os_bsd.cpp revision 4554:f32b6c267d2e
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#if defined(__FreeBSD__) || defined(__NetBSD__)
105# include <elf.h>
106#endif
107
108#ifdef __APPLE__
109# include <mach/mach.h> // semaphore_* API
110# include <mach-o/dyld.h>
111# include <sys/proc_info.h>
112# include <objc/objc-auto.h>
113#endif
114
115#ifndef MAP_ANONYMOUS
116#define MAP_ANONYMOUS MAP_ANON
117#endif
118
119#define MAX_PATH    (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Bsd::_physical_memory = 0;
128
129
130int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131pthread_t os::Bsd::_main_thread;
132int os::Bsd::_page_size = -1;
133
134static jlong initial_time_count=0;
135
136static int clock_tics_per_sec = 100;
137
138// For diagnostics to print a message once. see run_periodic_checks
139static sigset_t check_signal_done;
140static bool check_signals = true;
141
142static pid_t _initial_pid = 0;
143
144/* Signal number used to suspend/resume a thread */
145
146/* do not use any signal number less than SIGSEGV, see 4355769 */
147static int SR_signum = SIGUSR2;
148sigset_t SR_sigset;
149
150
151////////////////////////////////////////////////////////////////////////////////
152// utility functions
153
154static int SR_initialize();
155
156julong os::available_memory() {
157  return Bsd::available_memory();
158}
159
160julong os::Bsd::available_memory() {
161  // XXXBSD: this is just a stopgap implementation
162  return physical_memory() >> 2;
163}
164
165julong os::physical_memory() {
166  return Bsd::physical_memory();
167}
168
169////////////////////////////////////////////////////////////////////////////////
170// environment support
171
172bool os::getenv(const char* name, char* buf, int len) {
173  const char* val = ::getenv(name);
174  if (val != NULL && strlen(val) < (size_t)len) {
175    strcpy(buf, val);
176    return true;
177  }
178  if (len > 0) buf[0] = 0;  // return a null string
179  return false;
180}
181
182
183// Return true if user is running as root.
184
185bool os::have_special_privileges() {
186  static bool init = false;
187  static bool privileges = false;
188  if (!init) {
189    privileges = (getuid() != geteuid()) || (getgid() != getegid());
190    init = true;
191  }
192  return privileges;
193}
194
195
196
197// Cpu architecture string
198#if   defined(ZERO)
199static char cpu_arch[] = ZERO_LIBARCH;
200#elif defined(IA64)
201static char cpu_arch[] = "ia64";
202#elif defined(IA32)
203static char cpu_arch[] = "i386";
204#elif defined(AMD64)
205static char cpu_arch[] = "amd64";
206#elif defined(ARM)
207static char cpu_arch[] = "arm";
208#elif defined(PPC)
209static char cpu_arch[] = "ppc";
210#elif defined(SPARC)
211#  ifdef _LP64
212static char cpu_arch[] = "sparcv9";
213#  else
214static char cpu_arch[] = "sparc";
215#  endif
216#else
217#error Add appropriate cpu_arch setting
218#endif
219
220// Compiler variant
221#ifdef COMPILER2
222#define COMPILER_VARIANT "server"
223#else
224#define COMPILER_VARIANT "client"
225#endif
226
227
228void os::Bsd::initialize_system_info() {
229  int mib[2];
230  size_t len;
231  int cpu_val;
232  julong mem_val;
233
234  /* get processors count via hw.ncpus sysctl */
235  mib[0] = CTL_HW;
236  mib[1] = HW_NCPU;
237  len = sizeof(cpu_val);
238  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
239       assert(len == sizeof(cpu_val), "unexpected data size");
240       set_processor_count(cpu_val);
241  }
242  else {
243       set_processor_count(1);   // fallback
244  }
245
246  /* get physical memory via hw.memsize sysctl (hw.memsize is used
247   * since it returns a 64 bit value)
248   */
249  mib[0] = CTL_HW;
250  mib[1] = HW_MEMSIZE;
251  len = sizeof(mem_val);
252  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
253       assert(len == sizeof(mem_val), "unexpected data size");
254       _physical_memory = mem_val;
255  } else {
256       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
257  }
258
259#ifdef __OpenBSD__
260  {
261       // limit _physical_memory memory view on OpenBSD since
262       // datasize rlimit restricts us anyway.
263       struct rlimit limits;
264       getrlimit(RLIMIT_DATA, &limits);
265       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
266  }
267#endif
268}
269
270#ifdef __APPLE__
271static const char *get_home() {
272  const char *home_dir = ::getenv("HOME");
273  if ((home_dir == NULL) || (*home_dir == '\0')) {
274    struct passwd *passwd_info = getpwuid(geteuid());
275    if (passwd_info != NULL) {
276      home_dir = passwd_info->pw_dir;
277    }
278  }
279
280  return home_dir;
281}
282#endif
283
284void os::init_system_properties_values() {
285//  char arch[12];
286//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
287
288  // The next steps are taken in the product version:
289  //
290  // Obtain the JAVA_HOME value from the location of libjvm.so.
291  // This library should be located at:
292  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
293  //
294  // If "/jre/lib/" appears at the right place in the path, then we
295  // assume libjvm.so is installed in a JDK and we use this path.
296  //
297  // Otherwise exit with message: "Could not create the Java virtual machine."
298  //
299  // The following extra steps are taken in the debugging version:
300  //
301  // If "/jre/lib/" does NOT appear at the right place in the path
302  // instead of exit check for $JAVA_HOME environment variable.
303  //
304  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
305  // then we append a fake suffix "hotspot/libjvm.so" to this path so
306  // it looks like libjvm.so is installed there
307  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
308  //
309  // Otherwise exit.
310  //
311  // Important note: if the location of libjvm.so changes this
312  // code needs to be changed accordingly.
313
314  // The next few definitions allow the code to be verbatim:
315#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
316#define getenv(n) ::getenv(n)
317
318/*
319 * See ld(1):
320 *      The linker uses the following search paths to locate required
321 *      shared libraries:
322 *        1: ...
323 *        ...
324 *        7: The default directories, normally /lib and /usr/lib.
325 */
326#ifndef DEFAULT_LIBPATH
327#define DEFAULT_LIBPATH "/lib:/usr/lib"
328#endif
329
330#define EXTENSIONS_DIR  "/lib/ext"
331#define ENDORSED_DIR    "/lib/endorsed"
332#define REG_DIR         "/usr/java/packages"
333
334#ifdef __APPLE__
335#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
336#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
337        const char *user_home_dir = get_home();
338        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
339        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
340            sizeof(SYS_EXTENSIONS_DIRS);
341#endif
342
343  {
344    /* sysclasspath, java_home, dll_dir */
345    {
346        char *home_path;
347        char *dll_path;
348        char *pslash;
349        char buf[MAXPATHLEN];
350        os::jvm_path(buf, sizeof(buf));
351
352        // Found the full path to libjvm.so.
353        // Now cut the path to <java_home>/jre if we can.
354        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
355        pslash = strrchr(buf, '/');
356        if (pslash != NULL)
357            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
358        dll_path = malloc(strlen(buf) + 1);
359        if (dll_path == NULL)
360            return;
361        strcpy(dll_path, buf);
362        Arguments::set_dll_dir(dll_path);
363
364        if (pslash != NULL) {
365            pslash = strrchr(buf, '/');
366            if (pslash != NULL) {
367                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
368#ifndef __APPLE__
369                pslash = strrchr(buf, '/');
370                if (pslash != NULL)
371                    *pslash = '\0';   /* get rid of /lib */
372#endif
373            }
374        }
375
376        home_path = malloc(strlen(buf) + 1);
377        if (home_path == NULL)
378            return;
379        strcpy(home_path, buf);
380        Arguments::set_java_home(home_path);
381
382        if (!set_boot_path('/', ':'))
383            return;
384    }
385
386    /*
387     * Where to look for native libraries
388     *
389     * Note: Due to a legacy implementation, most of the library path
390     * is set in the launcher.  This was to accomodate linking restrictions
391     * on legacy Bsd implementations (which are no longer supported).
392     * Eventually, all the library path setting will be done here.
393     *
394     * However, to prevent the proliferation of improperly built native
395     * libraries, the new path component /usr/java/packages is added here.
396     * Eventually, all the library path setting will be done here.
397     */
398    {
399        char *ld_library_path;
400
401        /*
402         * Construct the invariant part of ld_library_path. Note that the
403         * space for the colon and the trailing null are provided by the
404         * nulls included by the sizeof operator (so actually we allocate
405         * a byte more than necessary).
406         */
407#ifdef __APPLE__
408        ld_library_path = (char *) malloc(system_ext_size);
409        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
410#else
411        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
412            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
413        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
414#endif
415
416        /*
417         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
418         * should always exist (until the legacy problem cited above is
419         * addressed).
420         */
421#ifdef __APPLE__
422        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
423        char *l = getenv("JAVA_LIBRARY_PATH");
424        if (l != NULL) {
425            char *t = ld_library_path;
426            /* That's +1 for the colon and +1 for the trailing '\0' */
427            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
428            sprintf(ld_library_path, "%s:%s", l, t);
429            free(t);
430        }
431
432        char *v = getenv("DYLD_LIBRARY_PATH");
433#else
434        char *v = getenv("LD_LIBRARY_PATH");
435#endif
436        if (v != NULL) {
437            char *t = ld_library_path;
438            /* That's +1 for the colon and +1 for the trailing '\0' */
439            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
440            sprintf(ld_library_path, "%s:%s", v, t);
441            free(t);
442        }
443
444#ifdef __APPLE__
445        // Apple's Java6 has "." at the beginning of java.library.path.
446        // OpenJDK on Windows has "." at the end of java.library.path.
447        // OpenJDK on Linux and Solaris don't have "." in java.library.path
448        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
449        // "." is appended to the end of java.library.path. Yes, this
450        // could cause a change in behavior, but Apple's Java6 behavior
451        // can be achieved by putting "." at the beginning of the
452        // JAVA_LIBRARY_PATH environment variable.
453        {
454            char *t = ld_library_path;
455            // that's +3 for appending ":." and the trailing '\0'
456            ld_library_path = (char *) malloc(strlen(t) + 3);
457            sprintf(ld_library_path, "%s:%s", t, ".");
458            free(t);
459        }
460#endif
461
462        Arguments::set_library_path(ld_library_path);
463    }
464
465    /*
466     * Extensions directories.
467     *
468     * Note that the space for the colon and the trailing null are provided
469     * by the nulls included by the sizeof operator (so actually one byte more
470     * than necessary is allocated).
471     */
472    {
473#ifdef __APPLE__
474        char *buf = malloc(strlen(Arguments::get_java_home()) +
475            sizeof(EXTENSIONS_DIR) + system_ext_size);
476        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
477            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
478#else
479        char *buf = malloc(strlen(Arguments::get_java_home()) +
480            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
481        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
482            Arguments::get_java_home());
483#endif
484
485        Arguments::set_ext_dirs(buf);
486    }
487
488    /* Endorsed standards default directory. */
489    {
490        char * buf;
491        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
492        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
493        Arguments::set_endorsed_dirs(buf);
494    }
495  }
496
497#ifdef __APPLE__
498#undef SYS_EXTENSIONS_DIR
499#endif
500#undef malloc
501#undef getenv
502#undef EXTENSIONS_DIR
503#undef ENDORSED_DIR
504
505  // Done
506  return;
507}
508
509////////////////////////////////////////////////////////////////////////////////
510// breakpoint support
511
512void os::breakpoint() {
513  BREAKPOINT;
514}
515
516extern "C" void breakpoint() {
517  // use debugger to set breakpoint here
518}
519
520////////////////////////////////////////////////////////////////////////////////
521// signal support
522
523debug_only(static bool signal_sets_initialized = false);
524static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
525
526bool os::Bsd::is_sig_ignored(int sig) {
527      struct sigaction oact;
528      sigaction(sig, (struct sigaction*)NULL, &oact);
529      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
530                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
531      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
532           return true;
533      else
534           return false;
535}
536
537void os::Bsd::signal_sets_init() {
538  // Should also have an assertion stating we are still single-threaded.
539  assert(!signal_sets_initialized, "Already initialized");
540  // Fill in signals that are necessarily unblocked for all threads in
541  // the VM. Currently, we unblock the following signals:
542  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
543  //                         by -Xrs (=ReduceSignalUsage));
544  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
545  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
546  // the dispositions or masks wrt these signals.
547  // Programs embedding the VM that want to use the above signals for their
548  // own purposes must, at this time, use the "-Xrs" option to prevent
549  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
550  // (See bug 4345157, and other related bugs).
551  // In reality, though, unblocking these signals is really a nop, since
552  // these signals are not blocked by default.
553  sigemptyset(&unblocked_sigs);
554  sigemptyset(&allowdebug_blocked_sigs);
555  sigaddset(&unblocked_sigs, SIGILL);
556  sigaddset(&unblocked_sigs, SIGSEGV);
557  sigaddset(&unblocked_sigs, SIGBUS);
558  sigaddset(&unblocked_sigs, SIGFPE);
559  sigaddset(&unblocked_sigs, SR_signum);
560
561  if (!ReduceSignalUsage) {
562   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
563      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
564      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
565   }
566   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
567      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
568      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
569   }
570   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
571      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
572      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
573   }
574  }
575  // Fill in signals that are blocked by all but the VM thread.
576  sigemptyset(&vm_sigs);
577  if (!ReduceSignalUsage)
578    sigaddset(&vm_sigs, BREAK_SIGNAL);
579  debug_only(signal_sets_initialized = true);
580
581}
582
583// These are signals that are unblocked while a thread is running Java.
584// (For some reason, they get blocked by default.)
585sigset_t* os::Bsd::unblocked_signals() {
586  assert(signal_sets_initialized, "Not initialized");
587  return &unblocked_sigs;
588}
589
590// These are the signals that are blocked while a (non-VM) thread is
591// running Java. Only the VM thread handles these signals.
592sigset_t* os::Bsd::vm_signals() {
593  assert(signal_sets_initialized, "Not initialized");
594  return &vm_sigs;
595}
596
597// These are signals that are blocked during cond_wait to allow debugger in
598sigset_t* os::Bsd::allowdebug_blocked_signals() {
599  assert(signal_sets_initialized, "Not initialized");
600  return &allowdebug_blocked_sigs;
601}
602
603void os::Bsd::hotspot_sigmask(Thread* thread) {
604
605  //Save caller's signal mask before setting VM signal mask
606  sigset_t caller_sigmask;
607  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
608
609  OSThread* osthread = thread->osthread();
610  osthread->set_caller_sigmask(caller_sigmask);
611
612  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
613
614  if (!ReduceSignalUsage) {
615    if (thread->is_VM_thread()) {
616      // Only the VM thread handles BREAK_SIGNAL ...
617      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
618    } else {
619      // ... all other threads block BREAK_SIGNAL
620      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
621    }
622  }
623}
624
625
626//////////////////////////////////////////////////////////////////////////////
627// create new thread
628
629static address highest_vm_reserved_address();
630
631// check if it's safe to start a new thread
632static bool _thread_safety_check(Thread* thread) {
633  return true;
634}
635
636#ifdef __APPLE__
637// library handle for calling objc_registerThreadWithCollector()
638// without static linking to the libobjc library
639#define OBJC_LIB "/usr/lib/libobjc.dylib"
640#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
641typedef void (*objc_registerThreadWithCollector_t)();
642extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
643objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
644#endif
645
646#ifdef __APPLE__
647static uint64_t locate_unique_thread_id() {
648  // Additional thread_id used to correlate threads in SA
649  thread_identifier_info_data_t     m_ident_info;
650  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
651
652  thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
653              (thread_info_t) &m_ident_info, &count);
654  return m_ident_info.thread_id;
655}
656#endif
657
658// Thread start routine for all newly created threads
659static void *java_start(Thread *thread) {
660  // Try to randomize the cache line index of hot stack frames.
661  // This helps when threads of the same stack traces evict each other's
662  // cache lines. The threads can be either from the same JVM instance, or
663  // from different JVM instances. The benefit is especially true for
664  // processors with hyperthreading technology.
665  static int counter = 0;
666  int pid = os::current_process_id();
667  alloca(((pid ^ counter++) & 7) * 128);
668
669  ThreadLocalStorage::set_thread(thread);
670
671  OSThread* osthread = thread->osthread();
672  Monitor* sync = osthread->startThread_lock();
673
674  // non floating stack BsdThreads needs extra check, see above
675  if (!_thread_safety_check(thread)) {
676    // notify parent thread
677    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
678    osthread->set_state(ZOMBIE);
679    sync->notify_all();
680    return NULL;
681  }
682
683#ifdef __APPLE__
684  // thread_id is mach thread on macos
685  osthread->set_thread_id(::mach_thread_self());
686  osthread->set_unique_thread_id(locate_unique_thread_id());
687#else
688  // thread_id is pthread_id on BSD
689  osthread->set_thread_id(::pthread_self());
690#endif
691  // initialize signal mask for this thread
692  os::Bsd::hotspot_sigmask(thread);
693
694  // initialize floating point control register
695  os::Bsd::init_thread_fpu_state();
696
697#ifdef __APPLE__
698  // register thread with objc gc
699  if (objc_registerThreadWithCollectorFunction != NULL) {
700    objc_registerThreadWithCollectorFunction();
701  }
702#endif
703
704  // handshaking with parent thread
705  {
706    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
707
708    // notify parent thread
709    osthread->set_state(INITIALIZED);
710    sync->notify_all();
711
712    // wait until os::start_thread()
713    while (osthread->get_state() == INITIALIZED) {
714      sync->wait(Mutex::_no_safepoint_check_flag);
715    }
716  }
717
718  // call one more level start routine
719  thread->run();
720
721  return 0;
722}
723
724bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
725  assert(thread->osthread() == NULL, "caller responsible");
726
727  // Allocate the OSThread object
728  OSThread* osthread = new OSThread(NULL, NULL);
729  if (osthread == NULL) {
730    return false;
731  }
732
733  // set the correct thread state
734  osthread->set_thread_type(thr_type);
735
736  // Initial state is ALLOCATED but not INITIALIZED
737  osthread->set_state(ALLOCATED);
738
739  thread->set_osthread(osthread);
740
741  // init thread attributes
742  pthread_attr_t attr;
743  pthread_attr_init(&attr);
744  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
745
746  // stack size
747  if (os::Bsd::supports_variable_stack_size()) {
748    // calculate stack size if it's not specified by caller
749    if (stack_size == 0) {
750      stack_size = os::Bsd::default_stack_size(thr_type);
751
752      switch (thr_type) {
753      case os::java_thread:
754        // Java threads use ThreadStackSize which default value can be
755        // changed with the flag -Xss
756        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
757        stack_size = JavaThread::stack_size_at_create();
758        break;
759      case os::compiler_thread:
760        if (CompilerThreadStackSize > 0) {
761          stack_size = (size_t)(CompilerThreadStackSize * K);
762          break;
763        } // else fall through:
764          // use VMThreadStackSize if CompilerThreadStackSize is not defined
765      case os::vm_thread:
766      case os::pgc_thread:
767      case os::cgc_thread:
768      case os::watcher_thread:
769        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
770        break;
771      }
772    }
773
774    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
775    pthread_attr_setstacksize(&attr, stack_size);
776  } else {
777    // let pthread_create() pick the default value.
778  }
779
780  ThreadState state;
781
782  {
783    pthread_t tid;
784    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
785
786    pthread_attr_destroy(&attr);
787
788    if (ret != 0) {
789      if (PrintMiscellaneous && (Verbose || WizardMode)) {
790        perror("pthread_create()");
791      }
792      // Need to clean up stuff we've allocated so far
793      thread->set_osthread(NULL);
794      delete osthread;
795      return false;
796    }
797
798    // Store pthread info into the OSThread
799    osthread->set_pthread_id(tid);
800
801    // Wait until child thread is either initialized or aborted
802    {
803      Monitor* sync_with_child = osthread->startThread_lock();
804      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
805      while ((state = osthread->get_state()) == ALLOCATED) {
806        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
807      }
808    }
809
810  }
811
812  // Aborted due to thread limit being reached
813  if (state == ZOMBIE) {
814      thread->set_osthread(NULL);
815      delete osthread;
816      return false;
817  }
818
819  // The thread is returned suspended (in state INITIALIZED),
820  // and is started higher up in the call chain
821  assert(state == INITIALIZED, "race condition");
822  return true;
823}
824
825/////////////////////////////////////////////////////////////////////////////
826// attach existing thread
827
828// bootstrap the main thread
829bool os::create_main_thread(JavaThread* thread) {
830  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
831  return create_attached_thread(thread);
832}
833
834bool os::create_attached_thread(JavaThread* thread) {
835#ifdef ASSERT
836    thread->verify_not_published();
837#endif
838
839  // Allocate the OSThread object
840  OSThread* osthread = new OSThread(NULL, NULL);
841
842  if (osthread == NULL) {
843    return false;
844  }
845
846  // Store pthread info into the OSThread
847#ifdef __APPLE__
848  osthread->set_thread_id(::mach_thread_self());
849  osthread->set_unique_thread_id(locate_unique_thread_id());
850#else
851  osthread->set_thread_id(::pthread_self());
852#endif
853  osthread->set_pthread_id(::pthread_self());
854
855  // initialize floating point control register
856  os::Bsd::init_thread_fpu_state();
857
858  // Initial thread state is RUNNABLE
859  osthread->set_state(RUNNABLE);
860
861  thread->set_osthread(osthread);
862
863  // initialize signal mask for this thread
864  // and save the caller's signal mask
865  os::Bsd::hotspot_sigmask(thread);
866
867  return true;
868}
869
870void os::pd_start_thread(Thread* thread) {
871  OSThread * osthread = thread->osthread();
872  assert(osthread->get_state() != INITIALIZED, "just checking");
873  Monitor* sync_with_child = osthread->startThread_lock();
874  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
875  sync_with_child->notify();
876}
877
878// Free Bsd resources related to the OSThread
879void os::free_thread(OSThread* osthread) {
880  assert(osthread != NULL, "osthread not set");
881
882  if (Thread::current()->osthread() == osthread) {
883    // Restore caller's signal mask
884    sigset_t sigmask = osthread->caller_sigmask();
885    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
886   }
887
888  delete osthread;
889}
890
891//////////////////////////////////////////////////////////////////////////////
892// thread local storage
893
894int os::allocate_thread_local_storage() {
895  pthread_key_t key;
896  int rslt = pthread_key_create(&key, NULL);
897  assert(rslt == 0, "cannot allocate thread local storage");
898  return (int)key;
899}
900
901// Note: This is currently not used by VM, as we don't destroy TLS key
902// on VM exit.
903void os::free_thread_local_storage(int index) {
904  int rslt = pthread_key_delete((pthread_key_t)index);
905  assert(rslt == 0, "invalid index");
906}
907
908void os::thread_local_storage_at_put(int index, void* value) {
909  int rslt = pthread_setspecific((pthread_key_t)index, value);
910  assert(rslt == 0, "pthread_setspecific failed");
911}
912
913extern "C" Thread* get_thread() {
914  return ThreadLocalStorage::thread();
915}
916
917
918////////////////////////////////////////////////////////////////////////////////
919// time support
920
921// Time since start-up in seconds to a fine granularity.
922// Used by VMSelfDestructTimer and the MemProfiler.
923double os::elapsedTime() {
924
925  return (double)(os::elapsed_counter()) * 0.000001;
926}
927
928jlong os::elapsed_counter() {
929  timeval time;
930  int status = gettimeofday(&time, NULL);
931  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
932}
933
934jlong os::elapsed_frequency() {
935  return (1000 * 1000);
936}
937
938// XXX: For now, code this as if BSD does not support vtime.
939bool os::supports_vtime() { return false; }
940bool os::enable_vtime()   { return false; }
941bool os::vtime_enabled()  { return false; }
942double os::elapsedVTime() {
943  // better than nothing, but not much
944  return elapsedTime();
945}
946
947jlong os::javaTimeMillis() {
948  timeval time;
949  int status = gettimeofday(&time, NULL);
950  assert(status != -1, "bsd error");
951  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
952}
953
954#ifndef CLOCK_MONOTONIC
955#define CLOCK_MONOTONIC (1)
956#endif
957
958#ifdef __APPLE__
959void os::Bsd::clock_init() {
960        // XXXDARWIN: Investigate replacement monotonic clock
961}
962#else
963void os::Bsd::clock_init() {
964  struct timespec res;
965  struct timespec tp;
966  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
967      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
968    // yes, monotonic clock is supported
969    _clock_gettime = ::clock_gettime;
970  }
971}
972#endif
973
974
975jlong os::javaTimeNanos() {
976  if (Bsd::supports_monotonic_clock()) {
977    struct timespec tp;
978    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
979    assert(status == 0, "gettime error");
980    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
981    return result;
982  } else {
983    timeval time;
984    int status = gettimeofday(&time, NULL);
985    assert(status != -1, "bsd error");
986    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
987    return 1000 * usecs;
988  }
989}
990
991void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
992  if (Bsd::supports_monotonic_clock()) {
993    info_ptr->max_value = ALL_64_BITS;
994
995    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
996    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
997    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
998  } else {
999    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1000    info_ptr->max_value = ALL_64_BITS;
1001
1002    // gettimeofday is a real time clock so it skips
1003    info_ptr->may_skip_backward = true;
1004    info_ptr->may_skip_forward = true;
1005  }
1006
1007  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1008}
1009
1010// Return the real, user, and system times in seconds from an
1011// arbitrary fixed point in the past.
1012bool os::getTimesSecs(double* process_real_time,
1013                      double* process_user_time,
1014                      double* process_system_time) {
1015  struct tms ticks;
1016  clock_t real_ticks = times(&ticks);
1017
1018  if (real_ticks == (clock_t) (-1)) {
1019    return false;
1020  } else {
1021    double ticks_per_second = (double) clock_tics_per_sec;
1022    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1023    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1024    *process_real_time = ((double) real_ticks) / ticks_per_second;
1025
1026    return true;
1027  }
1028}
1029
1030
1031char * os::local_time_string(char *buf, size_t buflen) {
1032  struct tm t;
1033  time_t long_time;
1034  time(&long_time);
1035  localtime_r(&long_time, &t);
1036  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1037               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1038               t.tm_hour, t.tm_min, t.tm_sec);
1039  return buf;
1040}
1041
1042struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1043  return localtime_r(clock, res);
1044}
1045
1046////////////////////////////////////////////////////////////////////////////////
1047// runtime exit support
1048
1049// Note: os::shutdown() might be called very early during initialization, or
1050// called from signal handler. Before adding something to os::shutdown(), make
1051// sure it is async-safe and can handle partially initialized VM.
1052void os::shutdown() {
1053
1054  // allow PerfMemory to attempt cleanup of any persistent resources
1055  perfMemory_exit();
1056
1057  // needs to remove object in file system
1058  AttachListener::abort();
1059
1060  // flush buffered output, finish log files
1061  ostream_abort();
1062
1063  // Check for abort hook
1064  abort_hook_t abort_hook = Arguments::abort_hook();
1065  if (abort_hook != NULL) {
1066    abort_hook();
1067  }
1068
1069}
1070
1071// Note: os::abort() might be called very early during initialization, or
1072// called from signal handler. Before adding something to os::abort(), make
1073// sure it is async-safe and can handle partially initialized VM.
1074void os::abort(bool dump_core) {
1075  os::shutdown();
1076  if (dump_core) {
1077#ifndef PRODUCT
1078    fdStream out(defaultStream::output_fd());
1079    out.print_raw("Current thread is ");
1080    char buf[16];
1081    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1082    out.print_raw_cr(buf);
1083    out.print_raw_cr("Dumping core ...");
1084#endif
1085    ::abort(); // dump core
1086  }
1087
1088  ::exit(1);
1089}
1090
1091// Die immediately, no exit hook, no abort hook, no cleanup.
1092void os::die() {
1093  // _exit() on BsdThreads only kills current thread
1094  ::abort();
1095}
1096
1097// unused on bsd for now.
1098void os::set_error_file(const char *logfile) {}
1099
1100
1101// This method is a copy of JDK's sysGetLastErrorString
1102// from src/solaris/hpi/src/system_md.c
1103
1104size_t os::lasterror(char *buf, size_t len) {
1105
1106  if (errno == 0)  return 0;
1107
1108  const char *s = ::strerror(errno);
1109  size_t n = ::strlen(s);
1110  if (n >= len) {
1111    n = len - 1;
1112  }
1113  ::strncpy(buf, s, n);
1114  buf[n] = '\0';
1115  return n;
1116}
1117
1118intx os::current_thread_id() {
1119#ifdef __APPLE__
1120  return (intx)::mach_thread_self();
1121#else
1122  return (intx)::pthread_self();
1123#endif
1124}
1125int os::current_process_id() {
1126
1127  // Under the old bsd thread library, bsd gives each thread
1128  // its own process id. Because of this each thread will return
1129  // a different pid if this method were to return the result
1130  // of getpid(2). Bsd provides no api that returns the pid
1131  // of the launcher thread for the vm. This implementation
1132  // returns a unique pid, the pid of the launcher thread
1133  // that starts the vm 'process'.
1134
1135  // Under the NPTL, getpid() returns the same pid as the
1136  // launcher thread rather than a unique pid per thread.
1137  // Use gettid() if you want the old pre NPTL behaviour.
1138
1139  // if you are looking for the result of a call to getpid() that
1140  // returns a unique pid for the calling thread, then look at the
1141  // OSThread::thread_id() method in osThread_bsd.hpp file
1142
1143  return (int)(_initial_pid ? _initial_pid : getpid());
1144}
1145
1146// DLL functions
1147
1148#define JNI_LIB_PREFIX "lib"
1149#ifdef __APPLE__
1150#define JNI_LIB_SUFFIX ".dylib"
1151#else
1152#define JNI_LIB_SUFFIX ".so"
1153#endif
1154
1155const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1156
1157// This must be hard coded because it's the system's temporary
1158// directory not the java application's temp directory, ala java.io.tmpdir.
1159#ifdef __APPLE__
1160// macosx has a secure per-user temporary directory
1161char temp_path_storage[PATH_MAX];
1162const char* os::get_temp_directory() {
1163  static char *temp_path = NULL;
1164  if (temp_path == NULL) {
1165    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1166    if (pathSize == 0 || pathSize > PATH_MAX) {
1167      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1168    }
1169    temp_path = temp_path_storage;
1170  }
1171  return temp_path;
1172}
1173#else /* __APPLE__ */
1174const char* os::get_temp_directory() { return "/tmp"; }
1175#endif /* __APPLE__ */
1176
1177static bool file_exists(const char* filename) {
1178  struct stat statbuf;
1179  if (filename == NULL || strlen(filename) == 0) {
1180    return false;
1181  }
1182  return os::stat(filename, &statbuf) == 0;
1183}
1184
1185bool os::dll_build_name(char* buffer, size_t buflen,
1186                        const char* pname, const char* fname) {
1187  bool retval = false;
1188  // Copied from libhpi
1189  const size_t pnamelen = pname ? strlen(pname) : 0;
1190
1191  // Return error on buffer overflow.
1192  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1193    return retval;
1194  }
1195
1196  if (pnamelen == 0) {
1197    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1198    retval = true;
1199  } else if (strchr(pname, *os::path_separator()) != NULL) {
1200    int n;
1201    char** pelements = split_path(pname, &n);
1202    if (pelements == NULL) {
1203      return false;
1204    }
1205    for (int i = 0 ; i < n ; i++) {
1206      // Really shouldn't be NULL, but check can't hurt
1207      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1208        continue; // skip the empty path values
1209      }
1210      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1211          pelements[i], fname);
1212      if (file_exists(buffer)) {
1213        retval = true;
1214        break;
1215      }
1216    }
1217    // release the storage
1218    for (int i = 0 ; i < n ; i++) {
1219      if (pelements[i] != NULL) {
1220        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1221      }
1222    }
1223    if (pelements != NULL) {
1224      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1225    }
1226  } else {
1227    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1228    retval = true;
1229  }
1230  return retval;
1231}
1232
1233const char* os::get_current_directory(char *buf, int buflen) {
1234  return getcwd(buf, buflen);
1235}
1236
1237// check if addr is inside libjvm.so
1238bool os::address_is_in_vm(address addr) {
1239  static address libjvm_base_addr;
1240  Dl_info dlinfo;
1241
1242  if (libjvm_base_addr == NULL) {
1243    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1244    libjvm_base_addr = (address)dlinfo.dli_fbase;
1245    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1246  }
1247
1248  if (dladdr((void *)addr, &dlinfo)) {
1249    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1250  }
1251
1252  return false;
1253}
1254
1255
1256#define MACH_MAXSYMLEN 256
1257
1258bool os::dll_address_to_function_name(address addr, char *buf,
1259                                      int buflen, int *offset) {
1260  Dl_info dlinfo;
1261  char localbuf[MACH_MAXSYMLEN];
1262
1263  // dladdr will find names of dynamic functions only, but does
1264  // it set dli_fbase with mach_header address when it "fails" ?
1265  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1266    if (buf != NULL) {
1267      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1268        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1269      }
1270    }
1271    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1272    return true;
1273  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1274    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1275       buf, buflen, offset, dlinfo.dli_fname)) {
1276       return true;
1277    }
1278  }
1279
1280  // Handle non-dymanic manually:
1281  if (dlinfo.dli_fbase != NULL &&
1282      Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1283    if(!Decoder::demangle(localbuf, buf, buflen)) {
1284      jio_snprintf(buf, buflen, "%s", localbuf);
1285    }
1286    return true;
1287  }
1288  if (buf != NULL) buf[0] = '\0';
1289  if (offset != NULL) *offset = -1;
1290  return false;
1291}
1292
1293// ported from solaris version
1294bool os::dll_address_to_library_name(address addr, char* buf,
1295                                     int buflen, int* offset) {
1296  Dl_info dlinfo;
1297
1298  if (dladdr((void*)addr, &dlinfo)){
1299     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1300     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1301     return true;
1302  } else {
1303     if (buf) buf[0] = '\0';
1304     if (offset) *offset = -1;
1305     return false;
1306  }
1307}
1308
1309// Loads .dll/.so and
1310// in case of error it checks if .dll/.so was built for the
1311// same architecture as Hotspot is running on
1312
1313#ifdef __APPLE__
1314void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1315  void * result= ::dlopen(filename, RTLD_LAZY);
1316  if (result != NULL) {
1317    // Successful loading
1318    return result;
1319  }
1320
1321  // Read system error message into ebuf
1322  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1323  ebuf[ebuflen-1]='\0';
1324
1325  return NULL;
1326}
1327#else
1328void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1329{
1330  void * result= ::dlopen(filename, RTLD_LAZY);
1331  if (result != NULL) {
1332    // Successful loading
1333    return result;
1334  }
1335
1336  Elf32_Ehdr elf_head;
1337
1338  // Read system error message into ebuf
1339  // It may or may not be overwritten below
1340  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1341  ebuf[ebuflen-1]='\0';
1342  int diag_msg_max_length=ebuflen-strlen(ebuf);
1343  char* diag_msg_buf=ebuf+strlen(ebuf);
1344
1345  if (diag_msg_max_length==0) {
1346    // No more space in ebuf for additional diagnostics message
1347    return NULL;
1348  }
1349
1350
1351  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1352
1353  if (file_descriptor < 0) {
1354    // Can't open library, report dlerror() message
1355    return NULL;
1356  }
1357
1358  bool failed_to_read_elf_head=
1359    (sizeof(elf_head)!=
1360        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1361
1362  ::close(file_descriptor);
1363  if (failed_to_read_elf_head) {
1364    // file i/o error - report dlerror() msg
1365    return NULL;
1366  }
1367
1368  typedef struct {
1369    Elf32_Half  code;         // Actual value as defined in elf.h
1370    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1371    char        elf_class;    // 32 or 64 bit
1372    char        endianess;    // MSB or LSB
1373    char*       name;         // String representation
1374  } arch_t;
1375
1376  #ifndef EM_486
1377  #define EM_486          6               /* Intel 80486 */
1378  #endif
1379
1380  #ifndef EM_MIPS_RS3_LE
1381  #define EM_MIPS_RS3_LE  10              /* MIPS */
1382  #endif
1383
1384  #ifndef EM_PPC64
1385  #define EM_PPC64        21              /* PowerPC64 */
1386  #endif
1387
1388  #ifndef EM_S390
1389  #define EM_S390         22              /* IBM System/390 */
1390  #endif
1391
1392  #ifndef EM_IA_64
1393  #define EM_IA_64        50              /* HP/Intel IA-64 */
1394  #endif
1395
1396  #ifndef EM_X86_64
1397  #define EM_X86_64       62              /* AMD x86-64 */
1398  #endif
1399
1400  static const arch_t arch_array[]={
1401    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1402    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1403    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1404    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1405    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1406    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1407    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1408    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1409    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1410    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1411    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1412    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1413    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1414    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1415    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1416    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1417  };
1418
1419  #if  (defined IA32)
1420    static  Elf32_Half running_arch_code=EM_386;
1421  #elif   (defined AMD64)
1422    static  Elf32_Half running_arch_code=EM_X86_64;
1423  #elif  (defined IA64)
1424    static  Elf32_Half running_arch_code=EM_IA_64;
1425  #elif  (defined __sparc) && (defined _LP64)
1426    static  Elf32_Half running_arch_code=EM_SPARCV9;
1427  #elif  (defined __sparc) && (!defined _LP64)
1428    static  Elf32_Half running_arch_code=EM_SPARC;
1429  #elif  (defined __powerpc64__)
1430    static  Elf32_Half running_arch_code=EM_PPC64;
1431  #elif  (defined __powerpc__)
1432    static  Elf32_Half running_arch_code=EM_PPC;
1433  #elif  (defined ARM)
1434    static  Elf32_Half running_arch_code=EM_ARM;
1435  #elif  (defined S390)
1436    static  Elf32_Half running_arch_code=EM_S390;
1437  #elif  (defined ALPHA)
1438    static  Elf32_Half running_arch_code=EM_ALPHA;
1439  #elif  (defined MIPSEL)
1440    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1441  #elif  (defined PARISC)
1442    static  Elf32_Half running_arch_code=EM_PARISC;
1443  #elif  (defined MIPS)
1444    static  Elf32_Half running_arch_code=EM_MIPS;
1445  #elif  (defined M68K)
1446    static  Elf32_Half running_arch_code=EM_68K;
1447  #else
1448    #error Method os::dll_load requires that one of following is defined:\
1449         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1450  #endif
1451
1452  // Identify compatability class for VM's architecture and library's architecture
1453  // Obtain string descriptions for architectures
1454
1455  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1456  int running_arch_index=-1;
1457
1458  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1459    if (running_arch_code == arch_array[i].code) {
1460      running_arch_index    = i;
1461    }
1462    if (lib_arch.code == arch_array[i].code) {
1463      lib_arch.compat_class = arch_array[i].compat_class;
1464      lib_arch.name         = arch_array[i].name;
1465    }
1466  }
1467
1468  assert(running_arch_index != -1,
1469    "Didn't find running architecture code (running_arch_code) in arch_array");
1470  if (running_arch_index == -1) {
1471    // Even though running architecture detection failed
1472    // we may still continue with reporting dlerror() message
1473    return NULL;
1474  }
1475
1476  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1477    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1478    return NULL;
1479  }
1480
1481#ifndef S390
1482  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1483    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1484    return NULL;
1485  }
1486#endif // !S390
1487
1488  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1489    if ( lib_arch.name!=NULL ) {
1490      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1491        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1492        lib_arch.name, arch_array[running_arch_index].name);
1493    } else {
1494      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1495      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1496        lib_arch.code,
1497        arch_array[running_arch_index].name);
1498    }
1499  }
1500
1501  return NULL;
1502}
1503#endif /* !__APPLE__ */
1504
1505// XXX: Do we need a lock around this as per Linux?
1506void* os::dll_lookup(void* handle, const char* name) {
1507  return dlsym(handle, name);
1508}
1509
1510
1511static bool _print_ascii_file(const char* filename, outputStream* st) {
1512  int fd = ::open(filename, O_RDONLY);
1513  if (fd == -1) {
1514     return false;
1515  }
1516
1517  char buf[32];
1518  int bytes;
1519  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1520    st->print_raw(buf, bytes);
1521  }
1522
1523  ::close(fd);
1524
1525  return true;
1526}
1527
1528void os::print_dll_info(outputStream *st) {
1529   st->print_cr("Dynamic libraries:");
1530#ifdef RTLD_DI_LINKMAP
1531    Dl_info dli;
1532    void *handle;
1533    Link_map *map;
1534    Link_map *p;
1535
1536    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1537        st->print_cr("Error: Cannot print dynamic libraries.");
1538        return;
1539    }
1540    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1541    if (handle == NULL) {
1542        st->print_cr("Error: Cannot print dynamic libraries.");
1543        return;
1544    }
1545    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1546    if (map == NULL) {
1547        st->print_cr("Error: Cannot print dynamic libraries.");
1548        return;
1549    }
1550
1551    while (map->l_prev != NULL)
1552        map = map->l_prev;
1553
1554    while (map != NULL) {
1555        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1556        map = map->l_next;
1557    }
1558
1559    dlclose(handle);
1560#elif defined(__APPLE__)
1561    uint32_t count;
1562    uint32_t i;
1563
1564    count = _dyld_image_count();
1565    for (i = 1; i < count; i++) {
1566        const char *name = _dyld_get_image_name(i);
1567        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1568        st->print_cr(PTR_FORMAT " \t%s", slide, name);
1569    }
1570#else
1571   st->print_cr("Error: Cannot print dynamic libraries.");
1572#endif
1573}
1574
1575void os::print_os_info_brief(outputStream* st) {
1576  st->print("Bsd");
1577
1578  os::Posix::print_uname_info(st);
1579}
1580
1581void os::print_os_info(outputStream* st) {
1582  st->print("OS:");
1583  st->print("Bsd");
1584
1585  os::Posix::print_uname_info(st);
1586
1587  os::Posix::print_rlimit_info(st);
1588
1589  os::Posix::print_load_average(st);
1590}
1591
1592void os::pd_print_cpu_info(outputStream* st) {
1593  // Nothing to do for now.
1594}
1595
1596void os::print_memory_info(outputStream* st) {
1597
1598  st->print("Memory:");
1599  st->print(" %dk page", os::vm_page_size()>>10);
1600
1601  st->print(", physical " UINT64_FORMAT "k",
1602            os::physical_memory() >> 10);
1603  st->print("(" UINT64_FORMAT "k free)",
1604            os::available_memory() >> 10);
1605  st->cr();
1606
1607  // meminfo
1608  st->print("\n/proc/meminfo:\n");
1609  _print_ascii_file("/proc/meminfo", st);
1610  st->cr();
1611}
1612
1613// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1614// but they're the same for all the bsd arch that we support
1615// and they're the same for solaris but there's no common place to put this.
1616const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1617                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1618                          "ILL_COPROC", "ILL_BADSTK" };
1619
1620const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1621                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1622                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1623
1624const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1625
1626const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1627
1628void os::print_siginfo(outputStream* st, void* siginfo) {
1629  st->print("siginfo:");
1630
1631  const int buflen = 100;
1632  char buf[buflen];
1633  siginfo_t *si = (siginfo_t*)siginfo;
1634  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1635  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1636    st->print("si_errno=%s", buf);
1637  } else {
1638    st->print("si_errno=%d", si->si_errno);
1639  }
1640  const int c = si->si_code;
1641  assert(c > 0, "unexpected si_code");
1642  switch (si->si_signo) {
1643  case SIGILL:
1644    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1645    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1646    break;
1647  case SIGFPE:
1648    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1649    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1650    break;
1651  case SIGSEGV:
1652    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1653    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1654    break;
1655  case SIGBUS:
1656    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1657    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1658    break;
1659  default:
1660    st->print(", si_code=%d", si->si_code);
1661    // no si_addr
1662  }
1663
1664  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1665      UseSharedSpaces) {
1666    FileMapInfo* mapinfo = FileMapInfo::current_info();
1667    if (mapinfo->is_in_shared_space(si->si_addr)) {
1668      st->print("\n\nError accessing class data sharing archive."   \
1669                " Mapped file inaccessible during execution, "      \
1670                " possible disk/network problem.");
1671    }
1672  }
1673  st->cr();
1674}
1675
1676
1677static void print_signal_handler(outputStream* st, int sig,
1678                                 char* buf, size_t buflen);
1679
1680void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1681  st->print_cr("Signal Handlers:");
1682  print_signal_handler(st, SIGSEGV, buf, buflen);
1683  print_signal_handler(st, SIGBUS , buf, buflen);
1684  print_signal_handler(st, SIGFPE , buf, buflen);
1685  print_signal_handler(st, SIGPIPE, buf, buflen);
1686  print_signal_handler(st, SIGXFSZ, buf, buflen);
1687  print_signal_handler(st, SIGILL , buf, buflen);
1688  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1689  print_signal_handler(st, SR_signum, buf, buflen);
1690  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1691  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1692  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1693  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1694}
1695
1696static char saved_jvm_path[MAXPATHLEN] = {0};
1697
1698// Find the full path to the current module, libjvm
1699void os::jvm_path(char *buf, jint buflen) {
1700  // Error checking.
1701  if (buflen < MAXPATHLEN) {
1702    assert(false, "must use a large-enough buffer");
1703    buf[0] = '\0';
1704    return;
1705  }
1706  // Lazy resolve the path to current module.
1707  if (saved_jvm_path[0] != 0) {
1708    strcpy(buf, saved_jvm_path);
1709    return;
1710  }
1711
1712  char dli_fname[MAXPATHLEN];
1713  bool ret = dll_address_to_library_name(
1714                CAST_FROM_FN_PTR(address, os::jvm_path),
1715                dli_fname, sizeof(dli_fname), NULL);
1716  assert(ret != 0, "cannot locate libjvm");
1717  char *rp = realpath(dli_fname, buf);
1718  if (rp == NULL)
1719    return;
1720
1721  if (Arguments::created_by_gamma_launcher()) {
1722    // Support for the gamma launcher.  Typical value for buf is
1723    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1724    // the right place in the string, then assume we are installed in a JDK and
1725    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1726    // construct a path to the JVM being overridden.
1727
1728    const char *p = buf + strlen(buf) - 1;
1729    for (int count = 0; p > buf && count < 5; ++count) {
1730      for (--p; p > buf && *p != '/'; --p)
1731        /* empty */ ;
1732    }
1733
1734    if (strncmp(p, "/jre/lib/", 9) != 0) {
1735      // Look for JAVA_HOME in the environment.
1736      char* java_home_var = ::getenv("JAVA_HOME");
1737      if (java_home_var != NULL && java_home_var[0] != 0) {
1738        char* jrelib_p;
1739        int len;
1740
1741        // Check the current module name "libjvm"
1742        p = strrchr(buf, '/');
1743        assert(strstr(p, "/libjvm") == p, "invalid library name");
1744
1745        rp = realpath(java_home_var, buf);
1746        if (rp == NULL)
1747          return;
1748
1749        // determine if this is a legacy image or modules image
1750        // modules image doesn't have "jre" subdirectory
1751        len = strlen(buf);
1752        jrelib_p = buf + len;
1753
1754        // Add the appropriate library subdir
1755        snprintf(jrelib_p, buflen-len, "/jre/lib");
1756        if (0 != access(buf, F_OK)) {
1757          snprintf(jrelib_p, buflen-len, "/lib");
1758        }
1759
1760        // Add the appropriate client or server subdir
1761        len = strlen(buf);
1762        jrelib_p = buf + len;
1763        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1764        if (0 != access(buf, F_OK)) {
1765          snprintf(jrelib_p, buflen-len, "");
1766        }
1767
1768        // If the path exists within JAVA_HOME, add the JVM library name
1769        // to complete the path to JVM being overridden.  Otherwise fallback
1770        // to the path to the current library.
1771        if (0 == access(buf, F_OK)) {
1772          // Use current module name "libjvm"
1773          len = strlen(buf);
1774          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1775        } else {
1776          // Fall back to path of current library
1777          rp = realpath(dli_fname, buf);
1778          if (rp == NULL)
1779            return;
1780        }
1781      }
1782    }
1783  }
1784
1785  strcpy(saved_jvm_path, buf);
1786}
1787
1788void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1789  // no prefix required, not even "_"
1790}
1791
1792void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1793  // no suffix required
1794}
1795
1796////////////////////////////////////////////////////////////////////////////////
1797// sun.misc.Signal support
1798
1799static volatile jint sigint_count = 0;
1800
1801static void
1802UserHandler(int sig, void *siginfo, void *context) {
1803  // 4511530 - sem_post is serialized and handled by the manager thread. When
1804  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1805  // don't want to flood the manager thread with sem_post requests.
1806  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1807      return;
1808
1809  // Ctrl-C is pressed during error reporting, likely because the error
1810  // handler fails to abort. Let VM die immediately.
1811  if (sig == SIGINT && is_error_reported()) {
1812     os::die();
1813  }
1814
1815  os::signal_notify(sig);
1816}
1817
1818void* os::user_handler() {
1819  return CAST_FROM_FN_PTR(void*, UserHandler);
1820}
1821
1822extern "C" {
1823  typedef void (*sa_handler_t)(int);
1824  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1825}
1826
1827void* os::signal(int signal_number, void* handler) {
1828  struct sigaction sigAct, oldSigAct;
1829
1830  sigfillset(&(sigAct.sa_mask));
1831  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1832  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1833
1834  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1835    // -1 means registration failed
1836    return (void *)-1;
1837  }
1838
1839  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1840}
1841
1842void os::signal_raise(int signal_number) {
1843  ::raise(signal_number);
1844}
1845
1846/*
1847 * The following code is moved from os.cpp for making this
1848 * code platform specific, which it is by its very nature.
1849 */
1850
1851// Will be modified when max signal is changed to be dynamic
1852int os::sigexitnum_pd() {
1853  return NSIG;
1854}
1855
1856// a counter for each possible signal value
1857static volatile jint pending_signals[NSIG+1] = { 0 };
1858
1859// Bsd(POSIX) specific hand shaking semaphore.
1860#ifdef __APPLE__
1861static semaphore_t sig_sem;
1862#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1863#define SEM_WAIT(sem)           semaphore_wait(sem);
1864#define SEM_POST(sem)           semaphore_signal(sem);
1865#else
1866static sem_t sig_sem;
1867#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1868#define SEM_WAIT(sem)           sem_wait(&sem);
1869#define SEM_POST(sem)           sem_post(&sem);
1870#endif
1871
1872void os::signal_init_pd() {
1873  // Initialize signal structures
1874  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1875
1876  // Initialize signal semaphore
1877  ::SEM_INIT(sig_sem, 0);
1878}
1879
1880void os::signal_notify(int sig) {
1881  Atomic::inc(&pending_signals[sig]);
1882  ::SEM_POST(sig_sem);
1883}
1884
1885static int check_pending_signals(bool wait) {
1886  Atomic::store(0, &sigint_count);
1887  for (;;) {
1888    for (int i = 0; i < NSIG + 1; i++) {
1889      jint n = pending_signals[i];
1890      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1891        return i;
1892      }
1893    }
1894    if (!wait) {
1895      return -1;
1896    }
1897    JavaThread *thread = JavaThread::current();
1898    ThreadBlockInVM tbivm(thread);
1899
1900    bool threadIsSuspended;
1901    do {
1902      thread->set_suspend_equivalent();
1903      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1904      ::SEM_WAIT(sig_sem);
1905
1906      // were we externally suspended while we were waiting?
1907      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1908      if (threadIsSuspended) {
1909        //
1910        // The semaphore has been incremented, but while we were waiting
1911        // another thread suspended us. We don't want to continue running
1912        // while suspended because that would surprise the thread that
1913        // suspended us.
1914        //
1915        ::SEM_POST(sig_sem);
1916
1917        thread->java_suspend_self();
1918      }
1919    } while (threadIsSuspended);
1920  }
1921}
1922
1923int os::signal_lookup() {
1924  return check_pending_signals(false);
1925}
1926
1927int os::signal_wait() {
1928  return check_pending_signals(true);
1929}
1930
1931////////////////////////////////////////////////////////////////////////////////
1932// Virtual Memory
1933
1934int os::vm_page_size() {
1935  // Seems redundant as all get out
1936  assert(os::Bsd::page_size() != -1, "must call os::init");
1937  return os::Bsd::page_size();
1938}
1939
1940// Solaris allocates memory by pages.
1941int os::vm_allocation_granularity() {
1942  assert(os::Bsd::page_size() != -1, "must call os::init");
1943  return os::Bsd::page_size();
1944}
1945
1946// Rationale behind this function:
1947//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
1948//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
1949//  samples for JITted code. Here we create private executable mapping over the code cache
1950//  and then we can use standard (well, almost, as mapping can change) way to provide
1951//  info for the reporting script by storing timestamp and location of symbol
1952void bsd_wrap_code(char* base, size_t size) {
1953  static volatile jint cnt = 0;
1954
1955  if (!UseOprofile) {
1956    return;
1957  }
1958
1959  char buf[PATH_MAX + 1];
1960  int num = Atomic::add(1, &cnt);
1961
1962  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
1963           os::get_temp_directory(), os::current_process_id(), num);
1964  unlink(buf);
1965
1966  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
1967
1968  if (fd != -1) {
1969    off_t rv = ::lseek(fd, size-2, SEEK_SET);
1970    if (rv != (off_t)-1) {
1971      if (::write(fd, "", 1) == 1) {
1972        mmap(base, size,
1973             PROT_READ|PROT_WRITE|PROT_EXEC,
1974             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
1975      }
1976    }
1977    ::close(fd);
1978    unlink(buf);
1979  }
1980}
1981
1982// NOTE: Bsd kernel does not really reserve the pages for us.
1983//       All it does is to check if there are enough free pages
1984//       left at the time of mmap(). This could be a potential
1985//       problem.
1986bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
1987  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
1988#ifdef __OpenBSD__
1989  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
1990  return ::mprotect(addr, size, prot) == 0;
1991#else
1992  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
1993                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
1994  return res != (uintptr_t) MAP_FAILED;
1995#endif
1996}
1997
1998
1999bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2000                       bool exec) {
2001  return commit_memory(addr, size, exec);
2002}
2003
2004void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2005}
2006
2007void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2008  ::madvise(addr, bytes, MADV_DONTNEED);
2009}
2010
2011void os::numa_make_global(char *addr, size_t bytes) {
2012}
2013
2014void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2015}
2016
2017bool os::numa_topology_changed()   { return false; }
2018
2019size_t os::numa_get_groups_num() {
2020  return 1;
2021}
2022
2023int os::numa_get_group_id() {
2024  return 0;
2025}
2026
2027size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2028  if (size > 0) {
2029    ids[0] = 0;
2030    return 1;
2031  }
2032  return 0;
2033}
2034
2035bool os::get_page_info(char *start, page_info* info) {
2036  return false;
2037}
2038
2039char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2040  return end;
2041}
2042
2043
2044bool os::pd_uncommit_memory(char* addr, size_t size) {
2045#ifdef __OpenBSD__
2046  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2047  return ::mprotect(addr, size, PROT_NONE) == 0;
2048#else
2049  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2050                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2051  return res  != (uintptr_t) MAP_FAILED;
2052#endif
2053}
2054
2055bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2056  return os::commit_memory(addr, size);
2057}
2058
2059// If this is a growable mapping, remove the guard pages entirely by
2060// munmap()ping them.  If not, just call uncommit_memory().
2061bool os::remove_stack_guard_pages(char* addr, size_t size) {
2062  return os::uncommit_memory(addr, size);
2063}
2064
2065static address _highest_vm_reserved_address = NULL;
2066
2067// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2068// at 'requested_addr'. If there are existing memory mappings at the same
2069// location, however, they will be overwritten. If 'fixed' is false,
2070// 'requested_addr' is only treated as a hint, the return value may or
2071// may not start from the requested address. Unlike Bsd mmap(), this
2072// function returns NULL to indicate failure.
2073static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2074  char * addr;
2075  int flags;
2076
2077  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2078  if (fixed) {
2079    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2080    flags |= MAP_FIXED;
2081  }
2082
2083  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2084  // touch an uncommitted page. Otherwise, the read/write might
2085  // succeed if we have enough swap space to back the physical page.
2086  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2087                       flags, -1, 0);
2088
2089  if (addr != MAP_FAILED) {
2090    // anon_mmap() should only get called during VM initialization,
2091    // don't need lock (actually we can skip locking even it can be called
2092    // from multiple threads, because _highest_vm_reserved_address is just a
2093    // hint about the upper limit of non-stack memory regions.)
2094    if ((address)addr + bytes > _highest_vm_reserved_address) {
2095      _highest_vm_reserved_address = (address)addr + bytes;
2096    }
2097  }
2098
2099  return addr == MAP_FAILED ? NULL : addr;
2100}
2101
2102// Don't update _highest_vm_reserved_address, because there might be memory
2103// regions above addr + size. If so, releasing a memory region only creates
2104// a hole in the address space, it doesn't help prevent heap-stack collision.
2105//
2106static int anon_munmap(char * addr, size_t size) {
2107  return ::munmap(addr, size) == 0;
2108}
2109
2110char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2111                         size_t alignment_hint) {
2112  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2113}
2114
2115bool os::pd_release_memory(char* addr, size_t size) {
2116  return anon_munmap(addr, size);
2117}
2118
2119static address highest_vm_reserved_address() {
2120  return _highest_vm_reserved_address;
2121}
2122
2123static bool bsd_mprotect(char* addr, size_t size, int prot) {
2124  // Bsd wants the mprotect address argument to be page aligned.
2125  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2126
2127  // According to SUSv3, mprotect() should only be used with mappings
2128  // established by mmap(), and mmap() always maps whole pages. Unaligned
2129  // 'addr' likely indicates problem in the VM (e.g. trying to change
2130  // protection of malloc'ed or statically allocated memory). Check the
2131  // caller if you hit this assert.
2132  assert(addr == bottom, "sanity check");
2133
2134  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2135  return ::mprotect(bottom, size, prot) == 0;
2136}
2137
2138// Set protections specified
2139bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2140                        bool is_committed) {
2141  unsigned int p = 0;
2142  switch (prot) {
2143  case MEM_PROT_NONE: p = PROT_NONE; break;
2144  case MEM_PROT_READ: p = PROT_READ; break;
2145  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2146  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2147  default:
2148    ShouldNotReachHere();
2149  }
2150  // is_committed is unused.
2151  return bsd_mprotect(addr, bytes, p);
2152}
2153
2154bool os::guard_memory(char* addr, size_t size) {
2155  return bsd_mprotect(addr, size, PROT_NONE);
2156}
2157
2158bool os::unguard_memory(char* addr, size_t size) {
2159  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2160}
2161
2162bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2163  return false;
2164}
2165
2166/*
2167* Set the coredump_filter bits to include largepages in core dump (bit 6)
2168*
2169* From the coredump_filter documentation:
2170*
2171* - (bit 0) anonymous private memory
2172* - (bit 1) anonymous shared memory
2173* - (bit 2) file-backed private memory
2174* - (bit 3) file-backed shared memory
2175* - (bit 4) ELF header pages in file-backed private memory areas (it is
2176*           effective only if the bit 2 is cleared)
2177* - (bit 5) hugetlb private memory
2178* - (bit 6) hugetlb shared memory
2179*/
2180static void set_coredump_filter(void) {
2181  FILE *f;
2182  long cdm;
2183
2184  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2185    return;
2186  }
2187
2188  if (fscanf(f, "%lx", &cdm) != 1) {
2189    fclose(f);
2190    return;
2191  }
2192
2193  rewind(f);
2194
2195  if ((cdm & LARGEPAGES_BIT) == 0) {
2196    cdm |= LARGEPAGES_BIT;
2197    fprintf(f, "%#lx", cdm);
2198  }
2199
2200  fclose(f);
2201}
2202
2203// Large page support
2204
2205static size_t _large_page_size = 0;
2206
2207void os::large_page_init() {
2208}
2209
2210
2211char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2212  // "exec" is passed in but not used.  Creating the shared image for
2213  // the code cache doesn't have an SHM_X executable permission to check.
2214  assert(UseLargePages && UseSHM, "only for SHM large pages");
2215
2216  key_t key = IPC_PRIVATE;
2217  char *addr;
2218
2219  bool warn_on_failure = UseLargePages &&
2220                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2221                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2222                        );
2223  char msg[128];
2224
2225  // Create a large shared memory region to attach to based on size.
2226  // Currently, size is the total size of the heap
2227  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2228  if (shmid == -1) {
2229     // Possible reasons for shmget failure:
2230     // 1. shmmax is too small for Java heap.
2231     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2232     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2233     // 2. not enough large page memory.
2234     //    > check available large pages: cat /proc/meminfo
2235     //    > increase amount of large pages:
2236     //          echo new_value > /proc/sys/vm/nr_hugepages
2237     //      Note 1: different Bsd may use different name for this property,
2238     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2239     //      Note 2: it's possible there's enough physical memory available but
2240     //            they are so fragmented after a long run that they can't
2241     //            coalesce into large pages. Try to reserve large pages when
2242     //            the system is still "fresh".
2243     if (warn_on_failure) {
2244       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2245       warning(msg);
2246     }
2247     return NULL;
2248  }
2249
2250  // attach to the region
2251  addr = (char*)shmat(shmid, req_addr, 0);
2252  int err = errno;
2253
2254  // Remove shmid. If shmat() is successful, the actual shared memory segment
2255  // will be deleted when it's detached by shmdt() or when the process
2256  // terminates. If shmat() is not successful this will remove the shared
2257  // segment immediately.
2258  shmctl(shmid, IPC_RMID, NULL);
2259
2260  if ((intptr_t)addr == -1) {
2261     if (warn_on_failure) {
2262       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2263       warning(msg);
2264     }
2265     return NULL;
2266  }
2267
2268  // The memory is committed
2269  address pc = CALLER_PC;
2270  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
2271  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
2272
2273  return addr;
2274}
2275
2276bool os::release_memory_special(char* base, size_t bytes) {
2277  // detaching the SHM segment will also delete it, see reserve_memory_special()
2278  int rslt = shmdt(base);
2279  if (rslt == 0) {
2280    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
2281    MemTracker::record_virtual_memory_release((address)base, bytes);
2282    return true;
2283  } else {
2284    return false;
2285  }
2286
2287}
2288
2289size_t os::large_page_size() {
2290  return _large_page_size;
2291}
2292
2293// HugeTLBFS allows application to commit large page memory on demand;
2294// with SysV SHM the entire memory region must be allocated as shared
2295// memory.
2296bool os::can_commit_large_page_memory() {
2297  return UseHugeTLBFS;
2298}
2299
2300bool os::can_execute_large_page_memory() {
2301  return UseHugeTLBFS;
2302}
2303
2304// Reserve memory at an arbitrary address, only if that area is
2305// available (and not reserved for something else).
2306
2307char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2308  const int max_tries = 10;
2309  char* base[max_tries];
2310  size_t size[max_tries];
2311  const size_t gap = 0x000000;
2312
2313  // Assert only that the size is a multiple of the page size, since
2314  // that's all that mmap requires, and since that's all we really know
2315  // about at this low abstraction level.  If we need higher alignment,
2316  // we can either pass an alignment to this method or verify alignment
2317  // in one of the methods further up the call chain.  See bug 5044738.
2318  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2319
2320  // Repeatedly allocate blocks until the block is allocated at the
2321  // right spot. Give up after max_tries. Note that reserve_memory() will
2322  // automatically update _highest_vm_reserved_address if the call is
2323  // successful. The variable tracks the highest memory address every reserved
2324  // by JVM. It is used to detect heap-stack collision if running with
2325  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2326  // space than needed, it could confuse the collision detecting code. To
2327  // solve the problem, save current _highest_vm_reserved_address and
2328  // calculate the correct value before return.
2329  address old_highest = _highest_vm_reserved_address;
2330
2331  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2332  // if kernel honors the hint then we can return immediately.
2333  char * addr = anon_mmap(requested_addr, bytes, false);
2334  if (addr == requested_addr) {
2335     return requested_addr;
2336  }
2337
2338  if (addr != NULL) {
2339     // mmap() is successful but it fails to reserve at the requested address
2340     anon_munmap(addr, bytes);
2341  }
2342
2343  int i;
2344  for (i = 0; i < max_tries; ++i) {
2345    base[i] = reserve_memory(bytes);
2346
2347    if (base[i] != NULL) {
2348      // Is this the block we wanted?
2349      if (base[i] == requested_addr) {
2350        size[i] = bytes;
2351        break;
2352      }
2353
2354      // Does this overlap the block we wanted? Give back the overlapped
2355      // parts and try again.
2356
2357      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2358      if (top_overlap >= 0 && top_overlap < bytes) {
2359        unmap_memory(base[i], top_overlap);
2360        base[i] += top_overlap;
2361        size[i] = bytes - top_overlap;
2362      } else {
2363        size_t bottom_overlap = base[i] + bytes - requested_addr;
2364        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2365          unmap_memory(requested_addr, bottom_overlap);
2366          size[i] = bytes - bottom_overlap;
2367        } else {
2368          size[i] = bytes;
2369        }
2370      }
2371    }
2372  }
2373
2374  // Give back the unused reserved pieces.
2375
2376  for (int j = 0; j < i; ++j) {
2377    if (base[j] != NULL) {
2378      unmap_memory(base[j], size[j]);
2379    }
2380  }
2381
2382  if (i < max_tries) {
2383    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2384    return requested_addr;
2385  } else {
2386    _highest_vm_reserved_address = old_highest;
2387    return NULL;
2388  }
2389}
2390
2391size_t os::read(int fd, void *buf, unsigned int nBytes) {
2392  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2393}
2394
2395// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2396// Solaris uses poll(), bsd uses park().
2397// Poll() is likely a better choice, assuming that Thread.interrupt()
2398// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2399// SIGSEGV, see 4355769.
2400
2401int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2402  assert(thread == Thread::current(),  "thread consistency check");
2403
2404  ParkEvent * const slp = thread->_SleepEvent ;
2405  slp->reset() ;
2406  OrderAccess::fence() ;
2407
2408  if (interruptible) {
2409    jlong prevtime = javaTimeNanos();
2410
2411    for (;;) {
2412      if (os::is_interrupted(thread, true)) {
2413        return OS_INTRPT;
2414      }
2415
2416      jlong newtime = javaTimeNanos();
2417
2418      if (newtime - prevtime < 0) {
2419        // time moving backwards, should only happen if no monotonic clock
2420        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2421        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2422      } else {
2423        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2424      }
2425
2426      if(millis <= 0) {
2427        return OS_OK;
2428      }
2429
2430      prevtime = newtime;
2431
2432      {
2433        assert(thread->is_Java_thread(), "sanity check");
2434        JavaThread *jt = (JavaThread *) thread;
2435        ThreadBlockInVM tbivm(jt);
2436        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2437
2438        jt->set_suspend_equivalent();
2439        // cleared by handle_special_suspend_equivalent_condition() or
2440        // java_suspend_self() via check_and_wait_while_suspended()
2441
2442        slp->park(millis);
2443
2444        // were we externally suspended while we were waiting?
2445        jt->check_and_wait_while_suspended();
2446      }
2447    }
2448  } else {
2449    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2450    jlong prevtime = javaTimeNanos();
2451
2452    for (;;) {
2453      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2454      // the 1st iteration ...
2455      jlong newtime = javaTimeNanos();
2456
2457      if (newtime - prevtime < 0) {
2458        // time moving backwards, should only happen if no monotonic clock
2459        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2460        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2461      } else {
2462        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2463      }
2464
2465      if(millis <= 0) break ;
2466
2467      prevtime = newtime;
2468      slp->park(millis);
2469    }
2470    return OS_OK ;
2471  }
2472}
2473
2474int os::naked_sleep() {
2475  // %% make the sleep time an integer flag. for now use 1 millisec.
2476  return os::sleep(Thread::current(), 1, false);
2477}
2478
2479// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2480void os::infinite_sleep() {
2481  while (true) {    // sleep forever ...
2482    ::sleep(100);   // ... 100 seconds at a time
2483  }
2484}
2485
2486// Used to convert frequent JVM_Yield() to nops
2487bool os::dont_yield() {
2488  return DontYieldALot;
2489}
2490
2491void os::yield() {
2492  sched_yield();
2493}
2494
2495os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2496
2497void os::yield_all(int attempts) {
2498  // Yields to all threads, including threads with lower priorities
2499  // Threads on Bsd are all with same priority. The Solaris style
2500  // os::yield_all() with nanosleep(1ms) is not necessary.
2501  sched_yield();
2502}
2503
2504// Called from the tight loops to possibly influence time-sharing heuristics
2505void os::loop_breaker(int attempts) {
2506  os::yield_all(attempts);
2507}
2508
2509////////////////////////////////////////////////////////////////////////////////
2510// thread priority support
2511
2512// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2513// only supports dynamic priority, static priority must be zero. For real-time
2514// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2515// However, for large multi-threaded applications, SCHED_RR is not only slower
2516// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2517// of 5 runs - Sep 2005).
2518//
2519// The following code actually changes the niceness of kernel-thread/LWP. It
2520// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2521// not the entire user process, and user level threads are 1:1 mapped to kernel
2522// threads. It has always been the case, but could change in the future. For
2523// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2524// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2525
2526#if !defined(__APPLE__)
2527int os::java_to_os_priority[CriticalPriority + 1] = {
2528  19,              // 0 Entry should never be used
2529
2530   0,              // 1 MinPriority
2531   3,              // 2
2532   6,              // 3
2533
2534  10,              // 4
2535  15,              // 5 NormPriority
2536  18,              // 6
2537
2538  21,              // 7
2539  25,              // 8
2540  28,              // 9 NearMaxPriority
2541
2542  31,              // 10 MaxPriority
2543
2544  31               // 11 CriticalPriority
2545};
2546#else
2547/* Using Mach high-level priority assignments */
2548int os::java_to_os_priority[CriticalPriority + 1] = {
2549   0,              // 0 Entry should never be used (MINPRI_USER)
2550
2551  27,              // 1 MinPriority
2552  28,              // 2
2553  29,              // 3
2554
2555  30,              // 4
2556  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2557  32,              // 6
2558
2559  33,              // 7
2560  34,              // 8
2561  35,              // 9 NearMaxPriority
2562
2563  36,              // 10 MaxPriority
2564
2565  36               // 11 CriticalPriority
2566};
2567#endif
2568
2569static int prio_init() {
2570  if (ThreadPriorityPolicy == 1) {
2571    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2572    // if effective uid is not root. Perhaps, a more elegant way of doing
2573    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2574    if (geteuid() != 0) {
2575      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2576        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2577      }
2578      ThreadPriorityPolicy = 0;
2579    }
2580  }
2581  if (UseCriticalJavaThreadPriority) {
2582    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2583  }
2584  return 0;
2585}
2586
2587OSReturn os::set_native_priority(Thread* thread, int newpri) {
2588  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2589
2590#ifdef __OpenBSD__
2591  // OpenBSD pthread_setprio starves low priority threads
2592  return OS_OK;
2593#elif defined(__FreeBSD__)
2594  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2595#elif defined(__APPLE__) || defined(__NetBSD__)
2596  struct sched_param sp;
2597  int policy;
2598  pthread_t self = pthread_self();
2599
2600  if (pthread_getschedparam(self, &policy, &sp) != 0)
2601    return OS_ERR;
2602
2603  sp.sched_priority = newpri;
2604  if (pthread_setschedparam(self, policy, &sp) != 0)
2605    return OS_ERR;
2606
2607  return OS_OK;
2608#else
2609  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2610  return (ret == 0) ? OS_OK : OS_ERR;
2611#endif
2612}
2613
2614OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2615  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2616    *priority_ptr = java_to_os_priority[NormPriority];
2617    return OS_OK;
2618  }
2619
2620  errno = 0;
2621#if defined(__OpenBSD__) || defined(__FreeBSD__)
2622  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2623#elif defined(__APPLE__) || defined(__NetBSD__)
2624  int policy;
2625  struct sched_param sp;
2626
2627  pthread_getschedparam(pthread_self(), &policy, &sp);
2628  *priority_ptr = sp.sched_priority;
2629#else
2630  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2631#endif
2632  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2633}
2634
2635// Hint to the underlying OS that a task switch would not be good.
2636// Void return because it's a hint and can fail.
2637void os::hint_no_preempt() {}
2638
2639////////////////////////////////////////////////////////////////////////////////
2640// suspend/resume support
2641
2642//  the low-level signal-based suspend/resume support is a remnant from the
2643//  old VM-suspension that used to be for java-suspension, safepoints etc,
2644//  within hotspot. Now there is a single use-case for this:
2645//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2646//      that runs in the watcher thread.
2647//  The remaining code is greatly simplified from the more general suspension
2648//  code that used to be used.
2649//
2650//  The protocol is quite simple:
2651//  - suspend:
2652//      - sends a signal to the target thread
2653//      - polls the suspend state of the osthread using a yield loop
2654//      - target thread signal handler (SR_handler) sets suspend state
2655//        and blocks in sigsuspend until continued
2656//  - resume:
2657//      - sets target osthread state to continue
2658//      - sends signal to end the sigsuspend loop in the SR_handler
2659//
2660//  Note that the SR_lock plays no role in this suspend/resume protocol.
2661//
2662
2663static void resume_clear_context(OSThread *osthread) {
2664  osthread->set_ucontext(NULL);
2665  osthread->set_siginfo(NULL);
2666
2667  // notify the suspend action is completed, we have now resumed
2668  osthread->sr.clear_suspended();
2669}
2670
2671static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2672  osthread->set_ucontext(context);
2673  osthread->set_siginfo(siginfo);
2674}
2675
2676//
2677// Handler function invoked when a thread's execution is suspended or
2678// resumed. We have to be careful that only async-safe functions are
2679// called here (Note: most pthread functions are not async safe and
2680// should be avoided.)
2681//
2682// Note: sigwait() is a more natural fit than sigsuspend() from an
2683// interface point of view, but sigwait() prevents the signal hander
2684// from being run. libpthread would get very confused by not having
2685// its signal handlers run and prevents sigwait()'s use with the
2686// mutex granting granting signal.
2687//
2688// Currently only ever called on the VMThread
2689//
2690static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2691  // Save and restore errno to avoid confusing native code with EINTR
2692  // after sigsuspend.
2693  int old_errno = errno;
2694
2695  Thread* thread = Thread::current();
2696  OSThread* osthread = thread->osthread();
2697  assert(thread->is_VM_thread(), "Must be VMThread");
2698  // read current suspend action
2699  int action = osthread->sr.suspend_action();
2700  if (action == os::Bsd::SuspendResume::SR_SUSPEND) {
2701    suspend_save_context(osthread, siginfo, context);
2702
2703    // Notify the suspend action is about to be completed. do_suspend()
2704    // waits until SR_SUSPENDED is set and then returns. We will wait
2705    // here for a resume signal and that completes the suspend-other
2706    // action. do_suspend/do_resume is always called as a pair from
2707    // the same thread - so there are no races
2708
2709    // notify the caller
2710    osthread->sr.set_suspended();
2711
2712    sigset_t suspend_set;  // signals for sigsuspend()
2713
2714    // get current set of blocked signals and unblock resume signal
2715    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2716    sigdelset(&suspend_set, SR_signum);
2717
2718    // wait here until we are resumed
2719    do {
2720      sigsuspend(&suspend_set);
2721      // ignore all returns until we get a resume signal
2722    } while (osthread->sr.suspend_action() != os::Bsd::SuspendResume::SR_CONTINUE);
2723
2724    resume_clear_context(osthread);
2725
2726  } else {
2727    assert(action == os::Bsd::SuspendResume::SR_CONTINUE, "unexpected sr action");
2728    // nothing special to do - just leave the handler
2729  }
2730
2731  errno = old_errno;
2732}
2733
2734
2735static int SR_initialize() {
2736  struct sigaction act;
2737  char *s;
2738  /* Get signal number to use for suspend/resume */
2739  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2740    int sig = ::strtol(s, 0, 10);
2741    if (sig > 0 || sig < NSIG) {
2742        SR_signum = sig;
2743    }
2744  }
2745
2746  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2747        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2748
2749  sigemptyset(&SR_sigset);
2750  sigaddset(&SR_sigset, SR_signum);
2751
2752  /* Set up signal handler for suspend/resume */
2753  act.sa_flags = SA_RESTART|SA_SIGINFO;
2754  act.sa_handler = (void (*)(int)) SR_handler;
2755
2756  // SR_signum is blocked by default.
2757  // 4528190 - We also need to block pthread restart signal (32 on all
2758  // supported Bsd platforms). Note that BsdThreads need to block
2759  // this signal for all threads to work properly. So we don't have
2760  // to use hard-coded signal number when setting up the mask.
2761  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2762
2763  if (sigaction(SR_signum, &act, 0) == -1) {
2764    return -1;
2765  }
2766
2767  // Save signal flag
2768  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2769  return 0;
2770}
2771
2772
2773// returns true on success and false on error - really an error is fatal
2774// but this seems the normal response to library errors
2775static bool do_suspend(OSThread* osthread) {
2776  // mark as suspended and send signal
2777  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_SUSPEND);
2778  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2779  assert_status(status == 0, status, "pthread_kill");
2780
2781  // check status and wait until notified of suspension
2782  if (status == 0) {
2783    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2784      os::yield_all(i);
2785    }
2786    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2787    return true;
2788  }
2789  else {
2790    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2791    return false;
2792  }
2793}
2794
2795static void do_resume(OSThread* osthread) {
2796  assert(osthread->sr.is_suspended(), "thread should be suspended");
2797  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_CONTINUE);
2798
2799  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2800  assert_status(status == 0, status, "pthread_kill");
2801  // check status and wait unit notified of resumption
2802  if (status == 0) {
2803    for (int i = 0; osthread->sr.is_suspended(); i++) {
2804      os::yield_all(i);
2805    }
2806  }
2807  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2808}
2809
2810////////////////////////////////////////////////////////////////////////////////
2811// interrupt support
2812
2813void os::interrupt(Thread* thread) {
2814  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2815    "possibility of dangling Thread pointer");
2816
2817  OSThread* osthread = thread->osthread();
2818
2819  if (!osthread->interrupted()) {
2820    osthread->set_interrupted(true);
2821    // More than one thread can get here with the same value of osthread,
2822    // resulting in multiple notifications.  We do, however, want the store
2823    // to interrupted() to be visible to other threads before we execute unpark().
2824    OrderAccess::fence();
2825    ParkEvent * const slp = thread->_SleepEvent ;
2826    if (slp != NULL) slp->unpark() ;
2827  }
2828
2829  // For JSR166. Unpark even if interrupt status already was set
2830  if (thread->is_Java_thread())
2831    ((JavaThread*)thread)->parker()->unpark();
2832
2833  ParkEvent * ev = thread->_ParkEvent ;
2834  if (ev != NULL) ev->unpark() ;
2835
2836}
2837
2838bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2839  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2840    "possibility of dangling Thread pointer");
2841
2842  OSThread* osthread = thread->osthread();
2843
2844  bool interrupted = osthread->interrupted();
2845
2846  if (interrupted && clear_interrupted) {
2847    osthread->set_interrupted(false);
2848    // consider thread->_SleepEvent->reset() ... optional optimization
2849  }
2850
2851  return interrupted;
2852}
2853
2854///////////////////////////////////////////////////////////////////////////////////
2855// signal handling (except suspend/resume)
2856
2857// This routine may be used by user applications as a "hook" to catch signals.
2858// The user-defined signal handler must pass unrecognized signals to this
2859// routine, and if it returns true (non-zero), then the signal handler must
2860// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2861// routine will never retun false (zero), but instead will execute a VM panic
2862// routine kill the process.
2863//
2864// If this routine returns false, it is OK to call it again.  This allows
2865// the user-defined signal handler to perform checks either before or after
2866// the VM performs its own checks.  Naturally, the user code would be making
2867// a serious error if it tried to handle an exception (such as a null check
2868// or breakpoint) that the VM was generating for its own correct operation.
2869//
2870// This routine may recognize any of the following kinds of signals:
2871//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2872// It should be consulted by handlers for any of those signals.
2873//
2874// The caller of this routine must pass in the three arguments supplied
2875// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2876// field of the structure passed to sigaction().  This routine assumes that
2877// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2878//
2879// Note that the VM will print warnings if it detects conflicting signal
2880// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2881//
2882extern "C" JNIEXPORT int
2883JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2884                        void* ucontext, int abort_if_unrecognized);
2885
2886void signalHandler(int sig, siginfo_t* info, void* uc) {
2887  assert(info != NULL && uc != NULL, "it must be old kernel");
2888  int orig_errno = errno;  // Preserve errno value over signal handler.
2889  JVM_handle_bsd_signal(sig, info, uc, true);
2890  errno = orig_errno;
2891}
2892
2893
2894// This boolean allows users to forward their own non-matching signals
2895// to JVM_handle_bsd_signal, harmlessly.
2896bool os::Bsd::signal_handlers_are_installed = false;
2897
2898// For signal-chaining
2899struct sigaction os::Bsd::sigact[MAXSIGNUM];
2900unsigned int os::Bsd::sigs = 0;
2901bool os::Bsd::libjsig_is_loaded = false;
2902typedef struct sigaction *(*get_signal_t)(int);
2903get_signal_t os::Bsd::get_signal_action = NULL;
2904
2905struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2906  struct sigaction *actp = NULL;
2907
2908  if (libjsig_is_loaded) {
2909    // Retrieve the old signal handler from libjsig
2910    actp = (*get_signal_action)(sig);
2911  }
2912  if (actp == NULL) {
2913    // Retrieve the preinstalled signal handler from jvm
2914    actp = get_preinstalled_handler(sig);
2915  }
2916
2917  return actp;
2918}
2919
2920static bool call_chained_handler(struct sigaction *actp, int sig,
2921                                 siginfo_t *siginfo, void *context) {
2922  // Call the old signal handler
2923  if (actp->sa_handler == SIG_DFL) {
2924    // It's more reasonable to let jvm treat it as an unexpected exception
2925    // instead of taking the default action.
2926    return false;
2927  } else if (actp->sa_handler != SIG_IGN) {
2928    if ((actp->sa_flags & SA_NODEFER) == 0) {
2929      // automaticlly block the signal
2930      sigaddset(&(actp->sa_mask), sig);
2931    }
2932
2933    sa_handler_t hand;
2934    sa_sigaction_t sa;
2935    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2936    // retrieve the chained handler
2937    if (siginfo_flag_set) {
2938      sa = actp->sa_sigaction;
2939    } else {
2940      hand = actp->sa_handler;
2941    }
2942
2943    if ((actp->sa_flags & SA_RESETHAND) != 0) {
2944      actp->sa_handler = SIG_DFL;
2945    }
2946
2947    // try to honor the signal mask
2948    sigset_t oset;
2949    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2950
2951    // call into the chained handler
2952    if (siginfo_flag_set) {
2953      (*sa)(sig, siginfo, context);
2954    } else {
2955      (*hand)(sig);
2956    }
2957
2958    // restore the signal mask
2959    pthread_sigmask(SIG_SETMASK, &oset, 0);
2960  }
2961  // Tell jvm's signal handler the signal is taken care of.
2962  return true;
2963}
2964
2965bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
2966  bool chained = false;
2967  // signal-chaining
2968  if (UseSignalChaining) {
2969    struct sigaction *actp = get_chained_signal_action(sig);
2970    if (actp != NULL) {
2971      chained = call_chained_handler(actp, sig, siginfo, context);
2972    }
2973  }
2974  return chained;
2975}
2976
2977struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
2978  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
2979    return &sigact[sig];
2980  }
2981  return NULL;
2982}
2983
2984void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
2985  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2986  sigact[sig] = oldAct;
2987  sigs |= (unsigned int)1 << sig;
2988}
2989
2990// for diagnostic
2991int os::Bsd::sigflags[MAXSIGNUM];
2992
2993int os::Bsd::get_our_sigflags(int sig) {
2994  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2995  return sigflags[sig];
2996}
2997
2998void os::Bsd::set_our_sigflags(int sig, int flags) {
2999  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3000  sigflags[sig] = flags;
3001}
3002
3003void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3004  // Check for overwrite.
3005  struct sigaction oldAct;
3006  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3007
3008  void* oldhand = oldAct.sa_sigaction
3009                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3010                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3011  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3012      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3013      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3014    if (AllowUserSignalHandlers || !set_installed) {
3015      // Do not overwrite; user takes responsibility to forward to us.
3016      return;
3017    } else if (UseSignalChaining) {
3018      // save the old handler in jvm
3019      save_preinstalled_handler(sig, oldAct);
3020      // libjsig also interposes the sigaction() call below and saves the
3021      // old sigaction on it own.
3022    } else {
3023      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3024                    "%#lx for signal %d.", (long)oldhand, sig));
3025    }
3026  }
3027
3028  struct sigaction sigAct;
3029  sigfillset(&(sigAct.sa_mask));
3030  sigAct.sa_handler = SIG_DFL;
3031  if (!set_installed) {
3032    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3033  } else {
3034    sigAct.sa_sigaction = signalHandler;
3035    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3036  }
3037  // Save flags, which are set by ours
3038  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3039  sigflags[sig] = sigAct.sa_flags;
3040
3041  int ret = sigaction(sig, &sigAct, &oldAct);
3042  assert(ret == 0, "check");
3043
3044  void* oldhand2  = oldAct.sa_sigaction
3045                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3046                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3047  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3048}
3049
3050// install signal handlers for signals that HotSpot needs to
3051// handle in order to support Java-level exception handling.
3052
3053void os::Bsd::install_signal_handlers() {
3054  if (!signal_handlers_are_installed) {
3055    signal_handlers_are_installed = true;
3056
3057    // signal-chaining
3058    typedef void (*signal_setting_t)();
3059    signal_setting_t begin_signal_setting = NULL;
3060    signal_setting_t end_signal_setting = NULL;
3061    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3062                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3063    if (begin_signal_setting != NULL) {
3064      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3065                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3066      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3067                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3068      libjsig_is_loaded = true;
3069      assert(UseSignalChaining, "should enable signal-chaining");
3070    }
3071    if (libjsig_is_loaded) {
3072      // Tell libjsig jvm is setting signal handlers
3073      (*begin_signal_setting)();
3074    }
3075
3076    set_signal_handler(SIGSEGV, true);
3077    set_signal_handler(SIGPIPE, true);
3078    set_signal_handler(SIGBUS, true);
3079    set_signal_handler(SIGILL, true);
3080    set_signal_handler(SIGFPE, true);
3081    set_signal_handler(SIGXFSZ, true);
3082
3083#if defined(__APPLE__)
3084    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3085    // signals caught and handled by the JVM. To work around this, we reset the mach task
3086    // signal handler that's placed on our process by CrashReporter. This disables
3087    // CrashReporter-based reporting.
3088    //
3089    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3090    // on caught fatal signals.
3091    //
3092    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3093    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3094    // exception handling, while leaving the standard BSD signal handlers functional.
3095    kern_return_t kr;
3096    kr = task_set_exception_ports(mach_task_self(),
3097        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3098        MACH_PORT_NULL,
3099        EXCEPTION_STATE_IDENTITY,
3100        MACHINE_THREAD_STATE);
3101
3102    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3103#endif
3104
3105    if (libjsig_is_loaded) {
3106      // Tell libjsig jvm finishes setting signal handlers
3107      (*end_signal_setting)();
3108    }
3109
3110    // We don't activate signal checker if libjsig is in place, we trust ourselves
3111    // and if UserSignalHandler is installed all bets are off
3112    if (CheckJNICalls) {
3113      if (libjsig_is_loaded) {
3114        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3115        check_signals = false;
3116      }
3117      if (AllowUserSignalHandlers) {
3118        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3119        check_signals = false;
3120      }
3121    }
3122  }
3123}
3124
3125
3126/////
3127// glibc on Bsd platform uses non-documented flag
3128// to indicate, that some special sort of signal
3129// trampoline is used.
3130// We will never set this flag, and we should
3131// ignore this flag in our diagnostic
3132#ifdef SIGNIFICANT_SIGNAL_MASK
3133#undef SIGNIFICANT_SIGNAL_MASK
3134#endif
3135#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3136
3137static const char* get_signal_handler_name(address handler,
3138                                           char* buf, int buflen) {
3139  int offset;
3140  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3141  if (found) {
3142    // skip directory names
3143    const char *p1, *p2;
3144    p1 = buf;
3145    size_t len = strlen(os::file_separator());
3146    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3147    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3148  } else {
3149    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3150  }
3151  return buf;
3152}
3153
3154static void print_signal_handler(outputStream* st, int sig,
3155                                 char* buf, size_t buflen) {
3156  struct sigaction sa;
3157
3158  sigaction(sig, NULL, &sa);
3159
3160  // See comment for SIGNIFICANT_SIGNAL_MASK define
3161  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3162
3163  st->print("%s: ", os::exception_name(sig, buf, buflen));
3164
3165  address handler = (sa.sa_flags & SA_SIGINFO)
3166    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3167    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3168
3169  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3170    st->print("SIG_DFL");
3171  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3172    st->print("SIG_IGN");
3173  } else {
3174    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3175  }
3176
3177  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3178
3179  address rh = VMError::get_resetted_sighandler(sig);
3180  // May be, handler was resetted by VMError?
3181  if(rh != NULL) {
3182    handler = rh;
3183    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3184  }
3185
3186  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3187
3188  // Check: is it our handler?
3189  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3190     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3191    // It is our signal handler
3192    // check for flags, reset system-used one!
3193    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3194      st->print(
3195                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3196                os::Bsd::get_our_sigflags(sig));
3197    }
3198  }
3199  st->cr();
3200}
3201
3202
3203#define DO_SIGNAL_CHECK(sig) \
3204  if (!sigismember(&check_signal_done, sig)) \
3205    os::Bsd::check_signal_handler(sig)
3206
3207// This method is a periodic task to check for misbehaving JNI applications
3208// under CheckJNI, we can add any periodic checks here
3209
3210void os::run_periodic_checks() {
3211
3212  if (check_signals == false) return;
3213
3214  // SEGV and BUS if overridden could potentially prevent
3215  // generation of hs*.log in the event of a crash, debugging
3216  // such a case can be very challenging, so we absolutely
3217  // check the following for a good measure:
3218  DO_SIGNAL_CHECK(SIGSEGV);
3219  DO_SIGNAL_CHECK(SIGILL);
3220  DO_SIGNAL_CHECK(SIGFPE);
3221  DO_SIGNAL_CHECK(SIGBUS);
3222  DO_SIGNAL_CHECK(SIGPIPE);
3223  DO_SIGNAL_CHECK(SIGXFSZ);
3224
3225
3226  // ReduceSignalUsage allows the user to override these handlers
3227  // see comments at the very top and jvm_solaris.h
3228  if (!ReduceSignalUsage) {
3229    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3230    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3231    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3232    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3233  }
3234
3235  DO_SIGNAL_CHECK(SR_signum);
3236  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3237}
3238
3239typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3240
3241static os_sigaction_t os_sigaction = NULL;
3242
3243void os::Bsd::check_signal_handler(int sig) {
3244  char buf[O_BUFLEN];
3245  address jvmHandler = NULL;
3246
3247
3248  struct sigaction act;
3249  if (os_sigaction == NULL) {
3250    // only trust the default sigaction, in case it has been interposed
3251    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3252    if (os_sigaction == NULL) return;
3253  }
3254
3255  os_sigaction(sig, (struct sigaction*)NULL, &act);
3256
3257
3258  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3259
3260  address thisHandler = (act.sa_flags & SA_SIGINFO)
3261    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3262    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3263
3264
3265  switch(sig) {
3266  case SIGSEGV:
3267  case SIGBUS:
3268  case SIGFPE:
3269  case SIGPIPE:
3270  case SIGILL:
3271  case SIGXFSZ:
3272    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3273    break;
3274
3275  case SHUTDOWN1_SIGNAL:
3276  case SHUTDOWN2_SIGNAL:
3277  case SHUTDOWN3_SIGNAL:
3278  case BREAK_SIGNAL:
3279    jvmHandler = (address)user_handler();
3280    break;
3281
3282  case INTERRUPT_SIGNAL:
3283    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3284    break;
3285
3286  default:
3287    if (sig == SR_signum) {
3288      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3289    } else {
3290      return;
3291    }
3292    break;
3293  }
3294
3295  if (thisHandler != jvmHandler) {
3296    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3297    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3298    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3299    // No need to check this sig any longer
3300    sigaddset(&check_signal_done, sig);
3301  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3302    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3303    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3304    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3305    // No need to check this sig any longer
3306    sigaddset(&check_signal_done, sig);
3307  }
3308
3309  // Dump all the signal
3310  if (sigismember(&check_signal_done, sig)) {
3311    print_signal_handlers(tty, buf, O_BUFLEN);
3312  }
3313}
3314
3315extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3316
3317extern bool signal_name(int signo, char* buf, size_t len);
3318
3319const char* os::exception_name(int exception_code, char* buf, size_t size) {
3320  if (0 < exception_code && exception_code <= SIGRTMAX) {
3321    // signal
3322    if (!signal_name(exception_code, buf, size)) {
3323      jio_snprintf(buf, size, "SIG%d", exception_code);
3324    }
3325    return buf;
3326  } else {
3327    return NULL;
3328  }
3329}
3330
3331// this is called _before_ the most of global arguments have been parsed
3332void os::init(void) {
3333  char dummy;   /* used to get a guess on initial stack address */
3334//  first_hrtime = gethrtime();
3335
3336  // With BsdThreads the JavaMain thread pid (primordial thread)
3337  // is different than the pid of the java launcher thread.
3338  // So, on Bsd, the launcher thread pid is passed to the VM
3339  // via the sun.java.launcher.pid property.
3340  // Use this property instead of getpid() if it was correctly passed.
3341  // See bug 6351349.
3342  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3343
3344  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3345
3346  clock_tics_per_sec = CLK_TCK;
3347
3348  init_random(1234567);
3349
3350  ThreadCritical::initialize();
3351
3352  Bsd::set_page_size(getpagesize());
3353  if (Bsd::page_size() == -1) {
3354    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3355                  strerror(errno)));
3356  }
3357  init_page_sizes((size_t) Bsd::page_size());
3358
3359  Bsd::initialize_system_info();
3360
3361  // main_thread points to the aboriginal thread
3362  Bsd::_main_thread = pthread_self();
3363
3364  Bsd::clock_init();
3365  initial_time_count = os::elapsed_counter();
3366
3367#ifdef __APPLE__
3368  // XXXDARWIN
3369  // Work around the unaligned VM callbacks in hotspot's
3370  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3371  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3372  // alignment when doing symbol lookup. To work around this, we force early
3373  // binding of all symbols now, thus binding when alignment is known-good.
3374  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3375#endif
3376}
3377
3378// To install functions for atexit system call
3379extern "C" {
3380  static void perfMemory_exit_helper() {
3381    perfMemory_exit();
3382  }
3383}
3384
3385// this is called _after_ the global arguments have been parsed
3386jint os::init_2(void)
3387{
3388  // Allocate a single page and mark it as readable for safepoint polling
3389  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3390  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3391
3392  os::set_polling_page( polling_page );
3393
3394#ifndef PRODUCT
3395  if(Verbose && PrintMiscellaneous)
3396    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3397#endif
3398
3399  if (!UseMembar) {
3400    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3401    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3402    os::set_memory_serialize_page( mem_serialize_page );
3403
3404#ifndef PRODUCT
3405    if(Verbose && PrintMiscellaneous)
3406      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3407#endif
3408  }
3409
3410  os::large_page_init();
3411
3412  // initialize suspend/resume support - must do this before signal_sets_init()
3413  if (SR_initialize() != 0) {
3414    perror("SR_initialize failed");
3415    return JNI_ERR;
3416  }
3417
3418  Bsd::signal_sets_init();
3419  Bsd::install_signal_handlers();
3420
3421  // Check minimum allowable stack size for thread creation and to initialize
3422  // the java system classes, including StackOverflowError - depends on page
3423  // size.  Add a page for compiler2 recursion in main thread.
3424  // Add in 2*BytesPerWord times page size to account for VM stack during
3425  // class initialization depending on 32 or 64 bit VM.
3426  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3427            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3428                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3429
3430  size_t threadStackSizeInBytes = ThreadStackSize * K;
3431  if (threadStackSizeInBytes != 0 &&
3432      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3433        tty->print_cr("\nThe stack size specified is too small, "
3434                      "Specify at least %dk",
3435                      os::Bsd::min_stack_allowed/ K);
3436        return JNI_ERR;
3437  }
3438
3439  // Make the stack size a multiple of the page size so that
3440  // the yellow/red zones can be guarded.
3441  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3442        vm_page_size()));
3443
3444  if (MaxFDLimit) {
3445    // set the number of file descriptors to max. print out error
3446    // if getrlimit/setrlimit fails but continue regardless.
3447    struct rlimit nbr_files;
3448    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3449    if (status != 0) {
3450      if (PrintMiscellaneous && (Verbose || WizardMode))
3451        perror("os::init_2 getrlimit failed");
3452    } else {
3453      nbr_files.rlim_cur = nbr_files.rlim_max;
3454
3455#ifdef __APPLE__
3456      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3457      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3458      // be used instead
3459      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3460#endif
3461
3462      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3463      if (status != 0) {
3464        if (PrintMiscellaneous && (Verbose || WizardMode))
3465          perror("os::init_2 setrlimit failed");
3466      }
3467    }
3468  }
3469
3470  // at-exit methods are called in the reverse order of their registration.
3471  // atexit functions are called on return from main or as a result of a
3472  // call to exit(3C). There can be only 32 of these functions registered
3473  // and atexit() does not set errno.
3474
3475  if (PerfAllowAtExitRegistration) {
3476    // only register atexit functions if PerfAllowAtExitRegistration is set.
3477    // atexit functions can be delayed until process exit time, which
3478    // can be problematic for embedded VM situations. Embedded VMs should
3479    // call DestroyJavaVM() to assure that VM resources are released.
3480
3481    // note: perfMemory_exit_helper atexit function may be removed in
3482    // the future if the appropriate cleanup code can be added to the
3483    // VM_Exit VMOperation's doit method.
3484    if (atexit(perfMemory_exit_helper) != 0) {
3485      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3486    }
3487  }
3488
3489  // initialize thread priority policy
3490  prio_init();
3491
3492#ifdef __APPLE__
3493  // dynamically link to objective c gc registration
3494  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3495  if (handleLibObjc != NULL) {
3496    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3497  }
3498#endif
3499
3500  return JNI_OK;
3501}
3502
3503// this is called at the end of vm_initialization
3504void os::init_3(void) { }
3505
3506// Mark the polling page as unreadable
3507void os::make_polling_page_unreadable(void) {
3508  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3509    fatal("Could not disable polling page");
3510};
3511
3512// Mark the polling page as readable
3513void os::make_polling_page_readable(void) {
3514  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3515    fatal("Could not enable polling page");
3516  }
3517};
3518
3519int os::active_processor_count() {
3520  return _processor_count;
3521}
3522
3523void os::set_native_thread_name(const char *name) {
3524#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3525  // This is only supported in Snow Leopard and beyond
3526  if (name != NULL) {
3527    // Add a "Java: " prefix to the name
3528    char buf[MAXTHREADNAMESIZE];
3529    snprintf(buf, sizeof(buf), "Java: %s", name);
3530    pthread_setname_np(buf);
3531  }
3532#endif
3533}
3534
3535bool os::distribute_processes(uint length, uint* distribution) {
3536  // Not yet implemented.
3537  return false;
3538}
3539
3540bool os::bind_to_processor(uint processor_id) {
3541  // Not yet implemented.
3542  return false;
3543}
3544
3545///
3546
3547// Suspends the target using the signal mechanism and then grabs the PC before
3548// resuming the target. Used by the flat-profiler only
3549ExtendedPC os::get_thread_pc(Thread* thread) {
3550  // Make sure that it is called by the watcher for the VMThread
3551  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3552  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3553
3554  ExtendedPC epc;
3555
3556  OSThread* osthread = thread->osthread();
3557  if (do_suspend(osthread)) {
3558    if (osthread->ucontext() != NULL) {
3559      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
3560    } else {
3561      // NULL context is unexpected, double-check this is the VMThread
3562      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3563    }
3564    do_resume(osthread);
3565  }
3566  // failure means pthread_kill failed for some reason - arguably this is
3567  // a fatal problem, but such problems are ignored elsewhere
3568
3569  return epc;
3570}
3571
3572int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3573{
3574  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3575}
3576
3577////////////////////////////////////////////////////////////////////////////////
3578// debug support
3579
3580bool os::find(address addr, outputStream* st) {
3581  Dl_info dlinfo;
3582  memset(&dlinfo, 0, sizeof(dlinfo));
3583  if (dladdr(addr, &dlinfo)) {
3584    st->print(PTR_FORMAT ": ", addr);
3585    if (dlinfo.dli_sname != NULL) {
3586      st->print("%s+%#x", dlinfo.dli_sname,
3587                 addr - (intptr_t)dlinfo.dli_saddr);
3588    } else if (dlinfo.dli_fname) {
3589      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3590    } else {
3591      st->print("<absolute address>");
3592    }
3593    if (dlinfo.dli_fname) {
3594      st->print(" in %s", dlinfo.dli_fname);
3595    }
3596    if (dlinfo.dli_fbase) {
3597      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3598    }
3599    st->cr();
3600
3601    if (Verbose) {
3602      // decode some bytes around the PC
3603      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3604      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3605      address       lowest = (address) dlinfo.dli_sname;
3606      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3607      if (begin < lowest)  begin = lowest;
3608      Dl_info dlinfo2;
3609      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3610          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3611        end = (address) dlinfo2.dli_saddr;
3612      Disassembler::decode(begin, end, st);
3613    }
3614    return true;
3615  }
3616  return false;
3617}
3618
3619////////////////////////////////////////////////////////////////////////////////
3620// misc
3621
3622// This does not do anything on Bsd. This is basically a hook for being
3623// able to use structured exception handling (thread-local exception filters)
3624// on, e.g., Win32.
3625void
3626os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3627                         JavaCallArguments* args, Thread* thread) {
3628  f(value, method, args, thread);
3629}
3630
3631void os::print_statistics() {
3632}
3633
3634int os::message_box(const char* title, const char* message) {
3635  int i;
3636  fdStream err(defaultStream::error_fd());
3637  for (i = 0; i < 78; i++) err.print_raw("=");
3638  err.cr();
3639  err.print_raw_cr(title);
3640  for (i = 0; i < 78; i++) err.print_raw("-");
3641  err.cr();
3642  err.print_raw_cr(message);
3643  for (i = 0; i < 78; i++) err.print_raw("=");
3644  err.cr();
3645
3646  char buf[16];
3647  // Prevent process from exiting upon "read error" without consuming all CPU
3648  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3649
3650  return buf[0] == 'y' || buf[0] == 'Y';
3651}
3652
3653int os::stat(const char *path, struct stat *sbuf) {
3654  char pathbuf[MAX_PATH];
3655  if (strlen(path) > MAX_PATH - 1) {
3656    errno = ENAMETOOLONG;
3657    return -1;
3658  }
3659  os::native_path(strcpy(pathbuf, path));
3660  return ::stat(pathbuf, sbuf);
3661}
3662
3663bool os::check_heap(bool force) {
3664  return true;
3665}
3666
3667int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3668  return ::vsnprintf(buf, count, format, args);
3669}
3670
3671// Is a (classpath) directory empty?
3672bool os::dir_is_empty(const char* path) {
3673  DIR *dir = NULL;
3674  struct dirent *ptr;
3675
3676  dir = opendir(path);
3677  if (dir == NULL) return true;
3678
3679  /* Scan the directory */
3680  bool result = true;
3681  char buf[sizeof(struct dirent) + MAX_PATH];
3682  while (result && (ptr = ::readdir(dir)) != NULL) {
3683    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3684      result = false;
3685    }
3686  }
3687  closedir(dir);
3688  return result;
3689}
3690
3691// This code originates from JDK's sysOpen and open64_w
3692// from src/solaris/hpi/src/system_md.c
3693
3694#ifndef O_DELETE
3695#define O_DELETE 0x10000
3696#endif
3697
3698// Open a file. Unlink the file immediately after open returns
3699// if the specified oflag has the O_DELETE flag set.
3700// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3701
3702int os::open(const char *path, int oflag, int mode) {
3703
3704  if (strlen(path) > MAX_PATH - 1) {
3705    errno = ENAMETOOLONG;
3706    return -1;
3707  }
3708  int fd;
3709  int o_delete = (oflag & O_DELETE);
3710  oflag = oflag & ~O_DELETE;
3711
3712  fd = ::open(path, oflag, mode);
3713  if (fd == -1) return -1;
3714
3715  //If the open succeeded, the file might still be a directory
3716  {
3717    struct stat buf;
3718    int ret = ::fstat(fd, &buf);
3719    int st_mode = buf.st_mode;
3720
3721    if (ret != -1) {
3722      if ((st_mode & S_IFMT) == S_IFDIR) {
3723        errno = EISDIR;
3724        ::close(fd);
3725        return -1;
3726      }
3727    } else {
3728      ::close(fd);
3729      return -1;
3730    }
3731  }
3732
3733    /*
3734     * All file descriptors that are opened in the JVM and not
3735     * specifically destined for a subprocess should have the
3736     * close-on-exec flag set.  If we don't set it, then careless 3rd
3737     * party native code might fork and exec without closing all
3738     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3739     * UNIXProcess.c), and this in turn might:
3740     *
3741     * - cause end-of-file to fail to be detected on some file
3742     *   descriptors, resulting in mysterious hangs, or
3743     *
3744     * - might cause an fopen in the subprocess to fail on a system
3745     *   suffering from bug 1085341.
3746     *
3747     * (Yes, the default setting of the close-on-exec flag is a Unix
3748     * design flaw)
3749     *
3750     * See:
3751     * 1085341: 32-bit stdio routines should support file descriptors >255
3752     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3753     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3754     */
3755#ifdef FD_CLOEXEC
3756    {
3757        int flags = ::fcntl(fd, F_GETFD);
3758        if (flags != -1)
3759            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3760    }
3761#endif
3762
3763  if (o_delete != 0) {
3764    ::unlink(path);
3765  }
3766  return fd;
3767}
3768
3769
3770// create binary file, rewriting existing file if required
3771int os::create_binary_file(const char* path, bool rewrite_existing) {
3772  int oflags = O_WRONLY | O_CREAT;
3773  if (!rewrite_existing) {
3774    oflags |= O_EXCL;
3775  }
3776  return ::open(path, oflags, S_IREAD | S_IWRITE);
3777}
3778
3779// return current position of file pointer
3780jlong os::current_file_offset(int fd) {
3781  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3782}
3783
3784// move file pointer to the specified offset
3785jlong os::seek_to_file_offset(int fd, jlong offset) {
3786  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3787}
3788
3789// This code originates from JDK's sysAvailable
3790// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3791
3792int os::available(int fd, jlong *bytes) {
3793  jlong cur, end;
3794  int mode;
3795  struct stat buf;
3796
3797  if (::fstat(fd, &buf) >= 0) {
3798    mode = buf.st_mode;
3799    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3800      /*
3801      * XXX: is the following call interruptible? If so, this might
3802      * need to go through the INTERRUPT_IO() wrapper as for other
3803      * blocking, interruptible calls in this file.
3804      */
3805      int n;
3806      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3807        *bytes = n;
3808        return 1;
3809      }
3810    }
3811  }
3812  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3813    return 0;
3814  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3815    return 0;
3816  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3817    return 0;
3818  }
3819  *bytes = end - cur;
3820  return 1;
3821}
3822
3823int os::socket_available(int fd, jint *pbytes) {
3824   if (fd < 0)
3825     return OS_OK;
3826
3827   int ret;
3828
3829   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3830
3831   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3832   // is expected to return 0 on failure and 1 on success to the jdk.
3833
3834   return (ret == OS_ERR) ? 0 : 1;
3835}
3836
3837// Map a block of memory.
3838char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3839                     char *addr, size_t bytes, bool read_only,
3840                     bool allow_exec) {
3841  int prot;
3842  int flags;
3843
3844  if (read_only) {
3845    prot = PROT_READ;
3846    flags = MAP_SHARED;
3847  } else {
3848    prot = PROT_READ | PROT_WRITE;
3849    flags = MAP_PRIVATE;
3850  }
3851
3852  if (allow_exec) {
3853    prot |= PROT_EXEC;
3854  }
3855
3856  if (addr != NULL) {
3857    flags |= MAP_FIXED;
3858  }
3859
3860  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3861                                     fd, file_offset);
3862  if (mapped_address == MAP_FAILED) {
3863    return NULL;
3864  }
3865  return mapped_address;
3866}
3867
3868
3869// Remap a block of memory.
3870char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3871                       char *addr, size_t bytes, bool read_only,
3872                       bool allow_exec) {
3873  // same as map_memory() on this OS
3874  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3875                        allow_exec);
3876}
3877
3878
3879// Unmap a block of memory.
3880bool os::pd_unmap_memory(char* addr, size_t bytes) {
3881  return munmap(addr, bytes) == 0;
3882}
3883
3884// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3885// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3886// of a thread.
3887//
3888// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3889// the fast estimate available on the platform.
3890
3891jlong os::current_thread_cpu_time() {
3892#ifdef __APPLE__
3893  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3894#else
3895  Unimplemented();
3896  return 0;
3897#endif
3898}
3899
3900jlong os::thread_cpu_time(Thread* thread) {
3901#ifdef __APPLE__
3902  return os::thread_cpu_time(thread, true /* user + sys */);
3903#else
3904  Unimplemented();
3905  return 0;
3906#endif
3907}
3908
3909jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3910#ifdef __APPLE__
3911  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3912#else
3913  Unimplemented();
3914  return 0;
3915#endif
3916}
3917
3918jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3919#ifdef __APPLE__
3920  struct thread_basic_info tinfo;
3921  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3922  kern_return_t kr;
3923  thread_t mach_thread;
3924
3925  mach_thread = thread->osthread()->thread_id();
3926  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3927  if (kr != KERN_SUCCESS)
3928    return -1;
3929
3930  if (user_sys_cpu_time) {
3931    jlong nanos;
3932    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3933    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3934    return nanos;
3935  } else {
3936    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3937  }
3938#else
3939  Unimplemented();
3940  return 0;
3941#endif
3942}
3943
3944
3945void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3946  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3947  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3948  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3949  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3950}
3951
3952void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3953  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3954  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3955  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3956  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3957}
3958
3959bool os::is_thread_cpu_time_supported() {
3960#ifdef __APPLE__
3961  return true;
3962#else
3963  return false;
3964#endif
3965}
3966
3967// System loadavg support.  Returns -1 if load average cannot be obtained.
3968// Bsd doesn't yet have a (official) notion of processor sets,
3969// so just return the system wide load average.
3970int os::loadavg(double loadavg[], int nelem) {
3971  return ::getloadavg(loadavg, nelem);
3972}
3973
3974void os::pause() {
3975  char filename[MAX_PATH];
3976  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3977    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3978  } else {
3979    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3980  }
3981
3982  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3983  if (fd != -1) {
3984    struct stat buf;
3985    ::close(fd);
3986    while (::stat(filename, &buf) == 0) {
3987      (void)::poll(NULL, 0, 100);
3988    }
3989  } else {
3990    jio_fprintf(stderr,
3991      "Could not open pause file '%s', continuing immediately.\n", filename);
3992  }
3993}
3994
3995
3996// Refer to the comments in os_solaris.cpp park-unpark.
3997//
3998// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
3999// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4000// For specifics regarding the bug see GLIBC BUGID 261237 :
4001//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4002// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4003// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4004// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4005// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4006// and monitorenter when we're using 1-0 locking.  All those operations may result in
4007// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4008// of libpthread avoids the problem, but isn't practical.
4009//
4010// Possible remedies:
4011//
4012// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4013//      This is palliative and probabilistic, however.  If the thread is preempted
4014//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4015//      than the minimum period may have passed, and the abstime may be stale (in the
4016//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4017//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4018//
4019// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4020//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4021//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4022//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4023//      thread.
4024//
4025// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4026//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4027//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4028//      This also works well.  In fact it avoids kernel-level scalability impediments
4029//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4030//      timers in a graceful fashion.
4031//
4032// 4.   When the abstime value is in the past it appears that control returns
4033//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4034//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4035//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4036//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4037//      It may be possible to avoid reinitialization by checking the return
4038//      value from pthread_cond_timedwait().  In addition to reinitializing the
4039//      condvar we must establish the invariant that cond_signal() is only called
4040//      within critical sections protected by the adjunct mutex.  This prevents
4041//      cond_signal() from "seeing" a condvar that's in the midst of being
4042//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4043//      desirable signal-after-unlock optimization that avoids futile context switching.
4044//
4045//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4046//      structure when a condvar is used or initialized.  cond_destroy()  would
4047//      release the helper structure.  Our reinitialize-after-timedwait fix
4048//      put excessive stress on malloc/free and locks protecting the c-heap.
4049//
4050// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4051// It may be possible to refine (4) by checking the kernel and NTPL verisons
4052// and only enabling the work-around for vulnerable environments.
4053
4054// utility to compute the abstime argument to timedwait:
4055// millis is the relative timeout time
4056// abstime will be the absolute timeout time
4057// TODO: replace compute_abstime() with unpackTime()
4058
4059static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4060  if (millis < 0)  millis = 0;
4061  struct timeval now;
4062  int status = gettimeofday(&now, NULL);
4063  assert(status == 0, "gettimeofday");
4064  jlong seconds = millis / 1000;
4065  millis %= 1000;
4066  if (seconds > 50000000) { // see man cond_timedwait(3T)
4067    seconds = 50000000;
4068  }
4069  abstime->tv_sec = now.tv_sec  + seconds;
4070  long       usec = now.tv_usec + millis * 1000;
4071  if (usec >= 1000000) {
4072    abstime->tv_sec += 1;
4073    usec -= 1000000;
4074  }
4075  abstime->tv_nsec = usec * 1000;
4076  return abstime;
4077}
4078
4079
4080// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4081// Conceptually TryPark() should be equivalent to park(0).
4082
4083int os::PlatformEvent::TryPark() {
4084  for (;;) {
4085    const int v = _Event ;
4086    guarantee ((v == 0) || (v == 1), "invariant") ;
4087    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4088  }
4089}
4090
4091void os::PlatformEvent::park() {       // AKA "down()"
4092  // Invariant: Only the thread associated with the Event/PlatformEvent
4093  // may call park().
4094  // TODO: assert that _Assoc != NULL or _Assoc == Self
4095  int v ;
4096  for (;;) {
4097      v = _Event ;
4098      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4099  }
4100  guarantee (v >= 0, "invariant") ;
4101  if (v == 0) {
4102     // Do this the hard way by blocking ...
4103     int status = pthread_mutex_lock(_mutex);
4104     assert_status(status == 0, status, "mutex_lock");
4105     guarantee (_nParked == 0, "invariant") ;
4106     ++ _nParked ;
4107     while (_Event < 0) {
4108        status = pthread_cond_wait(_cond, _mutex);
4109        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4110        // Treat this the same as if the wait was interrupted
4111        if (status == ETIMEDOUT) { status = EINTR; }
4112        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4113     }
4114     -- _nParked ;
4115
4116    _Event = 0 ;
4117     status = pthread_mutex_unlock(_mutex);
4118     assert_status(status == 0, status, "mutex_unlock");
4119    // Paranoia to ensure our locked and lock-free paths interact
4120    // correctly with each other.
4121    OrderAccess::fence();
4122  }
4123  guarantee (_Event >= 0, "invariant") ;
4124}
4125
4126int os::PlatformEvent::park(jlong millis) {
4127  guarantee (_nParked == 0, "invariant") ;
4128
4129  int v ;
4130  for (;;) {
4131      v = _Event ;
4132      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4133  }
4134  guarantee (v >= 0, "invariant") ;
4135  if (v != 0) return OS_OK ;
4136
4137  // We do this the hard way, by blocking the thread.
4138  // Consider enforcing a minimum timeout value.
4139  struct timespec abst;
4140  compute_abstime(&abst, millis);
4141
4142  int ret = OS_TIMEOUT;
4143  int status = pthread_mutex_lock(_mutex);
4144  assert_status(status == 0, status, "mutex_lock");
4145  guarantee (_nParked == 0, "invariant") ;
4146  ++_nParked ;
4147
4148  // Object.wait(timo) will return because of
4149  // (a) notification
4150  // (b) timeout
4151  // (c) thread.interrupt
4152  //
4153  // Thread.interrupt and object.notify{All} both call Event::set.
4154  // That is, we treat thread.interrupt as a special case of notification.
4155  // The underlying Solaris implementation, cond_timedwait, admits
4156  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4157  // JVM from making those visible to Java code.  As such, we must
4158  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4159  //
4160  // TODO: properly differentiate simultaneous notify+interrupt.
4161  // In that case, we should propagate the notify to another waiter.
4162
4163  while (_Event < 0) {
4164    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4165    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4166      pthread_cond_destroy (_cond);
4167      pthread_cond_init (_cond, NULL) ;
4168    }
4169    assert_status(status == 0 || status == EINTR ||
4170                  status == ETIMEDOUT,
4171                  status, "cond_timedwait");
4172    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4173    if (status == ETIMEDOUT) break ;
4174    // We consume and ignore EINTR and spurious wakeups.
4175  }
4176  --_nParked ;
4177  if (_Event >= 0) {
4178     ret = OS_OK;
4179  }
4180  _Event = 0 ;
4181  status = pthread_mutex_unlock(_mutex);
4182  assert_status(status == 0, status, "mutex_unlock");
4183  assert (_nParked == 0, "invariant") ;
4184  // Paranoia to ensure our locked and lock-free paths interact
4185  // correctly with each other.
4186  OrderAccess::fence();
4187  return ret;
4188}
4189
4190void os::PlatformEvent::unpark() {
4191  // Transitions for _Event:
4192  //    0 :=> 1
4193  //    1 :=> 1
4194  //   -1 :=> either 0 or 1; must signal target thread
4195  //          That is, we can safely transition _Event from -1 to either
4196  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4197  //          unpark() calls.
4198  // See also: "Semaphores in Plan 9" by Mullender & Cox
4199  //
4200  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4201  // that it will take two back-to-back park() calls for the owning
4202  // thread to block. This has the benefit of forcing a spurious return
4203  // from the first park() call after an unpark() call which will help
4204  // shake out uses of park() and unpark() without condition variables.
4205
4206  if (Atomic::xchg(1, &_Event) >= 0) return;
4207
4208  // Wait for the thread associated with the event to vacate
4209  int status = pthread_mutex_lock(_mutex);
4210  assert_status(status == 0, status, "mutex_lock");
4211  int AnyWaiters = _nParked;
4212  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4213  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4214    AnyWaiters = 0;
4215    pthread_cond_signal(_cond);
4216  }
4217  status = pthread_mutex_unlock(_mutex);
4218  assert_status(status == 0, status, "mutex_unlock");
4219  if (AnyWaiters != 0) {
4220    status = pthread_cond_signal(_cond);
4221    assert_status(status == 0, status, "cond_signal");
4222  }
4223
4224  // Note that we signal() _after dropping the lock for "immortal" Events.
4225  // This is safe and avoids a common class of  futile wakeups.  In rare
4226  // circumstances this can cause a thread to return prematurely from
4227  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4228  // simply re-test the condition and re-park itself.
4229}
4230
4231
4232// JSR166
4233// -------------------------------------------------------
4234
4235/*
4236 * The solaris and bsd implementations of park/unpark are fairly
4237 * conservative for now, but can be improved. They currently use a
4238 * mutex/condvar pair, plus a a count.
4239 * Park decrements count if > 0, else does a condvar wait.  Unpark
4240 * sets count to 1 and signals condvar.  Only one thread ever waits
4241 * on the condvar. Contention seen when trying to park implies that someone
4242 * is unparking you, so don't wait. And spurious returns are fine, so there
4243 * is no need to track notifications.
4244 */
4245
4246#define MAX_SECS 100000000
4247/*
4248 * This code is common to bsd and solaris and will be moved to a
4249 * common place in dolphin.
4250 *
4251 * The passed in time value is either a relative time in nanoseconds
4252 * or an absolute time in milliseconds. Either way it has to be unpacked
4253 * into suitable seconds and nanoseconds components and stored in the
4254 * given timespec structure.
4255 * Given time is a 64-bit value and the time_t used in the timespec is only
4256 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4257 * overflow if times way in the future are given. Further on Solaris versions
4258 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4259 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4260 * As it will be 28 years before "now + 100000000" will overflow we can
4261 * ignore overflow and just impose a hard-limit on seconds using the value
4262 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4263 * years from "now".
4264 */
4265
4266static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4267  assert (time > 0, "convertTime");
4268
4269  struct timeval now;
4270  int status = gettimeofday(&now, NULL);
4271  assert(status == 0, "gettimeofday");
4272
4273  time_t max_secs = now.tv_sec + MAX_SECS;
4274
4275  if (isAbsolute) {
4276    jlong secs = time / 1000;
4277    if (secs > max_secs) {
4278      absTime->tv_sec = max_secs;
4279    }
4280    else {
4281      absTime->tv_sec = secs;
4282    }
4283    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4284  }
4285  else {
4286    jlong secs = time / NANOSECS_PER_SEC;
4287    if (secs >= MAX_SECS) {
4288      absTime->tv_sec = max_secs;
4289      absTime->tv_nsec = 0;
4290    }
4291    else {
4292      absTime->tv_sec = now.tv_sec + secs;
4293      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4294      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4295        absTime->tv_nsec -= NANOSECS_PER_SEC;
4296        ++absTime->tv_sec; // note: this must be <= max_secs
4297      }
4298    }
4299  }
4300  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4301  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4302  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4303  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4304}
4305
4306void Parker::park(bool isAbsolute, jlong time) {
4307  // Ideally we'd do something useful while spinning, such
4308  // as calling unpackTime().
4309
4310  // Optional fast-path check:
4311  // Return immediately if a permit is available.
4312  // We depend on Atomic::xchg() having full barrier semantics
4313  // since we are doing a lock-free update to _counter.
4314  if (Atomic::xchg(0, &_counter) > 0) return;
4315
4316  Thread* thread = Thread::current();
4317  assert(thread->is_Java_thread(), "Must be JavaThread");
4318  JavaThread *jt = (JavaThread *)thread;
4319
4320  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4321  // Check interrupt before trying to wait
4322  if (Thread::is_interrupted(thread, false)) {
4323    return;
4324  }
4325
4326  // Next, demultiplex/decode time arguments
4327  struct timespec absTime;
4328  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4329    return;
4330  }
4331  if (time > 0) {
4332    unpackTime(&absTime, isAbsolute, time);
4333  }
4334
4335
4336  // Enter safepoint region
4337  // Beware of deadlocks such as 6317397.
4338  // The per-thread Parker:: mutex is a classic leaf-lock.
4339  // In particular a thread must never block on the Threads_lock while
4340  // holding the Parker:: mutex.  If safepoints are pending both the
4341  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4342  ThreadBlockInVM tbivm(jt);
4343
4344  // Don't wait if cannot get lock since interference arises from
4345  // unblocking.  Also. check interrupt before trying wait
4346  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4347    return;
4348  }
4349
4350  int status ;
4351  if (_counter > 0)  { // no wait needed
4352    _counter = 0;
4353    status = pthread_mutex_unlock(_mutex);
4354    assert (status == 0, "invariant") ;
4355    // Paranoia to ensure our locked and lock-free paths interact
4356    // correctly with each other and Java-level accesses.
4357    OrderAccess::fence();
4358    return;
4359  }
4360
4361#ifdef ASSERT
4362  // Don't catch signals while blocked; let the running threads have the signals.
4363  // (This allows a debugger to break into the running thread.)
4364  sigset_t oldsigs;
4365  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4366  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4367#endif
4368
4369  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4370  jt->set_suspend_equivalent();
4371  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4372
4373  if (time == 0) {
4374    status = pthread_cond_wait (_cond, _mutex) ;
4375  } else {
4376    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4377    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4378      pthread_cond_destroy (_cond) ;
4379      pthread_cond_init    (_cond, NULL);
4380    }
4381  }
4382  assert_status(status == 0 || status == EINTR ||
4383                status == ETIMEDOUT,
4384                status, "cond_timedwait");
4385
4386#ifdef ASSERT
4387  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4388#endif
4389
4390  _counter = 0 ;
4391  status = pthread_mutex_unlock(_mutex) ;
4392  assert_status(status == 0, status, "invariant") ;
4393  // Paranoia to ensure our locked and lock-free paths interact
4394  // correctly with each other and Java-level accesses.
4395  OrderAccess::fence();
4396
4397  // If externally suspended while waiting, re-suspend
4398  if (jt->handle_special_suspend_equivalent_condition()) {
4399    jt->java_suspend_self();
4400  }
4401}
4402
4403void Parker::unpark() {
4404  int s, status ;
4405  status = pthread_mutex_lock(_mutex);
4406  assert (status == 0, "invariant") ;
4407  s = _counter;
4408  _counter = 1;
4409  if (s < 1) {
4410     if (WorkAroundNPTLTimedWaitHang) {
4411        status = pthread_cond_signal (_cond) ;
4412        assert (status == 0, "invariant") ;
4413        status = pthread_mutex_unlock(_mutex);
4414        assert (status == 0, "invariant") ;
4415     } else {
4416        status = pthread_mutex_unlock(_mutex);
4417        assert (status == 0, "invariant") ;
4418        status = pthread_cond_signal (_cond) ;
4419        assert (status == 0, "invariant") ;
4420     }
4421  } else {
4422    pthread_mutex_unlock(_mutex);
4423    assert (status == 0, "invariant") ;
4424  }
4425}
4426
4427
4428/* Darwin has no "environ" in a dynamic library. */
4429#ifdef __APPLE__
4430#include <crt_externs.h>
4431#define environ (*_NSGetEnviron())
4432#else
4433extern char** environ;
4434#endif
4435
4436// Run the specified command in a separate process. Return its exit value,
4437// or -1 on failure (e.g. can't fork a new process).
4438// Unlike system(), this function can be called from signal handler. It
4439// doesn't block SIGINT et al.
4440int os::fork_and_exec(char* cmd) {
4441  const char * argv[4] = {"sh", "-c", cmd, NULL};
4442
4443  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4444  // pthread_atfork handlers and reset pthread library. All we need is a
4445  // separate process to execve. Make a direct syscall to fork process.
4446  // On IA64 there's no fork syscall, we have to use fork() and hope for
4447  // the best...
4448  pid_t pid = fork();
4449
4450  if (pid < 0) {
4451    // fork failed
4452    return -1;
4453
4454  } else if (pid == 0) {
4455    // child process
4456
4457    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4458    // first to kill every thread on the thread list. Because this list is
4459    // not reset by fork() (see notes above), execve() will instead kill
4460    // every thread in the parent process. We know this is the only thread
4461    // in the new process, so make a system call directly.
4462    // IA64 should use normal execve() from glibc to match the glibc fork()
4463    // above.
4464    execve("/bin/sh", (char* const*)argv, environ);
4465
4466    // execve failed
4467    _exit(-1);
4468
4469  } else  {
4470    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4471    // care about the actual exit code, for now.
4472
4473    int status;
4474
4475    // Wait for the child process to exit.  This returns immediately if
4476    // the child has already exited. */
4477    while (waitpid(pid, &status, 0) < 0) {
4478        switch (errno) {
4479        case ECHILD: return 0;
4480        case EINTR: break;
4481        default: return -1;
4482        }
4483    }
4484
4485    if (WIFEXITED(status)) {
4486       // The child exited normally; get its exit code.
4487       return WEXITSTATUS(status);
4488    } else if (WIFSIGNALED(status)) {
4489       // The child exited because of a signal
4490       // The best value to return is 0x80 + signal number,
4491       // because that is what all Unix shells do, and because
4492       // it allows callers to distinguish between process exit and
4493       // process death by signal.
4494       return 0x80 + WTERMSIG(status);
4495    } else {
4496       // Unknown exit code; pass it through
4497       return status;
4498    }
4499  }
4500}
4501
4502// is_headless_jre()
4503//
4504// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4505// in order to report if we are running in a headless jre
4506//
4507// Since JDK8 xawt/libmawt.so was moved into the same directory
4508// as libawt.so, and renamed libawt_xawt.so
4509//
4510bool os::is_headless_jre() {
4511    struct stat statbuf;
4512    char buf[MAXPATHLEN];
4513    char libmawtpath[MAXPATHLEN];
4514    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4515    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4516    char *p;
4517
4518    // Get path to libjvm.so
4519    os::jvm_path(buf, sizeof(buf));
4520
4521    // Get rid of libjvm.so
4522    p = strrchr(buf, '/');
4523    if (p == NULL) return false;
4524    else *p = '\0';
4525
4526    // Get rid of client or server
4527    p = strrchr(buf, '/');
4528    if (p == NULL) return false;
4529    else *p = '\0';
4530
4531    // check xawt/libmawt.so
4532    strcpy(libmawtpath, buf);
4533    strcat(libmawtpath, xawtstr);
4534    if (::stat(libmawtpath, &statbuf) == 0) return false;
4535
4536    // check libawt_xawt.so
4537    strcpy(libmawtpath, buf);
4538    strcat(libmawtpath, new_xawtstr);
4539    if (::stat(libmawtpath, &statbuf) == 0) return false;
4540
4541    return true;
4542}
4543
4544// Get the default path to the core file
4545// Returns the length of the string
4546int os::get_core_path(char* buffer, size_t bufferSize) {
4547  int n = jio_snprintf(buffer, bufferSize, "/cores");
4548
4549  // Truncate if theoretical string was longer than bufferSize
4550  n = MIN2(n, (int)bufferSize);
4551
4552  return n;
4553}
4554