os_bsd.cpp revision 6019:28f281e8de1d
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103# include <sys/syscall.h>
104
105#if defined(__FreeBSD__) || defined(__NetBSD__)
106# include <elf.h>
107#endif
108
109#ifdef __APPLE__
110# include <mach/mach.h> // semaphore_* API
111# include <mach-o/dyld.h>
112# include <sys/proc_info.h>
113# include <objc/objc-auto.h>
114#endif
115
116#ifndef MAP_ANONYMOUS
117#define MAP_ANONYMOUS MAP_ANON
118#endif
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125#define LARGEPAGES_BIT (1 << 6)
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Bsd::_physical_memory = 0;
129
130
131int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132pthread_t os::Bsd::_main_thread;
133int os::Bsd::_page_size = -1;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151
152////////////////////////////////////////////////////////////////////////////////
153// utility functions
154
155static int SR_initialize();
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158julong os::available_memory() {
159  return Bsd::available_memory();
160}
161
162// available here means free
163julong os::Bsd::available_memory() {
164  uint64_t available = physical_memory() >> 2;
165#ifdef __APPLE__
166  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
167  vm_statistics64_data_t vmstat;
168  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
169                                         (host_info64_t)&vmstat, &count);
170  assert(kerr == KERN_SUCCESS,
171         "host_statistics64 failed - check mach_host_self() and count");
172  if (kerr == KERN_SUCCESS) {
173    available = vmstat.free_count * os::vm_page_size();
174  }
175#endif
176  return available;
177}
178
179julong os::physical_memory() {
180  return Bsd::physical_memory();
181}
182
183////////////////////////////////////////////////////////////////////////////////
184// environment support
185
186bool os::getenv(const char* name, char* buf, int len) {
187  const char* val = ::getenv(name);
188  if (val != NULL && strlen(val) < (size_t)len) {
189    strcpy(buf, val);
190    return true;
191  }
192  if (len > 0) buf[0] = 0;  // return a null string
193  return false;
194}
195
196
197// Return true if user is running as root.
198
199bool os::have_special_privileges() {
200  static bool init = false;
201  static bool privileges = false;
202  if (!init) {
203    privileges = (getuid() != geteuid()) || (getgid() != getegid());
204    init = true;
205  }
206  return privileges;
207}
208
209
210
211// Cpu architecture string
212#if   defined(ZERO)
213static char cpu_arch[] = ZERO_LIBARCH;
214#elif defined(IA64)
215static char cpu_arch[] = "ia64";
216#elif defined(IA32)
217static char cpu_arch[] = "i386";
218#elif defined(AMD64)
219static char cpu_arch[] = "amd64";
220#elif defined(ARM)
221static char cpu_arch[] = "arm";
222#elif defined(PPC32)
223static char cpu_arch[] = "ppc";
224#elif defined(SPARC)
225#  ifdef _LP64
226static char cpu_arch[] = "sparcv9";
227#  else
228static char cpu_arch[] = "sparc";
229#  endif
230#else
231#error Add appropriate cpu_arch setting
232#endif
233
234// Compiler variant
235#ifdef COMPILER2
236#define COMPILER_VARIANT "server"
237#else
238#define COMPILER_VARIANT "client"
239#endif
240
241
242void os::Bsd::initialize_system_info() {
243  int mib[2];
244  size_t len;
245  int cpu_val;
246  julong mem_val;
247
248  /* get processors count via hw.ncpus sysctl */
249  mib[0] = CTL_HW;
250  mib[1] = HW_NCPU;
251  len = sizeof(cpu_val);
252  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
253       assert(len == sizeof(cpu_val), "unexpected data size");
254       set_processor_count(cpu_val);
255  }
256  else {
257       set_processor_count(1);   // fallback
258  }
259
260  /* get physical memory via hw.memsize sysctl (hw.memsize is used
261   * since it returns a 64 bit value)
262   */
263  mib[0] = CTL_HW;
264
265#if defined (HW_MEMSIZE) // Apple
266  mib[1] = HW_MEMSIZE;
267#elif defined(HW_PHYSMEM) // Most of BSD
268  mib[1] = HW_PHYSMEM;
269#elif defined(HW_REALMEM) // Old FreeBSD
270  mib[1] = HW_REALMEM;
271#else
272  #error No ways to get physmem
273#endif
274
275  len = sizeof(mem_val);
276  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
277       assert(len == sizeof(mem_val), "unexpected data size");
278       _physical_memory = mem_val;
279  } else {
280       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
281  }
282
283#ifdef __OpenBSD__
284  {
285       // limit _physical_memory memory view on OpenBSD since
286       // datasize rlimit restricts us anyway.
287       struct rlimit limits;
288       getrlimit(RLIMIT_DATA, &limits);
289       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
290  }
291#endif
292}
293
294#ifdef __APPLE__
295static const char *get_home() {
296  const char *home_dir = ::getenv("HOME");
297  if ((home_dir == NULL) || (*home_dir == '\0')) {
298    struct passwd *passwd_info = getpwuid(geteuid());
299    if (passwd_info != NULL) {
300      home_dir = passwd_info->pw_dir;
301    }
302  }
303
304  return home_dir;
305}
306#endif
307
308void os::init_system_properties_values() {
309//  char arch[12];
310//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
311
312  // The next steps are taken in the product version:
313  //
314  // Obtain the JAVA_HOME value from the location of libjvm.so.
315  // This library should be located at:
316  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
317  //
318  // If "/jre/lib/" appears at the right place in the path, then we
319  // assume libjvm.so is installed in a JDK and we use this path.
320  //
321  // Otherwise exit with message: "Could not create the Java virtual machine."
322  //
323  // The following extra steps are taken in the debugging version:
324  //
325  // If "/jre/lib/" does NOT appear at the right place in the path
326  // instead of exit check for $JAVA_HOME environment variable.
327  //
328  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
329  // then we append a fake suffix "hotspot/libjvm.so" to this path so
330  // it looks like libjvm.so is installed there
331  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
332  //
333  // Otherwise exit.
334  //
335  // Important note: if the location of libjvm.so changes this
336  // code needs to be changed accordingly.
337
338  // The next few definitions allow the code to be verbatim:
339#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
340#define getenv(n) ::getenv(n)
341
342/*
343 * See ld(1):
344 *      The linker uses the following search paths to locate required
345 *      shared libraries:
346 *        1: ...
347 *        ...
348 *        7: The default directories, normally /lib and /usr/lib.
349 */
350#ifndef DEFAULT_LIBPATH
351#define DEFAULT_LIBPATH "/lib:/usr/lib"
352#endif
353
354#define EXTENSIONS_DIR  "/lib/ext"
355#define ENDORSED_DIR    "/lib/endorsed"
356#define REG_DIR         "/usr/java/packages"
357
358#ifdef __APPLE__
359#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
360#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
361        const char *user_home_dir = get_home();
362        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
363        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
364            sizeof(SYS_EXTENSIONS_DIRS);
365#endif
366
367  {
368    /* sysclasspath, java_home, dll_dir */
369    {
370        char *home_path;
371        char *dll_path;
372        char *pslash;
373        char buf[MAXPATHLEN];
374        os::jvm_path(buf, sizeof(buf));
375
376        // Found the full path to libjvm.so.
377        // Now cut the path to <java_home>/jre if we can.
378        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
379        pslash = strrchr(buf, '/');
380        if (pslash != NULL)
381            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
382        dll_path = malloc(strlen(buf) + 1);
383        if (dll_path == NULL)
384            return;
385        strcpy(dll_path, buf);
386        Arguments::set_dll_dir(dll_path);
387
388        if (pslash != NULL) {
389            pslash = strrchr(buf, '/');
390            if (pslash != NULL) {
391                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
392#ifndef __APPLE__
393                pslash = strrchr(buf, '/');
394                if (pslash != NULL)
395                    *pslash = '\0';   /* get rid of /lib */
396#endif
397            }
398        }
399
400        home_path = malloc(strlen(buf) + 1);
401        if (home_path == NULL)
402            return;
403        strcpy(home_path, buf);
404        Arguments::set_java_home(home_path);
405
406        if (!set_boot_path('/', ':'))
407            return;
408    }
409
410    /*
411     * Where to look for native libraries
412     *
413     * Note: Due to a legacy implementation, most of the library path
414     * is set in the launcher.  This was to accomodate linking restrictions
415     * on legacy Bsd implementations (which are no longer supported).
416     * Eventually, all the library path setting will be done here.
417     *
418     * However, to prevent the proliferation of improperly built native
419     * libraries, the new path component /usr/java/packages is added here.
420     * Eventually, all the library path setting will be done here.
421     */
422    {
423        char *ld_library_path;
424
425        /*
426         * Construct the invariant part of ld_library_path. Note that the
427         * space for the colon and the trailing null are provided by the
428         * nulls included by the sizeof operator (so actually we allocate
429         * a byte more than necessary).
430         */
431#ifdef __APPLE__
432        ld_library_path = (char *) malloc(system_ext_size);
433        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
434#else
435        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
436            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
437        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
438#endif
439
440        /*
441         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
442         * should always exist (until the legacy problem cited above is
443         * addressed).
444         */
445#ifdef __APPLE__
446        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
447        char *l = getenv("JAVA_LIBRARY_PATH");
448        if (l != NULL) {
449            char *t = ld_library_path;
450            /* That's +1 for the colon and +1 for the trailing '\0' */
451            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
452            sprintf(ld_library_path, "%s:%s", l, t);
453            free(t);
454        }
455
456        char *v = getenv("DYLD_LIBRARY_PATH");
457#else
458        char *v = getenv("LD_LIBRARY_PATH");
459#endif
460        if (v != NULL) {
461            char *t = ld_library_path;
462            /* That's +1 for the colon and +1 for the trailing '\0' */
463            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
464            sprintf(ld_library_path, "%s:%s", v, t);
465            free(t);
466        }
467
468#ifdef __APPLE__
469        // Apple's Java6 has "." at the beginning of java.library.path.
470        // OpenJDK on Windows has "." at the end of java.library.path.
471        // OpenJDK on Linux and Solaris don't have "." in java.library.path
472        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
473        // "." is appended to the end of java.library.path. Yes, this
474        // could cause a change in behavior, but Apple's Java6 behavior
475        // can be achieved by putting "." at the beginning of the
476        // JAVA_LIBRARY_PATH environment variable.
477        {
478            char *t = ld_library_path;
479            // that's +3 for appending ":." and the trailing '\0'
480            ld_library_path = (char *) malloc(strlen(t) + 3);
481            sprintf(ld_library_path, "%s:%s", t, ".");
482            free(t);
483        }
484#endif
485
486        Arguments::set_library_path(ld_library_path);
487    }
488
489    /*
490     * Extensions directories.
491     *
492     * Note that the space for the colon and the trailing null are provided
493     * by the nulls included by the sizeof operator (so actually one byte more
494     * than necessary is allocated).
495     */
496    {
497#ifdef __APPLE__
498        char *buf = malloc(strlen(Arguments::get_java_home()) +
499            sizeof(EXTENSIONS_DIR) + system_ext_size);
500        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
501            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
502#else
503        char *buf = malloc(strlen(Arguments::get_java_home()) +
504            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
505        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
506            Arguments::get_java_home());
507#endif
508
509        Arguments::set_ext_dirs(buf);
510    }
511
512    /* Endorsed standards default directory. */
513    {
514        char * buf;
515        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
516        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
517        Arguments::set_endorsed_dirs(buf);
518    }
519  }
520
521#ifdef __APPLE__
522#undef SYS_EXTENSIONS_DIR
523#endif
524#undef malloc
525#undef getenv
526#undef EXTENSIONS_DIR
527#undef ENDORSED_DIR
528
529  // Done
530  return;
531}
532
533////////////////////////////////////////////////////////////////////////////////
534// breakpoint support
535
536void os::breakpoint() {
537  BREAKPOINT;
538}
539
540extern "C" void breakpoint() {
541  // use debugger to set breakpoint here
542}
543
544////////////////////////////////////////////////////////////////////////////////
545// signal support
546
547debug_only(static bool signal_sets_initialized = false);
548static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
549
550bool os::Bsd::is_sig_ignored(int sig) {
551      struct sigaction oact;
552      sigaction(sig, (struct sigaction*)NULL, &oact);
553      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
554                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
555      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
556           return true;
557      else
558           return false;
559}
560
561void os::Bsd::signal_sets_init() {
562  // Should also have an assertion stating we are still single-threaded.
563  assert(!signal_sets_initialized, "Already initialized");
564  // Fill in signals that are necessarily unblocked for all threads in
565  // the VM. Currently, we unblock the following signals:
566  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
567  //                         by -Xrs (=ReduceSignalUsage));
568  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
569  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
570  // the dispositions or masks wrt these signals.
571  // Programs embedding the VM that want to use the above signals for their
572  // own purposes must, at this time, use the "-Xrs" option to prevent
573  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
574  // (See bug 4345157, and other related bugs).
575  // In reality, though, unblocking these signals is really a nop, since
576  // these signals are not blocked by default.
577  sigemptyset(&unblocked_sigs);
578  sigemptyset(&allowdebug_blocked_sigs);
579  sigaddset(&unblocked_sigs, SIGILL);
580  sigaddset(&unblocked_sigs, SIGSEGV);
581  sigaddset(&unblocked_sigs, SIGBUS);
582  sigaddset(&unblocked_sigs, SIGFPE);
583  sigaddset(&unblocked_sigs, SR_signum);
584
585  if (!ReduceSignalUsage) {
586   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
587      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
588      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
589   }
590   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
591      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
592      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
593   }
594   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
595      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
596      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
597   }
598  }
599  // Fill in signals that are blocked by all but the VM thread.
600  sigemptyset(&vm_sigs);
601  if (!ReduceSignalUsage)
602    sigaddset(&vm_sigs, BREAK_SIGNAL);
603  debug_only(signal_sets_initialized = true);
604
605}
606
607// These are signals that are unblocked while a thread is running Java.
608// (For some reason, they get blocked by default.)
609sigset_t* os::Bsd::unblocked_signals() {
610  assert(signal_sets_initialized, "Not initialized");
611  return &unblocked_sigs;
612}
613
614// These are the signals that are blocked while a (non-VM) thread is
615// running Java. Only the VM thread handles these signals.
616sigset_t* os::Bsd::vm_signals() {
617  assert(signal_sets_initialized, "Not initialized");
618  return &vm_sigs;
619}
620
621// These are signals that are blocked during cond_wait to allow debugger in
622sigset_t* os::Bsd::allowdebug_blocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &allowdebug_blocked_sigs;
625}
626
627void os::Bsd::hotspot_sigmask(Thread* thread) {
628
629  //Save caller's signal mask before setting VM signal mask
630  sigset_t caller_sigmask;
631  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
632
633  OSThread* osthread = thread->osthread();
634  osthread->set_caller_sigmask(caller_sigmask);
635
636  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
637
638  if (!ReduceSignalUsage) {
639    if (thread->is_VM_thread()) {
640      // Only the VM thread handles BREAK_SIGNAL ...
641      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
642    } else {
643      // ... all other threads block BREAK_SIGNAL
644      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
645    }
646  }
647}
648
649
650//////////////////////////////////////////////////////////////////////////////
651// create new thread
652
653// check if it's safe to start a new thread
654static bool _thread_safety_check(Thread* thread) {
655  return true;
656}
657
658#ifdef __APPLE__
659// library handle for calling objc_registerThreadWithCollector()
660// without static linking to the libobjc library
661#define OBJC_LIB "/usr/lib/libobjc.dylib"
662#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
663typedef void (*objc_registerThreadWithCollector_t)();
664extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
665objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
666#endif
667
668#ifdef __APPLE__
669static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
670  // Additional thread_id used to correlate threads in SA
671  thread_identifier_info_data_t     m_ident_info;
672  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
673
674  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
675              (thread_info_t) &m_ident_info, &count);
676
677  return m_ident_info.thread_id;
678}
679#endif
680
681// Thread start routine for all newly created threads
682static void *java_start(Thread *thread) {
683  // Try to randomize the cache line index of hot stack frames.
684  // This helps when threads of the same stack traces evict each other's
685  // cache lines. The threads can be either from the same JVM instance, or
686  // from different JVM instances. The benefit is especially true for
687  // processors with hyperthreading technology.
688  static int counter = 0;
689  int pid = os::current_process_id();
690  alloca(((pid ^ counter++) & 7) * 128);
691
692  ThreadLocalStorage::set_thread(thread);
693
694  OSThread* osthread = thread->osthread();
695  Monitor* sync = osthread->startThread_lock();
696
697  // non floating stack BsdThreads needs extra check, see above
698  if (!_thread_safety_check(thread)) {
699    // notify parent thread
700    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
701    osthread->set_state(ZOMBIE);
702    sync->notify_all();
703    return NULL;
704  }
705
706  osthread->set_thread_id(os::Bsd::gettid());
707
708#ifdef __APPLE__
709  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
710  guarantee(unique_thread_id != 0, "unique thread id was not found");
711  osthread->set_unique_thread_id(unique_thread_id);
712#endif
713  // initialize signal mask for this thread
714  os::Bsd::hotspot_sigmask(thread);
715
716  // initialize floating point control register
717  os::Bsd::init_thread_fpu_state();
718
719#ifdef __APPLE__
720  // register thread with objc gc
721  if (objc_registerThreadWithCollectorFunction != NULL) {
722    objc_registerThreadWithCollectorFunction();
723  }
724#endif
725
726  // handshaking with parent thread
727  {
728    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
729
730    // notify parent thread
731    osthread->set_state(INITIALIZED);
732    sync->notify_all();
733
734    // wait until os::start_thread()
735    while (osthread->get_state() == INITIALIZED) {
736      sync->wait(Mutex::_no_safepoint_check_flag);
737    }
738  }
739
740  // call one more level start routine
741  thread->run();
742
743  return 0;
744}
745
746bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
747  assert(thread->osthread() == NULL, "caller responsible");
748
749  // Allocate the OSThread object
750  OSThread* osthread = new OSThread(NULL, NULL);
751  if (osthread == NULL) {
752    return false;
753  }
754
755  // set the correct thread state
756  osthread->set_thread_type(thr_type);
757
758  // Initial state is ALLOCATED but not INITIALIZED
759  osthread->set_state(ALLOCATED);
760
761  thread->set_osthread(osthread);
762
763  // init thread attributes
764  pthread_attr_t attr;
765  pthread_attr_init(&attr);
766  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
767
768  // stack size
769  if (os::Bsd::supports_variable_stack_size()) {
770    // calculate stack size if it's not specified by caller
771    if (stack_size == 0) {
772      stack_size = os::Bsd::default_stack_size(thr_type);
773
774      switch (thr_type) {
775      case os::java_thread:
776        // Java threads use ThreadStackSize which default value can be
777        // changed with the flag -Xss
778        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
779        stack_size = JavaThread::stack_size_at_create();
780        break;
781      case os::compiler_thread:
782        if (CompilerThreadStackSize > 0) {
783          stack_size = (size_t)(CompilerThreadStackSize * K);
784          break;
785        } // else fall through:
786          // use VMThreadStackSize if CompilerThreadStackSize is not defined
787      case os::vm_thread:
788      case os::pgc_thread:
789      case os::cgc_thread:
790      case os::watcher_thread:
791        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
792        break;
793      }
794    }
795
796    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
797    pthread_attr_setstacksize(&attr, stack_size);
798  } else {
799    // let pthread_create() pick the default value.
800  }
801
802  ThreadState state;
803
804  {
805    pthread_t tid;
806    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
807
808    pthread_attr_destroy(&attr);
809
810    if (ret != 0) {
811      if (PrintMiscellaneous && (Verbose || WizardMode)) {
812        perror("pthread_create()");
813      }
814      // Need to clean up stuff we've allocated so far
815      thread->set_osthread(NULL);
816      delete osthread;
817      return false;
818    }
819
820    // Store pthread info into the OSThread
821    osthread->set_pthread_id(tid);
822
823    // Wait until child thread is either initialized or aborted
824    {
825      Monitor* sync_with_child = osthread->startThread_lock();
826      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
827      while ((state = osthread->get_state()) == ALLOCATED) {
828        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
829      }
830    }
831
832  }
833
834  // Aborted due to thread limit being reached
835  if (state == ZOMBIE) {
836      thread->set_osthread(NULL);
837      delete osthread;
838      return false;
839  }
840
841  // The thread is returned suspended (in state INITIALIZED),
842  // and is started higher up in the call chain
843  assert(state == INITIALIZED, "race condition");
844  return true;
845}
846
847/////////////////////////////////////////////////////////////////////////////
848// attach existing thread
849
850// bootstrap the main thread
851bool os::create_main_thread(JavaThread* thread) {
852  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
853  return create_attached_thread(thread);
854}
855
856bool os::create_attached_thread(JavaThread* thread) {
857#ifdef ASSERT
858    thread->verify_not_published();
859#endif
860
861  // Allocate the OSThread object
862  OSThread* osthread = new OSThread(NULL, NULL);
863
864  if (osthread == NULL) {
865    return false;
866  }
867
868  osthread->set_thread_id(os::Bsd::gettid());
869
870  // Store pthread info into the OSThread
871#ifdef __APPLE__
872  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
873  guarantee(unique_thread_id != 0, "just checking");
874  osthread->set_unique_thread_id(unique_thread_id);
875#endif
876  osthread->set_pthread_id(::pthread_self());
877
878  // initialize floating point control register
879  os::Bsd::init_thread_fpu_state();
880
881  // Initial thread state is RUNNABLE
882  osthread->set_state(RUNNABLE);
883
884  thread->set_osthread(osthread);
885
886  // initialize signal mask for this thread
887  // and save the caller's signal mask
888  os::Bsd::hotspot_sigmask(thread);
889
890  return true;
891}
892
893void os::pd_start_thread(Thread* thread) {
894  OSThread * osthread = thread->osthread();
895  assert(osthread->get_state() != INITIALIZED, "just checking");
896  Monitor* sync_with_child = osthread->startThread_lock();
897  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
898  sync_with_child->notify();
899}
900
901// Free Bsd resources related to the OSThread
902void os::free_thread(OSThread* osthread) {
903  assert(osthread != NULL, "osthread not set");
904
905  if (Thread::current()->osthread() == osthread) {
906    // Restore caller's signal mask
907    sigset_t sigmask = osthread->caller_sigmask();
908    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
909   }
910
911  delete osthread;
912}
913
914//////////////////////////////////////////////////////////////////////////////
915// thread local storage
916
917int os::allocate_thread_local_storage() {
918  pthread_key_t key;
919  int rslt = pthread_key_create(&key, NULL);
920  assert(rslt == 0, "cannot allocate thread local storage");
921  return (int)key;
922}
923
924// Note: This is currently not used by VM, as we don't destroy TLS key
925// on VM exit.
926void os::free_thread_local_storage(int index) {
927  int rslt = pthread_key_delete((pthread_key_t)index);
928  assert(rslt == 0, "invalid index");
929}
930
931void os::thread_local_storage_at_put(int index, void* value) {
932  int rslt = pthread_setspecific((pthread_key_t)index, value);
933  assert(rslt == 0, "pthread_setspecific failed");
934}
935
936extern "C" Thread* get_thread() {
937  return ThreadLocalStorage::thread();
938}
939
940
941////////////////////////////////////////////////////////////////////////////////
942// time support
943
944// Time since start-up in seconds to a fine granularity.
945// Used by VMSelfDestructTimer and the MemProfiler.
946double os::elapsedTime() {
947
948  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
949}
950
951jlong os::elapsed_counter() {
952  return javaTimeNanos() - initial_time_count;
953}
954
955jlong os::elapsed_frequency() {
956  return NANOSECS_PER_SEC; // nanosecond resolution
957}
958
959bool os::supports_vtime() { return true; }
960bool os::enable_vtime()   { return false; }
961bool os::vtime_enabled()  { return false; }
962
963double os::elapsedVTime() {
964  // better than nothing, but not much
965  return elapsedTime();
966}
967
968jlong os::javaTimeMillis() {
969  timeval time;
970  int status = gettimeofday(&time, NULL);
971  assert(status != -1, "bsd error");
972  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
973}
974
975#ifndef CLOCK_MONOTONIC
976#define CLOCK_MONOTONIC (1)
977#endif
978
979#ifdef __APPLE__
980void os::Bsd::clock_init() {
981        // XXXDARWIN: Investigate replacement monotonic clock
982}
983#else
984void os::Bsd::clock_init() {
985  struct timespec res;
986  struct timespec tp;
987  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
988      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
989    // yes, monotonic clock is supported
990    _clock_gettime = ::clock_gettime;
991  }
992}
993#endif
994
995
996jlong os::javaTimeNanos() {
997  if (Bsd::supports_monotonic_clock()) {
998    struct timespec tp;
999    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1000    assert(status == 0, "gettime error");
1001    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1002    return result;
1003  } else {
1004    timeval time;
1005    int status = gettimeofday(&time, NULL);
1006    assert(status != -1, "bsd error");
1007    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1008    return 1000 * usecs;
1009  }
1010}
1011
1012void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1013  if (Bsd::supports_monotonic_clock()) {
1014    info_ptr->max_value = ALL_64_BITS;
1015
1016    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1017    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1018    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1019  } else {
1020    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1021    info_ptr->max_value = ALL_64_BITS;
1022
1023    // gettimeofday is a real time clock so it skips
1024    info_ptr->may_skip_backward = true;
1025    info_ptr->may_skip_forward = true;
1026  }
1027
1028  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1029}
1030
1031// Return the real, user, and system times in seconds from an
1032// arbitrary fixed point in the past.
1033bool os::getTimesSecs(double* process_real_time,
1034                      double* process_user_time,
1035                      double* process_system_time) {
1036  struct tms ticks;
1037  clock_t real_ticks = times(&ticks);
1038
1039  if (real_ticks == (clock_t) (-1)) {
1040    return false;
1041  } else {
1042    double ticks_per_second = (double) clock_tics_per_sec;
1043    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1044    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1045    *process_real_time = ((double) real_ticks) / ticks_per_second;
1046
1047    return true;
1048  }
1049}
1050
1051
1052char * os::local_time_string(char *buf, size_t buflen) {
1053  struct tm t;
1054  time_t long_time;
1055  time(&long_time);
1056  localtime_r(&long_time, &t);
1057  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1058               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1059               t.tm_hour, t.tm_min, t.tm_sec);
1060  return buf;
1061}
1062
1063struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1064  return localtime_r(clock, res);
1065}
1066
1067////////////////////////////////////////////////////////////////////////////////
1068// runtime exit support
1069
1070// Note: os::shutdown() might be called very early during initialization, or
1071// called from signal handler. Before adding something to os::shutdown(), make
1072// sure it is async-safe and can handle partially initialized VM.
1073void os::shutdown() {
1074
1075  // allow PerfMemory to attempt cleanup of any persistent resources
1076  perfMemory_exit();
1077
1078  // needs to remove object in file system
1079  AttachListener::abort();
1080
1081  // flush buffered output, finish log files
1082  ostream_abort();
1083
1084  // Check for abort hook
1085  abort_hook_t abort_hook = Arguments::abort_hook();
1086  if (abort_hook != NULL) {
1087    abort_hook();
1088  }
1089
1090}
1091
1092// Note: os::abort() might be called very early during initialization, or
1093// called from signal handler. Before adding something to os::abort(), make
1094// sure it is async-safe and can handle partially initialized VM.
1095void os::abort(bool dump_core) {
1096  os::shutdown();
1097  if (dump_core) {
1098#ifndef PRODUCT
1099    fdStream out(defaultStream::output_fd());
1100    out.print_raw("Current thread is ");
1101    char buf[16];
1102    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1103    out.print_raw_cr(buf);
1104    out.print_raw_cr("Dumping core ...");
1105#endif
1106    ::abort(); // dump core
1107  }
1108
1109  ::exit(1);
1110}
1111
1112// Die immediately, no exit hook, no abort hook, no cleanup.
1113void os::die() {
1114  // _exit() on BsdThreads only kills current thread
1115  ::abort();
1116}
1117
1118// unused on bsd for now.
1119void os::set_error_file(const char *logfile) {}
1120
1121
1122// This method is a copy of JDK's sysGetLastErrorString
1123// from src/solaris/hpi/src/system_md.c
1124
1125size_t os::lasterror(char *buf, size_t len) {
1126
1127  if (errno == 0)  return 0;
1128
1129  const char *s = ::strerror(errno);
1130  size_t n = ::strlen(s);
1131  if (n >= len) {
1132    n = len - 1;
1133  }
1134  ::strncpy(buf, s, n);
1135  buf[n] = '\0';
1136  return n;
1137}
1138
1139// Information of current thread in variety of formats
1140pid_t os::Bsd::gettid() {
1141  int retval = -1;
1142
1143#ifdef __APPLE__ //XNU kernel
1144  // despite the fact mach port is actually not a thread id use it
1145  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1146  retval = ::pthread_mach_thread_np(::pthread_self());
1147  guarantee(retval != 0, "just checking");
1148  return retval;
1149
1150#elif __FreeBSD__
1151  retval = syscall(SYS_thr_self);
1152#elif __OpenBSD__
1153  retval = syscall(SYS_getthrid);
1154#elif __NetBSD__
1155  retval = (pid_t) syscall(SYS__lwp_self);
1156#endif
1157
1158  if (retval == -1) {
1159    return getpid();
1160  }
1161}
1162
1163intx os::current_thread_id() {
1164#ifdef __APPLE__
1165  return (intx)::pthread_mach_thread_np(::pthread_self());
1166#else
1167  return (intx)::pthread_self();
1168#endif
1169}
1170
1171int os::current_process_id() {
1172
1173  // Under the old bsd thread library, bsd gives each thread
1174  // its own process id. Because of this each thread will return
1175  // a different pid if this method were to return the result
1176  // of getpid(2). Bsd provides no api that returns the pid
1177  // of the launcher thread for the vm. This implementation
1178  // returns a unique pid, the pid of the launcher thread
1179  // that starts the vm 'process'.
1180
1181  // Under the NPTL, getpid() returns the same pid as the
1182  // launcher thread rather than a unique pid per thread.
1183  // Use gettid() if you want the old pre NPTL behaviour.
1184
1185  // if you are looking for the result of a call to getpid() that
1186  // returns a unique pid for the calling thread, then look at the
1187  // OSThread::thread_id() method in osThread_bsd.hpp file
1188
1189  return (int)(_initial_pid ? _initial_pid : getpid());
1190}
1191
1192// DLL functions
1193
1194#define JNI_LIB_PREFIX "lib"
1195#ifdef __APPLE__
1196#define JNI_LIB_SUFFIX ".dylib"
1197#else
1198#define JNI_LIB_SUFFIX ".so"
1199#endif
1200
1201const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1202
1203// This must be hard coded because it's the system's temporary
1204// directory not the java application's temp directory, ala java.io.tmpdir.
1205#ifdef __APPLE__
1206// macosx has a secure per-user temporary directory
1207char temp_path_storage[PATH_MAX];
1208const char* os::get_temp_directory() {
1209  static char *temp_path = NULL;
1210  if (temp_path == NULL) {
1211    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1212    if (pathSize == 0 || pathSize > PATH_MAX) {
1213      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1214    }
1215    temp_path = temp_path_storage;
1216  }
1217  return temp_path;
1218}
1219#else /* __APPLE__ */
1220const char* os::get_temp_directory() { return "/tmp"; }
1221#endif /* __APPLE__ */
1222
1223static bool file_exists(const char* filename) {
1224  struct stat statbuf;
1225  if (filename == NULL || strlen(filename) == 0) {
1226    return false;
1227  }
1228  return os::stat(filename, &statbuf) == 0;
1229}
1230
1231bool os::dll_build_name(char* buffer, size_t buflen,
1232                        const char* pname, const char* fname) {
1233  bool retval = false;
1234  // Copied from libhpi
1235  const size_t pnamelen = pname ? strlen(pname) : 0;
1236
1237  // Return error on buffer overflow.
1238  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1239    return retval;
1240  }
1241
1242  if (pnamelen == 0) {
1243    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1244    retval = true;
1245  } else if (strchr(pname, *os::path_separator()) != NULL) {
1246    int n;
1247    char** pelements = split_path(pname, &n);
1248    if (pelements == NULL) {
1249      return false;
1250    }
1251    for (int i = 0 ; i < n ; i++) {
1252      // Really shouldn't be NULL, but check can't hurt
1253      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1254        continue; // skip the empty path values
1255      }
1256      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1257          pelements[i], fname);
1258      if (file_exists(buffer)) {
1259        retval = true;
1260        break;
1261      }
1262    }
1263    // release the storage
1264    for (int i = 0 ; i < n ; i++) {
1265      if (pelements[i] != NULL) {
1266        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1267      }
1268    }
1269    if (pelements != NULL) {
1270      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1271    }
1272  } else {
1273    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1274    retval = true;
1275  }
1276  return retval;
1277}
1278
1279// check if addr is inside libjvm.so
1280bool os::address_is_in_vm(address addr) {
1281  static address libjvm_base_addr;
1282  Dl_info dlinfo;
1283
1284  if (libjvm_base_addr == NULL) {
1285    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1286      libjvm_base_addr = (address)dlinfo.dli_fbase;
1287    }
1288    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1289  }
1290
1291  if (dladdr((void *)addr, &dlinfo) != 0) {
1292    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1293  }
1294
1295  return false;
1296}
1297
1298
1299#define MACH_MAXSYMLEN 256
1300
1301bool os::dll_address_to_function_name(address addr, char *buf,
1302                                      int buflen, int *offset) {
1303  // buf is not optional, but offset is optional
1304  assert(buf != NULL, "sanity check");
1305
1306  Dl_info dlinfo;
1307  char localbuf[MACH_MAXSYMLEN];
1308
1309  if (dladdr((void*)addr, &dlinfo) != 0) {
1310    // see if we have a matching symbol
1311    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1312      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1313        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1314      }
1315      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1316      return true;
1317    }
1318    // no matching symbol so try for just file info
1319    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1320      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1321                          buf, buflen, offset, dlinfo.dli_fname)) {
1322         return true;
1323      }
1324    }
1325
1326    // Handle non-dynamic manually:
1327    if (dlinfo.dli_fbase != NULL &&
1328        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1329                        dlinfo.dli_fbase)) {
1330      if (!Decoder::demangle(localbuf, buf, buflen)) {
1331        jio_snprintf(buf, buflen, "%s", localbuf);
1332      }
1333      return true;
1334    }
1335  }
1336  buf[0] = '\0';
1337  if (offset != NULL) *offset = -1;
1338  return false;
1339}
1340
1341// ported from solaris version
1342bool os::dll_address_to_library_name(address addr, char* buf,
1343                                     int buflen, int* offset) {
1344  // buf is not optional, but offset is optional
1345  assert(buf != NULL, "sanity check");
1346
1347  Dl_info dlinfo;
1348
1349  if (dladdr((void*)addr, &dlinfo) != 0) {
1350    if (dlinfo.dli_fname != NULL) {
1351      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1352    }
1353    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1354      *offset = addr - (address)dlinfo.dli_fbase;
1355    }
1356    return true;
1357  }
1358
1359  buf[0] = '\0';
1360  if (offset) *offset = -1;
1361  return false;
1362}
1363
1364// Loads .dll/.so and
1365// in case of error it checks if .dll/.so was built for the
1366// same architecture as Hotspot is running on
1367
1368#ifdef __APPLE__
1369void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1370  void * result= ::dlopen(filename, RTLD_LAZY);
1371  if (result != NULL) {
1372    // Successful loading
1373    return result;
1374  }
1375
1376  // Read system error message into ebuf
1377  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1378  ebuf[ebuflen-1]='\0';
1379
1380  return NULL;
1381}
1382#else
1383void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1384{
1385  void * result= ::dlopen(filename, RTLD_LAZY);
1386  if (result != NULL) {
1387    // Successful loading
1388    return result;
1389  }
1390
1391  Elf32_Ehdr elf_head;
1392
1393  // Read system error message into ebuf
1394  // It may or may not be overwritten below
1395  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1396  ebuf[ebuflen-1]='\0';
1397  int diag_msg_max_length=ebuflen-strlen(ebuf);
1398  char* diag_msg_buf=ebuf+strlen(ebuf);
1399
1400  if (diag_msg_max_length==0) {
1401    // No more space in ebuf for additional diagnostics message
1402    return NULL;
1403  }
1404
1405
1406  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1407
1408  if (file_descriptor < 0) {
1409    // Can't open library, report dlerror() message
1410    return NULL;
1411  }
1412
1413  bool failed_to_read_elf_head=
1414    (sizeof(elf_head)!=
1415        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1416
1417  ::close(file_descriptor);
1418  if (failed_to_read_elf_head) {
1419    // file i/o error - report dlerror() msg
1420    return NULL;
1421  }
1422
1423  typedef struct {
1424    Elf32_Half  code;         // Actual value as defined in elf.h
1425    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1426    char        elf_class;    // 32 or 64 bit
1427    char        endianess;    // MSB or LSB
1428    char*       name;         // String representation
1429  } arch_t;
1430
1431  #ifndef EM_486
1432  #define EM_486          6               /* Intel 80486 */
1433  #endif
1434
1435  #ifndef EM_MIPS_RS3_LE
1436  #define EM_MIPS_RS3_LE  10              /* MIPS */
1437  #endif
1438
1439  #ifndef EM_PPC64
1440  #define EM_PPC64        21              /* PowerPC64 */
1441  #endif
1442
1443  #ifndef EM_S390
1444  #define EM_S390         22              /* IBM System/390 */
1445  #endif
1446
1447  #ifndef EM_IA_64
1448  #define EM_IA_64        50              /* HP/Intel IA-64 */
1449  #endif
1450
1451  #ifndef EM_X86_64
1452  #define EM_X86_64       62              /* AMD x86-64 */
1453  #endif
1454
1455  static const arch_t arch_array[]={
1456    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1457    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1458    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1459    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1460    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1461    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1462    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1463    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1464    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1465    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1466    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1467    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1468    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1469    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1470    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1471    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1472  };
1473
1474  #if  (defined IA32)
1475    static  Elf32_Half running_arch_code=EM_386;
1476  #elif   (defined AMD64)
1477    static  Elf32_Half running_arch_code=EM_X86_64;
1478  #elif  (defined IA64)
1479    static  Elf32_Half running_arch_code=EM_IA_64;
1480  #elif  (defined __sparc) && (defined _LP64)
1481    static  Elf32_Half running_arch_code=EM_SPARCV9;
1482  #elif  (defined __sparc) && (!defined _LP64)
1483    static  Elf32_Half running_arch_code=EM_SPARC;
1484  #elif  (defined __powerpc64__)
1485    static  Elf32_Half running_arch_code=EM_PPC64;
1486  #elif  (defined __powerpc__)
1487    static  Elf32_Half running_arch_code=EM_PPC;
1488  #elif  (defined ARM)
1489    static  Elf32_Half running_arch_code=EM_ARM;
1490  #elif  (defined S390)
1491    static  Elf32_Half running_arch_code=EM_S390;
1492  #elif  (defined ALPHA)
1493    static  Elf32_Half running_arch_code=EM_ALPHA;
1494  #elif  (defined MIPSEL)
1495    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1496  #elif  (defined PARISC)
1497    static  Elf32_Half running_arch_code=EM_PARISC;
1498  #elif  (defined MIPS)
1499    static  Elf32_Half running_arch_code=EM_MIPS;
1500  #elif  (defined M68K)
1501    static  Elf32_Half running_arch_code=EM_68K;
1502  #else
1503    #error Method os::dll_load requires that one of following is defined:\
1504         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1505  #endif
1506
1507  // Identify compatability class for VM's architecture and library's architecture
1508  // Obtain string descriptions for architectures
1509
1510  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1511  int running_arch_index=-1;
1512
1513  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1514    if (running_arch_code == arch_array[i].code) {
1515      running_arch_index    = i;
1516    }
1517    if (lib_arch.code == arch_array[i].code) {
1518      lib_arch.compat_class = arch_array[i].compat_class;
1519      lib_arch.name         = arch_array[i].name;
1520    }
1521  }
1522
1523  assert(running_arch_index != -1,
1524    "Didn't find running architecture code (running_arch_code) in arch_array");
1525  if (running_arch_index == -1) {
1526    // Even though running architecture detection failed
1527    // we may still continue with reporting dlerror() message
1528    return NULL;
1529  }
1530
1531  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1532    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1533    return NULL;
1534  }
1535
1536#ifndef S390
1537  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1538    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1539    return NULL;
1540  }
1541#endif // !S390
1542
1543  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1544    if ( lib_arch.name!=NULL ) {
1545      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1546        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1547        lib_arch.name, arch_array[running_arch_index].name);
1548    } else {
1549      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1550      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1551        lib_arch.code,
1552        arch_array[running_arch_index].name);
1553    }
1554  }
1555
1556  return NULL;
1557}
1558#endif /* !__APPLE__ */
1559
1560void* os::get_default_process_handle() {
1561#ifdef __APPLE__
1562  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1563  // to avoid finding unexpected symbols on second (or later)
1564  // loads of a library.
1565  return (void*)::dlopen(NULL, RTLD_FIRST);
1566#else
1567  return (void*)::dlopen(NULL, RTLD_LAZY);
1568#endif
1569}
1570
1571// XXX: Do we need a lock around this as per Linux?
1572void* os::dll_lookup(void* handle, const char* name) {
1573  return dlsym(handle, name);
1574}
1575
1576
1577static bool _print_ascii_file(const char* filename, outputStream* st) {
1578  int fd = ::open(filename, O_RDONLY);
1579  if (fd == -1) {
1580     return false;
1581  }
1582
1583  char buf[32];
1584  int bytes;
1585  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1586    st->print_raw(buf, bytes);
1587  }
1588
1589  ::close(fd);
1590
1591  return true;
1592}
1593
1594void os::print_dll_info(outputStream *st) {
1595  st->print_cr("Dynamic libraries:");
1596#ifdef RTLD_DI_LINKMAP
1597  Dl_info dli;
1598  void *handle;
1599  Link_map *map;
1600  Link_map *p;
1601
1602  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1603      dli.dli_fname == NULL) {
1604    st->print_cr("Error: Cannot print dynamic libraries.");
1605    return;
1606  }
1607  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1608  if (handle == NULL) {
1609    st->print_cr("Error: Cannot print dynamic libraries.");
1610    return;
1611  }
1612  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1613  if (map == NULL) {
1614    st->print_cr("Error: Cannot print dynamic libraries.");
1615    return;
1616  }
1617
1618  while (map->l_prev != NULL)
1619    map = map->l_prev;
1620
1621  while (map != NULL) {
1622    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1623    map = map->l_next;
1624  }
1625
1626  dlclose(handle);
1627#elif defined(__APPLE__)
1628  uint32_t count;
1629  uint32_t i;
1630
1631  count = _dyld_image_count();
1632  for (i = 1; i < count; i++) {
1633    const char *name = _dyld_get_image_name(i);
1634    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1635    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1636  }
1637#else
1638  st->print_cr("Error: Cannot print dynamic libraries.");
1639#endif
1640}
1641
1642void os::print_os_info_brief(outputStream* st) {
1643  st->print("Bsd");
1644
1645  os::Posix::print_uname_info(st);
1646}
1647
1648void os::print_os_info(outputStream* st) {
1649  st->print("OS:");
1650  st->print("Bsd");
1651
1652  os::Posix::print_uname_info(st);
1653
1654  os::Posix::print_rlimit_info(st);
1655
1656  os::Posix::print_load_average(st);
1657}
1658
1659void os::pd_print_cpu_info(outputStream* st) {
1660  // Nothing to do for now.
1661}
1662
1663void os::print_memory_info(outputStream* st) {
1664
1665  st->print("Memory:");
1666  st->print(" %dk page", os::vm_page_size()>>10);
1667
1668  st->print(", physical " UINT64_FORMAT "k",
1669            os::physical_memory() >> 10);
1670  st->print("(" UINT64_FORMAT "k free)",
1671            os::available_memory() >> 10);
1672  st->cr();
1673
1674  // meminfo
1675  st->print("\n/proc/meminfo:\n");
1676  _print_ascii_file("/proc/meminfo", st);
1677  st->cr();
1678}
1679
1680void os::print_siginfo(outputStream* st, void* siginfo) {
1681  const siginfo_t* si = (const siginfo_t*)siginfo;
1682
1683  os::Posix::print_siginfo_brief(st, si);
1684
1685  if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1686      UseSharedSpaces) {
1687    FileMapInfo* mapinfo = FileMapInfo::current_info();
1688    if (mapinfo->is_in_shared_space(si->si_addr)) {
1689      st->print("\n\nError accessing class data sharing archive."   \
1690                " Mapped file inaccessible during execution, "      \
1691                " possible disk/network problem.");
1692    }
1693  }
1694  st->cr();
1695}
1696
1697
1698static void print_signal_handler(outputStream* st, int sig,
1699                                 char* buf, size_t buflen);
1700
1701void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1702  st->print_cr("Signal Handlers:");
1703  print_signal_handler(st, SIGSEGV, buf, buflen);
1704  print_signal_handler(st, SIGBUS , buf, buflen);
1705  print_signal_handler(st, SIGFPE , buf, buflen);
1706  print_signal_handler(st, SIGPIPE, buf, buflen);
1707  print_signal_handler(st, SIGXFSZ, buf, buflen);
1708  print_signal_handler(st, SIGILL , buf, buflen);
1709  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1710  print_signal_handler(st, SR_signum, buf, buflen);
1711  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1712  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1713  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1714  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1715}
1716
1717static char saved_jvm_path[MAXPATHLEN] = {0};
1718
1719// Find the full path to the current module, libjvm
1720void os::jvm_path(char *buf, jint buflen) {
1721  // Error checking.
1722  if (buflen < MAXPATHLEN) {
1723    assert(false, "must use a large-enough buffer");
1724    buf[0] = '\0';
1725    return;
1726  }
1727  // Lazy resolve the path to current module.
1728  if (saved_jvm_path[0] != 0) {
1729    strcpy(buf, saved_jvm_path);
1730    return;
1731  }
1732
1733  char dli_fname[MAXPATHLEN];
1734  bool ret = dll_address_to_library_name(
1735                CAST_FROM_FN_PTR(address, os::jvm_path),
1736                dli_fname, sizeof(dli_fname), NULL);
1737  assert(ret, "cannot locate libjvm");
1738  char *rp = NULL;
1739  if (ret && dli_fname[0] != '\0') {
1740    rp = realpath(dli_fname, buf);
1741  }
1742  if (rp == NULL)
1743    return;
1744
1745  if (Arguments::sun_java_launcher_is_altjvm()) {
1746    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1747    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1748    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1749    // appears at the right place in the string, then assume we are
1750    // installed in a JDK and we're done. Otherwise, check for a
1751    // JAVA_HOME environment variable and construct a path to the JVM
1752    // being overridden.
1753
1754    const char *p = buf + strlen(buf) - 1;
1755    for (int count = 0; p > buf && count < 5; ++count) {
1756      for (--p; p > buf && *p != '/'; --p)
1757        /* empty */ ;
1758    }
1759
1760    if (strncmp(p, "/jre/lib/", 9) != 0) {
1761      // Look for JAVA_HOME in the environment.
1762      char* java_home_var = ::getenv("JAVA_HOME");
1763      if (java_home_var != NULL && java_home_var[0] != 0) {
1764        char* jrelib_p;
1765        int len;
1766
1767        // Check the current module name "libjvm"
1768        p = strrchr(buf, '/');
1769        assert(strstr(p, "/libjvm") == p, "invalid library name");
1770
1771        rp = realpath(java_home_var, buf);
1772        if (rp == NULL)
1773          return;
1774
1775        // determine if this is a legacy image or modules image
1776        // modules image doesn't have "jre" subdirectory
1777        len = strlen(buf);
1778        jrelib_p = buf + len;
1779
1780        // Add the appropriate library subdir
1781        snprintf(jrelib_p, buflen-len, "/jre/lib");
1782        if (0 != access(buf, F_OK)) {
1783          snprintf(jrelib_p, buflen-len, "/lib");
1784        }
1785
1786        // Add the appropriate client or server subdir
1787        len = strlen(buf);
1788        jrelib_p = buf + len;
1789        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1790        if (0 != access(buf, F_OK)) {
1791          snprintf(jrelib_p, buflen-len, "%s", "");
1792        }
1793
1794        // If the path exists within JAVA_HOME, add the JVM library name
1795        // to complete the path to JVM being overridden.  Otherwise fallback
1796        // to the path to the current library.
1797        if (0 == access(buf, F_OK)) {
1798          // Use current module name "libjvm"
1799          len = strlen(buf);
1800          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1801        } else {
1802          // Fall back to path of current library
1803          rp = realpath(dli_fname, buf);
1804          if (rp == NULL)
1805            return;
1806        }
1807      }
1808    }
1809  }
1810
1811  strcpy(saved_jvm_path, buf);
1812}
1813
1814void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1815  // no prefix required, not even "_"
1816}
1817
1818void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1819  // no suffix required
1820}
1821
1822////////////////////////////////////////////////////////////////////////////////
1823// sun.misc.Signal support
1824
1825static volatile jint sigint_count = 0;
1826
1827static void
1828UserHandler(int sig, void *siginfo, void *context) {
1829  // 4511530 - sem_post is serialized and handled by the manager thread. When
1830  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1831  // don't want to flood the manager thread with sem_post requests.
1832  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1833      return;
1834
1835  // Ctrl-C is pressed during error reporting, likely because the error
1836  // handler fails to abort. Let VM die immediately.
1837  if (sig == SIGINT && is_error_reported()) {
1838     os::die();
1839  }
1840
1841  os::signal_notify(sig);
1842}
1843
1844void* os::user_handler() {
1845  return CAST_FROM_FN_PTR(void*, UserHandler);
1846}
1847
1848extern "C" {
1849  typedef void (*sa_handler_t)(int);
1850  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1851}
1852
1853void* os::signal(int signal_number, void* handler) {
1854  struct sigaction sigAct, oldSigAct;
1855
1856  sigfillset(&(sigAct.sa_mask));
1857  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1858  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1859
1860  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1861    // -1 means registration failed
1862    return (void *)-1;
1863  }
1864
1865  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1866}
1867
1868void os::signal_raise(int signal_number) {
1869  ::raise(signal_number);
1870}
1871
1872/*
1873 * The following code is moved from os.cpp for making this
1874 * code platform specific, which it is by its very nature.
1875 */
1876
1877// Will be modified when max signal is changed to be dynamic
1878int os::sigexitnum_pd() {
1879  return NSIG;
1880}
1881
1882// a counter for each possible signal value
1883static volatile jint pending_signals[NSIG+1] = { 0 };
1884
1885// Bsd(POSIX) specific hand shaking semaphore.
1886#ifdef __APPLE__
1887typedef semaphore_t os_semaphore_t;
1888#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1889#define SEM_WAIT(sem)           semaphore_wait(sem)
1890#define SEM_POST(sem)           semaphore_signal(sem)
1891#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1892#else
1893typedef sem_t os_semaphore_t;
1894#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1895#define SEM_WAIT(sem)           sem_wait(&sem)
1896#define SEM_POST(sem)           sem_post(&sem)
1897#define SEM_DESTROY(sem)        sem_destroy(&sem)
1898#endif
1899
1900class Semaphore : public StackObj {
1901  public:
1902    Semaphore();
1903    ~Semaphore();
1904    void signal();
1905    void wait();
1906    bool trywait();
1907    bool timedwait(unsigned int sec, int nsec);
1908  private:
1909    jlong currenttime() const;
1910    os_semaphore_t _semaphore;
1911};
1912
1913Semaphore::Semaphore() : _semaphore(0) {
1914  SEM_INIT(_semaphore, 0);
1915}
1916
1917Semaphore::~Semaphore() {
1918  SEM_DESTROY(_semaphore);
1919}
1920
1921void Semaphore::signal() {
1922  SEM_POST(_semaphore);
1923}
1924
1925void Semaphore::wait() {
1926  SEM_WAIT(_semaphore);
1927}
1928
1929jlong Semaphore::currenttime() const {
1930    struct timeval tv;
1931    gettimeofday(&tv, NULL);
1932    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1933}
1934
1935#ifdef __APPLE__
1936bool Semaphore::trywait() {
1937  return timedwait(0, 0);
1938}
1939
1940bool Semaphore::timedwait(unsigned int sec, int nsec) {
1941  kern_return_t kr = KERN_ABORTED;
1942  mach_timespec_t waitspec;
1943  waitspec.tv_sec = sec;
1944  waitspec.tv_nsec = nsec;
1945
1946  jlong starttime = currenttime();
1947
1948  kr = semaphore_timedwait(_semaphore, waitspec);
1949  while (kr == KERN_ABORTED) {
1950    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1951
1952    jlong current = currenttime();
1953    jlong passedtime = current - starttime;
1954
1955    if (passedtime >= totalwait) {
1956      waitspec.tv_sec = 0;
1957      waitspec.tv_nsec = 0;
1958    } else {
1959      jlong waittime = totalwait - (current - starttime);
1960      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1961      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1962    }
1963
1964    kr = semaphore_timedwait(_semaphore, waitspec);
1965  }
1966
1967  return kr == KERN_SUCCESS;
1968}
1969
1970#else
1971
1972bool Semaphore::trywait() {
1973  return sem_trywait(&_semaphore) == 0;
1974}
1975
1976bool Semaphore::timedwait(unsigned int sec, int nsec) {
1977  struct timespec ts;
1978  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1979
1980  while (1) {
1981    int result = sem_timedwait(&_semaphore, &ts);
1982    if (result == 0) {
1983      return true;
1984    } else if (errno == EINTR) {
1985      continue;
1986    } else if (errno == ETIMEDOUT) {
1987      return false;
1988    } else {
1989      return false;
1990    }
1991  }
1992}
1993
1994#endif // __APPLE__
1995
1996static os_semaphore_t sig_sem;
1997static Semaphore sr_semaphore;
1998
1999void os::signal_init_pd() {
2000  // Initialize signal structures
2001  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2002
2003  // Initialize signal semaphore
2004  ::SEM_INIT(sig_sem, 0);
2005}
2006
2007void os::signal_notify(int sig) {
2008  Atomic::inc(&pending_signals[sig]);
2009  ::SEM_POST(sig_sem);
2010}
2011
2012static int check_pending_signals(bool wait) {
2013  Atomic::store(0, &sigint_count);
2014  for (;;) {
2015    for (int i = 0; i < NSIG + 1; i++) {
2016      jint n = pending_signals[i];
2017      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2018        return i;
2019      }
2020    }
2021    if (!wait) {
2022      return -1;
2023    }
2024    JavaThread *thread = JavaThread::current();
2025    ThreadBlockInVM tbivm(thread);
2026
2027    bool threadIsSuspended;
2028    do {
2029      thread->set_suspend_equivalent();
2030      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2031      ::SEM_WAIT(sig_sem);
2032
2033      // were we externally suspended while we were waiting?
2034      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2035      if (threadIsSuspended) {
2036        //
2037        // The semaphore has been incremented, but while we were waiting
2038        // another thread suspended us. We don't want to continue running
2039        // while suspended because that would surprise the thread that
2040        // suspended us.
2041        //
2042        ::SEM_POST(sig_sem);
2043
2044        thread->java_suspend_self();
2045      }
2046    } while (threadIsSuspended);
2047  }
2048}
2049
2050int os::signal_lookup() {
2051  return check_pending_signals(false);
2052}
2053
2054int os::signal_wait() {
2055  return check_pending_signals(true);
2056}
2057
2058////////////////////////////////////////////////////////////////////////////////
2059// Virtual Memory
2060
2061int os::vm_page_size() {
2062  // Seems redundant as all get out
2063  assert(os::Bsd::page_size() != -1, "must call os::init");
2064  return os::Bsd::page_size();
2065}
2066
2067// Solaris allocates memory by pages.
2068int os::vm_allocation_granularity() {
2069  assert(os::Bsd::page_size() != -1, "must call os::init");
2070  return os::Bsd::page_size();
2071}
2072
2073// Rationale behind this function:
2074//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2075//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2076//  samples for JITted code. Here we create private executable mapping over the code cache
2077//  and then we can use standard (well, almost, as mapping can change) way to provide
2078//  info for the reporting script by storing timestamp and location of symbol
2079void bsd_wrap_code(char* base, size_t size) {
2080  static volatile jint cnt = 0;
2081
2082  if (!UseOprofile) {
2083    return;
2084  }
2085
2086  char buf[PATH_MAX + 1];
2087  int num = Atomic::add(1, &cnt);
2088
2089  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2090           os::get_temp_directory(), os::current_process_id(), num);
2091  unlink(buf);
2092
2093  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2094
2095  if (fd != -1) {
2096    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2097    if (rv != (off_t)-1) {
2098      if (::write(fd, "", 1) == 1) {
2099        mmap(base, size,
2100             PROT_READ|PROT_WRITE|PROT_EXEC,
2101             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2102      }
2103    }
2104    ::close(fd);
2105    unlink(buf);
2106  }
2107}
2108
2109static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2110                                    int err) {
2111  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2112          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2113          strerror(err), err);
2114}
2115
2116// NOTE: Bsd kernel does not really reserve the pages for us.
2117//       All it does is to check if there are enough free pages
2118//       left at the time of mmap(). This could be a potential
2119//       problem.
2120bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2121  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2122#ifdef __OpenBSD__
2123  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2124  if (::mprotect(addr, size, prot) == 0) {
2125    return true;
2126  }
2127#else
2128  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2129                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2130  if (res != (uintptr_t) MAP_FAILED) {
2131    return true;
2132  }
2133#endif
2134
2135  // Warn about any commit errors we see in non-product builds just
2136  // in case mmap() doesn't work as described on the man page.
2137  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2138
2139  return false;
2140}
2141
2142bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2143                       bool exec) {
2144  // alignment_hint is ignored on this OS
2145  return pd_commit_memory(addr, size, exec);
2146}
2147
2148void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2149                                  const char* mesg) {
2150  assert(mesg != NULL, "mesg must be specified");
2151  if (!pd_commit_memory(addr, size, exec)) {
2152    // add extra info in product mode for vm_exit_out_of_memory():
2153    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2154    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2155  }
2156}
2157
2158void os::pd_commit_memory_or_exit(char* addr, size_t size,
2159                                  size_t alignment_hint, bool exec,
2160                                  const char* mesg) {
2161  // alignment_hint is ignored on this OS
2162  pd_commit_memory_or_exit(addr, size, exec, mesg);
2163}
2164
2165void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2166}
2167
2168void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2169  ::madvise(addr, bytes, MADV_DONTNEED);
2170}
2171
2172void os::numa_make_global(char *addr, size_t bytes) {
2173}
2174
2175void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2176}
2177
2178bool os::numa_topology_changed()   { return false; }
2179
2180size_t os::numa_get_groups_num() {
2181  return 1;
2182}
2183
2184int os::numa_get_group_id() {
2185  return 0;
2186}
2187
2188size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2189  if (size > 0) {
2190    ids[0] = 0;
2191    return 1;
2192  }
2193  return 0;
2194}
2195
2196bool os::get_page_info(char *start, page_info* info) {
2197  return false;
2198}
2199
2200char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2201  return end;
2202}
2203
2204
2205bool os::pd_uncommit_memory(char* addr, size_t size) {
2206#ifdef __OpenBSD__
2207  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2208  return ::mprotect(addr, size, PROT_NONE) == 0;
2209#else
2210  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2211                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2212  return res  != (uintptr_t) MAP_FAILED;
2213#endif
2214}
2215
2216bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2217  return os::commit_memory(addr, size, !ExecMem);
2218}
2219
2220// If this is a growable mapping, remove the guard pages entirely by
2221// munmap()ping them.  If not, just call uncommit_memory().
2222bool os::remove_stack_guard_pages(char* addr, size_t size) {
2223  return os::uncommit_memory(addr, size);
2224}
2225
2226static address _highest_vm_reserved_address = NULL;
2227
2228// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2229// at 'requested_addr'. If there are existing memory mappings at the same
2230// location, however, they will be overwritten. If 'fixed' is false,
2231// 'requested_addr' is only treated as a hint, the return value may or
2232// may not start from the requested address. Unlike Bsd mmap(), this
2233// function returns NULL to indicate failure.
2234static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2235  char * addr;
2236  int flags;
2237
2238  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2239  if (fixed) {
2240    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2241    flags |= MAP_FIXED;
2242  }
2243
2244  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2245  // touch an uncommitted page. Otherwise, the read/write might
2246  // succeed if we have enough swap space to back the physical page.
2247  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2248                       flags, -1, 0);
2249
2250  if (addr != MAP_FAILED) {
2251    // anon_mmap() should only get called during VM initialization,
2252    // don't need lock (actually we can skip locking even it can be called
2253    // from multiple threads, because _highest_vm_reserved_address is just a
2254    // hint about the upper limit of non-stack memory regions.)
2255    if ((address)addr + bytes > _highest_vm_reserved_address) {
2256      _highest_vm_reserved_address = (address)addr + bytes;
2257    }
2258  }
2259
2260  return addr == MAP_FAILED ? NULL : addr;
2261}
2262
2263// Don't update _highest_vm_reserved_address, because there might be memory
2264// regions above addr + size. If so, releasing a memory region only creates
2265// a hole in the address space, it doesn't help prevent heap-stack collision.
2266//
2267static int anon_munmap(char * addr, size_t size) {
2268  return ::munmap(addr, size) == 0;
2269}
2270
2271char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2272                         size_t alignment_hint) {
2273  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2274}
2275
2276bool os::pd_release_memory(char* addr, size_t size) {
2277  return anon_munmap(addr, size);
2278}
2279
2280static bool bsd_mprotect(char* addr, size_t size, int prot) {
2281  // Bsd wants the mprotect address argument to be page aligned.
2282  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2283
2284  // According to SUSv3, mprotect() should only be used with mappings
2285  // established by mmap(), and mmap() always maps whole pages. Unaligned
2286  // 'addr' likely indicates problem in the VM (e.g. trying to change
2287  // protection of malloc'ed or statically allocated memory). Check the
2288  // caller if you hit this assert.
2289  assert(addr == bottom, "sanity check");
2290
2291  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2292  return ::mprotect(bottom, size, prot) == 0;
2293}
2294
2295// Set protections specified
2296bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2297                        bool is_committed) {
2298  unsigned int p = 0;
2299  switch (prot) {
2300  case MEM_PROT_NONE: p = PROT_NONE; break;
2301  case MEM_PROT_READ: p = PROT_READ; break;
2302  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2303  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2304  default:
2305    ShouldNotReachHere();
2306  }
2307  // is_committed is unused.
2308  return bsd_mprotect(addr, bytes, p);
2309}
2310
2311bool os::guard_memory(char* addr, size_t size) {
2312  return bsd_mprotect(addr, size, PROT_NONE);
2313}
2314
2315bool os::unguard_memory(char* addr, size_t size) {
2316  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2317}
2318
2319bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2320  return false;
2321}
2322
2323// Large page support
2324
2325static size_t _large_page_size = 0;
2326
2327void os::large_page_init() {
2328}
2329
2330
2331char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2332  fatal("This code is not used or maintained.");
2333
2334  // "exec" is passed in but not used.  Creating the shared image for
2335  // the code cache doesn't have an SHM_X executable permission to check.
2336  assert(UseLargePages && UseSHM, "only for SHM large pages");
2337
2338  key_t key = IPC_PRIVATE;
2339  char *addr;
2340
2341  bool warn_on_failure = UseLargePages &&
2342                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2343                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2344                        );
2345  char msg[128];
2346
2347  // Create a large shared memory region to attach to based on size.
2348  // Currently, size is the total size of the heap
2349  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2350  if (shmid == -1) {
2351     // Possible reasons for shmget failure:
2352     // 1. shmmax is too small for Java heap.
2353     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2354     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2355     // 2. not enough large page memory.
2356     //    > check available large pages: cat /proc/meminfo
2357     //    > increase amount of large pages:
2358     //          echo new_value > /proc/sys/vm/nr_hugepages
2359     //      Note 1: different Bsd may use different name for this property,
2360     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2361     //      Note 2: it's possible there's enough physical memory available but
2362     //            they are so fragmented after a long run that they can't
2363     //            coalesce into large pages. Try to reserve large pages when
2364     //            the system is still "fresh".
2365     if (warn_on_failure) {
2366       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2367       warning(msg);
2368     }
2369     return NULL;
2370  }
2371
2372  // attach to the region
2373  addr = (char*)shmat(shmid, req_addr, 0);
2374  int err = errno;
2375
2376  // Remove shmid. If shmat() is successful, the actual shared memory segment
2377  // will be deleted when it's detached by shmdt() or when the process
2378  // terminates. If shmat() is not successful this will remove the shared
2379  // segment immediately.
2380  shmctl(shmid, IPC_RMID, NULL);
2381
2382  if ((intptr_t)addr == -1) {
2383     if (warn_on_failure) {
2384       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2385       warning(msg);
2386     }
2387     return NULL;
2388  }
2389
2390  // The memory is committed
2391  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2392
2393  return addr;
2394}
2395
2396bool os::release_memory_special(char* base, size_t bytes) {
2397  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2398  // detaching the SHM segment will also delete it, see reserve_memory_special()
2399  int rslt = shmdt(base);
2400  if (rslt == 0) {
2401    tkr.record((address)base, bytes);
2402    return true;
2403  } else {
2404    tkr.discard();
2405    return false;
2406  }
2407
2408}
2409
2410size_t os::large_page_size() {
2411  return _large_page_size;
2412}
2413
2414// HugeTLBFS allows application to commit large page memory on demand;
2415// with SysV SHM the entire memory region must be allocated as shared
2416// memory.
2417bool os::can_commit_large_page_memory() {
2418  return UseHugeTLBFS;
2419}
2420
2421bool os::can_execute_large_page_memory() {
2422  return UseHugeTLBFS;
2423}
2424
2425// Reserve memory at an arbitrary address, only if that area is
2426// available (and not reserved for something else).
2427
2428char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2429  const int max_tries = 10;
2430  char* base[max_tries];
2431  size_t size[max_tries];
2432  const size_t gap = 0x000000;
2433
2434  // Assert only that the size is a multiple of the page size, since
2435  // that's all that mmap requires, and since that's all we really know
2436  // about at this low abstraction level.  If we need higher alignment,
2437  // we can either pass an alignment to this method or verify alignment
2438  // in one of the methods further up the call chain.  See bug 5044738.
2439  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2440
2441  // Repeatedly allocate blocks until the block is allocated at the
2442  // right spot. Give up after max_tries. Note that reserve_memory() will
2443  // automatically update _highest_vm_reserved_address if the call is
2444  // successful. The variable tracks the highest memory address every reserved
2445  // by JVM. It is used to detect heap-stack collision if running with
2446  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2447  // space than needed, it could confuse the collision detecting code. To
2448  // solve the problem, save current _highest_vm_reserved_address and
2449  // calculate the correct value before return.
2450  address old_highest = _highest_vm_reserved_address;
2451
2452  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2453  // if kernel honors the hint then we can return immediately.
2454  char * addr = anon_mmap(requested_addr, bytes, false);
2455  if (addr == requested_addr) {
2456     return requested_addr;
2457  }
2458
2459  if (addr != NULL) {
2460     // mmap() is successful but it fails to reserve at the requested address
2461     anon_munmap(addr, bytes);
2462  }
2463
2464  int i;
2465  for (i = 0; i < max_tries; ++i) {
2466    base[i] = reserve_memory(bytes);
2467
2468    if (base[i] != NULL) {
2469      // Is this the block we wanted?
2470      if (base[i] == requested_addr) {
2471        size[i] = bytes;
2472        break;
2473      }
2474
2475      // Does this overlap the block we wanted? Give back the overlapped
2476      // parts and try again.
2477
2478      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2479      if (top_overlap >= 0 && top_overlap < bytes) {
2480        unmap_memory(base[i], top_overlap);
2481        base[i] += top_overlap;
2482        size[i] = bytes - top_overlap;
2483      } else {
2484        size_t bottom_overlap = base[i] + bytes - requested_addr;
2485        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2486          unmap_memory(requested_addr, bottom_overlap);
2487          size[i] = bytes - bottom_overlap;
2488        } else {
2489          size[i] = bytes;
2490        }
2491      }
2492    }
2493  }
2494
2495  // Give back the unused reserved pieces.
2496
2497  for (int j = 0; j < i; ++j) {
2498    if (base[j] != NULL) {
2499      unmap_memory(base[j], size[j]);
2500    }
2501  }
2502
2503  if (i < max_tries) {
2504    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2505    return requested_addr;
2506  } else {
2507    _highest_vm_reserved_address = old_highest;
2508    return NULL;
2509  }
2510}
2511
2512size_t os::read(int fd, void *buf, unsigned int nBytes) {
2513  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2514}
2515
2516// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2517// Solaris uses poll(), bsd uses park().
2518// Poll() is likely a better choice, assuming that Thread.interrupt()
2519// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2520// SIGSEGV, see 4355769.
2521
2522int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2523  assert(thread == Thread::current(),  "thread consistency check");
2524
2525  ParkEvent * const slp = thread->_SleepEvent ;
2526  slp->reset() ;
2527  OrderAccess::fence() ;
2528
2529  if (interruptible) {
2530    jlong prevtime = javaTimeNanos();
2531
2532    for (;;) {
2533      if (os::is_interrupted(thread, true)) {
2534        return OS_INTRPT;
2535      }
2536
2537      jlong newtime = javaTimeNanos();
2538
2539      if (newtime - prevtime < 0) {
2540        // time moving backwards, should only happen if no monotonic clock
2541        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2542        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2543      } else {
2544        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2545      }
2546
2547      if(millis <= 0) {
2548        return OS_OK;
2549      }
2550
2551      prevtime = newtime;
2552
2553      {
2554        assert(thread->is_Java_thread(), "sanity check");
2555        JavaThread *jt = (JavaThread *) thread;
2556        ThreadBlockInVM tbivm(jt);
2557        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2558
2559        jt->set_suspend_equivalent();
2560        // cleared by handle_special_suspend_equivalent_condition() or
2561        // java_suspend_self() via check_and_wait_while_suspended()
2562
2563        slp->park(millis);
2564
2565        // were we externally suspended while we were waiting?
2566        jt->check_and_wait_while_suspended();
2567      }
2568    }
2569  } else {
2570    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2571    jlong prevtime = javaTimeNanos();
2572
2573    for (;;) {
2574      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2575      // the 1st iteration ...
2576      jlong newtime = javaTimeNanos();
2577
2578      if (newtime - prevtime < 0) {
2579        // time moving backwards, should only happen if no monotonic clock
2580        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2581        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2582      } else {
2583        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2584      }
2585
2586      if(millis <= 0) break ;
2587
2588      prevtime = newtime;
2589      slp->park(millis);
2590    }
2591    return OS_OK ;
2592  }
2593}
2594
2595void os::naked_short_sleep(jlong ms) {
2596  struct timespec req;
2597
2598  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2599  req.tv_sec = 0;
2600  if (ms > 0) {
2601    req.tv_nsec = (ms % 1000) * 1000000;
2602  }
2603  else {
2604    req.tv_nsec = 1;
2605  }
2606
2607  nanosleep(&req, NULL);
2608
2609  return;
2610}
2611
2612// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2613void os::infinite_sleep() {
2614  while (true) {    // sleep forever ...
2615    ::sleep(100);   // ... 100 seconds at a time
2616  }
2617}
2618
2619// Used to convert frequent JVM_Yield() to nops
2620bool os::dont_yield() {
2621  return DontYieldALot;
2622}
2623
2624void os::yield() {
2625  sched_yield();
2626}
2627
2628os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2629
2630void os::yield_all(int attempts) {
2631  // Yields to all threads, including threads with lower priorities
2632  // Threads on Bsd are all with same priority. The Solaris style
2633  // os::yield_all() with nanosleep(1ms) is not necessary.
2634  sched_yield();
2635}
2636
2637// Called from the tight loops to possibly influence time-sharing heuristics
2638void os::loop_breaker(int attempts) {
2639  os::yield_all(attempts);
2640}
2641
2642////////////////////////////////////////////////////////////////////////////////
2643// thread priority support
2644
2645// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2646// only supports dynamic priority, static priority must be zero. For real-time
2647// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2648// However, for large multi-threaded applications, SCHED_RR is not only slower
2649// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2650// of 5 runs - Sep 2005).
2651//
2652// The following code actually changes the niceness of kernel-thread/LWP. It
2653// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2654// not the entire user process, and user level threads are 1:1 mapped to kernel
2655// threads. It has always been the case, but could change in the future. For
2656// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2657// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2658
2659#if !defined(__APPLE__)
2660int os::java_to_os_priority[CriticalPriority + 1] = {
2661  19,              // 0 Entry should never be used
2662
2663   0,              // 1 MinPriority
2664   3,              // 2
2665   6,              // 3
2666
2667  10,              // 4
2668  15,              // 5 NormPriority
2669  18,              // 6
2670
2671  21,              // 7
2672  25,              // 8
2673  28,              // 9 NearMaxPriority
2674
2675  31,              // 10 MaxPriority
2676
2677  31               // 11 CriticalPriority
2678};
2679#else
2680/* Using Mach high-level priority assignments */
2681int os::java_to_os_priority[CriticalPriority + 1] = {
2682   0,              // 0 Entry should never be used (MINPRI_USER)
2683
2684  27,              // 1 MinPriority
2685  28,              // 2
2686  29,              // 3
2687
2688  30,              // 4
2689  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2690  32,              // 6
2691
2692  33,              // 7
2693  34,              // 8
2694  35,              // 9 NearMaxPriority
2695
2696  36,              // 10 MaxPriority
2697
2698  36               // 11 CriticalPriority
2699};
2700#endif
2701
2702static int prio_init() {
2703  if (ThreadPriorityPolicy == 1) {
2704    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2705    // if effective uid is not root. Perhaps, a more elegant way of doing
2706    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2707    if (geteuid() != 0) {
2708      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2709        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2710      }
2711      ThreadPriorityPolicy = 0;
2712    }
2713  }
2714  if (UseCriticalJavaThreadPriority) {
2715    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2716  }
2717  return 0;
2718}
2719
2720OSReturn os::set_native_priority(Thread* thread, int newpri) {
2721  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2722
2723#ifdef __OpenBSD__
2724  // OpenBSD pthread_setprio starves low priority threads
2725  return OS_OK;
2726#elif defined(__FreeBSD__)
2727  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2728#elif defined(__APPLE__) || defined(__NetBSD__)
2729  struct sched_param sp;
2730  int policy;
2731  pthread_t self = pthread_self();
2732
2733  if (pthread_getschedparam(self, &policy, &sp) != 0)
2734    return OS_ERR;
2735
2736  sp.sched_priority = newpri;
2737  if (pthread_setschedparam(self, policy, &sp) != 0)
2738    return OS_ERR;
2739
2740  return OS_OK;
2741#else
2742  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2743  return (ret == 0) ? OS_OK : OS_ERR;
2744#endif
2745}
2746
2747OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2748  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2749    *priority_ptr = java_to_os_priority[NormPriority];
2750    return OS_OK;
2751  }
2752
2753  errno = 0;
2754#if defined(__OpenBSD__) || defined(__FreeBSD__)
2755  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2756#elif defined(__APPLE__) || defined(__NetBSD__)
2757  int policy;
2758  struct sched_param sp;
2759
2760  pthread_getschedparam(pthread_self(), &policy, &sp);
2761  *priority_ptr = sp.sched_priority;
2762#else
2763  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2764#endif
2765  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2766}
2767
2768// Hint to the underlying OS that a task switch would not be good.
2769// Void return because it's a hint and can fail.
2770void os::hint_no_preempt() {}
2771
2772////////////////////////////////////////////////////////////////////////////////
2773// suspend/resume support
2774
2775//  the low-level signal-based suspend/resume support is a remnant from the
2776//  old VM-suspension that used to be for java-suspension, safepoints etc,
2777//  within hotspot. Now there is a single use-case for this:
2778//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2779//      that runs in the watcher thread.
2780//  The remaining code is greatly simplified from the more general suspension
2781//  code that used to be used.
2782//
2783//  The protocol is quite simple:
2784//  - suspend:
2785//      - sends a signal to the target thread
2786//      - polls the suspend state of the osthread using a yield loop
2787//      - target thread signal handler (SR_handler) sets suspend state
2788//        and blocks in sigsuspend until continued
2789//  - resume:
2790//      - sets target osthread state to continue
2791//      - sends signal to end the sigsuspend loop in the SR_handler
2792//
2793//  Note that the SR_lock plays no role in this suspend/resume protocol.
2794//
2795
2796static void resume_clear_context(OSThread *osthread) {
2797  osthread->set_ucontext(NULL);
2798  osthread->set_siginfo(NULL);
2799}
2800
2801static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2802  osthread->set_ucontext(context);
2803  osthread->set_siginfo(siginfo);
2804}
2805
2806//
2807// Handler function invoked when a thread's execution is suspended or
2808// resumed. We have to be careful that only async-safe functions are
2809// called here (Note: most pthread functions are not async safe and
2810// should be avoided.)
2811//
2812// Note: sigwait() is a more natural fit than sigsuspend() from an
2813// interface point of view, but sigwait() prevents the signal hander
2814// from being run. libpthread would get very confused by not having
2815// its signal handlers run and prevents sigwait()'s use with the
2816// mutex granting granting signal.
2817//
2818// Currently only ever called on the VMThread or JavaThread
2819//
2820static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2821  // Save and restore errno to avoid confusing native code with EINTR
2822  // after sigsuspend.
2823  int old_errno = errno;
2824
2825  Thread* thread = Thread::current();
2826  OSThread* osthread = thread->osthread();
2827  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2828
2829  os::SuspendResume::State current = osthread->sr.state();
2830  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2831    suspend_save_context(osthread, siginfo, context);
2832
2833    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2834    os::SuspendResume::State state = osthread->sr.suspended();
2835    if (state == os::SuspendResume::SR_SUSPENDED) {
2836      sigset_t suspend_set;  // signals for sigsuspend()
2837
2838      // get current set of blocked signals and unblock resume signal
2839      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2840      sigdelset(&suspend_set, SR_signum);
2841
2842      sr_semaphore.signal();
2843      // wait here until we are resumed
2844      while (1) {
2845        sigsuspend(&suspend_set);
2846
2847        os::SuspendResume::State result = osthread->sr.running();
2848        if (result == os::SuspendResume::SR_RUNNING) {
2849          sr_semaphore.signal();
2850          break;
2851        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2852          ShouldNotReachHere();
2853        }
2854      }
2855
2856    } else if (state == os::SuspendResume::SR_RUNNING) {
2857      // request was cancelled, continue
2858    } else {
2859      ShouldNotReachHere();
2860    }
2861
2862    resume_clear_context(osthread);
2863  } else if (current == os::SuspendResume::SR_RUNNING) {
2864    // request was cancelled, continue
2865  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2866    // ignore
2867  } else {
2868    // ignore
2869  }
2870
2871  errno = old_errno;
2872}
2873
2874
2875static int SR_initialize() {
2876  struct sigaction act;
2877  char *s;
2878  /* Get signal number to use for suspend/resume */
2879  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2880    int sig = ::strtol(s, 0, 10);
2881    if (sig > 0 || sig < NSIG) {
2882        SR_signum = sig;
2883    }
2884  }
2885
2886  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2887        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2888
2889  sigemptyset(&SR_sigset);
2890  sigaddset(&SR_sigset, SR_signum);
2891
2892  /* Set up signal handler for suspend/resume */
2893  act.sa_flags = SA_RESTART|SA_SIGINFO;
2894  act.sa_handler = (void (*)(int)) SR_handler;
2895
2896  // SR_signum is blocked by default.
2897  // 4528190 - We also need to block pthread restart signal (32 on all
2898  // supported Bsd platforms). Note that BsdThreads need to block
2899  // this signal for all threads to work properly. So we don't have
2900  // to use hard-coded signal number when setting up the mask.
2901  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2902
2903  if (sigaction(SR_signum, &act, 0) == -1) {
2904    return -1;
2905  }
2906
2907  // Save signal flag
2908  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2909  return 0;
2910}
2911
2912static int sr_notify(OSThread* osthread) {
2913  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2914  assert_status(status == 0, status, "pthread_kill");
2915  return status;
2916}
2917
2918// "Randomly" selected value for how long we want to spin
2919// before bailing out on suspending a thread, also how often
2920// we send a signal to a thread we want to resume
2921static const int RANDOMLY_LARGE_INTEGER = 1000000;
2922static const int RANDOMLY_LARGE_INTEGER2 = 100;
2923
2924// returns true on success and false on error - really an error is fatal
2925// but this seems the normal response to library errors
2926static bool do_suspend(OSThread* osthread) {
2927  assert(osthread->sr.is_running(), "thread should be running");
2928  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2929
2930  // mark as suspended and send signal
2931  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2932    // failed to switch, state wasn't running?
2933    ShouldNotReachHere();
2934    return false;
2935  }
2936
2937  if (sr_notify(osthread) != 0) {
2938    ShouldNotReachHere();
2939  }
2940
2941  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2942  while (true) {
2943    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2944      break;
2945    } else {
2946      // timeout
2947      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2948      if (cancelled == os::SuspendResume::SR_RUNNING) {
2949        return false;
2950      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2951        // make sure that we consume the signal on the semaphore as well
2952        sr_semaphore.wait();
2953        break;
2954      } else {
2955        ShouldNotReachHere();
2956        return false;
2957      }
2958    }
2959  }
2960
2961  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2962  return true;
2963}
2964
2965static void do_resume(OSThread* osthread) {
2966  assert(osthread->sr.is_suspended(), "thread should be suspended");
2967  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2968
2969  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2970    // failed to switch to WAKEUP_REQUEST
2971    ShouldNotReachHere();
2972    return;
2973  }
2974
2975  while (true) {
2976    if (sr_notify(osthread) == 0) {
2977      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2978        if (osthread->sr.is_running()) {
2979          return;
2980        }
2981      }
2982    } else {
2983      ShouldNotReachHere();
2984    }
2985  }
2986
2987  guarantee(osthread->sr.is_running(), "Must be running!");
2988}
2989
2990////////////////////////////////////////////////////////////////////////////////
2991// interrupt support
2992
2993void os::interrupt(Thread* thread) {
2994  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2995    "possibility of dangling Thread pointer");
2996
2997  OSThread* osthread = thread->osthread();
2998
2999  if (!osthread->interrupted()) {
3000    osthread->set_interrupted(true);
3001    // More than one thread can get here with the same value of osthread,
3002    // resulting in multiple notifications.  We do, however, want the store
3003    // to interrupted() to be visible to other threads before we execute unpark().
3004    OrderAccess::fence();
3005    ParkEvent * const slp = thread->_SleepEvent ;
3006    if (slp != NULL) slp->unpark() ;
3007  }
3008
3009  // For JSR166. Unpark even if interrupt status already was set
3010  if (thread->is_Java_thread())
3011    ((JavaThread*)thread)->parker()->unpark();
3012
3013  ParkEvent * ev = thread->_ParkEvent ;
3014  if (ev != NULL) ev->unpark() ;
3015
3016}
3017
3018bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3019  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3020    "possibility of dangling Thread pointer");
3021
3022  OSThread* osthread = thread->osthread();
3023
3024  bool interrupted = osthread->interrupted();
3025
3026  if (interrupted && clear_interrupted) {
3027    osthread->set_interrupted(false);
3028    // consider thread->_SleepEvent->reset() ... optional optimization
3029  }
3030
3031  return interrupted;
3032}
3033
3034///////////////////////////////////////////////////////////////////////////////////
3035// signal handling (except suspend/resume)
3036
3037// This routine may be used by user applications as a "hook" to catch signals.
3038// The user-defined signal handler must pass unrecognized signals to this
3039// routine, and if it returns true (non-zero), then the signal handler must
3040// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3041// routine will never retun false (zero), but instead will execute a VM panic
3042// routine kill the process.
3043//
3044// If this routine returns false, it is OK to call it again.  This allows
3045// the user-defined signal handler to perform checks either before or after
3046// the VM performs its own checks.  Naturally, the user code would be making
3047// a serious error if it tried to handle an exception (such as a null check
3048// or breakpoint) that the VM was generating for its own correct operation.
3049//
3050// This routine may recognize any of the following kinds of signals:
3051//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3052// It should be consulted by handlers for any of those signals.
3053//
3054// The caller of this routine must pass in the three arguments supplied
3055// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3056// field of the structure passed to sigaction().  This routine assumes that
3057// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3058//
3059// Note that the VM will print warnings if it detects conflicting signal
3060// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3061//
3062extern "C" JNIEXPORT int
3063JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3064                        void* ucontext, int abort_if_unrecognized);
3065
3066void signalHandler(int sig, siginfo_t* info, void* uc) {
3067  assert(info != NULL && uc != NULL, "it must be old kernel");
3068  int orig_errno = errno;  // Preserve errno value over signal handler.
3069  JVM_handle_bsd_signal(sig, info, uc, true);
3070  errno = orig_errno;
3071}
3072
3073
3074// This boolean allows users to forward their own non-matching signals
3075// to JVM_handle_bsd_signal, harmlessly.
3076bool os::Bsd::signal_handlers_are_installed = false;
3077
3078// For signal-chaining
3079struct sigaction os::Bsd::sigact[MAXSIGNUM];
3080unsigned int os::Bsd::sigs = 0;
3081bool os::Bsd::libjsig_is_loaded = false;
3082typedef struct sigaction *(*get_signal_t)(int);
3083get_signal_t os::Bsd::get_signal_action = NULL;
3084
3085struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3086  struct sigaction *actp = NULL;
3087
3088  if (libjsig_is_loaded) {
3089    // Retrieve the old signal handler from libjsig
3090    actp = (*get_signal_action)(sig);
3091  }
3092  if (actp == NULL) {
3093    // Retrieve the preinstalled signal handler from jvm
3094    actp = get_preinstalled_handler(sig);
3095  }
3096
3097  return actp;
3098}
3099
3100static bool call_chained_handler(struct sigaction *actp, int sig,
3101                                 siginfo_t *siginfo, void *context) {
3102  // Call the old signal handler
3103  if (actp->sa_handler == SIG_DFL) {
3104    // It's more reasonable to let jvm treat it as an unexpected exception
3105    // instead of taking the default action.
3106    return false;
3107  } else if (actp->sa_handler != SIG_IGN) {
3108    if ((actp->sa_flags & SA_NODEFER) == 0) {
3109      // automaticlly block the signal
3110      sigaddset(&(actp->sa_mask), sig);
3111    }
3112
3113    sa_handler_t hand;
3114    sa_sigaction_t sa;
3115    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3116    // retrieve the chained handler
3117    if (siginfo_flag_set) {
3118      sa = actp->sa_sigaction;
3119    } else {
3120      hand = actp->sa_handler;
3121    }
3122
3123    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3124      actp->sa_handler = SIG_DFL;
3125    }
3126
3127    // try to honor the signal mask
3128    sigset_t oset;
3129    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3130
3131    // call into the chained handler
3132    if (siginfo_flag_set) {
3133      (*sa)(sig, siginfo, context);
3134    } else {
3135      (*hand)(sig);
3136    }
3137
3138    // restore the signal mask
3139    pthread_sigmask(SIG_SETMASK, &oset, 0);
3140  }
3141  // Tell jvm's signal handler the signal is taken care of.
3142  return true;
3143}
3144
3145bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3146  bool chained = false;
3147  // signal-chaining
3148  if (UseSignalChaining) {
3149    struct sigaction *actp = get_chained_signal_action(sig);
3150    if (actp != NULL) {
3151      chained = call_chained_handler(actp, sig, siginfo, context);
3152    }
3153  }
3154  return chained;
3155}
3156
3157struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3158  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3159    return &sigact[sig];
3160  }
3161  return NULL;
3162}
3163
3164void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3165  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3166  sigact[sig] = oldAct;
3167  sigs |= (unsigned int)1 << sig;
3168}
3169
3170// for diagnostic
3171int os::Bsd::sigflags[MAXSIGNUM];
3172
3173int os::Bsd::get_our_sigflags(int sig) {
3174  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3175  return sigflags[sig];
3176}
3177
3178void os::Bsd::set_our_sigflags(int sig, int flags) {
3179  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3180  sigflags[sig] = flags;
3181}
3182
3183void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3184  // Check for overwrite.
3185  struct sigaction oldAct;
3186  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3187
3188  void* oldhand = oldAct.sa_sigaction
3189                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3190                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3191  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3192      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3193      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3194    if (AllowUserSignalHandlers || !set_installed) {
3195      // Do not overwrite; user takes responsibility to forward to us.
3196      return;
3197    } else if (UseSignalChaining) {
3198      // save the old handler in jvm
3199      save_preinstalled_handler(sig, oldAct);
3200      // libjsig also interposes the sigaction() call below and saves the
3201      // old sigaction on it own.
3202    } else {
3203      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3204                    "%#lx for signal %d.", (long)oldhand, sig));
3205    }
3206  }
3207
3208  struct sigaction sigAct;
3209  sigfillset(&(sigAct.sa_mask));
3210  sigAct.sa_handler = SIG_DFL;
3211  if (!set_installed) {
3212    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3213  } else {
3214    sigAct.sa_sigaction = signalHandler;
3215    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3216  }
3217#if __APPLE__
3218  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3219  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3220  // if the signal handler declares it will handle it on alternate stack.
3221  // Notice we only declare we will handle it on alt stack, but we are not
3222  // actually going to use real alt stack - this is just a workaround.
3223  // Please see ux_exception.c, method catch_mach_exception_raise for details
3224  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3225  if (sig == SIGSEGV) {
3226    sigAct.sa_flags |= SA_ONSTACK;
3227  }
3228#endif
3229
3230  // Save flags, which are set by ours
3231  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3232  sigflags[sig] = sigAct.sa_flags;
3233
3234  int ret = sigaction(sig, &sigAct, &oldAct);
3235  assert(ret == 0, "check");
3236
3237  void* oldhand2  = oldAct.sa_sigaction
3238                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3239                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3240  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3241}
3242
3243// install signal handlers for signals that HotSpot needs to
3244// handle in order to support Java-level exception handling.
3245
3246void os::Bsd::install_signal_handlers() {
3247  if (!signal_handlers_are_installed) {
3248    signal_handlers_are_installed = true;
3249
3250    // signal-chaining
3251    typedef void (*signal_setting_t)();
3252    signal_setting_t begin_signal_setting = NULL;
3253    signal_setting_t end_signal_setting = NULL;
3254    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3255                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3256    if (begin_signal_setting != NULL) {
3257      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3258                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3259      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3260                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3261      libjsig_is_loaded = true;
3262      assert(UseSignalChaining, "should enable signal-chaining");
3263    }
3264    if (libjsig_is_loaded) {
3265      // Tell libjsig jvm is setting signal handlers
3266      (*begin_signal_setting)();
3267    }
3268
3269    set_signal_handler(SIGSEGV, true);
3270    set_signal_handler(SIGPIPE, true);
3271    set_signal_handler(SIGBUS, true);
3272    set_signal_handler(SIGILL, true);
3273    set_signal_handler(SIGFPE, true);
3274    set_signal_handler(SIGXFSZ, true);
3275
3276#if defined(__APPLE__)
3277    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3278    // signals caught and handled by the JVM. To work around this, we reset the mach task
3279    // signal handler that's placed on our process by CrashReporter. This disables
3280    // CrashReporter-based reporting.
3281    //
3282    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3283    // on caught fatal signals.
3284    //
3285    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3286    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3287    // exception handling, while leaving the standard BSD signal handlers functional.
3288    kern_return_t kr;
3289    kr = task_set_exception_ports(mach_task_self(),
3290        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3291        MACH_PORT_NULL,
3292        EXCEPTION_STATE_IDENTITY,
3293        MACHINE_THREAD_STATE);
3294
3295    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3296#endif
3297
3298    if (libjsig_is_loaded) {
3299      // Tell libjsig jvm finishes setting signal handlers
3300      (*end_signal_setting)();
3301    }
3302
3303    // We don't activate signal checker if libjsig is in place, we trust ourselves
3304    // and if UserSignalHandler is installed all bets are off
3305    if (CheckJNICalls) {
3306      if (libjsig_is_loaded) {
3307        if (PrintJNIResolving) {
3308          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3309        }
3310        check_signals = false;
3311      }
3312      if (AllowUserSignalHandlers) {
3313        if (PrintJNIResolving) {
3314          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3315        }
3316        check_signals = false;
3317      }
3318    }
3319  }
3320}
3321
3322
3323/////
3324// glibc on Bsd platform uses non-documented flag
3325// to indicate, that some special sort of signal
3326// trampoline is used.
3327// We will never set this flag, and we should
3328// ignore this flag in our diagnostic
3329#ifdef SIGNIFICANT_SIGNAL_MASK
3330#undef SIGNIFICANT_SIGNAL_MASK
3331#endif
3332#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3333
3334static const char* get_signal_handler_name(address handler,
3335                                           char* buf, int buflen) {
3336  int offset;
3337  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3338  if (found) {
3339    // skip directory names
3340    const char *p1, *p2;
3341    p1 = buf;
3342    size_t len = strlen(os::file_separator());
3343    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3344    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3345  } else {
3346    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3347  }
3348  return buf;
3349}
3350
3351static void print_signal_handler(outputStream* st, int sig,
3352                                 char* buf, size_t buflen) {
3353  struct sigaction sa;
3354
3355  sigaction(sig, NULL, &sa);
3356
3357  // See comment for SIGNIFICANT_SIGNAL_MASK define
3358  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3359
3360  st->print("%s: ", os::exception_name(sig, buf, buflen));
3361
3362  address handler = (sa.sa_flags & SA_SIGINFO)
3363    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3364    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3365
3366  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3367    st->print("SIG_DFL");
3368  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3369    st->print("SIG_IGN");
3370  } else {
3371    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3372  }
3373
3374  st->print(", sa_mask[0]=");
3375  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3376
3377  address rh = VMError::get_resetted_sighandler(sig);
3378  // May be, handler was resetted by VMError?
3379  if(rh != NULL) {
3380    handler = rh;
3381    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3382  }
3383
3384  st->print(", sa_flags=");
3385  os::Posix::print_sa_flags(st, sa.sa_flags);
3386
3387  // Check: is it our handler?
3388  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3389     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3390    // It is our signal handler
3391    // check for flags, reset system-used one!
3392    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3393      st->print(
3394                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3395                os::Bsd::get_our_sigflags(sig));
3396    }
3397  }
3398  st->cr();
3399}
3400
3401
3402#define DO_SIGNAL_CHECK(sig) \
3403  if (!sigismember(&check_signal_done, sig)) \
3404    os::Bsd::check_signal_handler(sig)
3405
3406// This method is a periodic task to check for misbehaving JNI applications
3407// under CheckJNI, we can add any periodic checks here
3408
3409void os::run_periodic_checks() {
3410
3411  if (check_signals == false) return;
3412
3413  // SEGV and BUS if overridden could potentially prevent
3414  // generation of hs*.log in the event of a crash, debugging
3415  // such a case can be very challenging, so we absolutely
3416  // check the following for a good measure:
3417  DO_SIGNAL_CHECK(SIGSEGV);
3418  DO_SIGNAL_CHECK(SIGILL);
3419  DO_SIGNAL_CHECK(SIGFPE);
3420  DO_SIGNAL_CHECK(SIGBUS);
3421  DO_SIGNAL_CHECK(SIGPIPE);
3422  DO_SIGNAL_CHECK(SIGXFSZ);
3423
3424
3425  // ReduceSignalUsage allows the user to override these handlers
3426  // see comments at the very top and jvm_solaris.h
3427  if (!ReduceSignalUsage) {
3428    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3429    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3430    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3431    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3432  }
3433
3434  DO_SIGNAL_CHECK(SR_signum);
3435  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3436}
3437
3438typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3439
3440static os_sigaction_t os_sigaction = NULL;
3441
3442void os::Bsd::check_signal_handler(int sig) {
3443  char buf[O_BUFLEN];
3444  address jvmHandler = NULL;
3445
3446
3447  struct sigaction act;
3448  if (os_sigaction == NULL) {
3449    // only trust the default sigaction, in case it has been interposed
3450    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3451    if (os_sigaction == NULL) return;
3452  }
3453
3454  os_sigaction(sig, (struct sigaction*)NULL, &act);
3455
3456
3457  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3458
3459  address thisHandler = (act.sa_flags & SA_SIGINFO)
3460    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3461    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3462
3463
3464  switch(sig) {
3465  case SIGSEGV:
3466  case SIGBUS:
3467  case SIGFPE:
3468  case SIGPIPE:
3469  case SIGILL:
3470  case SIGXFSZ:
3471    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3472    break;
3473
3474  case SHUTDOWN1_SIGNAL:
3475  case SHUTDOWN2_SIGNAL:
3476  case SHUTDOWN3_SIGNAL:
3477  case BREAK_SIGNAL:
3478    jvmHandler = (address)user_handler();
3479    break;
3480
3481  case INTERRUPT_SIGNAL:
3482    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3483    break;
3484
3485  default:
3486    if (sig == SR_signum) {
3487      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3488    } else {
3489      return;
3490    }
3491    break;
3492  }
3493
3494  if (thisHandler != jvmHandler) {
3495    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3496    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3497    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3498    // No need to check this sig any longer
3499    sigaddset(&check_signal_done, sig);
3500  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3501    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3502    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3503    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3504    // No need to check this sig any longer
3505    sigaddset(&check_signal_done, sig);
3506  }
3507
3508  // Dump all the signal
3509  if (sigismember(&check_signal_done, sig)) {
3510    print_signal_handlers(tty, buf, O_BUFLEN);
3511  }
3512}
3513
3514extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3515
3516extern bool signal_name(int signo, char* buf, size_t len);
3517
3518const char* os::exception_name(int exception_code, char* buf, size_t size) {
3519  if (0 < exception_code && exception_code <= SIGRTMAX) {
3520    // signal
3521    if (!signal_name(exception_code, buf, size)) {
3522      jio_snprintf(buf, size, "SIG%d", exception_code);
3523    }
3524    return buf;
3525  } else {
3526    return NULL;
3527  }
3528}
3529
3530// this is called _before_ the most of global arguments have been parsed
3531void os::init(void) {
3532  char dummy;   /* used to get a guess on initial stack address */
3533//  first_hrtime = gethrtime();
3534
3535  // With BsdThreads the JavaMain thread pid (primordial thread)
3536  // is different than the pid of the java launcher thread.
3537  // So, on Bsd, the launcher thread pid is passed to the VM
3538  // via the sun.java.launcher.pid property.
3539  // Use this property instead of getpid() if it was correctly passed.
3540  // See bug 6351349.
3541  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3542
3543  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3544
3545  clock_tics_per_sec = CLK_TCK;
3546
3547  init_random(1234567);
3548
3549  ThreadCritical::initialize();
3550
3551  Bsd::set_page_size(getpagesize());
3552  if (Bsd::page_size() == -1) {
3553    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3554                  strerror(errno)));
3555  }
3556  init_page_sizes((size_t) Bsd::page_size());
3557
3558  Bsd::initialize_system_info();
3559
3560  // main_thread points to the aboriginal thread
3561  Bsd::_main_thread = pthread_self();
3562
3563  Bsd::clock_init();
3564  initial_time_count = javaTimeNanos();
3565
3566#ifdef __APPLE__
3567  // XXXDARWIN
3568  // Work around the unaligned VM callbacks in hotspot's
3569  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3570  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3571  // alignment when doing symbol lookup. To work around this, we force early
3572  // binding of all symbols now, thus binding when alignment is known-good.
3573  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3574#endif
3575}
3576
3577// To install functions for atexit system call
3578extern "C" {
3579  static void perfMemory_exit_helper() {
3580    perfMemory_exit();
3581  }
3582}
3583
3584// this is called _after_ the global arguments have been parsed
3585jint os::init_2(void)
3586{
3587  // Allocate a single page and mark it as readable for safepoint polling
3588  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3589  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3590
3591  os::set_polling_page( polling_page );
3592
3593#ifndef PRODUCT
3594  if(Verbose && PrintMiscellaneous)
3595    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3596#endif
3597
3598  if (!UseMembar) {
3599    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3600    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3601    os::set_memory_serialize_page( mem_serialize_page );
3602
3603#ifndef PRODUCT
3604    if(Verbose && PrintMiscellaneous)
3605      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3606#endif
3607  }
3608
3609  // initialize suspend/resume support - must do this before signal_sets_init()
3610  if (SR_initialize() != 0) {
3611    perror("SR_initialize failed");
3612    return JNI_ERR;
3613  }
3614
3615  Bsd::signal_sets_init();
3616  Bsd::install_signal_handlers();
3617
3618  // Check minimum allowable stack size for thread creation and to initialize
3619  // the java system classes, including StackOverflowError - depends on page
3620  // size.  Add a page for compiler2 recursion in main thread.
3621  // Add in 2*BytesPerWord times page size to account for VM stack during
3622  // class initialization depending on 32 or 64 bit VM.
3623  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3624            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3625                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3626
3627  size_t threadStackSizeInBytes = ThreadStackSize * K;
3628  if (threadStackSizeInBytes != 0 &&
3629      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3630        tty->print_cr("\nThe stack size specified is too small, "
3631                      "Specify at least %dk",
3632                      os::Bsd::min_stack_allowed/ K);
3633        return JNI_ERR;
3634  }
3635
3636  // Make the stack size a multiple of the page size so that
3637  // the yellow/red zones can be guarded.
3638  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3639        vm_page_size()));
3640
3641  if (MaxFDLimit) {
3642    // set the number of file descriptors to max. print out error
3643    // if getrlimit/setrlimit fails but continue regardless.
3644    struct rlimit nbr_files;
3645    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3646    if (status != 0) {
3647      if (PrintMiscellaneous && (Verbose || WizardMode))
3648        perror("os::init_2 getrlimit failed");
3649    } else {
3650      nbr_files.rlim_cur = nbr_files.rlim_max;
3651
3652#ifdef __APPLE__
3653      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3654      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3655      // be used instead
3656      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3657#endif
3658
3659      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3660      if (status != 0) {
3661        if (PrintMiscellaneous && (Verbose || WizardMode))
3662          perror("os::init_2 setrlimit failed");
3663      }
3664    }
3665  }
3666
3667  // at-exit methods are called in the reverse order of their registration.
3668  // atexit functions are called on return from main or as a result of a
3669  // call to exit(3C). There can be only 32 of these functions registered
3670  // and atexit() does not set errno.
3671
3672  if (PerfAllowAtExitRegistration) {
3673    // only register atexit functions if PerfAllowAtExitRegistration is set.
3674    // atexit functions can be delayed until process exit time, which
3675    // can be problematic for embedded VM situations. Embedded VMs should
3676    // call DestroyJavaVM() to assure that VM resources are released.
3677
3678    // note: perfMemory_exit_helper atexit function may be removed in
3679    // the future if the appropriate cleanup code can be added to the
3680    // VM_Exit VMOperation's doit method.
3681    if (atexit(perfMemory_exit_helper) != 0) {
3682      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3683    }
3684  }
3685
3686  // initialize thread priority policy
3687  prio_init();
3688
3689#ifdef __APPLE__
3690  // dynamically link to objective c gc registration
3691  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3692  if (handleLibObjc != NULL) {
3693    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3694  }
3695#endif
3696
3697  return JNI_OK;
3698}
3699
3700// this is called at the end of vm_initialization
3701void os::init_3(void) { }
3702
3703// Mark the polling page as unreadable
3704void os::make_polling_page_unreadable(void) {
3705  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3706    fatal("Could not disable polling page");
3707};
3708
3709// Mark the polling page as readable
3710void os::make_polling_page_readable(void) {
3711  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3712    fatal("Could not enable polling page");
3713  }
3714};
3715
3716int os::active_processor_count() {
3717  return _processor_count;
3718}
3719
3720void os::set_native_thread_name(const char *name) {
3721#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3722  // This is only supported in Snow Leopard and beyond
3723  if (name != NULL) {
3724    // Add a "Java: " prefix to the name
3725    char buf[MAXTHREADNAMESIZE];
3726    snprintf(buf, sizeof(buf), "Java: %s", name);
3727    pthread_setname_np(buf);
3728  }
3729#endif
3730}
3731
3732bool os::distribute_processes(uint length, uint* distribution) {
3733  // Not yet implemented.
3734  return false;
3735}
3736
3737bool os::bind_to_processor(uint processor_id) {
3738  // Not yet implemented.
3739  return false;
3740}
3741
3742void os::SuspendedThreadTask::internal_do_task() {
3743  if (do_suspend(_thread->osthread())) {
3744    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3745    do_task(context);
3746    do_resume(_thread->osthread());
3747  }
3748}
3749
3750///
3751class PcFetcher : public os::SuspendedThreadTask {
3752public:
3753  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3754  ExtendedPC result();
3755protected:
3756  void do_task(const os::SuspendedThreadTaskContext& context);
3757private:
3758  ExtendedPC _epc;
3759};
3760
3761ExtendedPC PcFetcher::result() {
3762  guarantee(is_done(), "task is not done yet.");
3763  return _epc;
3764}
3765
3766void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3767  Thread* thread = context.thread();
3768  OSThread* osthread = thread->osthread();
3769  if (osthread->ucontext() != NULL) {
3770    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3771  } else {
3772    // NULL context is unexpected, double-check this is the VMThread
3773    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3774  }
3775}
3776
3777// Suspends the target using the signal mechanism and then grabs the PC before
3778// resuming the target. Used by the flat-profiler only
3779ExtendedPC os::get_thread_pc(Thread* thread) {
3780  // Make sure that it is called by the watcher for the VMThread
3781  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3782  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3783
3784  PcFetcher fetcher(thread);
3785  fetcher.run();
3786  return fetcher.result();
3787}
3788
3789int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3790{
3791  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3792}
3793
3794////////////////////////////////////////////////////////////////////////////////
3795// debug support
3796
3797bool os::find(address addr, outputStream* st) {
3798  Dl_info dlinfo;
3799  memset(&dlinfo, 0, sizeof(dlinfo));
3800  if (dladdr(addr, &dlinfo) != 0) {
3801    st->print(PTR_FORMAT ": ", addr);
3802    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3803      st->print("%s+%#x", dlinfo.dli_sname,
3804                 addr - (intptr_t)dlinfo.dli_saddr);
3805    } else if (dlinfo.dli_fbase != NULL) {
3806      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3807    } else {
3808      st->print("<absolute address>");
3809    }
3810    if (dlinfo.dli_fname != NULL) {
3811      st->print(" in %s", dlinfo.dli_fname);
3812    }
3813    if (dlinfo.dli_fbase != NULL) {
3814      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3815    }
3816    st->cr();
3817
3818    if (Verbose) {
3819      // decode some bytes around the PC
3820      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3821      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3822      address       lowest = (address) dlinfo.dli_sname;
3823      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3824      if (begin < lowest)  begin = lowest;
3825      Dl_info dlinfo2;
3826      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3827          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3828        end = (address) dlinfo2.dli_saddr;
3829      Disassembler::decode(begin, end, st);
3830    }
3831    return true;
3832  }
3833  return false;
3834}
3835
3836////////////////////////////////////////////////////////////////////////////////
3837// misc
3838
3839// This does not do anything on Bsd. This is basically a hook for being
3840// able to use structured exception handling (thread-local exception filters)
3841// on, e.g., Win32.
3842void
3843os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3844                         JavaCallArguments* args, Thread* thread) {
3845  f(value, method, args, thread);
3846}
3847
3848void os::print_statistics() {
3849}
3850
3851int os::message_box(const char* title, const char* message) {
3852  int i;
3853  fdStream err(defaultStream::error_fd());
3854  for (i = 0; i < 78; i++) err.print_raw("=");
3855  err.cr();
3856  err.print_raw_cr(title);
3857  for (i = 0; i < 78; i++) err.print_raw("-");
3858  err.cr();
3859  err.print_raw_cr(message);
3860  for (i = 0; i < 78; i++) err.print_raw("=");
3861  err.cr();
3862
3863  char buf[16];
3864  // Prevent process from exiting upon "read error" without consuming all CPU
3865  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3866
3867  return buf[0] == 'y' || buf[0] == 'Y';
3868}
3869
3870int os::stat(const char *path, struct stat *sbuf) {
3871  char pathbuf[MAX_PATH];
3872  if (strlen(path) > MAX_PATH - 1) {
3873    errno = ENAMETOOLONG;
3874    return -1;
3875  }
3876  os::native_path(strcpy(pathbuf, path));
3877  return ::stat(pathbuf, sbuf);
3878}
3879
3880bool os::check_heap(bool force) {
3881  return true;
3882}
3883
3884int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3885  return ::vsnprintf(buf, count, format, args);
3886}
3887
3888// Is a (classpath) directory empty?
3889bool os::dir_is_empty(const char* path) {
3890  DIR *dir = NULL;
3891  struct dirent *ptr;
3892
3893  dir = opendir(path);
3894  if (dir == NULL) return true;
3895
3896  /* Scan the directory */
3897  bool result = true;
3898  char buf[sizeof(struct dirent) + MAX_PATH];
3899  while (result && (ptr = ::readdir(dir)) != NULL) {
3900    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3901      result = false;
3902    }
3903  }
3904  closedir(dir);
3905  return result;
3906}
3907
3908// This code originates from JDK's sysOpen and open64_w
3909// from src/solaris/hpi/src/system_md.c
3910
3911#ifndef O_DELETE
3912#define O_DELETE 0x10000
3913#endif
3914
3915// Open a file. Unlink the file immediately after open returns
3916// if the specified oflag has the O_DELETE flag set.
3917// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3918
3919int os::open(const char *path, int oflag, int mode) {
3920
3921  if (strlen(path) > MAX_PATH - 1) {
3922    errno = ENAMETOOLONG;
3923    return -1;
3924  }
3925  int fd;
3926  int o_delete = (oflag & O_DELETE);
3927  oflag = oflag & ~O_DELETE;
3928
3929  fd = ::open(path, oflag, mode);
3930  if (fd == -1) return -1;
3931
3932  //If the open succeeded, the file might still be a directory
3933  {
3934    struct stat buf;
3935    int ret = ::fstat(fd, &buf);
3936    int st_mode = buf.st_mode;
3937
3938    if (ret != -1) {
3939      if ((st_mode & S_IFMT) == S_IFDIR) {
3940        errno = EISDIR;
3941        ::close(fd);
3942        return -1;
3943      }
3944    } else {
3945      ::close(fd);
3946      return -1;
3947    }
3948  }
3949
3950    /*
3951     * All file descriptors that are opened in the JVM and not
3952     * specifically destined for a subprocess should have the
3953     * close-on-exec flag set.  If we don't set it, then careless 3rd
3954     * party native code might fork and exec without closing all
3955     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3956     * UNIXProcess.c), and this in turn might:
3957     *
3958     * - cause end-of-file to fail to be detected on some file
3959     *   descriptors, resulting in mysterious hangs, or
3960     *
3961     * - might cause an fopen in the subprocess to fail on a system
3962     *   suffering from bug 1085341.
3963     *
3964     * (Yes, the default setting of the close-on-exec flag is a Unix
3965     * design flaw)
3966     *
3967     * See:
3968     * 1085341: 32-bit stdio routines should support file descriptors >255
3969     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3970     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3971     */
3972#ifdef FD_CLOEXEC
3973    {
3974        int flags = ::fcntl(fd, F_GETFD);
3975        if (flags != -1)
3976            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3977    }
3978#endif
3979
3980  if (o_delete != 0) {
3981    ::unlink(path);
3982  }
3983  return fd;
3984}
3985
3986
3987// create binary file, rewriting existing file if required
3988int os::create_binary_file(const char* path, bool rewrite_existing) {
3989  int oflags = O_WRONLY | O_CREAT;
3990  if (!rewrite_existing) {
3991    oflags |= O_EXCL;
3992  }
3993  return ::open(path, oflags, S_IREAD | S_IWRITE);
3994}
3995
3996// return current position of file pointer
3997jlong os::current_file_offset(int fd) {
3998  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3999}
4000
4001// move file pointer to the specified offset
4002jlong os::seek_to_file_offset(int fd, jlong offset) {
4003  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4004}
4005
4006// This code originates from JDK's sysAvailable
4007// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4008
4009int os::available(int fd, jlong *bytes) {
4010  jlong cur, end;
4011  int mode;
4012  struct stat buf;
4013
4014  if (::fstat(fd, &buf) >= 0) {
4015    mode = buf.st_mode;
4016    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4017      /*
4018      * XXX: is the following call interruptible? If so, this might
4019      * need to go through the INTERRUPT_IO() wrapper as for other
4020      * blocking, interruptible calls in this file.
4021      */
4022      int n;
4023      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4024        *bytes = n;
4025        return 1;
4026      }
4027    }
4028  }
4029  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4030    return 0;
4031  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4032    return 0;
4033  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4034    return 0;
4035  }
4036  *bytes = end - cur;
4037  return 1;
4038}
4039
4040int os::socket_available(int fd, jint *pbytes) {
4041   if (fd < 0)
4042     return OS_OK;
4043
4044   int ret;
4045
4046   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4047
4048   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4049   // is expected to return 0 on failure and 1 on success to the jdk.
4050
4051   return (ret == OS_ERR) ? 0 : 1;
4052}
4053
4054// Map a block of memory.
4055char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4056                     char *addr, size_t bytes, bool read_only,
4057                     bool allow_exec) {
4058  int prot;
4059  int flags;
4060
4061  if (read_only) {
4062    prot = PROT_READ;
4063    flags = MAP_SHARED;
4064  } else {
4065    prot = PROT_READ | PROT_WRITE;
4066    flags = MAP_PRIVATE;
4067  }
4068
4069  if (allow_exec) {
4070    prot |= PROT_EXEC;
4071  }
4072
4073  if (addr != NULL) {
4074    flags |= MAP_FIXED;
4075  }
4076
4077  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4078                                     fd, file_offset);
4079  if (mapped_address == MAP_FAILED) {
4080    return NULL;
4081  }
4082  return mapped_address;
4083}
4084
4085
4086// Remap a block of memory.
4087char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4088                       char *addr, size_t bytes, bool read_only,
4089                       bool allow_exec) {
4090  // same as map_memory() on this OS
4091  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4092                        allow_exec);
4093}
4094
4095
4096// Unmap a block of memory.
4097bool os::pd_unmap_memory(char* addr, size_t bytes) {
4098  return munmap(addr, bytes) == 0;
4099}
4100
4101// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4102// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4103// of a thread.
4104//
4105// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4106// the fast estimate available on the platform.
4107
4108jlong os::current_thread_cpu_time() {
4109#ifdef __APPLE__
4110  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4111#else
4112  Unimplemented();
4113  return 0;
4114#endif
4115}
4116
4117jlong os::thread_cpu_time(Thread* thread) {
4118#ifdef __APPLE__
4119  return os::thread_cpu_time(thread, true /* user + sys */);
4120#else
4121  Unimplemented();
4122  return 0;
4123#endif
4124}
4125
4126jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4127#ifdef __APPLE__
4128  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4129#else
4130  Unimplemented();
4131  return 0;
4132#endif
4133}
4134
4135jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4136#ifdef __APPLE__
4137  struct thread_basic_info tinfo;
4138  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4139  kern_return_t kr;
4140  thread_t mach_thread;
4141
4142  mach_thread = thread->osthread()->thread_id();
4143  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4144  if (kr != KERN_SUCCESS)
4145    return -1;
4146
4147  if (user_sys_cpu_time) {
4148    jlong nanos;
4149    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4150    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4151    return nanos;
4152  } else {
4153    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4154  }
4155#else
4156  Unimplemented();
4157  return 0;
4158#endif
4159}
4160
4161
4162void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4163  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4164  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4165  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4166  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4167}
4168
4169void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4170  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4171  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4172  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4173  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4174}
4175
4176bool os::is_thread_cpu_time_supported() {
4177#ifdef __APPLE__
4178  return true;
4179#else
4180  return false;
4181#endif
4182}
4183
4184// System loadavg support.  Returns -1 if load average cannot be obtained.
4185// Bsd doesn't yet have a (official) notion of processor sets,
4186// so just return the system wide load average.
4187int os::loadavg(double loadavg[], int nelem) {
4188  return ::getloadavg(loadavg, nelem);
4189}
4190
4191void os::pause() {
4192  char filename[MAX_PATH];
4193  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4194    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4195  } else {
4196    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4197  }
4198
4199  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4200  if (fd != -1) {
4201    struct stat buf;
4202    ::close(fd);
4203    while (::stat(filename, &buf) == 0) {
4204      (void)::poll(NULL, 0, 100);
4205    }
4206  } else {
4207    jio_fprintf(stderr,
4208      "Could not open pause file '%s', continuing immediately.\n", filename);
4209  }
4210}
4211
4212
4213// Refer to the comments in os_solaris.cpp park-unpark.
4214//
4215// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4216// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4217// For specifics regarding the bug see GLIBC BUGID 261237 :
4218//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4219// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4220// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4221// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4222// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4223// and monitorenter when we're using 1-0 locking.  All those operations may result in
4224// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4225// of libpthread avoids the problem, but isn't practical.
4226//
4227// Possible remedies:
4228//
4229// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4230//      This is palliative and probabilistic, however.  If the thread is preempted
4231//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4232//      than the minimum period may have passed, and the abstime may be stale (in the
4233//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4234//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4235//
4236// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4237//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4238//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4239//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4240//      thread.
4241//
4242// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4243//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4244//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4245//      This also works well.  In fact it avoids kernel-level scalability impediments
4246//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4247//      timers in a graceful fashion.
4248//
4249// 4.   When the abstime value is in the past it appears that control returns
4250//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4251//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4252//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4253//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4254//      It may be possible to avoid reinitialization by checking the return
4255//      value from pthread_cond_timedwait().  In addition to reinitializing the
4256//      condvar we must establish the invariant that cond_signal() is only called
4257//      within critical sections protected by the adjunct mutex.  This prevents
4258//      cond_signal() from "seeing" a condvar that's in the midst of being
4259//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4260//      desirable signal-after-unlock optimization that avoids futile context switching.
4261//
4262//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4263//      structure when a condvar is used or initialized.  cond_destroy()  would
4264//      release the helper structure.  Our reinitialize-after-timedwait fix
4265//      put excessive stress on malloc/free and locks protecting the c-heap.
4266//
4267// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4268// It may be possible to refine (4) by checking the kernel and NTPL verisons
4269// and only enabling the work-around for vulnerable environments.
4270
4271// utility to compute the abstime argument to timedwait:
4272// millis is the relative timeout time
4273// abstime will be the absolute timeout time
4274// TODO: replace compute_abstime() with unpackTime()
4275
4276static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4277  if (millis < 0)  millis = 0;
4278  struct timeval now;
4279  int status = gettimeofday(&now, NULL);
4280  assert(status == 0, "gettimeofday");
4281  jlong seconds = millis / 1000;
4282  millis %= 1000;
4283  if (seconds > 50000000) { // see man cond_timedwait(3T)
4284    seconds = 50000000;
4285  }
4286  abstime->tv_sec = now.tv_sec  + seconds;
4287  long       usec = now.tv_usec + millis * 1000;
4288  if (usec >= 1000000) {
4289    abstime->tv_sec += 1;
4290    usec -= 1000000;
4291  }
4292  abstime->tv_nsec = usec * 1000;
4293  return abstime;
4294}
4295
4296
4297// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4298// Conceptually TryPark() should be equivalent to park(0).
4299
4300int os::PlatformEvent::TryPark() {
4301  for (;;) {
4302    const int v = _Event ;
4303    guarantee ((v == 0) || (v == 1), "invariant") ;
4304    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4305  }
4306}
4307
4308void os::PlatformEvent::park() {       // AKA "down()"
4309  // Invariant: Only the thread associated with the Event/PlatformEvent
4310  // may call park().
4311  // TODO: assert that _Assoc != NULL or _Assoc == Self
4312  int v ;
4313  for (;;) {
4314      v = _Event ;
4315      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4316  }
4317  guarantee (v >= 0, "invariant") ;
4318  if (v == 0) {
4319     // Do this the hard way by blocking ...
4320     int status = pthread_mutex_lock(_mutex);
4321     assert_status(status == 0, status, "mutex_lock");
4322     guarantee (_nParked == 0, "invariant") ;
4323     ++ _nParked ;
4324     while (_Event < 0) {
4325        status = pthread_cond_wait(_cond, _mutex);
4326        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4327        // Treat this the same as if the wait was interrupted
4328        if (status == ETIMEDOUT) { status = EINTR; }
4329        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4330     }
4331     -- _nParked ;
4332
4333    _Event = 0 ;
4334     status = pthread_mutex_unlock(_mutex);
4335     assert_status(status == 0, status, "mutex_unlock");
4336    // Paranoia to ensure our locked and lock-free paths interact
4337    // correctly with each other.
4338    OrderAccess::fence();
4339  }
4340  guarantee (_Event >= 0, "invariant") ;
4341}
4342
4343int os::PlatformEvent::park(jlong millis) {
4344  guarantee (_nParked == 0, "invariant") ;
4345
4346  int v ;
4347  for (;;) {
4348      v = _Event ;
4349      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4350  }
4351  guarantee (v >= 0, "invariant") ;
4352  if (v != 0) return OS_OK ;
4353
4354  // We do this the hard way, by blocking the thread.
4355  // Consider enforcing a minimum timeout value.
4356  struct timespec abst;
4357  compute_abstime(&abst, millis);
4358
4359  int ret = OS_TIMEOUT;
4360  int status = pthread_mutex_lock(_mutex);
4361  assert_status(status == 0, status, "mutex_lock");
4362  guarantee (_nParked == 0, "invariant") ;
4363  ++_nParked ;
4364
4365  // Object.wait(timo) will return because of
4366  // (a) notification
4367  // (b) timeout
4368  // (c) thread.interrupt
4369  //
4370  // Thread.interrupt and object.notify{All} both call Event::set.
4371  // That is, we treat thread.interrupt as a special case of notification.
4372  // The underlying Solaris implementation, cond_timedwait, admits
4373  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4374  // JVM from making those visible to Java code.  As such, we must
4375  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4376  //
4377  // TODO: properly differentiate simultaneous notify+interrupt.
4378  // In that case, we should propagate the notify to another waiter.
4379
4380  while (_Event < 0) {
4381    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4382    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4383      pthread_cond_destroy (_cond);
4384      pthread_cond_init (_cond, NULL) ;
4385    }
4386    assert_status(status == 0 || status == EINTR ||
4387                  status == ETIMEDOUT,
4388                  status, "cond_timedwait");
4389    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4390    if (status == ETIMEDOUT) break ;
4391    // We consume and ignore EINTR and spurious wakeups.
4392  }
4393  --_nParked ;
4394  if (_Event >= 0) {
4395     ret = OS_OK;
4396  }
4397  _Event = 0 ;
4398  status = pthread_mutex_unlock(_mutex);
4399  assert_status(status == 0, status, "mutex_unlock");
4400  assert (_nParked == 0, "invariant") ;
4401  // Paranoia to ensure our locked and lock-free paths interact
4402  // correctly with each other.
4403  OrderAccess::fence();
4404  return ret;
4405}
4406
4407void os::PlatformEvent::unpark() {
4408  // Transitions for _Event:
4409  //    0 :=> 1
4410  //    1 :=> 1
4411  //   -1 :=> either 0 or 1; must signal target thread
4412  //          That is, we can safely transition _Event from -1 to either
4413  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4414  //          unpark() calls.
4415  // See also: "Semaphores in Plan 9" by Mullender & Cox
4416  //
4417  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4418  // that it will take two back-to-back park() calls for the owning
4419  // thread to block. This has the benefit of forcing a spurious return
4420  // from the first park() call after an unpark() call which will help
4421  // shake out uses of park() and unpark() without condition variables.
4422
4423  if (Atomic::xchg(1, &_Event) >= 0) return;
4424
4425  // Wait for the thread associated with the event to vacate
4426  int status = pthread_mutex_lock(_mutex);
4427  assert_status(status == 0, status, "mutex_lock");
4428  int AnyWaiters = _nParked;
4429  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4430  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4431    AnyWaiters = 0;
4432    pthread_cond_signal(_cond);
4433  }
4434  status = pthread_mutex_unlock(_mutex);
4435  assert_status(status == 0, status, "mutex_unlock");
4436  if (AnyWaiters != 0) {
4437    status = pthread_cond_signal(_cond);
4438    assert_status(status == 0, status, "cond_signal");
4439  }
4440
4441  // Note that we signal() _after dropping the lock for "immortal" Events.
4442  // This is safe and avoids a common class of  futile wakeups.  In rare
4443  // circumstances this can cause a thread to return prematurely from
4444  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4445  // simply re-test the condition and re-park itself.
4446}
4447
4448
4449// JSR166
4450// -------------------------------------------------------
4451
4452/*
4453 * The solaris and bsd implementations of park/unpark are fairly
4454 * conservative for now, but can be improved. They currently use a
4455 * mutex/condvar pair, plus a a count.
4456 * Park decrements count if > 0, else does a condvar wait.  Unpark
4457 * sets count to 1 and signals condvar.  Only one thread ever waits
4458 * on the condvar. Contention seen when trying to park implies that someone
4459 * is unparking you, so don't wait. And spurious returns are fine, so there
4460 * is no need to track notifications.
4461 */
4462
4463#define MAX_SECS 100000000
4464/*
4465 * This code is common to bsd and solaris and will be moved to a
4466 * common place in dolphin.
4467 *
4468 * The passed in time value is either a relative time in nanoseconds
4469 * or an absolute time in milliseconds. Either way it has to be unpacked
4470 * into suitable seconds and nanoseconds components and stored in the
4471 * given timespec structure.
4472 * Given time is a 64-bit value and the time_t used in the timespec is only
4473 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4474 * overflow if times way in the future are given. Further on Solaris versions
4475 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4476 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4477 * As it will be 28 years before "now + 100000000" will overflow we can
4478 * ignore overflow and just impose a hard-limit on seconds using the value
4479 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4480 * years from "now".
4481 */
4482
4483static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4484  assert (time > 0, "convertTime");
4485
4486  struct timeval now;
4487  int status = gettimeofday(&now, NULL);
4488  assert(status == 0, "gettimeofday");
4489
4490  time_t max_secs = now.tv_sec + MAX_SECS;
4491
4492  if (isAbsolute) {
4493    jlong secs = time / 1000;
4494    if (secs > max_secs) {
4495      absTime->tv_sec = max_secs;
4496    }
4497    else {
4498      absTime->tv_sec = secs;
4499    }
4500    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4501  }
4502  else {
4503    jlong secs = time / NANOSECS_PER_SEC;
4504    if (secs >= MAX_SECS) {
4505      absTime->tv_sec = max_secs;
4506      absTime->tv_nsec = 0;
4507    }
4508    else {
4509      absTime->tv_sec = now.tv_sec + secs;
4510      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4511      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4512        absTime->tv_nsec -= NANOSECS_PER_SEC;
4513        ++absTime->tv_sec; // note: this must be <= max_secs
4514      }
4515    }
4516  }
4517  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4518  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4519  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4520  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4521}
4522
4523void Parker::park(bool isAbsolute, jlong time) {
4524  // Ideally we'd do something useful while spinning, such
4525  // as calling unpackTime().
4526
4527  // Optional fast-path check:
4528  // Return immediately if a permit is available.
4529  // We depend on Atomic::xchg() having full barrier semantics
4530  // since we are doing a lock-free update to _counter.
4531  if (Atomic::xchg(0, &_counter) > 0) return;
4532
4533  Thread* thread = Thread::current();
4534  assert(thread->is_Java_thread(), "Must be JavaThread");
4535  JavaThread *jt = (JavaThread *)thread;
4536
4537  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4538  // Check interrupt before trying to wait
4539  if (Thread::is_interrupted(thread, false)) {
4540    return;
4541  }
4542
4543  // Next, demultiplex/decode time arguments
4544  struct timespec absTime;
4545  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4546    return;
4547  }
4548  if (time > 0) {
4549    unpackTime(&absTime, isAbsolute, time);
4550  }
4551
4552
4553  // Enter safepoint region
4554  // Beware of deadlocks such as 6317397.
4555  // The per-thread Parker:: mutex is a classic leaf-lock.
4556  // In particular a thread must never block on the Threads_lock while
4557  // holding the Parker:: mutex.  If safepoints are pending both the
4558  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4559  ThreadBlockInVM tbivm(jt);
4560
4561  // Don't wait if cannot get lock since interference arises from
4562  // unblocking.  Also. check interrupt before trying wait
4563  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4564    return;
4565  }
4566
4567  int status ;
4568  if (_counter > 0)  { // no wait needed
4569    _counter = 0;
4570    status = pthread_mutex_unlock(_mutex);
4571    assert (status == 0, "invariant") ;
4572    // Paranoia to ensure our locked and lock-free paths interact
4573    // correctly with each other and Java-level accesses.
4574    OrderAccess::fence();
4575    return;
4576  }
4577
4578#ifdef ASSERT
4579  // Don't catch signals while blocked; let the running threads have the signals.
4580  // (This allows a debugger to break into the running thread.)
4581  sigset_t oldsigs;
4582  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4583  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4584#endif
4585
4586  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4587  jt->set_suspend_equivalent();
4588  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4589
4590  if (time == 0) {
4591    status = pthread_cond_wait (_cond, _mutex) ;
4592  } else {
4593    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4594    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4595      pthread_cond_destroy (_cond) ;
4596      pthread_cond_init    (_cond, NULL);
4597    }
4598  }
4599  assert_status(status == 0 || status == EINTR ||
4600                status == ETIMEDOUT,
4601                status, "cond_timedwait");
4602
4603#ifdef ASSERT
4604  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4605#endif
4606
4607  _counter = 0 ;
4608  status = pthread_mutex_unlock(_mutex) ;
4609  assert_status(status == 0, status, "invariant") ;
4610  // Paranoia to ensure our locked and lock-free paths interact
4611  // correctly with each other and Java-level accesses.
4612  OrderAccess::fence();
4613
4614  // If externally suspended while waiting, re-suspend
4615  if (jt->handle_special_suspend_equivalent_condition()) {
4616    jt->java_suspend_self();
4617  }
4618}
4619
4620void Parker::unpark() {
4621  int s, status ;
4622  status = pthread_mutex_lock(_mutex);
4623  assert (status == 0, "invariant") ;
4624  s = _counter;
4625  _counter = 1;
4626  if (s < 1) {
4627     if (WorkAroundNPTLTimedWaitHang) {
4628        status = pthread_cond_signal (_cond) ;
4629        assert (status == 0, "invariant") ;
4630        status = pthread_mutex_unlock(_mutex);
4631        assert (status == 0, "invariant") ;
4632     } else {
4633        status = pthread_mutex_unlock(_mutex);
4634        assert (status == 0, "invariant") ;
4635        status = pthread_cond_signal (_cond) ;
4636        assert (status == 0, "invariant") ;
4637     }
4638  } else {
4639    pthread_mutex_unlock(_mutex);
4640    assert (status == 0, "invariant") ;
4641  }
4642}
4643
4644
4645/* Darwin has no "environ" in a dynamic library. */
4646#ifdef __APPLE__
4647#include <crt_externs.h>
4648#define environ (*_NSGetEnviron())
4649#else
4650extern char** environ;
4651#endif
4652
4653// Run the specified command in a separate process. Return its exit value,
4654// or -1 on failure (e.g. can't fork a new process).
4655// Unlike system(), this function can be called from signal handler. It
4656// doesn't block SIGINT et al.
4657int os::fork_and_exec(char* cmd) {
4658  const char * argv[4] = {"sh", "-c", cmd, NULL};
4659
4660  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4661  // pthread_atfork handlers and reset pthread library. All we need is a
4662  // separate process to execve. Make a direct syscall to fork process.
4663  // On IA64 there's no fork syscall, we have to use fork() and hope for
4664  // the best...
4665  pid_t pid = fork();
4666
4667  if (pid < 0) {
4668    // fork failed
4669    return -1;
4670
4671  } else if (pid == 0) {
4672    // child process
4673
4674    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4675    // first to kill every thread on the thread list. Because this list is
4676    // not reset by fork() (see notes above), execve() will instead kill
4677    // every thread in the parent process. We know this is the only thread
4678    // in the new process, so make a system call directly.
4679    // IA64 should use normal execve() from glibc to match the glibc fork()
4680    // above.
4681    execve("/bin/sh", (char* const*)argv, environ);
4682
4683    // execve failed
4684    _exit(-1);
4685
4686  } else  {
4687    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4688    // care about the actual exit code, for now.
4689
4690    int status;
4691
4692    // Wait for the child process to exit.  This returns immediately if
4693    // the child has already exited. */
4694    while (waitpid(pid, &status, 0) < 0) {
4695        switch (errno) {
4696        case ECHILD: return 0;
4697        case EINTR: break;
4698        default: return -1;
4699        }
4700    }
4701
4702    if (WIFEXITED(status)) {
4703       // The child exited normally; get its exit code.
4704       return WEXITSTATUS(status);
4705    } else if (WIFSIGNALED(status)) {
4706       // The child exited because of a signal
4707       // The best value to return is 0x80 + signal number,
4708       // because that is what all Unix shells do, and because
4709       // it allows callers to distinguish between process exit and
4710       // process death by signal.
4711       return 0x80 + WTERMSIG(status);
4712    } else {
4713       // Unknown exit code; pass it through
4714       return status;
4715    }
4716  }
4717}
4718
4719// is_headless_jre()
4720//
4721// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4722// in order to report if we are running in a headless jre
4723//
4724// Since JDK8 xawt/libmawt.so was moved into the same directory
4725// as libawt.so, and renamed libawt_xawt.so
4726//
4727bool os::is_headless_jre() {
4728#ifdef __APPLE__
4729    // We no longer build headless-only on Mac OS X
4730    return false;
4731#else
4732    struct stat statbuf;
4733    char buf[MAXPATHLEN];
4734    char libmawtpath[MAXPATHLEN];
4735    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4736    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4737    char *p;
4738
4739    // Get path to libjvm.so
4740    os::jvm_path(buf, sizeof(buf));
4741
4742    // Get rid of libjvm.so
4743    p = strrchr(buf, '/');
4744    if (p == NULL) return false;
4745    else *p = '\0';
4746
4747    // Get rid of client or server
4748    p = strrchr(buf, '/');
4749    if (p == NULL) return false;
4750    else *p = '\0';
4751
4752    // check xawt/libmawt.so
4753    strcpy(libmawtpath, buf);
4754    strcat(libmawtpath, xawtstr);
4755    if (::stat(libmawtpath, &statbuf) == 0) return false;
4756
4757    // check libawt_xawt.so
4758    strcpy(libmawtpath, buf);
4759    strcat(libmawtpath, new_xawtstr);
4760    if (::stat(libmawtpath, &statbuf) == 0) return false;
4761
4762    return true;
4763#endif
4764}
4765
4766// Get the default path to the core file
4767// Returns the length of the string
4768int os::get_core_path(char* buffer, size_t bufferSize) {
4769  int n = jio_snprintf(buffer, bufferSize, "/cores");
4770
4771  // Truncate if theoretical string was longer than bufferSize
4772  n = MIN2(n, (int)bufferSize);
4773
4774  return n;
4775}
4776
4777#ifndef PRODUCT
4778void TestReserveMemorySpecial_test() {
4779  // No tests available for this platform
4780}
4781#endif
4782