      return false;
2041    }
2042  }
2043}
2044
2045#endif // __APPLE__
2046
2047static os_semaphore_t sig_sem;
2048static Semaphore sr_semaphore;
2049
2050void os::signal_init_pd() {
2051  // Initialize signal structures
2052  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2053
2054  // Initialize signal semaphore
2055  ::SEM_INIT(sig_sem, 0);
2056}
2057
2058void os::signal_notify(int sig) {
2059  Atomic::inc(&pending_signals[sig]);
2060  ::SEM_POST(sig_sem);
2061}
2062
2063static int check_pending_signals(bool wait) {
2064  Atomic::store(0, &sigint_count);
2065  for (;;) {
2066    for (int i = 0; i < NSIG + 1; i++) {
2067      jint n = pending_signals[i];
2068      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2069        return i;
2070      }
2071    }
2072    if (!wait) {
2073      return -1;
2074    }
2075    JavaThread *thread = JavaThread::current();
2076    ThreadBlockInVM tbivm(thread);
2077
2078    bool threadIsSuspended;
2079    do {
2080      thread->set_suspend_equivalent();
2081      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2082      ::SEM_WAIT(sig_sem);
2083
2084      // were we externally suspended while we were waiting?
2085      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2086      if (threadIsSuspended) {
2087        //
2088        // The semaphore has been incremented, but while we were waiting
2089        // another thread suspended us. We don't want to continue running
2090        // while suspended because that would surprise the thread that
2091        // suspended us.
2092        //
2093        ::SEM_POST(sig_sem);
2094
2095        thread->java_suspend_self();
2096      }
2097    } while (threadIsSuspended);
2098  }
2099}
2100
2101int os::signal_lookup() {
2102  return check_pending_signals(false);
2103}
2104
2105int os::signal_wait() {
2106  return check_pending_signals(true);
2107}
2108
2109////////////////////////////////////////////////////////////////////////////////
2110// Virtual Memory
2111
2112int os::vm_page_size() {
2113  // Seems redundant as all get out
2114  assert(os::Bsd::page_size() != -1, "must call os::init");
2115  return os::Bsd::page_size();
2116}
2117
2118// Solaris allocates memory by pages.
2119int os::vm_allocation_granularity() {
2120  assert(os::Bsd::page_size() != -1, "must call os::init");
2121  return os::Bsd::page_size();
2122}
2123
2124// Rationale behind this function:
2125//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2126//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2127//  samples for JITted code. Here we create private executable mapping over the code cache
2128//  and then we can use standard (well, almost, as mapping can change) way to provide
2129//  info for the reporting script by storing timestamp and location of symbol
2130void bsd_wrap_code(char* base, size_t size) {
2131  static volatile jint cnt = 0;
2132
2133  if (!UseOprofile) {
2134    return;
2135  }
2136
2137  char buf[PATH_MAX + 1];
2138  int num = Atomic::add(1, &cnt);
2139
2140  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2141           os::get_temp_directory(), os::current_process_id(), num);
2142  unlink(buf);
2143
2144  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2145
2146  if (fd != -1) {
2147    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2148    if (rv != (off_t)-1) {
2149      if (::write(fd, "", 1) == 1) {
2150        mmap(base, size,
2151             PROT_READ|PROT_WRITE|PROT_EXEC,
2152             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2153      }
2154    }
2155    ::close(fd);
2156    unlink(buf);
2157  }
2158}
2159
2160static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2161                                    int err) {
2162  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2163          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2164          strerror(err), err);
2165}
2166
2167// NOTE: Bsd kernel does not really reserve the pages for us.
2168//       All it does is to check if there are enough free pages
2169//       left at the time of mmap(). This could be a potential
2170//       problem.
2171bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2172  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2173#ifdef __OpenBSD__
2174  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2175  if (::mprotect(addr, size, prot) == 0) {
2176    return true;
2177  }
2178#else
2179  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2180                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2181  if (res != (uintptr_t) MAP_FAILED) {
2182    return true;
2183  }
2184#endif
2185
2186  // Warn about any commit errors we see in non-product builds just
2187  // in case mmap() doesn't work as described on the man page.
2188  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2189
2190  return false;
2191}
2192
2193bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2194                       bool exec) {
2195  // alignment_hint is ignored on this OS
2196  return pd_commit_memory(addr, size, exec);
2197}
2198
2199void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2200                                  const char* mesg) {
2201  assert(mesg != NULL, "mesg must be specified");
2202  if (!pd_commit_memory(addr, size, exec)) {
2203    // add extra info in product mode for vm_exit_out_of_memory():
2204    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2205    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2206  }
2207}
2208
2209void os::pd_commit_memory_or_exit(char* addr, size_t size,
2210                                  size_t alignment_hint, bool exec,
2211                                  const char* mesg) {
2212  // alignment_hint is ignored on this OS
2213  pd_commit_memory_or_exit(addr, size, exec, mesg);
2214}
2215
2216void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2217}
2218
2219void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2220  ::madvise(addr, bytes, MADV_DONTNEED);
2221}
2222
2223void os::numa_make_global(char *addr, size_t bytes) {
2224}
2225
2226void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2227}
2228
2229bool os::numa_topology_changed()   { return false; }
2230
2231size_t os::numa_get_groups_num() {
2232  return 1;
2233}
2234
2235int os::numa_get_group_id() {
2236  return 0;
2237}
2238
2239size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2240  if (size > 0) {
2241    ids[0] = 0;
2242    return 1;
2243  }
2244  return 0;
2245}
2246
2247bool os::get_page_info(char *start, page_info* info) {
2248  return false;
2249}
2250
2251char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2252  return end;
2253}
2254
2255
2256bool os::pd_uncommit_memory(char* addr, size_t size) {
2257#ifdef __OpenBSD__
2258  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2259  return ::mprotect(addr, size, PROT_NONE) == 0;
2260#else
2261  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2262                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2263  return res  != (uintptr_t) MAP_FAILED;
2264#endif
2265}
2266
2267bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2268  return os::commit_memory(addr, size, !ExecMem);
2269}
2270
2271// If this is a growable mapping, remove the guard pages entirely by
2272// munmap()ping them.  If not, just call uncommit_memory().
2273bool os::remove_stack_guard_pages(char* addr, size_t size) {
2274  return os::uncommit_memory(addr, size);
2275}
2276
2277static address _highest_vm_reserved_address = NULL;
2278
2279// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2280// at 'requested_addr'. If there are existing memory mappings at the same
2281// location, however, they will be overwritten. If 'fixed' is false,
2282// 'requested_addr' is only treated as a hint, the return value may or
2283// may not start from the requested address. Unlike Bsd mmap(), this
2284// function returns NULL to indicate failure.
2285static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2286  char * addr;
2287  int flags;
2288
2289  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2290  if (fixed) {
2291    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2292    flags |= MAP_FIXED;
2293  }
2294
2295  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2296  // touch an uncommitted page. Otherwise, the read/write might
2297  // succeed if we have enough swap space to back the physical page.
2298  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2299                       flags, -1, 0);
2300
2301  if (addr != MAP_FAILED) {
2302    // anon_mmap() should only get called during VM initialization,
2303    // don't need lock (actually we can skip locking even it can be called
2304    // from multiple threads, because _highest_vm_reserved_address is just a
2305    // hint about the upper limit of non-stack memory regions.)
2306    if ((address)addr + bytes > _highest_vm_reserved_address) {
2307      _highest_vm_reserved_address = (address)addr + bytes;
2308    }
2309  }
2310
2311  return addr == MAP_FAILED ? NULL : addr;
2312}
2313
2314// Don't update _highest_vm_reserved_address, because there might be memory
2315// regions above addr + size. If so, releasing a memory region only creates
2316// a hole in the address space, it doesn't help prevent heap-stack collision.
2317//
2318static int anon_munmap(char * addr, size_t size) {
2319  return ::munmap(addr, size) == 0;
2320}
2321
2322char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2323                         size_t alignment_hint) {
2324  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2325}
2326
2327bool os::pd_release_memory(char* addr, size_t size) {
2328  return anon_munmap(addr, size);
2329}
2330
2331static bool bsd_mprotect(char* addr, size_t size, int prot) {
2332  // Bsd wants the mprotect address argument to be page aligned.
2333  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2334
2335  // According to SUSv3, mprotect() should only be used with mappings
2336  // established by mmap(), and mmap() always maps whole pages. Unaligned
2337  // 'addr' likely indicates problem in the VM (e.g. trying to change
2338  // protection of malloc'ed or statically allocated memory). Check the
2339  // caller if you hit this assert.
2340  assert(addr == bottom, "sanity check");
2341
2342  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2343  return ::mprotect(bottom, size, prot) == 0;
2344}
2345
2346// Set protections specified
2347bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2348                        bool is_committed) {
2349  unsigned int p = 0;
2350  switch (prot) {
2351  case MEM_PROT_NONE: p = PROT_NONE; break;
2352  case MEM_PROT_READ: p = PROT_READ; break;
2353  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2354  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2355  default:
2356    ShouldNotReachHere();
2357  }
2358  // is_committed is unused.
2359  return bsd_mprotect(addr, bytes, p);
2360}
2361
2362bool os::guard_memory(char* addr, size_t size) {
2363  return bsd_mprotect(addr, size, PROT_NONE);
2364}
2365
2366bool os::unguard_memory(char* addr, size_t size) {
2367  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2368}
2369
2370bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2371  return false;
2372}
2373
2374// Large page support
2375
2376static size_t _large_page_size = 0;
2377
2378void os::large_page_init() {
2379}
2380
2381
2382char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2383  fatal("This code is not used or maintained.");
2384
2385  // "exec" is passed in but not used.  Creating the shared image for
2386  // the code cache doesn't have an SHM_X executable permission to check.
2387  assert(UseLargePages && UseSHM, "only for SHM large pages");
2388
2389  key_t key = IPC_PRIVATE;
2390  char *addr;
2391
2392  bool warn_on_failure = UseLargePages &&
2393                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2394                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2395                        );
2396  char msg[128];
2397
2398  // Create a large shared memory region to attach to based on size.
2399  // Currently, size is the total size of the heap
2400  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2401  if (shmid == -1) {
2402     // Possible reasons for shmget failure:
2403     // 1. shmmax is too small for Java heap.
2404     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2405     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2406     // 2. not enough large page memory.
2407     //    > check available large pages: cat /proc/meminfo
2408     //    > increase amount of large pages:
2409     //          echo new_value > /proc/sys/vm/nr_hugepages
2410     //      Note 1: different Bsd may use different name for this property,
2411     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2412     //      Note 2: it's possible there's enough physical memory available but
2413     //            they are so fragmented after a long run that they can't
2414     //            coalesce into large pages. Try to reserve large pages when
2415     //            the system is still "fresh".
2416     if (warn_on_failure) {
2417       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2418       warning(msg);
2419     }
2420     return NULL;
2421  }
2422
2423  // attach to the region
2424  addr = (char*)shmat(shmid, req_addr, 0);
2425  int err = errno;
2426
2427  // Remove shmid. If shmat() is successful, the actual shared memory segment
2428  // will be deleted when it's detached by shmdt() or when the process
2429  // terminates. If shmat() is not successful this will remove the shared
2430  // segment immediately.
2431  shmctl(shmid, IPC_RMID, NULL);
2432
2433  if ((intptr_t)addr == -1) {
2434     if (warn_on_failure) {
2435       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2436       warning(msg);
2437     }
2438     return NULL;
2439  }
2440
2441  // The memory is committed
2442  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2443
2444  return addr;
2445}
2446
2447bool os::release_memory_special(char* base, size_t bytes) {
2448  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2449  // detaching the SHM segment will also delete it, see reserve_memory_special()
2450  int rslt = shmdt(base);
2451  if (rslt == 0) {
2452    tkr.record((address)base, bytes);
2453    return true;
2454  } else {
2455    tkr.discard();
2456    return false;
2457  }
2458
2459}
2460
2461size_t os::large_page_size() {
2462  return _large_page_size;
2463}
2464
2465// HugeTLBFS allows application to commit large page memory on demand;
2466// with SysV SHM the entire memory region must be allocated as shared
2467// memory.
2468bool os::can_commit_large_page_memory() {
2469  return UseHugeTLBFS;
2470}
2471
2472bool os::can_execute_large_page_memory() {
2473  return UseHugeTLBFS;
2474}
2475
2476// Reserve memory at an arbitrary address, only if that area is
2477// available (and not reserved for something else).
2478
2479char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2480  const int max_tries = 10;
2481  char* base[max_tries];
2482  size_t size[max_tries];
2483  const size_t gap = 0x000000;
2484
2485  // Assert only that the size is a multiple of the page size, since
2486  // that's all that mmap requires, and since that's all we really know
2487  // about at this low abstraction level.  If we need higher alignment,
2488  // we can either pass an alignment to this method or verify alignment
2489  // in one of the methods further up the call chain.  See bug 5044738.
2490  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2491
2492  // Repeatedly allocate blocks until the block is allocated at the
2493  // right spot. Give up after max_tries. Note that reserve_memory() will
2494  // automatically update _highest_vm_reserved_address if the call is
2495  // successful. The variable tracks the highest memory address every reserved
2496  // by JVM. It is used to detect heap-stack collision if running with
2497  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2498  // space than needed, it could confuse the collision detecting code. To
2499  // solve the problem, save current _highest_vm_reserved_address and
2500  // calculate the correct value before return.
2501  address old_highest = _highest_vm_reserved_address;
2502
2503  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2504  // if kernel honors the hint then we can return immediately.
2505  char * addr = anon_mmap(requested_addr, bytes, false);
2506  if (addr == requested_addr) {
2507     return requested_addr;
2508  }
2509
2510  if (addr != NULL) {
2511     // mmap() is successful but it fails to reserve at the requested address
2512     anon_munmap(addr, bytes);
2513  }
2514
2515  int i;
2516  for (i = 0; i < max_tries; ++i) {
2517    base[i] = reserve_memory(bytes);
2518
2519    if (base[i] != NULL) {
2520      // Is this the block we wanted?
2521      if (base[i] == requested_addr) {
2522        size[i] = bytes;
2523        break;
2524      }
2525
2526      // Does this overlap the block we wanted? Give back the overlapped
2527      // parts and try again.
2528
2529      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2530      if (top_overlap >= 0 && top_overlap < bytes) {
2531        unmap_memory(base[i], top_overlap);
2532        base[i] += top_overlap;
2533        size[i] = bytes - top_overlap;
2534      } else {
2535        size_t bottom_overlap = base[i] + bytes - requested_addr;
2536        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2537          unmap_memory(requested_addr, bottom_overlap);
2538          size[i] = bytes - bottom_overlap;
2539        } else {
2540          size[i] = bytes;
2541        }
2542      }
2543    }
2544  }
2545
2546  // Give back the unused reserved pieces.
2547
2548  for (int j = 0; j < i; ++j) {
2549    if (base[j] != NULL) {
2550      unmap_memory(base[j], size[j]);
2551    }
2552  }
2553
2554  if (i < max_tries) {
2555    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2556    return requested_addr;
2557  } else {
2558    _highest_vm_reserved_address = old_highest;
2559    return NULL;
2560  }
2561}
2562
2563size_t os::read(int fd, void *buf, unsigned int nBytes) {
2564  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2565}
2566
2567void os::naked_short_sleep(jlong ms) {
2568  struct timespec req;
2569
2570  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2571  req.tv_sec = 0;
2572  if (ms > 0) {
2573    req.tv_nsec = (ms % 1000) * 1000000;
2574  }
2575  else {
2576    req.tv_nsec = 1;
2577  }
2578
2579  nanosleep(&req, NULL);
2580
2581  return;
2582}
2583
2584// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2585void os::infinite_sleep() {
2586  while (true) {    // sleep forever ...
2587    ::sleep(100);   // ... 100 seconds at a time
2588  }
2589}
2590
2591// Used to convert frequent JVM_Yield() to nops
2592bool os::dont_yield() {
2593  return DontYieldALot;
2594}
2595
2596void os::yield() {
2597  sched_yield();
2598}
2599
2600os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2601
2602void os::yield_all() {
2603  // Yields to all threads, including threads with lower priorities
2604  // Threads on Bsd are all with same priority. The Solaris style
2605  // os::yield_all() with nanosleep(1ms) is not necessary.
2606  sched_yield();
2607}
2608
2609////////////////////////////////////////////////////////////////////////////////
2610// thread priority support
2611
2612// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2613// only supports dynamic priority, static priority must be zero. For real-time
2614// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2615// However, for large multi-threaded applications, SCHED_RR is not only slower
2616// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2617// of 5 runs - Sep 2005).
2618//
2619// The following code actually changes the niceness of kernel-thread/LWP. It
2620// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2621// not the entire user process, and user level threads are 1:1 mapped to kernel
2622// threads. It has always been the case, but could change in the future. For
2623// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2624// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2625
2626#if !defined(__APPLE__)
2627int os::java_to_os_priority[CriticalPriority + 1] = {
2628  19,              // 0 Entry should never be used
2629
2630   0,              // 1 MinPriority
2631   3,              // 2
2632   6,              // 3
2633
2634  10,              // 4
2635  15,              // 5 NormPriority
2636  18,              // 6
2637
2638  21,              // 7
2639  25,              // 8
2640  28,              // 9 NearMaxPriority
2641
2642  31,              // 10 MaxPriority
2643
2644  31               // 11 CriticalPriority
2645};
2646#else
2647/* Using Mach high-level priority assignments */
2648int os::java_to_os_priority[CriticalPriority + 1] = {
2649   0,              // 0 Entry should never be used (MINPRI_USER)
2650
2651  27,              // 1 MinPriority
2652  28,              // 2
2653  29,              // 3
2654
2655  30,              // 4
2656  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2657  32,              // 6
2658
2659  33,              // 7
2660  34,              // 8
2661  35,              // 9 NearMaxPriority
2662
2663  36,              // 10 MaxPriority
2664
2665  36               // 11 CriticalPriority
2666};
2667#endif
2668
2669static int prio_init() {
2670  if (ThreadPriorityPolicy == 1) {
2671    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2672    // if effective uid is not root. Perhaps, a more elegant way of doing
2673    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2674    if (geteuid() != 0) {
2675      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2676        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2677      }
2678      ThreadPriorityPolicy = 0;
2679    }
2680  }
2681  if (UseCriticalJavaThreadPriority) {
2682    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2683  }
2684  return 0;
2685}
2686
2687OSReturn os::set_native_priority(Thread* thread, int newpri) {
2688  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2689
2690#ifdef __OpenBSD__
2691  // OpenBSD pthread_setprio starves low priority threads
2692  return OS_OK;
2693#elif defined(__FreeBSD__)
2694  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2695#elif defined(__APPLE__) || defined(__NetBSD__)
2696  struct sched_param sp;
2697  int policy;
2698  pthread_t self = pthread_self();
2699
2700  if (pthread_getschedparam(self, &policy, &sp) != 0)
2701    return OS_ERR;
2702
2703  sp.sched_priority = newpri;
2704  if (pthread_setschedparam(self, policy, &sp) != 0)
2705    return OS_ERR;
2706
2707  return OS_OK;
2708#else
2709  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2710  return (ret == 0) ? OS_OK : OS_ERR;
2711#endif
2712}
2713
2714OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2715  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2716    *priority_ptr = java_to_os_priority[NormPriority];
2717    return OS_OK;
2718  }
2719
2720  errno = 0;
2721#if defined(__OpenBSD__) || defined(__FreeBSD__)
2722  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2723#elif defined(__APPLE__) || defined(__NetBSD__)
2724  int policy;
2725  struct sched_param sp;
2726
2727  pthread_getschedparam(pthread_self(), &policy, &sp);
2728  *priority_ptr = sp.sched_priority;
2729#else
2730  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2731#endif
2732  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2733}
2734
2735// Hint to the underlying OS that a task switch would not be good.
2736// Void return because it's a hint and can fail.
2737void os::hint_no_preempt() {}
2738
2739////////////////////////////////////////////////////////////////////////////////
2740// suspend/resume support
2741
2742//  the low-level signal-based suspend/resume support is a remnant from the
2743//  old VM-suspension that used to be for java-suspension, safepoints etc,
2744//  within hotspot. Now there is a single use-case for this:
2745//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2746//      that runs in the watcher thread.
2747//  The remaining code is greatly simplified from the more general suspension
2748//  code that used to be used.
2749//
2750//  The protocol is quite simple:
2751//  - suspend:
2752//      - sends a signal to the target thread
2753//      - polls the suspend state of the osthread using a yield loop
2754//      - target thread signal handler (SR_handler) sets suspend state
2755//        and blocks in sigsuspend until continued
2756//  - resume:
2757//      - sets target osthread state to continue
2758//      - sends signal to end the sigsuspend loop in the SR_handler
2759//
2760//  Note that the SR_lock plays no role in this suspend/resume protocol.
2761//
2762
2763static void resume_clear_context(OSThread *osthread) {
2764  osthread->set_ucontext(NULL);
2765  osthread->set_siginfo(NULL);
2766}
2767
2768static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2769  osthread->set_ucontext(context);
2770  osthread->set_siginfo(siginfo);
2771}
2772
2773//
2774// Handler function invoked when a thread's execution is suspended or
2775// resumed. We have to be careful that only async-safe functions are
2776// called here (Note: most pthread functions are not async safe and
2777// should be avoided.)
2778//
2779// Note: sigwait() is a more natural fit than sigsuspend() from an
2780// interface point of view, but sigwait() prevents the signal hander
2781// from being run. libpthread would get very confused by not having
2782// its signal handlers run and prevents sigwait()'s use with the
2783// mutex granting granting signal.
2784//
2785// Currently only ever called on the VMThread or JavaThread
2786//
2787static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2788  // Save and restore errno to avoid confusing native code with EINTR
2789  // after sigsuspend.
2790  int old_errno = errno;
2791
2792  Thread* thread = Thread::current();
2793  OSThread* osthread = thread->osthread();
2794  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2795
2796  os::SuspendResume::State current = osthread->sr.state();
2797  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2798    suspend_save_context(osthread, siginfo, context);
2799
2800    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2801    os::SuspendResume::State state = osthread->sr.suspended();
2802    if (state == os::SuspendResume::SR_SUSPENDED) {
2803      sigset_t suspend_set;  // signals for sigsuspend()
2804
2805      // get current set of blocked signals and unblock resume signal
2806      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2807      sigdelset(&suspend_set, SR_signum);
2808
2809      sr_semaphore.signal();
2810      // wait here until we are resumed
2811      while (1) {
2812        sigsuspend(&suspend_set);
2813
2814        os::SuspendResume::State result = osthread->sr.running();
2815        if (result == os::SuspendResume::SR_RUNNING) {
2816          sr_semaphore.signal();
2817          break;
2818        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2819          ShouldNotReachHere();
2820        }
2821      }
2822
2823    } else if (state == os::SuspendResume::SR_RUNNING) {
2824      // request was cancelled, continue
2825    } else {
2826      ShouldNotReachHere();
2827    }
2828
2829    resume_clear_context(osthread);
2830  } else if (current == os::SuspendResume::SR_RUNNING) {
2831    // request was cancelled, continue
2832  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2833    // ignore
2834  } else {
2835    // ignore
2836  }
2837
2838  errno = old_errno;
2839}
2840
2841
2842static int SR_initialize() {
2843  struct sigaction act;
2844  char *s;
2845  /* Get signal number to use for suspend/resume */
2846  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2847    int sig = ::strtol(s, 0, 10);
2848    if (sig > 0 || sig < NSIG) {
2849        SR_signum = sig;
2850    }
2851  }
2852
2853  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2854        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2855
2856  sigemptyset(&SR_sigset);
2857  sigaddset(&SR_sigset, SR_signum);
2858
2859  /* Set up signal handler for suspend/resume */
2860  act.sa_flags = SA_RESTART|SA_SIGINFO;
2861  act.sa_handler = (void (*)(int)) SR_handler;
2862
2863  // SR_signum is blocked by default.
2864  // 4528190 - We also need to block pthread restart signal (32 on all
2865  // supported Bsd platforms). Note that BsdThreads need to block
2866  // this signal for all threads to work properly. So we don't have
2867  // to use hard-coded signal number when setting up the mask.
2868  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2869
2870  if (sigaction(SR_signum, &act, 0) == -1) {
2871    return -1;
2872  }
2873
2874  // Save signal flag
2875  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2876  return 0;
2877}
2878
2879static int sr_notify(OSThread* osthread) {
2880  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2881  assert_status(status == 0, status, "pthread_kill");
2882  return status;
2883}
2884
2885// "Randomly" selected value for how long we want to spin
2886// before bailing out on suspending a thread, also how often
2887// we send a signal to a thread we want to resume
2888static const int RANDOMLY_LARGE_INTEGER = 1000000;
2889static const int RANDOMLY_LARGE_INTEGER2 = 100;
2890
2891// returns true on success and false on error - really an error is fatal
2892// but this seems the normal response to library errors
2893static bool do_suspend(OSThread* osthread) {
2894  assert(osthread->sr.is_running(), "thread should be running");
2895  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2896
2897  // mark as suspended and send signal
2898  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2899    // failed to switch, state wasn't running?
2900    ShouldNotReachHere();
2901    return false;
2902  }
2903
2904  if (sr_notify(osthread) != 0) {
2905    ShouldNotReachHere();
2906  }
2907
2908  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2909  while (true) {
2910    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2911      break;
2912    } else {
2913      // timeout
2914      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2915      if (cancelled == os::SuspendResume::SR_RUNNING) {
2916        return false;
2917      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2918        // make sure that we consume the signal on the semaphore as well
2919        sr_semaphore.wait();
2920        break;
2921      } else {
2922        ShouldNotReachHere();
2923        return false;
2924      }
2925    }
2926  }
2927
2928  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2929  return true;
2930}
2931
2932static void do_resume(OSThread* osthread) {
2933  assert(osthread->sr.is_suspended(), "thread should be suspended");
2934  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2935
2936  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2937    // failed to switch to WAKEUP_REQUEST
2938    ShouldNotReachHere();
2939    return;
2940  }
2941
2942  while (true) {
2943    if (sr_notify(osthread) == 0) {
2944      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2945        if (osthread->sr.is_running()) {
2946          return;
2947        }
2948      }
2949    } else {
2950      ShouldNotReachHere();
2951    }
2952  }
2953
2954  guarantee(osthread->sr.is_running(), "Must be running!");
2955}
2956
2957///////////////////////////////////////////////////////////////////////////////////
2958// signal handling (except suspend/resume)
2959
2960// This routine may be used by user applications as a "hook" to catch signals.
2961// The user-defined signal handler must pass unrecognized signals to this
2962// routine, and if it returns true (non-zero), then the signal handler must
2963// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2964// routine will never retun false (zero), but instead will execute a VM panic
2965// routine kill the process.
2966//
2967// If this routine returns false, it is OK to call it again.  This allows
2968// the user-defined signal handler to perform checks either before or after
2969// the VM performs its own checks.  Naturally, the user code would be making
2970// a serious error if it tried to handle an exception (such as a null check
2971// or breakpoint) that the VM was generating for its own correct operation.
2972//
2973// This routine may recognize any of the following kinds of signals:
2974//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2975// It should be consulted by handlers for any of those signals.
2976//
2977// The caller of this routine must pass in the three arguments supplied
2978// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2979// field of the structure passed to sigaction().  This routine assumes that
2980// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2981//
2982// Note that the VM will print warnings if it detects conflicting signal
2983// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2984//
2985extern "C" JNIEXPORT int
2986JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2987                        void* ucontext, int abort_if_unrecognized);
2988
2989void signalHandler(int sig, siginfo_t* info, void* uc) {
2990  assert(info != NULL && uc != NULL, "it must be old kernel");
2991  int orig_errno = errno;  // Preserve errno value over signal handler.
2992  JVM_handle_bsd_signal(sig, info, uc, true);
2993  errno = orig_errno;
2994}
2995
2996
2997// This boolean allows users to forward their own non-matching signals
2998// to JVM_handle_bsd_signal, harmlessly.
2999bool os::Bsd::signal_handlers_are_installed = false;
3000
3001// For signal-chaining
3002struct sigaction os::Bsd::sigact[MAXSIGNUM];
3003unsigned int os::Bsd::sigs = 0;
3004bool os::Bsd::libjsig_is_loaded = false;
3005typedef struct sigaction *(*get_signal_t)(int);
3006get_signal_t os::Bsd::get_signal_action = NULL;
3007
3008struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3009  struct sigaction *actp = NULL;
3010
3011  if (libjsig_is_loaded) {
3012    // Retrieve the old signal handler from libjsig
3013    actp = (*get_signal_action)(sig);
3014  }
3015  if (actp == NULL) {
3016    // Retrieve the preinstalled signal handler from jvm
3017    actp = get_preinstalled_handler(sig);
3018  }
3019
3020  return actp;
3021}
3022
3023static bool call_chained_handler(struct sigaction *actp, int sig,
3024                                 siginfo_t *siginfo, void *context) {
3025  // Call the old signal handler
3026  if (actp->sa_handler == SIG_DFL) {
3027    // It's more reasonable to let jvm treat it as an unexpected exception
3028    // instead of taking the default action.
3029    return false;
3030  } else if (actp->sa_handler != SIG_IGN) {
3031    if ((actp->sa_flags & SA_NODEFER) == 0) {
3032      // automaticlly block the signal
3033      sigaddset(&(actp->sa_mask), sig);
3034    }
3035
3036    sa_handler_t hand;
3037    sa_sigaction_t sa;
3038    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3039    // retrieve the chained handler
3040    if (siginfo_flag_set) {
3041      sa = actp->sa_sigaction;
3042    } else {
3043      hand = actp->sa_handler;
3044    }
3045
3046    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3047      actp->sa_handler = SIG_DFL;
3048    }
3049
3050    // try to honor the signal mask
3051    sigset_t oset;
3052    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3053
3054    // call into the chained handler
3055    if (siginfo_flag_set) {
3056      (*sa)(sig, siginfo, context);
3057    } else {
3058      (*hand)(sig);
3059    }
3060
3061    // restore the signal mask
3062    pthread_sigmask(SIG_SETMASK, &oset, 0);
3063  }
3064  // Tell jvm's signal handler the signal is taken care of.
3065  return true;
3066}
3067
3068bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3069  bool chained = false;
3070  // signal-chaining
3071  if (UseSignalChaining) {
3072    struct sigaction *actp = get_chained_signal_action(sig);
3073    if (actp != NULL) {
3074      chained = call_chained_handler(actp, sig, siginfo, context);
3075    }
3076  }
3077  return chained;
3078}
3079
3080struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3081  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3082    return &sigact[sig];
3083  }
3084  return NULL;
3085}
3086
3087void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3088  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3089  sigact[sig] = oldAct;
3090  sigs |= (unsigned int)1 << sig;
3091}
3092
3093// for diagnostic
3094int os::Bsd::sigflags[MAXSIGNUM];
3095
3096int os::Bsd::get_our_sigflags(int sig) {
3097  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3098  return sigflags[sig];
3099}
3100
3101void os::Bsd::set_our_sigflags(int sig, int flags) {
3102  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3103  sigflags[sig] = flags;
3104}
3105
3106void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3107  // Check for overwrite.
3108  struct sigaction oldAct;
3109  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3110
3111  void* oldhand = oldAct.sa_sigaction
3112                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3113                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3114  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3115      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3116      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3117    if (AllowUserSignalHandlers || !set_installed) {
3118      // Do not overwrite; user takes responsibility to forward to us.
3119      return;
3120    } else if (UseSignalChaining) {
3121      // save the old handler in jvm
3122      save_preinstalled_handler(sig, oldAct);
3123      // libjsig also interposes the sigaction() call below and saves the
3124      // old sigaction on it own.
3125    } else {
3126      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3127                    "%#lx for signal %d.", (long)oldhand, sig));
3128    }
3129  }
3130
3131  struct sigaction sigAct;
3132  sigfillset(&(sigAct.sa_mask));
3133  sigAct.sa_handler = SIG_DFL;
3134  if (!set_installed) {
3135    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3136  } else {
3137    sigAct.sa_sigaction = signalHandler;
3138    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3139  }
3140#ifdef __APPLE__
3141  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3142  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3143  // if the signal handler declares it will handle it on alternate stack.
3144  // Notice we only declare we will handle it on alt stack, but we are not
3145  // actually going to use real alt stack - this is just a workaround.
3146  // Please see ux_exception.c, method catch_mach_exception_raise for details
3147  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3148  if (sig == SIGSEGV) {
3149    sigAct.sa_flags |= SA_ONSTACK;
3150  }
3151#endif
3152
3153  // Save flags, which are set by ours
3154  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3155  sigflags[sig] = sigAct.sa_flags;
3156
3157  int ret = sigaction(sig, &sigAct, &oldAct);
3158  assert(ret == 0, "check");
3159
3160  void* oldhand2  = oldAct.sa_sigaction
3161                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3162                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3163  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3164}
3165
3166// install signal handlers for signals that HotSpot needs to
3167// handle in order to support Java-level exception handling.
3168
3169void os::Bsd::install_signal_handlers() {
3170  if (!signal_handlers_are_installed) {
3171    signal_handlers_are_installed = true;
3172
3173    // signal-chaining
3174    typedef void (*signal_setting_t)();
3175    signal_setting_t begin_signal_setting = NULL;
3176    signal_setting_t end_signal_setting = NULL;
3177    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3178                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3179    if (begin_signal_setting != NULL) {
3180      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3181                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3182      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3183                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3184      libjsig_is_loaded = true;
3185      assert(UseSignalChaining, "should enable signal-chaining");
3186    }
3187    if (libjsig_is_loaded) {
3188      // Tell libjsig jvm is setting signal handlers
3189      (*begin_signal_setting)();
3190    }
3191
3192    set_signal_handler(SIGSEGV, true);
3193    set_signal_handler(SIGPIPE, true);
3194    set_signal_handler(SIGBUS, true);
3195    set_signal_handler(SIGILL, true);
3196    set_signal_handler(SIGFPE, true);
3197    set_signal_handler(SIGXFSZ, true);
3198
3199#if defined(__APPLE__)
3200    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3201    // signals caught and handled by the JVM. To work around this, we reset the mach task
3202    // signal handler that's placed on our process by CrashReporter. This disables
3203    // CrashReporter-based reporting.
3204    //
3205    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3206    // on caught fatal signals.
3207    //
3208    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3209    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3210    // exception handling, while leaving the standard BSD signal handlers functional.
3211    kern_return_t kr;
3212    kr = task_set_exception_ports(mach_task_self(),
3213        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3214        MACH_PORT_NULL,
3215        EXCEPTION_STATE_IDENTITY,
3216        MACHINE_THREAD_STATE);
3217
3218    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3219#endif
3220
3221    if (libjsig_is_loaded) {
3222      // Tell libjsig jvm finishes setting signal handlers
3223      (*end_signal_setting)();
3224    }
3225
3226    // We don't activate signal checker if libjsig is in place, we trust ourselves
3227    // and if UserSignalHandler is installed all bets are off
3228    if (CheckJNICalls) {
3229      if (libjsig_is_loaded) {
3230        if (PrintJNIResolving) {
3231          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3232        }
3233        check_signals = false;
3234      }
3235      if (AllowUserSignalHandlers) {
3236        if (PrintJNIResolving) {
3237          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3238        }
3239        check_signals = false;
3240      }
3241    }
3242  }
3243}
3244
3245
3246/////
3247// glibc on Bsd platform uses non-documented flag
3248// to indicate, that some special sort of signal
3249// trampoline is used.
3250// We will never set this flag, and we should
3251// ignore this flag in our diagnostic
3252#ifdef SIGNIFICANT_SIGNAL_MASK
3253#undef SIGNIFICANT_SIGNAL_MASK
3254#endif
3255#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3256
3257static const char* get_signal_handler_name(address handler,
3258                                           char* buf, int buflen) {
3259  int offset;
3260  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3261  if (found) {
3262    // skip directory names
3263    const char *p1, *p2;
3264    p1 = buf;
3265    size_t len = strlen(os::file_separator());
3266    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3267    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3268  } else {
3269    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3270  }
3271  return buf;
3272}
3273
3274static void print_signal_handler(outputStream* st, int sig,
3275                                 char* buf, size_t buflen) {
3276  struct sigaction sa;
3277
3278  sigaction(sig, NULL, &sa);
3279
3280  // See comment for SIGNIFICANT_SIGNAL_MASK define
3281  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3282
3283  st->print("%s: ", os::exception_name(sig, buf, buflen));
3284
3285  address handler = (sa.sa_flags & SA_SIGINFO)
3286    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3287    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3288
3289  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3290    st->print("SIG_DFL");
3291  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3292    st->print("SIG_IGN");
3293  } else {
3294    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3295  }
3296
3297  st->print(", sa_mask[0]=");
3298  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3299
3300  address rh = VMError::get_resetted_sighandler(sig);
3301  // May be, handler was resetted by VMError?
3302  if(rh != NULL) {
3303    handler = rh;
3304    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3305  }
3306
3307  st->print(", sa_flags=");
3308  os::Posix::print_sa_flags(st, sa.sa_flags);
3309
3310  // Check: is it our handler?
3311  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3312     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3313    // It is our signal handler
3314    // check for flags, reset system-used one!
3315    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3316      st->print(
3317                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3318                os::Bsd::get_our_sigflags(sig));
3319    }
3320  }
3321  st->cr();
3322}
3323
3324
3325#define DO_SIGNAL_CHECK(sig) \
3326  if (!sigismember(&check_signal_done, sig)) \
3327    os::Bsd::check_signal_handler(sig)
3328
3329// This method is a periodic task to check for misbehaving JNI applications
3330// under CheckJNI, we can add any periodic checks here
3331
3332void os::run_periodic_checks() {
3333
3334  if (check_signals == false) return;
3335
3336  // SEGV and BUS if overridden could potentially prevent
3337  // generation of hs*.log in the event of a crash, debugging
3338  // such a case can be very challenging, so we absolutely
3339  // check the following for a good measure:
3340  DO_SIGNAL_CHECK(SIGSEGV);
3341  DO_SIGNAL_CHECK(SIGILL);
3342  DO_SIGNAL_CHECK(SIGFPE);
3343  DO_SIGNAL_CHECK(SIGBUS);
3344  DO_SIGNAL_CHECK(SIGPIPE);
3345  DO_SIGNAL_CHECK(SIGXFSZ);
3346
3347
3348  // ReduceSignalUsage allows the user to override these handlers
3349  // see comments at the very top and jvm_solaris.h
3350  if (!ReduceSignalUsage) {
3351    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3352    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3353    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3354    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3355  }
3356
3357  DO_SIGNAL_CHECK(SR_signum);
3358  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3359}
3360
3361typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3362
3363static os_sigaction_t os_sigaction = NULL;
3364
3365void os::Bsd::check_signal_handler(int sig) {
3366  char buf[O_BUFLEN];
3367  address jvmHandler = NULL;
3368
3369
3370  struct sigaction act;
3371  if (os_sigaction == NULL) {
3372    // only trust the default sigaction, in case it has been interposed
3373    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3374    if (os_sigaction == NULL) return;
3375  }
3376
3377  os_sigaction(sig, (struct sigaction*)NULL, &act);
3378
3379
3380  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3381
3382  address thisHandler = (act.sa_flags & SA_SIGINFO)
3383    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3384    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3385
3386
3387  switch(sig) {
3388  case SIGSEGV:
3389  case SIGBUS:
3390  case SIGFPE:
3391  case SIGPIPE:
3392  case SIGILL:
3393  case SIGXFSZ:
3394    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3395    break;
3396
3397  case SHUTDOWN1_SIGNAL:
3398  case SHUTDOWN2_SIGNAL:
3399  case SHUTDOWN3_SIGNAL:
3400  case BREAK_SIGNAL:
3401    jvmHandler = (address)user_handler();
3402    break;
3403
3404  case INTERRUPT_SIGNAL:
3405    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3406    break;
3407
3408  default:
3409    if (sig == SR_signum) {
3410      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3411    } else {
3412      return;
3413    }
3414    break;
3415  }
3416
3417  if (thisHandler != jvmHandler) {
3418    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3419    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3420    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3421    // No need to check this sig any longer
3422    sigaddset(&check_signal_done, sig);
3423    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3424    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3425      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3426                    exception_name(sig, buf, O_BUFLEN));
3427    }
3428  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3429    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3430    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3431    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3432    // No need to check this sig any longer
3433    sigaddset(&check_signal_done, sig);
3434  }
3435
3436  // Dump all the signal
3437  if (sigismember(&check_signal_done, sig)) {
3438    print_signal_handlers(tty, buf, O_BUFLEN);
3439  }
3440}
3441
3442extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3443
3444extern bool signal_name(int signo, char* buf, size_t len);
3445
3446const char* os::exception_name(int exception_code, char* buf, size_t size) {
3447  if (0 < exception_code && exception_code <= SIGRTMAX) {
3448    // signal
3449    if (!signal_name(exception_code, buf, size)) {
3450      jio_snprintf(buf, size, "SIG%d", exception_code);
3451    }
3452    return buf;
3453  } else {
3454    return NULL;
3455  }
3456}
3457
3458// this is called _before_ the most of global arguments have been parsed
3459void os::init(void) {
3460  char dummy;   /* used to get a guess on initial stack address */
3461//  first_hrtime = gethrtime();
3462
3463  // With BsdThreads the JavaMain thread pid (primordial thread)
3464  // is different than the pid of the java launcher thread.
3465  // So, on Bsd, the launcher thread pid is passed to the VM
3466  // via the sun.java.launcher.pid property.
3467  // Use this property instead of getpid() if it was correctly passed.
3468  // See bug 6351349.
3469  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3470
3471  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3472
3473  clock_tics_per_sec = CLK_TCK;
3474
3475  init_random(1234567);
3476
3477  ThreadCritical::initialize();
3478
3479  Bsd::set_page_size(getpagesize());
3480  if (Bsd::page_size() == -1) {
3481    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3482                  strerror(errno)));
3483  }
3484  init_page_sizes((size_t) Bsd::page_size());
3485
3486  Bsd::initialize_system_info();
3487
3488  // main_thread points to the aboriginal thread
3489  Bsd::_main_thread = pthread_self();
3490
3491  Bsd::clock_init();
3492  initial_time_count = javaTimeNanos();
3493
3494#ifdef __APPLE__
3495  // XXXDARWIN
3496  // Work around the unaligned VM callbacks in hotspot's
3497  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3498  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3499  // alignment when doing symbol lookup. To work around this, we force early
3500  // binding of all symbols now, thus binding when alignment is known-good.
3501  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3502#endif
3503}
3504
3505// To install functions for atexit system call
3506extern "C" {
3507  static void perfMemory_exit_helper() {
3508    perfMemory_exit();
3509  }
3510}
3511
3512// this is called _after_ the global arguments have been parsed
3513jint os::init_2(void)
3514{
3515  // Allocate a single page and mark it as readable for safepoint polling
3516  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3517  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3518
3519  os::set_polling_page( polling_page );
3520
3521#ifndef PRODUCT
3522  if(Verbose && PrintMiscellaneous)
3523    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3524#endif
3525
3526  if (!UseMembar) {
3527    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3528    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3529    os::set_memory_serialize_page( mem_serialize_page );
3530
3531#ifndef PRODUCT
3532    if(Verbose && PrintMiscellaneous)
3533      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3534#endif
3535  }
3536
3537  // initialize suspend/resume support - must do this before signal_sets_init()
3538  if (SR_initialize() != 0) {
3539    perror("SR_initialize failed");
3540    return JNI_ERR;
3541  }
3542
3543  Bsd::signal_sets_init();
3544  Bsd::install_signal_handlers();
3545
3546  // Check minimum allowable stack size for thread creation and to initialize
3547  // the java system classes, including StackOverflowError - depends on page
3548  // size.  Add a page for compiler2 recursion in main thread.
3549  // Add in 2*BytesPerWord times page size to account for VM stack during
3550  // class initialization depending on 32 or 64 bit VM.
3551  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3552            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3553                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3554
3555  size_t threadStackSizeInBytes = ThreadStackSize * K;
3556  if (threadStackSizeInBytes != 0 &&
3557      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3558        tty->print_cr("\nThe stack size specified is too small, "
3559                      "Specify at least %dk",
3560                      os::Bsd::min_stack_allowed/ K);
3561        return JNI_ERR;
3562  }
3563
3564  // Make the stack size a multiple of the page size so that
3565  // the yellow/red zones can be guarded.
3566  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3567        vm_page_size()));
3568
3569  if (MaxFDLimit) {
3570    // set the number of file descriptors to max. print out error
3571    // if getrlimit/setrlimit fails but continue regardless.
3572    struct rlimit nbr_files;
3573    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3574    if (status != 0) {
3575      if (PrintMiscellaneous && (Verbose || WizardMode))
3576        perror("os::init_2 getrlimit failed");
3577    } else {
3578      nbr_files.rlim_cur = nbr_files.rlim_max;
3579
3580#ifdef __APPLE__
3581      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3582      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3583      // be used instead
3584      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3585#endif
3586
3587      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3588      if (status != 0) {
3589        if (PrintMiscellaneous && (Verbose || WizardMode))
3590          perror("os::init_2 setrlimit failed");
3591      }
3592    }
3593  }
3594
3595  // at-exit methods are called in the reverse order of their registration.
3596  // atexit functions are called on return from main or as a result of a
3597  // call to exit(3C). There can be only 32 of these functions registered
3598  // and atexit() does not set errno.
3599
3600  if (PerfAllowAtExitRegistration) {
3601    // only register atexit functions if PerfAllowAtExitRegistration is set.
3602    // atexit functions can be delayed until process exit time, which
3603    // can be problematic for embedded VM situations. Embedded VMs should
3604    // call DestroyJavaVM() to assure that VM resources are released.
3605
3606    // note: perfMemory_exit_helper atexit function may be removed in
3607    // the future if the appropriate cleanup code can be added to the
3608    // VM_Exit VMOperation's doit method.
3609    if (atexit(perfMemory_exit_helper) != 0) {
3610      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3611    }
3612  }
3613
3614  // initialize thread priority policy
3615  prio_init();
3616
3617#ifdef __APPLE__
3618  // dynamically link to objective c gc registration
3619  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3620  if (handleLibObjc != NULL) {
3621    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3622  }
3623#endif
3624
3625  return JNI_OK;
3626}
3627
3628// this is called at the end of vm_initialization
3629void os::init_3(void) { }
3630
3631// Mark the polling page as unreadable
3632void os::make_polling_page_unreadable(void) {
3633  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3634    fatal("Could not disable polling page");
3635};
3636
3637// Mark the polling page as readable
3638void os::make_polling_page_readable(void) {
3639  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3640    fatal("Could not enable polling page");
3641  }
3642};
3643
3644int os::active_processor_count() {
3645  return _processor_count;
3646}
3647
3648void os::set_native_thread_name(const char *name) {
3649#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3650  // This is only supported in Snow Leopard and beyond
3651  if (name != NULL) {
3652    // Add a "Java: " prefix to the name
3653    char buf[MAXTHREADNAMESIZE];
3654    snprintf(buf, sizeof(buf), "Java: %s", name);
3655    pthread_setname_np(buf);
3656  }
3657#endif
3658}
3659
3660bool os::distribute_processes(uint length, uint* distribution) {
3661  // Not yet implemented.
3662  return false;
3663}
3664
3665bool os::bind_to_processor(uint processor_id) {
3666  // Not yet implemented.
3667  return false;
3668}
3669
3670void os::SuspendedThreadTask::internal_do_task() {
3671  if (do_suspend(_thread->osthread())) {
3672    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3673    do_task(context);
3674    do_resume(_thread->osthread());
3675  }
3676}
3677
3678///
3679class PcFetcher : public os::SuspendedThreadTask {
3680public:
3681  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3682  ExtendedPC result();
3683protected:
3684  void do_task(const os::SuspendedThreadTaskContext& context);
3685private:
3686  ExtendedPC _epc;
3687};
3688
3689ExtendedPC PcFetcher::result() {
3690  guarantee(is_done(), "task is not done yet.");
3691  return _epc;
3692}
3693
3694void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3695  Thread* thread = context.thread();
3696  OSThread* osthread = thread->osthread();
3697  if (osthread->ucontext() != NULL) {
3698    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3699  } else {
3700    // NULL context is unexpected, double-check this is the VMThread
3701    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3702  }
3703}
3704
3705// Suspends the target using the signal mechanism and then grabs the PC before
3706// resuming the target. Used by the flat-profiler only
3707ExtendedPC os::get_thread_pc(Thread* thread) {
3708  // Make sure that it is called by the watcher for the VMThread
3709  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3710  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3711
3712  PcFetcher fetcher(thread);
3713  fetcher.run();
3714  return fetcher.result();
3715}
3716
3717int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3718{
3719  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3720}
3721
3722////////////////////////////////////////////////////////////////////////////////
3723// debug support
3724
3725bool os::find(address addr, outputStream* st) {
3726  Dl_info dlinfo;
3727  memset(&dlinfo, 0, sizeof(dlinfo));
3728  if (dladdr(addr, &dlinfo) != 0) {
3729    st->print(PTR_FORMAT ": ", addr);
3730    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3731      st->print("%s+%#x", dlinfo.dli_sname,
3732                 addr - (intptr_t)dlinfo.dli_saddr);
3733    } else if (dlinfo.dli_fbase != NULL) {
3734      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3735    } else {
3736      st->print("<absolute address>");
3737    }
3738    if (dlinfo.dli_fname != NULL) {
3739      st->print(" in %s", dlinfo.dli_fname);
3740    }
3741    if (dlinfo.dli_fbase != NULL) {
3742      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3743    }
3744    st->cr();
3745
3746    if (Verbose) {
3747      // decode some bytes around the PC
3748      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3749      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3750      address       lowest = (address) dlinfo.dli_sname;
3751      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3752      if (begin < lowest)  begin = lowest;
3753      Dl_info dlinfo2;
3754      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3755          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3756        end = (address) dlinfo2.dli_saddr;
3757      Disassembler::decode(begin, end, st);
3758    }
3759    return true;
3760  }
3761  return false;
3762}
3763
3764////////////////////////////////////////////////////////////////////////////////
3765// misc
3766
3767// This does not do anything on Bsd. This is basically a hook for being
3768// able to use structured exception handling (thread-local exception filters)
3769// on, e.g., Win32.
3770void
3771os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3772                         JavaCallArguments* args, Thread* thread) {
3773  f(value, method, args, thread);
3774}
3775
3776void os::print_statistics() {
3777}
3778
3779int os::message_box(const char* title, const char* message) {
3780  int i;
3781  fdStream err(defaultStream::error_fd());
3782  for (i = 0; i < 78; i++) err.print_raw("=");
3783  err.cr();
3784  err.print_raw_cr(title);
3785  for (i = 0; i < 78; i++) err.print_raw("-");
3786  err.cr();
3787  err.print_raw_cr(message);
3788  for (i = 0; i < 78; i++) err.print_raw("=");
3789  err.cr();
3790
3791  char buf[16];
3792  // Prevent process from exiting upon "read error" without consuming all CPU
3793  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3794
3795  return buf[0] == 'y' || buf[0] == 'Y';
3796}
3797
3798int os::stat(const char *path, struct stat *sbuf) {
3799  char pathbuf[MAX_PATH];
3800  if (strlen(path) > MAX_PATH - 1) {
3801    errno = ENAMETOOLONG;
3802    return -1;
3803  }
3804  os::native_path(strcpy(pathbuf, path));
3805  return ::stat(pathbuf, sbuf);
3806}
3807
3808bool os::check_heap(bool force) {
3809  return true;
3810}
3811
3812int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3813  return ::vsnprintf(buf, count, format, args);
3814}
3815
3816// Is a (classpath) directory empty?
3817bool os::dir_is_empty(const char* path) {
3818  DIR *dir = NULL;
3819  struct dirent *ptr;
3820
3821  dir = opendir(path);
3822  if (dir == NULL) return true;
3823
3824  /* Scan the directory */
3825  bool result = true;
3826  char buf[sizeof(struct dirent) + MAX_PATH];
3827  while (result && (ptr = ::readdir(dir)) != NULL) {
3828    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3829      result = false;
3830    }
3831  }
3832  closedir(dir);
3833  return result;
3834}
3835
3836// This code originates from JDK's sysOpen and open64_w
3837// from src/solaris/hpi/src/system_md.c
3838
3839#ifndef O_DELETE
3840#define O_DELETE 0x10000
3841#endif
3842
3843// Open a file. Unlink the file immediately after open returns
3844// if the specified oflag has the O_DELETE flag set.
3845// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3846
3847int os::open(const char *path, int oflag, int mode) {
3848
3849  if (strlen(path) > MAX_PATH - 1) {
3850    errno = ENAMETOOLONG;
3851    return -1;
3852  }
3853  int fd;
3854  int o_delete = (oflag & O_DELETE);
3855  oflag = oflag & ~O_DELETE;
3856
3857  fd = ::open(path, oflag, mode);
3858  if (fd == -1) return -1;
3859
3860  //If the open succeeded, the file might still be a directory
3861  {
3862    struct stat buf;
3863    int ret = ::fstat(fd, &buf);
3864    int st_mode = buf.st_mode;
3865
3866    if (ret != -1) {
3867      if ((st_mode & S_IFMT) == S_IFDIR) {
3868        errno = EISDIR;
3869        ::close(fd);
3870        return -1;
3871      }
3872    } else {
3873      ::close(fd);
3874      return -1;
3875    }
3876  }
3877
3878    /*
3879     * All file descriptors that are opened in the JVM and not
3880     * specifically destined for a subprocess should have the
3881     * close-on-exec flag set.  If we don't set it, then careless 3rd
3882     * party native code might fork and exec without closing all
3883     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3884     * UNIXProcess.c), and this in turn might:
3885     *
3886     * - cause end-of-file to fail to be detected on some file
3887     *   descriptors, resulting in mysterious hangs, or
3888     *
3889     * - might cause an fopen in the subprocess to fail on a system
3890     *   suffering from bug 1085341.
3891     *
3892     * (Yes, the default setting of the close-on-exec flag is a Unix
3893     * design flaw)
3894     *
3895     * See:
3896     * 1085341: 32-bit stdio routines should support file descriptors >255
3897     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3898     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3899     */
3900#ifdef FD_CLOEXEC
3901    {
3902        int flags = ::fcntl(fd, F_GETFD);
3903        if (flags != -1)
3904            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3905    }
3906#endif
3907
3908  if (o_delete != 0) {
3909    ::unlink(path);
3910  }
3911  return fd;
3912}
3913
3914
3915// create binary file, rewriting existing file if required
3916int os::create_binary_file(const char* path, bool rewrite_existing) {
3917  int oflags = O_WRONLY | O_CREAT;
3918  if (!rewrite_existing) {
3919    oflags |= O_EXCL;
3920  }
3921  return ::open(path, oflags, S_IREAD | S_IWRITE);
3922}
3923
3924// return current position of file pointer
3925jlong os::current_file_offset(int fd) {
3926  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3927}
3928
3929// move file pointer to the specified offset
3930jlong os::seek_to_file_offset(int fd, jlong offset) {
3931  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3932}
3933
3934// This code originates from JDK's sysAvailable
3935// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3936
3937int os::available(int fd, jlong *bytes) {
3938  jlong cur, end;
3939  int mode;
3940  struct stat buf;
3941
3942  if (::fstat(fd, &buf) >= 0) {
3943    mode = buf.st_mode;
3944    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3945      /*
3946      * XXX: is the following call interruptible? If so, this might
3947      * need to go through the INTERRUPT_IO() wrapper as for other
3948      * blocking, interruptible calls in this file.
3949      */
3950      int n;
3951      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3952        *bytes = n;
3953        return 1;
3954      }
3955    }
3956  }
3957  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3958    return 0;
3959  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3960    return 0;
3961  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3962    return 0;
3963  }
3964  *bytes = end - cur;
3965  return 1;
3966}
3967
3968int os::socket_available(int fd, jint *pbytes) {
3969   if (fd < 0)
3970     return OS_OK;
3971
3972   int ret;
3973
3974   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3975
3976   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3977   // is expected to return 0 on failure and 1 on success to the jdk.
3978
3979   return (ret == OS_ERR) ? 0 : 1;
3980}
3981
3982// Map a block of memory.
3983char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3984                     char *addr, size_t bytes, bool read_only,
3985                     bool allow_exec) {
3986  int prot;
3987  int flags;
3988
3989  if (read_only) {
3990    prot = PROT_READ;
3991    flags = MAP_SHARED;
3992  } else {
3993    prot = PROT_READ | PROT_WRITE;
3994    flags = MAP_PRIVATE;
3995  }
3996
3997  if (allow_exec) {
3998    prot |= PROT_EXEC;
3999  }
4000
4001  if (addr != NULL) {
4002    flags |= MAP_FIXED;
4003  }
4004
4005  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4006                                     fd, file_offset);
4007  if (mapped_address == MAP_FAILED) {
4008    return NULL;
4009  }
4010  return mapped_address;
4011}
4012
4013
4014// Remap a block of memory.
4015char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4016                       char *addr, size_t bytes, bool read_only,
4017                       bool allow_exec) {
4018  // same as map_memory() on this OS
4019  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4020                        allow_exec);
4021}
4022
4023
4024// Unmap a block of memory.
4025bool os::pd_unmap_memory(char* addr, size_t bytes) {
4026  return munmap(addr, bytes) == 0;
4027}
4028
4029// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4030// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4031// of a thread.
4032//
4033// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4034// the fast estimate available on the platform.
4035
4036jlong os::current_thread_cpu_time() {
4037#ifdef __APPLE__
4038  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4039#else
4040  Unimplemented();
4041  return 0;
4042#endif
4043}
4044
4045jlong os::thread_cpu_time(Thread* thread) {
4046#ifdef __APPLE__
4047  return os::thread_cpu_time(thread, true /* user + sys */);
4048#else
4049  Unimplemented();
4050  return 0;
4051#endif
4052}
4053
4054jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4055#ifdef __APPLE__
4056  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4057#else
4058  Unimplemented();
4059  return 0;
4060#endif
4061}
4062
4063jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4064#ifdef __APPLE__
4065  struct thread_basic_info tinfo;
4066  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4067  kern_return_t kr;
4068  thread_t mach_thread;
4069
4070  mach_thread = thread->osthread()->thread_id();
4071  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4072  if (kr != KERN_SUCCESS)
4073    return -1;
4074
4075  if (user_sys_cpu_time) {
4076    jlong nanos;
4077    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4078    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4079    return nanos;
4080  } else {
4081    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4082  }
4083#else
4084  Unimplemented();
4085  return 0;
4086#endif
4087}
4088
4089
4090void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4091  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4092  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4093  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4094  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4095}
4096
4097void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4098  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4099  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4100  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4101  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4102}
4103
4104bool os::is_thread_cpu_time_supported() {
4105#ifdef __APPLE__
4106  return true;
4107#else
4108  return false;
4109#endif
4110}
4111
4112// System loadavg support.  Returns -1 if load average cannot be obtained.
4113// Bsd doesn't yet have a (official) notion of processor sets,
4114// so just return the system wide load average.
4115int os::loadavg(double loadavg[], int nelem) {
4116  return ::getloadavg(loadavg, nelem);
4117}
4118
4119void os::pause() {
4120  char filename[MAX_PATH];
4121  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4122    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4123  } else {
4124    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4125  }
4126
4127  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4128  if (fd != -1) {
4129    struct stat buf;
4130    ::close(fd);
4131    while (::stat(filename, &buf) == 0) {
4132      (void)::poll(NULL, 0, 100);
4133    }
4134  } else {
4135    jio_fprintf(stderr,
4136      "Could not open pause file '%s', continuing immediately.\n", filename);
4137  }
4138}
4139
4140
4141// Refer to the comments in os_solaris.cpp park-unpark.
4142//
4143// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4144// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4145// For specifics regarding the bug see GLIBC BUGID 261237 :
4146//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4147// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4148// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4149// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4150// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4151// and monitorenter when we're using 1-0 locking.  All those operations may result in
4152// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4153// of libpthread avoids the problem, but isn't practical.
4154//
4155// Possible remedies:
4156//
4157// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4158//      This is palliative and probabilistic, however.  If the thread is preempted
4159//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4160//      than the minimum period may have passed, and the abstime may be stale (in the
4161//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4162//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4163//
4164// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4165//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4166//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4167//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4168//      thread.
4169//
4170// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4171//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4172//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4173//      This also works well.  In fact it avoids kernel-level scalability impediments
4174//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4175//      timers in a graceful fashion.
4176//
4177// 4.   When the abstime value is in the past it appears that control returns
4178//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4179//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4180//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4181//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4182//      It may be possible to avoid reinitialization by checking the return
4183//      value from pthread_cond_timedwait().  In addition to reinitializing the
4184//      condvar we must establish the invariant that cond_signal() is only called
4185//      within critical sections protected by the adjunct mutex.  This prevents
4186//      cond_signal() from "seeing" a condvar that's in the midst of being
4187//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4188//      desirable signal-after-unlock optimization that avoids futile context switching.
4189//
4190//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4191//      structure when a condvar is used or initialized.  cond_destroy()  would
4192//      release the helper structure.  Our reinitialize-after-timedwait fix
4193//      put excessive stress on malloc/free and locks protecting the c-heap.
4194//
4195// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4196// It may be possible to refine (4) by checking the kernel and NTPL verisons
4197// and only enabling the work-around for vulnerable environments.
4198
4199// utility to compute the abstime argument to timedwait:
4200// millis is the relative timeout time
4201// abstime will be the absolute timeout time
4202// TODO: replace compute_abstime() with unpackTime()
4203
4204static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4205  if (millis < 0)  millis = 0;
4206  struct timeval now;
4207  int status = gettimeofday(&now, NULL);
4208  assert(status == 0, "gettimeofday");
4209  jlong seconds = millis / 1000;
4210  millis %= 1000;
4211  if (seconds > 50000000) { // see man cond_timedwait(3T)
4212    seconds = 50000000;
4213  }
4214  abstime->tv_sec = now.tv_sec  + seconds;
4215  long       usec = now.tv_usec + millis * 1000;
4216  if (usec >= 1000000) {
4217    abstime->tv_sec += 1;
4218    usec -= 1000000;
4219  }
4220  abstime->tv_nsec = usec * 1000;
4221  return abstime;
4222}
4223
4224
4225// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4226// Conceptually TryPark() should be equivalent to park(0).
4227
4228int os::PlatformEvent::TryPark() {
4229  for (;;) {
4230    const int v = _Event ;
4231    guarantee ((v == 0) || (v == 1), "invariant") ;
4232    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4233  }
4234}
4235
4236void os::PlatformEvent::park() {       // AKA "down()"
4237  // Invariant: Only the thread associated with the Event/PlatformEvent
4238  // may call park().
4239  // TODO: assert that _Assoc != NULL or _Assoc == Self
4240  int v ;
4241  for (;;) {
4242      v = _Event ;
4243      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4244  }
4245  guarantee (v >= 0, "invariant") ;
4246  if (v == 0) {
4247     // Do this the hard way by blocking ...
4248     int status = pthread_mutex_lock(_mutex);
4249     assert_status(status == 0, status, "mutex_lock");
4250     guarantee (_nParked == 0, "invariant") ;
4251     ++ _nParked ;
4252     while (_Event < 0) {
4253        status = pthread_cond_wait(_cond, _mutex);
4254        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4255        // Treat this the same as if the wait was interrupted
4256        if (status == ETIMEDOUT) { status = EINTR; }
4257        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4258     }
4259     -- _nParked ;
4260
4261    _Event = 0 ;
4262     status = pthread_mutex_unlock(_mutex);
4263     assert_status(status == 0, status, "mutex_unlock");
4264    // Paranoia to ensure our locked and lock-free paths interact
4265    // correctly with each other.
4266    OrderAccess::fence();
4267  }
4268  guarantee (_Event >= 0, "invariant") ;
4269}
4270
4271int os::PlatformEvent::park(jlong millis) {
4272  guarantee (_nParked == 0, "invariant") ;
4273
4274  int v ;
4275  for (;;) {
4276      v = _Event ;
4277      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4278  }
4279  guarantee (v >= 0, "invariant") ;
4280  if (v != 0) return OS_OK ;
4281
4282  // We do this the hard way, by blocking the thread.
4283  // Consider enforcing a minimum timeout value.
4284  struct timespec abst;
4285  compute_abstime(&abst, millis);
4286
4287  int ret = OS_TIMEOUT;
4288  int status = pthread_mutex_lock(_mutex);
4289  assert_status(status == 0, status, "mutex_lock");
4290  guarantee (_nParked == 0, "invariant") ;
4291  ++_nParked ;
4292
4293  // Object.wait(timo) will return because of
4294  // (a) notification
4295  // (b) timeout
4296  // (c) thread.interrupt
4297  //
4298  // Thread.interrupt and object.notify{All} both call Event::set.
4299  // That is, we treat thread.interrupt as a special case of notification.
4300  // The underlying Solaris implementation, cond_timedwait, admits
4301  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4302  // JVM from making those visible to Java code.  As such, we must
4303  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4304  //
4305  // TODO: properly differentiate simultaneous notify+interrupt.
4306  // In that case, we should propagate the notify to another waiter.
4307
4308  while (_Event < 0) {
4309    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4310    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4311      pthread_cond_destroy (_cond);
4312      pthread_cond_init (_cond, NULL) ;
4313    }
4314    assert_status(status == 0 || status == EINTR ||
4315                  status == ETIMEDOUT,
4316                  status, "cond_timedwait");
4317    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4318    if (status == ETIMEDOUT) break ;
4319    // We consume and ignore EINTR and spurious wakeups.
4320  }
4321  --_nParked ;
4322  if (_Event >= 0) {
4323     ret = OS_OK;
4324  }
4325  _Event = 0 ;
4326  status = pthread_mutex_unlock(_mutex);
4327  assert_status(status == 0, status, "mutex_unlock");
4328  assert (_nParked == 0, "invariant") ;
4329  // Paranoia to ensure our locked and lock-free paths interact
4330  // correctly with each other.
4331  OrderAccess::fence();
4332  return ret;
4333}
4334
4335void os::PlatformEvent::unpark() {
4336  // Transitions for _Event:
4337  //    0 :=> 1
4338  //    1 :=> 1
4339  //   -1 :=> either 0 or 1; must signal target thread
4340  //          That is, we can safely transition _Event from -1 to either
4341  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4342  //          unpark() calls.
4343  // See also: "Semaphores in Plan 9" by Mullender & Cox
4344  //
4345  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4346  // that it will take two back-to-back park() calls for the owning
4347  // thread to block. This has the benefit of forcing a spurious return
4348  // from the first park() call after an unpark() call which will help
4349  // shake out uses of park() and unpark() without condition variables.
4350
4351  if (Atomic::xchg(1, &_Event) >= 0) return;
4352
4353  // Wait for the thread associated with the event to vacate
4354  int status = pthread_mutex_lock(_mutex);
4355  assert_status(status == 0, status, "mutex_lock");
4356  int AnyWaiters = _nParked;
4357  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4358  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4359    AnyWaiters = 0;
4360    pthread_cond_signal(_cond);
4361  }
4362  status = pthread_mutex_unlock(_mutex);
4363  assert_status(status == 0, status, "mutex_unlock");
4364  if (AnyWaiters != 0) {
4365    status = pthread_cond_signal(_cond);
4366    assert_status(status == 0, status, "cond_signal");
4367  }
4368
4369  // Note that we signal() _after dropping the lock for "immortal" Events.
4370  // This is safe and avoids a common class of  futile wakeups.  In rare
4371  // circumstances this can cause a thread to return prematurely from
4372  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4373  // simply re-test the condition and re-park itself.
4374}
4375
4376
4377// JSR166
4378// -------------------------------------------------------
4379
4380/*
4381 * The solaris and bsd implementations of park/unpark are fairly
4382 * conservative for now, but can be improved. They currently use a
4383 * mutex/condvar pair, plus a a count.
4384 * Park decrements count if > 0, else does a condvar wait.  Unpark
4385 * sets count to 1 and signals condvar.  Only one thread ever waits
4386 * on the condvar. Contention seen when trying to park implies that someone
4387 * is unparking you, so don't wait. And spurious returns are fine, so there
4388 * is no need to track notifications.
4389 */
4390
4391#define MAX_SECS 100000000
4392/*
4393 * This code is common to bsd and solaris and will be moved to a
4394 * common place in dolphin.
4395 *
4396 * The passed in time value is either a relative time in nanoseconds
4397 * or an absolute time in milliseconds. Either way it has to be unpacked
4398 * into suitable seconds and nanoseconds components and stored in the
4399 * given timespec structure.
4400 * Given time is a 64-bit value and the time_t used in the timespec is only
4401 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4402 * overflow if times way in the future are given. Further on Solaris versions
4403 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4404 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4405 * As it will be 28 years before "now + 100000000" will overflow we can
4406 * ignore overflow and just impose a hard-limit on seconds using the value
4407 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4408 * years from "now".
4409 */
4410
4411static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4412  assert (time > 0, "convertTime");
4413
4414  struct timeval now;
4415  int status = gettimeofday(&now, NULL);
4416  assert(status == 0, "gettimeofday");
4417
4418  time_t max_secs = now.tv_sec + MAX_SECS;
4419
4420  if (isAbsolute) {
4421    jlong secs = time / 1000;
4422    if (secs > max_secs) {
4423      absTime->tv_sec = max_secs;
4424    }
4425    else {
4426      absTime->tv_sec = secs;
4427    }
4428    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4429  }
4430  else {
4431    jlong secs = time / NANOSECS_PER_SEC;
4432    if (secs >= MAX_SECS) {
4433      absTime->tv_sec = max_secs;
4434      absTime->tv_nsec = 0;
4435    }
4436    else {
4437      absTime->tv_sec = now.tv_sec + secs;
4438      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4439      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4440        absTime->tv_nsec -= NANOSECS_PER_SEC;
4441        ++absTime->tv_sec; // note: this must be <= max_secs
4442      }
4443    }
4444  }
4445  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4446  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4447  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4448  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4449}
4450
4451void Parker::park(bool isAbsolute, jlong time) {
4452  // Ideally we'd do something useful while spinning, such
4453  // as calling unpackTime().
4454
4455  // Optional fast-path check:
4456  // Return immediately if a permit is available.
4457  // We depend on Atomic::xchg() having full barrier semantics
4458  // since we are doing a lock-free update to _counter.
4459  if (Atomic::xchg(0, &_counter) > 0) return;
4460
4461  Thread* thread = Thread::current();
4462  assert(thread->is_Java_thread(), "Must be JavaThread");
4463  JavaThread *jt = (JavaThread *)thread;
4464
4465  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4466  // Check interrupt before trying to wait
4467  if (Thread::is_interrupted(thread, false)) {
4468    return;
4469  }
4470
4471  // Next, demultiplex/decode time arguments
4472  struct timespec absTime;
4473  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4474    return;
4475  }
4476  if (time > 0) {
4477    unpackTime(&absTime, isAbsolute, time);
4478  }
4479
4480
4481  // Enter safepoint region
4482  // Beware of deadlocks such as 6317397.
4483  // The per-thread Parker:: mutex is a classic leaf-lock.
4484  // In particular a thread must never block on the Threads_lock while
4485  // holding the Parker:: mutex.  If safepoints are pending both the
4486  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4487  ThreadBlockInVM tbivm(jt);
4488
4489  // Don't wait if cannot get lock since interference arises from
4490  // unblocking.  Also. check interrupt before trying wait
4491  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4492    return;
4493  }
4494
4495  int status ;
4496  if (_counter > 0)  { // no wait needed
4497    _counter = 0;
4498    status = pthread_mutex_unlock(_mutex);
4499    assert (status == 0, "invariant") ;
4500    // Paranoia to ensure our locked and lock-free paths interact
4501    // correctly with each other and Java-level accesses.
4502    OrderAccess::fence();
4503    return;
4504  }
4505
4506#ifdef ASSERT
4507  // Don't catch signals while blocked; let the running threads have the signals.
4508  // (This allows a debugger to break into the running thread.)
4509  sigset_t oldsigs;
4510  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4511  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4512#endif
4513
4514  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4515  jt->set_suspend_equivalent();
4516  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4517
4518  if (time == 0) {
4519    status = pthread_cond_wait (_cond, _mutex) ;
4520  } else {
4521    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4522    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4523      pthread_cond_destroy (_cond) ;
4524      pthread_cond_init    (_cond, NULL);
4525    }
4526  }
4527  assert_status(status == 0 || status == EINTR ||
4528                status == ETIMEDOUT,
4529                status, "cond_timedwait");
4530
4531#ifdef ASSERT
4532  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4533#endif
4534
4535  _counter = 0 ;
4536  status = pthread_mutex_unlock(_mutex) ;
4537  assert_status(status == 0, status, "invariant") ;
4538  // Paranoia to ensure our locked and lock-free paths interact
4539  // correctly with each other and Java-level accesses.
4540  OrderAccess::fence();
4541
4542  // If externally suspended while waiting, re-suspend
4543  if (jt->handle_special_suspend_equivalent_condition()) {
4544    jt->java_suspend_self();
4545  }
4546}
4547
4548void Parker::unpark() {
4549  int s, status ;
4550  status = pthread_mutex_lock(_mutex);
4551  assert (status == 0, "invariant") ;
4552  s = _counter;
4553  _counter = 1;
4554  if (s < 1) {
4555     if (WorkAroundNPTLTimedWaitHang) {
4556        status = pthread_cond_signal (_cond) ;
4557        assert (status == 0, "invariant") ;
4558        status = pthread_mutex_unlock(_mutex);
4559        assert (status == 0, "invariant") ;
4560     } else {
4561        status = pthread_mutex_unlock(_mutex);
4562        assert (status == 0, "invariant") ;
4563        status = pthread_cond_signal (_cond) ;
4564        assert (status == 0, "invariant") ;
4565     }
4566  } else {
4567    pthread_mutex_unlock(_mutex);
4568    assert (status == 0, "invariant") ;
4569  }
4570}
4571
4572
4573/* Darwin has no "environ" in a dynamic library. */
4574#ifdef __APPLE__
4575#include <crt_externs.h>
4576#define environ (*_NSGetEnviron())
4577#else
4578extern char** environ;
4579#endif
4580
4581// Run the specified command in a separate process. Return its exit value,
4582// or -1 on failure (e.g. can't fork a new process).
4583// Unlike system(), this function can be called from signal handler. It
4584// doesn't block SIGINT et al.
4585int os::fork_and_exec(char* cmd) {
4586  const char * argv[4] = {"sh", "-c", cmd, NULL};
4587
4588  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4589  // pthread_atfork handlers and reset pthread library. All we need is a
4590  // separate process to execve. Make a direct syscall to fork process.
4591  // On IA64 there's no fork syscall, we have to use fork() and hope for
4592  // the best...
4593  pid_t pid = fork();
4594
4595  if (pid < 0) {
4596    // fork failed
4597    return -1;
4598
4599  } else if (pid == 0) {
4600    // child process
4601
4602    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4603    // first to kill every thread on the thread list. Because this list is
4604    // not reset by fork() (see notes above), execve() will instead kill
4605    // every thread in the parent process. We know this is the only thread
4606    // in the new process, so make a system call directly.
4607    // IA64 should use normal execve() from glibc to match the glibc fork()
4608    // above.
4609    execve("/bin/sh", (char* const*)argv, environ);
4610
4611    // execve failed
4612    _exit(-1);
4613
4614  } else  {
4615    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4616    // care about the actual exit code, for now.
4617
4618    int status;
4619
4620    // Wait for the child process to exit.  This returns immediately if
4621    // the child has already exited. */
4622    while (waitpid(pid, &status, 0) < 0) {
4623        switch (errno) {
4624        case ECHILD: return 0;
4625        case EINTR: break;
4626        default: return -1;
4627        }
4628    }
4629
4630    if (WIFEXITED(status)) {
4631       // The child exited normally; get its exit code.
4632       return WEXITSTATUS(status);
4633    } else if (WIFSIGNALED(status)) {
4634       // The child exited because of a signal
4635       // The best value to return is 0x80 + signal number,
4636       // because that is what all Unix shells do, and because
4637       // it allows callers to distinguish between process exit and
4638       // process death by signal.
4639       return 0x80 + WTERMSIG(status);
4640    } else {
4641       // Unknown exit code; pass it through
4642       return status;
4643    }
4644  }
4645}
4646
4647// is_headless_jre()
4648//
4649// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4650// in order to report if we are running in a headless jre
4651//
4652// Since JDK8 xawt/libmawt.so was moved into the same directory
4653// as libawt.so, and renamed libawt_xawt.so
4654//
4655bool os::is_headless_jre() {
4656#ifdef __APPLE__
4657    // We no longer build headless-only on Mac OS X
4658    return false;
4659#else
4660    struct stat statbuf;
4661    char buf[MAXPATHLEN];
4662    char libmawtpath[MAXPATHLEN];
4663    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4664    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4665    char *p;
4666
4667    // Get path to libjvm.so
4668    os::jvm_path(buf, sizeof(buf));
4669
4670    // Get rid of libjvm.so
4671    p = strrchr(buf, '/');
4672    if (p == NULL) return false;
4673    else *p = '\0';
4674
4675    // Get rid of client or server
4676    p = strrchr(buf, '/');
4677    if (p == NULL) return false;
4678    else *p = '\0';
4679
4680    // check xawt/libmawt.so
4681    strcpy(libmawtpath, buf);
4682    strcat(libmawtpath, xawtstr);
4683    if (::stat(libmawtpath, &statbuf) == 0) return false;
4684
4685    // check libawt_xawt.so
4686    strcpy(libmawtpath, buf);
4687    strcat(libmawtpath, new_xawtstr);
4688    if (::stat(libmawtpath, &statbuf) == 0) return false;
4689
4690    return true;
4691#endif
4692}
4693
4694// Get the default path to the core file
4695// Returns the length of the string
4696int os::get_core_path(char* buffer, size_t bufferSize) {
4697  int n = jio_snprintf(buffer, bufferSize, "/cores");
4698
4699  // Truncate if theoretical string was longer than bufferSize
4700  n = MIN2(n, (int)bufferSize);
4701
4702  return n;
4703}
4704
4705#ifndef PRODUCT
4706void TestReserveMemorySpecial_test() {
4707  // No tests available for this platform
4708}
4709#endif
4710