os_bsd.cpp revision 4797:ef1818846c22
1188410Sthompsa/*
2188410Sthompsa * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3188410Sthompsa * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4188410Sthompsa *
5188410Sthompsa * This code is free software; you can redistribute it and/or modify it
6188410Sthompsa * under the terms of the GNU General Public License version 2 only, as
7188410Sthompsa * published by the Free Software Foundation.
8188410Sthompsa *
9188410Sthompsa * This code is distributed in the hope that it will be useful, but WITHOUT
10188410Sthompsa * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11188410Sthompsa * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12188410Sthompsa * version 2 for more details (a copy is included in the LICENSE file that
13188410Sthompsa * accompanied this code).
14188410Sthompsa *
15188410Sthompsa * You should have received a copy of the GNU General Public License version
16188410Sthompsa * 2 along with this work; if not, write to the Free Software Foundation,
17188410Sthompsa * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18188410Sthompsa *
19188410Sthompsa * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20188410Sthompsa * or visit www.oracle.com if you need additional information or have any
21188410Sthompsa * questions.
22188410Sthompsa *
23188410Sthompsa */
24188410Sthompsa
25188410Sthompsa// no precompiled headers
26188410Sthompsa#include "classfile/classLoader.hpp"
27188410Sthompsa#include "classfile/systemDictionary.hpp"
28188410Sthompsa#include "classfile/vmSymbols.hpp"
29188410Sthompsa#include "code/icBuffer.hpp"
30188410Sthompsa#include "code/vtableStubs.hpp"
31188410Sthompsa#include "compiler/compileBroker.hpp"
32188410Sthompsa#include "compiler/disassembler.hpp"
33188410Sthompsa#include "interpreter/interpreter.hpp"
34194677Sthompsa#include "jvm_bsd.h"
35194677Sthompsa#include "memory/allocation.inline.hpp"
36194677Sthompsa#include "memory/filemap.hpp"
37194677Sthompsa#include "mutex_bsd.inline.hpp"
38194677Sthompsa#include "oops/oop.inline.hpp"
39194677Sthompsa#include "os_share_bsd.hpp"
40194677Sthompsa#include "prims/jniFastGetField.hpp"
41194677Sthompsa#include "prims/jvm.h"
42194677Sthompsa#include "prims/jvm_misc.hpp"
43194677Sthompsa#include "runtime/arguments.hpp"
44194677Sthompsa#include "runtime/extendedPC.hpp"
45194677Sthompsa#include "runtime/globals.hpp"
46194677Sthompsa#include "runtime/interfaceSupport.hpp"
47194677Sthompsa#include "runtime/java.hpp"
48194677Sthompsa#include "runtime/javaCalls.hpp"
49194677Sthompsa#include "runtime/mutexLocker.hpp"
50194677Sthompsa#include "runtime/objectMonitor.hpp"
51194677Sthompsa#include "runtime/osThread.hpp"
52194677Sthompsa#include "runtime/perfMemory.hpp"
53188942Sthompsa#include "runtime/sharedRuntime.hpp"
54194677Sthompsa#include "runtime/statSampler.hpp"
55188410Sthompsa#include "runtime/stubRoutines.hpp"
56188942Sthompsa#include "runtime/thread.inline.hpp"
57188942Sthompsa#include "runtime/threadCritical.hpp"
58188942Sthompsa#include "runtime/timer.hpp"
59188942Sthompsa#include "services/attachListener.hpp"
60188410Sthompsa#include "services/memTracker.hpp"
61188942Sthompsa#include "services/runtimeService.hpp"
62188942Sthompsa#include "utilities/decoder.hpp"
63188942Sthompsa#include "utilities/defaultStream.hpp"
64198151Sthompsa#include "utilities/events.hpp"
65188410Sthompsa#include "utilities/growableArray.hpp"
66188410Sthompsa#include "utilities/vmError.hpp"
67188410Sthompsa
68188410Sthompsa// put OS-includes here
69188410Sthompsa# include <sys/types.h>
70188410Sthompsa# include <sys/mman.h>
71188410Sthompsa# include <sys/stat.h>
72188410Sthompsa# include <sys/select.h>
73188410Sthompsa# include <pthread.h>
74188410Sthompsa# include <signal.h>
75188410Sthompsa# include <errno.h>
76188410Sthompsa# include <dlfcn.h>
77188410Sthompsa# include <stdio.h>
78188410Sthompsa# include <unistd.h>
79188410Sthompsa# include <sys/resource.h>
80188410Sthompsa# include <pthread.h>
81188410Sthompsa# include <sys/stat.h>
82278727Sian# include <sys/time.h>
83278727Sian# include <sys/times.h>
84278727Sian# include <sys/utsname.h>
85278727Sian# include <sys/socket.h>
86278727Sian# include <sys/wait.h>
87278727Sian# include <time.h>
88188410Sthompsa# include <pwd.h>
89188410Sthompsa# include <poll.h>
90188410Sthompsa# include <semaphore.h>
91188410Sthompsa# include <fcntl.h>
92188410Sthompsa# include <string.h>
93188410Sthompsa# include <sys/param.h>
94188410Sthompsa# include <sys/sysctl.h>
95188410Sthompsa# include <sys/ipc.h>
96188410Sthompsa# include <sys/shm.h>
97188410Sthompsa#ifndef __APPLE__
98188410Sthompsa# include <link.h>
99188410Sthompsa#endif
100188410Sthompsa# include <stdint.h>
101188410Sthompsa# include <inttypes.h>
102188410Sthompsa# include <sys/ioctl.h>
103188410Sthompsa
104188410Sthompsa#if defined(__FreeBSD__) || defined(__NetBSD__)
105188410Sthompsa# include <elf.h>
106188410Sthompsa#endif
107188410Sthompsa
108188410Sthompsa#ifdef __APPLE__
109188410Sthompsa# include <mach/mach.h> // semaphore_* API
110278278Shselasky# include <mach-o/dyld.h>
111188410Sthompsa# include <sys/proc_info.h>
112188410Sthompsa# include <objc/objc-auto.h>
113194228Sthompsa#endif
114188410Sthompsa
115188410Sthompsa#ifndef MAP_ANONYMOUS
116188410Sthompsa#define MAP_ANONYMOUS MAP_ANON
117188410Sthompsa#endif
118188410Sthompsa
119188410Sthompsa#define MAX_PATH    (2 * K)
120188410Sthompsa
121188410Sthompsa// for timer info max values which include all bits
122188410Sthompsa#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123188410Sthompsa
124188410Sthompsa#define LARGEPAGES_BIT (1 << 6)
125188410Sthompsa////////////////////////////////////////////////////////////////////////////////
126188410Sthompsa// global variables
127188410Sthompsajulong os::Bsd::_physical_memory = 0;
128188410Sthompsa
129188410Sthompsa
130188410Sthompsaint (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131188410Sthompsapthread_t os::Bsd::_main_thread;
132188410Sthompsaint os::Bsd::_page_size = -1;
133188410Sthompsa
134188410Sthompsastatic jlong initial_time_count=0;
135278727Sian
136188410Sthompsastatic int clock_tics_per_sec = 100;
137305615Spfg
138305615Spfg// For diagnostics to print a message once. see run_periodic_checks
139305615Spfgstatic sigset_t check_signal_done;
140188410Sthompsastatic bool check_signals = true;
141305615Spfg
142305615Spfgstatic pid_t _initial_pid = 0;
143305615Spfg
144188410Sthompsa/* Signal number used to suspend/resume a thread */
145188410Sthompsa
146188410Sthompsa/* do not use any signal number less than SIGSEGV, see 4355769 */
147188410Sthompsastatic int SR_signum = SIGUSR2;
148188410Sthompsasigset_t SR_sigset;
149188410Sthompsa
150188410Sthompsa
151188410Sthompsa////////////////////////////////////////////////////////////////////////////////
152188410Sthompsa// utility functions
153188410Sthompsa
154188410Sthompsastatic int SR_initialize();
155188410Sthompsa
156188410Sthompsajulong os::available_memory() {
157188410Sthompsa  return Bsd::available_memory();
158188410Sthompsa}
159188410Sthompsa
160188410Sthompsajulong os::Bsd::available_memory() {
161188410Sthompsa  // XXXBSD: this is just a stopgap implementation
162188410Sthompsa  return physical_memory() >> 2;
163188410Sthompsa}
164188410Sthompsa
165188410Sthompsajulong os::physical_memory() {
166188410Sthompsa  return Bsd::physical_memory();
167188410Sthompsa}
168190183Sthompsa
169188410Sthompsa////////////////////////////////////////////////////////////////////////////////
170188410Sthompsa// environment support
171188410Sthompsa
172188410Sthompsabool os::getenv(const char* name, char* buf, int len) {
173188410Sthompsa  const char* val = ::getenv(name);
174188410Sthompsa  if (val != NULL && strlen(val) < (size_t)len) {
175188410Sthompsa    strcpy(buf, val);
176188410Sthompsa    return true;
177188410Sthompsa  }
178188410Sthompsa  if (len > 0) buf[0] = 0;  // return a null string
179188410Sthompsa  return false;
180188410Sthompsa}
181188410Sthompsa
182188410Sthompsa
183188410Sthompsa// Return true if user is running as root.
184188410Sthompsa
185188410Sthompsabool os::have_special_privileges() {
186188410Sthompsa  static bool init = false;
187188410Sthompsa  static bool privileges = false;
188188410Sthompsa  if (!init) {
189188410Sthompsa    privileges = (getuid() != geteuid()) || (getgid() != getegid());
190188410Sthompsa    init = true;
191188410Sthompsa  }
192188410Sthompsa  return privileges;
193188410Sthompsa}
194188410Sthompsa
195188410Sthompsa
196188410Sthompsa
197188410Sthompsa// Cpu architecture string
198188410Sthompsa#if   defined(ZERO)
199188410Sthompsastatic char cpu_arch[] = ZERO_LIBARCH;
200188410Sthompsa#elif defined(IA64)
201188410Sthompsastatic char cpu_arch[] = "ia64";
202188410Sthompsa#elif defined(IA32)
203188410Sthompsastatic char cpu_arch[] = "i386";
204188410Sthompsa#elif defined(AMD64)
205188410Sthompsastatic char cpu_arch[] = "amd64";
206188410Sthompsa#elif defined(ARM)
207188410Sthompsastatic char cpu_arch[] = "arm";
208188410Sthompsa#elif defined(PPC)
209188410Sthompsastatic char cpu_arch[] = "ppc";
210188410Sthompsa#elif defined(SPARC)
211188410Sthompsa#  ifdef _LP64
212188410Sthompsastatic char cpu_arch[] = "sparcv9";
213227849Shselasky#  else
214188410Sthompsastatic char cpu_arch[] = "sparc";
215188410Sthompsa#  endif
216188410Sthompsa#else
217188410Sthompsa#error Add appropriate cpu_arch setting
218188410Sthompsa#endif
219188410Sthompsa
220188410Sthompsa// Compiler variant
221188410Sthompsa#ifdef COMPILER2
222188410Sthompsa#define COMPILER_VARIANT "server"
223188410Sthompsa#else
224188410Sthompsa#define COMPILER_VARIANT "client"
225188410Sthompsa#endif
226188410Sthompsa
227188410Sthompsa
228188410Sthompsavoid os::Bsd::initialize_system_info() {
229188410Sthompsa  int mib[2];
230188410Sthompsa  size_t len;
231188410Sthompsa  int cpu_val;
232188410Sthompsa  julong mem_val;
233188410Sthompsa
234188410Sthompsa  /* get processors count via hw.ncpus sysctl */
235188410Sthompsa  mib[0] = CTL_HW;
236188410Sthompsa  mib[1] = HW_NCPU;
237188410Sthompsa  len = sizeof(cpu_val);
238188410Sthompsa  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
239194228Sthompsa       assert(len == sizeof(cpu_val), "unexpected data size");
240188410Sthompsa       set_processor_count(cpu_val);
241188410Sthompsa  }
242188410Sthompsa  else {
243188410Sthompsa       set_processor_count(1);   // fallback
244188410Sthompsa  }
245188410Sthompsa
246188410Sthompsa  /* get physical memory via hw.memsize sysctl (hw.memsize is used
247188410Sthompsa   * since it returns a 64 bit value)
248188410Sthompsa   */
249278727Sian  mib[0] = CTL_HW;
250188410Sthompsa  mib[1] = HW_MEMSIZE;
251278727Sian  len = sizeof(mem_val);
252188410Sthompsa  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
253188410Sthompsa       assert(len == sizeof(mem_val), "unexpected data size");
254188410Sthompsa       _physical_memory = mem_val;
255188410Sthompsa  } else {
256278727Sian       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
257188410Sthompsa  }
258188410Sthompsa
259188410Sthompsa#ifdef __OpenBSD__
260188410Sthompsa  {
261188410Sthompsa       // limit _physical_memory memory view on OpenBSD since
262278727Sian       // datasize rlimit restricts us anyway.
263188410Sthompsa       struct rlimit limits;
264278727Sian       getrlimit(RLIMIT_DATA, &limits);
265188410Sthompsa       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
266188410Sthompsa  }
267188410Sthompsa#endif
268188410Sthompsa}
269278727Sian
270188410Sthompsa#ifdef __APPLE__
271188410Sthompsastatic const char *get_home() {
272188410Sthompsa  const char *home_dir = ::getenv("HOME");
273188410Sthompsa  if ((home_dir == NULL) || (*home_dir == '\0')) {
274188410Sthompsa    struct passwd *passwd_info = getpwuid(geteuid());
275278727Sian    if (passwd_info != NULL) {
276188410Sthompsa      home_dir = passwd_info->pw_dir;
277278727Sian    }
278188410Sthompsa  }
279188410Sthompsa
280188410Sthompsa  return home_dir;
281278727Sian}
282188410Sthompsa#endif
283278727Sian
284188410Sthompsavoid os::init_system_properties_values() {
285188410Sthompsa//  char arch[12];
286188410Sthompsa//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
287188410Sthompsa
288188410Sthompsa  // The next steps are taken in the product version:
289188410Sthompsa  //
290188410Sthompsa  // Obtain the JAVA_HOME value from the location of libjvm.so.
291228483Shselasky  // This library should be located at:
292228483Shselasky  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
293228483Shselasky  //
294188410Sthompsa  // If "/jre/lib/" appears at the right place in the path, then we
295227843Smarius  // assume libjvm.so is installed in a JDK and we use this path.
296188410Sthompsa  //
297188410Sthompsa  // Otherwise exit with message: "Could not create the Java virtual machine."
298188410Sthompsa  //
299188410Sthompsa  // The following extra steps are taken in the debugging version:
300188410Sthompsa  //
301188410Sthompsa  // If "/jre/lib/" does NOT appear at the right place in the path
302188410Sthompsa  // instead of exit check for $JAVA_HOME environment variable.
303188410Sthompsa  //
304188410Sthompsa  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
305188410Sthompsa  // then we append a fake suffix "hotspot/libjvm.so" to this path so
306188410Sthompsa  // it looks like libjvm.so is installed there
307188942Sthompsa  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
308  //
309  // Otherwise exit.
310  //
311  // Important note: if the location of libjvm.so changes this
312  // code needs to be changed accordingly.
313
314  // The next few definitions allow the code to be verbatim:
315#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
316#define getenv(n) ::getenv(n)
317
318/*
319 * See ld(1):
320 *      The linker uses the following search paths to locate required
321 *      shared libraries:
322 *        1: ...
323 *        ...
324 *        7: The default directories, normally /lib and /usr/lib.
325 */
326#ifndef DEFAULT_LIBPATH
327#define DEFAULT_LIBPATH "/lib:/usr/lib"
328#endif
329
330#define EXTENSIONS_DIR  "/lib/ext"
331#define ENDORSED_DIR    "/lib/endorsed"
332#define REG_DIR         "/usr/java/packages"
333
334#ifdef __APPLE__
335#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
336#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
337        const char *user_home_dir = get_home();
338        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
339        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
340            sizeof(SYS_EXTENSIONS_DIRS);
341#endif
342
343  {
344    /* sysclasspath, java_home, dll_dir */
345    {
346        char *home_path;
347        char *dll_path;
348        char *pslash;
349        char buf[MAXPATHLEN];
350        os::jvm_path(buf, sizeof(buf));
351
352        // Found the full path to libjvm.so.
353        // Now cut the path to <java_home>/jre if we can.
354        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
355        pslash = strrchr(buf, '/');
356        if (pslash != NULL)
357            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
358        dll_path = malloc(strlen(buf) + 1);
359        if (dll_path == NULL)
360            return;
361        strcpy(dll_path, buf);
362        Arguments::set_dll_dir(dll_path);
363
364        if (pslash != NULL) {
365            pslash = strrchr(buf, '/');
366            if (pslash != NULL) {
367                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
368#ifndef __APPLE__
369                pslash = strrchr(buf, '/');
370                if (pslash != NULL)
371                    *pslash = '\0';   /* get rid of /lib */
372#endif
373            }
374        }
375
376        home_path = malloc(strlen(buf) + 1);
377        if (home_path == NULL)
378            return;
379        strcpy(home_path, buf);
380        Arguments::set_java_home(home_path);
381
382        if (!set_boot_path('/', ':'))
383            return;
384    }
385
386    /*
387     * Where to look for native libraries
388     *
389     * Note: Due to a legacy implementation, most of the library path
390     * is set in the launcher.  This was to accomodate linking restrictions
391     * on legacy Bsd implementations (which are no longer supported).
392     * Eventually, all the library path setting will be done here.
393     *
394     * However, to prevent the proliferation of improperly built native
395     * libraries, the new path component /usr/java/packages is added here.
396     * Eventually, all the library path setting will be done here.
397     */
398    {
399        char *ld_library_path;
400
401        /*
402         * Construct the invariant part of ld_library_path. Note that the
403         * space for the colon and the trailing null are provided by the
404         * nulls included by the sizeof operator (so actually we allocate
405         * a byte more than necessary).
406         */
407#ifdef __APPLE__
408        ld_library_path = (char *) malloc(system_ext_size);
409        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
410#else
411        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
412            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
413        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
414#endif
415
416        /*
417         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
418         * should always exist (until the legacy problem cited above is
419         * addressed).
420         */
421#ifdef __APPLE__
422        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
423        char *l = getenv("JAVA_LIBRARY_PATH");
424        if (l != NULL) {
425            char *t = ld_library_path;
426            /* That's +1 for the colon and +1 for the trailing '\0' */
427            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
428            sprintf(ld_library_path, "%s:%s", l, t);
429            free(t);
430        }
431
432        char *v = getenv("DYLD_LIBRARY_PATH");
433#else
434        char *v = getenv("LD_LIBRARY_PATH");
435#endif
436        if (v != NULL) {
437            char *t = ld_library_path;
438            /* That's +1 for the colon and +1 for the trailing '\0' */
439            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
440            sprintf(ld_library_path, "%s:%s", v, t);
441            free(t);
442        }
443
444#ifdef __APPLE__
445        // Apple's Java6 has "." at the beginning of java.library.path.
446        // OpenJDK on Windows has "." at the end of java.library.path.
447        // OpenJDK on Linux and Solaris don't have "." in java.library.path
448        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
449        // "." is appended to the end of java.library.path. Yes, this
450        // could cause a change in behavior, but Apple's Java6 behavior
451        // can be achieved by putting "." at the beginning of the
452        // JAVA_LIBRARY_PATH environment variable.
453        {
454            char *t = ld_library_path;
455            // that's +3 for appending ":." and the trailing '\0'
456            ld_library_path = (char *) malloc(strlen(t) + 3);
457            sprintf(ld_library_path, "%s:%s", t, ".");
458            free(t);
459        }
460#endif
461
462        Arguments::set_library_path(ld_library_path);
463    }
464
465    /*
466     * Extensions directories.
467     *
468     * Note that the space for the colon and the trailing null are provided
469     * by the nulls included by the sizeof operator (so actually one byte more
470     * than necessary is allocated).
471     */
472    {
473#ifdef __APPLE__
474        char *buf = malloc(strlen(Arguments::get_java_home()) +
475            sizeof(EXTENSIONS_DIR) + system_ext_size);
476        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
477            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
478#else
479        char *buf = malloc(strlen(Arguments::get_java_home()) +
480            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
481        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
482            Arguments::get_java_home());
483#endif
484
485        Arguments::set_ext_dirs(buf);
486    }
487
488    /* Endorsed standards default directory. */
489    {
490        char * buf;
491        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
492        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
493        Arguments::set_endorsed_dirs(buf);
494    }
495  }
496
497#ifdef __APPLE__
498#undef SYS_EXTENSIONS_DIR
499#endif
500#undef malloc
501#undef getenv
502#undef EXTENSIONS_DIR
503#undef ENDORSED_DIR
504
505  // Done
506  return;
507}
508
509////////////////////////////////////////////////////////////////////////////////
510// breakpoint support
511
512void os::breakpoint() {
513  BREAKPOINT;
514}
515
516extern "C" void breakpoint() {
517  // use debugger to set breakpoint here
518}
519
520////////////////////////////////////////////////////////////////////////////////
521// signal support
522
523debug_only(static bool signal_sets_initialized = false);
524static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
525
526bool os::Bsd::is_sig_ignored(int sig) {
527      struct sigaction oact;
528      sigaction(sig, (struct sigaction*)NULL, &oact);
529      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
530                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
531      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
532           return true;
533      else
534           return false;
535}
536
537void os::Bsd::signal_sets_init() {
538  // Should also have an assertion stating we are still single-threaded.
539  assert(!signal_sets_initialized, "Already initialized");
540  // Fill in signals that are necessarily unblocked for all threads in
541  // the VM. Currently, we unblock the following signals:
542  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
543  //                         by -Xrs (=ReduceSignalUsage));
544  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
545  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
546  // the dispositions or masks wrt these signals.
547  // Programs embedding the VM that want to use the above signals for their
548  // own purposes must, at this time, use the "-Xrs" option to prevent
549  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
550  // (See bug 4345157, and other related bugs).
551  // In reality, though, unblocking these signals is really a nop, since
552  // these signals are not blocked by default.
553  sigemptyset(&unblocked_sigs);
554  sigemptyset(&allowdebug_blocked_sigs);
555  sigaddset(&unblocked_sigs, SIGILL);
556  sigaddset(&unblocked_sigs, SIGSEGV);
557  sigaddset(&unblocked_sigs, SIGBUS);
558  sigaddset(&unblocked_sigs, SIGFPE);
559  sigaddset(&unblocked_sigs, SR_signum);
560
561  if (!ReduceSignalUsage) {
562   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
563      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
564      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
565   }
566   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
567      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
568      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
569   }
570   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
571      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
572      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
573   }
574  }
575  // Fill in signals that are blocked by all but the VM thread.
576  sigemptyset(&vm_sigs);
577  if (!ReduceSignalUsage)
578    sigaddset(&vm_sigs, BREAK_SIGNAL);
579  debug_only(signal_sets_initialized = true);
580
581}
582
583// These are signals that are unblocked while a thread is running Java.
584// (For some reason, they get blocked by default.)
585sigset_t* os::Bsd::unblocked_signals() {
586  assert(signal_sets_initialized, "Not initialized");
587  return &unblocked_sigs;
588}
589
590// These are the signals that are blocked while a (non-VM) thread is
591// running Java. Only the VM thread handles these signals.
592sigset_t* os::Bsd::vm_signals() {
593  assert(signal_sets_initialized, "Not initialized");
594  return &vm_sigs;
595}
596
597// These are signals that are blocked during cond_wait to allow debugger in
598sigset_t* os::Bsd::allowdebug_blocked_signals() {
599  assert(signal_sets_initialized, "Not initialized");
600  return &allowdebug_blocked_sigs;
601}
602
603void os::Bsd::hotspot_sigmask(Thread* thread) {
604
605  //Save caller's signal mask before setting VM signal mask
606  sigset_t caller_sigmask;
607  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
608
609  OSThread* osthread = thread->osthread();
610  osthread->set_caller_sigmask(caller_sigmask);
611
612  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
613
614  if (!ReduceSignalUsage) {
615    if (thread->is_VM_thread()) {
616      // Only the VM thread handles BREAK_SIGNAL ...
617      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
618    } else {
619      // ... all other threads block BREAK_SIGNAL
620      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
621    }
622  }
623}
624
625
626//////////////////////////////////////////////////////////////////////////////
627// create new thread
628
629// check if it's safe to start a new thread
630static bool _thread_safety_check(Thread* thread) {
631  return true;
632}
633
634#ifdef __APPLE__
635// library handle for calling objc_registerThreadWithCollector()
636// without static linking to the libobjc library
637#define OBJC_LIB "/usr/lib/libobjc.dylib"
638#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
639typedef void (*objc_registerThreadWithCollector_t)();
640extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
641objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
642#endif
643
644#ifdef __APPLE__
645static uint64_t locate_unique_thread_id() {
646  // Additional thread_id used to correlate threads in SA
647  thread_identifier_info_data_t     m_ident_info;
648  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
649
650  thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
651              (thread_info_t) &m_ident_info, &count);
652  return m_ident_info.thread_id;
653}
654#endif
655
656// Thread start routine for all newly created threads
657static void *java_start(Thread *thread) {
658  // Try to randomize the cache line index of hot stack frames.
659  // This helps when threads of the same stack traces evict each other's
660  // cache lines. The threads can be either from the same JVM instance, or
661  // from different JVM instances. The benefit is especially true for
662  // processors with hyperthreading technology.
663  static int counter = 0;
664  int pid = os::current_process_id();
665  alloca(((pid ^ counter++) & 7) * 128);
666
667  ThreadLocalStorage::set_thread(thread);
668
669  OSThread* osthread = thread->osthread();
670  Monitor* sync = osthread->startThread_lock();
671
672  // non floating stack BsdThreads needs extra check, see above
673  if (!_thread_safety_check(thread)) {
674    // notify parent thread
675    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
676    osthread->set_state(ZOMBIE);
677    sync->notify_all();
678    return NULL;
679  }
680
681#ifdef __APPLE__
682  // thread_id is mach thread on macos
683  osthread->set_thread_id(::mach_thread_self());
684  osthread->set_unique_thread_id(locate_unique_thread_id());
685#else
686  // thread_id is pthread_id on BSD
687  osthread->set_thread_id(::pthread_self());
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // stack size
745  if (os::Bsd::supports_variable_stack_size()) {
746    // calculate stack size if it's not specified by caller
747    if (stack_size == 0) {
748      stack_size = os::Bsd::default_stack_size(thr_type);
749
750      switch (thr_type) {
751      case os::java_thread:
752        // Java threads use ThreadStackSize which default value can be
753        // changed with the flag -Xss
754        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
755        stack_size = JavaThread::stack_size_at_create();
756        break;
757      case os::compiler_thread:
758        if (CompilerThreadStackSize > 0) {
759          stack_size = (size_t)(CompilerThreadStackSize * K);
760          break;
761        } // else fall through:
762          // use VMThreadStackSize if CompilerThreadStackSize is not defined
763      case os::vm_thread:
764      case os::pgc_thread:
765      case os::cgc_thread:
766      case os::watcher_thread:
767        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
768        break;
769      }
770    }
771
772    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
773    pthread_attr_setstacksize(&attr, stack_size);
774  } else {
775    // let pthread_create() pick the default value.
776  }
777
778  ThreadState state;
779
780  {
781    pthread_t tid;
782    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
783
784    pthread_attr_destroy(&attr);
785
786    if (ret != 0) {
787      if (PrintMiscellaneous && (Verbose || WizardMode)) {
788        perror("pthread_create()");
789      }
790      // Need to clean up stuff we've allocated so far
791      thread->set_osthread(NULL);
792      delete osthread;
793      return false;
794    }
795
796    // Store pthread info into the OSThread
797    osthread->set_pthread_id(tid);
798
799    // Wait until child thread is either initialized or aborted
800    {
801      Monitor* sync_with_child = osthread->startThread_lock();
802      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
803      while ((state = osthread->get_state()) == ALLOCATED) {
804        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
805      }
806    }
807
808  }
809
810  // Aborted due to thread limit being reached
811  if (state == ZOMBIE) {
812      thread->set_osthread(NULL);
813      delete osthread;
814      return false;
815  }
816
817  // The thread is returned suspended (in state INITIALIZED),
818  // and is started higher up in the call chain
819  assert(state == INITIALIZED, "race condition");
820  return true;
821}
822
823/////////////////////////////////////////////////////////////////////////////
824// attach existing thread
825
826// bootstrap the main thread
827bool os::create_main_thread(JavaThread* thread) {
828  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
829  return create_attached_thread(thread);
830}
831
832bool os::create_attached_thread(JavaThread* thread) {
833#ifdef ASSERT
834    thread->verify_not_published();
835#endif
836
837  // Allocate the OSThread object
838  OSThread* osthread = new OSThread(NULL, NULL);
839
840  if (osthread == NULL) {
841    return false;
842  }
843
844  // Store pthread info into the OSThread
845#ifdef __APPLE__
846  osthread->set_thread_id(::mach_thread_self());
847  osthread->set_unique_thread_id(locate_unique_thread_id());
848#else
849  osthread->set_thread_id(::pthread_self());
850#endif
851  osthread->set_pthread_id(::pthread_self());
852
853  // initialize floating point control register
854  os::Bsd::init_thread_fpu_state();
855
856  // Initial thread state is RUNNABLE
857  osthread->set_state(RUNNABLE);
858
859  thread->set_osthread(osthread);
860
861  // initialize signal mask for this thread
862  // and save the caller's signal mask
863  os::Bsd::hotspot_sigmask(thread);
864
865  return true;
866}
867
868void os::pd_start_thread(Thread* thread) {
869  OSThread * osthread = thread->osthread();
870  assert(osthread->get_state() != INITIALIZED, "just checking");
871  Monitor* sync_with_child = osthread->startThread_lock();
872  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
873  sync_with_child->notify();
874}
875
876// Free Bsd resources related to the OSThread
877void os::free_thread(OSThread* osthread) {
878  assert(osthread != NULL, "osthread not set");
879
880  if (Thread::current()->osthread() == osthread) {
881    // Restore caller's signal mask
882    sigset_t sigmask = osthread->caller_sigmask();
883    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
884   }
885
886  delete osthread;
887}
888
889//////////////////////////////////////////////////////////////////////////////
890// thread local storage
891
892int os::allocate_thread_local_storage() {
893  pthread_key_t key;
894  int rslt = pthread_key_create(&key, NULL);
895  assert(rslt == 0, "cannot allocate thread local storage");
896  return (int)key;
897}
898
899// Note: This is currently not used by VM, as we don't destroy TLS key
900// on VM exit.
901void os::free_thread_local_storage(int index) {
902  int rslt = pthread_key_delete((pthread_key_t)index);
903  assert(rslt == 0, "invalid index");
904}
905
906void os::thread_local_storage_at_put(int index, void* value) {
907  int rslt = pthread_setspecific((pthread_key_t)index, value);
908  assert(rslt == 0, "pthread_setspecific failed");
909}
910
911extern "C" Thread* get_thread() {
912  return ThreadLocalStorage::thread();
913}
914
915
916////////////////////////////////////////////////////////////////////////////////
917// time support
918
919// Time since start-up in seconds to a fine granularity.
920// Used by VMSelfDestructTimer and the MemProfiler.
921double os::elapsedTime() {
922
923  return (double)(os::elapsed_counter()) * 0.000001;
924}
925
926jlong os::elapsed_counter() {
927  timeval time;
928  int status = gettimeofday(&time, NULL);
929  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
930}
931
932jlong os::elapsed_frequency() {
933  return (1000 * 1000);
934}
935
936bool os::supports_vtime() { return true; }
937bool os::enable_vtime()   { return false; }
938bool os::vtime_enabled()  { return false; }
939
940double os::elapsedVTime() {
941  // better than nothing, but not much
942  return elapsedTime();
943}
944
945jlong os::javaTimeMillis() {
946  timeval time;
947  int status = gettimeofday(&time, NULL);
948  assert(status != -1, "bsd error");
949  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
950}
951
952#ifndef CLOCK_MONOTONIC
953#define CLOCK_MONOTONIC (1)
954#endif
955
956#ifdef __APPLE__
957void os::Bsd::clock_init() {
958        // XXXDARWIN: Investigate replacement monotonic clock
959}
960#else
961void os::Bsd::clock_init() {
962  struct timespec res;
963  struct timespec tp;
964  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
965      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
966    // yes, monotonic clock is supported
967    _clock_gettime = ::clock_gettime;
968  }
969}
970#endif
971
972
973jlong os::javaTimeNanos() {
974  if (Bsd::supports_monotonic_clock()) {
975    struct timespec tp;
976    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
977    assert(status == 0, "gettime error");
978    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
979    return result;
980  } else {
981    timeval time;
982    int status = gettimeofday(&time, NULL);
983    assert(status != -1, "bsd error");
984    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
985    return 1000 * usecs;
986  }
987}
988
989void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
990  if (Bsd::supports_monotonic_clock()) {
991    info_ptr->max_value = ALL_64_BITS;
992
993    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
994    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
995    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
996  } else {
997    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
998    info_ptr->max_value = ALL_64_BITS;
999
1000    // gettimeofday is a real time clock so it skips
1001    info_ptr->may_skip_backward = true;
1002    info_ptr->may_skip_forward = true;
1003  }
1004
1005  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1006}
1007
1008// Return the real, user, and system times in seconds from an
1009// arbitrary fixed point in the past.
1010bool os::getTimesSecs(double* process_real_time,
1011                      double* process_user_time,
1012                      double* process_system_time) {
1013  struct tms ticks;
1014  clock_t real_ticks = times(&ticks);
1015
1016  if (real_ticks == (clock_t) (-1)) {
1017    return false;
1018  } else {
1019    double ticks_per_second = (double) clock_tics_per_sec;
1020    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1021    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1022    *process_real_time = ((double) real_ticks) / ticks_per_second;
1023
1024    return true;
1025  }
1026}
1027
1028
1029char * os::local_time_string(char *buf, size_t buflen) {
1030  struct tm t;
1031  time_t long_time;
1032  time(&long_time);
1033  localtime_r(&long_time, &t);
1034  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1035               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1036               t.tm_hour, t.tm_min, t.tm_sec);
1037  return buf;
1038}
1039
1040struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1041  return localtime_r(clock, res);
1042}
1043
1044////////////////////////////////////////////////////////////////////////////////
1045// runtime exit support
1046
1047// Note: os::shutdown() might be called very early during initialization, or
1048// called from signal handler. Before adding something to os::shutdown(), make
1049// sure it is async-safe and can handle partially initialized VM.
1050void os::shutdown() {
1051
1052  // allow PerfMemory to attempt cleanup of any persistent resources
1053  perfMemory_exit();
1054
1055  // needs to remove object in file system
1056  AttachListener::abort();
1057
1058  // flush buffered output, finish log files
1059  ostream_abort();
1060
1061  // Check for abort hook
1062  abort_hook_t abort_hook = Arguments::abort_hook();
1063  if (abort_hook != NULL) {
1064    abort_hook();
1065  }
1066
1067}
1068
1069// Note: os::abort() might be called very early during initialization, or
1070// called from signal handler. Before adding something to os::abort(), make
1071// sure it is async-safe and can handle partially initialized VM.
1072void os::abort(bool dump_core) {
1073  os::shutdown();
1074  if (dump_core) {
1075#ifndef PRODUCT
1076    fdStream out(defaultStream::output_fd());
1077    out.print_raw("Current thread is ");
1078    char buf[16];
1079    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1080    out.print_raw_cr(buf);
1081    out.print_raw_cr("Dumping core ...");
1082#endif
1083    ::abort(); // dump core
1084  }
1085
1086  ::exit(1);
1087}
1088
1089// Die immediately, no exit hook, no abort hook, no cleanup.
1090void os::die() {
1091  // _exit() on BsdThreads only kills current thread
1092  ::abort();
1093}
1094
1095// unused on bsd for now.
1096void os::set_error_file(const char *logfile) {}
1097
1098
1099// This method is a copy of JDK's sysGetLastErrorString
1100// from src/solaris/hpi/src/system_md.c
1101
1102size_t os::lasterror(char *buf, size_t len) {
1103
1104  if (errno == 0)  return 0;
1105
1106  const char *s = ::strerror(errno);
1107  size_t n = ::strlen(s);
1108  if (n >= len) {
1109    n = len - 1;
1110  }
1111  ::strncpy(buf, s, n);
1112  buf[n] = '\0';
1113  return n;
1114}
1115
1116intx os::current_thread_id() {
1117#ifdef __APPLE__
1118  return (intx)::mach_thread_self();
1119#else
1120  return (intx)::pthread_self();
1121#endif
1122}
1123int os::current_process_id() {
1124
1125  // Under the old bsd thread library, bsd gives each thread
1126  // its own process id. Because of this each thread will return
1127  // a different pid if this method were to return the result
1128  // of getpid(2). Bsd provides no api that returns the pid
1129  // of the launcher thread for the vm. This implementation
1130  // returns a unique pid, the pid of the launcher thread
1131  // that starts the vm 'process'.
1132
1133  // Under the NPTL, getpid() returns the same pid as the
1134  // launcher thread rather than a unique pid per thread.
1135  // Use gettid() if you want the old pre NPTL behaviour.
1136
1137  // if you are looking for the result of a call to getpid() that
1138  // returns a unique pid for the calling thread, then look at the
1139  // OSThread::thread_id() method in osThread_bsd.hpp file
1140
1141  return (int)(_initial_pid ? _initial_pid : getpid());
1142}
1143
1144// DLL functions
1145
1146#define JNI_LIB_PREFIX "lib"
1147#ifdef __APPLE__
1148#define JNI_LIB_SUFFIX ".dylib"
1149#else
1150#define JNI_LIB_SUFFIX ".so"
1151#endif
1152
1153const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1154
1155// This must be hard coded because it's the system's temporary
1156// directory not the java application's temp directory, ala java.io.tmpdir.
1157#ifdef __APPLE__
1158// macosx has a secure per-user temporary directory
1159char temp_path_storage[PATH_MAX];
1160const char* os::get_temp_directory() {
1161  static char *temp_path = NULL;
1162  if (temp_path == NULL) {
1163    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1164    if (pathSize == 0 || pathSize > PATH_MAX) {
1165      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1166    }
1167    temp_path = temp_path_storage;
1168  }
1169  return temp_path;
1170}
1171#else /* __APPLE__ */
1172const char* os::get_temp_directory() { return "/tmp"; }
1173#endif /* __APPLE__ */
1174
1175static bool file_exists(const char* filename) {
1176  struct stat statbuf;
1177  if (filename == NULL || strlen(filename) == 0) {
1178    return false;
1179  }
1180  return os::stat(filename, &statbuf) == 0;
1181}
1182
1183bool os::dll_build_name(char* buffer, size_t buflen,
1184                        const char* pname, const char* fname) {
1185  bool retval = false;
1186  // Copied from libhpi
1187  const size_t pnamelen = pname ? strlen(pname) : 0;
1188
1189  // Return error on buffer overflow.
1190  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1191    return retval;
1192  }
1193
1194  if (pnamelen == 0) {
1195    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1196    retval = true;
1197  } else if (strchr(pname, *os::path_separator()) != NULL) {
1198    int n;
1199    char** pelements = split_path(pname, &n);
1200    if (pelements == NULL) {
1201      return false;
1202    }
1203    for (int i = 0 ; i < n ; i++) {
1204      // Really shouldn't be NULL, but check can't hurt
1205      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1206        continue; // skip the empty path values
1207      }
1208      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1209          pelements[i], fname);
1210      if (file_exists(buffer)) {
1211        retval = true;
1212        break;
1213      }
1214    }
1215    // release the storage
1216    for (int i = 0 ; i < n ; i++) {
1217      if (pelements[i] != NULL) {
1218        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1219      }
1220    }
1221    if (pelements != NULL) {
1222      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1223    }
1224  } else {
1225    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1226    retval = true;
1227  }
1228  return retval;
1229}
1230
1231// check if addr is inside libjvm.so
1232bool os::address_is_in_vm(address addr) {
1233  static address libjvm_base_addr;
1234  Dl_info dlinfo;
1235
1236  if (libjvm_base_addr == NULL) {
1237    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1238    libjvm_base_addr = (address)dlinfo.dli_fbase;
1239    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1240  }
1241
1242  if (dladdr((void *)addr, &dlinfo)) {
1243    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1244  }
1245
1246  return false;
1247}
1248
1249
1250#define MACH_MAXSYMLEN 256
1251
1252bool os::dll_address_to_function_name(address addr, char *buf,
1253                                      int buflen, int *offset) {
1254  Dl_info dlinfo;
1255  char localbuf[MACH_MAXSYMLEN];
1256
1257  // dladdr will find names of dynamic functions only, but does
1258  // it set dli_fbase with mach_header address when it "fails" ?
1259  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1260    if (buf != NULL) {
1261      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1262        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1263      }
1264    }
1265    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1266    return true;
1267  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1268    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1269       buf, buflen, offset, dlinfo.dli_fname)) {
1270       return true;
1271    }
1272  }
1273
1274  // Handle non-dymanic manually:
1275  if (dlinfo.dli_fbase != NULL &&
1276      Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1277    if(!Decoder::demangle(localbuf, buf, buflen)) {
1278      jio_snprintf(buf, buflen, "%s", localbuf);
1279    }
1280    return true;
1281  }
1282  if (buf != NULL) buf[0] = '\0';
1283  if (offset != NULL) *offset = -1;
1284  return false;
1285}
1286
1287// ported from solaris version
1288bool os::dll_address_to_library_name(address addr, char* buf,
1289                                     int buflen, int* offset) {
1290  Dl_info dlinfo;
1291
1292  if (dladdr((void*)addr, &dlinfo)){
1293     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1294     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1295     return true;
1296  } else {
1297     if (buf) buf[0] = '\0';
1298     if (offset) *offset = -1;
1299     return false;
1300  }
1301}
1302
1303// Loads .dll/.so and
1304// in case of error it checks if .dll/.so was built for the
1305// same architecture as Hotspot is running on
1306
1307#ifdef __APPLE__
1308void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1309  void * result= ::dlopen(filename, RTLD_LAZY);
1310  if (result != NULL) {
1311    // Successful loading
1312    return result;
1313  }
1314
1315  // Read system error message into ebuf
1316  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1317  ebuf[ebuflen-1]='\0';
1318
1319  return NULL;
1320}
1321#else
1322void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1323{
1324  void * result= ::dlopen(filename, RTLD_LAZY);
1325  if (result != NULL) {
1326    // Successful loading
1327    return result;
1328  }
1329
1330  Elf32_Ehdr elf_head;
1331
1332  // Read system error message into ebuf
1333  // It may or may not be overwritten below
1334  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1335  ebuf[ebuflen-1]='\0';
1336  int diag_msg_max_length=ebuflen-strlen(ebuf);
1337  char* diag_msg_buf=ebuf+strlen(ebuf);
1338
1339  if (diag_msg_max_length==0) {
1340    // No more space in ebuf for additional diagnostics message
1341    return NULL;
1342  }
1343
1344
1345  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1346
1347  if (file_descriptor < 0) {
1348    // Can't open library, report dlerror() message
1349    return NULL;
1350  }
1351
1352  bool failed_to_read_elf_head=
1353    (sizeof(elf_head)!=
1354        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1355
1356  ::close(file_descriptor);
1357  if (failed_to_read_elf_head) {
1358    // file i/o error - report dlerror() msg
1359    return NULL;
1360  }
1361
1362  typedef struct {
1363    Elf32_Half  code;         // Actual value as defined in elf.h
1364    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1365    char        elf_class;    // 32 or 64 bit
1366    char        endianess;    // MSB or LSB
1367    char*       name;         // String representation
1368  } arch_t;
1369
1370  #ifndef EM_486
1371  #define EM_486          6               /* Intel 80486 */
1372  #endif
1373
1374  #ifndef EM_MIPS_RS3_LE
1375  #define EM_MIPS_RS3_LE  10              /* MIPS */
1376  #endif
1377
1378  #ifndef EM_PPC64
1379  #define EM_PPC64        21              /* PowerPC64 */
1380  #endif
1381
1382  #ifndef EM_S390
1383  #define EM_S390         22              /* IBM System/390 */
1384  #endif
1385
1386  #ifndef EM_IA_64
1387  #define EM_IA_64        50              /* HP/Intel IA-64 */
1388  #endif
1389
1390  #ifndef EM_X86_64
1391  #define EM_X86_64       62              /* AMD x86-64 */
1392  #endif
1393
1394  static const arch_t arch_array[]={
1395    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1396    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1397    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1398    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1399    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1400    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1401    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1402    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1403    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1404    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1405    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1406    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1407    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1408    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1409    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1410    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1411  };
1412
1413  #if  (defined IA32)
1414    static  Elf32_Half running_arch_code=EM_386;
1415  #elif   (defined AMD64)
1416    static  Elf32_Half running_arch_code=EM_X86_64;
1417  #elif  (defined IA64)
1418    static  Elf32_Half running_arch_code=EM_IA_64;
1419  #elif  (defined __sparc) && (defined _LP64)
1420    static  Elf32_Half running_arch_code=EM_SPARCV9;
1421  #elif  (defined __sparc) && (!defined _LP64)
1422    static  Elf32_Half running_arch_code=EM_SPARC;
1423  #elif  (defined __powerpc64__)
1424    static  Elf32_Half running_arch_code=EM_PPC64;
1425  #elif  (defined __powerpc__)
1426    static  Elf32_Half running_arch_code=EM_PPC;
1427  #elif  (defined ARM)
1428    static  Elf32_Half running_arch_code=EM_ARM;
1429  #elif  (defined S390)
1430    static  Elf32_Half running_arch_code=EM_S390;
1431  #elif  (defined ALPHA)
1432    static  Elf32_Half running_arch_code=EM_ALPHA;
1433  #elif  (defined MIPSEL)
1434    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1435  #elif  (defined PARISC)
1436    static  Elf32_Half running_arch_code=EM_PARISC;
1437  #elif  (defined MIPS)
1438    static  Elf32_Half running_arch_code=EM_MIPS;
1439  #elif  (defined M68K)
1440    static  Elf32_Half running_arch_code=EM_68K;
1441  #else
1442    #error Method os::dll_load requires that one of following is defined:\
1443         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1444  #endif
1445
1446  // Identify compatability class for VM's architecture and library's architecture
1447  // Obtain string descriptions for architectures
1448
1449  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1450  int running_arch_index=-1;
1451
1452  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1453    if (running_arch_code == arch_array[i].code) {
1454      running_arch_index    = i;
1455    }
1456    if (lib_arch.code == arch_array[i].code) {
1457      lib_arch.compat_class = arch_array[i].compat_class;
1458      lib_arch.name         = arch_array[i].name;
1459    }
1460  }
1461
1462  assert(running_arch_index != -1,
1463    "Didn't find running architecture code (running_arch_code) in arch_array");
1464  if (running_arch_index == -1) {
1465    // Even though running architecture detection failed
1466    // we may still continue with reporting dlerror() message
1467    return NULL;
1468  }
1469
1470  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1471    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1472    return NULL;
1473  }
1474
1475#ifndef S390
1476  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1477    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1478    return NULL;
1479  }
1480#endif // !S390
1481
1482  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1483    if ( lib_arch.name!=NULL ) {
1484      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1485        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1486        lib_arch.name, arch_array[running_arch_index].name);
1487    } else {
1488      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1489      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1490        lib_arch.code,
1491        arch_array[running_arch_index].name);
1492    }
1493  }
1494
1495  return NULL;
1496}
1497#endif /* !__APPLE__ */
1498
1499// XXX: Do we need a lock around this as per Linux?
1500void* os::dll_lookup(void* handle, const char* name) {
1501  return dlsym(handle, name);
1502}
1503
1504
1505static bool _print_ascii_file(const char* filename, outputStream* st) {
1506  int fd = ::open(filename, O_RDONLY);
1507  if (fd == -1) {
1508     return false;
1509  }
1510
1511  char buf[32];
1512  int bytes;
1513  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1514    st->print_raw(buf, bytes);
1515  }
1516
1517  ::close(fd);
1518
1519  return true;
1520}
1521
1522void os::print_dll_info(outputStream *st) {
1523   st->print_cr("Dynamic libraries:");
1524#ifdef RTLD_DI_LINKMAP
1525    Dl_info dli;
1526    void *handle;
1527    Link_map *map;
1528    Link_map *p;
1529
1530    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1531        st->print_cr("Error: Cannot print dynamic libraries.");
1532        return;
1533    }
1534    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1535    if (handle == NULL) {
1536        st->print_cr("Error: Cannot print dynamic libraries.");
1537        return;
1538    }
1539    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1540    if (map == NULL) {
1541        st->print_cr("Error: Cannot print dynamic libraries.");
1542        return;
1543    }
1544
1545    while (map->l_prev != NULL)
1546        map = map->l_prev;
1547
1548    while (map != NULL) {
1549        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1550        map = map->l_next;
1551    }
1552
1553    dlclose(handle);
1554#elif defined(__APPLE__)
1555    uint32_t count;
1556    uint32_t i;
1557
1558    count = _dyld_image_count();
1559    for (i = 1; i < count; i++) {
1560        const char *name = _dyld_get_image_name(i);
1561        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1562        st->print_cr(PTR_FORMAT " \t%s", slide, name);
1563    }
1564#else
1565   st->print_cr("Error: Cannot print dynamic libraries.");
1566#endif
1567}
1568
1569void os::print_os_info_brief(outputStream* st) {
1570  st->print("Bsd");
1571
1572  os::Posix::print_uname_info(st);
1573}
1574
1575void os::print_os_info(outputStream* st) {
1576  st->print("OS:");
1577  st->print("Bsd");
1578
1579  os::Posix::print_uname_info(st);
1580
1581  os::Posix::print_rlimit_info(st);
1582
1583  os::Posix::print_load_average(st);
1584}
1585
1586void os::pd_print_cpu_info(outputStream* st) {
1587  // Nothing to do for now.
1588}
1589
1590void os::print_memory_info(outputStream* st) {
1591
1592  st->print("Memory:");
1593  st->print(" %dk page", os::vm_page_size()>>10);
1594
1595  st->print(", physical " UINT64_FORMAT "k",
1596            os::physical_memory() >> 10);
1597  st->print("(" UINT64_FORMAT "k free)",
1598            os::available_memory() >> 10);
1599  st->cr();
1600
1601  // meminfo
1602  st->print("\n/proc/meminfo:\n");
1603  _print_ascii_file("/proc/meminfo", st);
1604  st->cr();
1605}
1606
1607// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1608// but they're the same for all the bsd arch that we support
1609// and they're the same for solaris but there's no common place to put this.
1610const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1611                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1612                          "ILL_COPROC", "ILL_BADSTK" };
1613
1614const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1615                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1616                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1617
1618const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1619
1620const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1621
1622void os::print_siginfo(outputStream* st, void* siginfo) {
1623  st->print("siginfo:");
1624
1625  const int buflen = 100;
1626  char buf[buflen];
1627  siginfo_t *si = (siginfo_t*)siginfo;
1628  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1629  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1630    st->print("si_errno=%s", buf);
1631  } else {
1632    st->print("si_errno=%d", si->si_errno);
1633  }
1634  const int c = si->si_code;
1635  assert(c > 0, "unexpected si_code");
1636  switch (si->si_signo) {
1637  case SIGILL:
1638    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1639    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1640    break;
1641  case SIGFPE:
1642    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1643    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1644    break;
1645  case SIGSEGV:
1646    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1647    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1648    break;
1649  case SIGBUS:
1650    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1651    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1652    break;
1653  default:
1654    st->print(", si_code=%d", si->si_code);
1655    // no si_addr
1656  }
1657
1658  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1659      UseSharedSpaces) {
1660    FileMapInfo* mapinfo = FileMapInfo::current_info();
1661    if (mapinfo->is_in_shared_space(si->si_addr)) {
1662      st->print("\n\nError accessing class data sharing archive."   \
1663                " Mapped file inaccessible during execution, "      \
1664                " possible disk/network problem.");
1665    }
1666  }
1667  st->cr();
1668}
1669
1670
1671static void print_signal_handler(outputStream* st, int sig,
1672                                 char* buf, size_t buflen);
1673
1674void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1675  st->print_cr("Signal Handlers:");
1676  print_signal_handler(st, SIGSEGV, buf, buflen);
1677  print_signal_handler(st, SIGBUS , buf, buflen);
1678  print_signal_handler(st, SIGFPE , buf, buflen);
1679  print_signal_handler(st, SIGPIPE, buf, buflen);
1680  print_signal_handler(st, SIGXFSZ, buf, buflen);
1681  print_signal_handler(st, SIGILL , buf, buflen);
1682  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1683  print_signal_handler(st, SR_signum, buf, buflen);
1684  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1685  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1686  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1687  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1688}
1689
1690static char saved_jvm_path[MAXPATHLEN] = {0};
1691
1692// Find the full path to the current module, libjvm
1693void os::jvm_path(char *buf, jint buflen) {
1694  // Error checking.
1695  if (buflen < MAXPATHLEN) {
1696    assert(false, "must use a large-enough buffer");
1697    buf[0] = '\0';
1698    return;
1699  }
1700  // Lazy resolve the path to current module.
1701  if (saved_jvm_path[0] != 0) {
1702    strcpy(buf, saved_jvm_path);
1703    return;
1704  }
1705
1706  char dli_fname[MAXPATHLEN];
1707  bool ret = dll_address_to_library_name(
1708                CAST_FROM_FN_PTR(address, os::jvm_path),
1709                dli_fname, sizeof(dli_fname), NULL);
1710  assert(ret != 0, "cannot locate libjvm");
1711  char *rp = realpath(dli_fname, buf);
1712  if (rp == NULL)
1713    return;
1714
1715  if (Arguments::created_by_gamma_launcher()) {
1716    // Support for the gamma launcher.  Typical value for buf is
1717    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1718    // the right place in the string, then assume we are installed in a JDK and
1719    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1720    // construct a path to the JVM being overridden.
1721
1722    const char *p = buf + strlen(buf) - 1;
1723    for (int count = 0; p > buf && count < 5; ++count) {
1724      for (--p; p > buf && *p != '/'; --p)
1725        /* empty */ ;
1726    }
1727
1728    if (strncmp(p, "/jre/lib/", 9) != 0) {
1729      // Look for JAVA_HOME in the environment.
1730      char* java_home_var = ::getenv("JAVA_HOME");
1731      if (java_home_var != NULL && java_home_var[0] != 0) {
1732        char* jrelib_p;
1733        int len;
1734
1735        // Check the current module name "libjvm"
1736        p = strrchr(buf, '/');
1737        assert(strstr(p, "/libjvm") == p, "invalid library name");
1738
1739        rp = realpath(java_home_var, buf);
1740        if (rp == NULL)
1741          return;
1742
1743        // determine if this is a legacy image or modules image
1744        // modules image doesn't have "jre" subdirectory
1745        len = strlen(buf);
1746        jrelib_p = buf + len;
1747
1748        // Add the appropriate library subdir
1749        snprintf(jrelib_p, buflen-len, "/jre/lib");
1750        if (0 != access(buf, F_OK)) {
1751          snprintf(jrelib_p, buflen-len, "/lib");
1752        }
1753
1754        // Add the appropriate client or server subdir
1755        len = strlen(buf);
1756        jrelib_p = buf + len;
1757        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1758        if (0 != access(buf, F_OK)) {
1759          snprintf(jrelib_p, buflen-len, "");
1760        }
1761
1762        // If the path exists within JAVA_HOME, add the JVM library name
1763        // to complete the path to JVM being overridden.  Otherwise fallback
1764        // to the path to the current library.
1765        if (0 == access(buf, F_OK)) {
1766          // Use current module name "libjvm"
1767          len = strlen(buf);
1768          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1769        } else {
1770          // Fall back to path of current library
1771          rp = realpath(dli_fname, buf);
1772          if (rp == NULL)
1773            return;
1774        }
1775      }
1776    }
1777  }
1778
1779  strcpy(saved_jvm_path, buf);
1780}
1781
1782void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1783  // no prefix required, not even "_"
1784}
1785
1786void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1787  // no suffix required
1788}
1789
1790////////////////////////////////////////////////////////////////////////////////
1791// sun.misc.Signal support
1792
1793static volatile jint sigint_count = 0;
1794
1795static void
1796UserHandler(int sig, void *siginfo, void *context) {
1797  // 4511530 - sem_post is serialized and handled by the manager thread. When
1798  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1799  // don't want to flood the manager thread with sem_post requests.
1800  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1801      return;
1802
1803  // Ctrl-C is pressed during error reporting, likely because the error
1804  // handler fails to abort. Let VM die immediately.
1805  if (sig == SIGINT && is_error_reported()) {
1806     os::die();
1807  }
1808
1809  os::signal_notify(sig);
1810}
1811
1812void* os::user_handler() {
1813  return CAST_FROM_FN_PTR(void*, UserHandler);
1814}
1815
1816extern "C" {
1817  typedef void (*sa_handler_t)(int);
1818  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1819}
1820
1821void* os::signal(int signal_number, void* handler) {
1822  struct sigaction sigAct, oldSigAct;
1823
1824  sigfillset(&(sigAct.sa_mask));
1825  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1826  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1827
1828  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1829    // -1 means registration failed
1830    return (void *)-1;
1831  }
1832
1833  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1834}
1835
1836void os::signal_raise(int signal_number) {
1837  ::raise(signal_number);
1838}
1839
1840/*
1841 * The following code is moved from os.cpp for making this
1842 * code platform specific, which it is by its very nature.
1843 */
1844
1845// Will be modified when max signal is changed to be dynamic
1846int os::sigexitnum_pd() {
1847  return NSIG;
1848}
1849
1850// a counter for each possible signal value
1851static volatile jint pending_signals[NSIG+1] = { 0 };
1852
1853// Bsd(POSIX) specific hand shaking semaphore.
1854#ifdef __APPLE__
1855static semaphore_t sig_sem;
1856#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1857#define SEM_WAIT(sem)           semaphore_wait(sem);
1858#define SEM_POST(sem)           semaphore_signal(sem);
1859#else
1860static sem_t sig_sem;
1861#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1862#define SEM_WAIT(sem)           sem_wait(&sem);
1863#define SEM_POST(sem)           sem_post(&sem);
1864#endif
1865
1866void os::signal_init_pd() {
1867  // Initialize signal structures
1868  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1869
1870  // Initialize signal semaphore
1871  ::SEM_INIT(sig_sem, 0);
1872}
1873
1874void os::signal_notify(int sig) {
1875  Atomic::inc(&pending_signals[sig]);
1876  ::SEM_POST(sig_sem);
1877}
1878
1879static int check_pending_signals(bool wait) {
1880  Atomic::store(0, &sigint_count);
1881  for (;;) {
1882    for (int i = 0; i < NSIG + 1; i++) {
1883      jint n = pending_signals[i];
1884      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1885        return i;
1886      }
1887    }
1888    if (!wait) {
1889      return -1;
1890    }
1891    JavaThread *thread = JavaThread::current();
1892    ThreadBlockInVM tbivm(thread);
1893
1894    bool threadIsSuspended;
1895    do {
1896      thread->set_suspend_equivalent();
1897      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1898      ::SEM_WAIT(sig_sem);
1899
1900      // were we externally suspended while we were waiting?
1901      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1902      if (threadIsSuspended) {
1903        //
1904        // The semaphore has been incremented, but while we were waiting
1905        // another thread suspended us. We don't want to continue running
1906        // while suspended because that would surprise the thread that
1907        // suspended us.
1908        //
1909        ::SEM_POST(sig_sem);
1910
1911        thread->java_suspend_self();
1912      }
1913    } while (threadIsSuspended);
1914  }
1915}
1916
1917int os::signal_lookup() {
1918  return check_pending_signals(false);
1919}
1920
1921int os::signal_wait() {
1922  return check_pending_signals(true);
1923}
1924
1925////////////////////////////////////////////////////////////////////////////////
1926// Virtual Memory
1927
1928int os::vm_page_size() {
1929  // Seems redundant as all get out
1930  assert(os::Bsd::page_size() != -1, "must call os::init");
1931  return os::Bsd::page_size();
1932}
1933
1934// Solaris allocates memory by pages.
1935int os::vm_allocation_granularity() {
1936  assert(os::Bsd::page_size() != -1, "must call os::init");
1937  return os::Bsd::page_size();
1938}
1939
1940// Rationale behind this function:
1941//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
1942//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
1943//  samples for JITted code. Here we create private executable mapping over the code cache
1944//  and then we can use standard (well, almost, as mapping can change) way to provide
1945//  info for the reporting script by storing timestamp and location of symbol
1946void bsd_wrap_code(char* base, size_t size) {
1947  static volatile jint cnt = 0;
1948
1949  if (!UseOprofile) {
1950    return;
1951  }
1952
1953  char buf[PATH_MAX + 1];
1954  int num = Atomic::add(1, &cnt);
1955
1956  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
1957           os::get_temp_directory(), os::current_process_id(), num);
1958  unlink(buf);
1959
1960  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
1961
1962  if (fd != -1) {
1963    off_t rv = ::lseek(fd, size-2, SEEK_SET);
1964    if (rv != (off_t)-1) {
1965      if (::write(fd, "", 1) == 1) {
1966        mmap(base, size,
1967             PROT_READ|PROT_WRITE|PROT_EXEC,
1968             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
1969      }
1970    }
1971    ::close(fd);
1972    unlink(buf);
1973  }
1974}
1975
1976// NOTE: Bsd kernel does not really reserve the pages for us.
1977//       All it does is to check if there are enough free pages
1978//       left at the time of mmap(). This could be a potential
1979//       problem.
1980bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
1981  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
1982#ifdef __OpenBSD__
1983  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
1984  return ::mprotect(addr, size, prot) == 0;
1985#else
1986  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
1987                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
1988  return res != (uintptr_t) MAP_FAILED;
1989#endif
1990}
1991
1992
1993bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
1994                       bool exec) {
1995  return commit_memory(addr, size, exec);
1996}
1997
1998void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1999}
2000
2001void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2002  ::madvise(addr, bytes, MADV_DONTNEED);
2003}
2004
2005void os::numa_make_global(char *addr, size_t bytes) {
2006}
2007
2008void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2009}
2010
2011bool os::numa_topology_changed()   { return false; }
2012
2013size_t os::numa_get_groups_num() {
2014  return 1;
2015}
2016
2017int os::numa_get_group_id() {
2018  return 0;
2019}
2020
2021size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2022  if (size > 0) {
2023    ids[0] = 0;
2024    return 1;
2025  }
2026  return 0;
2027}
2028
2029bool os::get_page_info(char *start, page_info* info) {
2030  return false;
2031}
2032
2033char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2034  return end;
2035}
2036
2037
2038bool os::pd_uncommit_memory(char* addr, size_t size) {
2039#ifdef __OpenBSD__
2040  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2041  return ::mprotect(addr, size, PROT_NONE) == 0;
2042#else
2043  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2044                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2045  return res  != (uintptr_t) MAP_FAILED;
2046#endif
2047}
2048
2049bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2050  return os::commit_memory(addr, size);
2051}
2052
2053// If this is a growable mapping, remove the guard pages entirely by
2054// munmap()ping them.  If not, just call uncommit_memory().
2055bool os::remove_stack_guard_pages(char* addr, size_t size) {
2056  return os::uncommit_memory(addr, size);
2057}
2058
2059static address _highest_vm_reserved_address = NULL;
2060
2061// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2062// at 'requested_addr'. If there are existing memory mappings at the same
2063// location, however, they will be overwritten. If 'fixed' is false,
2064// 'requested_addr' is only treated as a hint, the return value may or
2065// may not start from the requested address. Unlike Bsd mmap(), this
2066// function returns NULL to indicate failure.
2067static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2068  char * addr;
2069  int flags;
2070
2071  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2072  if (fixed) {
2073    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2074    flags |= MAP_FIXED;
2075  }
2076
2077  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2078  // touch an uncommitted page. Otherwise, the read/write might
2079  // succeed if we have enough swap space to back the physical page.
2080  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2081                       flags, -1, 0);
2082
2083  if (addr != MAP_FAILED) {
2084    // anon_mmap() should only get called during VM initialization,
2085    // don't need lock (actually we can skip locking even it can be called
2086    // from multiple threads, because _highest_vm_reserved_address is just a
2087    // hint about the upper limit of non-stack memory regions.)
2088    if ((address)addr + bytes > _highest_vm_reserved_address) {
2089      _highest_vm_reserved_address = (address)addr + bytes;
2090    }
2091  }
2092
2093  return addr == MAP_FAILED ? NULL : addr;
2094}
2095
2096// Don't update _highest_vm_reserved_address, because there might be memory
2097// regions above addr + size. If so, releasing a memory region only creates
2098// a hole in the address space, it doesn't help prevent heap-stack collision.
2099//
2100static int anon_munmap(char * addr, size_t size) {
2101  return ::munmap(addr, size) == 0;
2102}
2103
2104char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2105                         size_t alignment_hint) {
2106  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2107}
2108
2109bool os::pd_release_memory(char* addr, size_t size) {
2110  return anon_munmap(addr, size);
2111}
2112
2113static bool bsd_mprotect(char* addr, size_t size, int prot) {
2114  // Bsd wants the mprotect address argument to be page aligned.
2115  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2116
2117  // According to SUSv3, mprotect() should only be used with mappings
2118  // established by mmap(), and mmap() always maps whole pages. Unaligned
2119  // 'addr' likely indicates problem in the VM (e.g. trying to change
2120  // protection of malloc'ed or statically allocated memory). Check the
2121  // caller if you hit this assert.
2122  assert(addr == bottom, "sanity check");
2123
2124  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2125  return ::mprotect(bottom, size, prot) == 0;
2126}
2127
2128// Set protections specified
2129bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2130                        bool is_committed) {
2131  unsigned int p = 0;
2132  switch (prot) {
2133  case MEM_PROT_NONE: p = PROT_NONE; break;
2134  case MEM_PROT_READ: p = PROT_READ; break;
2135  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2136  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2137  default:
2138    ShouldNotReachHere();
2139  }
2140  // is_committed is unused.
2141  return bsd_mprotect(addr, bytes, p);
2142}
2143
2144bool os::guard_memory(char* addr, size_t size) {
2145  return bsd_mprotect(addr, size, PROT_NONE);
2146}
2147
2148bool os::unguard_memory(char* addr, size_t size) {
2149  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2150}
2151
2152bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2153  return false;
2154}
2155
2156// Large page support
2157
2158static size_t _large_page_size = 0;
2159
2160void os::large_page_init() {
2161}
2162
2163
2164char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2165  // "exec" is passed in but not used.  Creating the shared image for
2166  // the code cache doesn't have an SHM_X executable permission to check.
2167  assert(UseLargePages && UseSHM, "only for SHM large pages");
2168
2169  key_t key = IPC_PRIVATE;
2170  char *addr;
2171
2172  bool warn_on_failure = UseLargePages &&
2173                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2174                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2175                        );
2176  char msg[128];
2177
2178  // Create a large shared memory region to attach to based on size.
2179  // Currently, size is the total size of the heap
2180  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2181  if (shmid == -1) {
2182     // Possible reasons for shmget failure:
2183     // 1. shmmax is too small for Java heap.
2184     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2185     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2186     // 2. not enough large page memory.
2187     //    > check available large pages: cat /proc/meminfo
2188     //    > increase amount of large pages:
2189     //          echo new_value > /proc/sys/vm/nr_hugepages
2190     //      Note 1: different Bsd may use different name for this property,
2191     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2192     //      Note 2: it's possible there's enough physical memory available but
2193     //            they are so fragmented after a long run that they can't
2194     //            coalesce into large pages. Try to reserve large pages when
2195     //            the system is still "fresh".
2196     if (warn_on_failure) {
2197       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2198       warning(msg);
2199     }
2200     return NULL;
2201  }
2202
2203  // attach to the region
2204  addr = (char*)shmat(shmid, req_addr, 0);
2205  int err = errno;
2206
2207  // Remove shmid. If shmat() is successful, the actual shared memory segment
2208  // will be deleted when it's detached by shmdt() or when the process
2209  // terminates. If shmat() is not successful this will remove the shared
2210  // segment immediately.
2211  shmctl(shmid, IPC_RMID, NULL);
2212
2213  if ((intptr_t)addr == -1) {
2214     if (warn_on_failure) {
2215       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2216       warning(msg);
2217     }
2218     return NULL;
2219  }
2220
2221  // The memory is committed
2222  address pc = CALLER_PC;
2223  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
2224  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
2225
2226  return addr;
2227}
2228
2229bool os::release_memory_special(char* base, size_t bytes) {
2230  // detaching the SHM segment will also delete it, see reserve_memory_special()
2231  int rslt = shmdt(base);
2232  if (rslt == 0) {
2233    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
2234    MemTracker::record_virtual_memory_release((address)base, bytes);
2235    return true;
2236  } else {
2237    return false;
2238  }
2239
2240}
2241
2242size_t os::large_page_size() {
2243  return _large_page_size;
2244}
2245
2246// HugeTLBFS allows application to commit large page memory on demand;
2247// with SysV SHM the entire memory region must be allocated as shared
2248// memory.
2249bool os::can_commit_large_page_memory() {
2250  return UseHugeTLBFS;
2251}
2252
2253bool os::can_execute_large_page_memory() {
2254  return UseHugeTLBFS;
2255}
2256
2257// Reserve memory at an arbitrary address, only if that area is
2258// available (and not reserved for something else).
2259
2260char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2261  const int max_tries = 10;
2262  char* base[max_tries];
2263  size_t size[max_tries];
2264  const size_t gap = 0x000000;
2265
2266  // Assert only that the size is a multiple of the page size, since
2267  // that's all that mmap requires, and since that's all we really know
2268  // about at this low abstraction level.  If we need higher alignment,
2269  // we can either pass an alignment to this method or verify alignment
2270  // in one of the methods further up the call chain.  See bug 5044738.
2271  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2272
2273  // Repeatedly allocate blocks until the block is allocated at the
2274  // right spot. Give up after max_tries. Note that reserve_memory() will
2275  // automatically update _highest_vm_reserved_address if the call is
2276  // successful. The variable tracks the highest memory address every reserved
2277  // by JVM. It is used to detect heap-stack collision if running with
2278  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2279  // space than needed, it could confuse the collision detecting code. To
2280  // solve the problem, save current _highest_vm_reserved_address and
2281  // calculate the correct value before return.
2282  address old_highest = _highest_vm_reserved_address;
2283
2284  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2285  // if kernel honors the hint then we can return immediately.
2286  char * addr = anon_mmap(requested_addr, bytes, false);
2287  if (addr == requested_addr) {
2288     return requested_addr;
2289  }
2290
2291  if (addr != NULL) {
2292     // mmap() is successful but it fails to reserve at the requested address
2293     anon_munmap(addr, bytes);
2294  }
2295
2296  int i;
2297  for (i = 0; i < max_tries; ++i) {
2298    base[i] = reserve_memory(bytes);
2299
2300    if (base[i] != NULL) {
2301      // Is this the block we wanted?
2302      if (base[i] == requested_addr) {
2303        size[i] = bytes;
2304        break;
2305      }
2306
2307      // Does this overlap the block we wanted? Give back the overlapped
2308      // parts and try again.
2309
2310      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2311      if (top_overlap >= 0 && top_overlap < bytes) {
2312        unmap_memory(base[i], top_overlap);
2313        base[i] += top_overlap;
2314        size[i] = bytes - top_overlap;
2315      } else {
2316        size_t bottom_overlap = base[i] + bytes - requested_addr;
2317        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2318          unmap_memory(requested_addr, bottom_overlap);
2319          size[i] = bytes - bottom_overlap;
2320        } else {
2321          size[i] = bytes;
2322        }
2323      }
2324    }
2325  }
2326
2327  // Give back the unused reserved pieces.
2328
2329  for (int j = 0; j < i; ++j) {
2330    if (base[j] != NULL) {
2331      unmap_memory(base[j], size[j]);
2332    }
2333  }
2334
2335  if (i < max_tries) {
2336    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2337    return requested_addr;
2338  } else {
2339    _highest_vm_reserved_address = old_highest;
2340    return NULL;
2341  }
2342}
2343
2344size_t os::read(int fd, void *buf, unsigned int nBytes) {
2345  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2346}
2347
2348// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2349// Solaris uses poll(), bsd uses park().
2350// Poll() is likely a better choice, assuming that Thread.interrupt()
2351// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2352// SIGSEGV, see 4355769.
2353
2354int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2355  assert(thread == Thread::current(),  "thread consistency check");
2356
2357  ParkEvent * const slp = thread->_SleepEvent ;
2358  slp->reset() ;
2359  OrderAccess::fence() ;
2360
2361  if (interruptible) {
2362    jlong prevtime = javaTimeNanos();
2363
2364    for (;;) {
2365      if (os::is_interrupted(thread, true)) {
2366        return OS_INTRPT;
2367      }
2368
2369      jlong newtime = javaTimeNanos();
2370
2371      if (newtime - prevtime < 0) {
2372        // time moving backwards, should only happen if no monotonic clock
2373        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2374        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2375      } else {
2376        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2377      }
2378
2379      if(millis <= 0) {
2380        return OS_OK;
2381      }
2382
2383      prevtime = newtime;
2384
2385      {
2386        assert(thread->is_Java_thread(), "sanity check");
2387        JavaThread *jt = (JavaThread *) thread;
2388        ThreadBlockInVM tbivm(jt);
2389        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2390
2391        jt->set_suspend_equivalent();
2392        // cleared by handle_special_suspend_equivalent_condition() or
2393        // java_suspend_self() via check_and_wait_while_suspended()
2394
2395        slp->park(millis);
2396
2397        // were we externally suspended while we were waiting?
2398        jt->check_and_wait_while_suspended();
2399      }
2400    }
2401  } else {
2402    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2403    jlong prevtime = javaTimeNanos();
2404
2405    for (;;) {
2406      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2407      // the 1st iteration ...
2408      jlong newtime = javaTimeNanos();
2409
2410      if (newtime - prevtime < 0) {
2411        // time moving backwards, should only happen if no monotonic clock
2412        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2413        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2414      } else {
2415        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2416      }
2417
2418      if(millis <= 0) break ;
2419
2420      prevtime = newtime;
2421      slp->park(millis);
2422    }
2423    return OS_OK ;
2424  }
2425}
2426
2427int os::naked_sleep() {
2428  // %% make the sleep time an integer flag. for now use 1 millisec.
2429  return os::sleep(Thread::current(), 1, false);
2430}
2431
2432// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2433void os::infinite_sleep() {
2434  while (true) {    // sleep forever ...
2435    ::sleep(100);   // ... 100 seconds at a time
2436  }
2437}
2438
2439// Used to convert frequent JVM_Yield() to nops
2440bool os::dont_yield() {
2441  return DontYieldALot;
2442}
2443
2444void os::yield() {
2445  sched_yield();
2446}
2447
2448os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2449
2450void os::yield_all(int attempts) {
2451  // Yields to all threads, including threads with lower priorities
2452  // Threads on Bsd are all with same priority. The Solaris style
2453  // os::yield_all() with nanosleep(1ms) is not necessary.
2454  sched_yield();
2455}
2456
2457// Called from the tight loops to possibly influence time-sharing heuristics
2458void os::loop_breaker(int attempts) {
2459  os::yield_all(attempts);
2460}
2461
2462////////////////////////////////////////////////////////////////////////////////
2463// thread priority support
2464
2465// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2466// only supports dynamic priority, static priority must be zero. For real-time
2467// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2468// However, for large multi-threaded applications, SCHED_RR is not only slower
2469// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2470// of 5 runs - Sep 2005).
2471//
2472// The following code actually changes the niceness of kernel-thread/LWP. It
2473// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2474// not the entire user process, and user level threads are 1:1 mapped to kernel
2475// threads. It has always been the case, but could change in the future. For
2476// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2477// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2478
2479#if !defined(__APPLE__)
2480int os::java_to_os_priority[CriticalPriority + 1] = {
2481  19,              // 0 Entry should never be used
2482
2483   0,              // 1 MinPriority
2484   3,              // 2
2485   6,              // 3
2486
2487  10,              // 4
2488  15,              // 5 NormPriority
2489  18,              // 6
2490
2491  21,              // 7
2492  25,              // 8
2493  28,              // 9 NearMaxPriority
2494
2495  31,              // 10 MaxPriority
2496
2497  31               // 11 CriticalPriority
2498};
2499#else
2500/* Using Mach high-level priority assignments */
2501int os::java_to_os_priority[CriticalPriority + 1] = {
2502   0,              // 0 Entry should never be used (MINPRI_USER)
2503
2504  27,              // 1 MinPriority
2505  28,              // 2
2506  29,              // 3
2507
2508  30,              // 4
2509  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2510  32,              // 6
2511
2512  33,              // 7
2513  34,              // 8
2514  35,              // 9 NearMaxPriority
2515
2516  36,              // 10 MaxPriority
2517
2518  36               // 11 CriticalPriority
2519};
2520#endif
2521
2522static int prio_init() {
2523  if (ThreadPriorityPolicy == 1) {
2524    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2525    // if effective uid is not root. Perhaps, a more elegant way of doing
2526    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2527    if (geteuid() != 0) {
2528      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2529        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2530      }
2531      ThreadPriorityPolicy = 0;
2532    }
2533  }
2534  if (UseCriticalJavaThreadPriority) {
2535    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2536  }
2537  return 0;
2538}
2539
2540OSReturn os::set_native_priority(Thread* thread, int newpri) {
2541  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2542
2543#ifdef __OpenBSD__
2544  // OpenBSD pthread_setprio starves low priority threads
2545  return OS_OK;
2546#elif defined(__FreeBSD__)
2547  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2548#elif defined(__APPLE__) || defined(__NetBSD__)
2549  struct sched_param sp;
2550  int policy;
2551  pthread_t self = pthread_self();
2552
2553  if (pthread_getschedparam(self, &policy, &sp) != 0)
2554    return OS_ERR;
2555
2556  sp.sched_priority = newpri;
2557  if (pthread_setschedparam(self, policy, &sp) != 0)
2558    return OS_ERR;
2559
2560  return OS_OK;
2561#else
2562  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2563  return (ret == 0) ? OS_OK : OS_ERR;
2564#endif
2565}
2566
2567OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2568  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2569    *priority_ptr = java_to_os_priority[NormPriority];
2570    return OS_OK;
2571  }
2572
2573  errno = 0;
2574#if defined(__OpenBSD__) || defined(__FreeBSD__)
2575  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2576#elif defined(__APPLE__) || defined(__NetBSD__)
2577  int policy;
2578  struct sched_param sp;
2579
2580  pthread_getschedparam(pthread_self(), &policy, &sp);
2581  *priority_ptr = sp.sched_priority;
2582#else
2583  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2584#endif
2585  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2586}
2587
2588// Hint to the underlying OS that a task switch would not be good.
2589// Void return because it's a hint and can fail.
2590void os::hint_no_preempt() {}
2591
2592////////////////////////////////////////////////////////////////////////////////
2593// suspend/resume support
2594
2595//  the low-level signal-based suspend/resume support is a remnant from the
2596//  old VM-suspension that used to be for java-suspension, safepoints etc,
2597//  within hotspot. Now there is a single use-case for this:
2598//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2599//      that runs in the watcher thread.
2600//  The remaining code is greatly simplified from the more general suspension
2601//  code that used to be used.
2602//
2603//  The protocol is quite simple:
2604//  - suspend:
2605//      - sends a signal to the target thread
2606//      - polls the suspend state of the osthread using a yield loop
2607//      - target thread signal handler (SR_handler) sets suspend state
2608//        and blocks in sigsuspend until continued
2609//  - resume:
2610//      - sets target osthread state to continue
2611//      - sends signal to end the sigsuspend loop in the SR_handler
2612//
2613//  Note that the SR_lock plays no role in this suspend/resume protocol.
2614//
2615
2616static void resume_clear_context(OSThread *osthread) {
2617  osthread->set_ucontext(NULL);
2618  osthread->set_siginfo(NULL);
2619
2620  // notify the suspend action is completed, we have now resumed
2621  osthread->sr.clear_suspended();
2622}
2623
2624static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2625  osthread->set_ucontext(context);
2626  osthread->set_siginfo(siginfo);
2627}
2628
2629//
2630// Handler function invoked when a thread's execution is suspended or
2631// resumed. We have to be careful that only async-safe functions are
2632// called here (Note: most pthread functions are not async safe and
2633// should be avoided.)
2634//
2635// Note: sigwait() is a more natural fit than sigsuspend() from an
2636// interface point of view, but sigwait() prevents the signal hander
2637// from being run. libpthread would get very confused by not having
2638// its signal handlers run and prevents sigwait()'s use with the
2639// mutex granting granting signal.
2640//
2641// Currently only ever called on the VMThread
2642//
2643static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2644  // Save and restore errno to avoid confusing native code with EINTR
2645  // after sigsuspend.
2646  int old_errno = errno;
2647
2648  Thread* thread = Thread::current();
2649  OSThread* osthread = thread->osthread();
2650  assert(thread->is_VM_thread(), "Must be VMThread");
2651  // read current suspend action
2652  int action = osthread->sr.suspend_action();
2653  if (action == os::Bsd::SuspendResume::SR_SUSPEND) {
2654    suspend_save_context(osthread, siginfo, context);
2655
2656    // Notify the suspend action is about to be completed. do_suspend()
2657    // waits until SR_SUSPENDED is set and then returns. We will wait
2658    // here for a resume signal and that completes the suspend-other
2659    // action. do_suspend/do_resume is always called as a pair from
2660    // the same thread - so there are no races
2661
2662    // notify the caller
2663    osthread->sr.set_suspended();
2664
2665    sigset_t suspend_set;  // signals for sigsuspend()
2666
2667    // get current set of blocked signals and unblock resume signal
2668    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2669    sigdelset(&suspend_set, SR_signum);
2670
2671    // wait here until we are resumed
2672    do {
2673      sigsuspend(&suspend_set);
2674      // ignore all returns until we get a resume signal
2675    } while (osthread->sr.suspend_action() != os::Bsd::SuspendResume::SR_CONTINUE);
2676
2677    resume_clear_context(osthread);
2678
2679  } else {
2680    assert(action == os::Bsd::SuspendResume::SR_CONTINUE, "unexpected sr action");
2681    // nothing special to do - just leave the handler
2682  }
2683
2684  errno = old_errno;
2685}
2686
2687
2688static int SR_initialize() {
2689  struct sigaction act;
2690  char *s;
2691  /* Get signal number to use for suspend/resume */
2692  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2693    int sig = ::strtol(s, 0, 10);
2694    if (sig > 0 || sig < NSIG) {
2695        SR_signum = sig;
2696    }
2697  }
2698
2699  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2700        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2701
2702  sigemptyset(&SR_sigset);
2703  sigaddset(&SR_sigset, SR_signum);
2704
2705  /* Set up signal handler for suspend/resume */
2706  act.sa_flags = SA_RESTART|SA_SIGINFO;
2707  act.sa_handler = (void (*)(int)) SR_handler;
2708
2709  // SR_signum is blocked by default.
2710  // 4528190 - We also need to block pthread restart signal (32 on all
2711  // supported Bsd platforms). Note that BsdThreads need to block
2712  // this signal for all threads to work properly. So we don't have
2713  // to use hard-coded signal number when setting up the mask.
2714  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2715
2716  if (sigaction(SR_signum, &act, 0) == -1) {
2717    return -1;
2718  }
2719
2720  // Save signal flag
2721  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2722  return 0;
2723}
2724
2725
2726// returns true on success and false on error - really an error is fatal
2727// but this seems the normal response to library errors
2728static bool do_suspend(OSThread* osthread) {
2729  // mark as suspended and send signal
2730  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_SUSPEND);
2731  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2732  assert_status(status == 0, status, "pthread_kill");
2733
2734  // check status and wait until notified of suspension
2735  if (status == 0) {
2736    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2737      os::yield_all(i);
2738    }
2739    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2740    return true;
2741  }
2742  else {
2743    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2744    return false;
2745  }
2746}
2747
2748static void do_resume(OSThread* osthread) {
2749  assert(osthread->sr.is_suspended(), "thread should be suspended");
2750  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_CONTINUE);
2751
2752  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2753  assert_status(status == 0, status, "pthread_kill");
2754  // check status and wait unit notified of resumption
2755  if (status == 0) {
2756    for (int i = 0; osthread->sr.is_suspended(); i++) {
2757      os::yield_all(i);
2758    }
2759  }
2760  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2761}
2762
2763////////////////////////////////////////////////////////////////////////////////
2764// interrupt support
2765
2766void os::interrupt(Thread* thread) {
2767  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2768    "possibility of dangling Thread pointer");
2769
2770  OSThread* osthread = thread->osthread();
2771
2772  if (!osthread->interrupted()) {
2773    osthread->set_interrupted(true);
2774    // More than one thread can get here with the same value of osthread,
2775    // resulting in multiple notifications.  We do, however, want the store
2776    // to interrupted() to be visible to other threads before we execute unpark().
2777    OrderAccess::fence();
2778    ParkEvent * const slp = thread->_SleepEvent ;
2779    if (slp != NULL) slp->unpark() ;
2780  }
2781
2782  // For JSR166. Unpark even if interrupt status already was set
2783  if (thread->is_Java_thread())
2784    ((JavaThread*)thread)->parker()->unpark();
2785
2786  ParkEvent * ev = thread->_ParkEvent ;
2787  if (ev != NULL) ev->unpark() ;
2788
2789}
2790
2791bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2792  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2793    "possibility of dangling Thread pointer");
2794
2795  OSThread* osthread = thread->osthread();
2796
2797  bool interrupted = osthread->interrupted();
2798
2799  if (interrupted && clear_interrupted) {
2800    osthread->set_interrupted(false);
2801    // consider thread->_SleepEvent->reset() ... optional optimization
2802  }
2803
2804  return interrupted;
2805}
2806
2807///////////////////////////////////////////////////////////////////////////////////
2808// signal handling (except suspend/resume)
2809
2810// This routine may be used by user applications as a "hook" to catch signals.
2811// The user-defined signal handler must pass unrecognized signals to this
2812// routine, and if it returns true (non-zero), then the signal handler must
2813// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2814// routine will never retun false (zero), but instead will execute a VM panic
2815// routine kill the process.
2816//
2817// If this routine returns false, it is OK to call it again.  This allows
2818// the user-defined signal handler to perform checks either before or after
2819// the VM performs its own checks.  Naturally, the user code would be making
2820// a serious error if it tried to handle an exception (such as a null check
2821// or breakpoint) that the VM was generating for its own correct operation.
2822//
2823// This routine may recognize any of the following kinds of signals:
2824//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2825// It should be consulted by handlers for any of those signals.
2826//
2827// The caller of this routine must pass in the three arguments supplied
2828// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2829// field of the structure passed to sigaction().  This routine assumes that
2830// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2831//
2832// Note that the VM will print warnings if it detects conflicting signal
2833// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2834//
2835extern "C" JNIEXPORT int
2836JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2837                        void* ucontext, int abort_if_unrecognized);
2838
2839void signalHandler(int sig, siginfo_t* info, void* uc) {
2840  assert(info != NULL && uc != NULL, "it must be old kernel");
2841  int orig_errno = errno;  // Preserve errno value over signal handler.
2842  JVM_handle_bsd_signal(sig, info, uc, true);
2843  errno = orig_errno;
2844}
2845
2846
2847// This boolean allows users to forward their own non-matching signals
2848// to JVM_handle_bsd_signal, harmlessly.
2849bool os::Bsd::signal_handlers_are_installed = false;
2850
2851// For signal-chaining
2852struct sigaction os::Bsd::sigact[MAXSIGNUM];
2853unsigned int os::Bsd::sigs = 0;
2854bool os::Bsd::libjsig_is_loaded = false;
2855typedef struct sigaction *(*get_signal_t)(int);
2856get_signal_t os::Bsd::get_signal_action = NULL;
2857
2858struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2859  struct sigaction *actp = NULL;
2860
2861  if (libjsig_is_loaded) {
2862    // Retrieve the old signal handler from libjsig
2863    actp = (*get_signal_action)(sig);
2864  }
2865  if (actp == NULL) {
2866    // Retrieve the preinstalled signal handler from jvm
2867    actp = get_preinstalled_handler(sig);
2868  }
2869
2870  return actp;
2871}
2872
2873static bool call_chained_handler(struct sigaction *actp, int sig,
2874                                 siginfo_t *siginfo, void *context) {
2875  // Call the old signal handler
2876  if (actp->sa_handler == SIG_DFL) {
2877    // It's more reasonable to let jvm treat it as an unexpected exception
2878    // instead of taking the default action.
2879    return false;
2880  } else if (actp->sa_handler != SIG_IGN) {
2881    if ((actp->sa_flags & SA_NODEFER) == 0) {
2882      // automaticlly block the signal
2883      sigaddset(&(actp->sa_mask), sig);
2884    }
2885
2886    sa_handler_t hand;
2887    sa_sigaction_t sa;
2888    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2889    // retrieve the chained handler
2890    if (siginfo_flag_set) {
2891      sa = actp->sa_sigaction;
2892    } else {
2893      hand = actp->sa_handler;
2894    }
2895
2896    if ((actp->sa_flags & SA_RESETHAND) != 0) {
2897      actp->sa_handler = SIG_DFL;
2898    }
2899
2900    // try to honor the signal mask
2901    sigset_t oset;
2902    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2903
2904    // call into the chained handler
2905    if (siginfo_flag_set) {
2906      (*sa)(sig, siginfo, context);
2907    } else {
2908      (*hand)(sig);
2909    }
2910
2911    // restore the signal mask
2912    pthread_sigmask(SIG_SETMASK, &oset, 0);
2913  }
2914  // Tell jvm's signal handler the signal is taken care of.
2915  return true;
2916}
2917
2918bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
2919  bool chained = false;
2920  // signal-chaining
2921  if (UseSignalChaining) {
2922    struct sigaction *actp = get_chained_signal_action(sig);
2923    if (actp != NULL) {
2924      chained = call_chained_handler(actp, sig, siginfo, context);
2925    }
2926  }
2927  return chained;
2928}
2929
2930struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
2931  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
2932    return &sigact[sig];
2933  }
2934  return NULL;
2935}
2936
2937void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
2938  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2939  sigact[sig] = oldAct;
2940  sigs |= (unsigned int)1 << sig;
2941}
2942
2943// for diagnostic
2944int os::Bsd::sigflags[MAXSIGNUM];
2945
2946int os::Bsd::get_our_sigflags(int sig) {
2947  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2948  return sigflags[sig];
2949}
2950
2951void os::Bsd::set_our_sigflags(int sig, int flags) {
2952  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2953  sigflags[sig] = flags;
2954}
2955
2956void os::Bsd::set_signal_handler(int sig, bool set_installed) {
2957  // Check for overwrite.
2958  struct sigaction oldAct;
2959  sigaction(sig, (struct sigaction*)NULL, &oldAct);
2960
2961  void* oldhand = oldAct.sa_sigaction
2962                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
2963                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
2964  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
2965      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
2966      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
2967    if (AllowUserSignalHandlers || !set_installed) {
2968      // Do not overwrite; user takes responsibility to forward to us.
2969      return;
2970    } else if (UseSignalChaining) {
2971      // save the old handler in jvm
2972      save_preinstalled_handler(sig, oldAct);
2973      // libjsig also interposes the sigaction() call below and saves the
2974      // old sigaction on it own.
2975    } else {
2976      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
2977                    "%#lx for signal %d.", (long)oldhand, sig));
2978    }
2979  }
2980
2981  struct sigaction sigAct;
2982  sigfillset(&(sigAct.sa_mask));
2983  sigAct.sa_handler = SIG_DFL;
2984  if (!set_installed) {
2985    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
2986  } else {
2987    sigAct.sa_sigaction = signalHandler;
2988    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
2989  }
2990#if __APPLE__
2991  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
2992  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
2993  // if the signal handler declares it will handle it on alternate stack.
2994  // Notice we only declare we will handle it on alt stack, but we are not
2995  // actually going to use real alt stack - this is just a workaround.
2996  // Please see ux_exception.c, method catch_mach_exception_raise for details
2997  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
2998  if (sig == SIGSEGV) {
2999    sigAct.sa_flags |= SA_ONSTACK;
3000  }
3001#endif
3002
3003  // Save flags, which are set by ours
3004  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3005  sigflags[sig] = sigAct.sa_flags;
3006
3007  int ret = sigaction(sig, &sigAct, &oldAct);
3008  assert(ret == 0, "check");
3009
3010  void* oldhand2  = oldAct.sa_sigaction
3011                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3012                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3013  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3014}
3015
3016// install signal handlers for signals that HotSpot needs to
3017// handle in order to support Java-level exception handling.
3018
3019void os::Bsd::install_signal_handlers() {
3020  if (!signal_handlers_are_installed) {
3021    signal_handlers_are_installed = true;
3022
3023    // signal-chaining
3024    typedef void (*signal_setting_t)();
3025    signal_setting_t begin_signal_setting = NULL;
3026    signal_setting_t end_signal_setting = NULL;
3027    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3028                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3029    if (begin_signal_setting != NULL) {
3030      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3031                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3032      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3033                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3034      libjsig_is_loaded = true;
3035      assert(UseSignalChaining, "should enable signal-chaining");
3036    }
3037    if (libjsig_is_loaded) {
3038      // Tell libjsig jvm is setting signal handlers
3039      (*begin_signal_setting)();
3040    }
3041
3042    set_signal_handler(SIGSEGV, true);
3043    set_signal_handler(SIGPIPE, true);
3044    set_signal_handler(SIGBUS, true);
3045    set_signal_handler(SIGILL, true);
3046    set_signal_handler(SIGFPE, true);
3047    set_signal_handler(SIGXFSZ, true);
3048
3049#if defined(__APPLE__)
3050    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3051    // signals caught and handled by the JVM. To work around this, we reset the mach task
3052    // signal handler that's placed on our process by CrashReporter. This disables
3053    // CrashReporter-based reporting.
3054    //
3055    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3056    // on caught fatal signals.
3057    //
3058    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3059    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3060    // exception handling, while leaving the standard BSD signal handlers functional.
3061    kern_return_t kr;
3062    kr = task_set_exception_ports(mach_task_self(),
3063        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3064        MACH_PORT_NULL,
3065        EXCEPTION_STATE_IDENTITY,
3066        MACHINE_THREAD_STATE);
3067
3068    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3069#endif
3070
3071    if (libjsig_is_loaded) {
3072      // Tell libjsig jvm finishes setting signal handlers
3073      (*end_signal_setting)();
3074    }
3075
3076    // We don't activate signal checker if libjsig is in place, we trust ourselves
3077    // and if UserSignalHandler is installed all bets are off
3078    if (CheckJNICalls) {
3079      if (libjsig_is_loaded) {
3080        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3081        check_signals = false;
3082      }
3083      if (AllowUserSignalHandlers) {
3084        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3085        check_signals = false;
3086      }
3087    }
3088  }
3089}
3090
3091
3092/////
3093// glibc on Bsd platform uses non-documented flag
3094// to indicate, that some special sort of signal
3095// trampoline is used.
3096// We will never set this flag, and we should
3097// ignore this flag in our diagnostic
3098#ifdef SIGNIFICANT_SIGNAL_MASK
3099#undef SIGNIFICANT_SIGNAL_MASK
3100#endif
3101#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3102
3103static const char* get_signal_handler_name(address handler,
3104                                           char* buf, int buflen) {
3105  int offset;
3106  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3107  if (found) {
3108    // skip directory names
3109    const char *p1, *p2;
3110    p1 = buf;
3111    size_t len = strlen(os::file_separator());
3112    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3113    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3114  } else {
3115    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3116  }
3117  return buf;
3118}
3119
3120static void print_signal_handler(outputStream* st, int sig,
3121                                 char* buf, size_t buflen) {
3122  struct sigaction sa;
3123
3124  sigaction(sig, NULL, &sa);
3125
3126  // See comment for SIGNIFICANT_SIGNAL_MASK define
3127  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3128
3129  st->print("%s: ", os::exception_name(sig, buf, buflen));
3130
3131  address handler = (sa.sa_flags & SA_SIGINFO)
3132    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3133    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3134
3135  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3136    st->print("SIG_DFL");
3137  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3138    st->print("SIG_IGN");
3139  } else {
3140    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3141  }
3142
3143  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3144
3145  address rh = VMError::get_resetted_sighandler(sig);
3146  // May be, handler was resetted by VMError?
3147  if(rh != NULL) {
3148    handler = rh;
3149    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3150  }
3151
3152  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3153
3154  // Check: is it our handler?
3155  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3156     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3157    // It is our signal handler
3158    // check for flags, reset system-used one!
3159    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3160      st->print(
3161                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3162                os::Bsd::get_our_sigflags(sig));
3163    }
3164  }
3165  st->cr();
3166}
3167
3168
3169#define DO_SIGNAL_CHECK(sig) \
3170  if (!sigismember(&check_signal_done, sig)) \
3171    os::Bsd::check_signal_handler(sig)
3172
3173// This method is a periodic task to check for misbehaving JNI applications
3174// under CheckJNI, we can add any periodic checks here
3175
3176void os::run_periodic_checks() {
3177
3178  if (check_signals == false) return;
3179
3180  // SEGV and BUS if overridden could potentially prevent
3181  // generation of hs*.log in the event of a crash, debugging
3182  // such a case can be very challenging, so we absolutely
3183  // check the following for a good measure:
3184  DO_SIGNAL_CHECK(SIGSEGV);
3185  DO_SIGNAL_CHECK(SIGILL);
3186  DO_SIGNAL_CHECK(SIGFPE);
3187  DO_SIGNAL_CHECK(SIGBUS);
3188  DO_SIGNAL_CHECK(SIGPIPE);
3189  DO_SIGNAL_CHECK(SIGXFSZ);
3190
3191
3192  // ReduceSignalUsage allows the user to override these handlers
3193  // see comments at the very top and jvm_solaris.h
3194  if (!ReduceSignalUsage) {
3195    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3196    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3197    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3198    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3199  }
3200
3201  DO_SIGNAL_CHECK(SR_signum);
3202  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3203}
3204
3205typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3206
3207static os_sigaction_t os_sigaction = NULL;
3208
3209void os::Bsd::check_signal_handler(int sig) {
3210  char buf[O_BUFLEN];
3211  address jvmHandler = NULL;
3212
3213
3214  struct sigaction act;
3215  if (os_sigaction == NULL) {
3216    // only trust the default sigaction, in case it has been interposed
3217    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3218    if (os_sigaction == NULL) return;
3219  }
3220
3221  os_sigaction(sig, (struct sigaction*)NULL, &act);
3222
3223
3224  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3225
3226  address thisHandler = (act.sa_flags & SA_SIGINFO)
3227    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3228    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3229
3230
3231  switch(sig) {
3232  case SIGSEGV:
3233  case SIGBUS:
3234  case SIGFPE:
3235  case SIGPIPE:
3236  case SIGILL:
3237  case SIGXFSZ:
3238    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3239    break;
3240
3241  case SHUTDOWN1_SIGNAL:
3242  case SHUTDOWN2_SIGNAL:
3243  case SHUTDOWN3_SIGNAL:
3244  case BREAK_SIGNAL:
3245    jvmHandler = (address)user_handler();
3246    break;
3247
3248  case INTERRUPT_SIGNAL:
3249    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3250    break;
3251
3252  default:
3253    if (sig == SR_signum) {
3254      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3255    } else {
3256      return;
3257    }
3258    break;
3259  }
3260
3261  if (thisHandler != jvmHandler) {
3262    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3263    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3264    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3265    // No need to check this sig any longer
3266    sigaddset(&check_signal_done, sig);
3267  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3268    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3269    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3270    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3271    // No need to check this sig any longer
3272    sigaddset(&check_signal_done, sig);
3273  }
3274
3275  // Dump all the signal
3276  if (sigismember(&check_signal_done, sig)) {
3277    print_signal_handlers(tty, buf, O_BUFLEN);
3278  }
3279}
3280
3281extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3282
3283extern bool signal_name(int signo, char* buf, size_t len);
3284
3285const char* os::exception_name(int exception_code, char* buf, size_t size) {
3286  if (0 < exception_code && exception_code <= SIGRTMAX) {
3287    // signal
3288    if (!signal_name(exception_code, buf, size)) {
3289      jio_snprintf(buf, size, "SIG%d", exception_code);
3290    }
3291    return buf;
3292  } else {
3293    return NULL;
3294  }
3295}
3296
3297// this is called _before_ the most of global arguments have been parsed
3298void os::init(void) {
3299  char dummy;   /* used to get a guess on initial stack address */
3300//  first_hrtime = gethrtime();
3301
3302  // With BsdThreads the JavaMain thread pid (primordial thread)
3303  // is different than the pid of the java launcher thread.
3304  // So, on Bsd, the launcher thread pid is passed to the VM
3305  // via the sun.java.launcher.pid property.
3306  // Use this property instead of getpid() if it was correctly passed.
3307  // See bug 6351349.
3308  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3309
3310  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3311
3312  clock_tics_per_sec = CLK_TCK;
3313
3314  init_random(1234567);
3315
3316  ThreadCritical::initialize();
3317
3318  Bsd::set_page_size(getpagesize());
3319  if (Bsd::page_size() == -1) {
3320    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3321                  strerror(errno)));
3322  }
3323  init_page_sizes((size_t) Bsd::page_size());
3324
3325  Bsd::initialize_system_info();
3326
3327  // main_thread points to the aboriginal thread
3328  Bsd::_main_thread = pthread_self();
3329
3330  Bsd::clock_init();
3331  initial_time_count = os::elapsed_counter();
3332
3333#ifdef __APPLE__
3334  // XXXDARWIN
3335  // Work around the unaligned VM callbacks in hotspot's
3336  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3337  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3338  // alignment when doing symbol lookup. To work around this, we force early
3339  // binding of all symbols now, thus binding when alignment is known-good.
3340  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3341#endif
3342}
3343
3344// To install functions for atexit system call
3345extern "C" {
3346  static void perfMemory_exit_helper() {
3347    perfMemory_exit();
3348  }
3349}
3350
3351// this is called _after_ the global arguments have been parsed
3352jint os::init_2(void)
3353{
3354  // Allocate a single page and mark it as readable for safepoint polling
3355  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3356  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3357
3358  os::set_polling_page( polling_page );
3359
3360#ifndef PRODUCT
3361  if(Verbose && PrintMiscellaneous)
3362    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3363#endif
3364
3365  if (!UseMembar) {
3366    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3367    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3368    os::set_memory_serialize_page( mem_serialize_page );
3369
3370#ifndef PRODUCT
3371    if(Verbose && PrintMiscellaneous)
3372      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3373#endif
3374  }
3375
3376  os::large_page_init();
3377
3378  // initialize suspend/resume support - must do this before signal_sets_init()
3379  if (SR_initialize() != 0) {
3380    perror("SR_initialize failed");
3381    return JNI_ERR;
3382  }
3383
3384  Bsd::signal_sets_init();
3385  Bsd::install_signal_handlers();
3386
3387  // Check minimum allowable stack size for thread creation and to initialize
3388  // the java system classes, including StackOverflowError - depends on page
3389  // size.  Add a page for compiler2 recursion in main thread.
3390  // Add in 2*BytesPerWord times page size to account for VM stack during
3391  // class initialization depending on 32 or 64 bit VM.
3392  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3393            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3394                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3395
3396  size_t threadStackSizeInBytes = ThreadStackSize * K;
3397  if (threadStackSizeInBytes != 0 &&
3398      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3399        tty->print_cr("\nThe stack size specified is too small, "
3400                      "Specify at least %dk",
3401                      os::Bsd::min_stack_allowed/ K);
3402        return JNI_ERR;
3403  }
3404
3405  // Make the stack size a multiple of the page size so that
3406  // the yellow/red zones can be guarded.
3407  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3408        vm_page_size()));
3409
3410  if (MaxFDLimit) {
3411    // set the number of file descriptors to max. print out error
3412    // if getrlimit/setrlimit fails but continue regardless.
3413    struct rlimit nbr_files;
3414    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3415    if (status != 0) {
3416      if (PrintMiscellaneous && (Verbose || WizardMode))
3417        perror("os::init_2 getrlimit failed");
3418    } else {
3419      nbr_files.rlim_cur = nbr_files.rlim_max;
3420
3421#ifdef __APPLE__
3422      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3423      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3424      // be used instead
3425      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3426#endif
3427
3428      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3429      if (status != 0) {
3430        if (PrintMiscellaneous && (Verbose || WizardMode))
3431          perror("os::init_2 setrlimit failed");
3432      }
3433    }
3434  }
3435
3436  // at-exit methods are called in the reverse order of their registration.
3437  // atexit functions are called on return from main or as a result of a
3438  // call to exit(3C). There can be only 32 of these functions registered
3439  // and atexit() does not set errno.
3440
3441  if (PerfAllowAtExitRegistration) {
3442    // only register atexit functions if PerfAllowAtExitRegistration is set.
3443    // atexit functions can be delayed until process exit time, which
3444    // can be problematic for embedded VM situations. Embedded VMs should
3445    // call DestroyJavaVM() to assure that VM resources are released.
3446
3447    // note: perfMemory_exit_helper atexit function may be removed in
3448    // the future if the appropriate cleanup code can be added to the
3449    // VM_Exit VMOperation's doit method.
3450    if (atexit(perfMemory_exit_helper) != 0) {
3451      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3452    }
3453  }
3454
3455  // initialize thread priority policy
3456  prio_init();
3457
3458#ifdef __APPLE__
3459  // dynamically link to objective c gc registration
3460  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3461  if (handleLibObjc != NULL) {
3462    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3463  }
3464#endif
3465
3466  return JNI_OK;
3467}
3468
3469// this is called at the end of vm_initialization
3470void os::init_3(void) { }
3471
3472// Mark the polling page as unreadable
3473void os::make_polling_page_unreadable(void) {
3474  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3475    fatal("Could not disable polling page");
3476};
3477
3478// Mark the polling page as readable
3479void os::make_polling_page_readable(void) {
3480  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3481    fatal("Could not enable polling page");
3482  }
3483};
3484
3485int os::active_processor_count() {
3486  return _processor_count;
3487}
3488
3489void os::set_native_thread_name(const char *name) {
3490#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3491  // This is only supported in Snow Leopard and beyond
3492  if (name != NULL) {
3493    // Add a "Java: " prefix to the name
3494    char buf[MAXTHREADNAMESIZE];
3495    snprintf(buf, sizeof(buf), "Java: %s", name);
3496    pthread_setname_np(buf);
3497  }
3498#endif
3499}
3500
3501bool os::distribute_processes(uint length, uint* distribution) {
3502  // Not yet implemented.
3503  return false;
3504}
3505
3506bool os::bind_to_processor(uint processor_id) {
3507  // Not yet implemented.
3508  return false;
3509}
3510
3511///
3512
3513// Suspends the target using the signal mechanism and then grabs the PC before
3514// resuming the target. Used by the flat-profiler only
3515ExtendedPC os::get_thread_pc(Thread* thread) {
3516  // Make sure that it is called by the watcher for the VMThread
3517  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3518  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3519
3520  ExtendedPC epc;
3521
3522  OSThread* osthread = thread->osthread();
3523  if (do_suspend(osthread)) {
3524    if (osthread->ucontext() != NULL) {
3525      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
3526    } else {
3527      // NULL context is unexpected, double-check this is the VMThread
3528      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3529    }
3530    do_resume(osthread);
3531  }
3532  // failure means pthread_kill failed for some reason - arguably this is
3533  // a fatal problem, but such problems are ignored elsewhere
3534
3535  return epc;
3536}
3537
3538int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3539{
3540  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3541}
3542
3543////////////////////////////////////////////////////////////////////////////////
3544// debug support
3545
3546bool os::find(address addr, outputStream* st) {
3547  Dl_info dlinfo;
3548  memset(&dlinfo, 0, sizeof(dlinfo));
3549  if (dladdr(addr, &dlinfo)) {
3550    st->print(PTR_FORMAT ": ", addr);
3551    if (dlinfo.dli_sname != NULL) {
3552      st->print("%s+%#x", dlinfo.dli_sname,
3553                 addr - (intptr_t)dlinfo.dli_saddr);
3554    } else if (dlinfo.dli_fname) {
3555      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3556    } else {
3557      st->print("<absolute address>");
3558    }
3559    if (dlinfo.dli_fname) {
3560      st->print(" in %s", dlinfo.dli_fname);
3561    }
3562    if (dlinfo.dli_fbase) {
3563      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3564    }
3565    st->cr();
3566
3567    if (Verbose) {
3568      // decode some bytes around the PC
3569      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3570      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3571      address       lowest = (address) dlinfo.dli_sname;
3572      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3573      if (begin < lowest)  begin = lowest;
3574      Dl_info dlinfo2;
3575      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3576          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3577        end = (address) dlinfo2.dli_saddr;
3578      Disassembler::decode(begin, end, st);
3579    }
3580    return true;
3581  }
3582  return false;
3583}
3584
3585////////////////////////////////////////////////////////////////////////////////
3586// misc
3587
3588// This does not do anything on Bsd. This is basically a hook for being
3589// able to use structured exception handling (thread-local exception filters)
3590// on, e.g., Win32.
3591void
3592os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3593                         JavaCallArguments* args, Thread* thread) {
3594  f(value, method, args, thread);
3595}
3596
3597void os::print_statistics() {
3598}
3599
3600int os::message_box(const char* title, const char* message) {
3601  int i;
3602  fdStream err(defaultStream::error_fd());
3603  for (i = 0; i < 78; i++) err.print_raw("=");
3604  err.cr();
3605  err.print_raw_cr(title);
3606  for (i = 0; i < 78; i++) err.print_raw("-");
3607  err.cr();
3608  err.print_raw_cr(message);
3609  for (i = 0; i < 78; i++) err.print_raw("=");
3610  err.cr();
3611
3612  char buf[16];
3613  // Prevent process from exiting upon "read error" without consuming all CPU
3614  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3615
3616  return buf[0] == 'y' || buf[0] == 'Y';
3617}
3618
3619int os::stat(const char *path, struct stat *sbuf) {
3620  char pathbuf[MAX_PATH];
3621  if (strlen(path) > MAX_PATH - 1) {
3622    errno = ENAMETOOLONG;
3623    return -1;
3624  }
3625  os::native_path(strcpy(pathbuf, path));
3626  return ::stat(pathbuf, sbuf);
3627}
3628
3629bool os::check_heap(bool force) {
3630  return true;
3631}
3632
3633int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3634  return ::vsnprintf(buf, count, format, args);
3635}
3636
3637// Is a (classpath) directory empty?
3638bool os::dir_is_empty(const char* path) {
3639  DIR *dir = NULL;
3640  struct dirent *ptr;
3641
3642  dir = opendir(path);
3643  if (dir == NULL) return true;
3644
3645  /* Scan the directory */
3646  bool result = true;
3647  char buf[sizeof(struct dirent) + MAX_PATH];
3648  while (result && (ptr = ::readdir(dir)) != NULL) {
3649    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3650      result = false;
3651    }
3652  }
3653  closedir(dir);
3654  return result;
3655}
3656
3657// This code originates from JDK's sysOpen and open64_w
3658// from src/solaris/hpi/src/system_md.c
3659
3660#ifndef O_DELETE
3661#define O_DELETE 0x10000
3662#endif
3663
3664// Open a file. Unlink the file immediately after open returns
3665// if the specified oflag has the O_DELETE flag set.
3666// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3667
3668int os::open(const char *path, int oflag, int mode) {
3669
3670  if (strlen(path) > MAX_PATH - 1) {
3671    errno = ENAMETOOLONG;
3672    return -1;
3673  }
3674  int fd;
3675  int o_delete = (oflag & O_DELETE);
3676  oflag = oflag & ~O_DELETE;
3677
3678  fd = ::open(path, oflag, mode);
3679  if (fd == -1) return -1;
3680
3681  //If the open succeeded, the file might still be a directory
3682  {
3683    struct stat buf;
3684    int ret = ::fstat(fd, &buf);
3685    int st_mode = buf.st_mode;
3686
3687    if (ret != -1) {
3688      if ((st_mode & S_IFMT) == S_IFDIR) {
3689        errno = EISDIR;
3690        ::close(fd);
3691        return -1;
3692      }
3693    } else {
3694      ::close(fd);
3695      return -1;
3696    }
3697  }
3698
3699    /*
3700     * All file descriptors that are opened in the JVM and not
3701     * specifically destined for a subprocess should have the
3702     * close-on-exec flag set.  If we don't set it, then careless 3rd
3703     * party native code might fork and exec without closing all
3704     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3705     * UNIXProcess.c), and this in turn might:
3706     *
3707     * - cause end-of-file to fail to be detected on some file
3708     *   descriptors, resulting in mysterious hangs, or
3709     *
3710     * - might cause an fopen in the subprocess to fail on a system
3711     *   suffering from bug 1085341.
3712     *
3713     * (Yes, the default setting of the close-on-exec flag is a Unix
3714     * design flaw)
3715     *
3716     * See:
3717     * 1085341: 32-bit stdio routines should support file descriptors >255
3718     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3719     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3720     */
3721#ifdef FD_CLOEXEC
3722    {
3723        int flags = ::fcntl(fd, F_GETFD);
3724        if (flags != -1)
3725            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3726    }
3727#endif
3728
3729  if (o_delete != 0) {
3730    ::unlink(path);
3731  }
3732  return fd;
3733}
3734
3735
3736// create binary file, rewriting existing file if required
3737int os::create_binary_file(const char* path, bool rewrite_existing) {
3738  int oflags = O_WRONLY | O_CREAT;
3739  if (!rewrite_existing) {
3740    oflags |= O_EXCL;
3741  }
3742  return ::open(path, oflags, S_IREAD | S_IWRITE);
3743}
3744
3745// return current position of file pointer
3746jlong os::current_file_offset(int fd) {
3747  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3748}
3749
3750// move file pointer to the specified offset
3751jlong os::seek_to_file_offset(int fd, jlong offset) {
3752  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3753}
3754
3755// This code originates from JDK's sysAvailable
3756// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3757
3758int os::available(int fd, jlong *bytes) {
3759  jlong cur, end;
3760  int mode;
3761  struct stat buf;
3762
3763  if (::fstat(fd, &buf) >= 0) {
3764    mode = buf.st_mode;
3765    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3766      /*
3767      * XXX: is the following call interruptible? If so, this might
3768      * need to go through the INTERRUPT_IO() wrapper as for other
3769      * blocking, interruptible calls in this file.
3770      */
3771      int n;
3772      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3773        *bytes = n;
3774        return 1;
3775      }
3776    }
3777  }
3778  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3779    return 0;
3780  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3781    return 0;
3782  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3783    return 0;
3784  }
3785  *bytes = end - cur;
3786  return 1;
3787}
3788
3789int os::socket_available(int fd, jint *pbytes) {
3790   if (fd < 0)
3791     return OS_OK;
3792
3793   int ret;
3794
3795   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3796
3797   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3798   // is expected to return 0 on failure and 1 on success to the jdk.
3799
3800   return (ret == OS_ERR) ? 0 : 1;
3801}
3802
3803// Map a block of memory.
3804char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3805                     char *addr, size_t bytes, bool read_only,
3806                     bool allow_exec) {
3807  int prot;
3808  int flags;
3809
3810  if (read_only) {
3811    prot = PROT_READ;
3812    flags = MAP_SHARED;
3813  } else {
3814    prot = PROT_READ | PROT_WRITE;
3815    flags = MAP_PRIVATE;
3816  }
3817
3818  if (allow_exec) {
3819    prot |= PROT_EXEC;
3820  }
3821
3822  if (addr != NULL) {
3823    flags |= MAP_FIXED;
3824  }
3825
3826  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3827                                     fd, file_offset);
3828  if (mapped_address == MAP_FAILED) {
3829    return NULL;
3830  }
3831  return mapped_address;
3832}
3833
3834
3835// Remap a block of memory.
3836char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3837                       char *addr, size_t bytes, bool read_only,
3838                       bool allow_exec) {
3839  // same as map_memory() on this OS
3840  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3841                        allow_exec);
3842}
3843
3844
3845// Unmap a block of memory.
3846bool os::pd_unmap_memory(char* addr, size_t bytes) {
3847  return munmap(addr, bytes) == 0;
3848}
3849
3850// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3851// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3852// of a thread.
3853//
3854// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3855// the fast estimate available on the platform.
3856
3857jlong os::current_thread_cpu_time() {
3858#ifdef __APPLE__
3859  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3860#else
3861  Unimplemented();
3862  return 0;
3863#endif
3864}
3865
3866jlong os::thread_cpu_time(Thread* thread) {
3867#ifdef __APPLE__
3868  return os::thread_cpu_time(thread, true /* user + sys */);
3869#else
3870  Unimplemented();
3871  return 0;
3872#endif
3873}
3874
3875jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3876#ifdef __APPLE__
3877  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3878#else
3879  Unimplemented();
3880  return 0;
3881#endif
3882}
3883
3884jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3885#ifdef __APPLE__
3886  struct thread_basic_info tinfo;
3887  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3888  kern_return_t kr;
3889  thread_t mach_thread;
3890
3891  mach_thread = thread->osthread()->thread_id();
3892  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3893  if (kr != KERN_SUCCESS)
3894    return -1;
3895
3896  if (user_sys_cpu_time) {
3897    jlong nanos;
3898    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3899    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3900    return nanos;
3901  } else {
3902    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3903  }
3904#else
3905  Unimplemented();
3906  return 0;
3907#endif
3908}
3909
3910
3911void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3912  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3913  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3914  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3915  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3916}
3917
3918void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3919  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3920  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3921  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3922  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3923}
3924
3925bool os::is_thread_cpu_time_supported() {
3926#ifdef __APPLE__
3927  return true;
3928#else
3929  return false;
3930#endif
3931}
3932
3933// System loadavg support.  Returns -1 if load average cannot be obtained.
3934// Bsd doesn't yet have a (official) notion of processor sets,
3935// so just return the system wide load average.
3936int os::loadavg(double loadavg[], int nelem) {
3937  return ::getloadavg(loadavg, nelem);
3938}
3939
3940void os::pause() {
3941  char filename[MAX_PATH];
3942  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3943    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3944  } else {
3945    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3946  }
3947
3948  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3949  if (fd != -1) {
3950    struct stat buf;
3951    ::close(fd);
3952    while (::stat(filename, &buf) == 0) {
3953      (void)::poll(NULL, 0, 100);
3954    }
3955  } else {
3956    jio_fprintf(stderr,
3957      "Could not open pause file '%s', continuing immediately.\n", filename);
3958  }
3959}
3960
3961
3962// Refer to the comments in os_solaris.cpp park-unpark.
3963//
3964// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
3965// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
3966// For specifics regarding the bug see GLIBC BUGID 261237 :
3967//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
3968// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
3969// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
3970// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
3971// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
3972// and monitorenter when we're using 1-0 locking.  All those operations may result in
3973// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
3974// of libpthread avoids the problem, but isn't practical.
3975//
3976// Possible remedies:
3977//
3978// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
3979//      This is palliative and probabilistic, however.  If the thread is preempted
3980//      between the call to compute_abstime() and pthread_cond_timedwait(), more
3981//      than the minimum period may have passed, and the abstime may be stale (in the
3982//      past) resultin in a hang.   Using this technique reduces the odds of a hang
3983//      but the JVM is still vulnerable, particularly on heavily loaded systems.
3984//
3985// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
3986//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
3987//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
3988//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
3989//      thread.
3990//
3991// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
3992//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
3993//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
3994//      This also works well.  In fact it avoids kernel-level scalability impediments
3995//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
3996//      timers in a graceful fashion.
3997//
3998// 4.   When the abstime value is in the past it appears that control returns
3999//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4000//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4001//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4002//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4003//      It may be possible to avoid reinitialization by checking the return
4004//      value from pthread_cond_timedwait().  In addition to reinitializing the
4005//      condvar we must establish the invariant that cond_signal() is only called
4006//      within critical sections protected by the adjunct mutex.  This prevents
4007//      cond_signal() from "seeing" a condvar that's in the midst of being
4008//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4009//      desirable signal-after-unlock optimization that avoids futile context switching.
4010//
4011//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4012//      structure when a condvar is used or initialized.  cond_destroy()  would
4013//      release the helper structure.  Our reinitialize-after-timedwait fix
4014//      put excessive stress on malloc/free and locks protecting the c-heap.
4015//
4016// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4017// It may be possible to refine (4) by checking the kernel and NTPL verisons
4018// and only enabling the work-around for vulnerable environments.
4019
4020// utility to compute the abstime argument to timedwait:
4021// millis is the relative timeout time
4022// abstime will be the absolute timeout time
4023// TODO: replace compute_abstime() with unpackTime()
4024
4025static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4026  if (millis < 0)  millis = 0;
4027  struct timeval now;
4028  int status = gettimeofday(&now, NULL);
4029  assert(status == 0, "gettimeofday");
4030  jlong seconds = millis / 1000;
4031  millis %= 1000;
4032  if (seconds > 50000000) { // see man cond_timedwait(3T)
4033    seconds = 50000000;
4034  }
4035  abstime->tv_sec = now.tv_sec  + seconds;
4036  long       usec = now.tv_usec + millis * 1000;
4037  if (usec >= 1000000) {
4038    abstime->tv_sec += 1;
4039    usec -= 1000000;
4040  }
4041  abstime->tv_nsec = usec * 1000;
4042  return abstime;
4043}
4044
4045
4046// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4047// Conceptually TryPark() should be equivalent to park(0).
4048
4049int os::PlatformEvent::TryPark() {
4050  for (;;) {
4051    const int v = _Event ;
4052    guarantee ((v == 0) || (v == 1), "invariant") ;
4053    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4054  }
4055}
4056
4057void os::PlatformEvent::park() {       // AKA "down()"
4058  // Invariant: Only the thread associated with the Event/PlatformEvent
4059  // may call park().
4060  // TODO: assert that _Assoc != NULL or _Assoc == Self
4061  int v ;
4062  for (;;) {
4063      v = _Event ;
4064      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4065  }
4066  guarantee (v >= 0, "invariant") ;
4067  if (v == 0) {
4068     // Do this the hard way by blocking ...
4069     int status = pthread_mutex_lock(_mutex);
4070     assert_status(status == 0, status, "mutex_lock");
4071     guarantee (_nParked == 0, "invariant") ;
4072     ++ _nParked ;
4073     while (_Event < 0) {
4074        status = pthread_cond_wait(_cond, _mutex);
4075        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4076        // Treat this the same as if the wait was interrupted
4077        if (status == ETIMEDOUT) { status = EINTR; }
4078        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4079     }
4080     -- _nParked ;
4081
4082    _Event = 0 ;
4083     status = pthread_mutex_unlock(_mutex);
4084     assert_status(status == 0, status, "mutex_unlock");
4085    // Paranoia to ensure our locked and lock-free paths interact
4086    // correctly with each other.
4087    OrderAccess::fence();
4088  }
4089  guarantee (_Event >= 0, "invariant") ;
4090}
4091
4092int os::PlatformEvent::park(jlong millis) {
4093  guarantee (_nParked == 0, "invariant") ;
4094
4095  int v ;
4096  for (;;) {
4097      v = _Event ;
4098      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4099  }
4100  guarantee (v >= 0, "invariant") ;
4101  if (v != 0) return OS_OK ;
4102
4103  // We do this the hard way, by blocking the thread.
4104  // Consider enforcing a minimum timeout value.
4105  struct timespec abst;
4106  compute_abstime(&abst, millis);
4107
4108  int ret = OS_TIMEOUT;
4109  int status = pthread_mutex_lock(_mutex);
4110  assert_status(status == 0, status, "mutex_lock");
4111  guarantee (_nParked == 0, "invariant") ;
4112  ++_nParked ;
4113
4114  // Object.wait(timo) will return because of
4115  // (a) notification
4116  // (b) timeout
4117  // (c) thread.interrupt
4118  //
4119  // Thread.interrupt and object.notify{All} both call Event::set.
4120  // That is, we treat thread.interrupt as a special case of notification.
4121  // The underlying Solaris implementation, cond_timedwait, admits
4122  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4123  // JVM from making those visible to Java code.  As such, we must
4124  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4125  //
4126  // TODO: properly differentiate simultaneous notify+interrupt.
4127  // In that case, we should propagate the notify to another waiter.
4128
4129  while (_Event < 0) {
4130    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4131    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4132      pthread_cond_destroy (_cond);
4133      pthread_cond_init (_cond, NULL) ;
4134    }
4135    assert_status(status == 0 || status == EINTR ||
4136                  status == ETIMEDOUT,
4137                  status, "cond_timedwait");
4138    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4139    if (status == ETIMEDOUT) break ;
4140    // We consume and ignore EINTR and spurious wakeups.
4141  }
4142  --_nParked ;
4143  if (_Event >= 0) {
4144     ret = OS_OK;
4145  }
4146  _Event = 0 ;
4147  status = pthread_mutex_unlock(_mutex);
4148  assert_status(status == 0, status, "mutex_unlock");
4149  assert (_nParked == 0, "invariant") ;
4150  // Paranoia to ensure our locked and lock-free paths interact
4151  // correctly with each other.
4152  OrderAccess::fence();
4153  return ret;
4154}
4155
4156void os::PlatformEvent::unpark() {
4157  // Transitions for _Event:
4158  //    0 :=> 1
4159  //    1 :=> 1
4160  //   -1 :=> either 0 or 1; must signal target thread
4161  //          That is, we can safely transition _Event from -1 to either
4162  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4163  //          unpark() calls.
4164  // See also: "Semaphores in Plan 9" by Mullender & Cox
4165  //
4166  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4167  // that it will take two back-to-back park() calls for the owning
4168  // thread to block. This has the benefit of forcing a spurious return
4169  // from the first park() call after an unpark() call which will help
4170  // shake out uses of park() and unpark() without condition variables.
4171
4172  if (Atomic::xchg(1, &_Event) >= 0) return;
4173
4174  // Wait for the thread associated with the event to vacate
4175  int status = pthread_mutex_lock(_mutex);
4176  assert_status(status == 0, status, "mutex_lock");
4177  int AnyWaiters = _nParked;
4178  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4179  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4180    AnyWaiters = 0;
4181    pthread_cond_signal(_cond);
4182  }
4183  status = pthread_mutex_unlock(_mutex);
4184  assert_status(status == 0, status, "mutex_unlock");
4185  if (AnyWaiters != 0) {
4186    status = pthread_cond_signal(_cond);
4187    assert_status(status == 0, status, "cond_signal");
4188  }
4189
4190  // Note that we signal() _after dropping the lock for "immortal" Events.
4191  // This is safe and avoids a common class of  futile wakeups.  In rare
4192  // circumstances this can cause a thread to return prematurely from
4193  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4194  // simply re-test the condition and re-park itself.
4195}
4196
4197
4198// JSR166
4199// -------------------------------------------------------
4200
4201/*
4202 * The solaris and bsd implementations of park/unpark are fairly
4203 * conservative for now, but can be improved. They currently use a
4204 * mutex/condvar pair, plus a a count.
4205 * Park decrements count if > 0, else does a condvar wait.  Unpark
4206 * sets count to 1 and signals condvar.  Only one thread ever waits
4207 * on the condvar. Contention seen when trying to park implies that someone
4208 * is unparking you, so don't wait. And spurious returns are fine, so there
4209 * is no need to track notifications.
4210 */
4211
4212#define MAX_SECS 100000000
4213/*
4214 * This code is common to bsd and solaris and will be moved to a
4215 * common place in dolphin.
4216 *
4217 * The passed in time value is either a relative time in nanoseconds
4218 * or an absolute time in milliseconds. Either way it has to be unpacked
4219 * into suitable seconds and nanoseconds components and stored in the
4220 * given timespec structure.
4221 * Given time is a 64-bit value and the time_t used in the timespec is only
4222 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4223 * overflow if times way in the future are given. Further on Solaris versions
4224 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4225 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4226 * As it will be 28 years before "now + 100000000" will overflow we can
4227 * ignore overflow and just impose a hard-limit on seconds using the value
4228 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4229 * years from "now".
4230 */
4231
4232static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4233  assert (time > 0, "convertTime");
4234
4235  struct timeval now;
4236  int status = gettimeofday(&now, NULL);
4237  assert(status == 0, "gettimeofday");
4238
4239  time_t max_secs = now.tv_sec + MAX_SECS;
4240
4241  if (isAbsolute) {
4242    jlong secs = time / 1000;
4243    if (secs > max_secs) {
4244      absTime->tv_sec = max_secs;
4245    }
4246    else {
4247      absTime->tv_sec = secs;
4248    }
4249    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4250  }
4251  else {
4252    jlong secs = time / NANOSECS_PER_SEC;
4253    if (secs >= MAX_SECS) {
4254      absTime->tv_sec = max_secs;
4255      absTime->tv_nsec = 0;
4256    }
4257    else {
4258      absTime->tv_sec = now.tv_sec + secs;
4259      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4260      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4261        absTime->tv_nsec -= NANOSECS_PER_SEC;
4262        ++absTime->tv_sec; // note: this must be <= max_secs
4263      }
4264    }
4265  }
4266  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4267  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4268  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4269  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4270}
4271
4272void Parker::park(bool isAbsolute, jlong time) {
4273  // Ideally we'd do something useful while spinning, such
4274  // as calling unpackTime().
4275
4276  // Optional fast-path check:
4277  // Return immediately if a permit is available.
4278  // We depend on Atomic::xchg() having full barrier semantics
4279  // since we are doing a lock-free update to _counter.
4280  if (Atomic::xchg(0, &_counter) > 0) return;
4281
4282  Thread* thread = Thread::current();
4283  assert(thread->is_Java_thread(), "Must be JavaThread");
4284  JavaThread *jt = (JavaThread *)thread;
4285
4286  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4287  // Check interrupt before trying to wait
4288  if (Thread::is_interrupted(thread, false)) {
4289    return;
4290  }
4291
4292  // Next, demultiplex/decode time arguments
4293  struct timespec absTime;
4294  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4295    return;
4296  }
4297  if (time > 0) {
4298    unpackTime(&absTime, isAbsolute, time);
4299  }
4300
4301
4302  // Enter safepoint region
4303  // Beware of deadlocks such as 6317397.
4304  // The per-thread Parker:: mutex is a classic leaf-lock.
4305  // In particular a thread must never block on the Threads_lock while
4306  // holding the Parker:: mutex.  If safepoints are pending both the
4307  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4308  ThreadBlockInVM tbivm(jt);
4309
4310  // Don't wait if cannot get lock since interference arises from
4311  // unblocking.  Also. check interrupt before trying wait
4312  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4313    return;
4314  }
4315
4316  int status ;
4317  if (_counter > 0)  { // no wait needed
4318    _counter = 0;
4319    status = pthread_mutex_unlock(_mutex);
4320    assert (status == 0, "invariant") ;
4321    // Paranoia to ensure our locked and lock-free paths interact
4322    // correctly with each other and Java-level accesses.
4323    OrderAccess::fence();
4324    return;
4325  }
4326
4327#ifdef ASSERT
4328  // Don't catch signals while blocked; let the running threads have the signals.
4329  // (This allows a debugger to break into the running thread.)
4330  sigset_t oldsigs;
4331  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4332  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4333#endif
4334
4335  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4336  jt->set_suspend_equivalent();
4337  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4338
4339  if (time == 0) {
4340    status = pthread_cond_wait (_cond, _mutex) ;
4341  } else {
4342    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4343    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4344      pthread_cond_destroy (_cond) ;
4345      pthread_cond_init    (_cond, NULL);
4346    }
4347  }
4348  assert_status(status == 0 || status == EINTR ||
4349                status == ETIMEDOUT,
4350                status, "cond_timedwait");
4351
4352#ifdef ASSERT
4353  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4354#endif
4355
4356  _counter = 0 ;
4357  status = pthread_mutex_unlock(_mutex) ;
4358  assert_status(status == 0, status, "invariant") ;
4359  // Paranoia to ensure our locked and lock-free paths interact
4360  // correctly with each other and Java-level accesses.
4361  OrderAccess::fence();
4362
4363  // If externally suspended while waiting, re-suspend
4364  if (jt->handle_special_suspend_equivalent_condition()) {
4365    jt->java_suspend_self();
4366  }
4367}
4368
4369void Parker::unpark() {
4370  int s, status ;
4371  status = pthread_mutex_lock(_mutex);
4372  assert (status == 0, "invariant") ;
4373  s = _counter;
4374  _counter = 1;
4375  if (s < 1) {
4376     if (WorkAroundNPTLTimedWaitHang) {
4377        status = pthread_cond_signal (_cond) ;
4378        assert (status == 0, "invariant") ;
4379        status = pthread_mutex_unlock(_mutex);
4380        assert (status == 0, "invariant") ;
4381     } else {
4382        status = pthread_mutex_unlock(_mutex);
4383        assert (status == 0, "invariant") ;
4384        status = pthread_cond_signal (_cond) ;
4385        assert (status == 0, "invariant") ;
4386     }
4387  } else {
4388    pthread_mutex_unlock(_mutex);
4389    assert (status == 0, "invariant") ;
4390  }
4391}
4392
4393
4394/* Darwin has no "environ" in a dynamic library. */
4395#ifdef __APPLE__
4396#include <crt_externs.h>
4397#define environ (*_NSGetEnviron())
4398#else
4399extern char** environ;
4400#endif
4401
4402// Run the specified command in a separate process. Return its exit value,
4403// or -1 on failure (e.g. can't fork a new process).
4404// Unlike system(), this function can be called from signal handler. It
4405// doesn't block SIGINT et al.
4406int os::fork_and_exec(char* cmd) {
4407  const char * argv[4] = {"sh", "-c", cmd, NULL};
4408
4409  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4410  // pthread_atfork handlers and reset pthread library. All we need is a
4411  // separate process to execve. Make a direct syscall to fork process.
4412  // On IA64 there's no fork syscall, we have to use fork() and hope for
4413  // the best...
4414  pid_t pid = fork();
4415
4416  if (pid < 0) {
4417    // fork failed
4418    return -1;
4419
4420  } else if (pid == 0) {
4421    // child process
4422
4423    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4424    // first to kill every thread on the thread list. Because this list is
4425    // not reset by fork() (see notes above), execve() will instead kill
4426    // every thread in the parent process. We know this is the only thread
4427    // in the new process, so make a system call directly.
4428    // IA64 should use normal execve() from glibc to match the glibc fork()
4429    // above.
4430    execve("/bin/sh", (char* const*)argv, environ);
4431
4432    // execve failed
4433    _exit(-1);
4434
4435  } else  {
4436    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4437    // care about the actual exit code, for now.
4438
4439    int status;
4440
4441    // Wait for the child process to exit.  This returns immediately if
4442    // the child has already exited. */
4443    while (waitpid(pid, &status, 0) < 0) {
4444        switch (errno) {
4445        case ECHILD: return 0;
4446        case EINTR: break;
4447        default: return -1;
4448        }
4449    }
4450
4451    if (WIFEXITED(status)) {
4452       // The child exited normally; get its exit code.
4453       return WEXITSTATUS(status);
4454    } else if (WIFSIGNALED(status)) {
4455       // The child exited because of a signal
4456       // The best value to return is 0x80 + signal number,
4457       // because that is what all Unix shells do, and because
4458       // it allows callers to distinguish between process exit and
4459       // process death by signal.
4460       return 0x80 + WTERMSIG(status);
4461    } else {
4462       // Unknown exit code; pass it through
4463       return status;
4464    }
4465  }
4466}
4467
4468// is_headless_jre()
4469//
4470// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4471// in order to report if we are running in a headless jre
4472//
4473// Since JDK8 xawt/libmawt.so was moved into the same directory
4474// as libawt.so, and renamed libawt_xawt.so
4475//
4476bool os::is_headless_jre() {
4477    struct stat statbuf;
4478    char buf[MAXPATHLEN];
4479    char libmawtpath[MAXPATHLEN];
4480    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4481    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4482    char *p;
4483
4484    // Get path to libjvm.so
4485    os::jvm_path(buf, sizeof(buf));
4486
4487    // Get rid of libjvm.so
4488    p = strrchr(buf, '/');
4489    if (p == NULL) return false;
4490    else *p = '\0';
4491
4492    // Get rid of client or server
4493    p = strrchr(buf, '/');
4494    if (p == NULL) return false;
4495    else *p = '\0';
4496
4497    // check xawt/libmawt.so
4498    strcpy(libmawtpath, buf);
4499    strcat(libmawtpath, xawtstr);
4500    if (::stat(libmawtpath, &statbuf) == 0) return false;
4501
4502    // check libawt_xawt.so
4503    strcpy(libmawtpath, buf);
4504    strcat(libmawtpath, new_xawtstr);
4505    if (::stat(libmawtpath, &statbuf) == 0) return false;
4506
4507    return true;
4508}
4509
4510// Get the default path to the core file
4511// Returns the length of the string
4512int os::get_core_path(char* buffer, size_t bufferSize) {
4513  int n = jio_snprintf(buffer, bufferSize, "/cores");
4514
4515  // Truncate if theoretical string was longer than bufferSize
4516  n = MIN2(n, (int)bufferSize);
4517
4518  return n;
4519}
4520