os_bsd.cpp revision 5959:438e13354adf
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#if defined(__FreeBSD__) || defined(__NetBSD__)
105# include <elf.h>
106#endif
107
108#ifdef __APPLE__
109# include <mach/mach.h> // semaphore_* API
110# include <mach-o/dyld.h>
111# include <sys/proc_info.h>
112# include <objc/objc-auto.h>
113#endif
114
115#ifndef MAP_ANONYMOUS
116#define MAP_ANONYMOUS MAP_ANON
117#endif
118
119#define MAX_PATH    (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Bsd::_physical_memory = 0;
128
129
130int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131pthread_t os::Bsd::_main_thread;
132int os::Bsd::_page_size = -1;
133
134static jlong initial_time_count=0;
135
136static int clock_tics_per_sec = 100;
137
138// For diagnostics to print a message once. see run_periodic_checks
139static sigset_t check_signal_done;
140static bool check_signals = true;
141
142static pid_t _initial_pid = 0;
143
144/* Signal number used to suspend/resume a thread */
145
146/* do not use any signal number less than SIGSEGV, see 4355769 */
147static int SR_signum = SIGUSR2;
148sigset_t SR_sigset;
149
150
151////////////////////////////////////////////////////////////////////////////////
152// utility functions
153
154static int SR_initialize();
155
156julong os::available_memory() {
157  return Bsd::available_memory();
158}
159
160julong os::Bsd::available_memory() {
161  // XXXBSD: this is just a stopgap implementation
162  return physical_memory() >> 2;
163}
164
165julong os::physical_memory() {
166  return Bsd::physical_memory();
167}
168
169////////////////////////////////////////////////////////////////////////////////
170// environment support
171
172bool os::getenv(const char* name, char* buf, int len) {
173  const char* val = ::getenv(name);
174  if (val != NULL && strlen(val) < (size_t)len) {
175    strcpy(buf, val);
176    return true;
177  }
178  if (len > 0) buf[0] = 0;  // return a null string
179  return false;
180}
181
182
183// Return true if user is running as root.
184
185bool os::have_special_privileges() {
186  static bool init = false;
187  static bool privileges = false;
188  if (!init) {
189    privileges = (getuid() != geteuid()) || (getgid() != getegid());
190    init = true;
191  }
192  return privileges;
193}
194
195
196
197// Cpu architecture string
198#if   defined(ZERO)
199static char cpu_arch[] = ZERO_LIBARCH;
200#elif defined(IA64)
201static char cpu_arch[] = "ia64";
202#elif defined(IA32)
203static char cpu_arch[] = "i386";
204#elif defined(AMD64)
205static char cpu_arch[] = "amd64";
206#elif defined(ARM)
207static char cpu_arch[] = "arm";
208#elif defined(PPC32)
209static char cpu_arch[] = "ppc";
210#elif defined(SPARC)
211#  ifdef _LP64
212static char cpu_arch[] = "sparcv9";
213#  else
214static char cpu_arch[] = "sparc";
215#  endif
216#else
217#error Add appropriate cpu_arch setting
218#endif
219
220// Compiler variant
221#ifdef COMPILER2
222#define COMPILER_VARIANT "server"
223#else
224#define COMPILER_VARIANT "client"
225#endif
226
227
228void os::Bsd::initialize_system_info() {
229  int mib[2];
230  size_t len;
231  int cpu_val;
232  julong mem_val;
233
234  /* get processors count via hw.ncpus sysctl */
235  mib[0] = CTL_HW;
236  mib[1] = HW_NCPU;
237  len = sizeof(cpu_val);
238  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
239       assert(len == sizeof(cpu_val), "unexpected data size");
240       set_processor_count(cpu_val);
241  }
242  else {
243       set_processor_count(1);   // fallback
244  }
245
246  /* get physical memory via hw.memsize sysctl (hw.memsize is used
247   * since it returns a 64 bit value)
248   */
249  mib[0] = CTL_HW;
250  mib[1] = HW_MEMSIZE;
251  len = sizeof(mem_val);
252  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
253       assert(len == sizeof(mem_val), "unexpected data size");
254       _physical_memory = mem_val;
255  } else {
256       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
257  }
258
259#ifdef __OpenBSD__
260  {
261       // limit _physical_memory memory view on OpenBSD since
262       // datasize rlimit restricts us anyway.
263       struct rlimit limits;
264       getrlimit(RLIMIT_DATA, &limits);
265       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
266  }
267#endif
268}
269
270#ifdef __APPLE__
271static const char *get_home() {
272  const char *home_dir = ::getenv("HOME");
273  if ((home_dir == NULL) || (*home_dir == '\0')) {
274    struct passwd *passwd_info = getpwuid(geteuid());
275    if (passwd_info != NULL) {
276      home_dir = passwd_info->pw_dir;
277    }
278  }
279
280  return home_dir;
281}
282#endif
283
284void os::init_system_properties_values() {
285//  char arch[12];
286//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
287
288  // The next steps are taken in the product version:
289  //
290  // Obtain the JAVA_HOME value from the location of libjvm.so.
291  // This library should be located at:
292  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
293  //
294  // If "/jre/lib/" appears at the right place in the path, then we
295  // assume libjvm.so is installed in a JDK and we use this path.
296  //
297  // Otherwise exit with message: "Could not create the Java virtual machine."
298  //
299  // The following extra steps are taken in the debugging version:
300  //
301  // If "/jre/lib/" does NOT appear at the right place in the path
302  // instead of exit check for $JAVA_HOME environment variable.
303  //
304  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
305  // then we append a fake suffix "hotspot/libjvm.so" to this path so
306  // it looks like libjvm.so is installed there
307  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
308  //
309  // Otherwise exit.
310  //
311  // Important note: if the location of libjvm.so changes this
312  // code needs to be changed accordingly.
313
314  // The next few definitions allow the code to be verbatim:
315#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
316#define getenv(n) ::getenv(n)
317
318/*
319 * See ld(1):
320 *      The linker uses the following search paths to locate required
321 *      shared libraries:
322 *        1: ...
323 *        ...
324 *        7: The default directories, normally /lib and /usr/lib.
325 */
326#ifndef DEFAULT_LIBPATH
327#define DEFAULT_LIBPATH "/lib:/usr/lib"
328#endif
329
330#define EXTENSIONS_DIR  "/lib/ext"
331#define ENDORSED_DIR    "/lib/endorsed"
332#define REG_DIR         "/usr/java/packages"
333
334#ifdef __APPLE__
335#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
336#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
337        const char *user_home_dir = get_home();
338        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
339        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
340            sizeof(SYS_EXTENSIONS_DIRS);
341#endif
342
343  {
344    /* sysclasspath, java_home, dll_dir */
345    {
346        char *home_path;
347        char *dll_path;
348        char *pslash;
349        char buf[MAXPATHLEN];
350        os::jvm_path(buf, sizeof(buf));
351
352        // Found the full path to libjvm.so.
353        // Now cut the path to <java_home>/jre if we can.
354        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
355        pslash = strrchr(buf, '/');
356        if (pslash != NULL)
357            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
358        dll_path = malloc(strlen(buf) + 1);
359        if (dll_path == NULL)
360            return;
361        strcpy(dll_path, buf);
362        Arguments::set_dll_dir(dll_path);
363
364        if (pslash != NULL) {
365            pslash = strrchr(buf, '/');
366            if (pslash != NULL) {
367                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
368#ifndef __APPLE__
369                pslash = strrchr(buf, '/');
370                if (pslash != NULL)
371                    *pslash = '\0';   /* get rid of /lib */
372#endif
373            }
374        }
375
376        home_path = malloc(strlen(buf) + 1);
377        if (home_path == NULL)
378            return;
379        strcpy(home_path, buf);
380        Arguments::set_java_home(home_path);
381
382        if (!set_boot_path('/', ':'))
383            return;
384    }
385
386    /*
387     * Where to look for native libraries
388     *
389     * Note: Due to a legacy implementation, most of the library path
390     * is set in the launcher.  This was to accomodate linking restrictions
391     * on legacy Bsd implementations (which are no longer supported).
392     * Eventually, all the library path setting will be done here.
393     *
394     * However, to prevent the proliferation of improperly built native
395     * libraries, the new path component /usr/java/packages is added here.
396     * Eventually, all the library path setting will be done here.
397     */
398    {
399        char *ld_library_path;
400
401        /*
402         * Construct the invariant part of ld_library_path. Note that the
403         * space for the colon and the trailing null are provided by the
404         * nulls included by the sizeof operator (so actually we allocate
405         * a byte more than necessary).
406         */
407#ifdef __APPLE__
408        ld_library_path = (char *) malloc(system_ext_size);
409        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
410#else
411        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
412            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
413        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
414#endif
415
416        /*
417         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
418         * should always exist (until the legacy problem cited above is
419         * addressed).
420         */
421#ifdef __APPLE__
422        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
423        char *l = getenv("JAVA_LIBRARY_PATH");
424        if (l != NULL) {
425            char *t = ld_library_path;
426            /* That's +1 for the colon and +1 for the trailing '\0' */
427            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
428            sprintf(ld_library_path, "%s:%s", l, t);
429            free(t);
430        }
431
432        char *v = getenv("DYLD_LIBRARY_PATH");
433#else
434        char *v = getenv("LD_LIBRARY_PATH");
435#endif
436        if (v != NULL) {
437            char *t = ld_library_path;
438            /* That's +1 for the colon and +1 for the trailing '\0' */
439            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
440            sprintf(ld_library_path, "%s:%s", v, t);
441            free(t);
442        }
443
444#ifdef __APPLE__
445        // Apple's Java6 has "." at the beginning of java.library.path.
446        // OpenJDK on Windows has "." at the end of java.library.path.
447        // OpenJDK on Linux and Solaris don't have "." in java.library.path
448        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
449        // "." is appended to the end of java.library.path. Yes, this
450        // could cause a change in behavior, but Apple's Java6 behavior
451        // can be achieved by putting "." at the beginning of the
452        // JAVA_LIBRARY_PATH environment variable.
453        {
454            char *t = ld_library_path;
455            // that's +3 for appending ":." and the trailing '\0'
456            ld_library_path = (char *) malloc(strlen(t) + 3);
457            sprintf(ld_library_path, "%s:%s", t, ".");
458            free(t);
459        }
460#endif
461
462        Arguments::set_library_path(ld_library_path);
463    }
464
465    /*
466     * Extensions directories.
467     *
468     * Note that the space for the colon and the trailing null are provided
469     * by the nulls included by the sizeof operator (so actually one byte more
470     * than necessary is allocated).
471     */
472    {
473#ifdef __APPLE__
474        char *buf = malloc(strlen(Arguments::get_java_home()) +
475            sizeof(EXTENSIONS_DIR) + system_ext_size);
476        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
477            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
478#else
479        char *buf = malloc(strlen(Arguments::get_java_home()) +
480            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
481        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
482            Arguments::get_java_home());
483#endif
484
485        Arguments::set_ext_dirs(buf);
486    }
487
488    /* Endorsed standards default directory. */
489    {
490        char * buf;
491        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
492        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
493        Arguments::set_endorsed_dirs(buf);
494    }
495  }
496
497#ifdef __APPLE__
498#undef SYS_EXTENSIONS_DIR
499#endif
500#undef malloc
501#undef getenv
502#undef EXTENSIONS_DIR
503#undef ENDORSED_DIR
504
505  // Done
506  return;
507}
508
509////////////////////////////////////////////////////////////////////////////////
510// breakpoint support
511
512void os::breakpoint() {
513  BREAKPOINT;
514}
515
516extern "C" void breakpoint() {
517  // use debugger to set breakpoint here
518}
519
520////////////////////////////////////////////////////////////////////////////////
521// signal support
522
523debug_only(static bool signal_sets_initialized = false);
524static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
525
526bool os::Bsd::is_sig_ignored(int sig) {
527      struct sigaction oact;
528      sigaction(sig, (struct sigaction*)NULL, &oact);
529      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
530                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
531      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
532           return true;
533      else
534           return false;
535}
536
537void os::Bsd::signal_sets_init() {
538  // Should also have an assertion stating we are still single-threaded.
539  assert(!signal_sets_initialized, "Already initialized");
540  // Fill in signals that are necessarily unblocked for all threads in
541  // the VM. Currently, we unblock the following signals:
542  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
543  //                         by -Xrs (=ReduceSignalUsage));
544  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
545  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
546  // the dispositions or masks wrt these signals.
547  // Programs embedding the VM that want to use the above signals for their
548  // own purposes must, at this time, use the "-Xrs" option to prevent
549  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
550  // (See bug 4345157, and other related bugs).
551  // In reality, though, unblocking these signals is really a nop, since
552  // these signals are not blocked by default.
553  sigemptyset(&unblocked_sigs);
554  sigemptyset(&allowdebug_blocked_sigs);
555  sigaddset(&unblocked_sigs, SIGILL);
556  sigaddset(&unblocked_sigs, SIGSEGV);
557  sigaddset(&unblocked_sigs, SIGBUS);
558  sigaddset(&unblocked_sigs, SIGFPE);
559  sigaddset(&unblocked_sigs, SR_signum);
560
561  if (!ReduceSignalUsage) {
562   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
563      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
564      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
565   }
566   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
567      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
568      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
569   }
570   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
571      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
572      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
573   }
574  }
575  // Fill in signals that are blocked by all but the VM thread.
576  sigemptyset(&vm_sigs);
577  if (!ReduceSignalUsage)
578    sigaddset(&vm_sigs, BREAK_SIGNAL);
579  debug_only(signal_sets_initialized = true);
580
581}
582
583// These are signals that are unblocked while a thread is running Java.
584// (For some reason, they get blocked by default.)
585sigset_t* os::Bsd::unblocked_signals() {
586  assert(signal_sets_initialized, "Not initialized");
587  return &unblocked_sigs;
588}
589
590// These are the signals that are blocked while a (non-VM) thread is
591// running Java. Only the VM thread handles these signals.
592sigset_t* os::Bsd::vm_signals() {
593  assert(signal_sets_initialized, "Not initialized");
594  return &vm_sigs;
595}
596
597// These are signals that are blocked during cond_wait to allow debugger in
598sigset_t* os::Bsd::allowdebug_blocked_signals() {
599  assert(signal_sets_initialized, "Not initialized");
600  return &allowdebug_blocked_sigs;
601}
602
603void os::Bsd::hotspot_sigmask(Thread* thread) {
604
605  //Save caller's signal mask before setting VM signal mask
606  sigset_t caller_sigmask;
607  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
608
609  OSThread* osthread = thread->osthread();
610  osthread->set_caller_sigmask(caller_sigmask);
611
612  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
613
614  if (!ReduceSignalUsage) {
615    if (thread->is_VM_thread()) {
616      // Only the VM thread handles BREAK_SIGNAL ...
617      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
618    } else {
619      // ... all other threads block BREAK_SIGNAL
620      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
621    }
622  }
623}
624
625
626//////////////////////////////////////////////////////////////////////////////
627// create new thread
628
629// check if it's safe to start a new thread
630static bool _thread_safety_check(Thread* thread) {
631  return true;
632}
633
634#ifdef __APPLE__
635// library handle for calling objc_registerThreadWithCollector()
636// without static linking to the libobjc library
637#define OBJC_LIB "/usr/lib/libobjc.dylib"
638#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
639typedef void (*objc_registerThreadWithCollector_t)();
640extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
641objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
642#endif
643
644#ifdef __APPLE__
645static uint64_t locate_unique_thread_id() {
646  // Additional thread_id used to correlate threads in SA
647  thread_identifier_info_data_t     m_ident_info;
648  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
649
650  thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
651              (thread_info_t) &m_ident_info, &count);
652  return m_ident_info.thread_id;
653}
654#endif
655
656// Thread start routine for all newly created threads
657static void *java_start(Thread *thread) {
658  // Try to randomize the cache line index of hot stack frames.
659  // This helps when threads of the same stack traces evict each other's
660  // cache lines. The threads can be either from the same JVM instance, or
661  // from different JVM instances. The benefit is especially true for
662  // processors with hyperthreading technology.
663  static int counter = 0;
664  int pid = os::current_process_id();
665  alloca(((pid ^ counter++) & 7) * 128);
666
667  ThreadLocalStorage::set_thread(thread);
668
669  OSThread* osthread = thread->osthread();
670  Monitor* sync = osthread->startThread_lock();
671
672  // non floating stack BsdThreads needs extra check, see above
673  if (!_thread_safety_check(thread)) {
674    // notify parent thread
675    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
676    osthread->set_state(ZOMBIE);
677    sync->notify_all();
678    return NULL;
679  }
680
681#ifdef __APPLE__
682  // thread_id is mach thread on macos
683  osthread->set_thread_id(::mach_thread_self());
684  osthread->set_unique_thread_id(locate_unique_thread_id());
685#else
686  // thread_id is pthread_id on BSD
687  osthread->set_thread_id(::pthread_self());
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // stack size
745  if (os::Bsd::supports_variable_stack_size()) {
746    // calculate stack size if it's not specified by caller
747    if (stack_size == 0) {
748      stack_size = os::Bsd::default_stack_size(thr_type);
749
750      switch (thr_type) {
751      case os::java_thread:
752        // Java threads use ThreadStackSize which default value can be
753        // changed with the flag -Xss
754        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
755        stack_size = JavaThread::stack_size_at_create();
756        break;
757      case os::compiler_thread:
758        if (CompilerThreadStackSize > 0) {
759          stack_size = (size_t)(CompilerThreadStackSize * K);
760          break;
761        } // else fall through:
762          // use VMThreadStackSize if CompilerThreadStackSize is not defined
763      case os::vm_thread:
764      case os::pgc_thread:
765      case os::cgc_thread:
766      case os::watcher_thread:
767        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
768        break;
769      }
770    }
771
772    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
773    pthread_attr_setstacksize(&attr, stack_size);
774  } else {
775    // let pthread_create() pick the default value.
776  }
777
778  ThreadState state;
779
780  {
781    pthread_t tid;
782    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
783
784    pthread_attr_destroy(&attr);
785
786    if (ret != 0) {
787      if (PrintMiscellaneous && (Verbose || WizardMode)) {
788        perror("pthread_create()");
789      }
790      // Need to clean up stuff we've allocated so far
791      thread->set_osthread(NULL);
792      delete osthread;
793      return false;
794    }
795
796    // Store pthread info into the OSThread
797    osthread->set_pthread_id(tid);
798
799    // Wait until child thread is either initialized or aborted
800    {
801      Monitor* sync_with_child = osthread->startThread_lock();
802      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
803      while ((state = osthread->get_state()) == ALLOCATED) {
804        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
805      }
806    }
807
808  }
809
810  // Aborted due to thread limit being reached
811  if (state == ZOMBIE) {
812      thread->set_osthread(NULL);
813      delete osthread;
814      return false;
815  }
816
817  // The thread is returned suspended (in state INITIALIZED),
818  // and is started higher up in the call chain
819  assert(state == INITIALIZED, "race condition");
820  return true;
821}
822
823/////////////////////////////////////////////////////////////////////////////
824// attach existing thread
825
826// bootstrap the main thread
827bool os::create_main_thread(JavaThread* thread) {
828  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
829  return create_attached_thread(thread);
830}
831
832bool os::create_attached_thread(JavaThread* thread) {
833#ifdef ASSERT
834    thread->verify_not_published();
835#endif
836
837  // Allocate the OSThread object
838  OSThread* osthread = new OSThread(NULL, NULL);
839
840  if (osthread == NULL) {
841    return false;
842  }
843
844  // Store pthread info into the OSThread
845#ifdef __APPLE__
846  osthread->set_thread_id(::mach_thread_self());
847  osthread->set_unique_thread_id(locate_unique_thread_id());
848#else
849  osthread->set_thread_id(::pthread_self());
850#endif
851  osthread->set_pthread_id(::pthread_self());
852
853  // initialize floating point control register
854  os::Bsd::init_thread_fpu_state();
855
856  // Initial thread state is RUNNABLE
857  osthread->set_state(RUNNABLE);
858
859  thread->set_osthread(osthread);
860
861  // initialize signal mask for this thread
862  // and save the caller's signal mask
863  os::Bsd::hotspot_sigmask(thread);
864
865  return true;
866}
867
868void os::pd_start_thread(Thread* thread) {
869  OSThread * osthread = thread->osthread();
870  assert(osthread->get_state() != INITIALIZED, "just checking");
871  Monitor* sync_with_child = osthread->startThread_lock();
872  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
873  sync_with_child->notify();
874}
875
876// Free Bsd resources related to the OSThread
877void os::free_thread(OSThread* osthread) {
878  assert(osthread != NULL, "osthread not set");
879
880  if (Thread::current()->osthread() == osthread) {
881    // Restore caller's signal mask
882    sigset_t sigmask = osthread->caller_sigmask();
883    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
884   }
885
886  delete osthread;
887}
888
889//////////////////////////////////////////////////////////////////////////////
890// thread local storage
891
892int os::allocate_thread_local_storage() {
893  pthread_key_t key;
894  int rslt = pthread_key_create(&key, NULL);
895  assert(rslt == 0, "cannot allocate thread local storage");
896  return (int)key;
897}
898
899// Note: This is currently not used by VM, as we don't destroy TLS key
900// on VM exit.
901void os::free_thread_local_storage(int index) {
902  int rslt = pthread_key_delete((pthread_key_t)index);
903  assert(rslt == 0, "invalid index");
904}
905
906void os::thread_local_storage_at_put(int index, void* value) {
907  int rslt = pthread_setspecific((pthread_key_t)index, value);
908  assert(rslt == 0, "pthread_setspecific failed");
909}
910
911extern "C" Thread* get_thread() {
912  return ThreadLocalStorage::thread();
913}
914
915
916////////////////////////////////////////////////////////////////////////////////
917// time support
918
919// Time since start-up in seconds to a fine granularity.
920// Used by VMSelfDestructTimer and the MemProfiler.
921double os::elapsedTime() {
922
923  return (double)(os::elapsed_counter()) * 0.000001;
924}
925
926jlong os::elapsed_counter() {
927  timeval time;
928  int status = gettimeofday(&time, NULL);
929  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
930}
931
932jlong os::elapsed_frequency() {
933  return (1000 * 1000);
934}
935
936bool os::supports_vtime() { return true; }
937bool os::enable_vtime()   { return false; }
938bool os::vtime_enabled()  { return false; }
939
940double os::elapsedVTime() {
941  // better than nothing, but not much
942  return elapsedTime();
943}
944
945jlong os::javaTimeMillis() {
946  timeval time;
947  int status = gettimeofday(&time, NULL);
948  assert(status != -1, "bsd error");
949  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
950}
951
952#ifndef CLOCK_MONOTONIC
953#define CLOCK_MONOTONIC (1)
954#endif
955
956#ifdef __APPLE__
957void os::Bsd::clock_init() {
958        // XXXDARWIN: Investigate replacement monotonic clock
959}
960#else
961void os::Bsd::clock_init() {
962  struct timespec res;
963  struct timespec tp;
964  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
965      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
966    // yes, monotonic clock is supported
967    _clock_gettime = ::clock_gettime;
968  }
969}
970#endif
971
972
973jlong os::javaTimeNanos() {
974  if (Bsd::supports_monotonic_clock()) {
975    struct timespec tp;
976    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
977    assert(status == 0, "gettime error");
978    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
979    return result;
980  } else {
981    timeval time;
982    int status = gettimeofday(&time, NULL);
983    assert(status != -1, "bsd error");
984    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
985    return 1000 * usecs;
986  }
987}
988
989void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
990  if (Bsd::supports_monotonic_clock()) {
991    info_ptr->max_value = ALL_64_BITS;
992
993    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
994    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
995    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
996  } else {
997    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
998    info_ptr->max_value = ALL_64_BITS;
999
1000    // gettimeofday is a real time clock so it skips
1001    info_ptr->may_skip_backward = true;
1002    info_ptr->may_skip_forward = true;
1003  }
1004
1005  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1006}
1007
1008// Return the real, user, and system times in seconds from an
1009// arbitrary fixed point in the past.
1010bool os::getTimesSecs(double* process_real_time,
1011                      double* process_user_time,
1012                      double* process_system_time) {
1013  struct tms ticks;
1014  clock_t real_ticks = times(&ticks);
1015
1016  if (real_ticks == (clock_t) (-1)) {
1017    return false;
1018  } else {
1019    double ticks_per_second = (double) clock_tics_per_sec;
1020    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1021    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1022    *process_real_time = ((double) real_ticks) / ticks_per_second;
1023
1024    return true;
1025  }
1026}
1027
1028
1029char * os::local_time_string(char *buf, size_t buflen) {
1030  struct tm t;
1031  time_t long_time;
1032  time(&long_time);
1033  localtime_r(&long_time, &t);
1034  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1035               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1036               t.tm_hour, t.tm_min, t.tm_sec);
1037  return buf;
1038}
1039
1040struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1041  return localtime_r(clock, res);
1042}
1043
1044////////////////////////////////////////////////////////////////////////////////
1045// runtime exit support
1046
1047// Note: os::shutdown() might be called very early during initialization, or
1048// called from signal handler. Before adding something to os::shutdown(), make
1049// sure it is async-safe and can handle partially initialized VM.
1050void os::shutdown() {
1051
1052  // allow PerfMemory to attempt cleanup of any persistent resources
1053  perfMemory_exit();
1054
1055  // needs to remove object in file system
1056  AttachListener::abort();
1057
1058  // flush buffered output, finish log files
1059  ostream_abort();
1060
1061  // Check for abort hook
1062  abort_hook_t abort_hook = Arguments::abort_hook();
1063  if (abort_hook != NULL) {
1064    abort_hook();
1065  }
1066
1067}
1068
1069// Note: os::abort() might be called very early during initialization, or
1070// called from signal handler. Before adding something to os::abort(), make
1071// sure it is async-safe and can handle partially initialized VM.
1072void os::abort(bool dump_core) {
1073  os::shutdown();
1074  if (dump_core) {
1075#ifndef PRODUCT
1076    fdStream out(defaultStream::output_fd());
1077    out.print_raw("Current thread is ");
1078    char buf[16];
1079    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1080    out.print_raw_cr(buf);
1081    out.print_raw_cr("Dumping core ...");
1082#endif
1083    ::abort(); // dump core
1084  }
1085
1086  ::exit(1);
1087}
1088
1089// Die immediately, no exit hook, no abort hook, no cleanup.
1090void os::die() {
1091  // _exit() on BsdThreads only kills current thread
1092  ::abort();
1093}
1094
1095// unused on bsd for now.
1096void os::set_error_file(const char *logfile) {}
1097
1098
1099// This method is a copy of JDK's sysGetLastErrorString
1100// from src/solaris/hpi/src/system_md.c
1101
1102size_t os::lasterror(char *buf, size_t len) {
1103
1104  if (errno == 0)  return 0;
1105
1106  const char *s = ::strerror(errno);
1107  size_t n = ::strlen(s);
1108  if (n >= len) {
1109    n = len - 1;
1110  }
1111  ::strncpy(buf, s, n);
1112  buf[n] = '\0';
1113  return n;
1114}
1115
1116intx os::current_thread_id() {
1117#ifdef __APPLE__
1118  return (intx)::mach_thread_self();
1119#else
1120  return (intx)::pthread_self();
1121#endif
1122}
1123int os::current_process_id() {
1124
1125  // Under the old bsd thread library, bsd gives each thread
1126  // its own process id. Because of this each thread will return
1127  // a different pid if this method were to return the result
1128  // of getpid(2). Bsd provides no api that returns the pid
1129  // of the launcher thread for the vm. This implementation
1130  // returns a unique pid, the pid of the launcher thread
1131  // that starts the vm 'process'.
1132
1133  // Under the NPTL, getpid() returns the same pid as the
1134  // launcher thread rather than a unique pid per thread.
1135  // Use gettid() if you want the old pre NPTL behaviour.
1136
1137  // if you are looking for the result of a call to getpid() that
1138  // returns a unique pid for the calling thread, then look at the
1139  // OSThread::thread_id() method in osThread_bsd.hpp file
1140
1141  return (int)(_initial_pid ? _initial_pid : getpid());
1142}
1143
1144// DLL functions
1145
1146#define JNI_LIB_PREFIX "lib"
1147#ifdef __APPLE__
1148#define JNI_LIB_SUFFIX ".dylib"
1149#else
1150#define JNI_LIB_SUFFIX ".so"
1151#endif
1152
1153const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1154
1155// This must be hard coded because it's the system's temporary
1156// directory not the java application's temp directory, ala java.io.tmpdir.
1157#ifdef __APPLE__
1158// macosx has a secure per-user temporary directory
1159char temp_path_storage[PATH_MAX];
1160const char* os::get_temp_directory() {
1161  static char *temp_path = NULL;
1162  if (temp_path == NULL) {
1163    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1164    if (pathSize == 0 || pathSize > PATH_MAX) {
1165      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1166    }
1167    temp_path = temp_path_storage;
1168  }
1169  return temp_path;
1170}
1171#else /* __APPLE__ */
1172const char* os::get_temp_directory() { return "/tmp"; }
1173#endif /* __APPLE__ */
1174
1175static bool file_exists(const char* filename) {
1176  struct stat statbuf;
1177  if (filename == NULL || strlen(filename) == 0) {
1178    return false;
1179  }
1180  return os::stat(filename, &statbuf) == 0;
1181}
1182
1183bool os::dll_build_name(char* buffer, size_t buflen,
1184                        const char* pname, const char* fname) {
1185  bool retval = false;
1186  // Copied from libhpi
1187  const size_t pnamelen = pname ? strlen(pname) : 0;
1188
1189  // Return error on buffer overflow.
1190  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1191    return retval;
1192  }
1193
1194  if (pnamelen == 0) {
1195    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1196    retval = true;
1197  } else if (strchr(pname, *os::path_separator()) != NULL) {
1198    int n;
1199    char** pelements = split_path(pname, &n);
1200    if (pelements == NULL) {
1201      return false;
1202    }
1203    for (int i = 0 ; i < n ; i++) {
1204      // Really shouldn't be NULL, but check can't hurt
1205      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1206        continue; // skip the empty path values
1207      }
1208      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1209          pelements[i], fname);
1210      if (file_exists(buffer)) {
1211        retval = true;
1212        break;
1213      }
1214    }
1215    // release the storage
1216    for (int i = 0 ; i < n ; i++) {
1217      if (pelements[i] != NULL) {
1218        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1219      }
1220    }
1221    if (pelements != NULL) {
1222      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1223    }
1224  } else {
1225    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1226    retval = true;
1227  }
1228  return retval;
1229}
1230
1231// check if addr is inside libjvm.so
1232bool os::address_is_in_vm(address addr) {
1233  static address libjvm_base_addr;
1234  Dl_info dlinfo;
1235
1236  if (libjvm_base_addr == NULL) {
1237    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1238      libjvm_base_addr = (address)dlinfo.dli_fbase;
1239    }
1240    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1241  }
1242
1243  if (dladdr((void *)addr, &dlinfo) != 0) {
1244    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1245  }
1246
1247  return false;
1248}
1249
1250
1251#define MACH_MAXSYMLEN 256
1252
1253bool os::dll_address_to_function_name(address addr, char *buf,
1254                                      int buflen, int *offset) {
1255  // buf is not optional, but offset is optional
1256  assert(buf != NULL, "sanity check");
1257
1258  Dl_info dlinfo;
1259  char localbuf[MACH_MAXSYMLEN];
1260
1261  if (dladdr((void*)addr, &dlinfo) != 0) {
1262    // see if we have a matching symbol
1263    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1264      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1265        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1266      }
1267      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1268      return true;
1269    }
1270    // no matching symbol so try for just file info
1271    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1272      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1273                          buf, buflen, offset, dlinfo.dli_fname)) {
1274         return true;
1275      }
1276    }
1277
1278    // Handle non-dynamic manually:
1279    if (dlinfo.dli_fbase != NULL &&
1280        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1281                        dlinfo.dli_fbase)) {
1282      if (!Decoder::demangle(localbuf, buf, buflen)) {
1283        jio_snprintf(buf, buflen, "%s", localbuf);
1284      }
1285      return true;
1286    }
1287  }
1288  buf[0] = '\0';
1289  if (offset != NULL) *offset = -1;
1290  return false;
1291}
1292
1293// ported from solaris version
1294bool os::dll_address_to_library_name(address addr, char* buf,
1295                                     int buflen, int* offset) {
1296  // buf is not optional, but offset is optional
1297  assert(buf != NULL, "sanity check");
1298
1299  Dl_info dlinfo;
1300
1301  if (dladdr((void*)addr, &dlinfo) != 0) {
1302    if (dlinfo.dli_fname != NULL) {
1303      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1304    }
1305    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1306      *offset = addr - (address)dlinfo.dli_fbase;
1307    }
1308    return true;
1309  }
1310
1311  buf[0] = '\0';
1312  if (offset) *offset = -1;
1313  return false;
1314}
1315
1316// Loads .dll/.so and
1317// in case of error it checks if .dll/.so was built for the
1318// same architecture as Hotspot is running on
1319
1320#ifdef __APPLE__
1321void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1322  void * result= ::dlopen(filename, RTLD_LAZY);
1323  if (result != NULL) {
1324    // Successful loading
1325    return result;
1326  }
1327
1328  // Read system error message into ebuf
1329  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1330  ebuf[ebuflen-1]='\0';
1331
1332  return NULL;
1333}
1334#else
1335void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1336{
1337  void * result= ::dlopen(filename, RTLD_LAZY);
1338  if (result != NULL) {
1339    // Successful loading
1340    return result;
1341  }
1342
1343  Elf32_Ehdr elf_head;
1344
1345  // Read system error message into ebuf
1346  // It may or may not be overwritten below
1347  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1348  ebuf[ebuflen-1]='\0';
1349  int diag_msg_max_length=ebuflen-strlen(ebuf);
1350  char* diag_msg_buf=ebuf+strlen(ebuf);
1351
1352  if (diag_msg_max_length==0) {
1353    // No more space in ebuf for additional diagnostics message
1354    return NULL;
1355  }
1356
1357
1358  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1359
1360  if (file_descriptor < 0) {
1361    // Can't open library, report dlerror() message
1362    return NULL;
1363  }
1364
1365  bool failed_to_read_elf_head=
1366    (sizeof(elf_head)!=
1367        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1368
1369  ::close(file_descriptor);
1370  if (failed_to_read_elf_head) {
1371    // file i/o error - report dlerror() msg
1372    return NULL;
1373  }
1374
1375  typedef struct {
1376    Elf32_Half  code;         // Actual value as defined in elf.h
1377    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1378    char        elf_class;    // 32 or 64 bit
1379    char        endianess;    // MSB or LSB
1380    char*       name;         // String representation
1381  } arch_t;
1382
1383  #ifndef EM_486
1384  #define EM_486          6               /* Intel 80486 */
1385  #endif
1386
1387  #ifndef EM_MIPS_RS3_LE
1388  #define EM_MIPS_RS3_LE  10              /* MIPS */
1389  #endif
1390
1391  #ifndef EM_PPC64
1392  #define EM_PPC64        21              /* PowerPC64 */
1393  #endif
1394
1395  #ifndef EM_S390
1396  #define EM_S390         22              /* IBM System/390 */
1397  #endif
1398
1399  #ifndef EM_IA_64
1400  #define EM_IA_64        50              /* HP/Intel IA-64 */
1401  #endif
1402
1403  #ifndef EM_X86_64
1404  #define EM_X86_64       62              /* AMD x86-64 */
1405  #endif
1406
1407  static const arch_t arch_array[]={
1408    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1409    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1410    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1411    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1412    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1413    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1414    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1415    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1416    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1417    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1418    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1419    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1420    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1421    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1422    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1423    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1424  };
1425
1426  #if  (defined IA32)
1427    static  Elf32_Half running_arch_code=EM_386;
1428  #elif   (defined AMD64)
1429    static  Elf32_Half running_arch_code=EM_X86_64;
1430  #elif  (defined IA64)
1431    static  Elf32_Half running_arch_code=EM_IA_64;
1432  #elif  (defined __sparc) && (defined _LP64)
1433    static  Elf32_Half running_arch_code=EM_SPARCV9;
1434  #elif  (defined __sparc) && (!defined _LP64)
1435    static  Elf32_Half running_arch_code=EM_SPARC;
1436  #elif  (defined __powerpc64__)
1437    static  Elf32_Half running_arch_code=EM_PPC64;
1438  #elif  (defined __powerpc__)
1439    static  Elf32_Half running_arch_code=EM_PPC;
1440  #elif  (defined ARM)
1441    static  Elf32_Half running_arch_code=EM_ARM;
1442  #elif  (defined S390)
1443    static  Elf32_Half running_arch_code=EM_S390;
1444  #elif  (defined ALPHA)
1445    static  Elf32_Half running_arch_code=EM_ALPHA;
1446  #elif  (defined MIPSEL)
1447    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1448  #elif  (defined PARISC)
1449    static  Elf32_Half running_arch_code=EM_PARISC;
1450  #elif  (defined MIPS)
1451    static  Elf32_Half running_arch_code=EM_MIPS;
1452  #elif  (defined M68K)
1453    static  Elf32_Half running_arch_code=EM_68K;
1454  #else
1455    #error Method os::dll_load requires that one of following is defined:\
1456         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1457  #endif
1458
1459  // Identify compatability class for VM's architecture and library's architecture
1460  // Obtain string descriptions for architectures
1461
1462  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1463  int running_arch_index=-1;
1464
1465  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1466    if (running_arch_code == arch_array[i].code) {
1467      running_arch_index    = i;
1468    }
1469    if (lib_arch.code == arch_array[i].code) {
1470      lib_arch.compat_class = arch_array[i].compat_class;
1471      lib_arch.name         = arch_array[i].name;
1472    }
1473  }
1474
1475  assert(running_arch_index != -1,
1476    "Didn't find running architecture code (running_arch_code) in arch_array");
1477  if (running_arch_index == -1) {
1478    // Even though running architecture detection failed
1479    // we may still continue with reporting dlerror() message
1480    return NULL;
1481  }
1482
1483  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1484    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1485    return NULL;
1486  }
1487
1488#ifndef S390
1489  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1490    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1491    return NULL;
1492  }
1493#endif // !S390
1494
1495  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1496    if ( lib_arch.name!=NULL ) {
1497      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1498        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1499        lib_arch.name, arch_array[running_arch_index].name);
1500    } else {
1501      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1502      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1503        lib_arch.code,
1504        arch_array[running_arch_index].name);
1505    }
1506  }
1507
1508  return NULL;
1509}
1510#endif /* !__APPLE__ */
1511
1512// XXX: Do we need a lock around this as per Linux?
1513void* os::dll_lookup(void* handle, const char* name) {
1514  return dlsym(handle, name);
1515}
1516
1517
1518static bool _print_ascii_file(const char* filename, outputStream* st) {
1519  int fd = ::open(filename, O_RDONLY);
1520  if (fd == -1) {
1521     return false;
1522  }
1523
1524  char buf[32];
1525  int bytes;
1526  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1527    st->print_raw(buf, bytes);
1528  }
1529
1530  ::close(fd);
1531
1532  return true;
1533}
1534
1535void os::print_dll_info(outputStream *st) {
1536  st->print_cr("Dynamic libraries:");
1537#ifdef RTLD_DI_LINKMAP
1538  Dl_info dli;
1539  void *handle;
1540  Link_map *map;
1541  Link_map *p;
1542
1543  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1544      dli.dli_fname == NULL) {
1545    st->print_cr("Error: Cannot print dynamic libraries.");
1546    return;
1547  }
1548  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1549  if (handle == NULL) {
1550    st->print_cr("Error: Cannot print dynamic libraries.");
1551    return;
1552  }
1553  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1554  if (map == NULL) {
1555    st->print_cr("Error: Cannot print dynamic libraries.");
1556    return;
1557  }
1558
1559  while (map->l_prev != NULL)
1560    map = map->l_prev;
1561
1562  while (map != NULL) {
1563    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1564    map = map->l_next;
1565  }
1566
1567  dlclose(handle);
1568#elif defined(__APPLE__)
1569  uint32_t count;
1570  uint32_t i;
1571
1572  count = _dyld_image_count();
1573  for (i = 1; i < count; i++) {
1574    const char *name = _dyld_get_image_name(i);
1575    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1576    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1577  }
1578#else
1579  st->print_cr("Error: Cannot print dynamic libraries.");
1580#endif
1581}
1582
1583void os::print_os_info_brief(outputStream* st) {
1584  st->print("Bsd");
1585
1586  os::Posix::print_uname_info(st);
1587}
1588
1589void os::print_os_info(outputStream* st) {
1590  st->print("OS:");
1591  st->print("Bsd");
1592
1593  os::Posix::print_uname_info(st);
1594
1595  os::Posix::print_rlimit_info(st);
1596
1597  os::Posix::print_load_average(st);
1598}
1599
1600void os::pd_print_cpu_info(outputStream* st) {
1601  // Nothing to do for now.
1602}
1603
1604void os::print_memory_info(outputStream* st) {
1605
1606  st->print("Memory:");
1607  st->print(" %dk page", os::vm_page_size()>>10);
1608
1609  st->print(", physical " UINT64_FORMAT "k",
1610            os::physical_memory() >> 10);
1611  st->print("(" UINT64_FORMAT "k free)",
1612            os::available_memory() >> 10);
1613  st->cr();
1614
1615  // meminfo
1616  st->print("\n/proc/meminfo:\n");
1617  _print_ascii_file("/proc/meminfo", st);
1618  st->cr();
1619}
1620
1621// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1622// but they're the same for all the bsd arch that we support
1623// and they're the same for solaris but there's no common place to put this.
1624const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1625                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1626                          "ILL_COPROC", "ILL_BADSTK" };
1627
1628const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1629                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1630                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1631
1632const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1633
1634const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1635
1636void os::print_siginfo(outputStream* st, void* siginfo) {
1637  st->print("siginfo:");
1638
1639  const int buflen = 100;
1640  char buf[buflen];
1641  siginfo_t *si = (siginfo_t*)siginfo;
1642  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1643  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1644    st->print("si_errno=%s", buf);
1645  } else {
1646    st->print("si_errno=%d", si->si_errno);
1647  }
1648  const int c = si->si_code;
1649  assert(c > 0, "unexpected si_code");
1650  switch (si->si_signo) {
1651  case SIGILL:
1652    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1653    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1654    break;
1655  case SIGFPE:
1656    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1657    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1658    break;
1659  case SIGSEGV:
1660    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1661    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1662    break;
1663  case SIGBUS:
1664    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1665    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1666    break;
1667  default:
1668    st->print(", si_code=%d", si->si_code);
1669    // no si_addr
1670  }
1671
1672  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1673      UseSharedSpaces) {
1674    FileMapInfo* mapinfo = FileMapInfo::current_info();
1675    if (mapinfo->is_in_shared_space(si->si_addr)) {
1676      st->print("\n\nError accessing class data sharing archive."   \
1677                " Mapped file inaccessible during execution, "      \
1678                " possible disk/network problem.");
1679    }
1680  }
1681  st->cr();
1682}
1683
1684
1685static void print_signal_handler(outputStream* st, int sig,
1686                                 char* buf, size_t buflen);
1687
1688void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1689  st->print_cr("Signal Handlers:");
1690  print_signal_handler(st, SIGSEGV, buf, buflen);
1691  print_signal_handler(st, SIGBUS , buf, buflen);
1692  print_signal_handler(st, SIGFPE , buf, buflen);
1693  print_signal_handler(st, SIGPIPE, buf, buflen);
1694  print_signal_handler(st, SIGXFSZ, buf, buflen);
1695  print_signal_handler(st, SIGILL , buf, buflen);
1696  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1697  print_signal_handler(st, SR_signum, buf, buflen);
1698  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1699  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1700  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1701  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1702}
1703
1704static char saved_jvm_path[MAXPATHLEN] = {0};
1705
1706// Find the full path to the current module, libjvm
1707void os::jvm_path(char *buf, jint buflen) {
1708  // Error checking.
1709  if (buflen < MAXPATHLEN) {
1710    assert(false, "must use a large-enough buffer");
1711    buf[0] = '\0';
1712    return;
1713  }
1714  // Lazy resolve the path to current module.
1715  if (saved_jvm_path[0] != 0) {
1716    strcpy(buf, saved_jvm_path);
1717    return;
1718  }
1719
1720  char dli_fname[MAXPATHLEN];
1721  bool ret = dll_address_to_library_name(
1722                CAST_FROM_FN_PTR(address, os::jvm_path),
1723                dli_fname, sizeof(dli_fname), NULL);
1724  assert(ret, "cannot locate libjvm");
1725  char *rp = NULL;
1726  if (ret && dli_fname[0] != '\0') {
1727    rp = realpath(dli_fname, buf);
1728  }
1729  if (rp == NULL)
1730    return;
1731
1732  if (Arguments::created_by_gamma_launcher()) {
1733    // Support for the gamma launcher.  Typical value for buf is
1734    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1735    // the right place in the string, then assume we are installed in a JDK and
1736    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1737    // construct a path to the JVM being overridden.
1738
1739    const char *p = buf + strlen(buf) - 1;
1740    for (int count = 0; p > buf && count < 5; ++count) {
1741      for (--p; p > buf && *p != '/'; --p)
1742        /* empty */ ;
1743    }
1744
1745    if (strncmp(p, "/jre/lib/", 9) != 0) {
1746      // Look for JAVA_HOME in the environment.
1747      char* java_home_var = ::getenv("JAVA_HOME");
1748      if (java_home_var != NULL && java_home_var[0] != 0) {
1749        char* jrelib_p;
1750        int len;
1751
1752        // Check the current module name "libjvm"
1753        p = strrchr(buf, '/');
1754        assert(strstr(p, "/libjvm") == p, "invalid library name");
1755
1756        rp = realpath(java_home_var, buf);
1757        if (rp == NULL)
1758          return;
1759
1760        // determine if this is a legacy image or modules image
1761        // modules image doesn't have "jre" subdirectory
1762        len = strlen(buf);
1763        jrelib_p = buf + len;
1764
1765        // Add the appropriate library subdir
1766        snprintf(jrelib_p, buflen-len, "/jre/lib");
1767        if (0 != access(buf, F_OK)) {
1768          snprintf(jrelib_p, buflen-len, "/lib");
1769        }
1770
1771        // Add the appropriate client or server subdir
1772        len = strlen(buf);
1773        jrelib_p = buf + len;
1774        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1775        if (0 != access(buf, F_OK)) {
1776          snprintf(jrelib_p, buflen-len, "");
1777        }
1778
1779        // If the path exists within JAVA_HOME, add the JVM library name
1780        // to complete the path to JVM being overridden.  Otherwise fallback
1781        // to the path to the current library.
1782        if (0 == access(buf, F_OK)) {
1783          // Use current module name "libjvm"
1784          len = strlen(buf);
1785          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1786        } else {
1787          // Fall back to path of current library
1788          rp = realpath(dli_fname, buf);
1789          if (rp == NULL)
1790            return;
1791        }
1792      }
1793    }
1794  }
1795
1796  strcpy(saved_jvm_path, buf);
1797}
1798
1799void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1800  // no prefix required, not even "_"
1801}
1802
1803void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1804  // no suffix required
1805}
1806
1807////////////////////////////////////////////////////////////////////////////////
1808// sun.misc.Signal support
1809
1810static volatile jint sigint_count = 0;
1811
1812static void
1813UserHandler(int sig, void *siginfo, void *context) {
1814  // 4511530 - sem_post is serialized and handled by the manager thread. When
1815  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1816  // don't want to flood the manager thread with sem_post requests.
1817  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1818      return;
1819
1820  // Ctrl-C is pressed during error reporting, likely because the error
1821  // handler fails to abort. Let VM die immediately.
1822  if (sig == SIGINT && is_error_reported()) {
1823     os::die();
1824  }
1825
1826  os::signal_notify(sig);
1827}
1828
1829void* os::user_handler() {
1830  return CAST_FROM_FN_PTR(void*, UserHandler);
1831}
1832
1833extern "C" {
1834  typedef void (*sa_handler_t)(int);
1835  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1836}
1837
1838void* os::signal(int signal_number, void* handler) {
1839  struct sigaction sigAct, oldSigAct;
1840
1841  sigfillset(&(sigAct.sa_mask));
1842  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1843  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1844
1845  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1846    // -1 means registration failed
1847    return (void *)-1;
1848  }
1849
1850  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1851}
1852
1853void os::signal_raise(int signal_number) {
1854  ::raise(signal_number);
1855}
1856
1857/*
1858 * The following code is moved from os.cpp for making this
1859 * code platform specific, which it is by its very nature.
1860 */
1861
1862// Will be modified when max signal is changed to be dynamic
1863int os::sigexitnum_pd() {
1864  return NSIG;
1865}
1866
1867// a counter for each possible signal value
1868static volatile jint pending_signals[NSIG+1] = { 0 };
1869
1870// Bsd(POSIX) specific hand shaking semaphore.
1871#ifdef __APPLE__
1872typedef semaphore_t os_semaphore_t;
1873#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1874#define SEM_WAIT(sem)           semaphore_wait(sem)
1875#define SEM_POST(sem)           semaphore_signal(sem)
1876#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1877#else
1878typedef sem_t os_semaphore_t;
1879#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1880#define SEM_WAIT(sem)           sem_wait(&sem)
1881#define SEM_POST(sem)           sem_post(&sem)
1882#define SEM_DESTROY(sem)        sem_destroy(&sem)
1883#endif
1884
1885class Semaphore : public StackObj {
1886  public:
1887    Semaphore();
1888    ~Semaphore();
1889    void signal();
1890    void wait();
1891    bool trywait();
1892    bool timedwait(unsigned int sec, int nsec);
1893  private:
1894    jlong currenttime() const;
1895    semaphore_t _semaphore;
1896};
1897
1898Semaphore::Semaphore() : _semaphore(0) {
1899  SEM_INIT(_semaphore, 0);
1900}
1901
1902Semaphore::~Semaphore() {
1903  SEM_DESTROY(_semaphore);
1904}
1905
1906void Semaphore::signal() {
1907  SEM_POST(_semaphore);
1908}
1909
1910void Semaphore::wait() {
1911  SEM_WAIT(_semaphore);
1912}
1913
1914jlong Semaphore::currenttime() const {
1915    struct timeval tv;
1916    gettimeofday(&tv, NULL);
1917    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1918}
1919
1920#ifdef __APPLE__
1921bool Semaphore::trywait() {
1922  return timedwait(0, 0);
1923}
1924
1925bool Semaphore::timedwait(unsigned int sec, int nsec) {
1926  kern_return_t kr = KERN_ABORTED;
1927  mach_timespec_t waitspec;
1928  waitspec.tv_sec = sec;
1929  waitspec.tv_nsec = nsec;
1930
1931  jlong starttime = currenttime();
1932
1933  kr = semaphore_timedwait(_semaphore, waitspec);
1934  while (kr == KERN_ABORTED) {
1935    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1936
1937    jlong current = currenttime();
1938    jlong passedtime = current - starttime;
1939
1940    if (passedtime >= totalwait) {
1941      waitspec.tv_sec = 0;
1942      waitspec.tv_nsec = 0;
1943    } else {
1944      jlong waittime = totalwait - (current - starttime);
1945      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1946      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1947    }
1948
1949    kr = semaphore_timedwait(_semaphore, waitspec);
1950  }
1951
1952  return kr == KERN_SUCCESS;
1953}
1954
1955#else
1956
1957bool Semaphore::trywait() {
1958  return sem_trywait(&_semaphore) == 0;
1959}
1960
1961bool Semaphore::timedwait(unsigned int sec, int nsec) {
1962  struct timespec ts;
1963  jlong endtime = unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1964
1965  while (1) {
1966    int result = sem_timedwait(&_semaphore, &ts);
1967    if (result == 0) {
1968      return true;
1969    } else if (errno == EINTR) {
1970      continue;
1971    } else if (errno == ETIMEDOUT) {
1972      return false;
1973    } else {
1974      return false;
1975    }
1976  }
1977}
1978
1979#endif // __APPLE__
1980
1981static os_semaphore_t sig_sem;
1982static Semaphore sr_semaphore;
1983
1984void os::signal_init_pd() {
1985  // Initialize signal structures
1986  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1987
1988  // Initialize signal semaphore
1989  ::SEM_INIT(sig_sem, 0);
1990}
1991
1992void os::signal_notify(int sig) {
1993  Atomic::inc(&pending_signals[sig]);
1994  ::SEM_POST(sig_sem);
1995}
1996
1997static int check_pending_signals(bool wait) {
1998  Atomic::store(0, &sigint_count);
1999  for (;;) {
2000    for (int i = 0; i < NSIG + 1; i++) {
2001      jint n = pending_signals[i];
2002      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2003        return i;
2004      }
2005    }
2006    if (!wait) {
2007      return -1;
2008    }
2009    JavaThread *thread = JavaThread::current();
2010    ThreadBlockInVM tbivm(thread);
2011
2012    bool threadIsSuspended;
2013    do {
2014      thread->set_suspend_equivalent();
2015      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2016      ::SEM_WAIT(sig_sem);
2017
2018      // were we externally suspended while we were waiting?
2019      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2020      if (threadIsSuspended) {
2021        //
2022        // The semaphore has been incremented, but while we were waiting
2023        // another thread suspended us. We don't want to continue running
2024        // while suspended because that would surprise the thread that
2025        // suspended us.
2026        //
2027        ::SEM_POST(sig_sem);
2028
2029        thread->java_suspend_self();
2030      }
2031    } while (threadIsSuspended);
2032  }
2033}
2034
2035int os::signal_lookup() {
2036  return check_pending_signals(false);
2037}
2038
2039int os::signal_wait() {
2040  return check_pending_signals(true);
2041}
2042
2043////////////////////////////////////////////////////////////////////////////////
2044// Virtual Memory
2045
2046int os::vm_page_size() {
2047  // Seems redundant as all get out
2048  assert(os::Bsd::page_size() != -1, "must call os::init");
2049  return os::Bsd::page_size();
2050}
2051
2052// Solaris allocates memory by pages.
2053int os::vm_allocation_granularity() {
2054  assert(os::Bsd::page_size() != -1, "must call os::init");
2055  return os::Bsd::page_size();
2056}
2057
2058// Rationale behind this function:
2059//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2060//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2061//  samples for JITted code. Here we create private executable mapping over the code cache
2062//  and then we can use standard (well, almost, as mapping can change) way to provide
2063//  info for the reporting script by storing timestamp and location of symbol
2064void bsd_wrap_code(char* base, size_t size) {
2065  static volatile jint cnt = 0;
2066
2067  if (!UseOprofile) {
2068    return;
2069  }
2070
2071  char buf[PATH_MAX + 1];
2072  int num = Atomic::add(1, &cnt);
2073
2074  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2075           os::get_temp_directory(), os::current_process_id(), num);
2076  unlink(buf);
2077
2078  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2079
2080  if (fd != -1) {
2081    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2082    if (rv != (off_t)-1) {
2083      if (::write(fd, "", 1) == 1) {
2084        mmap(base, size,
2085             PROT_READ|PROT_WRITE|PROT_EXEC,
2086             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2087      }
2088    }
2089    ::close(fd);
2090    unlink(buf);
2091  }
2092}
2093
2094static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2095                                    int err) {
2096  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2097          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2098          strerror(err), err);
2099}
2100
2101// NOTE: Bsd kernel does not really reserve the pages for us.
2102//       All it does is to check if there are enough free pages
2103//       left at the time of mmap(). This could be a potential
2104//       problem.
2105bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2106  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2107#ifdef __OpenBSD__
2108  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2109  if (::mprotect(addr, size, prot) == 0) {
2110    return true;
2111  }
2112#else
2113  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2114                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2115  if (res != (uintptr_t) MAP_FAILED) {
2116    return true;
2117  }
2118#endif
2119
2120  // Warn about any commit errors we see in non-product builds just
2121  // in case mmap() doesn't work as described on the man page.
2122  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2123
2124  return false;
2125}
2126
2127bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2128                       bool exec) {
2129  // alignment_hint is ignored on this OS
2130  return pd_commit_memory(addr, size, exec);
2131}
2132
2133void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2134                                  const char* mesg) {
2135  assert(mesg != NULL, "mesg must be specified");
2136  if (!pd_commit_memory(addr, size, exec)) {
2137    // add extra info in product mode for vm_exit_out_of_memory():
2138    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2139    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2140  }
2141}
2142
2143void os::pd_commit_memory_or_exit(char* addr, size_t size,
2144                                  size_t alignment_hint, bool exec,
2145                                  const char* mesg) {
2146  // alignment_hint is ignored on this OS
2147  pd_commit_memory_or_exit(addr, size, exec, mesg);
2148}
2149
2150void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2151}
2152
2153void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2154  ::madvise(addr, bytes, MADV_DONTNEED);
2155}
2156
2157void os::numa_make_global(char *addr, size_t bytes) {
2158}
2159
2160void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2161}
2162
2163bool os::numa_topology_changed()   { return false; }
2164
2165size_t os::numa_get_groups_num() {
2166  return 1;
2167}
2168
2169int os::numa_get_group_id() {
2170  return 0;
2171}
2172
2173size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2174  if (size > 0) {
2175    ids[0] = 0;
2176    return 1;
2177  }
2178  return 0;
2179}
2180
2181bool os::get_page_info(char *start, page_info* info) {
2182  return false;
2183}
2184
2185char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2186  return end;
2187}
2188
2189
2190bool os::pd_uncommit_memory(char* addr, size_t size) {
2191#ifdef __OpenBSD__
2192  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2193  return ::mprotect(addr, size, PROT_NONE) == 0;
2194#else
2195  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2196                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2197  return res  != (uintptr_t) MAP_FAILED;
2198#endif
2199}
2200
2201bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2202  return os::commit_memory(addr, size, !ExecMem);
2203}
2204
2205// If this is a growable mapping, remove the guard pages entirely by
2206// munmap()ping them.  If not, just call uncommit_memory().
2207bool os::remove_stack_guard_pages(char* addr, size_t size) {
2208  return os::uncommit_memory(addr, size);
2209}
2210
2211static address _highest_vm_reserved_address = NULL;
2212
2213// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2214// at 'requested_addr'. If there are existing memory mappings at the same
2215// location, however, they will be overwritten. If 'fixed' is false,
2216// 'requested_addr' is only treated as a hint, the return value may or
2217// may not start from the requested address. Unlike Bsd mmap(), this
2218// function returns NULL to indicate failure.
2219static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2220  char * addr;
2221  int flags;
2222
2223  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2224  if (fixed) {
2225    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2226    flags |= MAP_FIXED;
2227  }
2228
2229  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2230  // touch an uncommitted page. Otherwise, the read/write might
2231  // succeed if we have enough swap space to back the physical page.
2232  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2233                       flags, -1, 0);
2234
2235  if (addr != MAP_FAILED) {
2236    // anon_mmap() should only get called during VM initialization,
2237    // don't need lock (actually we can skip locking even it can be called
2238    // from multiple threads, because _highest_vm_reserved_address is just a
2239    // hint about the upper limit of non-stack memory regions.)
2240    if ((address)addr + bytes > _highest_vm_reserved_address) {
2241      _highest_vm_reserved_address = (address)addr + bytes;
2242    }
2243  }
2244
2245  return addr == MAP_FAILED ? NULL : addr;
2246}
2247
2248// Don't update _highest_vm_reserved_address, because there might be memory
2249// regions above addr + size. If so, releasing a memory region only creates
2250// a hole in the address space, it doesn't help prevent heap-stack collision.
2251//
2252static int anon_munmap(char * addr, size_t size) {
2253  return ::munmap(addr, size) == 0;
2254}
2255
2256char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2257                         size_t alignment_hint) {
2258  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2259}
2260
2261bool os::pd_release_memory(char* addr, size_t size) {
2262  return anon_munmap(addr, size);
2263}
2264
2265static bool bsd_mprotect(char* addr, size_t size, int prot) {
2266  // Bsd wants the mprotect address argument to be page aligned.
2267  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2268
2269  // According to SUSv3, mprotect() should only be used with mappings
2270  // established by mmap(), and mmap() always maps whole pages. Unaligned
2271  // 'addr' likely indicates problem in the VM (e.g. trying to change
2272  // protection of malloc'ed or statically allocated memory). Check the
2273  // caller if you hit this assert.
2274  assert(addr == bottom, "sanity check");
2275
2276  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2277  return ::mprotect(bottom, size, prot) == 0;
2278}
2279
2280// Set protections specified
2281bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2282                        bool is_committed) {
2283  unsigned int p = 0;
2284  switch (prot) {
2285  case MEM_PROT_NONE: p = PROT_NONE; break;
2286  case MEM_PROT_READ: p = PROT_READ; break;
2287  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2288  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2289  default:
2290    ShouldNotReachHere();
2291  }
2292  // is_committed is unused.
2293  return bsd_mprotect(addr, bytes, p);
2294}
2295
2296bool os::guard_memory(char* addr, size_t size) {
2297  return bsd_mprotect(addr, size, PROT_NONE);
2298}
2299
2300bool os::unguard_memory(char* addr, size_t size) {
2301  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2302}
2303
2304bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2305  return false;
2306}
2307
2308// Large page support
2309
2310static size_t _large_page_size = 0;
2311
2312void os::large_page_init() {
2313}
2314
2315
2316char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2317  // "exec" is passed in but not used.  Creating the shared image for
2318  // the code cache doesn't have an SHM_X executable permission to check.
2319  assert(UseLargePages && UseSHM, "only for SHM large pages");
2320
2321  key_t key = IPC_PRIVATE;
2322  char *addr;
2323
2324  bool warn_on_failure = UseLargePages &&
2325                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2326                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2327                        );
2328  char msg[128];
2329
2330  // Create a large shared memory region to attach to based on size.
2331  // Currently, size is the total size of the heap
2332  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2333  if (shmid == -1) {
2334     // Possible reasons for shmget failure:
2335     // 1. shmmax is too small for Java heap.
2336     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2337     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2338     // 2. not enough large page memory.
2339     //    > check available large pages: cat /proc/meminfo
2340     //    > increase amount of large pages:
2341     //          echo new_value > /proc/sys/vm/nr_hugepages
2342     //      Note 1: different Bsd may use different name for this property,
2343     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2344     //      Note 2: it's possible there's enough physical memory available but
2345     //            they are so fragmented after a long run that they can't
2346     //            coalesce into large pages. Try to reserve large pages when
2347     //            the system is still "fresh".
2348     if (warn_on_failure) {
2349       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2350       warning(msg);
2351     }
2352     return NULL;
2353  }
2354
2355  // attach to the region
2356  addr = (char*)shmat(shmid, req_addr, 0);
2357  int err = errno;
2358
2359  // Remove shmid. If shmat() is successful, the actual shared memory segment
2360  // will be deleted when it's detached by shmdt() or when the process
2361  // terminates. If shmat() is not successful this will remove the shared
2362  // segment immediately.
2363  shmctl(shmid, IPC_RMID, NULL);
2364
2365  if ((intptr_t)addr == -1) {
2366     if (warn_on_failure) {
2367       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2368       warning(msg);
2369     }
2370     return NULL;
2371  }
2372
2373  // The memory is committed
2374  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2375
2376  return addr;
2377}
2378
2379bool os::release_memory_special(char* base, size_t bytes) {
2380  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2381  // detaching the SHM segment will also delete it, see reserve_memory_special()
2382  int rslt = shmdt(base);
2383  if (rslt == 0) {
2384    tkr.record((address)base, bytes);
2385    return true;
2386  } else {
2387    tkr.discard();
2388    return false;
2389  }
2390
2391}
2392
2393size_t os::large_page_size() {
2394  return _large_page_size;
2395}
2396
2397// HugeTLBFS allows application to commit large page memory on demand;
2398// with SysV SHM the entire memory region must be allocated as shared
2399// memory.
2400bool os::can_commit_large_page_memory() {
2401  return UseHugeTLBFS;
2402}
2403
2404bool os::can_execute_large_page_memory() {
2405  return UseHugeTLBFS;
2406}
2407
2408// Reserve memory at an arbitrary address, only if that area is
2409// available (and not reserved for something else).
2410
2411char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2412  const int max_tries = 10;
2413  char* base[max_tries];
2414  size_t size[max_tries];
2415  const size_t gap = 0x000000;
2416
2417  // Assert only that the size is a multiple of the page size, since
2418  // that's all that mmap requires, and since that's all we really know
2419  // about at this low abstraction level.  If we need higher alignment,
2420  // we can either pass an alignment to this method or verify alignment
2421  // in one of the methods further up the call chain.  See bug 5044738.
2422  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2423
2424  // Repeatedly allocate blocks until the block is allocated at the
2425  // right spot. Give up after max_tries. Note that reserve_memory() will
2426  // automatically update _highest_vm_reserved_address if the call is
2427  // successful. The variable tracks the highest memory address every reserved
2428  // by JVM. It is used to detect heap-stack collision if running with
2429  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2430  // space than needed, it could confuse the collision detecting code. To
2431  // solve the problem, save current _highest_vm_reserved_address and
2432  // calculate the correct value before return.
2433  address old_highest = _highest_vm_reserved_address;
2434
2435  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2436  // if kernel honors the hint then we can return immediately.
2437  char * addr = anon_mmap(requested_addr, bytes, false);
2438  if (addr == requested_addr) {
2439     return requested_addr;
2440  }
2441
2442  if (addr != NULL) {
2443     // mmap() is successful but it fails to reserve at the requested address
2444     anon_munmap(addr, bytes);
2445  }
2446
2447  int i;
2448  for (i = 0; i < max_tries; ++i) {
2449    base[i] = reserve_memory(bytes);
2450
2451    if (base[i] != NULL) {
2452      // Is this the block we wanted?
2453      if (base[i] == requested_addr) {
2454        size[i] = bytes;
2455        break;
2456      }
2457
2458      // Does this overlap the block we wanted? Give back the overlapped
2459      // parts and try again.
2460
2461      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2462      if (top_overlap >= 0 && top_overlap < bytes) {
2463        unmap_memory(base[i], top_overlap);
2464        base[i] += top_overlap;
2465        size[i] = bytes - top_overlap;
2466      } else {
2467        size_t bottom_overlap = base[i] + bytes - requested_addr;
2468        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2469          unmap_memory(requested_addr, bottom_overlap);
2470          size[i] = bytes - bottom_overlap;
2471        } else {
2472          size[i] = bytes;
2473        }
2474      }
2475    }
2476  }
2477
2478  // Give back the unused reserved pieces.
2479
2480  for (int j = 0; j < i; ++j) {
2481    if (base[j] != NULL) {
2482      unmap_memory(base[j], size[j]);
2483    }
2484  }
2485
2486  if (i < max_tries) {
2487    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2488    return requested_addr;
2489  } else {
2490    _highest_vm_reserved_address = old_highest;
2491    return NULL;
2492  }
2493}
2494
2495size_t os::read(int fd, void *buf, unsigned int nBytes) {
2496  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2497}
2498
2499// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2500// Solaris uses poll(), bsd uses park().
2501// Poll() is likely a better choice, assuming that Thread.interrupt()
2502// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2503// SIGSEGV, see 4355769.
2504
2505int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2506  assert(thread == Thread::current(),  "thread consistency check");
2507
2508  ParkEvent * const slp = thread->_SleepEvent ;
2509  slp->reset() ;
2510  OrderAccess::fence() ;
2511
2512  if (interruptible) {
2513    jlong prevtime = javaTimeNanos();
2514
2515    for (;;) {
2516      if (os::is_interrupted(thread, true)) {
2517        return OS_INTRPT;
2518      }
2519
2520      jlong newtime = javaTimeNanos();
2521
2522      if (newtime - prevtime < 0) {
2523        // time moving backwards, should only happen if no monotonic clock
2524        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2525        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2526      } else {
2527        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2528      }
2529
2530      if(millis <= 0) {
2531        return OS_OK;
2532      }
2533
2534      prevtime = newtime;
2535
2536      {
2537        assert(thread->is_Java_thread(), "sanity check");
2538        JavaThread *jt = (JavaThread *) thread;
2539        ThreadBlockInVM tbivm(jt);
2540        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2541
2542        jt->set_suspend_equivalent();
2543        // cleared by handle_special_suspend_equivalent_condition() or
2544        // java_suspend_self() via check_and_wait_while_suspended()
2545
2546        slp->park(millis);
2547
2548        // were we externally suspended while we were waiting?
2549        jt->check_and_wait_while_suspended();
2550      }
2551    }
2552  } else {
2553    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2554    jlong prevtime = javaTimeNanos();
2555
2556    for (;;) {
2557      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2558      // the 1st iteration ...
2559      jlong newtime = javaTimeNanos();
2560
2561      if (newtime - prevtime < 0) {
2562        // time moving backwards, should only happen if no monotonic clock
2563        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2564        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2565      } else {
2566        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2567      }
2568
2569      if(millis <= 0) break ;
2570
2571      prevtime = newtime;
2572      slp->park(millis);
2573    }
2574    return OS_OK ;
2575  }
2576}
2577
2578int os::naked_sleep() {
2579  // %% make the sleep time an integer flag. for now use 1 millisec.
2580  return os::sleep(Thread::current(), 1, false);
2581}
2582
2583// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2584void os::infinite_sleep() {
2585  while (true) {    // sleep forever ...
2586    ::sleep(100);   // ... 100 seconds at a time
2587  }
2588}
2589
2590// Used to convert frequent JVM_Yield() to nops
2591bool os::dont_yield() {
2592  return DontYieldALot;
2593}
2594
2595void os::yield() {
2596  sched_yield();
2597}
2598
2599os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2600
2601void os::yield_all(int attempts) {
2602  // Yields to all threads, including threads with lower priorities
2603  // Threads on Bsd are all with same priority. The Solaris style
2604  // os::yield_all() with nanosleep(1ms) is not necessary.
2605  sched_yield();
2606}
2607
2608// Called from the tight loops to possibly influence time-sharing heuristics
2609void os::loop_breaker(int attempts) {
2610  os::yield_all(attempts);
2611}
2612
2613////////////////////////////////////////////////////////////////////////////////
2614// thread priority support
2615
2616// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2617// only supports dynamic priority, static priority must be zero. For real-time
2618// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2619// However, for large multi-threaded applications, SCHED_RR is not only slower
2620// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2621// of 5 runs - Sep 2005).
2622//
2623// The following code actually changes the niceness of kernel-thread/LWP. It
2624// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2625// not the entire user process, and user level threads are 1:1 mapped to kernel
2626// threads. It has always been the case, but could change in the future. For
2627// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2628// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2629
2630#if !defined(__APPLE__)
2631int os::java_to_os_priority[CriticalPriority + 1] = {
2632  19,              // 0 Entry should never be used
2633
2634   0,              // 1 MinPriority
2635   3,              // 2
2636   6,              // 3
2637
2638  10,              // 4
2639  15,              // 5 NormPriority
2640  18,              // 6
2641
2642  21,              // 7
2643  25,              // 8
2644  28,              // 9 NearMaxPriority
2645
2646  31,              // 10 MaxPriority
2647
2648  31               // 11 CriticalPriority
2649};
2650#else
2651/* Using Mach high-level priority assignments */
2652int os::java_to_os_priority[CriticalPriority + 1] = {
2653   0,              // 0 Entry should never be used (MINPRI_USER)
2654
2655  27,              // 1 MinPriority
2656  28,              // 2
2657  29,              // 3
2658
2659  30,              // 4
2660  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2661  32,              // 6
2662
2663  33,              // 7
2664  34,              // 8
2665  35,              // 9 NearMaxPriority
2666
2667  36,              // 10 MaxPriority
2668
2669  36               // 11 CriticalPriority
2670};
2671#endif
2672
2673static int prio_init() {
2674  if (ThreadPriorityPolicy == 1) {
2675    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2676    // if effective uid is not root. Perhaps, a more elegant way of doing
2677    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2678    if (geteuid() != 0) {
2679      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2680        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2681      }
2682      ThreadPriorityPolicy = 0;
2683    }
2684  }
2685  if (UseCriticalJavaThreadPriority) {
2686    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2687  }
2688  return 0;
2689}
2690
2691OSReturn os::set_native_priority(Thread* thread, int newpri) {
2692  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2693
2694#ifdef __OpenBSD__
2695  // OpenBSD pthread_setprio starves low priority threads
2696  return OS_OK;
2697#elif defined(__FreeBSD__)
2698  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2699#elif defined(__APPLE__) || defined(__NetBSD__)
2700  struct sched_param sp;
2701  int policy;
2702  pthread_t self = pthread_self();
2703
2704  if (pthread_getschedparam(self, &policy, &sp) != 0)
2705    return OS_ERR;
2706
2707  sp.sched_priority = newpri;
2708  if (pthread_setschedparam(self, policy, &sp) != 0)
2709    return OS_ERR;
2710
2711  return OS_OK;
2712#else
2713  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2714  return (ret == 0) ? OS_OK : OS_ERR;
2715#endif
2716}
2717
2718OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2719  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2720    *priority_ptr = java_to_os_priority[NormPriority];
2721    return OS_OK;
2722  }
2723
2724  errno = 0;
2725#if defined(__OpenBSD__) || defined(__FreeBSD__)
2726  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2727#elif defined(__APPLE__) || defined(__NetBSD__)
2728  int policy;
2729  struct sched_param sp;
2730
2731  pthread_getschedparam(pthread_self(), &policy, &sp);
2732  *priority_ptr = sp.sched_priority;
2733#else
2734  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2735#endif
2736  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2737}
2738
2739// Hint to the underlying OS that a task switch would not be good.
2740// Void return because it's a hint and can fail.
2741void os::hint_no_preempt() {}
2742
2743////////////////////////////////////////////////////////////////////////////////
2744// suspend/resume support
2745
2746//  the low-level signal-based suspend/resume support is a remnant from the
2747//  old VM-suspension that used to be for java-suspension, safepoints etc,
2748//  within hotspot. Now there is a single use-case for this:
2749//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2750//      that runs in the watcher thread.
2751//  The remaining code is greatly simplified from the more general suspension
2752//  code that used to be used.
2753//
2754//  The protocol is quite simple:
2755//  - suspend:
2756//      - sends a signal to the target thread
2757//      - polls the suspend state of the osthread using a yield loop
2758//      - target thread signal handler (SR_handler) sets suspend state
2759//        and blocks in sigsuspend until continued
2760//  - resume:
2761//      - sets target osthread state to continue
2762//      - sends signal to end the sigsuspend loop in the SR_handler
2763//
2764//  Note that the SR_lock plays no role in this suspend/resume protocol.
2765//
2766
2767static void resume_clear_context(OSThread *osthread) {
2768  osthread->set_ucontext(NULL);
2769  osthread->set_siginfo(NULL);
2770}
2771
2772static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2773  osthread->set_ucontext(context);
2774  osthread->set_siginfo(siginfo);
2775}
2776
2777//
2778// Handler function invoked when a thread's execution is suspended or
2779// resumed. We have to be careful that only async-safe functions are
2780// called here (Note: most pthread functions are not async safe and
2781// should be avoided.)
2782//
2783// Note: sigwait() is a more natural fit than sigsuspend() from an
2784// interface point of view, but sigwait() prevents the signal hander
2785// from being run. libpthread would get very confused by not having
2786// its signal handlers run and prevents sigwait()'s use with the
2787// mutex granting granting signal.
2788//
2789// Currently only ever called on the VMThread or JavaThread
2790//
2791static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2792  // Save and restore errno to avoid confusing native code with EINTR
2793  // after sigsuspend.
2794  int old_errno = errno;
2795
2796  Thread* thread = Thread::current();
2797  OSThread* osthread = thread->osthread();
2798  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2799
2800  os::SuspendResume::State current = osthread->sr.state();
2801  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2802    suspend_save_context(osthread, siginfo, context);
2803
2804    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2805    os::SuspendResume::State state = osthread->sr.suspended();
2806    if (state == os::SuspendResume::SR_SUSPENDED) {
2807      sigset_t suspend_set;  // signals for sigsuspend()
2808
2809      // get current set of blocked signals and unblock resume signal
2810      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2811      sigdelset(&suspend_set, SR_signum);
2812
2813      sr_semaphore.signal();
2814      // wait here until we are resumed
2815      while (1) {
2816        sigsuspend(&suspend_set);
2817
2818        os::SuspendResume::State result = osthread->sr.running();
2819        if (result == os::SuspendResume::SR_RUNNING) {
2820          sr_semaphore.signal();
2821          break;
2822        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2823          ShouldNotReachHere();
2824        }
2825      }
2826
2827    } else if (state == os::SuspendResume::SR_RUNNING) {
2828      // request was cancelled, continue
2829    } else {
2830      ShouldNotReachHere();
2831    }
2832
2833    resume_clear_context(osthread);
2834  } else if (current == os::SuspendResume::SR_RUNNING) {
2835    // request was cancelled, continue
2836  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2837    // ignore
2838  } else {
2839    // ignore
2840  }
2841
2842  errno = old_errno;
2843}
2844
2845
2846static int SR_initialize() {
2847  struct sigaction act;
2848  char *s;
2849  /* Get signal number to use for suspend/resume */
2850  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2851    int sig = ::strtol(s, 0, 10);
2852    if (sig > 0 || sig < NSIG) {
2853        SR_signum = sig;
2854    }
2855  }
2856
2857  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2858        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2859
2860  sigemptyset(&SR_sigset);
2861  sigaddset(&SR_sigset, SR_signum);
2862
2863  /* Set up signal handler for suspend/resume */
2864  act.sa_flags = SA_RESTART|SA_SIGINFO;
2865  act.sa_handler = (void (*)(int)) SR_handler;
2866
2867  // SR_signum is blocked by default.
2868  // 4528190 - We also need to block pthread restart signal (32 on all
2869  // supported Bsd platforms). Note that BsdThreads need to block
2870  // this signal for all threads to work properly. So we don't have
2871  // to use hard-coded signal number when setting up the mask.
2872  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2873
2874  if (sigaction(SR_signum, &act, 0) == -1) {
2875    return -1;
2876  }
2877
2878  // Save signal flag
2879  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2880  return 0;
2881}
2882
2883static int sr_notify(OSThread* osthread) {
2884  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2885  assert_status(status == 0, status, "pthread_kill");
2886  return status;
2887}
2888
2889// "Randomly" selected value for how long we want to spin
2890// before bailing out on suspending a thread, also how often
2891// we send a signal to a thread we want to resume
2892static const int RANDOMLY_LARGE_INTEGER = 1000000;
2893static const int RANDOMLY_LARGE_INTEGER2 = 100;
2894
2895// returns true on success and false on error - really an error is fatal
2896// but this seems the normal response to library errors
2897static bool do_suspend(OSThread* osthread) {
2898  assert(osthread->sr.is_running(), "thread should be running");
2899  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2900
2901  // mark as suspended and send signal
2902  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2903    // failed to switch, state wasn't running?
2904    ShouldNotReachHere();
2905    return false;
2906  }
2907
2908  if (sr_notify(osthread) != 0) {
2909    ShouldNotReachHere();
2910  }
2911
2912  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2913  while (true) {
2914    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2915      break;
2916    } else {
2917      // timeout
2918      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2919      if (cancelled == os::SuspendResume::SR_RUNNING) {
2920        return false;
2921      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2922        // make sure that we consume the signal on the semaphore as well
2923        sr_semaphore.wait();
2924        break;
2925      } else {
2926        ShouldNotReachHere();
2927        return false;
2928      }
2929    }
2930  }
2931
2932  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2933  return true;
2934}
2935
2936static void do_resume(OSThread* osthread) {
2937  assert(osthread->sr.is_suspended(), "thread should be suspended");
2938  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2939
2940  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2941    // failed to switch to WAKEUP_REQUEST
2942    ShouldNotReachHere();
2943    return;
2944  }
2945
2946  while (true) {
2947    if (sr_notify(osthread) == 0) {
2948      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2949        if (osthread->sr.is_running()) {
2950          return;
2951        }
2952      }
2953    } else {
2954      ShouldNotReachHere();
2955    }
2956  }
2957
2958  guarantee(osthread->sr.is_running(), "Must be running!");
2959}
2960
2961////////////////////////////////////////////////////////////////////////////////
2962// interrupt support
2963
2964void os::interrupt(Thread* thread) {
2965  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2966    "possibility of dangling Thread pointer");
2967
2968  OSThread* osthread = thread->osthread();
2969
2970  if (!osthread->interrupted()) {
2971    osthread->set_interrupted(true);
2972    // More than one thread can get here with the same value of osthread,
2973    // resulting in multiple notifications.  We do, however, want the store
2974    // to interrupted() to be visible to other threads before we execute unpark().
2975    OrderAccess::fence();
2976    ParkEvent * const slp = thread->_SleepEvent ;
2977    if (slp != NULL) slp->unpark() ;
2978  }
2979
2980  // For JSR166. Unpark even if interrupt status already was set
2981  if (thread->is_Java_thread())
2982    ((JavaThread*)thread)->parker()->unpark();
2983
2984  ParkEvent * ev = thread->_ParkEvent ;
2985  if (ev != NULL) ev->unpark() ;
2986
2987}
2988
2989bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2990  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2991    "possibility of dangling Thread pointer");
2992
2993  OSThread* osthread = thread->osthread();
2994
2995  bool interrupted = osthread->interrupted();
2996
2997  if (interrupted && clear_interrupted) {
2998    osthread->set_interrupted(false);
2999    // consider thread->_SleepEvent->reset() ... optional optimization
3000  }
3001
3002  return interrupted;
3003}
3004
3005///////////////////////////////////////////////////////////////////////////////////
3006// signal handling (except suspend/resume)
3007
3008// This routine may be used by user applications as a "hook" to catch signals.
3009// The user-defined signal handler must pass unrecognized signals to this
3010// routine, and if it returns true (non-zero), then the signal handler must
3011// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3012// routine will never retun false (zero), but instead will execute a VM panic
3013// routine kill the process.
3014//
3015// If this routine returns false, it is OK to call it again.  This allows
3016// the user-defined signal handler to perform checks either before or after
3017// the VM performs its own checks.  Naturally, the user code would be making
3018// a serious error if it tried to handle an exception (such as a null check
3019// or breakpoint) that the VM was generating for its own correct operation.
3020//
3021// This routine may recognize any of the following kinds of signals:
3022//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3023// It should be consulted by handlers for any of those signals.
3024//
3025// The caller of this routine must pass in the three arguments supplied
3026// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3027// field of the structure passed to sigaction().  This routine assumes that
3028// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3029//
3030// Note that the VM will print warnings if it detects conflicting signal
3031// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3032//
3033extern "C" JNIEXPORT int
3034JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3035                        void* ucontext, int abort_if_unrecognized);
3036
3037void signalHandler(int sig, siginfo_t* info, void* uc) {
3038  assert(info != NULL && uc != NULL, "it must be old kernel");
3039  int orig_errno = errno;  // Preserve errno value over signal handler.
3040  JVM_handle_bsd_signal(sig, info, uc, true);
3041  errno = orig_errno;
3042}
3043
3044
3045// This boolean allows users to forward their own non-matching signals
3046// to JVM_handle_bsd_signal, harmlessly.
3047bool os::Bsd::signal_handlers_are_installed = false;
3048
3049// For signal-chaining
3050struct sigaction os::Bsd::sigact[MAXSIGNUM];
3051unsigned int os::Bsd::sigs = 0;
3052bool os::Bsd::libjsig_is_loaded = false;
3053typedef struct sigaction *(*get_signal_t)(int);
3054get_signal_t os::Bsd::get_signal_action = NULL;
3055
3056struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3057  struct sigaction *actp = NULL;
3058
3059  if (libjsig_is_loaded) {
3060    // Retrieve the old signal handler from libjsig
3061    actp = (*get_signal_action)(sig);
3062  }
3063  if (actp == NULL) {
3064    // Retrieve the preinstalled signal handler from jvm
3065    actp = get_preinstalled_handler(sig);
3066  }
3067
3068  return actp;
3069}
3070
3071static bool call_chained_handler(struct sigaction *actp, int sig,
3072                                 siginfo_t *siginfo, void *context) {
3073  // Call the old signal handler
3074  if (actp->sa_handler == SIG_DFL) {
3075    // It's more reasonable to let jvm treat it as an unexpected exception
3076    // instead of taking the default action.
3077    return false;
3078  } else if (actp->sa_handler != SIG_IGN) {
3079    if ((actp->sa_flags & SA_NODEFER) == 0) {
3080      // automaticlly block the signal
3081      sigaddset(&(actp->sa_mask), sig);
3082    }
3083
3084    sa_handler_t hand;
3085    sa_sigaction_t sa;
3086    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3087    // retrieve the chained handler
3088    if (siginfo_flag_set) {
3089      sa = actp->sa_sigaction;
3090    } else {
3091      hand = actp->sa_handler;
3092    }
3093
3094    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3095      actp->sa_handler = SIG_DFL;
3096    }
3097
3098    // try to honor the signal mask
3099    sigset_t oset;
3100    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3101
3102    // call into the chained handler
3103    if (siginfo_flag_set) {
3104      (*sa)(sig, siginfo, context);
3105    } else {
3106      (*hand)(sig);
3107    }
3108
3109    // restore the signal mask
3110    pthread_sigmask(SIG_SETMASK, &oset, 0);
3111  }
3112  // Tell jvm's signal handler the signal is taken care of.
3113  return true;
3114}
3115
3116bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3117  bool chained = false;
3118  // signal-chaining
3119  if (UseSignalChaining) {
3120    struct sigaction *actp = get_chained_signal_action(sig);
3121    if (actp != NULL) {
3122      chained = call_chained_handler(actp, sig, siginfo, context);
3123    }
3124  }
3125  return chained;
3126}
3127
3128struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3129  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3130    return &sigact[sig];
3131  }
3132  return NULL;
3133}
3134
3135void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3136  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3137  sigact[sig] = oldAct;
3138  sigs |= (unsigned int)1 << sig;
3139}
3140
3141// for diagnostic
3142int os::Bsd::sigflags[MAXSIGNUM];
3143
3144int os::Bsd::get_our_sigflags(int sig) {
3145  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3146  return sigflags[sig];
3147}
3148
3149void os::Bsd::set_our_sigflags(int sig, int flags) {
3150  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3151  sigflags[sig] = flags;
3152}
3153
3154void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3155  // Check for overwrite.
3156  struct sigaction oldAct;
3157  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3158
3159  void* oldhand = oldAct.sa_sigaction
3160                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3161                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3162  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3163      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3164      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3165    if (AllowUserSignalHandlers || !set_installed) {
3166      // Do not overwrite; user takes responsibility to forward to us.
3167      return;
3168    } else if (UseSignalChaining) {
3169      // save the old handler in jvm
3170      save_preinstalled_handler(sig, oldAct);
3171      // libjsig also interposes the sigaction() call below and saves the
3172      // old sigaction on it own.
3173    } else {
3174      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3175                    "%#lx for signal %d.", (long)oldhand, sig));
3176    }
3177  }
3178
3179  struct sigaction sigAct;
3180  sigfillset(&(sigAct.sa_mask));
3181  sigAct.sa_handler = SIG_DFL;
3182  if (!set_installed) {
3183    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3184  } else {
3185    sigAct.sa_sigaction = signalHandler;
3186    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3187  }
3188#if __APPLE__
3189  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3190  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3191  // if the signal handler declares it will handle it on alternate stack.
3192  // Notice we only declare we will handle it on alt stack, but we are not
3193  // actually going to use real alt stack - this is just a workaround.
3194  // Please see ux_exception.c, method catch_mach_exception_raise for details
3195  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3196  if (sig == SIGSEGV) {
3197    sigAct.sa_flags |= SA_ONSTACK;
3198  }
3199#endif
3200
3201  // Save flags, which are set by ours
3202  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3203  sigflags[sig] = sigAct.sa_flags;
3204
3205  int ret = sigaction(sig, &sigAct, &oldAct);
3206  assert(ret == 0, "check");
3207
3208  void* oldhand2  = oldAct.sa_sigaction
3209                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3210                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3211  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3212}
3213
3214// install signal handlers for signals that HotSpot needs to
3215// handle in order to support Java-level exception handling.
3216
3217void os::Bsd::install_signal_handlers() {
3218  if (!signal_handlers_are_installed) {
3219    signal_handlers_are_installed = true;
3220
3221    // signal-chaining
3222    typedef void (*signal_setting_t)();
3223    signal_setting_t begin_signal_setting = NULL;
3224    signal_setting_t end_signal_setting = NULL;
3225    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3226                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3227    if (begin_signal_setting != NULL) {
3228      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3229                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3230      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3231                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3232      libjsig_is_loaded = true;
3233      assert(UseSignalChaining, "should enable signal-chaining");
3234    }
3235    if (libjsig_is_loaded) {
3236      // Tell libjsig jvm is setting signal handlers
3237      (*begin_signal_setting)();
3238    }
3239
3240    set_signal_handler(SIGSEGV, true);
3241    set_signal_handler(SIGPIPE, true);
3242    set_signal_handler(SIGBUS, true);
3243    set_signal_handler(SIGILL, true);
3244    set_signal_handler(SIGFPE, true);
3245    set_signal_handler(SIGXFSZ, true);
3246
3247#if defined(__APPLE__)
3248    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3249    // signals caught and handled by the JVM. To work around this, we reset the mach task
3250    // signal handler that's placed on our process by CrashReporter. This disables
3251    // CrashReporter-based reporting.
3252    //
3253    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3254    // on caught fatal signals.
3255    //
3256    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3257    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3258    // exception handling, while leaving the standard BSD signal handlers functional.
3259    kern_return_t kr;
3260    kr = task_set_exception_ports(mach_task_self(),
3261        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3262        MACH_PORT_NULL,
3263        EXCEPTION_STATE_IDENTITY,
3264        MACHINE_THREAD_STATE);
3265
3266    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3267#endif
3268
3269    if (libjsig_is_loaded) {
3270      // Tell libjsig jvm finishes setting signal handlers
3271      (*end_signal_setting)();
3272    }
3273
3274    // We don't activate signal checker if libjsig is in place, we trust ourselves
3275    // and if UserSignalHandler is installed all bets are off
3276    if (CheckJNICalls) {
3277      if (libjsig_is_loaded) {
3278        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3279        check_signals = false;
3280      }
3281      if (AllowUserSignalHandlers) {
3282        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3283        check_signals = false;
3284      }
3285    }
3286  }
3287}
3288
3289
3290/////
3291// glibc on Bsd platform uses non-documented flag
3292// to indicate, that some special sort of signal
3293// trampoline is used.
3294// We will never set this flag, and we should
3295// ignore this flag in our diagnostic
3296#ifdef SIGNIFICANT_SIGNAL_MASK
3297#undef SIGNIFICANT_SIGNAL_MASK
3298#endif
3299#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3300
3301static const char* get_signal_handler_name(address handler,
3302                                           char* buf, int buflen) {
3303  int offset;
3304  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3305  if (found) {
3306    // skip directory names
3307    const char *p1, *p2;
3308    p1 = buf;
3309    size_t len = strlen(os::file_separator());
3310    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3311    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3312  } else {
3313    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3314  }
3315  return buf;
3316}
3317
3318static void print_signal_handler(outputStream* st, int sig,
3319                                 char* buf, size_t buflen) {
3320  struct sigaction sa;
3321
3322  sigaction(sig, NULL, &sa);
3323
3324  // See comment for SIGNIFICANT_SIGNAL_MASK define
3325  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3326
3327  st->print("%s: ", os::exception_name(sig, buf, buflen));
3328
3329  address handler = (sa.sa_flags & SA_SIGINFO)
3330    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3331    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3332
3333  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3334    st->print("SIG_DFL");
3335  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3336    st->print("SIG_IGN");
3337  } else {
3338    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3339  }
3340
3341  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3342
3343  address rh = VMError::get_resetted_sighandler(sig);
3344  // May be, handler was resetted by VMError?
3345  if(rh != NULL) {
3346    handler = rh;
3347    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3348  }
3349
3350  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3351
3352  // Check: is it our handler?
3353  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3354     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3355    // It is our signal handler
3356    // check for flags, reset system-used one!
3357    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3358      st->print(
3359                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3360                os::Bsd::get_our_sigflags(sig));
3361    }
3362  }
3363  st->cr();
3364}
3365
3366
3367#define DO_SIGNAL_CHECK(sig) \
3368  if (!sigismember(&check_signal_done, sig)) \
3369    os::Bsd::check_signal_handler(sig)
3370
3371// This method is a periodic task to check for misbehaving JNI applications
3372// under CheckJNI, we can add any periodic checks here
3373
3374void os::run_periodic_checks() {
3375
3376  if (check_signals == false) return;
3377
3378  // SEGV and BUS if overridden could potentially prevent
3379  // generation of hs*.log in the event of a crash, debugging
3380  // such a case can be very challenging, so we absolutely
3381  // check the following for a good measure:
3382  DO_SIGNAL_CHECK(SIGSEGV);
3383  DO_SIGNAL_CHECK(SIGILL);
3384  DO_SIGNAL_CHECK(SIGFPE);
3385  DO_SIGNAL_CHECK(SIGBUS);
3386  DO_SIGNAL_CHECK(SIGPIPE);
3387  DO_SIGNAL_CHECK(SIGXFSZ);
3388
3389
3390  // ReduceSignalUsage allows the user to override these handlers
3391  // see comments at the very top and jvm_solaris.h
3392  if (!ReduceSignalUsage) {
3393    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3394    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3395    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3396    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3397  }
3398
3399  DO_SIGNAL_CHECK(SR_signum);
3400  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3401}
3402
3403typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3404
3405static os_sigaction_t os_sigaction = NULL;
3406
3407void os::Bsd::check_signal_handler(int sig) {
3408  char buf[O_BUFLEN];
3409  address jvmHandler = NULL;
3410
3411
3412  struct sigaction act;
3413  if (os_sigaction == NULL) {
3414    // only trust the default sigaction, in case it has been interposed
3415    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3416    if (os_sigaction == NULL) return;
3417  }
3418
3419  os_sigaction(sig, (struct sigaction*)NULL, &act);
3420
3421
3422  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3423
3424  address thisHandler = (act.sa_flags & SA_SIGINFO)
3425    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3426    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3427
3428
3429  switch(sig) {
3430  case SIGSEGV:
3431  case SIGBUS:
3432  case SIGFPE:
3433  case SIGPIPE:
3434  case SIGILL:
3435  case SIGXFSZ:
3436    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3437    break;
3438
3439  case SHUTDOWN1_SIGNAL:
3440  case SHUTDOWN2_SIGNAL:
3441  case SHUTDOWN3_SIGNAL:
3442  case BREAK_SIGNAL:
3443    jvmHandler = (address)user_handler();
3444    break;
3445
3446  case INTERRUPT_SIGNAL:
3447    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3448    break;
3449
3450  default:
3451    if (sig == SR_signum) {
3452      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3453    } else {
3454      return;
3455    }
3456    break;
3457  }
3458
3459  if (thisHandler != jvmHandler) {
3460    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3461    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3462    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3463    // No need to check this sig any longer
3464    sigaddset(&check_signal_done, sig);
3465  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3466    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3467    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3468    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3469    // No need to check this sig any longer
3470    sigaddset(&check_signal_done, sig);
3471  }
3472
3473  // Dump all the signal
3474  if (sigismember(&check_signal_done, sig)) {
3475    print_signal_handlers(tty, buf, O_BUFLEN);
3476  }
3477}
3478
3479extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3480
3481extern bool signal_name(int signo, char* buf, size_t len);
3482
3483const char* os::exception_name(int exception_code, char* buf, size_t size) {
3484  if (0 < exception_code && exception_code <= SIGRTMAX) {
3485    // signal
3486    if (!signal_name(exception_code, buf, size)) {
3487      jio_snprintf(buf, size, "SIG%d", exception_code);
3488    }
3489    return buf;
3490  } else {
3491    return NULL;
3492  }
3493}
3494
3495// this is called _before_ the most of global arguments have been parsed
3496void os::init(void) {
3497  char dummy;   /* used to get a guess on initial stack address */
3498//  first_hrtime = gethrtime();
3499
3500  // With BsdThreads the JavaMain thread pid (primordial thread)
3501  // is different than the pid of the java launcher thread.
3502  // So, on Bsd, the launcher thread pid is passed to the VM
3503  // via the sun.java.launcher.pid property.
3504  // Use this property instead of getpid() if it was correctly passed.
3505  // See bug 6351349.
3506  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3507
3508  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3509
3510  clock_tics_per_sec = CLK_TCK;
3511
3512  init_random(1234567);
3513
3514  ThreadCritical::initialize();
3515
3516  Bsd::set_page_size(getpagesize());
3517  if (Bsd::page_size() == -1) {
3518    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3519                  strerror(errno)));
3520  }
3521  init_page_sizes((size_t) Bsd::page_size());
3522
3523  Bsd::initialize_system_info();
3524
3525  // main_thread points to the aboriginal thread
3526  Bsd::_main_thread = pthread_self();
3527
3528  Bsd::clock_init();
3529  initial_time_count = os::elapsed_counter();
3530
3531#ifdef __APPLE__
3532  // XXXDARWIN
3533  // Work around the unaligned VM callbacks in hotspot's
3534  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3535  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3536  // alignment when doing symbol lookup. To work around this, we force early
3537  // binding of all symbols now, thus binding when alignment is known-good.
3538  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3539#endif
3540}
3541
3542// To install functions for atexit system call
3543extern "C" {
3544  static void perfMemory_exit_helper() {
3545    perfMemory_exit();
3546  }
3547}
3548
3549// this is called _after_ the global arguments have been parsed
3550jint os::init_2(void)
3551{
3552  // Allocate a single page and mark it as readable for safepoint polling
3553  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3554  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3555
3556  os::set_polling_page( polling_page );
3557
3558#ifndef PRODUCT
3559  if(Verbose && PrintMiscellaneous)
3560    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3561#endif
3562
3563  if (!UseMembar) {
3564    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3565    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3566    os::set_memory_serialize_page( mem_serialize_page );
3567
3568#ifndef PRODUCT
3569    if(Verbose && PrintMiscellaneous)
3570      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3571#endif
3572  }
3573
3574  os::large_page_init();
3575
3576  // initialize suspend/resume support - must do this before signal_sets_init()
3577  if (SR_initialize() != 0) {
3578    perror("SR_initialize failed");
3579    return JNI_ERR;
3580  }
3581
3582  Bsd::signal_sets_init();
3583  Bsd::install_signal_handlers();
3584
3585  // Check minimum allowable stack size for thread creation and to initialize
3586  // the java system classes, including StackOverflowError - depends on page
3587  // size.  Add a page for compiler2 recursion in main thread.
3588  // Add in 2*BytesPerWord times page size to account for VM stack during
3589  // class initialization depending on 32 or 64 bit VM.
3590  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3591            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3592                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3593
3594  size_t threadStackSizeInBytes = ThreadStackSize * K;
3595  if (threadStackSizeInBytes != 0 &&
3596      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3597        tty->print_cr("\nThe stack size specified is too small, "
3598                      "Specify at least %dk",
3599                      os::Bsd::min_stack_allowed/ K);
3600        return JNI_ERR;
3601  }
3602
3603  // Make the stack size a multiple of the page size so that
3604  // the yellow/red zones can be guarded.
3605  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3606        vm_page_size()));
3607
3608  if (MaxFDLimit) {
3609    // set the number of file descriptors to max. print out error
3610    // if getrlimit/setrlimit fails but continue regardless.
3611    struct rlimit nbr_files;
3612    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3613    if (status != 0) {
3614      if (PrintMiscellaneous && (Verbose || WizardMode))
3615        perror("os::init_2 getrlimit failed");
3616    } else {
3617      nbr_files.rlim_cur = nbr_files.rlim_max;
3618
3619#ifdef __APPLE__
3620      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3621      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3622      // be used instead
3623      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3624#endif
3625
3626      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3627      if (status != 0) {
3628        if (PrintMiscellaneous && (Verbose || WizardMode))
3629          perror("os::init_2 setrlimit failed");
3630      }
3631    }
3632  }
3633
3634  // at-exit methods are called in the reverse order of their registration.
3635  // atexit functions are called on return from main or as a result of a
3636  // call to exit(3C). There can be only 32 of these functions registered
3637  // and atexit() does not set errno.
3638
3639  if (PerfAllowAtExitRegistration) {
3640    // only register atexit functions if PerfAllowAtExitRegistration is set.
3641    // atexit functions can be delayed until process exit time, which
3642    // can be problematic for embedded VM situations. Embedded VMs should
3643    // call DestroyJavaVM() to assure that VM resources are released.
3644
3645    // note: perfMemory_exit_helper atexit function may be removed in
3646    // the future if the appropriate cleanup code can be added to the
3647    // VM_Exit VMOperation's doit method.
3648    if (atexit(perfMemory_exit_helper) != 0) {
3649      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3650    }
3651  }
3652
3653  // initialize thread priority policy
3654  prio_init();
3655
3656#ifdef __APPLE__
3657  // dynamically link to objective c gc registration
3658  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3659  if (handleLibObjc != NULL) {
3660    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3661  }
3662#endif
3663
3664  return JNI_OK;
3665}
3666
3667// this is called at the end of vm_initialization
3668void os::init_3(void) { }
3669
3670// Mark the polling page as unreadable
3671void os::make_polling_page_unreadable(void) {
3672  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3673    fatal("Could not disable polling page");
3674};
3675
3676// Mark the polling page as readable
3677void os::make_polling_page_readable(void) {
3678  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3679    fatal("Could not enable polling page");
3680  }
3681};
3682
3683int os::active_processor_count() {
3684  return _processor_count;
3685}
3686
3687void os::set_native_thread_name(const char *name) {
3688#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3689  // This is only supported in Snow Leopard and beyond
3690  if (name != NULL) {
3691    // Add a "Java: " prefix to the name
3692    char buf[MAXTHREADNAMESIZE];
3693    snprintf(buf, sizeof(buf), "Java: %s", name);
3694    pthread_setname_np(buf);
3695  }
3696#endif
3697}
3698
3699bool os::distribute_processes(uint length, uint* distribution) {
3700  // Not yet implemented.
3701  return false;
3702}
3703
3704bool os::bind_to_processor(uint processor_id) {
3705  // Not yet implemented.
3706  return false;
3707}
3708
3709void os::SuspendedThreadTask::internal_do_task() {
3710  if (do_suspend(_thread->osthread())) {
3711    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3712    do_task(context);
3713    do_resume(_thread->osthread());
3714  }
3715}
3716
3717///
3718class PcFetcher : public os::SuspendedThreadTask {
3719public:
3720  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3721  ExtendedPC result();
3722protected:
3723  void do_task(const os::SuspendedThreadTaskContext& context);
3724private:
3725  ExtendedPC _epc;
3726};
3727
3728ExtendedPC PcFetcher::result() {
3729  guarantee(is_done(), "task is not done yet.");
3730  return _epc;
3731}
3732
3733void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3734  Thread* thread = context.thread();
3735  OSThread* osthread = thread->osthread();
3736  if (osthread->ucontext() != NULL) {
3737    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3738  } else {
3739    // NULL context is unexpected, double-check this is the VMThread
3740    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3741  }
3742}
3743
3744// Suspends the target using the signal mechanism and then grabs the PC before
3745// resuming the target. Used by the flat-profiler only
3746ExtendedPC os::get_thread_pc(Thread* thread) {
3747  // Make sure that it is called by the watcher for the VMThread
3748  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3749  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3750
3751  PcFetcher fetcher(thread);
3752  fetcher.run();
3753  return fetcher.result();
3754}
3755
3756int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3757{
3758  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3759}
3760
3761////////////////////////////////////////////////////////////////////////////////
3762// debug support
3763
3764bool os::find(address addr, outputStream* st) {
3765  Dl_info dlinfo;
3766  memset(&dlinfo, 0, sizeof(dlinfo));
3767  if (dladdr(addr, &dlinfo) != 0) {
3768    st->print(PTR_FORMAT ": ", addr);
3769    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3770      st->print("%s+%#x", dlinfo.dli_sname,
3771                 addr - (intptr_t)dlinfo.dli_saddr);
3772    } else if (dlinfo.dli_fbase != NULL) {
3773      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3774    } else {
3775      st->print("<absolute address>");
3776    }
3777    if (dlinfo.dli_fname != NULL) {
3778      st->print(" in %s", dlinfo.dli_fname);
3779    }
3780    if (dlinfo.dli_fbase != NULL) {
3781      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3782    }
3783    st->cr();
3784
3785    if (Verbose) {
3786      // decode some bytes around the PC
3787      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3788      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3789      address       lowest = (address) dlinfo.dli_sname;
3790      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3791      if (begin < lowest)  begin = lowest;
3792      Dl_info dlinfo2;
3793      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3794          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3795        end = (address) dlinfo2.dli_saddr;
3796      Disassembler::decode(begin, end, st);
3797    }
3798    return true;
3799  }
3800  return false;
3801}
3802
3803////////////////////////////////////////////////////////////////////////////////
3804// misc
3805
3806// This does not do anything on Bsd. This is basically a hook for being
3807// able to use structured exception handling (thread-local exception filters)
3808// on, e.g., Win32.
3809void
3810os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3811                         JavaCallArguments* args, Thread* thread) {
3812  f(value, method, args, thread);
3813}
3814
3815void os::print_statistics() {
3816}
3817
3818int os::message_box(const char* title, const char* message) {
3819  int i;
3820  fdStream err(defaultStream::error_fd());
3821  for (i = 0; i < 78; i++) err.print_raw("=");
3822  err.cr();
3823  err.print_raw_cr(title);
3824  for (i = 0; i < 78; i++) err.print_raw("-");
3825  err.cr();
3826  err.print_raw_cr(message);
3827  for (i = 0; i < 78; i++) err.print_raw("=");
3828  err.cr();
3829
3830  char buf[16];
3831  // Prevent process from exiting upon "read error" without consuming all CPU
3832  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3833
3834  return buf[0] == 'y' || buf[0] == 'Y';
3835}
3836
3837int os::stat(const char *path, struct stat *sbuf) {
3838  char pathbuf[MAX_PATH];
3839  if (strlen(path) > MAX_PATH - 1) {
3840    errno = ENAMETOOLONG;
3841    return -1;
3842  }
3843  os::native_path(strcpy(pathbuf, path));
3844  return ::stat(pathbuf, sbuf);
3845}
3846
3847bool os::check_heap(bool force) {
3848  return true;
3849}
3850
3851int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3852  return ::vsnprintf(buf, count, format, args);
3853}
3854
3855// Is a (classpath) directory empty?
3856bool os::dir_is_empty(const char* path) {
3857  DIR *dir = NULL;
3858  struct dirent *ptr;
3859
3860  dir = opendir(path);
3861  if (dir == NULL) return true;
3862
3863  /* Scan the directory */
3864  bool result = true;
3865  char buf[sizeof(struct dirent) + MAX_PATH];
3866  while (result && (ptr = ::readdir(dir)) != NULL) {
3867    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3868      result = false;
3869    }
3870  }
3871  closedir(dir);
3872  return result;
3873}
3874
3875// This code originates from JDK's sysOpen and open64_w
3876// from src/solaris/hpi/src/system_md.c
3877
3878#ifndef O_DELETE
3879#define O_DELETE 0x10000
3880#endif
3881
3882// Open a file. Unlink the file immediately after open returns
3883// if the specified oflag has the O_DELETE flag set.
3884// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3885
3886int os::open(const char *path, int oflag, int mode) {
3887
3888  if (strlen(path) > MAX_PATH - 1) {
3889    errno = ENAMETOOLONG;
3890    return -1;
3891  }
3892  int fd;
3893  int o_delete = (oflag & O_DELETE);
3894  oflag = oflag & ~O_DELETE;
3895
3896  fd = ::open(path, oflag, mode);
3897  if (fd == -1) return -1;
3898
3899  //If the open succeeded, the file might still be a directory
3900  {
3901    struct stat buf;
3902    int ret = ::fstat(fd, &buf);
3903    int st_mode = buf.st_mode;
3904
3905    if (ret != -1) {
3906      if ((st_mode & S_IFMT) == S_IFDIR) {
3907        errno = EISDIR;
3908        ::close(fd);
3909        return -1;
3910      }
3911    } else {
3912      ::close(fd);
3913      return -1;
3914    }
3915  }
3916
3917    /*
3918     * All file descriptors that are opened in the JVM and not
3919     * specifically destined for a subprocess should have the
3920     * close-on-exec flag set.  If we don't set it, then careless 3rd
3921     * party native code might fork and exec without closing all
3922     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3923     * UNIXProcess.c), and this in turn might:
3924     *
3925     * - cause end-of-file to fail to be detected on some file
3926     *   descriptors, resulting in mysterious hangs, or
3927     *
3928     * - might cause an fopen in the subprocess to fail on a system
3929     *   suffering from bug 1085341.
3930     *
3931     * (Yes, the default setting of the close-on-exec flag is a Unix
3932     * design flaw)
3933     *
3934     * See:
3935     * 1085341: 32-bit stdio routines should support file descriptors >255
3936     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3937     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3938     */
3939#ifdef FD_CLOEXEC
3940    {
3941        int flags = ::fcntl(fd, F_GETFD);
3942        if (flags != -1)
3943            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3944    }
3945#endif
3946
3947  if (o_delete != 0) {
3948    ::unlink(path);
3949  }
3950  return fd;
3951}
3952
3953
3954// create binary file, rewriting existing file if required
3955int os::create_binary_file(const char* path, bool rewrite_existing) {
3956  int oflags = O_WRONLY | O_CREAT;
3957  if (!rewrite_existing) {
3958    oflags |= O_EXCL;
3959  }
3960  return ::open(path, oflags, S_IREAD | S_IWRITE);
3961}
3962
3963// return current position of file pointer
3964jlong os::current_file_offset(int fd) {
3965  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3966}
3967
3968// move file pointer to the specified offset
3969jlong os::seek_to_file_offset(int fd, jlong offset) {
3970  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3971}
3972
3973// This code originates from JDK's sysAvailable
3974// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3975
3976int os::available(int fd, jlong *bytes) {
3977  jlong cur, end;
3978  int mode;
3979  struct stat buf;
3980
3981  if (::fstat(fd, &buf) >= 0) {
3982    mode = buf.st_mode;
3983    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3984      /*
3985      * XXX: is the following call interruptible? If so, this might
3986      * need to go through the INTERRUPT_IO() wrapper as for other
3987      * blocking, interruptible calls in this file.
3988      */
3989      int n;
3990      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3991        *bytes = n;
3992        return 1;
3993      }
3994    }
3995  }
3996  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3997    return 0;
3998  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3999    return 0;
4000  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4001    return 0;
4002  }
4003  *bytes = end - cur;
4004  return 1;
4005}
4006
4007int os::socket_available(int fd, jint *pbytes) {
4008   if (fd < 0)
4009     return OS_OK;
4010
4011   int ret;
4012
4013   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4014
4015   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4016   // is expected to return 0 on failure and 1 on success to the jdk.
4017
4018   return (ret == OS_ERR) ? 0 : 1;
4019}
4020
4021// Map a block of memory.
4022char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4023                     char *addr, size_t bytes, bool read_only,
4024                     bool allow_exec) {
4025  int prot;
4026  int flags;
4027
4028  if (read_only) {
4029    prot = PROT_READ;
4030    flags = MAP_SHARED;
4031  } else {
4032    prot = PROT_READ | PROT_WRITE;
4033    flags = MAP_PRIVATE;
4034  }
4035
4036  if (allow_exec) {
4037    prot |= PROT_EXEC;
4038  }
4039
4040  if (addr != NULL) {
4041    flags |= MAP_FIXED;
4042  }
4043
4044  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4045                                     fd, file_offset);
4046  if (mapped_address == MAP_FAILED) {
4047    return NULL;
4048  }
4049  return mapped_address;
4050}
4051
4052
4053// Remap a block of memory.
4054char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4055                       char *addr, size_t bytes, bool read_only,
4056                       bool allow_exec) {
4057  // same as map_memory() on this OS
4058  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4059                        allow_exec);
4060}
4061
4062
4063// Unmap a block of memory.
4064bool os::pd_unmap_memory(char* addr, size_t bytes) {
4065  return munmap(addr, bytes) == 0;
4066}
4067
4068// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4069// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4070// of a thread.
4071//
4072// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4073// the fast estimate available on the platform.
4074
4075jlong os::current_thread_cpu_time() {
4076#ifdef __APPLE__
4077  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4078#else
4079  Unimplemented();
4080  return 0;
4081#endif
4082}
4083
4084jlong os::thread_cpu_time(Thread* thread) {
4085#ifdef __APPLE__
4086  return os::thread_cpu_time(thread, true /* user + sys */);
4087#else
4088  Unimplemented();
4089  return 0;
4090#endif
4091}
4092
4093jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4094#ifdef __APPLE__
4095  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4096#else
4097  Unimplemented();
4098  return 0;
4099#endif
4100}
4101
4102jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4103#ifdef __APPLE__
4104  struct thread_basic_info tinfo;
4105  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4106  kern_return_t kr;
4107  thread_t mach_thread;
4108
4109  mach_thread = thread->osthread()->thread_id();
4110  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4111  if (kr != KERN_SUCCESS)
4112    return -1;
4113
4114  if (user_sys_cpu_time) {
4115    jlong nanos;
4116    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4117    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4118    return nanos;
4119  } else {
4120    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4121  }
4122#else
4123  Unimplemented();
4124  return 0;
4125#endif
4126}
4127
4128
4129void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4130  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4131  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4132  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4133  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4134}
4135
4136void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4137  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4138  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4139  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4140  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4141}
4142
4143bool os::is_thread_cpu_time_supported() {
4144#ifdef __APPLE__
4145  return true;
4146#else
4147  return false;
4148#endif
4149}
4150
4151// System loadavg support.  Returns -1 if load average cannot be obtained.
4152// Bsd doesn't yet have a (official) notion of processor sets,
4153// so just return the system wide load average.
4154int os::loadavg(double loadavg[], int nelem) {
4155  return ::getloadavg(loadavg, nelem);
4156}
4157
4158void os::pause() {
4159  char filename[MAX_PATH];
4160  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4161    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4162  } else {
4163    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4164  }
4165
4166  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4167  if (fd != -1) {
4168    struct stat buf;
4169    ::close(fd);
4170    while (::stat(filename, &buf) == 0) {
4171      (void)::poll(NULL, 0, 100);
4172    }
4173  } else {
4174    jio_fprintf(stderr,
4175      "Could not open pause file '%s', continuing immediately.\n", filename);
4176  }
4177}
4178
4179
4180// Refer to the comments in os_solaris.cpp park-unpark.
4181//
4182// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4183// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4184// For specifics regarding the bug see GLIBC BUGID 261237 :
4185//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4186// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4187// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4188// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4189// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4190// and monitorenter when we're using 1-0 locking.  All those operations may result in
4191// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4192// of libpthread avoids the problem, but isn't practical.
4193//
4194// Possible remedies:
4195//
4196// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4197//      This is palliative and probabilistic, however.  If the thread is preempted
4198//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4199//      than the minimum period may have passed, and the abstime may be stale (in the
4200//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4201//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4202//
4203// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4204//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4205//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4206//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4207//      thread.
4208//
4209// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4210//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4211//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4212//      This also works well.  In fact it avoids kernel-level scalability impediments
4213//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4214//      timers in a graceful fashion.
4215//
4216// 4.   When the abstime value is in the past it appears that control returns
4217//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4218//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4219//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4220//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4221//      It may be possible to avoid reinitialization by checking the return
4222//      value from pthread_cond_timedwait().  In addition to reinitializing the
4223//      condvar we must establish the invariant that cond_signal() is only called
4224//      within critical sections protected by the adjunct mutex.  This prevents
4225//      cond_signal() from "seeing" a condvar that's in the midst of being
4226//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4227//      desirable signal-after-unlock optimization that avoids futile context switching.
4228//
4229//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4230//      structure when a condvar is used or initialized.  cond_destroy()  would
4231//      release the helper structure.  Our reinitialize-after-timedwait fix
4232//      put excessive stress on malloc/free and locks protecting the c-heap.
4233//
4234// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4235// It may be possible to refine (4) by checking the kernel and NTPL verisons
4236// and only enabling the work-around for vulnerable environments.
4237
4238// utility to compute the abstime argument to timedwait:
4239// millis is the relative timeout time
4240// abstime will be the absolute timeout time
4241// TODO: replace compute_abstime() with unpackTime()
4242
4243static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4244  if (millis < 0)  millis = 0;
4245  struct timeval now;
4246  int status = gettimeofday(&now, NULL);
4247  assert(status == 0, "gettimeofday");
4248  jlong seconds = millis / 1000;
4249  millis %= 1000;
4250  if (seconds > 50000000) { // see man cond_timedwait(3T)
4251    seconds = 50000000;
4252  }
4253  abstime->tv_sec = now.tv_sec  + seconds;
4254  long       usec = now.tv_usec + millis * 1000;
4255  if (usec >= 1000000) {
4256    abstime->tv_sec += 1;
4257    usec -= 1000000;
4258  }
4259  abstime->tv_nsec = usec * 1000;
4260  return abstime;
4261}
4262
4263
4264// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4265// Conceptually TryPark() should be equivalent to park(0).
4266
4267int os::PlatformEvent::TryPark() {
4268  for (;;) {
4269    const int v = _Event ;
4270    guarantee ((v == 0) || (v == 1), "invariant") ;
4271    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4272  }
4273}
4274
4275void os::PlatformEvent::park() {       // AKA "down()"
4276  // Invariant: Only the thread associated with the Event/PlatformEvent
4277  // may call park().
4278  // TODO: assert that _Assoc != NULL or _Assoc == Self
4279  int v ;
4280  for (;;) {
4281      v = _Event ;
4282      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4283  }
4284  guarantee (v >= 0, "invariant") ;
4285  if (v == 0) {
4286     // Do this the hard way by blocking ...
4287     int status = pthread_mutex_lock(_mutex);
4288     assert_status(status == 0, status, "mutex_lock");
4289     guarantee (_nParked == 0, "invariant") ;
4290     ++ _nParked ;
4291     while (_Event < 0) {
4292        status = pthread_cond_wait(_cond, _mutex);
4293        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4294        // Treat this the same as if the wait was interrupted
4295        if (status == ETIMEDOUT) { status = EINTR; }
4296        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4297     }
4298     -- _nParked ;
4299
4300    _Event = 0 ;
4301     status = pthread_mutex_unlock(_mutex);
4302     assert_status(status == 0, status, "mutex_unlock");
4303    // Paranoia to ensure our locked and lock-free paths interact
4304    // correctly with each other.
4305    OrderAccess::fence();
4306  }
4307  guarantee (_Event >= 0, "invariant") ;
4308}
4309
4310int os::PlatformEvent::park(jlong millis) {
4311  guarantee (_nParked == 0, "invariant") ;
4312
4313  int v ;
4314  for (;;) {
4315      v = _Event ;
4316      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4317  }
4318  guarantee (v >= 0, "invariant") ;
4319  if (v != 0) return OS_OK ;
4320
4321  // We do this the hard way, by blocking the thread.
4322  // Consider enforcing a minimum timeout value.
4323  struct timespec abst;
4324  compute_abstime(&abst, millis);
4325
4326  int ret = OS_TIMEOUT;
4327  int status = pthread_mutex_lock(_mutex);
4328  assert_status(status == 0, status, "mutex_lock");
4329  guarantee (_nParked == 0, "invariant") ;
4330  ++_nParked ;
4331
4332  // Object.wait(timo) will return because of
4333  // (a) notification
4334  // (b) timeout
4335  // (c) thread.interrupt
4336  //
4337  // Thread.interrupt and object.notify{All} both call Event::set.
4338  // That is, we treat thread.interrupt as a special case of notification.
4339  // The underlying Solaris implementation, cond_timedwait, admits
4340  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4341  // JVM from making those visible to Java code.  As such, we must
4342  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4343  //
4344  // TODO: properly differentiate simultaneous notify+interrupt.
4345  // In that case, we should propagate the notify to another waiter.
4346
4347  while (_Event < 0) {
4348    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4349    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4350      pthread_cond_destroy (_cond);
4351      pthread_cond_init (_cond, NULL) ;
4352    }
4353    assert_status(status == 0 || status == EINTR ||
4354                  status == ETIMEDOUT,
4355                  status, "cond_timedwait");
4356    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4357    if (status == ETIMEDOUT) break ;
4358    // We consume and ignore EINTR and spurious wakeups.
4359  }
4360  --_nParked ;
4361  if (_Event >= 0) {
4362     ret = OS_OK;
4363  }
4364  _Event = 0 ;
4365  status = pthread_mutex_unlock(_mutex);
4366  assert_status(status == 0, status, "mutex_unlock");
4367  assert (_nParked == 0, "invariant") ;
4368  // Paranoia to ensure our locked and lock-free paths interact
4369  // correctly with each other.
4370  OrderAccess::fence();
4371  return ret;
4372}
4373
4374void os::PlatformEvent::unpark() {
4375  // Transitions for _Event:
4376  //    0 :=> 1
4377  //    1 :=> 1
4378  //   -1 :=> either 0 or 1; must signal target thread
4379  //          That is, we can safely transition _Event from -1 to either
4380  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4381  //          unpark() calls.
4382  // See also: "Semaphores in Plan 9" by Mullender & Cox
4383  //
4384  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4385  // that it will take two back-to-back park() calls for the owning
4386  // thread to block. This has the benefit of forcing a spurious return
4387  // from the first park() call after an unpark() call which will help
4388  // shake out uses of park() and unpark() without condition variables.
4389
4390  if (Atomic::xchg(1, &_Event) >= 0) return;
4391
4392  // Wait for the thread associated with the event to vacate
4393  int status = pthread_mutex_lock(_mutex);
4394  assert_status(status == 0, status, "mutex_lock");
4395  int AnyWaiters = _nParked;
4396  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4397  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4398    AnyWaiters = 0;
4399    pthread_cond_signal(_cond);
4400  }
4401  status = pthread_mutex_unlock(_mutex);
4402  assert_status(status == 0, status, "mutex_unlock");
4403  if (AnyWaiters != 0) {
4404    status = pthread_cond_signal(_cond);
4405    assert_status(status == 0, status, "cond_signal");
4406  }
4407
4408  // Note that we signal() _after dropping the lock for "immortal" Events.
4409  // This is safe and avoids a common class of  futile wakeups.  In rare
4410  // circumstances this can cause a thread to return prematurely from
4411  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4412  // simply re-test the condition and re-park itself.
4413}
4414
4415
4416// JSR166
4417// -------------------------------------------------------
4418
4419/*
4420 * The solaris and bsd implementations of park/unpark are fairly
4421 * conservative for now, but can be improved. They currently use a
4422 * mutex/condvar pair, plus a a count.
4423 * Park decrements count if > 0, else does a condvar wait.  Unpark
4424 * sets count to 1 and signals condvar.  Only one thread ever waits
4425 * on the condvar. Contention seen when trying to park implies that someone
4426 * is unparking you, so don't wait. And spurious returns are fine, so there
4427 * is no need to track notifications.
4428 */
4429
4430#define MAX_SECS 100000000
4431/*
4432 * This code is common to bsd and solaris and will be moved to a
4433 * common place in dolphin.
4434 *
4435 * The passed in time value is either a relative time in nanoseconds
4436 * or an absolute time in milliseconds. Either way it has to be unpacked
4437 * into suitable seconds and nanoseconds components and stored in the
4438 * given timespec structure.
4439 * Given time is a 64-bit value and the time_t used in the timespec is only
4440 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4441 * overflow if times way in the future are given. Further on Solaris versions
4442 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4443 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4444 * As it will be 28 years before "now + 100000000" will overflow we can
4445 * ignore overflow and just impose a hard-limit on seconds using the value
4446 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4447 * years from "now".
4448 */
4449
4450static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4451  assert (time > 0, "convertTime");
4452
4453  struct timeval now;
4454  int status = gettimeofday(&now, NULL);
4455  assert(status == 0, "gettimeofday");
4456
4457  time_t max_secs = now.tv_sec + MAX_SECS;
4458
4459  if (isAbsolute) {
4460    jlong secs = time / 1000;
4461    if (secs > max_secs) {
4462      absTime->tv_sec = max_secs;
4463    }
4464    else {
4465      absTime->tv_sec = secs;
4466    }
4467    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4468  }
4469  else {
4470    jlong secs = time / NANOSECS_PER_SEC;
4471    if (secs >= MAX_SECS) {
4472      absTime->tv_sec = max_secs;
4473      absTime->tv_nsec = 0;
4474    }
4475    else {
4476      absTime->tv_sec = now.tv_sec + secs;
4477      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4478      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4479        absTime->tv_nsec -= NANOSECS_PER_SEC;
4480        ++absTime->tv_sec; // note: this must be <= max_secs
4481      }
4482    }
4483  }
4484  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4485  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4486  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4487  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4488}
4489
4490void Parker::park(bool isAbsolute, jlong time) {
4491  // Ideally we'd do something useful while spinning, such
4492  // as calling unpackTime().
4493
4494  // Optional fast-path check:
4495  // Return immediately if a permit is available.
4496  // We depend on Atomic::xchg() having full barrier semantics
4497  // since we are doing a lock-free update to _counter.
4498  if (Atomic::xchg(0, &_counter) > 0) return;
4499
4500  Thread* thread = Thread::current();
4501  assert(thread->is_Java_thread(), "Must be JavaThread");
4502  JavaThread *jt = (JavaThread *)thread;
4503
4504  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4505  // Check interrupt before trying to wait
4506  if (Thread::is_interrupted(thread, false)) {
4507    return;
4508  }
4509
4510  // Next, demultiplex/decode time arguments
4511  struct timespec absTime;
4512  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4513    return;
4514  }
4515  if (time > 0) {
4516    unpackTime(&absTime, isAbsolute, time);
4517  }
4518
4519
4520  // Enter safepoint region
4521  // Beware of deadlocks such as 6317397.
4522  // The per-thread Parker:: mutex is a classic leaf-lock.
4523  // In particular a thread must never block on the Threads_lock while
4524  // holding the Parker:: mutex.  If safepoints are pending both the
4525  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4526  ThreadBlockInVM tbivm(jt);
4527
4528  // Don't wait if cannot get lock since interference arises from
4529  // unblocking.  Also. check interrupt before trying wait
4530  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4531    return;
4532  }
4533
4534  int status ;
4535  if (_counter > 0)  { // no wait needed
4536    _counter = 0;
4537    status = pthread_mutex_unlock(_mutex);
4538    assert (status == 0, "invariant") ;
4539    // Paranoia to ensure our locked and lock-free paths interact
4540    // correctly with each other and Java-level accesses.
4541    OrderAccess::fence();
4542    return;
4543  }
4544
4545#ifdef ASSERT
4546  // Don't catch signals while blocked; let the running threads have the signals.
4547  // (This allows a debugger to break into the running thread.)
4548  sigset_t oldsigs;
4549  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4550  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4551#endif
4552
4553  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4554  jt->set_suspend_equivalent();
4555  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4556
4557  if (time == 0) {
4558    status = pthread_cond_wait (_cond, _mutex) ;
4559  } else {
4560    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4561    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4562      pthread_cond_destroy (_cond) ;
4563      pthread_cond_init    (_cond, NULL);
4564    }
4565  }
4566  assert_status(status == 0 || status == EINTR ||
4567                status == ETIMEDOUT,
4568                status, "cond_timedwait");
4569
4570#ifdef ASSERT
4571  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4572#endif
4573
4574  _counter = 0 ;
4575  status = pthread_mutex_unlock(_mutex) ;
4576  assert_status(status == 0, status, "invariant") ;
4577  // Paranoia to ensure our locked and lock-free paths interact
4578  // correctly with each other and Java-level accesses.
4579  OrderAccess::fence();
4580
4581  // If externally suspended while waiting, re-suspend
4582  if (jt->handle_special_suspend_equivalent_condition()) {
4583    jt->java_suspend_self();
4584  }
4585}
4586
4587void Parker::unpark() {
4588  int s, status ;
4589  status = pthread_mutex_lock(_mutex);
4590  assert (status == 0, "invariant") ;
4591  s = _counter;
4592  _counter = 1;
4593  if (s < 1) {
4594     if (WorkAroundNPTLTimedWaitHang) {
4595        status = pthread_cond_signal (_cond) ;
4596        assert (status == 0, "invariant") ;
4597        status = pthread_mutex_unlock(_mutex);
4598        assert (status == 0, "invariant") ;
4599     } else {
4600        status = pthread_mutex_unlock(_mutex);
4601        assert (status == 0, "invariant") ;
4602        status = pthread_cond_signal (_cond) ;
4603        assert (status == 0, "invariant") ;
4604     }
4605  } else {
4606    pthread_mutex_unlock(_mutex);
4607    assert (status == 0, "invariant") ;
4608  }
4609}
4610
4611
4612/* Darwin has no "environ" in a dynamic library. */
4613#ifdef __APPLE__
4614#include <crt_externs.h>
4615#define environ (*_NSGetEnviron())
4616#else
4617extern char** environ;
4618#endif
4619
4620// Run the specified command in a separate process. Return its exit value,
4621// or -1 on failure (e.g. can't fork a new process).
4622// Unlike system(), this function can be called from signal handler. It
4623// doesn't block SIGINT et al.
4624int os::fork_and_exec(char* cmd) {
4625  const char * argv[4] = {"sh", "-c", cmd, NULL};
4626
4627  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4628  // pthread_atfork handlers and reset pthread library. All we need is a
4629  // separate process to execve. Make a direct syscall to fork process.
4630  // On IA64 there's no fork syscall, we have to use fork() and hope for
4631  // the best...
4632  pid_t pid = fork();
4633
4634  if (pid < 0) {
4635    // fork failed
4636    return -1;
4637
4638  } else if (pid == 0) {
4639    // child process
4640
4641    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4642    // first to kill every thread on the thread list. Because this list is
4643    // not reset by fork() (see notes above), execve() will instead kill
4644    // every thread in the parent process. We know this is the only thread
4645    // in the new process, so make a system call directly.
4646    // IA64 should use normal execve() from glibc to match the glibc fork()
4647    // above.
4648    execve("/bin/sh", (char* const*)argv, environ);
4649
4650    // execve failed
4651    _exit(-1);
4652
4653  } else  {
4654    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4655    // care about the actual exit code, for now.
4656
4657    int status;
4658
4659    // Wait for the child process to exit.  This returns immediately if
4660    // the child has already exited. */
4661    while (waitpid(pid, &status, 0) < 0) {
4662        switch (errno) {
4663        case ECHILD: return 0;
4664        case EINTR: break;
4665        default: return -1;
4666        }
4667    }
4668
4669    if (WIFEXITED(status)) {
4670       // The child exited normally; get its exit code.
4671       return WEXITSTATUS(status);
4672    } else if (WIFSIGNALED(status)) {
4673       // The child exited because of a signal
4674       // The best value to return is 0x80 + signal number,
4675       // because that is what all Unix shells do, and because
4676       // it allows callers to distinguish between process exit and
4677       // process death by signal.
4678       return 0x80 + WTERMSIG(status);
4679    } else {
4680       // Unknown exit code; pass it through
4681       return status;
4682    }
4683  }
4684}
4685
4686// is_headless_jre()
4687//
4688// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4689// in order to report if we are running in a headless jre
4690//
4691// Since JDK8 xawt/libmawt.so was moved into the same directory
4692// as libawt.so, and renamed libawt_xawt.so
4693//
4694bool os::is_headless_jre() {
4695    struct stat statbuf;
4696    char buf[MAXPATHLEN];
4697    char libmawtpath[MAXPATHLEN];
4698    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4699    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4700    char *p;
4701
4702    // Get path to libjvm.so
4703    os::jvm_path(buf, sizeof(buf));
4704
4705    // Get rid of libjvm.so
4706    p = strrchr(buf, '/');
4707    if (p == NULL) return false;
4708    else *p = '\0';
4709
4710    // Get rid of client or server
4711    p = strrchr(buf, '/');
4712    if (p == NULL) return false;
4713    else *p = '\0';
4714
4715    // check xawt/libmawt.so
4716    strcpy(libmawtpath, buf);
4717    strcat(libmawtpath, xawtstr);
4718    if (::stat(libmawtpath, &statbuf) == 0) return false;
4719
4720    // check libawt_xawt.so
4721    strcpy(libmawtpath, buf);
4722    strcat(libmawtpath, new_xawtstr);
4723    if (::stat(libmawtpath, &statbuf) == 0) return false;
4724
4725    return true;
4726}
4727
4728// Get the default path to the core file
4729// Returns the length of the string
4730int os::get_core_path(char* buffer, size_t bufferSize) {
4731  int n = jio_snprintf(buffer, bufferSize, "/cores");
4732
4733  // Truncate if theoretical string was longer than bufferSize
4734  n = MIN2(n, (int)bufferSize);
4735
4736  return n;
4737}
4738
4739