os_bsd.cpp revision 5580:e006d2e25bc7
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103# include <sys/syscall.h>
104
105#if defined(__FreeBSD__) || defined(__NetBSD__)
106# include <elf.h>
107#endif
108
109#ifdef __APPLE__
110# include <mach/mach.h> // semaphore_* API
111# include <mach-o/dyld.h>
112# include <sys/proc_info.h>
113# include <objc/objc-auto.h>
114#endif
115
116#ifndef MAP_ANONYMOUS
117#define MAP_ANONYMOUS MAP_ANON
118#endif
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125#define LARGEPAGES_BIT (1 << 6)
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Bsd::_physical_memory = 0;
129
130
131int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132pthread_t os::Bsd::_main_thread;
133int os::Bsd::_page_size = -1;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151
152////////////////////////////////////////////////////////////////////////////////
153// utility functions
154
155static int SR_initialize();
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158julong os::available_memory() {
159  return Bsd::available_memory();
160}
161
162// available here means free
163julong os::Bsd::available_memory() {
164  uint64_t available = physical_memory() >> 2;
165#ifdef __APPLE__
166  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
167  vm_statistics64_data_t vmstat;
168  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
169                                         (host_info64_t)&vmstat, &count);
170  assert(kerr == KERN_SUCCESS,
171         "host_statistics64 failed - check mach_host_self() and count");
172  if (kerr == KERN_SUCCESS) {
173    available = vmstat.free_count * os::vm_page_size();
174  }
175#endif
176  return available;
177}
178
179julong os::physical_memory() {
180  return Bsd::physical_memory();
181}
182
183////////////////////////////////////////////////////////////////////////////////
184// environment support
185
186bool os::getenv(const char* name, char* buf, int len) {
187  const char* val = ::getenv(name);
188  if (val != NULL && strlen(val) < (size_t)len) {
189    strcpy(buf, val);
190    return true;
191  }
192  if (len > 0) buf[0] = 0;  // return a null string
193  return false;
194}
195
196
197// Return true if user is running as root.
198
199bool os::have_special_privileges() {
200  static bool init = false;
201  static bool privileges = false;
202  if (!init) {
203    privileges = (getuid() != geteuid()) || (getgid() != getegid());
204    init = true;
205  }
206  return privileges;
207}
208
209
210
211// Cpu architecture string
212#if   defined(ZERO)
213static char cpu_arch[] = ZERO_LIBARCH;
214#elif defined(IA64)
215static char cpu_arch[] = "ia64";
216#elif defined(IA32)
217static char cpu_arch[] = "i386";
218#elif defined(AMD64)
219static char cpu_arch[] = "amd64";
220#elif defined(ARM)
221static char cpu_arch[] = "arm";
222#elif defined(PPC)
223static char cpu_arch[] = "ppc";
224#elif defined(SPARC)
225#  ifdef _LP64
226static char cpu_arch[] = "sparcv9";
227#  else
228static char cpu_arch[] = "sparc";
229#  endif
230#else
231#error Add appropriate cpu_arch setting
232#endif
233
234// Compiler variant
235#ifdef COMPILER2
236#define COMPILER_VARIANT "server"
237#else
238#define COMPILER_VARIANT "client"
239#endif
240
241
242void os::Bsd::initialize_system_info() {
243  int mib[2];
244  size_t len;
245  int cpu_val;
246  julong mem_val;
247
248  /* get processors count via hw.ncpus sysctl */
249  mib[0] = CTL_HW;
250  mib[1] = HW_NCPU;
251  len = sizeof(cpu_val);
252  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
253       assert(len == sizeof(cpu_val), "unexpected data size");
254       set_processor_count(cpu_val);
255  }
256  else {
257       set_processor_count(1);   // fallback
258  }
259
260  /* get physical memory via hw.memsize sysctl (hw.memsize is used
261   * since it returns a 64 bit value)
262   */
263  mib[0] = CTL_HW;
264
265#if defined (HW_MEMSIZE) // Apple
266  mib[1] = HW_MEMSIZE;
267#elif defined(HW_PHYSMEM) // Most of BSD
268  mib[1] = HW_PHYSMEM;
269#elif defined(HW_REALMEM) // Old FreeBSD
270  mib[1] = HW_REALMEM;
271#else
272  #error No ways to get physmem
273#endif
274
275  len = sizeof(mem_val);
276  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
277       assert(len == sizeof(mem_val), "unexpected data size");
278       _physical_memory = mem_val;
279  } else {
280       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
281  }
282
283#ifdef __OpenBSD__
284  {
285       // limit _physical_memory memory view on OpenBSD since
286       // datasize rlimit restricts us anyway.
287       struct rlimit limits;
288       getrlimit(RLIMIT_DATA, &limits);
289       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
290  }
291#endif
292}
293
294#ifdef __APPLE__
295static const char *get_home() {
296  const char *home_dir = ::getenv("HOME");
297  if ((home_dir == NULL) || (*home_dir == '\0')) {
298    struct passwd *passwd_info = getpwuid(geteuid());
299    if (passwd_info != NULL) {
300      home_dir = passwd_info->pw_dir;
301    }
302  }
303
304  return home_dir;
305}
306#endif
307
308void os::init_system_properties_values() {
309//  char arch[12];
310//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
311
312  // The next steps are taken in the product version:
313  //
314  // Obtain the JAVA_HOME value from the location of libjvm.so.
315  // This library should be located at:
316  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
317  //
318  // If "/jre/lib/" appears at the right place in the path, then we
319  // assume libjvm.so is installed in a JDK and we use this path.
320  //
321  // Otherwise exit with message: "Could not create the Java virtual machine."
322  //
323  // The following extra steps are taken in the debugging version:
324  //
325  // If "/jre/lib/" does NOT appear at the right place in the path
326  // instead of exit check for $JAVA_HOME environment variable.
327  //
328  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
329  // then we append a fake suffix "hotspot/libjvm.so" to this path so
330  // it looks like libjvm.so is installed there
331  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
332  //
333  // Otherwise exit.
334  //
335  // Important note: if the location of libjvm.so changes this
336  // code needs to be changed accordingly.
337
338  // The next few definitions allow the code to be verbatim:
339#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
340#define getenv(n) ::getenv(n)
341
342/*
343 * See ld(1):
344 *      The linker uses the following search paths to locate required
345 *      shared libraries:
346 *        1: ...
347 *        ...
348 *        7: The default directories, normally /lib and /usr/lib.
349 */
350#ifndef DEFAULT_LIBPATH
351#define DEFAULT_LIBPATH "/lib:/usr/lib"
352#endif
353
354#define EXTENSIONS_DIR  "/lib/ext"
355#define ENDORSED_DIR    "/lib/endorsed"
356#define REG_DIR         "/usr/java/packages"
357
358#ifdef __APPLE__
359#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
360#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
361        const char *user_home_dir = get_home();
362        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
363        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
364            sizeof(SYS_EXTENSIONS_DIRS);
365#endif
366
367  {
368    /* sysclasspath, java_home, dll_dir */
369    {
370        char *home_path;
371        char *dll_path;
372        char *pslash;
373        char buf[MAXPATHLEN];
374        os::jvm_path(buf, sizeof(buf));
375
376        // Found the full path to libjvm.so.
377        // Now cut the path to <java_home>/jre if we can.
378        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
379        pslash = strrchr(buf, '/');
380        if (pslash != NULL)
381            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
382        dll_path = malloc(strlen(buf) + 1);
383        if (dll_path == NULL)
384            return;
385        strcpy(dll_path, buf);
386        Arguments::set_dll_dir(dll_path);
387
388        if (pslash != NULL) {
389            pslash = strrchr(buf, '/');
390            if (pslash != NULL) {
391                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
392#ifndef __APPLE__
393                pslash = strrchr(buf, '/');
394                if (pslash != NULL)
395                    *pslash = '\0';   /* get rid of /lib */
396#endif
397            }
398        }
399
400        home_path = malloc(strlen(buf) + 1);
401        if (home_path == NULL)
402            return;
403        strcpy(home_path, buf);
404        Arguments::set_java_home(home_path);
405
406        if (!set_boot_path('/', ':'))
407            return;
408    }
409
410    /*
411     * Where to look for native libraries
412     *
413     * Note: Due to a legacy implementation, most of the library path
414     * is set in the launcher.  This was to accomodate linking restrictions
415     * on legacy Bsd implementations (which are no longer supported).
416     * Eventually, all the library path setting will be done here.
417     *
418     * However, to prevent the proliferation of improperly built native
419     * libraries, the new path component /usr/java/packages is added here.
420     * Eventually, all the library path setting will be done here.
421     */
422    {
423        char *ld_library_path;
424
425        /*
426         * Construct the invariant part of ld_library_path. Note that the
427         * space for the colon and the trailing null are provided by the
428         * nulls included by the sizeof operator (so actually we allocate
429         * a byte more than necessary).
430         */
431#ifdef __APPLE__
432        ld_library_path = (char *) malloc(system_ext_size);
433        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
434#else
435        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
436            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
437        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
438#endif
439
440        /*
441         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
442         * should always exist (until the legacy problem cited above is
443         * addressed).
444         */
445#ifdef __APPLE__
446        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
447        char *l = getenv("JAVA_LIBRARY_PATH");
448        if (l != NULL) {
449            char *t = ld_library_path;
450            /* That's +1 for the colon and +1 for the trailing '\0' */
451            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
452            sprintf(ld_library_path, "%s:%s", l, t);
453            free(t);
454        }
455
456        char *v = getenv("DYLD_LIBRARY_PATH");
457#else
458        char *v = getenv("LD_LIBRARY_PATH");
459#endif
460        if (v != NULL) {
461            char *t = ld_library_path;
462            /* That's +1 for the colon and +1 for the trailing '\0' */
463            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
464            sprintf(ld_library_path, "%s:%s", v, t);
465            free(t);
466        }
467
468#ifdef __APPLE__
469        // Apple's Java6 has "." at the beginning of java.library.path.
470        // OpenJDK on Windows has "." at the end of java.library.path.
471        // OpenJDK on Linux and Solaris don't have "." in java.library.path
472        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
473        // "." is appended to the end of java.library.path. Yes, this
474        // could cause a change in behavior, but Apple's Java6 behavior
475        // can be achieved by putting "." at the beginning of the
476        // JAVA_LIBRARY_PATH environment variable.
477        {
478            char *t = ld_library_path;
479            // that's +3 for appending ":." and the trailing '\0'
480            ld_library_path = (char *) malloc(strlen(t) + 3);
481            sprintf(ld_library_path, "%s:%s", t, ".");
482            free(t);
483        }
484#endif
485
486        Arguments::set_library_path(ld_library_path);
487    }
488
489    /*
490     * Extensions directories.
491     *
492     * Note that the space for the colon and the trailing null are provided
493     * by the nulls included by the sizeof operator (so actually one byte more
494     * than necessary is allocated).
495     */
496    {
497#ifdef __APPLE__
498        char *buf = malloc(strlen(Arguments::get_java_home()) +
499            sizeof(EXTENSIONS_DIR) + system_ext_size);
500        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
501            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
502#else
503        char *buf = malloc(strlen(Arguments::get_java_home()) +
504            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
505        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
506            Arguments::get_java_home());
507#endif
508
509        Arguments::set_ext_dirs(buf);
510    }
511
512    /* Endorsed standards default directory. */
513    {
514        char * buf;
515        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
516        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
517        Arguments::set_endorsed_dirs(buf);
518    }
519  }
520
521#ifdef __APPLE__
522#undef SYS_EXTENSIONS_DIR
523#endif
524#undef malloc
525#undef getenv
526#undef EXTENSIONS_DIR
527#undef ENDORSED_DIR
528
529  // Done
530  return;
531}
532
533////////////////////////////////////////////////////////////////////////////////
534// breakpoint support
535
536void os::breakpoint() {
537  BREAKPOINT;
538}
539
540extern "C" void breakpoint() {
541  // use debugger to set breakpoint here
542}
543
544////////////////////////////////////////////////////////////////////////////////
545// signal support
546
547debug_only(static bool signal_sets_initialized = false);
548static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
549
550bool os::Bsd::is_sig_ignored(int sig) {
551      struct sigaction oact;
552      sigaction(sig, (struct sigaction*)NULL, &oact);
553      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
554                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
555      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
556           return true;
557      else
558           return false;
559}
560
561void os::Bsd::signal_sets_init() {
562  // Should also have an assertion stating we are still single-threaded.
563  assert(!signal_sets_initialized, "Already initialized");
564  // Fill in signals that are necessarily unblocked for all threads in
565  // the VM. Currently, we unblock the following signals:
566  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
567  //                         by -Xrs (=ReduceSignalUsage));
568  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
569  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
570  // the dispositions or masks wrt these signals.
571  // Programs embedding the VM that want to use the above signals for their
572  // own purposes must, at this time, use the "-Xrs" option to prevent
573  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
574  // (See bug 4345157, and other related bugs).
575  // In reality, though, unblocking these signals is really a nop, since
576  // these signals are not blocked by default.
577  sigemptyset(&unblocked_sigs);
578  sigemptyset(&allowdebug_blocked_sigs);
579  sigaddset(&unblocked_sigs, SIGILL);
580  sigaddset(&unblocked_sigs, SIGSEGV);
581  sigaddset(&unblocked_sigs, SIGBUS);
582  sigaddset(&unblocked_sigs, SIGFPE);
583  sigaddset(&unblocked_sigs, SR_signum);
584
585  if (!ReduceSignalUsage) {
586   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
587      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
588      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
589   }
590   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
591      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
592      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
593   }
594   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
595      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
596      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
597   }
598  }
599  // Fill in signals that are blocked by all but the VM thread.
600  sigemptyset(&vm_sigs);
601  if (!ReduceSignalUsage)
602    sigaddset(&vm_sigs, BREAK_SIGNAL);
603  debug_only(signal_sets_initialized = true);
604
605}
606
607// These are signals that are unblocked while a thread is running Java.
608// (For some reason, they get blocked by default.)
609sigset_t* os::Bsd::unblocked_signals() {
610  assert(signal_sets_initialized, "Not initialized");
611  return &unblocked_sigs;
612}
613
614// These are the signals that are blocked while a (non-VM) thread is
615// running Java. Only the VM thread handles these signals.
616sigset_t* os::Bsd::vm_signals() {
617  assert(signal_sets_initialized, "Not initialized");
618  return &vm_sigs;
619}
620
621// These are signals that are blocked during cond_wait to allow debugger in
622sigset_t* os::Bsd::allowdebug_blocked_signals() {
623  assert(signal_sets_initialized, "Not initialized");
624  return &allowdebug_blocked_sigs;
625}
626
627void os::Bsd::hotspot_sigmask(Thread* thread) {
628
629  //Save caller's signal mask before setting VM signal mask
630  sigset_t caller_sigmask;
631  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
632
633  OSThread* osthread = thread->osthread();
634  osthread->set_caller_sigmask(caller_sigmask);
635
636  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
637
638  if (!ReduceSignalUsage) {
639    if (thread->is_VM_thread()) {
640      // Only the VM thread handles BREAK_SIGNAL ...
641      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
642    } else {
643      // ... all other threads block BREAK_SIGNAL
644      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
645    }
646  }
647}
648
649
650//////////////////////////////////////////////////////////////////////////////
651// create new thread
652
653// check if it's safe to start a new thread
654static bool _thread_safety_check(Thread* thread) {
655  return true;
656}
657
658#ifdef __APPLE__
659// library handle for calling objc_registerThreadWithCollector()
660// without static linking to the libobjc library
661#define OBJC_LIB "/usr/lib/libobjc.dylib"
662#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
663typedef void (*objc_registerThreadWithCollector_t)();
664extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
665objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
666#endif
667
668#ifdef __APPLE__
669static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
670  // Additional thread_id used to correlate threads in SA
671  thread_identifier_info_data_t     m_ident_info;
672  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
673
674  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
675              (thread_info_t) &m_ident_info, &count);
676
677  return m_ident_info.thread_id;
678}
679#endif
680
681// Thread start routine for all newly created threads
682static void *java_start(Thread *thread) {
683  // Try to randomize the cache line index of hot stack frames.
684  // This helps when threads of the same stack traces evict each other's
685  // cache lines. The threads can be either from the same JVM instance, or
686  // from different JVM instances. The benefit is especially true for
687  // processors with hyperthreading technology.
688  static int counter = 0;
689  int pid = os::current_process_id();
690  alloca(((pid ^ counter++) & 7) * 128);
691
692  ThreadLocalStorage::set_thread(thread);
693
694  OSThread* osthread = thread->osthread();
695  Monitor* sync = osthread->startThread_lock();
696
697  // non floating stack BsdThreads needs extra check, see above
698  if (!_thread_safety_check(thread)) {
699    // notify parent thread
700    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
701    osthread->set_state(ZOMBIE);
702    sync->notify_all();
703    return NULL;
704  }
705
706  osthread->set_thread_id(os::Bsd::gettid());
707
708#ifdef __APPLE__
709  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
710  guarantee(unique_thread_id != 0, "unique thread id was not found");
711  osthread->set_unique_thread_id(unique_thread_id);
712#endif
713  // initialize signal mask for this thread
714  os::Bsd::hotspot_sigmask(thread);
715
716  // initialize floating point control register
717  os::Bsd::init_thread_fpu_state();
718
719#ifdef __APPLE__
720  // register thread with objc gc
721  if (objc_registerThreadWithCollectorFunction != NULL) {
722    objc_registerThreadWithCollectorFunction();
723  }
724#endif
725
726  // handshaking with parent thread
727  {
728    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
729
730    // notify parent thread
731    osthread->set_state(INITIALIZED);
732    sync->notify_all();
733
734    // wait until os::start_thread()
735    while (osthread->get_state() == INITIALIZED) {
736      sync->wait(Mutex::_no_safepoint_check_flag);
737    }
738  }
739
740  // call one more level start routine
741  thread->run();
742
743  return 0;
744}
745
746bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
747  assert(thread->osthread() == NULL, "caller responsible");
748
749  // Allocate the OSThread object
750  OSThread* osthread = new OSThread(NULL, NULL);
751  if (osthread == NULL) {
752    return false;
753  }
754
755  // set the correct thread state
756  osthread->set_thread_type(thr_type);
757
758  // Initial state is ALLOCATED but not INITIALIZED
759  osthread->set_state(ALLOCATED);
760
761  thread->set_osthread(osthread);
762
763  // init thread attributes
764  pthread_attr_t attr;
765  pthread_attr_init(&attr);
766  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
767
768  // stack size
769  if (os::Bsd::supports_variable_stack_size()) {
770    // calculate stack size if it's not specified by caller
771    if (stack_size == 0) {
772      stack_size = os::Bsd::default_stack_size(thr_type);
773
774      switch (thr_type) {
775      case os::java_thread:
776        // Java threads use ThreadStackSize which default value can be
777        // changed with the flag -Xss
778        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
779        stack_size = JavaThread::stack_size_at_create();
780        break;
781      case os::compiler_thread:
782        if (CompilerThreadStackSize > 0) {
783          stack_size = (size_t)(CompilerThreadStackSize * K);
784          break;
785        } // else fall through:
786          // use VMThreadStackSize if CompilerThreadStackSize is not defined
787      case os::vm_thread:
788      case os::pgc_thread:
789      case os::cgc_thread:
790      case os::watcher_thread:
791        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
792        break;
793      }
794    }
795
796    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
797    pthread_attr_setstacksize(&attr, stack_size);
798  } else {
799    // let pthread_create() pick the default value.
800  }
801
802  ThreadState state;
803
804  {
805    pthread_t tid;
806    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
807
808    pthread_attr_destroy(&attr);
809
810    if (ret != 0) {
811      if (PrintMiscellaneous && (Verbose || WizardMode)) {
812        perror("pthread_create()");
813      }
814      // Need to clean up stuff we've allocated so far
815      thread->set_osthread(NULL);
816      delete osthread;
817      return false;
818    }
819
820    // Store pthread info into the OSThread
821    osthread->set_pthread_id(tid);
822
823    // Wait until child thread is either initialized or aborted
824    {
825      Monitor* sync_with_child = osthread->startThread_lock();
826      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
827      while ((state = osthread->get_state()) == ALLOCATED) {
828        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
829      }
830    }
831
832  }
833
834  // Aborted due to thread limit being reached
835  if (state == ZOMBIE) {
836      thread->set_osthread(NULL);
837      delete osthread;
838      return false;
839  }
840
841  // The thread is returned suspended (in state INITIALIZED),
842  // and is started higher up in the call chain
843  assert(state == INITIALIZED, "race condition");
844  return true;
845}
846
847/////////////////////////////////////////////////////////////////////////////
848// attach existing thread
849
850// bootstrap the main thread
851bool os::create_main_thread(JavaThread* thread) {
852  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
853  return create_attached_thread(thread);
854}
855
856bool os::create_attached_thread(JavaThread* thread) {
857#ifdef ASSERT
858    thread->verify_not_published();
859#endif
860
861  // Allocate the OSThread object
862  OSThread* osthread = new OSThread(NULL, NULL);
863
864  if (osthread == NULL) {
865    return false;
866  }
867
868  osthread->set_thread_id(os::Bsd::gettid());
869
870  // Store pthread info into the OSThread
871#ifdef __APPLE__
872  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
873  guarantee(unique_thread_id != 0, "just checking");
874  osthread->set_unique_thread_id(unique_thread_id);
875#endif
876  osthread->set_pthread_id(::pthread_self());
877
878  // initialize floating point control register
879  os::Bsd::init_thread_fpu_state();
880
881  // Initial thread state is RUNNABLE
882  osthread->set_state(RUNNABLE);
883
884  thread->set_osthread(osthread);
885
886  // initialize signal mask for this thread
887  // and save the caller's signal mask
888  os::Bsd::hotspot_sigmask(thread);
889
890  return true;
891}
892
893void os::pd_start_thread(Thread* thread) {
894  OSThread * osthread = thread->osthread();
895  assert(osthread->get_state() != INITIALIZED, "just checking");
896  Monitor* sync_with_child = osthread->startThread_lock();
897  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
898  sync_with_child->notify();
899}
900
901// Free Bsd resources related to the OSThread
902void os::free_thread(OSThread* osthread) {
903  assert(osthread != NULL, "osthread not set");
904
905  if (Thread::current()->osthread() == osthread) {
906    // Restore caller's signal mask
907    sigset_t sigmask = osthread->caller_sigmask();
908    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
909   }
910
911  delete osthread;
912}
913
914//////////////////////////////////////////////////////////////////////////////
915// thread local storage
916
917int os::allocate_thread_local_storage() {
918  pthread_key_t key;
919  int rslt = pthread_key_create(&key, NULL);
920  assert(rslt == 0, "cannot allocate thread local storage");
921  return (int)key;
922}
923
924// Note: This is currently not used by VM, as we don't destroy TLS key
925// on VM exit.
926void os::free_thread_local_storage(int index) {
927  int rslt = pthread_key_delete((pthread_key_t)index);
928  assert(rslt == 0, "invalid index");
929}
930
931void os::thread_local_storage_at_put(int index, void* value) {
932  int rslt = pthread_setspecific((pthread_key_t)index, value);
933  assert(rslt == 0, "pthread_setspecific failed");
934}
935
936extern "C" Thread* get_thread() {
937  return ThreadLocalStorage::thread();
938}
939
940
941////////////////////////////////////////////////////////////////////////////////
942// time support
943
944// Time since start-up in seconds to a fine granularity.
945// Used by VMSelfDestructTimer and the MemProfiler.
946double os::elapsedTime() {
947
948  return (double)(os::elapsed_counter()) * 0.000001;
949}
950
951jlong os::elapsed_counter() {
952  timeval time;
953  int status = gettimeofday(&time, NULL);
954  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
955}
956
957jlong os::elapsed_frequency() {
958  return (1000 * 1000);
959}
960
961bool os::supports_vtime() { return true; }
962bool os::enable_vtime()   { return false; }
963bool os::vtime_enabled()  { return false; }
964
965double os::elapsedVTime() {
966  // better than nothing, but not much
967  return elapsedTime();
968}
969
970jlong os::javaTimeMillis() {
971  timeval time;
972  int status = gettimeofday(&time, NULL);
973  assert(status != -1, "bsd error");
974  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
975}
976
977#ifndef CLOCK_MONOTONIC
978#define CLOCK_MONOTONIC (1)
979#endif
980
981#ifdef __APPLE__
982void os::Bsd::clock_init() {
983        // XXXDARWIN: Investigate replacement monotonic clock
984}
985#else
986void os::Bsd::clock_init() {
987  struct timespec res;
988  struct timespec tp;
989  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
990      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
991    // yes, monotonic clock is supported
992    _clock_gettime = ::clock_gettime;
993  }
994}
995#endif
996
997
998jlong os::javaTimeNanos() {
999  if (Bsd::supports_monotonic_clock()) {
1000    struct timespec tp;
1001    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1002    assert(status == 0, "gettime error");
1003    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1004    return result;
1005  } else {
1006    timeval time;
1007    int status = gettimeofday(&time, NULL);
1008    assert(status != -1, "bsd error");
1009    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1010    return 1000 * usecs;
1011  }
1012}
1013
1014void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1015  if (Bsd::supports_monotonic_clock()) {
1016    info_ptr->max_value = ALL_64_BITS;
1017
1018    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1019    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1020    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1021  } else {
1022    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1023    info_ptr->max_value = ALL_64_BITS;
1024
1025    // gettimeofday is a real time clock so it skips
1026    info_ptr->may_skip_backward = true;
1027    info_ptr->may_skip_forward = true;
1028  }
1029
1030  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1031}
1032
1033// Return the real, user, and system times in seconds from an
1034// arbitrary fixed point in the past.
1035bool os::getTimesSecs(double* process_real_time,
1036                      double* process_user_time,
1037                      double* process_system_time) {
1038  struct tms ticks;
1039  clock_t real_ticks = times(&ticks);
1040
1041  if (real_ticks == (clock_t) (-1)) {
1042    return false;
1043  } else {
1044    double ticks_per_second = (double) clock_tics_per_sec;
1045    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1046    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1047    *process_real_time = ((double) real_ticks) / ticks_per_second;
1048
1049    return true;
1050  }
1051}
1052
1053
1054char * os::local_time_string(char *buf, size_t buflen) {
1055  struct tm t;
1056  time_t long_time;
1057  time(&long_time);
1058  localtime_r(&long_time, &t);
1059  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1060               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1061               t.tm_hour, t.tm_min, t.tm_sec);
1062  return buf;
1063}
1064
1065struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1066  return localtime_r(clock, res);
1067}
1068
1069////////////////////////////////////////////////////////////////////////////////
1070// runtime exit support
1071
1072// Note: os::shutdown() might be called very early during initialization, or
1073// called from signal handler. Before adding something to os::shutdown(), make
1074// sure it is async-safe and can handle partially initialized VM.
1075void os::shutdown() {
1076
1077  // allow PerfMemory to attempt cleanup of any persistent resources
1078  perfMemory_exit();
1079
1080  // needs to remove object in file system
1081  AttachListener::abort();
1082
1083  // flush buffered output, finish log files
1084  ostream_abort();
1085
1086  // Check for abort hook
1087  abort_hook_t abort_hook = Arguments::abort_hook();
1088  if (abort_hook != NULL) {
1089    abort_hook();
1090  }
1091
1092}
1093
1094// Note: os::abort() might be called very early during initialization, or
1095// called from signal handler. Before adding something to os::abort(), make
1096// sure it is async-safe and can handle partially initialized VM.
1097void os::abort(bool dump_core) {
1098  os::shutdown();
1099  if (dump_core) {
1100#ifndef PRODUCT
1101    fdStream out(defaultStream::output_fd());
1102    out.print_raw("Current thread is ");
1103    char buf[16];
1104    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1105    out.print_raw_cr(buf);
1106    out.print_raw_cr("Dumping core ...");
1107#endif
1108    ::abort(); // dump core
1109  }
1110
1111  ::exit(1);
1112}
1113
1114// Die immediately, no exit hook, no abort hook, no cleanup.
1115void os::die() {
1116  // _exit() on BsdThreads only kills current thread
1117  ::abort();
1118}
1119
1120// unused on bsd for now.
1121void os::set_error_file(const char *logfile) {}
1122
1123
1124// This method is a copy of JDK's sysGetLastErrorString
1125// from src/solaris/hpi/src/system_md.c
1126
1127size_t os::lasterror(char *buf, size_t len) {
1128
1129  if (errno == 0)  return 0;
1130
1131  const char *s = ::strerror(errno);
1132  size_t n = ::strlen(s);
1133  if (n >= len) {
1134    n = len - 1;
1135  }
1136  ::strncpy(buf, s, n);
1137  buf[n] = '\0';
1138  return n;
1139}
1140
1141// Information of current thread in variety of formats
1142pid_t os::Bsd::gettid() {
1143  int retval = -1;
1144
1145#ifdef __APPLE__ //XNU kernel
1146  // despite the fact mach port is actually not a thread id use it
1147  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1148  retval = ::pthread_mach_thread_np(::pthread_self());
1149  guarantee(retval != 0, "just checking");
1150  return retval;
1151
1152#elif __FreeBSD__
1153  retval = syscall(SYS_thr_self);
1154#elif __OpenBSD__
1155  retval = syscall(SYS_getthrid);
1156#elif __NetBSD__
1157  retval = (pid_t) syscall(SYS__lwp_self);
1158#endif
1159
1160  if (retval == -1) {
1161    return getpid();
1162  }
1163}
1164
1165intx os::current_thread_id() {
1166#ifdef __APPLE__
1167  return (intx)::pthread_mach_thread_np(::pthread_self());
1168#else
1169  return (intx)::pthread_self();
1170#endif
1171}
1172
1173int os::current_process_id() {
1174
1175  // Under the old bsd thread library, bsd gives each thread
1176  // its own process id. Because of this each thread will return
1177  // a different pid if this method were to return the result
1178  // of getpid(2). Bsd provides no api that returns the pid
1179  // of the launcher thread for the vm. This implementation
1180  // returns a unique pid, the pid of the launcher thread
1181  // that starts the vm 'process'.
1182
1183  // Under the NPTL, getpid() returns the same pid as the
1184  // launcher thread rather than a unique pid per thread.
1185  // Use gettid() if you want the old pre NPTL behaviour.
1186
1187  // if you are looking for the result of a call to getpid() that
1188  // returns a unique pid for the calling thread, then look at the
1189  // OSThread::thread_id() method in osThread_bsd.hpp file
1190
1191  return (int)(_initial_pid ? _initial_pid : getpid());
1192}
1193
1194// DLL functions
1195
1196#define JNI_LIB_PREFIX "lib"
1197#ifdef __APPLE__
1198#define JNI_LIB_SUFFIX ".dylib"
1199#else
1200#define JNI_LIB_SUFFIX ".so"
1201#endif
1202
1203const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1204
1205// This must be hard coded because it's the system's temporary
1206// directory not the java application's temp directory, ala java.io.tmpdir.
1207#ifdef __APPLE__
1208// macosx has a secure per-user temporary directory
1209char temp_path_storage[PATH_MAX];
1210const char* os::get_temp_directory() {
1211  static char *temp_path = NULL;
1212  if (temp_path == NULL) {
1213    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1214    if (pathSize == 0 || pathSize > PATH_MAX) {
1215      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1216    }
1217    temp_path = temp_path_storage;
1218  }
1219  return temp_path;
1220}
1221#else /* __APPLE__ */
1222const char* os::get_temp_directory() { return "/tmp"; }
1223#endif /* __APPLE__ */
1224
1225static bool file_exists(const char* filename) {
1226  struct stat statbuf;
1227  if (filename == NULL || strlen(filename) == 0) {
1228    return false;
1229  }
1230  return os::stat(filename, &statbuf) == 0;
1231}
1232
1233bool os::dll_build_name(char* buffer, size_t buflen,
1234                        const char* pname, const char* fname) {
1235  bool retval = false;
1236  // Copied from libhpi
1237  const size_t pnamelen = pname ? strlen(pname) : 0;
1238
1239  // Return error on buffer overflow.
1240  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1241    return retval;
1242  }
1243
1244  if (pnamelen == 0) {
1245    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1246    retval = true;
1247  } else if (strchr(pname, *os::path_separator()) != NULL) {
1248    int n;
1249    char** pelements = split_path(pname, &n);
1250    if (pelements == NULL) {
1251      return false;
1252    }
1253    for (int i = 0 ; i < n ; i++) {
1254      // Really shouldn't be NULL, but check can't hurt
1255      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1256        continue; // skip the empty path values
1257      }
1258      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1259          pelements[i], fname);
1260      if (file_exists(buffer)) {
1261        retval = true;
1262        break;
1263      }
1264    }
1265    // release the storage
1266    for (int i = 0 ; i < n ; i++) {
1267      if (pelements[i] != NULL) {
1268        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1269      }
1270    }
1271    if (pelements != NULL) {
1272      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1273    }
1274  } else {
1275    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1276    retval = true;
1277  }
1278  return retval;
1279}
1280
1281// check if addr is inside libjvm.so
1282bool os::address_is_in_vm(address addr) {
1283  static address libjvm_base_addr;
1284  Dl_info dlinfo;
1285
1286  if (libjvm_base_addr == NULL) {
1287    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1288      libjvm_base_addr = (address)dlinfo.dli_fbase;
1289    }
1290    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1291  }
1292
1293  if (dladdr((void *)addr, &dlinfo) != 0) {
1294    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1295  }
1296
1297  return false;
1298}
1299
1300
1301#define MACH_MAXSYMLEN 256
1302
1303bool os::dll_address_to_function_name(address addr, char *buf,
1304                                      int buflen, int *offset) {
1305  // buf is not optional, but offset is optional
1306  assert(buf != NULL, "sanity check");
1307
1308  Dl_info dlinfo;
1309  char localbuf[MACH_MAXSYMLEN];
1310
1311  if (dladdr((void*)addr, &dlinfo) != 0) {
1312    // see if we have a matching symbol
1313    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1314      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1315        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1316      }
1317      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1318      return true;
1319    }
1320    // no matching symbol so try for just file info
1321    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1322      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1323                          buf, buflen, offset, dlinfo.dli_fname)) {
1324         return true;
1325      }
1326    }
1327
1328    // Handle non-dynamic manually:
1329    if (dlinfo.dli_fbase != NULL &&
1330        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1331                        dlinfo.dli_fbase)) {
1332      if (!Decoder::demangle(localbuf, buf, buflen)) {
1333        jio_snprintf(buf, buflen, "%s", localbuf);
1334      }
1335      return true;
1336    }
1337  }
1338  buf[0] = '\0';
1339  if (offset != NULL) *offset = -1;
1340  return false;
1341}
1342
1343// ported from solaris version
1344bool os::dll_address_to_library_name(address addr, char* buf,
1345                                     int buflen, int* offset) {
1346  // buf is not optional, but offset is optional
1347  assert(buf != NULL, "sanity check");
1348
1349  Dl_info dlinfo;
1350
1351  if (dladdr((void*)addr, &dlinfo) != 0) {
1352    if (dlinfo.dli_fname != NULL) {
1353      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1354    }
1355    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1356      *offset = addr - (address)dlinfo.dli_fbase;
1357    }
1358    return true;
1359  }
1360
1361  buf[0] = '\0';
1362  if (offset) *offset = -1;
1363  return false;
1364}
1365
1366// Loads .dll/.so and
1367// in case of error it checks if .dll/.so was built for the
1368// same architecture as Hotspot is running on
1369
1370#ifdef __APPLE__
1371void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1372  void * result= ::dlopen(filename, RTLD_LAZY);
1373  if (result != NULL) {
1374    // Successful loading
1375    return result;
1376  }
1377
1378  // Read system error message into ebuf
1379  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1380  ebuf[ebuflen-1]='\0';
1381
1382  return NULL;
1383}
1384#else
1385void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1386{
1387  void * result= ::dlopen(filename, RTLD_LAZY);
1388  if (result != NULL) {
1389    // Successful loading
1390    return result;
1391  }
1392
1393  Elf32_Ehdr elf_head;
1394
1395  // Read system error message into ebuf
1396  // It may or may not be overwritten below
1397  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1398  ebuf[ebuflen-1]='\0';
1399  int diag_msg_max_length=ebuflen-strlen(ebuf);
1400  char* diag_msg_buf=ebuf+strlen(ebuf);
1401
1402  if (diag_msg_max_length==0) {
1403    // No more space in ebuf for additional diagnostics message
1404    return NULL;
1405  }
1406
1407
1408  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1409
1410  if (file_descriptor < 0) {
1411    // Can't open library, report dlerror() message
1412    return NULL;
1413  }
1414
1415  bool failed_to_read_elf_head=
1416    (sizeof(elf_head)!=
1417        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1418
1419  ::close(file_descriptor);
1420  if (failed_to_read_elf_head) {
1421    // file i/o error - report dlerror() msg
1422    return NULL;
1423  }
1424
1425  typedef struct {
1426    Elf32_Half  code;         // Actual value as defined in elf.h
1427    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1428    char        elf_class;    // 32 or 64 bit
1429    char        endianess;    // MSB or LSB
1430    char*       name;         // String representation
1431  } arch_t;
1432
1433  #ifndef EM_486
1434  #define EM_486          6               /* Intel 80486 */
1435  #endif
1436
1437  #ifndef EM_MIPS_RS3_LE
1438  #define EM_MIPS_RS3_LE  10              /* MIPS */
1439  #endif
1440
1441  #ifndef EM_PPC64
1442  #define EM_PPC64        21              /* PowerPC64 */
1443  #endif
1444
1445  #ifndef EM_S390
1446  #define EM_S390         22              /* IBM System/390 */
1447  #endif
1448
1449  #ifndef EM_IA_64
1450  #define EM_IA_64        50              /* HP/Intel IA-64 */
1451  #endif
1452
1453  #ifndef EM_X86_64
1454  #define EM_X86_64       62              /* AMD x86-64 */
1455  #endif
1456
1457  static const arch_t arch_array[]={
1458    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1459    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1460    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1461    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1462    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1463    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1464    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1465    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1466    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1467    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1468    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1469    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1470    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1471    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1472    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1473    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1474  };
1475
1476  #if  (defined IA32)
1477    static  Elf32_Half running_arch_code=EM_386;
1478  #elif   (defined AMD64)
1479    static  Elf32_Half running_arch_code=EM_X86_64;
1480  #elif  (defined IA64)
1481    static  Elf32_Half running_arch_code=EM_IA_64;
1482  #elif  (defined __sparc) && (defined _LP64)
1483    static  Elf32_Half running_arch_code=EM_SPARCV9;
1484  #elif  (defined __sparc) && (!defined _LP64)
1485    static  Elf32_Half running_arch_code=EM_SPARC;
1486  #elif  (defined __powerpc64__)
1487    static  Elf32_Half running_arch_code=EM_PPC64;
1488  #elif  (defined __powerpc__)
1489    static  Elf32_Half running_arch_code=EM_PPC;
1490  #elif  (defined ARM)
1491    static  Elf32_Half running_arch_code=EM_ARM;
1492  #elif  (defined S390)
1493    static  Elf32_Half running_arch_code=EM_S390;
1494  #elif  (defined ALPHA)
1495    static  Elf32_Half running_arch_code=EM_ALPHA;
1496  #elif  (defined MIPSEL)
1497    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1498  #elif  (defined PARISC)
1499    static  Elf32_Half running_arch_code=EM_PARISC;
1500  #elif  (defined MIPS)
1501    static  Elf32_Half running_arch_code=EM_MIPS;
1502  #elif  (defined M68K)
1503    static  Elf32_Half running_arch_code=EM_68K;
1504  #else
1505    #error Method os::dll_load requires that one of following is defined:\
1506         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1507  #endif
1508
1509  // Identify compatability class for VM's architecture and library's architecture
1510  // Obtain string descriptions for architectures
1511
1512  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1513  int running_arch_index=-1;
1514
1515  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1516    if (running_arch_code == arch_array[i].code) {
1517      running_arch_index    = i;
1518    }
1519    if (lib_arch.code == arch_array[i].code) {
1520      lib_arch.compat_class = arch_array[i].compat_class;
1521      lib_arch.name         = arch_array[i].name;
1522    }
1523  }
1524
1525  assert(running_arch_index != -1,
1526    "Didn't find running architecture code (running_arch_code) in arch_array");
1527  if (running_arch_index == -1) {
1528    // Even though running architecture detection failed
1529    // we may still continue with reporting dlerror() message
1530    return NULL;
1531  }
1532
1533  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1534    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1535    return NULL;
1536  }
1537
1538#ifndef S390
1539  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1540    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1541    return NULL;
1542  }
1543#endif // !S390
1544
1545  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1546    if ( lib_arch.name!=NULL ) {
1547      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1548        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1549        lib_arch.name, arch_array[running_arch_index].name);
1550    } else {
1551      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1552      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1553        lib_arch.code,
1554        arch_array[running_arch_index].name);
1555    }
1556  }
1557
1558  return NULL;
1559}
1560#endif /* !__APPLE__ */
1561
1562// XXX: Do we need a lock around this as per Linux?
1563void* os::dll_lookup(void* handle, const char* name) {
1564  return dlsym(handle, name);
1565}
1566
1567
1568static bool _print_ascii_file(const char* filename, outputStream* st) {
1569  int fd = ::open(filename, O_RDONLY);
1570  if (fd == -1) {
1571     return false;
1572  }
1573
1574  char buf[32];
1575  int bytes;
1576  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1577    st->print_raw(buf, bytes);
1578  }
1579
1580  ::close(fd);
1581
1582  return true;
1583}
1584
1585void os::print_dll_info(outputStream *st) {
1586  st->print_cr("Dynamic libraries:");
1587#ifdef RTLD_DI_LINKMAP
1588  Dl_info dli;
1589  void *handle;
1590  Link_map *map;
1591  Link_map *p;
1592
1593  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1594      dli.dli_fname == NULL) {
1595    st->print_cr("Error: Cannot print dynamic libraries.");
1596    return;
1597  }
1598  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1599  if (handle == NULL) {
1600    st->print_cr("Error: Cannot print dynamic libraries.");
1601    return;
1602  }
1603  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1604  if (map == NULL) {
1605    st->print_cr("Error: Cannot print dynamic libraries.");
1606    return;
1607  }
1608
1609  while (map->l_prev != NULL)
1610    map = map->l_prev;
1611
1612  while (map != NULL) {
1613    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1614    map = map->l_next;
1615  }
1616
1617  dlclose(handle);
1618#elif defined(__APPLE__)
1619  uint32_t count;
1620  uint32_t i;
1621
1622  count = _dyld_image_count();
1623  for (i = 1; i < count; i++) {
1624    const char *name = _dyld_get_image_name(i);
1625    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1626    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1627  }
1628#else
1629  st->print_cr("Error: Cannot print dynamic libraries.");
1630#endif
1631}
1632
1633void os::print_os_info_brief(outputStream* st) {
1634  st->print("Bsd");
1635
1636  os::Posix::print_uname_info(st);
1637}
1638
1639void os::print_os_info(outputStream* st) {
1640  st->print("OS:");
1641  st->print("Bsd");
1642
1643  os::Posix::print_uname_info(st);
1644
1645  os::Posix::print_rlimit_info(st);
1646
1647  os::Posix::print_load_average(st);
1648}
1649
1650void os::pd_print_cpu_info(outputStream* st) {
1651  // Nothing to do for now.
1652}
1653
1654void os::print_memory_info(outputStream* st) {
1655
1656  st->print("Memory:");
1657  st->print(" %dk page", os::vm_page_size()>>10);
1658
1659  st->print(", physical " UINT64_FORMAT "k",
1660            os::physical_memory() >> 10);
1661  st->print("(" UINT64_FORMAT "k free)",
1662            os::available_memory() >> 10);
1663  st->cr();
1664
1665  // meminfo
1666  st->print("\n/proc/meminfo:\n");
1667  _print_ascii_file("/proc/meminfo", st);
1668  st->cr();
1669}
1670
1671// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1672// but they're the same for all the bsd arch that we support
1673// and they're the same for solaris but there's no common place to put this.
1674const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1675                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1676                          "ILL_COPROC", "ILL_BADSTK" };
1677
1678const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1679                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1680                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1681
1682const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1683
1684const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1685
1686void os::print_siginfo(outputStream* st, void* siginfo) {
1687  st->print("siginfo:");
1688
1689  const int buflen = 100;
1690  char buf[buflen];
1691  siginfo_t *si = (siginfo_t*)siginfo;
1692  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1693  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1694    st->print("si_errno=%s", buf);
1695  } else {
1696    st->print("si_errno=%d", si->si_errno);
1697  }
1698  const int c = si->si_code;
1699  assert(c > 0, "unexpected si_code");
1700  switch (si->si_signo) {
1701  case SIGILL:
1702    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1703    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1704    break;
1705  case SIGFPE:
1706    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1707    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1708    break;
1709  case SIGSEGV:
1710    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1711    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1712    break;
1713  case SIGBUS:
1714    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1715    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1716    break;
1717  default:
1718    st->print(", si_code=%d", si->si_code);
1719    // no si_addr
1720  }
1721
1722  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1723      UseSharedSpaces) {
1724    FileMapInfo* mapinfo = FileMapInfo::current_info();
1725    if (mapinfo->is_in_shared_space(si->si_addr)) {
1726      st->print("\n\nError accessing class data sharing archive."   \
1727                " Mapped file inaccessible during execution, "      \
1728                " possible disk/network problem.");
1729    }
1730  }
1731  st->cr();
1732}
1733
1734
1735static void print_signal_handler(outputStream* st, int sig,
1736                                 char* buf, size_t buflen);
1737
1738void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1739  st->print_cr("Signal Handlers:");
1740  print_signal_handler(st, SIGSEGV, buf, buflen);
1741  print_signal_handler(st, SIGBUS , buf, buflen);
1742  print_signal_handler(st, SIGFPE , buf, buflen);
1743  print_signal_handler(st, SIGPIPE, buf, buflen);
1744  print_signal_handler(st, SIGXFSZ, buf, buflen);
1745  print_signal_handler(st, SIGILL , buf, buflen);
1746  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1747  print_signal_handler(st, SR_signum, buf, buflen);
1748  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1749  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1750  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1751  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1752}
1753
1754static char saved_jvm_path[MAXPATHLEN] = {0};
1755
1756// Find the full path to the current module, libjvm
1757void os::jvm_path(char *buf, jint buflen) {
1758  // Error checking.
1759  if (buflen < MAXPATHLEN) {
1760    assert(false, "must use a large-enough buffer");
1761    buf[0] = '\0';
1762    return;
1763  }
1764  // Lazy resolve the path to current module.
1765  if (saved_jvm_path[0] != 0) {
1766    strcpy(buf, saved_jvm_path);
1767    return;
1768  }
1769
1770  char dli_fname[MAXPATHLEN];
1771  bool ret = dll_address_to_library_name(
1772                CAST_FROM_FN_PTR(address, os::jvm_path),
1773                dli_fname, sizeof(dli_fname), NULL);
1774  assert(ret, "cannot locate libjvm");
1775  char *rp = NULL;
1776  if (ret && dli_fname[0] != '\0') {
1777    rp = realpath(dli_fname, buf);
1778  }
1779  if (rp == NULL)
1780    return;
1781
1782  if (Arguments::created_by_gamma_launcher()) {
1783    // Support for the gamma launcher.  Typical value for buf is
1784    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1785    // the right place in the string, then assume we are installed in a JDK and
1786    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1787    // construct a path to the JVM being overridden.
1788
1789    const char *p = buf + strlen(buf) - 1;
1790    for (int count = 0; p > buf && count < 5; ++count) {
1791      for (--p; p > buf && *p != '/'; --p)
1792        /* empty */ ;
1793    }
1794
1795    if (strncmp(p, "/jre/lib/", 9) != 0) {
1796      // Look for JAVA_HOME in the environment.
1797      char* java_home_var = ::getenv("JAVA_HOME");
1798      if (java_home_var != NULL && java_home_var[0] != 0) {
1799        char* jrelib_p;
1800        int len;
1801
1802        // Check the current module name "libjvm"
1803        p = strrchr(buf, '/');
1804        assert(strstr(p, "/libjvm") == p, "invalid library name");
1805
1806        rp = realpath(java_home_var, buf);
1807        if (rp == NULL)
1808          return;
1809
1810        // determine if this is a legacy image or modules image
1811        // modules image doesn't have "jre" subdirectory
1812        len = strlen(buf);
1813        jrelib_p = buf + len;
1814
1815        // Add the appropriate library subdir
1816        snprintf(jrelib_p, buflen-len, "/jre/lib");
1817        if (0 != access(buf, F_OK)) {
1818          snprintf(jrelib_p, buflen-len, "/lib");
1819        }
1820
1821        // Add the appropriate client or server subdir
1822        len = strlen(buf);
1823        jrelib_p = buf + len;
1824        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1825        if (0 != access(buf, F_OK)) {
1826          snprintf(jrelib_p, buflen-len, "");
1827        }
1828
1829        // If the path exists within JAVA_HOME, add the JVM library name
1830        // to complete the path to JVM being overridden.  Otherwise fallback
1831        // to the path to the current library.
1832        if (0 == access(buf, F_OK)) {
1833          // Use current module name "libjvm"
1834          len = strlen(buf);
1835          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1836        } else {
1837          // Fall back to path of current library
1838          rp = realpath(dli_fname, buf);
1839          if (rp == NULL)
1840            return;
1841        }
1842      }
1843    }
1844  }
1845
1846  strcpy(saved_jvm_path, buf);
1847}
1848
1849void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1850  // no prefix required, not even "_"
1851}
1852
1853void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1854  // no suffix required
1855}
1856
1857////////////////////////////////////////////////////////////////////////////////
1858// sun.misc.Signal support
1859
1860static volatile jint sigint_count = 0;
1861
1862static void
1863UserHandler(int sig, void *siginfo, void *context) {
1864  // 4511530 - sem_post is serialized and handled by the manager thread. When
1865  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1866  // don't want to flood the manager thread with sem_post requests.
1867  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1868      return;
1869
1870  // Ctrl-C is pressed during error reporting, likely because the error
1871  // handler fails to abort. Let VM die immediately.
1872  if (sig == SIGINT && is_error_reported()) {
1873     os::die();
1874  }
1875
1876  os::signal_notify(sig);
1877}
1878
1879void* os::user_handler() {
1880  return CAST_FROM_FN_PTR(void*, UserHandler);
1881}
1882
1883extern "C" {
1884  typedef void (*sa_handler_t)(int);
1885  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1886}
1887
1888void* os::signal(int signal_number, void* handler) {
1889  struct sigaction sigAct, oldSigAct;
1890
1891  sigfillset(&(sigAct.sa_mask));
1892  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1893  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1894
1895  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1896    // -1 means registration failed
1897    return (void *)-1;
1898  }
1899
1900  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1901}
1902
1903void os::signal_raise(int signal_number) {
1904  ::raise(signal_number);
1905}
1906
1907/*
1908 * The following code is moved from os.cpp for making this
1909 * code platform specific, which it is by its very nature.
1910 */
1911
1912// Will be modified when max signal is changed to be dynamic
1913int os::sigexitnum_pd() {
1914  return NSIG;
1915}
1916
1917// a counter for each possible signal value
1918static volatile jint pending_signals[NSIG+1] = { 0 };
1919
1920// Bsd(POSIX) specific hand shaking semaphore.
1921#ifdef __APPLE__
1922typedef semaphore_t os_semaphore_t;
1923#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1924#define SEM_WAIT(sem)           semaphore_wait(sem)
1925#define SEM_POST(sem)           semaphore_signal(sem)
1926#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1927#else
1928typedef sem_t os_semaphore_t;
1929#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1930#define SEM_WAIT(sem)           sem_wait(&sem)
1931#define SEM_POST(sem)           sem_post(&sem)
1932#define SEM_DESTROY(sem)        sem_destroy(&sem)
1933#endif
1934
1935class Semaphore : public StackObj {
1936  public:
1937    Semaphore();
1938    ~Semaphore();
1939    void signal();
1940    void wait();
1941    bool trywait();
1942    bool timedwait(unsigned int sec, int nsec);
1943  private:
1944    jlong currenttime() const;
1945    os_semaphore_t _semaphore;
1946};
1947
1948Semaphore::Semaphore() : _semaphore(0) {
1949  SEM_INIT(_semaphore, 0);
1950}
1951
1952Semaphore::~Semaphore() {
1953  SEM_DESTROY(_semaphore);
1954}
1955
1956void Semaphore::signal() {
1957  SEM_POST(_semaphore);
1958}
1959
1960void Semaphore::wait() {
1961  SEM_WAIT(_semaphore);
1962}
1963
1964jlong Semaphore::currenttime() const {
1965    struct timeval tv;
1966    gettimeofday(&tv, NULL);
1967    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1968}
1969
1970#ifdef __APPLE__
1971bool Semaphore::trywait() {
1972  return timedwait(0, 0);
1973}
1974
1975bool Semaphore::timedwait(unsigned int sec, int nsec) {
1976  kern_return_t kr = KERN_ABORTED;
1977  mach_timespec_t waitspec;
1978  waitspec.tv_sec = sec;
1979  waitspec.tv_nsec = nsec;
1980
1981  jlong starttime = currenttime();
1982
1983  kr = semaphore_timedwait(_semaphore, waitspec);
1984  while (kr == KERN_ABORTED) {
1985    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1986
1987    jlong current = currenttime();
1988    jlong passedtime = current - starttime;
1989
1990    if (passedtime >= totalwait) {
1991      waitspec.tv_sec = 0;
1992      waitspec.tv_nsec = 0;
1993    } else {
1994      jlong waittime = totalwait - (current - starttime);
1995      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1996      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1997    }
1998
1999    kr = semaphore_timedwait(_semaphore, waitspec);
2000  }
2001
2002  return kr == KERN_SUCCESS;
2003}
2004
2005#else
2006
2007bool Semaphore::trywait() {
2008  return sem_trywait(&_semaphore) == 0;
2009}
2010
2011bool Semaphore::timedwait(unsigned int sec, int nsec) {
2012  struct timespec ts;
2013  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2014
2015  while (1) {
2016    int result = sem_timedwait(&_semaphore, &ts);
2017    if (result == 0) {
2018      return true;
2019    } else if (errno == EINTR) {
2020      continue;
2021    } else if (errno == ETIMEDOUT) {
2022      return false;
2023    } else {
2024      return false;
2025    }
2026  }
2027}
2028
2029#endif // __APPLE__
2030
2031static os_semaphore_t sig_sem;
2032static Semaphore sr_semaphore;
2033
2034void os::signal_init_pd() {
2035  // Initialize signal structures
2036  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2037
2038  // Initialize signal semaphore
2039  ::SEM_INIT(sig_sem, 0);
2040}
2041
2042void os::signal_notify(int sig) {
2043  Atomic::inc(&pending_signals[sig]);
2044  ::SEM_POST(sig_sem);
2045}
2046
2047static int check_pending_signals(bool wait) {
2048  Atomic::store(0, &sigint_count);
2049  for (;;) {
2050    for (int i = 0; i < NSIG + 1; i++) {
2051      jint n = pending_signals[i];
2052      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2053        return i;
2054      }
2055    }
2056    if (!wait) {
2057      return -1;
2058    }
2059    JavaThread *thread = JavaThread::current();
2060    ThreadBlockInVM tbivm(thread);
2061
2062    bool threadIsSuspended;
2063    do {
2064      thread->set_suspend_equivalent();
2065      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2066      ::SEM_WAIT(sig_sem);
2067
2068      // were we externally suspended while we were waiting?
2069      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2070      if (threadIsSuspended) {
2071        //
2072        // The semaphore has been incremented, but while we were waiting
2073        // another thread suspended us. We don't want to continue running
2074        // while suspended because that would surprise the thread that
2075        // suspended us.
2076        //
2077        ::SEM_POST(sig_sem);
2078
2079        thread->java_suspend_self();
2080      }
2081    } while (threadIsSuspended);
2082  }
2083}
2084
2085int os::signal_lookup() {
2086  return check_pending_signals(false);
2087}
2088
2089int os::signal_wait() {
2090  return check_pending_signals(true);
2091}
2092
2093////////////////////////////////////////////////////////////////////////////////
2094// Virtual Memory
2095
2096int os::vm_page_size() {
2097  // Seems redundant as all get out
2098  assert(os::Bsd::page_size() != -1, "must call os::init");
2099  return os::Bsd::page_size();
2100}
2101
2102// Solaris allocates memory by pages.
2103int os::vm_allocation_granularity() {
2104  assert(os::Bsd::page_size() != -1, "must call os::init");
2105  return os::Bsd::page_size();
2106}
2107
2108// Rationale behind this function:
2109//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2110//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2111//  samples for JITted code. Here we create private executable mapping over the code cache
2112//  and then we can use standard (well, almost, as mapping can change) way to provide
2113//  info for the reporting script by storing timestamp and location of symbol
2114void bsd_wrap_code(char* base, size_t size) {
2115  static volatile jint cnt = 0;
2116
2117  if (!UseOprofile) {
2118    return;
2119  }
2120
2121  char buf[PATH_MAX + 1];
2122  int num = Atomic::add(1, &cnt);
2123
2124  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2125           os::get_temp_directory(), os::current_process_id(), num);
2126  unlink(buf);
2127
2128  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2129
2130  if (fd != -1) {
2131    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2132    if (rv != (off_t)-1) {
2133      if (::write(fd, "", 1) == 1) {
2134        mmap(base, size,
2135             PROT_READ|PROT_WRITE|PROT_EXEC,
2136             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2137      }
2138    }
2139    ::close(fd);
2140    unlink(buf);
2141  }
2142}
2143
2144static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2145                                    int err) {
2146  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2147          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2148          strerror(err), err);
2149}
2150
2151// NOTE: Bsd kernel does not really reserve the pages for us.
2152//       All it does is to check if there are enough free pages
2153//       left at the time of mmap(). This could be a potential
2154//       problem.
2155bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2156  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2157#ifdef __OpenBSD__
2158  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2159  if (::mprotect(addr, size, prot) == 0) {
2160    return true;
2161  }
2162#else
2163  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2164                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2165  if (res != (uintptr_t) MAP_FAILED) {
2166    return true;
2167  }
2168#endif
2169
2170  // Warn about any commit errors we see in non-product builds just
2171  // in case mmap() doesn't work as described on the man page.
2172  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2173
2174  return false;
2175}
2176
2177bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2178                       bool exec) {
2179  // alignment_hint is ignored on this OS
2180  return pd_commit_memory(addr, size, exec);
2181}
2182
2183void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2184                                  const char* mesg) {
2185  assert(mesg != NULL, "mesg must be specified");
2186  if (!pd_commit_memory(addr, size, exec)) {
2187    // add extra info in product mode for vm_exit_out_of_memory():
2188    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2189    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2190  }
2191}
2192
2193void os::pd_commit_memory_or_exit(char* addr, size_t size,
2194                                  size_t alignment_hint, bool exec,
2195                                  const char* mesg) {
2196  // alignment_hint is ignored on this OS
2197  pd_commit_memory_or_exit(addr, size, exec, mesg);
2198}
2199
2200void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2201}
2202
2203void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2204  ::madvise(addr, bytes, MADV_DONTNEED);
2205}
2206
2207void os::numa_make_global(char *addr, size_t bytes) {
2208}
2209
2210void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2211}
2212
2213bool os::numa_topology_changed()   { return false; }
2214
2215size_t os::numa_get_groups_num() {
2216  return 1;
2217}
2218
2219int os::numa_get_group_id() {
2220  return 0;
2221}
2222
2223size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2224  if (size > 0) {
2225    ids[0] = 0;
2226    return 1;
2227  }
2228  return 0;
2229}
2230
2231bool os::get_page_info(char *start, page_info* info) {
2232  return false;
2233}
2234
2235char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2236  return end;
2237}
2238
2239
2240bool os::pd_uncommit_memory(char* addr, size_t size) {
2241#ifdef __OpenBSD__
2242  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2243  return ::mprotect(addr, size, PROT_NONE) == 0;
2244#else
2245  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2246                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2247  return res  != (uintptr_t) MAP_FAILED;
2248#endif
2249}
2250
2251bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2252  return os::commit_memory(addr, size, !ExecMem);
2253}
2254
2255// If this is a growable mapping, remove the guard pages entirely by
2256// munmap()ping them.  If not, just call uncommit_memory().
2257bool os::remove_stack_guard_pages(char* addr, size_t size) {
2258  return os::uncommit_memory(addr, size);
2259}
2260
2261static address _highest_vm_reserved_address = NULL;
2262
2263// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2264// at 'requested_addr'. If there are existing memory mappings at the same
2265// location, however, they will be overwritten. If 'fixed' is false,
2266// 'requested_addr' is only treated as a hint, the return value may or
2267// may not start from the requested address. Unlike Bsd mmap(), this
2268// function returns NULL to indicate failure.
2269static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2270  char * addr;
2271  int flags;
2272
2273  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2274  if (fixed) {
2275    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2276    flags |= MAP_FIXED;
2277  }
2278
2279  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2280  // touch an uncommitted page. Otherwise, the read/write might
2281  // succeed if we have enough swap space to back the physical page.
2282  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2283                       flags, -1, 0);
2284
2285  if (addr != MAP_FAILED) {
2286    // anon_mmap() should only get called during VM initialization,
2287    // don't need lock (actually we can skip locking even it can be called
2288    // from multiple threads, because _highest_vm_reserved_address is just a
2289    // hint about the upper limit of non-stack memory regions.)
2290    if ((address)addr + bytes > _highest_vm_reserved_address) {
2291      _highest_vm_reserved_address = (address)addr + bytes;
2292    }
2293  }
2294
2295  return addr == MAP_FAILED ? NULL : addr;
2296}
2297
2298// Don't update _highest_vm_reserved_address, because there might be memory
2299// regions above addr + size. If so, releasing a memory region only creates
2300// a hole in the address space, it doesn't help prevent heap-stack collision.
2301//
2302static int anon_munmap(char * addr, size_t size) {
2303  return ::munmap(addr, size) == 0;
2304}
2305
2306char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2307                         size_t alignment_hint) {
2308  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2309}
2310
2311bool os::pd_release_memory(char* addr, size_t size) {
2312  return anon_munmap(addr, size);
2313}
2314
2315static bool bsd_mprotect(char* addr, size_t size, int prot) {
2316  // Bsd wants the mprotect address argument to be page aligned.
2317  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2318
2319  // According to SUSv3, mprotect() should only be used with mappings
2320  // established by mmap(), and mmap() always maps whole pages. Unaligned
2321  // 'addr' likely indicates problem in the VM (e.g. trying to change
2322  // protection of malloc'ed or statically allocated memory). Check the
2323  // caller if you hit this assert.
2324  assert(addr == bottom, "sanity check");
2325
2326  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2327  return ::mprotect(bottom, size, prot) == 0;
2328}
2329
2330// Set protections specified
2331bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2332                        bool is_committed) {
2333  unsigned int p = 0;
2334  switch (prot) {
2335  case MEM_PROT_NONE: p = PROT_NONE; break;
2336  case MEM_PROT_READ: p = PROT_READ; break;
2337  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2338  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2339  default:
2340    ShouldNotReachHere();
2341  }
2342  // is_committed is unused.
2343  return bsd_mprotect(addr, bytes, p);
2344}
2345
2346bool os::guard_memory(char* addr, size_t size) {
2347  return bsd_mprotect(addr, size, PROT_NONE);
2348}
2349
2350bool os::unguard_memory(char* addr, size_t size) {
2351  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2352}
2353
2354bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2355  return false;
2356}
2357
2358// Large page support
2359
2360static size_t _large_page_size = 0;
2361
2362void os::large_page_init() {
2363}
2364
2365
2366char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2367  fatal("This code is not used or maintained.");
2368
2369  // "exec" is passed in but not used.  Creating the shared image for
2370  // the code cache doesn't have an SHM_X executable permission to check.
2371  assert(UseLargePages && UseSHM, "only for SHM large pages");
2372
2373  key_t key = IPC_PRIVATE;
2374  char *addr;
2375
2376  bool warn_on_failure = UseLargePages &&
2377                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2378                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2379                        );
2380  char msg[128];
2381
2382  // Create a large shared memory region to attach to based on size.
2383  // Currently, size is the total size of the heap
2384  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2385  if (shmid == -1) {
2386     // Possible reasons for shmget failure:
2387     // 1. shmmax is too small for Java heap.
2388     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2389     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2390     // 2. not enough large page memory.
2391     //    > check available large pages: cat /proc/meminfo
2392     //    > increase amount of large pages:
2393     //          echo new_value > /proc/sys/vm/nr_hugepages
2394     //      Note 1: different Bsd may use different name for this property,
2395     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2396     //      Note 2: it's possible there's enough physical memory available but
2397     //            they are so fragmented after a long run that they can't
2398     //            coalesce into large pages. Try to reserve large pages when
2399     //            the system is still "fresh".
2400     if (warn_on_failure) {
2401       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2402       warning(msg);
2403     }
2404     return NULL;
2405  }
2406
2407  // attach to the region
2408  addr = (char*)shmat(shmid, req_addr, 0);
2409  int err = errno;
2410
2411  // Remove shmid. If shmat() is successful, the actual shared memory segment
2412  // will be deleted when it's detached by shmdt() or when the process
2413  // terminates. If shmat() is not successful this will remove the shared
2414  // segment immediately.
2415  shmctl(shmid, IPC_RMID, NULL);
2416
2417  if ((intptr_t)addr == -1) {
2418     if (warn_on_failure) {
2419       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2420       warning(msg);
2421     }
2422     return NULL;
2423  }
2424
2425  // The memory is committed
2426  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2427
2428  return addr;
2429}
2430
2431bool os::release_memory_special(char* base, size_t bytes) {
2432  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2433  // detaching the SHM segment will also delete it, see reserve_memory_special()
2434  int rslt = shmdt(base);
2435  if (rslt == 0) {
2436    tkr.record((address)base, bytes);
2437    return true;
2438  } else {
2439    tkr.discard();
2440    return false;
2441  }
2442
2443}
2444
2445size_t os::large_page_size() {
2446  return _large_page_size;
2447}
2448
2449// HugeTLBFS allows application to commit large page memory on demand;
2450// with SysV SHM the entire memory region must be allocated as shared
2451// memory.
2452bool os::can_commit_large_page_memory() {
2453  return UseHugeTLBFS;
2454}
2455
2456bool os::can_execute_large_page_memory() {
2457  return UseHugeTLBFS;
2458}
2459
2460// Reserve memory at an arbitrary address, only if that area is
2461// available (and not reserved for something else).
2462
2463char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2464  const int max_tries = 10;
2465  char* base[max_tries];
2466  size_t size[max_tries];
2467  const size_t gap = 0x000000;
2468
2469  // Assert only that the size is a multiple of the page size, since
2470  // that's all that mmap requires, and since that's all we really know
2471  // about at this low abstraction level.  If we need higher alignment,
2472  // we can either pass an alignment to this method or verify alignment
2473  // in one of the methods further up the call chain.  See bug 5044738.
2474  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2475
2476  // Repeatedly allocate blocks until the block is allocated at the
2477  // right spot. Give up after max_tries. Note that reserve_memory() will
2478  // automatically update _highest_vm_reserved_address if the call is
2479  // successful. The variable tracks the highest memory address every reserved
2480  // by JVM. It is used to detect heap-stack collision if running with
2481  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2482  // space than needed, it could confuse the collision detecting code. To
2483  // solve the problem, save current _highest_vm_reserved_address and
2484  // calculate the correct value before return.
2485  address old_highest = _highest_vm_reserved_address;
2486
2487  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2488  // if kernel honors the hint then we can return immediately.
2489  char * addr = anon_mmap(requested_addr, bytes, false);
2490  if (addr == requested_addr) {
2491     return requested_addr;
2492  }
2493
2494  if (addr != NULL) {
2495     // mmap() is successful but it fails to reserve at the requested address
2496     anon_munmap(addr, bytes);
2497  }
2498
2499  int i;
2500  for (i = 0; i < max_tries; ++i) {
2501    base[i] = reserve_memory(bytes);
2502
2503    if (base[i] != NULL) {
2504      // Is this the block we wanted?
2505      if (base[i] == requested_addr) {
2506        size[i] = bytes;
2507        break;
2508      }
2509
2510      // Does this overlap the block we wanted? Give back the overlapped
2511      // parts and try again.
2512
2513      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2514      if (top_overlap >= 0 && top_overlap < bytes) {
2515        unmap_memory(base[i], top_overlap);
2516        base[i] += top_overlap;
2517        size[i] = bytes - top_overlap;
2518      } else {
2519        size_t bottom_overlap = base[i] + bytes - requested_addr;
2520        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2521          unmap_memory(requested_addr, bottom_overlap);
2522          size[i] = bytes - bottom_overlap;
2523        } else {
2524          size[i] = bytes;
2525        }
2526      }
2527    }
2528  }
2529
2530  // Give back the unused reserved pieces.
2531
2532  for (int j = 0; j < i; ++j) {
2533    if (base[j] != NULL) {
2534      unmap_memory(base[j], size[j]);
2535    }
2536  }
2537
2538  if (i < max_tries) {
2539    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2540    return requested_addr;
2541  } else {
2542    _highest_vm_reserved_address = old_highest;
2543    return NULL;
2544  }
2545}
2546
2547size_t os::read(int fd, void *buf, unsigned int nBytes) {
2548  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2549}
2550
2551// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2552// Solaris uses poll(), bsd uses park().
2553// Poll() is likely a better choice, assuming that Thread.interrupt()
2554// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2555// SIGSEGV, see 4355769.
2556
2557int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2558  assert(thread == Thread::current(),  "thread consistency check");
2559
2560  ParkEvent * const slp = thread->_SleepEvent ;
2561  slp->reset() ;
2562  OrderAccess::fence() ;
2563
2564  if (interruptible) {
2565    jlong prevtime = javaTimeNanos();
2566
2567    for (;;) {
2568      if (os::is_interrupted(thread, true)) {
2569        return OS_INTRPT;
2570      }
2571
2572      jlong newtime = javaTimeNanos();
2573
2574      if (newtime - prevtime < 0) {
2575        // time moving backwards, should only happen if no monotonic clock
2576        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2577        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2578      } else {
2579        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2580      }
2581
2582      if(millis <= 0) {
2583        return OS_OK;
2584      }
2585
2586      prevtime = newtime;
2587
2588      {
2589        assert(thread->is_Java_thread(), "sanity check");
2590        JavaThread *jt = (JavaThread *) thread;
2591        ThreadBlockInVM tbivm(jt);
2592        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2593
2594        jt->set_suspend_equivalent();
2595        // cleared by handle_special_suspend_equivalent_condition() or
2596        // java_suspend_self() via check_and_wait_while_suspended()
2597
2598        slp->park(millis);
2599
2600        // were we externally suspended while we were waiting?
2601        jt->check_and_wait_while_suspended();
2602      }
2603    }
2604  } else {
2605    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2606    jlong prevtime = javaTimeNanos();
2607
2608    for (;;) {
2609      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2610      // the 1st iteration ...
2611      jlong newtime = javaTimeNanos();
2612
2613      if (newtime - prevtime < 0) {
2614        // time moving backwards, should only happen if no monotonic clock
2615        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2616        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2617      } else {
2618        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2619      }
2620
2621      if(millis <= 0) break ;
2622
2623      prevtime = newtime;
2624      slp->park(millis);
2625    }
2626    return OS_OK ;
2627  }
2628}
2629
2630int os::naked_sleep() {
2631  // %% make the sleep time an integer flag. for now use 1 millisec.
2632  return os::sleep(Thread::current(), 1, false);
2633}
2634
2635// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2636void os::infinite_sleep() {
2637  while (true) {    // sleep forever ...
2638    ::sleep(100);   // ... 100 seconds at a time
2639  }
2640}
2641
2642// Used to convert frequent JVM_Yield() to nops
2643bool os::dont_yield() {
2644  return DontYieldALot;
2645}
2646
2647void os::yield() {
2648  sched_yield();
2649}
2650
2651os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2652
2653void os::yield_all(int attempts) {
2654  // Yields to all threads, including threads with lower priorities
2655  // Threads on Bsd are all with same priority. The Solaris style
2656  // os::yield_all() with nanosleep(1ms) is not necessary.
2657  sched_yield();
2658}
2659
2660// Called from the tight loops to possibly influence time-sharing heuristics
2661void os::loop_breaker(int attempts) {
2662  os::yield_all(attempts);
2663}
2664
2665////////////////////////////////////////////////////////////////////////////////
2666// thread priority support
2667
2668// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2669// only supports dynamic priority, static priority must be zero. For real-time
2670// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2671// However, for large multi-threaded applications, SCHED_RR is not only slower
2672// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2673// of 5 runs - Sep 2005).
2674//
2675// The following code actually changes the niceness of kernel-thread/LWP. It
2676// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2677// not the entire user process, and user level threads are 1:1 mapped to kernel
2678// threads. It has always been the case, but could change in the future. For
2679// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2680// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2681
2682#if !defined(__APPLE__)
2683int os::java_to_os_priority[CriticalPriority + 1] = {
2684  19,              // 0 Entry should never be used
2685
2686   0,              // 1 MinPriority
2687   3,              // 2
2688   6,              // 3
2689
2690  10,              // 4
2691  15,              // 5 NormPriority
2692  18,              // 6
2693
2694  21,              // 7
2695  25,              // 8
2696  28,              // 9 NearMaxPriority
2697
2698  31,              // 10 MaxPriority
2699
2700  31               // 11 CriticalPriority
2701};
2702#else
2703/* Using Mach high-level priority assignments */
2704int os::java_to_os_priority[CriticalPriority + 1] = {
2705   0,              // 0 Entry should never be used (MINPRI_USER)
2706
2707  27,              // 1 MinPriority
2708  28,              // 2
2709  29,              // 3
2710
2711  30,              // 4
2712  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2713  32,              // 6
2714
2715  33,              // 7
2716  34,              // 8
2717  35,              // 9 NearMaxPriority
2718
2719  36,              // 10 MaxPriority
2720
2721  36               // 11 CriticalPriority
2722};
2723#endif
2724
2725static int prio_init() {
2726  if (ThreadPriorityPolicy == 1) {
2727    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2728    // if effective uid is not root. Perhaps, a more elegant way of doing
2729    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2730    if (geteuid() != 0) {
2731      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2732        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2733      }
2734      ThreadPriorityPolicy = 0;
2735    }
2736  }
2737  if (UseCriticalJavaThreadPriority) {
2738    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2739  }
2740  return 0;
2741}
2742
2743OSReturn os::set_native_priority(Thread* thread, int newpri) {
2744  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2745
2746#ifdef __OpenBSD__
2747  // OpenBSD pthread_setprio starves low priority threads
2748  return OS_OK;
2749#elif defined(__FreeBSD__)
2750  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2751#elif defined(__APPLE__) || defined(__NetBSD__)
2752  struct sched_param sp;
2753  int policy;
2754  pthread_t self = pthread_self();
2755
2756  if (pthread_getschedparam(self, &policy, &sp) != 0)
2757    return OS_ERR;
2758
2759  sp.sched_priority = newpri;
2760  if (pthread_setschedparam(self, policy, &sp) != 0)
2761    return OS_ERR;
2762
2763  return OS_OK;
2764#else
2765  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2766  return (ret == 0) ? OS_OK : OS_ERR;
2767#endif
2768}
2769
2770OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2771  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2772    *priority_ptr = java_to_os_priority[NormPriority];
2773    return OS_OK;
2774  }
2775
2776  errno = 0;
2777#if defined(__OpenBSD__) || defined(__FreeBSD__)
2778  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2779#elif defined(__APPLE__) || defined(__NetBSD__)
2780  int policy;
2781  struct sched_param sp;
2782
2783  pthread_getschedparam(pthread_self(), &policy, &sp);
2784  *priority_ptr = sp.sched_priority;
2785#else
2786  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2787#endif
2788  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2789}
2790
2791// Hint to the underlying OS that a task switch would not be good.
2792// Void return because it's a hint and can fail.
2793void os::hint_no_preempt() {}
2794
2795////////////////////////////////////////////////////////////////////////////////
2796// suspend/resume support
2797
2798//  the low-level signal-based suspend/resume support is a remnant from the
2799//  old VM-suspension that used to be for java-suspension, safepoints etc,
2800//  within hotspot. Now there is a single use-case for this:
2801//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2802//      that runs in the watcher thread.
2803//  The remaining code is greatly simplified from the more general suspension
2804//  code that used to be used.
2805//
2806//  The protocol is quite simple:
2807//  - suspend:
2808//      - sends a signal to the target thread
2809//      - polls the suspend state of the osthread using a yield loop
2810//      - target thread signal handler (SR_handler) sets suspend state
2811//        and blocks in sigsuspend until continued
2812//  - resume:
2813//      - sets target osthread state to continue
2814//      - sends signal to end the sigsuspend loop in the SR_handler
2815//
2816//  Note that the SR_lock plays no role in this suspend/resume protocol.
2817//
2818
2819static void resume_clear_context(OSThread *osthread) {
2820  osthread->set_ucontext(NULL);
2821  osthread->set_siginfo(NULL);
2822}
2823
2824static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2825  osthread->set_ucontext(context);
2826  osthread->set_siginfo(siginfo);
2827}
2828
2829//
2830// Handler function invoked when a thread's execution is suspended or
2831// resumed. We have to be careful that only async-safe functions are
2832// called here (Note: most pthread functions are not async safe and
2833// should be avoided.)
2834//
2835// Note: sigwait() is a more natural fit than sigsuspend() from an
2836// interface point of view, but sigwait() prevents the signal hander
2837// from being run. libpthread would get very confused by not having
2838// its signal handlers run and prevents sigwait()'s use with the
2839// mutex granting granting signal.
2840//
2841// Currently only ever called on the VMThread or JavaThread
2842//
2843static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2844  // Save and restore errno to avoid confusing native code with EINTR
2845  // after sigsuspend.
2846  int old_errno = errno;
2847
2848  Thread* thread = Thread::current();
2849  OSThread* osthread = thread->osthread();
2850  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2851
2852  os::SuspendResume::State current = osthread->sr.state();
2853  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2854    suspend_save_context(osthread, siginfo, context);
2855
2856    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2857    os::SuspendResume::State state = osthread->sr.suspended();
2858    if (state == os::SuspendResume::SR_SUSPENDED) {
2859      sigset_t suspend_set;  // signals for sigsuspend()
2860
2861      // get current set of blocked signals and unblock resume signal
2862      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2863      sigdelset(&suspend_set, SR_signum);
2864
2865      sr_semaphore.signal();
2866      // wait here until we are resumed
2867      while (1) {
2868        sigsuspend(&suspend_set);
2869
2870        os::SuspendResume::State result = osthread->sr.running();
2871        if (result == os::SuspendResume::SR_RUNNING) {
2872          sr_semaphore.signal();
2873          break;
2874        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2875          ShouldNotReachHere();
2876        }
2877      }
2878
2879    } else if (state == os::SuspendResume::SR_RUNNING) {
2880      // request was cancelled, continue
2881    } else {
2882      ShouldNotReachHere();
2883    }
2884
2885    resume_clear_context(osthread);
2886  } else if (current == os::SuspendResume::SR_RUNNING) {
2887    // request was cancelled, continue
2888  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2889    // ignore
2890  } else {
2891    // ignore
2892  }
2893
2894  errno = old_errno;
2895}
2896
2897
2898static int SR_initialize() {
2899  struct sigaction act;
2900  char *s;
2901  /* Get signal number to use for suspend/resume */
2902  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2903    int sig = ::strtol(s, 0, 10);
2904    if (sig > 0 || sig < NSIG) {
2905        SR_signum = sig;
2906    }
2907  }
2908
2909  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2910        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2911
2912  sigemptyset(&SR_sigset);
2913  sigaddset(&SR_sigset, SR_signum);
2914
2915  /* Set up signal handler for suspend/resume */
2916  act.sa_flags = SA_RESTART|SA_SIGINFO;
2917  act.sa_handler = (void (*)(int)) SR_handler;
2918
2919  // SR_signum is blocked by default.
2920  // 4528190 - We also need to block pthread restart signal (32 on all
2921  // supported Bsd platforms). Note that BsdThreads need to block
2922  // this signal for all threads to work properly. So we don't have
2923  // to use hard-coded signal number when setting up the mask.
2924  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2925
2926  if (sigaction(SR_signum, &act, 0) == -1) {
2927    return -1;
2928  }
2929
2930  // Save signal flag
2931  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2932  return 0;
2933}
2934
2935static int sr_notify(OSThread* osthread) {
2936  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2937  assert_status(status == 0, status, "pthread_kill");
2938  return status;
2939}
2940
2941// "Randomly" selected value for how long we want to spin
2942// before bailing out on suspending a thread, also how often
2943// we send a signal to a thread we want to resume
2944static const int RANDOMLY_LARGE_INTEGER = 1000000;
2945static const int RANDOMLY_LARGE_INTEGER2 = 100;
2946
2947// returns true on success and false on error - really an error is fatal
2948// but this seems the normal response to library errors
2949static bool do_suspend(OSThread* osthread) {
2950  assert(osthread->sr.is_running(), "thread should be running");
2951  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2952
2953  // mark as suspended and send signal
2954  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2955    // failed to switch, state wasn't running?
2956    ShouldNotReachHere();
2957    return false;
2958  }
2959
2960  if (sr_notify(osthread) != 0) {
2961    ShouldNotReachHere();
2962  }
2963
2964  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2965  while (true) {
2966    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2967      break;
2968    } else {
2969      // timeout
2970      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2971      if (cancelled == os::SuspendResume::SR_RUNNING) {
2972        return false;
2973      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2974        // make sure that we consume the signal on the semaphore as well
2975        sr_semaphore.wait();
2976        break;
2977      } else {
2978        ShouldNotReachHere();
2979        return false;
2980      }
2981    }
2982  }
2983
2984  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2985  return true;
2986}
2987
2988static void do_resume(OSThread* osthread) {
2989  assert(osthread->sr.is_suspended(), "thread should be suspended");
2990  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2991
2992  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2993    // failed to switch to WAKEUP_REQUEST
2994    ShouldNotReachHere();
2995    return;
2996  }
2997
2998  while (true) {
2999    if (sr_notify(osthread) == 0) {
3000      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3001        if (osthread->sr.is_running()) {
3002          return;
3003        }
3004      }
3005    } else {
3006      ShouldNotReachHere();
3007    }
3008  }
3009
3010  guarantee(osthread->sr.is_running(), "Must be running!");
3011}
3012
3013////////////////////////////////////////////////////////////////////////////////
3014// interrupt support
3015
3016void os::interrupt(Thread* thread) {
3017  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3018    "possibility of dangling Thread pointer");
3019
3020  OSThread* osthread = thread->osthread();
3021
3022  if (!osthread->interrupted()) {
3023    osthread->set_interrupted(true);
3024    // More than one thread can get here with the same value of osthread,
3025    // resulting in multiple notifications.  We do, however, want the store
3026    // to interrupted() to be visible to other threads before we execute unpark().
3027    OrderAccess::fence();
3028    ParkEvent * const slp = thread->_SleepEvent ;
3029    if (slp != NULL) slp->unpark() ;
3030  }
3031
3032  // For JSR166. Unpark even if interrupt status already was set
3033  if (thread->is_Java_thread())
3034    ((JavaThread*)thread)->parker()->unpark();
3035
3036  ParkEvent * ev = thread->_ParkEvent ;
3037  if (ev != NULL) ev->unpark() ;
3038
3039}
3040
3041bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3042  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3043    "possibility of dangling Thread pointer");
3044
3045  OSThread* osthread = thread->osthread();
3046
3047  bool interrupted = osthread->interrupted();
3048
3049  if (interrupted && clear_interrupted) {
3050    osthread->set_interrupted(false);
3051    // consider thread->_SleepEvent->reset() ... optional optimization
3052  }
3053
3054  return interrupted;
3055}
3056
3057///////////////////////////////////////////////////////////////////////////////////
3058// signal handling (except suspend/resume)
3059
3060// This routine may be used by user applications as a "hook" to catch signals.
3061// The user-defined signal handler must pass unrecognized signals to this
3062// routine, and if it returns true (non-zero), then the signal handler must
3063// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3064// routine will never retun false (zero), but instead will execute a VM panic
3065// routine kill the process.
3066//
3067// If this routine returns false, it is OK to call it again.  This allows
3068// the user-defined signal handler to perform checks either before or after
3069// the VM performs its own checks.  Naturally, the user code would be making
3070// a serious error if it tried to handle an exception (such as a null check
3071// or breakpoint) that the VM was generating for its own correct operation.
3072//
3073// This routine may recognize any of the following kinds of signals:
3074//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3075// It should be consulted by handlers for any of those signals.
3076//
3077// The caller of this routine must pass in the three arguments supplied
3078// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3079// field of the structure passed to sigaction().  This routine assumes that
3080// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3081//
3082// Note that the VM will print warnings if it detects conflicting signal
3083// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3084//
3085extern "C" JNIEXPORT int
3086JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3087                        void* ucontext, int abort_if_unrecognized);
3088
3089void signalHandler(int sig, siginfo_t* info, void* uc) {
3090  assert(info != NULL && uc != NULL, "it must be old kernel");
3091  int orig_errno = errno;  // Preserve errno value over signal handler.
3092  JVM_handle_bsd_signal(sig, info, uc, true);
3093  errno = orig_errno;
3094}
3095
3096
3097// This boolean allows users to forward their own non-matching signals
3098// to JVM_handle_bsd_signal, harmlessly.
3099bool os::Bsd::signal_handlers_are_installed = false;
3100
3101// For signal-chaining
3102struct sigaction os::Bsd::sigact[MAXSIGNUM];
3103unsigned int os::Bsd::sigs = 0;
3104bool os::Bsd::libjsig_is_loaded = false;
3105typedef struct sigaction *(*get_signal_t)(int);
3106get_signal_t os::Bsd::get_signal_action = NULL;
3107
3108struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3109  struct sigaction *actp = NULL;
3110
3111  if (libjsig_is_loaded) {
3112    // Retrieve the old signal handler from libjsig
3113    actp = (*get_signal_action)(sig);
3114  }
3115  if (actp == NULL) {
3116    // Retrieve the preinstalled signal handler from jvm
3117    actp = get_preinstalled_handler(sig);
3118  }
3119
3120  return actp;
3121}
3122
3123static bool call_chained_handler(struct sigaction *actp, int sig,
3124                                 siginfo_t *siginfo, void *context) {
3125  // Call the old signal handler
3126  if (actp->sa_handler == SIG_DFL) {
3127    // It's more reasonable to let jvm treat it as an unexpected exception
3128    // instead of taking the default action.
3129    return false;
3130  } else if (actp->sa_handler != SIG_IGN) {
3131    if ((actp->sa_flags & SA_NODEFER) == 0) {
3132      // automaticlly block the signal
3133      sigaddset(&(actp->sa_mask), sig);
3134    }
3135
3136    sa_handler_t hand;
3137    sa_sigaction_t sa;
3138    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3139    // retrieve the chained handler
3140    if (siginfo_flag_set) {
3141      sa = actp->sa_sigaction;
3142    } else {
3143      hand = actp->sa_handler;
3144    }
3145
3146    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3147      actp->sa_handler = SIG_DFL;
3148    }
3149
3150    // try to honor the signal mask
3151    sigset_t oset;
3152    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3153
3154    // call into the chained handler
3155    if (siginfo_flag_set) {
3156      (*sa)(sig, siginfo, context);
3157    } else {
3158      (*hand)(sig);
3159    }
3160
3161    // restore the signal mask
3162    pthread_sigmask(SIG_SETMASK, &oset, 0);
3163  }
3164  // Tell jvm's signal handler the signal is taken care of.
3165  return true;
3166}
3167
3168bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3169  bool chained = false;
3170  // signal-chaining
3171  if (UseSignalChaining) {
3172    struct sigaction *actp = get_chained_signal_action(sig);
3173    if (actp != NULL) {
3174      chained = call_chained_handler(actp, sig, siginfo, context);
3175    }
3176  }
3177  return chained;
3178}
3179
3180struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3181  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3182    return &sigact[sig];
3183  }
3184  return NULL;
3185}
3186
3187void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3188  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3189  sigact[sig] = oldAct;
3190  sigs |= (unsigned int)1 << sig;
3191}
3192
3193// for diagnostic
3194int os::Bsd::sigflags[MAXSIGNUM];
3195
3196int os::Bsd::get_our_sigflags(int sig) {
3197  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3198  return sigflags[sig];
3199}
3200
3201void os::Bsd::set_our_sigflags(int sig, int flags) {
3202  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3203  sigflags[sig] = flags;
3204}
3205
3206void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3207  // Check for overwrite.
3208  struct sigaction oldAct;
3209  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3210
3211  void* oldhand = oldAct.sa_sigaction
3212                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3213                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3214  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3215      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3216      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3217    if (AllowUserSignalHandlers || !set_installed) {
3218      // Do not overwrite; user takes responsibility to forward to us.
3219      return;
3220    } else if (UseSignalChaining) {
3221      // save the old handler in jvm
3222      save_preinstalled_handler(sig, oldAct);
3223      // libjsig also interposes the sigaction() call below and saves the
3224      // old sigaction on it own.
3225    } else {
3226      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3227                    "%#lx for signal %d.", (long)oldhand, sig));
3228    }
3229  }
3230
3231  struct sigaction sigAct;
3232  sigfillset(&(sigAct.sa_mask));
3233  sigAct.sa_handler = SIG_DFL;
3234  if (!set_installed) {
3235    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3236  } else {
3237    sigAct.sa_sigaction = signalHandler;
3238    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3239  }
3240#if __APPLE__
3241  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3242  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3243  // if the signal handler declares it will handle it on alternate stack.
3244  // Notice we only declare we will handle it on alt stack, but we are not
3245  // actually going to use real alt stack - this is just a workaround.
3246  // Please see ux_exception.c, method catch_mach_exception_raise for details
3247  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3248  if (sig == SIGSEGV) {
3249    sigAct.sa_flags |= SA_ONSTACK;
3250  }
3251#endif
3252
3253  // Save flags, which are set by ours
3254  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3255  sigflags[sig] = sigAct.sa_flags;
3256
3257  int ret = sigaction(sig, &sigAct, &oldAct);
3258  assert(ret == 0, "check");
3259
3260  void* oldhand2  = oldAct.sa_sigaction
3261                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3262                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3263  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3264}
3265
3266// install signal handlers for signals that HotSpot needs to
3267// handle in order to support Java-level exception handling.
3268
3269void os::Bsd::install_signal_handlers() {
3270  if (!signal_handlers_are_installed) {
3271    signal_handlers_are_installed = true;
3272
3273    // signal-chaining
3274    typedef void (*signal_setting_t)();
3275    signal_setting_t begin_signal_setting = NULL;
3276    signal_setting_t end_signal_setting = NULL;
3277    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3278                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3279    if (begin_signal_setting != NULL) {
3280      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3281                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3282      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3283                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3284      libjsig_is_loaded = true;
3285      assert(UseSignalChaining, "should enable signal-chaining");
3286    }
3287    if (libjsig_is_loaded) {
3288      // Tell libjsig jvm is setting signal handlers
3289      (*begin_signal_setting)();
3290    }
3291
3292    set_signal_handler(SIGSEGV, true);
3293    set_signal_handler(SIGPIPE, true);
3294    set_signal_handler(SIGBUS, true);
3295    set_signal_handler(SIGILL, true);
3296    set_signal_handler(SIGFPE, true);
3297    set_signal_handler(SIGXFSZ, true);
3298
3299#if defined(__APPLE__)
3300    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3301    // signals caught and handled by the JVM. To work around this, we reset the mach task
3302    // signal handler that's placed on our process by CrashReporter. This disables
3303    // CrashReporter-based reporting.
3304    //
3305    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3306    // on caught fatal signals.
3307    //
3308    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3309    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3310    // exception handling, while leaving the standard BSD signal handlers functional.
3311    kern_return_t kr;
3312    kr = task_set_exception_ports(mach_task_self(),
3313        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3314        MACH_PORT_NULL,
3315        EXCEPTION_STATE_IDENTITY,
3316        MACHINE_THREAD_STATE);
3317
3318    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3319#endif
3320
3321    if (libjsig_is_loaded) {
3322      // Tell libjsig jvm finishes setting signal handlers
3323      (*end_signal_setting)();
3324    }
3325
3326    // We don't activate signal checker if libjsig is in place, we trust ourselves
3327    // and if UserSignalHandler is installed all bets are off
3328    if (CheckJNICalls) {
3329      if (libjsig_is_loaded) {
3330        if (PrintJNIResolving) {
3331          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3332        }
3333        check_signals = false;
3334      }
3335      if (AllowUserSignalHandlers) {
3336        if (PrintJNIResolving) {
3337          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3338        }
3339        check_signals = false;
3340      }
3341    }
3342  }
3343}
3344
3345
3346/////
3347// glibc on Bsd platform uses non-documented flag
3348// to indicate, that some special sort of signal
3349// trampoline is used.
3350// We will never set this flag, and we should
3351// ignore this flag in our diagnostic
3352#ifdef SIGNIFICANT_SIGNAL_MASK
3353#undef SIGNIFICANT_SIGNAL_MASK
3354#endif
3355#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3356
3357static const char* get_signal_handler_name(address handler,
3358                                           char* buf, int buflen) {
3359  int offset;
3360  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3361  if (found) {
3362    // skip directory names
3363    const char *p1, *p2;
3364    p1 = buf;
3365    size_t len = strlen(os::file_separator());
3366    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3367    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3368  } else {
3369    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3370  }
3371  return buf;
3372}
3373
3374static void print_signal_handler(outputStream* st, int sig,
3375                                 char* buf, size_t buflen) {
3376  struct sigaction sa;
3377
3378  sigaction(sig, NULL, &sa);
3379
3380  // See comment for SIGNIFICANT_SIGNAL_MASK define
3381  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3382
3383  st->print("%s: ", os::exception_name(sig, buf, buflen));
3384
3385  address handler = (sa.sa_flags & SA_SIGINFO)
3386    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3387    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3388
3389  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3390    st->print("SIG_DFL");
3391  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3392    st->print("SIG_IGN");
3393  } else {
3394    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3395  }
3396
3397  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3398
3399  address rh = VMError::get_resetted_sighandler(sig);
3400  // May be, handler was resetted by VMError?
3401  if(rh != NULL) {
3402    handler = rh;
3403    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3404  }
3405
3406  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3407
3408  // Check: is it our handler?
3409  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3410     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3411    // It is our signal handler
3412    // check for flags, reset system-used one!
3413    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3414      st->print(
3415                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3416                os::Bsd::get_our_sigflags(sig));
3417    }
3418  }
3419  st->cr();
3420}
3421
3422
3423#define DO_SIGNAL_CHECK(sig) \
3424  if (!sigismember(&check_signal_done, sig)) \
3425    os::Bsd::check_signal_handler(sig)
3426
3427// This method is a periodic task to check for misbehaving JNI applications
3428// under CheckJNI, we can add any periodic checks here
3429
3430void os::run_periodic_checks() {
3431
3432  if (check_signals == false) return;
3433
3434  // SEGV and BUS if overridden could potentially prevent
3435  // generation of hs*.log in the event of a crash, debugging
3436  // such a case can be very challenging, so we absolutely
3437  // check the following for a good measure:
3438  DO_SIGNAL_CHECK(SIGSEGV);
3439  DO_SIGNAL_CHECK(SIGILL);
3440  DO_SIGNAL_CHECK(SIGFPE);
3441  DO_SIGNAL_CHECK(SIGBUS);
3442  DO_SIGNAL_CHECK(SIGPIPE);
3443  DO_SIGNAL_CHECK(SIGXFSZ);
3444
3445
3446  // ReduceSignalUsage allows the user to override these handlers
3447  // see comments at the very top and jvm_solaris.h
3448  if (!ReduceSignalUsage) {
3449    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3450    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3451    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3452    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3453  }
3454
3455  DO_SIGNAL_CHECK(SR_signum);
3456  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3457}
3458
3459typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3460
3461static os_sigaction_t os_sigaction = NULL;
3462
3463void os::Bsd::check_signal_handler(int sig) {
3464  char buf[O_BUFLEN];
3465  address jvmHandler = NULL;
3466
3467
3468  struct sigaction act;
3469  if (os_sigaction == NULL) {
3470    // only trust the default sigaction, in case it has been interposed
3471    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3472    if (os_sigaction == NULL) return;
3473  }
3474
3475  os_sigaction(sig, (struct sigaction*)NULL, &act);
3476
3477
3478  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3479
3480  address thisHandler = (act.sa_flags & SA_SIGINFO)
3481    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3482    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3483
3484
3485  switch(sig) {
3486  case SIGSEGV:
3487  case SIGBUS:
3488  case SIGFPE:
3489  case SIGPIPE:
3490  case SIGILL:
3491  case SIGXFSZ:
3492    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3493    break;
3494
3495  case SHUTDOWN1_SIGNAL:
3496  case SHUTDOWN2_SIGNAL:
3497  case SHUTDOWN3_SIGNAL:
3498  case BREAK_SIGNAL:
3499    jvmHandler = (address)user_handler();
3500    break;
3501
3502  case INTERRUPT_SIGNAL:
3503    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3504    break;
3505
3506  default:
3507    if (sig == SR_signum) {
3508      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3509    } else {
3510      return;
3511    }
3512    break;
3513  }
3514
3515  if (thisHandler != jvmHandler) {
3516    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3517    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3518    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3519    // No need to check this sig any longer
3520    sigaddset(&check_signal_done, sig);
3521  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3522    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3523    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3524    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3525    // No need to check this sig any longer
3526    sigaddset(&check_signal_done, sig);
3527  }
3528
3529  // Dump all the signal
3530  if (sigismember(&check_signal_done, sig)) {
3531    print_signal_handlers(tty, buf, O_BUFLEN);
3532  }
3533}
3534
3535extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3536
3537extern bool signal_name(int signo, char* buf, size_t len);
3538
3539const char* os::exception_name(int exception_code, char* buf, size_t size) {
3540  if (0 < exception_code && exception_code <= SIGRTMAX) {
3541    // signal
3542    if (!signal_name(exception_code, buf, size)) {
3543      jio_snprintf(buf, size, "SIG%d", exception_code);
3544    }
3545    return buf;
3546  } else {
3547    return NULL;
3548  }
3549}
3550
3551// this is called _before_ the most of global arguments have been parsed
3552void os::init(void) {
3553  char dummy;   /* used to get a guess on initial stack address */
3554//  first_hrtime = gethrtime();
3555
3556  // With BsdThreads the JavaMain thread pid (primordial thread)
3557  // is different than the pid of the java launcher thread.
3558  // So, on Bsd, the launcher thread pid is passed to the VM
3559  // via the sun.java.launcher.pid property.
3560  // Use this property instead of getpid() if it was correctly passed.
3561  // See bug 6351349.
3562  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3563
3564  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3565
3566  clock_tics_per_sec = CLK_TCK;
3567
3568  init_random(1234567);
3569
3570  ThreadCritical::initialize();
3571
3572  Bsd::set_page_size(getpagesize());
3573  if (Bsd::page_size() == -1) {
3574    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3575                  strerror(errno)));
3576  }
3577  init_page_sizes((size_t) Bsd::page_size());
3578
3579  Bsd::initialize_system_info();
3580
3581  // main_thread points to the aboriginal thread
3582  Bsd::_main_thread = pthread_self();
3583
3584  Bsd::clock_init();
3585  initial_time_count = os::elapsed_counter();
3586
3587#ifdef __APPLE__
3588  // XXXDARWIN
3589  // Work around the unaligned VM callbacks in hotspot's
3590  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3591  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3592  // alignment when doing symbol lookup. To work around this, we force early
3593  // binding of all symbols now, thus binding when alignment is known-good.
3594  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3595#endif
3596}
3597
3598// To install functions for atexit system call
3599extern "C" {
3600  static void perfMemory_exit_helper() {
3601    perfMemory_exit();
3602  }
3603}
3604
3605// this is called _after_ the global arguments have been parsed
3606jint os::init_2(void)
3607{
3608  // Allocate a single page and mark it as readable for safepoint polling
3609  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3610  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3611
3612  os::set_polling_page( polling_page );
3613
3614#ifndef PRODUCT
3615  if(Verbose && PrintMiscellaneous)
3616    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3617#endif
3618
3619  if (!UseMembar) {
3620    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3621    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3622    os::set_memory_serialize_page( mem_serialize_page );
3623
3624#ifndef PRODUCT
3625    if(Verbose && PrintMiscellaneous)
3626      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3627#endif
3628  }
3629
3630  // initialize suspend/resume support - must do this before signal_sets_init()
3631  if (SR_initialize() != 0) {
3632    perror("SR_initialize failed");
3633    return JNI_ERR;
3634  }
3635
3636  Bsd::signal_sets_init();
3637  Bsd::install_signal_handlers();
3638
3639  // Check minimum allowable stack size for thread creation and to initialize
3640  // the java system classes, including StackOverflowError - depends on page
3641  // size.  Add a page for compiler2 recursion in main thread.
3642  // Add in 2*BytesPerWord times page size to account for VM stack during
3643  // class initialization depending on 32 or 64 bit VM.
3644  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3645            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3646                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3647
3648  size_t threadStackSizeInBytes = ThreadStackSize * K;
3649  if (threadStackSizeInBytes != 0 &&
3650      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3651        tty->print_cr("\nThe stack size specified is too small, "
3652                      "Specify at least %dk",
3653                      os::Bsd::min_stack_allowed/ K);
3654        return JNI_ERR;
3655  }
3656
3657  // Make the stack size a multiple of the page size so that
3658  // the yellow/red zones can be guarded.
3659  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3660        vm_page_size()));
3661
3662  if (MaxFDLimit) {
3663    // set the number of file descriptors to max. print out error
3664    // if getrlimit/setrlimit fails but continue regardless.
3665    struct rlimit nbr_files;
3666    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3667    if (status != 0) {
3668      if (PrintMiscellaneous && (Verbose || WizardMode))
3669        perror("os::init_2 getrlimit failed");
3670    } else {
3671      nbr_files.rlim_cur = nbr_files.rlim_max;
3672
3673#ifdef __APPLE__
3674      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3675      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3676      // be used instead
3677      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3678#endif
3679
3680      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3681      if (status != 0) {
3682        if (PrintMiscellaneous && (Verbose || WizardMode))
3683          perror("os::init_2 setrlimit failed");
3684      }
3685    }
3686  }
3687
3688  // at-exit methods are called in the reverse order of their registration.
3689  // atexit functions are called on return from main or as a result of a
3690  // call to exit(3C). There can be only 32 of these functions registered
3691  // and atexit() does not set errno.
3692
3693  if (PerfAllowAtExitRegistration) {
3694    // only register atexit functions if PerfAllowAtExitRegistration is set.
3695    // atexit functions can be delayed until process exit time, which
3696    // can be problematic for embedded VM situations. Embedded VMs should
3697    // call DestroyJavaVM() to assure that VM resources are released.
3698
3699    // note: perfMemory_exit_helper atexit function may be removed in
3700    // the future if the appropriate cleanup code can be added to the
3701    // VM_Exit VMOperation's doit method.
3702    if (atexit(perfMemory_exit_helper) != 0) {
3703      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3704    }
3705  }
3706
3707  // initialize thread priority policy
3708  prio_init();
3709
3710#ifdef __APPLE__
3711  // dynamically link to objective c gc registration
3712  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3713  if (handleLibObjc != NULL) {
3714    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3715  }
3716#endif
3717
3718  return JNI_OK;
3719}
3720
3721// this is called at the end of vm_initialization
3722void os::init_3(void) { }
3723
3724// Mark the polling page as unreadable
3725void os::make_polling_page_unreadable(void) {
3726  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3727    fatal("Could not disable polling page");
3728};
3729
3730// Mark the polling page as readable
3731void os::make_polling_page_readable(void) {
3732  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3733    fatal("Could not enable polling page");
3734  }
3735};
3736
3737int os::active_processor_count() {
3738  return _processor_count;
3739}
3740
3741void os::set_native_thread_name(const char *name) {
3742#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3743  // This is only supported in Snow Leopard and beyond
3744  if (name != NULL) {
3745    // Add a "Java: " prefix to the name
3746    char buf[MAXTHREADNAMESIZE];
3747    snprintf(buf, sizeof(buf), "Java: %s", name);
3748    pthread_setname_np(buf);
3749  }
3750#endif
3751}
3752
3753bool os::distribute_processes(uint length, uint* distribution) {
3754  // Not yet implemented.
3755  return false;
3756}
3757
3758bool os::bind_to_processor(uint processor_id) {
3759  // Not yet implemented.
3760  return false;
3761}
3762
3763void os::SuspendedThreadTask::internal_do_task() {
3764  if (do_suspend(_thread->osthread())) {
3765    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3766    do_task(context);
3767    do_resume(_thread->osthread());
3768  }
3769}
3770
3771///
3772class PcFetcher : public os::SuspendedThreadTask {
3773public:
3774  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3775  ExtendedPC result();
3776protected:
3777  void do_task(const os::SuspendedThreadTaskContext& context);
3778private:
3779  ExtendedPC _epc;
3780};
3781
3782ExtendedPC PcFetcher::result() {
3783  guarantee(is_done(), "task is not done yet.");
3784  return _epc;
3785}
3786
3787void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3788  Thread* thread = context.thread();
3789  OSThread* osthread = thread->osthread();
3790  if (osthread->ucontext() != NULL) {
3791    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3792  } else {
3793    // NULL context is unexpected, double-check this is the VMThread
3794    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3795  }
3796}
3797
3798// Suspends the target using the signal mechanism and then grabs the PC before
3799// resuming the target. Used by the flat-profiler only
3800ExtendedPC os::get_thread_pc(Thread* thread) {
3801  // Make sure that it is called by the watcher for the VMThread
3802  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3803  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3804
3805  PcFetcher fetcher(thread);
3806  fetcher.run();
3807  return fetcher.result();
3808}
3809
3810int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3811{
3812  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3813}
3814
3815////////////////////////////////////////////////////////////////////////////////
3816// debug support
3817
3818bool os::find(address addr, outputStream* st) {
3819  Dl_info dlinfo;
3820  memset(&dlinfo, 0, sizeof(dlinfo));
3821  if (dladdr(addr, &dlinfo) != 0) {
3822    st->print(PTR_FORMAT ": ", addr);
3823    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3824      st->print("%s+%#x", dlinfo.dli_sname,
3825                 addr - (intptr_t)dlinfo.dli_saddr);
3826    } else if (dlinfo.dli_fbase != NULL) {
3827      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3828    } else {
3829      st->print("<absolute address>");
3830    }
3831    if (dlinfo.dli_fname != NULL) {
3832      st->print(" in %s", dlinfo.dli_fname);
3833    }
3834    if (dlinfo.dli_fbase != NULL) {
3835      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3836    }
3837    st->cr();
3838
3839    if (Verbose) {
3840      // decode some bytes around the PC
3841      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3842      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3843      address       lowest = (address) dlinfo.dli_sname;
3844      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3845      if (begin < lowest)  begin = lowest;
3846      Dl_info dlinfo2;
3847      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3848          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3849        end = (address) dlinfo2.dli_saddr;
3850      Disassembler::decode(begin, end, st);
3851    }
3852    return true;
3853  }
3854  return false;
3855}
3856
3857////////////////////////////////////////////////////////////////////////////////
3858// misc
3859
3860// This does not do anything on Bsd. This is basically a hook for being
3861// able to use structured exception handling (thread-local exception filters)
3862// on, e.g., Win32.
3863void
3864os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3865                         JavaCallArguments* args, Thread* thread) {
3866  f(value, method, args, thread);
3867}
3868
3869void os::print_statistics() {
3870}
3871
3872int os::message_box(const char* title, const char* message) {
3873  int i;
3874  fdStream err(defaultStream::error_fd());
3875  for (i = 0; i < 78; i++) err.print_raw("=");
3876  err.cr();
3877  err.print_raw_cr(title);
3878  for (i = 0; i < 78; i++) err.print_raw("-");
3879  err.cr();
3880  err.print_raw_cr(message);
3881  for (i = 0; i < 78; i++) err.print_raw("=");
3882  err.cr();
3883
3884  char buf[16];
3885  // Prevent process from exiting upon "read error" without consuming all CPU
3886  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3887
3888  return buf[0] == 'y' || buf[0] == 'Y';
3889}
3890
3891int os::stat(const char *path, struct stat *sbuf) {
3892  char pathbuf[MAX_PATH];
3893  if (strlen(path) > MAX_PATH - 1) {
3894    errno = ENAMETOOLONG;
3895    return -1;
3896  }
3897  os::native_path(strcpy(pathbuf, path));
3898  return ::stat(pathbuf, sbuf);
3899}
3900
3901bool os::check_heap(bool force) {
3902  return true;
3903}
3904
3905int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3906  return ::vsnprintf(buf, count, format, args);
3907}
3908
3909// Is a (classpath) directory empty?
3910bool os::dir_is_empty(const char* path) {
3911  DIR *dir = NULL;
3912  struct dirent *ptr;
3913
3914  dir = opendir(path);
3915  if (dir == NULL) return true;
3916
3917  /* Scan the directory */
3918  bool result = true;
3919  char buf[sizeof(struct dirent) + MAX_PATH];
3920  while (result && (ptr = ::readdir(dir)) != NULL) {
3921    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3922      result = false;
3923    }
3924  }
3925  closedir(dir);
3926  return result;
3927}
3928
3929// This code originates from JDK's sysOpen and open64_w
3930// from src/solaris/hpi/src/system_md.c
3931
3932#ifndef O_DELETE
3933#define O_DELETE 0x10000
3934#endif
3935
3936// Open a file. Unlink the file immediately after open returns
3937// if the specified oflag has the O_DELETE flag set.
3938// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3939
3940int os::open(const char *path, int oflag, int mode) {
3941
3942  if (strlen(path) > MAX_PATH - 1) {
3943    errno = ENAMETOOLONG;
3944    return -1;
3945  }
3946  int fd;
3947  int o_delete = (oflag & O_DELETE);
3948  oflag = oflag & ~O_DELETE;
3949
3950  fd = ::open(path, oflag, mode);
3951  if (fd == -1) return -1;
3952
3953  //If the open succeeded, the file might still be a directory
3954  {
3955    struct stat buf;
3956    int ret = ::fstat(fd, &buf);
3957    int st_mode = buf.st_mode;
3958
3959    if (ret != -1) {
3960      if ((st_mode & S_IFMT) == S_IFDIR) {
3961        errno = EISDIR;
3962        ::close(fd);
3963        return -1;
3964      }
3965    } else {
3966      ::close(fd);
3967      return -1;
3968    }
3969  }
3970
3971    /*
3972     * All file descriptors that are opened in the JVM and not
3973     * specifically destined for a subprocess should have the
3974     * close-on-exec flag set.  If we don't set it, then careless 3rd
3975     * party native code might fork and exec without closing all
3976     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3977     * UNIXProcess.c), and this in turn might:
3978     *
3979     * - cause end-of-file to fail to be detected on some file
3980     *   descriptors, resulting in mysterious hangs, or
3981     *
3982     * - might cause an fopen in the subprocess to fail on a system
3983     *   suffering from bug 1085341.
3984     *
3985     * (Yes, the default setting of the close-on-exec flag is a Unix
3986     * design flaw)
3987     *
3988     * See:
3989     * 1085341: 32-bit stdio routines should support file descriptors >255
3990     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3991     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3992     */
3993#ifdef FD_CLOEXEC
3994    {
3995        int flags = ::fcntl(fd, F_GETFD);
3996        if (flags != -1)
3997            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3998    }
3999#endif
4000
4001  if (o_delete != 0) {
4002    ::unlink(path);
4003  }
4004  return fd;
4005}
4006
4007
4008// create binary file, rewriting existing file if required
4009int os::create_binary_file(const char* path, bool rewrite_existing) {
4010  int oflags = O_WRONLY | O_CREAT;
4011  if (!rewrite_existing) {
4012    oflags |= O_EXCL;
4013  }
4014  return ::open(path, oflags, S_IREAD | S_IWRITE);
4015}
4016
4017// return current position of file pointer
4018jlong os::current_file_offset(int fd) {
4019  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4020}
4021
4022// move file pointer to the specified offset
4023jlong os::seek_to_file_offset(int fd, jlong offset) {
4024  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4025}
4026
4027// This code originates from JDK's sysAvailable
4028// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4029
4030int os::available(int fd, jlong *bytes) {
4031  jlong cur, end;
4032  int mode;
4033  struct stat buf;
4034
4035  if (::fstat(fd, &buf) >= 0) {
4036    mode = buf.st_mode;
4037    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4038      /*
4039      * XXX: is the following call interruptible? If so, this might
4040      * need to go through the INTERRUPT_IO() wrapper as for other
4041      * blocking, interruptible calls in this file.
4042      */
4043      int n;
4044      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4045        *bytes = n;
4046        return 1;
4047      }
4048    }
4049  }
4050  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4051    return 0;
4052  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4053    return 0;
4054  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4055    return 0;
4056  }
4057  *bytes = end - cur;
4058  return 1;
4059}
4060
4061int os::socket_available(int fd, jint *pbytes) {
4062   if (fd < 0)
4063     return OS_OK;
4064
4065   int ret;
4066
4067   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4068
4069   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4070   // is expected to return 0 on failure and 1 on success to the jdk.
4071
4072   return (ret == OS_ERR) ? 0 : 1;
4073}
4074
4075// Map a block of memory.
4076char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4077                     char *addr, size_t bytes, bool read_only,
4078                     bool allow_exec) {
4079  int prot;
4080  int flags;
4081
4082  if (read_only) {
4083    prot = PROT_READ;
4084    flags = MAP_SHARED;
4085  } else {
4086    prot = PROT_READ | PROT_WRITE;
4087    flags = MAP_PRIVATE;
4088  }
4089
4090  if (allow_exec) {
4091    prot |= PROT_EXEC;
4092  }
4093
4094  if (addr != NULL) {
4095    flags |= MAP_FIXED;
4096  }
4097
4098  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4099                                     fd, file_offset);
4100  if (mapped_address == MAP_FAILED) {
4101    return NULL;
4102  }
4103  return mapped_address;
4104}
4105
4106
4107// Remap a block of memory.
4108char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4109                       char *addr, size_t bytes, bool read_only,
4110                       bool allow_exec) {
4111  // same as map_memory() on this OS
4112  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4113                        allow_exec);
4114}
4115
4116
4117// Unmap a block of memory.
4118bool os::pd_unmap_memory(char* addr, size_t bytes) {
4119  return munmap(addr, bytes) == 0;
4120}
4121
4122// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4123// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4124// of a thread.
4125//
4126// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4127// the fast estimate available on the platform.
4128
4129jlong os::current_thread_cpu_time() {
4130#ifdef __APPLE__
4131  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4132#else
4133  Unimplemented();
4134  return 0;
4135#endif
4136}
4137
4138jlong os::thread_cpu_time(Thread* thread) {
4139#ifdef __APPLE__
4140  return os::thread_cpu_time(thread, true /* user + sys */);
4141#else
4142  Unimplemented();
4143  return 0;
4144#endif
4145}
4146
4147jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4148#ifdef __APPLE__
4149  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4150#else
4151  Unimplemented();
4152  return 0;
4153#endif
4154}
4155
4156jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4157#ifdef __APPLE__
4158  struct thread_basic_info tinfo;
4159  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4160  kern_return_t kr;
4161  thread_t mach_thread;
4162
4163  mach_thread = thread->osthread()->thread_id();
4164  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4165  if (kr != KERN_SUCCESS)
4166    return -1;
4167
4168  if (user_sys_cpu_time) {
4169    jlong nanos;
4170    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4171    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4172    return nanos;
4173  } else {
4174    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4175  }
4176#else
4177  Unimplemented();
4178  return 0;
4179#endif
4180}
4181
4182
4183void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4184  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4185  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4186  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4187  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4188}
4189
4190void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4191  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4192  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4193  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4194  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4195}
4196
4197bool os::is_thread_cpu_time_supported() {
4198#ifdef __APPLE__
4199  return true;
4200#else
4201  return false;
4202#endif
4203}
4204
4205// System loadavg support.  Returns -1 if load average cannot be obtained.
4206// Bsd doesn't yet have a (official) notion of processor sets,
4207// so just return the system wide load average.
4208int os::loadavg(double loadavg[], int nelem) {
4209  return ::getloadavg(loadavg, nelem);
4210}
4211
4212void os::pause() {
4213  char filename[MAX_PATH];
4214  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4215    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4216  } else {
4217    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4218  }
4219
4220  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4221  if (fd != -1) {
4222    struct stat buf;
4223    ::close(fd);
4224    while (::stat(filename, &buf) == 0) {
4225      (void)::poll(NULL, 0, 100);
4226    }
4227  } else {
4228    jio_fprintf(stderr,
4229      "Could not open pause file '%s', continuing immediately.\n", filename);
4230  }
4231}
4232
4233
4234// Refer to the comments in os_solaris.cpp park-unpark.
4235//
4236// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4237// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4238// For specifics regarding the bug see GLIBC BUGID 261237 :
4239//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4240// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4241// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4242// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4243// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4244// and monitorenter when we're using 1-0 locking.  All those operations may result in
4245// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4246// of libpthread avoids the problem, but isn't practical.
4247//
4248// Possible remedies:
4249//
4250// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4251//      This is palliative and probabilistic, however.  If the thread is preempted
4252//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4253//      than the minimum period may have passed, and the abstime may be stale (in the
4254//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4255//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4256//
4257// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4258//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4259//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4260//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4261//      thread.
4262//
4263// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4264//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4265//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4266//      This also works well.  In fact it avoids kernel-level scalability impediments
4267//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4268//      timers in a graceful fashion.
4269//
4270// 4.   When the abstime value is in the past it appears that control returns
4271//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4272//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4273//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4274//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4275//      It may be possible to avoid reinitialization by checking the return
4276//      value from pthread_cond_timedwait().  In addition to reinitializing the
4277//      condvar we must establish the invariant that cond_signal() is only called
4278//      within critical sections protected by the adjunct mutex.  This prevents
4279//      cond_signal() from "seeing" a condvar that's in the midst of being
4280//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4281//      desirable signal-after-unlock optimization that avoids futile context switching.
4282//
4283//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4284//      structure when a condvar is used or initialized.  cond_destroy()  would
4285//      release the helper structure.  Our reinitialize-after-timedwait fix
4286//      put excessive stress on malloc/free and locks protecting the c-heap.
4287//
4288// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4289// It may be possible to refine (4) by checking the kernel and NTPL verisons
4290// and only enabling the work-around for vulnerable environments.
4291
4292// utility to compute the abstime argument to timedwait:
4293// millis is the relative timeout time
4294// abstime will be the absolute timeout time
4295// TODO: replace compute_abstime() with unpackTime()
4296
4297static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4298  if (millis < 0)  millis = 0;
4299  struct timeval now;
4300  int status = gettimeofday(&now, NULL);
4301  assert(status == 0, "gettimeofday");
4302  jlong seconds = millis / 1000;
4303  millis %= 1000;
4304  if (seconds > 50000000) { // see man cond_timedwait(3T)
4305    seconds = 50000000;
4306  }
4307  abstime->tv_sec = now.tv_sec  + seconds;
4308  long       usec = now.tv_usec + millis * 1000;
4309  if (usec >= 1000000) {
4310    abstime->tv_sec += 1;
4311    usec -= 1000000;
4312  }
4313  abstime->tv_nsec = usec * 1000;
4314  return abstime;
4315}
4316
4317
4318// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4319// Conceptually TryPark() should be equivalent to park(0).
4320
4321int os::PlatformEvent::TryPark() {
4322  for (;;) {
4323    const int v = _Event ;
4324    guarantee ((v == 0) || (v == 1), "invariant") ;
4325    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4326  }
4327}
4328
4329void os::PlatformEvent::park() {       // AKA "down()"
4330  // Invariant: Only the thread associated with the Event/PlatformEvent
4331  // may call park().
4332  // TODO: assert that _Assoc != NULL or _Assoc == Self
4333  int v ;
4334  for (;;) {
4335      v = _Event ;
4336      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4337  }
4338  guarantee (v >= 0, "invariant") ;
4339  if (v == 0) {
4340     // Do this the hard way by blocking ...
4341     int status = pthread_mutex_lock(_mutex);
4342     assert_status(status == 0, status, "mutex_lock");
4343     guarantee (_nParked == 0, "invariant") ;
4344     ++ _nParked ;
4345     while (_Event < 0) {
4346        status = pthread_cond_wait(_cond, _mutex);
4347        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4348        // Treat this the same as if the wait was interrupted
4349        if (status == ETIMEDOUT) { status = EINTR; }
4350        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4351     }
4352     -- _nParked ;
4353
4354    _Event = 0 ;
4355     status = pthread_mutex_unlock(_mutex);
4356     assert_status(status == 0, status, "mutex_unlock");
4357    // Paranoia to ensure our locked and lock-free paths interact
4358    // correctly with each other.
4359    OrderAccess::fence();
4360  }
4361  guarantee (_Event >= 0, "invariant") ;
4362}
4363
4364int os::PlatformEvent::park(jlong millis) {
4365  guarantee (_nParked == 0, "invariant") ;
4366
4367  int v ;
4368  for (;;) {
4369      v = _Event ;
4370      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4371  }
4372  guarantee (v >= 0, "invariant") ;
4373  if (v != 0) return OS_OK ;
4374
4375  // We do this the hard way, by blocking the thread.
4376  // Consider enforcing a minimum timeout value.
4377  struct timespec abst;
4378  compute_abstime(&abst, millis);
4379
4380  int ret = OS_TIMEOUT;
4381  int status = pthread_mutex_lock(_mutex);
4382  assert_status(status == 0, status, "mutex_lock");
4383  guarantee (_nParked == 0, "invariant") ;
4384  ++_nParked ;
4385
4386  // Object.wait(timo) will return because of
4387  // (a) notification
4388  // (b) timeout
4389  // (c) thread.interrupt
4390  //
4391  // Thread.interrupt and object.notify{All} both call Event::set.
4392  // That is, we treat thread.interrupt as a special case of notification.
4393  // The underlying Solaris implementation, cond_timedwait, admits
4394  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4395  // JVM from making those visible to Java code.  As such, we must
4396  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4397  //
4398  // TODO: properly differentiate simultaneous notify+interrupt.
4399  // In that case, we should propagate the notify to another waiter.
4400
4401  while (_Event < 0) {
4402    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4403    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4404      pthread_cond_destroy (_cond);
4405      pthread_cond_init (_cond, NULL) ;
4406    }
4407    assert_status(status == 0 || status == EINTR ||
4408                  status == ETIMEDOUT,
4409                  status, "cond_timedwait");
4410    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4411    if (status == ETIMEDOUT) break ;
4412    // We consume and ignore EINTR and spurious wakeups.
4413  }
4414  --_nParked ;
4415  if (_Event >= 0) {
4416     ret = OS_OK;
4417  }
4418  _Event = 0 ;
4419  status = pthread_mutex_unlock(_mutex);
4420  assert_status(status == 0, status, "mutex_unlock");
4421  assert (_nParked == 0, "invariant") ;
4422  // Paranoia to ensure our locked and lock-free paths interact
4423  // correctly with each other.
4424  OrderAccess::fence();
4425  return ret;
4426}
4427
4428void os::PlatformEvent::unpark() {
4429  // Transitions for _Event:
4430  //    0 :=> 1
4431  //    1 :=> 1
4432  //   -1 :=> either 0 or 1; must signal target thread
4433  //          That is, we can safely transition _Event from -1 to either
4434  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4435  //          unpark() calls.
4436  // See also: "Semaphores in Plan 9" by Mullender & Cox
4437  //
4438  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4439  // that it will take two back-to-back park() calls for the owning
4440  // thread to block. This has the benefit of forcing a spurious return
4441  // from the first park() call after an unpark() call which will help
4442  // shake out uses of park() and unpark() without condition variables.
4443
4444  if (Atomic::xchg(1, &_Event) >= 0) return;
4445
4446  // Wait for the thread associated with the event to vacate
4447  int status = pthread_mutex_lock(_mutex);
4448  assert_status(status == 0, status, "mutex_lock");
4449  int AnyWaiters = _nParked;
4450  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4451  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4452    AnyWaiters = 0;
4453    pthread_cond_signal(_cond);
4454  }
4455  status = pthread_mutex_unlock(_mutex);
4456  assert_status(status == 0, status, "mutex_unlock");
4457  if (AnyWaiters != 0) {
4458    status = pthread_cond_signal(_cond);
4459    assert_status(status == 0, status, "cond_signal");
4460  }
4461
4462  // Note that we signal() _after dropping the lock for "immortal" Events.
4463  // This is safe and avoids a common class of  futile wakeups.  In rare
4464  // circumstances this can cause a thread to return prematurely from
4465  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4466  // simply re-test the condition and re-park itself.
4467}
4468
4469
4470// JSR166
4471// -------------------------------------------------------
4472
4473/*
4474 * The solaris and bsd implementations of park/unpark are fairly
4475 * conservative for now, but can be improved. They currently use a
4476 * mutex/condvar pair, plus a a count.
4477 * Park decrements count if > 0, else does a condvar wait.  Unpark
4478 * sets count to 1 and signals condvar.  Only one thread ever waits
4479 * on the condvar. Contention seen when trying to park implies that someone
4480 * is unparking you, so don't wait. And spurious returns are fine, so there
4481 * is no need to track notifications.
4482 */
4483
4484#define MAX_SECS 100000000
4485/*
4486 * This code is common to bsd and solaris and will be moved to a
4487 * common place in dolphin.
4488 *
4489 * The passed in time value is either a relative time in nanoseconds
4490 * or an absolute time in milliseconds. Either way it has to be unpacked
4491 * into suitable seconds and nanoseconds components and stored in the
4492 * given timespec structure.
4493 * Given time is a 64-bit value and the time_t used in the timespec is only
4494 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4495 * overflow if times way in the future are given. Further on Solaris versions
4496 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4497 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4498 * As it will be 28 years before "now + 100000000" will overflow we can
4499 * ignore overflow and just impose a hard-limit on seconds using the value
4500 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4501 * years from "now".
4502 */
4503
4504static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4505  assert (time > 0, "convertTime");
4506
4507  struct timeval now;
4508  int status = gettimeofday(&now, NULL);
4509  assert(status == 0, "gettimeofday");
4510
4511  time_t max_secs = now.tv_sec + MAX_SECS;
4512
4513  if (isAbsolute) {
4514    jlong secs = time / 1000;
4515    if (secs > max_secs) {
4516      absTime->tv_sec = max_secs;
4517    }
4518    else {
4519      absTime->tv_sec = secs;
4520    }
4521    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4522  }
4523  else {
4524    jlong secs = time / NANOSECS_PER_SEC;
4525    if (secs >= MAX_SECS) {
4526      absTime->tv_sec = max_secs;
4527      absTime->tv_nsec = 0;
4528    }
4529    else {
4530      absTime->tv_sec = now.tv_sec + secs;
4531      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4532      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4533        absTime->tv_nsec -= NANOSECS_PER_SEC;
4534        ++absTime->tv_sec; // note: this must be <= max_secs
4535      }
4536    }
4537  }
4538  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4539  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4540  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4541  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4542}
4543
4544void Parker::park(bool isAbsolute, jlong time) {
4545  // Ideally we'd do something useful while spinning, such
4546  // as calling unpackTime().
4547
4548  // Optional fast-path check:
4549  // Return immediately if a permit is available.
4550  // We depend on Atomic::xchg() having full barrier semantics
4551  // since we are doing a lock-free update to _counter.
4552  if (Atomic::xchg(0, &_counter) > 0) return;
4553
4554  Thread* thread = Thread::current();
4555  assert(thread->is_Java_thread(), "Must be JavaThread");
4556  JavaThread *jt = (JavaThread *)thread;
4557
4558  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4559  // Check interrupt before trying to wait
4560  if (Thread::is_interrupted(thread, false)) {
4561    return;
4562  }
4563
4564  // Next, demultiplex/decode time arguments
4565  struct timespec absTime;
4566  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4567    return;
4568  }
4569  if (time > 0) {
4570    unpackTime(&absTime, isAbsolute, time);
4571  }
4572
4573
4574  // Enter safepoint region
4575  // Beware of deadlocks such as 6317397.
4576  // The per-thread Parker:: mutex is a classic leaf-lock.
4577  // In particular a thread must never block on the Threads_lock while
4578  // holding the Parker:: mutex.  If safepoints are pending both the
4579  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4580  ThreadBlockInVM tbivm(jt);
4581
4582  // Don't wait if cannot get lock since interference arises from
4583  // unblocking.  Also. check interrupt before trying wait
4584  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4585    return;
4586  }
4587
4588  int status ;
4589  if (_counter > 0)  { // no wait needed
4590    _counter = 0;
4591    status = pthread_mutex_unlock(_mutex);
4592    assert (status == 0, "invariant") ;
4593    // Paranoia to ensure our locked and lock-free paths interact
4594    // correctly with each other and Java-level accesses.
4595    OrderAccess::fence();
4596    return;
4597  }
4598
4599#ifdef ASSERT
4600  // Don't catch signals while blocked; let the running threads have the signals.
4601  // (This allows a debugger to break into the running thread.)
4602  sigset_t oldsigs;
4603  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4604  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4605#endif
4606
4607  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4608  jt->set_suspend_equivalent();
4609  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4610
4611  if (time == 0) {
4612    status = pthread_cond_wait (_cond, _mutex) ;
4613  } else {
4614    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4615    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4616      pthread_cond_destroy (_cond) ;
4617      pthread_cond_init    (_cond, NULL);
4618    }
4619  }
4620  assert_status(status == 0 || status == EINTR ||
4621                status == ETIMEDOUT,
4622                status, "cond_timedwait");
4623
4624#ifdef ASSERT
4625  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4626#endif
4627
4628  _counter = 0 ;
4629  status = pthread_mutex_unlock(_mutex) ;
4630  assert_status(status == 0, status, "invariant") ;
4631  // Paranoia to ensure our locked and lock-free paths interact
4632  // correctly with each other and Java-level accesses.
4633  OrderAccess::fence();
4634
4635  // If externally suspended while waiting, re-suspend
4636  if (jt->handle_special_suspend_equivalent_condition()) {
4637    jt->java_suspend_self();
4638  }
4639}
4640
4641void Parker::unpark() {
4642  int s, status ;
4643  status = pthread_mutex_lock(_mutex);
4644  assert (status == 0, "invariant") ;
4645  s = _counter;
4646  _counter = 1;
4647  if (s < 1) {
4648     if (WorkAroundNPTLTimedWaitHang) {
4649        status = pthread_cond_signal (_cond) ;
4650        assert (status == 0, "invariant") ;
4651        status = pthread_mutex_unlock(_mutex);
4652        assert (status == 0, "invariant") ;
4653     } else {
4654        status = pthread_mutex_unlock(_mutex);
4655        assert (status == 0, "invariant") ;
4656        status = pthread_cond_signal (_cond) ;
4657        assert (status == 0, "invariant") ;
4658     }
4659  } else {
4660    pthread_mutex_unlock(_mutex);
4661    assert (status == 0, "invariant") ;
4662  }
4663}
4664
4665
4666/* Darwin has no "environ" in a dynamic library. */
4667#ifdef __APPLE__
4668#include <crt_externs.h>
4669#define environ (*_NSGetEnviron())
4670#else
4671extern char** environ;
4672#endif
4673
4674// Run the specified command in a separate process. Return its exit value,
4675// or -1 on failure (e.g. can't fork a new process).
4676// Unlike system(), this function can be called from signal handler. It
4677// doesn't block SIGINT et al.
4678int os::fork_and_exec(char* cmd) {
4679  const char * argv[4] = {"sh", "-c", cmd, NULL};
4680
4681  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4682  // pthread_atfork handlers and reset pthread library. All we need is a
4683  // separate process to execve. Make a direct syscall to fork process.
4684  // On IA64 there's no fork syscall, we have to use fork() and hope for
4685  // the best...
4686  pid_t pid = fork();
4687
4688  if (pid < 0) {
4689    // fork failed
4690    return -1;
4691
4692  } else if (pid == 0) {
4693    // child process
4694
4695    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4696    // first to kill every thread on the thread list. Because this list is
4697    // not reset by fork() (see notes above), execve() will instead kill
4698    // every thread in the parent process. We know this is the only thread
4699    // in the new process, so make a system call directly.
4700    // IA64 should use normal execve() from glibc to match the glibc fork()
4701    // above.
4702    execve("/bin/sh", (char* const*)argv, environ);
4703
4704    // execve failed
4705    _exit(-1);
4706
4707  } else  {
4708    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4709    // care about the actual exit code, for now.
4710
4711    int status;
4712
4713    // Wait for the child process to exit.  This returns immediately if
4714    // the child has already exited. */
4715    while (waitpid(pid, &status, 0) < 0) {
4716        switch (errno) {
4717        case ECHILD: return 0;
4718        case EINTR: break;
4719        default: return -1;
4720        }
4721    }
4722
4723    if (WIFEXITED(status)) {
4724       // The child exited normally; get its exit code.
4725       return WEXITSTATUS(status);
4726    } else if (WIFSIGNALED(status)) {
4727       // The child exited because of a signal
4728       // The best value to return is 0x80 + signal number,
4729       // because that is what all Unix shells do, and because
4730       // it allows callers to distinguish between process exit and
4731       // process death by signal.
4732       return 0x80 + WTERMSIG(status);
4733    } else {
4734       // Unknown exit code; pass it through
4735       return status;
4736    }
4737  }
4738}
4739
4740// is_headless_jre()
4741//
4742// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4743// in order to report if we are running in a headless jre
4744//
4745// Since JDK8 xawt/libmawt.so was moved into the same directory
4746// as libawt.so, and renamed libawt_xawt.so
4747//
4748bool os::is_headless_jre() {
4749#ifdef __APPLE__
4750    // We no longer build headless-only on Mac OS X
4751    return false;
4752#else
4753    struct stat statbuf;
4754    char buf[MAXPATHLEN];
4755    char libmawtpath[MAXPATHLEN];
4756    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4757    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4758    char *p;
4759
4760    // Get path to libjvm.so
4761    os::jvm_path(buf, sizeof(buf));
4762
4763    // Get rid of libjvm.so
4764    p = strrchr(buf, '/');
4765    if (p == NULL) return false;
4766    else *p = '\0';
4767
4768    // Get rid of client or server
4769    p = strrchr(buf, '/');
4770    if (p == NULL) return false;
4771    else *p = '\0';
4772
4773    // check xawt/libmawt.so
4774    strcpy(libmawtpath, buf);
4775    strcat(libmawtpath, xawtstr);
4776    if (::stat(libmawtpath, &statbuf) == 0) return false;
4777
4778    // check libawt_xawt.so
4779    strcpy(libmawtpath, buf);
4780    strcat(libmawtpath, new_xawtstr);
4781    if (::stat(libmawtpath, &statbuf) == 0) return false;
4782
4783    return true;
4784#endif
4785}
4786
4787// Get the default path to the core file
4788// Returns the length of the string
4789int os::get_core_path(char* buffer, size_t bufferSize) {
4790  int n = jio_snprintf(buffer, bufferSize, "/cores");
4791
4792  // Truncate if theoretical string was longer than bufferSize
4793  n = MIN2(n, (int)bufferSize);
4794
4795  return n;
4796}
4797
4798#ifndef PRODUCT
4799void TestReserveMemorySpecial_test() {
4800  // No tests available for this platform
4801}
4802#endif
4803