os_bsd.cpp revision 5872:b59507f713e0
1155131Srwatson/*
2155131Srwatson * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3155131Srwatson * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4155131Srwatson *
5155131Srwatson * This code is free software; you can redistribute it and/or modify it
6155131Srwatson * under the terms of the GNU General Public License version 2 only, as
7155131Srwatson * published by the Free Software Foundation.
8155131Srwatson *
9155131Srwatson * This code is distributed in the hope that it will be useful, but WITHOUT
10155131Srwatson * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11155131Srwatson * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12155131Srwatson * version 2 for more details (a copy is included in the LICENSE file that
13155131Srwatson * accompanied this code).
14155131Srwatson *
15155131Srwatson * You should have received a copy of the GNU General Public License version
16155131Srwatson * 2 along with this work; if not, write to the Free Software Foundation,
17155131Srwatson * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18155131Srwatson *
19155131Srwatson * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20155131Srwatson * or visit www.oracle.com if you need additional information or have any
21155131Srwatson * questions.
22155131Srwatson *
23155131Srwatson */
24155131Srwatson
25155131Srwatson// no precompiled headers
26155131Srwatson#include "classfile/classLoader.hpp"
27155131Srwatson#include "classfile/systemDictionary.hpp"
28155131Srwatson#include "classfile/vmSymbols.hpp"
29155131Srwatson#include "code/icBuffer.hpp"
30155131Srwatson#include "code/vtableStubs.hpp"
31155131Srwatson#include "compiler/compileBroker.hpp"
32168777Srwatson#include "compiler/disassembler.hpp"
33155131Srwatson#include "interpreter/interpreter.hpp"
34155131Srwatson#include "jvm_bsd.h"
35155131Srwatson#include "memory/allocation.inline.hpp"
36155131Srwatson#include "memory/filemap.hpp"
37155131Srwatson#include "mutex_bsd.inline.hpp"
38168777Srwatson#include "oops/oop.inline.hpp"
39155131Srwatson#include "os_share_bsd.hpp"
40168777Srwatson#include "prims/jniFastGetField.hpp"
41155131Srwatson#include "prims/jvm.h"
42155131Srwatson#include "prims/jvm_misc.hpp"
43168777Srwatson#include "runtime/arguments.hpp"
44155131Srwatson#include "runtime/extendedPC.hpp"
45168777Srwatson#include "runtime/globals.hpp"
46168777Srwatson#include "runtime/interfaceSupport.hpp"
47168777Srwatson#include "runtime/java.hpp"
48155131Srwatson#include "runtime/javaCalls.hpp"
49155131Srwatson#include "runtime/mutexLocker.hpp"
50155131Srwatson#include "runtime/objectMonitor.hpp"
51155131Srwatson#include "runtime/osThread.hpp"
52155131Srwatson#include "runtime/perfMemory.hpp"
53155131Srwatson#include "runtime/sharedRuntime.hpp"
54155131Srwatson#include "runtime/statSampler.hpp"
55155131Srwatson#include "runtime/stubRoutines.hpp"
56155131Srwatson#include "runtime/thread.inline.hpp"
57155131Srwatson#include "runtime/threadCritical.hpp"
58155131Srwatson#include "runtime/timer.hpp"
59155131Srwatson#include "services/attachListener.hpp"
60155131Srwatson#include "services/memTracker.hpp"
61155131Srwatson#include "services/runtimeService.hpp"
62168777Srwatson#include "utilities/decoder.hpp"
63155131Srwatson#include "utilities/defaultStream.hpp"
64168777Srwatson#include "utilities/events.hpp"
65155131Srwatson#include "utilities/growableArray.hpp"
66155131Srwatson#include "utilities/vmError.hpp"
67155131Srwatson
68155131Srwatson// put OS-includes here
69155131Srwatson# include <sys/types.h>
70155131Srwatson# include <sys/mman.h>
71168777Srwatson# include <sys/stat.h>
72168777Srwatson# include <sys/select.h>
73155131Srwatson# include <pthread.h>
74155131Srwatson# include <signal.h>
75155131Srwatson# include <errno.h>
76168777Srwatson# include <dlfcn.h>
77155131Srwatson# include <stdio.h>
78168777Srwatson# include <unistd.h>
79168777Srwatson# include <sys/resource.h>
80168777Srwatson# include <pthread.h>
81168777Srwatson# include <sys/stat.h>
82168777Srwatson# include <sys/time.h>
83155131Srwatson# include <sys/times.h>
84168777Srwatson# include <sys/utsname.h>
85155131Srwatson# include <sys/socket.h>
86155131Srwatson# include <sys/wait.h>
87168777Srwatson# include <time.h>
88168777Srwatson# include <pwd.h>
89168777Srwatson# include <poll.h>
90168777Srwatson# include <semaphore.h>
91155131Srwatson# include <fcntl.h>
92155131Srwatson# include <string.h>
93155131Srwatson# include <sys/param.h>
94155131Srwatson# include <sys/sysctl.h>
95155131Srwatson# include <sys/ipc.h>
96155131Srwatson# include <sys/shm.h>
97155131Srwatson#ifndef __APPLE__
98155131Srwatson# include <link.h>
99155131Srwatson#endif
100155131Srwatson# include <stdint.h>
101155131Srwatson# include <inttypes.h>
102155131Srwatson# include <sys/ioctl.h>
103# include <sys/syscall.h>
104
105#if defined(__FreeBSD__) || defined(__NetBSD__)
106# include <elf.h>
107#endif
108
109#ifdef __APPLE__
110# include <mach/mach.h> // semaphore_* API
111# include <mach-o/dyld.h>
112# include <sys/proc_info.h>
113# include <objc/objc-auto.h>
114#endif
115
116#ifndef MAP_ANONYMOUS
117#define MAP_ANONYMOUS MAP_ANON
118#endif
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125#define LARGEPAGES_BIT (1 << 6)
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Bsd::_physical_memory = 0;
129
130
131int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132pthread_t os::Bsd::_main_thread;
133int os::Bsd::_page_size = -1;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151
152////////////////////////////////////////////////////////////////////////////////
153// utility functions
154
155static int SR_initialize();
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158julong os::available_memory() {
159  return Bsd::available_memory();
160}
161
162// available here means free
163julong os::Bsd::available_memory() {
164  uint64_t available = physical_memory() >> 2;
165#ifdef __APPLE__
166  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
167  vm_statistics64_data_t vmstat;
168  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
169                                         (host_info64_t)&vmstat, &count);
170  assert(kerr == KERN_SUCCESS,
171         "host_statistics64 failed - check mach_host_self() and count");
172  if (kerr == KERN_SUCCESS) {
173    available = vmstat.free_count * os::vm_page_size();
174  }
175#endif
176  return available;
177}
178
179julong os::physical_memory() {
180  return Bsd::physical_memory();
181}
182
183////////////////////////////////////////////////////////////////////////////////
184// environment support
185
186bool os::getenv(const char* name, char* buf, int len) {
187  const char* val = ::getenv(name);
188  if (val != NULL && strlen(val) < (size_t)len) {
189    strcpy(buf, val);
190    return true;
191  }
192  if (len > 0) buf[0] = 0;  // return a null string
193  return false;
194}
195
196
197// Return true if user is running as root.
198
199bool os::have_special_privileges() {
200  static bool init = false;
201  static bool privileges = false;
202  if (!init) {
203    privileges = (getuid() != geteuid()) || (getgid() != getegid());
204    init = true;
205  }
206  return privileges;
207}
208
209
210
211// Cpu architecture string
212#if   defined(ZERO)
213static char cpu_arch[] = ZERO_LIBARCH;
214#elif defined(IA64)
215static char cpu_arch[] = "ia64";
216#elif defined(IA32)
217static char cpu_arch[] = "i386";
218#elif defined(AMD64)
219static char cpu_arch[] = "amd64";
220#elif defined(ARM)
221static char cpu_arch[] = "arm";
222#elif defined(PPC)
223static char cpu_arch[] = "ppc";
224#elif defined(SPARC)
225#  ifdef _LP64
226static char cpu_arch[] = "sparcv9";
227#  else
228static char cpu_arch[] = "sparc";
229#  endif
230#else
231#error Add appropriate cpu_arch setting
232#endif
233
234// Compiler variant
235#ifdef COMPILER2
236#define COMPILER_VARIANT "server"
237#else
238#define COMPILER_VARIANT "client"
239#endif
240
241
242void os::Bsd::initialize_system_info() {
243  int mib[2];
244  size_t len;
245  int cpu_val;
246  julong mem_val;
247
248  /* get processors count via hw.ncpus sysctl */
249  mib[0] = CTL_HW;
250  mib[1] = HW_NCPU;
251  len = sizeof(cpu_val);
252  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
253       assert(len == sizeof(cpu_val), "unexpected data size");
254       set_processor_count(cpu_val);
255  }
256  else {
257       set_processor_count(1);   // fallback
258  }
259
260  /* get physical memory via hw.memsize sysctl (hw.memsize is used
261   * since it returns a 64 bit value)
262   */
263  mib[0] = CTL_HW;
264
265#if defined (HW_MEMSIZE) // Apple
266  mib[1] = HW_MEMSIZE;
267#elif defined(HW_PHYSMEM) // Most of BSD
268  mib[1] = HW_PHYSMEM;
269#elif defined(HW_REALMEM) // Old FreeBSD
270  mib[1] = HW_REALMEM;
271#else
272  #error No ways to get physmem
273#endif
274
275  len = sizeof(mem_val);
276  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
277       assert(len == sizeof(mem_val), "unexpected data size");
278       _physical_memory = mem_val;
279  } else {
280       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
281  }
282
283#ifdef __OpenBSD__
284  {
285       // limit _physical_memory memory view on OpenBSD since
286       // datasize rlimit restricts us anyway.
287       struct rlimit limits;
288       getrlimit(RLIMIT_DATA, &limits);
289       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
290  }
291#endif
292}
293
294#ifdef __APPLE__
295static const char *get_home() {
296  const char *home_dir = ::getenv("HOME");
297  if ((home_dir == NULL) || (*home_dir == '\0')) {
298    struct passwd *passwd_info = getpwuid(geteuid());
299    if (passwd_info != NULL) {
300      home_dir = passwd_info->pw_dir;
301    }
302  }
303
304  return home_dir;
305}
306#endif
307
308void os::init_system_properties_values() {
309//  char arch[12];
310//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
311
312  // The next steps are taken in the product version:
313  //
314  // Obtain the JAVA_HOME value from the location of libjvm.so.
315  // This library should be located at:
316  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
317  //
318  // If "/jre/lib/" appears at the right place in the path, then we
319  // assume libjvm.so is installed in a JDK and we use this path.
320  //
321  // Otherwise exit with message: "Could not create the Java virtual machine."
322  //
323  // The following extra steps are taken in the debugging version:
324  //
325  // If "/jre/lib/" does NOT appear at the right place in the path
326  // instead of exit check for $JAVA_HOME environment variable.
327  //
328  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
329  // then we append a fake suffix "hotspot/libjvm.so" to this path so
330  // it looks like libjvm.so is installed there
331  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
332  //
333  // Otherwise exit.
334  //
335  // Important note: if the location of libjvm.so changes this
336  // code needs to be changed accordingly.
337
338  // The next few definitions allow the code to be verbatim:
339#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
340#define getenv(n) ::getenv(n)
341
342/*
343 * See ld(1):
344 *      The linker uses the following search paths to locate required
345 *      shared libraries:
346 *        1: ...
347 *        ...
348 *        7: The default directories, normally /lib and /usr/lib.
349 */
350#ifndef DEFAULT_LIBPATH
351#define DEFAULT_LIBPATH "/lib:/usr/lib"
352#endif
353
354#define EXTENSIONS_DIR  "/lib/ext"
355#define ENDORSED_DIR    "/lib/endorsed"
356#define REG_DIR         "/usr/java/packages"
357
358#ifdef __APPLE__
359#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
360#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
361        const char *user_home_dir = get_home();
362        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
363        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
364            sizeof(SYS_EXTENSIONS_DIRS);
365#endif
366
367  {
368    /* sysclasspath, java_home, dll_dir */
369    {
370        char *home_path;
371        char *dll_path;
372        char *pslash;
373        char buf[MAXPATHLEN];
374        os::jvm_path(buf, sizeof(buf));
375
376        // Found the full path to libjvm.so.
377        // Now cut the path to <java_home>/jre if we can.
378        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
379        pslash = strrchr(buf, '/');
380        if (pslash != NULL)
381            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
382        dll_path = malloc(strlen(buf) + 1);
383        if (dll_path == NULL)
384            return;
385        strcpy(dll_path, buf);
386        Arguments::set_dll_dir(dll_path);
387
388        if (pslash != NULL) {
389            pslash = strrchr(buf, '/');
390            if (pslash != NULL) {
391                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
392#ifndef __APPLE__
393                pslash = strrchr(buf, '/');
394                if (pslash != NULL)
395                    *pslash = '\0';   /* get rid of /lib */
396#endif
397            }
398        }
399
400        home_path = malloc(strlen(buf) + 1);
401        if (home_path == NULL)
402            return;
403        strcpy(home_path, buf);
404        Arguments::set_java_home(home_path);
405
406        if (!set_boot_path('/', ':'))
407            return;
408    }
409
410    /*
411     * Where to look for native libraries
412     *
413     * Note: Due to a legacy implementation, most of the library path
414     * is set in the launcher.  This was to accomodate linking restrictions
415     * on legacy Bsd implementations (which are no longer supported).
416     * Eventually, all the library path setting will be done here.
417     *
418     * However, to prevent the proliferation of improperly built native
419     * libraries, the new path component /usr/java/packages is added here.
420     * Eventually, all the library path setting will be done here.
421     */
422    {
423        char *ld_library_path;
424
425        /*
426         * Construct the invariant part of ld_library_path. Note that the
427         * space for the colon and the trailing null are provided by the
428         * nulls included by the sizeof operator (so actually we allocate
429         * a byte more than necessary).
430         */
431#ifdef __APPLE__
432        ld_library_path = (char *) malloc(system_ext_size);
433        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
434#else
435        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
436            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
437        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
438#endif
439
440        /*
441         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
442         * should always exist (until the legacy problem cited above is
443         * addressed).
444         */
445#ifdef __APPLE__
446        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
447        char *l = getenv("JAVA_LIBRARY_PATH");
448        if (l != NULL) {
449            char *t = ld_library_path;
450            /* That's +1 for the colon and +1 for the trailing '\0' */
451            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
452            sprintf(ld_library_path, "%s:%s", l, t);
453            free(t);
454        }
455
456        char *v = getenv("DYLD_LIBRARY_PATH");
457#else
458        char *v = getenv("LD_LIBRARY_PATH");
459#endif
460        if (v != NULL) {
461            char *t = ld_library_path;
462            /* That's +1 for the colon and +1 for the trailing '\0' */
463            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
464            sprintf(ld_library_path, "%s:%s", v, t);
465            free(t);
466        }
467
468#ifdef __APPLE__
469        // Apple's Java6 has "." at the beginning of java.library.path.
470        // OpenJDK on Windows has "." at the end of java.library.path.
471        // OpenJDK on Linux and Solaris don't have "." in java.library.path
472        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
473        // "." is appended to the end of java.library.path. Yes, this
474        // could cause a change in behavior, but Apple's Java6 behavior
475        // can be achieved by putting "." at the beginning of the
476        // JAVA_LIBRARY_PATH environment variable.
477        {
478            char *t = ld_library_path;
479            // that's +3 for appending ":." and the trailing '\0'
480            ld_library_path = (char *) malloc(strlen(t) + 3);
481            sprintf(ld_library_path, "%s:%s", t, ".");
482            free(t);
483        }
484#endif
485
486        Arguments::set_library_path(ld_library_path);
487    }
488
489    /*
490     * Extensions directories.
491     *
492     * Note that the space for the colon and the trailing null are provided
493     * by the nulls included by the sizeof operator (so actually one byte more
494     * than necessary is allocated).
495     */
496    {
497#ifdef __APPLE__
498        char *buf = malloc(strlen(Arguments::get_java_home()) +
499            sizeof(EXTENSIONS_DIR) + system_ext_size);
500        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
501            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
502#else
503        char *buf = malloc(strlen(Arguments::get_java_home()) +
504            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
505        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
506            Arguments::get_java_home());
507#endif
508
509        Arguments::set_ext_dirs(buf);
510    }
511
512    /* Endorsed standards default directory. */
513    {
514        char * buf;
515        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
516        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
517        Arguments::set_endorsed_dirs(buf);
518    }
519  }
520
521#ifdef __APPLE__
522#undef SYS_EXTENSIONS_DIR
523#endif
524#undef malloc
525#undef getenv
526#undef EXTENSIONS_DIR
527#undef ENDORSED_DIR
528
529  // Done
530  return;
531}
532
533////////////////////////////////////////////////////////////////////////////////
534// breakpoint support
535
536void os::breakpoint() {
537  BREAKPOINT;
538}
539
540extern "C" void breakpoint() {
541  // use debugger to set breakpoint here
542}
543
544////////////////////////////////////////////////////////////////////////////////
545// signal support
546
547debug_only(static bool signal_sets_initialized = false);
548static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
549
550bool os::Bsd::is_sig_ignored(int sig) {
551      struct sigaction oact;
552      sigaction(sig, (struct sigaction*)NULL, &oact);
553      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
554                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
555      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
556           return true;
557      else
558           return false;
559}
560
561void os::Bsd::signal_sets_init() {
562  // Should also have an assertion stating we are still single-threaded.
563  assert(!signal_sets_initialized, "Already initialized");
564  // Fill in signals that are necessarily unblocked for all threads in
565  // the VM. Currently, we unblock the following signals:
566  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
567  //                         by -Xrs (=ReduceSignalUsage));
568  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
569  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
570  // the dispositions or masks wrt these signals.
571  // Programs embedding the VM that want to use the above signals for their
572  // own purposes must, at this time, use the "-Xrs" option to prevent
573  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
574  // (See bug 4345157, and other related bugs).
575  // In reality, though, unblocking these signals is really a nop, since
576  // these signals are not blocked by default.
577  sigemptyset(&unblocked_sigs);
578  sigemptyset(&allowdebug_blocked_sigs);
579  sigaddset(&unblocked_sigs, SIGILL);
580  sigaddset(&unblocked_sigs, SIGSEGV);
581  sigaddset(&unblocked_sigs, SIGBUS);
582  sigaddset(&unblocked_sigs, SIGFPE);
583  sigaddset(&unblocked_sigs, SR_signum);
584
585  if (!ReduceSignalUsage) {
586   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
587      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
588      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
589   }
590   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
591      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
592      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
593   }
594   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
595      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
596      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
597   }
598  }
599  // Fill in signals that are blocked by all but the VM thread.
600  sigemptyset(&vm_sigs);
601  if (!ReduceSignalUsage)
602    sigaddset(&vm_sigs, BREAK_SIGNAL);
603  debug_only(signal_sets_initialized = true);
604
605}
606
607// These are signals that are unblocked while a thread is running Java.
608// (For some reason, they get blocked by default.)
609sigset_t* os::Bsd::unblocked_signals() {
610  assert(signal_sets_initialized, "Not initialized");
611  return &unblocked_sigs;
612}
613
614// These are the signals that are blocked while a (non-VM) thread is
615// running Java. Only the VM thread handles these signals.
616sigset_t* os::Bsd::vm_signals() {
617  assert(signal_sets_initialized, "Not initialized");
618  return &vm_sigs;
619}
620
621// These are signals that are blocked during cond_wait to allow debugger in
622sigset_t* os::Bsd::allowdebug_blocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &allowdebug_blocked_sigs;
625}
626
627void os::Bsd::hotspot_sigmask(Thread* thread) {
628
629  //Save caller's signal mask before setting VM signal mask
630  sigset_t caller_sigmask;
631  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
632
633  OSThread* osthread = thread->osthread();
634  osthread->set_caller_sigmask(caller_sigmask);
635
636  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
637
638  if (!ReduceSignalUsage) {
639    if (thread->is_VM_thread()) {
640      // Only the VM thread handles BREAK_SIGNAL ...
641      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
642    } else {
643      // ... all other threads block BREAK_SIGNAL
644      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
645    }
646  }
647}
648
649
650//////////////////////////////////////////////////////////////////////////////
651// create new thread
652
653// check if it's safe to start a new thread
654static bool _thread_safety_check(Thread* thread) {
655  return true;
656}
657
658#ifdef __APPLE__
659// library handle for calling objc_registerThreadWithCollector()
660// without static linking to the libobjc library
661#define OBJC_LIB "/usr/lib/libobjc.dylib"
662#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
663typedef void (*objc_registerThreadWithCollector_t)();
664extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
665objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
666#endif
667
668#ifdef __APPLE__
669static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
670  // Additional thread_id used to correlate threads in SA
671  thread_identifier_info_data_t     m_ident_info;
672  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
673
674  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
675              (thread_info_t) &m_ident_info, &count);
676
677  return m_ident_info.thread_id;
678}
679#endif
680
681// Thread start routine for all newly created threads
682static void *java_start(Thread *thread) {
683  // Try to randomize the cache line index of hot stack frames.
684  // This helps when threads of the same stack traces evict each other's
685  // cache lines. The threads can be either from the same JVM instance, or
686  // from different JVM instances. The benefit is especially true for
687  // processors with hyperthreading technology.
688  static int counter = 0;
689  int pid = os::current_process_id();
690  alloca(((pid ^ counter++) & 7) * 128);
691
692  ThreadLocalStorage::set_thread(thread);
693
694  OSThread* osthread = thread->osthread();
695  Monitor* sync = osthread->startThread_lock();
696
697  // non floating stack BsdThreads needs extra check, see above
698  if (!_thread_safety_check(thread)) {
699    // notify parent thread
700    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
701    osthread->set_state(ZOMBIE);
702    sync->notify_all();
703    return NULL;
704  }
705
706  osthread->set_thread_id(os::Bsd::gettid());
707
708#ifdef __APPLE__
709  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
710  guarantee(unique_thread_id != 0, "unique thread id was not found");
711  osthread->set_unique_thread_id(unique_thread_id);
712#endif
713  // initialize signal mask for this thread
714  os::Bsd::hotspot_sigmask(thread);
715
716  // initialize floating point control register
717  os::Bsd::init_thread_fpu_state();
718
719#ifdef __APPLE__
720  // register thread with objc gc
721  if (objc_registerThreadWithCollectorFunction != NULL) {
722    objc_registerThreadWithCollectorFunction();
723  }
724#endif
725
726  // handshaking with parent thread
727  {
728    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
729
730    // notify parent thread
731    osthread->set_state(INITIALIZED);
732    sync->notify_all();
733
734    // wait until os::start_thread()
735    while (osthread->get_state() == INITIALIZED) {
736      sync->wait(Mutex::_no_safepoint_check_flag);
737    }
738  }
739
740  // call one more level start routine
741  thread->run();
742
743  return 0;
744}
745
746bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
747  assert(thread->osthread() == NULL, "caller responsible");
748
749  // Allocate the OSThread object
750  OSThread* osthread = new OSThread(NULL, NULL);
751  if (osthread == NULL) {
752    return false;
753  }
754
755  // set the correct thread state
756  osthread->set_thread_type(thr_type);
757
758  // Initial state is ALLOCATED but not INITIALIZED
759  osthread->set_state(ALLOCATED);
760
761  thread->set_osthread(osthread);
762
763  // init thread attributes
764  pthread_attr_t attr;
765  pthread_attr_init(&attr);
766  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
767
768  // stack size
769  if (os::Bsd::supports_variable_stack_size()) {
770    // calculate stack size if it's not specified by caller
771    if (stack_size == 0) {
772      stack_size = os::Bsd::default_stack_size(thr_type);
773
774      switch (thr_type) {
775      case os::java_thread:
776        // Java threads use ThreadStackSize which default value can be
777        // changed with the flag -Xss
778        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
779        stack_size = JavaThread::stack_size_at_create();
780        break;
781      case os::compiler_thread:
782        if (CompilerThreadStackSize > 0) {
783          stack_size = (size_t)(CompilerThreadStackSize * K);
784          break;
785        } // else fall through:
786          // use VMThreadStackSize if CompilerThreadStackSize is not defined
787      case os::vm_thread:
788      case os::pgc_thread:
789      case os::cgc_thread:
790      case os::watcher_thread:
791        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
792        break;
793      }
794    }
795
796    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
797    pthread_attr_setstacksize(&attr, stack_size);
798  } else {
799    // let pthread_create() pick the default value.
800  }
801
802  ThreadState state;
803
804  {
805    pthread_t tid;
806    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
807
808    pthread_attr_destroy(&attr);
809
810    if (ret != 0) {
811      if (PrintMiscellaneous && (Verbose || WizardMode)) {
812        perror("pthread_create()");
813      }
814      // Need to clean up stuff we've allocated so far
815      thread->set_osthread(NULL);
816      delete osthread;
817      return false;
818    }
819
820    // Store pthread info into the OSThread
821    osthread->set_pthread_id(tid);
822
823    // Wait until child thread is either initialized or aborted
824    {
825      Monitor* sync_with_child = osthread->startThread_lock();
826      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
827      while ((state = osthread->get_state()) == ALLOCATED) {
828        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
829      }
830    }
831
832  }
833
834  // Aborted due to thread limit being reached
835  if (state == ZOMBIE) {
836      thread->set_osthread(NULL);
837      delete osthread;
838      return false;
839  }
840
841  // The thread is returned suspended (in state INITIALIZED),
842  // and is started higher up in the call chain
843  assert(state == INITIALIZED, "race condition");
844  return true;
845}
846
847/////////////////////////////////////////////////////////////////////////////
848// attach existing thread
849
850// bootstrap the main thread
851bool os::create_main_thread(JavaThread* thread) {
852  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
853  return create_attached_thread(thread);
854}
855
856bool os::create_attached_thread(JavaThread* thread) {
857#ifdef ASSERT
858    thread->verify_not_published();
859#endif
860
861  // Allocate the OSThread object
862  OSThread* osthread = new OSThread(NULL, NULL);
863
864  if (osthread == NULL) {
865    return false;
866  }
867
868  osthread->set_thread_id(os::Bsd::gettid());
869
870  // Store pthread info into the OSThread
871#ifdef __APPLE__
872  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
873  guarantee(unique_thread_id != 0, "just checking");
874  osthread->set_unique_thread_id(unique_thread_id);
875#endif
876  osthread->set_pthread_id(::pthread_self());
877
878  // initialize floating point control register
879  os::Bsd::init_thread_fpu_state();
880
881  // Initial thread state is RUNNABLE
882  osthread->set_state(RUNNABLE);
883
884  thread->set_osthread(osthread);
885
886  // initialize signal mask for this thread
887  // and save the caller's signal mask
888  os::Bsd::hotspot_sigmask(thread);
889
890  return true;
891}
892
893void os::pd_start_thread(Thread* thread) {
894  OSThread * osthread = thread->osthread();
895  assert(osthread->get_state() != INITIALIZED, "just checking");
896  Monitor* sync_with_child = osthread->startThread_lock();
897  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
898  sync_with_child->notify();
899}
900
901// Free Bsd resources related to the OSThread
902void os::free_thread(OSThread* osthread) {
903  assert(osthread != NULL, "osthread not set");
904
905  if (Thread::current()->osthread() == osthread) {
906    // Restore caller's signal mask
907    sigset_t sigmask = osthread->caller_sigmask();
908    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
909   }
910
911  delete osthread;
912}
913
914//////////////////////////////////////////////////////////////////////////////
915// thread local storage
916
917int os::allocate_thread_local_storage() {
918  pthread_key_t key;
919  int rslt = pthread_key_create(&key, NULL);
920  assert(rslt == 0, "cannot allocate thread local storage");
921  return (int)key;
922}
923
924// Note: This is currently not used by VM, as we don't destroy TLS key
925// on VM exit.
926void os::free_thread_local_storage(int index) {
927  int rslt = pthread_key_delete((pthread_key_t)index);
928  assert(rslt == 0, "invalid index");
929}
930
931void os::thread_local_storage_at_put(int index, void* value) {
932  int rslt = pthread_setspecific((pthread_key_t)index, value);
933  assert(rslt == 0, "pthread_setspecific failed");
934}
935
936extern "C" Thread* get_thread() {
937  return ThreadLocalStorage::thread();
938}
939
940
941////////////////////////////////////////////////////////////////////////////////
942// time support
943
944// Time since start-up in seconds to a fine granularity.
945// Used by VMSelfDestructTimer and the MemProfiler.
946double os::elapsedTime() {
947
948  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
949}
950
951jlong os::elapsed_counter() {
952  return javaTimeNanos() - initial_time_count;
953}
954
955jlong os::elapsed_frequency() {
956  return NANOSECS_PER_SEC; // nanosecond resolution
957}
958
959bool os::supports_vtime() { return true; }
960bool os::enable_vtime()   { return false; }
961bool os::vtime_enabled()  { return false; }
962
963double os::elapsedVTime() {
964  // better than nothing, but not much
965  return elapsedTime();
966}
967
968jlong os::javaTimeMillis() {
969  timeval time;
970  int status = gettimeofday(&time, NULL);
971  assert(status != -1, "bsd error");
972  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
973}
974
975#ifndef CLOCK_MONOTONIC
976#define CLOCK_MONOTONIC (1)
977#endif
978
979#ifdef __APPLE__
980void os::Bsd::clock_init() {
981        // XXXDARWIN: Investigate replacement monotonic clock
982}
983#else
984void os::Bsd::clock_init() {
985  struct timespec res;
986  struct timespec tp;
987  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
988      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
989    // yes, monotonic clock is supported
990    _clock_gettime = ::clock_gettime;
991  }
992}
993#endif
994
995
996jlong os::javaTimeNanos() {
997  if (Bsd::supports_monotonic_clock()) {
998    struct timespec tp;
999    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1000    assert(status == 0, "gettime error");
1001    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1002    return result;
1003  } else {
1004    timeval time;
1005    int status = gettimeofday(&time, NULL);
1006    assert(status != -1, "bsd error");
1007    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1008    return 1000 * usecs;
1009  }
1010}
1011
1012void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1013  if (Bsd::supports_monotonic_clock()) {
1014    info_ptr->max_value = ALL_64_BITS;
1015
1016    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1017    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1018    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1019  } else {
1020    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1021    info_ptr->max_value = ALL_64_BITS;
1022
1023    // gettimeofday is a real time clock so it skips
1024    info_ptr->may_skip_backward = true;
1025    info_ptr->may_skip_forward = true;
1026  }
1027
1028  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1029}
1030
1031// Return the real, user, and system times in seconds from an
1032// arbitrary fixed point in the past.
1033bool os::getTimesSecs(double* process_real_time,
1034                      double* process_user_time,
1035                      double* process_system_time) {
1036  struct tms ticks;
1037  clock_t real_ticks = times(&ticks);
1038
1039  if (real_ticks == (clock_t) (-1)) {
1040    return false;
1041  } else {
1042    double ticks_per_second = (double) clock_tics_per_sec;
1043    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1044    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1045    *process_real_time = ((double) real_ticks) / ticks_per_second;
1046
1047    return true;
1048  }
1049}
1050
1051
1052char * os::local_time_string(char *buf, size_t buflen) {
1053  struct tm t;
1054  time_t long_time;
1055  time(&long_time);
1056  localtime_r(&long_time, &t);
1057  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1058               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1059               t.tm_hour, t.tm_min, t.tm_sec);
1060  return buf;
1061}
1062
1063struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1064  return localtime_r(clock, res);
1065}
1066
1067////////////////////////////////////////////////////////////////////////////////
1068// runtime exit support
1069
1070// Note: os::shutdown() might be called very early during initialization, or
1071// called from signal handler. Before adding something to os::shutdown(), make
1072// sure it is async-safe and can handle partially initialized VM.
1073void os::shutdown() {
1074
1075  // allow PerfMemory to attempt cleanup of any persistent resources
1076  perfMemory_exit();
1077
1078  // needs to remove object in file system
1079  AttachListener::abort();
1080
1081  // flush buffered output, finish log files
1082  ostream_abort();
1083
1084  // Check for abort hook
1085  abort_hook_t abort_hook = Arguments::abort_hook();
1086  if (abort_hook != NULL) {
1087    abort_hook();
1088  }
1089
1090}
1091
1092// Note: os::abort() might be called very early during initialization, or
1093// called from signal handler. Before adding something to os::abort(), make
1094// sure it is async-safe and can handle partially initialized VM.
1095void os::abort(bool dump_core) {
1096  os::shutdown();
1097  if (dump_core) {
1098#ifndef PRODUCT
1099    fdStream out(defaultStream::output_fd());
1100    out.print_raw("Current thread is ");
1101    char buf[16];
1102    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1103    out.print_raw_cr(buf);
1104    out.print_raw_cr("Dumping core ...");
1105#endif
1106    ::abort(); // dump core
1107  }
1108
1109  ::exit(1);
1110}
1111
1112// Die immediately, no exit hook, no abort hook, no cleanup.
1113void os::die() {
1114  // _exit() on BsdThreads only kills current thread
1115  ::abort();
1116}
1117
1118// unused on bsd for now.
1119void os::set_error_file(const char *logfile) {}
1120
1121
1122// This method is a copy of JDK's sysGetLastErrorString
1123// from src/solaris/hpi/src/system_md.c
1124
1125size_t os::lasterror(char *buf, size_t len) {
1126
1127  if (errno == 0)  return 0;
1128
1129  const char *s = ::strerror(errno);
1130  size_t n = ::strlen(s);
1131  if (n >= len) {
1132    n = len - 1;
1133  }
1134  ::strncpy(buf, s, n);
1135  buf[n] = '\0';
1136  return n;
1137}
1138
1139// Information of current thread in variety of formats
1140pid_t os::Bsd::gettid() {
1141  int retval = -1;
1142
1143#ifdef __APPLE__ //XNU kernel
1144  // despite the fact mach port is actually not a thread id use it
1145  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1146  retval = ::pthread_mach_thread_np(::pthread_self());
1147  guarantee(retval != 0, "just checking");
1148  return retval;
1149
1150#elif __FreeBSD__
1151  retval = syscall(SYS_thr_self);
1152#elif __OpenBSD__
1153  retval = syscall(SYS_getthrid);
1154#elif __NetBSD__
1155  retval = (pid_t) syscall(SYS__lwp_self);
1156#endif
1157
1158  if (retval == -1) {
1159    return getpid();
1160  }
1161}
1162
1163intx os::current_thread_id() {
1164#ifdef __APPLE__
1165  return (intx)::pthread_mach_thread_np(::pthread_self());
1166#else
1167  return (intx)::pthread_self();
1168#endif
1169}
1170
1171int os::current_process_id() {
1172
1173  // Under the old bsd thread library, bsd gives each thread
1174  // its own process id. Because of this each thread will return
1175  // a different pid if this method were to return the result
1176  // of getpid(2). Bsd provides no api that returns the pid
1177  // of the launcher thread for the vm. This implementation
1178  // returns a unique pid, the pid of the launcher thread
1179  // that starts the vm 'process'.
1180
1181  // Under the NPTL, getpid() returns the same pid as the
1182  // launcher thread rather than a unique pid per thread.
1183  // Use gettid() if you want the old pre NPTL behaviour.
1184
1185  // if you are looking for the result of a call to getpid() that
1186  // returns a unique pid for the calling thread, then look at the
1187  // OSThread::thread_id() method in osThread_bsd.hpp file
1188
1189  return (int)(_initial_pid ? _initial_pid : getpid());
1190}
1191
1192// DLL functions
1193
1194#define JNI_LIB_PREFIX "lib"
1195#ifdef __APPLE__
1196#define JNI_LIB_SUFFIX ".dylib"
1197#else
1198#define JNI_LIB_SUFFIX ".so"
1199#endif
1200
1201const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1202
1203// This must be hard coded because it's the system's temporary
1204// directory not the java application's temp directory, ala java.io.tmpdir.
1205#ifdef __APPLE__
1206// macosx has a secure per-user temporary directory
1207char temp_path_storage[PATH_MAX];
1208const char* os::get_temp_directory() {
1209  static char *temp_path = NULL;
1210  if (temp_path == NULL) {
1211    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1212    if (pathSize == 0 || pathSize > PATH_MAX) {
1213      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1214    }
1215    temp_path = temp_path_storage;
1216  }
1217  return temp_path;
1218}
1219#else /* __APPLE__ */
1220const char* os::get_temp_directory() { return "/tmp"; }
1221#endif /* __APPLE__ */
1222
1223static bool file_exists(const char* filename) {
1224  struct stat statbuf;
1225  if (filename == NULL || strlen(filename) == 0) {
1226    return false;
1227  }
1228  return os::stat(filename, &statbuf) == 0;
1229}
1230
1231bool os::dll_build_name(char* buffer, size_t buflen,
1232                        const char* pname, const char* fname) {
1233  bool retval = false;
1234  // Copied from libhpi
1235  const size_t pnamelen = pname ? strlen(pname) : 0;
1236
1237  // Return error on buffer overflow.
1238  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1239    return retval;
1240  }
1241
1242  if (pnamelen == 0) {
1243    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1244    retval = true;
1245  } else if (strchr(pname, *os::path_separator()) != NULL) {
1246    int n;
1247    char** pelements = split_path(pname, &n);
1248    if (pelements == NULL) {
1249      return false;
1250    }
1251    for (int i = 0 ; i < n ; i++) {
1252      // Really shouldn't be NULL, but check can't hurt
1253      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1254        continue; // skip the empty path values
1255      }
1256      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1257          pelements[i], fname);
1258      if (file_exists(buffer)) {
1259        retval = true;
1260        break;
1261      }
1262    }
1263    // release the storage
1264    for (int i = 0 ; i < n ; i++) {
1265      if (pelements[i] != NULL) {
1266        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1267      }
1268    }
1269    if (pelements != NULL) {
1270      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1271    }
1272  } else {
1273    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1274    retval = true;
1275  }
1276  return retval;
1277}
1278
1279// check if addr is inside libjvm.so
1280bool os::address_is_in_vm(address addr) {
1281  static address libjvm_base_addr;
1282  Dl_info dlinfo;
1283
1284  if (libjvm_base_addr == NULL) {
1285    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1286      libjvm_base_addr = (address)dlinfo.dli_fbase;
1287    }
1288    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1289  }
1290
1291  if (dladdr((void *)addr, &dlinfo) != 0) {
1292    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1293  }
1294
1295  return false;
1296}
1297
1298
1299#define MACH_MAXSYMLEN 256
1300
1301bool os::dll_address_to_function_name(address addr, char *buf,
1302                                      int buflen, int *offset) {
1303  // buf is not optional, but offset is optional
1304  assert(buf != NULL, "sanity check");
1305
1306  Dl_info dlinfo;
1307  char localbuf[MACH_MAXSYMLEN];
1308
1309  if (dladdr((void*)addr, &dlinfo) != 0) {
1310    // see if we have a matching symbol
1311    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1312      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1313        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1314      }
1315      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1316      return true;
1317    }
1318    // no matching symbol so try for just file info
1319    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1320      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1321                          buf, buflen, offset, dlinfo.dli_fname)) {
1322         return true;
1323      }
1324    }
1325
1326    // Handle non-dynamic manually:
1327    if (dlinfo.dli_fbase != NULL &&
1328        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1329                        dlinfo.dli_fbase)) {
1330      if (!Decoder::demangle(localbuf, buf, buflen)) {
1331        jio_snprintf(buf, buflen, "%s", localbuf);
1332      }
1333      return true;
1334    }
1335  }
1336  buf[0] = '\0';
1337  if (offset != NULL) *offset = -1;
1338  return false;
1339}
1340
1341// ported from solaris version
1342bool os::dll_address_to_library_name(address addr, char* buf,
1343                                     int buflen, int* offset) {
1344  // buf is not optional, but offset is optional
1345  assert(buf != NULL, "sanity check");
1346
1347  Dl_info dlinfo;
1348
1349  if (dladdr((void*)addr, &dlinfo) != 0) {
1350    if (dlinfo.dli_fname != NULL) {
1351      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1352    }
1353    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1354      *offset = addr - (address)dlinfo.dli_fbase;
1355    }
1356    return true;
1357  }
1358
1359  buf[0] = '\0';
1360  if (offset) *offset = -1;
1361  return false;
1362}
1363
1364// Loads .dll/.so and
1365// in case of error it checks if .dll/.so was built for the
1366// same architecture as Hotspot is running on
1367
1368#ifdef __APPLE__
1369void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1370  void * result= ::dlopen(filename, RTLD_LAZY);
1371  if (result != NULL) {
1372    // Successful loading
1373    return result;
1374  }
1375
1376  // Read system error message into ebuf
1377  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1378  ebuf[ebuflen-1]='\0';
1379
1380  return NULL;
1381}
1382#else
1383void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1384{
1385  void * result= ::dlopen(filename, RTLD_LAZY);
1386  if (result != NULL) {
1387    // Successful loading
1388    return result;
1389  }
1390
1391  Elf32_Ehdr elf_head;
1392
1393  // Read system error message into ebuf
1394  // It may or may not be overwritten below
1395  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1396  ebuf[ebuflen-1]='\0';
1397  int diag_msg_max_length=ebuflen-strlen(ebuf);
1398  char* diag_msg_buf=ebuf+strlen(ebuf);
1399
1400  if (diag_msg_max_length==0) {
1401    // No more space in ebuf for additional diagnostics message
1402    return NULL;
1403  }
1404
1405
1406  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1407
1408  if (file_descriptor < 0) {
1409    // Can't open library, report dlerror() message
1410    return NULL;
1411  }
1412
1413  bool failed_to_read_elf_head=
1414    (sizeof(elf_head)!=
1415        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1416
1417  ::close(file_descriptor);
1418  if (failed_to_read_elf_head) {
1419    // file i/o error - report dlerror() msg
1420    return NULL;
1421  }
1422
1423  typedef struct {
1424    Elf32_Half  code;         // Actual value as defined in elf.h
1425    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1426    char        elf_class;    // 32 or 64 bit
1427    char        endianess;    // MSB or LSB
1428    char*       name;         // String representation
1429  } arch_t;
1430
1431  #ifndef EM_486
1432  #define EM_486          6               /* Intel 80486 */
1433  #endif
1434
1435  #ifndef EM_MIPS_RS3_LE
1436  #define EM_MIPS_RS3_LE  10              /* MIPS */
1437  #endif
1438
1439  #ifndef EM_PPC64
1440  #define EM_PPC64        21              /* PowerPC64 */
1441  #endif
1442
1443  #ifndef EM_S390
1444  #define EM_S390         22              /* IBM System/390 */
1445  #endif
1446
1447  #ifndef EM_IA_64
1448  #define EM_IA_64        50              /* HP/Intel IA-64 */
1449  #endif
1450
1451  #ifndef EM_X86_64
1452  #define EM_X86_64       62              /* AMD x86-64 */
1453  #endif
1454
1455  static const arch_t arch_array[]={
1456    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1457    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1458    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1459    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1460    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1461    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1462    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1463    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1464    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1465    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1466    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1467    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1468    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1469    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1470    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1471    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1472  };
1473
1474  #if  (defined IA32)
1475    static  Elf32_Half running_arch_code=EM_386;
1476  #elif   (defined AMD64)
1477    static  Elf32_Half running_arch_code=EM_X86_64;
1478  #elif  (defined IA64)
1479    static  Elf32_Half running_arch_code=EM_IA_64;
1480  #elif  (defined __sparc) && (defined _LP64)
1481    static  Elf32_Half running_arch_code=EM_SPARCV9;
1482  #elif  (defined __sparc) && (!defined _LP64)
1483    static  Elf32_Half running_arch_code=EM_SPARC;
1484  #elif  (defined __powerpc64__)
1485    static  Elf32_Half running_arch_code=EM_PPC64;
1486  #elif  (defined __powerpc__)
1487    static  Elf32_Half running_arch_code=EM_PPC;
1488  #elif  (defined ARM)
1489    static  Elf32_Half running_arch_code=EM_ARM;
1490  #elif  (defined S390)
1491    static  Elf32_Half running_arch_code=EM_S390;
1492  #elif  (defined ALPHA)
1493    static  Elf32_Half running_arch_code=EM_ALPHA;
1494  #elif  (defined MIPSEL)
1495    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1496  #elif  (defined PARISC)
1497    static  Elf32_Half running_arch_code=EM_PARISC;
1498  #elif  (defined MIPS)
1499    static  Elf32_Half running_arch_code=EM_MIPS;
1500  #elif  (defined M68K)
1501    static  Elf32_Half running_arch_code=EM_68K;
1502  #else
1503    #error Method os::dll_load requires that one of following is defined:\
1504         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1505  #endif
1506
1507  // Identify compatability class for VM's architecture and library's architecture
1508  // Obtain string descriptions for architectures
1509
1510  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1511  int running_arch_index=-1;
1512
1513  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1514    if (running_arch_code == arch_array[i].code) {
1515      running_arch_index    = i;
1516    }
1517    if (lib_arch.code == arch_array[i].code) {
1518      lib_arch.compat_class = arch_array[i].compat_class;
1519      lib_arch.name         = arch_array[i].name;
1520    }
1521  }
1522
1523  assert(running_arch_index != -1,
1524    "Didn't find running architecture code (running_arch_code) in arch_array");
1525  if (running_arch_index == -1) {
1526    // Even though running architecture detection failed
1527    // we may still continue with reporting dlerror() message
1528    return NULL;
1529  }
1530
1531  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1532    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1533    return NULL;
1534  }
1535
1536#ifndef S390
1537  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1538    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1539    return NULL;
1540  }
1541#endif // !S390
1542
1543  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1544    if ( lib_arch.name!=NULL ) {
1545      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1546        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1547        lib_arch.name, arch_array[running_arch_index].name);
1548    } else {
1549      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1550      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1551        lib_arch.code,
1552        arch_array[running_arch_index].name);
1553    }
1554  }
1555
1556  return NULL;
1557}
1558#endif /* !__APPLE__ */
1559
1560void* os::get_default_process_handle() {
1561#ifdef __APPLE__
1562  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1563  // to avoid finding unexpected symbols on second (or later)
1564  // loads of a library.
1565  return (void*)::dlopen(NULL, RTLD_FIRST);
1566#else
1567  return (void*)::dlopen(NULL, RTLD_LAZY);
1568#endif
1569}
1570
1571// XXX: Do we need a lock around this as per Linux?
1572void* os::dll_lookup(void* handle, const char* name) {
1573  return dlsym(handle, name);
1574}
1575
1576
1577static bool _print_ascii_file(const char* filename, outputStream* st) {
1578  int fd = ::open(filename, O_RDONLY);
1579  if (fd == -1) {
1580     return false;
1581  }
1582
1583  char buf[32];
1584  int bytes;
1585  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1586    st->print_raw(buf, bytes);
1587  }
1588
1589  ::close(fd);
1590
1591  return true;
1592}
1593
1594void os::print_dll_info(outputStream *st) {
1595  st->print_cr("Dynamic libraries:");
1596#ifdef RTLD_DI_LINKMAP
1597  Dl_info dli;
1598  void *handle;
1599  Link_map *map;
1600  Link_map *p;
1601
1602  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1603      dli.dli_fname == NULL) {
1604    st->print_cr("Error: Cannot print dynamic libraries.");
1605    return;
1606  }
1607  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1608  if (handle == NULL) {
1609    st->print_cr("Error: Cannot print dynamic libraries.");
1610    return;
1611  }
1612  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1613  if (map == NULL) {
1614    st->print_cr("Error: Cannot print dynamic libraries.");
1615    return;
1616  }
1617
1618  while (map->l_prev != NULL)
1619    map = map->l_prev;
1620
1621  while (map != NULL) {
1622    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1623    map = map->l_next;
1624  }
1625
1626  dlclose(handle);
1627#elif defined(__APPLE__)
1628  uint32_t count;
1629  uint32_t i;
1630
1631  count = _dyld_image_count();
1632  for (i = 1; i < count; i++) {
1633    const char *name = _dyld_get_image_name(i);
1634    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1635    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1636  }
1637#else
1638  st->print_cr("Error: Cannot print dynamic libraries.");
1639#endif
1640}
1641
1642void os::print_os_info_brief(outputStream* st) {
1643  st->print("Bsd");
1644
1645  os::Posix::print_uname_info(st);
1646}
1647
1648void os::print_os_info(outputStream* st) {
1649  st->print("OS:");
1650  st->print("Bsd");
1651
1652  os::Posix::print_uname_info(st);
1653
1654  os::Posix::print_rlimit_info(st);
1655
1656  os::Posix::print_load_average(st);
1657}
1658
1659void os::pd_print_cpu_info(outputStream* st) {
1660  // Nothing to do for now.
1661}
1662
1663void os::print_memory_info(outputStream* st) {
1664
1665  st->print("Memory:");
1666  st->print(" %dk page", os::vm_page_size()>>10);
1667
1668  st->print(", physical " UINT64_FORMAT "k",
1669            os::physical_memory() >> 10);
1670  st->print("(" UINT64_FORMAT "k free)",
1671            os::available_memory() >> 10);
1672  st->cr();
1673
1674  // meminfo
1675  st->print("\n/proc/meminfo:\n");
1676  _print_ascii_file("/proc/meminfo", st);
1677  st->cr();
1678}
1679
1680// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1681// but they're the same for all the bsd arch that we support
1682// and they're the same for solaris but there's no common place to put this.
1683const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1684                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1685                          "ILL_COPROC", "ILL_BADSTK" };
1686
1687const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1688                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1689                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1690
1691const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1692
1693const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1694
1695void os::print_siginfo(outputStream* st, void* siginfo) {
1696  st->print("siginfo:");
1697
1698  const int buflen = 100;
1699  char buf[buflen];
1700  siginfo_t *si = (siginfo_t*)siginfo;
1701  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1702  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1703    st->print("si_errno=%s", buf);
1704  } else {
1705    st->print("si_errno=%d", si->si_errno);
1706  }
1707  const int c = si->si_code;
1708  assert(c > 0, "unexpected si_code");
1709  switch (si->si_signo) {
1710  case SIGILL:
1711    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1712    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1713    break;
1714  case SIGFPE:
1715    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1716    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1717    break;
1718  case SIGSEGV:
1719    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1720    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1721    break;
1722  case SIGBUS:
1723    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1724    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1725    break;
1726  default:
1727    st->print(", si_code=%d", si->si_code);
1728    // no si_addr
1729  }
1730
1731  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1732      UseSharedSpaces) {
1733    FileMapInfo* mapinfo = FileMapInfo::current_info();
1734    if (mapinfo->is_in_shared_space(si->si_addr)) {
1735      st->print("\n\nError accessing class data sharing archive."   \
1736                " Mapped file inaccessible during execution, "      \
1737                " possible disk/network problem.");
1738    }
1739  }
1740  st->cr();
1741}
1742
1743
1744static void print_signal_handler(outputStream* st, int sig,
1745                                 char* buf, size_t buflen);
1746
1747void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1748  st->print_cr("Signal Handlers:");
1749  print_signal_handler(st, SIGSEGV, buf, buflen);
1750  print_signal_handler(st, SIGBUS , buf, buflen);
1751  print_signal_handler(st, SIGFPE , buf, buflen);
1752  print_signal_handler(st, SIGPIPE, buf, buflen);
1753  print_signal_handler(st, SIGXFSZ, buf, buflen);
1754  print_signal_handler(st, SIGILL , buf, buflen);
1755  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1756  print_signal_handler(st, SR_signum, buf, buflen);
1757  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1758  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1759  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1760  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1761}
1762
1763static char saved_jvm_path[MAXPATHLEN] = {0};
1764
1765// Find the full path to the current module, libjvm
1766void os::jvm_path(char *buf, jint buflen) {
1767  // Error checking.
1768  if (buflen < MAXPATHLEN) {
1769    assert(false, "must use a large-enough buffer");
1770    buf[0] = '\0';
1771    return;
1772  }
1773  // Lazy resolve the path to current module.
1774  if (saved_jvm_path[0] != 0) {
1775    strcpy(buf, saved_jvm_path);
1776    return;
1777  }
1778
1779  char dli_fname[MAXPATHLEN];
1780  bool ret = dll_address_to_library_name(
1781                CAST_FROM_FN_PTR(address, os::jvm_path),
1782                dli_fname, sizeof(dli_fname), NULL);
1783  assert(ret, "cannot locate libjvm");
1784  char *rp = NULL;
1785  if (ret && dli_fname[0] != '\0') {
1786    rp = realpath(dli_fname, buf);
1787  }
1788  if (rp == NULL)
1789    return;
1790
1791  if (Arguments::sun_java_launcher_is_altjvm()) {
1792    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1793    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1794    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1795    // appears at the right place in the string, then assume we are
1796    // installed in a JDK and we're done. Otherwise, check for a
1797    // JAVA_HOME environment variable and construct a path to the JVM
1798    // being overridden.
1799
1800    const char *p = buf + strlen(buf) - 1;
1801    for (int count = 0; p > buf && count < 5; ++count) {
1802      for (--p; p > buf && *p != '/'; --p)
1803        /* empty */ ;
1804    }
1805
1806    if (strncmp(p, "/jre/lib/", 9) != 0) {
1807      // Look for JAVA_HOME in the environment.
1808      char* java_home_var = ::getenv("JAVA_HOME");
1809      if (java_home_var != NULL && java_home_var[0] != 0) {
1810        char* jrelib_p;
1811        int len;
1812
1813        // Check the current module name "libjvm"
1814        p = strrchr(buf, '/');
1815        assert(strstr(p, "/libjvm") == p, "invalid library name");
1816
1817        rp = realpath(java_home_var, buf);
1818        if (rp == NULL)
1819          return;
1820
1821        // determine if this is a legacy image or modules image
1822        // modules image doesn't have "jre" subdirectory
1823        len = strlen(buf);
1824        jrelib_p = buf + len;
1825
1826        // Add the appropriate library subdir
1827        snprintf(jrelib_p, buflen-len, "/jre/lib");
1828        if (0 != access(buf, F_OK)) {
1829          snprintf(jrelib_p, buflen-len, "/lib");
1830        }
1831
1832        // Add the appropriate client or server subdir
1833        len = strlen(buf);
1834        jrelib_p = buf + len;
1835        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1836        if (0 != access(buf, F_OK)) {
1837          snprintf(jrelib_p, buflen-len, "");
1838        }
1839
1840        // If the path exists within JAVA_HOME, add the JVM library name
1841        // to complete the path to JVM being overridden.  Otherwise fallback
1842        // to the path to the current library.
1843        if (0 == access(buf, F_OK)) {
1844          // Use current module name "libjvm"
1845          len = strlen(buf);
1846          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1847        } else {
1848          // Fall back to path of current library
1849          rp = realpath(dli_fname, buf);
1850          if (rp == NULL)
1851            return;
1852        }
1853      }
1854    }
1855  }
1856
1857  strcpy(saved_jvm_path, buf);
1858}
1859
1860void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1861  // no prefix required, not even "_"
1862}
1863
1864void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1865  // no suffix required
1866}
1867
1868////////////////////////////////////////////////////////////////////////////////
1869// sun.misc.Signal support
1870
1871static volatile jint sigint_count = 0;
1872
1873static void
1874UserHandler(int sig, void *siginfo, void *context) {
1875  // 4511530 - sem_post is serialized and handled by the manager thread. When
1876  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1877  // don't want to flood the manager thread with sem_post requests.
1878  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1879      return;
1880
1881  // Ctrl-C is pressed during error reporting, likely because the error
1882  // handler fails to abort. Let VM die immediately.
1883  if (sig == SIGINT && is_error_reported()) {
1884     os::die();
1885  }
1886
1887  os::signal_notify(sig);
1888}
1889
1890void* os::user_handler() {
1891  return CAST_FROM_FN_PTR(void*, UserHandler);
1892}
1893
1894extern "C" {
1895  typedef void (*sa_handler_t)(int);
1896  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1897}
1898
1899void* os::signal(int signal_number, void* handler) {
1900  struct sigaction sigAct, oldSigAct;
1901
1902  sigfillset(&(sigAct.sa_mask));
1903  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1904  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1905
1906  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1907    // -1 means registration failed
1908    return (void *)-1;
1909  }
1910
1911  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1912}
1913
1914void os::signal_raise(int signal_number) {
1915  ::raise(signal_number);
1916}
1917
1918/*
1919 * The following code is moved from os.cpp for making this
1920 * code platform specific, which it is by its very nature.
1921 */
1922
1923// Will be modified when max signal is changed to be dynamic
1924int os::sigexitnum_pd() {
1925  return NSIG;
1926}
1927
1928// a counter for each possible signal value
1929static volatile jint pending_signals[NSIG+1] = { 0 };
1930
1931// Bsd(POSIX) specific hand shaking semaphore.
1932#ifdef __APPLE__
1933typedef semaphore_t os_semaphore_t;
1934#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1935#define SEM_WAIT(sem)           semaphore_wait(sem)
1936#define SEM_POST(sem)           semaphore_signal(sem)
1937#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1938#else
1939typedef sem_t os_semaphore_t;
1940#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1941#define SEM_WAIT(sem)           sem_wait(&sem)
1942#define SEM_POST(sem)           sem_post(&sem)
1943#define SEM_DESTROY(sem)        sem_destroy(&sem)
1944#endif
1945
1946class Semaphore : public StackObj {
1947  public:
1948    Semaphore();
1949    ~Semaphore();
1950    void signal();
1951    void wait();
1952    bool trywait();
1953    bool timedwait(unsigned int sec, int nsec);
1954  private:
1955    jlong currenttime() const;
1956    os_semaphore_t _semaphore;
1957};
1958
1959Semaphore::Semaphore() : _semaphore(0) {
1960  SEM_INIT(_semaphore, 0);
1961}
1962
1963Semaphore::~Semaphore() {
1964  SEM_DESTROY(_semaphore);
1965}
1966
1967void Semaphore::signal() {
1968  SEM_POST(_semaphore);
1969}
1970
1971void Semaphore::wait() {
1972  SEM_WAIT(_semaphore);
1973}
1974
1975jlong Semaphore::currenttime() const {
1976    struct timeval tv;
1977    gettimeofday(&tv, NULL);
1978    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1979}
1980
1981#ifdef __APPLE__
1982bool Semaphore::trywait() {
1983  return timedwait(0, 0);
1984}
1985
1986bool Semaphore::timedwait(unsigned int sec, int nsec) {
1987  kern_return_t kr = KERN_ABORTED;
1988  mach_timespec_t waitspec;
1989  waitspec.tv_sec = sec;
1990  waitspec.tv_nsec = nsec;
1991
1992  jlong starttime = currenttime();
1993
1994  kr = semaphore_timedwait(_semaphore, waitspec);
1995  while (kr == KERN_ABORTED) {
1996    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1997
1998    jlong current = currenttime();
1999    jlong passedtime = current - starttime;
2000
2001    if (passedtime >= totalwait) {
2002      waitspec.tv_sec = 0;
2003      waitspec.tv_nsec = 0;
2004    } else {
2005      jlong waittime = totalwait - (current - starttime);
2006      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2007      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2008    }
2009
2010    kr = semaphore_timedwait(_semaphore, waitspec);
2011  }
2012
2013  return kr == KERN_SUCCESS;
2014}
2015
2016#else
2017
2018bool Semaphore::trywait() {
2019  return sem_trywait(&_semaphore) == 0;
2020}
2021
2022bool Semaphore::timedwait(unsigned int sec, int nsec) {
2023  struct timespec ts;
2024  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2025
2026  while (1) {
2027    int result = sem_timedwait(&_semaphore, &ts);
2028    if (result == 0) {
2029      return true;
2030    } else if (errno == EINTR) {
2031      continue;
2032    } else if (errno == ETIMEDOUT) {
2033      return false;
2034    } else {
2035      return false;
2036    }
2037  }
2038}
2039
2040#endif // __APPLE__
2041
2042static os_semaphore_t sig_sem;
2043static Semaphore sr_semaphore;
2044
2045void os::signal_init_pd() {
2046  // Initialize signal structures
2047  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2048
2049  // Initialize signal semaphore
2050  ::SEM_INIT(sig_sem, 0);
2051}
2052
2053void os::signal_notify(int sig) {
2054  Atomic::inc(&pending_signals[sig]);
2055  ::SEM_POST(sig_sem);
2056}
2057
2058static int check_pending_signals(bool wait) {
2059  Atomic::store(0, &sigint_count);
2060  for (;;) {
2061    for (int i = 0; i < NSIG + 1; i++) {
2062      jint n = pending_signals[i];
2063      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2064        return i;
2065      }
2066    }
2067    if (!wait) {
2068      return -1;
2069    }
2070    JavaThread *thread = JavaThread::current();
2071    ThreadBlockInVM tbivm(thread);
2072
2073    bool threadIsSuspended;
2074    do {
2075      thread->set_suspend_equivalent();
2076      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2077      ::SEM_WAIT(sig_sem);
2078
2079      // were we externally suspended while we were waiting?
2080      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2081      if (threadIsSuspended) {
2082        //
2083        // The semaphore has been incremented, but while we were waiting
2084        // another thread suspended us. We don't want to continue running
2085        // while suspended because that would surprise the thread that
2086        // suspended us.
2087        //
2088        ::SEM_POST(sig_sem);
2089
2090        thread->java_suspend_self();
2091      }
2092    } while (threadIsSuspended);
2093  }
2094}
2095
2096int os::signal_lookup() {
2097  return check_pending_signals(false);
2098}
2099
2100int os::signal_wait() {
2101  return check_pending_signals(true);
2102}
2103
2104////////////////////////////////////////////////////////////////////////////////
2105// Virtual Memory
2106
2107int os::vm_page_size() {
2108  // Seems redundant as all get out
2109  assert(os::Bsd::page_size() != -1, "must call os::init");
2110  return os::Bsd::page_size();
2111}
2112
2113// Solaris allocates memory by pages.
2114int os::vm_allocation_granularity() {
2115  assert(os::Bsd::page_size() != -1, "must call os::init");
2116  return os::Bsd::page_size();
2117}
2118
2119// Rationale behind this function:
2120//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2121//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2122//  samples for JITted code. Here we create private executable mapping over the code cache
2123//  and then we can use standard (well, almost, as mapping can change) way to provide
2124//  info for the reporting script by storing timestamp and location of symbol
2125void bsd_wrap_code(char* base, size_t size) {
2126  static volatile jint cnt = 0;
2127
2128  if (!UseOprofile) {
2129    return;
2130  }
2131
2132  char buf[PATH_MAX + 1];
2133  int num = Atomic::add(1, &cnt);
2134
2135  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2136           os::get_temp_directory(), os::current_process_id(), num);
2137  unlink(buf);
2138
2139  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2140
2141  if (fd != -1) {
2142    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2143    if (rv != (off_t)-1) {
2144      if (::write(fd, "", 1) == 1) {
2145        mmap(base, size,
2146             PROT_READ|PROT_WRITE|PROT_EXEC,
2147             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2148      }
2149    }
2150    ::close(fd);
2151    unlink(buf);
2152  }
2153}
2154
2155static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2156                                    int err) {
2157  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2158          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2159          strerror(err), err);
2160}
2161
2162// NOTE: Bsd kernel does not really reserve the pages for us.
2163//       All it does is to check if there are enough free pages
2164//       left at the time of mmap(). This could be a potential
2165//       problem.
2166bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2167  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2168#ifdef __OpenBSD__
2169  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2170  if (::mprotect(addr, size, prot) == 0) {
2171    return true;
2172  }
2173#else
2174  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2175                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2176  if (res != (uintptr_t) MAP_FAILED) {
2177    return true;
2178  }
2179#endif
2180
2181  // Warn about any commit errors we see in non-product builds just
2182  // in case mmap() doesn't work as described on the man page.
2183  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2184
2185  return false;
2186}
2187
2188bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2189                       bool exec) {
2190  // alignment_hint is ignored on this OS
2191  return pd_commit_memory(addr, size, exec);
2192}
2193
2194void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2195                                  const char* mesg) {
2196  assert(mesg != NULL, "mesg must be specified");
2197  if (!pd_commit_memory(addr, size, exec)) {
2198    // add extra info in product mode for vm_exit_out_of_memory():
2199    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2200    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2201  }
2202}
2203
2204void os::pd_commit_memory_or_exit(char* addr, size_t size,
2205                                  size_t alignment_hint, bool exec,
2206                                  const char* mesg) {
2207  // alignment_hint is ignored on this OS
2208  pd_commit_memory_or_exit(addr, size, exec, mesg);
2209}
2210
2211void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2212}
2213
2214void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2215  ::madvise(addr, bytes, MADV_DONTNEED);
2216}
2217
2218void os::numa_make_global(char *addr, size_t bytes) {
2219}
2220
2221void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2222}
2223
2224bool os::numa_topology_changed()   { return false; }
2225
2226size_t os::numa_get_groups_num() {
2227  return 1;
2228}
2229
2230int os::numa_get_group_id() {
2231  return 0;
2232}
2233
2234size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2235  if (size > 0) {
2236    ids[0] = 0;
2237    return 1;
2238  }
2239  return 0;
2240}
2241
2242bool os::get_page_info(char *start, page_info* info) {
2243  return false;
2244}
2245
2246char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2247  return end;
2248}
2249
2250
2251bool os::pd_uncommit_memory(char* addr, size_t size) {
2252#ifdef __OpenBSD__
2253  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2254  return ::mprotect(addr, size, PROT_NONE) == 0;
2255#else
2256  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2257                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2258  return res  != (uintptr_t) MAP_FAILED;
2259#endif
2260}
2261
2262bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2263  return os::commit_memory(addr, size, !ExecMem);
2264}
2265
2266// If this is a growable mapping, remove the guard pages entirely by
2267// munmap()ping them.  If not, just call uncommit_memory().
2268bool os::remove_stack_guard_pages(char* addr, size_t size) {
2269  return os::uncommit_memory(addr, size);
2270}
2271
2272static address _highest_vm_reserved_address = NULL;
2273
2274// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2275// at 'requested_addr'. If there are existing memory mappings at the same
2276// location, however, they will be overwritten. If 'fixed' is false,
2277// 'requested_addr' is only treated as a hint, the return value may or
2278// may not start from the requested address. Unlike Bsd mmap(), this
2279// function returns NULL to indicate failure.
2280static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2281  char * addr;
2282  int flags;
2283
2284  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2285  if (fixed) {
2286    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2287    flags |= MAP_FIXED;
2288  }
2289
2290  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2291  // touch an uncommitted page. Otherwise, the read/write might
2292  // succeed if we have enough swap space to back the physical page.
2293  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2294                       flags, -1, 0);
2295
2296  if (addr != MAP_FAILED) {
2297    // anon_mmap() should only get called during VM initialization,
2298    // don't need lock (actually we can skip locking even it can be called
2299    // from multiple threads, because _highest_vm_reserved_address is just a
2300    // hint about the upper limit of non-stack memory regions.)
2301    if ((address)addr + bytes > _highest_vm_reserved_address) {
2302      _highest_vm_reserved_address = (address)addr + bytes;
2303    }
2304  }
2305
2306  return addr == MAP_FAILED ? NULL : addr;
2307}
2308
2309// Don't update _highest_vm_reserved_address, because there might be memory
2310// regions above addr + size. If so, releasing a memory region only creates
2311// a hole in the address space, it doesn't help prevent heap-stack collision.
2312//
2313static int anon_munmap(char * addr, size_t size) {
2314  return ::munmap(addr, size) == 0;
2315}
2316
2317char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2318                         size_t alignment_hint) {
2319  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2320}
2321
2322bool os::pd_release_memory(char* addr, size_t size) {
2323  return anon_munmap(addr, size);
2324}
2325
2326static bool bsd_mprotect(char* addr, size_t size, int prot) {
2327  // Bsd wants the mprotect address argument to be page aligned.
2328  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2329
2330  // According to SUSv3, mprotect() should only be used with mappings
2331  // established by mmap(), and mmap() always maps whole pages. Unaligned
2332  // 'addr' likely indicates problem in the VM (e.g. trying to change
2333  // protection of malloc'ed or statically allocated memory). Check the
2334  // caller if you hit this assert.
2335  assert(addr == bottom, "sanity check");
2336
2337  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2338  return ::mprotect(bottom, size, prot) == 0;
2339}
2340
2341// Set protections specified
2342bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2343                        bool is_committed) {
2344  unsigned int p = 0;
2345  switch (prot) {
2346  case MEM_PROT_NONE: p = PROT_NONE; break;
2347  case MEM_PROT_READ: p = PROT_READ; break;
2348  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2349  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2350  default:
2351    ShouldNotReachHere();
2352  }
2353  // is_committed is unused.
2354  return bsd_mprotect(addr, bytes, p);
2355}
2356
2357bool os::guard_memory(char* addr, size_t size) {
2358  return bsd_mprotect(addr, size, PROT_NONE);
2359}
2360
2361bool os::unguard_memory(char* addr, size_t size) {
2362  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2363}
2364
2365bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2366  return false;
2367}
2368
2369// Large page support
2370
2371static size_t _large_page_size = 0;
2372
2373void os::large_page_init() {
2374}
2375
2376
2377char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2378  fatal("This code is not used or maintained.");
2379
2380  // "exec" is passed in but not used.  Creating the shared image for
2381  // the code cache doesn't have an SHM_X executable permission to check.
2382  assert(UseLargePages && UseSHM, "only for SHM large pages");
2383
2384  key_t key = IPC_PRIVATE;
2385  char *addr;
2386
2387  bool warn_on_failure = UseLargePages &&
2388                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2389                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2390                        );
2391  char msg[128];
2392
2393  // Create a large shared memory region to attach to based on size.
2394  // Currently, size is the total size of the heap
2395  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2396  if (shmid == -1) {
2397     // Possible reasons for shmget failure:
2398     // 1. shmmax is too small for Java heap.
2399     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2400     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2401     // 2. not enough large page memory.
2402     //    > check available large pages: cat /proc/meminfo
2403     //    > increase amount of large pages:
2404     //          echo new_value > /proc/sys/vm/nr_hugepages
2405     //      Note 1: different Bsd may use different name for this property,
2406     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2407     //      Note 2: it's possible there's enough physical memory available but
2408     //            they are so fragmented after a long run that they can't
2409     //            coalesce into large pages. Try to reserve large pages when
2410     //            the system is still "fresh".
2411     if (warn_on_failure) {
2412       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2413       warning(msg);
2414     }
2415     return NULL;
2416  }
2417
2418  // attach to the region
2419  addr = (char*)shmat(shmid, req_addr, 0);
2420  int err = errno;
2421
2422  // Remove shmid. If shmat() is successful, the actual shared memory segment
2423  // will be deleted when it's detached by shmdt() or when the process
2424  // terminates. If shmat() is not successful this will remove the shared
2425  // segment immediately.
2426  shmctl(shmid, IPC_RMID, NULL);
2427
2428  if ((intptr_t)addr == -1) {
2429     if (warn_on_failure) {
2430       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2431       warning(msg);
2432     }
2433     return NULL;
2434  }
2435
2436  // The memory is committed
2437  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2438
2439  return addr;
2440}
2441
2442bool os::release_memory_special(char* base, size_t bytes) {
2443  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2444  // detaching the SHM segment will also delete it, see reserve_memory_special()
2445  int rslt = shmdt(base);
2446  if (rslt == 0) {
2447    tkr.record((address)base, bytes);
2448    return true;
2449  } else {
2450    tkr.discard();
2451    return false;
2452  }
2453
2454}
2455
2456size_t os::large_page_size() {
2457  return _large_page_size;
2458}
2459
2460// HugeTLBFS allows application to commit large page memory on demand;
2461// with SysV SHM the entire memory region must be allocated as shared
2462// memory.
2463bool os::can_commit_large_page_memory() {
2464  return UseHugeTLBFS;
2465}
2466
2467bool os::can_execute_large_page_memory() {
2468  return UseHugeTLBFS;
2469}
2470
2471// Reserve memory at an arbitrary address, only if that area is
2472// available (and not reserved for something else).
2473
2474char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2475  const int max_tries = 10;
2476  char* base[max_tries];
2477  size_t size[max_tries];
2478  const size_t gap = 0x000000;
2479
2480  // Assert only that the size is a multiple of the page size, since
2481  // that's all that mmap requires, and since that's all we really know
2482  // about at this low abstraction level.  If we need higher alignment,
2483  // we can either pass an alignment to this method or verify alignment
2484  // in one of the methods further up the call chain.  See bug 5044738.
2485  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2486
2487  // Repeatedly allocate blocks until the block is allocated at the
2488  // right spot. Give up after max_tries. Note that reserve_memory() will
2489  // automatically update _highest_vm_reserved_address if the call is
2490  // successful. The variable tracks the highest memory address every reserved
2491  // by JVM. It is used to detect heap-stack collision if running with
2492  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2493  // space than needed, it could confuse the collision detecting code. To
2494  // solve the problem, save current _highest_vm_reserved_address and
2495  // calculate the correct value before return.
2496  address old_highest = _highest_vm_reserved_address;
2497
2498  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2499  // if kernel honors the hint then we can return immediately.
2500  char * addr = anon_mmap(requested_addr, bytes, false);
2501  if (addr == requested_addr) {
2502     return requested_addr;
2503  }
2504
2505  if (addr != NULL) {
2506     // mmap() is successful but it fails to reserve at the requested address
2507     anon_munmap(addr, bytes);
2508  }
2509
2510  int i;
2511  for (i = 0; i < max_tries; ++i) {
2512    base[i] = reserve_memory(bytes);
2513
2514    if (base[i] != NULL) {
2515      // Is this the block we wanted?
2516      if (base[i] == requested_addr) {
2517        size[i] = bytes;
2518        break;
2519      }
2520
2521      // Does this overlap the block we wanted? Give back the overlapped
2522      // parts and try again.
2523
2524      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2525      if (top_overlap >= 0 && top_overlap < bytes) {
2526        unmap_memory(base[i], top_overlap);
2527        base[i] += top_overlap;
2528        size[i] = bytes - top_overlap;
2529      } else {
2530        size_t bottom_overlap = base[i] + bytes - requested_addr;
2531        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2532          unmap_memory(requested_addr, bottom_overlap);
2533          size[i] = bytes - bottom_overlap;
2534        } else {
2535          size[i] = bytes;
2536        }
2537      }
2538    }
2539  }
2540
2541  // Give back the unused reserved pieces.
2542
2543  for (int j = 0; j < i; ++j) {
2544    if (base[j] != NULL) {
2545      unmap_memory(base[j], size[j]);
2546    }
2547  }
2548
2549  if (i < max_tries) {
2550    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2551    return requested_addr;
2552  } else {
2553    _highest_vm_reserved_address = old_highest;
2554    return NULL;
2555  }
2556}
2557
2558size_t os::read(int fd, void *buf, unsigned int nBytes) {
2559  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2560}
2561
2562// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2563// Solaris uses poll(), bsd uses park().
2564// Poll() is likely a better choice, assuming that Thread.interrupt()
2565// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2566// SIGSEGV, see 4355769.
2567
2568int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2569  assert(thread == Thread::current(),  "thread consistency check");
2570
2571  ParkEvent * const slp = thread->_SleepEvent ;
2572  slp->reset() ;
2573  OrderAccess::fence() ;
2574
2575  if (interruptible) {
2576    jlong prevtime = javaTimeNanos();
2577
2578    for (;;) {
2579      if (os::is_interrupted(thread, true)) {
2580        return OS_INTRPT;
2581      }
2582
2583      jlong newtime = javaTimeNanos();
2584
2585      if (newtime - prevtime < 0) {
2586        // time moving backwards, should only happen if no monotonic clock
2587        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2588        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2589      } else {
2590        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2591      }
2592
2593      if(millis <= 0) {
2594        return OS_OK;
2595      }
2596
2597      prevtime = newtime;
2598
2599      {
2600        assert(thread->is_Java_thread(), "sanity check");
2601        JavaThread *jt = (JavaThread *) thread;
2602        ThreadBlockInVM tbivm(jt);
2603        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2604
2605        jt->set_suspend_equivalent();
2606        // cleared by handle_special_suspend_equivalent_condition() or
2607        // java_suspend_self() via check_and_wait_while_suspended()
2608
2609        slp->park(millis);
2610
2611        // were we externally suspended while we were waiting?
2612        jt->check_and_wait_while_suspended();
2613      }
2614    }
2615  } else {
2616    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2617    jlong prevtime = javaTimeNanos();
2618
2619    for (;;) {
2620      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2621      // the 1st iteration ...
2622      jlong newtime = javaTimeNanos();
2623
2624      if (newtime - prevtime < 0) {
2625        // time moving backwards, should only happen if no monotonic clock
2626        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2627        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2628      } else {
2629        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2630      }
2631
2632      if(millis <= 0) break ;
2633
2634      prevtime = newtime;
2635      slp->park(millis);
2636    }
2637    return OS_OK ;
2638  }
2639}
2640
2641void os::naked_short_sleep(jlong ms) {
2642  struct timespec req;
2643
2644  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2645  req.tv_sec = 0;
2646  if (ms > 0) {
2647    req.tv_nsec = (ms % 1000) * 1000000;
2648  }
2649  else {
2650    req.tv_nsec = 1;
2651  }
2652
2653  nanosleep(&req, NULL);
2654
2655  return;
2656}
2657
2658// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2659void os::infinite_sleep() {
2660  while (true) {    // sleep forever ...
2661    ::sleep(100);   // ... 100 seconds at a time
2662  }
2663}
2664
2665// Used to convert frequent JVM_Yield() to nops
2666bool os::dont_yield() {
2667  return DontYieldALot;
2668}
2669
2670void os::yield() {
2671  sched_yield();
2672}
2673
2674os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2675
2676void os::yield_all(int attempts) {
2677  // Yields to all threads, including threads with lower priorities
2678  // Threads on Bsd are all with same priority. The Solaris style
2679  // os::yield_all() with nanosleep(1ms) is not necessary.
2680  sched_yield();
2681}
2682
2683// Called from the tight loops to possibly influence time-sharing heuristics
2684void os::loop_breaker(int attempts) {
2685  os::yield_all(attempts);
2686}
2687
2688////////////////////////////////////////////////////////////////////////////////
2689// thread priority support
2690
2691// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2692// only supports dynamic priority, static priority must be zero. For real-time
2693// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2694// However, for large multi-threaded applications, SCHED_RR is not only slower
2695// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2696// of 5 runs - Sep 2005).
2697//
2698// The following code actually changes the niceness of kernel-thread/LWP. It
2699// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2700// not the entire user process, and user level threads are 1:1 mapped to kernel
2701// threads. It has always been the case, but could change in the future. For
2702// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2703// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2704
2705#if !defined(__APPLE__)
2706int os::java_to_os_priority[CriticalPriority + 1] = {
2707  19,              // 0 Entry should never be used
2708
2709   0,              // 1 MinPriority
2710   3,              // 2
2711   6,              // 3
2712
2713  10,              // 4
2714  15,              // 5 NormPriority
2715  18,              // 6
2716
2717  21,              // 7
2718  25,              // 8
2719  28,              // 9 NearMaxPriority
2720
2721  31,              // 10 MaxPriority
2722
2723  31               // 11 CriticalPriority
2724};
2725#else
2726/* Using Mach high-level priority assignments */
2727int os::java_to_os_priority[CriticalPriority + 1] = {
2728   0,              // 0 Entry should never be used (MINPRI_USER)
2729
2730  27,              // 1 MinPriority
2731  28,              // 2
2732  29,              // 3
2733
2734  30,              // 4
2735  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2736  32,              // 6
2737
2738  33,              // 7
2739  34,              // 8
2740  35,              // 9 NearMaxPriority
2741
2742  36,              // 10 MaxPriority
2743
2744  36               // 11 CriticalPriority
2745};
2746#endif
2747
2748static int prio_init() {
2749  if (ThreadPriorityPolicy == 1) {
2750    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2751    // if effective uid is not root. Perhaps, a more elegant way of doing
2752    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2753    if (geteuid() != 0) {
2754      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2755        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2756      }
2757      ThreadPriorityPolicy = 0;
2758    }
2759  }
2760  if (UseCriticalJavaThreadPriority) {
2761    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2762  }
2763  return 0;
2764}
2765
2766OSReturn os::set_native_priority(Thread* thread, int newpri) {
2767  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2768
2769#ifdef __OpenBSD__
2770  // OpenBSD pthread_setprio starves low priority threads
2771  return OS_OK;
2772#elif defined(__FreeBSD__)
2773  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2774#elif defined(__APPLE__) || defined(__NetBSD__)
2775  struct sched_param sp;
2776  int policy;
2777  pthread_t self = pthread_self();
2778
2779  if (pthread_getschedparam(self, &policy, &sp) != 0)
2780    return OS_ERR;
2781
2782  sp.sched_priority = newpri;
2783  if (pthread_setschedparam(self, policy, &sp) != 0)
2784    return OS_ERR;
2785
2786  return OS_OK;
2787#else
2788  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2789  return (ret == 0) ? OS_OK : OS_ERR;
2790#endif
2791}
2792
2793OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2794  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2795    *priority_ptr = java_to_os_priority[NormPriority];
2796    return OS_OK;
2797  }
2798
2799  errno = 0;
2800#if defined(__OpenBSD__) || defined(__FreeBSD__)
2801  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2802#elif defined(__APPLE__) || defined(__NetBSD__)
2803  int policy;
2804  struct sched_param sp;
2805
2806  pthread_getschedparam(pthread_self(), &policy, &sp);
2807  *priority_ptr = sp.sched_priority;
2808#else
2809  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2810#endif
2811  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2812}
2813
2814// Hint to the underlying OS that a task switch would not be good.
2815// Void return because it's a hint and can fail.
2816void os::hint_no_preempt() {}
2817
2818////////////////////////////////////////////////////////////////////////////////
2819// suspend/resume support
2820
2821//  the low-level signal-based suspend/resume support is a remnant from the
2822//  old VM-suspension that used to be for java-suspension, safepoints etc,
2823//  within hotspot. Now there is a single use-case for this:
2824//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2825//      that runs in the watcher thread.
2826//  The remaining code is greatly simplified from the more general suspension
2827//  code that used to be used.
2828//
2829//  The protocol is quite simple:
2830//  - suspend:
2831//      - sends a signal to the target thread
2832//      - polls the suspend state of the osthread using a yield loop
2833//      - target thread signal handler (SR_handler) sets suspend state
2834//        and blocks in sigsuspend until continued
2835//  - resume:
2836//      - sets target osthread state to continue
2837//      - sends signal to end the sigsuspend loop in the SR_handler
2838//
2839//  Note that the SR_lock plays no role in this suspend/resume protocol.
2840//
2841
2842static void resume_clear_context(OSThread *osthread) {
2843  osthread->set_ucontext(NULL);
2844  osthread->set_siginfo(NULL);
2845}
2846
2847static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2848  osthread->set_ucontext(context);
2849  osthread->set_siginfo(siginfo);
2850}
2851
2852//
2853// Handler function invoked when a thread's execution is suspended or
2854// resumed. We have to be careful that only async-safe functions are
2855// called here (Note: most pthread functions are not async safe and
2856// should be avoided.)
2857//
2858// Note: sigwait() is a more natural fit than sigsuspend() from an
2859// interface point of view, but sigwait() prevents the signal hander
2860// from being run. libpthread would get very confused by not having
2861// its signal handlers run and prevents sigwait()'s use with the
2862// mutex granting granting signal.
2863//
2864// Currently only ever called on the VMThread or JavaThread
2865//
2866static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2867  // Save and restore errno to avoid confusing native code with EINTR
2868  // after sigsuspend.
2869  int old_errno = errno;
2870
2871  Thread* thread = Thread::current();
2872  OSThread* osthread = thread->osthread();
2873  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2874
2875  os::SuspendResume::State current = osthread->sr.state();
2876  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2877    suspend_save_context(osthread, siginfo, context);
2878
2879    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2880    os::SuspendResume::State state = osthread->sr.suspended();
2881    if (state == os::SuspendResume::SR_SUSPENDED) {
2882      sigset_t suspend_set;  // signals for sigsuspend()
2883
2884      // get current set of blocked signals and unblock resume signal
2885      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2886      sigdelset(&suspend_set, SR_signum);
2887
2888      sr_semaphore.signal();
2889      // wait here until we are resumed
2890      while (1) {
2891        sigsuspend(&suspend_set);
2892
2893        os::SuspendResume::State result = osthread->sr.running();
2894        if (result == os::SuspendResume::SR_RUNNING) {
2895          sr_semaphore.signal();
2896          break;
2897        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2898          ShouldNotReachHere();
2899        }
2900      }
2901
2902    } else if (state == os::SuspendResume::SR_RUNNING) {
2903      // request was cancelled, continue
2904    } else {
2905      ShouldNotReachHere();
2906    }
2907
2908    resume_clear_context(osthread);
2909  } else if (current == os::SuspendResume::SR_RUNNING) {
2910    // request was cancelled, continue
2911  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2912    // ignore
2913  } else {
2914    // ignore
2915  }
2916
2917  errno = old_errno;
2918}
2919
2920
2921static int SR_initialize() {
2922  struct sigaction act;
2923  char *s;
2924  /* Get signal number to use for suspend/resume */
2925  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2926    int sig = ::strtol(s, 0, 10);
2927    if (sig > 0 || sig < NSIG) {
2928        SR_signum = sig;
2929    }
2930  }
2931
2932  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2933        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2934
2935  sigemptyset(&SR_sigset);
2936  sigaddset(&SR_sigset, SR_signum);
2937
2938  /* Set up signal handler for suspend/resume */
2939  act.sa_flags = SA_RESTART|SA_SIGINFO;
2940  act.sa_handler = (void (*)(int)) SR_handler;
2941
2942  // SR_signum is blocked by default.
2943  // 4528190 - We also need to block pthread restart signal (32 on all
2944  // supported Bsd platforms). Note that BsdThreads need to block
2945  // this signal for all threads to work properly. So we don't have
2946  // to use hard-coded signal number when setting up the mask.
2947  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2948
2949  if (sigaction(SR_signum, &act, 0) == -1) {
2950    return -1;
2951  }
2952
2953  // Save signal flag
2954  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2955  return 0;
2956}
2957
2958static int sr_notify(OSThread* osthread) {
2959  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2960  assert_status(status == 0, status, "pthread_kill");
2961  return status;
2962}
2963
2964// "Randomly" selected value for how long we want to spin
2965// before bailing out on suspending a thread, also how often
2966// we send a signal to a thread we want to resume
2967static const int RANDOMLY_LARGE_INTEGER = 1000000;
2968static const int RANDOMLY_LARGE_INTEGER2 = 100;
2969
2970// returns true on success and false on error - really an error is fatal
2971// but this seems the normal response to library errors
2972static bool do_suspend(OSThread* osthread) {
2973  assert(osthread->sr.is_running(), "thread should be running");
2974  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2975
2976  // mark as suspended and send signal
2977  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2978    // failed to switch, state wasn't running?
2979    ShouldNotReachHere();
2980    return false;
2981  }
2982
2983  if (sr_notify(osthread) != 0) {
2984    ShouldNotReachHere();
2985  }
2986
2987  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2988  while (true) {
2989    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2990      break;
2991    } else {
2992      // timeout
2993      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2994      if (cancelled == os::SuspendResume::SR_RUNNING) {
2995        return false;
2996      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2997        // make sure that we consume the signal on the semaphore as well
2998        sr_semaphore.wait();
2999        break;
3000      } else {
3001        ShouldNotReachHere();
3002        return false;
3003      }
3004    }
3005  }
3006
3007  guarantee(osthread->sr.is_suspended(), "Must be suspended");
3008  return true;
3009}
3010
3011static void do_resume(OSThread* osthread) {
3012  assert(osthread->sr.is_suspended(), "thread should be suspended");
3013  assert(!sr_semaphore.trywait(), "invalid semaphore state");
3014
3015  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3016    // failed to switch to WAKEUP_REQUEST
3017    ShouldNotReachHere();
3018    return;
3019  }
3020
3021  while (true) {
3022    if (sr_notify(osthread) == 0) {
3023      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3024        if (osthread->sr.is_running()) {
3025          return;
3026        }
3027      }
3028    } else {
3029      ShouldNotReachHere();
3030    }
3031  }
3032
3033  guarantee(osthread->sr.is_running(), "Must be running!");
3034}
3035
3036////////////////////////////////////////////////////////////////////////////////
3037// interrupt support
3038
3039void os::interrupt(Thread* thread) {
3040  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3041    "possibility of dangling Thread pointer");
3042
3043  OSThread* osthread = thread->osthread();
3044
3045  if (!osthread->interrupted()) {
3046    osthread->set_interrupted(true);
3047    // More than one thread can get here with the same value of osthread,
3048    // resulting in multiple notifications.  We do, however, want the store
3049    // to interrupted() to be visible to other threads before we execute unpark().
3050    OrderAccess::fence();
3051    ParkEvent * const slp = thread->_SleepEvent ;
3052    if (slp != NULL) slp->unpark() ;
3053  }
3054
3055  // For JSR166. Unpark even if interrupt status already was set
3056  if (thread->is_Java_thread())
3057    ((JavaThread*)thread)->parker()->unpark();
3058
3059  ParkEvent * ev = thread->_ParkEvent ;
3060  if (ev != NULL) ev->unpark() ;
3061
3062}
3063
3064bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3065  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3066    "possibility of dangling Thread pointer");
3067
3068  OSThread* osthread = thread->osthread();
3069
3070  bool interrupted = osthread->interrupted();
3071
3072  if (interrupted && clear_interrupted) {
3073    osthread->set_interrupted(false);
3074    // consider thread->_SleepEvent->reset() ... optional optimization
3075  }
3076
3077  return interrupted;
3078}
3079
3080///////////////////////////////////////////////////////////////////////////////////
3081// signal handling (except suspend/resume)
3082
3083// This routine may be used by user applications as a "hook" to catch signals.
3084// The user-defined signal handler must pass unrecognized signals to this
3085// routine, and if it returns true (non-zero), then the signal handler must
3086// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3087// routine will never retun false (zero), but instead will execute a VM panic
3088// routine kill the process.
3089//
3090// If this routine returns false, it is OK to call it again.  This allows
3091// the user-defined signal handler to perform checks either before or after
3092// the VM performs its own checks.  Naturally, the user code would be making
3093// a serious error if it tried to handle an exception (such as a null check
3094// or breakpoint) that the VM was generating for its own correct operation.
3095//
3096// This routine may recognize any of the following kinds of signals:
3097//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3098// It should be consulted by handlers for any of those signals.
3099//
3100// The caller of this routine must pass in the three arguments supplied
3101// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3102// field of the structure passed to sigaction().  This routine assumes that
3103// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3104//
3105// Note that the VM will print warnings if it detects conflicting signal
3106// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3107//
3108extern "C" JNIEXPORT int
3109JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3110                        void* ucontext, int abort_if_unrecognized);
3111
3112void signalHandler(int sig, siginfo_t* info, void* uc) {
3113  assert(info != NULL && uc != NULL, "it must be old kernel");
3114  int orig_errno = errno;  // Preserve errno value over signal handler.
3115  JVM_handle_bsd_signal(sig, info, uc, true);
3116  errno = orig_errno;
3117}
3118
3119
3120// This boolean allows users to forward their own non-matching signals
3121// to JVM_handle_bsd_signal, harmlessly.
3122bool os::Bsd::signal_handlers_are_installed = false;
3123
3124// For signal-chaining
3125struct sigaction os::Bsd::sigact[MAXSIGNUM];
3126unsigned int os::Bsd::sigs = 0;
3127bool os::Bsd::libjsig_is_loaded = false;
3128typedef struct sigaction *(*get_signal_t)(int);
3129get_signal_t os::Bsd::get_signal_action = NULL;
3130
3131struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3132  struct sigaction *actp = NULL;
3133
3134  if (libjsig_is_loaded) {
3135    // Retrieve the old signal handler from libjsig
3136    actp = (*get_signal_action)(sig);
3137  }
3138  if (actp == NULL) {
3139    // Retrieve the preinstalled signal handler from jvm
3140    actp = get_preinstalled_handler(sig);
3141  }
3142
3143  return actp;
3144}
3145
3146static bool call_chained_handler(struct sigaction *actp, int sig,
3147                                 siginfo_t *siginfo, void *context) {
3148  // Call the old signal handler
3149  if (actp->sa_handler == SIG_DFL) {
3150    // It's more reasonable to let jvm treat it as an unexpected exception
3151    // instead of taking the default action.
3152    return false;
3153  } else if (actp->sa_handler != SIG_IGN) {
3154    if ((actp->sa_flags & SA_NODEFER) == 0) {
3155      // automaticlly block the signal
3156      sigaddset(&(actp->sa_mask), sig);
3157    }
3158
3159    sa_handler_t hand;
3160    sa_sigaction_t sa;
3161    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3162    // retrieve the chained handler
3163    if (siginfo_flag_set) {
3164      sa = actp->sa_sigaction;
3165    } else {
3166      hand = actp->sa_handler;
3167    }
3168
3169    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3170      actp->sa_handler = SIG_DFL;
3171    }
3172
3173    // try to honor the signal mask
3174    sigset_t oset;
3175    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3176
3177    // call into the chained handler
3178    if (siginfo_flag_set) {
3179      (*sa)(sig, siginfo, context);
3180    } else {
3181      (*hand)(sig);
3182    }
3183
3184    // restore the signal mask
3185    pthread_sigmask(SIG_SETMASK, &oset, 0);
3186  }
3187  // Tell jvm's signal handler the signal is taken care of.
3188  return true;
3189}
3190
3191bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3192  bool chained = false;
3193  // signal-chaining
3194  if (UseSignalChaining) {
3195    struct sigaction *actp = get_chained_signal_action(sig);
3196    if (actp != NULL) {
3197      chained = call_chained_handler(actp, sig, siginfo, context);
3198    }
3199  }
3200  return chained;
3201}
3202
3203struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3204  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3205    return &sigact[sig];
3206  }
3207  return NULL;
3208}
3209
3210void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3211  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3212  sigact[sig] = oldAct;
3213  sigs |= (unsigned int)1 << sig;
3214}
3215
3216// for diagnostic
3217int os::Bsd::sigflags[MAXSIGNUM];
3218
3219int os::Bsd::get_our_sigflags(int sig) {
3220  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3221  return sigflags[sig];
3222}
3223
3224void os::Bsd::set_our_sigflags(int sig, int flags) {
3225  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3226  sigflags[sig] = flags;
3227}
3228
3229void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3230  // Check for overwrite.
3231  struct sigaction oldAct;
3232  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3233
3234  void* oldhand = oldAct.sa_sigaction
3235                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3236                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3237  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3238      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3239      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3240    if (AllowUserSignalHandlers || !set_installed) {
3241      // Do not overwrite; user takes responsibility to forward to us.
3242      return;
3243    } else if (UseSignalChaining) {
3244      // save the old handler in jvm
3245      save_preinstalled_handler(sig, oldAct);
3246      // libjsig also interposes the sigaction() call below and saves the
3247      // old sigaction on it own.
3248    } else {
3249      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3250                    "%#lx for signal %d.", (long)oldhand, sig));
3251    }
3252  }
3253
3254  struct sigaction sigAct;
3255  sigfillset(&(sigAct.sa_mask));
3256  sigAct.sa_handler = SIG_DFL;
3257  if (!set_installed) {
3258    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3259  } else {
3260    sigAct.sa_sigaction = signalHandler;
3261    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3262  }
3263#if __APPLE__
3264  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3265  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3266  // if the signal handler declares it will handle it on alternate stack.
3267  // Notice we only declare we will handle it on alt stack, but we are not
3268  // actually going to use real alt stack - this is just a workaround.
3269  // Please see ux_exception.c, method catch_mach_exception_raise for details
3270  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3271  if (sig == SIGSEGV) {
3272    sigAct.sa_flags |= SA_ONSTACK;
3273  }
3274#endif
3275
3276  // Save flags, which are set by ours
3277  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3278  sigflags[sig] = sigAct.sa_flags;
3279
3280  int ret = sigaction(sig, &sigAct, &oldAct);
3281  assert(ret == 0, "check");
3282
3283  void* oldhand2  = oldAct.sa_sigaction
3284                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3285                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3286  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3287}
3288
3289// install signal handlers for signals that HotSpot needs to
3290// handle in order to support Java-level exception handling.
3291
3292void os::Bsd::install_signal_handlers() {
3293  if (!signal_handlers_are_installed) {
3294    signal_handlers_are_installed = true;
3295
3296    // signal-chaining
3297    typedef void (*signal_setting_t)();
3298    signal_setting_t begin_signal_setting = NULL;
3299    signal_setting_t end_signal_setting = NULL;
3300    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3301                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3302    if (begin_signal_setting != NULL) {
3303      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3304                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3305      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3306                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3307      libjsig_is_loaded = true;
3308      assert(UseSignalChaining, "should enable signal-chaining");
3309    }
3310    if (libjsig_is_loaded) {
3311      // Tell libjsig jvm is setting signal handlers
3312      (*begin_signal_setting)();
3313    }
3314
3315    set_signal_handler(SIGSEGV, true);
3316    set_signal_handler(SIGPIPE, true);
3317    set_signal_handler(SIGBUS, true);
3318    set_signal_handler(SIGILL, true);
3319    set_signal_handler(SIGFPE, true);
3320    set_signal_handler(SIGXFSZ, true);
3321
3322#if defined(__APPLE__)
3323    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3324    // signals caught and handled by the JVM. To work around this, we reset the mach task
3325    // signal handler that's placed on our process by CrashReporter. This disables
3326    // CrashReporter-based reporting.
3327    //
3328    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3329    // on caught fatal signals.
3330    //
3331    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3332    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3333    // exception handling, while leaving the standard BSD signal handlers functional.
3334    kern_return_t kr;
3335    kr = task_set_exception_ports(mach_task_self(),
3336        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3337        MACH_PORT_NULL,
3338        EXCEPTION_STATE_IDENTITY,
3339        MACHINE_THREAD_STATE);
3340
3341    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3342#endif
3343
3344    if (libjsig_is_loaded) {
3345      // Tell libjsig jvm finishes setting signal handlers
3346      (*end_signal_setting)();
3347    }
3348
3349    // We don't activate signal checker if libjsig is in place, we trust ourselves
3350    // and if UserSignalHandler is installed all bets are off
3351    if (CheckJNICalls) {
3352      if (libjsig_is_loaded) {
3353        if (PrintJNIResolving) {
3354          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3355        }
3356        check_signals = false;
3357      }
3358      if (AllowUserSignalHandlers) {
3359        if (PrintJNIResolving) {
3360          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3361        }
3362        check_signals = false;
3363      }
3364    }
3365  }
3366}
3367
3368
3369/////
3370// glibc on Bsd platform uses non-documented flag
3371// to indicate, that some special sort of signal
3372// trampoline is used.
3373// We will never set this flag, and we should
3374// ignore this flag in our diagnostic
3375#ifdef SIGNIFICANT_SIGNAL_MASK
3376#undef SIGNIFICANT_SIGNAL_MASK
3377#endif
3378#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3379
3380static const char* get_signal_handler_name(address handler,
3381                                           char* buf, int buflen) {
3382  int offset;
3383  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3384  if (found) {
3385    // skip directory names
3386    const char *p1, *p2;
3387    p1 = buf;
3388    size_t len = strlen(os::file_separator());
3389    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3390    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3391  } else {
3392    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3393  }
3394  return buf;
3395}
3396
3397static void print_signal_handler(outputStream* st, int sig,
3398                                 char* buf, size_t buflen) {
3399  struct sigaction sa;
3400
3401  sigaction(sig, NULL, &sa);
3402
3403  // See comment for SIGNIFICANT_SIGNAL_MASK define
3404  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3405
3406  st->print("%s: ", os::exception_name(sig, buf, buflen));
3407
3408  address handler = (sa.sa_flags & SA_SIGINFO)
3409    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3410    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3411
3412  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3413    st->print("SIG_DFL");
3414  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3415    st->print("SIG_IGN");
3416  } else {
3417    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3418  }
3419
3420  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3421
3422  address rh = VMError::get_resetted_sighandler(sig);
3423  // May be, handler was resetted by VMError?
3424  if(rh != NULL) {
3425    handler = rh;
3426    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3427  }
3428
3429  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3430
3431  // Check: is it our handler?
3432  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3433     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3434    // It is our signal handler
3435    // check for flags, reset system-used one!
3436    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3437      st->print(
3438                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3439                os::Bsd::get_our_sigflags(sig));
3440    }
3441  }
3442  st->cr();
3443}
3444
3445
3446#define DO_SIGNAL_CHECK(sig) \
3447  if (!sigismember(&check_signal_done, sig)) \
3448    os::Bsd::check_signal_handler(sig)
3449
3450// This method is a periodic task to check for misbehaving JNI applications
3451// under CheckJNI, we can add any periodic checks here
3452
3453void os::run_periodic_checks() {
3454
3455  if (check_signals == false) return;
3456
3457  // SEGV and BUS if overridden could potentially prevent
3458  // generation of hs*.log in the event of a crash, debugging
3459  // such a case can be very challenging, so we absolutely
3460  // check the following for a good measure:
3461  DO_SIGNAL_CHECK(SIGSEGV);
3462  DO_SIGNAL_CHECK(SIGILL);
3463  DO_SIGNAL_CHECK(SIGFPE);
3464  DO_SIGNAL_CHECK(SIGBUS);
3465  DO_SIGNAL_CHECK(SIGPIPE);
3466  DO_SIGNAL_CHECK(SIGXFSZ);
3467
3468
3469  // ReduceSignalUsage allows the user to override these handlers
3470  // see comments at the very top and jvm_solaris.h
3471  if (!ReduceSignalUsage) {
3472    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3473    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3474    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3475    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3476  }
3477
3478  DO_SIGNAL_CHECK(SR_signum);
3479  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3480}
3481
3482typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3483
3484static os_sigaction_t os_sigaction = NULL;
3485
3486void os::Bsd::check_signal_handler(int sig) {
3487  char buf[O_BUFLEN];
3488  address jvmHandler = NULL;
3489
3490
3491  struct sigaction act;
3492  if (os_sigaction == NULL) {
3493    // only trust the default sigaction, in case it has been interposed
3494    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3495    if (os_sigaction == NULL) return;
3496  }
3497
3498  os_sigaction(sig, (struct sigaction*)NULL, &act);
3499
3500
3501  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3502
3503  address thisHandler = (act.sa_flags & SA_SIGINFO)
3504    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3505    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3506
3507
3508  switch(sig) {
3509  case SIGSEGV:
3510  case SIGBUS:
3511  case SIGFPE:
3512  case SIGPIPE:
3513  case SIGILL:
3514  case SIGXFSZ:
3515    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3516    break;
3517
3518  case SHUTDOWN1_SIGNAL:
3519  case SHUTDOWN2_SIGNAL:
3520  case SHUTDOWN3_SIGNAL:
3521  case BREAK_SIGNAL:
3522    jvmHandler = (address)user_handler();
3523    break;
3524
3525  case INTERRUPT_SIGNAL:
3526    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3527    break;
3528
3529  default:
3530    if (sig == SR_signum) {
3531      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3532    } else {
3533      return;
3534    }
3535    break;
3536  }
3537
3538  if (thisHandler != jvmHandler) {
3539    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3540    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3541    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3542    // No need to check this sig any longer
3543    sigaddset(&check_signal_done, sig);
3544  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3545    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3546    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3547    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3548    // No need to check this sig any longer
3549    sigaddset(&check_signal_done, sig);
3550  }
3551
3552  // Dump all the signal
3553  if (sigismember(&check_signal_done, sig)) {
3554    print_signal_handlers(tty, buf, O_BUFLEN);
3555  }
3556}
3557
3558extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3559
3560extern bool signal_name(int signo, char* buf, size_t len);
3561
3562const char* os::exception_name(int exception_code, char* buf, size_t size) {
3563  if (0 < exception_code && exception_code <= SIGRTMAX) {
3564    // signal
3565    if (!signal_name(exception_code, buf, size)) {
3566      jio_snprintf(buf, size, "SIG%d", exception_code);
3567    }
3568    return buf;
3569  } else {
3570    return NULL;
3571  }
3572}
3573
3574// this is called _before_ the most of global arguments have been parsed
3575void os::init(void) {
3576  char dummy;   /* used to get a guess on initial stack address */
3577//  first_hrtime = gethrtime();
3578
3579  // With BsdThreads the JavaMain thread pid (primordial thread)
3580  // is different than the pid of the java launcher thread.
3581  // So, on Bsd, the launcher thread pid is passed to the VM
3582  // via the sun.java.launcher.pid property.
3583  // Use this property instead of getpid() if it was correctly passed.
3584  // See bug 6351349.
3585  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3586
3587  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3588
3589  clock_tics_per_sec = CLK_TCK;
3590
3591  init_random(1234567);
3592
3593  ThreadCritical::initialize();
3594
3595  Bsd::set_page_size(getpagesize());
3596  if (Bsd::page_size() == -1) {
3597    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3598                  strerror(errno)));
3599  }
3600  init_page_sizes((size_t) Bsd::page_size());
3601
3602  Bsd::initialize_system_info();
3603
3604  // main_thread points to the aboriginal thread
3605  Bsd::_main_thread = pthread_self();
3606
3607  Bsd::clock_init();
3608  initial_time_count = javaTimeNanos();
3609
3610#ifdef __APPLE__
3611  // XXXDARWIN
3612  // Work around the unaligned VM callbacks in hotspot's
3613  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3614  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3615  // alignment when doing symbol lookup. To work around this, we force early
3616  // binding of all symbols now, thus binding when alignment is known-good.
3617  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3618#endif
3619}
3620
3621// To install functions for atexit system call
3622extern "C" {
3623  static void perfMemory_exit_helper() {
3624    perfMemory_exit();
3625  }
3626}
3627
3628// this is called _after_ the global arguments have been parsed
3629jint os::init_2(void)
3630{
3631  // Allocate a single page and mark it as readable for safepoint polling
3632  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3633  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3634
3635  os::set_polling_page( polling_page );
3636
3637#ifndef PRODUCT
3638  if(Verbose && PrintMiscellaneous)
3639    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3640#endif
3641
3642  if (!UseMembar) {
3643    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3644    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3645    os::set_memory_serialize_page( mem_serialize_page );
3646
3647#ifndef PRODUCT
3648    if(Verbose && PrintMiscellaneous)
3649      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3650#endif
3651  }
3652
3653  // initialize suspend/resume support - must do this before signal_sets_init()
3654  if (SR_initialize() != 0) {
3655    perror("SR_initialize failed");
3656    return JNI_ERR;
3657  }
3658
3659  Bsd::signal_sets_init();
3660  Bsd::install_signal_handlers();
3661
3662  // Check minimum allowable stack size for thread creation and to initialize
3663  // the java system classes, including StackOverflowError - depends on page
3664  // size.  Add a page for compiler2 recursion in main thread.
3665  // Add in 2*BytesPerWord times page size to account for VM stack during
3666  // class initialization depending on 32 or 64 bit VM.
3667  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3668            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3669                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3670
3671  size_t threadStackSizeInBytes = ThreadStackSize * K;
3672  if (threadStackSizeInBytes != 0 &&
3673      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3674        tty->print_cr("\nThe stack size specified is too small, "
3675                      "Specify at least %dk",
3676                      os::Bsd::min_stack_allowed/ K);
3677        return JNI_ERR;
3678  }
3679
3680  // Make the stack size a multiple of the page size so that
3681  // the yellow/red zones can be guarded.
3682  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3683        vm_page_size()));
3684
3685  if (MaxFDLimit) {
3686    // set the number of file descriptors to max. print out error
3687    // if getrlimit/setrlimit fails but continue regardless.
3688    struct rlimit nbr_files;
3689    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3690    if (status != 0) {
3691      if (PrintMiscellaneous && (Verbose || WizardMode))
3692        perror("os::init_2 getrlimit failed");
3693    } else {
3694      nbr_files.rlim_cur = nbr_files.rlim_max;
3695
3696#ifdef __APPLE__
3697      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3698      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3699      // be used instead
3700      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3701#endif
3702
3703      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3704      if (status != 0) {
3705        if (PrintMiscellaneous && (Verbose || WizardMode))
3706          perror("os::init_2 setrlimit failed");
3707      }
3708    }
3709  }
3710
3711  // at-exit methods are called in the reverse order of their registration.
3712  // atexit functions are called on return from main or as a result of a
3713  // call to exit(3C). There can be only 32 of these functions registered
3714  // and atexit() does not set errno.
3715
3716  if (PerfAllowAtExitRegistration) {
3717    // only register atexit functions if PerfAllowAtExitRegistration is set.
3718    // atexit functions can be delayed until process exit time, which
3719    // can be problematic for embedded VM situations. Embedded VMs should
3720    // call DestroyJavaVM() to assure that VM resources are released.
3721
3722    // note: perfMemory_exit_helper atexit function may be removed in
3723    // the future if the appropriate cleanup code can be added to the
3724    // VM_Exit VMOperation's doit method.
3725    if (atexit(perfMemory_exit_helper) != 0) {
3726      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3727    }
3728  }
3729
3730  // initialize thread priority policy
3731  prio_init();
3732
3733#ifdef __APPLE__
3734  // dynamically link to objective c gc registration
3735  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3736  if (handleLibObjc != NULL) {
3737    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3738  }
3739#endif
3740
3741  return JNI_OK;
3742}
3743
3744// this is called at the end of vm_initialization
3745void os::init_3(void) { }
3746
3747// Mark the polling page as unreadable
3748void os::make_polling_page_unreadable(void) {
3749  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3750    fatal("Could not disable polling page");
3751};
3752
3753// Mark the polling page as readable
3754void os::make_polling_page_readable(void) {
3755  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3756    fatal("Could not enable polling page");
3757  }
3758};
3759
3760int os::active_processor_count() {
3761  return _processor_count;
3762}
3763
3764void os::set_native_thread_name(const char *name) {
3765#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3766  // This is only supported in Snow Leopard and beyond
3767  if (name != NULL) {
3768    // Add a "Java: " prefix to the name
3769    char buf[MAXTHREADNAMESIZE];
3770    snprintf(buf, sizeof(buf), "Java: %s", name);
3771    pthread_setname_np(buf);
3772  }
3773#endif
3774}
3775
3776bool os::distribute_processes(uint length, uint* distribution) {
3777  // Not yet implemented.
3778  return false;
3779}
3780
3781bool os::bind_to_processor(uint processor_id) {
3782  // Not yet implemented.
3783  return false;
3784}
3785
3786void os::SuspendedThreadTask::internal_do_task() {
3787  if (do_suspend(_thread->osthread())) {
3788    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3789    do_task(context);
3790    do_resume(_thread->osthread());
3791  }
3792}
3793
3794///
3795class PcFetcher : public os::SuspendedThreadTask {
3796public:
3797  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3798  ExtendedPC result();
3799protected:
3800  void do_task(const os::SuspendedThreadTaskContext& context);
3801private:
3802  ExtendedPC _epc;
3803};
3804
3805ExtendedPC PcFetcher::result() {
3806  guarantee(is_done(), "task is not done yet.");
3807  return _epc;
3808}
3809
3810void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3811  Thread* thread = context.thread();
3812  OSThread* osthread = thread->osthread();
3813  if (osthread->ucontext() != NULL) {
3814    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3815  } else {
3816    // NULL context is unexpected, double-check this is the VMThread
3817    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3818  }
3819}
3820
3821// Suspends the target using the signal mechanism and then grabs the PC before
3822// resuming the target. Used by the flat-profiler only
3823ExtendedPC os::get_thread_pc(Thread* thread) {
3824  // Make sure that it is called by the watcher for the VMThread
3825  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3826  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3827
3828  PcFetcher fetcher(thread);
3829  fetcher.run();
3830  return fetcher.result();
3831}
3832
3833int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3834{
3835  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3836}
3837
3838////////////////////////////////////////////////////////////////////////////////
3839// debug support
3840
3841bool os::find(address addr, outputStream* st) {
3842  Dl_info dlinfo;
3843  memset(&dlinfo, 0, sizeof(dlinfo));
3844  if (dladdr(addr, &dlinfo) != 0) {
3845    st->print(PTR_FORMAT ": ", addr);
3846    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3847      st->print("%s+%#x", dlinfo.dli_sname,
3848                 addr - (intptr_t)dlinfo.dli_saddr);
3849    } else if (dlinfo.dli_fbase != NULL) {
3850      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3851    } else {
3852      st->print("<absolute address>");
3853    }
3854    if (dlinfo.dli_fname != NULL) {
3855      st->print(" in %s", dlinfo.dli_fname);
3856    }
3857    if (dlinfo.dli_fbase != NULL) {
3858      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3859    }
3860    st->cr();
3861
3862    if (Verbose) {
3863      // decode some bytes around the PC
3864      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3865      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3866      address       lowest = (address) dlinfo.dli_sname;
3867      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3868      if (begin < lowest)  begin = lowest;
3869      Dl_info dlinfo2;
3870      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3871          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3872        end = (address) dlinfo2.dli_saddr;
3873      Disassembler::decode(begin, end, st);
3874    }
3875    return true;
3876  }
3877  return false;
3878}
3879
3880////////////////////////////////////////////////////////////////////////////////
3881// misc
3882
3883// This does not do anything on Bsd. This is basically a hook for being
3884// able to use structured exception handling (thread-local exception filters)
3885// on, e.g., Win32.
3886void
3887os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3888                         JavaCallArguments* args, Thread* thread) {
3889  f(value, method, args, thread);
3890}
3891
3892void os::print_statistics() {
3893}
3894
3895int os::message_box(const char* title, const char* message) {
3896  int i;
3897  fdStream err(defaultStream::error_fd());
3898  for (i = 0; i < 78; i++) err.print_raw("=");
3899  err.cr();
3900  err.print_raw_cr(title);
3901  for (i = 0; i < 78; i++) err.print_raw("-");
3902  err.cr();
3903  err.print_raw_cr(message);
3904  for (i = 0; i < 78; i++) err.print_raw("=");
3905  err.cr();
3906
3907  char buf[16];
3908  // Prevent process from exiting upon "read error" without consuming all CPU
3909  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3910
3911  return buf[0] == 'y' || buf[0] == 'Y';
3912}
3913
3914int os::stat(const char *path, struct stat *sbuf) {
3915  char pathbuf[MAX_PATH];
3916  if (strlen(path) > MAX_PATH - 1) {
3917    errno = ENAMETOOLONG;
3918    return -1;
3919  }
3920  os::native_path(strcpy(pathbuf, path));
3921  return ::stat(pathbuf, sbuf);
3922}
3923
3924bool os::check_heap(bool force) {
3925  return true;
3926}
3927
3928int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3929  return ::vsnprintf(buf, count, format, args);
3930}
3931
3932// Is a (classpath) directory empty?
3933bool os::dir_is_empty(const char* path) {
3934  DIR *dir = NULL;
3935  struct dirent *ptr;
3936
3937  dir = opendir(path);
3938  if (dir == NULL) return true;
3939
3940  /* Scan the directory */
3941  bool result = true;
3942  char buf[sizeof(struct dirent) + MAX_PATH];
3943  while (result && (ptr = ::readdir(dir)) != NULL) {
3944    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3945      result = false;
3946    }
3947  }
3948  closedir(dir);
3949  return result;
3950}
3951
3952// This code originates from JDK's sysOpen and open64_w
3953// from src/solaris/hpi/src/system_md.c
3954
3955#ifndef O_DELETE
3956#define O_DELETE 0x10000
3957#endif
3958
3959// Open a file. Unlink the file immediately after open returns
3960// if the specified oflag has the O_DELETE flag set.
3961// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3962
3963int os::open(const char *path, int oflag, int mode) {
3964
3965  if (strlen(path) > MAX_PATH - 1) {
3966    errno = ENAMETOOLONG;
3967    return -1;
3968  }
3969  int fd;
3970  int o_delete = (oflag & O_DELETE);
3971  oflag = oflag & ~O_DELETE;
3972
3973  fd = ::open(path, oflag, mode);
3974  if (fd == -1) return -1;
3975
3976  //If the open succeeded, the file might still be a directory
3977  {
3978    struct stat buf;
3979    int ret = ::fstat(fd, &buf);
3980    int st_mode = buf.st_mode;
3981
3982    if (ret != -1) {
3983      if ((st_mode & S_IFMT) == S_IFDIR) {
3984        errno = EISDIR;
3985        ::close(fd);
3986        return -1;
3987      }
3988    } else {
3989      ::close(fd);
3990      return -1;
3991    }
3992  }
3993
3994    /*
3995     * All file descriptors that are opened in the JVM and not
3996     * specifically destined for a subprocess should have the
3997     * close-on-exec flag set.  If we don't set it, then careless 3rd
3998     * party native code might fork and exec without closing all
3999     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4000     * UNIXProcess.c), and this in turn might:
4001     *
4002     * - cause end-of-file to fail to be detected on some file
4003     *   descriptors, resulting in mysterious hangs, or
4004     *
4005     * - might cause an fopen in the subprocess to fail on a system
4006     *   suffering from bug 1085341.
4007     *
4008     * (Yes, the default setting of the close-on-exec flag is a Unix
4009     * design flaw)
4010     *
4011     * See:
4012     * 1085341: 32-bit stdio routines should support file descriptors >255
4013     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4014     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4015     */
4016#ifdef FD_CLOEXEC
4017    {
4018        int flags = ::fcntl(fd, F_GETFD);
4019        if (flags != -1)
4020            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4021    }
4022#endif
4023
4024  if (o_delete != 0) {
4025    ::unlink(path);
4026  }
4027  return fd;
4028}
4029
4030
4031// create binary file, rewriting existing file if required
4032int os::create_binary_file(const char* path, bool rewrite_existing) {
4033  int oflags = O_WRONLY | O_CREAT;
4034  if (!rewrite_existing) {
4035    oflags |= O_EXCL;
4036  }
4037  return ::open(path, oflags, S_IREAD | S_IWRITE);
4038}
4039
4040// return current position of file pointer
4041jlong os::current_file_offset(int fd) {
4042  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4043}
4044
4045// move file pointer to the specified offset
4046jlong os::seek_to_file_offset(int fd, jlong offset) {
4047  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4048}
4049
4050// This code originates from JDK's sysAvailable
4051// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4052
4053int os::available(int fd, jlong *bytes) {
4054  jlong cur, end;
4055  int mode;
4056  struct stat buf;
4057
4058  if (::fstat(fd, &buf) >= 0) {
4059    mode = buf.st_mode;
4060    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4061      /*
4062      * XXX: is the following call interruptible? If so, this might
4063      * need to go through the INTERRUPT_IO() wrapper as for other
4064      * blocking, interruptible calls in this file.
4065      */
4066      int n;
4067      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4068        *bytes = n;
4069        return 1;
4070      }
4071    }
4072  }
4073  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4074    return 0;
4075  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4076    return 0;
4077  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4078    return 0;
4079  }
4080  *bytes = end - cur;
4081  return 1;
4082}
4083
4084int os::socket_available(int fd, jint *pbytes) {
4085   if (fd < 0)
4086     return OS_OK;
4087
4088   int ret;
4089
4090   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4091
4092   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4093   // is expected to return 0 on failure and 1 on success to the jdk.
4094
4095   return (ret == OS_ERR) ? 0 : 1;
4096}
4097
4098// Map a block of memory.
4099char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4100                     char *addr, size_t bytes, bool read_only,
4101                     bool allow_exec) {
4102  int prot;
4103  int flags;
4104
4105  if (read_only) {
4106    prot = PROT_READ;
4107    flags = MAP_SHARED;
4108  } else {
4109    prot = PROT_READ | PROT_WRITE;
4110    flags = MAP_PRIVATE;
4111  }
4112
4113  if (allow_exec) {
4114    prot |= PROT_EXEC;
4115  }
4116
4117  if (addr != NULL) {
4118    flags |= MAP_FIXED;
4119  }
4120
4121  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4122                                     fd, file_offset);
4123  if (mapped_address == MAP_FAILED) {
4124    return NULL;
4125  }
4126  return mapped_address;
4127}
4128
4129
4130// Remap a block of memory.
4131char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4132                       char *addr, size_t bytes, bool read_only,
4133                       bool allow_exec) {
4134  // same as map_memory() on this OS
4135  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4136                        allow_exec);
4137}
4138
4139
4140// Unmap a block of memory.
4141bool os::pd_unmap_memory(char* addr, size_t bytes) {
4142  return munmap(addr, bytes) == 0;
4143}
4144
4145// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4146// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4147// of a thread.
4148//
4149// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4150// the fast estimate available on the platform.
4151
4152jlong os::current_thread_cpu_time() {
4153#ifdef __APPLE__
4154  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4155#else
4156  Unimplemented();
4157  return 0;
4158#endif
4159}
4160
4161jlong os::thread_cpu_time(Thread* thread) {
4162#ifdef __APPLE__
4163  return os::thread_cpu_time(thread, true /* user + sys */);
4164#else
4165  Unimplemented();
4166  return 0;
4167#endif
4168}
4169
4170jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4171#ifdef __APPLE__
4172  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4173#else
4174  Unimplemented();
4175  return 0;
4176#endif
4177}
4178
4179jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4180#ifdef __APPLE__
4181  struct thread_basic_info tinfo;
4182  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4183  kern_return_t kr;
4184  thread_t mach_thread;
4185
4186  mach_thread = thread->osthread()->thread_id();
4187  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4188  if (kr != KERN_SUCCESS)
4189    return -1;
4190
4191  if (user_sys_cpu_time) {
4192    jlong nanos;
4193    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4194    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4195    return nanos;
4196  } else {
4197    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4198  }
4199#else
4200  Unimplemented();
4201  return 0;
4202#endif
4203}
4204
4205
4206void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4207  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4208  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4209  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4210  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4211}
4212
4213void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4214  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4215  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4216  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4217  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4218}
4219
4220bool os::is_thread_cpu_time_supported() {
4221#ifdef __APPLE__
4222  return true;
4223#else
4224  return false;
4225#endif
4226}
4227
4228// System loadavg support.  Returns -1 if load average cannot be obtained.
4229// Bsd doesn't yet have a (official) notion of processor sets,
4230// so just return the system wide load average.
4231int os::loadavg(double loadavg[], int nelem) {
4232  return ::getloadavg(loadavg, nelem);
4233}
4234
4235void os::pause() {
4236  char filename[MAX_PATH];
4237  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4238    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4239  } else {
4240    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4241  }
4242
4243  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4244  if (fd != -1) {
4245    struct stat buf;
4246    ::close(fd);
4247    while (::stat(filename, &buf) == 0) {
4248      (void)::poll(NULL, 0, 100);
4249    }
4250  } else {
4251    jio_fprintf(stderr,
4252      "Could not open pause file '%s', continuing immediately.\n", filename);
4253  }
4254}
4255
4256
4257// Refer to the comments in os_solaris.cpp park-unpark.
4258//
4259// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4260// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4261// For specifics regarding the bug see GLIBC BUGID 261237 :
4262//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4263// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4264// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4265// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4266// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4267// and monitorenter when we're using 1-0 locking.  All those operations may result in
4268// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4269// of libpthread avoids the problem, but isn't practical.
4270//
4271// Possible remedies:
4272//
4273// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4274//      This is palliative and probabilistic, however.  If the thread is preempted
4275//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4276//      than the minimum period may have passed, and the abstime may be stale (in the
4277//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4278//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4279//
4280// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4281//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4282//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4283//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4284//      thread.
4285//
4286// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4287//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4288//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4289//      This also works well.  In fact it avoids kernel-level scalability impediments
4290//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4291//      timers in a graceful fashion.
4292//
4293// 4.   When the abstime value is in the past it appears that control returns
4294//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4295//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4296//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4297//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4298//      It may be possible to avoid reinitialization by checking the return
4299//      value from pthread_cond_timedwait().  In addition to reinitializing the
4300//      condvar we must establish the invariant that cond_signal() is only called
4301//      within critical sections protected by the adjunct mutex.  This prevents
4302//      cond_signal() from "seeing" a condvar that's in the midst of being
4303//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4304//      desirable signal-after-unlock optimization that avoids futile context switching.
4305//
4306//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4307//      structure when a condvar is used or initialized.  cond_destroy()  would
4308//      release the helper structure.  Our reinitialize-after-timedwait fix
4309//      put excessive stress on malloc/free and locks protecting the c-heap.
4310//
4311// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4312// It may be possible to refine (4) by checking the kernel and NTPL verisons
4313// and only enabling the work-around for vulnerable environments.
4314
4315// utility to compute the abstime argument to timedwait:
4316// millis is the relative timeout time
4317// abstime will be the absolute timeout time
4318// TODO: replace compute_abstime() with unpackTime()
4319
4320static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4321  if (millis < 0)  millis = 0;
4322  struct timeval now;
4323  int status = gettimeofday(&now, NULL);
4324  assert(status == 0, "gettimeofday");
4325  jlong seconds = millis / 1000;
4326  millis %= 1000;
4327  if (seconds > 50000000) { // see man cond_timedwait(3T)
4328    seconds = 50000000;
4329  }
4330  abstime->tv_sec = now.tv_sec  + seconds;
4331  long       usec = now.tv_usec + millis * 1000;
4332  if (usec >= 1000000) {
4333    abstime->tv_sec += 1;
4334    usec -= 1000000;
4335  }
4336  abstime->tv_nsec = usec * 1000;
4337  return abstime;
4338}
4339
4340
4341// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4342// Conceptually TryPark() should be equivalent to park(0).
4343
4344int os::PlatformEvent::TryPark() {
4345  for (;;) {
4346    const int v = _Event ;
4347    guarantee ((v == 0) || (v == 1), "invariant") ;
4348    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4349  }
4350}
4351
4352void os::PlatformEvent::park() {       // AKA "down()"
4353  // Invariant: Only the thread associated with the Event/PlatformEvent
4354  // may call park().
4355  // TODO: assert that _Assoc != NULL or _Assoc == Self
4356  int v ;
4357  for (;;) {
4358      v = _Event ;
4359      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4360  }
4361  guarantee (v >= 0, "invariant") ;
4362  if (v == 0) {
4363     // Do this the hard way by blocking ...
4364     int status = pthread_mutex_lock(_mutex);
4365     assert_status(status == 0, status, "mutex_lock");
4366     guarantee (_nParked == 0, "invariant") ;
4367     ++ _nParked ;
4368     while (_Event < 0) {
4369        status = pthread_cond_wait(_cond, _mutex);
4370        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4371        // Treat this the same as if the wait was interrupted
4372        if (status == ETIMEDOUT) { status = EINTR; }
4373        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4374     }
4375     -- _nParked ;
4376
4377    _Event = 0 ;
4378     status = pthread_mutex_unlock(_mutex);
4379     assert_status(status == 0, status, "mutex_unlock");
4380    // Paranoia to ensure our locked and lock-free paths interact
4381    // correctly with each other.
4382    OrderAccess::fence();
4383  }
4384  guarantee (_Event >= 0, "invariant") ;
4385}
4386
4387int os::PlatformEvent::park(jlong millis) {
4388  guarantee (_nParked == 0, "invariant") ;
4389
4390  int v ;
4391  for (;;) {
4392      v = _Event ;
4393      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4394  }
4395  guarantee (v >= 0, "invariant") ;
4396  if (v != 0) return OS_OK ;
4397
4398  // We do this the hard way, by blocking the thread.
4399  // Consider enforcing a minimum timeout value.
4400  struct timespec abst;
4401  compute_abstime(&abst, millis);
4402
4403  int ret = OS_TIMEOUT;
4404  int status = pthread_mutex_lock(_mutex);
4405  assert_status(status == 0, status, "mutex_lock");
4406  guarantee (_nParked == 0, "invariant") ;
4407  ++_nParked ;
4408
4409  // Object.wait(timo) will return because of
4410  // (a) notification
4411  // (b) timeout
4412  // (c) thread.interrupt
4413  //
4414  // Thread.interrupt and object.notify{All} both call Event::set.
4415  // That is, we treat thread.interrupt as a special case of notification.
4416  // The underlying Solaris implementation, cond_timedwait, admits
4417  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4418  // JVM from making those visible to Java code.  As such, we must
4419  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4420  //
4421  // TODO: properly differentiate simultaneous notify+interrupt.
4422  // In that case, we should propagate the notify to another waiter.
4423
4424  while (_Event < 0) {
4425    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4426    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4427      pthread_cond_destroy (_cond);
4428      pthread_cond_init (_cond, NULL) ;
4429    }
4430    assert_status(status == 0 || status == EINTR ||
4431                  status == ETIMEDOUT,
4432                  status, "cond_timedwait");
4433    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4434    if (status == ETIMEDOUT) break ;
4435    // We consume and ignore EINTR and spurious wakeups.
4436  }
4437  --_nParked ;
4438  if (_Event >= 0) {
4439     ret = OS_OK;
4440  }
4441  _Event = 0 ;
4442  status = pthread_mutex_unlock(_mutex);
4443  assert_status(status == 0, status, "mutex_unlock");
4444  assert (_nParked == 0, "invariant") ;
4445  // Paranoia to ensure our locked and lock-free paths interact
4446  // correctly with each other.
4447  OrderAccess::fence();
4448  return ret;
4449}
4450
4451void os::PlatformEvent::unpark() {
4452  // Transitions for _Event:
4453  //    0 :=> 1
4454  //    1 :=> 1
4455  //   -1 :=> either 0 or 1; must signal target thread
4456  //          That is, we can safely transition _Event from -1 to either
4457  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4458  //          unpark() calls.
4459  // See also: "Semaphores in Plan 9" by Mullender & Cox
4460  //
4461  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4462  // that it will take two back-to-back park() calls for the owning
4463  // thread to block. This has the benefit of forcing a spurious return
4464  // from the first park() call after an unpark() call which will help
4465  // shake out uses of park() and unpark() without condition variables.
4466
4467  if (Atomic::xchg(1, &_Event) >= 0) return;
4468
4469  // Wait for the thread associated with the event to vacate
4470  int status = pthread_mutex_lock(_mutex);
4471  assert_status(status == 0, status, "mutex_lock");
4472  int AnyWaiters = _nParked;
4473  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4474  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4475    AnyWaiters = 0;
4476    pthread_cond_signal(_cond);
4477  }
4478  status = pthread_mutex_unlock(_mutex);
4479  assert_status(status == 0, status, "mutex_unlock");
4480  if (AnyWaiters != 0) {
4481    status = pthread_cond_signal(_cond);
4482    assert_status(status == 0, status, "cond_signal");
4483  }
4484
4485  // Note that we signal() _after dropping the lock for "immortal" Events.
4486  // This is safe and avoids a common class of  futile wakeups.  In rare
4487  // circumstances this can cause a thread to return prematurely from
4488  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4489  // simply re-test the condition and re-park itself.
4490}
4491
4492
4493// JSR166
4494// -------------------------------------------------------
4495
4496/*
4497 * The solaris and bsd implementations of park/unpark are fairly
4498 * conservative for now, but can be improved. They currently use a
4499 * mutex/condvar pair, plus a a count.
4500 * Park decrements count if > 0, else does a condvar wait.  Unpark
4501 * sets count to 1 and signals condvar.  Only one thread ever waits
4502 * on the condvar. Contention seen when trying to park implies that someone
4503 * is unparking you, so don't wait. And spurious returns are fine, so there
4504 * is no need to track notifications.
4505 */
4506
4507#define MAX_SECS 100000000
4508/*
4509 * This code is common to bsd and solaris and will be moved to a
4510 * common place in dolphin.
4511 *
4512 * The passed in time value is either a relative time in nanoseconds
4513 * or an absolute time in milliseconds. Either way it has to be unpacked
4514 * into suitable seconds and nanoseconds components and stored in the
4515 * given timespec structure.
4516 * Given time is a 64-bit value and the time_t used in the timespec is only
4517 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4518 * overflow if times way in the future are given. Further on Solaris versions
4519 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4520 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4521 * As it will be 28 years before "now + 100000000" will overflow we can
4522 * ignore overflow and just impose a hard-limit on seconds using the value
4523 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4524 * years from "now".
4525 */
4526
4527static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4528  assert (time > 0, "convertTime");
4529
4530  struct timeval now;
4531  int status = gettimeofday(&now, NULL);
4532  assert(status == 0, "gettimeofday");
4533
4534  time_t max_secs = now.tv_sec + MAX_SECS;
4535
4536  if (isAbsolute) {
4537    jlong secs = time / 1000;
4538    if (secs > max_secs) {
4539      absTime->tv_sec = max_secs;
4540    }
4541    else {
4542      absTime->tv_sec = secs;
4543    }
4544    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4545  }
4546  else {
4547    jlong secs = time / NANOSECS_PER_SEC;
4548    if (secs >= MAX_SECS) {
4549      absTime->tv_sec = max_secs;
4550      absTime->tv_nsec = 0;
4551    }
4552    else {
4553      absTime->tv_sec = now.tv_sec + secs;
4554      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4555      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4556        absTime->tv_nsec -= NANOSECS_PER_SEC;
4557        ++absTime->tv_sec; // note: this must be <= max_secs
4558      }
4559    }
4560  }
4561  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4562  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4563  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4564  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4565}
4566
4567void Parker::park(bool isAbsolute, jlong time) {
4568  // Ideally we'd do something useful while spinning, such
4569  // as calling unpackTime().
4570
4571  // Optional fast-path check:
4572  // Return immediately if a permit is available.
4573  // We depend on Atomic::xchg() having full barrier semantics
4574  // since we are doing a lock-free update to _counter.
4575  if (Atomic::xchg(0, &_counter) > 0) return;
4576
4577  Thread* thread = Thread::current();
4578  assert(thread->is_Java_thread(), "Must be JavaThread");
4579  JavaThread *jt = (JavaThread *)thread;
4580
4581  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4582  // Check interrupt before trying to wait
4583  if (Thread::is_interrupted(thread, false)) {
4584    return;
4585  }
4586
4587  // Next, demultiplex/decode time arguments
4588  struct timespec absTime;
4589  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4590    return;
4591  }
4592  if (time > 0) {
4593    unpackTime(&absTime, isAbsolute, time);
4594  }
4595
4596
4597  // Enter safepoint region
4598  // Beware of deadlocks such as 6317397.
4599  // The per-thread Parker:: mutex is a classic leaf-lock.
4600  // In particular a thread must never block on the Threads_lock while
4601  // holding the Parker:: mutex.  If safepoints are pending both the
4602  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4603  ThreadBlockInVM tbivm(jt);
4604
4605  // Don't wait if cannot get lock since interference arises from
4606  // unblocking.  Also. check interrupt before trying wait
4607  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4608    return;
4609  }
4610
4611  int status ;
4612  if (_counter > 0)  { // no wait needed
4613    _counter = 0;
4614    status = pthread_mutex_unlock(_mutex);
4615    assert (status == 0, "invariant") ;
4616    // Paranoia to ensure our locked and lock-free paths interact
4617    // correctly with each other and Java-level accesses.
4618    OrderAccess::fence();
4619    return;
4620  }
4621
4622#ifdef ASSERT
4623  // Don't catch signals while blocked; let the running threads have the signals.
4624  // (This allows a debugger to break into the running thread.)
4625  sigset_t oldsigs;
4626  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4627  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4628#endif
4629
4630  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4631  jt->set_suspend_equivalent();
4632  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4633
4634  if (time == 0) {
4635    status = pthread_cond_wait (_cond, _mutex) ;
4636  } else {
4637    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4638    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4639      pthread_cond_destroy (_cond) ;
4640      pthread_cond_init    (_cond, NULL);
4641    }
4642  }
4643  assert_status(status == 0 || status == EINTR ||
4644                status == ETIMEDOUT,
4645                status, "cond_timedwait");
4646
4647#ifdef ASSERT
4648  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4649#endif
4650
4651  _counter = 0 ;
4652  status = pthread_mutex_unlock(_mutex) ;
4653  assert_status(status == 0, status, "invariant") ;
4654  // Paranoia to ensure our locked and lock-free paths interact
4655  // correctly with each other and Java-level accesses.
4656  OrderAccess::fence();
4657
4658  // If externally suspended while waiting, re-suspend
4659  if (jt->handle_special_suspend_equivalent_condition()) {
4660    jt->java_suspend_self();
4661  }
4662}
4663
4664void Parker::unpark() {
4665  int s, status ;
4666  status = pthread_mutex_lock(_mutex);
4667  assert (status == 0, "invariant") ;
4668  s = _counter;
4669  _counter = 1;
4670  if (s < 1) {
4671     if (WorkAroundNPTLTimedWaitHang) {
4672        status = pthread_cond_signal (_cond) ;
4673        assert (status == 0, "invariant") ;
4674        status = pthread_mutex_unlock(_mutex);
4675        assert (status == 0, "invariant") ;
4676     } else {
4677        status = pthread_mutex_unlock(_mutex);
4678        assert (status == 0, "invariant") ;
4679        status = pthread_cond_signal (_cond) ;
4680        assert (status == 0, "invariant") ;
4681     }
4682  } else {
4683    pthread_mutex_unlock(_mutex);
4684    assert (status == 0, "invariant") ;
4685  }
4686}
4687
4688
4689/* Darwin has no "environ" in a dynamic library. */
4690#ifdef __APPLE__
4691#include <crt_externs.h>
4692#define environ (*_NSGetEnviron())
4693#else
4694extern char** environ;
4695#endif
4696
4697// Run the specified command in a separate process. Return its exit value,
4698// or -1 on failure (e.g. can't fork a new process).
4699// Unlike system(), this function can be called from signal handler. It
4700// doesn't block SIGINT et al.
4701int os::fork_and_exec(char* cmd) {
4702  const char * argv[4] = {"sh", "-c", cmd, NULL};
4703
4704  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4705  // pthread_atfork handlers and reset pthread library. All we need is a
4706  // separate process to execve. Make a direct syscall to fork process.
4707  // On IA64 there's no fork syscall, we have to use fork() and hope for
4708  // the best...
4709  pid_t pid = fork();
4710
4711  if (pid < 0) {
4712    // fork failed
4713    return -1;
4714
4715  } else if (pid == 0) {
4716    // child process
4717
4718    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4719    // first to kill every thread on the thread list. Because this list is
4720    // not reset by fork() (see notes above), execve() will instead kill
4721    // every thread in the parent process. We know this is the only thread
4722    // in the new process, so make a system call directly.
4723    // IA64 should use normal execve() from glibc to match the glibc fork()
4724    // above.
4725    execve("/bin/sh", (char* const*)argv, environ);
4726
4727    // execve failed
4728    _exit(-1);
4729
4730  } else  {
4731    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4732    // care about the actual exit code, for now.
4733
4734    int status;
4735
4736    // Wait for the child process to exit.  This returns immediately if
4737    // the child has already exited. */
4738    while (waitpid(pid, &status, 0) < 0) {
4739        switch (errno) {
4740        case ECHILD: return 0;
4741        case EINTR: break;
4742        default: return -1;
4743        }
4744    }
4745
4746    if (WIFEXITED(status)) {
4747       // The child exited normally; get its exit code.
4748       return WEXITSTATUS(status);
4749    } else if (WIFSIGNALED(status)) {
4750       // The child exited because of a signal
4751       // The best value to return is 0x80 + signal number,
4752       // because that is what all Unix shells do, and because
4753       // it allows callers to distinguish between process exit and
4754       // process death by signal.
4755       return 0x80 + WTERMSIG(status);
4756    } else {
4757       // Unknown exit code; pass it through
4758       return status;
4759    }
4760  }
4761}
4762
4763// is_headless_jre()
4764//
4765// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4766// in order to report if we are running in a headless jre
4767//
4768// Since JDK8 xawt/libmawt.so was moved into the same directory
4769// as libawt.so, and renamed libawt_xawt.so
4770//
4771bool os::is_headless_jre() {
4772#ifdef __APPLE__
4773    // We no longer build headless-only on Mac OS X
4774    return false;
4775#else
4776    struct stat statbuf;
4777    char buf[MAXPATHLEN];
4778    char libmawtpath[MAXPATHLEN];
4779    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4780    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4781    char *p;
4782
4783    // Get path to libjvm.so
4784    os::jvm_path(buf, sizeof(buf));
4785
4786    // Get rid of libjvm.so
4787    p = strrchr(buf, '/');
4788    if (p == NULL) return false;
4789    else *p = '\0';
4790
4791    // Get rid of client or server
4792    p = strrchr(buf, '/');
4793    if (p == NULL) return false;
4794    else *p = '\0';
4795
4796    // check xawt/libmawt.so
4797    strcpy(libmawtpath, buf);
4798    strcat(libmawtpath, xawtstr);
4799    if (::stat(libmawtpath, &statbuf) == 0) return false;
4800
4801    // check libawt_xawt.so
4802    strcpy(libmawtpath, buf);
4803    strcat(libmawtpath, new_xawtstr);
4804    if (::stat(libmawtpath, &statbuf) == 0) return false;
4805
4806    return true;
4807#endif
4808}
4809
4810// Get the default path to the core file
4811// Returns the length of the string
4812int os::get_core_path(char* buffer, size_t bufferSize) {
4813  int n = jio_snprintf(buffer, bufferSize, "/cores");
4814
4815  // Truncate if theoretical string was longer than bufferSize
4816  n = MIN2(n, (int)bufferSize);
4817
4818  return n;
4819}
4820
4821#ifndef PRODUCT
4822void TestReserveMemorySpecial_test() {
4823  // No tests available for this platform
4824}
4825#endif
4826