os_bsd.cpp revision 5619:3b32d287da89
1179055Sjfv/*
2171384Sjfv * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3247822Sjfv * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4171384Sjfv *
5171384Sjfv * This code is free software; you can redistribute it and/or modify it
6171384Sjfv * under the terms of the GNU General Public License version 2 only, as
7171384Sjfv * published by the Free Software Foundation.
8171384Sjfv *
9171384Sjfv * This code is distributed in the hope that it will be useful, but WITHOUT
10171384Sjfv * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11171384Sjfv * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12171384Sjfv * version 2 for more details (a copy is included in the LICENSE file that
13171384Sjfv * accompanied this code).
14171384Sjfv *
15171384Sjfv * You should have received a copy of the GNU General Public License version
16171384Sjfv * 2 along with this work; if not, write to the Free Software Foundation,
17171384Sjfv * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18171384Sjfv *
19171384Sjfv * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20171384Sjfv * or visit www.oracle.com if you need additional information or have any
21171384Sjfv * questions.
22171384Sjfv *
23171384Sjfv */
24171384Sjfv
25171384Sjfv// no precompiled headers
26171384Sjfv#include "classfile/classLoader.hpp"
27171384Sjfv#include "classfile/systemDictionary.hpp"
28171384Sjfv#include "classfile/vmSymbols.hpp"
29171384Sjfv#include "code/icBuffer.hpp"
30171384Sjfv#include "code/vtableStubs.hpp"
31171384Sjfv#include "compiler/compileBroker.hpp"
32179055Sjfv#include "compiler/disassembler.hpp"
33179055Sjfv#include "interpreter/interpreter.hpp"
34171384Sjfv#include "jvm_bsd.h"
35171384Sjfv#include "memory/allocation.inline.hpp"
36171384Sjfv#include "memory/filemap.hpp"
37171384Sjfv#include "mutex_bsd.inline.hpp"
38251964Sjfv#include "oops/oop.inline.hpp"
39251964Sjfv#include "os_share_bsd.hpp"
40251964Sjfv#include "prims/jniFastGetField.hpp"
41251964Sjfv#include "prims/jvm.h"
42251964Sjfv#include "prims/jvm_misc.hpp"
43251964Sjfv#include "runtime/arguments.hpp"
44251964Sjfv#include "runtime/extendedPC.hpp"
45251964Sjfv#include "runtime/globals.hpp"
46251964Sjfv#include "runtime/interfaceSupport.hpp"
47251964Sjfv#include "runtime/java.hpp"
48251964Sjfv#include "runtime/javaCalls.hpp"
49251964Sjfv#include "runtime/mutexLocker.hpp"
50251964Sjfv#include "runtime/objectMonitor.hpp"
51251964Sjfv#include "runtime/osThread.hpp"
52251964Sjfv#include "runtime/perfMemory.hpp"
53251964Sjfv#include "runtime/sharedRuntime.hpp"
54251964Sjfv#include "runtime/statSampler.hpp"
55251964Sjfv#include "runtime/stubRoutines.hpp"
56251964Sjfv#include "runtime/thread.inline.hpp"
57251964Sjfv#include "runtime/threadCritical.hpp"
58251964Sjfv#include "runtime/timer.hpp"
59251964Sjfv#include "services/attachListener.hpp"
60251964Sjfv#include "services/memTracker.hpp"
61251964Sjfv#include "services/runtimeService.hpp"
62251964Sjfv#include "utilities/decoder.hpp"
63251964Sjfv#include "utilities/defaultStream.hpp"
64251964Sjfv#include "utilities/events.hpp"
65251964Sjfv#include "utilities/growableArray.hpp"
66251964Sjfv#include "utilities/vmError.hpp"
67251964Sjfv
68251964Sjfv// put OS-includes here
69251964Sjfv# include <sys/types.h>
70251964Sjfv# include <sys/mman.h>
71251964Sjfv# include <sys/stat.h>
72251964Sjfv# include <sys/select.h>
73251964Sjfv# include <pthread.h>
74251964Sjfv# include <signal.h>
75251964Sjfv# include <errno.h>
76171384Sjfv# include <dlfcn.h>
77171384Sjfv# include <stdio.h>
78194875Sjfv# include <unistd.h>
79251964Sjfv# include <sys/resource.h>
80251964Sjfv# include <pthread.h>
81251964Sjfv# include <sys/stat.h>
82171384Sjfv# include <sys/time.h>
83230775Sjfv# include <sys/times.h>
84230775Sjfv# include <sys/utsname.h>
85230775Sjfv# include <sys/socket.h>
86230775Sjfv# include <sys/wait.h>
87230775Sjfv# include <time.h>
88230775Sjfv# include <pwd.h>
89230775Sjfv# include <poll.h>
90230775Sjfv# include <semaphore.h>
91230775Sjfv# include <fcntl.h>
92230775Sjfv# include <string.h>
93230775Sjfv# include <sys/param.h>
94230775Sjfv# include <sys/sysctl.h>
95230775Sjfv# include <sys/ipc.h>
96230775Sjfv# include <sys/shm.h>
97230775Sjfv#ifndef __APPLE__
98230775Sjfv# include <link.h>
99230775Sjfv#endif
100230775Sjfv# include <stdint.h>
101230775Sjfv# include <inttypes.h>
102230775Sjfv# include <sys/ioctl.h>
103247822Sjfv# include <sys/syscall.h>
104230775Sjfv
105247822Sjfv#if defined(__FreeBSD__) || defined(__NetBSD__)
106251964Sjfv# include <elf.h>
107251964Sjfv#endif
108230775Sjfv
109230775Sjfv#ifdef __APPLE__
110230775Sjfv# include <mach/mach.h> // semaphore_* API
111238149Sjfv# include <mach-o/dyld.h>
112247822Sjfv# include <sys/proc_info.h>
113230775Sjfv# include <objc/objc-auto.h>
114251964Sjfv#endif
115230775Sjfv
116230775Sjfv#ifndef MAP_ANONYMOUS
117230775Sjfv#define MAP_ANONYMOUS MAP_ANON
118247822Sjfv#endif
119247822Sjfv
120247822Sjfv#define MAX_PATH    (2 * K)
121230775Sjfv
122247822Sjfv// for timer info max values which include all bits
123247822Sjfv#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124171384Sjfv
125171384Sjfv#define LARGEPAGES_BIT (1 << 6)
126230775Sjfv////////////////////////////////////////////////////////////////////////////////
127230775Sjfv// global variables
128230775Sjfvjulong os::Bsd::_physical_memory = 0;
129230775Sjfv
130230775Sjfv
131230775Sjfvint (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132230775Sjfvpthread_t os::Bsd::_main_thread;
133230775Sjfvint os::Bsd::_page_size = -1;
134230775Sjfv
135230775Sjfvstatic jlong initial_time_count=0;
136230775Sjfv
137230775Sjfvstatic int clock_tics_per_sec = 100;
138230775Sjfv
139230775Sjfv// For diagnostics to print a message once. see run_periodic_checks
140230775Sjfvstatic sigset_t check_signal_done;
141230775Sjfvstatic bool check_signals = true;
142171384Sjfv
143171384Sjfvstatic pid_t _initial_pid = 0;
144230775Sjfv
145230775Sjfv/* Signal number used to suspend/resume a thread */
146230775Sjfv
147230775Sjfv/* do not use any signal number less than SIGSEGV, see 4355769 */
148230775Sjfvstatic int SR_signum = SIGUSR2;
149230775Sjfvsigset_t SR_sigset;
150230775Sjfv
151230775Sjfv
152230775Sjfv////////////////////////////////////////////////////////////////////////////////
153230775Sjfv// utility functions
154230775Sjfv
155230775Sjfvstatic int SR_initialize();
156230775Sjfvstatic void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157171384Sjfv
158190873Sjfvjulong os::available_memory() {
159230775Sjfv  return Bsd::available_memory();
160230775Sjfv}
161190873Sjfv
162230775Sjfv// available here means free
163230775Sjfvjulong os::Bsd::available_memory() {
164190873Sjfv  uint64_t available = physical_memory() >> 2;
165190873Sjfv#ifdef __APPLE__
166230775Sjfv  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
167230775Sjfv  vm_statistics64_data_t vmstat;
168230775Sjfv  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
169230775Sjfv                                         (host_info64_t)&vmstat, &count);
170238149Sjfv  assert(kerr == KERN_SUCCESS,
171190873Sjfv         "host_statistics64 failed - check mach_host_self() and count");
172238149Sjfv  if (kerr == KERN_SUCCESS) {
173171384Sjfv    available = vmstat.free_count * os::vm_page_size();
174230775Sjfv  }
175230775Sjfv#endif
176230775Sjfv  return available;
177230775Sjfv}
178230775Sjfv
179230775Sjfvjulong os::physical_memory() {
180230775Sjfv  return Bsd::physical_memory();
181230775Sjfv}
182230775Sjfv
183230775Sjfv////////////////////////////////////////////////////////////////////////////////
184190873Sjfv// environment support
185190873Sjfv
186190873Sjfvbool os::getenv(const char* name, char* buf, int len) {
187190873Sjfv  const char* val = ::getenv(name);
188190873Sjfv  if (val != NULL && strlen(val) < (size_t)len) {
189230775Sjfv    strcpy(buf, val);
190230775Sjfv    return true;
191230775Sjfv  }
192230775Sjfv  if (len > 0) buf[0] = 0;  // return a null string
193230775Sjfv  return false;
194230775Sjfv}
195230775Sjfv
196230775Sjfv
197230775Sjfv// Return true if user is running as root.
198230775Sjfv
199230775Sjfvbool os::have_special_privileges() {
200230775Sjfv  static bool init = false;
201230775Sjfv  static bool privileges = false;
202230775Sjfv  if (!init) {
203230775Sjfv    privileges = (getuid() != geteuid()) || (getgid() != getegid());
204230775Sjfv    init = true;
205171384Sjfv  }
206171384Sjfv  return privileges;
207230775Sjfv}
208230775Sjfv
209230775Sjfv
210230775Sjfv
211230775Sjfv// Cpu architecture string
212230775Sjfv#if   defined(ZERO)
213230775Sjfvstatic char cpu_arch[] = ZERO_LIBARCH;
214230775Sjfv#elif defined(IA64)
215230775Sjfvstatic char cpu_arch[] = "ia64";
216230775Sjfv#elif defined(IA32)
217230775Sjfvstatic char cpu_arch[] = "i386";
218230775Sjfv#elif defined(AMD64)
219230775Sjfvstatic char cpu_arch[] = "amd64";
220171384Sjfv#elif defined(ARM)
221171384Sjfvstatic char cpu_arch[] = "arm";
222230775Sjfv#elif defined(PPC)
223230775Sjfvstatic char cpu_arch[] = "ppc";
224230775Sjfv#elif defined(SPARC)
225230775Sjfv#  ifdef _LP64
226230775Sjfvstatic char cpu_arch[] = "sparcv9";
227230775Sjfv#  else
228230775Sjfvstatic char cpu_arch[] = "sparc";
229230775Sjfv#  endif
230230775Sjfv#else
231230775Sjfv#error Add appropriate cpu_arch setting
232230775Sjfv#endif
233230775Sjfv
234230775Sjfv// Compiler variant
235230775Sjfv#ifdef COMPILER2
236230775Sjfv#define COMPILER_VARIANT "server"
237230775Sjfv#else
238230775Sjfv#define COMPILER_VARIANT "client"
239230775Sjfv#endif
240179055Sjfv
241179055Sjfv
242179055Sjfvvoid os::Bsd::initialize_system_info() {
243179055Sjfv  int mib[2];
244179055Sjfv  size_t len;
245179055Sjfv  int cpu_val;
246230775Sjfv  julong mem_val;
247230775Sjfv
248230775Sjfv  /* get processors count via hw.ncpus sysctl */
249179055Sjfv  mib[0] = CTL_HW;
250179055Sjfv  mib[1] = HW_NCPU;
251179055Sjfv  len = sizeof(cpu_val);
252179055Sjfv  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
253179055Sjfv       assert(len == sizeof(cpu_val), "unexpected data size");
254179055Sjfv       set_processor_count(cpu_val);
255230775Sjfv  }
256230775Sjfv  else {
257230775Sjfv       set_processor_count(1);   // fallback
258230775Sjfv  }
259230775Sjfv
260230775Sjfv  /* get physical memory via hw.memsize sysctl (hw.memsize is used
261230775Sjfv   * since it returns a 64 bit value)
262230775Sjfv   */
263230775Sjfv  mib[0] = CTL_HW;
264251964Sjfv
265171384Sjfv#if defined (HW_MEMSIZE) // Apple
266171384Sjfv  mib[1] = HW_MEMSIZE;
267230775Sjfv#elif defined(HW_PHYSMEM) // Most of BSD
268230775Sjfv  mib[1] = HW_PHYSMEM;
269230775Sjfv#elif defined(HW_REALMEM) // Old FreeBSD
270230775Sjfv  mib[1] = HW_REALMEM;
271230775Sjfv#else
272205720Sjfv  #error No ways to get physmem
273179055Sjfv#endif
274230775Sjfv
275230775Sjfv  len = sizeof(mem_val);
276230775Sjfv  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
277230775Sjfv       assert(len == sizeof(mem_val), "unexpected data size");
278230775Sjfv       _physical_memory = mem_val;
279230775Sjfv  } else {
280230775Sjfv       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
281179055Sjfv  }
282230775Sjfv
283230775Sjfv#ifdef __OpenBSD__
284179055Sjfv  {
285230775Sjfv       // limit _physical_memory memory view on OpenBSD since
286179055Sjfv       // datasize rlimit restricts us anyway.
287230775Sjfv       struct rlimit limits;
288230775Sjfv       getrlimit(RLIMIT_DATA, &limits);
289230775Sjfv       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
290230775Sjfv  }
291230775Sjfv#endif
292230775Sjfv}
293230775Sjfv
294230775Sjfv#ifdef __APPLE__
295230775Sjfvstatic const char *get_home() {
296230775Sjfv  const char *home_dir = ::getenv("HOME");
297230775Sjfv  if ((home_dir == NULL) || (*home_dir == '\0')) {
298230775Sjfv    struct passwd *passwd_info = getpwuid(geteuid());
299230775Sjfv    if (passwd_info != NULL) {
300230775Sjfv      home_dir = passwd_info->pw_dir;
301230775Sjfv    }
302230775Sjfv  }
303230775Sjfv
304230775Sjfv  return home_dir;
305230775Sjfv}
306230775Sjfv#endif
307230775Sjfv
308230775Sjfvvoid os::init_system_properties_values() {
309230775Sjfv//  char arch[12];
310230775Sjfv//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
311230775Sjfv
312230775Sjfv  // The next steps are taken in the product version:
313230775Sjfv  //
314230775Sjfv  // Obtain the JAVA_HOME value from the location of libjvm.so.
315230775Sjfv  // This library should be located at:
316230775Sjfv  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
317230775Sjfv  //
318230775Sjfv  // If "/jre/lib/" appears at the right place in the path, then we
319230775Sjfv  // assume libjvm.so is installed in a JDK and we use this path.
320230775Sjfv  //
321230775Sjfv  // Otherwise exit with message: "Could not create the Java virtual machine."
322230775Sjfv  //
323230775Sjfv  // The following extra steps are taken in the debugging version:
324230775Sjfv  //
325230775Sjfv  // If "/jre/lib/" does NOT appear at the right place in the path
326230775Sjfv  // instead of exit check for $JAVA_HOME environment variable.
327230775Sjfv  //
328230775Sjfv  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
329171384Sjfv  // then we append a fake suffix "hotspot/libjvm.so" to this path so
330247822Sjfv  // it looks like libjvm.so is installed there
331190873Sjfv  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
332230775Sjfv  //
333230775Sjfv  // Otherwise exit.
334230775Sjfv  //
335230775Sjfv  // Important note: if the location of libjvm.so changes this
336230775Sjfv  // code needs to be changed accordingly.
337230775Sjfv
338230775Sjfv  // The next few definitions allow the code to be verbatim:
339230775Sjfv#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
340230775Sjfv#define getenv(n) ::getenv(n)
341179055Sjfv
342190873Sjfv/*
343230775Sjfv * See ld(1):
344230775Sjfv *      The linker uses the following search paths to locate required
345230775Sjfv *      shared libraries:
346230775Sjfv *        1: ...
347230775Sjfv *        ...
348230775Sjfv *        7: The default directories, normally /lib and /usr/lib.
349190873Sjfv */
350190873Sjfv#ifndef DEFAULT_LIBPATH
351190873Sjfv#define DEFAULT_LIBPATH "/lib:/usr/lib"
352230775Sjfv#endif
353230775Sjfv
354230775Sjfv#define EXTENSIONS_DIR  "/lib/ext"
355230775Sjfv#define ENDORSED_DIR    "/lib/endorsed"
356230775Sjfv#define REG_DIR         "/usr/java/packages"
357230775Sjfv
358190873Sjfv#ifdef __APPLE__
359171384Sjfv#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
360230775Sjfv#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
361230775Sjfv        const char *user_home_dir = get_home();
362230775Sjfv        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
363230775Sjfv        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
364230775Sjfv            sizeof(SYS_EXTENSIONS_DIRS);
365230775Sjfv#endif
366230775Sjfv
367230775Sjfv  {
368230775Sjfv    /* sysclasspath, java_home, dll_dir */
369179055Sjfv    {
370230775Sjfv        char *home_path;
371230775Sjfv        char *dll_path;
372230775Sjfv        char *pslash;
373230775Sjfv        char buf[MAXPATHLEN];
374230775Sjfv        os::jvm_path(buf, sizeof(buf));
375230775Sjfv
376230775Sjfv        // Found the full path to libjvm.so.
377230775Sjfv        // Now cut the path to <java_home>/jre if we can.
378190873Sjfv        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
379230775Sjfv        pslash = strrchr(buf, '/');
380230775Sjfv        if (pslash != NULL)
381230775Sjfv            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
382230775Sjfv        dll_path = malloc(strlen(buf) + 1);
383194875Sjfv        if (dll_path == NULL)
384230775Sjfv            return;
385215911Sjfv        strcpy(dll_path, buf);
386215911Sjfv        Arguments::set_dll_dir(dll_path);
387230775Sjfv
388230775Sjfv        if (pslash != NULL) {
389230775Sjfv            pslash = strrchr(buf, '/');
390230775Sjfv            if (pslash != NULL) {
391230775Sjfv                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
392230775Sjfv#ifndef __APPLE__
393190873Sjfv                pslash = strrchr(buf, '/');
394230775Sjfv                if (pslash != NULL)
395230775Sjfv                    *pslash = '\0';   /* get rid of /lib */
396230775Sjfv#endif
397230775Sjfv            }
398230775Sjfv        }
399230775Sjfv
400171384Sjfv        home_path = malloc(strlen(buf) + 1);
401171384Sjfv        if (home_path == NULL)
402230775Sjfv            return;
403230775Sjfv        strcpy(home_path, buf);
404230775Sjfv        Arguments::set_java_home(home_path);
405230775Sjfv
406230775Sjfv        if (!set_boot_path('/', ':'))
407230775Sjfv            return;
408185352Sjfv    }
409230775Sjfv
410230775Sjfv    /*
411247822Sjfv     * Where to look for native libraries
412230775Sjfv     *
413230775Sjfv     * Note: Due to a legacy implementation, most of the library path
414230775Sjfv     * is set in the launcher.  This was to accomodate linking restrictions
415171384Sjfv     * on legacy Bsd implementations (which are no longer supported).
416247822Sjfv     * Eventually, all the library path setting will be done here.
417230775Sjfv     *
418247822Sjfv     * However, to prevent the proliferation of improperly built native
419247822Sjfv     * libraries, the new path component /usr/java/packages is added here.
420247822Sjfv     * Eventually, all the library path setting will be done here.
421230775Sjfv     */
422185352Sjfv    {
423185352Sjfv        char *ld_library_path;
424230775Sjfv
425230775Sjfv        /*
426230775Sjfv         * Construct the invariant part of ld_library_path. Note that the
427185352Sjfv         * space for the colon and the trailing null are provided by the
428185352Sjfv         * nulls included by the sizeof operator (so actually we allocate
429185352Sjfv         * a byte more than necessary).
430230775Sjfv         */
431230775Sjfv#ifdef __APPLE__
432230775Sjfv        ld_library_path = (char *) malloc(system_ext_size);
433185352Sjfv        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
434185352Sjfv#else
435230775Sjfv        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
436230775Sjfv            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
437230775Sjfv        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
438230775Sjfv#endif
439230775Sjfv
440230775Sjfv        /*
441230775Sjfv         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
442230775Sjfv         * should always exist (until the legacy problem cited above is
443230775Sjfv         * addressed).
444185352Sjfv         */
445230775Sjfv#ifdef __APPLE__
446230775Sjfv        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
447230775Sjfv        char *l = getenv("JAVA_LIBRARY_PATH");
448230775Sjfv        if (l != NULL) {
449230775Sjfv            char *t = ld_library_path;
450230775Sjfv            /* That's +1 for the colon and +1 for the trailing '\0' */
451230775Sjfv            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
452247822Sjfv            sprintf(ld_library_path, "%s:%s", l, t);
453230775Sjfv            free(t);
454230775Sjfv        }
455247822Sjfv
456247822Sjfv        char *v = getenv("DYLD_LIBRARY_PATH");
457230775Sjfv#else
458185352Sjfv        char *v = getenv("LD_LIBRARY_PATH");
459185352Sjfv#endif
460230775Sjfv        if (v != NULL) {
461230775Sjfv            char *t = ld_library_path;
462230775Sjfv            /* That's +1 for the colon and +1 for the trailing '\0' */
463230775Sjfv            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
464230775Sjfv            sprintf(ld_library_path, "%s:%s", v, t);
465230775Sjfv            free(t);
466230775Sjfv        }
467230775Sjfv
468230775Sjfv#ifdef __APPLE__
469230775Sjfv        // Apple's Java6 has "." at the beginning of java.library.path.
470230775Sjfv        // OpenJDK on Windows has "." at the end of java.library.path.
471230775Sjfv        // OpenJDK on Linux and Solaris don't have "." in java.library.path
472230775Sjfv        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
473230775Sjfv        // "." is appended to the end of java.library.path. Yes, this
474230775Sjfv        // could cause a change in behavior, but Apple's Java6 behavior
475230775Sjfv        // can be achieved by putting "." at the beginning of the
476185352Sjfv        // JAVA_LIBRARY_PATH environment variable.
477230775Sjfv        {
478185352Sjfv            char *t = ld_library_path;
479185352Sjfv            // that's +3 for appending ":." and the trailing '\0'
480230775Sjfv            ld_library_path = (char *) malloc(strlen(t) + 3);
481230775Sjfv            sprintf(ld_library_path, "%s:%s", t, ".");
482230775Sjfv            free(t);
483230775Sjfv        }
484230775Sjfv#endif
485230775Sjfv
486230775Sjfv        Arguments::set_library_path(ld_library_path);
487230775Sjfv    }
488230775Sjfv
489230775Sjfv    /*
490230775Sjfv     * Extensions directories.
491171384Sjfv     *
492179055Sjfv     * Note that the space for the colon and the trailing null are provided
493251964Sjfv     * by the nulls included by the sizeof operator (so actually one byte more
494190873Sjfv     * than necessary is allocated).
495230775Sjfv     */
496230775Sjfv    {
497230775Sjfv#ifdef __APPLE__
498230775Sjfv        char *buf = malloc(strlen(Arguments::get_java_home()) +
499230775Sjfv            sizeof(EXTENSIONS_DIR) + system_ext_size);
500230775Sjfv        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
501179055Sjfv            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
502190873Sjfv#else
503230775Sjfv        char *buf = malloc(strlen(Arguments::get_java_home()) +
504230775Sjfv            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
505230775Sjfv        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
506190873Sjfv            Arguments::get_java_home());
507230775Sjfv#endif
508230775Sjfv
509190873Sjfv        Arguments::set_ext_dirs(buf);
510230775Sjfv    }
511230775Sjfv
512190873Sjfv    /* Endorsed standards default directory. */
513230775Sjfv    {
514230775Sjfv        char * buf;
515190873Sjfv        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
516190873Sjfv        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
517230775Sjfv        Arguments::set_endorsed_dirs(buf);
518230775Sjfv    }
519230775Sjfv  }
520230775Sjfv
521230775Sjfv#ifdef __APPLE__
522230775Sjfv#undef SYS_EXTENSIONS_DIR
523230775Sjfv#endif
524230775Sjfv#undef malloc
525230775Sjfv#undef getenv
526230775Sjfv#undef EXTENSIONS_DIR
527230775Sjfv#undef ENDORSED_DIR
528230775Sjfv
529230775Sjfv  // Done
530230775Sjfv  return;
531230775Sjfv}
532230775Sjfv
533230775Sjfv////////////////////////////////////////////////////////////////////////////////
534230775Sjfv// breakpoint support
535230775Sjfv
536230775Sjfvvoid os::breakpoint() {
537230775Sjfv  BREAKPOINT;
538230775Sjfv}
539230775Sjfv
540230775Sjfvextern "C" void breakpoint() {
541230775Sjfv  // use debugger to set breakpoint here
542230775Sjfv}
543230775Sjfv
544230775Sjfv////////////////////////////////////////////////////////////////////////////////
545230775Sjfv// signal support
546230775Sjfv
547230775Sjfvdebug_only(static bool signal_sets_initialized = false);
548230775Sjfvstatic sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
549230775Sjfv
550230775Sjfvbool os::Bsd::is_sig_ignored(int sig) {
551230775Sjfv      struct sigaction oact;
552190873Sjfv      sigaction(sig, (struct sigaction*)NULL, &oact);
553190873Sjfv      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
554230775Sjfv                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
555230775Sjfv      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
556230775Sjfv           return true;
557230775Sjfv      else
558190873Sjfv           return false;
559230775Sjfv}
560230775Sjfv
561230775Sjfvvoid os::Bsd::signal_sets_init() {
562230775Sjfv  // Should also have an assertion stating we are still single-threaded.
563230775Sjfv  assert(!signal_sets_initialized, "Already initialized");
564230775Sjfv  // Fill in signals that are necessarily unblocked for all threads in
565230775Sjfv  // the VM. Currently, we unblock the following signals:
566190873Sjfv  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
567230775Sjfv  //                         by -Xrs (=ReduceSignalUsage));
568230775Sjfv  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
569230775Sjfv  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
570230775Sjfv  // the dispositions or masks wrt these signals.
571230775Sjfv  // Programs embedding the VM that want to use the above signals for their
572230775Sjfv  // own purposes must, at this time, use the "-Xrs" option to prevent
573230775Sjfv  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
574230775Sjfv  // (See bug 4345157, and other related bugs).
575230775Sjfv  // In reality, though, unblocking these signals is really a nop, since
576190873Sjfv  // these signals are not blocked by default.
577190873Sjfv  sigemptyset(&unblocked_sigs);
578230775Sjfv  sigemptyset(&allowdebug_blocked_sigs);
579230775Sjfv  sigaddset(&unblocked_sigs, SIGILL);
580230775Sjfv  sigaddset(&unblocked_sigs, SIGSEGV);
581230775Sjfv  sigaddset(&unblocked_sigs, SIGBUS);
582230775Sjfv  sigaddset(&unblocked_sigs, SIGFPE);
583230775Sjfv  sigaddset(&unblocked_sigs, SR_signum);
584230775Sjfv
585230775Sjfv  if (!ReduceSignalUsage) {
586230775Sjfv   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
587230775Sjfv      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
588190873Sjfv      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
589230775Sjfv   }
590190873Sjfv   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
591190873Sjfv      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
592230775Sjfv      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
593230775Sjfv   }
594230775Sjfv   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
595230775Sjfv      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
596230775Sjfv      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
597230775Sjfv   }
598230775Sjfv  }
599230775Sjfv  // Fill in signals that are blocked by all but the VM thread.
600230775Sjfv  sigemptyset(&vm_sigs);
601230775Sjfv  if (!ReduceSignalUsage)
602230775Sjfv    sigaddset(&vm_sigs, BREAK_SIGNAL);
603230775Sjfv  debug_only(signal_sets_initialized = true);
604230775Sjfv
605230775Sjfv}
606230775Sjfv
607230775Sjfv// These are signals that are unblocked while a thread is running Java.
608230775Sjfv// (For some reason, they get blocked by default.)
609230775Sjfvsigset_t* os::Bsd::unblocked_signals() {
610190873Sjfv  assert(signal_sets_initialized, "Not initialized");
611230775Sjfv  return &unblocked_sigs;
612230775Sjfv}
613230775Sjfv
614230775Sjfv// These are the signals that are blocked while a (non-VM) thread is
615217593Sjfv// running Java. Only the VM thread handles these signals.
616217593Sjfvsigset_t* os::Bsd::vm_signals() {
617230775Sjfv  assert(signal_sets_initialized, "Not initialized");
618190873Sjfv  return &vm_sigs;
619190873Sjfv}
620230775Sjfv
621230775Sjfv// These are signals that are blocked during cond_wait to allow debugger in
622230775Sjfvsigset_t* os::Bsd::allowdebug_blocked_signals() {
623230775Sjfv  assert(signal_sets_initialized, "Not initialized");
624230775Sjfv  return &allowdebug_blocked_sigs;
625230775Sjfv}
626230775Sjfv
627230775Sjfvvoid os::Bsd::hotspot_sigmask(Thread* thread) {
628230775Sjfv
629230775Sjfv  //Save caller's signal mask before setting VM signal mask
630190873Sjfv  sigset_t caller_sigmask;
631247822Sjfv  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
632190873Sjfv
633230775Sjfv  OSThread* osthread = thread->osthread();
634230775Sjfv  osthread->set_caller_sigmask(caller_sigmask);
635230775Sjfv
636230775Sjfv  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
637230775Sjfv
638230775Sjfv  if (!ReduceSignalUsage) {
639230775Sjfv    if (thread->is_VM_thread()) {
640230775Sjfv      // Only the VM thread handles BREAK_SIGNAL ...
641230775Sjfv      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
642230775Sjfv    } else {
643230775Sjfv      // ... all other threads block BREAK_SIGNAL
644230775Sjfv      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
645230775Sjfv    }
646230775Sjfv  }
647230775Sjfv}
648230775Sjfv
649230775Sjfv
650190873Sjfv//////////////////////////////////////////////////////////////////////////////
651230775Sjfv// create new thread
652230775Sjfv
653230775Sjfv// check if it's safe to start a new thread
654230775Sjfvstatic bool _thread_safety_check(Thread* thread) {
655190873Sjfv  return true;
656230775Sjfv}
657230775Sjfv
658230775Sjfv#ifdef __APPLE__
659230775Sjfv// library handle for calling objc_registerThreadWithCollector()
660230775Sjfv// without static linking to the libobjc library
661230775Sjfv#define OBJC_LIB "/usr/lib/libobjc.dylib"
662230775Sjfv#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
663230775Sjfvtypedef void (*objc_registerThreadWithCollector_t)();
664230775Sjfvextern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
665230775Sjfvobjc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
666190873Sjfv#endif
667230775Sjfv
668230775Sjfv#ifdef __APPLE__
669230775Sjfvstatic uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
670230775Sjfv  // Additional thread_id used to correlate threads in SA
671230775Sjfv  thread_identifier_info_data_t     m_ident_info;
672230775Sjfv  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
673230775Sjfv
674230775Sjfv  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
675230775Sjfv              (thread_info_t) &m_ident_info, &count);
676230775Sjfv
677230775Sjfv  return m_ident_info.thread_id;
678190873Sjfv}
679230775Sjfv#endif
680230775Sjfv
681230775Sjfv// Thread start routine for all newly created threads
682230775Sjfvstatic void *java_start(Thread *thread) {
683230775Sjfv  // Try to randomize the cache line index of hot stack frames.
684230775Sjfv  // This helps when threads of the same stack traces evict each other's
685230775Sjfv  // cache lines. The threads can be either from the same JVM instance, or
686190873Sjfv  // from different JVM instances. The benefit is especially true for
687171384Sjfv  // processors with hyperthreading technology.
688230775Sjfv  static int counter = 0;
689230775Sjfv  int pid = os::current_process_id();
690230775Sjfv  alloca(((pid ^ counter++) & 7) * 128);
691230775Sjfv
692230775Sjfv  ThreadLocalStorage::set_thread(thread);
693230775Sjfv
694230775Sjfv  OSThread* osthread = thread->osthread();
695230775Sjfv  Monitor* sync = osthread->startThread_lock();
696230775Sjfv
697230775Sjfv  // non floating stack BsdThreads needs extra check, see above
698230775Sjfv  if (!_thread_safety_check(thread)) {
699230775Sjfv    // notify parent thread
700230775Sjfv    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
701230775Sjfv    osthread->set_state(ZOMBIE);
702230775Sjfv    sync->notify_all();
703230775Sjfv    return NULL;
704230775Sjfv  }
705230775Sjfv
706230775Sjfv  osthread->set_thread_id(os::Bsd::gettid());
707230775Sjfv
708230775Sjfv#ifdef __APPLE__
709230775Sjfv  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
710230775Sjfv  guarantee(unique_thread_id != 0, "unique thread id was not found");
711230775Sjfv  osthread->set_unique_thread_id(unique_thread_id);
712230775Sjfv#endif
713230775Sjfv  // initialize signal mask for this thread
714230775Sjfv  os::Bsd::hotspot_sigmask(thread);
715230775Sjfv
716230775Sjfv  // initialize floating point control register
717230775Sjfv  os::Bsd::init_thread_fpu_state();
718230775Sjfv
719230775Sjfv#ifdef __APPLE__
720230775Sjfv  // register thread with objc gc
721230775Sjfv  if (objc_registerThreadWithCollectorFunction != NULL) {
722230775Sjfv    objc_registerThreadWithCollectorFunction();
723230775Sjfv  }
724230775Sjfv#endif
725230775Sjfv
726230775Sjfv  // handshaking with parent thread
727230775Sjfv  {
728230775Sjfv    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
729230775Sjfv
730230775Sjfv    // notify parent thread
731230775Sjfv    osthread->set_state(INITIALIZED);
732230775Sjfv    sync->notify_all();
733230775Sjfv
734230775Sjfv    // wait until os::start_thread()
735230775Sjfv    while (osthread->get_state() == INITIALIZED) {
736230775Sjfv      sync->wait(Mutex::_no_safepoint_check_flag);
737230775Sjfv    }
738230775Sjfv  }
739230775Sjfv
740230775Sjfv  // call one more level start routine
741230775Sjfv  thread->run();
742230775Sjfv
743230775Sjfv  return 0;
744230775Sjfv}
745171384Sjfv
746230775Sjfvbool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
747230775Sjfv  assert(thread->osthread() == NULL, "caller responsible");
748230775Sjfv
749230775Sjfv  // Allocate the OSThread object
750171384Sjfv  OSThread* osthread = new OSThread(NULL, NULL);
751230775Sjfv  if (osthread == NULL) {
752230775Sjfv    return false;
753230775Sjfv  }
754230775Sjfv
755230775Sjfv  // set the correct thread state
756230775Sjfv  osthread->set_thread_type(thr_type);
757230775Sjfv
758230775Sjfv  // Initial state is ALLOCATED but not INITIALIZED
759230775Sjfv  osthread->set_state(ALLOCATED);
760230775Sjfv
761230775Sjfv  thread->set_osthread(osthread);
762230775Sjfv
763230775Sjfv  // init thread attributes
764230775Sjfv  pthread_attr_t attr;
765230775Sjfv  pthread_attr_init(&attr);
766230775Sjfv  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
767230775Sjfv
768230775Sjfv  // stack size
769230775Sjfv  if (os::Bsd::supports_variable_stack_size()) {
770230775Sjfv    // calculate stack size if it's not specified by caller
771230775Sjfv    if (stack_size == 0) {
772230775Sjfv      stack_size = os::Bsd::default_stack_size(thr_type);
773230775Sjfv
774230775Sjfv      switch (thr_type) {
775230775Sjfv      case os::java_thread:
776230775Sjfv        // Java threads use ThreadStackSize which default value can be
777230775Sjfv        // changed with the flag -Xss
778230775Sjfv        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
779230775Sjfv        stack_size = JavaThread::stack_size_at_create();
780230775Sjfv        break;
781230775Sjfv      case os::compiler_thread:
782230775Sjfv        if (CompilerThreadStackSize > 0) {
783230775Sjfv          stack_size = (size_t)(CompilerThreadStackSize * K);
784230775Sjfv          break;
785230775Sjfv        } // else fall through:
786230775Sjfv          // use VMThreadStackSize if CompilerThreadStackSize is not defined
787230775Sjfv      case os::vm_thread:
788230775Sjfv      case os::pgc_thread:
789171384Sjfv      case os::cgc_thread:
790171384Sjfv      case os::watcher_thread:
791230775Sjfv        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
792230775Sjfv        break;
793230775Sjfv      }
794230775Sjfv    }
795230775Sjfv
796230775Sjfv    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
797230775Sjfv    pthread_attr_setstacksize(&attr, stack_size);
798230775Sjfv  } else {
799230775Sjfv    // let pthread_create() pick the default value.
800230775Sjfv  }
801230775Sjfv
802230775Sjfv  ThreadState state;
803230775Sjfv
804230775Sjfv  {
805230775Sjfv    pthread_t tid;
806230775Sjfv    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
807230775Sjfv
808171384Sjfv    pthread_attr_destroy(&attr);
809230775Sjfv
810247822Sjfv    if (ret != 0) {
811230775Sjfv      if (PrintMiscellaneous && (Verbose || WizardMode)) {
812230775Sjfv        perror("pthread_create()");
813230775Sjfv      }
814230775Sjfv      // Need to clean up stuff we've allocated so far
815230775Sjfv      thread->set_osthread(NULL);
816247822Sjfv      delete osthread;
817247822Sjfv      return false;
818230775Sjfv    }
819171384Sjfv
820230775Sjfv    // Store pthread info into the OSThread
821230775Sjfv    osthread->set_pthread_id(tid);
822230775Sjfv
823230775Sjfv    // Wait until child thread is either initialized or aborted
824230775Sjfv    {
825230775Sjfv      Monitor* sync_with_child = osthread->startThread_lock();
826230775Sjfv      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
827171384Sjfv      while ((state = osthread->get_state()) == ALLOCATED) {
828230775Sjfv        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
829230775Sjfv      }
830230775Sjfv    }
831230775Sjfv
832230775Sjfv  }
833230775Sjfv
834230775Sjfv  // Aborted due to thread limit being reached
835171384Sjfv  if (state == ZOMBIE) {
836230775Sjfv      thread->set_osthread(NULL);
837230775Sjfv      delete osthread;
838230775Sjfv      return false;
839230775Sjfv  }
840230775Sjfv
841230775Sjfv  // The thread is returned suspended (in state INITIALIZED),
842230775Sjfv  // and is started higher up in the call chain
843230775Sjfv  assert(state == INITIALIZED, "race condition");
844230775Sjfv  return true;
845230775Sjfv}
846230775Sjfv
847230775Sjfv/////////////////////////////////////////////////////////////////////////////
848230775Sjfv// attach existing thread
849230775Sjfv
850230775Sjfv// bootstrap the main thread
851230775Sjfvbool os::create_main_thread(JavaThread* thread) {
852230775Sjfv  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
853230775Sjfv  return create_attached_thread(thread);
854230775Sjfv}
855230775Sjfv
856230775Sjfvbool os::create_attached_thread(JavaThread* thread) {
857230775Sjfv#ifdef ASSERT
858230775Sjfv    thread->verify_not_published();
859171384Sjfv#endif
860190873Sjfv
861230775Sjfv  // Allocate the OSThread object
862230775Sjfv  OSThread* osthread = new OSThread(NULL, NULL);
863230775Sjfv
864230775Sjfv  if (osthread == NULL) {
865230775Sjfv    return false;
866230775Sjfv  }
867230775Sjfv
868230775Sjfv  osthread->set_thread_id(os::Bsd::gettid());
869230775Sjfv
870230775Sjfv  // Store pthread info into the OSThread
871230775Sjfv#ifdef __APPLE__
872230775Sjfv  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
873230775Sjfv  guarantee(unique_thread_id != 0, "just checking");
874230775Sjfv  osthread->set_unique_thread_id(unique_thread_id);
875230775Sjfv#endif
876230775Sjfv  osthread->set_pthread_id(::pthread_self());
877230775Sjfv
878230775Sjfv  // initialize floating point control register
879230775Sjfv  os::Bsd::init_thread_fpu_state();
880230775Sjfv
881190873Sjfv  // Initial thread state is RUNNABLE
882200239Sjfv  osthread->set_state(RUNNABLE);
883230775Sjfv
884230775Sjfv  thread->set_osthread(osthread);
885230775Sjfv
886230775Sjfv  // initialize signal mask for this thread
887200239Sjfv  // and save the caller's signal mask
888230775Sjfv  os::Bsd::hotspot_sigmask(thread);
889230775Sjfv
890230775Sjfv  return true;
891230775Sjfv}
892230775Sjfv
893230775Sjfvvoid os::pd_start_thread(Thread* thread) {
894230775Sjfv  OSThread * osthread = thread->osthread();
895238149Sjfv  assert(osthread->get_state() != INITIALIZED, "just checking");
896190873Sjfv  Monitor* sync_with_child = osthread->startThread_lock();
897230775Sjfv  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
898230775Sjfv  sync_with_child->notify();
899230775Sjfv}
900230775Sjfv
901230775Sjfv// Free Bsd resources related to the OSThread
902230775Sjfvvoid os::free_thread(OSThread* osthread) {
903230775Sjfv  assert(osthread != NULL, "osthread not set");
904230775Sjfv
905230775Sjfv  if (Thread::current()->osthread() == osthread) {
906230775Sjfv    // Restore caller's signal mask
907230775Sjfv    sigset_t sigmask = osthread->caller_sigmask();
908230775Sjfv    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
909230775Sjfv   }
910230775Sjfv
911230775Sjfv  delete osthread;
912230775Sjfv}
913230775Sjfv
914230775Sjfv//////////////////////////////////////////////////////////////////////////////
915230775Sjfv// thread local storage
916238149Sjfv
917238149Sjfvint os::allocate_thread_local_storage() {
918230775Sjfv  pthread_key_t key;
919230775Sjfv  int rslt = pthread_key_create(&key, NULL);
920230775Sjfv  assert(rslt == 0, "cannot allocate thread local storage");
921230775Sjfv  return (int)key;
922230775Sjfv}
923230775Sjfv
924190873Sjfv// Note: This is currently not used by VM, as we don't destroy TLS key
925171384Sjfv// on VM exit.
926230775Sjfvvoid os::free_thread_local_storage(int index) {
927230775Sjfv  int rslt = pthread_key_delete((pthread_key_t)index);
928230775Sjfv  assert(rslt == 0, "invalid index");
929230775Sjfv}
930230775Sjfv
931230775Sjfvvoid os::thread_local_storage_at_put(int index, void* value) {
932230775Sjfv  int rslt = pthread_setspecific((pthread_key_t)index, value);
933230775Sjfv  assert(rslt == 0, "pthread_setspecific failed");
934230775Sjfv}
935230775Sjfv
936230775Sjfvextern "C" Thread* get_thread() {
937230775Sjfv  return ThreadLocalStorage::thread();
938230775Sjfv}
939230775Sjfv
940230775Sjfv
941230775Sjfv////////////////////////////////////////////////////////////////////////////////
942230775Sjfv// time support
943230775Sjfv
944230775Sjfv// Time since start-up in seconds to a fine granularity.
945230775Sjfv// Used by VMSelfDestructTimer and the MemProfiler.
946230775Sjfvdouble os::elapsedTime() {
947230775Sjfv
948230775Sjfv  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
949230775Sjfv}
950230775Sjfv
951230775Sjfvjlong os::elapsed_counter() {
952230775Sjfv  return javaTimeNanos() - initial_time_count;
953230775Sjfv}
954230775Sjfv
955230775Sjfvjlong os::elapsed_frequency() {
956230775Sjfv  return NANOSECS_PER_SEC; // nanosecond resolution
957230775Sjfv}
958230775Sjfv
959230775Sjfvbool os::supports_vtime() { return true; }
960230775Sjfvbool os::enable_vtime()   { return false; }
961230775Sjfvbool os::vtime_enabled()  { return false; }
962230775Sjfv
963230775Sjfvdouble os::elapsedVTime() {
964230775Sjfv  // better than nothing, but not much
965230775Sjfv  return elapsedTime();
966230775Sjfv}
967230775Sjfv
968230775Sjfvjlong os::javaTimeMillis() {
969230775Sjfv  timeval time;
970230775Sjfv  int status = gettimeofday(&time, NULL);
971230775Sjfv  assert(status != -1, "bsd error");
972230775Sjfv  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
973230775Sjfv}
974230775Sjfv
975230775Sjfv#ifndef CLOCK_MONOTONIC
976230775Sjfv#define CLOCK_MONOTONIC (1)
977230775Sjfv#endif
978230775Sjfv
979230775Sjfv#ifdef __APPLE__
980230775Sjfvvoid os::Bsd::clock_init() {
981230775Sjfv        // XXXDARWIN: Investigate replacement monotonic clock
982171384Sjfv}
983171384Sjfv#else
984230775Sjfvvoid os::Bsd::clock_init() {
985230775Sjfv  struct timespec res;
986230775Sjfv  struct timespec tp;
987230775Sjfv  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
988230775Sjfv      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
989230775Sjfv    // yes, monotonic clock is supported
990230775Sjfv    _clock_gettime = ::clock_gettime;
991230775Sjfv  }
992230775Sjfv}
993230775Sjfv#endif
994230775Sjfv
995230775Sjfv
996230775Sjfvjlong os::javaTimeNanos() {
997230775Sjfv  if (Bsd::supports_monotonic_clock()) {
998230775Sjfv    struct timespec tp;
999230775Sjfv    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1000230775Sjfv    assert(status == 0, "gettime error");
1001230775Sjfv    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1002230775Sjfv    return result;
1003230775Sjfv  } else {
1004230775Sjfv    timeval time;
1005230775Sjfv    int status = gettimeofday(&time, NULL);
1006230775Sjfv    assert(status != -1, "bsd error");
1007230775Sjfv    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1008230775Sjfv    return 1000 * usecs;
1009230775Sjfv  }
1010230775Sjfv}
1011230775Sjfv
1012230775Sjfvvoid os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1013230775Sjfv  if (Bsd::supports_monotonic_clock()) {
1014230775Sjfv    info_ptr->max_value = ALL_64_BITS;
1015230775Sjfv
1016230775Sjfv    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1017230775Sjfv    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1018230775Sjfv    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1019230775Sjfv  } else {
1020230775Sjfv    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1021230775Sjfv    info_ptr->max_value = ALL_64_BITS;
1022230775Sjfv
1023230775Sjfv    // gettimeofday is a real time clock so it skips
1024230775Sjfv    info_ptr->may_skip_backward = true;
1025230775Sjfv    info_ptr->may_skip_forward = true;
1026230775Sjfv  }
1027230775Sjfv
1028230775Sjfv  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1029230775Sjfv}
1030230775Sjfv
1031171384Sjfv// Return the real, user, and system times in seconds from an
1032230775Sjfv// arbitrary fixed point in the past.
1033230775Sjfvbool os::getTimesSecs(double* process_real_time,
1034230775Sjfv                      double* process_user_time,
1035230775Sjfv                      double* process_system_time) {
1036230775Sjfv  struct tms ticks;
1037230775Sjfv  clock_t real_ticks = times(&ticks);
1038230775Sjfv
1039230775Sjfv  if (real_ticks == (clock_t) (-1)) {
1040230775Sjfv    return false;
1041230775Sjfv  } else {
1042230775Sjfv    double ticks_per_second = (double) clock_tics_per_sec;
1043230775Sjfv    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1044230775Sjfv    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1045230775Sjfv    *process_real_time = ((double) real_ticks) / ticks_per_second;
1046230775Sjfv
1047230775Sjfv    return true;
1048230775Sjfv  }
1049230775Sjfv}
1050230775Sjfv
1051230775Sjfv
1052230775Sjfvchar * os::local_time_string(char *buf, size_t buflen) {
1053230775Sjfv  struct tm t;
1054200239Sjfv  time_t long_time;
1055200239Sjfv  time(&long_time);
1056200239Sjfv  localtime_r(&long_time, &t);
1057190873Sjfv  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1058230775Sjfv               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1059190873Sjfv               t.tm_hour, t.tm_min, t.tm_sec);
1060230775Sjfv  return buf;
1061230775Sjfv}
1062230775Sjfv
1063230775Sjfvstruct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1064190873Sjfv  return localtime_r(clock, res);
1065190873Sjfv}
1066230775Sjfv
1067230775Sjfv////////////////////////////////////////////////////////////////////////////////
1068230775Sjfv// runtime exit support
1069230775Sjfv
1070230775Sjfv// Note: os::shutdown() might be called very early during initialization, or
1071247822Sjfv// called from signal handler. Before adding something to os::shutdown(), make
1072190873Sjfv// sure it is async-safe and can handle partially initialized VM.
1073190873Sjfvvoid os::shutdown() {
1074230775Sjfv
1075230775Sjfv  // allow PerfMemory to attempt cleanup of any persistent resources
1076190873Sjfv  perfMemory_exit();
1077181003Sjfv
1078230775Sjfv  // needs to remove object in file system
1079230775Sjfv  AttachListener::abort();
1080230775Sjfv
1081251964Sjfv  // flush buffered output, finish log files
1082230775Sjfv  ostream_abort();
1083251964Sjfv
1084230775Sjfv  // Check for abort hook
1085230775Sjfv  abort_hook_t abort_hook = Arguments::abort_hook();
1086247822Sjfv  if (abort_hook != NULL) {
1087230775Sjfv    abort_hook();
1088230775Sjfv  }
1089171384Sjfv
1090190873Sjfv}
1091230775Sjfv
1092230775Sjfv// Note: os::abort() might be called very early during initialization, or
1093230775Sjfv// called from signal handler. Before adding something to os::abort(), make
1094230775Sjfv// sure it is async-safe and can handle partially initialized VM.
1095230775Sjfvvoid os::abort(bool dump_core) {
1096230775Sjfv  os::shutdown();
1097230775Sjfv  if (dump_core) {
1098230775Sjfv#ifndef PRODUCT
1099230775Sjfv    fdStream out(defaultStream::output_fd());
1100190873Sjfv    out.print_raw("Current thread is ");
1101190873Sjfv    char buf[16];
1102230775Sjfv    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1103230775Sjfv    out.print_raw_cr(buf);
1104190873Sjfv    out.print_raw_cr("Dumping core ...");
1105171384Sjfv#endif
1106230775Sjfv    ::abort(); // dump core
1107230775Sjfv  }
1108230775Sjfv
1109230775Sjfv  ::exit(1);
1110171384Sjfv}
1111171384Sjfv
1112247822Sjfv// Die immediately, no exit hook, no abort hook, no cleanup.
1113230775Sjfvvoid os::die() {
1114171384Sjfv  // _exit() on BsdThreads only kills current thread
1115171384Sjfv  ::abort();
1116230775Sjfv}
1117230775Sjfv
1118171384Sjfv// unused on bsd for now.
1119171384Sjfvvoid os::set_error_file(const char *logfile) {}
1120230775Sjfv
1121230775Sjfv
1122230775Sjfv// This method is a copy of JDK's sysGetLastErrorString
1123230775Sjfv// from src/solaris/hpi/src/system_md.c
1124171384Sjfv
1125171384Sjfvsize_t os::lasterror(char *buf, size_t len) {
1126230775Sjfv
1127230775Sjfv  if (errno == 0)  return 0;
1128171384Sjfv
1129230775Sjfv  const char *s = ::strerror(errno);
1130230775Sjfv  size_t n = ::strlen(s);
1131171384Sjfv  if (n >= len) {
1132230775Sjfv    n = len - 1;
1133230775Sjfv  }
1134230775Sjfv  ::strncpy(buf, s, n);
1135230775Sjfv  buf[n] = '\0';
1136230775Sjfv  return n;
1137230775Sjfv}
1138230775Sjfv
1139238149Sjfv// Information of current thread in variety of formats
1140238149Sjfvpid_t os::Bsd::gettid() {
1141171384Sjfv  int retval = -1;
1142230775Sjfv
1143230775Sjfv#ifdef __APPLE__ //XNU kernel
1144230775Sjfv  // despite the fact mach port is actually not a thread id use it
1145230775Sjfv  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1146238149Sjfv  retval = ::pthread_mach_thread_np(::pthread_self());
1147238149Sjfv  guarantee(retval != 0, "just checking");
1148238149Sjfv  return retval;
1149230775Sjfv
1150171384Sjfv#elif __FreeBSD__
1151171384Sjfv  retval = syscall(SYS_thr_self);
1152230775Sjfv#elif __OpenBSD__
1153230775Sjfv  retval = syscall(SYS_getthrid);
1154230775Sjfv#elif __NetBSD__
1155230775Sjfv  retval = (pid_t) syscall(SYS__lwp_self);
1156230775Sjfv#endif
1157230775Sjfv
1158230775Sjfv  if (retval == -1) {
1159230775Sjfv    return getpid();
1160230775Sjfv  }
1161230775Sjfv}
1162230775Sjfv
1163230775Sjfvintx os::current_thread_id() {
1164230775Sjfv#ifdef __APPLE__
1165230775Sjfv  return (intx)::pthread_mach_thread_np(::pthread_self());
1166230775Sjfv#else
1167230775Sjfv  return (intx)::pthread_self();
1168230775Sjfv#endif
1169230775Sjfv}
1170171384Sjfv
1171171384Sjfvint os::current_process_id() {
1172230775Sjfv
1173230775Sjfv  // Under the old bsd thread library, bsd gives each thread
1174230775Sjfv  // its own process id. Because of this each thread will return
1175230775Sjfv  // a different pid if this method were to return the result
1176171384Sjfv  // of getpid(2). Bsd provides no api that returns the pid
1177172043Sjfv  // of the launcher thread for the vm. This implementation
1178230775Sjfv  // returns a unique pid, the pid of the launcher thread
1179230775Sjfv  // that starts the vm 'process'.
1180230775Sjfv
1181230775Sjfv  // Under the NPTL, getpid() returns the same pid as the
1182172043Sjfv  // launcher thread rather than a unique pid per thread.
1183172043Sjfv  // Use gettid() if you want the old pre NPTL behaviour.
1184230775Sjfv
1185230775Sjfv  // if you are looking for the result of a call to getpid() that
1186230775Sjfv  // returns a unique pid for the calling thread, then look at the
1187230775Sjfv  // OSThread::thread_id() method in osThread_bsd.hpp file
1188230775Sjfv
1189172043Sjfv  return (int)(_initial_pid ? _initial_pid : getpid());
1190190873Sjfv}
1191230775Sjfv
1192185352Sjfv// DLL functions
1193171384Sjfv
1194230775Sjfv#define JNI_LIB_PREFIX "lib"
1195230775Sjfv#ifdef __APPLE__
1196230775Sjfv#define JNI_LIB_SUFFIX ".dylib"
1197230775Sjfv#else
1198230775Sjfv#define JNI_LIB_SUFFIX ".so"
1199230775Sjfv#endif
1200171384Sjfv
1201230775Sjfvconst char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1202172043Sjfv
1203230775Sjfv// This must be hard coded because it's the system's temporary
1204230775Sjfv// directory not the java application's temp directory, ala java.io.tmpdir.
1205230775Sjfv#ifdef __APPLE__
1206230775Sjfv// macosx has a secure per-user temporary directory
1207230775Sjfvchar temp_path_storage[PATH_MAX];
1208230775Sjfvconst char* os::get_temp_directory() {
1209171384Sjfv  static char *temp_path = NULL;
1210230775Sjfv  if (temp_path == NULL) {
1211230775Sjfv    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1212230775Sjfv    if (pathSize == 0 || pathSize > PATH_MAX) {
1213230775Sjfv      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1214230775Sjfv    }
1215230775Sjfv    temp_path = temp_path_storage;
1216230775Sjfv  }
1217230775Sjfv  return temp_path;
1218230775Sjfv}
1219230775Sjfv#else /* __APPLE__ */
1220230775Sjfvconst char* os::get_temp_directory() { return "/tmp"; }
1221230775Sjfv#endif /* __APPLE__ */
1222230775Sjfv
1223230775Sjfvstatic bool file_exists(const char* filename) {
1224230775Sjfv  struct stat statbuf;
1225230775Sjfv  if (filename == NULL || strlen(filename) == 0) {
1226230775Sjfv    return false;
1227171384Sjfv  }
1228230775Sjfv  return os::stat(filename, &statbuf) == 0;
1229230775Sjfv}
1230230775Sjfv
1231230775Sjfvbool os::dll_build_name(char* buffer, size_t buflen,
1232185352Sjfv                        const char* pname, const char* fname) {
1233179055Sjfv  bool retval = false;
1234230775Sjfv  // Copied from libhpi
1235179055Sjfv  const size_t pnamelen = pname ? strlen(pname) : 0;
1236230775Sjfv
1237200239Sjfv  // Return error on buffer overflow.
1238230775Sjfv  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1239230775Sjfv    return retval;
1240230775Sjfv  }
1241230775Sjfv
1242230775Sjfv  if (pnamelen == 0) {
1243230775Sjfv    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1244230775Sjfv    retval = true;
1245230775Sjfv  } else if (strchr(pname, *os::path_separator()) != NULL) {
1246230775Sjfv    int n;
1247230775Sjfv    char** pelements = split_path(pname, &n);
1248230775Sjfv    if (pelements == NULL) {
1249179055Sjfv      return false;
1250230775Sjfv    }
1251230775Sjfv    for (int i = 0 ; i < n ; i++) {
1252171384Sjfv      // Really shouldn't be NULL, but check can't hurt
1253171384Sjfv      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1254230775Sjfv        continue; // skip the empty path values
1255230775Sjfv      }
1256230775Sjfv      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1257230775Sjfv          pelements[i], fname);
1258230775Sjfv      if (file_exists(buffer)) {
1259230775Sjfv        retval = true;
1260171384Sjfv        break;
1261179055Sjfv      }
1262230775Sjfv    }
1263179055Sjfv    // release the storage
1264185352Sjfv    for (int i = 0 ; i < n ; i++) {
1265230775Sjfv      if (pelements[i] != NULL) {
1266230775Sjfv        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1267230775Sjfv      }
1268230775Sjfv    }
1269230775Sjfv    if (pelements != NULL) {
1270230775Sjfv      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1271230775Sjfv    }
1272230775Sjfv  } else {
1273230775Sjfv    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1274230775Sjfv    retval = true;
1275185352Sjfv  }
1276171384Sjfv  return retval;
1277230775Sjfv}
1278230775Sjfv
1279230775Sjfv// check if addr is inside libjvm.so
1280230775Sjfvbool os::address_is_in_vm(address addr) {
1281230775Sjfv  static address libjvm_base_addr;
1282230775Sjfv  Dl_info dlinfo;
1283230775Sjfv
1284230775Sjfv  if (libjvm_base_addr == NULL) {
1285230775Sjfv    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1286230775Sjfv      libjvm_base_addr = (address)dlinfo.dli_fbase;
1287230775Sjfv    }
1288230775Sjfv    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1289230775Sjfv  }
1290171384Sjfv
1291230775Sjfv  if (dladdr((void *)addr, &dlinfo) != 0) {
1292230775Sjfv    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1293230775Sjfv  }
1294230775Sjfv
1295230775Sjfv  return false;
1296230775Sjfv}
1297230775Sjfv
1298230775Sjfv
1299230775Sjfv#define MACH_MAXSYMLEN 256
1300230775Sjfv
1301230775Sjfvbool os::dll_address_to_function_name(address addr, char *buf,
1302230775Sjfv                                      int buflen, int *offset) {
1303230775Sjfv  // buf is not optional, but offset is optional
1304230775Sjfv  assert(buf != NULL, "sanity check");
1305230775Sjfv
1306230775Sjfv  Dl_info dlinfo;
1307230775Sjfv  char localbuf[MACH_MAXSYMLEN];
1308230775Sjfv
1309230775Sjfv  if (dladdr((void*)addr, &dlinfo) != 0) {
1310230775Sjfv    // see if we have a matching symbol
1311230775Sjfv    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1312230775Sjfv      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1313230775Sjfv        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1314171384Sjfv      }
1315230775Sjfv      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1316230775Sjfv      return true;
1317230775Sjfv    }
1318230775Sjfv    // no matching symbol so try for just file info
1319230775Sjfv    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1320230775Sjfv      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1321230775Sjfv                          buf, buflen, offset, dlinfo.dli_fname)) {
1322230775Sjfv         return true;
1323230775Sjfv      }
1324171384Sjfv    }
1325171384Sjfv
1326230775Sjfv    // Handle non-dynamic manually:
1327230775Sjfv    if (dlinfo.dli_fbase != NULL &&
1328230775Sjfv        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1329230775Sjfv                        dlinfo.dli_fbase)) {
1330230775Sjfv      if (!Decoder::demangle(localbuf, buf, buflen)) {
1331171384Sjfv        jio_snprintf(buf, buflen, "%s", localbuf);
1332171384Sjfv      }
1333230775Sjfv      return true;
1334230775Sjfv    }
1335230775Sjfv  }
1336230775Sjfv  buf[0] = '\0';
1337230775Sjfv  if (offset != NULL) *offset = -1;
1338230775Sjfv  return false;
1339230775Sjfv}
1340230775Sjfv
1341230775Sjfv// ported from solaris version
1342230775Sjfvbool os::dll_address_to_library_name(address addr, char* buf,
1343230775Sjfv                                     int buflen, int* offset) {
1344230775Sjfv  // buf is not optional, but offset is optional
1345230775Sjfv  assert(buf != NULL, "sanity check");
1346230775Sjfv
1347230775Sjfv  Dl_info dlinfo;
1348171384Sjfv
1349171384Sjfv  if (dladdr((void*)addr, &dlinfo) != 0) {
1350230775Sjfv    if (dlinfo.dli_fname != NULL) {
1351230775Sjfv      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1352171384Sjfv    }
1353190873Sjfv    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1354230775Sjfv      *offset = addr - (address)dlinfo.dli_fbase;
1355230775Sjfv    }
1356230775Sjfv    return true;
1357230775Sjfv  }
1358230775Sjfv
1359190873Sjfv  buf[0] = '\0';
1360190873Sjfv  if (offset) *offset = -1;
1361230775Sjfv  return false;
1362230775Sjfv}
1363230775Sjfv
1364230775Sjfv// Loads .dll/.so and
1365230775Sjfv// in case of error it checks if .dll/.so was built for the
1366190873Sjfv// same architecture as Hotspot is running on
1367190873Sjfv
1368230775Sjfv#ifdef __APPLE__
1369190873Sjfvvoid * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1370230775Sjfv  void * result= ::dlopen(filename, RTLD_LAZY);
1371194875Sjfv  if (result != NULL) {
1372171384Sjfv    // Successful loading
1373230775Sjfv    return result;
1374230775Sjfv  }
1375230775Sjfv
1376230775Sjfv  // Read system error message into ebuf
1377230775Sjfv  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1378230775Sjfv  ebuf[ebuflen-1]='\0';
1379171384Sjfv
1380230775Sjfv  return NULL;
1381230775Sjfv}
1382230775Sjfv#else
1383230775Sjfvvoid * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1384230775Sjfv{
1385230775Sjfv  void * result= ::dlopen(filename, RTLD_LAZY);
1386230775Sjfv  if (result != NULL) {
1387230775Sjfv    // Successful loading
1388230775Sjfv    return result;
1389230775Sjfv  }
1390230775Sjfv
1391230775Sjfv  Elf32_Ehdr elf_head;
1392230775Sjfv
1393230775Sjfv  // Read system error message into ebuf
1394230775Sjfv  // It may or may not be overwritten below
1395230775Sjfv  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1396230775Sjfv  ebuf[ebuflen-1]='\0';
1397230775Sjfv  int diag_msg_max_length=ebuflen-strlen(ebuf);
1398230775Sjfv  char* diag_msg_buf=ebuf+strlen(ebuf);
1399230775Sjfv
1400230775Sjfv  if (diag_msg_max_length==0) {
1401230775Sjfv    // No more space in ebuf for additional diagnostics message
1402230775Sjfv    return NULL;
1403230775Sjfv  }
1404230775Sjfv
1405230775Sjfv
1406230775Sjfv  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1407230775Sjfv
1408230775Sjfv  if (file_descriptor < 0) {
1409230775Sjfv    // Can't open library, report dlerror() message
1410230775Sjfv    return NULL;
1411230775Sjfv  }
1412190873Sjfv
1413230775Sjfv  bool failed_to_read_elf_head=
1414190873Sjfv    (sizeof(elf_head)!=
1415171384Sjfv        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1416230775Sjfv
1417230775Sjfv  ::close(file_descriptor);
1418171384Sjfv  if (failed_to_read_elf_head) {
1419171384Sjfv    // file i/o error - report dlerror() msg
1420230775Sjfv    return NULL;
1421230775Sjfv  }
1422171384Sjfv
1423171384Sjfv  typedef struct {
1424230775Sjfv    Elf32_Half  code;         // Actual value as defined in elf.h
1425171384Sjfv    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1426171384Sjfv    char        elf_class;    // 32 or 64 bit
1427230775Sjfv    char        endianess;    // MSB or LSB
1428171384Sjfv    char*       name;         // String representation
1429230775Sjfv  } arch_t;
1430230775Sjfv
1431230775Sjfv  #ifndef EM_486
1432230775Sjfv  #define EM_486          6               /* Intel 80486 */
1433230775Sjfv  #endif
1434230775Sjfv
1435171384Sjfv  #ifndef EM_MIPS_RS3_LE
1436190873Sjfv  #define EM_MIPS_RS3_LE  10              /* MIPS */
1437230775Sjfv  #endif
1438230775Sjfv
1439179055Sjfv  #ifndef EM_PPC64
1440171384Sjfv  #define EM_PPC64        21              /* PowerPC64 */
1441171384Sjfv  #endif
1442171384Sjfv
1443230775Sjfv  #ifndef EM_S390
1444230775Sjfv  #define EM_S390         22              /* IBM System/390 */
1445230775Sjfv  #endif
1446230775Sjfv
1447230775Sjfv  #ifndef EM_IA_64
1448230775Sjfv  #define EM_IA_64        50              /* HP/Intel IA-64 */
1449230775Sjfv  #endif
1450230775Sjfv
1451230775Sjfv  #ifndef EM_X86_64
1452238149Sjfv  #define EM_X86_64       62              /* AMD x86-64 */
1453230775Sjfv  #endif
1454230775Sjfv
1455230775Sjfv  static const arch_t arch_array[]={
1456230775Sjfv    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1457230775Sjfv    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1458230775Sjfv    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1459230775Sjfv    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1460230775Sjfv    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1461171384Sjfv    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1462171384Sjfv    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1463230775Sjfv    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1464230775Sjfv    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1465230775Sjfv    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1466230775Sjfv    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1467230775Sjfv    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1468230775Sjfv    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1469230775Sjfv    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1470238149Sjfv    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1471230775Sjfv    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1472230775Sjfv  };
1473230775Sjfv
1474230775Sjfv  #if  (defined IA32)
1475230775Sjfv    static  Elf32_Half running_arch_code=EM_386;
1476230775Sjfv  #elif   (defined AMD64)
1477230775Sjfv    static  Elf32_Half running_arch_code=EM_X86_64;
1478230775Sjfv  #elif  (defined IA64)
1479171384Sjfv    static  Elf32_Half running_arch_code=EM_IA_64;
1480171384Sjfv  #elif  (defined __sparc) && (defined _LP64)
1481230775Sjfv    static  Elf32_Half running_arch_code=EM_SPARCV9;
1482230775Sjfv  #elif  (defined __sparc) && (!defined _LP64)
1483230775Sjfv    static  Elf32_Half running_arch_code=EM_SPARC;
1484230775Sjfv  #elif  (defined __powerpc64__)
1485230775Sjfv    static  Elf32_Half running_arch_code=EM_PPC64;
1486230775Sjfv  #elif  (defined __powerpc__)
1487230775Sjfv    static  Elf32_Half running_arch_code=EM_PPC;
1488230775Sjfv  #elif  (defined ARM)
1489238149Sjfv    static  Elf32_Half running_arch_code=EM_ARM;
1490230775Sjfv  #elif  (defined S390)
1491230775Sjfv    static  Elf32_Half running_arch_code=EM_S390;
1492230775Sjfv  #elif  (defined ALPHA)
1493230775Sjfv    static  Elf32_Half running_arch_code=EM_ALPHA;
1494230775Sjfv  #elif  (defined MIPSEL)
1495230775Sjfv    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1496230775Sjfv  #elif  (defined PARISC)
1497230775Sjfv    static  Elf32_Half running_arch_code=EM_PARISC;
1498171384Sjfv  #elif  (defined MIPS)
1499171384Sjfv    static  Elf32_Half running_arch_code=EM_MIPS;
1500230775Sjfv  #elif  (defined M68K)
1501230775Sjfv    static  Elf32_Half running_arch_code=EM_68K;
1502230775Sjfv  #else
1503230775Sjfv    #error Method os::dll_load requires that one of following is defined:\
1504230775Sjfv         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1505230775Sjfv  #endif
1506230775Sjfv
1507238149Sjfv  // Identify compatability class for VM's architecture and library's architecture
1508230775Sjfv  // Obtain string descriptions for architectures
1509230775Sjfv
1510230775Sjfv  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1511230775Sjfv  int running_arch_index=-1;
1512230775Sjfv
1513230775Sjfv  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1514230775Sjfv    if (running_arch_code == arch_array[i].code) {
1515230775Sjfv      running_arch_index    = i;
1516171384Sjfv    }
1517171384Sjfv    if (lib_arch.code == arch_array[i].code) {
1518230775Sjfv      lib_arch.compat_class = arch_array[i].compat_class;
1519230775Sjfv      lib_arch.name         = arch_array[i].name;
1520230775Sjfv    }
1521230775Sjfv  }
1522171384Sjfv
1523179055Sjfv  assert(running_arch_index != -1,
1524230775Sjfv    "Didn't find running architecture code (running_arch_code) in arch_array");
1525230775Sjfv  if (running_arch_index == -1) {
1526230775Sjfv    // Even though running architecture detection failed
1527230775Sjfv    // we may still continue with reporting dlerror() message
1528230775Sjfv    return NULL;
1529230775Sjfv  }
1530230775Sjfv
1531230775Sjfv  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1532230775Sjfv    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1533230775Sjfv    return NULL;
1534230775Sjfv  }
1535230775Sjfv
1536230775Sjfv#ifndef S390
1537230775Sjfv  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1538230775Sjfv    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1539230775Sjfv    return NULL;
1540230775Sjfv  }
1541230775Sjfv#endif // !S390
1542230775Sjfv
1543230775Sjfv  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1544230775Sjfv    if ( lib_arch.name!=NULL ) {
1545230775Sjfv      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1546230775Sjfv        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1547171384Sjfv        lib_arch.name, arch_array[running_arch_index].name);
1548230775Sjfv    } else {
1549230775Sjfv      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1550230775Sjfv      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1551230775Sjfv        lib_arch.code,
1552230775Sjfv        arch_array[running_arch_index].name);
1553230775Sjfv    }
1554230775Sjfv  }
1555230775Sjfv
1556230775Sjfv  return NULL;
1557230775Sjfv}
1558230775Sjfv#endif /* !__APPLE__ */
1559230775Sjfv
1560230775Sjfv// XXX: Do we need a lock around this as per Linux?
1561230775Sjfvvoid* os::dll_lookup(void* handle, const char* name) {
1562230775Sjfv  return dlsym(handle, name);
1563230775Sjfv}
1564230775Sjfv
1565230775Sjfv
1566190873Sjfvstatic bool _print_ascii_file(const char* filename, outputStream* st) {
1567171384Sjfv  int fd = ::open(filename, O_RDONLY);
1568230775Sjfv  if (fd == -1) {
1569171384Sjfv     return false;
1570171384Sjfv  }
1571230775Sjfv
1572230775Sjfv  char buf[32];
1573230775Sjfv  int bytes;
1574230775Sjfv  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1575230775Sjfv    st->print_raw(buf, bytes);
1576230775Sjfv  }
1577230775Sjfv
1578171384Sjfv  ::close(fd);
1579230775Sjfv
1580230775Sjfv  return true;
1581171384Sjfv}
1582230775Sjfv
1583171384Sjfvvoid os::print_dll_info(outputStream *st) {
1584230775Sjfv  st->print_cr("Dynamic libraries:");
1585171384Sjfv#ifdef RTLD_DI_LINKMAP
1586190873Sjfv  Dl_info dli;
1587230775Sjfv  void *handle;
1588230775Sjfv  Link_map *map;
1589230775Sjfv  Link_map *p;
1590230775Sjfv
1591230775Sjfv  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1592230775Sjfv      dli.dli_fname == NULL) {
1593238149Sjfv    st->print_cr("Error: Cannot print dynamic libraries.");
1594190873Sjfv    return;
1595230775Sjfv  }
1596230775Sjfv  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1597230775Sjfv  if (handle == NULL) {
1598230775Sjfv    st->print_cr("Error: Cannot print dynamic libraries.");
1599190873Sjfv    return;
1600190873Sjfv  }
1601190873Sjfv  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1602230775Sjfv  if (map == NULL) {
1603230775Sjfv    st->print_cr("Error: Cannot print dynamic libraries.");
1604190873Sjfv    return;
1605190873Sjfv  }
1606230775Sjfv
1607230775Sjfv  while (map->l_prev != NULL)
1608230775Sjfv    map = map->l_prev;
1609230775Sjfv
1610190873Sjfv  while (map != NULL) {
1611230775Sjfv    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1612230775Sjfv    map = map->l_next;
1613230775Sjfv  }
1614230775Sjfv
1615171384Sjfv  dlclose(handle);
1616230775Sjfv#elif defined(__APPLE__)
1617230775Sjfv  uint32_t count;
1618230775Sjfv  uint32_t i;
1619230775Sjfv
1620230775Sjfv  count = _dyld_image_count();
1621171384Sjfv  for (i = 1; i < count; i++) {
1622190873Sjfv    const char *name = _dyld_get_image_name(i);
1623230775Sjfv    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1624230775Sjfv    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1625230775Sjfv  }
1626215911Sjfv#else
1627230775Sjfv  st->print_cr("Error: Cannot print dynamic libraries.");
1628230775Sjfv#endif
1629179055Sjfv}
1630230775Sjfv
1631171384Sjfvvoid os::print_os_info_brief(outputStream* st) {
1632171384Sjfv  st->print("Bsd");
1633230775Sjfv
1634230775Sjfv  os::Posix::print_uname_info(st);
1635230775Sjfv}
1636171384Sjfv
1637230775Sjfvvoid os::print_os_info(outputStream* st) {
1638230775Sjfv  st->print("OS:");
1639171384Sjfv  st->print("Bsd");
1640171384Sjfv
1641230775Sjfv  os::Posix::print_uname_info(st);
1642230775Sjfv
1643230775Sjfv  os::Posix::print_rlimit_info(st);
1644230775Sjfv
1645230775Sjfv  os::Posix::print_load_average(st);
1646230775Sjfv}
1647230775Sjfv
1648238149Sjfvvoid os::pd_print_cpu_info(outputStream* st) {
1649238149Sjfv  // Nothing to do for now.
1650238149Sjfv}
1651247822Sjfv
1652238149Sjfvvoid os::print_memory_info(outputStream* st) {
1653238149Sjfv
1654230775Sjfv  st->print("Memory:");
1655238149Sjfv  st->print(" %dk page", os::vm_page_size()>>10);
1656238149Sjfv
1657238149Sjfv  st->print(", physical " UINT64_FORMAT "k",
1658238149Sjfv            os::physical_memory() >> 10);
1659171384Sjfv  st->print("(" UINT64_FORMAT "k free)",
1660238149Sjfv            os::available_memory() >> 10);
1661171384Sjfv  st->cr();
1662230775Sjfv
1663230775Sjfv  // meminfo
1664230775Sjfv  st->print("\n/proc/meminfo:\n");
1665230775Sjfv  _print_ascii_file("/proc/meminfo", st);
1666230775Sjfv  st->cr();
1667230775Sjfv}
1668230775Sjfv
1669230775Sjfv// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1670171384Sjfv// but they're the same for all the bsd arch that we support
1671171384Sjfv// and they're the same for solaris but there's no common place to put this.
1672230775Sjfvconst char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1673230775Sjfv                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1674230775Sjfv                          "ILL_COPROC", "ILL_BADSTK" };
1675230775Sjfv
1676230775Sjfvconst char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1677230775Sjfv                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1678230775Sjfv                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1679230775Sjfv
1680171384Sjfvconst char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1681171384Sjfv
1682190873Sjfvconst char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1683230775Sjfv
1684230775Sjfvvoid os::print_siginfo(outputStream* st, void* siginfo) {
1685230775Sjfv  st->print("siginfo:");
1686230775Sjfv
1687230775Sjfv  const int buflen = 100;
1688230775Sjfv  char buf[buflen];
1689230775Sjfv  siginfo_t *si = (siginfo_t*)siginfo;
1690230775Sjfv  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1691230775Sjfv  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1692230775Sjfv    st->print("si_errno=%s", buf);
1693230775Sjfv  } else {
1694230775Sjfv    st->print("si_errno=%d", si->si_errno);
1695230775Sjfv  }
1696230775Sjfv  const int c = si->si_code;
1697230775Sjfv  assert(c > 0, "unexpected si_code");
1698230775Sjfv  switch (si->si_signo) {
1699230775Sjfv  case SIGILL:
1700230775Sjfv    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1701230775Sjfv    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1702230775Sjfv    break;
1703230775Sjfv  case SIGFPE:
1704230775Sjfv    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1705230775Sjfv    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1706230775Sjfv    break;
1707230775Sjfv  case SIGSEGV:
1708230775Sjfv    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1709230775Sjfv    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1710230775Sjfv    break;
1711171384Sjfv  case SIGBUS:
1712230775Sjfv    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1713230775Sjfv    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1714230775Sjfv    break;
1715230775Sjfv  default:
1716230775Sjfv    st->print(", si_code=%d", si->si_code);
1717230775Sjfv    // no si_addr
1718230775Sjfv  }
1719230775Sjfv
1720230775Sjfv  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1721230775Sjfv      UseSharedSpaces) {
1722230775Sjfv    FileMapInfo* mapinfo = FileMapInfo::current_info();
1723171384Sjfv    if (mapinfo->is_in_shared_space(si->si_addr)) {
1724230775Sjfv      st->print("\n\nError accessing class data sharing archive."   \
1725230775Sjfv                " Mapped file inaccessible during execution, "      \
1726230775Sjfv                " possible disk/network problem.");
1727230775Sjfv    }
1728230775Sjfv  }
1729230775Sjfv  st->cr();
1730251964Sjfv}
1731251964Sjfv
1732190873Sjfv
1733230775Sjfvstatic void print_signal_handler(outputStream* st, int sig,
1734230775Sjfv                                 char* buf, size_t buflen);
1735230775Sjfv
1736230775Sjfvvoid os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1737205720Sjfv  st->print_cr("Signal Handlers:");
1738171384Sjfv  print_signal_handler(st, SIGSEGV, buf, buflen);
1739230775Sjfv  print_signal_handler(st, SIGBUS , buf, buflen);
1740230775Sjfv  print_signal_handler(st, SIGFPE , buf, buflen);
1741230775Sjfv  print_signal_handler(st, SIGPIPE, buf, buflen);
1742230775Sjfv  print_signal_handler(st, SIGXFSZ, buf, buflen);
1743230775Sjfv  print_signal_handler(st, SIGILL , buf, buflen);
1744230775Sjfv  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1745230775Sjfv  print_signal_handler(st, SR_signum, buf, buflen);
1746230775Sjfv  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1747230775Sjfv  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1748230775Sjfv  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1749230775Sjfv  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1750230775Sjfv}
1751230775Sjfv
1752230775Sjfvstatic char saved_jvm_path[MAXPATHLEN] = {0};
1753230775Sjfv
1754230775Sjfv// Find the full path to the current module, libjvm
1755171384Sjfvvoid os::jvm_path(char *buf, jint buflen) {
1756230775Sjfv  // Error checking.
1757230775Sjfv  if (buflen < MAXPATHLEN) {
1758230775Sjfv    assert(false, "must use a large-enough buffer");
1759230775Sjfv    buf[0] = '\0';
1760230775Sjfv    return;
1761230775Sjfv  }
1762171384Sjfv  // Lazy resolve the path to current module.
1763230775Sjfv  if (saved_jvm_path[0] != 0) {
1764200239Sjfv    strcpy(buf, saved_jvm_path);
1765172043Sjfv    return;
1766230775Sjfv  }
1767230775Sjfv
1768230775Sjfv  char dli_fname[MAXPATHLEN];
1769230775Sjfv  bool ret = dll_address_to_library_name(
1770230775Sjfv                CAST_FROM_FN_PTR(address, os::jvm_path),
1771230775Sjfv                dli_fname, sizeof(dli_fname), NULL);
1772230775Sjfv  assert(ret, "cannot locate libjvm");
1773172043Sjfv  char *rp = NULL;
1774230775Sjfv  if (ret && dli_fname[0] != '\0') {
1775230775Sjfv    rp = realpath(dli_fname, buf);
1776172043Sjfv  }
1777172043Sjfv  if (rp == NULL)
1778230775Sjfv    return;
1779230775Sjfv
1780230775Sjfv  if (Arguments::created_by_gamma_launcher()) {
1781230775Sjfv    // Support for the gamma launcher.  Typical value for buf is
1782230775Sjfv    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1783230775Sjfv    // the right place in the string, then assume we are installed in a JDK and
1784172043Sjfv    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1785200239Sjfv    // construct a path to the JVM being overridden.
1786230775Sjfv
1787230775Sjfv    const char *p = buf + strlen(buf) - 1;
1788230775Sjfv    for (int count = 0; p > buf && count < 5; ++count) {
1789230775Sjfv      for (--p; p > buf && *p != '/'; --p)
1790200239Sjfv        /* empty */ ;
1791171384Sjfv    }
1792230775Sjfv
1793230775Sjfv    if (strncmp(p, "/jre/lib/", 9) != 0) {
1794230775Sjfv      // Look for JAVA_HOME in the environment.
1795230775Sjfv      char* java_home_var = ::getenv("JAVA_HOME");
1796171384Sjfv      if (java_home_var != NULL && java_home_var[0] != 0) {
1797200239Sjfv        char* jrelib_p;
1798230775Sjfv        int len;
1799230775Sjfv
1800230775Sjfv        // Check the current module name "libjvm"
1801230775Sjfv        p = strrchr(buf, '/');
1802230775Sjfv        assert(strstr(p, "/libjvm") == p, "invalid library name");
1803230775Sjfv
1804171384Sjfv        rp = realpath(java_home_var, buf);
1805230775Sjfv        if (rp == NULL)
1806230775Sjfv          return;
1807230775Sjfv
1808171384Sjfv        // determine if this is a legacy image or modules image
1809230775Sjfv        // modules image doesn't have "jre" subdirectory
1810230775Sjfv        len = strlen(buf);
1811230775Sjfv        jrelib_p = buf + len;
1812230775Sjfv
1813230775Sjfv        // Add the appropriate library subdir
1814230775Sjfv        snprintf(jrelib_p, buflen-len, "/jre/lib");
1815230775Sjfv        if (0 != access(buf, F_OK)) {
1816230775Sjfv          snprintf(jrelib_p, buflen-len, "/lib");
1817230775Sjfv        }
1818230775Sjfv
1819230775Sjfv        // Add the appropriate client or server subdir
1820230775Sjfv        len = strlen(buf);
1821230775Sjfv        jrelib_p = buf + len;
1822230775Sjfv        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1823230775Sjfv        if (0 != access(buf, F_OK)) {
1824171384Sjfv          snprintf(jrelib_p, buflen-len, "");
1825230775Sjfv        }
1826230775Sjfv
1827230775Sjfv        // If the path exists within JAVA_HOME, add the JVM library name
1828171384Sjfv        // to complete the path to JVM being overridden.  Otherwise fallback
1829230775Sjfv        // to the path to the current library.
1830230775Sjfv        if (0 == access(buf, F_OK)) {
1831230775Sjfv          // Use current module name "libjvm"
1832171384Sjfv          len = strlen(buf);
1833215911Sjfv          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1834230775Sjfv        } else {
1835215911Sjfv          // Fall back to path of current library
1836171384Sjfv          rp = realpath(dli_fname, buf);
1837230775Sjfv          if (rp == NULL)
1838230775Sjfv            return;
1839230775Sjfv        }
1840230775Sjfv      }
1841230775Sjfv    }
1842230775Sjfv  }
1843230775Sjfv
1844230775Sjfv  strcpy(saved_jvm_path, buf);
1845230775Sjfv}
1846230775Sjfv
1847230775Sjfvvoid os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1848230775Sjfv  // no prefix required, not even "_"
1849230775Sjfv}
1850230775Sjfv
1851230775Sjfvvoid os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1852230775Sjfv  // no suffix required
1853230775Sjfv}
1854230775Sjfv
1855230775Sjfv////////////////////////////////////////////////////////////////////////////////
1856230775Sjfv// sun.misc.Signal support
1857230775Sjfv
1858230775Sjfvstatic volatile jint sigint_count = 0;
1859171384Sjfv
1860230775Sjfvstatic void
1861230775SjfvUserHandler(int sig, void *siginfo, void *context) {
1862230775Sjfv  // 4511530 - sem_post is serialized and handled by the manager thread. When
1863230775Sjfv  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1864238149Sjfv  // don't want to flood the manager thread with sem_post requests.
1865230775Sjfv  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1866238149Sjfv      return;
1867230775Sjfv
1868190873Sjfv  // Ctrl-C is pressed during error reporting, likely because the error
1869230775Sjfv  // handler fails to abort. Let VM die immediately.
1870190873Sjfv  if (sig == SIGINT && is_error_reported()) {
1871172043Sjfv     os::die();
1872230775Sjfv  }
1873230775Sjfv
1874230775Sjfv  os::signal_notify(sig);
1875172043Sjfv}
1876171384Sjfv
1877230775Sjfvvoid* os::user_handler() {
1878230775Sjfv  return CAST_FROM_FN_PTR(void*, UserHandler);
1879230775Sjfv}
1880230775Sjfv
1881230775Sjfvextern "C" {
1882230775Sjfv  typedef void (*sa_handler_t)(int);
1883179055Sjfv  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1884230775Sjfv}
1885230775Sjfv
1886230775Sjfvvoid* os::signal(int signal_number, void* handler) {
1887230775Sjfv  struct sigaction sigAct, oldSigAct;
1888230775Sjfv
1889230775Sjfv  sigfillset(&(sigAct.sa_mask));
1890171384Sjfv  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1891171384Sjfv  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1892230775Sjfv
1893230775Sjfv  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1894230775Sjfv    // -1 means registration failed
1895230775Sjfv    return (void *)-1;
1896230775Sjfv  }
1897230775Sjfv
1898171384Sjfv  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1899230775Sjfv}
1900171384Sjfv
1901230775Sjfvvoid os::signal_raise(int signal_number) {
1902247822Sjfv  ::raise(signal_number);
1903230775Sjfv}
1904251964Sjfv
1905251964Sjfv/*
1906230775Sjfv * The following code is moved from os.cpp for making this
1907171384Sjfv * code platform specific, which it is by its very nature.
1908230775Sjfv */
1909171384Sjfv
1910171384Sjfv// Will be modified when max signal is changed to be dynamic
1911200239Sjfvint os::sigexitnum_pd() {
1912200239Sjfv  return NSIG;
1913230775Sjfv}
1914171384Sjfv
1915200239Sjfv// a counter for each possible signal value
1916230775Sjfvstatic volatile jint pending_signals[NSIG+1] = { 0 };
1917200239Sjfv
1918230775Sjfv// Bsd(POSIX) specific hand shaking semaphore.
1919230775Sjfv#ifdef __APPLE__
1920230775Sjfvtypedef semaphore_t os_semaphore_t;
1921230775Sjfv#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1922194875Sjfv#define SEM_WAIT(sem)           semaphore_wait(sem)
1923230775Sjfv#define SEM_POST(sem)           semaphore_signal(sem)
1924230775Sjfv#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1925230775Sjfv#else
1926230775Sjfvtypedef sem_t os_semaphore_t;
1927230775Sjfv#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1928230775Sjfv#define SEM_WAIT(sem)           sem_wait(&sem)
1929230775Sjfv#define SEM_POST(sem)           sem_post(&sem)
1930230775Sjfv#define SEM_DESTROY(sem)        sem_destroy(&sem)
1931230775Sjfv#endif
1932230775Sjfv
1933230775Sjfvclass Semaphore : public StackObj {
1934230775Sjfv  public:
1935230775Sjfv    Semaphore();
1936230775Sjfv    ~Semaphore();
1937230775Sjfv    void signal();
1938230775Sjfv    void wait();
1939230775Sjfv    bool trywait();
1940230775Sjfv    bool timedwait(unsigned int sec, int nsec);
1941230775Sjfv  private:
1942230775Sjfv    jlong currenttime() const;
1943230775Sjfv    os_semaphore_t _semaphore;
1944230775Sjfv};
1945190873Sjfv
1946251964SjfvSemaphore::Semaphore() : _semaphore(0) {
1947251964Sjfv  SEM_INIT(_semaphore, 0);
1948251964Sjfv}
1949251964Sjfv
1950251964SjfvSemaphore::~Semaphore() {
1951251964Sjfv  SEM_DESTROY(_semaphore);
1952251964Sjfv}
1953251964Sjfv
1954251964Sjfvvoid Semaphore::signal() {
1955251964Sjfv  SEM_POST(_semaphore);
1956251964Sjfv}
1957251964Sjfv
1958230775Sjfvvoid Semaphore::wait() {
1959230775Sjfv  SEM_WAIT(_semaphore);
1960230775Sjfv}
1961230775Sjfv
1962171384Sjfvjlong Semaphore::currenttime() const {
1963230775Sjfv    struct timeval tv;
1964230775Sjfv    gettimeofday(&tv, NULL);
1965230775Sjfv    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1966230775Sjfv}
1967230775Sjfv
1968230775Sjfv#ifdef __APPLE__
1969230775Sjfvbool Semaphore::trywait() {
1970230775Sjfv  return timedwait(0, 0);
1971230775Sjfv}
1972230775Sjfv
1973230775Sjfvbool Semaphore::timedwait(unsigned int sec, int nsec) {
1974230775Sjfv  kern_return_t kr = KERN_ABORTED;
1975238149Sjfv  mach_timespec_t waitspec;
1976230775Sjfv  waitspec.tv_sec = sec;
1977230775Sjfv  waitspec.tv_nsec = nsec;
1978230775Sjfv
1979171384Sjfv  jlong starttime = currenttime();
1980251964Sjfv
1981251964Sjfv  kr = semaphore_timedwait(_semaphore, waitspec);
1982251964Sjfv  while (kr == KERN_ABORTED) {
1983251964Sjfv    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1984251964Sjfv
1985251964Sjfv    jlong current = currenttime();
1986251964Sjfv    jlong passedtime = current - starttime;
1987251964Sjfv
1988251964Sjfv    if (passedtime >= totalwait) {
1989251964Sjfv      waitspec.tv_sec = 0;
1990251964Sjfv      waitspec.tv_nsec = 0;
1991171384Sjfv    } else {
1992230775Sjfv      jlong waittime = totalwait - (current - starttime);
1993171384Sjfv      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1994230775Sjfv      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1995171384Sjfv    }
1996230775Sjfv
1997171384Sjfv    kr = semaphore_timedwait(_semaphore, waitspec);
1998171384Sjfv  }
1999230775Sjfv
2000230775Sjfv  return kr == KERN_SUCCESS;
2001230775Sjfv}
2002171384Sjfv
2003171384Sjfv#else
2004230775Sjfv
2005230775Sjfvbool Semaphore::trywait() {
2006230775Sjfv  return sem_trywait(&_semaphore) == 0;
2007230775Sjfv}
2008171384Sjfv
2009171384Sjfvbool Semaphore::timedwait(unsigned int sec, int nsec) {
2010230775Sjfv  struct timespec ts;
2011230775Sjfv  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2012230775Sjfv
2013230775Sjfv  while (1) {
2014230775Sjfv    int result = sem_timedwait(&_semaphore, &ts);
2015230775Sjfv    if (result == 0) {
2016230775Sjfv      return true;
2017230775Sjfv    } else if (errno == EINTR) {
2018230775Sjfv      continue;
2019230775Sjfv    } else if (errno == ETIMEDOUT) {
2020230775Sjfv      return false;
2021230775Sjfv    } else {
2022230775Sjfv      return false;
2023230775Sjfv    }
2024230775Sjfv  }
2025230775Sjfv}
2026171384Sjfv
2027171384Sjfv#endif // __APPLE__
2028230775Sjfv
2029230775Sjfvstatic os_semaphore_t sig_sem;
2030230775Sjfvstatic Semaphore sr_semaphore;
2031171384Sjfv
2032230775Sjfvvoid os::signal_init_pd() {
2033230775Sjfv  // Initialize signal structures
2034171384Sjfv  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2035230775Sjfv
2036171384Sjfv  // Initialize signal semaphore
2037230775Sjfv  ::SEM_INIT(sig_sem, 0);
2038230775Sjfv}
2039171384Sjfv
2040171384Sjfvvoid os::signal_notify(int sig) {
2041230775Sjfv  Atomic::inc(&pending_signals[sig]);
2042230775Sjfv  ::SEM_POST(sig_sem);
2043230775Sjfv}
2044230775Sjfv
2045230775Sjfvstatic int check_pending_signals(bool wait) {
2046230775Sjfv  Atomic::store(0, &sigint_count);
2047230775Sjfv  for (;;) {
2048171384Sjfv    for (int i = 0; i < NSIG + 1; i++) {
2049238149Sjfv      jint n = pending_signals[i];
2050238149Sjfv      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2051238149Sjfv        return i;
2052238149Sjfv      }
2053230775Sjfv    }
2054230775Sjfv    if (!wait) {
2055230775Sjfv      return -1;
2056230775Sjfv    }
2057230775Sjfv    JavaThread *thread = JavaThread::current();
2058230775Sjfv    ThreadBlockInVM tbivm(thread);
2059230775Sjfv
2060230775Sjfv    bool threadIsSuspended;
2061230775Sjfv    do {
2062230775Sjfv      thread->set_suspend_equivalent();
2063230775Sjfv      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2064230775Sjfv      ::SEM_WAIT(sig_sem);
2065230775Sjfv
2066230775Sjfv      // were we externally suspended while we were waiting?
2067230775Sjfv      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2068230775Sjfv      if (threadIsSuspended) {
2069230775Sjfv        //
2070230775Sjfv        // The semaphore has been incremented, but while we were waiting
2071230775Sjfv        // another thread suspended us. We don't want to continue running
2072230775Sjfv        // while suspended because that would surprise the thread that
2073230775Sjfv        // suspended us.
2074230775Sjfv        //
2075230775Sjfv        ::SEM_POST(sig_sem);
2076230775Sjfv
2077230775Sjfv        thread->java_suspend_self();
2078230775Sjfv      }
2079230775Sjfv    } while (threadIsSuspended);
2080230775Sjfv  }
2081230775Sjfv}
2082230775Sjfv
2083230775Sjfvint os::signal_lookup() {
2084230775Sjfv  return check_pending_signals(false);
2085230775Sjfv}
2086230775Sjfv
2087230775Sjfvint os::signal_wait() {
2088230775Sjfv  return check_pending_signals(true);
2089179055Sjfv}
2090230775Sjfv
2091230775Sjfv////////////////////////////////////////////////////////////////////////////////
2092230775Sjfv// Virtual Memory
2093230775Sjfv
2094230775Sjfvint os::vm_page_size() {
2095230775Sjfv  // Seems redundant as all get out
2096238149Sjfv  assert(os::Bsd::page_size() != -1, "must call os::init");
2097230775Sjfv  return os::Bsd::page_size();
2098171384Sjfv}
2099171384Sjfv
2100230775Sjfv// Solaris allocates memory by pages.
2101230775Sjfvint os::vm_allocation_granularity() {
2102230775Sjfv  assert(os::Bsd::page_size() != -1, "must call os::init");
2103230775Sjfv  return os::Bsd::page_size();
2104230775Sjfv}
2105230775Sjfv
2106230775Sjfv// Rationale behind this function:
2107230775Sjfv//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2108230775Sjfv//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2109230775Sjfv//  samples for JITted code. Here we create private executable mapping over the code cache
2110230775Sjfv//  and then we can use standard (well, almost, as mapping can change) way to provide
2111230775Sjfv//  info for the reporting script by storing timestamp and location of symbol
2112230775Sjfvvoid bsd_wrap_code(char* base, size_t size) {
2113230775Sjfv  static volatile jint cnt = 0;
2114171384Sjfv
2115230775Sjfv  if (!UseOprofile) {
2116230775Sjfv    return;
2117230775Sjfv  }
2118230775Sjfv
2119230775Sjfv  char buf[PATH_MAX + 1];
2120171384Sjfv  int num = Atomic::add(1, &cnt);
2121230775Sjfv
2122171384Sjfv  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2123190873Sjfv           os::get_temp_directory(), os::current_process_id(), num);
2124230775Sjfv  unlink(buf);
2125230775Sjfv
2126230775Sjfv  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2127230775Sjfv
2128230775Sjfv  if (fd != -1) {
2129190873Sjfv    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2130230775Sjfv    if (rv != (off_t)-1) {
2131230775Sjfv      if (::write(fd, "", 1) == 1) {
2132230775Sjfv        mmap(base, size,
2133230775Sjfv             PROT_READ|PROT_WRITE|PROT_EXEC,
2134230775Sjfv             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2135230775Sjfv      }
2136230775Sjfv    }
2137230775Sjfv    ::close(fd);
2138230775Sjfv    unlink(buf);
2139171384Sjfv  }
2140230775Sjfv}
2141230775Sjfv
2142230775Sjfvstatic void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2143230775Sjfv                                    int err) {
2144230775Sjfv  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2145190873Sjfv          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2146230775Sjfv          strerror(err), err);
2147230775Sjfv}
2148230775Sjfv
2149230775Sjfv// NOTE: Bsd kernel does not really reserve the pages for us.
2150230775Sjfv//       All it does is to check if there are enough free pages
2151230775Sjfv//       left at the time of mmap(). This could be a potential
2152230775Sjfv//       problem.
2153190873Sjfvbool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2154171384Sjfv  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2155230775Sjfv#ifdef __OpenBSD__
2156230775Sjfv  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2157230775Sjfv  if (::mprotect(addr, size, prot) == 0) {
2158230775Sjfv    return true;
2159230775Sjfv  }
2160230775Sjfv#else
2161230775Sjfv  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2162230775Sjfv                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2163230775Sjfv  if (res != (uintptr_t) MAP_FAILED) {
2164230775Sjfv    return true;
2165230775Sjfv  }
2166230775Sjfv#endif
2167230775Sjfv
2168230775Sjfv  // Warn about any commit errors we see in non-product builds just
2169230775Sjfv  // in case mmap() doesn't work as described on the man page.
2170230775Sjfv  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2171230775Sjfv
2172230775Sjfv  return false;
2173230775Sjfv}
2174230775Sjfv
2175230775Sjfvbool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2176230775Sjfv                       bool exec) {
2177230775Sjfv  // alignment_hint is ignored on this OS
2178230775Sjfv  return pd_commit_memory(addr, size, exec);
2179230775Sjfv}
2180230775Sjfv
2181230775Sjfvvoid os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2182230775Sjfv                                  const char* mesg) {
2183230775Sjfv  assert(mesg != NULL, "mesg must be specified");
2184230775Sjfv  if (!pd_commit_memory(addr, size, exec)) {
2185230775Sjfv    // add extra info in product mode for vm_exit_out_of_memory():
2186230775Sjfv    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2187230775Sjfv    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2188230775Sjfv  }
2189230775Sjfv}
2190230775Sjfv
2191230775Sjfvvoid os::pd_commit_memory_or_exit(char* addr, size_t size,
2192230775Sjfv                                  size_t alignment_hint, bool exec,
2193230775Sjfv                                  const char* mesg) {
2194230775Sjfv  // alignment_hint is ignored on this OS
2195230775Sjfv  pd_commit_memory_or_exit(addr, size, exec, mesg);
2196230775Sjfv}
2197230775Sjfv
2198230775Sjfvvoid os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2199230775Sjfv}
2200230775Sjfv
2201230775Sjfvvoid os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2202171384Sjfv  ::madvise(addr, bytes, MADV_DONTNEED);
2203230775Sjfv}
2204230775Sjfv
2205230775Sjfvvoid os::numa_make_global(char *addr, size_t bytes) {
2206230775Sjfv}
2207230775Sjfv
2208230775Sjfvvoid os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2209230775Sjfv}
2210230775Sjfv
2211230775Sjfvbool os::numa_topology_changed()   { return false; }
2212230775Sjfv
2213230775Sjfvsize_t os::numa_get_groups_num() {
2214230775Sjfv  return 1;
2215185352Sjfv}
2216190873Sjfv
2217230775Sjfvint os::numa_get_group_id() {
2218230775Sjfv  return 0;
2219230775Sjfv}
2220230775Sjfv
2221230775Sjfvsize_t os::numa_get_leaf_groups(int *ids, size_t size) {
2222190873Sjfv  if (size > 0) {
2223171384Sjfv    ids[0] = 0;
2224230775Sjfv    return 1;
2225230775Sjfv  }
2226230775Sjfv  return 0;
2227230775Sjfv}
2228230775Sjfv
2229230775Sjfvbool os::get_page_info(char *start, page_info* info) {
2230230775Sjfv  return false;
2231171384Sjfv}
2232230775Sjfv
2233171384Sjfvchar *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2234171384Sjfv  return end;
2235230775Sjfv}
2236171384Sjfv
2237230775Sjfv
2238230775Sjfvbool os::pd_uncommit_memory(char* addr, size_t size) {
2239171384Sjfv#ifdef __OpenBSD__
2240230775Sjfv  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2241230775Sjfv  return ::mprotect(addr, size, PROT_NONE) == 0;
2242230775Sjfv#else
2243230775Sjfv  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2244230775Sjfv                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2245230775Sjfv  return res  != (uintptr_t) MAP_FAILED;
2246230775Sjfv#endif
2247230775Sjfv}
2248230775Sjfv
2249171384Sjfvbool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2250171384Sjfv  return os::commit_memory(addr, size, !ExecMem);
2251230775Sjfv}
2252230775Sjfv
2253230775Sjfv// If this is a growable mapping, remove the guard pages entirely by
2254230775Sjfv// munmap()ping them.  If not, just call uncommit_memory().
2255230775Sjfvbool os::remove_stack_guard_pages(char* addr, size_t size) {
2256230775Sjfv  return os::uncommit_memory(addr, size);
2257171384Sjfv}
2258230775Sjfv
2259230775Sjfvstatic address _highest_vm_reserved_address = NULL;
2260171384Sjfv
2261171384Sjfv// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2262171384Sjfv// at 'requested_addr'. If there are existing memory mappings at the same
2263230775Sjfv// location, however, they will be overwritten. If 'fixed' is false,
2264230775Sjfv// 'requested_addr' is only treated as a hint, the return value may or
2265230775Sjfv// may not start from the requested address. Unlike Bsd mmap(), this
2266230775Sjfv// function returns NULL to indicate failure.
2267230775Sjfvstatic char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2268230775Sjfv  char * addr;
2269230775Sjfv  int flags;
2270230775Sjfv
2271230775Sjfv  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2272230775Sjfv  if (fixed) {
2273230775Sjfv    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2274230775Sjfv    flags |= MAP_FIXED;
2275230775Sjfv  }
2276230775Sjfv
2277230775Sjfv  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2278190873Sjfv  // touch an uncommitted page. Otherwise, the read/write might
2279190873Sjfv  // succeed if we have enough swap space to back the physical page.
2280230775Sjfv  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2281230775Sjfv                       flags, -1, 0);
2282230775Sjfv
2283230775Sjfv  if (addr != MAP_FAILED) {
2284230775Sjfv    // anon_mmap() should only get called during VM initialization,
2285190873Sjfv    // don't need lock (actually we can skip locking even it can be called
2286171384Sjfv    // from multiple threads, because _highest_vm_reserved_address is just a
2287171384Sjfv    // hint about the upper limit of non-stack memory regions.)
2288230775Sjfv    if ((address)addr + bytes > _highest_vm_reserved_address) {
2289230775Sjfv      _highest_vm_reserved_address = (address)addr + bytes;
2290230775Sjfv    }
2291230775Sjfv  }
2292230775Sjfv
2293171384Sjfv  return addr == MAP_FAILED ? NULL : addr;
2294171384Sjfv}
2295230775Sjfv
2296230775Sjfv// Don't update _highest_vm_reserved_address, because there might be memory
2297230775Sjfv// regions above addr + size. If so, releasing a memory region only creates
2298230775Sjfv// a hole in the address space, it doesn't help prevent heap-stack collision.
2299230775Sjfv//
2300171384Sjfvstatic int anon_munmap(char * addr, size_t size) {
2301230775Sjfv  return ::munmap(addr, size) == 0;
2302230775Sjfv}
2303171384Sjfv
2304230775Sjfvchar* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2305171384Sjfv                         size_t alignment_hint) {
2306171384Sjfv  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2307230775Sjfv}
2308230775Sjfv
2309230775Sjfvbool os::pd_release_memory(char* addr, size_t size) {
2310171384Sjfv  return anon_munmap(addr, size);
2311171384Sjfv}
2312230775Sjfv
2313230775Sjfvstatic bool bsd_mprotect(char* addr, size_t size, int prot) {
2314230775Sjfv  // Bsd wants the mprotect address argument to be page aligned.
2315230775Sjfv  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2316171384Sjfv
2317194875Sjfv  // According to SUSv3, mprotect() should only be used with mappings
2318230775Sjfv  // established by mmap(), and mmap() always maps whole pages. Unaligned
2319230775Sjfv  // 'addr' likely indicates problem in the VM (e.g. trying to change
2320230775Sjfv  // protection of malloc'ed or statically allocated memory). Check the
2321230775Sjfv  // caller if you hit this assert.
2322194875Sjfv  assert(addr == bottom, "sanity check");
2323190873Sjfv
2324179055Sjfv  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2325179055Sjfv  return ::mprotect(bottom, size, prot) == 0;
2326190873Sjfv}
2327190873Sjfv
2328179055Sjfv// Set protections specified
2329190873Sjfvbool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2330190873Sjfv                        bool is_committed) {
2331179055Sjfv  unsigned int p = 0;
2332179055Sjfv  switch (prot) {
2333179055Sjfv  case MEM_PROT_NONE: p = PROT_NONE; break;
2334185352Sjfv  case MEM_PROT_READ: p = PROT_READ; break;
2335185352Sjfv  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2336185352Sjfv  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2337185352Sjfv  default:
2338185352Sjfv    ShouldNotReachHere();
2339179055Sjfv  }
2340185352Sjfv  // is_committed is unused.
2341190873Sjfv  return bsd_mprotect(addr, bytes, p);
2342230775Sjfv}
2343230775Sjfv
2344230775Sjfvbool os::guard_memory(char* addr, size_t size) {
2345230775Sjfv  return bsd_mprotect(addr, size, PROT_NONE);
2346190873Sjfv}
2347179055Sjfv
2348190873Sjfvbool os::unguard_memory(char* addr, size_t size) {
2349230775Sjfv  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2350230775Sjfv}
2351230775Sjfv
2352230775Sjfvbool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2353230775Sjfv  return false;
2354230775Sjfv}
2355230775Sjfv
2356230775Sjfv// Large page support
2357230775Sjfv
2358230775Sjfvstatic size_t _large_page_size = 0;
2359230775Sjfv
2360230775Sjfvvoid os::large_page_init() {
2361230775Sjfv}
2362190873Sjfv
2363230775Sjfv
2364230775Sjfvchar* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2365230775Sjfv  fatal("This code is not used or maintained.");
2366230775Sjfv
2367230775Sjfv  // "exec" is passed in but not used.  Creating the shared image for
2368230775Sjfv  // the code cache doesn't have an SHM_X executable permission to check.
2369230775Sjfv  assert(UseLargePages && UseSHM, "only for SHM large pages");
2370230775Sjfv
2371230775Sjfv  key_t key = IPC_PRIVATE;
2372190873Sjfv  char *addr;
2373230775Sjfv
2374230775Sjfv  bool warn_on_failure = UseLargePages &&
2375230775Sjfv                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2376230775Sjfv                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2377230775Sjfv                        );
2378230775Sjfv  char msg[128];
2379230775Sjfv
2380230775Sjfv  // Create a large shared memory region to attach to based on size.
2381230775Sjfv  // Currently, size is the total size of the heap
2382230775Sjfv  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2383230775Sjfv  if (shmid == -1) {
2384230775Sjfv     // Possible reasons for shmget failure:
2385230775Sjfv     // 1. shmmax is too small for Java heap.
2386230775Sjfv     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2387230775Sjfv     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2388230775Sjfv     // 2. not enough large page memory.
2389230775Sjfv     //    > check available large pages: cat /proc/meminfo
2390230775Sjfv     //    > increase amount of large pages:
2391230775Sjfv     //          echo new_value > /proc/sys/vm/nr_hugepages
2392230775Sjfv     //      Note 1: different Bsd may use different name for this property,
2393190873Sjfv     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2394230775Sjfv     //      Note 2: it's possible there's enough physical memory available but
2395230775Sjfv     //            they are so fragmented after a long run that they can't
2396230775Sjfv     //            coalesce into large pages. Try to reserve large pages when
2397230775Sjfv     //            the system is still "fresh".
2398230775Sjfv     if (warn_on_failure) {
2399230775Sjfv       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2400230775Sjfv       warning(msg);
2401230775Sjfv     }
2402230775Sjfv     return NULL;
2403230775Sjfv  }
2404230775Sjfv
2405230775Sjfv  // attach to the region
2406230775Sjfv  addr = (char*)shmat(shmid, req_addr, 0);
2407230775Sjfv  int err = errno;
2408230775Sjfv
2409230775Sjfv  // Remove shmid. If shmat() is successful, the actual shared memory segment
2410230775Sjfv  // will be deleted when it's detached by shmdt() or when the process
2411230775Sjfv  // terminates. If shmat() is not successful this will remove the shared
2412230775Sjfv  // segment immediately.
2413230775Sjfv  shmctl(shmid, IPC_RMID, NULL);
2414230775Sjfv
2415230775Sjfv  if ((intptr_t)addr == -1) {
2416190873Sjfv     if (warn_on_failure) {
2417230775Sjfv       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2418230775Sjfv       warning(msg);
2419230775Sjfv     }
2420251964Sjfv     return NULL;
2421251964Sjfv  }
2422251964Sjfv
2423251964Sjfv  // The memory is committed
2424251964Sjfv  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2425251964Sjfv
2426251964Sjfv  return addr;
2427251964Sjfv}
2428230775Sjfv
2429230775Sjfvbool os::release_memory_special(char* base, size_t bytes) {
2430230775Sjfv  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2431230775Sjfv  // detaching the SHM segment will also delete it, see reserve_memory_special()
2432230775Sjfv  int rslt = shmdt(base);
2433230775Sjfv  if (rslt == 0) {
2434230775Sjfv    tkr.record((address)base, bytes);
2435230775Sjfv    return true;
2436230775Sjfv  } else {
2437230775Sjfv    tkr.discard();
2438230775Sjfv    return false;
2439230775Sjfv  }
2440230775Sjfv
2441230775Sjfv}
2442230775Sjfv
2443230775Sjfvsize_t os::large_page_size() {
2444230775Sjfv  return _large_page_size;
2445230775Sjfv}
2446230775Sjfv
2447230775Sjfv// HugeTLBFS allows application to commit large page memory on demand;
2448230775Sjfv// with SysV SHM the entire memory region must be allocated as shared
2449230775Sjfv// memory.
2450230775Sjfvbool os::can_commit_large_page_memory() {
2451230775Sjfv  return UseHugeTLBFS;
2452230775Sjfv}
2453230775Sjfv
2454230775Sjfvbool os::can_execute_large_page_memory() {
2455230775Sjfv  return UseHugeTLBFS;
2456230775Sjfv}
2457230775Sjfv
2458230775Sjfv// Reserve memory at an arbitrary address, only if that area is
2459230775Sjfv// available (and not reserved for something else).
2460230775Sjfv
2461230775Sjfvchar* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2462230775Sjfv  const int max_tries = 10;
2463230775Sjfv  char* base[max_tries];
2464230775Sjfv  size_t size[max_tries];
2465230775Sjfv  const size_t gap = 0x000000;
2466171384Sjfv
2467171384Sjfv  // Assert only that the size is a multiple of the page size, since
2468230775Sjfv  // that's all that mmap requires, and since that's all we really know
2469171384Sjfv  // about at this low abstraction level.  If we need higher alignment,
2470179055Sjfv  // we can either pass an alignment to this method or verify alignment
2471171384Sjfv  // in one of the methods further up the call chain.  See bug 5044738.
2472230775Sjfv  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2473230775Sjfv
2474230775Sjfv  // Repeatedly allocate blocks until the block is allocated at the
2475171384Sjfv  // right spot. Give up after max_tries. Note that reserve_memory() will
2476171384Sjfv  // automatically update _highest_vm_reserved_address if the call is
2477171384Sjfv  // successful. The variable tracks the highest memory address every reserved
2478179055Sjfv  // by JVM. It is used to detect heap-stack collision if running with
2479171384Sjfv  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2480230775Sjfv  // space than needed, it could confuse the collision detecting code. To
2481230775Sjfv  // solve the problem, save current _highest_vm_reserved_address and
2482179055Sjfv  // calculate the correct value before return.
2483171384Sjfv  address old_highest = _highest_vm_reserved_address;
2484171384Sjfv
2485171384Sjfv  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2486171384Sjfv  // if kernel honors the hint then we can return immediately.
2487171384Sjfv  char * addr = anon_mmap(requested_addr, bytes, false);
2488171384Sjfv  if (addr == requested_addr) {
2489171384Sjfv     return requested_addr;
2490230775Sjfv  }
2491179055Sjfv
2492179055Sjfv  if (addr != NULL) {
2493171384Sjfv     // mmap() is successful but it fails to reserve at the requested address
2494171384Sjfv     anon_munmap(addr, bytes);
2495230775Sjfv  }
2496179055Sjfv
2497179055Sjfv  int i;
2498171384Sjfv  for (i = 0; i < max_tries; ++i) {
2499171384Sjfv    base[i] = reserve_memory(bytes);
2500171384Sjfv
2501171384Sjfv    if (base[i] != NULL) {
2502171384Sjfv      // Is this the block we wanted?
2503179055Sjfv      if (base[i] == requested_addr) {
2504230775Sjfv        size[i] = bytes;
2505230775Sjfv        break;
2506230775Sjfv      }
2507230775Sjfv
2508179055Sjfv      // Does this overlap the block we wanted? Give back the overlapped
2509171384Sjfv      // parts and try again.
2510171384Sjfv
2511171384Sjfv      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2512171384Sjfv      if (top_overlap >= 0 && top_overlap < bytes) {
2513171384Sjfv        unmap_memory(base[i], top_overlap);
2514179055Sjfv        base[i] += top_overlap;
2515179055Sjfv        size[i] = bytes - top_overlap;
2516171384Sjfv      } else {
2517171384Sjfv        size_t bottom_overlap = base[i] + bytes - requested_addr;
2518171384Sjfv        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2519179055Sjfv          unmap_memory(requested_addr, bottom_overlap);
2520179055Sjfv          size[i] = bytes - bottom_overlap;
2521179055Sjfv        } else {
2522181003Sjfv          size[i] = bytes;
2523181003Sjfv        }
2524179055Sjfv      }
2525171384Sjfv    }
2526171384Sjfv  }
2527179055Sjfv
2528171384Sjfv  // Give back the unused reserved pieces.
2529179055Sjfv
2530179055Sjfv  for (int j = 0; j < i; ++j) {
2531171384Sjfv    if (base[j] != NULL) {
2532171384Sjfv      unmap_memory(base[j], size[j]);
2533171384Sjfv    }
2534171384Sjfv  }
2535179055Sjfv
2536179055Sjfv  if (i < max_tries) {
2537179055Sjfv    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2538171384Sjfv    return requested_addr;
2539171384Sjfv  } else {
2540171384Sjfv    _highest_vm_reserved_address = old_highest;
2541171384Sjfv    return NULL;
2542171384Sjfv  }
2543171384Sjfv}
2544179055Sjfv
2545179055Sjfvsize_t os::read(int fd, void *buf, unsigned int nBytes) {
2546179055Sjfv  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2547179055Sjfv}
2548171384Sjfv
2549171384Sjfv// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2550171384Sjfv// Solaris uses poll(), bsd uses park().
2551230775Sjfv// Poll() is likely a better choice, assuming that Thread.interrupt()
2552230775Sjfv// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2553230775Sjfv// SIGSEGV, see 4355769.
2554230775Sjfv
2555230775Sjfvint os::sleep(Thread* thread, jlong millis, bool interruptible) {
2556230775Sjfv  assert(thread == Thread::current(),  "thread consistency check");
2557230775Sjfv
2558230775Sjfv  ParkEvent * const slp = thread->_SleepEvent ;
2559230775Sjfv  slp->reset() ;
2560230775Sjfv  OrderAccess::fence() ;
2561230775Sjfv
2562230775Sjfv  if (interruptible) {
2563230775Sjfv    jlong prevtime = javaTimeNanos();
2564230775Sjfv
2565230775Sjfv    for (;;) {
2566230775Sjfv      if (os::is_interrupted(thread, true)) {
2567230775Sjfv        return OS_INTRPT;
2568230775Sjfv      }
2569230775Sjfv
2570230775Sjfv      jlong newtime = javaTimeNanos();
2571230775Sjfv
2572230775Sjfv      if (newtime - prevtime < 0) {
2573230775Sjfv        // time moving backwards, should only happen if no monotonic clock
2574230775Sjfv        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2575230775Sjfv        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2576230775Sjfv      } else {
2577230775Sjfv        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2578230775Sjfv      }
2579230775Sjfv
2580230775Sjfv      if(millis <= 0) {
2581230775Sjfv        return OS_OK;
2582230775Sjfv      }
2583230775Sjfv
2584230775Sjfv      prevtime = newtime;
2585230775Sjfv
2586230775Sjfv      {
2587230775Sjfv        assert(thread->is_Java_thread(), "sanity check");
2588230775Sjfv        JavaThread *jt = (JavaThread *) thread;
2589230775Sjfv        ThreadBlockInVM tbivm(jt);
2590230775Sjfv        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2591230775Sjfv
2592190873Sjfv        jt->set_suspend_equivalent();
2593190873Sjfv        // cleared by handle_special_suspend_equivalent_condition() or
2594230775Sjfv        // java_suspend_self() via check_and_wait_while_suspended()
2595230775Sjfv
2596230775Sjfv        slp->park(millis);
2597230775Sjfv
2598230775Sjfv        // were we externally suspended while we were waiting?
2599230775Sjfv        jt->check_and_wait_while_suspended();
2600230775Sjfv      }
2601230775Sjfv    }
2602230775Sjfv  } else {
2603230775Sjfv    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2604230775Sjfv    jlong prevtime = javaTimeNanos();
2605230775Sjfv
2606171384Sjfv    for (;;) {
2607171384Sjfv      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2608171384Sjfv      // the 1st iteration ...
2609171384Sjfv      jlong newtime = javaTimeNanos();
2610171384Sjfv
2611230775Sjfv      if (newtime - prevtime < 0) {
2612230775Sjfv        // time moving backwards, should only happen if no monotonic clock
2613230775Sjfv        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2614230775Sjfv        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2615230775Sjfv      } else {
2616230775Sjfv        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2617230775Sjfv      }
2618230775Sjfv
2619230775Sjfv      if(millis <= 0) break ;
2620171384Sjfv
2621185352Sjfv      prevtime = newtime;
2622185352Sjfv      slp->park(millis);
2623230775Sjfv    }
2624230775Sjfv    return OS_OK ;
2625230775Sjfv  }
2626230775Sjfv}
2627230775Sjfv
2628230775Sjfvint os::naked_sleep() {
2629230775Sjfv  // %% make the sleep time an integer flag. for now use 1 millisec.
2630230775Sjfv  return os::sleep(Thread::current(), 1, false);
2631230775Sjfv}
2632230775Sjfv
2633230775Sjfv// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2634230775Sjfvvoid os::infinite_sleep() {
2635230775Sjfv  while (true) {    // sleep forever ...
2636230775Sjfv    ::sleep(100);   // ... 100 seconds at a time
2637230775Sjfv  }
2638238149Sjfv}
2639185352Sjfv
2640230775Sjfv// Used to convert frequent JVM_Yield() to nops
2641230775Sjfvbool os::dont_yield() {
2642230775Sjfv  return DontYieldALot;
2643205720Sjfv}
2644230775Sjfv
2645238149Sjfvvoid os::yield() {
2646230775Sjfv  sched_yield();
2647215911Sjfv}
2648230775Sjfv
2649230775Sjfvos::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2650230775Sjfv
2651230775Sjfvvoid os::yield_all(int attempts) {
2652230775Sjfv  // Yields to all threads, including threads with lower priorities
2653230775Sjfv  // Threads on Bsd are all with same priority. The Solaris style
2654230775Sjfv  // os::yield_all() with nanosleep(1ms) is not necessary.
2655230775Sjfv  sched_yield();
2656230775Sjfv}
2657230775Sjfv
2658230775Sjfv// Called from the tight loops to possibly influence time-sharing heuristics
2659230775Sjfvvoid os::loop_breaker(int attempts) {
2660230775Sjfv  os::yield_all(attempts);
2661230775Sjfv}
2662230775Sjfv
2663230775Sjfv////////////////////////////////////////////////////////////////////////////////
2664230775Sjfv// thread priority support
2665230775Sjfv
2666230775Sjfv// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2667230775Sjfv// only supports dynamic priority, static priority must be zero. For real-time
2668230775Sjfv// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2669230775Sjfv// However, for large multi-threaded applications, SCHED_RR is not only slower
2670230775Sjfv// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2671230775Sjfv// of 5 runs - Sep 2005).
2672230775Sjfv//
2673230775Sjfv// The following code actually changes the niceness of kernel-thread/LWP. It
2674230775Sjfv// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2675230775Sjfv// not the entire user process, and user level threads are 1:1 mapped to kernel
2676238149Sjfv// threads. It has always been the case, but could change in the future. For
2677238149Sjfv// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2678238149Sjfv// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2679238149Sjfv
2680238149Sjfv#if !defined(__APPLE__)
2681238149Sjfvint os::java_to_os_priority[CriticalPriority + 1] = {
2682238149Sjfv  19,              // 0 Entry should never be used
2683238149Sjfv
2684230775Sjfv   0,              // 1 MinPriority
2685230775Sjfv   3,              // 2
2686238149Sjfv   6,              // 3
2687238149Sjfv
2688238149Sjfv  10,              // 4
2689238149Sjfv  15,              // 5 NormPriority
2690238149Sjfv  18,              // 6
2691238149Sjfv
2692238149Sjfv  21,              // 7
2693238149Sjfv  25,              // 8
2694230775Sjfv  28,              // 9 NearMaxPriority
2695230775Sjfv
2696238149Sjfv  31,              // 10 MaxPriority
2697238149Sjfv
2698238149Sjfv  31               // 11 CriticalPriority
2699238149Sjfv};
2700238149Sjfv#else
2701230775Sjfv/* Using Mach high-level priority assignments */
2702190873Sjfvint os::java_to_os_priority[CriticalPriority + 1] = {
2703230775Sjfv   0,              // 0 Entry should never be used (MINPRI_USER)
2704230775Sjfv
2705185352Sjfv  27,              // 1 MinPriority
2706215911Sjfv  28,              // 2
2707230775Sjfv  29,              // 3
2708230775Sjfv
2709230775Sjfv  30,              // 4
2710230775Sjfv  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2711230775Sjfv  32,              // 6
2712230775Sjfv
2713215911Sjfv  33,              // 7
2714230775Sjfv  34,              // 8
2715230775Sjfv  35,              // 9 NearMaxPriority
2716230775Sjfv
2717230775Sjfv  36,              // 10 MaxPriority
2718230775Sjfv
2719230775Sjfv  36               // 11 CriticalPriority
2720230775Sjfv};
2721230775Sjfv#endif
2722215911Sjfv
2723190873Sjfvstatic int prio_init() {
2724190873Sjfv  if (ThreadPriorityPolicy == 1) {
2725215911Sjfv    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2726217593Sjfv    // if effective uid is not root. Perhaps, a more elegant way of doing
2727217593Sjfv    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2728190873Sjfv    if (geteuid() != 0) {
2729230775Sjfv      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2730230775Sjfv        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2731230775Sjfv      }
2732230775Sjfv      ThreadPriorityPolicy = 0;
2733230775Sjfv    }
2734230775Sjfv  }
2735230775Sjfv  if (UseCriticalJavaThreadPriority) {
2736230775Sjfv    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2737230775Sjfv  }
2738190873Sjfv  return 0;
2739215911Sjfv}
2740230775Sjfv
2741230775SjfvOSReturn os::set_native_priority(Thread* thread, int newpri) {
2742215911Sjfv  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2743215911Sjfv
2744215911Sjfv#ifdef __OpenBSD__
2745215911Sjfv  // OpenBSD pthread_setprio starves low priority threads
2746215911Sjfv  return OS_OK;
2747215911Sjfv#elif defined(__FreeBSD__)
2748230775Sjfv  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2749215911Sjfv#elif defined(__APPLE__) || defined(__NetBSD__)
2750215911Sjfv  struct sched_param sp;
2751190873Sjfv  int policy;
2752190873Sjfv  pthread_t self = pthread_self();
2753217593Sjfv
2754217593Sjfv  if (pthread_getschedparam(self, &policy, &sp) != 0)
2755217593Sjfv    return OS_ERR;
2756217593Sjfv
2757217593Sjfv  sp.sched_priority = newpri;
2758217593Sjfv  if (pthread_setschedparam(self, policy, &sp) != 0)
2759217593Sjfv    return OS_ERR;
2760217593Sjfv
2761217593Sjfv  return OS_OK;
2762217593Sjfv#else
2763217593Sjfv  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2764217593Sjfv  return (ret == 0) ? OS_OK : OS_ERR;
2765217593Sjfv#endif
2766217593Sjfv}
2767217593Sjfv
2768217593SjfvOSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2769217593Sjfv  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2770215911Sjfv    *priority_ptr = java_to_os_priority[NormPriority];
2771215911Sjfv    return OS_OK;
2772215911Sjfv  }
2773215911Sjfv
2774215911Sjfv  errno = 0;
2775215911Sjfv#if defined(__OpenBSD__) || defined(__FreeBSD__)
2776230775Sjfv  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2777230775Sjfv#elif defined(__APPLE__) || defined(__NetBSD__)
2778230775Sjfv  int policy;
2779215911Sjfv  struct sched_param sp;
2780215911Sjfv
2781171384Sjfv  pthread_getschedparam(pthread_self(), &policy, &sp);
2782171384Sjfv  *priority_ptr = sp.sched_priority;
2783171384Sjfv#else
2784200239Sjfv  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2785171384Sjfv#endif
2786171384Sjfv  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2787171384Sjfv}
2788171384Sjfv
2789171384Sjfv// Hint to the underlying OS that a task switch would not be good.
2790171384Sjfv// Void return because it's a hint and can fail.
2791190873Sjfvvoid os::hint_no_preempt() {}
2792215911Sjfv
2793230775Sjfv////////////////////////////////////////////////////////////////////////////////
2794230775Sjfv// suspend/resume support
2795171384Sjfv
2796171384Sjfv//  the low-level signal-based suspend/resume support is a remnant from the
2797171384Sjfv//  old VM-suspension that used to be for java-suspension, safepoints etc,
2798171384Sjfv//  within hotspot. Now there is a single use-case for this:
2799171384Sjfv//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2800190873Sjfv//      that runs in the watcher thread.
2801179055Sjfv//  The remaining code is greatly simplified from the more general suspension
2802190873Sjfv//  code that used to be used.
2803190873Sjfv//
2804171384Sjfv//  The protocol is quite simple:
2805179055Sjfv//  - suspend:
2806185352Sjfv//      - sends a signal to the target thread
2807205720Sjfv//      - polls the suspend state of the osthread using a yield loop
2808205720Sjfv//      - target thread signal handler (SR_handler) sets suspend state
2809205720Sjfv//        and blocks in sigsuspend until continued
2810185352Sjfv//  - resume:
2811185352Sjfv//      - sets target osthread state to continue
2812205720Sjfv//      - sends signal to end the sigsuspend loop in the SR_handler
2813185352Sjfv//
2814190873Sjfv//  Note that the SR_lock plays no role in this suspend/resume protocol.
2815190873Sjfv//
2816179055Sjfv
2817171384Sjfvstatic void resume_clear_context(OSThread *osthread) {
2818171384Sjfv  osthread->set_ucontext(NULL);
2819185352Sjfv  osthread->set_siginfo(NULL);
2820185352Sjfv}
2821185352Sjfv
2822185352Sjfvstatic void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2823185352Sjfv  osthread->set_ucontext(context);
2824185352Sjfv  osthread->set_siginfo(siginfo);
2825185352Sjfv}
2826185352Sjfv
2827230775Sjfv//
2828230775Sjfv// Handler function invoked when a thread's execution is suspended or
2829230775Sjfv// resumed. We have to be careful that only async-safe functions are
2830230775Sjfv// called here (Note: most pthread functions are not async safe and
2831185352Sjfv// should be avoided.)
2832185352Sjfv//
2833185352Sjfv// Note: sigwait() is a more natural fit than sigsuspend() from an
2834185352Sjfv// interface point of view, but sigwait() prevents the signal hander
2835185352Sjfv// from being run. libpthread would get very confused by not having
2836190873Sjfv// its signal handlers run and prevents sigwait()'s use with the
2837190873Sjfv// mutex granting granting signal.
2838190873Sjfv//
2839190873Sjfv// Currently only ever called on the VMThread or JavaThread
2840205720Sjfv//
2841205720Sjfvstatic void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2842215911Sjfv  // Save and restore errno to avoid confusing native code with EINTR
2843215911Sjfv  // after sigsuspend.
2844238149Sjfv  int old_errno = errno;
2845238149Sjfv
2846185352Sjfv  Thread* thread = Thread::current();
2847185352Sjfv  OSThread* osthread = thread->osthread();
2848185352Sjfv  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2849185352Sjfv
2850171384Sjfv  os::SuspendResume::State current = osthread->sr.state();
2851171384Sjfv  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2852171384Sjfv    suspend_save_context(osthread, siginfo, context);
2853247822Sjfv
2854171384Sjfv    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2855179055Sjfv    os::SuspendResume::State state = osthread->sr.suspended();
2856200239Sjfv    if (state == os::SuspendResume::SR_SUSPENDED) {
2857179055Sjfv      sigset_t suspend_set;  // signals for sigsuspend()
2858171384Sjfv
2859171384Sjfv      // get current set of blocked signals and unblock resume signal
2860171384Sjfv      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2861185352Sjfv      sigdelset(&suspend_set, SR_signum);
2862171384Sjfv
2863171384Sjfv      sr_semaphore.signal();
2864171384Sjfv      // wait here until we are resumed
2865171384Sjfv      while (1) {
2866171384Sjfv        sigsuspend(&suspend_set);
2867171384Sjfv
2868171384Sjfv        os::SuspendResume::State result = osthread->sr.running();
2869200239Sjfv        if (result == os::SuspendResume::SR_RUNNING) {
2870200239Sjfv          sr_semaphore.signal();
2871200239Sjfv          break;
2872200239Sjfv        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2873200239Sjfv          ShouldNotReachHere();
2874200239Sjfv        }
2875200239Sjfv      }
2876200239Sjfv
2877171384Sjfv    } else if (state == os::SuspendResume::SR_RUNNING) {
2878171384Sjfv      // request was cancelled, continue
2879171384Sjfv    } else {
2880171384Sjfv      ShouldNotReachHere();
2881171384Sjfv    }
2882171384Sjfv
2883171384Sjfv    resume_clear_context(osthread);
2884171384Sjfv  } else if (current == os::SuspendResume::SR_RUNNING) {
2885171384Sjfv    // request was cancelled, continue
2886171384Sjfv  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2887171384Sjfv    // ignore
2888230775Sjfv  } else {
2889230775Sjfv    // ignore
2890230775Sjfv  }
2891230775Sjfv
2892230775Sjfv  errno = old_errno;
2893230775Sjfv}
2894230775Sjfv
2895230775Sjfv
2896238149Sjfvstatic int SR_initialize() {
2897171384Sjfv  struct sigaction act;
2898171384Sjfv  char *s;
2899171384Sjfv  /* Get signal number to use for suspend/resume */
2900171384Sjfv  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2901171384Sjfv    int sig = ::strtol(s, 0, 10);
2902230775Sjfv    if (sig > 0 || sig < NSIG) {
2903230775Sjfv        SR_signum = sig;
2904230775Sjfv    }
2905230775Sjfv  }
2906230775Sjfv
2907230775Sjfv  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2908230775Sjfv        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2909171384Sjfv
2910171384Sjfv  sigemptyset(&SR_sigset);
2911171384Sjfv  sigaddset(&SR_sigset, SR_signum);
2912171384Sjfv
2913171384Sjfv  /* Set up signal handler for suspend/resume */
2914171384Sjfv  act.sa_flags = SA_RESTART|SA_SIGINFO;
2915171384Sjfv  act.sa_handler = (void (*)(int)) SR_handler;
2916179055Sjfv
2917179055Sjfv  // SR_signum is blocked by default.
2918171384Sjfv  // 4528190 - We also need to block pthread restart signal (32 on all
2919171384Sjfv  // supported Bsd platforms). Note that BsdThreads need to block
2920171384Sjfv  // this signal for all threads to work properly. So we don't have
2921171384Sjfv  // to use hard-coded signal number when setting up the mask.
2922171384Sjfv  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2923171384Sjfv
2924171384Sjfv  if (sigaction(SR_signum, &act, 0) == -1) {
2925185352Sjfv    return -1;
2926185352Sjfv  }
2927190873Sjfv
2928171384Sjfv  // Save signal flag
2929171384Sjfv  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2930171384Sjfv  return 0;
2931171384Sjfv}
2932230775Sjfv
2933238149Sjfvstatic int sr_notify(OSThread* osthread) {
2934171384Sjfv  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2935171384Sjfv  assert_status(status == 0, status, "pthread_kill");
2936171384Sjfv  return status;
2937190873Sjfv}
2938190873Sjfv
2939185352Sjfv// "Randomly" selected value for how long we want to spin
2940185352Sjfv// before bailing out on suspending a thread, also how often
2941171384Sjfv// we send a signal to a thread we want to resume
2942171384Sjfvstatic const int RANDOMLY_LARGE_INTEGER = 1000000;
2943171384Sjfvstatic const int RANDOMLY_LARGE_INTEGER2 = 100;
2944171384Sjfv
2945171384Sjfv// returns true on success and false on error - really an error is fatal
2946171384Sjfv// but this seems the normal response to library errors
2947171384Sjfvstatic bool do_suspend(OSThread* osthread) {
2948171384Sjfv  assert(osthread->sr.is_running(), "thread should be running");
2949171384Sjfv  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2950171384Sjfv
2951171384Sjfv  // mark as suspended and send signal
2952171384Sjfv  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2953171384Sjfv    // failed to switch, state wasn't running?
2954171384Sjfv    ShouldNotReachHere();
2955171384Sjfv    return false;
2956171384Sjfv  }
2957171384Sjfv
2958171384Sjfv  if (sr_notify(osthread) != 0) {
2959171384Sjfv    ShouldNotReachHere();
2960171384Sjfv  }
2961171384Sjfv
2962171384Sjfv  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2963171384Sjfv  while (true) {
2964171384Sjfv    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2965171384Sjfv      break;
2966171384Sjfv    } else {
2967171384Sjfv      // timeout
2968171384Sjfv      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2969171384Sjfv      if (cancelled == os::SuspendResume::SR_RUNNING) {
2970171384Sjfv        return false;
2971171384Sjfv      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2972171384Sjfv        // make sure that we consume the signal on the semaphore as well
2973171384Sjfv        sr_semaphore.wait();
2974171384Sjfv        break;
2975171384Sjfv      } else {
2976171384Sjfv        ShouldNotReachHere();
2977171384Sjfv        return false;
2978171384Sjfv      }
2979171384Sjfv    }
2980171384Sjfv  }
2981171384Sjfv
2982171384Sjfv  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2983171384Sjfv  return true;
2984171384Sjfv}
2985171384Sjfv
2986171384Sjfvstatic void do_resume(OSThread* osthread) {
2987171384Sjfv  assert(osthread->sr.is_suspended(), "thread should be suspended");
2988171384Sjfv  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2989171384Sjfv
2990171384Sjfv  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2991171384Sjfv    // failed to switch to WAKEUP_REQUEST
2992171384Sjfv    ShouldNotReachHere();
2993171384Sjfv    return;
2994171384Sjfv  }
2995171384Sjfv
2996171384Sjfv  while (true) {
2997171384Sjfv    if (sr_notify(osthread) == 0) {
2998190873Sjfv      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2999190873Sjfv        if (osthread->sr.is_running()) {
3000190873Sjfv          return;
3001190873Sjfv        }
3002190873Sjfv      }
3003190873Sjfv    } else {
3004190873Sjfv      ShouldNotReachHere();
3005190873Sjfv    }
3006190873Sjfv  }
3007190873Sjfv
3008190873Sjfv  guarantee(osthread->sr.is_running(), "Must be running!");
3009190873Sjfv}
3010190873Sjfv
3011190873Sjfv////////////////////////////////////////////////////////////////////////////////
3012190873Sjfv// interrupt support
3013230775Sjfv
3014230775Sjfvvoid os::interrupt(Thread* thread) {
3015230775Sjfv  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3016230775Sjfv    "possibility of dangling Thread pointer");
3017230775Sjfv
3018230775Sjfv  OSThread* osthread = thread->osthread();
3019230775Sjfv
3020230775Sjfv  if (!osthread->interrupted()) {
3021171384Sjfv    osthread->set_interrupted(true);
3022171384Sjfv    // More than one thread can get here with the same value of osthread,
3023171384Sjfv    // resulting in multiple notifications.  We do, however, want the store
3024171384Sjfv    // to interrupted() to be visible to other threads before we execute unpark().
3025171384Sjfv    OrderAccess::fence();
3026179055Sjfv    ParkEvent * const slp = thread->_SleepEvent ;
3027179055Sjfv    if (slp != NULL) slp->unpark() ;
3028230775Sjfv  }
3029179055Sjfv
3030171384Sjfv  // For JSR166. Unpark even if interrupt status already was set
3031179055Sjfv  if (thread->is_Java_thread())
3032179055Sjfv    ((JavaThread*)thread)->parker()->unpark();
3033179055Sjfv
3034230775Sjfv  ParkEvent * ev = thread->_ParkEvent ;
3035179055Sjfv  if (ev != NULL) ev->unpark() ;
3036230775Sjfv
3037179055Sjfv}
3038179055Sjfv
3039200239Sjfvbool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3040179055Sjfv  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3041171384Sjfv    "possibility of dangling Thread pointer");
3042179055Sjfv
3043179055Sjfv  OSThread* osthread = thread->osthread();
3044179055Sjfv
3045179055Sjfv  bool interrupted = osthread->interrupted();
3046179055Sjfv
3047205720Sjfv  if (interrupted && clear_interrupted) {
3048179055Sjfv    osthread->set_interrupted(false);
3049185352Sjfv    // consider thread->_SleepEvent->reset() ... optional optimization
3050179055Sjfv  }
3051190873Sjfv
3052190873Sjfv  return interrupted;
3053190873Sjfv}
3054200239Sjfv
3055215911Sjfv///////////////////////////////////////////////////////////////////////////////////
3056179055Sjfv// signal handling (except suspend/resume)
3057179055Sjfv
3058185352Sjfv// This routine may be used by user applications as a "hook" to catch signals.
3059179055Sjfv// The user-defined signal handler must pass unrecognized signals to this
3060179055Sjfv// routine, and if it returns true (non-zero), then the signal handler must
3061190873Sjfv// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3062190873Sjfv// routine will never retun false (zero), but instead will execute a VM panic
3063230775Sjfv// routine kill the process.
3064230775Sjfv//
3065194875Sjfv// If this routine returns false, it is OK to call it again.  This allows
3066194875Sjfv// the user-defined signal handler to perform checks either before or after
3067179055Sjfv// the VM performs its own checks.  Naturally, the user code would be making
3068171384Sjfv// a serious error if it tried to handle an exception (such as a null check
3069215911Sjfv// or breakpoint) that the VM was generating for its own correct operation.
3070215911Sjfv//
3071215911Sjfv// This routine may recognize any of the following kinds of signals:
3072247822Sjfv//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3073179055Sjfv// It should be consulted by handlers for any of those signals.
3074179055Sjfv//
3075230775Sjfv// The caller of this routine must pass in the three arguments supplied
3076171384Sjfv// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3077230775Sjfv// field of the structure passed to sigaction().  This routine assumes that
3078230775Sjfv// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3079230775Sjfv//
3080171384Sjfv// Note that the VM will print warnings if it detects conflicting signal
3081179055Sjfv// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3082179055Sjfv//
3083179055Sjfvextern "C" JNIEXPORT int
3084179055SjfvJVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3085171384Sjfv                        void* ucontext, int abort_if_unrecognized);
3086171384Sjfv
3087179055Sjfvvoid signalHandler(int sig, siginfo_t* info, void* uc) {
3088230775Sjfv  assert(info != NULL && uc != NULL, "it must be old kernel");
3089181003Sjfv  int orig_errno = errno;  // Preserve errno value over signal handler.
3090190873Sjfv  JVM_handle_bsd_signal(sig, info, uc, true);
3091179055Sjfv  errno = orig_errno;
3092238149Sjfv}
3093181003Sjfv
3094179055Sjfv
3095179055Sjfv// This boolean allows users to forward their own non-matching signals
3096230775Sjfv// to JVM_handle_bsd_signal, harmlessly.
3097179055Sjfvbool os::Bsd::signal_handlers_are_installed = false;
3098230775Sjfv
3099179055Sjfv// For signal-chaining
3100179055Sjfvstruct sigaction os::Bsd::sigact[MAXSIGNUM];
3101179055Sjfvunsigned int os::Bsd::sigs = 0;
3102179055Sjfvbool os::Bsd::libjsig_is_loaded = false;
3103230775Sjfvtypedef struct sigaction *(*get_signal_t)(int);
3104181003Sjfvget_signal_t os::Bsd::get_signal_action = NULL;
3105215911Sjfv
3106215911Sjfvstruct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3107171384Sjfv  struct sigaction *actp = NULL;
3108171384Sjfv
3109238149Sjfv  if (libjsig_is_loaded) {
3110230775Sjfv    // Retrieve the old signal handler from libjsig
3111230775Sjfv    actp = (*get_signal_action)(sig);
3112230775Sjfv  }
3113251964Sjfv  if (actp == NULL) {
3114251964Sjfv    // Retrieve the preinstalled signal handler from jvm
3115251964Sjfv    actp = get_preinstalled_handler(sig);
3116251964Sjfv  }
3117171384Sjfv
3118171384Sjfv  return actp;
3119179055Sjfv}
3120179055Sjfv
3121185352Sjfvstatic bool call_chained_handler(struct sigaction *actp, int sig,
3122190873Sjfv                                 siginfo_t *siginfo, void *context) {
3123179055Sjfv  // Call the old signal handler
3124179055Sjfv  if (actp->sa_handler == SIG_DFL) {
3125179055Sjfv    // It's more reasonable to let jvm treat it as an unexpected exception
3126251964Sjfv    // instead of taking the default action.
3127251964Sjfv    return false;
3128179055Sjfv  } else if (actp->sa_handler != SIG_IGN) {
3129247822Sjfv    if ((actp->sa_flags & SA_NODEFER) == 0) {
3130179055Sjfv      // automaticlly block the signal
3131179055Sjfv      sigaddset(&(actp->sa_mask), sig);
3132185352Sjfv    }
3133185352Sjfv
3134247822Sjfv    sa_handler_t hand;
3135185352Sjfv    sa_sigaction_t sa;
3136185352Sjfv    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3137190873Sjfv    // retrieve the chained handler
3138205720Sjfv    if (siginfo_flag_set) {
3139179055Sjfv      sa = actp->sa_sigaction;
3140179055Sjfv    } else {
3141179055Sjfv      hand = actp->sa_handler;
3142230775Sjfv    }
3143230775Sjfv
3144230775Sjfv    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3145230775Sjfv      actp->sa_handler = SIG_DFL;
3146230775Sjfv    }
3147230775Sjfv
3148179055Sjfv    // try to honor the signal mask
3149179055Sjfv    sigset_t oset;
3150205720Sjfv    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3151171384Sjfv
3152230775Sjfv    // call into the chained handler
3153230775Sjfv    if (siginfo_flag_set) {
3154230775Sjfv      (*sa)(sig, siginfo, context);
3155230775Sjfv    } else {
3156230775Sjfv      (*hand)(sig);
3157200239Sjfv    }
3158230775Sjfv
3159200239Sjfv    // restore the signal mask
3160230775Sjfv    pthread_sigmask(SIG_SETMASK, &oset, 0);
3161215911Sjfv  }
3162230775Sjfv  // Tell jvm's signal handler the signal is taken care of.
3163230775Sjfv  return true;
3164230775Sjfv}
3165230775Sjfv
3166230775Sjfvbool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3167230775Sjfv  bool chained = false;
3168230775Sjfv  // signal-chaining
3169230775Sjfv  if (UseSignalChaining) {
3170230775Sjfv    struct sigaction *actp = get_chained_signal_action(sig);
3171230775Sjfv    if (actp != NULL) {
3172247822Sjfv      chained = call_chained_handler(actp, sig, siginfo, context);
3173238149Sjfv    }
3174247822Sjfv  }
3175238149Sjfv  return chained;
3176238149Sjfv}
3177230775Sjfv
3178230775Sjfvstruct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3179230775Sjfv  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3180230775Sjfv    return &sigact[sig];
3181171384Sjfv  }
3182171384Sjfv  return NULL;
3183171384Sjfv}
3184230775Sjfv
3185230775Sjfvvoid os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3186230775Sjfv  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3187230775Sjfv  sigact[sig] = oldAct;
3188230775Sjfv  sigs |= (unsigned int)1 << sig;
3189230775Sjfv}
3190230775Sjfv
3191230775Sjfv// for diagnostic
3192230775Sjfvint os::Bsd::sigflags[MAXSIGNUM];
3193230775Sjfv
3194230775Sjfvint os::Bsd::get_our_sigflags(int sig) {
3195230775Sjfv  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3196230775Sjfv  return sigflags[sig];
3197230775Sjfv}
3198171384Sjfv
3199171384Sjfvvoid os::Bsd::set_our_sigflags(int sig, int flags) {
3200215911Sjfv  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3201215911Sjfv  sigflags[sig] = flags;
3202215911Sjfv}
3203215911Sjfv
3204215911Sjfvvoid os::Bsd::set_signal_handler(int sig, bool set_installed) {
3205215911Sjfv  // Check for overwrite.
3206215911Sjfv  struct sigaction oldAct;
3207215911Sjfv  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3208215911Sjfv
3209215911Sjfv  void* oldhand = oldAct.sa_sigaction
3210215911Sjfv                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3211215911Sjfv                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3212215911Sjfv  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3213215911Sjfv      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3214215911Sjfv      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3215215911Sjfv    if (AllowUserSignalHandlers || !set_installed) {
3216215911Sjfv      // Do not overwrite; user takes responsibility to forward to us.
3217215911Sjfv      return;
3218215911Sjfv    } else if (UseSignalChaining) {
3219215911Sjfv      // save the old handler in jvm
3220215911Sjfv      save_preinstalled_handler(sig, oldAct);
3221215911Sjfv      // libjsig also interposes the sigaction() call below and saves the
3222215911Sjfv      // old sigaction on it own.
3223215911Sjfv    } else {
3224215911Sjfv      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3225215911Sjfv                    "%#lx for signal %d.", (long)oldhand, sig));
3226215911Sjfv    }
3227215911Sjfv  }
3228215911Sjfv
3229215911Sjfv  struct sigaction sigAct;
3230215911Sjfv  sigfillset(&(sigAct.sa_mask));
3231171384Sjfv  sigAct.sa_handler = SIG_DFL;
3232230775Sjfv  if (!set_installed) {
3233230775Sjfv    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3234230775Sjfv  } else {
3235230775Sjfv    sigAct.sa_sigaction = signalHandler;
3236230775Sjfv    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3237230775Sjfv  }
3238230775Sjfv#if __APPLE__
3239230775Sjfv  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3240230775Sjfv  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3241230775Sjfv  // if the signal handler declares it will handle it on alternate stack.
3242230775Sjfv  // Notice we only declare we will handle it on alt stack, but we are not
3243230775Sjfv  // actually going to use real alt stack - this is just a workaround.
3244230775Sjfv  // Please see ux_exception.c, method catch_mach_exception_raise for details
3245230775Sjfv  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3246230775Sjfv  if (sig == SIGSEGV) {
3247247822Sjfv    sigAct.sa_flags |= SA_ONSTACK;
3248230775Sjfv  }
3249238149Sjfv#endif
3250251964Sjfv
3251251964Sjfv  // Save flags, which are set by ours
3252171384Sjfv  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3253171384Sjfv  sigflags[sig] = sigAct.sa_flags;
3254171384Sjfv
3255230775Sjfv  int ret = sigaction(sig, &sigAct, &oldAct);
3256171384Sjfv  assert(ret == 0, "check");
3257194875Sjfv
3258171384Sjfv  void* oldhand2  = oldAct.sa_sigaction
3259230775Sjfv                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3260230775Sjfv                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3261230775Sjfv  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3262230775Sjfv}
3263230775Sjfv
3264230775Sjfv// install signal handlers for signals that HotSpot needs to
3265230775Sjfv// handle in order to support Java-level exception handling.
3266230775Sjfv
3267230775Sjfvvoid os::Bsd::install_signal_handlers() {
3268230775Sjfv  if (!signal_handlers_are_installed) {
3269230775Sjfv    signal_handlers_are_installed = true;
3270230775Sjfv
3271230775Sjfv    // signal-chaining
3272230775Sjfv    typedef void (*signal_setting_t)();
3273230775Sjfv    signal_setting_t begin_signal_setting = NULL;
3274230775Sjfv    signal_setting_t end_signal_setting = NULL;
3275230775Sjfv    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3276230775Sjfv                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3277230775Sjfv    if (begin_signal_setting != NULL) {
3278230775Sjfv      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3279230775Sjfv                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3280230775Sjfv      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3281230775Sjfv                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3282230775Sjfv      libjsig_is_loaded = true;
3283230775Sjfv      assert(UseSignalChaining, "should enable signal-chaining");
3284230775Sjfv    }
3285230775Sjfv    if (libjsig_is_loaded) {
3286230775Sjfv      // Tell libjsig jvm is setting signal handlers
3287230775Sjfv      (*begin_signal_setting)();
3288230775Sjfv    }
3289230775Sjfv
3290230775Sjfv    set_signal_handler(SIGSEGV, true);
3291230775Sjfv    set_signal_handler(SIGPIPE, true);
3292230775Sjfv    set_signal_handler(SIGBUS, true);
3293247822Sjfv    set_signal_handler(SIGILL, true);
3294251964Sjfv    set_signal_handler(SIGFPE, true);
3295171384Sjfv    set_signal_handler(SIGXFSZ, true);
3296230775Sjfv
3297171384Sjfv#if defined(__APPLE__)
3298171384Sjfv    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3299    // signals caught and handled by the JVM. To work around this, we reset the mach task
3300    // signal handler that's placed on our process by CrashReporter. This disables
3301    // CrashReporter-based reporting.
3302    //
3303    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3304    // on caught fatal signals.
3305    //
3306    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3307    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3308    // exception handling, while leaving the standard BSD signal handlers functional.
3309    kern_return_t kr;
3310    kr = task_set_exception_ports(mach_task_self(),
3311        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3312        MACH_PORT_NULL,
3313        EXCEPTION_STATE_IDENTITY,
3314        MACHINE_THREAD_STATE);
3315
3316    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3317#endif
3318
3319    if (libjsig_is_loaded) {
3320      // Tell libjsig jvm finishes setting signal handlers
3321      (*end_signal_setting)();
3322    }
3323
3324    // We don't activate signal checker if libjsig is in place, we trust ourselves
3325    // and if UserSignalHandler is installed all bets are off
3326    if (CheckJNICalls) {
3327      if (libjsig_is_loaded) {
3328        if (PrintJNIResolving) {
3329          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3330        }
3331        check_signals = false;
3332      }
3333      if (AllowUserSignalHandlers) {
3334        if (PrintJNIResolving) {
3335          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3336        }
3337        check_signals = false;
3338      }
3339    }
3340  }
3341}
3342
3343
3344/////
3345// glibc on Bsd platform uses non-documented flag
3346// to indicate, that some special sort of signal
3347// trampoline is used.
3348// We will never set this flag, and we should
3349// ignore this flag in our diagnostic
3350#ifdef SIGNIFICANT_SIGNAL_MASK
3351#undef SIGNIFICANT_SIGNAL_MASK
3352#endif
3353#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3354
3355static const char* get_signal_handler_name(address handler,
3356                                           char* buf, int buflen) {
3357  int offset;
3358  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3359  if (found) {
3360    // skip directory names
3361    const char *p1, *p2;
3362    p1 = buf;
3363    size_t len = strlen(os::file_separator());
3364    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3365    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3366  } else {
3367    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3368  }
3369  return buf;
3370}
3371
3372static void print_signal_handler(outputStream* st, int sig,
3373                                 char* buf, size_t buflen) {
3374  struct sigaction sa;
3375
3376  sigaction(sig, NULL, &sa);
3377
3378  // See comment for SIGNIFICANT_SIGNAL_MASK define
3379  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3380
3381  st->print("%s: ", os::exception_name(sig, buf, buflen));
3382
3383  address handler = (sa.sa_flags & SA_SIGINFO)
3384    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3385    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3386
3387  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3388    st->print("SIG_DFL");
3389  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3390    st->print("SIG_IGN");
3391  } else {
3392    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3393  }
3394
3395  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3396
3397  address rh = VMError::get_resetted_sighandler(sig);
3398  // May be, handler was resetted by VMError?
3399  if(rh != NULL) {
3400    handler = rh;
3401    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3402  }
3403
3404  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3405
3406  // Check: is it our handler?
3407  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3408     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3409    // It is our signal handler
3410    // check for flags, reset system-used one!
3411    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3412      st->print(
3413                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3414                os::Bsd::get_our_sigflags(sig));
3415    }
3416  }
3417  st->cr();
3418}
3419
3420
3421#define DO_SIGNAL_CHECK(sig) \
3422  if (!sigismember(&check_signal_done, sig)) \
3423    os::Bsd::check_signal_handler(sig)
3424
3425// This method is a periodic task to check for misbehaving JNI applications
3426// under CheckJNI, we can add any periodic checks here
3427
3428void os::run_periodic_checks() {
3429
3430  if (check_signals == false) return;
3431
3432  // SEGV and BUS if overridden could potentially prevent
3433  // generation of hs*.log in the event of a crash, debugging
3434  // such a case can be very challenging, so we absolutely
3435  // check the following for a good measure:
3436  DO_SIGNAL_CHECK(SIGSEGV);
3437  DO_SIGNAL_CHECK(SIGILL);
3438  DO_SIGNAL_CHECK(SIGFPE);
3439  DO_SIGNAL_CHECK(SIGBUS);
3440  DO_SIGNAL_CHECK(SIGPIPE);
3441  DO_SIGNAL_CHECK(SIGXFSZ);
3442
3443
3444  // ReduceSignalUsage allows the user to override these handlers
3445  // see comments at the very top and jvm_solaris.h
3446  if (!ReduceSignalUsage) {
3447    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3448    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3449    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3450    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3451  }
3452
3453  DO_SIGNAL_CHECK(SR_signum);
3454  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3455}
3456
3457typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3458
3459static os_sigaction_t os_sigaction = NULL;
3460
3461void os::Bsd::check_signal_handler(int sig) {
3462  char buf[O_BUFLEN];
3463  address jvmHandler = NULL;
3464
3465
3466  struct sigaction act;
3467  if (os_sigaction == NULL) {
3468    // only trust the default sigaction, in case it has been interposed
3469    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3470    if (os_sigaction == NULL) return;
3471  }
3472
3473  os_sigaction(sig, (struct sigaction*)NULL, &act);
3474
3475
3476  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3477
3478  address thisHandler = (act.sa_flags & SA_SIGINFO)
3479    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3480    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3481
3482
3483  switch(sig) {
3484  case SIGSEGV:
3485  case SIGBUS:
3486  case SIGFPE:
3487  case SIGPIPE:
3488  case SIGILL:
3489  case SIGXFSZ:
3490    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3491    break;
3492
3493  case SHUTDOWN1_SIGNAL:
3494  case SHUTDOWN2_SIGNAL:
3495  case SHUTDOWN3_SIGNAL:
3496  case BREAK_SIGNAL:
3497    jvmHandler = (address)user_handler();
3498    break;
3499
3500  case INTERRUPT_SIGNAL:
3501    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3502    break;
3503
3504  default:
3505    if (sig == SR_signum) {
3506      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3507    } else {
3508      return;
3509    }
3510    break;
3511  }
3512
3513  if (thisHandler != jvmHandler) {
3514    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3515    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3516    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3517    // No need to check this sig any longer
3518    sigaddset(&check_signal_done, sig);
3519  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3520    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3521    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3522    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3523    // No need to check this sig any longer
3524    sigaddset(&check_signal_done, sig);
3525  }
3526
3527  // Dump all the signal
3528  if (sigismember(&check_signal_done, sig)) {
3529    print_signal_handlers(tty, buf, O_BUFLEN);
3530  }
3531}
3532
3533extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3534
3535extern bool signal_name(int signo, char* buf, size_t len);
3536
3537const char* os::exception_name(int exception_code, char* buf, size_t size) {
3538  if (0 < exception_code && exception_code <= SIGRTMAX) {
3539    // signal
3540    if (!signal_name(exception_code, buf, size)) {
3541      jio_snprintf(buf, size, "SIG%d", exception_code);
3542    }
3543    return buf;
3544  } else {
3545    return NULL;
3546  }
3547}
3548
3549// this is called _before_ the most of global arguments have been parsed
3550void os::init(void) {
3551  char dummy;   /* used to get a guess on initial stack address */
3552//  first_hrtime = gethrtime();
3553
3554  // With BsdThreads the JavaMain thread pid (primordial thread)
3555  // is different than the pid of the java launcher thread.
3556  // So, on Bsd, the launcher thread pid is passed to the VM
3557  // via the sun.java.launcher.pid property.
3558  // Use this property instead of getpid() if it was correctly passed.
3559  // See bug 6351349.
3560  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3561
3562  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3563
3564  clock_tics_per_sec = CLK_TCK;
3565
3566  init_random(1234567);
3567
3568  ThreadCritical::initialize();
3569
3570  Bsd::set_page_size(getpagesize());
3571  if (Bsd::page_size() == -1) {
3572    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3573                  strerror(errno)));
3574  }
3575  init_page_sizes((size_t) Bsd::page_size());
3576
3577  Bsd::initialize_system_info();
3578
3579  // main_thread points to the aboriginal thread
3580  Bsd::_main_thread = pthread_self();
3581
3582  Bsd::clock_init();
3583  initial_time_count = javaTimeNanos();
3584
3585#ifdef __APPLE__
3586  // XXXDARWIN
3587  // Work around the unaligned VM callbacks in hotspot's
3588  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3589  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3590  // alignment when doing symbol lookup. To work around this, we force early
3591  // binding of all symbols now, thus binding when alignment is known-good.
3592  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3593#endif
3594}
3595
3596// To install functions for atexit system call
3597extern "C" {
3598  static void perfMemory_exit_helper() {
3599    perfMemory_exit();
3600  }
3601}
3602
3603// this is called _after_ the global arguments have been parsed
3604jint os::init_2(void)
3605{
3606  // Allocate a single page and mark it as readable for safepoint polling
3607  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3608  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3609
3610  os::set_polling_page( polling_page );
3611
3612#ifndef PRODUCT
3613  if(Verbose && PrintMiscellaneous)
3614    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3615#endif
3616
3617  if (!UseMembar) {
3618    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3619    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3620    os::set_memory_serialize_page( mem_serialize_page );
3621
3622#ifndef PRODUCT
3623    if(Verbose && PrintMiscellaneous)
3624      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3625#endif
3626  }
3627
3628  // initialize suspend/resume support - must do this before signal_sets_init()
3629  if (SR_initialize() != 0) {
3630    perror("SR_initialize failed");
3631    return JNI_ERR;
3632  }
3633
3634  Bsd::signal_sets_init();
3635  Bsd::install_signal_handlers();
3636
3637  // Check minimum allowable stack size for thread creation and to initialize
3638  // the java system classes, including StackOverflowError - depends on page
3639  // size.  Add a page for compiler2 recursion in main thread.
3640  // Add in 2*BytesPerWord times page size to account for VM stack during
3641  // class initialization depending on 32 or 64 bit VM.
3642  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3643            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3644                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3645
3646  size_t threadStackSizeInBytes = ThreadStackSize * K;
3647  if (threadStackSizeInBytes != 0 &&
3648      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3649        tty->print_cr("\nThe stack size specified is too small, "
3650                      "Specify at least %dk",
3651                      os::Bsd::min_stack_allowed/ K);
3652        return JNI_ERR;
3653  }
3654
3655  // Make the stack size a multiple of the page size so that
3656  // the yellow/red zones can be guarded.
3657  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3658        vm_page_size()));
3659
3660  if (MaxFDLimit) {
3661    // set the number of file descriptors to max. print out error
3662    // if getrlimit/setrlimit fails but continue regardless.
3663    struct rlimit nbr_files;
3664    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3665    if (status != 0) {
3666      if (PrintMiscellaneous && (Verbose || WizardMode))
3667        perror("os::init_2 getrlimit failed");
3668    } else {
3669      nbr_files.rlim_cur = nbr_files.rlim_max;
3670
3671#ifdef __APPLE__
3672      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3673      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3674      // be used instead
3675      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3676#endif
3677
3678      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3679      if (status != 0) {
3680        if (PrintMiscellaneous && (Verbose || WizardMode))
3681          perror("os::init_2 setrlimit failed");
3682      }
3683    }
3684  }
3685
3686  // at-exit methods are called in the reverse order of their registration.
3687  // atexit functions are called on return from main or as a result of a
3688  // call to exit(3C). There can be only 32 of these functions registered
3689  // and atexit() does not set errno.
3690
3691  if (PerfAllowAtExitRegistration) {
3692    // only register atexit functions if PerfAllowAtExitRegistration is set.
3693    // atexit functions can be delayed until process exit time, which
3694    // can be problematic for embedded VM situations. Embedded VMs should
3695    // call DestroyJavaVM() to assure that VM resources are released.
3696
3697    // note: perfMemory_exit_helper atexit function may be removed in
3698    // the future if the appropriate cleanup code can be added to the
3699    // VM_Exit VMOperation's doit method.
3700    if (atexit(perfMemory_exit_helper) != 0) {
3701      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3702    }
3703  }
3704
3705  // initialize thread priority policy
3706  prio_init();
3707
3708#ifdef __APPLE__
3709  // dynamically link to objective c gc registration
3710  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3711  if (handleLibObjc != NULL) {
3712    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3713  }
3714#endif
3715
3716  return JNI_OK;
3717}
3718
3719// this is called at the end of vm_initialization
3720void os::init_3(void) { }
3721
3722// Mark the polling page as unreadable
3723void os::make_polling_page_unreadable(void) {
3724  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3725    fatal("Could not disable polling page");
3726};
3727
3728// Mark the polling page as readable
3729void os::make_polling_page_readable(void) {
3730  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3731    fatal("Could not enable polling page");
3732  }
3733};
3734
3735int os::active_processor_count() {
3736  return _processor_count;
3737}
3738
3739void os::set_native_thread_name(const char *name) {
3740#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3741  // This is only supported in Snow Leopard and beyond
3742  if (name != NULL) {
3743    // Add a "Java: " prefix to the name
3744    char buf[MAXTHREADNAMESIZE];
3745    snprintf(buf, sizeof(buf), "Java: %s", name);
3746    pthread_setname_np(buf);
3747  }
3748#endif
3749}
3750
3751bool os::distribute_processes(uint length, uint* distribution) {
3752  // Not yet implemented.
3753  return false;
3754}
3755
3756bool os::bind_to_processor(uint processor_id) {
3757  // Not yet implemented.
3758  return false;
3759}
3760
3761void os::SuspendedThreadTask::internal_do_task() {
3762  if (do_suspend(_thread->osthread())) {
3763    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3764    do_task(context);
3765    do_resume(_thread->osthread());
3766  }
3767}
3768
3769///
3770class PcFetcher : public os::SuspendedThreadTask {
3771public:
3772  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3773  ExtendedPC result();
3774protected:
3775  void do_task(const os::SuspendedThreadTaskContext& context);
3776private:
3777  ExtendedPC _epc;
3778};
3779
3780ExtendedPC PcFetcher::result() {
3781  guarantee(is_done(), "task is not done yet.");
3782  return _epc;
3783}
3784
3785void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3786  Thread* thread = context.thread();
3787  OSThread* osthread = thread->osthread();
3788  if (osthread->ucontext() != NULL) {
3789    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3790  } else {
3791    // NULL context is unexpected, double-check this is the VMThread
3792    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3793  }
3794}
3795
3796// Suspends the target using the signal mechanism and then grabs the PC before
3797// resuming the target. Used by the flat-profiler only
3798ExtendedPC os::get_thread_pc(Thread* thread) {
3799  // Make sure that it is called by the watcher for the VMThread
3800  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3801  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3802
3803  PcFetcher fetcher(thread);
3804  fetcher.run();
3805  return fetcher.result();
3806}
3807
3808int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3809{
3810  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3811}
3812
3813////////////////////////////////////////////////////////////////////////////////
3814// debug support
3815
3816bool os::find(address addr, outputStream* st) {
3817  Dl_info dlinfo;
3818  memset(&dlinfo, 0, sizeof(dlinfo));
3819  if (dladdr(addr, &dlinfo) != 0) {
3820    st->print(PTR_FORMAT ": ", addr);
3821    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3822      st->print("%s+%#x", dlinfo.dli_sname,
3823                 addr - (intptr_t)dlinfo.dli_saddr);
3824    } else if (dlinfo.dli_fbase != NULL) {
3825      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3826    } else {
3827      st->print("<absolute address>");
3828    }
3829    if (dlinfo.dli_fname != NULL) {
3830      st->print(" in %s", dlinfo.dli_fname);
3831    }
3832    if (dlinfo.dli_fbase != NULL) {
3833      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3834    }
3835    st->cr();
3836
3837    if (Verbose) {
3838      // decode some bytes around the PC
3839      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3840      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3841      address       lowest = (address) dlinfo.dli_sname;
3842      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3843      if (begin < lowest)  begin = lowest;
3844      Dl_info dlinfo2;
3845      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3846          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3847        end = (address) dlinfo2.dli_saddr;
3848      Disassembler::decode(begin, end, st);
3849    }
3850    return true;
3851  }
3852  return false;
3853}
3854
3855////////////////////////////////////////////////////////////////////////////////
3856// misc
3857
3858// This does not do anything on Bsd. This is basically a hook for being
3859// able to use structured exception handling (thread-local exception filters)
3860// on, e.g., Win32.
3861void
3862os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3863                         JavaCallArguments* args, Thread* thread) {
3864  f(value, method, args, thread);
3865}
3866
3867void os::print_statistics() {
3868}
3869
3870int os::message_box(const char* title, const char* message) {
3871  int i;
3872  fdStream err(defaultStream::error_fd());
3873  for (i = 0; i < 78; i++) err.print_raw("=");
3874  err.cr();
3875  err.print_raw_cr(title);
3876  for (i = 0; i < 78; i++) err.print_raw("-");
3877  err.cr();
3878  err.print_raw_cr(message);
3879  for (i = 0; i < 78; i++) err.print_raw("=");
3880  err.cr();
3881
3882  char buf[16];
3883  // Prevent process from exiting upon "read error" without consuming all CPU
3884  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3885
3886  return buf[0] == 'y' || buf[0] == 'Y';
3887}
3888
3889int os::stat(const char *path, struct stat *sbuf) {
3890  char pathbuf[MAX_PATH];
3891  if (strlen(path) > MAX_PATH - 1) {
3892    errno = ENAMETOOLONG;
3893    return -1;
3894  }
3895  os::native_path(strcpy(pathbuf, path));
3896  return ::stat(pathbuf, sbuf);
3897}
3898
3899bool os::check_heap(bool force) {
3900  return true;
3901}
3902
3903int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3904  return ::vsnprintf(buf, count, format, args);
3905}
3906
3907// Is a (classpath) directory empty?
3908bool os::dir_is_empty(const char* path) {
3909  DIR *dir = NULL;
3910  struct dirent *ptr;
3911
3912  dir = opendir(path);
3913  if (dir == NULL) return true;
3914
3915  /* Scan the directory */
3916  bool result = true;
3917  char buf[sizeof(struct dirent) + MAX_PATH];
3918  while (result && (ptr = ::readdir(dir)) != NULL) {
3919    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3920      result = false;
3921    }
3922  }
3923  closedir(dir);
3924  return result;
3925}
3926
3927// This code originates from JDK's sysOpen and open64_w
3928// from src/solaris/hpi/src/system_md.c
3929
3930#ifndef O_DELETE
3931#define O_DELETE 0x10000
3932#endif
3933
3934// Open a file. Unlink the file immediately after open returns
3935// if the specified oflag has the O_DELETE flag set.
3936// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3937
3938int os::open(const char *path, int oflag, int mode) {
3939
3940  if (strlen(path) > MAX_PATH - 1) {
3941    errno = ENAMETOOLONG;
3942    return -1;
3943  }
3944  int fd;
3945  int o_delete = (oflag & O_DELETE);
3946  oflag = oflag & ~O_DELETE;
3947
3948  fd = ::open(path, oflag, mode);
3949  if (fd == -1) return -1;
3950
3951  //If the open succeeded, the file might still be a directory
3952  {
3953    struct stat buf;
3954    int ret = ::fstat(fd, &buf);
3955    int st_mode = buf.st_mode;
3956
3957    if (ret != -1) {
3958      if ((st_mode & S_IFMT) == S_IFDIR) {
3959        errno = EISDIR;
3960        ::close(fd);
3961        return -1;
3962      }
3963    } else {
3964      ::close(fd);
3965      return -1;
3966    }
3967  }
3968
3969    /*
3970     * All file descriptors that are opened in the JVM and not
3971     * specifically destined for a subprocess should have the
3972     * close-on-exec flag set.  If we don't set it, then careless 3rd
3973     * party native code might fork and exec without closing all
3974     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3975     * UNIXProcess.c), and this in turn might:
3976     *
3977     * - cause end-of-file to fail to be detected on some file
3978     *   descriptors, resulting in mysterious hangs, or
3979     *
3980     * - might cause an fopen in the subprocess to fail on a system
3981     *   suffering from bug 1085341.
3982     *
3983     * (Yes, the default setting of the close-on-exec flag is a Unix
3984     * design flaw)
3985     *
3986     * See:
3987     * 1085341: 32-bit stdio routines should support file descriptors >255
3988     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3989     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3990     */
3991#ifdef FD_CLOEXEC
3992    {
3993        int flags = ::fcntl(fd, F_GETFD);
3994        if (flags != -1)
3995            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3996    }
3997#endif
3998
3999  if (o_delete != 0) {
4000    ::unlink(path);
4001  }
4002  return fd;
4003}
4004
4005
4006// create binary file, rewriting existing file if required
4007int os::create_binary_file(const char* path, bool rewrite_existing) {
4008  int oflags = O_WRONLY | O_CREAT;
4009  if (!rewrite_existing) {
4010    oflags |= O_EXCL;
4011  }
4012  return ::open(path, oflags, S_IREAD | S_IWRITE);
4013}
4014
4015// return current position of file pointer
4016jlong os::current_file_offset(int fd) {
4017  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4018}
4019
4020// move file pointer to the specified offset
4021jlong os::seek_to_file_offset(int fd, jlong offset) {
4022  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4023}
4024
4025// This code originates from JDK's sysAvailable
4026// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4027
4028int os::available(int fd, jlong *bytes) {
4029  jlong cur, end;
4030  int mode;
4031  struct stat buf;
4032
4033  if (::fstat(fd, &buf) >= 0) {
4034    mode = buf.st_mode;
4035    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4036      /*
4037      * XXX: is the following call interruptible? If so, this might
4038      * need to go through the INTERRUPT_IO() wrapper as for other
4039      * blocking, interruptible calls in this file.
4040      */
4041      int n;
4042      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4043        *bytes = n;
4044        return 1;
4045      }
4046    }
4047  }
4048  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4049    return 0;
4050  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4051    return 0;
4052  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4053    return 0;
4054  }
4055  *bytes = end - cur;
4056  return 1;
4057}
4058
4059int os::socket_available(int fd, jint *pbytes) {
4060   if (fd < 0)
4061     return OS_OK;
4062
4063   int ret;
4064
4065   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4066
4067   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4068   // is expected to return 0 on failure and 1 on success to the jdk.
4069
4070   return (ret == OS_ERR) ? 0 : 1;
4071}
4072
4073// Map a block of memory.
4074char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4075                     char *addr, size_t bytes, bool read_only,
4076                     bool allow_exec) {
4077  int prot;
4078  int flags;
4079
4080  if (read_only) {
4081    prot = PROT_READ;
4082    flags = MAP_SHARED;
4083  } else {
4084    prot = PROT_READ | PROT_WRITE;
4085    flags = MAP_PRIVATE;
4086  }
4087
4088  if (allow_exec) {
4089    prot |= PROT_EXEC;
4090  }
4091
4092  if (addr != NULL) {
4093    flags |= MAP_FIXED;
4094  }
4095
4096  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4097                                     fd, file_offset);
4098  if (mapped_address == MAP_FAILED) {
4099    return NULL;
4100  }
4101  return mapped_address;
4102}
4103
4104
4105// Remap a block of memory.
4106char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4107                       char *addr, size_t bytes, bool read_only,
4108                       bool allow_exec) {
4109  // same as map_memory() on this OS
4110  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4111                        allow_exec);
4112}
4113
4114
4115// Unmap a block of memory.
4116bool os::pd_unmap_memory(char* addr, size_t bytes) {
4117  return munmap(addr, bytes) == 0;
4118}
4119
4120// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4121// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4122// of a thread.
4123//
4124// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4125// the fast estimate available on the platform.
4126
4127jlong os::current_thread_cpu_time() {
4128#ifdef __APPLE__
4129  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4130#else
4131  Unimplemented();
4132  return 0;
4133#endif
4134}
4135
4136jlong os::thread_cpu_time(Thread* thread) {
4137#ifdef __APPLE__
4138  return os::thread_cpu_time(thread, true /* user + sys */);
4139#else
4140  Unimplemented();
4141  return 0;
4142#endif
4143}
4144
4145jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4146#ifdef __APPLE__
4147  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4148#else
4149  Unimplemented();
4150  return 0;
4151#endif
4152}
4153
4154jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4155#ifdef __APPLE__
4156  struct thread_basic_info tinfo;
4157  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4158  kern_return_t kr;
4159  thread_t mach_thread;
4160
4161  mach_thread = thread->osthread()->thread_id();
4162  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4163  if (kr != KERN_SUCCESS)
4164    return -1;
4165
4166  if (user_sys_cpu_time) {
4167    jlong nanos;
4168    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4169    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4170    return nanos;
4171  } else {
4172    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4173  }
4174#else
4175  Unimplemented();
4176  return 0;
4177#endif
4178}
4179
4180
4181void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4182  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4183  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4184  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4185  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4186}
4187
4188void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4189  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4190  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4191  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4192  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4193}
4194
4195bool os::is_thread_cpu_time_supported() {
4196#ifdef __APPLE__
4197  return true;
4198#else
4199  return false;
4200#endif
4201}
4202
4203// System loadavg support.  Returns -1 if load average cannot be obtained.
4204// Bsd doesn't yet have a (official) notion of processor sets,
4205// so just return the system wide load average.
4206int os::loadavg(double loadavg[], int nelem) {
4207  return ::getloadavg(loadavg, nelem);
4208}
4209
4210void os::pause() {
4211  char filename[MAX_PATH];
4212  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4213    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4214  } else {
4215    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4216  }
4217
4218  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4219  if (fd != -1) {
4220    struct stat buf;
4221    ::close(fd);
4222    while (::stat(filename, &buf) == 0) {
4223      (void)::poll(NULL, 0, 100);
4224    }
4225  } else {
4226    jio_fprintf(stderr,
4227      "Could not open pause file '%s', continuing immediately.\n", filename);
4228  }
4229}
4230
4231
4232// Refer to the comments in os_solaris.cpp park-unpark.
4233//
4234// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4235// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4236// For specifics regarding the bug see GLIBC BUGID 261237 :
4237//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4238// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4239// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4240// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4241// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4242// and monitorenter when we're using 1-0 locking.  All those operations may result in
4243// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4244// of libpthread avoids the problem, but isn't practical.
4245//
4246// Possible remedies:
4247//
4248// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4249//      This is palliative and probabilistic, however.  If the thread is preempted
4250//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4251//      than the minimum period may have passed, and the abstime may be stale (in the
4252//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4253//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4254//
4255// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4256//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4257//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4258//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4259//      thread.
4260//
4261// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4262//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4263//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4264//      This also works well.  In fact it avoids kernel-level scalability impediments
4265//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4266//      timers in a graceful fashion.
4267//
4268// 4.   When the abstime value is in the past it appears that control returns
4269//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4270//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4271//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4272//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4273//      It may be possible to avoid reinitialization by checking the return
4274//      value from pthread_cond_timedwait().  In addition to reinitializing the
4275//      condvar we must establish the invariant that cond_signal() is only called
4276//      within critical sections protected by the adjunct mutex.  This prevents
4277//      cond_signal() from "seeing" a condvar that's in the midst of being
4278//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4279//      desirable signal-after-unlock optimization that avoids futile context switching.
4280//
4281//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4282//      structure when a condvar is used or initialized.  cond_destroy()  would
4283//      release the helper structure.  Our reinitialize-after-timedwait fix
4284//      put excessive stress on malloc/free and locks protecting the c-heap.
4285//
4286// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4287// It may be possible to refine (4) by checking the kernel and NTPL verisons
4288// and only enabling the work-around for vulnerable environments.
4289
4290// utility to compute the abstime argument to timedwait:
4291// millis is the relative timeout time
4292// abstime will be the absolute timeout time
4293// TODO: replace compute_abstime() with unpackTime()
4294
4295static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4296  if (millis < 0)  millis = 0;
4297  struct timeval now;
4298  int status = gettimeofday(&now, NULL);
4299  assert(status == 0, "gettimeofday");
4300  jlong seconds = millis / 1000;
4301  millis %= 1000;
4302  if (seconds > 50000000) { // see man cond_timedwait(3T)
4303    seconds = 50000000;
4304  }
4305  abstime->tv_sec = now.tv_sec  + seconds;
4306  long       usec = now.tv_usec + millis * 1000;
4307  if (usec >= 1000000) {
4308    abstime->tv_sec += 1;
4309    usec -= 1000000;
4310  }
4311  abstime->tv_nsec = usec * 1000;
4312  return abstime;
4313}
4314
4315
4316// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4317// Conceptually TryPark() should be equivalent to park(0).
4318
4319int os::PlatformEvent::TryPark() {
4320  for (;;) {
4321    const int v = _Event ;
4322    guarantee ((v == 0) || (v == 1), "invariant") ;
4323    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4324  }
4325}
4326
4327void os::PlatformEvent::park() {       // AKA "down()"
4328  // Invariant: Only the thread associated with the Event/PlatformEvent
4329  // may call park().
4330  // TODO: assert that _Assoc != NULL or _Assoc == Self
4331  int v ;
4332  for (;;) {
4333      v = _Event ;
4334      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4335  }
4336  guarantee (v >= 0, "invariant") ;
4337  if (v == 0) {
4338     // Do this the hard way by blocking ...
4339     int status = pthread_mutex_lock(_mutex);
4340     assert_status(status == 0, status, "mutex_lock");
4341     guarantee (_nParked == 0, "invariant") ;
4342     ++ _nParked ;
4343     while (_Event < 0) {
4344        status = pthread_cond_wait(_cond, _mutex);
4345        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4346        // Treat this the same as if the wait was interrupted
4347        if (status == ETIMEDOUT) { status = EINTR; }
4348        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4349     }
4350     -- _nParked ;
4351
4352    _Event = 0 ;
4353     status = pthread_mutex_unlock(_mutex);
4354     assert_status(status == 0, status, "mutex_unlock");
4355    // Paranoia to ensure our locked and lock-free paths interact
4356    // correctly with each other.
4357    OrderAccess::fence();
4358  }
4359  guarantee (_Event >= 0, "invariant") ;
4360}
4361
4362int os::PlatformEvent::park(jlong millis) {
4363  guarantee (_nParked == 0, "invariant") ;
4364
4365  int v ;
4366  for (;;) {
4367      v = _Event ;
4368      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4369  }
4370  guarantee (v >= 0, "invariant") ;
4371  if (v != 0) return OS_OK ;
4372
4373  // We do this the hard way, by blocking the thread.
4374  // Consider enforcing a minimum timeout value.
4375  struct timespec abst;
4376  compute_abstime(&abst, millis);
4377
4378  int ret = OS_TIMEOUT;
4379  int status = pthread_mutex_lock(_mutex);
4380  assert_status(status == 0, status, "mutex_lock");
4381  guarantee (_nParked == 0, "invariant") ;
4382  ++_nParked ;
4383
4384  // Object.wait(timo) will return because of
4385  // (a) notification
4386  // (b) timeout
4387  // (c) thread.interrupt
4388  //
4389  // Thread.interrupt and object.notify{All} both call Event::set.
4390  // That is, we treat thread.interrupt as a special case of notification.
4391  // The underlying Solaris implementation, cond_timedwait, admits
4392  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4393  // JVM from making those visible to Java code.  As such, we must
4394  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4395  //
4396  // TODO: properly differentiate simultaneous notify+interrupt.
4397  // In that case, we should propagate the notify to another waiter.
4398
4399  while (_Event < 0) {
4400    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4401    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4402      pthread_cond_destroy (_cond);
4403      pthread_cond_init (_cond, NULL) ;
4404    }
4405    assert_status(status == 0 || status == EINTR ||
4406                  status == ETIMEDOUT,
4407                  status, "cond_timedwait");
4408    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4409    if (status == ETIMEDOUT) break ;
4410    // We consume and ignore EINTR and spurious wakeups.
4411  }
4412  --_nParked ;
4413  if (_Event >= 0) {
4414     ret = OS_OK;
4415  }
4416  _Event = 0 ;
4417  status = pthread_mutex_unlock(_mutex);
4418  assert_status(status == 0, status, "mutex_unlock");
4419  assert (_nParked == 0, "invariant") ;
4420  // Paranoia to ensure our locked and lock-free paths interact
4421  // correctly with each other.
4422  OrderAccess::fence();
4423  return ret;
4424}
4425
4426void os::PlatformEvent::unpark() {
4427  // Transitions for _Event:
4428  //    0 :=> 1
4429  //    1 :=> 1
4430  //   -1 :=> either 0 or 1; must signal target thread
4431  //          That is, we can safely transition _Event from -1 to either
4432  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4433  //          unpark() calls.
4434  // See also: "Semaphores in Plan 9" by Mullender & Cox
4435  //
4436  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4437  // that it will take two back-to-back park() calls for the owning
4438  // thread to block. This has the benefit of forcing a spurious return
4439  // from the first park() call after an unpark() call which will help
4440  // shake out uses of park() and unpark() without condition variables.
4441
4442  if (Atomic::xchg(1, &_Event) >= 0) return;
4443
4444  // Wait for the thread associated with the event to vacate
4445  int status = pthread_mutex_lock(_mutex);
4446  assert_status(status == 0, status, "mutex_lock");
4447  int AnyWaiters = _nParked;
4448  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4449  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4450    AnyWaiters = 0;
4451    pthread_cond_signal(_cond);
4452  }
4453  status = pthread_mutex_unlock(_mutex);
4454  assert_status(status == 0, status, "mutex_unlock");
4455  if (AnyWaiters != 0) {
4456    status = pthread_cond_signal(_cond);
4457    assert_status(status == 0, status, "cond_signal");
4458  }
4459
4460  // Note that we signal() _after dropping the lock for "immortal" Events.
4461  // This is safe and avoids a common class of  futile wakeups.  In rare
4462  // circumstances this can cause a thread to return prematurely from
4463  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4464  // simply re-test the condition and re-park itself.
4465}
4466
4467
4468// JSR166
4469// -------------------------------------------------------
4470
4471/*
4472 * The solaris and bsd implementations of park/unpark are fairly
4473 * conservative for now, but can be improved. They currently use a
4474 * mutex/condvar pair, plus a a count.
4475 * Park decrements count if > 0, else does a condvar wait.  Unpark
4476 * sets count to 1 and signals condvar.  Only one thread ever waits
4477 * on the condvar. Contention seen when trying to park implies that someone
4478 * is unparking you, so don't wait. And spurious returns are fine, so there
4479 * is no need to track notifications.
4480 */
4481
4482#define MAX_SECS 100000000
4483/*
4484 * This code is common to bsd and solaris and will be moved to a
4485 * common place in dolphin.
4486 *
4487 * The passed in time value is either a relative time in nanoseconds
4488 * or an absolute time in milliseconds. Either way it has to be unpacked
4489 * into suitable seconds and nanoseconds components and stored in the
4490 * given timespec structure.
4491 * Given time is a 64-bit value and the time_t used in the timespec is only
4492 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4493 * overflow if times way in the future are given. Further on Solaris versions
4494 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4495 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4496 * As it will be 28 years before "now + 100000000" will overflow we can
4497 * ignore overflow and just impose a hard-limit on seconds using the value
4498 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4499 * years from "now".
4500 */
4501
4502static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4503  assert (time > 0, "convertTime");
4504
4505  struct timeval now;
4506  int status = gettimeofday(&now, NULL);
4507  assert(status == 0, "gettimeofday");
4508
4509  time_t max_secs = now.tv_sec + MAX_SECS;
4510
4511  if (isAbsolute) {
4512    jlong secs = time / 1000;
4513    if (secs > max_secs) {
4514      absTime->tv_sec = max_secs;
4515    }
4516    else {
4517      absTime->tv_sec = secs;
4518    }
4519    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4520  }
4521  else {
4522    jlong secs = time / NANOSECS_PER_SEC;
4523    if (secs >= MAX_SECS) {
4524      absTime->tv_sec = max_secs;
4525      absTime->tv_nsec = 0;
4526    }
4527    else {
4528      absTime->tv_sec = now.tv_sec + secs;
4529      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4530      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4531        absTime->tv_nsec -= NANOSECS_PER_SEC;
4532        ++absTime->tv_sec; // note: this must be <= max_secs
4533      }
4534    }
4535  }
4536  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4537  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4538  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4539  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4540}
4541
4542void Parker::park(bool isAbsolute, jlong time) {
4543  // Ideally we'd do something useful while spinning, such
4544  // as calling unpackTime().
4545
4546  // Optional fast-path check:
4547  // Return immediately if a permit is available.
4548  // We depend on Atomic::xchg() having full barrier semantics
4549  // since we are doing a lock-free update to _counter.
4550  if (Atomic::xchg(0, &_counter) > 0) return;
4551
4552  Thread* thread = Thread::current();
4553  assert(thread->is_Java_thread(), "Must be JavaThread");
4554  JavaThread *jt = (JavaThread *)thread;
4555
4556  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4557  // Check interrupt before trying to wait
4558  if (Thread::is_interrupted(thread, false)) {
4559    return;
4560  }
4561
4562  // Next, demultiplex/decode time arguments
4563  struct timespec absTime;
4564  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4565    return;
4566  }
4567  if (time > 0) {
4568    unpackTime(&absTime, isAbsolute, time);
4569  }
4570
4571
4572  // Enter safepoint region
4573  // Beware of deadlocks such as 6317397.
4574  // The per-thread Parker:: mutex is a classic leaf-lock.
4575  // In particular a thread must never block on the Threads_lock while
4576  // holding the Parker:: mutex.  If safepoints are pending both the
4577  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4578  ThreadBlockInVM tbivm(jt);
4579
4580  // Don't wait if cannot get lock since interference arises from
4581  // unblocking.  Also. check interrupt before trying wait
4582  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4583    return;
4584  }
4585
4586  int status ;
4587  if (_counter > 0)  { // no wait needed
4588    _counter = 0;
4589    status = pthread_mutex_unlock(_mutex);
4590    assert (status == 0, "invariant") ;
4591    // Paranoia to ensure our locked and lock-free paths interact
4592    // correctly with each other and Java-level accesses.
4593    OrderAccess::fence();
4594    return;
4595  }
4596
4597#ifdef ASSERT
4598  // Don't catch signals while blocked; let the running threads have the signals.
4599  // (This allows a debugger to break into the running thread.)
4600  sigset_t oldsigs;
4601  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4602  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4603#endif
4604
4605  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4606  jt->set_suspend_equivalent();
4607  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4608
4609  if (time == 0) {
4610    status = pthread_cond_wait (_cond, _mutex) ;
4611  } else {
4612    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4613    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4614      pthread_cond_destroy (_cond) ;
4615      pthread_cond_init    (_cond, NULL);
4616    }
4617  }
4618  assert_status(status == 0 || status == EINTR ||
4619                status == ETIMEDOUT,
4620                status, "cond_timedwait");
4621
4622#ifdef ASSERT
4623  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4624#endif
4625
4626  _counter = 0 ;
4627  status = pthread_mutex_unlock(_mutex) ;
4628  assert_status(status == 0, status, "invariant") ;
4629  // Paranoia to ensure our locked and lock-free paths interact
4630  // correctly with each other and Java-level accesses.
4631  OrderAccess::fence();
4632
4633  // If externally suspended while waiting, re-suspend
4634  if (jt->handle_special_suspend_equivalent_condition()) {
4635    jt->java_suspend_self();
4636  }
4637}
4638
4639void Parker::unpark() {
4640  int s, status ;
4641  status = pthread_mutex_lock(_mutex);
4642  assert (status == 0, "invariant") ;
4643  s = _counter;
4644  _counter = 1;
4645  if (s < 1) {
4646     if (WorkAroundNPTLTimedWaitHang) {
4647        status = pthread_cond_signal (_cond) ;
4648        assert (status == 0, "invariant") ;
4649        status = pthread_mutex_unlock(_mutex);
4650        assert (status == 0, "invariant") ;
4651     } else {
4652        status = pthread_mutex_unlock(_mutex);
4653        assert (status == 0, "invariant") ;
4654        status = pthread_cond_signal (_cond) ;
4655        assert (status == 0, "invariant") ;
4656     }
4657  } else {
4658    pthread_mutex_unlock(_mutex);
4659    assert (status == 0, "invariant") ;
4660  }
4661}
4662
4663
4664/* Darwin has no "environ" in a dynamic library. */
4665#ifdef __APPLE__
4666#include <crt_externs.h>
4667#define environ (*_NSGetEnviron())
4668#else
4669extern char** environ;
4670#endif
4671
4672// Run the specified command in a separate process. Return its exit value,
4673// or -1 on failure (e.g. can't fork a new process).
4674// Unlike system(), this function can be called from signal handler. It
4675// doesn't block SIGINT et al.
4676int os::fork_and_exec(char* cmd) {
4677  const char * argv[4] = {"sh", "-c", cmd, NULL};
4678
4679  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4680  // pthread_atfork handlers and reset pthread library. All we need is a
4681  // separate process to execve. Make a direct syscall to fork process.
4682  // On IA64 there's no fork syscall, we have to use fork() and hope for
4683  // the best...
4684  pid_t pid = fork();
4685
4686  if (pid < 0) {
4687    // fork failed
4688    return -1;
4689
4690  } else if (pid == 0) {
4691    // child process
4692
4693    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4694    // first to kill every thread on the thread list. Because this list is
4695    // not reset by fork() (see notes above), execve() will instead kill
4696    // every thread in the parent process. We know this is the only thread
4697    // in the new process, so make a system call directly.
4698    // IA64 should use normal execve() from glibc to match the glibc fork()
4699    // above.
4700    execve("/bin/sh", (char* const*)argv, environ);
4701
4702    // execve failed
4703    _exit(-1);
4704
4705  } else  {
4706    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4707    // care about the actual exit code, for now.
4708
4709    int status;
4710
4711    // Wait for the child process to exit.  This returns immediately if
4712    // the child has already exited. */
4713    while (waitpid(pid, &status, 0) < 0) {
4714        switch (errno) {
4715        case ECHILD: return 0;
4716        case EINTR: break;
4717        default: return -1;
4718        }
4719    }
4720
4721    if (WIFEXITED(status)) {
4722       // The child exited normally; get its exit code.
4723       return WEXITSTATUS(status);
4724    } else if (WIFSIGNALED(status)) {
4725       // The child exited because of a signal
4726       // The best value to return is 0x80 + signal number,
4727       // because that is what all Unix shells do, and because
4728       // it allows callers to distinguish between process exit and
4729       // process death by signal.
4730       return 0x80 + WTERMSIG(status);
4731    } else {
4732       // Unknown exit code; pass it through
4733       return status;
4734    }
4735  }
4736}
4737
4738// is_headless_jre()
4739//
4740// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4741// in order to report if we are running in a headless jre
4742//
4743// Since JDK8 xawt/libmawt.so was moved into the same directory
4744// as libawt.so, and renamed libawt_xawt.so
4745//
4746bool os::is_headless_jre() {
4747#ifdef __APPLE__
4748    // We no longer build headless-only on Mac OS X
4749    return false;
4750#else
4751    struct stat statbuf;
4752    char buf[MAXPATHLEN];
4753    char libmawtpath[MAXPATHLEN];
4754    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4755    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4756    char *p;
4757
4758    // Get path to libjvm.so
4759    os::jvm_path(buf, sizeof(buf));
4760
4761    // Get rid of libjvm.so
4762    p = strrchr(buf, '/');
4763    if (p == NULL) return false;
4764    else *p = '\0';
4765
4766    // Get rid of client or server
4767    p = strrchr(buf, '/');
4768    if (p == NULL) return false;
4769    else *p = '\0';
4770
4771    // check xawt/libmawt.so
4772    strcpy(libmawtpath, buf);
4773    strcat(libmawtpath, xawtstr);
4774    if (::stat(libmawtpath, &statbuf) == 0) return false;
4775
4776    // check libawt_xawt.so
4777    strcpy(libmawtpath, buf);
4778    strcat(libmawtpath, new_xawtstr);
4779    if (::stat(libmawtpath, &statbuf) == 0) return false;
4780
4781    return true;
4782#endif
4783}
4784
4785// Get the default path to the core file
4786// Returns the length of the string
4787int os::get_core_path(char* buffer, size_t bufferSize) {
4788  int n = jio_snprintf(buffer, bufferSize, "/cores");
4789
4790  // Truncate if theoretical string was longer than bufferSize
4791  n = MIN2(n, (int)bufferSize);
4792
4793  return n;
4794}
4795
4796#ifndef PRODUCT
4797void TestReserveMemorySpecial_test() {
4798  // No tests available for this platform
4799}
4800#endif
4801