os_bsd.cpp revision 4802:f2110083203d
1284345Ssjg/*
2284345Ssjg * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3284345Ssjg * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4284345Ssjg *
5284345Ssjg * This code is free software; you can redistribute it and/or modify it
6284345Ssjg * under the terms of the GNU General Public License version 2 only, as
7284345Ssjg * published by the Free Software Foundation.
8284345Ssjg *
9284345Ssjg * This code is distributed in the hope that it will be useful, but WITHOUT
10284345Ssjg * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11284345Ssjg * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#if defined(__FreeBSD__) || defined(__NetBSD__)
105# include <elf.h>
106#endif
107
108#ifdef __APPLE__
109# include <mach/mach.h> // semaphore_* API
110# include <mach-o/dyld.h>
111# include <sys/proc_info.h>
112# include <objc/objc-auto.h>
113#endif
114
115#ifndef MAP_ANONYMOUS
116#define MAP_ANONYMOUS MAP_ANON
117#endif
118
119#define MAX_PATH    (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Bsd::_physical_memory = 0;
128
129
130int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131pthread_t os::Bsd::_main_thread;
132int os::Bsd::_page_size = -1;
133
134static jlong initial_time_count=0;
135
136static int clock_tics_per_sec = 100;
137
138// For diagnostics to print a message once. see run_periodic_checks
139static sigset_t check_signal_done;
140static bool check_signals = true;
141
142static pid_t _initial_pid = 0;
143
144/* Signal number used to suspend/resume a thread */
145
146/* do not use any signal number less than SIGSEGV, see 4355769 */
147static int SR_signum = SIGUSR2;
148sigset_t SR_sigset;
149
150
151////////////////////////////////////////////////////////////////////////////////
152// utility functions
153
154static int SR_initialize();
155
156julong os::available_memory() {
157  return Bsd::available_memory();
158}
159
160julong os::Bsd::available_memory() {
161  // XXXBSD: this is just a stopgap implementation
162  return physical_memory() >> 2;
163}
164
165julong os::physical_memory() {
166  return Bsd::physical_memory();
167}
168
169////////////////////////////////////////////////////////////////////////////////
170// environment support
171
172bool os::getenv(const char* name, char* buf, int len) {
173  const char* val = ::getenv(name);
174  if (val != NULL && strlen(val) < (size_t)len) {
175    strcpy(buf, val);
176    return true;
177  }
178  if (len > 0) buf[0] = 0;  // return a null string
179  return false;
180}
181
182
183// Return true if user is running as root.
184
185bool os::have_special_privileges() {
186  static bool init = false;
187  static bool privileges = false;
188  if (!init) {
189    privileges = (getuid() != geteuid()) || (getgid() != getegid());
190    init = true;
191  }
192  return privileges;
193}
194
195
196
197// Cpu architecture string
198#if   defined(ZERO)
199static char cpu_arch[] = ZERO_LIBARCH;
200#elif defined(IA64)
201static char cpu_arch[] = "ia64";
202#elif defined(IA32)
203static char cpu_arch[] = "i386";
204#elif defined(AMD64)
205static char cpu_arch[] = "amd64";
206#elif defined(ARM)
207static char cpu_arch[] = "arm";
208#elif defined(PPC)
209static char cpu_arch[] = "ppc";
210#elif defined(SPARC)
211#  ifdef _LP64
212static char cpu_arch[] = "sparcv9";
213#  else
214static char cpu_arch[] = "sparc";
215#  endif
216#else
217#error Add appropriate cpu_arch setting
218#endif
219
220// Compiler variant
221#ifdef COMPILER2
222#define COMPILER_VARIANT "server"
223#else
224#define COMPILER_VARIANT "client"
225#endif
226
227
228void os::Bsd::initialize_system_info() {
229  int mib[2];
230  size_t len;
231  int cpu_val;
232  julong mem_val;
233
234  /* get processors count via hw.ncpus sysctl */
235  mib[0] = CTL_HW;
236  mib[1] = HW_NCPU;
237  len = sizeof(cpu_val);
238  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
239       assert(len == sizeof(cpu_val), "unexpected data size");
240       set_processor_count(cpu_val);
241  }
242  else {
243       set_processor_count(1);   // fallback
244  }
245
246  /* get physical memory via hw.memsize sysctl (hw.memsize is used
247   * since it returns a 64 bit value)
248   */
249  mib[0] = CTL_HW;
250  mib[1] = HW_MEMSIZE;
251  len = sizeof(mem_val);
252  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
253       assert(len == sizeof(mem_val), "unexpected data size");
254       _physical_memory = mem_val;
255  } else {
256       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
257  }
258
259#ifdef __OpenBSD__
260  {
261       // limit _physical_memory memory view on OpenBSD since
262       // datasize rlimit restricts us anyway.
263       struct rlimit limits;
264       getrlimit(RLIMIT_DATA, &limits);
265       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
266  }
267#endif
268}
269
270#ifdef __APPLE__
271static const char *get_home() {
272  const char *home_dir = ::getenv("HOME");
273  if ((home_dir == NULL) || (*home_dir == '\0')) {
274    struct passwd *passwd_info = getpwuid(geteuid());
275    if (passwd_info != NULL) {
276      home_dir = passwd_info->pw_dir;
277    }
278  }
279
280  return home_dir;
281}
282#endif
283
284void os::init_system_properties_values() {
285//  char arch[12];
286//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
287
288  // The next steps are taken in the product version:
289  //
290  // Obtain the JAVA_HOME value from the location of libjvm.so.
291  // This library should be located at:
292  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
293  //
294  // If "/jre/lib/" appears at the right place in the path, then we
295  // assume libjvm.so is installed in a JDK and we use this path.
296  //
297  // Otherwise exit with message: "Could not create the Java virtual machine."
298  //
299  // The following extra steps are taken in the debugging version:
300  //
301  // If "/jre/lib/" does NOT appear at the right place in the path
302  // instead of exit check for $JAVA_HOME environment variable.
303  //
304  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
305  // then we append a fake suffix "hotspot/libjvm.so" to this path so
306  // it looks like libjvm.so is installed there
307  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
308  //
309  // Otherwise exit.
310  //
311  // Important note: if the location of libjvm.so changes this
312  // code needs to be changed accordingly.
313
314  // The next few definitions allow the code to be verbatim:
315#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
316#define getenv(n) ::getenv(n)
317
318/*
319 * See ld(1):
320 *      The linker uses the following search paths to locate required
321 *      shared libraries:
322 *        1: ...
323 *        ...
324 *        7: The default directories, normally /lib and /usr/lib.
325 */
326#ifndef DEFAULT_LIBPATH
327#define DEFAULT_LIBPATH "/lib:/usr/lib"
328#endif
329
330#define EXTENSIONS_DIR  "/lib/ext"
331#define ENDORSED_DIR    "/lib/endorsed"
332#define REG_DIR         "/usr/java/packages"
333
334#ifdef __APPLE__
335#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
336#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
337        const char *user_home_dir = get_home();
338        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
339        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
340            sizeof(SYS_EXTENSIONS_DIRS);
341#endif
342
343  {
344    /* sysclasspath, java_home, dll_dir */
345    {
346        char *home_path;
347        char *dll_path;
348        char *pslash;
349        char buf[MAXPATHLEN];
350        os::jvm_path(buf, sizeof(buf));
351
352        // Found the full path to libjvm.so.
353        // Now cut the path to <java_home>/jre if we can.
354        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
355        pslash = strrchr(buf, '/');
356        if (pslash != NULL)
357            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
358        dll_path = malloc(strlen(buf) + 1);
359        if (dll_path == NULL)
360            return;
361        strcpy(dll_path, buf);
362        Arguments::set_dll_dir(dll_path);
363
364        if (pslash != NULL) {
365            pslash = strrchr(buf, '/');
366            if (pslash != NULL) {
367                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
368#ifndef __APPLE__
369                pslash = strrchr(buf, '/');
370                if (pslash != NULL)
371                    *pslash = '\0';   /* get rid of /lib */
372#endif
373            }
374        }
375
376        home_path = malloc(strlen(buf) + 1);
377        if (home_path == NULL)
378            return;
379        strcpy(home_path, buf);
380        Arguments::set_java_home(home_path);
381
382        if (!set_boot_path('/', ':'))
383            return;
384    }
385
386    /*
387     * Where to look for native libraries
388     *
389     * Note: Due to a legacy implementation, most of the library path
390     * is set in the launcher.  This was to accomodate linking restrictions
391     * on legacy Bsd implementations (which are no longer supported).
392     * Eventually, all the library path setting will be done here.
393     *
394     * However, to prevent the proliferation of improperly built native
395     * libraries, the new path component /usr/java/packages is added here.
396     * Eventually, all the library path setting will be done here.
397     */
398    {
399        char *ld_library_path;
400
401        /*
402         * Construct the invariant part of ld_library_path. Note that the
403         * space for the colon and the trailing null are provided by the
404         * nulls included by the sizeof operator (so actually we allocate
405         * a byte more than necessary).
406         */
407#ifdef __APPLE__
408        ld_library_path = (char *) malloc(system_ext_size);
409        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
410#else
411        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
412            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
413        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
414#endif
415
416        /*
417         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
418         * should always exist (until the legacy problem cited above is
419         * addressed).
420         */
421#ifdef __APPLE__
422        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
423        char *l = getenv("JAVA_LIBRARY_PATH");
424        if (l != NULL) {
425            char *t = ld_library_path;
426            /* That's +1 for the colon and +1 for the trailing '\0' */
427            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
428            sprintf(ld_library_path, "%s:%s", l, t);
429            free(t);
430        }
431
432        char *v = getenv("DYLD_LIBRARY_PATH");
433#else
434        char *v = getenv("LD_LIBRARY_PATH");
435#endif
436        if (v != NULL) {
437            char *t = ld_library_path;
438            /* That's +1 for the colon and +1 for the trailing '\0' */
439            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
440            sprintf(ld_library_path, "%s:%s", v, t);
441            free(t);
442        }
443
444#ifdef __APPLE__
445        // Apple's Java6 has "." at the beginning of java.library.path.
446        // OpenJDK on Windows has "." at the end of java.library.path.
447        // OpenJDK on Linux and Solaris don't have "." in java.library.path
448        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
449        // "." is appended to the end of java.library.path. Yes, this
450        // could cause a change in behavior, but Apple's Java6 behavior
451        // can be achieved by putting "." at the beginning of the
452        // JAVA_LIBRARY_PATH environment variable.
453        {
454            char *t = ld_library_path;
455            // that's +3 for appending ":." and the trailing '\0'
456            ld_library_path = (char *) malloc(strlen(t) + 3);
457            sprintf(ld_library_path, "%s:%s", t, ".");
458            free(t);
459        }
460#endif
461
462        Arguments::set_library_path(ld_library_path);
463    }
464
465    /*
466     * Extensions directories.
467     *
468     * Note that the space for the colon and the trailing null are provided
469     * by the nulls included by the sizeof operator (so actually one byte more
470     * than necessary is allocated).
471     */
472    {
473#ifdef __APPLE__
474        char *buf = malloc(strlen(Arguments::get_java_home()) +
475            sizeof(EXTENSIONS_DIR) + system_ext_size);
476        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
477            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
478#else
479        char *buf = malloc(strlen(Arguments::get_java_home()) +
480            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
481        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
482            Arguments::get_java_home());
483#endif
484
485        Arguments::set_ext_dirs(buf);
486    }
487
488    /* Endorsed standards default directory. */
489    {
490        char * buf;
491        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
492        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
493        Arguments::set_endorsed_dirs(buf);
494    }
495  }
496
497#ifdef __APPLE__
498#undef SYS_EXTENSIONS_DIR
499#endif
500#undef malloc
501#undef getenv
502#undef EXTENSIONS_DIR
503#undef ENDORSED_DIR
504
505  // Done
506  return;
507}
508
509////////////////////////////////////////////////////////////////////////////////
510// breakpoint support
511
512void os::breakpoint() {
513  BREAKPOINT;
514}
515
516extern "C" void breakpoint() {
517  // use debugger to set breakpoint here
518}
519
520////////////////////////////////////////////////////////////////////////////////
521// signal support
522
523debug_only(static bool signal_sets_initialized = false);
524static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
525
526bool os::Bsd::is_sig_ignored(int sig) {
527      struct sigaction oact;
528      sigaction(sig, (struct sigaction*)NULL, &oact);
529      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
530                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
531      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
532           return true;
533      else
534           return false;
535}
536
537void os::Bsd::signal_sets_init() {
538  // Should also have an assertion stating we are still single-threaded.
539  assert(!signal_sets_initialized, "Already initialized");
540  // Fill in signals that are necessarily unblocked for all threads in
541  // the VM. Currently, we unblock the following signals:
542  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
543  //                         by -Xrs (=ReduceSignalUsage));
544  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
545  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
546  // the dispositions or masks wrt these signals.
547  // Programs embedding the VM that want to use the above signals for their
548  // own purposes must, at this time, use the "-Xrs" option to prevent
549  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
550  // (See bug 4345157, and other related bugs).
551  // In reality, though, unblocking these signals is really a nop, since
552  // these signals are not blocked by default.
553  sigemptyset(&unblocked_sigs);
554  sigemptyset(&allowdebug_blocked_sigs);
555  sigaddset(&unblocked_sigs, SIGILL);
556  sigaddset(&unblocked_sigs, SIGSEGV);
557  sigaddset(&unblocked_sigs, SIGBUS);
558  sigaddset(&unblocked_sigs, SIGFPE);
559  sigaddset(&unblocked_sigs, SR_signum);
560
561  if (!ReduceSignalUsage) {
562   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
563      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
564      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
565   }
566   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
567      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
568      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
569   }
570   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
571      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
572      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
573   }
574  }
575  // Fill in signals that are blocked by all but the VM thread.
576  sigemptyset(&vm_sigs);
577  if (!ReduceSignalUsage)
578    sigaddset(&vm_sigs, BREAK_SIGNAL);
579  debug_only(signal_sets_initialized = true);
580
581}
582
583// These are signals that are unblocked while a thread is running Java.
584// (For some reason, they get blocked by default.)
585sigset_t* os::Bsd::unblocked_signals() {
586  assert(signal_sets_initialized, "Not initialized");
587  return &unblocked_sigs;
588}
589
590// These are the signals that are blocked while a (non-VM) thread is
591// running Java. Only the VM thread handles these signals.
592sigset_t* os::Bsd::vm_signals() {
593  assert(signal_sets_initialized, "Not initialized");
594  return &vm_sigs;
595}
596
597// These are signals that are blocked during cond_wait to allow debugger in
598sigset_t* os::Bsd::allowdebug_blocked_signals() {
599  assert(signal_sets_initialized, "Not initialized");
600  return &allowdebug_blocked_sigs;
601}
602
603void os::Bsd::hotspot_sigmask(Thread* thread) {
604
605  //Save caller's signal mask before setting VM signal mask
606  sigset_t caller_sigmask;
607  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
608
609  OSThread* osthread = thread->osthread();
610  osthread->set_caller_sigmask(caller_sigmask);
611
612  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
613
614  if (!ReduceSignalUsage) {
615    if (thread->is_VM_thread()) {
616      // Only the VM thread handles BREAK_SIGNAL ...
617      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
618    } else {
619      // ... all other threads block BREAK_SIGNAL
620      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
621    }
622  }
623}
624
625
626//////////////////////////////////////////////////////////////////////////////
627// create new thread
628
629// check if it's safe to start a new thread
630static bool _thread_safety_check(Thread* thread) {
631  return true;
632}
633
634#ifdef __APPLE__
635// library handle for calling objc_registerThreadWithCollector()
636// without static linking to the libobjc library
637#define OBJC_LIB "/usr/lib/libobjc.dylib"
638#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
639typedef void (*objc_registerThreadWithCollector_t)();
640extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
641objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
642#endif
643
644#ifdef __APPLE__
645static uint64_t locate_unique_thread_id() {
646  // Additional thread_id used to correlate threads in SA
647  thread_identifier_info_data_t     m_ident_info;
648  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
649
650  thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
651              (thread_info_t) &m_ident_info, &count);
652  return m_ident_info.thread_id;
653}
654#endif
655
656// Thread start routine for all newly created threads
657static void *java_start(Thread *thread) {
658  // Try to randomize the cache line index of hot stack frames.
659  // This helps when threads of the same stack traces evict each other's
660  // cache lines. The threads can be either from the same JVM instance, or
661  // from different JVM instances. The benefit is especially true for
662  // processors with hyperthreading technology.
663  static int counter = 0;
664  int pid = os::current_process_id();
665  alloca(((pid ^ counter++) & 7) * 128);
666
667  ThreadLocalStorage::set_thread(thread);
668
669  OSThread* osthread = thread->osthread();
670  Monitor* sync = osthread->startThread_lock();
671
672  // non floating stack BsdThreads needs extra check, see above
673  if (!_thread_safety_check(thread)) {
674    // notify parent thread
675    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
676    osthread->set_state(ZOMBIE);
677    sync->notify_all();
678    return NULL;
679  }
680
681#ifdef __APPLE__
682  // thread_id is mach thread on macos
683  osthread->set_thread_id(::mach_thread_self());
684  osthread->set_unique_thread_id(locate_unique_thread_id());
685#else
686  // thread_id is pthread_id on BSD
687  osthread->set_thread_id(::pthread_self());
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // stack size
745  if (os::Bsd::supports_variable_stack_size()) {
746    // calculate stack size if it's not specified by caller
747    if (stack_size == 0) {
748      stack_size = os::Bsd::default_stack_size(thr_type);
749
750      switch (thr_type) {
751      case os::java_thread:
752        // Java threads use ThreadStackSize which default value can be
753        // changed with the flag -Xss
754        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
755        stack_size = JavaThread::stack_size_at_create();
756        break;
757      case os::compiler_thread:
758        if (CompilerThreadStackSize > 0) {
759          stack_size = (size_t)(CompilerThreadStackSize * K);
760          break;
761        } // else fall through:
762          // use VMThreadStackSize if CompilerThreadStackSize is not defined
763      case os::vm_thread:
764      case os::pgc_thread:
765      case os::cgc_thread:
766      case os::watcher_thread:
767        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
768        break;
769      }
770    }
771
772    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
773    pthread_attr_setstacksize(&attr, stack_size);
774  } else {
775    // let pthread_create() pick the default value.
776  }
777
778  ThreadState state;
779
780  {
781    pthread_t tid;
782    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
783
784    pthread_attr_destroy(&attr);
785
786    if (ret != 0) {
787      if (PrintMiscellaneous && (Verbose || WizardMode)) {
788        perror("pthread_create()");
789      }
790      // Need to clean up stuff we've allocated so far
791      thread->set_osthread(NULL);
792      delete osthread;
793      return false;
794    }
795
796    // Store pthread info into the OSThread
797    osthread->set_pthread_id(tid);
798
799    // Wait until child thread is either initialized or aborted
800    {
801      Monitor* sync_with_child = osthread->startThread_lock();
802      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
803      while ((state = osthread->get_state()) == ALLOCATED) {
804        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
805      }
806    }
807
808  }
809
810  // Aborted due to thread limit being reached
811  if (state == ZOMBIE) {
812      thread->set_osthread(NULL);
813      delete osthread;
814      return false;
815  }
816
817  // The thread is returned suspended (in state INITIALIZED),
818  // and is started higher up in the call chain
819  assert(state == INITIALIZED, "race condition");
820  return true;
821}
822
823/////////////////////////////////////////////////////////////////////////////
824// attach existing thread
825
826// bootstrap the main thread
827bool os::create_main_thread(JavaThread* thread) {
828  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
829  return create_attached_thread(thread);
830}
831
832bool os::create_attached_thread(JavaThread* thread) {
833#ifdef ASSERT
834    thread->verify_not_published();
835#endif
836
837  // Allocate the OSThread object
838  OSThread* osthread = new OSThread(NULL, NULL);
839
840  if (osthread == NULL) {
841    return false;
842  }
843
844  // Store pthread info into the OSThread
845#ifdef __APPLE__
846  osthread->set_thread_id(::mach_thread_self());
847  osthread->set_unique_thread_id(locate_unique_thread_id());
848#else
849  osthread->set_thread_id(::pthread_self());
850#endif
851  osthread->set_pthread_id(::pthread_self());
852
853  // initialize floating point control register
854  os::Bsd::init_thread_fpu_state();
855
856  // Initial thread state is RUNNABLE
857  osthread->set_state(RUNNABLE);
858
859  thread->set_osthread(osthread);
860
861  // initialize signal mask for this thread
862  // and save the caller's signal mask
863  os::Bsd::hotspot_sigmask(thread);
864
865  return true;
866}
867
868void os::pd_start_thread(Thread* thread) {
869  OSThread * osthread = thread->osthread();
870  assert(osthread->get_state() != INITIALIZED, "just checking");
871  Monitor* sync_with_child = osthread->startThread_lock();
872  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
873  sync_with_child->notify();
874}
875
876// Free Bsd resources related to the OSThread
877void os::free_thread(OSThread* osthread) {
878  assert(osthread != NULL, "osthread not set");
879
880  if (Thread::current()->osthread() == osthread) {
881    // Restore caller's signal mask
882    sigset_t sigmask = osthread->caller_sigmask();
883    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
884   }
885
886  delete osthread;
887}
888
889//////////////////////////////////////////////////////////////////////////////
890// thread local storage
891
892int os::allocate_thread_local_storage() {
893  pthread_key_t key;
894  int rslt = pthread_key_create(&key, NULL);
895  assert(rslt == 0, "cannot allocate thread local storage");
896  return (int)key;
897}
898
899// Note: This is currently not used by VM, as we don't destroy TLS key
900// on VM exit.
901void os::free_thread_local_storage(int index) {
902  int rslt = pthread_key_delete((pthread_key_t)index);
903  assert(rslt == 0, "invalid index");
904}
905
906void os::thread_local_storage_at_put(int index, void* value) {
907  int rslt = pthread_setspecific((pthread_key_t)index, value);
908  assert(rslt == 0, "pthread_setspecific failed");
909}
910
911extern "C" Thread* get_thread() {
912  return ThreadLocalStorage::thread();
913}
914
915
916////////////////////////////////////////////////////////////////////////////////
917// time support
918
919// Time since start-up in seconds to a fine granularity.
920// Used by VMSelfDestructTimer and the MemProfiler.
921double os::elapsedTime() {
922
923  return (double)(os::elapsed_counter()) * 0.000001;
924}
925
926jlong os::elapsed_counter() {
927  timeval time;
928  int status = gettimeofday(&time, NULL);
929  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
930}
931
932jlong os::elapsed_frequency() {
933  return (1000 * 1000);
934}
935
936bool os::supports_vtime() { return true; }
937bool os::enable_vtime()   { return false; }
938bool os::vtime_enabled()  { return false; }
939
940double os::elapsedVTime() {
941  // better than nothing, but not much
942  return elapsedTime();
943}
944
945jlong os::javaTimeMillis() {
946  timeval time;
947  int status = gettimeofday(&time, NULL);
948  assert(status != -1, "bsd error");
949  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
950}
951
952#ifndef CLOCK_MONOTONIC
953#define CLOCK_MONOTONIC (1)
954#endif
955
956#ifdef __APPLE__
957void os::Bsd::clock_init() {
958        // XXXDARWIN: Investigate replacement monotonic clock
959}
960#else
961void os::Bsd::clock_init() {
962  struct timespec res;
963  struct timespec tp;
964  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
965      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
966    // yes, monotonic clock is supported
967    _clock_gettime = ::clock_gettime;
968  }
969}
970#endif
971
972
973jlong os::javaTimeNanos() {
974  if (Bsd::supports_monotonic_clock()) {
975    struct timespec tp;
976    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
977    assert(status == 0, "gettime error");
978    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
979    return result;
980  } else {
981    timeval time;
982    int status = gettimeofday(&time, NULL);
983    assert(status != -1, "bsd error");
984    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
985    return 1000 * usecs;
986  }
987}
988
989void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
990  if (Bsd::supports_monotonic_clock()) {
991    info_ptr->max_value = ALL_64_BITS;
992
993    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
994    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
995    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
996  } else {
997    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
998    info_ptr->max_value = ALL_64_BITS;
999
1000    // gettimeofday is a real time clock so it skips
1001    info_ptr->may_skip_backward = true;
1002    info_ptr->may_skip_forward = true;
1003  }
1004
1005  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1006}
1007
1008// Return the real, user, and system times in seconds from an
1009// arbitrary fixed point in the past.
1010bool os::getTimesSecs(double* process_real_time,
1011                      double* process_user_time,
1012                      double* process_system_time) {
1013  struct tms ticks;
1014  clock_t real_ticks = times(&ticks);
1015
1016  if (real_ticks == (clock_t) (-1)) {
1017    return false;
1018  } else {
1019    double ticks_per_second = (double) clock_tics_per_sec;
1020    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1021    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1022    *process_real_time = ((double) real_ticks) / ticks_per_second;
1023
1024    return true;
1025  }
1026}
1027
1028
1029char * os::local_time_string(char *buf, size_t buflen) {
1030  struct tm t;
1031  time_t long_time;
1032  time(&long_time);
1033  localtime_r(&long_time, &t);
1034  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1035               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1036               t.tm_hour, t.tm_min, t.tm_sec);
1037  return buf;
1038}
1039
1040struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1041  return localtime_r(clock, res);
1042}
1043
1044////////////////////////////////////////////////////////////////////////////////
1045// runtime exit support
1046
1047// Note: os::shutdown() might be called very early during initialization, or
1048// called from signal handler. Before adding something to os::shutdown(), make
1049// sure it is async-safe and can handle partially initialized VM.
1050void os::shutdown() {
1051
1052  // allow PerfMemory to attempt cleanup of any persistent resources
1053  perfMemory_exit();
1054
1055  // needs to remove object in file system
1056  AttachListener::abort();
1057
1058  // flush buffered output, finish log files
1059  ostream_abort();
1060
1061  // Check for abort hook
1062  abort_hook_t abort_hook = Arguments::abort_hook();
1063  if (abort_hook != NULL) {
1064    abort_hook();
1065  }
1066
1067}
1068
1069// Note: os::abort() might be called very early during initialization, or
1070// called from signal handler. Before adding something to os::abort(), make
1071// sure it is async-safe and can handle partially initialized VM.
1072void os::abort(bool dump_core) {
1073  os::shutdown();
1074  if (dump_core) {
1075#ifndef PRODUCT
1076    fdStream out(defaultStream::output_fd());
1077    out.print_raw("Current thread is ");
1078    char buf[16];
1079    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1080    out.print_raw_cr(buf);
1081    out.print_raw_cr("Dumping core ...");
1082#endif
1083    ::abort(); // dump core
1084  }
1085
1086  ::exit(1);
1087}
1088
1089// Die immediately, no exit hook, no abort hook, no cleanup.
1090void os::die() {
1091  // _exit() on BsdThreads only kills current thread
1092  ::abort();
1093}
1094
1095// unused on bsd for now.
1096void os::set_error_file(const char *logfile) {}
1097
1098
1099// This method is a copy of JDK's sysGetLastErrorString
1100// from src/solaris/hpi/src/system_md.c
1101
1102size_t os::lasterror(char *buf, size_t len) {
1103
1104  if (errno == 0)  return 0;
1105
1106  const char *s = ::strerror(errno);
1107  size_t n = ::strlen(s);
1108  if (n >= len) {
1109    n = len - 1;
1110  }
1111  ::strncpy(buf, s, n);
1112  buf[n] = '\0';
1113  return n;
1114}
1115
1116intx os::current_thread_id() {
1117#ifdef __APPLE__
1118  return (intx)::mach_thread_self();
1119#else
1120  return (intx)::pthread_self();
1121#endif
1122}
1123int os::current_process_id() {
1124
1125  // Under the old bsd thread library, bsd gives each thread
1126  // its own process id. Because of this each thread will return
1127  // a different pid if this method were to return the result
1128  // of getpid(2). Bsd provides no api that returns the pid
1129  // of the launcher thread for the vm. This implementation
1130  // returns a unique pid, the pid of the launcher thread
1131  // that starts the vm 'process'.
1132
1133  // Under the NPTL, getpid() returns the same pid as the
1134  // launcher thread rather than a unique pid per thread.
1135  // Use gettid() if you want the old pre NPTL behaviour.
1136
1137  // if you are looking for the result of a call to getpid() that
1138  // returns a unique pid for the calling thread, then look at the
1139  // OSThread::thread_id() method in osThread_bsd.hpp file
1140
1141  return (int)(_initial_pid ? _initial_pid : getpid());
1142}
1143
1144// DLL functions
1145
1146#define JNI_LIB_PREFIX "lib"
1147#ifdef __APPLE__
1148#define JNI_LIB_SUFFIX ".dylib"
1149#else
1150#define JNI_LIB_SUFFIX ".so"
1151#endif
1152
1153const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1154
1155// This must be hard coded because it's the system's temporary
1156// directory not the java application's temp directory, ala java.io.tmpdir.
1157#ifdef __APPLE__
1158// macosx has a secure per-user temporary directory
1159char temp_path_storage[PATH_MAX];
1160const char* os::get_temp_directory() {
1161  static char *temp_path = NULL;
1162  if (temp_path == NULL) {
1163    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1164    if (pathSize == 0 || pathSize > PATH_MAX) {
1165      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1166    }
1167    temp_path = temp_path_storage;
1168  }
1169  return temp_path;
1170}
1171#else /* __APPLE__ */
1172const char* os::get_temp_directory() { return "/tmp"; }
1173#endif /* __APPLE__ */
1174
1175static bool file_exists(const char* filename) {
1176  struct stat statbuf;
1177  if (filename == NULL || strlen(filename) == 0) {
1178    return false;
1179  }
1180  return os::stat(filename, &statbuf) == 0;
1181}
1182
1183bool os::dll_build_name(char* buffer, size_t buflen,
1184                        const char* pname, const char* fname) {
1185  bool retval = false;
1186  // Copied from libhpi
1187  const size_t pnamelen = pname ? strlen(pname) : 0;
1188
1189  // Return error on buffer overflow.
1190  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1191    return retval;
1192  }
1193
1194  if (pnamelen == 0) {
1195    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1196    retval = true;
1197  } else if (strchr(pname, *os::path_separator()) != NULL) {
1198    int n;
1199    char** pelements = split_path(pname, &n);
1200    if (pelements == NULL) {
1201      return false;
1202    }
1203    for (int i = 0 ; i < n ; i++) {
1204      // Really shouldn't be NULL, but check can't hurt
1205      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1206        continue; // skip the empty path values
1207      }
1208      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1209          pelements[i], fname);
1210      if (file_exists(buffer)) {
1211        retval = true;
1212        break;
1213      }
1214    }
1215    // release the storage
1216    for (int i = 0 ; i < n ; i++) {
1217      if (pelements[i] != NULL) {
1218        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1219      }
1220    }
1221    if (pelements != NULL) {
1222      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1223    }
1224  } else {
1225    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1226    retval = true;
1227  }
1228  return retval;
1229}
1230
1231// check if addr is inside libjvm.so
1232bool os::address_is_in_vm(address addr) {
1233  static address libjvm_base_addr;
1234  Dl_info dlinfo;
1235
1236  if (libjvm_base_addr == NULL) {
1237    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1238    libjvm_base_addr = (address)dlinfo.dli_fbase;
1239    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1240  }
1241
1242  if (dladdr((void *)addr, &dlinfo)) {
1243    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1244  }
1245
1246  return false;
1247}
1248
1249
1250#define MACH_MAXSYMLEN 256
1251
1252bool os::dll_address_to_function_name(address addr, char *buf,
1253                                      int buflen, int *offset) {
1254  Dl_info dlinfo;
1255  char localbuf[MACH_MAXSYMLEN];
1256
1257  // dladdr will find names of dynamic functions only, but does
1258  // it set dli_fbase with mach_header address when it "fails" ?
1259  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1260    if (buf != NULL) {
1261      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1262        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1263      }
1264    }
1265    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1266    return true;
1267  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1268    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1269       buf, buflen, offset, dlinfo.dli_fname)) {
1270       return true;
1271    }
1272  }
1273
1274  // Handle non-dymanic manually:
1275  if (dlinfo.dli_fbase != NULL &&
1276      Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1277    if(!Decoder::demangle(localbuf, buf, buflen)) {
1278      jio_snprintf(buf, buflen, "%s", localbuf);
1279    }
1280    return true;
1281  }
1282  if (buf != NULL) buf[0] = '\0';
1283  if (offset != NULL) *offset = -1;
1284  return false;
1285}
1286
1287// ported from solaris version
1288bool os::dll_address_to_library_name(address addr, char* buf,
1289                                     int buflen, int* offset) {
1290  Dl_info dlinfo;
1291
1292  if (dladdr((void*)addr, &dlinfo)){
1293     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1294     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1295     return true;
1296  } else {
1297     if (buf) buf[0] = '\0';
1298     if (offset) *offset = -1;
1299     return false;
1300  }
1301}
1302
1303// Loads .dll/.so and
1304// in case of error it checks if .dll/.so was built for the
1305// same architecture as Hotspot is running on
1306
1307#ifdef __APPLE__
1308void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1309  void * result= ::dlopen(filename, RTLD_LAZY);
1310  if (result != NULL) {
1311    // Successful loading
1312    return result;
1313  }
1314
1315  // Read system error message into ebuf
1316  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1317  ebuf[ebuflen-1]='\0';
1318
1319  return NULL;
1320}
1321#else
1322void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1323{
1324  void * result= ::dlopen(filename, RTLD_LAZY);
1325  if (result != NULL) {
1326    // Successful loading
1327    return result;
1328  }
1329
1330  Elf32_Ehdr elf_head;
1331
1332  // Read system error message into ebuf
1333  // It may or may not be overwritten below
1334  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1335  ebuf[ebuflen-1]='\0';
1336  int diag_msg_max_length=ebuflen-strlen(ebuf);
1337  char* diag_msg_buf=ebuf+strlen(ebuf);
1338
1339  if (diag_msg_max_length==0) {
1340    // No more space in ebuf for additional diagnostics message
1341    return NULL;
1342  }
1343
1344
1345  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1346
1347  if (file_descriptor < 0) {
1348    // Can't open library, report dlerror() message
1349    return NULL;
1350  }
1351
1352  bool failed_to_read_elf_head=
1353    (sizeof(elf_head)!=
1354        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1355
1356  ::close(file_descriptor);
1357  if (failed_to_read_elf_head) {
1358    // file i/o error - report dlerror() msg
1359    return NULL;
1360  }
1361
1362  typedef struct {
1363    Elf32_Half  code;         // Actual value as defined in elf.h
1364    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1365    char        elf_class;    // 32 or 64 bit
1366    char        endianess;    // MSB or LSB
1367    char*       name;         // String representation
1368  } arch_t;
1369
1370  #ifndef EM_486
1371  #define EM_486          6               /* Intel 80486 */
1372  #endif
1373
1374  #ifndef EM_MIPS_RS3_LE
1375  #define EM_MIPS_RS3_LE  10              /* MIPS */
1376  #endif
1377
1378  #ifndef EM_PPC64
1379  #define EM_PPC64        21              /* PowerPC64 */
1380  #endif
1381
1382  #ifndef EM_S390
1383  #define EM_S390         22              /* IBM System/390 */
1384  #endif
1385
1386  #ifndef EM_IA_64
1387  #define EM_IA_64        50              /* HP/Intel IA-64 */
1388  #endif
1389
1390  #ifndef EM_X86_64
1391  #define EM_X86_64       62              /* AMD x86-64 */
1392  #endif
1393
1394  static const arch_t arch_array[]={
1395    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1396    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1397    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1398    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1399    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1400    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1401    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1402    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1403    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1404    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1405    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1406    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1407    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1408    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1409    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1410    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1411  };
1412
1413  #if  (defined IA32)
1414    static  Elf32_Half running_arch_code=EM_386;
1415  #elif   (defined AMD64)
1416    static  Elf32_Half running_arch_code=EM_X86_64;
1417  #elif  (defined IA64)
1418    static  Elf32_Half running_arch_code=EM_IA_64;
1419  #elif  (defined __sparc) && (defined _LP64)
1420    static  Elf32_Half running_arch_code=EM_SPARCV9;
1421  #elif  (defined __sparc) && (!defined _LP64)
1422    static  Elf32_Half running_arch_code=EM_SPARC;
1423  #elif  (defined __powerpc64__)
1424    static  Elf32_Half running_arch_code=EM_PPC64;
1425  #elif  (defined __powerpc__)
1426    static  Elf32_Half running_arch_code=EM_PPC;
1427  #elif  (defined ARM)
1428    static  Elf32_Half running_arch_code=EM_ARM;
1429  #elif  (defined S390)
1430    static  Elf32_Half running_arch_code=EM_S390;
1431  #elif  (defined ALPHA)
1432    static  Elf32_Half running_arch_code=EM_ALPHA;
1433  #elif  (defined MIPSEL)
1434    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1435  #elif  (defined PARISC)
1436    static  Elf32_Half running_arch_code=EM_PARISC;
1437  #elif  (defined MIPS)
1438    static  Elf32_Half running_arch_code=EM_MIPS;
1439  #elif  (defined M68K)
1440    static  Elf32_Half running_arch_code=EM_68K;
1441  #else
1442    #error Method os::dll_load requires that one of following is defined:\
1443         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1444  #endif
1445
1446  // Identify compatability class for VM's architecture and library's architecture
1447  // Obtain string descriptions for architectures
1448
1449  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1450  int running_arch_index=-1;
1451
1452  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1453    if (running_arch_code == arch_array[i].code) {
1454      running_arch_index    = i;
1455    }
1456    if (lib_arch.code == arch_array[i].code) {
1457      lib_arch.compat_class = arch_array[i].compat_class;
1458      lib_arch.name         = arch_array[i].name;
1459    }
1460  }
1461
1462  assert(running_arch_index != -1,
1463    "Didn't find running architecture code (running_arch_code) in arch_array");
1464  if (running_arch_index == -1) {
1465    // Even though running architecture detection failed
1466    // we may still continue with reporting dlerror() message
1467    return NULL;
1468  }
1469
1470  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1471    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1472    return NULL;
1473  }
1474
1475#ifndef S390
1476  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1477    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1478    return NULL;
1479  }
1480#endif // !S390
1481
1482  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1483    if ( lib_arch.name!=NULL ) {
1484      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1485        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1486        lib_arch.name, arch_array[running_arch_index].name);
1487    } else {
1488      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1489      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1490        lib_arch.code,
1491        arch_array[running_arch_index].name);
1492    }
1493  }
1494
1495  return NULL;
1496}
1497#endif /* !__APPLE__ */
1498
1499// XXX: Do we need a lock around this as per Linux?
1500void* os::dll_lookup(void* handle, const char* name) {
1501  return dlsym(handle, name);
1502}
1503
1504
1505static bool _print_ascii_file(const char* filename, outputStream* st) {
1506  int fd = ::open(filename, O_RDONLY);
1507  if (fd == -1) {
1508     return false;
1509  }
1510
1511  char buf[32];
1512  int bytes;
1513  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1514    st->print_raw(buf, bytes);
1515  }
1516
1517  ::close(fd);
1518
1519  return true;
1520}
1521
1522void os::print_dll_info(outputStream *st) {
1523   st->print_cr("Dynamic libraries:");
1524#ifdef RTLD_DI_LINKMAP
1525    Dl_info dli;
1526    void *handle;
1527    Link_map *map;
1528    Link_map *p;
1529
1530    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1531        st->print_cr("Error: Cannot print dynamic libraries.");
1532        return;
1533    }
1534    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1535    if (handle == NULL) {
1536        st->print_cr("Error: Cannot print dynamic libraries.");
1537        return;
1538    }
1539    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1540    if (map == NULL) {
1541        st->print_cr("Error: Cannot print dynamic libraries.");
1542        return;
1543    }
1544
1545    while (map->l_prev != NULL)
1546        map = map->l_prev;
1547
1548    while (map != NULL) {
1549        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1550        map = map->l_next;
1551    }
1552
1553    dlclose(handle);
1554#elif defined(__APPLE__)
1555    uint32_t count;
1556    uint32_t i;
1557
1558    count = _dyld_image_count();
1559    for (i = 1; i < count; i++) {
1560        const char *name = _dyld_get_image_name(i);
1561        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1562        st->print_cr(PTR_FORMAT " \t%s", slide, name);
1563    }
1564#else
1565   st->print_cr("Error: Cannot print dynamic libraries.");
1566#endif
1567}
1568
1569void os::print_os_info_brief(outputStream* st) {
1570  st->print("Bsd");
1571
1572  os::Posix::print_uname_info(st);
1573}
1574
1575void os::print_os_info(outputStream* st) {
1576  st->print("OS:");
1577  st->print("Bsd");
1578
1579  os::Posix::print_uname_info(st);
1580
1581  os::Posix::print_rlimit_info(st);
1582
1583  os::Posix::print_load_average(st);
1584}
1585
1586void os::pd_print_cpu_info(outputStream* st) {
1587  // Nothing to do for now.
1588}
1589
1590void os::print_memory_info(outputStream* st) {
1591
1592  st->print("Memory:");
1593  st->print(" %dk page", os::vm_page_size()>>10);
1594
1595  st->print(", physical " UINT64_FORMAT "k",
1596            os::physical_memory() >> 10);
1597  st->print("(" UINT64_FORMAT "k free)",
1598            os::available_memory() >> 10);
1599  st->cr();
1600
1601  // meminfo
1602  st->print("\n/proc/meminfo:\n");
1603  _print_ascii_file("/proc/meminfo", st);
1604  st->cr();
1605}
1606
1607// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1608// but they're the same for all the bsd arch that we support
1609// and they're the same for solaris but there's no common place to put this.
1610const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1611                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1612                          "ILL_COPROC", "ILL_BADSTK" };
1613
1614const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1615                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1616                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1617
1618const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1619
1620const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1621
1622void os::print_siginfo(outputStream* st, void* siginfo) {
1623  st->print("siginfo:");
1624
1625  const int buflen = 100;
1626  char buf[buflen];
1627  siginfo_t *si = (siginfo_t*)siginfo;
1628  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1629  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1630    st->print("si_errno=%s", buf);
1631  } else {
1632    st->print("si_errno=%d", si->si_errno);
1633  }
1634  const int c = si->si_code;
1635  assert(c > 0, "unexpected si_code");
1636  switch (si->si_signo) {
1637  case SIGILL:
1638    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1639    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1640    break;
1641  case SIGFPE:
1642    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1643    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1644    break;
1645  case SIGSEGV:
1646    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1647    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1648    break;
1649  case SIGBUS:
1650    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1651    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1652    break;
1653  default:
1654    st->print(", si_code=%d", si->si_code);
1655    // no si_addr
1656  }
1657
1658  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1659      UseSharedSpaces) {
1660    FileMapInfo* mapinfo = FileMapInfo::current_info();
1661    if (mapinfo->is_in_shared_space(si->si_addr)) {
1662      st->print("\n\nError accessing class data sharing archive."   \
1663                " Mapped file inaccessible during execution, "      \
1664                " possible disk/network problem.");
1665    }
1666  }
1667  st->cr();
1668}
1669
1670
1671static void print_signal_handler(outputStream* st, int sig,
1672                                 char* buf, size_t buflen);
1673
1674void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1675  st->print_cr("Signal Handlers:");
1676  print_signal_handler(st, SIGSEGV, buf, buflen);
1677  print_signal_handler(st, SIGBUS , buf, buflen);
1678  print_signal_handler(st, SIGFPE , buf, buflen);
1679  print_signal_handler(st, SIGPIPE, buf, buflen);
1680  print_signal_handler(st, SIGXFSZ, buf, buflen);
1681  print_signal_handler(st, SIGILL , buf, buflen);
1682  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1683  print_signal_handler(st, SR_signum, buf, buflen);
1684  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1685  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1686  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1687  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1688}
1689
1690static char saved_jvm_path[MAXPATHLEN] = {0};
1691
1692// Find the full path to the current module, libjvm
1693void os::jvm_path(char *buf, jint buflen) {
1694  // Error checking.
1695  if (buflen < MAXPATHLEN) {
1696    assert(false, "must use a large-enough buffer");
1697    buf[0] = '\0';
1698    return;
1699  }
1700  // Lazy resolve the path to current module.
1701  if (saved_jvm_path[0] != 0) {
1702    strcpy(buf, saved_jvm_path);
1703    return;
1704  }
1705
1706  char dli_fname[MAXPATHLEN];
1707  bool ret = dll_address_to_library_name(
1708                CAST_FROM_FN_PTR(address, os::jvm_path),
1709                dli_fname, sizeof(dli_fname), NULL);
1710  assert(ret != 0, "cannot locate libjvm");
1711  char *rp = realpath(dli_fname, buf);
1712  if (rp == NULL)
1713    return;
1714
1715  if (Arguments::created_by_gamma_launcher()) {
1716    // Support for the gamma launcher.  Typical value for buf is
1717    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1718    // the right place in the string, then assume we are installed in a JDK and
1719    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1720    // construct a path to the JVM being overridden.
1721
1722    const char *p = buf + strlen(buf) - 1;
1723    for (int count = 0; p > buf && count < 5; ++count) {
1724      for (--p; p > buf && *p != '/'; --p)
1725        /* empty */ ;
1726    }
1727
1728    if (strncmp(p, "/jre/lib/", 9) != 0) {
1729      // Look for JAVA_HOME in the environment.
1730      char* java_home_var = ::getenv("JAVA_HOME");
1731      if (java_home_var != NULL && java_home_var[0] != 0) {
1732        char* jrelib_p;
1733        int len;
1734
1735        // Check the current module name "libjvm"
1736        p = strrchr(buf, '/');
1737        assert(strstr(p, "/libjvm") == p, "invalid library name");
1738
1739        rp = realpath(java_home_var, buf);
1740        if (rp == NULL)
1741          return;
1742
1743        // determine if this is a legacy image or modules image
1744        // modules image doesn't have "jre" subdirectory
1745        len = strlen(buf);
1746        jrelib_p = buf + len;
1747
1748        // Add the appropriate library subdir
1749        snprintf(jrelib_p, buflen-len, "/jre/lib");
1750        if (0 != access(buf, F_OK)) {
1751          snprintf(jrelib_p, buflen-len, "/lib");
1752        }
1753
1754        // Add the appropriate client or server subdir
1755        len = strlen(buf);
1756        jrelib_p = buf + len;
1757        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1758        if (0 != access(buf, F_OK)) {
1759          snprintf(jrelib_p, buflen-len, "");
1760        }
1761
1762        // If the path exists within JAVA_HOME, add the JVM library name
1763        // to complete the path to JVM being overridden.  Otherwise fallback
1764        // to the path to the current library.
1765        if (0 == access(buf, F_OK)) {
1766          // Use current module name "libjvm"
1767          len = strlen(buf);
1768          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1769        } else {
1770          // Fall back to path of current library
1771          rp = realpath(dli_fname, buf);
1772          if (rp == NULL)
1773            return;
1774        }
1775      }
1776    }
1777  }
1778
1779  strcpy(saved_jvm_path, buf);
1780}
1781
1782void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1783  // no prefix required, not even "_"
1784}
1785
1786void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1787  // no suffix required
1788}
1789
1790////////////////////////////////////////////////////////////////////////////////
1791// sun.misc.Signal support
1792
1793static volatile jint sigint_count = 0;
1794
1795static void
1796UserHandler(int sig, void *siginfo, void *context) {
1797  // 4511530 - sem_post is serialized and handled by the manager thread. When
1798  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1799  // don't want to flood the manager thread with sem_post requests.
1800  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1801      return;
1802
1803  // Ctrl-C is pressed during error reporting, likely because the error
1804  // handler fails to abort. Let VM die immediately.
1805  if (sig == SIGINT && is_error_reported()) {
1806     os::die();
1807  }
1808
1809  os::signal_notify(sig);
1810}
1811
1812void* os::user_handler() {
1813  return CAST_FROM_FN_PTR(void*, UserHandler);
1814}
1815
1816extern "C" {
1817  typedef void (*sa_handler_t)(int);
1818  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1819}
1820
1821void* os::signal(int signal_number, void* handler) {
1822  struct sigaction sigAct, oldSigAct;
1823
1824  sigfillset(&(sigAct.sa_mask));
1825  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1826  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1827
1828  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1829    // -1 means registration failed
1830    return (void *)-1;
1831  }
1832
1833  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1834}
1835
1836void os::signal_raise(int signal_number) {
1837  ::raise(signal_number);
1838}
1839
1840/*
1841 * The following code is moved from os.cpp for making this
1842 * code platform specific, which it is by its very nature.
1843 */
1844
1845// Will be modified when max signal is changed to be dynamic
1846int os::sigexitnum_pd() {
1847  return NSIG;
1848}
1849
1850// a counter for each possible signal value
1851static volatile jint pending_signals[NSIG+1] = { 0 };
1852
1853// Bsd(POSIX) specific hand shaking semaphore.
1854#ifdef __APPLE__
1855typedef semaphore_t os_semaphore_t;
1856#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1857#define SEM_WAIT(sem)           semaphore_wait(sem)
1858#define SEM_POST(sem)           semaphore_signal(sem)
1859#define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1860#else
1861typedef sem_t os_semaphore_t;
1862#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1863#define SEM_WAIT(sem)           sem_wait(&sem)
1864#define SEM_POST(sem)           sem_post(&sem)
1865#define SEM_DESTROY(sem)        sem_destroy(&sem)
1866#endif
1867
1868class Semaphore : public StackObj {
1869  public:
1870    Semaphore();
1871    ~Semaphore();
1872    void signal();
1873    void wait();
1874    bool trywait();
1875    bool timedwait(unsigned int sec, int nsec);
1876  private:
1877    jlong currenttime() const;
1878    semaphore_t _semaphore;
1879};
1880
1881Semaphore::Semaphore() : _semaphore(0) {
1882  SEM_INIT(_semaphore, 0);
1883}
1884
1885Semaphore::~Semaphore() {
1886  SEM_DESTROY(_semaphore);
1887}
1888
1889void Semaphore::signal() {
1890  SEM_POST(_semaphore);
1891}
1892
1893void Semaphore::wait() {
1894  SEM_WAIT(_semaphore);
1895}
1896
1897jlong Semaphore::currenttime() const {
1898    struct timeval tv;
1899    gettimeofday(&tv, NULL);
1900    return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1901}
1902
1903#ifdef __APPLE__
1904bool Semaphore::trywait() {
1905  return timedwait(0, 0);
1906}
1907
1908bool Semaphore::timedwait(unsigned int sec, int nsec) {
1909  kern_return_t kr = KERN_ABORTED;
1910  mach_timespec_t waitspec;
1911  waitspec.tv_sec = sec;
1912  waitspec.tv_nsec = nsec;
1913
1914  jlong starttime = currenttime();
1915
1916  kr = semaphore_timedwait(_semaphore, waitspec);
1917  while (kr == KERN_ABORTED) {
1918    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1919
1920    jlong current = currenttime();
1921    jlong passedtime = current - starttime;
1922
1923    if (passedtime >= totalwait) {
1924      waitspec.tv_sec = 0;
1925      waitspec.tv_nsec = 0;
1926    } else {
1927      jlong waittime = totalwait - (current - starttime);
1928      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1929      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1930    }
1931
1932    kr = semaphore_timedwait(_semaphore, waitspec);
1933  }
1934
1935  return kr == KERN_SUCCESS;
1936}
1937
1938#else
1939
1940bool Semaphore::trywait() {
1941  return sem_trywait(&_semaphore) == 0;
1942}
1943
1944bool Semaphore::timedwait(unsigned int sec, int nsec) {
1945  struct timespec ts;
1946  jlong endtime = unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1947
1948  while (1) {
1949    int result = sem_timedwait(&_semaphore, &ts);
1950    if (result == 0) {
1951      return true;
1952    } else if (errno == EINTR) {
1953      continue;
1954    } else if (errno == ETIMEDOUT) {
1955      return false;
1956    } else {
1957      return false;
1958    }
1959  }
1960}
1961
1962#endif // __APPLE__
1963
1964static os_semaphore_t sig_sem;
1965static Semaphore sr_semaphore;
1966
1967void os::signal_init_pd() {
1968  // Initialize signal structures
1969  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1970
1971  // Initialize signal semaphore
1972  ::SEM_INIT(sig_sem, 0);
1973}
1974
1975void os::signal_notify(int sig) {
1976  Atomic::inc(&pending_signals[sig]);
1977  ::SEM_POST(sig_sem);
1978}
1979
1980static int check_pending_signals(bool wait) {
1981  Atomic::store(0, &sigint_count);
1982  for (;;) {
1983    for (int i = 0; i < NSIG + 1; i++) {
1984      jint n = pending_signals[i];
1985      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1986        return i;
1987      }
1988    }
1989    if (!wait) {
1990      return -1;
1991    }
1992    JavaThread *thread = JavaThread::current();
1993    ThreadBlockInVM tbivm(thread);
1994
1995    bool threadIsSuspended;
1996    do {
1997      thread->set_suspend_equivalent();
1998      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1999      ::SEM_WAIT(sig_sem);
2000
2001      // were we externally suspended while we were waiting?
2002      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2003      if (threadIsSuspended) {
2004        //
2005        // The semaphore has been incremented, but while we were waiting
2006        // another thread suspended us. We don't want to continue running
2007        // while suspended because that would surprise the thread that
2008        // suspended us.
2009        //
2010        ::SEM_POST(sig_sem);
2011
2012        thread->java_suspend_self();
2013      }
2014    } while (threadIsSuspended);
2015  }
2016}
2017
2018int os::signal_lookup() {
2019  return check_pending_signals(false);
2020}
2021
2022int os::signal_wait() {
2023  return check_pending_signals(true);
2024}
2025
2026////////////////////////////////////////////////////////////////////////////////
2027// Virtual Memory
2028
2029int os::vm_page_size() {
2030  // Seems redundant as all get out
2031  assert(os::Bsd::page_size() != -1, "must call os::init");
2032  return os::Bsd::page_size();
2033}
2034
2035// Solaris allocates memory by pages.
2036int os::vm_allocation_granularity() {
2037  assert(os::Bsd::page_size() != -1, "must call os::init");
2038  return os::Bsd::page_size();
2039}
2040
2041// Rationale behind this function:
2042//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2043//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2044//  samples for JITted code. Here we create private executable mapping over the code cache
2045//  and then we can use standard (well, almost, as mapping can change) way to provide
2046//  info for the reporting script by storing timestamp and location of symbol
2047void bsd_wrap_code(char* base, size_t size) {
2048  static volatile jint cnt = 0;
2049
2050  if (!UseOprofile) {
2051    return;
2052  }
2053
2054  char buf[PATH_MAX + 1];
2055  int num = Atomic::add(1, &cnt);
2056
2057  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2058           os::get_temp_directory(), os::current_process_id(), num);
2059  unlink(buf);
2060
2061  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2062
2063  if (fd != -1) {
2064    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2065    if (rv != (off_t)-1) {
2066      if (::write(fd, "", 1) == 1) {
2067        mmap(base, size,
2068             PROT_READ|PROT_WRITE|PROT_EXEC,
2069             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2070      }
2071    }
2072    ::close(fd);
2073    unlink(buf);
2074  }
2075}
2076
2077// NOTE: Bsd kernel does not really reserve the pages for us.
2078//       All it does is to check if there are enough free pages
2079//       left at the time of mmap(). This could be a potential
2080//       problem.
2081bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2082  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2083#ifdef __OpenBSD__
2084  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2085  return ::mprotect(addr, size, prot) == 0;
2086#else
2087  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2088                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2089  return res != (uintptr_t) MAP_FAILED;
2090#endif
2091}
2092
2093
2094bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2095                       bool exec) {
2096  return commit_memory(addr, size, exec);
2097}
2098
2099void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2100}
2101
2102void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2103  ::madvise(addr, bytes, MADV_DONTNEED);
2104}
2105
2106void os::numa_make_global(char *addr, size_t bytes) {
2107}
2108
2109void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2110}
2111
2112bool os::numa_topology_changed()   { return false; }
2113
2114size_t os::numa_get_groups_num() {
2115  return 1;
2116}
2117
2118int os::numa_get_group_id() {
2119  return 0;
2120}
2121
2122size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2123  if (size > 0) {
2124    ids[0] = 0;
2125    return 1;
2126  }
2127  return 0;
2128}
2129
2130bool os::get_page_info(char *start, page_info* info) {
2131  return false;
2132}
2133
2134char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2135  return end;
2136}
2137
2138
2139bool os::pd_uncommit_memory(char* addr, size_t size) {
2140#ifdef __OpenBSD__
2141  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2142  return ::mprotect(addr, size, PROT_NONE) == 0;
2143#else
2144  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2145                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2146  return res  != (uintptr_t) MAP_FAILED;
2147#endif
2148}
2149
2150bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2151  return os::commit_memory(addr, size);
2152}
2153
2154// If this is a growable mapping, remove the guard pages entirely by
2155// munmap()ping them.  If not, just call uncommit_memory().
2156bool os::remove_stack_guard_pages(char* addr, size_t size) {
2157  return os::uncommit_memory(addr, size);
2158}
2159
2160static address _highest_vm_reserved_address = NULL;
2161
2162// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2163// at 'requested_addr'. If there are existing memory mappings at the same
2164// location, however, they will be overwritten. If 'fixed' is false,
2165// 'requested_addr' is only treated as a hint, the return value may or
2166// may not start from the requested address. Unlike Bsd mmap(), this
2167// function returns NULL to indicate failure.
2168static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2169  char * addr;
2170  int flags;
2171
2172  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2173  if (fixed) {
2174    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2175    flags |= MAP_FIXED;
2176  }
2177
2178  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2179  // touch an uncommitted page. Otherwise, the read/write might
2180  // succeed if we have enough swap space to back the physical page.
2181  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2182                       flags, -1, 0);
2183
2184  if (addr != MAP_FAILED) {
2185    // anon_mmap() should only get called during VM initialization,
2186    // don't need lock (actually we can skip locking even it can be called
2187    // from multiple threads, because _highest_vm_reserved_address is just a
2188    // hint about the upper limit of non-stack memory regions.)
2189    if ((address)addr + bytes > _highest_vm_reserved_address) {
2190      _highest_vm_reserved_address = (address)addr + bytes;
2191    }
2192  }
2193
2194  return addr == MAP_FAILED ? NULL : addr;
2195}
2196
2197// Don't update _highest_vm_reserved_address, because there might be memory
2198// regions above addr + size. If so, releasing a memory region only creates
2199// a hole in the address space, it doesn't help prevent heap-stack collision.
2200//
2201static int anon_munmap(char * addr, size_t size) {
2202  return ::munmap(addr, size) == 0;
2203}
2204
2205char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2206                         size_t alignment_hint) {
2207  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2208}
2209
2210bool os::pd_release_memory(char* addr, size_t size) {
2211  return anon_munmap(addr, size);
2212}
2213
2214static bool bsd_mprotect(char* addr, size_t size, int prot) {
2215  // Bsd wants the mprotect address argument to be page aligned.
2216  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2217
2218  // According to SUSv3, mprotect() should only be used with mappings
2219  // established by mmap(), and mmap() always maps whole pages. Unaligned
2220  // 'addr' likely indicates problem in the VM (e.g. trying to change
2221  // protection of malloc'ed or statically allocated memory). Check the
2222  // caller if you hit this assert.
2223  assert(addr == bottom, "sanity check");
2224
2225  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2226  return ::mprotect(bottom, size, prot) == 0;
2227}
2228
2229// Set protections specified
2230bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2231                        bool is_committed) {
2232  unsigned int p = 0;
2233  switch (prot) {
2234  case MEM_PROT_NONE: p = PROT_NONE; break;
2235  case MEM_PROT_READ: p = PROT_READ; break;
2236  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2237  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2238  default:
2239    ShouldNotReachHere();
2240  }
2241  // is_committed is unused.
2242  return bsd_mprotect(addr, bytes, p);
2243}
2244
2245bool os::guard_memory(char* addr, size_t size) {
2246  return bsd_mprotect(addr, size, PROT_NONE);
2247}
2248
2249bool os::unguard_memory(char* addr, size_t size) {
2250  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2251}
2252
2253bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2254  return false;
2255}
2256
2257// Large page support
2258
2259static size_t _large_page_size = 0;
2260
2261void os::large_page_init() {
2262}
2263
2264
2265char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2266  // "exec" is passed in but not used.  Creating the shared image for
2267  // the code cache doesn't have an SHM_X executable permission to check.
2268  assert(UseLargePages && UseSHM, "only for SHM large pages");
2269
2270  key_t key = IPC_PRIVATE;
2271  char *addr;
2272
2273  bool warn_on_failure = UseLargePages &&
2274                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2275                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2276                        );
2277  char msg[128];
2278
2279  // Create a large shared memory region to attach to based on size.
2280  // Currently, size is the total size of the heap
2281  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2282  if (shmid == -1) {
2283     // Possible reasons for shmget failure:
2284     // 1. shmmax is too small for Java heap.
2285     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2286     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2287     // 2. not enough large page memory.
2288     //    > check available large pages: cat /proc/meminfo
2289     //    > increase amount of large pages:
2290     //          echo new_value > /proc/sys/vm/nr_hugepages
2291     //      Note 1: different Bsd may use different name for this property,
2292     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2293     //      Note 2: it's possible there's enough physical memory available but
2294     //            they are so fragmented after a long run that they can't
2295     //            coalesce into large pages. Try to reserve large pages when
2296     //            the system is still "fresh".
2297     if (warn_on_failure) {
2298       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2299       warning(msg);
2300     }
2301     return NULL;
2302  }
2303
2304  // attach to the region
2305  addr = (char*)shmat(shmid, req_addr, 0);
2306  int err = errno;
2307
2308  // Remove shmid. If shmat() is successful, the actual shared memory segment
2309  // will be deleted when it's detached by shmdt() or when the process
2310  // terminates. If shmat() is not successful this will remove the shared
2311  // segment immediately.
2312  shmctl(shmid, IPC_RMID, NULL);
2313
2314  if ((intptr_t)addr == -1) {
2315     if (warn_on_failure) {
2316       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2317       warning(msg);
2318     }
2319     return NULL;
2320  }
2321
2322  // The memory is committed
2323  address pc = CALLER_PC;
2324  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
2325  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
2326
2327  return addr;
2328}
2329
2330bool os::release_memory_special(char* base, size_t bytes) {
2331  // detaching the SHM segment will also delete it, see reserve_memory_special()
2332  int rslt = shmdt(base);
2333  if (rslt == 0) {
2334    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
2335    MemTracker::record_virtual_memory_release((address)base, bytes);
2336    return true;
2337  } else {
2338    return false;
2339  }
2340
2341}
2342
2343size_t os::large_page_size() {
2344  return _large_page_size;
2345}
2346
2347// HugeTLBFS allows application to commit large page memory on demand;
2348// with SysV SHM the entire memory region must be allocated as shared
2349// memory.
2350bool os::can_commit_large_page_memory() {
2351  return UseHugeTLBFS;
2352}
2353
2354bool os::can_execute_large_page_memory() {
2355  return UseHugeTLBFS;
2356}
2357
2358// Reserve memory at an arbitrary address, only if that area is
2359// available (and not reserved for something else).
2360
2361char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2362  const int max_tries = 10;
2363  char* base[max_tries];
2364  size_t size[max_tries];
2365  const size_t gap = 0x000000;
2366
2367  // Assert only that the size is a multiple of the page size, since
2368  // that's all that mmap requires, and since that's all we really know
2369  // about at this low abstraction level.  If we need higher alignment,
2370  // we can either pass an alignment to this method or verify alignment
2371  // in one of the methods further up the call chain.  See bug 5044738.
2372  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2373
2374  // Repeatedly allocate blocks until the block is allocated at the
2375  // right spot. Give up after max_tries. Note that reserve_memory() will
2376  // automatically update _highest_vm_reserved_address if the call is
2377  // successful. The variable tracks the highest memory address every reserved
2378  // by JVM. It is used to detect heap-stack collision if running with
2379  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2380  // space than needed, it could confuse the collision detecting code. To
2381  // solve the problem, save current _highest_vm_reserved_address and
2382  // calculate the correct value before return.
2383  address old_highest = _highest_vm_reserved_address;
2384
2385  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2386  // if kernel honors the hint then we can return immediately.
2387  char * addr = anon_mmap(requested_addr, bytes, false);
2388  if (addr == requested_addr) {
2389     return requested_addr;
2390  }
2391
2392  if (addr != NULL) {
2393     // mmap() is successful but it fails to reserve at the requested address
2394     anon_munmap(addr, bytes);
2395  }
2396
2397  int i;
2398  for (i = 0; i < max_tries; ++i) {
2399    base[i] = reserve_memory(bytes);
2400
2401    if (base[i] != NULL) {
2402      // Is this the block we wanted?
2403      if (base[i] == requested_addr) {
2404        size[i] = bytes;
2405        break;
2406      }
2407
2408      // Does this overlap the block we wanted? Give back the overlapped
2409      // parts and try again.
2410
2411      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2412      if (top_overlap >= 0 && top_overlap < bytes) {
2413        unmap_memory(base[i], top_overlap);
2414        base[i] += top_overlap;
2415        size[i] = bytes - top_overlap;
2416      } else {
2417        size_t bottom_overlap = base[i] + bytes - requested_addr;
2418        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2419          unmap_memory(requested_addr, bottom_overlap);
2420          size[i] = bytes - bottom_overlap;
2421        } else {
2422          size[i] = bytes;
2423        }
2424      }
2425    }
2426  }
2427
2428  // Give back the unused reserved pieces.
2429
2430  for (int j = 0; j < i; ++j) {
2431    if (base[j] != NULL) {
2432      unmap_memory(base[j], size[j]);
2433    }
2434  }
2435
2436  if (i < max_tries) {
2437    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2438    return requested_addr;
2439  } else {
2440    _highest_vm_reserved_address = old_highest;
2441    return NULL;
2442  }
2443}
2444
2445size_t os::read(int fd, void *buf, unsigned int nBytes) {
2446  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2447}
2448
2449// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2450// Solaris uses poll(), bsd uses park().
2451// Poll() is likely a better choice, assuming that Thread.interrupt()
2452// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2453// SIGSEGV, see 4355769.
2454
2455int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2456  assert(thread == Thread::current(),  "thread consistency check");
2457
2458  ParkEvent * const slp = thread->_SleepEvent ;
2459  slp->reset() ;
2460  OrderAccess::fence() ;
2461
2462  if (interruptible) {
2463    jlong prevtime = javaTimeNanos();
2464
2465    for (;;) {
2466      if (os::is_interrupted(thread, true)) {
2467        return OS_INTRPT;
2468      }
2469
2470      jlong newtime = javaTimeNanos();
2471
2472      if (newtime - prevtime < 0) {
2473        // time moving backwards, should only happen if no monotonic clock
2474        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2475        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2476      } else {
2477        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2478      }
2479
2480      if(millis <= 0) {
2481        return OS_OK;
2482      }
2483
2484      prevtime = newtime;
2485
2486      {
2487        assert(thread->is_Java_thread(), "sanity check");
2488        JavaThread *jt = (JavaThread *) thread;
2489        ThreadBlockInVM tbivm(jt);
2490        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2491
2492        jt->set_suspend_equivalent();
2493        // cleared by handle_special_suspend_equivalent_condition() or
2494        // java_suspend_self() via check_and_wait_while_suspended()
2495
2496        slp->park(millis);
2497
2498        // were we externally suspended while we were waiting?
2499        jt->check_and_wait_while_suspended();
2500      }
2501    }
2502  } else {
2503    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2504    jlong prevtime = javaTimeNanos();
2505
2506    for (;;) {
2507      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2508      // the 1st iteration ...
2509      jlong newtime = javaTimeNanos();
2510
2511      if (newtime - prevtime < 0) {
2512        // time moving backwards, should only happen if no monotonic clock
2513        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2514        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2515      } else {
2516        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2517      }
2518
2519      if(millis <= 0) break ;
2520
2521      prevtime = newtime;
2522      slp->park(millis);
2523    }
2524    return OS_OK ;
2525  }
2526}
2527
2528int os::naked_sleep() {
2529  // %% make the sleep time an integer flag. for now use 1 millisec.
2530  return os::sleep(Thread::current(), 1, false);
2531}
2532
2533// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2534void os::infinite_sleep() {
2535  while (true) {    // sleep forever ...
2536    ::sleep(100);   // ... 100 seconds at a time
2537  }
2538}
2539
2540// Used to convert frequent JVM_Yield() to nops
2541bool os::dont_yield() {
2542  return DontYieldALot;
2543}
2544
2545void os::yield() {
2546  sched_yield();
2547}
2548
2549os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2550
2551void os::yield_all(int attempts) {
2552  // Yields to all threads, including threads with lower priorities
2553  // Threads on Bsd are all with same priority. The Solaris style
2554  // os::yield_all() with nanosleep(1ms) is not necessary.
2555  sched_yield();
2556}
2557
2558// Called from the tight loops to possibly influence time-sharing heuristics
2559void os::loop_breaker(int attempts) {
2560  os::yield_all(attempts);
2561}
2562
2563////////////////////////////////////////////////////////////////////////////////
2564// thread priority support
2565
2566// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2567// only supports dynamic priority, static priority must be zero. For real-time
2568// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2569// However, for large multi-threaded applications, SCHED_RR is not only slower
2570// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2571// of 5 runs - Sep 2005).
2572//
2573// The following code actually changes the niceness of kernel-thread/LWP. It
2574// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2575// not the entire user process, and user level threads are 1:1 mapped to kernel
2576// threads. It has always been the case, but could change in the future. For
2577// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2578// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2579
2580#if !defined(__APPLE__)
2581int os::java_to_os_priority[CriticalPriority + 1] = {
2582  19,              // 0 Entry should never be used
2583
2584   0,              // 1 MinPriority
2585   3,              // 2
2586   6,              // 3
2587
2588  10,              // 4
2589  15,              // 5 NormPriority
2590  18,              // 6
2591
2592  21,              // 7
2593  25,              // 8
2594  28,              // 9 NearMaxPriority
2595
2596  31,              // 10 MaxPriority
2597
2598  31               // 11 CriticalPriority
2599};
2600#else
2601/* Using Mach high-level priority assignments */
2602int os::java_to_os_priority[CriticalPriority + 1] = {
2603   0,              // 0 Entry should never be used (MINPRI_USER)
2604
2605  27,              // 1 MinPriority
2606  28,              // 2
2607  29,              // 3
2608
2609  30,              // 4
2610  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2611  32,              // 6
2612
2613  33,              // 7
2614  34,              // 8
2615  35,              // 9 NearMaxPriority
2616
2617  36,              // 10 MaxPriority
2618
2619  36               // 11 CriticalPriority
2620};
2621#endif
2622
2623static int prio_init() {
2624  if (ThreadPriorityPolicy == 1) {
2625    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2626    // if effective uid is not root. Perhaps, a more elegant way of doing
2627    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2628    if (geteuid() != 0) {
2629      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2630        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2631      }
2632      ThreadPriorityPolicy = 0;
2633    }
2634  }
2635  if (UseCriticalJavaThreadPriority) {
2636    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2637  }
2638  return 0;
2639}
2640
2641OSReturn os::set_native_priority(Thread* thread, int newpri) {
2642  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2643
2644#ifdef __OpenBSD__
2645  // OpenBSD pthread_setprio starves low priority threads
2646  return OS_OK;
2647#elif defined(__FreeBSD__)
2648  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2649#elif defined(__APPLE__) || defined(__NetBSD__)
2650  struct sched_param sp;
2651  int policy;
2652  pthread_t self = pthread_self();
2653
2654  if (pthread_getschedparam(self, &policy, &sp) != 0)
2655    return OS_ERR;
2656
2657  sp.sched_priority = newpri;
2658  if (pthread_setschedparam(self, policy, &sp) != 0)
2659    return OS_ERR;
2660
2661  return OS_OK;
2662#else
2663  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2664  return (ret == 0) ? OS_OK : OS_ERR;
2665#endif
2666}
2667
2668OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2669  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2670    *priority_ptr = java_to_os_priority[NormPriority];
2671    return OS_OK;
2672  }
2673
2674  errno = 0;
2675#if defined(__OpenBSD__) || defined(__FreeBSD__)
2676  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2677#elif defined(__APPLE__) || defined(__NetBSD__)
2678  int policy;
2679  struct sched_param sp;
2680
2681  pthread_getschedparam(pthread_self(), &policy, &sp);
2682  *priority_ptr = sp.sched_priority;
2683#else
2684  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2685#endif
2686  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2687}
2688
2689// Hint to the underlying OS that a task switch would not be good.
2690// Void return because it's a hint and can fail.
2691void os::hint_no_preempt() {}
2692
2693////////////////////////////////////////////////////////////////////////////////
2694// suspend/resume support
2695
2696//  the low-level signal-based suspend/resume support is a remnant from the
2697//  old VM-suspension that used to be for java-suspension, safepoints etc,
2698//  within hotspot. Now there is a single use-case for this:
2699//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2700//      that runs in the watcher thread.
2701//  The remaining code is greatly simplified from the more general suspension
2702//  code that used to be used.
2703//
2704//  The protocol is quite simple:
2705//  - suspend:
2706//      - sends a signal to the target thread
2707//      - polls the suspend state of the osthread using a yield loop
2708//      - target thread signal handler (SR_handler) sets suspend state
2709//        and blocks in sigsuspend until continued
2710//  - resume:
2711//      - sets target osthread state to continue
2712//      - sends signal to end the sigsuspend loop in the SR_handler
2713//
2714//  Note that the SR_lock plays no role in this suspend/resume protocol.
2715//
2716
2717static void resume_clear_context(OSThread *osthread) {
2718  osthread->set_ucontext(NULL);
2719  osthread->set_siginfo(NULL);
2720}
2721
2722static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2723  osthread->set_ucontext(context);
2724  osthread->set_siginfo(siginfo);
2725}
2726
2727//
2728// Handler function invoked when a thread's execution is suspended or
2729// resumed. We have to be careful that only async-safe functions are
2730// called here (Note: most pthread functions are not async safe and
2731// should be avoided.)
2732//
2733// Note: sigwait() is a more natural fit than sigsuspend() from an
2734// interface point of view, but sigwait() prevents the signal hander
2735// from being run. libpthread would get very confused by not having
2736// its signal handlers run and prevents sigwait()'s use with the
2737// mutex granting granting signal.
2738//
2739// Currently only ever called on the VMThread or JavaThread
2740//
2741static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2742  // Save and restore errno to avoid confusing native code with EINTR
2743  // after sigsuspend.
2744  int old_errno = errno;
2745
2746  Thread* thread = Thread::current();
2747  OSThread* osthread = thread->osthread();
2748  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2749
2750  os::SuspendResume::State current = osthread->sr.state();
2751  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2752    suspend_save_context(osthread, siginfo, context);
2753
2754    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2755    os::SuspendResume::State state = osthread->sr.suspended();
2756    if (state == os::SuspendResume::SR_SUSPENDED) {
2757      sigset_t suspend_set;  // signals for sigsuspend()
2758
2759      // get current set of blocked signals and unblock resume signal
2760      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2761      sigdelset(&suspend_set, SR_signum);
2762
2763      sr_semaphore.signal();
2764      // wait here until we are resumed
2765      while (1) {
2766        sigsuspend(&suspend_set);
2767
2768        os::SuspendResume::State result = osthread->sr.running();
2769        if (result == os::SuspendResume::SR_RUNNING) {
2770          sr_semaphore.signal();
2771          break;
2772        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2773          ShouldNotReachHere();
2774        }
2775      }
2776
2777    } else if (state == os::SuspendResume::SR_RUNNING) {
2778      // request was cancelled, continue
2779    } else {
2780      ShouldNotReachHere();
2781    }
2782
2783    resume_clear_context(osthread);
2784  } else if (current == os::SuspendResume::SR_RUNNING) {
2785    // request was cancelled, continue
2786  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2787    // ignore
2788  } else {
2789    // ignore
2790  }
2791
2792  errno = old_errno;
2793}
2794
2795
2796static int SR_initialize() {
2797  struct sigaction act;
2798  char *s;
2799  /* Get signal number to use for suspend/resume */
2800  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2801    int sig = ::strtol(s, 0, 10);
2802    if (sig > 0 || sig < NSIG) {
2803        SR_signum = sig;
2804    }
2805  }
2806
2807  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2808        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2809
2810  sigemptyset(&SR_sigset);
2811  sigaddset(&SR_sigset, SR_signum);
2812
2813  /* Set up signal handler for suspend/resume */
2814  act.sa_flags = SA_RESTART|SA_SIGINFO;
2815  act.sa_handler = (void (*)(int)) SR_handler;
2816
2817  // SR_signum is blocked by default.
2818  // 4528190 - We also need to block pthread restart signal (32 on all
2819  // supported Bsd platforms). Note that BsdThreads need to block
2820  // this signal for all threads to work properly. So we don't have
2821  // to use hard-coded signal number when setting up the mask.
2822  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2823
2824  if (sigaction(SR_signum, &act, 0) == -1) {
2825    return -1;
2826  }
2827
2828  // Save signal flag
2829  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2830  return 0;
2831}
2832
2833static int sr_notify(OSThread* osthread) {
2834  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2835  assert_status(status == 0, status, "pthread_kill");
2836  return status;
2837}
2838
2839// "Randomly" selected value for how long we want to spin
2840// before bailing out on suspending a thread, also how often
2841// we send a signal to a thread we want to resume
2842static const int RANDOMLY_LARGE_INTEGER = 1000000;
2843static const int RANDOMLY_LARGE_INTEGER2 = 100;
2844
2845// returns true on success and false on error - really an error is fatal
2846// but this seems the normal response to library errors
2847static bool do_suspend(OSThread* osthread) {
2848  assert(osthread->sr.is_running(), "thread should be running");
2849  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2850
2851  // mark as suspended and send signal
2852  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2853    // failed to switch, state wasn't running?
2854    ShouldNotReachHere();
2855    return false;
2856  }
2857
2858  if (sr_notify(osthread) != 0) {
2859    ShouldNotReachHere();
2860  }
2861
2862  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2863  while (true) {
2864    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2865      break;
2866    } else {
2867      // timeout
2868      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2869      if (cancelled == os::SuspendResume::SR_RUNNING) {
2870        return false;
2871      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2872        // make sure that we consume the signal on the semaphore as well
2873        sr_semaphore.wait();
2874        break;
2875      } else {
2876        ShouldNotReachHere();
2877        return false;
2878      }
2879    }
2880  }
2881
2882  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2883  return true;
2884}
2885
2886static void do_resume(OSThread* osthread) {
2887  assert(osthread->sr.is_suspended(), "thread should be suspended");
2888  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2889
2890  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2891    // failed to switch to WAKEUP_REQUEST
2892    ShouldNotReachHere();
2893    return;
2894  }
2895
2896  while (true) {
2897    if (sr_notify(osthread) == 0) {
2898      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2899        if (osthread->sr.is_running()) {
2900          return;
2901        }
2902      }
2903    } else {
2904      ShouldNotReachHere();
2905    }
2906  }
2907
2908  guarantee(osthread->sr.is_running(), "Must be running!");
2909}
2910
2911////////////////////////////////////////////////////////////////////////////////
2912// interrupt support
2913
2914void os::interrupt(Thread* thread) {
2915  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2916    "possibility of dangling Thread pointer");
2917
2918  OSThread* osthread = thread->osthread();
2919
2920  if (!osthread->interrupted()) {
2921    osthread->set_interrupted(true);
2922    // More than one thread can get here with the same value of osthread,
2923    // resulting in multiple notifications.  We do, however, want the store
2924    // to interrupted() to be visible to other threads before we execute unpark().
2925    OrderAccess::fence();
2926    ParkEvent * const slp = thread->_SleepEvent ;
2927    if (slp != NULL) slp->unpark() ;
2928  }
2929
2930  // For JSR166. Unpark even if interrupt status already was set
2931  if (thread->is_Java_thread())
2932    ((JavaThread*)thread)->parker()->unpark();
2933
2934  ParkEvent * ev = thread->_ParkEvent ;
2935  if (ev != NULL) ev->unpark() ;
2936
2937}
2938
2939bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2940  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2941    "possibility of dangling Thread pointer");
2942
2943  OSThread* osthread = thread->osthread();
2944
2945  bool interrupted = osthread->interrupted();
2946
2947  if (interrupted && clear_interrupted) {
2948    osthread->set_interrupted(false);
2949    // consider thread->_SleepEvent->reset() ... optional optimization
2950  }
2951
2952  return interrupted;
2953}
2954
2955///////////////////////////////////////////////////////////////////////////////////
2956// signal handling (except suspend/resume)
2957
2958// This routine may be used by user applications as a "hook" to catch signals.
2959// The user-defined signal handler must pass unrecognized signals to this
2960// routine, and if it returns true (non-zero), then the signal handler must
2961// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2962// routine will never retun false (zero), but instead will execute a VM panic
2963// routine kill the process.
2964//
2965// If this routine returns false, it is OK to call it again.  This allows
2966// the user-defined signal handler to perform checks either before or after
2967// the VM performs its own checks.  Naturally, the user code would be making
2968// a serious error if it tried to handle an exception (such as a null check
2969// or breakpoint) that the VM was generating for its own correct operation.
2970//
2971// This routine may recognize any of the following kinds of signals:
2972//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2973// It should be consulted by handlers for any of those signals.
2974//
2975// The caller of this routine must pass in the three arguments supplied
2976// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2977// field of the structure passed to sigaction().  This routine assumes that
2978// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2979//
2980// Note that the VM will print warnings if it detects conflicting signal
2981// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2982//
2983extern "C" JNIEXPORT int
2984JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2985                        void* ucontext, int abort_if_unrecognized);
2986
2987void signalHandler(int sig, siginfo_t* info, void* uc) {
2988  assert(info != NULL && uc != NULL, "it must be old kernel");
2989  int orig_errno = errno;  // Preserve errno value over signal handler.
2990  JVM_handle_bsd_signal(sig, info, uc, true);
2991  errno = orig_errno;
2992}
2993
2994
2995// This boolean allows users to forward their own non-matching signals
2996// to JVM_handle_bsd_signal, harmlessly.
2997bool os::Bsd::signal_handlers_are_installed = false;
2998
2999// For signal-chaining
3000struct sigaction os::Bsd::sigact[MAXSIGNUM];
3001unsigned int os::Bsd::sigs = 0;
3002bool os::Bsd::libjsig_is_loaded = false;
3003typedef struct sigaction *(*get_signal_t)(int);
3004get_signal_t os::Bsd::get_signal_action = NULL;
3005
3006struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3007  struct sigaction *actp = NULL;
3008
3009  if (libjsig_is_loaded) {
3010    // Retrieve the old signal handler from libjsig
3011    actp = (*get_signal_action)(sig);
3012  }
3013  if (actp == NULL) {
3014    // Retrieve the preinstalled signal handler from jvm
3015    actp = get_preinstalled_handler(sig);
3016  }
3017
3018  return actp;
3019}
3020
3021static bool call_chained_handler(struct sigaction *actp, int sig,
3022                                 siginfo_t *siginfo, void *context) {
3023  // Call the old signal handler
3024  if (actp->sa_handler == SIG_DFL) {
3025    // It's more reasonable to let jvm treat it as an unexpected exception
3026    // instead of taking the default action.
3027    return false;
3028  } else if (actp->sa_handler != SIG_IGN) {
3029    if ((actp->sa_flags & SA_NODEFER) == 0) {
3030      // automaticlly block the signal
3031      sigaddset(&(actp->sa_mask), sig);
3032    }
3033
3034    sa_handler_t hand;
3035    sa_sigaction_t sa;
3036    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3037    // retrieve the chained handler
3038    if (siginfo_flag_set) {
3039      sa = actp->sa_sigaction;
3040    } else {
3041      hand = actp->sa_handler;
3042    }
3043
3044    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3045      actp->sa_handler = SIG_DFL;
3046    }
3047
3048    // try to honor the signal mask
3049    sigset_t oset;
3050    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3051
3052    // call into the chained handler
3053    if (siginfo_flag_set) {
3054      (*sa)(sig, siginfo, context);
3055    } else {
3056      (*hand)(sig);
3057    }
3058
3059    // restore the signal mask
3060    pthread_sigmask(SIG_SETMASK, &oset, 0);
3061  }
3062  // Tell jvm's signal handler the signal is taken care of.
3063  return true;
3064}
3065
3066bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3067  bool chained = false;
3068  // signal-chaining
3069  if (UseSignalChaining) {
3070    struct sigaction *actp = get_chained_signal_action(sig);
3071    if (actp != NULL) {
3072      chained = call_chained_handler(actp, sig, siginfo, context);
3073    }
3074  }
3075  return chained;
3076}
3077
3078struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3079  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3080    return &sigact[sig];
3081  }
3082  return NULL;
3083}
3084
3085void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3086  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3087  sigact[sig] = oldAct;
3088  sigs |= (unsigned int)1 << sig;
3089}
3090
3091// for diagnostic
3092int os::Bsd::sigflags[MAXSIGNUM];
3093
3094int os::Bsd::get_our_sigflags(int sig) {
3095  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3096  return sigflags[sig];
3097}
3098
3099void os::Bsd::set_our_sigflags(int sig, int flags) {
3100  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3101  sigflags[sig] = flags;
3102}
3103
3104void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3105  // Check for overwrite.
3106  struct sigaction oldAct;
3107  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3108
3109  void* oldhand = oldAct.sa_sigaction
3110                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3111                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3112  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3113      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3114      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3115    if (AllowUserSignalHandlers || !set_installed) {
3116      // Do not overwrite; user takes responsibility to forward to us.
3117      return;
3118    } else if (UseSignalChaining) {
3119      // save the old handler in jvm
3120      save_preinstalled_handler(sig, oldAct);
3121      // libjsig also interposes the sigaction() call below and saves the
3122      // old sigaction on it own.
3123    } else {
3124      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3125                    "%#lx for signal %d.", (long)oldhand, sig));
3126    }
3127  }
3128
3129  struct sigaction sigAct;
3130  sigfillset(&(sigAct.sa_mask));
3131  sigAct.sa_handler = SIG_DFL;
3132  if (!set_installed) {
3133    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3134  } else {
3135    sigAct.sa_sigaction = signalHandler;
3136    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3137  }
3138#if __APPLE__
3139  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3140  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3141  // if the signal handler declares it will handle it on alternate stack.
3142  // Notice we only declare we will handle it on alt stack, but we are not
3143  // actually going to use real alt stack - this is just a workaround.
3144  // Please see ux_exception.c, method catch_mach_exception_raise for details
3145  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3146  if (sig == SIGSEGV) {
3147    sigAct.sa_flags |= SA_ONSTACK;
3148  }
3149#endif
3150
3151  // Save flags, which are set by ours
3152  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3153  sigflags[sig] = sigAct.sa_flags;
3154
3155  int ret = sigaction(sig, &sigAct, &oldAct);
3156  assert(ret == 0, "check");
3157
3158  void* oldhand2  = oldAct.sa_sigaction
3159                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3160                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3161  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3162}
3163
3164// install signal handlers for signals that HotSpot needs to
3165// handle in order to support Java-level exception handling.
3166
3167void os::Bsd::install_signal_handlers() {
3168  if (!signal_handlers_are_installed) {
3169    signal_handlers_are_installed = true;
3170
3171    // signal-chaining
3172    typedef void (*signal_setting_t)();
3173    signal_setting_t begin_signal_setting = NULL;
3174    signal_setting_t end_signal_setting = NULL;
3175    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3176                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3177    if (begin_signal_setting != NULL) {
3178      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3179                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3180      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3181                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3182      libjsig_is_loaded = true;
3183      assert(UseSignalChaining, "should enable signal-chaining");
3184    }
3185    if (libjsig_is_loaded) {
3186      // Tell libjsig jvm is setting signal handlers
3187      (*begin_signal_setting)();
3188    }
3189
3190    set_signal_handler(SIGSEGV, true);
3191    set_signal_handler(SIGPIPE, true);
3192    set_signal_handler(SIGBUS, true);
3193    set_signal_handler(SIGILL, true);
3194    set_signal_handler(SIGFPE, true);
3195    set_signal_handler(SIGXFSZ, true);
3196
3197#if defined(__APPLE__)
3198    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3199    // signals caught and handled by the JVM. To work around this, we reset the mach task
3200    // signal handler that's placed on our process by CrashReporter. This disables
3201    // CrashReporter-based reporting.
3202    //
3203    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3204    // on caught fatal signals.
3205    //
3206    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3207    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3208    // exception handling, while leaving the standard BSD signal handlers functional.
3209    kern_return_t kr;
3210    kr = task_set_exception_ports(mach_task_self(),
3211        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3212        MACH_PORT_NULL,
3213        EXCEPTION_STATE_IDENTITY,
3214        MACHINE_THREAD_STATE);
3215
3216    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3217#endif
3218
3219    if (libjsig_is_loaded) {
3220      // Tell libjsig jvm finishes setting signal handlers
3221      (*end_signal_setting)();
3222    }
3223
3224    // We don't activate signal checker if libjsig is in place, we trust ourselves
3225    // and if UserSignalHandler is installed all bets are off
3226    if (CheckJNICalls) {
3227      if (libjsig_is_loaded) {
3228        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3229        check_signals = false;
3230      }
3231      if (AllowUserSignalHandlers) {
3232        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3233        check_signals = false;
3234      }
3235    }
3236  }
3237}
3238
3239
3240/////
3241// glibc on Bsd platform uses non-documented flag
3242// to indicate, that some special sort of signal
3243// trampoline is used.
3244// We will never set this flag, and we should
3245// ignore this flag in our diagnostic
3246#ifdef SIGNIFICANT_SIGNAL_MASK
3247#undef SIGNIFICANT_SIGNAL_MASK
3248#endif
3249#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3250
3251static const char* get_signal_handler_name(address handler,
3252                                           char* buf, int buflen) {
3253  int offset;
3254  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3255  if (found) {
3256    // skip directory names
3257    const char *p1, *p2;
3258    p1 = buf;
3259    size_t len = strlen(os::file_separator());
3260    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3261    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3262  } else {
3263    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3264  }
3265  return buf;
3266}
3267
3268static void print_signal_handler(outputStream* st, int sig,
3269                                 char* buf, size_t buflen) {
3270  struct sigaction sa;
3271
3272  sigaction(sig, NULL, &sa);
3273
3274  // See comment for SIGNIFICANT_SIGNAL_MASK define
3275  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3276
3277  st->print("%s: ", os::exception_name(sig, buf, buflen));
3278
3279  address handler = (sa.sa_flags & SA_SIGINFO)
3280    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3281    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3282
3283  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3284    st->print("SIG_DFL");
3285  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3286    st->print("SIG_IGN");
3287  } else {
3288    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3289  }
3290
3291  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3292
3293  address rh = VMError::get_resetted_sighandler(sig);
3294  // May be, handler was resetted by VMError?
3295  if(rh != NULL) {
3296    handler = rh;
3297    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3298  }
3299
3300  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3301
3302  // Check: is it our handler?
3303  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3304     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3305    // It is our signal handler
3306    // check for flags, reset system-used one!
3307    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3308      st->print(
3309                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3310                os::Bsd::get_our_sigflags(sig));
3311    }
3312  }
3313  st->cr();
3314}
3315
3316
3317#define DO_SIGNAL_CHECK(sig) \
3318  if (!sigismember(&check_signal_done, sig)) \
3319    os::Bsd::check_signal_handler(sig)
3320
3321// This method is a periodic task to check for misbehaving JNI applications
3322// under CheckJNI, we can add any periodic checks here
3323
3324void os::run_periodic_checks() {
3325
3326  if (check_signals == false) return;
3327
3328  // SEGV and BUS if overridden could potentially prevent
3329  // generation of hs*.log in the event of a crash, debugging
3330  // such a case can be very challenging, so we absolutely
3331  // check the following for a good measure:
3332  DO_SIGNAL_CHECK(SIGSEGV);
3333  DO_SIGNAL_CHECK(SIGILL);
3334  DO_SIGNAL_CHECK(SIGFPE);
3335  DO_SIGNAL_CHECK(SIGBUS);
3336  DO_SIGNAL_CHECK(SIGPIPE);
3337  DO_SIGNAL_CHECK(SIGXFSZ);
3338
3339
3340  // ReduceSignalUsage allows the user to override these handlers
3341  // see comments at the very top and jvm_solaris.h
3342  if (!ReduceSignalUsage) {
3343    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3344    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3345    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3346    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3347  }
3348
3349  DO_SIGNAL_CHECK(SR_signum);
3350  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3351}
3352
3353typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3354
3355static os_sigaction_t os_sigaction = NULL;
3356
3357void os::Bsd::check_signal_handler(int sig) {
3358  char buf[O_BUFLEN];
3359  address jvmHandler = NULL;
3360
3361
3362  struct sigaction act;
3363  if (os_sigaction == NULL) {
3364    // only trust the default sigaction, in case it has been interposed
3365    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3366    if (os_sigaction == NULL) return;
3367  }
3368
3369  os_sigaction(sig, (struct sigaction*)NULL, &act);
3370
3371
3372  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3373
3374  address thisHandler = (act.sa_flags & SA_SIGINFO)
3375    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3376    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3377
3378
3379  switch(sig) {
3380  case SIGSEGV:
3381  case SIGBUS:
3382  case SIGFPE:
3383  case SIGPIPE:
3384  case SIGILL:
3385  case SIGXFSZ:
3386    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3387    break;
3388
3389  case SHUTDOWN1_SIGNAL:
3390  case SHUTDOWN2_SIGNAL:
3391  case SHUTDOWN3_SIGNAL:
3392  case BREAK_SIGNAL:
3393    jvmHandler = (address)user_handler();
3394    break;
3395
3396  case INTERRUPT_SIGNAL:
3397    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3398    break;
3399
3400  default:
3401    if (sig == SR_signum) {
3402      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3403    } else {
3404      return;
3405    }
3406    break;
3407  }
3408
3409  if (thisHandler != jvmHandler) {
3410    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3411    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3412    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3413    // No need to check this sig any longer
3414    sigaddset(&check_signal_done, sig);
3415  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3416    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3417    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3418    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3419    // No need to check this sig any longer
3420    sigaddset(&check_signal_done, sig);
3421  }
3422
3423  // Dump all the signal
3424  if (sigismember(&check_signal_done, sig)) {
3425    print_signal_handlers(tty, buf, O_BUFLEN);
3426  }
3427}
3428
3429extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3430
3431extern bool signal_name(int signo, char* buf, size_t len);
3432
3433const char* os::exception_name(int exception_code, char* buf, size_t size) {
3434  if (0 < exception_code && exception_code <= SIGRTMAX) {
3435    // signal
3436    if (!signal_name(exception_code, buf, size)) {
3437      jio_snprintf(buf, size, "SIG%d", exception_code);
3438    }
3439    return buf;
3440  } else {
3441    return NULL;
3442  }
3443}
3444
3445// this is called _before_ the most of global arguments have been parsed
3446void os::init(void) {
3447  char dummy;   /* used to get a guess on initial stack address */
3448//  first_hrtime = gethrtime();
3449
3450  // With BsdThreads the JavaMain thread pid (primordial thread)
3451  // is different than the pid of the java launcher thread.
3452  // So, on Bsd, the launcher thread pid is passed to the VM
3453  // via the sun.java.launcher.pid property.
3454  // Use this property instead of getpid() if it was correctly passed.
3455  // See bug 6351349.
3456  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3457
3458  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3459
3460  clock_tics_per_sec = CLK_TCK;
3461
3462  init_random(1234567);
3463
3464  ThreadCritical::initialize();
3465
3466  Bsd::set_page_size(getpagesize());
3467  if (Bsd::page_size() == -1) {
3468    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3469                  strerror(errno)));
3470  }
3471  init_page_sizes((size_t) Bsd::page_size());
3472
3473  Bsd::initialize_system_info();
3474
3475  // main_thread points to the aboriginal thread
3476  Bsd::_main_thread = pthread_self();
3477
3478  Bsd::clock_init();
3479  initial_time_count = os::elapsed_counter();
3480
3481#ifdef __APPLE__
3482  // XXXDARWIN
3483  // Work around the unaligned VM callbacks in hotspot's
3484  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3485  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3486  // alignment when doing symbol lookup. To work around this, we force early
3487  // binding of all symbols now, thus binding when alignment is known-good.
3488  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3489#endif
3490}
3491
3492// To install functions for atexit system call
3493extern "C" {
3494  static void perfMemory_exit_helper() {
3495    perfMemory_exit();
3496  }
3497}
3498
3499// this is called _after_ the global arguments have been parsed
3500jint os::init_2(void)
3501{
3502  // Allocate a single page and mark it as readable for safepoint polling
3503  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3504  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3505
3506  os::set_polling_page( polling_page );
3507
3508#ifndef PRODUCT
3509  if(Verbose && PrintMiscellaneous)
3510    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3511#endif
3512
3513  if (!UseMembar) {
3514    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3515    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3516    os::set_memory_serialize_page( mem_serialize_page );
3517
3518#ifndef PRODUCT
3519    if(Verbose && PrintMiscellaneous)
3520      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3521#endif
3522  }
3523
3524  os::large_page_init();
3525
3526  // initialize suspend/resume support - must do this before signal_sets_init()
3527  if (SR_initialize() != 0) {
3528    perror("SR_initialize failed");
3529    return JNI_ERR;
3530  }
3531
3532  Bsd::signal_sets_init();
3533  Bsd::install_signal_handlers();
3534
3535  // Check minimum allowable stack size for thread creation and to initialize
3536  // the java system classes, including StackOverflowError - depends on page
3537  // size.  Add a page for compiler2 recursion in main thread.
3538  // Add in 2*BytesPerWord times page size to account for VM stack during
3539  // class initialization depending on 32 or 64 bit VM.
3540  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3541            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3542                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3543
3544  size_t threadStackSizeInBytes = ThreadStackSize * K;
3545  if (threadStackSizeInBytes != 0 &&
3546      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3547        tty->print_cr("\nThe stack size specified is too small, "
3548                      "Specify at least %dk",
3549                      os::Bsd::min_stack_allowed/ K);
3550        return JNI_ERR;
3551  }
3552
3553  // Make the stack size a multiple of the page size so that
3554  // the yellow/red zones can be guarded.
3555  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3556        vm_page_size()));
3557
3558  if (MaxFDLimit) {
3559    // set the number of file descriptors to max. print out error
3560    // if getrlimit/setrlimit fails but continue regardless.
3561    struct rlimit nbr_files;
3562    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3563    if (status != 0) {
3564      if (PrintMiscellaneous && (Verbose || WizardMode))
3565        perror("os::init_2 getrlimit failed");
3566    } else {
3567      nbr_files.rlim_cur = nbr_files.rlim_max;
3568
3569#ifdef __APPLE__
3570      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3571      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3572      // be used instead
3573      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3574#endif
3575
3576      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3577      if (status != 0) {
3578        if (PrintMiscellaneous && (Verbose || WizardMode))
3579          perror("os::init_2 setrlimit failed");
3580      }
3581    }
3582  }
3583
3584  // at-exit methods are called in the reverse order of their registration.
3585  // atexit functions are called on return from main or as a result of a
3586  // call to exit(3C). There can be only 32 of these functions registered
3587  // and atexit() does not set errno.
3588
3589  if (PerfAllowAtExitRegistration) {
3590    // only register atexit functions if PerfAllowAtExitRegistration is set.
3591    // atexit functions can be delayed until process exit time, which
3592    // can be problematic for embedded VM situations. Embedded VMs should
3593    // call DestroyJavaVM() to assure that VM resources are released.
3594
3595    // note: perfMemory_exit_helper atexit function may be removed in
3596    // the future if the appropriate cleanup code can be added to the
3597    // VM_Exit VMOperation's doit method.
3598    if (atexit(perfMemory_exit_helper) != 0) {
3599      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3600    }
3601  }
3602
3603  // initialize thread priority policy
3604  prio_init();
3605
3606#ifdef __APPLE__
3607  // dynamically link to objective c gc registration
3608  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3609  if (handleLibObjc != NULL) {
3610    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3611  }
3612#endif
3613
3614  return JNI_OK;
3615}
3616
3617// this is called at the end of vm_initialization
3618void os::init_3(void) { }
3619
3620// Mark the polling page as unreadable
3621void os::make_polling_page_unreadable(void) {
3622  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3623    fatal("Could not disable polling page");
3624};
3625
3626// Mark the polling page as readable
3627void os::make_polling_page_readable(void) {
3628  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3629    fatal("Could not enable polling page");
3630  }
3631};
3632
3633int os::active_processor_count() {
3634  return _processor_count;
3635}
3636
3637void os::set_native_thread_name(const char *name) {
3638#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3639  // This is only supported in Snow Leopard and beyond
3640  if (name != NULL) {
3641    // Add a "Java: " prefix to the name
3642    char buf[MAXTHREADNAMESIZE];
3643    snprintf(buf, sizeof(buf), "Java: %s", name);
3644    pthread_setname_np(buf);
3645  }
3646#endif
3647}
3648
3649bool os::distribute_processes(uint length, uint* distribution) {
3650  // Not yet implemented.
3651  return false;
3652}
3653
3654bool os::bind_to_processor(uint processor_id) {
3655  // Not yet implemented.
3656  return false;
3657}
3658
3659void os::SuspendedThreadTask::internal_do_task() {
3660  if (do_suspend(_thread->osthread())) {
3661    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3662    do_task(context);
3663    do_resume(_thread->osthread());
3664  }
3665}
3666
3667///
3668class PcFetcher : public os::SuspendedThreadTask {
3669public:
3670  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3671  ExtendedPC result();
3672protected:
3673  void do_task(const os::SuspendedThreadTaskContext& context);
3674private:
3675  ExtendedPC _epc;
3676};
3677
3678ExtendedPC PcFetcher::result() {
3679  guarantee(is_done(), "task is not done yet.");
3680  return _epc;
3681}
3682
3683void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3684  Thread* thread = context.thread();
3685  OSThread* osthread = thread->osthread();
3686  if (osthread->ucontext() != NULL) {
3687    _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3688  } else {
3689    // NULL context is unexpected, double-check this is the VMThread
3690    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3691  }
3692}
3693
3694// Suspends the target using the signal mechanism and then grabs the PC before
3695// resuming the target. Used by the flat-profiler only
3696ExtendedPC os::get_thread_pc(Thread* thread) {
3697  // Make sure that it is called by the watcher for the VMThread
3698  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3699  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3700
3701  PcFetcher fetcher(thread);
3702  fetcher.run();
3703  return fetcher.result();
3704}
3705
3706int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3707{
3708  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3709}
3710
3711////////////////////////////////////////////////////////////////////////////////
3712// debug support
3713
3714bool os::find(address addr, outputStream* st) {
3715  Dl_info dlinfo;
3716  memset(&dlinfo, 0, sizeof(dlinfo));
3717  if (dladdr(addr, &dlinfo)) {
3718    st->print(PTR_FORMAT ": ", addr);
3719    if (dlinfo.dli_sname != NULL) {
3720      st->print("%s+%#x", dlinfo.dli_sname,
3721                 addr - (intptr_t)dlinfo.dli_saddr);
3722    } else if (dlinfo.dli_fname) {
3723      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3724    } else {
3725      st->print("<absolute address>");
3726    }
3727    if (dlinfo.dli_fname) {
3728      st->print(" in %s", dlinfo.dli_fname);
3729    }
3730    if (dlinfo.dli_fbase) {
3731      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3732    }
3733    st->cr();
3734
3735    if (Verbose) {
3736      // decode some bytes around the PC
3737      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3738      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3739      address       lowest = (address) dlinfo.dli_sname;
3740      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3741      if (begin < lowest)  begin = lowest;
3742      Dl_info dlinfo2;
3743      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3744          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3745        end = (address) dlinfo2.dli_saddr;
3746      Disassembler::decode(begin, end, st);
3747    }
3748    return true;
3749  }
3750  return false;
3751}
3752
3753////////////////////////////////////////////////////////////////////////////////
3754// misc
3755
3756// This does not do anything on Bsd. This is basically a hook for being
3757// able to use structured exception handling (thread-local exception filters)
3758// on, e.g., Win32.
3759void
3760os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3761                         JavaCallArguments* args, Thread* thread) {
3762  f(value, method, args, thread);
3763}
3764
3765void os::print_statistics() {
3766}
3767
3768int os::message_box(const char* title, const char* message) {
3769  int i;
3770  fdStream err(defaultStream::error_fd());
3771  for (i = 0; i < 78; i++) err.print_raw("=");
3772  err.cr();
3773  err.print_raw_cr(title);
3774  for (i = 0; i < 78; i++) err.print_raw("-");
3775  err.cr();
3776  err.print_raw_cr(message);
3777  for (i = 0; i < 78; i++) err.print_raw("=");
3778  err.cr();
3779
3780  char buf[16];
3781  // Prevent process from exiting upon "read error" without consuming all CPU
3782  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3783
3784  return buf[0] == 'y' || buf[0] == 'Y';
3785}
3786
3787int os::stat(const char *path, struct stat *sbuf) {
3788  char pathbuf[MAX_PATH];
3789  if (strlen(path) > MAX_PATH - 1) {
3790    errno = ENAMETOOLONG;
3791    return -1;
3792  }
3793  os::native_path(strcpy(pathbuf, path));
3794  return ::stat(pathbuf, sbuf);
3795}
3796
3797bool os::check_heap(bool force) {
3798  return true;
3799}
3800
3801int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3802  return ::vsnprintf(buf, count, format, args);
3803}
3804
3805// Is a (classpath) directory empty?
3806bool os::dir_is_empty(const char* path) {
3807  DIR *dir = NULL;
3808  struct dirent *ptr;
3809
3810  dir = opendir(path);
3811  if (dir == NULL) return true;
3812
3813  /* Scan the directory */
3814  bool result = true;
3815  char buf[sizeof(struct dirent) + MAX_PATH];
3816  while (result && (ptr = ::readdir(dir)) != NULL) {
3817    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3818      result = false;
3819    }
3820  }
3821  closedir(dir);
3822  return result;
3823}
3824
3825// This code originates from JDK's sysOpen and open64_w
3826// from src/solaris/hpi/src/system_md.c
3827
3828#ifndef O_DELETE
3829#define O_DELETE 0x10000
3830#endif
3831
3832// Open a file. Unlink the file immediately after open returns
3833// if the specified oflag has the O_DELETE flag set.
3834// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3835
3836int os::open(const char *path, int oflag, int mode) {
3837
3838  if (strlen(path) > MAX_PATH - 1) {
3839    errno = ENAMETOOLONG;
3840    return -1;
3841  }
3842  int fd;
3843  int o_delete = (oflag & O_DELETE);
3844  oflag = oflag & ~O_DELETE;
3845
3846  fd = ::open(path, oflag, mode);
3847  if (fd == -1) return -1;
3848
3849  //If the open succeeded, the file might still be a directory
3850  {
3851    struct stat buf;
3852    int ret = ::fstat(fd, &buf);
3853    int st_mode = buf.st_mode;
3854
3855    if (ret != -1) {
3856      if ((st_mode & S_IFMT) == S_IFDIR) {
3857        errno = EISDIR;
3858        ::close(fd);
3859        return -1;
3860      }
3861    } else {
3862      ::close(fd);
3863      return -1;
3864    }
3865  }
3866
3867    /*
3868     * All file descriptors that are opened in the JVM and not
3869     * specifically destined for a subprocess should have the
3870     * close-on-exec flag set.  If we don't set it, then careless 3rd
3871     * party native code might fork and exec without closing all
3872     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3873     * UNIXProcess.c), and this in turn might:
3874     *
3875     * - cause end-of-file to fail to be detected on some file
3876     *   descriptors, resulting in mysterious hangs, or
3877     *
3878     * - might cause an fopen in the subprocess to fail on a system
3879     *   suffering from bug 1085341.
3880     *
3881     * (Yes, the default setting of the close-on-exec flag is a Unix
3882     * design flaw)
3883     *
3884     * See:
3885     * 1085341: 32-bit stdio routines should support file descriptors >255
3886     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3887     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3888     */
3889#ifdef FD_CLOEXEC
3890    {
3891        int flags = ::fcntl(fd, F_GETFD);
3892        if (flags != -1)
3893            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3894    }
3895#endif
3896
3897  if (o_delete != 0) {
3898    ::unlink(path);
3899  }
3900  return fd;
3901}
3902
3903
3904// create binary file, rewriting existing file if required
3905int os::create_binary_file(const char* path, bool rewrite_existing) {
3906  int oflags = O_WRONLY | O_CREAT;
3907  if (!rewrite_existing) {
3908    oflags |= O_EXCL;
3909  }
3910  return ::open(path, oflags, S_IREAD | S_IWRITE);
3911}
3912
3913// return current position of file pointer
3914jlong os::current_file_offset(int fd) {
3915  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3916}
3917
3918// move file pointer to the specified offset
3919jlong os::seek_to_file_offset(int fd, jlong offset) {
3920  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3921}
3922
3923// This code originates from JDK's sysAvailable
3924// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3925
3926int os::available(int fd, jlong *bytes) {
3927  jlong cur, end;
3928  int mode;
3929  struct stat buf;
3930
3931  if (::fstat(fd, &buf) >= 0) {
3932    mode = buf.st_mode;
3933    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3934      /*
3935      * XXX: is the following call interruptible? If so, this might
3936      * need to go through the INTERRUPT_IO() wrapper as for other
3937      * blocking, interruptible calls in this file.
3938      */
3939      int n;
3940      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3941        *bytes = n;
3942        return 1;
3943      }
3944    }
3945  }
3946  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3947    return 0;
3948  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3949    return 0;
3950  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3951    return 0;
3952  }
3953  *bytes = end - cur;
3954  return 1;
3955}
3956
3957int os::socket_available(int fd, jint *pbytes) {
3958   if (fd < 0)
3959     return OS_OK;
3960
3961   int ret;
3962
3963   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3964
3965   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3966   // is expected to return 0 on failure and 1 on success to the jdk.
3967
3968   return (ret == OS_ERR) ? 0 : 1;
3969}
3970
3971// Map a block of memory.
3972char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3973                     char *addr, size_t bytes, bool read_only,
3974                     bool allow_exec) {
3975  int prot;
3976  int flags;
3977
3978  if (read_only) {
3979    prot = PROT_READ;
3980    flags = MAP_SHARED;
3981  } else {
3982    prot = PROT_READ | PROT_WRITE;
3983    flags = MAP_PRIVATE;
3984  }
3985
3986  if (allow_exec) {
3987    prot |= PROT_EXEC;
3988  }
3989
3990  if (addr != NULL) {
3991    flags |= MAP_FIXED;
3992  }
3993
3994  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3995                                     fd, file_offset);
3996  if (mapped_address == MAP_FAILED) {
3997    return NULL;
3998  }
3999  return mapped_address;
4000}
4001
4002
4003// Remap a block of memory.
4004char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4005                       char *addr, size_t bytes, bool read_only,
4006                       bool allow_exec) {
4007  // same as map_memory() on this OS
4008  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4009                        allow_exec);
4010}
4011
4012
4013// Unmap a block of memory.
4014bool os::pd_unmap_memory(char* addr, size_t bytes) {
4015  return munmap(addr, bytes) == 0;
4016}
4017
4018// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4019// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4020// of a thread.
4021//
4022// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4023// the fast estimate available on the platform.
4024
4025jlong os::current_thread_cpu_time() {
4026#ifdef __APPLE__
4027  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4028#else
4029  Unimplemented();
4030  return 0;
4031#endif
4032}
4033
4034jlong os::thread_cpu_time(Thread* thread) {
4035#ifdef __APPLE__
4036  return os::thread_cpu_time(thread, true /* user + sys */);
4037#else
4038  Unimplemented();
4039  return 0;
4040#endif
4041}
4042
4043jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4044#ifdef __APPLE__
4045  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4046#else
4047  Unimplemented();
4048  return 0;
4049#endif
4050}
4051
4052jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4053#ifdef __APPLE__
4054  struct thread_basic_info tinfo;
4055  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4056  kern_return_t kr;
4057  thread_t mach_thread;
4058
4059  mach_thread = thread->osthread()->thread_id();
4060  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4061  if (kr != KERN_SUCCESS)
4062    return -1;
4063
4064  if (user_sys_cpu_time) {
4065    jlong nanos;
4066    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4067    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4068    return nanos;
4069  } else {
4070    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4071  }
4072#else
4073  Unimplemented();
4074  return 0;
4075#endif
4076}
4077
4078
4079void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4080  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4081  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4082  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4083  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4084}
4085
4086void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4087  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4088  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4089  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4090  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4091}
4092
4093bool os::is_thread_cpu_time_supported() {
4094#ifdef __APPLE__
4095  return true;
4096#else
4097  return false;
4098#endif
4099}
4100
4101// System loadavg support.  Returns -1 if load average cannot be obtained.
4102// Bsd doesn't yet have a (official) notion of processor sets,
4103// so just return the system wide load average.
4104int os::loadavg(double loadavg[], int nelem) {
4105  return ::getloadavg(loadavg, nelem);
4106}
4107
4108void os::pause() {
4109  char filename[MAX_PATH];
4110  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4111    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4112  } else {
4113    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4114  }
4115
4116  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4117  if (fd != -1) {
4118    struct stat buf;
4119    ::close(fd);
4120    while (::stat(filename, &buf) == 0) {
4121      (void)::poll(NULL, 0, 100);
4122    }
4123  } else {
4124    jio_fprintf(stderr,
4125      "Could not open pause file '%s', continuing immediately.\n", filename);
4126  }
4127}
4128
4129
4130// Refer to the comments in os_solaris.cpp park-unpark.
4131//
4132// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4133// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4134// For specifics regarding the bug see GLIBC BUGID 261237 :
4135//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4136// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4137// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4138// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4139// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4140// and monitorenter when we're using 1-0 locking.  All those operations may result in
4141// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4142// of libpthread avoids the problem, but isn't practical.
4143//
4144// Possible remedies:
4145//
4146// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4147//      This is palliative and probabilistic, however.  If the thread is preempted
4148//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4149//      than the minimum period may have passed, and the abstime may be stale (in the
4150//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4151//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4152//
4153// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4154//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4155//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4156//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4157//      thread.
4158//
4159// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4160//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4161//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4162//      This also works well.  In fact it avoids kernel-level scalability impediments
4163//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4164//      timers in a graceful fashion.
4165//
4166// 4.   When the abstime value is in the past it appears that control returns
4167//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4168//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4169//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4170//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4171//      It may be possible to avoid reinitialization by checking the return
4172//      value from pthread_cond_timedwait().  In addition to reinitializing the
4173//      condvar we must establish the invariant that cond_signal() is only called
4174//      within critical sections protected by the adjunct mutex.  This prevents
4175//      cond_signal() from "seeing" a condvar that's in the midst of being
4176//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4177//      desirable signal-after-unlock optimization that avoids futile context switching.
4178//
4179//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4180//      structure when a condvar is used or initialized.  cond_destroy()  would
4181//      release the helper structure.  Our reinitialize-after-timedwait fix
4182//      put excessive stress on malloc/free and locks protecting the c-heap.
4183//
4184// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4185// It may be possible to refine (4) by checking the kernel and NTPL verisons
4186// and only enabling the work-around for vulnerable environments.
4187
4188// utility to compute the abstime argument to timedwait:
4189// millis is the relative timeout time
4190// abstime will be the absolute timeout time
4191// TODO: replace compute_abstime() with unpackTime()
4192
4193static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4194  if (millis < 0)  millis = 0;
4195  struct timeval now;
4196  int status = gettimeofday(&now, NULL);
4197  assert(status == 0, "gettimeofday");
4198  jlong seconds = millis / 1000;
4199  millis %= 1000;
4200  if (seconds > 50000000) { // see man cond_timedwait(3T)
4201    seconds = 50000000;
4202  }
4203  abstime->tv_sec = now.tv_sec  + seconds;
4204  long       usec = now.tv_usec + millis * 1000;
4205  if (usec >= 1000000) {
4206    abstime->tv_sec += 1;
4207    usec -= 1000000;
4208  }
4209  abstime->tv_nsec = usec * 1000;
4210  return abstime;
4211}
4212
4213
4214// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4215// Conceptually TryPark() should be equivalent to park(0).
4216
4217int os::PlatformEvent::TryPark() {
4218  for (;;) {
4219    const int v = _Event ;
4220    guarantee ((v == 0) || (v == 1), "invariant") ;
4221    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4222  }
4223}
4224
4225void os::PlatformEvent::park() {       // AKA "down()"
4226  // Invariant: Only the thread associated with the Event/PlatformEvent
4227  // may call park().
4228  // TODO: assert that _Assoc != NULL or _Assoc == Self
4229  int v ;
4230  for (;;) {
4231      v = _Event ;
4232      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4233  }
4234  guarantee (v >= 0, "invariant") ;
4235  if (v == 0) {
4236     // Do this the hard way by blocking ...
4237     int status = pthread_mutex_lock(_mutex);
4238     assert_status(status == 0, status, "mutex_lock");
4239     guarantee (_nParked == 0, "invariant") ;
4240     ++ _nParked ;
4241     while (_Event < 0) {
4242        status = pthread_cond_wait(_cond, _mutex);
4243        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4244        // Treat this the same as if the wait was interrupted
4245        if (status == ETIMEDOUT) { status = EINTR; }
4246        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4247     }
4248     -- _nParked ;
4249
4250    _Event = 0 ;
4251     status = pthread_mutex_unlock(_mutex);
4252     assert_status(status == 0, status, "mutex_unlock");
4253    // Paranoia to ensure our locked and lock-free paths interact
4254    // correctly with each other.
4255    OrderAccess::fence();
4256  }
4257  guarantee (_Event >= 0, "invariant") ;
4258}
4259
4260int os::PlatformEvent::park(jlong millis) {
4261  guarantee (_nParked == 0, "invariant") ;
4262
4263  int v ;
4264  for (;;) {
4265      v = _Event ;
4266      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4267  }
4268  guarantee (v >= 0, "invariant") ;
4269  if (v != 0) return OS_OK ;
4270
4271  // We do this the hard way, by blocking the thread.
4272  // Consider enforcing a minimum timeout value.
4273  struct timespec abst;
4274  compute_abstime(&abst, millis);
4275
4276  int ret = OS_TIMEOUT;
4277  int status = pthread_mutex_lock(_mutex);
4278  assert_status(status == 0, status, "mutex_lock");
4279  guarantee (_nParked == 0, "invariant") ;
4280  ++_nParked ;
4281
4282  // Object.wait(timo) will return because of
4283  // (a) notification
4284  // (b) timeout
4285  // (c) thread.interrupt
4286  //
4287  // Thread.interrupt and object.notify{All} both call Event::set.
4288  // That is, we treat thread.interrupt as a special case of notification.
4289  // The underlying Solaris implementation, cond_timedwait, admits
4290  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4291  // JVM from making those visible to Java code.  As such, we must
4292  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4293  //
4294  // TODO: properly differentiate simultaneous notify+interrupt.
4295  // In that case, we should propagate the notify to another waiter.
4296
4297  while (_Event < 0) {
4298    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4299    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4300      pthread_cond_destroy (_cond);
4301      pthread_cond_init (_cond, NULL) ;
4302    }
4303    assert_status(status == 0 || status == EINTR ||
4304                  status == ETIMEDOUT,
4305                  status, "cond_timedwait");
4306    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4307    if (status == ETIMEDOUT) break ;
4308    // We consume and ignore EINTR and spurious wakeups.
4309  }
4310  --_nParked ;
4311  if (_Event >= 0) {
4312     ret = OS_OK;
4313  }
4314  _Event = 0 ;
4315  status = pthread_mutex_unlock(_mutex);
4316  assert_status(status == 0, status, "mutex_unlock");
4317  assert (_nParked == 0, "invariant") ;
4318  // Paranoia to ensure our locked and lock-free paths interact
4319  // correctly with each other.
4320  OrderAccess::fence();
4321  return ret;
4322}
4323
4324void os::PlatformEvent::unpark() {
4325  // Transitions for _Event:
4326  //    0 :=> 1
4327  //    1 :=> 1
4328  //   -1 :=> either 0 or 1; must signal target thread
4329  //          That is, we can safely transition _Event from -1 to either
4330  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4331  //          unpark() calls.
4332  // See also: "Semaphores in Plan 9" by Mullender & Cox
4333  //
4334  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4335  // that it will take two back-to-back park() calls for the owning
4336  // thread to block. This has the benefit of forcing a spurious return
4337  // from the first park() call after an unpark() call which will help
4338  // shake out uses of park() and unpark() without condition variables.
4339
4340  if (Atomic::xchg(1, &_Event) >= 0) return;
4341
4342  // Wait for the thread associated with the event to vacate
4343  int status = pthread_mutex_lock(_mutex);
4344  assert_status(status == 0, status, "mutex_lock");
4345  int AnyWaiters = _nParked;
4346  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4347  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4348    AnyWaiters = 0;
4349    pthread_cond_signal(_cond);
4350  }
4351  status = pthread_mutex_unlock(_mutex);
4352  assert_status(status == 0, status, "mutex_unlock");
4353  if (AnyWaiters != 0) {
4354    status = pthread_cond_signal(_cond);
4355    assert_status(status == 0, status, "cond_signal");
4356  }
4357
4358  // Note that we signal() _after dropping the lock for "immortal" Events.
4359  // This is safe and avoids a common class of  futile wakeups.  In rare
4360  // circumstances this can cause a thread to return prematurely from
4361  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4362  // simply re-test the condition and re-park itself.
4363}
4364
4365
4366// JSR166
4367// -------------------------------------------------------
4368
4369/*
4370 * The solaris and bsd implementations of park/unpark are fairly
4371 * conservative for now, but can be improved. They currently use a
4372 * mutex/condvar pair, plus a a count.
4373 * Park decrements count if > 0, else does a condvar wait.  Unpark
4374 * sets count to 1 and signals condvar.  Only one thread ever waits
4375 * on the condvar. Contention seen when trying to park implies that someone
4376 * is unparking you, so don't wait. And spurious returns are fine, so there
4377 * is no need to track notifications.
4378 */
4379
4380#define MAX_SECS 100000000
4381/*
4382 * This code is common to bsd and solaris and will be moved to a
4383 * common place in dolphin.
4384 *
4385 * The passed in time value is either a relative time in nanoseconds
4386 * or an absolute time in milliseconds. Either way it has to be unpacked
4387 * into suitable seconds and nanoseconds components and stored in the
4388 * given timespec structure.
4389 * Given time is a 64-bit value and the time_t used in the timespec is only
4390 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4391 * overflow if times way in the future are given. Further on Solaris versions
4392 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4393 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4394 * As it will be 28 years before "now + 100000000" will overflow we can
4395 * ignore overflow and just impose a hard-limit on seconds using the value
4396 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4397 * years from "now".
4398 */
4399
4400static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4401  assert (time > 0, "convertTime");
4402
4403  struct timeval now;
4404  int status = gettimeofday(&now, NULL);
4405  assert(status == 0, "gettimeofday");
4406
4407  time_t max_secs = now.tv_sec + MAX_SECS;
4408
4409  if (isAbsolute) {
4410    jlong secs = time / 1000;
4411    if (secs > max_secs) {
4412      absTime->tv_sec = max_secs;
4413    }
4414    else {
4415      absTime->tv_sec = secs;
4416    }
4417    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4418  }
4419  else {
4420    jlong secs = time / NANOSECS_PER_SEC;
4421    if (secs >= MAX_SECS) {
4422      absTime->tv_sec = max_secs;
4423      absTime->tv_nsec = 0;
4424    }
4425    else {
4426      absTime->tv_sec = now.tv_sec + secs;
4427      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4428      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4429        absTime->tv_nsec -= NANOSECS_PER_SEC;
4430        ++absTime->tv_sec; // note: this must be <= max_secs
4431      }
4432    }
4433  }
4434  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4435  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4436  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4437  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4438}
4439
4440void Parker::park(bool isAbsolute, jlong time) {
4441  // Ideally we'd do something useful while spinning, such
4442  // as calling unpackTime().
4443
4444  // Optional fast-path check:
4445  // Return immediately if a permit is available.
4446  // We depend on Atomic::xchg() having full barrier semantics
4447  // since we are doing a lock-free update to _counter.
4448  if (Atomic::xchg(0, &_counter) > 0) return;
4449
4450  Thread* thread = Thread::current();
4451  assert(thread->is_Java_thread(), "Must be JavaThread");
4452  JavaThread *jt = (JavaThread *)thread;
4453
4454  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4455  // Check interrupt before trying to wait
4456  if (Thread::is_interrupted(thread, false)) {
4457    return;
4458  }
4459
4460  // Next, demultiplex/decode time arguments
4461  struct timespec absTime;
4462  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4463    return;
4464  }
4465  if (time > 0) {
4466    unpackTime(&absTime, isAbsolute, time);
4467  }
4468
4469
4470  // Enter safepoint region
4471  // Beware of deadlocks such as 6317397.
4472  // The per-thread Parker:: mutex is a classic leaf-lock.
4473  // In particular a thread must never block on the Threads_lock while
4474  // holding the Parker:: mutex.  If safepoints are pending both the
4475  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4476  ThreadBlockInVM tbivm(jt);
4477
4478  // Don't wait if cannot get lock since interference arises from
4479  // unblocking.  Also. check interrupt before trying wait
4480  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4481    return;
4482  }
4483
4484  int status ;
4485  if (_counter > 0)  { // no wait needed
4486    _counter = 0;
4487    status = pthread_mutex_unlock(_mutex);
4488    assert (status == 0, "invariant") ;
4489    // Paranoia to ensure our locked and lock-free paths interact
4490    // correctly with each other and Java-level accesses.
4491    OrderAccess::fence();
4492    return;
4493  }
4494
4495#ifdef ASSERT
4496  // Don't catch signals while blocked; let the running threads have the signals.
4497  // (This allows a debugger to break into the running thread.)
4498  sigset_t oldsigs;
4499  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4500  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4501#endif
4502
4503  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4504  jt->set_suspend_equivalent();
4505  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4506
4507  if (time == 0) {
4508    status = pthread_cond_wait (_cond, _mutex) ;
4509  } else {
4510    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4511    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4512      pthread_cond_destroy (_cond) ;
4513      pthread_cond_init    (_cond, NULL);
4514    }
4515  }
4516  assert_status(status == 0 || status == EINTR ||
4517                status == ETIMEDOUT,
4518                status, "cond_timedwait");
4519
4520#ifdef ASSERT
4521  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4522#endif
4523
4524  _counter = 0 ;
4525  status = pthread_mutex_unlock(_mutex) ;
4526  assert_status(status == 0, status, "invariant") ;
4527  // Paranoia to ensure our locked and lock-free paths interact
4528  // correctly with each other and Java-level accesses.
4529  OrderAccess::fence();
4530
4531  // If externally suspended while waiting, re-suspend
4532  if (jt->handle_special_suspend_equivalent_condition()) {
4533    jt->java_suspend_self();
4534  }
4535}
4536
4537void Parker::unpark() {
4538  int s, status ;
4539  status = pthread_mutex_lock(_mutex);
4540  assert (status == 0, "invariant") ;
4541  s = _counter;
4542  _counter = 1;
4543  if (s < 1) {
4544     if (WorkAroundNPTLTimedWaitHang) {
4545        status = pthread_cond_signal (_cond) ;
4546        assert (status == 0, "invariant") ;
4547        status = pthread_mutex_unlock(_mutex);
4548        assert (status == 0, "invariant") ;
4549     } else {
4550        status = pthread_mutex_unlock(_mutex);
4551        assert (status == 0, "invariant") ;
4552        status = pthread_cond_signal (_cond) ;
4553        assert (status == 0, "invariant") ;
4554     }
4555  } else {
4556    pthread_mutex_unlock(_mutex);
4557    assert (status == 0, "invariant") ;
4558  }
4559}
4560
4561
4562/* Darwin has no "environ" in a dynamic library. */
4563#ifdef __APPLE__
4564#include <crt_externs.h>
4565#define environ (*_NSGetEnviron())
4566#else
4567extern char** environ;
4568#endif
4569
4570// Run the specified command in a separate process. Return its exit value,
4571// or -1 on failure (e.g. can't fork a new process).
4572// Unlike system(), this function can be called from signal handler. It
4573// doesn't block SIGINT et al.
4574int os::fork_and_exec(char* cmd) {
4575  const char * argv[4] = {"sh", "-c", cmd, NULL};
4576
4577  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4578  // pthread_atfork handlers and reset pthread library. All we need is a
4579  // separate process to execve. Make a direct syscall to fork process.
4580  // On IA64 there's no fork syscall, we have to use fork() and hope for
4581  // the best...
4582  pid_t pid = fork();
4583
4584  if (pid < 0) {
4585    // fork failed
4586    return -1;
4587
4588  } else if (pid == 0) {
4589    // child process
4590
4591    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4592    // first to kill every thread on the thread list. Because this list is
4593    // not reset by fork() (see notes above), execve() will instead kill
4594    // every thread in the parent process. We know this is the only thread
4595    // in the new process, so make a system call directly.
4596    // IA64 should use normal execve() from glibc to match the glibc fork()
4597    // above.
4598    execve("/bin/sh", (char* const*)argv, environ);
4599
4600    // execve failed
4601    _exit(-1);
4602
4603  } else  {
4604    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4605    // care about the actual exit code, for now.
4606
4607    int status;
4608
4609    // Wait for the child process to exit.  This returns immediately if
4610    // the child has already exited. */
4611    while (waitpid(pid, &status, 0) < 0) {
4612        switch (errno) {
4613        case ECHILD: return 0;
4614        case EINTR: break;
4615        default: return -1;
4616        }
4617    }
4618
4619    if (WIFEXITED(status)) {
4620       // The child exited normally; get its exit code.
4621       return WEXITSTATUS(status);
4622    } else if (WIFSIGNALED(status)) {
4623       // The child exited because of a signal
4624       // The best value to return is 0x80 + signal number,
4625       // because that is what all Unix shells do, and because
4626       // it allows callers to distinguish between process exit and
4627       // process death by signal.
4628       return 0x80 + WTERMSIG(status);
4629    } else {
4630       // Unknown exit code; pass it through
4631       return status;
4632    }
4633  }
4634}
4635
4636// is_headless_jre()
4637//
4638// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4639// in order to report if we are running in a headless jre
4640//
4641// Since JDK8 xawt/libmawt.so was moved into the same directory
4642// as libawt.so, and renamed libawt_xawt.so
4643//
4644bool os::is_headless_jre() {
4645    struct stat statbuf;
4646    char buf[MAXPATHLEN];
4647    char libmawtpath[MAXPATHLEN];
4648    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4649    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4650    char *p;
4651
4652    // Get path to libjvm.so
4653    os::jvm_path(buf, sizeof(buf));
4654
4655    // Get rid of libjvm.so
4656    p = strrchr(buf, '/');
4657    if (p == NULL) return false;
4658    else *p = '\0';
4659
4660    // Get rid of client or server
4661    p = strrchr(buf, '/');
4662    if (p == NULL) return false;
4663    else *p = '\0';
4664
4665    // check xawt/libmawt.so
4666    strcpy(libmawtpath, buf);
4667    strcat(libmawtpath, xawtstr);
4668    if (::stat(libmawtpath, &statbuf) == 0) return false;
4669
4670    // check libawt_xawt.so
4671    strcpy(libmawtpath, buf);
4672    strcat(libmawtpath, new_xawtstr);
4673    if (::stat(libmawtpath, &statbuf) == 0) return false;
4674
4675    return true;
4676}
4677
4678// Get the default path to the core file
4679// Returns the length of the string
4680int os::get_core_path(char* buffer, size_t bufferSize) {
4681  int n = jio_snprintf(buffer, bufferSize, "/cores");
4682
4683  // Truncate if theoretical string was longer than bufferSize
4684  n = MIN2(n, (int)bufferSize);
4685
4686  return n;
4687}
4688
4689