os_bsd.cpp revision 5399:faff125a1ead
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103# include <sys/syscall.h>
104
105#if defined(__FreeBSD__) || defined(__NetBSD__)
106# include <elf.h>
107#endif
108
109#ifdef __APPLE__
110# include <mach/mach.h> // semaphore_* API
111# include <mach-o/dyld.h>
112# include <sys/proc_info.h>
113# include <objc/objc-auto.h>
114#endif
115
116#ifndef MAP_ANONYMOUS
117#define MAP_ANONYMOUS MAP_ANON
118#endif
119
120#define MAX_PATH    (2 * K)
121
122// for timer info max values which include all bits
123#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
124
125#define LARGEPAGES_BIT (1 << 6)
126////////////////////////////////////////////////////////////////////////////////
127// global variables
128julong os::Bsd::_physical_memory = 0;
129
130
131int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
132pthread_t os::Bsd::_main_thread;
133int os::Bsd::_page_size = -1;
134
135static jlong initial_time_count=0;
136
137static int clock_tics_per_sec = 100;
138
139// For diagnostics to print a message once. see run_periodic_checks
140static sigset_t check_signal_done;
141static bool check_signals = true;
142
143static pid_t _initial_pid = 0;
144
145/* Signal number used to suspend/resume a thread */
146
147/* do not use any signal number less than SIGSEGV, see 4355769 */
148static int SR_signum = SIGUSR2;
149sigset_t SR_sigset;
150
151
152////////////////////////////////////////////////////////////////////////////////
153// utility functions
154
155static int SR_initialize();
156static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
157
158julong os::available_memory() {
159  return Bsd::available_memory();
160}
161
162julong os::Bsd::available_memory() {
163  // XXXBSD: this is just a stopgap implementation
164  return physical_memory() >> 2;
165}
166
167julong os::physical_memory() {
168  return Bsd::physical_memory();
169}
170
171////////////////////////////////////////////////////////////////////////////////
172// environment support
173
174bool os::getenv(const char* name, char* buf, int len) {
175  const char* val = ::getenv(name);
176  if (val != NULL && strlen(val) < (size_t)len) {
177    strcpy(buf, val);
178    return true;
179  }
180  if (len > 0) buf[0] = 0;  // return a null string
181  return false;
182}
183
184
185// Return true if user is running as root.
186
187bool os::have_special_privileges() {
188  static bool init = false;
189  static bool privileges = false;
190  if (!init) {
191    privileges = (getuid() != geteuid()) || (getgid() != getegid());
192    init = true;
193  }
194  return privileges;
195}
196
197
198
199// Cpu architecture string
200#if   defined(ZERO)
201static char cpu_arch[] = ZERO_LIBARCH;
202#elif defined(IA64)
203static char cpu_arch[] = "ia64";
204#elif defined(IA32)
205static char cpu_arch[] = "i386";
206#elif defined(AMD64)
207static char cpu_arch[] = "amd64";
208#elif defined(ARM)
209static char cpu_arch[] = "arm";
210#elif defined(PPC)
211static char cpu_arch[] = "ppc";
212#elif defined(SPARC)
213#  ifdef _LP64
214static char cpu_arch[] = "sparcv9";
215#  else
216static char cpu_arch[] = "sparc";
217#  endif
218#else
219#error Add appropriate cpu_arch setting
220#endif
221
222// Compiler variant
223#ifdef COMPILER2
224#define COMPILER_VARIANT "server"
225#else
226#define COMPILER_VARIANT "client"
227#endif
228
229
230void os::Bsd::initialize_system_info() {
231  int mib[2];
232  size_t len;
233  int cpu_val;
234  julong mem_val;
235
236  /* get processors count via hw.ncpus sysctl */
237  mib[0] = CTL_HW;
238  mib[1] = HW_NCPU;
239  len = sizeof(cpu_val);
240  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
241       assert(len == sizeof(cpu_val), "unexpected data size");
242       set_processor_count(cpu_val);
243  }
244  else {
245       set_processor_count(1);   // fallback
246  }
247
248  /* get physical memory via hw.memsize sysctl (hw.memsize is used
249   * since it returns a 64 bit value)
250   */
251  mib[0] = CTL_HW;
252
253#if defined (HW_MEMSIZE) // Apple
254  mib[1] = HW_MEMSIZE;
255#elif defined(HW_PHYSMEM) // Most of BSD
256  mib[1] = HW_PHYSMEM;
257#elif defined(HW_REALMEM) // Old FreeBSD
258  mib[1] = HW_REALMEM;
259#else
260  #error No ways to get physmem
261#endif
262
263  len = sizeof(mem_val);
264  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
265       assert(len == sizeof(mem_val), "unexpected data size");
266       _physical_memory = mem_val;
267  } else {
268       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
269  }
270
271#ifdef __OpenBSD__
272  {
273       // limit _physical_memory memory view on OpenBSD since
274       // datasize rlimit restricts us anyway.
275       struct rlimit limits;
276       getrlimit(RLIMIT_DATA, &limits);
277       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
278  }
279#endif
280}
281
282#ifdef __APPLE__
283static const char *get_home() {
284  const char *home_dir = ::getenv("HOME");
285  if ((home_dir == NULL) || (*home_dir == '\0')) {
286    struct passwd *passwd_info = getpwuid(geteuid());
287    if (passwd_info != NULL) {
288      home_dir = passwd_info->pw_dir;
289    }
290  }
291
292  return home_dir;
293}
294#endif
295
296void os::init_system_properties_values() {
297//  char arch[12];
298//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
299
300  // The next steps are taken in the product version:
301  //
302  // Obtain the JAVA_HOME value from the location of libjvm.so.
303  // This library should be located at:
304  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
305  //
306  // If "/jre/lib/" appears at the right place in the path, then we
307  // assume libjvm.so is installed in a JDK and we use this path.
308  //
309  // Otherwise exit with message: "Could not create the Java virtual machine."
310  //
311  // The following extra steps are taken in the debugging version:
312  //
313  // If "/jre/lib/" does NOT appear at the right place in the path
314  // instead of exit check for $JAVA_HOME environment variable.
315  //
316  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
317  // then we append a fake suffix "hotspot/libjvm.so" to this path so
318  // it looks like libjvm.so is installed there
319  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
320  //
321  // Otherwise exit.
322  //
323  // Important note: if the location of libjvm.so changes this
324  // code needs to be changed accordingly.
325
326  // The next few definitions allow the code to be verbatim:
327#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
328#define getenv(n) ::getenv(n)
329
330/*
331 * See ld(1):
332 *      The linker uses the following search paths to locate required
333 *      shared libraries:
334 *        1: ...
335 *        ...
336 *        7: The default directories, normally /lib and /usr/lib.
337 */
338#ifndef DEFAULT_LIBPATH
339#define DEFAULT_LIBPATH "/lib:/usr/lib"
340#endif
341
342#define EXTENSIONS_DIR  "/lib/ext"
343#define ENDORSED_DIR    "/lib/endorsed"
344#define REG_DIR         "/usr/java/packages"
345
346#ifdef __APPLE__
347#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
348#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
349        const char *user_home_dir = get_home();
350        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
351        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
352            sizeof(SYS_EXTENSIONS_DIRS);
353#endif
354
355  {
356    /* sysclasspath, java_home, dll_dir */
357    {
358        char *home_path;
359        char *dll_path;
360        char *pslash;
361        char buf[MAXPATHLEN];
362        os::jvm_path(buf, sizeof(buf));
363
364        // Found the full path to libjvm.so.
365        // Now cut the path to <java_home>/jre if we can.
366        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
367        pslash = strrchr(buf, '/');
368        if (pslash != NULL)
369            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
370        dll_path = malloc(strlen(buf) + 1);
371        if (dll_path == NULL)
372            return;
373        strcpy(dll_path, buf);
374        Arguments::set_dll_dir(dll_path);
375
376        if (pslash != NULL) {
377            pslash = strrchr(buf, '/');
378            if (pslash != NULL) {
379                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
380#ifndef __APPLE__
381                pslash = strrchr(buf, '/');
382                if (pslash != NULL)
383                    *pslash = '\0';   /* get rid of /lib */
384#endif
385            }
386        }
387
388        home_path = malloc(strlen(buf) + 1);
389        if (home_path == NULL)
390            return;
391        strcpy(home_path, buf);
392        Arguments::set_java_home(home_path);
393
394        if (!set_boot_path('/', ':'))
395            return;
396    }
397
398    /*
399     * Where to look for native libraries
400     *
401     * Note: Due to a legacy implementation, most of the library path
402     * is set in the launcher.  This was to accomodate linking restrictions
403     * on legacy Bsd implementations (which are no longer supported).
404     * Eventually, all the library path setting will be done here.
405     *
406     * However, to prevent the proliferation of improperly built native
407     * libraries, the new path component /usr/java/packages is added here.
408     * Eventually, all the library path setting will be done here.
409     */
410    {
411        char *ld_library_path;
412
413        /*
414         * Construct the invariant part of ld_library_path. Note that the
415         * space for the colon and the trailing null are provided by the
416         * nulls included by the sizeof operator (so actually we allocate
417         * a byte more than necessary).
418         */
419#ifdef __APPLE__
420        ld_library_path = (char *) malloc(system_ext_size);
421        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
422#else
423        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
424            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
425        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
426#endif
427
428        /*
429         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
430         * should always exist (until the legacy problem cited above is
431         * addressed).
432         */
433#ifdef __APPLE__
434        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
435        char *l = getenv("JAVA_LIBRARY_PATH");
436        if (l != NULL) {
437            char *t = ld_library_path;
438            /* That's +1 for the colon and +1 for the trailing '\0' */
439            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
440            sprintf(ld_library_path, "%s:%s", l, t);
441            free(t);
442        }
443
444        char *v = getenv("DYLD_LIBRARY_PATH");
445#else
446        char *v = getenv("LD_LIBRARY_PATH");
447#endif
448        if (v != NULL) {
449            char *t = ld_library_path;
450            /* That's +1 for the colon and +1 for the trailing '\0' */
451            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
452            sprintf(ld_library_path, "%s:%s", v, t);
453            free(t);
454        }
455
456#ifdef __APPLE__
457        // Apple's Java6 has "." at the beginning of java.library.path.
458        // OpenJDK on Windows has "." at the end of java.library.path.
459        // OpenJDK on Linux and Solaris don't have "." in java.library.path
460        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
461        // "." is appended to the end of java.library.path. Yes, this
462        // could cause a change in behavior, but Apple's Java6 behavior
463        // can be achieved by putting "." at the beginning of the
464        // JAVA_LIBRARY_PATH environment variable.
465        {
466            char *t = ld_library_path;
467            // that's +3 for appending ":." and the trailing '\0'
468            ld_library_path = (char *) malloc(strlen(t) + 3);
469            sprintf(ld_library_path, "%s:%s", t, ".");
470            free(t);
471        }
472#endif
473
474        Arguments::set_library_path(ld_library_path);
475    }
476
477    /*
478     * Extensions directories.
479     *
480     * Note that the space for the colon and the trailing null are provided
481     * by the nulls included by the sizeof operator (so actually one byte more
482     * than necessary is allocated).
483     */
484    {
485#ifdef __APPLE__
486        char *buf = malloc(strlen(Arguments::get_java_home()) +
487            sizeof(EXTENSIONS_DIR) + system_ext_size);
488        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
489            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
490#else
491        char *buf = malloc(strlen(Arguments::get_java_home()) +
492            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
493        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
494            Arguments::get_java_home());
495#endif
496
497        Arguments::set_ext_dirs(buf);
498    }
499
500    /* Endorsed standards default directory. */
501    {
502        char * buf;
503        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
504        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
505        Arguments::set_endorsed_dirs(buf);
506    }
507  }
508
509#ifdef __APPLE__
510#undef SYS_EXTENSIONS_DIR
511#endif
512#undef malloc
513#undef getenv
514#undef EXTENSIONS_DIR
515#undef ENDORSED_DIR
516
517  // Done
518  return;
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539      struct sigaction oact;
540      sigaction(sig, (struct sigaction*)NULL, &oact);
541      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
544           return true;
545      else
546           return false;
547}
548
549void os::Bsd::signal_sets_init() {
550  // Should also have an assertion stating we are still single-threaded.
551  assert(!signal_sets_initialized, "Already initialized");
552  // Fill in signals that are necessarily unblocked for all threads in
553  // the VM. Currently, we unblock the following signals:
554  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
555  //                         by -Xrs (=ReduceSignalUsage));
556  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
557  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
558  // the dispositions or masks wrt these signals.
559  // Programs embedding the VM that want to use the above signals for their
560  // own purposes must, at this time, use the "-Xrs" option to prevent
561  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
562  // (See bug 4345157, and other related bugs).
563  // In reality, though, unblocking these signals is really a nop, since
564  // these signals are not blocked by default.
565  sigemptyset(&unblocked_sigs);
566  sigemptyset(&allowdebug_blocked_sigs);
567  sigaddset(&unblocked_sigs, SIGILL);
568  sigaddset(&unblocked_sigs, SIGSEGV);
569  sigaddset(&unblocked_sigs, SIGBUS);
570  sigaddset(&unblocked_sigs, SIGFPE);
571  sigaddset(&unblocked_sigs, SR_signum);
572
573  if (!ReduceSignalUsage) {
574   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
575      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
576      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
577   }
578   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
579      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
580      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
581   }
582   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
583      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
584      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
585   }
586  }
587  // Fill in signals that are blocked by all but the VM thread.
588  sigemptyset(&vm_sigs);
589  if (!ReduceSignalUsage)
590    sigaddset(&vm_sigs, BREAK_SIGNAL);
591  debug_only(signal_sets_initialized = true);
592
593}
594
595// These are signals that are unblocked while a thread is running Java.
596// (For some reason, they get blocked by default.)
597sigset_t* os::Bsd::unblocked_signals() {
598  assert(signal_sets_initialized, "Not initialized");
599  return &unblocked_sigs;
600}
601
602// These are the signals that are blocked while a (non-VM) thread is
603// running Java. Only the VM thread handles these signals.
604sigset_t* os::Bsd::vm_signals() {
605  assert(signal_sets_initialized, "Not initialized");
606  return &vm_sigs;
607}
608
609// These are signals that are blocked during cond_wait to allow debugger in
610sigset_t* os::Bsd::allowdebug_blocked_signals() {
611  assert(signal_sets_initialized, "Not initialized");
612  return &allowdebug_blocked_sigs;
613}
614
615void os::Bsd::hotspot_sigmask(Thread* thread) {
616
617  //Save caller's signal mask before setting VM signal mask
618  sigset_t caller_sigmask;
619  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
620
621  OSThread* osthread = thread->osthread();
622  osthread->set_caller_sigmask(caller_sigmask);
623
624  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
625
626  if (!ReduceSignalUsage) {
627    if (thread->is_VM_thread()) {
628      // Only the VM thread handles BREAK_SIGNAL ...
629      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
630    } else {
631      // ... all other threads block BREAK_SIGNAL
632      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
633    }
634  }
635}
636
637
638//////////////////////////////////////////////////////////////////////////////
639// create new thread
640
641// check if it's safe to start a new thread
642static bool _thread_safety_check(Thread* thread) {
643  return true;
644}
645
646#ifdef __APPLE__
647// library handle for calling objc_registerThreadWithCollector()
648// without static linking to the libobjc library
649#define OBJC_LIB "/usr/lib/libobjc.dylib"
650#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
651typedef void (*objc_registerThreadWithCollector_t)();
652extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
653objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
654#endif
655
656#ifdef __APPLE__
657static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
658  // Additional thread_id used to correlate threads in SA
659  thread_identifier_info_data_t     m_ident_info;
660  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
661
662  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
663              (thread_info_t) &m_ident_info, &count);
664
665  return m_ident_info.thread_id;
666}
667#endif
668
669// Thread start routine for all newly created threads
670static void *java_start(Thread *thread) {
671  // Try to randomize the cache line index of hot stack frames.
672  // This helps when threads of the same stack traces evict each other's
673  // cache lines. The threads can be either from the same JVM instance, or
674  // from different JVM instances. The benefit is especially true for
675  // processors with hyperthreading technology.
676  static int counter = 0;
677  int pid = os::current_process_id();
678  alloca(((pid ^ counter++) & 7) * 128);
679
680  ThreadLocalStorage::set_thread(thread);
681
682  OSThread* osthread = thread->osthread();
683  Monitor* sync = osthread->startThread_lock();
684
685  // non floating stack BsdThreads needs extra check, see above
686  if (!_thread_safety_check(thread)) {
687    // notify parent thread
688    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
689    osthread->set_state(ZOMBIE);
690    sync->notify_all();
691    return NULL;
692  }
693
694  osthread->set_thread_id(os::Bsd::gettid());
695
696#ifdef __APPLE__
697  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
698  guarantee(unique_thread_id != 0, "unique thread id was not found");
699  osthread->set_unique_thread_id(unique_thread_id);
700#endif
701  // initialize signal mask for this thread
702  os::Bsd::hotspot_sigmask(thread);
703
704  // initialize floating point control register
705  os::Bsd::init_thread_fpu_state();
706
707#ifdef __APPLE__
708  // register thread with objc gc
709  if (objc_registerThreadWithCollectorFunction != NULL) {
710    objc_registerThreadWithCollectorFunction();
711  }
712#endif
713
714  // handshaking with parent thread
715  {
716    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
717
718    // notify parent thread
719    osthread->set_state(INITIALIZED);
720    sync->notify_all();
721
722    // wait until os::start_thread()
723    while (osthread->get_state() == INITIALIZED) {
724      sync->wait(Mutex::_no_safepoint_check_flag);
725    }
726  }
727
728  // call one more level start routine
729  thread->run();
730
731  return 0;
732}
733
734bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
735  assert(thread->osthread() == NULL, "caller responsible");
736
737  // Allocate the OSThread object
738  OSThread* osthread = new OSThread(NULL, NULL);
739  if (osthread == NULL) {
740    return false;
741  }
742
743  // set the correct thread state
744  osthread->set_thread_type(thr_type);
745
746  // Initial state is ALLOCATED but not INITIALIZED
747  osthread->set_state(ALLOCATED);
748
749  thread->set_osthread(osthread);
750
751  // init thread attributes
752  pthread_attr_t attr;
753  pthread_attr_init(&attr);
754  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
755
756  // stack size
757  if (os::Bsd::supports_variable_stack_size()) {
758    // calculate stack size if it's not specified by caller
759    if (stack_size == 0) {
760      stack_size = os::Bsd::default_stack_size(thr_type);
761
762      switch (thr_type) {
763      case os::java_thread:
764        // Java threads use ThreadStackSize which default value can be
765        // changed with the flag -Xss
766        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
767        stack_size = JavaThread::stack_size_at_create();
768        break;
769      case os::compiler_thread:
770        if (CompilerThreadStackSize > 0) {
771          stack_size = (size_t)(CompilerThreadStackSize * K);
772          break;
773        } // else fall through:
774          // use VMThreadStackSize if CompilerThreadStackSize is not defined
775      case os::vm_thread:
776      case os::pgc_thread:
777      case os::cgc_thread:
778      case os::watcher_thread:
779        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
780        break;
781      }
782    }
783
784    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
785    pthread_attr_setstacksize(&attr, stack_size);
786  } else {
787    // let pthread_create() pick the default value.
788  }
789
790  ThreadState state;
791
792  {
793    pthread_t tid;
794    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
795
796    pthread_attr_destroy(&attr);
797
798    if (ret != 0) {
799      if (PrintMiscellaneous && (Verbose || WizardMode)) {
800        perror("pthread_create()");
801      }
802      // Need to clean up stuff we've allocated so far
803      thread->set_osthread(NULL);
804      delete osthread;
805      return false;
806    }
807
808    // Store pthread info into the OSThread
809    osthread->set_pthread_id(tid);
810
811    // Wait until child thread is either initialized or aborted
812    {
813      Monitor* sync_with_child = osthread->startThread_lock();
814      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
815      while ((state = osthread->get_state()) == ALLOCATED) {
816        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
817      }
818    }
819
820  }
821
822  // Aborted due to thread limit being reached
823  if (state == ZOMBIE) {
824      thread->set_osthread(NULL);
825      delete osthread;
826      return false;
827  }
828
829  // The thread is returned suspended (in state INITIALIZED),
830  // and is started higher up in the call chain
831  assert(state == INITIALIZED, "race condition");
832  return true;
833}
834
835/////////////////////////////////////////////////////////////////////////////
836// attach existing thread
837
838// bootstrap the main thread
839bool os::create_main_thread(JavaThread* thread) {
840  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
841  return create_attached_thread(thread);
842}
843
844bool os::create_attached_thread(JavaThread* thread) {
845#ifdef ASSERT
846    thread->verify_not_published();
847#endif
848
849  // Allocate the OSThread object
850  OSThread* osthread = new OSThread(NULL, NULL);
851
852  if (osthread == NULL) {
853    return false;
854  }
855
856  osthread->set_thread_id(os::Bsd::gettid());
857
858  // Store pthread info into the OSThread
859#ifdef __APPLE__
860  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
861  guarantee(unique_thread_id != 0, "just checking");
862  osthread->set_unique_thread_id(unique_thread_id);
863#endif
864  osthread->set_pthread_id(::pthread_self());
865
866  // initialize floating point control register
867  os::Bsd::init_thread_fpu_state();
868
869  // Initial thread state is RUNNABLE
870  osthread->set_state(RUNNABLE);
871
872  thread->set_osthread(osthread);
873
874  // initialize signal mask for this thread
875  // and save the caller's signal mask
876  os::Bsd::hotspot_sigmask(thread);
877
878  return true;
879}
880
881void os::pd_start_thread(Thread* thread) {
882  OSThread * osthread = thread->osthread();
883  assert(osthread->get_state() != INITIALIZED, "just checking");
884  Monitor* sync_with_child = osthread->startThread_lock();
885  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
886  sync_with_child->notify();
887}
888
889// Free Bsd resources related to the OSThread
890void os::free_thread(OSThread* osthread) {
891  assert(osthread != NULL, "osthread not set");
892
893  if (Thread::current()->osthread() == osthread) {
894    // Restore caller's signal mask
895    sigset_t sigmask = osthread->caller_sigmask();
896    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
897   }
898
899  delete osthread;
900}
901
902//////////////////////////////////////////////////////////////////////////////
903// thread local storage
904
905int os::allocate_thread_local_storage() {
906  pthread_key_t key;
907  int rslt = pthread_key_create(&key, NULL);
908  assert(rslt == 0, "cannot allocate thread local storage");
909  return (int)key;
910}
911
912// Note: This is currently not used by VM, as we don't destroy TLS key
913// on VM exit.
914void os::free_thread_local_storage(int index) {
915  int rslt = pthread_key_delete((pthread_key_t)index);
916  assert(rslt == 0, "invalid index");
917}
918
919void os::thread_local_storage_at_put(int index, void* value) {
920  int rslt = pthread_setspecific((pthread_key_t)index, value);
921  assert(rslt == 0, "pthread_setspecific failed");
922}
923
924extern "C" Thread* get_thread() {
925  return ThreadLocalStorage::thread();
926}
927
928
929////////////////////////////////////////////////////////////////////////////////
930// time support
931
932// Time since start-up in seconds to a fine granularity.
933// Used by VMSelfDestructTimer and the MemProfiler.
934double os::elapsedTime() {
935
936  return (double)(os::elapsed_counter()) * 0.000001;
937}
938
939jlong os::elapsed_counter() {
940  timeval time;
941  int status = gettimeofday(&time, NULL);
942  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
943}
944
945jlong os::elapsed_frequency() {
946  return (1000 * 1000);
947}
948
949bool os::supports_vtime() { return true; }
950bool os::enable_vtime()   { return false; }
951bool os::vtime_enabled()  { return false; }
952
953double os::elapsedVTime() {
954  // better than nothing, but not much
955  return elapsedTime();
956}
957
958jlong os::javaTimeMillis() {
959  timeval time;
960  int status = gettimeofday(&time, NULL);
961  assert(status != -1, "bsd error");
962  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
963}
964
965#ifndef CLOCK_MONOTONIC
966#define CLOCK_MONOTONIC (1)
967#endif
968
969#ifdef __APPLE__
970void os::Bsd::clock_init() {
971        // XXXDARWIN: Investigate replacement monotonic clock
972}
973#else
974void os::Bsd::clock_init() {
975  struct timespec res;
976  struct timespec tp;
977  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
978      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
979    // yes, monotonic clock is supported
980    _clock_gettime = ::clock_gettime;
981  }
982}
983#endif
984
985
986jlong os::javaTimeNanos() {
987  if (Bsd::supports_monotonic_clock()) {
988    struct timespec tp;
989    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
990    assert(status == 0, "gettime error");
991    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
992    return result;
993  } else {
994    timeval time;
995    int status = gettimeofday(&time, NULL);
996    assert(status != -1, "bsd error");
997    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
998    return 1000 * usecs;
999  }
1000}
1001
1002void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1003  if (Bsd::supports_monotonic_clock()) {
1004    info_ptr->max_value = ALL_64_BITS;
1005
1006    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1007    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1008    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1009  } else {
1010    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1011    info_ptr->max_value = ALL_64_BITS;
1012
1013    // gettimeofday is a real time clock so it skips
1014    info_ptr->may_skip_backward = true;
1015    info_ptr->may_skip_forward = true;
1016  }
1017
1018  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1019}
1020
1021// Return the real, user, and system times in seconds from an
1022// arbitrary fixed point in the past.
1023bool os::getTimesSecs(double* process_real_time,
1024                      double* process_user_time,
1025                      double* process_system_time) {
1026  struct tms ticks;
1027  clock_t real_ticks = times(&ticks);
1028
1029  if (real_ticks == (clock_t) (-1)) {
1030    return false;
1031  } else {
1032    double ticks_per_second = (double) clock_tics_per_sec;
1033    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1034    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1035    *process_real_time = ((double) real_ticks) / ticks_per_second;
1036
1037    return true;
1038  }
1039}
1040
1041
1042char * os::local_time_string(char *buf, size_t buflen) {
1043  struct tm t;
1044  time_t long_time;
1045  time(&long_time);
1046  localtime_r(&long_time, &t);
1047  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1048               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1049               t.tm_hour, t.tm_min, t.tm_sec);
1050  return buf;
1051}
1052
1053struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1054  return localtime_r(clock, res);
1055}
1056
1057////////////////////////////////////////////////////////////////////////////////
1058// runtime exit support
1059
1060// Note: os::shutdown() might be called very early during initialization, or
1061// called from signal handler. Before adding something to os::shutdown(), make
1062// sure it is async-safe and can handle partially initialized VM.
1063void os::shutdown() {
1064
1065  // allow PerfMemory to attempt cleanup of any persistent resources
1066  perfMemory_exit();
1067
1068  // needs to remove object in file system
1069  AttachListener::abort();
1070
1071  // flush buffered output, finish log files
1072  ostream_abort();
1073
1074  // Check for abort hook
1075  abort_hook_t abort_hook = Arguments::abort_hook();
1076  if (abort_hook != NULL) {
1077    abort_hook();
1078  }
1079
1080}
1081
1082// Note: os::abort() might be called very early during initialization, or
1083// called from signal handler. Before adding something to os::abort(), make
1084// sure it is async-safe and can handle partially initialized VM.
1085void os::abort(bool dump_core) {
1086  os::shutdown();
1087  if (dump_core) {
1088#ifndef PRODUCT
1089    fdStream out(defaultStream::output_fd());
1090    out.print_raw("Current thread is ");
1091    char buf[16];
1092    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1093    out.print_raw_cr(buf);
1094    out.print_raw_cr("Dumping core ...");
1095#endif
1096    ::abort(); // dump core
1097  }
1098
1099  ::exit(1);
1100}
1101
1102// Die immediately, no exit hook, no abort hook, no cleanup.
1103void os::die() {
1104  // _exit() on BsdThreads only kills current thread
1105  ::abort();
1106}
1107
1108// unused on bsd for now.
1109void os::set_error_file(const char *logfile) {}
1110
1111
1112// This method is a copy of JDK's sysGetLastErrorString
1113// from src/solaris/hpi/src/system_md.c
1114
1115size_t os::lasterror(char *buf, size_t len) {
1116
1117  if (errno == 0)  return 0;
1118
1119  const char *s = ::strerror(errno);
1120  size_t n = ::strlen(s);
1121  if (n >= len) {
1122    n = len - 1;
1123  }
1124  ::strncpy(buf, s, n);
1125  buf[n] = '\0';
1126  return n;
1127}
1128
1129// Information of current thread in variety of formats
1130pid_t os::Bsd::gettid() {
1131  int retval = -1;
1132
1133#ifdef __APPLE__ //XNU kernel
1134  // despite the fact mach port is actually not a thread id use it
1135  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1136  retval = ::pthread_mach_thread_np(::pthread_self());
1137  guarantee(retval != 0, "just checking");
1138  return retval;
1139
1140#elif __FreeBSD__
1141  retval = syscall(SYS_thr_self);
1142#elif __OpenBSD__
1143  retval = syscall(SYS_getthrid);
1144#elif __NetBSD__
1145  retval = (pid_t) syscall(SYS__lwp_self);
1146#endif
1147
1148  if (retval == -1) {
1149    return getpid();
1150  }
1151}
1152
1153intx os::current_thread_id() {
1154#ifdef __APPLE__
1155  return (intx)::pthread_mach_thread_np(::pthread_self());
1156#else
1157  return (intx)::pthread_self();
1158#endif
1159}
1160
1161int os::current_process_id() {
1162
1163  // Under the old bsd thread library, bsd gives each thread
1164  // its own process id. Because of this each thread will return
1165  // a different pid if this method were to return the result
1166  // of getpid(2). Bsd provides no api that returns the pid
1167  // of the launcher thread for the vm. This implementation
1168  // returns a unique pid, the pid of the launcher thread
1169  // that starts the vm 'process'.
1170
1171  // Under the NPTL, getpid() returns the same pid as the
1172  // launcher thread rather than a unique pid per thread.
1173  // Use gettid() if you want the old pre NPTL behaviour.
1174
1175  // if you are looking for the result of a call to getpid() that
1176  // returns a unique pid for the calling thread, then look at the
1177  // OSThread::thread_id() method in osThread_bsd.hpp file
1178
1179  return (int)(_initial_pid ? _initial_pid : getpid());
1180}
1181
1182// DLL functions
1183
1184#define JNI_LIB_PREFIX "lib"
1185#ifdef __APPLE__
1186#define JNI_LIB_SUFFIX ".dylib"
1187#else
1188#define JNI_LIB_SUFFIX ".so"
1189#endif
1190
1191const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1192
1193// This must be hard coded because it's the system's temporary
1194// directory not the java application's temp directory, ala java.io.tmpdir.
1195#ifdef __APPLE__
1196// macosx has a secure per-user temporary directory
1197char temp_path_storage[PATH_MAX];
1198const char* os::get_temp_directory() {
1199  static char *temp_path = NULL;
1200  if (temp_path == NULL) {
1201    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1202    if (pathSize == 0 || pathSize > PATH_MAX) {
1203      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1204    }
1205    temp_path = temp_path_storage;
1206  }
1207  return temp_path;
1208}
1209#else /* __APPLE__ */
1210const char* os::get_temp_directory() { return "/tmp"; }
1211#endif /* __APPLE__ */
1212
1213static bool file_exists(const char* filename) {
1214  struct stat statbuf;
1215  if (filename == NULL || strlen(filename) == 0) {
1216    return false;
1217  }
1218  return os::stat(filename, &statbuf) == 0;
1219}
1220
1221bool os::dll_build_name(char* buffer, size_t buflen,
1222                        const char* pname, const char* fname) {
1223  bool retval = false;
1224  // Copied from libhpi
1225  const size_t pnamelen = pname ? strlen(pname) : 0;
1226
1227  // Return error on buffer overflow.
1228  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1229    return retval;
1230  }
1231
1232  if (pnamelen == 0) {
1233    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1234    retval = true;
1235  } else if (strchr(pname, *os::path_separator()) != NULL) {
1236    int n;
1237    char** pelements = split_path(pname, &n);
1238    if (pelements == NULL) {
1239      return false;
1240    }
1241    for (int i = 0 ; i < n ; i++) {
1242      // Really shouldn't be NULL, but check can't hurt
1243      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1244        continue; // skip the empty path values
1245      }
1246      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1247          pelements[i], fname);
1248      if (file_exists(buffer)) {
1249        retval = true;
1250        break;
1251      }
1252    }
1253    // release the storage
1254    for (int i = 0 ; i < n ; i++) {
1255      if (pelements[i] != NULL) {
1256        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1257      }
1258    }
1259    if (pelements != NULL) {
1260      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1261    }
1262  } else {
1263    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1264    retval = true;
1265  }
1266  return retval;
1267}
1268
1269// check if addr is inside libjvm.so
1270bool os::address_is_in_vm(address addr) {
1271  static address libjvm_base_addr;
1272  Dl_info dlinfo;
1273
1274  if (libjvm_base_addr == NULL) {
1275    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1276      libjvm_base_addr = (address)dlinfo.dli_fbase;
1277    }
1278    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1279  }
1280
1281  if (dladdr((void *)addr, &dlinfo) != 0) {
1282    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1283  }
1284
1285  return false;
1286}
1287
1288
1289#define MACH_MAXSYMLEN 256
1290
1291bool os::dll_address_to_function_name(address addr, char *buf,
1292                                      int buflen, int *offset) {
1293  // buf is not optional, but offset is optional
1294  assert(buf != NULL, "sanity check");
1295
1296  Dl_info dlinfo;
1297  char localbuf[MACH_MAXSYMLEN];
1298
1299  if (dladdr((void*)addr, &dlinfo) != 0) {
1300    // see if we have a matching symbol
1301    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1302      if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1303        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1304      }
1305      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1306      return true;
1307    }
1308    // no matching symbol so try for just file info
1309    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1310      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1311                          buf, buflen, offset, dlinfo.dli_fname)) {
1312         return true;
1313      }
1314    }
1315
1316    // Handle non-dynamic manually:
1317    if (dlinfo.dli_fbase != NULL &&
1318        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1319                        dlinfo.dli_fbase)) {
1320      if (!Decoder::demangle(localbuf, buf, buflen)) {
1321        jio_snprintf(buf, buflen, "%s", localbuf);
1322      }
1323      return true;
1324    }
1325  }
1326  buf[0] = '\0';
1327  if (offset != NULL) *offset = -1;
1328  return false;
1329}
1330
1331// ported from solaris version
1332bool os::dll_address_to_library_name(address addr, char* buf,
1333                                     int buflen, int* offset) {
1334  // buf is not optional, but offset is optional
1335  assert(buf != NULL, "sanity check");
1336
1337  Dl_info dlinfo;
1338
1339  if (dladdr((void*)addr, &dlinfo) != 0) {
1340    if (dlinfo.dli_fname != NULL) {
1341      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1342    }
1343    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1344      *offset = addr - (address)dlinfo.dli_fbase;
1345    }
1346    return true;
1347  }
1348
1349  buf[0] = '\0';
1350  if (offset) *offset = -1;
1351  return false;
1352}
1353
1354// Loads .dll/.so and
1355// in case of error it checks if .dll/.so was built for the
1356// same architecture as Hotspot is running on
1357
1358#ifdef __APPLE__
1359void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1360  void * result= ::dlopen(filename, RTLD_LAZY);
1361  if (result != NULL) {
1362    // Successful loading
1363    return result;
1364  }
1365
1366  // Read system error message into ebuf
1367  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1368  ebuf[ebuflen-1]='\0';
1369
1370  return NULL;
1371}
1372#else
1373void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1374{
1375  void * result= ::dlopen(filename, RTLD_LAZY);
1376  if (result != NULL) {
1377    // Successful loading
1378    return result;
1379  }
1380
1381  Elf32_Ehdr elf_head;
1382
1383  // Read system error message into ebuf
1384  // It may or may not be overwritten below
1385  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1386  ebuf[ebuflen-1]='\0';
1387  int diag_msg_max_length=ebuflen-strlen(ebuf);
1388  char* diag_msg_buf=ebuf+strlen(ebuf);
1389
1390  if (diag_msg_max_length==0) {
1391    // No more space in ebuf for additional diagnostics message
1392    return NULL;
1393  }
1394
1395
1396  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1397
1398  if (file_descriptor < 0) {
1399    // Can't open library, report dlerror() message
1400    return NULL;
1401  }
1402
1403  bool failed_to_read_elf_head=
1404    (sizeof(elf_head)!=
1405        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1406
1407  ::close(file_descriptor);
1408  if (failed_to_read_elf_head) {
1409    // file i/o error - report dlerror() msg
1410    return NULL;
1411  }
1412
1413  typedef struct {
1414    Elf32_Half  code;         // Actual value as defined in elf.h
1415    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1416    char        elf_class;    // 32 or 64 bit
1417    char        endianess;    // MSB or LSB
1418    char*       name;         // String representation
1419  } arch_t;
1420
1421  #ifndef EM_486
1422  #define EM_486          6               /* Intel 80486 */
1423  #endif
1424
1425  #ifndef EM_MIPS_RS3_LE
1426  #define EM_MIPS_RS3_LE  10              /* MIPS */
1427  #endif
1428
1429  #ifndef EM_PPC64
1430  #define EM_PPC64        21              /* PowerPC64 */
1431  #endif
1432
1433  #ifndef EM_S390
1434  #define EM_S390         22              /* IBM System/390 */
1435  #endif
1436
1437  #ifndef EM_IA_64
1438  #define EM_IA_64        50              /* HP/Intel IA-64 */
1439  #endif
1440
1441  #ifndef EM_X86_64
1442  #define EM_X86_64       62              /* AMD x86-64 */
1443  #endif
1444
1445  static const arch_t arch_array[]={
1446    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1447    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1448    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1449    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1450    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1451    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1452    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1453    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1454    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1455    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1456    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1457    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1458    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1459    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1460    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1461    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1462  };
1463
1464  #if  (defined IA32)
1465    static  Elf32_Half running_arch_code=EM_386;
1466  #elif   (defined AMD64)
1467    static  Elf32_Half running_arch_code=EM_X86_64;
1468  #elif  (defined IA64)
1469    static  Elf32_Half running_arch_code=EM_IA_64;
1470  #elif  (defined __sparc) && (defined _LP64)
1471    static  Elf32_Half running_arch_code=EM_SPARCV9;
1472  #elif  (defined __sparc) && (!defined _LP64)
1473    static  Elf32_Half running_arch_code=EM_SPARC;
1474  #elif  (defined __powerpc64__)
1475    static  Elf32_Half running_arch_code=EM_PPC64;
1476  #elif  (defined __powerpc__)
1477    static  Elf32_Half running_arch_code=EM_PPC;
1478  #elif  (defined ARM)
1479    static  Elf32_Half running_arch_code=EM_ARM;
1480  #elif  (defined S390)
1481    static  Elf32_Half running_arch_code=EM_S390;
1482  #elif  (defined ALPHA)
1483    static  Elf32_Half running_arch_code=EM_ALPHA;
1484  #elif  (defined MIPSEL)
1485    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1486  #elif  (defined PARISC)
1487    static  Elf32_Half running_arch_code=EM_PARISC;
1488  #elif  (defined MIPS)
1489    static  Elf32_Half running_arch_code=EM_MIPS;
1490  #elif  (defined M68K)
1491    static  Elf32_Half running_arch_code=EM_68K;
1492  #else
1493    #error Method os::dll_load requires that one of following is defined:\
1494         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1495  #endif
1496
1497  // Identify compatability class for VM's architecture and library's architecture
1498  // Obtain string descriptions for architectures
1499
1500  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1501  int running_arch_index=-1;
1502
1503  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1504    if (running_arch_code == arch_array[i].code) {
1505      running_arch_index    = i;
1506    }
1507    if (lib_arch.code == arch_array[i].code) {
1508      lib_arch.compat_class = arch_array[i].compat_class;
1509      lib_arch.name         = arch_array[i].name;
1510    }
1511  }
1512
1513  assert(running_arch_index != -1,
1514    "Didn't find running architecture code (running_arch_code) in arch_array");
1515  if (running_arch_index == -1) {
1516    // Even though running architecture detection failed
1517    // we may still continue with reporting dlerror() message
1518    return NULL;
1519  }
1520
1521  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1522    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1523    return NULL;
1524  }
1525
1526#ifndef S390
1527  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1528    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1529    return NULL;
1530  }
1531#endif // !S390
1532
1533  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1534    if ( lib_arch.name!=NULL ) {
1535      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1536        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1537        lib_arch.name, arch_array[running_arch_index].name);
1538    } else {
1539      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1540      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1541        lib_arch.code,
1542        arch_array[running_arch_index].name);
1543    }
1544  }
1545
1546  return NULL;
1547}
1548#endif /* !__APPLE__ */
1549
1550// XXX: Do we need a lock around this as per Linux?
1551void* os::dll_lookup(void* handle, const char* name) {
1552  return dlsym(handle, name);
1553}
1554
1555
1556static bool _print_ascii_file(const char* filename, outputStream* st) {
1557  int fd = ::open(filename, O_RDONLY);
1558  if (fd == -1) {
1559     return false;
1560  }
1561
1562  char buf[32];
1563  int bytes;
1564  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1565    st->print_raw(buf, bytes);
1566  }
1567
1568  ::close(fd);
1569
1570  return true;
1571}
1572
1573void os::print_dll_info(outputStream *st) {
1574  st->print_cr("Dynamic libraries:");
1575#ifdef RTLD_DI_LINKMAP
1576  Dl_info dli;
1577  void *handle;
1578  Link_map *map;
1579  Link_map *p;
1580
1581  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1582      dli.dli_fname == NULL) {
1583    st->print_cr("Error: Cannot print dynamic libraries.");
1584    return;
1585  }
1586  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1587  if (handle == NULL) {
1588    st->print_cr("Error: Cannot print dynamic libraries.");
1589    return;
1590  }
1591  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1592  if (map == NULL) {
1593    st->print_cr("Error: Cannot print dynamic libraries.");
1594    return;
1595  }
1596
1597  while (map->l_prev != NULL)
1598    map = map->l_prev;
1599
1600  while (map != NULL) {
1601    st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1602    map = map->l_next;
1603  }
1604
1605  dlclose(handle);
1606#elif defined(__APPLE__)
1607  uint32_t count;
1608  uint32_t i;
1609
1610  count = _dyld_image_count();
1611  for (i = 1; i < count; i++) {
1612    const char *name = _dyld_get_image_name(i);
1613    intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1614    st->print_cr(PTR_FORMAT " \t%s", slide, name);
1615  }
1616#else
1617  st->print_cr("Error: Cannot print dynamic libraries.");
1618#endif
1619}
1620
1621void os::print_os_info_brief(outputStream* st) {
1622  st->print("Bsd");
1623
1624  os::Posix::print_uname_info(st);
1625}
1626
1627void os::print_os_info(outputStream* st) {
1628  st->print("OS:");
1629  st->print("Bsd");
1630
1631  os::Posix::print_uname_info(st);
1632
1633  os::Posix::print_rlimit_info(st);
1634
1635  os::Posix::print_load_average(st);
1636}
1637
1638void os::pd_print_cpu_info(outputStream* st) {
1639  // Nothing to do for now.
1640}
1641
1642void os::print_memory_info(outputStream* st) {
1643
1644  st->print("Memory:");
1645  st->print(" %dk page", os::vm_page_size()>>10);
1646
1647  st->print(", physical " UINT64_FORMAT "k",
1648            os::physical_memory() >> 10);
1649  st->print("(" UINT64_FORMAT "k free)",
1650            os::available_memory() >> 10);
1651  st->cr();
1652
1653  // meminfo
1654  st->print("\n/proc/meminfo:\n");
1655  _print_ascii_file("/proc/meminfo", st);
1656  st->cr();
1657}
1658
1659// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1660// but they're the same for all the bsd arch that we support
1661// and they're the same for solaris but there's no common place to put this.
1662const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1663                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1664                          "ILL_COPROC", "ILL_BADSTK" };
1665
1666const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1667                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1668                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1669
1670const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1671
1672const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1673
1674void os::print_siginfo(outputStream* st, void* siginfo) {
1675  st->print("siginfo:");
1676
1677  const int buflen = 100;
1678  char buf[buflen];
1679  siginfo_t *si = (siginfo_t*)siginfo;
1680  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1681  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1682    st->print("si_errno=%s", buf);
1683  } else {
1684    st->print("si_errno=%d", si->si_errno);
1685  }
1686  const int c = si->si_code;
1687  assert(c > 0, "unexpected si_code");
1688  switch (si->si_signo) {
1689  case SIGILL:
1690    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1691    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1692    break;
1693  case SIGFPE:
1694    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1695    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1696    break;
1697  case SIGSEGV:
1698    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1699    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1700    break;
1701  case SIGBUS:
1702    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1703    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1704    break;
1705  default:
1706    st->print(", si_code=%d", si->si_code);
1707    // no si_addr
1708  }
1709
1710  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1711      UseSharedSpaces) {
1712    FileMapInfo* mapinfo = FileMapInfo::current_info();
1713    if (mapinfo->is_in_shared_space(si->si_addr)) {
1714      st->print("\n\nError accessing class data sharing archive."   \
1715                " Mapped file inaccessible during execution, "      \
1716                " possible disk/network problem.");
1717    }
1718  }
1719  st->cr();
1720}
1721
1722
1723static void print_signal_handler(outputStream* st, int sig,
1724                                 char* buf, size_t buflen);
1725
1726void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1727  st->print_cr("Signal Handlers:");
1728  print_signal_handler(st, SIGSEGV, buf, buflen);
1729  print_signal_handler(st, SIGBUS , buf, buflen);
1730  print_signal_handler(st, SIGFPE , buf, buflen);
1731  print_signal_handler(st, SIGPIPE, buf, buflen);
1732  print_signal_handler(st, SIGXFSZ, buf, buflen);
1733  print_signal_handler(st, SIGILL , buf, buflen);
1734  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1735  print_signal_handler(st, SR_signum, buf, buflen);
1736  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1737  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1738  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1739  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1740}
1741
1742static char saved_jvm_path[MAXPATHLEN] = {0};
1743
1744// Find the full path to the current module, libjvm
1745void os::jvm_path(char *buf, jint buflen) {
1746  // Error checking.
1747  if (buflen < MAXPATHLEN) {
1748    assert(false, "must use a large-enough buffer");
1749    buf[0] = '\0';
1750    return;
1751  }
1752  // Lazy resolve the path to current module.
1753  if (saved_jvm_path[0] != 0) {
1754    strcpy(buf, saved_jvm_path);
1755    return;
1756  }
1757
1758  char dli_fname[MAXPATHLEN];
1759  bool ret = dll_address_to_library_name(
1760                CAST_FROM_FN_PTR(address, os::jvm_path),
1761                dli_fname, sizeof(dli_fname), NULL);
1762  assert(ret, "cannot locate libjvm");
1763  char *rp = NULL;
1764  if (ret && dli_fname[0] != '\0') {
1765    rp = realpath(dli_fname, buf);
1766  }
1767  if (rp == NULL)
1768    return;
1769
1770  if (Arguments::created_by_gamma_launcher()) {
1771    // Support for the gamma launcher.  Typical value for buf is
1772    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1773    // the right place in the string, then assume we are installed in a JDK and
1774    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1775    // construct a path to the JVM being overridden.
1776
1777    const char *p = buf + strlen(buf) - 1;
1778    for (int count = 0; p > buf && count < 5; ++count) {
1779      for (--p; p > buf && *p != '/'; --p)
1780        /* empty */ ;
1781    }
1782
1783    if (strncmp(p, "/jre/lib/", 9) != 0) {
1784      // Look for JAVA_HOME in the environment.
1785      char* java_home_var = ::getenv("JAVA_HOME");
1786      if (java_home_var != NULL && java_home_var[0] != 0) {
1787        char* jrelib_p;
1788        int len;
1789
1790        // Check the current module name "libjvm"
1791        p = strrchr(buf, '/');
1792        assert(strstr(p, "/libjvm") == p, "invalid library name");
1793
1794        rp = realpath(java_home_var, buf);
1795        if (rp == NULL)
1796          return;
1797
1798        // determine if this is a legacy image or modules image
1799        // modules image doesn't have "jre" subdirectory
1800        len = strlen(buf);
1801        jrelib_p = buf + len;
1802
1803        // Add the appropriate library subdir
1804        snprintf(jrelib_p, buflen-len, "/jre/lib");
1805        if (0 != access(buf, F_OK)) {
1806          snprintf(jrelib_p, buflen-len, "/lib");
1807        }
1808
1809        // Add the appropriate client or server subdir
1810        len = strlen(buf);
1811        jrelib_p = buf + len;
1812        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1813        if (0 != access(buf, F_OK)) {
1814          snprintf(jrelib_p, buflen-len, "");
1815        }
1816
1817        // If the path exists within JAVA_HOME, add the JVM library name
1818        // to complete the path to JVM being overridden.  Otherwise fallback
1819        // to the path to the current library.
1820        if (0 == access(buf, F_OK)) {
1821          // Use current module name "libjvm"
1822          len = strlen(buf);
1823          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1824        } else {
1825          // Fall back to path of current library
1826          rp = realpath(dli_fname, buf);
1827          if (rp == NULL)
1828            return;
1829        }
1830      }
1831    }
1832  }
1833
1834  strcpy(saved_jvm_path, buf);
1835}
1836
1837void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1838  // no prefix required, not even "_"
1839}
1840
1841void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1842  // no suffix required
1843}
1844
1845////////////////////////////////////////////////////////////////////////////////
1846// sun.misc.Signal support
1847
1848static volatile jint sigint_count = 0;
1849
1850static void
1851UserHandler(int sig, void *siginfo, void *context) {
1852  // 4511530 - sem_post is serialized and handled by the manager thread. When
1853  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1854  // don't want to flood the manager thread with sem_post requests.
1855  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1856      return;
1857
1858  // Ctrl-C is pressed during error reporting, likely because the error
1859  // handler fails to abort. Let VM die immediately.
1860  if (sig == SIGINT && is_error_reported()) {
1861     os::die();
1862  }
1863
1864  os::signal_notify(sig);
1865}
1866
1867void* os::user_handler() {
1868  return CAST_FROM_FN_PTR(void*, UserHandler);
1869}
1870
1871extern "C" {
1872  typedef void (*sa_handler_t)(int);
1873  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1874}
1875
1876void* os::signal(int signal_number, void* handler) {
1877  struct sigaction sigAct, oldSigAct;
1878
1879  sigfillset(&(sigAct.sa_mask));
1880  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1881  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1882
1883  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1884    // -1 means registration failed
1885    return (void *)-1;
1886  }
1887
1888  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1889}
1890
1891void os::signal_raise(int signal_number) {
1892  ::raise(signal_number);
1893}
1894
1895/*
1896 * The following code is moved from os.cpp for making this
1897 * code platform specific, which it is by its very nature.
1898 */
1899
1900// Will be modified when max signal is changed to be dynamic
1901int os::sigexitnum_pd() {
1902  return NSIG;
1903}
1904
1905// a counter for each possible signal value
1906static volatile jint pending_signals[NSIG+1] = { 0 };
1907
1908// Bsd(POSIX) specific hand shaking semaphore.
1909#ifdef __APPLE__
1910typedef semaphore_t os_semaphore_t;
1911#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1912#define SEM_WAIT(sem)           semaphore_wait(sem)
1913#define SEM_POST(sem)           semaphore_signal(sem)
1914#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1915#else
1916typedef sem_t os_semaphore_t;
1917#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1918#define SEM_WAIT(sem)           sem_wait(&sem)
1919#define SEM_POST(sem)           sem_post(&sem)
1920#define SEM_DESTROY(sem)        sem_destroy(&sem)
1921#endif
1922
1923class Semaphore : public StackObj {
1924  public:
1925    Semaphore();
1926    ~Semaphore();
1927    void signal();
1928    void wait();
1929    bool trywait();
1930    bool timedwait(unsigned int sec, int nsec);
1931  private:
1932    jlong currenttime() const;
1933    os_semaphore_t _semaphore;
1934};
1935
1936Semaphore::Semaphore() : _semaphore(0) {
1937  SEM_INIT(_semaphore, 0);
1938}
1939
1940Semaphore::~Semaphore() {
1941  SEM_DESTROY(_semaphore);
1942}
1943
1944void Semaphore::signal() {
1945  SEM_POST(_semaphore);
1946}
1947
1948void Semaphore::wait() {
1949  SEM_WAIT(_semaphore);
1950}
1951
1952jlong Semaphore::currenttime() const {
1953    struct timeval tv;
1954    gettimeofday(&tv, NULL);
1955    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1956}
1957
1958#ifdef __APPLE__
1959bool Semaphore::trywait() {
1960  return timedwait(0, 0);
1961}
1962
1963bool Semaphore::timedwait(unsigned int sec, int nsec) {
1964  kern_return_t kr = KERN_ABORTED;
1965  mach_timespec_t waitspec;
1966  waitspec.tv_sec = sec;
1967  waitspec.tv_nsec = nsec;
1968
1969  jlong starttime = currenttime();
1970
1971  kr = semaphore_timedwait(_semaphore, waitspec);
1972  while (kr == KERN_ABORTED) {
1973    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1974
1975    jlong current = currenttime();
1976    jlong passedtime = current - starttime;
1977
1978    if (passedtime >= totalwait) {
1979      waitspec.tv_sec = 0;
1980      waitspec.tv_nsec = 0;
1981    } else {
1982      jlong waittime = totalwait - (current - starttime);
1983      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1984      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1985    }
1986
1987    kr = semaphore_timedwait(_semaphore, waitspec);
1988  }
1989
1990  return kr == KERN_SUCCESS;
1991}
1992
1993#else
1994
1995bool Semaphore::trywait() {
1996  return sem_trywait(&_semaphore) == 0;
1997}
1998
1999bool Semaphore::timedwait(unsigned int sec, int nsec) {
2000  struct timespec ts;
2001  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2002
2003  while (1) {
2004    int result = sem_timedwait(&_semaphore, &ts);
2005    if (result == 0) {
2006      return true;
2007    } else if (errno == EINTR) {
2008      continue;
2009    } else if (errno == ETIMEDOUT) {
2010      return false;
2011    } else {
2012      return false;
2013    }
2014  }
2015}
2016
2017#endif // __APPLE__
2018
2019static os_semaphore_t sig_sem;
2020static Semaphore sr_semaphore;
2021
2022void os::signal_init_pd() {
2023  // Initialize signal structures
2024  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2025
2026  // Initialize signal semaphore
2027  ::SEM_INIT(sig_sem, 0);
2028}
2029
2030void os::signal_notify(int sig) {
2031  Atomic::inc(&pending_signals[sig]);
2032  ::SEM_POST(sig_sem);
2033}
2034
2035static int check_pending_signals(bool wait) {
2036  Atomic::store(0, &sigint_count);
2037  for (;;) {
2038    for (int i = 0; i < NSIG + 1; i++) {
2039      jint n = pending_signals[i];
2040      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2041        return i;
2042      }
2043    }
2044    if (!wait) {
2045      return -1;
2046    }
2047    JavaThread *thread = JavaThread::current();
2048    ThreadBlockInVM tbivm(thread);
2049
2050    bool threadIsSuspended;
2051    do {
2052      thread->set_suspend_equivalent();
2053      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2054      ::SEM_WAIT(sig_sem);
2055
2056      // were we externally suspended while we were waiting?
2057      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2058      if (threadIsSuspended) {
2059        //
2060        // The semaphore has been incremented, but while we were waiting
2061        // another thread suspended us. We don't want to continue running
2062        // while suspended because that would surprise the thread that
2063        // suspended us.
2064        //
2065        ::SEM_POST(sig_sem);
2066
2067        thread->java_suspend_self();
2068      }
2069    } while (threadIsSuspended);
2070  }
2071}
2072
2073int os::signal_lookup() {
2074  return check_pending_signals(false);
2075}
2076
2077int os::signal_wait() {
2078  return check_pending_signals(true);
2079}
2080
2081////////////////////////////////////////////////////////////////////////////////
2082// Virtual Memory
2083
2084int os::vm_page_size() {
2085  // Seems redundant as all get out
2086  assert(os::Bsd::page_size() != -1, "must call os::init");
2087  return os::Bsd::page_size();
2088}
2089
2090// Solaris allocates memory by pages.
2091int os::vm_allocation_granularity() {
2092  assert(os::Bsd::page_size() != -1, "must call os::init");
2093  return os::Bsd::page_size();
2094}
2095
2096// Rationale behind this function:
2097//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2098//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2099//  samples for JITted code. Here we create private executable mapping over the code cache
2100//  and then we can use standard (well, almost, as mapping can change) way to provide
2101//  info for the reporting script by storing timestamp and location of symbol
2102void bsd_wrap_code(char* base, size_t size) {
2103  static volatile jint cnt = 0;
2104
2105  if (!UseOprofile) {
2106    return;
2107  }
2108
2109  char buf[PATH_MAX + 1];
2110  int num = Atomic::add(1, &cnt);
2111
2112  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2113           os::get_temp_directory(), os::current_process_id(), num);
2114  unlink(buf);
2115
2116  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2117
2118  if (fd != -1) {
2119    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2120    if (rv != (off_t)-1) {
2121      if (::write(fd, "", 1) == 1) {
2122        mmap(base, size,
2123             PROT_READ|PROT_WRITE|PROT_EXEC,
2124             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2125      }
2126    }
2127    ::close(fd);
2128    unlink(buf);
2129  }
2130}
2131
2132static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2133                                    int err) {
2134  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2135          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2136          strerror(err), err);
2137}
2138
2139// NOTE: Bsd kernel does not really reserve the pages for us.
2140//       All it does is to check if there are enough free pages
2141//       left at the time of mmap(). This could be a potential
2142//       problem.
2143bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2144  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2145#ifdef __OpenBSD__
2146  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2147  if (::mprotect(addr, size, prot) == 0) {
2148    return true;
2149  }
2150#else
2151  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2152                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2153  if (res != (uintptr_t) MAP_FAILED) {
2154    return true;
2155  }
2156#endif
2157
2158  // Warn about any commit errors we see in non-product builds just
2159  // in case mmap() doesn't work as described on the man page.
2160  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2161
2162  return false;
2163}
2164
2165bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2166                       bool exec) {
2167  // alignment_hint is ignored on this OS
2168  return pd_commit_memory(addr, size, exec);
2169}
2170
2171void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2172                                  const char* mesg) {
2173  assert(mesg != NULL, "mesg must be specified");
2174  if (!pd_commit_memory(addr, size, exec)) {
2175    // add extra info in product mode for vm_exit_out_of_memory():
2176    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2177    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2178  }
2179}
2180
2181void os::pd_commit_memory_or_exit(char* addr, size_t size,
2182                                  size_t alignment_hint, bool exec,
2183                                  const char* mesg) {
2184  // alignment_hint is ignored on this OS
2185  pd_commit_memory_or_exit(addr, size, exec, mesg);
2186}
2187
2188void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2189}
2190
2191void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2192  ::madvise(addr, bytes, MADV_DONTNEED);
2193}
2194
2195void os::numa_make_global(char *addr, size_t bytes) {
2196}
2197
2198void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2199}
2200
2201bool os::numa_topology_changed()   { return false; }
2202
2203size_t os::numa_get_groups_num() {
2204  return 1;
2205}
2206
2207int os::numa_get_group_id() {
2208  return 0;
2209}
2210
2211size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2212  if (size > 0) {
2213    ids[0] = 0;
2214    return 1;
2215  }
2216  return 0;
2217}
2218
2219bool os::get_page_info(char *start, page_info* info) {
2220  return false;
2221}
2222
2223char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2224  return end;
2225}
2226
2227
2228bool os::pd_uncommit_memory(char* addr, size_t size) {
2229#ifdef __OpenBSD__
2230  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2231  return ::mprotect(addr, size, PROT_NONE) == 0;
2232#else
2233  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2234                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2235  return res  != (uintptr_t) MAP_FAILED;
2236#endif
2237}
2238
2239bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2240  return os::commit_memory(addr, size, !ExecMem);
2241}
2242
2243// If this is a growable mapping, remove the guard pages entirely by
2244// munmap()ping them.  If not, just call uncommit_memory().
2245bool os::remove_stack_guard_pages(char* addr, size_t size) {
2246  return os::uncommit_memory(addr, size);
2247}
2248
2249static address _highest_vm_reserved_address = NULL;
2250
2251// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2252// at 'requested_addr'. If there are existing memory mappings at the same
2253// location, however, they will be overwritten. If 'fixed' is false,
2254// 'requested_addr' is only treated as a hint, the return value may or
2255// may not start from the requested address. Unlike Bsd mmap(), this
2256// function returns NULL to indicate failure.
2257static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2258  char * addr;
2259  int flags;
2260
2261  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2262  if (fixed) {
2263    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2264    flags |= MAP_FIXED;
2265  }
2266
2267  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2268  // touch an uncommitted page. Otherwise, the read/write might
2269  // succeed if we have enough swap space to back the physical page.
2270  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2271                       flags, -1, 0);
2272
2273  if (addr != MAP_FAILED) {
2274    // anon_mmap() should only get called during VM initialization,
2275    // don't need lock (actually we can skip locking even it can be called
2276    // from multiple threads, because _highest_vm_reserved_address is just a
2277    // hint about the upper limit of non-stack memory regions.)
2278    if ((address)addr + bytes > _highest_vm_reserved_address) {
2279      _highest_vm_reserved_address = (address)addr + bytes;
2280    }
2281  }
2282
2283  return addr == MAP_FAILED ? NULL : addr;
2284}
2285
2286// Don't update _highest_vm_reserved_address, because there might be memory
2287// regions above addr + size. If so, releasing a memory region only creates
2288// a hole in the address space, it doesn't help prevent heap-stack collision.
2289//
2290static int anon_munmap(char * addr, size_t size) {
2291  return ::munmap(addr, size) == 0;
2292}
2293
2294char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2295                         size_t alignment_hint) {
2296  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2297}
2298
2299bool os::pd_release_memory(char* addr, size_t size) {
2300  return anon_munmap(addr, size);
2301}
2302
2303static bool bsd_mprotect(char* addr, size_t size, int prot) {
2304  // Bsd wants the mprotect address argument to be page aligned.
2305  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2306
2307  // According to SUSv3, mprotect() should only be used with mappings
2308  // established by mmap(), and mmap() always maps whole pages. Unaligned
2309  // 'addr' likely indicates problem in the VM (e.g. trying to change
2310  // protection of malloc'ed or statically allocated memory). Check the
2311  // caller if you hit this assert.
2312  assert(addr == bottom, "sanity check");
2313
2314  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2315  return ::mprotect(bottom, size, prot) == 0;
2316}
2317
2318// Set protections specified
2319bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2320                        bool is_committed) {
2321  unsigned int p = 0;
2322  switch (prot) {
2323  case MEM_PROT_NONE: p = PROT_NONE; break;
2324  case MEM_PROT_READ: p = PROT_READ; break;
2325  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2326  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2327  default:
2328    ShouldNotReachHere();
2329  }
2330  // is_committed is unused.
2331  return bsd_mprotect(addr, bytes, p);
2332}
2333
2334bool os::guard_memory(char* addr, size_t size) {
2335  return bsd_mprotect(addr, size, PROT_NONE);
2336}
2337
2338bool os::unguard_memory(char* addr, size_t size) {
2339  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2340}
2341
2342bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2343  return false;
2344}
2345
2346// Large page support
2347
2348static size_t _large_page_size = 0;
2349
2350void os::large_page_init() {
2351}
2352
2353
2354char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2355  fatal("This code is not used or maintained.");
2356
2357  // "exec" is passed in but not used.  Creating the shared image for
2358  // the code cache doesn't have an SHM_X executable permission to check.
2359  assert(UseLargePages && UseSHM, "only for SHM large pages");
2360
2361  key_t key = IPC_PRIVATE;
2362  char *addr;
2363
2364  bool warn_on_failure = UseLargePages &&
2365                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2366                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2367                        );
2368  char msg[128];
2369
2370  // Create a large shared memory region to attach to based on size.
2371  // Currently, size is the total size of the heap
2372  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2373  if (shmid == -1) {
2374     // Possible reasons for shmget failure:
2375     // 1. shmmax is too small for Java heap.
2376     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2377     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2378     // 2. not enough large page memory.
2379     //    > check available large pages: cat /proc/meminfo
2380     //    > increase amount of large pages:
2381     //          echo new_value > /proc/sys/vm/nr_hugepages
2382     //      Note 1: different Bsd may use different name for this property,
2383     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2384     //      Note 2: it's possible there's enough physical memory available but
2385     //            they are so fragmented after a long run that they can't
2386     //            coalesce into large pages. Try to reserve large pages when
2387     //            the system is still "fresh".
2388     if (warn_on_failure) {
2389       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2390       warning(msg);
2391     }
2392     return NULL;
2393  }
2394
2395  // attach to the region
2396  addr = (char*)shmat(shmid, req_addr, 0);
2397  int err = errno;
2398
2399  // Remove shmid. If shmat() is successful, the actual shared memory segment
2400  // will be deleted when it's detached by shmdt() or when the process
2401  // terminates. If shmat() is not successful this will remove the shared
2402  // segment immediately.
2403  shmctl(shmid, IPC_RMID, NULL);
2404
2405  if ((intptr_t)addr == -1) {
2406     if (warn_on_failure) {
2407       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2408       warning(msg);
2409     }
2410     return NULL;
2411  }
2412
2413  // The memory is committed
2414  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2415
2416  return addr;
2417}
2418
2419bool os::release_memory_special(char* base, size_t bytes) {
2420  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2421  // detaching the SHM segment will also delete it, see reserve_memory_special()
2422  int rslt = shmdt(base);
2423  if (rslt == 0) {
2424    tkr.record((address)base, bytes);
2425    return true;
2426  } else {
2427    tkr.discard();
2428    return false;
2429  }
2430
2431}
2432
2433size_t os::large_page_size() {
2434  return _large_page_size;
2435}
2436
2437// HugeTLBFS allows application to commit large page memory on demand;
2438// with SysV SHM the entire memory region must be allocated as shared
2439// memory.
2440bool os::can_commit_large_page_memory() {
2441  return UseHugeTLBFS;
2442}
2443
2444bool os::can_execute_large_page_memory() {
2445  return UseHugeTLBFS;
2446}
2447
2448// Reserve memory at an arbitrary address, only if that area is
2449// available (and not reserved for something else).
2450
2451char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2452  const int max_tries = 10;
2453  char* base[max_tries];
2454  size_t size[max_tries];
2455  const size_t gap = 0x000000;
2456
2457  // Assert only that the size is a multiple of the page size, since
2458  // that's all that mmap requires, and since that's all we really know
2459  // about at this low abstraction level.  If we need higher alignment,
2460  // we can either pass an alignment to this method or verify alignment
2461  // in one of the methods further up the call chain.  See bug 5044738.
2462  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2463
2464  // Repeatedly allocate blocks until the block is allocated at the
2465  // right spot. Give up after max_tries. Note that reserve_memory() will
2466  // automatically update _highest_vm_reserved_address if the call is
2467  // successful. The variable tracks the highest memory address every reserved
2468  // by JVM. It is used to detect heap-stack collision if running with
2469  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2470  // space than needed, it could confuse the collision detecting code. To
2471  // solve the problem, save current _highest_vm_reserved_address and
2472  // calculate the correct value before return.
2473  address old_highest = _highest_vm_reserved_address;
2474
2475  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2476  // if kernel honors the hint then we can return immediately.
2477  char * addr = anon_mmap(requested_addr, bytes, false);
2478  if (addr == requested_addr) {
2479     return requested_addr;
2480  }
2481
2482  if (addr != NULL) {
2483     // mmap() is successful but it fails to reserve at the requested address
2484     anon_munmap(addr, bytes);
2485  }
2486
2487  int i;
2488  for (i = 0; i < max_tries; ++i) {
2489    base[i] = reserve_memory(bytes);
2490
2491    if (base[i] != NULL) {
2492      // Is this the block we wanted?
2493      if (base[i] == requested_addr) {
2494        size[i] = bytes;
2495        break;
2496      }
2497
2498      // Does this overlap the block we wanted? Give back the overlapped
2499      // parts and try again.
2500
2501      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2502      if (top_overlap >= 0 && top_overlap < bytes) {
2503        unmap_memory(base[i], top_overlap);
2504        base[i] += top_overlap;
2505        size[i] = bytes - top_overlap;
2506      } else {
2507        size_t bottom_overlap = base[i] + bytes - requested_addr;
2508        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2509          unmap_memory(requested_addr, bottom_overlap);
2510          size[i] = bytes - bottom_overlap;
2511        } else {
2512          size[i] = bytes;
2513        }
2514      }
2515    }
2516  }
2517
2518  // Give back the unused reserved pieces.
2519
2520  for (int j = 0; j < i; ++j) {
2521    if (base[j] != NULL) {
2522      unmap_memory(base[j], size[j]);
2523    }
2524  }
2525
2526  if (i < max_tries) {
2527    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2528    return requested_addr;
2529  } else {
2530    _highest_vm_reserved_address = old_highest;
2531    return NULL;
2532  }
2533}
2534
2535size_t os::read(int fd, void *buf, unsigned int nBytes) {
2536  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2537}
2538
2539// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2540// Solaris uses poll(), bsd uses park().
2541// Poll() is likely a better choice, assuming that Thread.interrupt()
2542// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2543// SIGSEGV, see 4355769.
2544
2545int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2546  assert(thread == Thread::current(),  "thread consistency check");
2547
2548  ParkEvent * const slp = thread->_SleepEvent ;
2549  slp->reset() ;
2550  OrderAccess::fence() ;
2551
2552  if (interruptible) {
2553    jlong prevtime = javaTimeNanos();
2554
2555    for (;;) {
2556      if (os::is_interrupted(thread, true)) {
2557        return OS_INTRPT;
2558      }
2559
2560      jlong newtime = javaTimeNanos();
2561
2562      if (newtime - prevtime < 0) {
2563        // time moving backwards, should only happen if no monotonic clock
2564        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2565        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2566      } else {
2567        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2568      }
2569
2570      if(millis <= 0) {
2571        return OS_OK;
2572      }
2573
2574      prevtime = newtime;
2575
2576      {
2577        assert(thread->is_Java_thread(), "sanity check");
2578        JavaThread *jt = (JavaThread *) thread;
2579        ThreadBlockInVM tbivm(jt);
2580        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2581
2582        jt->set_suspend_equivalent();
2583        // cleared by handle_special_suspend_equivalent_condition() or
2584        // java_suspend_self() via check_and_wait_while_suspended()
2585
2586        slp->park(millis);
2587
2588        // were we externally suspended while we were waiting?
2589        jt->check_and_wait_while_suspended();
2590      }
2591    }
2592  } else {
2593    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2594    jlong prevtime = javaTimeNanos();
2595
2596    for (;;) {
2597      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2598      // the 1st iteration ...
2599      jlong newtime = javaTimeNanos();
2600
2601      if (newtime - prevtime < 0) {
2602        // time moving backwards, should only happen if no monotonic clock
2603        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2604        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2605      } else {
2606        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2607      }
2608
2609      if(millis <= 0) break ;
2610
2611      prevtime = newtime;
2612      slp->park(millis);
2613    }
2614    return OS_OK ;
2615  }
2616}
2617
2618int os::naked_sleep() {
2619  // %% make the sleep time an integer flag. for now use 1 millisec.
2620  return os::sleep(Thread::current(), 1, false);
2621}
2622
2623// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2624void os::infinite_sleep() {
2625  while (true) {    // sleep forever ...
2626    ::sleep(100);   // ... 100 seconds at a time
2627  }
2628}
2629
2630// Used to convert frequent JVM_Yield() to nops
2631bool os::dont_yield() {
2632  return DontYieldALot;
2633}
2634
2635void os::yield() {
2636  sched_yield();
2637}
2638
2639os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2640
2641void os::yield_all(int attempts) {
2642  // Yields to all threads, including threads with lower priorities
2643  // Threads on Bsd are all with same priority. The Solaris style
2644  // os::yield_all() with nanosleep(1ms) is not necessary.
2645  sched_yield();
2646}
2647
2648// Called from the tight loops to possibly influence time-sharing heuristics
2649void os::loop_breaker(int attempts) {
2650  os::yield_all(attempts);
2651}
2652
2653////////////////////////////////////////////////////////////////////////////////
2654// thread priority support
2655
2656// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2657// only supports dynamic priority, static priority must be zero. For real-time
2658// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2659// However, for large multi-threaded applications, SCHED_RR is not only slower
2660// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2661// of 5 runs - Sep 2005).
2662//
2663// The following code actually changes the niceness of kernel-thread/LWP. It
2664// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2665// not the entire user process, and user level threads are 1:1 mapped to kernel
2666// threads. It has always been the case, but could change in the future. For
2667// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2668// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2669
2670#if !defined(__APPLE__)
2671int os::java_to_os_priority[CriticalPriority + 1] = {
2672  19,              // 0 Entry should never be used
2673
2674   0,              // 1 MinPriority
2675   3,              // 2
2676   6,              // 3
2677
2678  10,              // 4
2679  15,              // 5 NormPriority
2680  18,              // 6
2681
2682  21,              // 7
2683  25,              // 8
2684  28,              // 9 NearMaxPriority
2685
2686  31,              // 10 MaxPriority
2687
2688  31               // 11 CriticalPriority
2689};
2690#else
2691/* Using Mach high-level priority assignments */
2692int os::java_to_os_priority[CriticalPriority + 1] = {
2693   0,              // 0 Entry should never be used (MINPRI_USER)
2694
2695  27,              // 1 MinPriority
2696  28,              // 2
2697  29,              // 3
2698
2699  30,              // 4
2700  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2701  32,              // 6
2702
2703  33,              // 7
2704  34,              // 8
2705  35,              // 9 NearMaxPriority
2706
2707  36,              // 10 MaxPriority
2708
2709  36               // 11 CriticalPriority
2710};
2711#endif
2712
2713static int prio_init() {
2714  if (ThreadPriorityPolicy == 1) {
2715    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2716    // if effective uid is not root. Perhaps, a more elegant way of doing
2717    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2718    if (geteuid() != 0) {
2719      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2720        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2721      }
2722      ThreadPriorityPolicy = 0;
2723    }
2724  }
2725  if (UseCriticalJavaThreadPriority) {
2726    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2727  }
2728  return 0;
2729}
2730
2731OSReturn os::set_native_priority(Thread* thread, int newpri) {
2732  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2733
2734#ifdef __OpenBSD__
2735  // OpenBSD pthread_setprio starves low priority threads
2736  return OS_OK;
2737#elif defined(__FreeBSD__)
2738  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2739#elif defined(__APPLE__) || defined(__NetBSD__)
2740  struct sched_param sp;
2741  int policy;
2742  pthread_t self = pthread_self();
2743
2744  if (pthread_getschedparam(self, &policy, &sp) != 0)
2745    return OS_ERR;
2746
2747  sp.sched_priority = newpri;
2748  if (pthread_setschedparam(self, policy, &sp) != 0)
2749    return OS_ERR;
2750
2751  return OS_OK;
2752#else
2753  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2754  return (ret == 0) ? OS_OK : OS_ERR;
2755#endif
2756}
2757
2758OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2759  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2760    *priority_ptr = java_to_os_priority[NormPriority];
2761    return OS_OK;
2762  }
2763
2764  errno = 0;
2765#if defined(__OpenBSD__) || defined(__FreeBSD__)
2766  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2767#elif defined(__APPLE__) || defined(__NetBSD__)
2768  int policy;
2769  struct sched_param sp;
2770
2771  pthread_getschedparam(pthread_self(), &policy, &sp);
2772  *priority_ptr = sp.sched_priority;
2773#else
2774  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2775#endif
2776  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2777}
2778
2779// Hint to the underlying OS that a task switch would not be good.
2780// Void return because it's a hint and can fail.
2781void os::hint_no_preempt() {}
2782
2783////////////////////////////////////////////////////////////////////////////////
2784// suspend/resume support
2785
2786//  the low-level signal-based suspend/resume support is a remnant from the
2787//  old VM-suspension that used to be for java-suspension, safepoints etc,
2788//  within hotspot. Now there is a single use-case for this:
2789//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2790//      that runs in the watcher thread.
2791//  The remaining code is greatly simplified from the more general suspension
2792//  code that used to be used.
2793//
2794//  The protocol is quite simple:
2795//  - suspend:
2796//      - sends a signal to the target thread
2797//      - polls the suspend state of the osthread using a yield loop
2798//      - target thread signal handler (SR_handler) sets suspend state
2799//        and blocks in sigsuspend until continued
2800//  - resume:
2801//      - sets target osthread state to continue
2802//      - sends signal to end the sigsuspend loop in the SR_handler
2803//
2804//  Note that the SR_lock plays no role in this suspend/resume protocol.
2805//
2806
2807static void resume_clear_context(OSThread *osthread) {
2808  osthread->set_ucontext(NULL);
2809  osthread->set_siginfo(NULL);
2810}
2811
2812static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2813  osthread->set_ucontext(context);
2814  osthread->set_siginfo(siginfo);
2815}
2816
2817//
2818// Handler function invoked when a thread's execution is suspended or
2819// resumed. We have to be careful that only async-safe functions are
2820// called here (Note: most pthread functions are not async safe and
2821// should be avoided.)
2822//
2823// Note: sigwait() is a more natural fit than sigsuspend() from an
2824// interface point of view, but sigwait() prevents the signal hander
2825// from being run. libpthread would get very confused by not having
2826// its signal handlers run and prevents sigwait()'s use with the
2827// mutex granting granting signal.
2828//
2829// Currently only ever called on the VMThread or JavaThread
2830//
2831static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2832  // Save and restore errno to avoid confusing native code with EINTR
2833  // after sigsuspend.
2834  int old_errno = errno;
2835
2836  Thread* thread = Thread::current();
2837  OSThread* osthread = thread->osthread();
2838  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2839
2840  os::SuspendResume::State current = osthread->sr.state();
2841  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2842    suspend_save_context(osthread, siginfo, context);
2843
2844    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2845    os::SuspendResume::State state = osthread->sr.suspended();
2846    if (state == os::SuspendResume::SR_SUSPENDED) {
2847      sigset_t suspend_set;  // signals for sigsuspend()
2848
2849      // get current set of blocked signals and unblock resume signal
2850      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2851      sigdelset(&suspend_set, SR_signum);
2852
2853      sr_semaphore.signal();
2854      // wait here until we are resumed
2855      while (1) {
2856        sigsuspend(&suspend_set);
2857
2858        os::SuspendResume::State result = osthread->sr.running();
2859        if (result == os::SuspendResume::SR_RUNNING) {
2860          sr_semaphore.signal();
2861          break;
2862        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2863          ShouldNotReachHere();
2864        }
2865      }
2866
2867    } else if (state == os::SuspendResume::SR_RUNNING) {
2868      // request was cancelled, continue
2869    } else {
2870      ShouldNotReachHere();
2871    }
2872
2873    resume_clear_context(osthread);
2874  } else if (current == os::SuspendResume::SR_RUNNING) {
2875    // request was cancelled, continue
2876  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2877    // ignore
2878  } else {
2879    // ignore
2880  }
2881
2882  errno = old_errno;
2883}
2884
2885
2886static int SR_initialize() {
2887  struct sigaction act;
2888  char *s;
2889  /* Get signal number to use for suspend/resume */
2890  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2891    int sig = ::strtol(s, 0, 10);
2892    if (sig > 0 || sig < NSIG) {
2893        SR_signum = sig;
2894    }
2895  }
2896
2897  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2898        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2899
2900  sigemptyset(&SR_sigset);
2901  sigaddset(&SR_sigset, SR_signum);
2902
2903  /* Set up signal handler for suspend/resume */
2904  act.sa_flags = SA_RESTART|SA_SIGINFO;
2905  act.sa_handler = (void (*)(int)) SR_handler;
2906
2907  // SR_signum is blocked by default.
2908  // 4528190 - We also need to block pthread restart signal (32 on all
2909  // supported Bsd platforms). Note that BsdThreads need to block
2910  // this signal for all threads to work properly. So we don't have
2911  // to use hard-coded signal number when setting up the mask.
2912  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2913
2914  if (sigaction(SR_signum, &act, 0) == -1) {
2915    return -1;
2916  }
2917
2918  // Save signal flag
2919  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2920  return 0;
2921}
2922
2923static int sr_notify(OSThread* osthread) {
2924  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2925  assert_status(status == 0, status, "pthread_kill");
2926  return status;
2927}
2928
2929// "Randomly" selected value for how long we want to spin
2930// before bailing out on suspending a thread, also how often
2931// we send a signal to a thread we want to resume
2932static const int RANDOMLY_LARGE_INTEGER = 1000000;
2933static const int RANDOMLY_LARGE_INTEGER2 = 100;
2934
2935// returns true on success and false on error - really an error is fatal
2936// but this seems the normal response to library errors
2937static bool do_suspend(OSThread* osthread) {
2938  assert(osthread->sr.is_running(), "thread should be running");
2939  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2940
2941  // mark as suspended and send signal
2942  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2943    // failed to switch, state wasn't running?
2944    ShouldNotReachHere();
2945    return false;
2946  }
2947
2948  if (sr_notify(osthread) != 0) {
2949    ShouldNotReachHere();
2950  }
2951
2952  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2953  while (true) {
2954    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2955      break;
2956    } else {
2957      // timeout
2958      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2959      if (cancelled == os::SuspendResume::SR_RUNNING) {
2960        return false;
2961      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2962        // make sure that we consume the signal on the semaphore as well
2963        sr_semaphore.wait();
2964        break;
2965      } else {
2966        ShouldNotReachHere();
2967        return false;
2968      }
2969    }
2970  }
2971
2972  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2973  return true;
2974}
2975
2976static void do_resume(OSThread* osthread) {
2977  assert(osthread->sr.is_suspended(), "thread should be suspended");
2978  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2979
2980  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2981    // failed to switch to WAKEUP_REQUEST
2982    ShouldNotReachHere();
2983    return;
2984  }
2985
2986  while (true) {
2987    if (sr_notify(osthread) == 0) {
2988      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2989        if (osthread->sr.is_running()) {
2990          return;
2991        }
2992      }
2993    } else {
2994      ShouldNotReachHere();
2995    }
2996  }
2997
2998  guarantee(osthread->sr.is_running(), "Must be running!");
2999}
3000
3001////////////////////////////////////////////////////////////////////////////////
3002// interrupt support
3003
3004void os::interrupt(Thread* thread) {
3005  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3006    "possibility of dangling Thread pointer");
3007
3008  OSThread* osthread = thread->osthread();
3009
3010  if (!osthread->interrupted()) {
3011    osthread->set_interrupted(true);
3012    // More than one thread can get here with the same value of osthread,
3013    // resulting in multiple notifications.  We do, however, want the store
3014    // to interrupted() to be visible to other threads before we execute unpark().
3015    OrderAccess::fence();
3016    ParkEvent * const slp = thread->_SleepEvent ;
3017    if (slp != NULL) slp->unpark() ;
3018  }
3019
3020  // For JSR166. Unpark even if interrupt status already was set
3021  if (thread->is_Java_thread())
3022    ((JavaThread*)thread)->parker()->unpark();
3023
3024  ParkEvent * ev = thread->_ParkEvent ;
3025  if (ev != NULL) ev->unpark() ;
3026
3027}
3028
3029bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3030  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3031    "possibility of dangling Thread pointer");
3032
3033  OSThread* osthread = thread->osthread();
3034
3035  bool interrupted = osthread->interrupted();
3036
3037  if (interrupted && clear_interrupted) {
3038    osthread->set_interrupted(false);
3039    // consider thread->_SleepEvent->reset() ... optional optimization
3040  }
3041
3042  return interrupted;
3043}
3044
3045///////////////////////////////////////////////////////////////////////////////////
3046// signal handling (except suspend/resume)
3047
3048// This routine may be used by user applications as a "hook" to catch signals.
3049// The user-defined signal handler must pass unrecognized signals to this
3050// routine, and if it returns true (non-zero), then the signal handler must
3051// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3052// routine will never retun false (zero), but instead will execute a VM panic
3053// routine kill the process.
3054//
3055// If this routine returns false, it is OK to call it again.  This allows
3056// the user-defined signal handler to perform checks either before or after
3057// the VM performs its own checks.  Naturally, the user code would be making
3058// a serious error if it tried to handle an exception (such as a null check
3059// or breakpoint) that the VM was generating for its own correct operation.
3060//
3061// This routine may recognize any of the following kinds of signals:
3062//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3063// It should be consulted by handlers for any of those signals.
3064//
3065// The caller of this routine must pass in the three arguments supplied
3066// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3067// field of the structure passed to sigaction().  This routine assumes that
3068// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3069//
3070// Note that the VM will print warnings if it detects conflicting signal
3071// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3072//
3073extern "C" JNIEXPORT int
3074JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3075                        void* ucontext, int abort_if_unrecognized);
3076
3077void signalHandler(int sig, siginfo_t* info, void* uc) {
3078  assert(info != NULL && uc != NULL, "it must be old kernel");
3079  int orig_errno = errno;  // Preserve errno value over signal handler.
3080  JVM_handle_bsd_signal(sig, info, uc, true);
3081  errno = orig_errno;
3082}
3083
3084
3085// This boolean allows users to forward their own non-matching signals
3086// to JVM_handle_bsd_signal, harmlessly.
3087bool os::Bsd::signal_handlers_are_installed = false;
3088
3089// For signal-chaining
3090struct sigaction os::Bsd::sigact[MAXSIGNUM];
3091unsigned int os::Bsd::sigs = 0;
3092bool os::Bsd::libjsig_is_loaded = false;
3093typedef struct sigaction *(*get_signal_t)(int);
3094get_signal_t os::Bsd::get_signal_action = NULL;
3095
3096struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3097  struct sigaction *actp = NULL;
3098
3099  if (libjsig_is_loaded) {
3100    // Retrieve the old signal handler from libjsig
3101    actp = (*get_signal_action)(sig);
3102  }
3103  if (actp == NULL) {
3104    // Retrieve the preinstalled signal handler from jvm
3105    actp = get_preinstalled_handler(sig);
3106  }
3107
3108  return actp;
3109}
3110
3111static bool call_chained_handler(struct sigaction *actp, int sig,
3112                                 siginfo_t *siginfo, void *context) {
3113  // Call the old signal handler
3114  if (actp->sa_handler == SIG_DFL) {
3115    // It's more reasonable to let jvm treat it as an unexpected exception
3116    // instead of taking the default action.
3117    return false;
3118  } else if (actp->sa_handler != SIG_IGN) {
3119    if ((actp->sa_flags & SA_NODEFER) == 0) {
3120      // automaticlly block the signal
3121      sigaddset(&(actp->sa_mask), sig);
3122    }
3123
3124    sa_handler_t hand;
3125    sa_sigaction_t sa;
3126    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3127    // retrieve the chained handler
3128    if (siginfo_flag_set) {
3129      sa = actp->sa_sigaction;
3130    } else {
3131      hand = actp->sa_handler;
3132    }
3133
3134    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3135      actp->sa_handler = SIG_DFL;
3136    }
3137
3138    // try to honor the signal mask
3139    sigset_t oset;
3140    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3141
3142    // call into the chained handler
3143    if (siginfo_flag_set) {
3144      (*sa)(sig, siginfo, context);
3145    } else {
3146      (*hand)(sig);
3147    }
3148
3149    // restore the signal mask
3150    pthread_sigmask(SIG_SETMASK, &oset, 0);
3151  }
3152  // Tell jvm's signal handler the signal is taken care of.
3153  return true;
3154}
3155
3156bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3157  bool chained = false;
3158  // signal-chaining
3159  if (UseSignalChaining) {
3160    struct sigaction *actp = get_chained_signal_action(sig);
3161    if (actp != NULL) {
3162      chained = call_chained_handler(actp, sig, siginfo, context);
3163    }
3164  }
3165  return chained;
3166}
3167
3168struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3169  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3170    return &sigact[sig];
3171  }
3172  return NULL;
3173}
3174
3175void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3176  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3177  sigact[sig] = oldAct;
3178  sigs |= (unsigned int)1 << sig;
3179}
3180
3181// for diagnostic
3182int os::Bsd::sigflags[MAXSIGNUM];
3183
3184int os::Bsd::get_our_sigflags(int sig) {
3185  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3186  return sigflags[sig];
3187}
3188
3189void os::Bsd::set_our_sigflags(int sig, int flags) {
3190  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3191  sigflags[sig] = flags;
3192}
3193
3194void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3195  // Check for overwrite.
3196  struct sigaction oldAct;
3197  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3198
3199  void* oldhand = oldAct.sa_sigaction
3200                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3201                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3202  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3203      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3204      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3205    if (AllowUserSignalHandlers || !set_installed) {
3206      // Do not overwrite; user takes responsibility to forward to us.
3207      return;
3208    } else if (UseSignalChaining) {
3209      // save the old handler in jvm
3210      save_preinstalled_handler(sig, oldAct);
3211      // libjsig also interposes the sigaction() call below and saves the
3212      // old sigaction on it own.
3213    } else {
3214      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3215                    "%#lx for signal %d.", (long)oldhand, sig));
3216    }
3217  }
3218
3219  struct sigaction sigAct;
3220  sigfillset(&(sigAct.sa_mask));
3221  sigAct.sa_handler = SIG_DFL;
3222  if (!set_installed) {
3223    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3224  } else {
3225    sigAct.sa_sigaction = signalHandler;
3226    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3227  }
3228#if __APPLE__
3229  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3230  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3231  // if the signal handler declares it will handle it on alternate stack.
3232  // Notice we only declare we will handle it on alt stack, but we are not
3233  // actually going to use real alt stack - this is just a workaround.
3234  // Please see ux_exception.c, method catch_mach_exception_raise for details
3235  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3236  if (sig == SIGSEGV) {
3237    sigAct.sa_flags |= SA_ONSTACK;
3238  }
3239#endif
3240
3241  // Save flags, which are set by ours
3242  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3243  sigflags[sig] = sigAct.sa_flags;
3244
3245  int ret = sigaction(sig, &sigAct, &oldAct);
3246  assert(ret == 0, "check");
3247
3248  void* oldhand2  = oldAct.sa_sigaction
3249                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3250                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3251  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3252}
3253
3254// install signal handlers for signals that HotSpot needs to
3255// handle in order to support Java-level exception handling.
3256
3257void os::Bsd::install_signal_handlers() {
3258  if (!signal_handlers_are_installed) {
3259    signal_handlers_are_installed = true;
3260
3261    // signal-chaining
3262    typedef void (*signal_setting_t)();
3263    signal_setting_t begin_signal_setting = NULL;
3264    signal_setting_t end_signal_setting = NULL;
3265    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3266                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3267    if (begin_signal_setting != NULL) {
3268      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3269                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3270      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3271                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3272      libjsig_is_loaded = true;
3273      assert(UseSignalChaining, "should enable signal-chaining");
3274    }
3275    if (libjsig_is_loaded) {
3276      // Tell libjsig jvm is setting signal handlers
3277      (*begin_signal_setting)();
3278    }
3279
3280    set_signal_handler(SIGSEGV, true);
3281    set_signal_handler(SIGPIPE, true);
3282    set_signal_handler(SIGBUS, true);
3283    set_signal_handler(SIGILL, true);
3284    set_signal_handler(SIGFPE, true);
3285    set_signal_handler(SIGXFSZ, true);
3286
3287#if defined(__APPLE__)
3288    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3289    // signals caught and handled by the JVM. To work around this, we reset the mach task
3290    // signal handler that's placed on our process by CrashReporter. This disables
3291    // CrashReporter-based reporting.
3292    //
3293    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3294    // on caught fatal signals.
3295    //
3296    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3297    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3298    // exception handling, while leaving the standard BSD signal handlers functional.
3299    kern_return_t kr;
3300    kr = task_set_exception_ports(mach_task_self(),
3301        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3302        MACH_PORT_NULL,
3303        EXCEPTION_STATE_IDENTITY,
3304        MACHINE_THREAD_STATE);
3305
3306    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3307#endif
3308
3309    if (libjsig_is_loaded) {
3310      // Tell libjsig jvm finishes setting signal handlers
3311      (*end_signal_setting)();
3312    }
3313
3314    // We don't activate signal checker if libjsig is in place, we trust ourselves
3315    // and if UserSignalHandler is installed all bets are off
3316    if (CheckJNICalls) {
3317      if (libjsig_is_loaded) {
3318        if (PrintJNIResolving) {
3319          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3320        }
3321        check_signals = false;
3322      }
3323      if (AllowUserSignalHandlers) {
3324        if (PrintJNIResolving) {
3325          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3326        }
3327        check_signals = false;
3328      }
3329    }
3330  }
3331}
3332
3333
3334/////
3335// glibc on Bsd platform uses non-documented flag
3336// to indicate, that some special sort of signal
3337// trampoline is used.
3338// We will never set this flag, and we should
3339// ignore this flag in our diagnostic
3340#ifdef SIGNIFICANT_SIGNAL_MASK
3341#undef SIGNIFICANT_SIGNAL_MASK
3342#endif
3343#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3344
3345static const char* get_signal_handler_name(address handler,
3346                                           char* buf, int buflen) {
3347  int offset;
3348  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3349  if (found) {
3350    // skip directory names
3351    const char *p1, *p2;
3352    p1 = buf;
3353    size_t len = strlen(os::file_separator());
3354    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3355    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3356  } else {
3357    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3358  }
3359  return buf;
3360}
3361
3362static void print_signal_handler(outputStream* st, int sig,
3363                                 char* buf, size_t buflen) {
3364  struct sigaction sa;
3365
3366  sigaction(sig, NULL, &sa);
3367
3368  // See comment for SIGNIFICANT_SIGNAL_MASK define
3369  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3370
3371  st->print("%s: ", os::exception_name(sig, buf, buflen));
3372
3373  address handler = (sa.sa_flags & SA_SIGINFO)
3374    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3375    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3376
3377  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3378    st->print("SIG_DFL");
3379  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3380    st->print("SIG_IGN");
3381  } else {
3382    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3383  }
3384
3385  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3386
3387  address rh = VMError::get_resetted_sighandler(sig);
3388  // May be, handler was resetted by VMError?
3389  if(rh != NULL) {
3390    handler = rh;
3391    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3392  }
3393
3394  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3395
3396  // Check: is it our handler?
3397  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3398     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3399    // It is our signal handler
3400    // check for flags, reset system-used one!
3401    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3402      st->print(
3403                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3404                os::Bsd::get_our_sigflags(sig));
3405    }
3406  }
3407  st->cr();
3408}
3409
3410
3411#define DO_SIGNAL_CHECK(sig) \
3412  if (!sigismember(&check_signal_done, sig)) \
3413    os::Bsd::check_signal_handler(sig)
3414
3415// This method is a periodic task to check for misbehaving JNI applications
3416// under CheckJNI, we can add any periodic checks here
3417
3418void os::run_periodic_checks() {
3419
3420  if (check_signals == false) return;
3421
3422  // SEGV and BUS if overridden could potentially prevent
3423  // generation of hs*.log in the event of a crash, debugging
3424  // such a case can be very challenging, so we absolutely
3425  // check the following for a good measure:
3426  DO_SIGNAL_CHECK(SIGSEGV);
3427  DO_SIGNAL_CHECK(SIGILL);
3428  DO_SIGNAL_CHECK(SIGFPE);
3429  DO_SIGNAL_CHECK(SIGBUS);
3430  DO_SIGNAL_CHECK(SIGPIPE);
3431  DO_SIGNAL_CHECK(SIGXFSZ);
3432
3433
3434  // ReduceSignalUsage allows the user to override these handlers
3435  // see comments at the very top and jvm_solaris.h
3436  if (!ReduceSignalUsage) {
3437    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3438    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3439    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3440    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3441  }
3442
3443  DO_SIGNAL_CHECK(SR_signum);
3444  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3445}
3446
3447typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3448
3449static os_sigaction_t os_sigaction = NULL;
3450
3451void os::Bsd::check_signal_handler(int sig) {
3452  char buf[O_BUFLEN];
3453  address jvmHandler = NULL;
3454
3455
3456  struct sigaction act;
3457  if (os_sigaction == NULL) {
3458    // only trust the default sigaction, in case it has been interposed
3459    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3460    if (os_sigaction == NULL) return;
3461  }
3462
3463  os_sigaction(sig, (struct sigaction*)NULL, &act);
3464
3465
3466  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3467
3468  address thisHandler = (act.sa_flags & SA_SIGINFO)
3469    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3470    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3471
3472
3473  switch(sig) {
3474  case SIGSEGV:
3475  case SIGBUS:
3476  case SIGFPE:
3477  case SIGPIPE:
3478  case SIGILL:
3479  case SIGXFSZ:
3480    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3481    break;
3482
3483  case SHUTDOWN1_SIGNAL:
3484  case SHUTDOWN2_SIGNAL:
3485  case SHUTDOWN3_SIGNAL:
3486  case BREAK_SIGNAL:
3487    jvmHandler = (address)user_handler();
3488    break;
3489
3490  case INTERRUPT_SIGNAL:
3491    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3492    break;
3493
3494  default:
3495    if (sig == SR_signum) {
3496      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3497    } else {
3498      return;
3499    }
3500    break;
3501  }
3502
3503  if (thisHandler != jvmHandler) {
3504    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3505    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3506    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3507    // No need to check this sig any longer
3508    sigaddset(&check_signal_done, sig);
3509  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3510    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3511    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3512    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3513    // No need to check this sig any longer
3514    sigaddset(&check_signal_done, sig);
3515  }
3516
3517  // Dump all the signal
3518  if (sigismember(&check_signal_done, sig)) {
3519    print_signal_handlers(tty, buf, O_BUFLEN);
3520  }
3521}
3522
3523extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3524
3525extern bool signal_name(int signo, char* buf, size_t len);
3526
3527const char* os::exception_name(int exception_code, char* buf, size_t size) {
3528  if (0 < exception_code && exception_code <= SIGRTMAX) {
3529    // signal
3530    if (!signal_name(exception_code, buf, size)) {
3531      jio_snprintf(buf, size, "SIG%d", exception_code);
3532    }
3533    return buf;
3534  } else {
3535    return NULL;
3536  }
3537}
3538
3539// this is called _before_ the most of global arguments have been parsed
3540void os::init(void) {
3541  char dummy;   /* used to get a guess on initial stack address */
3542//  first_hrtime = gethrtime();
3543
3544  // With BsdThreads the JavaMain thread pid (primordial thread)
3545  // is different than the pid of the java launcher thread.
3546  // So, on Bsd, the launcher thread pid is passed to the VM
3547  // via the sun.java.launcher.pid property.
3548  // Use this property instead of getpid() if it was correctly passed.
3549  // See bug 6351349.
3550  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3551
3552  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3553
3554  clock_tics_per_sec = CLK_TCK;
3555
3556  init_random(1234567);
3557
3558  ThreadCritical::initialize();
3559
3560  Bsd::set_page_size(getpagesize());
3561  if (Bsd::page_size() == -1) {
3562    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3563                  strerror(errno)));
3564  }
3565  init_page_sizes((size_t) Bsd::page_size());
3566
3567  Bsd::initialize_system_info();
3568
3569  // main_thread points to the aboriginal thread
3570  Bsd::_main_thread = pthread_self();
3571
3572  Bsd::clock_init();
3573  initial_time_count = os::elapsed_counter();
3574
3575#ifdef __APPLE__
3576  // XXXDARWIN
3577  // Work around the unaligned VM callbacks in hotspot's
3578  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3579  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3580  // alignment when doing symbol lookup. To work around this, we force early
3581  // binding of all symbols now, thus binding when alignment is known-good.
3582  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3583#endif
3584}
3585
3586// To install functions for atexit system call
3587extern "C" {
3588  static void perfMemory_exit_helper() {
3589    perfMemory_exit();
3590  }
3591}
3592
3593// this is called _after_ the global arguments have been parsed
3594jint os::init_2(void)
3595{
3596  // Allocate a single page and mark it as readable for safepoint polling
3597  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3598  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3599
3600  os::set_polling_page( polling_page );
3601
3602#ifndef PRODUCT
3603  if(Verbose && PrintMiscellaneous)
3604    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3605#endif
3606
3607  if (!UseMembar) {
3608    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3609    guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3610    os::set_memory_serialize_page( mem_serialize_page );
3611
3612#ifndef PRODUCT
3613    if(Verbose && PrintMiscellaneous)
3614      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3615#endif
3616  }
3617
3618  // initialize suspend/resume support - must do this before signal_sets_init()
3619  if (SR_initialize() != 0) {
3620    perror("SR_initialize failed");
3621    return JNI_ERR;
3622  }
3623
3624  Bsd::signal_sets_init();
3625  Bsd::install_signal_handlers();
3626
3627  // Check minimum allowable stack size for thread creation and to initialize
3628  // the java system classes, including StackOverflowError - depends on page
3629  // size.  Add a page for compiler2 recursion in main thread.
3630  // Add in 2*BytesPerWord times page size to account for VM stack during
3631  // class initialization depending on 32 or 64 bit VM.
3632  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3633            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3634                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3635
3636  size_t threadStackSizeInBytes = ThreadStackSize * K;
3637  if (threadStackSizeInBytes != 0 &&
3638      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3639        tty->print_cr("\nThe stack size specified is too small, "
3640                      "Specify at least %dk",
3641                      os::Bsd::min_stack_allowed/ K);
3642        return JNI_ERR;
3643  }
3644
3645  // Make the stack size a multiple of the page size so that
3646  // the yellow/red zones can be guarded.
3647  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3648        vm_page_size()));
3649
3650  if (MaxFDLimit) {
3651    // set the number of file descriptors to max. print out error
3652    // if getrlimit/setrlimit fails but continue regardless.
3653    struct rlimit nbr_files;
3654    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3655    if (status != 0) {
3656      if (PrintMiscellaneous && (Verbose || WizardMode))
3657        perror("os::init_2 getrlimit failed");
3658    } else {
3659      nbr_files.rlim_cur = nbr_files.rlim_max;
3660
3661#ifdef __APPLE__
3662      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3663      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3664      // be used instead
3665      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3666#endif
3667
3668      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3669      if (status != 0) {
3670        if (PrintMiscellaneous && (Verbose || WizardMode))
3671          perror("os::init_2 setrlimit failed");
3672      }
3673    }
3674  }
3675
3676  // at-exit methods are called in the reverse order of their registration.
3677  // atexit functions are called on return from main or as a result of a
3678  // call to exit(3C). There can be only 32 of these functions registered
3679  // and atexit() does not set errno.
3680
3681  if (PerfAllowAtExitRegistration) {
3682    // only register atexit functions if PerfAllowAtExitRegistration is set.
3683    // atexit functions can be delayed until process exit time, which
3684    // can be problematic for embedded VM situations. Embedded VMs should
3685    // call DestroyJavaVM() to assure that VM resources are released.
3686
3687    // note: perfMemory_exit_helper atexit function may be removed in
3688    // the future if the appropriate cleanup code can be added to the
3689    // VM_Exit VMOperation's doit method.
3690    if (atexit(perfMemory_exit_helper) != 0) {
3691      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3692    }
3693  }
3694
3695  // initialize thread priority policy
3696  prio_init();
3697
3698#ifdef __APPLE__
3699  // dynamically link to objective c gc registration
3700  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3701  if (handleLibObjc != NULL) {
3702    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3703  }
3704#endif
3705
3706  return JNI_OK;
3707}
3708
3709// this is called at the end of vm_initialization
3710void os::init_3(void) { }
3711
3712// Mark the polling page as unreadable
3713void os::make_polling_page_unreadable(void) {
3714  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3715    fatal("Could not disable polling page");
3716};
3717
3718// Mark the polling page as readable
3719void os::make_polling_page_readable(void) {
3720  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3721    fatal("Could not enable polling page");
3722  }
3723};
3724
3725int os::active_processor_count() {
3726  return _processor_count;
3727}
3728
3729void os::set_native_thread_name(const char *name) {
3730#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3731  // This is only supported in Snow Leopard and beyond
3732  if (name != NULL) {
3733    // Add a "Java: " prefix to the name
3734    char buf[MAXTHREADNAMESIZE];
3735    snprintf(buf, sizeof(buf), "Java: %s", name);
3736    pthread_setname_np(buf);
3737  }
3738#endif
3739}
3740
3741bool os::distribute_processes(uint length, uint* distribution) {
3742  // Not yet implemented.
3743  return false;
3744}
3745
3746bool os::bind_to_processor(uint processor_id) {
3747  // Not yet implemented.
3748  return false;
3749}
3750
3751void os::SuspendedThreadTask::internal_do_task() {
3752  if (do_suspend(_thread->osthread())) {
3753    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3754    do_task(context);
3755    do_resume(_thread->osthread());
3756  }
3757}
3758
3759///
3760class PcFetcher : public os::SuspendedThreadTask {
3761public:
3762  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3763  ExtendedPC result();
3764protected:
3765  void do_task(const os::SuspendedThreadTaskContext& context);
3766private:
3767  ExtendedPC _epc;
3768};
3769
3770ExtendedPC PcFetcher::result() {
3771  guarantee(is_done(), "task is not done yet.");
3772  return _epc;
3773}
3774
3775void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3776  Thread* thread = context.thread();
3777  OSThread* osthread = thread->osthread();
3778  if (osthread->ucontext() != NULL) {
3779    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3780  } else {
3781    // NULL context is unexpected, double-check this is the VMThread
3782    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3783  }
3784}
3785
3786// Suspends the target using the signal mechanism and then grabs the PC before
3787// resuming the target. Used by the flat-profiler only
3788ExtendedPC os::get_thread_pc(Thread* thread) {
3789  // Make sure that it is called by the watcher for the VMThread
3790  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3791  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3792
3793  PcFetcher fetcher(thread);
3794  fetcher.run();
3795  return fetcher.result();
3796}
3797
3798int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3799{
3800  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3801}
3802
3803////////////////////////////////////////////////////////////////////////////////
3804// debug support
3805
3806bool os::find(address addr, outputStream* st) {
3807  Dl_info dlinfo;
3808  memset(&dlinfo, 0, sizeof(dlinfo));
3809  if (dladdr(addr, &dlinfo) != 0) {
3810    st->print(PTR_FORMAT ": ", addr);
3811    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3812      st->print("%s+%#x", dlinfo.dli_sname,
3813                 addr - (intptr_t)dlinfo.dli_saddr);
3814    } else if (dlinfo.dli_fbase != NULL) {
3815      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3816    } else {
3817      st->print("<absolute address>");
3818    }
3819    if (dlinfo.dli_fname != NULL) {
3820      st->print(" in %s", dlinfo.dli_fname);
3821    }
3822    if (dlinfo.dli_fbase != NULL) {
3823      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3824    }
3825    st->cr();
3826
3827    if (Verbose) {
3828      // decode some bytes around the PC
3829      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3830      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3831      address       lowest = (address) dlinfo.dli_sname;
3832      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3833      if (begin < lowest)  begin = lowest;
3834      Dl_info dlinfo2;
3835      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3836          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3837        end = (address) dlinfo2.dli_saddr;
3838      Disassembler::decode(begin, end, st);
3839    }
3840    return true;
3841  }
3842  return false;
3843}
3844
3845////////////////////////////////////////////////////////////////////////////////
3846// misc
3847
3848// This does not do anything on Bsd. This is basically a hook for being
3849// able to use structured exception handling (thread-local exception filters)
3850// on, e.g., Win32.
3851void
3852os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3853                         JavaCallArguments* args, Thread* thread) {
3854  f(value, method, args, thread);
3855}
3856
3857void os::print_statistics() {
3858}
3859
3860int os::message_box(const char* title, const char* message) {
3861  int i;
3862  fdStream err(defaultStream::error_fd());
3863  for (i = 0; i < 78; i++) err.print_raw("=");
3864  err.cr();
3865  err.print_raw_cr(title);
3866  for (i = 0; i < 78; i++) err.print_raw("-");
3867  err.cr();
3868  err.print_raw_cr(message);
3869  for (i = 0; i < 78; i++) err.print_raw("=");
3870  err.cr();
3871
3872  char buf[16];
3873  // Prevent process from exiting upon "read error" without consuming all CPU
3874  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3875
3876  return buf[0] == 'y' || buf[0] == 'Y';
3877}
3878
3879int os::stat(const char *path, struct stat *sbuf) {
3880  char pathbuf[MAX_PATH];
3881  if (strlen(path) > MAX_PATH - 1) {
3882    errno = ENAMETOOLONG;
3883    return -1;
3884  }
3885  os::native_path(strcpy(pathbuf, path));
3886  return ::stat(pathbuf, sbuf);
3887}
3888
3889bool os::check_heap(bool force) {
3890  return true;
3891}
3892
3893int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3894  return ::vsnprintf(buf, count, format, args);
3895}
3896
3897// Is a (classpath) directory empty?
3898bool os::dir_is_empty(const char* path) {
3899  DIR *dir = NULL;
3900  struct dirent *ptr;
3901
3902  dir = opendir(path);
3903  if (dir == NULL) return true;
3904
3905  /* Scan the directory */
3906  bool result = true;
3907  char buf[sizeof(struct dirent) + MAX_PATH];
3908  while (result && (ptr = ::readdir(dir)) != NULL) {
3909    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3910      result = false;
3911    }
3912  }
3913  closedir(dir);
3914  return result;
3915}
3916
3917// This code originates from JDK's sysOpen and open64_w
3918// from src/solaris/hpi/src/system_md.c
3919
3920#ifndef O_DELETE
3921#define O_DELETE 0x10000
3922#endif
3923
3924// Open a file. Unlink the file immediately after open returns
3925// if the specified oflag has the O_DELETE flag set.
3926// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3927
3928int os::open(const char *path, int oflag, int mode) {
3929
3930  if (strlen(path) > MAX_PATH - 1) {
3931    errno = ENAMETOOLONG;
3932    return -1;
3933  }
3934  int fd;
3935  int o_delete = (oflag & O_DELETE);
3936  oflag = oflag & ~O_DELETE;
3937
3938  fd = ::open(path, oflag, mode);
3939  if (fd == -1) return -1;
3940
3941  //If the open succeeded, the file might still be a directory
3942  {
3943    struct stat buf;
3944    int ret = ::fstat(fd, &buf);
3945    int st_mode = buf.st_mode;
3946
3947    if (ret != -1) {
3948      if ((st_mode & S_IFMT) == S_IFDIR) {
3949        errno = EISDIR;
3950        ::close(fd);
3951        return -1;
3952      }
3953    } else {
3954      ::close(fd);
3955      return -1;
3956    }
3957  }
3958
3959    /*
3960     * All file descriptors that are opened in the JVM and not
3961     * specifically destined for a subprocess should have the
3962     * close-on-exec flag set.  If we don't set it, then careless 3rd
3963     * party native code might fork and exec without closing all
3964     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3965     * UNIXProcess.c), and this in turn might:
3966     *
3967     * - cause end-of-file to fail to be detected on some file
3968     *   descriptors, resulting in mysterious hangs, or
3969     *
3970     * - might cause an fopen in the subprocess to fail on a system
3971     *   suffering from bug 1085341.
3972     *
3973     * (Yes, the default setting of the close-on-exec flag is a Unix
3974     * design flaw)
3975     *
3976     * See:
3977     * 1085341: 32-bit stdio routines should support file descriptors >255
3978     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3979     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3980     */
3981#ifdef FD_CLOEXEC
3982    {
3983        int flags = ::fcntl(fd, F_GETFD);
3984        if (flags != -1)
3985            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3986    }
3987#endif
3988
3989  if (o_delete != 0) {
3990    ::unlink(path);
3991  }
3992  return fd;
3993}
3994
3995
3996// create binary file, rewriting existing file if required
3997int os::create_binary_file(const char* path, bool rewrite_existing) {
3998  int oflags = O_WRONLY | O_CREAT;
3999  if (!rewrite_existing) {
4000    oflags |= O_EXCL;
4001  }
4002  return ::open(path, oflags, S_IREAD | S_IWRITE);
4003}
4004
4005// return current position of file pointer
4006jlong os::current_file_offset(int fd) {
4007  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4008}
4009
4010// move file pointer to the specified offset
4011jlong os::seek_to_file_offset(int fd, jlong offset) {
4012  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4013}
4014
4015// This code originates from JDK's sysAvailable
4016// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4017
4018int os::available(int fd, jlong *bytes) {
4019  jlong cur, end;
4020  int mode;
4021  struct stat buf;
4022
4023  if (::fstat(fd, &buf) >= 0) {
4024    mode = buf.st_mode;
4025    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4026      /*
4027      * XXX: is the following call interruptible? If so, this might
4028      * need to go through the INTERRUPT_IO() wrapper as for other
4029      * blocking, interruptible calls in this file.
4030      */
4031      int n;
4032      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4033        *bytes = n;
4034        return 1;
4035      }
4036    }
4037  }
4038  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4039    return 0;
4040  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4041    return 0;
4042  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4043    return 0;
4044  }
4045  *bytes = end - cur;
4046  return 1;
4047}
4048
4049int os::socket_available(int fd, jint *pbytes) {
4050   if (fd < 0)
4051     return OS_OK;
4052
4053   int ret;
4054
4055   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4056
4057   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4058   // is expected to return 0 on failure and 1 on success to the jdk.
4059
4060   return (ret == OS_ERR) ? 0 : 1;
4061}
4062
4063// Map a block of memory.
4064char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4065                     char *addr, size_t bytes, bool read_only,
4066                     bool allow_exec) {
4067  int prot;
4068  int flags;
4069
4070  if (read_only) {
4071    prot = PROT_READ;
4072    flags = MAP_SHARED;
4073  } else {
4074    prot = PROT_READ | PROT_WRITE;
4075    flags = MAP_PRIVATE;
4076  }
4077
4078  if (allow_exec) {
4079    prot |= PROT_EXEC;
4080  }
4081
4082  if (addr != NULL) {
4083    flags |= MAP_FIXED;
4084  }
4085
4086  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4087                                     fd, file_offset);
4088  if (mapped_address == MAP_FAILED) {
4089    return NULL;
4090  }
4091  return mapped_address;
4092}
4093
4094
4095// Remap a block of memory.
4096char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4097                       char *addr, size_t bytes, bool read_only,
4098                       bool allow_exec) {
4099  // same as map_memory() on this OS
4100  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4101                        allow_exec);
4102}
4103
4104
4105// Unmap a block of memory.
4106bool os::pd_unmap_memory(char* addr, size_t bytes) {
4107  return munmap(addr, bytes) == 0;
4108}
4109
4110// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4111// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4112// of a thread.
4113//
4114// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4115// the fast estimate available on the platform.
4116
4117jlong os::current_thread_cpu_time() {
4118#ifdef __APPLE__
4119  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4120#else
4121  Unimplemented();
4122  return 0;
4123#endif
4124}
4125
4126jlong os::thread_cpu_time(Thread* thread) {
4127#ifdef __APPLE__
4128  return os::thread_cpu_time(thread, true /* user + sys */);
4129#else
4130  Unimplemented();
4131  return 0;
4132#endif
4133}
4134
4135jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4136#ifdef __APPLE__
4137  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4138#else
4139  Unimplemented();
4140  return 0;
4141#endif
4142}
4143
4144jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4145#ifdef __APPLE__
4146  struct thread_basic_info tinfo;
4147  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4148  kern_return_t kr;
4149  thread_t mach_thread;
4150
4151  mach_thread = thread->osthread()->thread_id();
4152  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4153  if (kr != KERN_SUCCESS)
4154    return -1;
4155
4156  if (user_sys_cpu_time) {
4157    jlong nanos;
4158    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4159    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4160    return nanos;
4161  } else {
4162    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4163  }
4164#else
4165  Unimplemented();
4166  return 0;
4167#endif
4168}
4169
4170
4171void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4172  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4173  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4174  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4175  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4176}
4177
4178void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4179  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4180  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4181  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4182  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4183}
4184
4185bool os::is_thread_cpu_time_supported() {
4186#ifdef __APPLE__
4187  return true;
4188#else
4189  return false;
4190#endif
4191}
4192
4193// System loadavg support.  Returns -1 if load average cannot be obtained.
4194// Bsd doesn't yet have a (official) notion of processor sets,
4195// so just return the system wide load average.
4196int os::loadavg(double loadavg[], int nelem) {
4197  return ::getloadavg(loadavg, nelem);
4198}
4199
4200void os::pause() {
4201  char filename[MAX_PATH];
4202  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4203    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4204  } else {
4205    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4206  }
4207
4208  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4209  if (fd != -1) {
4210    struct stat buf;
4211    ::close(fd);
4212    while (::stat(filename, &buf) == 0) {
4213      (void)::poll(NULL, 0, 100);
4214    }
4215  } else {
4216    jio_fprintf(stderr,
4217      "Could not open pause file '%s', continuing immediately.\n", filename);
4218  }
4219}
4220
4221
4222// Refer to the comments in os_solaris.cpp park-unpark.
4223//
4224// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4225// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4226// For specifics regarding the bug see GLIBC BUGID 261237 :
4227//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4228// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4229// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4230// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4231// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4232// and monitorenter when we're using 1-0 locking.  All those operations may result in
4233// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4234// of libpthread avoids the problem, but isn't practical.
4235//
4236// Possible remedies:
4237//
4238// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4239//      This is palliative and probabilistic, however.  If the thread is preempted
4240//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4241//      than the minimum period may have passed, and the abstime may be stale (in the
4242//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4243//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4244//
4245// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4246//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4247//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4248//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4249//      thread.
4250//
4251// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4252//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4253//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4254//      This also works well.  In fact it avoids kernel-level scalability impediments
4255//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4256//      timers in a graceful fashion.
4257//
4258// 4.   When the abstime value is in the past it appears that control returns
4259//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4260//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4261//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4262//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4263//      It may be possible to avoid reinitialization by checking the return
4264//      value from pthread_cond_timedwait().  In addition to reinitializing the
4265//      condvar we must establish the invariant that cond_signal() is only called
4266//      within critical sections protected by the adjunct mutex.  This prevents
4267//      cond_signal() from "seeing" a condvar that's in the midst of being
4268//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4269//      desirable signal-after-unlock optimization that avoids futile context switching.
4270//
4271//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4272//      structure when a condvar is used or initialized.  cond_destroy()  would
4273//      release the helper structure.  Our reinitialize-after-timedwait fix
4274//      put excessive stress on malloc/free and locks protecting the c-heap.
4275//
4276// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4277// It may be possible to refine (4) by checking the kernel and NTPL verisons
4278// and only enabling the work-around for vulnerable environments.
4279
4280// utility to compute the abstime argument to timedwait:
4281// millis is the relative timeout time
4282// abstime will be the absolute timeout time
4283// TODO: replace compute_abstime() with unpackTime()
4284
4285static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4286  if (millis < 0)  millis = 0;
4287  struct timeval now;
4288  int status = gettimeofday(&now, NULL);
4289  assert(status == 0, "gettimeofday");
4290  jlong seconds = millis / 1000;
4291  millis %= 1000;
4292  if (seconds > 50000000) { // see man cond_timedwait(3T)
4293    seconds = 50000000;
4294  }
4295  abstime->tv_sec = now.tv_sec  + seconds;
4296  long       usec = now.tv_usec + millis * 1000;
4297  if (usec >= 1000000) {
4298    abstime->tv_sec += 1;
4299    usec -= 1000000;
4300  }
4301  abstime->tv_nsec = usec * 1000;
4302  return abstime;
4303}
4304
4305
4306// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4307// Conceptually TryPark() should be equivalent to park(0).
4308
4309int os::PlatformEvent::TryPark() {
4310  for (;;) {
4311    const int v = _Event ;
4312    guarantee ((v == 0) || (v == 1), "invariant") ;
4313    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4314  }
4315}
4316
4317void os::PlatformEvent::park() {       // AKA "down()"
4318  // Invariant: Only the thread associated with the Event/PlatformEvent
4319  // may call park().
4320  // TODO: assert that _Assoc != NULL or _Assoc == Self
4321  int v ;
4322  for (;;) {
4323      v = _Event ;
4324      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4325  }
4326  guarantee (v >= 0, "invariant") ;
4327  if (v == 0) {
4328     // Do this the hard way by blocking ...
4329     int status = pthread_mutex_lock(_mutex);
4330     assert_status(status == 0, status, "mutex_lock");
4331     guarantee (_nParked == 0, "invariant") ;
4332     ++ _nParked ;
4333     while (_Event < 0) {
4334        status = pthread_cond_wait(_cond, _mutex);
4335        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4336        // Treat this the same as if the wait was interrupted
4337        if (status == ETIMEDOUT) { status = EINTR; }
4338        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4339     }
4340     -- _nParked ;
4341
4342    _Event = 0 ;
4343     status = pthread_mutex_unlock(_mutex);
4344     assert_status(status == 0, status, "mutex_unlock");
4345    // Paranoia to ensure our locked and lock-free paths interact
4346    // correctly with each other.
4347    OrderAccess::fence();
4348  }
4349  guarantee (_Event >= 0, "invariant") ;
4350}
4351
4352int os::PlatformEvent::park(jlong millis) {
4353  guarantee (_nParked == 0, "invariant") ;
4354
4355  int v ;
4356  for (;;) {
4357      v = _Event ;
4358      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4359  }
4360  guarantee (v >= 0, "invariant") ;
4361  if (v != 0) return OS_OK ;
4362
4363  // We do this the hard way, by blocking the thread.
4364  // Consider enforcing a minimum timeout value.
4365  struct timespec abst;
4366  compute_abstime(&abst, millis);
4367
4368  int ret = OS_TIMEOUT;
4369  int status = pthread_mutex_lock(_mutex);
4370  assert_status(status == 0, status, "mutex_lock");
4371  guarantee (_nParked == 0, "invariant") ;
4372  ++_nParked ;
4373
4374  // Object.wait(timo) will return because of
4375  // (a) notification
4376  // (b) timeout
4377  // (c) thread.interrupt
4378  //
4379  // Thread.interrupt and object.notify{All} both call Event::set.
4380  // That is, we treat thread.interrupt as a special case of notification.
4381  // The underlying Solaris implementation, cond_timedwait, admits
4382  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4383  // JVM from making those visible to Java code.  As such, we must
4384  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4385  //
4386  // TODO: properly differentiate simultaneous notify+interrupt.
4387  // In that case, we should propagate the notify to another waiter.
4388
4389  while (_Event < 0) {
4390    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4391    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4392      pthread_cond_destroy (_cond);
4393      pthread_cond_init (_cond, NULL) ;
4394    }
4395    assert_status(status == 0 || status == EINTR ||
4396                  status == ETIMEDOUT,
4397                  status, "cond_timedwait");
4398    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4399    if (status == ETIMEDOUT) break ;
4400    // We consume and ignore EINTR and spurious wakeups.
4401  }
4402  --_nParked ;
4403  if (_Event >= 0) {
4404     ret = OS_OK;
4405  }
4406  _Event = 0 ;
4407  status = pthread_mutex_unlock(_mutex);
4408  assert_status(status == 0, status, "mutex_unlock");
4409  assert (_nParked == 0, "invariant") ;
4410  // Paranoia to ensure our locked and lock-free paths interact
4411  // correctly with each other.
4412  OrderAccess::fence();
4413  return ret;
4414}
4415
4416void os::PlatformEvent::unpark() {
4417  // Transitions for _Event:
4418  //    0 :=> 1
4419  //    1 :=> 1
4420  //   -1 :=> either 0 or 1; must signal target thread
4421  //          That is, we can safely transition _Event from -1 to either
4422  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4423  //          unpark() calls.
4424  // See also: "Semaphores in Plan 9" by Mullender & Cox
4425  //
4426  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4427  // that it will take two back-to-back park() calls for the owning
4428  // thread to block. This has the benefit of forcing a spurious return
4429  // from the first park() call after an unpark() call which will help
4430  // shake out uses of park() and unpark() without condition variables.
4431
4432  if (Atomic::xchg(1, &_Event) >= 0) return;
4433
4434  // Wait for the thread associated with the event to vacate
4435  int status = pthread_mutex_lock(_mutex);
4436  assert_status(status == 0, status, "mutex_lock");
4437  int AnyWaiters = _nParked;
4438  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4439  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4440    AnyWaiters = 0;
4441    pthread_cond_signal(_cond);
4442  }
4443  status = pthread_mutex_unlock(_mutex);
4444  assert_status(status == 0, status, "mutex_unlock");
4445  if (AnyWaiters != 0) {
4446    status = pthread_cond_signal(_cond);
4447    assert_status(status == 0, status, "cond_signal");
4448  }
4449
4450  // Note that we signal() _after dropping the lock for "immortal" Events.
4451  // This is safe and avoids a common class of  futile wakeups.  In rare
4452  // circumstances this can cause a thread to return prematurely from
4453  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4454  // simply re-test the condition and re-park itself.
4455}
4456
4457
4458// JSR166
4459// -------------------------------------------------------
4460
4461/*
4462 * The solaris and bsd implementations of park/unpark are fairly
4463 * conservative for now, but can be improved. They currently use a
4464 * mutex/condvar pair, plus a a count.
4465 * Park decrements count if > 0, else does a condvar wait.  Unpark
4466 * sets count to 1 and signals condvar.  Only one thread ever waits
4467 * on the condvar. Contention seen when trying to park implies that someone
4468 * is unparking you, so don't wait. And spurious returns are fine, so there
4469 * is no need to track notifications.
4470 */
4471
4472#define MAX_SECS 100000000
4473/*
4474 * This code is common to bsd and solaris and will be moved to a
4475 * common place in dolphin.
4476 *
4477 * The passed in time value is either a relative time in nanoseconds
4478 * or an absolute time in milliseconds. Either way it has to be unpacked
4479 * into suitable seconds and nanoseconds components and stored in the
4480 * given timespec structure.
4481 * Given time is a 64-bit value and the time_t used in the timespec is only
4482 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4483 * overflow if times way in the future are given. Further on Solaris versions
4484 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4485 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4486 * As it will be 28 years before "now + 100000000" will overflow we can
4487 * ignore overflow and just impose a hard-limit on seconds using the value
4488 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4489 * years from "now".
4490 */
4491
4492static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4493  assert (time > 0, "convertTime");
4494
4495  struct timeval now;
4496  int status = gettimeofday(&now, NULL);
4497  assert(status == 0, "gettimeofday");
4498
4499  time_t max_secs = now.tv_sec + MAX_SECS;
4500
4501  if (isAbsolute) {
4502    jlong secs = time / 1000;
4503    if (secs > max_secs) {
4504      absTime->tv_sec = max_secs;
4505    }
4506    else {
4507      absTime->tv_sec = secs;
4508    }
4509    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4510  }
4511  else {
4512    jlong secs = time / NANOSECS_PER_SEC;
4513    if (secs >= MAX_SECS) {
4514      absTime->tv_sec = max_secs;
4515      absTime->tv_nsec = 0;
4516    }
4517    else {
4518      absTime->tv_sec = now.tv_sec + secs;
4519      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4520      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4521        absTime->tv_nsec -= NANOSECS_PER_SEC;
4522        ++absTime->tv_sec; // note: this must be <= max_secs
4523      }
4524    }
4525  }
4526  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4527  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4528  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4529  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4530}
4531
4532void Parker::park(bool isAbsolute, jlong time) {
4533  // Ideally we'd do something useful while spinning, such
4534  // as calling unpackTime().
4535
4536  // Optional fast-path check:
4537  // Return immediately if a permit is available.
4538  // We depend on Atomic::xchg() having full barrier semantics
4539  // since we are doing a lock-free update to _counter.
4540  if (Atomic::xchg(0, &_counter) > 0) return;
4541
4542  Thread* thread = Thread::current();
4543  assert(thread->is_Java_thread(), "Must be JavaThread");
4544  JavaThread *jt = (JavaThread *)thread;
4545
4546  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4547  // Check interrupt before trying to wait
4548  if (Thread::is_interrupted(thread, false)) {
4549    return;
4550  }
4551
4552  // Next, demultiplex/decode time arguments
4553  struct timespec absTime;
4554  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4555    return;
4556  }
4557  if (time > 0) {
4558    unpackTime(&absTime, isAbsolute, time);
4559  }
4560
4561
4562  // Enter safepoint region
4563  // Beware of deadlocks such as 6317397.
4564  // The per-thread Parker:: mutex is a classic leaf-lock.
4565  // In particular a thread must never block on the Threads_lock while
4566  // holding the Parker:: mutex.  If safepoints are pending both the
4567  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4568  ThreadBlockInVM tbivm(jt);
4569
4570  // Don't wait if cannot get lock since interference arises from
4571  // unblocking.  Also. check interrupt before trying wait
4572  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4573    return;
4574  }
4575
4576  int status ;
4577  if (_counter > 0)  { // no wait needed
4578    _counter = 0;
4579    status = pthread_mutex_unlock(_mutex);
4580    assert (status == 0, "invariant") ;
4581    // Paranoia to ensure our locked and lock-free paths interact
4582    // correctly with each other and Java-level accesses.
4583    OrderAccess::fence();
4584    return;
4585  }
4586
4587#ifdef ASSERT
4588  // Don't catch signals while blocked; let the running threads have the signals.
4589  // (This allows a debugger to break into the running thread.)
4590  sigset_t oldsigs;
4591  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4592  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4593#endif
4594
4595  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4596  jt->set_suspend_equivalent();
4597  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4598
4599  if (time == 0) {
4600    status = pthread_cond_wait (_cond, _mutex) ;
4601  } else {
4602    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4603    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4604      pthread_cond_destroy (_cond) ;
4605      pthread_cond_init    (_cond, NULL);
4606    }
4607  }
4608  assert_status(status == 0 || status == EINTR ||
4609                status == ETIMEDOUT,
4610                status, "cond_timedwait");
4611
4612#ifdef ASSERT
4613  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4614#endif
4615
4616  _counter = 0 ;
4617  status = pthread_mutex_unlock(_mutex) ;
4618  assert_status(status == 0, status, "invariant") ;
4619  // Paranoia to ensure our locked and lock-free paths interact
4620  // correctly with each other and Java-level accesses.
4621  OrderAccess::fence();
4622
4623  // If externally suspended while waiting, re-suspend
4624  if (jt->handle_special_suspend_equivalent_condition()) {
4625    jt->java_suspend_self();
4626  }
4627}
4628
4629void Parker::unpark() {
4630  int s, status ;
4631  status = pthread_mutex_lock(_mutex);
4632  assert (status == 0, "invariant") ;
4633  s = _counter;
4634  _counter = 1;
4635  if (s < 1) {
4636     if (WorkAroundNPTLTimedWaitHang) {
4637        status = pthread_cond_signal (_cond) ;
4638        assert (status == 0, "invariant") ;
4639        status = pthread_mutex_unlock(_mutex);
4640        assert (status == 0, "invariant") ;
4641     } else {
4642        status = pthread_mutex_unlock(_mutex);
4643        assert (status == 0, "invariant") ;
4644        status = pthread_cond_signal (_cond) ;
4645        assert (status == 0, "invariant") ;
4646     }
4647  } else {
4648    pthread_mutex_unlock(_mutex);
4649    assert (status == 0, "invariant") ;
4650  }
4651}
4652
4653
4654/* Darwin has no "environ" in a dynamic library. */
4655#ifdef __APPLE__
4656#include <crt_externs.h>
4657#define environ (*_NSGetEnviron())
4658#else
4659extern char** environ;
4660#endif
4661
4662// Run the specified command in a separate process. Return its exit value,
4663// or -1 on failure (e.g. can't fork a new process).
4664// Unlike system(), this function can be called from signal handler. It
4665// doesn't block SIGINT et al.
4666int os::fork_and_exec(char* cmd) {
4667  const char * argv[4] = {"sh", "-c", cmd, NULL};
4668
4669  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4670  // pthread_atfork handlers and reset pthread library. All we need is a
4671  // separate process to execve. Make a direct syscall to fork process.
4672  // On IA64 there's no fork syscall, we have to use fork() and hope for
4673  // the best...
4674  pid_t pid = fork();
4675
4676  if (pid < 0) {
4677    // fork failed
4678    return -1;
4679
4680  } else if (pid == 0) {
4681    // child process
4682
4683    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4684    // first to kill every thread on the thread list. Because this list is
4685    // not reset by fork() (see notes above), execve() will instead kill
4686    // every thread in the parent process. We know this is the only thread
4687    // in the new process, so make a system call directly.
4688    // IA64 should use normal execve() from glibc to match the glibc fork()
4689    // above.
4690    execve("/bin/sh", (char* const*)argv, environ);
4691
4692    // execve failed
4693    _exit(-1);
4694
4695  } else  {
4696    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4697    // care about the actual exit code, for now.
4698
4699    int status;
4700
4701    // Wait for the child process to exit.  This returns immediately if
4702    // the child has already exited. */
4703    while (waitpid(pid, &status, 0) < 0) {
4704        switch (errno) {
4705        case ECHILD: return 0;
4706        case EINTR: break;
4707        default: return -1;
4708        }
4709    }
4710
4711    if (WIFEXITED(status)) {
4712       // The child exited normally; get its exit code.
4713       return WEXITSTATUS(status);
4714    } else if (WIFSIGNALED(status)) {
4715       // The child exited because of a signal
4716       // The best value to return is 0x80 + signal number,
4717       // because that is what all Unix shells do, and because
4718       // it allows callers to distinguish between process exit and
4719       // process death by signal.
4720       return 0x80 + WTERMSIG(status);
4721    } else {
4722       // Unknown exit code; pass it through
4723       return status;
4724    }
4725  }
4726}
4727
4728// is_headless_jre()
4729//
4730// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4731// in order to report if we are running in a headless jre
4732//
4733// Since JDK8 xawt/libmawt.so was moved into the same directory
4734// as libawt.so, and renamed libawt_xawt.so
4735//
4736bool os::is_headless_jre() {
4737    struct stat statbuf;
4738    char buf[MAXPATHLEN];
4739    char libmawtpath[MAXPATHLEN];
4740    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4741    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4742    char *p;
4743
4744    // Get path to libjvm.so
4745    os::jvm_path(buf, sizeof(buf));
4746
4747    // Get rid of libjvm.so
4748    p = strrchr(buf, '/');
4749    if (p == NULL) return false;
4750    else *p = '\0';
4751
4752    // Get rid of client or server
4753    p = strrchr(buf, '/');
4754    if (p == NULL) return false;
4755    else *p = '\0';
4756
4757    // check xawt/libmawt.so
4758    strcpy(libmawtpath, buf);
4759    strcat(libmawtpath, xawtstr);
4760    if (::stat(libmawtpath, &statbuf) == 0) return false;
4761
4762    // check libawt_xawt.so
4763    strcpy(libmawtpath, buf);
4764    strcat(libmawtpath, new_xawtstr);
4765    if (::stat(libmawtpath, &statbuf) == 0) return false;
4766
4767    return true;
4768}
4769
4770// Get the default path to the core file
4771// Returns the length of the string
4772int os::get_core_path(char* buffer, size_t bufferSize) {
4773  int n = jio_snprintf(buffer, bufferSize, "/cores");
4774
4775  // Truncate if theoretical string was longer than bufferSize
4776  n = MIN2(n, (int)bufferSize);
4777
4778  return n;
4779}
4780
4781#ifndef PRODUCT
4782void TestReserveMemorySpecial_test() {
4783  // No tests available for this platform
4784}
4785#endif
4786