os_bsd.cpp revision 4453:17bf4d428955
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#if defined(__FreeBSD__) || defined(__NetBSD__)
105# include <elf.h>
106#endif
107
108#ifdef __APPLE__
109# include <mach/mach.h> // semaphore_* API
110# include <mach-o/dyld.h>
111# include <sys/proc_info.h>
112# include <objc/objc-auto.h>
113#endif
114
115#ifndef MAP_ANONYMOUS
116#define MAP_ANONYMOUS MAP_ANON
117#endif
118
119#define MAX_PATH    (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Bsd::_physical_memory = 0;
128
129
130int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131pthread_t os::Bsd::_main_thread;
132int os::Bsd::_page_size = -1;
133
134static jlong initial_time_count=0;
135
136static int clock_tics_per_sec = 100;
137
138// For diagnostics to print a message once. see run_periodic_checks
139static sigset_t check_signal_done;
140static bool check_signals = true;
141
142static pid_t _initial_pid = 0;
143
144/* Signal number used to suspend/resume a thread */
145
146/* do not use any signal number less than SIGSEGV, see 4355769 */
147static int SR_signum = SIGUSR2;
148sigset_t SR_sigset;
149
150
151////////////////////////////////////////////////////////////////////////////////
152// utility functions
153
154static int SR_initialize();
155static int SR_finalize();
156
157julong os::available_memory() {
158  return Bsd::available_memory();
159}
160
161julong os::Bsd::available_memory() {
162  // XXXBSD: this is just a stopgap implementation
163  return physical_memory() >> 2;
164}
165
166julong os::physical_memory() {
167  return Bsd::physical_memory();
168}
169
170julong os::allocatable_physical_memory(julong size) {
171#ifdef _LP64
172  return size;
173#else
174  julong result = MIN2(size, (julong)3800*M);
175   if (!is_allocatable(result)) {
176     // See comments under solaris for alignment considerations
177     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
178     result =  MIN2(size, reasonable_size);
179   }
180   return result;
181#endif // _LP64
182}
183
184////////////////////////////////////////////////////////////////////////////////
185// environment support
186
187bool os::getenv(const char* name, char* buf, int len) {
188  const char* val = ::getenv(name);
189  if (val != NULL && strlen(val) < (size_t)len) {
190    strcpy(buf, val);
191    return true;
192  }
193  if (len > 0) buf[0] = 0;  // return a null string
194  return false;
195}
196
197
198// Return true if user is running as root.
199
200bool os::have_special_privileges() {
201  static bool init = false;
202  static bool privileges = false;
203  if (!init) {
204    privileges = (getuid() != geteuid()) || (getgid() != getegid());
205    init = true;
206  }
207  return privileges;
208}
209
210
211
212// Cpu architecture string
213#if   defined(ZERO)
214static char cpu_arch[] = ZERO_LIBARCH;
215#elif defined(IA64)
216static char cpu_arch[] = "ia64";
217#elif defined(IA32)
218static char cpu_arch[] = "i386";
219#elif defined(AMD64)
220static char cpu_arch[] = "amd64";
221#elif defined(ARM)
222static char cpu_arch[] = "arm";
223#elif defined(PPC)
224static char cpu_arch[] = "ppc";
225#elif defined(SPARC)
226#  ifdef _LP64
227static char cpu_arch[] = "sparcv9";
228#  else
229static char cpu_arch[] = "sparc";
230#  endif
231#else
232#error Add appropriate cpu_arch setting
233#endif
234
235// Compiler variant
236#ifdef COMPILER2
237#define COMPILER_VARIANT "server"
238#else
239#define COMPILER_VARIANT "client"
240#endif
241
242
243void os::Bsd::initialize_system_info() {
244  int mib[2];
245  size_t len;
246  int cpu_val;
247  julong mem_val;
248
249  /* get processors count via hw.ncpus sysctl */
250  mib[0] = CTL_HW;
251  mib[1] = HW_NCPU;
252  len = sizeof(cpu_val);
253  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
254       assert(len == sizeof(cpu_val), "unexpected data size");
255       set_processor_count(cpu_val);
256  }
257  else {
258       set_processor_count(1);   // fallback
259  }
260
261  /* get physical memory via hw.memsize sysctl (hw.memsize is used
262   * since it returns a 64 bit value)
263   */
264  mib[0] = CTL_HW;
265  mib[1] = HW_MEMSIZE;
266  len = sizeof(mem_val);
267  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
268       assert(len == sizeof(mem_val), "unexpected data size");
269       _physical_memory = mem_val;
270  } else {
271       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
272  }
273
274#ifdef __OpenBSD__
275  {
276       // limit _physical_memory memory view on OpenBSD since
277       // datasize rlimit restricts us anyway.
278       struct rlimit limits;
279       getrlimit(RLIMIT_DATA, &limits);
280       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
281  }
282#endif
283}
284
285#ifdef __APPLE__
286static const char *get_home() {
287  const char *home_dir = ::getenv("HOME");
288  if ((home_dir == NULL) || (*home_dir == '\0')) {
289    struct passwd *passwd_info = getpwuid(geteuid());
290    if (passwd_info != NULL) {
291      home_dir = passwd_info->pw_dir;
292    }
293  }
294
295  return home_dir;
296}
297#endif
298
299void os::init_system_properties_values() {
300//  char arch[12];
301//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
302
303  // The next steps are taken in the product version:
304  //
305  // Obtain the JAVA_HOME value from the location of libjvm.so.
306  // This library should be located at:
307  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
308  //
309  // If "/jre/lib/" appears at the right place in the path, then we
310  // assume libjvm.so is installed in a JDK and we use this path.
311  //
312  // Otherwise exit with message: "Could not create the Java virtual machine."
313  //
314  // The following extra steps are taken in the debugging version:
315  //
316  // If "/jre/lib/" does NOT appear at the right place in the path
317  // instead of exit check for $JAVA_HOME environment variable.
318  //
319  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
320  // then we append a fake suffix "hotspot/libjvm.so" to this path so
321  // it looks like libjvm.so is installed there
322  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
323  //
324  // Otherwise exit.
325  //
326  // Important note: if the location of libjvm.so changes this
327  // code needs to be changed accordingly.
328
329  // The next few definitions allow the code to be verbatim:
330#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
331#define getenv(n) ::getenv(n)
332
333/*
334 * See ld(1):
335 *      The linker uses the following search paths to locate required
336 *      shared libraries:
337 *        1: ...
338 *        ...
339 *        7: The default directories, normally /lib and /usr/lib.
340 */
341#ifndef DEFAULT_LIBPATH
342#define DEFAULT_LIBPATH "/lib:/usr/lib"
343#endif
344
345#define EXTENSIONS_DIR  "/lib/ext"
346#define ENDORSED_DIR    "/lib/endorsed"
347#define REG_DIR         "/usr/java/packages"
348
349#ifdef __APPLE__
350#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
351#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
352        const char *user_home_dir = get_home();
353        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
354        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
355            sizeof(SYS_EXTENSIONS_DIRS);
356#endif
357
358  {
359    /* sysclasspath, java_home, dll_dir */
360    {
361        char *home_path;
362        char *dll_path;
363        char *pslash;
364        char buf[MAXPATHLEN];
365        os::jvm_path(buf, sizeof(buf));
366
367        // Found the full path to libjvm.so.
368        // Now cut the path to <java_home>/jre if we can.
369        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL)
372            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
373        dll_path = malloc(strlen(buf) + 1);
374        if (dll_path == NULL)
375            return;
376        strcpy(dll_path, buf);
377        Arguments::set_dll_dir(dll_path);
378
379        if (pslash != NULL) {
380            pslash = strrchr(buf, '/');
381            if (pslash != NULL) {
382                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
383#ifndef __APPLE__
384                pslash = strrchr(buf, '/');
385                if (pslash != NULL)
386                    *pslash = '\0';   /* get rid of /lib */
387#endif
388            }
389        }
390
391        home_path = malloc(strlen(buf) + 1);
392        if (home_path == NULL)
393            return;
394        strcpy(home_path, buf);
395        Arguments::set_java_home(home_path);
396
397        if (!set_boot_path('/', ':'))
398            return;
399    }
400
401    /*
402     * Where to look for native libraries
403     *
404     * Note: Due to a legacy implementation, most of the library path
405     * is set in the launcher.  This was to accomodate linking restrictions
406     * on legacy Bsd implementations (which are no longer supported).
407     * Eventually, all the library path setting will be done here.
408     *
409     * However, to prevent the proliferation of improperly built native
410     * libraries, the new path component /usr/java/packages is added here.
411     * Eventually, all the library path setting will be done here.
412     */
413    {
414        char *ld_library_path;
415
416        /*
417         * Construct the invariant part of ld_library_path. Note that the
418         * space for the colon and the trailing null are provided by the
419         * nulls included by the sizeof operator (so actually we allocate
420         * a byte more than necessary).
421         */
422#ifdef __APPLE__
423        ld_library_path = (char *) malloc(system_ext_size);
424        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
425#else
426        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
427            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
428        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
429#endif
430
431        /*
432         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
433         * should always exist (until the legacy problem cited above is
434         * addressed).
435         */
436#ifdef __APPLE__
437        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
438        char *l = getenv("JAVA_LIBRARY_PATH");
439        if (l != NULL) {
440            char *t = ld_library_path;
441            /* That's +1 for the colon and +1 for the trailing '\0' */
442            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
443            sprintf(ld_library_path, "%s:%s", l, t);
444            free(t);
445        }
446
447        char *v = getenv("DYLD_LIBRARY_PATH");
448#else
449        char *v = getenv("LD_LIBRARY_PATH");
450#endif
451        if (v != NULL) {
452            char *t = ld_library_path;
453            /* That's +1 for the colon and +1 for the trailing '\0' */
454            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
455            sprintf(ld_library_path, "%s:%s", v, t);
456            free(t);
457        }
458
459#ifdef __APPLE__
460        // Apple's Java6 has "." at the beginning of java.library.path.
461        // OpenJDK on Windows has "." at the end of java.library.path.
462        // OpenJDK on Linux and Solaris don't have "." in java.library.path
463        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
464        // "." is appended to the end of java.library.path. Yes, this
465        // could cause a change in behavior, but Apple's Java6 behavior
466        // can be achieved by putting "." at the beginning of the
467        // JAVA_LIBRARY_PATH environment variable.
468        {
469            char *t = ld_library_path;
470            // that's +3 for appending ":." and the trailing '\0'
471            ld_library_path = (char *) malloc(strlen(t) + 3);
472            sprintf(ld_library_path, "%s:%s", t, ".");
473            free(t);
474        }
475#endif
476
477        Arguments::set_library_path(ld_library_path);
478    }
479
480    /*
481     * Extensions directories.
482     *
483     * Note that the space for the colon and the trailing null are provided
484     * by the nulls included by the sizeof operator (so actually one byte more
485     * than necessary is allocated).
486     */
487    {
488#ifdef __APPLE__
489        char *buf = malloc(strlen(Arguments::get_java_home()) +
490            sizeof(EXTENSIONS_DIR) + system_ext_size);
491        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
492            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
493#else
494        char *buf = malloc(strlen(Arguments::get_java_home()) +
495            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
496        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
497            Arguments::get_java_home());
498#endif
499
500        Arguments::set_ext_dirs(buf);
501    }
502
503    /* Endorsed standards default directory. */
504    {
505        char * buf;
506        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
507        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
508        Arguments::set_endorsed_dirs(buf);
509    }
510  }
511
512#ifdef __APPLE__
513#undef SYS_EXTENSIONS_DIR
514#endif
515#undef malloc
516#undef getenv
517#undef EXTENSIONS_DIR
518#undef ENDORSED_DIR
519
520  // Done
521  return;
522}
523
524////////////////////////////////////////////////////////////////////////////////
525// breakpoint support
526
527void os::breakpoint() {
528  BREAKPOINT;
529}
530
531extern "C" void breakpoint() {
532  // use debugger to set breakpoint here
533}
534
535////////////////////////////////////////////////////////////////////////////////
536// signal support
537
538debug_only(static bool signal_sets_initialized = false);
539static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
540
541bool os::Bsd::is_sig_ignored(int sig) {
542      struct sigaction oact;
543      sigaction(sig, (struct sigaction*)NULL, &oact);
544      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
545                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
546      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
547           return true;
548      else
549           return false;
550}
551
552void os::Bsd::signal_sets_init() {
553  // Should also have an assertion stating we are still single-threaded.
554  assert(!signal_sets_initialized, "Already initialized");
555  // Fill in signals that are necessarily unblocked for all threads in
556  // the VM. Currently, we unblock the following signals:
557  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
558  //                         by -Xrs (=ReduceSignalUsage));
559  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
560  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
561  // the dispositions or masks wrt these signals.
562  // Programs embedding the VM that want to use the above signals for their
563  // own purposes must, at this time, use the "-Xrs" option to prevent
564  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
565  // (See bug 4345157, and other related bugs).
566  // In reality, though, unblocking these signals is really a nop, since
567  // these signals are not blocked by default.
568  sigemptyset(&unblocked_sigs);
569  sigemptyset(&allowdebug_blocked_sigs);
570  sigaddset(&unblocked_sigs, SIGILL);
571  sigaddset(&unblocked_sigs, SIGSEGV);
572  sigaddset(&unblocked_sigs, SIGBUS);
573  sigaddset(&unblocked_sigs, SIGFPE);
574  sigaddset(&unblocked_sigs, SR_signum);
575
576  if (!ReduceSignalUsage) {
577   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
578      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
579      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
580   }
581   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
582      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
583      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
584   }
585   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
586      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
587      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
588   }
589  }
590  // Fill in signals that are blocked by all but the VM thread.
591  sigemptyset(&vm_sigs);
592  if (!ReduceSignalUsage)
593    sigaddset(&vm_sigs, BREAK_SIGNAL);
594  debug_only(signal_sets_initialized = true);
595
596}
597
598// These are signals that are unblocked while a thread is running Java.
599// (For some reason, they get blocked by default.)
600sigset_t* os::Bsd::unblocked_signals() {
601  assert(signal_sets_initialized, "Not initialized");
602  return &unblocked_sigs;
603}
604
605// These are the signals that are blocked while a (non-VM) thread is
606// running Java. Only the VM thread handles these signals.
607sigset_t* os::Bsd::vm_signals() {
608  assert(signal_sets_initialized, "Not initialized");
609  return &vm_sigs;
610}
611
612// These are signals that are blocked during cond_wait to allow debugger in
613sigset_t* os::Bsd::allowdebug_blocked_signals() {
614  assert(signal_sets_initialized, "Not initialized");
615  return &allowdebug_blocked_sigs;
616}
617
618void os::Bsd::hotspot_sigmask(Thread* thread) {
619
620  //Save caller's signal mask before setting VM signal mask
621  sigset_t caller_sigmask;
622  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
623
624  OSThread* osthread = thread->osthread();
625  osthread->set_caller_sigmask(caller_sigmask);
626
627  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
628
629  if (!ReduceSignalUsage) {
630    if (thread->is_VM_thread()) {
631      // Only the VM thread handles BREAK_SIGNAL ...
632      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
633    } else {
634      // ... all other threads block BREAK_SIGNAL
635      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
636    }
637  }
638}
639
640
641//////////////////////////////////////////////////////////////////////////////
642// create new thread
643
644static address highest_vm_reserved_address();
645
646// check if it's safe to start a new thread
647static bool _thread_safety_check(Thread* thread) {
648  return true;
649}
650
651#ifdef __APPLE__
652// library handle for calling objc_registerThreadWithCollector()
653// without static linking to the libobjc library
654#define OBJC_LIB "/usr/lib/libobjc.dylib"
655#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
656typedef void (*objc_registerThreadWithCollector_t)();
657extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
658objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
659#endif
660
661#ifdef __APPLE__
662static uint64_t locate_unique_thread_id() {
663  // Additional thread_id used to correlate threads in SA
664  thread_identifier_info_data_t     m_ident_info;
665  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
666
667  thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
668              (thread_info_t) &m_ident_info, &count);
669  return m_ident_info.thread_id;
670}
671#endif
672
673// Thread start routine for all newly created threads
674static void *java_start(Thread *thread) {
675  // Try to randomize the cache line index of hot stack frames.
676  // This helps when threads of the same stack traces evict each other's
677  // cache lines. The threads can be either from the same JVM instance, or
678  // from different JVM instances. The benefit is especially true for
679  // processors with hyperthreading technology.
680  static int counter = 0;
681  int pid = os::current_process_id();
682  alloca(((pid ^ counter++) & 7) * 128);
683
684  ThreadLocalStorage::set_thread(thread);
685
686  OSThread* osthread = thread->osthread();
687  Monitor* sync = osthread->startThread_lock();
688
689  // non floating stack BsdThreads needs extra check, see above
690  if (!_thread_safety_check(thread)) {
691    // notify parent thread
692    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
693    osthread->set_state(ZOMBIE);
694    sync->notify_all();
695    return NULL;
696  }
697
698#ifdef __APPLE__
699  // thread_id is mach thread on macos
700  osthread->set_thread_id(::mach_thread_self());
701  osthread->set_unique_thread_id(locate_unique_thread_id());
702#else
703  // thread_id is pthread_id on BSD
704  osthread->set_thread_id(::pthread_self());
705#endif
706  // initialize signal mask for this thread
707  os::Bsd::hotspot_sigmask(thread);
708
709  // initialize floating point control register
710  os::Bsd::init_thread_fpu_state();
711
712#ifdef __APPLE__
713  // register thread with objc gc
714  if (objc_registerThreadWithCollectorFunction != NULL) {
715    objc_registerThreadWithCollectorFunction();
716  }
717#endif
718
719  // handshaking with parent thread
720  {
721    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
722
723    // notify parent thread
724    osthread->set_state(INITIALIZED);
725    sync->notify_all();
726
727    // wait until os::start_thread()
728    while (osthread->get_state() == INITIALIZED) {
729      sync->wait(Mutex::_no_safepoint_check_flag);
730    }
731  }
732
733  // call one more level start routine
734  thread->run();
735
736  return 0;
737}
738
739bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
740  assert(thread->osthread() == NULL, "caller responsible");
741
742  // Allocate the OSThread object
743  OSThread* osthread = new OSThread(NULL, NULL);
744  if (osthread == NULL) {
745    return false;
746  }
747
748  // set the correct thread state
749  osthread->set_thread_type(thr_type);
750
751  // Initial state is ALLOCATED but not INITIALIZED
752  osthread->set_state(ALLOCATED);
753
754  thread->set_osthread(osthread);
755
756  // init thread attributes
757  pthread_attr_t attr;
758  pthread_attr_init(&attr);
759  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
760
761  // stack size
762  if (os::Bsd::supports_variable_stack_size()) {
763    // calculate stack size if it's not specified by caller
764    if (stack_size == 0) {
765      stack_size = os::Bsd::default_stack_size(thr_type);
766
767      switch (thr_type) {
768      case os::java_thread:
769        // Java threads use ThreadStackSize which default value can be
770        // changed with the flag -Xss
771        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
772        stack_size = JavaThread::stack_size_at_create();
773        break;
774      case os::compiler_thread:
775        if (CompilerThreadStackSize > 0) {
776          stack_size = (size_t)(CompilerThreadStackSize * K);
777          break;
778        } // else fall through:
779          // use VMThreadStackSize if CompilerThreadStackSize is not defined
780      case os::vm_thread:
781      case os::pgc_thread:
782      case os::cgc_thread:
783      case os::watcher_thread:
784        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
785        break;
786      }
787    }
788
789    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
790    pthread_attr_setstacksize(&attr, stack_size);
791  } else {
792    // let pthread_create() pick the default value.
793  }
794
795  ThreadState state;
796
797  {
798    pthread_t tid;
799    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
800
801    pthread_attr_destroy(&attr);
802
803    if (ret != 0) {
804      if (PrintMiscellaneous && (Verbose || WizardMode)) {
805        perror("pthread_create()");
806      }
807      // Need to clean up stuff we've allocated so far
808      thread->set_osthread(NULL);
809      delete osthread;
810      return false;
811    }
812
813    // Store pthread info into the OSThread
814    osthread->set_pthread_id(tid);
815
816    // Wait until child thread is either initialized or aborted
817    {
818      Monitor* sync_with_child = osthread->startThread_lock();
819      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
820      while ((state = osthread->get_state()) == ALLOCATED) {
821        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
822      }
823    }
824
825  }
826
827  // Aborted due to thread limit being reached
828  if (state == ZOMBIE) {
829      thread->set_osthread(NULL);
830      delete osthread;
831      return false;
832  }
833
834  // The thread is returned suspended (in state INITIALIZED),
835  // and is started higher up in the call chain
836  assert(state == INITIALIZED, "race condition");
837  return true;
838}
839
840/////////////////////////////////////////////////////////////////////////////
841// attach existing thread
842
843// bootstrap the main thread
844bool os::create_main_thread(JavaThread* thread) {
845  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
846  return create_attached_thread(thread);
847}
848
849bool os::create_attached_thread(JavaThread* thread) {
850#ifdef ASSERT
851    thread->verify_not_published();
852#endif
853
854  // Allocate the OSThread object
855  OSThread* osthread = new OSThread(NULL, NULL);
856
857  if (osthread == NULL) {
858    return false;
859  }
860
861  // Store pthread info into the OSThread
862#ifdef __APPLE__
863  osthread->set_thread_id(::mach_thread_self());
864  osthread->set_unique_thread_id(locate_unique_thread_id());
865#else
866  osthread->set_thread_id(::pthread_self());
867#endif
868  osthread->set_pthread_id(::pthread_self());
869
870  // initialize floating point control register
871  os::Bsd::init_thread_fpu_state();
872
873  // Initial thread state is RUNNABLE
874  osthread->set_state(RUNNABLE);
875
876  thread->set_osthread(osthread);
877
878  // initialize signal mask for this thread
879  // and save the caller's signal mask
880  os::Bsd::hotspot_sigmask(thread);
881
882  return true;
883}
884
885void os::pd_start_thread(Thread* thread) {
886  OSThread * osthread = thread->osthread();
887  assert(osthread->get_state() != INITIALIZED, "just checking");
888  Monitor* sync_with_child = osthread->startThread_lock();
889  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
890  sync_with_child->notify();
891}
892
893// Free Bsd resources related to the OSThread
894void os::free_thread(OSThread* osthread) {
895  assert(osthread != NULL, "osthread not set");
896
897  if (Thread::current()->osthread() == osthread) {
898    // Restore caller's signal mask
899    sigset_t sigmask = osthread->caller_sigmask();
900    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
901   }
902
903  delete osthread;
904}
905
906//////////////////////////////////////////////////////////////////////////////
907// thread local storage
908
909int os::allocate_thread_local_storage() {
910  pthread_key_t key;
911  int rslt = pthread_key_create(&key, NULL);
912  assert(rslt == 0, "cannot allocate thread local storage");
913  return (int)key;
914}
915
916// Note: This is currently not used by VM, as we don't destroy TLS key
917// on VM exit.
918void os::free_thread_local_storage(int index) {
919  int rslt = pthread_key_delete((pthread_key_t)index);
920  assert(rslt == 0, "invalid index");
921}
922
923void os::thread_local_storage_at_put(int index, void* value) {
924  int rslt = pthread_setspecific((pthread_key_t)index, value);
925  assert(rslt == 0, "pthread_setspecific failed");
926}
927
928extern "C" Thread* get_thread() {
929  return ThreadLocalStorage::thread();
930}
931
932
933////////////////////////////////////////////////////////////////////////////////
934// time support
935
936// Time since start-up in seconds to a fine granularity.
937// Used by VMSelfDestructTimer and the MemProfiler.
938double os::elapsedTime() {
939
940  return (double)(os::elapsed_counter()) * 0.000001;
941}
942
943jlong os::elapsed_counter() {
944  timeval time;
945  int status = gettimeofday(&time, NULL);
946  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
947}
948
949jlong os::elapsed_frequency() {
950  return (1000 * 1000);
951}
952
953// XXX: For now, code this as if BSD does not support vtime.
954bool os::supports_vtime() { return false; }
955bool os::enable_vtime()   { return false; }
956bool os::vtime_enabled()  { return false; }
957double os::elapsedVTime() {
958  // better than nothing, but not much
959  return elapsedTime();
960}
961
962jlong os::javaTimeMillis() {
963  timeval time;
964  int status = gettimeofday(&time, NULL);
965  assert(status != -1, "bsd error");
966  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
967}
968
969#ifndef CLOCK_MONOTONIC
970#define CLOCK_MONOTONIC (1)
971#endif
972
973#ifdef __APPLE__
974void os::Bsd::clock_init() {
975        // XXXDARWIN: Investigate replacement monotonic clock
976}
977#else
978void os::Bsd::clock_init() {
979  struct timespec res;
980  struct timespec tp;
981  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
982      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
983    // yes, monotonic clock is supported
984    _clock_gettime = ::clock_gettime;
985  }
986}
987#endif
988
989
990jlong os::javaTimeNanos() {
991  if (Bsd::supports_monotonic_clock()) {
992    struct timespec tp;
993    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
994    assert(status == 0, "gettime error");
995    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
996    return result;
997  } else {
998    timeval time;
999    int status = gettimeofday(&time, NULL);
1000    assert(status != -1, "bsd error");
1001    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1002    return 1000 * usecs;
1003  }
1004}
1005
1006void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1007  if (Bsd::supports_monotonic_clock()) {
1008    info_ptr->max_value = ALL_64_BITS;
1009
1010    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1011    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1012    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1013  } else {
1014    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1015    info_ptr->max_value = ALL_64_BITS;
1016
1017    // gettimeofday is a real time clock so it skips
1018    info_ptr->may_skip_backward = true;
1019    info_ptr->may_skip_forward = true;
1020  }
1021
1022  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1023}
1024
1025// Return the real, user, and system times in seconds from an
1026// arbitrary fixed point in the past.
1027bool os::getTimesSecs(double* process_real_time,
1028                      double* process_user_time,
1029                      double* process_system_time) {
1030  struct tms ticks;
1031  clock_t real_ticks = times(&ticks);
1032
1033  if (real_ticks == (clock_t) (-1)) {
1034    return false;
1035  } else {
1036    double ticks_per_second = (double) clock_tics_per_sec;
1037    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1038    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1039    *process_real_time = ((double) real_ticks) / ticks_per_second;
1040
1041    return true;
1042  }
1043}
1044
1045
1046char * os::local_time_string(char *buf, size_t buflen) {
1047  struct tm t;
1048  time_t long_time;
1049  time(&long_time);
1050  localtime_r(&long_time, &t);
1051  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1052               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1053               t.tm_hour, t.tm_min, t.tm_sec);
1054  return buf;
1055}
1056
1057struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1058  return localtime_r(clock, res);
1059}
1060
1061////////////////////////////////////////////////////////////////////////////////
1062// runtime exit support
1063
1064// Note: os::shutdown() might be called very early during initialization, or
1065// called from signal handler. Before adding something to os::shutdown(), make
1066// sure it is async-safe and can handle partially initialized VM.
1067void os::shutdown() {
1068
1069  // allow PerfMemory to attempt cleanup of any persistent resources
1070  perfMemory_exit();
1071
1072  // needs to remove object in file system
1073  AttachListener::abort();
1074
1075  // flush buffered output, finish log files
1076  ostream_abort();
1077
1078  // Check for abort hook
1079  abort_hook_t abort_hook = Arguments::abort_hook();
1080  if (abort_hook != NULL) {
1081    abort_hook();
1082  }
1083
1084}
1085
1086// Note: os::abort() might be called very early during initialization, or
1087// called from signal handler. Before adding something to os::abort(), make
1088// sure it is async-safe and can handle partially initialized VM.
1089void os::abort(bool dump_core) {
1090  os::shutdown();
1091  if (dump_core) {
1092#ifndef PRODUCT
1093    fdStream out(defaultStream::output_fd());
1094    out.print_raw("Current thread is ");
1095    char buf[16];
1096    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1097    out.print_raw_cr(buf);
1098    out.print_raw_cr("Dumping core ...");
1099#endif
1100    ::abort(); // dump core
1101  }
1102
1103  ::exit(1);
1104}
1105
1106// Die immediately, no exit hook, no abort hook, no cleanup.
1107void os::die() {
1108  // _exit() on BsdThreads only kills current thread
1109  ::abort();
1110}
1111
1112// unused on bsd for now.
1113void os::set_error_file(const char *logfile) {}
1114
1115
1116// This method is a copy of JDK's sysGetLastErrorString
1117// from src/solaris/hpi/src/system_md.c
1118
1119size_t os::lasterror(char *buf, size_t len) {
1120
1121  if (errno == 0)  return 0;
1122
1123  const char *s = ::strerror(errno);
1124  size_t n = ::strlen(s);
1125  if (n >= len) {
1126    n = len - 1;
1127  }
1128  ::strncpy(buf, s, n);
1129  buf[n] = '\0';
1130  return n;
1131}
1132
1133intx os::current_thread_id() {
1134#ifdef __APPLE__
1135  return (intx)::mach_thread_self();
1136#else
1137  return (intx)::pthread_self();
1138#endif
1139}
1140int os::current_process_id() {
1141
1142  // Under the old bsd thread library, bsd gives each thread
1143  // its own process id. Because of this each thread will return
1144  // a different pid if this method were to return the result
1145  // of getpid(2). Bsd provides no api that returns the pid
1146  // of the launcher thread for the vm. This implementation
1147  // returns a unique pid, the pid of the launcher thread
1148  // that starts the vm 'process'.
1149
1150  // Under the NPTL, getpid() returns the same pid as the
1151  // launcher thread rather than a unique pid per thread.
1152  // Use gettid() if you want the old pre NPTL behaviour.
1153
1154  // if you are looking for the result of a call to getpid() that
1155  // returns a unique pid for the calling thread, then look at the
1156  // OSThread::thread_id() method in osThread_bsd.hpp file
1157
1158  return (int)(_initial_pid ? _initial_pid : getpid());
1159}
1160
1161// DLL functions
1162
1163#define JNI_LIB_PREFIX "lib"
1164#ifdef __APPLE__
1165#define JNI_LIB_SUFFIX ".dylib"
1166#else
1167#define JNI_LIB_SUFFIX ".so"
1168#endif
1169
1170const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1171
1172// This must be hard coded because it's the system's temporary
1173// directory not the java application's temp directory, ala java.io.tmpdir.
1174#ifdef __APPLE__
1175// macosx has a secure per-user temporary directory
1176char temp_path_storage[PATH_MAX];
1177const char* os::get_temp_directory() {
1178  static char *temp_path = NULL;
1179  if (temp_path == NULL) {
1180    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1181    if (pathSize == 0 || pathSize > PATH_MAX) {
1182      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1183    }
1184    temp_path = temp_path_storage;
1185  }
1186  return temp_path;
1187}
1188#else /* __APPLE__ */
1189const char* os::get_temp_directory() { return "/tmp"; }
1190#endif /* __APPLE__ */
1191
1192static bool file_exists(const char* filename) {
1193  struct stat statbuf;
1194  if (filename == NULL || strlen(filename) == 0) {
1195    return false;
1196  }
1197  return os::stat(filename, &statbuf) == 0;
1198}
1199
1200bool os::dll_build_name(char* buffer, size_t buflen,
1201                        const char* pname, const char* fname) {
1202  bool retval = false;
1203  // Copied from libhpi
1204  const size_t pnamelen = pname ? strlen(pname) : 0;
1205
1206  // Return error on buffer overflow.
1207  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1208    return retval;
1209  }
1210
1211  if (pnamelen == 0) {
1212    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1213    retval = true;
1214  } else if (strchr(pname, *os::path_separator()) != NULL) {
1215    int n;
1216    char** pelements = split_path(pname, &n);
1217    if (pelements == NULL) {
1218        return false;
1219    }
1220    for (int i = 0 ; i < n ; i++) {
1221      // Really shouldn't be NULL, but check can't hurt
1222      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1223        continue; // skip the empty path values
1224      }
1225      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1226          pelements[i], fname);
1227      if (file_exists(buffer)) {
1228        retval = true;
1229        break;
1230      }
1231    }
1232    // release the storage
1233    for (int i = 0 ; i < n ; i++) {
1234      if (pelements[i] != NULL) {
1235        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1236      }
1237    }
1238    if (pelements != NULL) {
1239      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1240    }
1241  } else {
1242    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1243    retval = true;
1244  }
1245  return retval;
1246}
1247
1248const char* os::get_current_directory(char *buf, int buflen) {
1249  return getcwd(buf, buflen);
1250}
1251
1252// check if addr is inside libjvm.so
1253bool os::address_is_in_vm(address addr) {
1254  static address libjvm_base_addr;
1255  Dl_info dlinfo;
1256
1257  if (libjvm_base_addr == NULL) {
1258    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1259    libjvm_base_addr = (address)dlinfo.dli_fbase;
1260    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1261  }
1262
1263  if (dladdr((void *)addr, &dlinfo)) {
1264    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1265  }
1266
1267  return false;
1268}
1269
1270
1271#define MACH_MAXSYMLEN 256
1272
1273bool os::dll_address_to_function_name(address addr, char *buf,
1274                                      int buflen, int *offset) {
1275  Dl_info dlinfo;
1276  char localbuf[MACH_MAXSYMLEN];
1277
1278  // dladdr will find names of dynamic functions only, but does
1279  // it set dli_fbase with mach_header address when it "fails" ?
1280  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1281    if (buf != NULL) {
1282      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1283        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1284      }
1285    }
1286    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1287    return true;
1288  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1289    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1290       buf, buflen, offset, dlinfo.dli_fname)) {
1291       return true;
1292    }
1293  }
1294
1295  // Handle non-dymanic manually:
1296  if (dlinfo.dli_fbase != NULL &&
1297      Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1298    if(!Decoder::demangle(localbuf, buf, buflen)) {
1299      jio_snprintf(buf, buflen, "%s", localbuf);
1300    }
1301    return true;
1302  }
1303  if (buf != NULL) buf[0] = '\0';
1304  if (offset != NULL) *offset = -1;
1305  return false;
1306}
1307
1308// ported from solaris version
1309bool os::dll_address_to_library_name(address addr, char* buf,
1310                                     int buflen, int* offset) {
1311  Dl_info dlinfo;
1312
1313  if (dladdr((void*)addr, &dlinfo)){
1314     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1315     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1316     return true;
1317  } else {
1318     if (buf) buf[0] = '\0';
1319     if (offset) *offset = -1;
1320     return false;
1321  }
1322}
1323
1324// Loads .dll/.so and
1325// in case of error it checks if .dll/.so was built for the
1326// same architecture as Hotspot is running on
1327
1328#ifdef __APPLE__
1329void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1330  void * result= ::dlopen(filename, RTLD_LAZY);
1331  if (result != NULL) {
1332    // Successful loading
1333    return result;
1334  }
1335
1336  // Read system error message into ebuf
1337  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1338  ebuf[ebuflen-1]='\0';
1339
1340  return NULL;
1341}
1342#else
1343void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1344{
1345  void * result= ::dlopen(filename, RTLD_LAZY);
1346  if (result != NULL) {
1347    // Successful loading
1348    return result;
1349  }
1350
1351  Elf32_Ehdr elf_head;
1352
1353  // Read system error message into ebuf
1354  // It may or may not be overwritten below
1355  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1356  ebuf[ebuflen-1]='\0';
1357  int diag_msg_max_length=ebuflen-strlen(ebuf);
1358  char* diag_msg_buf=ebuf+strlen(ebuf);
1359
1360  if (diag_msg_max_length==0) {
1361    // No more space in ebuf for additional diagnostics message
1362    return NULL;
1363  }
1364
1365
1366  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1367
1368  if (file_descriptor < 0) {
1369    // Can't open library, report dlerror() message
1370    return NULL;
1371  }
1372
1373  bool failed_to_read_elf_head=
1374    (sizeof(elf_head)!=
1375        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1376
1377  ::close(file_descriptor);
1378  if (failed_to_read_elf_head) {
1379    // file i/o error - report dlerror() msg
1380    return NULL;
1381  }
1382
1383  typedef struct {
1384    Elf32_Half  code;         // Actual value as defined in elf.h
1385    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1386    char        elf_class;    // 32 or 64 bit
1387    char        endianess;    // MSB or LSB
1388    char*       name;         // String representation
1389  } arch_t;
1390
1391  #ifndef EM_486
1392  #define EM_486          6               /* Intel 80486 */
1393  #endif
1394
1395  #ifndef EM_MIPS_RS3_LE
1396  #define EM_MIPS_RS3_LE  10              /* MIPS */
1397  #endif
1398
1399  #ifndef EM_PPC64
1400  #define EM_PPC64        21              /* PowerPC64 */
1401  #endif
1402
1403  #ifndef EM_S390
1404  #define EM_S390         22              /* IBM System/390 */
1405  #endif
1406
1407  #ifndef EM_IA_64
1408  #define EM_IA_64        50              /* HP/Intel IA-64 */
1409  #endif
1410
1411  #ifndef EM_X86_64
1412  #define EM_X86_64       62              /* AMD x86-64 */
1413  #endif
1414
1415  static const arch_t arch_array[]={
1416    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1417    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1418    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1419    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1420    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1421    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1422    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1423    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1424    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1425    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1426    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1427    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1428    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1429    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1430    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1431    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1432  };
1433
1434  #if  (defined IA32)
1435    static  Elf32_Half running_arch_code=EM_386;
1436  #elif   (defined AMD64)
1437    static  Elf32_Half running_arch_code=EM_X86_64;
1438  #elif  (defined IA64)
1439    static  Elf32_Half running_arch_code=EM_IA_64;
1440  #elif  (defined __sparc) && (defined _LP64)
1441    static  Elf32_Half running_arch_code=EM_SPARCV9;
1442  #elif  (defined __sparc) && (!defined _LP64)
1443    static  Elf32_Half running_arch_code=EM_SPARC;
1444  #elif  (defined __powerpc64__)
1445    static  Elf32_Half running_arch_code=EM_PPC64;
1446  #elif  (defined __powerpc__)
1447    static  Elf32_Half running_arch_code=EM_PPC;
1448  #elif  (defined ARM)
1449    static  Elf32_Half running_arch_code=EM_ARM;
1450  #elif  (defined S390)
1451    static  Elf32_Half running_arch_code=EM_S390;
1452  #elif  (defined ALPHA)
1453    static  Elf32_Half running_arch_code=EM_ALPHA;
1454  #elif  (defined MIPSEL)
1455    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1456  #elif  (defined PARISC)
1457    static  Elf32_Half running_arch_code=EM_PARISC;
1458  #elif  (defined MIPS)
1459    static  Elf32_Half running_arch_code=EM_MIPS;
1460  #elif  (defined M68K)
1461    static  Elf32_Half running_arch_code=EM_68K;
1462  #else
1463    #error Method os::dll_load requires that one of following is defined:\
1464         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1465  #endif
1466
1467  // Identify compatability class for VM's architecture and library's architecture
1468  // Obtain string descriptions for architectures
1469
1470  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1471  int running_arch_index=-1;
1472
1473  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1474    if (running_arch_code == arch_array[i].code) {
1475      running_arch_index    = i;
1476    }
1477    if (lib_arch.code == arch_array[i].code) {
1478      lib_arch.compat_class = arch_array[i].compat_class;
1479      lib_arch.name         = arch_array[i].name;
1480    }
1481  }
1482
1483  assert(running_arch_index != -1,
1484    "Didn't find running architecture code (running_arch_code) in arch_array");
1485  if (running_arch_index == -1) {
1486    // Even though running architecture detection failed
1487    // we may still continue with reporting dlerror() message
1488    return NULL;
1489  }
1490
1491  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1492    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1493    return NULL;
1494  }
1495
1496#ifndef S390
1497  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1498    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1499    return NULL;
1500  }
1501#endif // !S390
1502
1503  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1504    if ( lib_arch.name!=NULL ) {
1505      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1506        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1507        lib_arch.name, arch_array[running_arch_index].name);
1508    } else {
1509      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1510      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1511        lib_arch.code,
1512        arch_array[running_arch_index].name);
1513    }
1514  }
1515
1516  return NULL;
1517}
1518#endif /* !__APPLE__ */
1519
1520// XXX: Do we need a lock around this as per Linux?
1521void* os::dll_lookup(void* handle, const char* name) {
1522  return dlsym(handle, name);
1523}
1524
1525
1526static bool _print_ascii_file(const char* filename, outputStream* st) {
1527  int fd = ::open(filename, O_RDONLY);
1528  if (fd == -1) {
1529     return false;
1530  }
1531
1532  char buf[32];
1533  int bytes;
1534  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1535    st->print_raw(buf, bytes);
1536  }
1537
1538  ::close(fd);
1539
1540  return true;
1541}
1542
1543void os::print_dll_info(outputStream *st) {
1544   st->print_cr("Dynamic libraries:");
1545#ifdef RTLD_DI_LINKMAP
1546    Dl_info dli;
1547    void *handle;
1548    Link_map *map;
1549    Link_map *p;
1550
1551    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1552        st->print_cr("Error: Cannot print dynamic libraries.");
1553        return;
1554    }
1555    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1556    if (handle == NULL) {
1557        st->print_cr("Error: Cannot print dynamic libraries.");
1558        return;
1559    }
1560    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1561    if (map == NULL) {
1562        st->print_cr("Error: Cannot print dynamic libraries.");
1563        return;
1564    }
1565
1566    while (map->l_prev != NULL)
1567        map = map->l_prev;
1568
1569    while (map != NULL) {
1570        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1571        map = map->l_next;
1572    }
1573
1574    dlclose(handle);
1575#elif defined(__APPLE__)
1576    uint32_t count;
1577    uint32_t i;
1578
1579    count = _dyld_image_count();
1580    for (i = 1; i < count; i++) {
1581        const char *name = _dyld_get_image_name(i);
1582        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1583        st->print_cr(PTR_FORMAT " \t%s", slide, name);
1584    }
1585#else
1586   st->print_cr("Error: Cannot print dynamic libraries.");
1587#endif
1588}
1589
1590void os::print_os_info_brief(outputStream* st) {
1591  st->print("Bsd");
1592
1593  os::Posix::print_uname_info(st);
1594}
1595
1596void os::print_os_info(outputStream* st) {
1597  st->print("OS:");
1598  st->print("Bsd");
1599
1600  os::Posix::print_uname_info(st);
1601
1602  os::Posix::print_rlimit_info(st);
1603
1604  os::Posix::print_load_average(st);
1605}
1606
1607void os::pd_print_cpu_info(outputStream* st) {
1608  // Nothing to do for now.
1609}
1610
1611void os::print_memory_info(outputStream* st) {
1612
1613  st->print("Memory:");
1614  st->print(" %dk page", os::vm_page_size()>>10);
1615
1616  st->print(", physical " UINT64_FORMAT "k",
1617            os::physical_memory() >> 10);
1618  st->print("(" UINT64_FORMAT "k free)",
1619            os::available_memory() >> 10);
1620  st->cr();
1621
1622  // meminfo
1623  st->print("\n/proc/meminfo:\n");
1624  _print_ascii_file("/proc/meminfo", st);
1625  st->cr();
1626}
1627
1628// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1629// but they're the same for all the bsd arch that we support
1630// and they're the same for solaris but there's no common place to put this.
1631const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1632                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1633                          "ILL_COPROC", "ILL_BADSTK" };
1634
1635const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1636                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1637                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1638
1639const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1640
1641const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1642
1643void os::print_siginfo(outputStream* st, void* siginfo) {
1644  st->print("siginfo:");
1645
1646  const int buflen = 100;
1647  char buf[buflen];
1648  siginfo_t *si = (siginfo_t*)siginfo;
1649  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1650  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1651    st->print("si_errno=%s", buf);
1652  } else {
1653    st->print("si_errno=%d", si->si_errno);
1654  }
1655  const int c = si->si_code;
1656  assert(c > 0, "unexpected si_code");
1657  switch (si->si_signo) {
1658  case SIGILL:
1659    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1660    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1661    break;
1662  case SIGFPE:
1663    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1664    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1665    break;
1666  case SIGSEGV:
1667    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1668    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1669    break;
1670  case SIGBUS:
1671    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1672    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1673    break;
1674  default:
1675    st->print(", si_code=%d", si->si_code);
1676    // no si_addr
1677  }
1678
1679  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1680      UseSharedSpaces) {
1681    FileMapInfo* mapinfo = FileMapInfo::current_info();
1682    if (mapinfo->is_in_shared_space(si->si_addr)) {
1683      st->print("\n\nError accessing class data sharing archive."   \
1684                " Mapped file inaccessible during execution, "      \
1685                " possible disk/network problem.");
1686    }
1687  }
1688  st->cr();
1689}
1690
1691
1692static void print_signal_handler(outputStream* st, int sig,
1693                                 char* buf, size_t buflen);
1694
1695void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1696  st->print_cr("Signal Handlers:");
1697  print_signal_handler(st, SIGSEGV, buf, buflen);
1698  print_signal_handler(st, SIGBUS , buf, buflen);
1699  print_signal_handler(st, SIGFPE , buf, buflen);
1700  print_signal_handler(st, SIGPIPE, buf, buflen);
1701  print_signal_handler(st, SIGXFSZ, buf, buflen);
1702  print_signal_handler(st, SIGILL , buf, buflen);
1703  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1704  print_signal_handler(st, SR_signum, buf, buflen);
1705  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1706  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1707  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1708  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1709}
1710
1711static char saved_jvm_path[MAXPATHLEN] = {0};
1712
1713// Find the full path to the current module, libjvm
1714void os::jvm_path(char *buf, jint buflen) {
1715  // Error checking.
1716  if (buflen < MAXPATHLEN) {
1717    assert(false, "must use a large-enough buffer");
1718    buf[0] = '\0';
1719    return;
1720  }
1721  // Lazy resolve the path to current module.
1722  if (saved_jvm_path[0] != 0) {
1723    strcpy(buf, saved_jvm_path);
1724    return;
1725  }
1726
1727  char dli_fname[MAXPATHLEN];
1728  bool ret = dll_address_to_library_name(
1729                CAST_FROM_FN_PTR(address, os::jvm_path),
1730                dli_fname, sizeof(dli_fname), NULL);
1731  assert(ret != 0, "cannot locate libjvm");
1732  char *rp = realpath(dli_fname, buf);
1733  if (rp == NULL)
1734    return;
1735
1736  if (Arguments::created_by_gamma_launcher()) {
1737    // Support for the gamma launcher.  Typical value for buf is
1738    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1739    // the right place in the string, then assume we are installed in a JDK and
1740    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1741    // construct a path to the JVM being overridden.
1742
1743    const char *p = buf + strlen(buf) - 1;
1744    for (int count = 0; p > buf && count < 5; ++count) {
1745      for (--p; p > buf && *p != '/'; --p)
1746        /* empty */ ;
1747    }
1748
1749    if (strncmp(p, "/jre/lib/", 9) != 0) {
1750      // Look for JAVA_HOME in the environment.
1751      char* java_home_var = ::getenv("JAVA_HOME");
1752      if (java_home_var != NULL && java_home_var[0] != 0) {
1753        char* jrelib_p;
1754        int len;
1755
1756        // Check the current module name "libjvm"
1757        p = strrchr(buf, '/');
1758        assert(strstr(p, "/libjvm") == p, "invalid library name");
1759
1760        rp = realpath(java_home_var, buf);
1761        if (rp == NULL)
1762          return;
1763
1764        // determine if this is a legacy image or modules image
1765        // modules image doesn't have "jre" subdirectory
1766        len = strlen(buf);
1767        jrelib_p = buf + len;
1768
1769        // Add the appropriate library subdir
1770        snprintf(jrelib_p, buflen-len, "/jre/lib");
1771        if (0 != access(buf, F_OK)) {
1772          snprintf(jrelib_p, buflen-len, "/lib");
1773        }
1774
1775        // Add the appropriate client or server subdir
1776        len = strlen(buf);
1777        jrelib_p = buf + len;
1778        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1779        if (0 != access(buf, F_OK)) {
1780          snprintf(jrelib_p, buflen-len, "");
1781        }
1782
1783        // If the path exists within JAVA_HOME, add the JVM library name
1784        // to complete the path to JVM being overridden.  Otherwise fallback
1785        // to the path to the current library.
1786        if (0 == access(buf, F_OK)) {
1787          // Use current module name "libjvm"
1788          len = strlen(buf);
1789          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1790        } else {
1791          // Fall back to path of current library
1792          rp = realpath(dli_fname, buf);
1793          if (rp == NULL)
1794            return;
1795        }
1796      }
1797    }
1798  }
1799
1800  strcpy(saved_jvm_path, buf);
1801}
1802
1803void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1804  // no prefix required, not even "_"
1805}
1806
1807void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1808  // no suffix required
1809}
1810
1811////////////////////////////////////////////////////////////////////////////////
1812// sun.misc.Signal support
1813
1814static volatile jint sigint_count = 0;
1815
1816static void
1817UserHandler(int sig, void *siginfo, void *context) {
1818  // 4511530 - sem_post is serialized and handled by the manager thread. When
1819  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1820  // don't want to flood the manager thread with sem_post requests.
1821  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1822      return;
1823
1824  // Ctrl-C is pressed during error reporting, likely because the error
1825  // handler fails to abort. Let VM die immediately.
1826  if (sig == SIGINT && is_error_reported()) {
1827     os::die();
1828  }
1829
1830  os::signal_notify(sig);
1831}
1832
1833void* os::user_handler() {
1834  return CAST_FROM_FN_PTR(void*, UserHandler);
1835}
1836
1837extern "C" {
1838  typedef void (*sa_handler_t)(int);
1839  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1840}
1841
1842void* os::signal(int signal_number, void* handler) {
1843  struct sigaction sigAct, oldSigAct;
1844
1845  sigfillset(&(sigAct.sa_mask));
1846  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1847  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1848
1849  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1850    // -1 means registration failed
1851    return (void *)-1;
1852  }
1853
1854  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1855}
1856
1857void os::signal_raise(int signal_number) {
1858  ::raise(signal_number);
1859}
1860
1861/*
1862 * The following code is moved from os.cpp for making this
1863 * code platform specific, which it is by its very nature.
1864 */
1865
1866// Will be modified when max signal is changed to be dynamic
1867int os::sigexitnum_pd() {
1868  return NSIG;
1869}
1870
1871// a counter for each possible signal value
1872static volatile jint pending_signals[NSIG+1] = { 0 };
1873
1874// Bsd(POSIX) specific hand shaking semaphore.
1875#ifdef __APPLE__
1876static semaphore_t sig_sem;
1877#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1878#define SEM_WAIT(sem)           semaphore_wait(sem);
1879#define SEM_POST(sem)           semaphore_signal(sem);
1880#else
1881static sem_t sig_sem;
1882#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1883#define SEM_WAIT(sem)           sem_wait(&sem);
1884#define SEM_POST(sem)           sem_post(&sem);
1885#endif
1886
1887void os::signal_init_pd() {
1888  // Initialize signal structures
1889  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1890
1891  // Initialize signal semaphore
1892  ::SEM_INIT(sig_sem, 0);
1893}
1894
1895void os::signal_notify(int sig) {
1896  Atomic::inc(&pending_signals[sig]);
1897  ::SEM_POST(sig_sem);
1898}
1899
1900static int check_pending_signals(bool wait) {
1901  Atomic::store(0, &sigint_count);
1902  for (;;) {
1903    for (int i = 0; i < NSIG + 1; i++) {
1904      jint n = pending_signals[i];
1905      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1906        return i;
1907      }
1908    }
1909    if (!wait) {
1910      return -1;
1911    }
1912    JavaThread *thread = JavaThread::current();
1913    ThreadBlockInVM tbivm(thread);
1914
1915    bool threadIsSuspended;
1916    do {
1917      thread->set_suspend_equivalent();
1918      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1919      ::SEM_WAIT(sig_sem);
1920
1921      // were we externally suspended while we were waiting?
1922      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1923      if (threadIsSuspended) {
1924        //
1925        // The semaphore has been incremented, but while we were waiting
1926        // another thread suspended us. We don't want to continue running
1927        // while suspended because that would surprise the thread that
1928        // suspended us.
1929        //
1930        ::SEM_POST(sig_sem);
1931
1932        thread->java_suspend_self();
1933      }
1934    } while (threadIsSuspended);
1935  }
1936}
1937
1938int os::signal_lookup() {
1939  return check_pending_signals(false);
1940}
1941
1942int os::signal_wait() {
1943  return check_pending_signals(true);
1944}
1945
1946////////////////////////////////////////////////////////////////////////////////
1947// Virtual Memory
1948
1949int os::vm_page_size() {
1950  // Seems redundant as all get out
1951  assert(os::Bsd::page_size() != -1, "must call os::init");
1952  return os::Bsd::page_size();
1953}
1954
1955// Solaris allocates memory by pages.
1956int os::vm_allocation_granularity() {
1957  assert(os::Bsd::page_size() != -1, "must call os::init");
1958  return os::Bsd::page_size();
1959}
1960
1961// Rationale behind this function:
1962//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
1963//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
1964//  samples for JITted code. Here we create private executable mapping over the code cache
1965//  and then we can use standard (well, almost, as mapping can change) way to provide
1966//  info for the reporting script by storing timestamp and location of symbol
1967void bsd_wrap_code(char* base, size_t size) {
1968  static volatile jint cnt = 0;
1969
1970  if (!UseOprofile) {
1971    return;
1972  }
1973
1974  char buf[PATH_MAX + 1];
1975  int num = Atomic::add(1, &cnt);
1976
1977  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
1978           os::get_temp_directory(), os::current_process_id(), num);
1979  unlink(buf);
1980
1981  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
1982
1983  if (fd != -1) {
1984    off_t rv = ::lseek(fd, size-2, SEEK_SET);
1985    if (rv != (off_t)-1) {
1986      if (::write(fd, "", 1) == 1) {
1987        mmap(base, size,
1988             PROT_READ|PROT_WRITE|PROT_EXEC,
1989             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
1990      }
1991    }
1992    ::close(fd);
1993    unlink(buf);
1994  }
1995}
1996
1997// NOTE: Bsd kernel does not really reserve the pages for us.
1998//       All it does is to check if there are enough free pages
1999//       left at the time of mmap(). This could be a potential
2000//       problem.
2001bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2002  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2003#ifdef __OpenBSD__
2004  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2005  return ::mprotect(addr, size, prot) == 0;
2006#else
2007  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2008                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2009  return res != (uintptr_t) MAP_FAILED;
2010#endif
2011}
2012
2013
2014bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2015                       bool exec) {
2016  return commit_memory(addr, size, exec);
2017}
2018
2019void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2020}
2021
2022void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2023  ::madvise(addr, bytes, MADV_DONTNEED);
2024}
2025
2026void os::numa_make_global(char *addr, size_t bytes) {
2027}
2028
2029void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2030}
2031
2032bool os::numa_topology_changed()   { return false; }
2033
2034size_t os::numa_get_groups_num() {
2035  return 1;
2036}
2037
2038int os::numa_get_group_id() {
2039  return 0;
2040}
2041
2042size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2043  if (size > 0) {
2044    ids[0] = 0;
2045    return 1;
2046  }
2047  return 0;
2048}
2049
2050bool os::get_page_info(char *start, page_info* info) {
2051  return false;
2052}
2053
2054char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2055  return end;
2056}
2057
2058
2059bool os::pd_uncommit_memory(char* addr, size_t size) {
2060#ifdef __OpenBSD__
2061  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2062  return ::mprotect(addr, size, PROT_NONE) == 0;
2063#else
2064  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2065                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2066  return res  != (uintptr_t) MAP_FAILED;
2067#endif
2068}
2069
2070bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2071  return os::commit_memory(addr, size);
2072}
2073
2074// If this is a growable mapping, remove the guard pages entirely by
2075// munmap()ping them.  If not, just call uncommit_memory().
2076bool os::remove_stack_guard_pages(char* addr, size_t size) {
2077  return os::uncommit_memory(addr, size);
2078}
2079
2080static address _highest_vm_reserved_address = NULL;
2081
2082// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2083// at 'requested_addr'. If there are existing memory mappings at the same
2084// location, however, they will be overwritten. If 'fixed' is false,
2085// 'requested_addr' is only treated as a hint, the return value may or
2086// may not start from the requested address. Unlike Bsd mmap(), this
2087// function returns NULL to indicate failure.
2088static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2089  char * addr;
2090  int flags;
2091
2092  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2093  if (fixed) {
2094    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2095    flags |= MAP_FIXED;
2096  }
2097
2098  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2099  // to PROT_EXEC if executable when we commit the page.
2100  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2101                       flags, -1, 0);
2102
2103  if (addr != MAP_FAILED) {
2104    // anon_mmap() should only get called during VM initialization,
2105    // don't need lock (actually we can skip locking even it can be called
2106    // from multiple threads, because _highest_vm_reserved_address is just a
2107    // hint about the upper limit of non-stack memory regions.)
2108    if ((address)addr + bytes > _highest_vm_reserved_address) {
2109      _highest_vm_reserved_address = (address)addr + bytes;
2110    }
2111  }
2112
2113  return addr == MAP_FAILED ? NULL : addr;
2114}
2115
2116// Don't update _highest_vm_reserved_address, because there might be memory
2117// regions above addr + size. If so, releasing a memory region only creates
2118// a hole in the address space, it doesn't help prevent heap-stack collision.
2119//
2120static int anon_munmap(char * addr, size_t size) {
2121  return ::munmap(addr, size) == 0;
2122}
2123
2124char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2125                         size_t alignment_hint) {
2126  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2127}
2128
2129bool os::pd_release_memory(char* addr, size_t size) {
2130  return anon_munmap(addr, size);
2131}
2132
2133static address highest_vm_reserved_address() {
2134  return _highest_vm_reserved_address;
2135}
2136
2137static bool bsd_mprotect(char* addr, size_t size, int prot) {
2138  // Bsd wants the mprotect address argument to be page aligned.
2139  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2140
2141  // According to SUSv3, mprotect() should only be used with mappings
2142  // established by mmap(), and mmap() always maps whole pages. Unaligned
2143  // 'addr' likely indicates problem in the VM (e.g. trying to change
2144  // protection of malloc'ed or statically allocated memory). Check the
2145  // caller if you hit this assert.
2146  assert(addr == bottom, "sanity check");
2147
2148  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2149  return ::mprotect(bottom, size, prot) == 0;
2150}
2151
2152// Set protections specified
2153bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2154                        bool is_committed) {
2155  unsigned int p = 0;
2156  switch (prot) {
2157  case MEM_PROT_NONE: p = PROT_NONE; break;
2158  case MEM_PROT_READ: p = PROT_READ; break;
2159  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2160  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2161  default:
2162    ShouldNotReachHere();
2163  }
2164  // is_committed is unused.
2165  return bsd_mprotect(addr, bytes, p);
2166}
2167
2168bool os::guard_memory(char* addr, size_t size) {
2169  return bsd_mprotect(addr, size, PROT_NONE);
2170}
2171
2172bool os::unguard_memory(char* addr, size_t size) {
2173  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2174}
2175
2176bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2177  return false;
2178}
2179
2180/*
2181* Set the coredump_filter bits to include largepages in core dump (bit 6)
2182*
2183* From the coredump_filter documentation:
2184*
2185* - (bit 0) anonymous private memory
2186* - (bit 1) anonymous shared memory
2187* - (bit 2) file-backed private memory
2188* - (bit 3) file-backed shared memory
2189* - (bit 4) ELF header pages in file-backed private memory areas (it is
2190*           effective only if the bit 2 is cleared)
2191* - (bit 5) hugetlb private memory
2192* - (bit 6) hugetlb shared memory
2193*/
2194static void set_coredump_filter(void) {
2195  FILE *f;
2196  long cdm;
2197
2198  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2199    return;
2200  }
2201
2202  if (fscanf(f, "%lx", &cdm) != 1) {
2203    fclose(f);
2204    return;
2205  }
2206
2207  rewind(f);
2208
2209  if ((cdm & LARGEPAGES_BIT) == 0) {
2210    cdm |= LARGEPAGES_BIT;
2211    fprintf(f, "%#lx", cdm);
2212  }
2213
2214  fclose(f);
2215}
2216
2217// Large page support
2218
2219static size_t _large_page_size = 0;
2220
2221void os::large_page_init() {
2222}
2223
2224
2225char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2226  // "exec" is passed in but not used.  Creating the shared image for
2227  // the code cache doesn't have an SHM_X executable permission to check.
2228  assert(UseLargePages && UseSHM, "only for SHM large pages");
2229
2230  key_t key = IPC_PRIVATE;
2231  char *addr;
2232
2233  bool warn_on_failure = UseLargePages &&
2234                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2235                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2236                        );
2237  char msg[128];
2238
2239  // Create a large shared memory region to attach to based on size.
2240  // Currently, size is the total size of the heap
2241  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2242  if (shmid == -1) {
2243     // Possible reasons for shmget failure:
2244     // 1. shmmax is too small for Java heap.
2245     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2246     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2247     // 2. not enough large page memory.
2248     //    > check available large pages: cat /proc/meminfo
2249     //    > increase amount of large pages:
2250     //          echo new_value > /proc/sys/vm/nr_hugepages
2251     //      Note 1: different Bsd may use different name for this property,
2252     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2253     //      Note 2: it's possible there's enough physical memory available but
2254     //            they are so fragmented after a long run that they can't
2255     //            coalesce into large pages. Try to reserve large pages when
2256     //            the system is still "fresh".
2257     if (warn_on_failure) {
2258       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2259       warning(msg);
2260     }
2261     return NULL;
2262  }
2263
2264  // attach to the region
2265  addr = (char*)shmat(shmid, req_addr, 0);
2266  int err = errno;
2267
2268  // Remove shmid. If shmat() is successful, the actual shared memory segment
2269  // will be deleted when it's detached by shmdt() or when the process
2270  // terminates. If shmat() is not successful this will remove the shared
2271  // segment immediately.
2272  shmctl(shmid, IPC_RMID, NULL);
2273
2274  if ((intptr_t)addr == -1) {
2275     if (warn_on_failure) {
2276       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2277       warning(msg);
2278     }
2279     return NULL;
2280  }
2281
2282  // The memory is committed
2283  address pc = CALLER_PC;
2284  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
2285  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
2286
2287  return addr;
2288}
2289
2290bool os::release_memory_special(char* base, size_t bytes) {
2291  // detaching the SHM segment will also delete it, see reserve_memory_special()
2292  int rslt = shmdt(base);
2293  if (rslt == 0) {
2294    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
2295    MemTracker::record_virtual_memory_release((address)base, bytes);
2296    return true;
2297  } else {
2298    return false;
2299  }
2300
2301}
2302
2303size_t os::large_page_size() {
2304  return _large_page_size;
2305}
2306
2307// HugeTLBFS allows application to commit large page memory on demand;
2308// with SysV SHM the entire memory region must be allocated as shared
2309// memory.
2310bool os::can_commit_large_page_memory() {
2311  return UseHugeTLBFS;
2312}
2313
2314bool os::can_execute_large_page_memory() {
2315  return UseHugeTLBFS;
2316}
2317
2318// Reserve memory at an arbitrary address, only if that area is
2319// available (and not reserved for something else).
2320
2321char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2322  const int max_tries = 10;
2323  char* base[max_tries];
2324  size_t size[max_tries];
2325  const size_t gap = 0x000000;
2326
2327  // Assert only that the size is a multiple of the page size, since
2328  // that's all that mmap requires, and since that's all we really know
2329  // about at this low abstraction level.  If we need higher alignment,
2330  // we can either pass an alignment to this method or verify alignment
2331  // in one of the methods further up the call chain.  See bug 5044738.
2332  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2333
2334  // Repeatedly allocate blocks until the block is allocated at the
2335  // right spot. Give up after max_tries. Note that reserve_memory() will
2336  // automatically update _highest_vm_reserved_address if the call is
2337  // successful. The variable tracks the highest memory address every reserved
2338  // by JVM. It is used to detect heap-stack collision if running with
2339  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2340  // space than needed, it could confuse the collision detecting code. To
2341  // solve the problem, save current _highest_vm_reserved_address and
2342  // calculate the correct value before return.
2343  address old_highest = _highest_vm_reserved_address;
2344
2345  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2346  // if kernel honors the hint then we can return immediately.
2347  char * addr = anon_mmap(requested_addr, bytes, false);
2348  if (addr == requested_addr) {
2349     return requested_addr;
2350  }
2351
2352  if (addr != NULL) {
2353     // mmap() is successful but it fails to reserve at the requested address
2354     anon_munmap(addr, bytes);
2355  }
2356
2357  int i;
2358  for (i = 0; i < max_tries; ++i) {
2359    base[i] = reserve_memory(bytes);
2360
2361    if (base[i] != NULL) {
2362      // Is this the block we wanted?
2363      if (base[i] == requested_addr) {
2364        size[i] = bytes;
2365        break;
2366      }
2367
2368      // Does this overlap the block we wanted? Give back the overlapped
2369      // parts and try again.
2370
2371      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2372      if (top_overlap >= 0 && top_overlap < bytes) {
2373        unmap_memory(base[i], top_overlap);
2374        base[i] += top_overlap;
2375        size[i] = bytes - top_overlap;
2376      } else {
2377        size_t bottom_overlap = base[i] + bytes - requested_addr;
2378        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2379          unmap_memory(requested_addr, bottom_overlap);
2380          size[i] = bytes - bottom_overlap;
2381        } else {
2382          size[i] = bytes;
2383        }
2384      }
2385    }
2386  }
2387
2388  // Give back the unused reserved pieces.
2389
2390  for (int j = 0; j < i; ++j) {
2391    if (base[j] != NULL) {
2392      unmap_memory(base[j], size[j]);
2393    }
2394  }
2395
2396  if (i < max_tries) {
2397    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2398    return requested_addr;
2399  } else {
2400    _highest_vm_reserved_address = old_highest;
2401    return NULL;
2402  }
2403}
2404
2405size_t os::read(int fd, void *buf, unsigned int nBytes) {
2406  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2407}
2408
2409// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2410// Solaris uses poll(), bsd uses park().
2411// Poll() is likely a better choice, assuming that Thread.interrupt()
2412// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2413// SIGSEGV, see 4355769.
2414
2415int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2416  assert(thread == Thread::current(),  "thread consistency check");
2417
2418  ParkEvent * const slp = thread->_SleepEvent ;
2419  slp->reset() ;
2420  OrderAccess::fence() ;
2421
2422  if (interruptible) {
2423    jlong prevtime = javaTimeNanos();
2424
2425    for (;;) {
2426      if (os::is_interrupted(thread, true)) {
2427        return OS_INTRPT;
2428      }
2429
2430      jlong newtime = javaTimeNanos();
2431
2432      if (newtime - prevtime < 0) {
2433        // time moving backwards, should only happen if no monotonic clock
2434        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2435        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2436      } else {
2437        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2438      }
2439
2440      if(millis <= 0) {
2441        return OS_OK;
2442      }
2443
2444      prevtime = newtime;
2445
2446      {
2447        assert(thread->is_Java_thread(), "sanity check");
2448        JavaThread *jt = (JavaThread *) thread;
2449        ThreadBlockInVM tbivm(jt);
2450        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2451
2452        jt->set_suspend_equivalent();
2453        // cleared by handle_special_suspend_equivalent_condition() or
2454        // java_suspend_self() via check_and_wait_while_suspended()
2455
2456        slp->park(millis);
2457
2458        // were we externally suspended while we were waiting?
2459        jt->check_and_wait_while_suspended();
2460      }
2461    }
2462  } else {
2463    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2464    jlong prevtime = javaTimeNanos();
2465
2466    for (;;) {
2467      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2468      // the 1st iteration ...
2469      jlong newtime = javaTimeNanos();
2470
2471      if (newtime - prevtime < 0) {
2472        // time moving backwards, should only happen if no monotonic clock
2473        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2474        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2475      } else {
2476        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2477      }
2478
2479      if(millis <= 0) break ;
2480
2481      prevtime = newtime;
2482      slp->park(millis);
2483    }
2484    return OS_OK ;
2485  }
2486}
2487
2488int os::naked_sleep() {
2489  // %% make the sleep time an integer flag. for now use 1 millisec.
2490  return os::sleep(Thread::current(), 1, false);
2491}
2492
2493// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2494void os::infinite_sleep() {
2495  while (true) {    // sleep forever ...
2496    ::sleep(100);   // ... 100 seconds at a time
2497  }
2498}
2499
2500// Used to convert frequent JVM_Yield() to nops
2501bool os::dont_yield() {
2502  return DontYieldALot;
2503}
2504
2505void os::yield() {
2506  sched_yield();
2507}
2508
2509os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2510
2511void os::yield_all(int attempts) {
2512  // Yields to all threads, including threads with lower priorities
2513  // Threads on Bsd are all with same priority. The Solaris style
2514  // os::yield_all() with nanosleep(1ms) is not necessary.
2515  sched_yield();
2516}
2517
2518// Called from the tight loops to possibly influence time-sharing heuristics
2519void os::loop_breaker(int attempts) {
2520  os::yield_all(attempts);
2521}
2522
2523////////////////////////////////////////////////////////////////////////////////
2524// thread priority support
2525
2526// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2527// only supports dynamic priority, static priority must be zero. For real-time
2528// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2529// However, for large multi-threaded applications, SCHED_RR is not only slower
2530// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2531// of 5 runs - Sep 2005).
2532//
2533// The following code actually changes the niceness of kernel-thread/LWP. It
2534// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2535// not the entire user process, and user level threads are 1:1 mapped to kernel
2536// threads. It has always been the case, but could change in the future. For
2537// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2538// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2539
2540#if !defined(__APPLE__)
2541int os::java_to_os_priority[CriticalPriority + 1] = {
2542  19,              // 0 Entry should never be used
2543
2544   0,              // 1 MinPriority
2545   3,              // 2
2546   6,              // 3
2547
2548  10,              // 4
2549  15,              // 5 NormPriority
2550  18,              // 6
2551
2552  21,              // 7
2553  25,              // 8
2554  28,              // 9 NearMaxPriority
2555
2556  31,              // 10 MaxPriority
2557
2558  31               // 11 CriticalPriority
2559};
2560#else
2561/* Using Mach high-level priority assignments */
2562int os::java_to_os_priority[CriticalPriority + 1] = {
2563   0,              // 0 Entry should never be used (MINPRI_USER)
2564
2565  27,              // 1 MinPriority
2566  28,              // 2
2567  29,              // 3
2568
2569  30,              // 4
2570  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2571  32,              // 6
2572
2573  33,              // 7
2574  34,              // 8
2575  35,              // 9 NearMaxPriority
2576
2577  36,              // 10 MaxPriority
2578
2579  36               // 11 CriticalPriority
2580};
2581#endif
2582
2583static int prio_init() {
2584  if (ThreadPriorityPolicy == 1) {
2585    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2586    // if effective uid is not root. Perhaps, a more elegant way of doing
2587    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2588    if (geteuid() != 0) {
2589      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2590        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2591      }
2592      ThreadPriorityPolicy = 0;
2593    }
2594  }
2595  if (UseCriticalJavaThreadPriority) {
2596    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2597  }
2598  return 0;
2599}
2600
2601OSReturn os::set_native_priority(Thread* thread, int newpri) {
2602  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2603
2604#ifdef __OpenBSD__
2605  // OpenBSD pthread_setprio starves low priority threads
2606  return OS_OK;
2607#elif defined(__FreeBSD__)
2608  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2609#elif defined(__APPLE__) || defined(__NetBSD__)
2610  struct sched_param sp;
2611  int policy;
2612  pthread_t self = pthread_self();
2613
2614  if (pthread_getschedparam(self, &policy, &sp) != 0)
2615    return OS_ERR;
2616
2617  sp.sched_priority = newpri;
2618  if (pthread_setschedparam(self, policy, &sp) != 0)
2619    return OS_ERR;
2620
2621  return OS_OK;
2622#else
2623  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2624  return (ret == 0) ? OS_OK : OS_ERR;
2625#endif
2626}
2627
2628OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2629  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2630    *priority_ptr = java_to_os_priority[NormPriority];
2631    return OS_OK;
2632  }
2633
2634  errno = 0;
2635#if defined(__OpenBSD__) || defined(__FreeBSD__)
2636  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2637#elif defined(__APPLE__) || defined(__NetBSD__)
2638  int policy;
2639  struct sched_param sp;
2640
2641  pthread_getschedparam(pthread_self(), &policy, &sp);
2642  *priority_ptr = sp.sched_priority;
2643#else
2644  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2645#endif
2646  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2647}
2648
2649// Hint to the underlying OS that a task switch would not be good.
2650// Void return because it's a hint and can fail.
2651void os::hint_no_preempt() {}
2652
2653////////////////////////////////////////////////////////////////////////////////
2654// suspend/resume support
2655
2656//  the low-level signal-based suspend/resume support is a remnant from the
2657//  old VM-suspension that used to be for java-suspension, safepoints etc,
2658//  within hotspot. Now there is a single use-case for this:
2659//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2660//      that runs in the watcher thread.
2661//  The remaining code is greatly simplified from the more general suspension
2662//  code that used to be used.
2663//
2664//  The protocol is quite simple:
2665//  - suspend:
2666//      - sends a signal to the target thread
2667//      - polls the suspend state of the osthread using a yield loop
2668//      - target thread signal handler (SR_handler) sets suspend state
2669//        and blocks in sigsuspend until continued
2670//  - resume:
2671//      - sets target osthread state to continue
2672//      - sends signal to end the sigsuspend loop in the SR_handler
2673//
2674//  Note that the SR_lock plays no role in this suspend/resume protocol.
2675//
2676
2677static void resume_clear_context(OSThread *osthread) {
2678  osthread->set_ucontext(NULL);
2679  osthread->set_siginfo(NULL);
2680
2681  // notify the suspend action is completed, we have now resumed
2682  osthread->sr.clear_suspended();
2683}
2684
2685static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2686  osthread->set_ucontext(context);
2687  osthread->set_siginfo(siginfo);
2688}
2689
2690//
2691// Handler function invoked when a thread's execution is suspended or
2692// resumed. We have to be careful that only async-safe functions are
2693// called here (Note: most pthread functions are not async safe and
2694// should be avoided.)
2695//
2696// Note: sigwait() is a more natural fit than sigsuspend() from an
2697// interface point of view, but sigwait() prevents the signal hander
2698// from being run. libpthread would get very confused by not having
2699// its signal handlers run and prevents sigwait()'s use with the
2700// mutex granting granting signal.
2701//
2702// Currently only ever called on the VMThread
2703//
2704static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2705  // Save and restore errno to avoid confusing native code with EINTR
2706  // after sigsuspend.
2707  int old_errno = errno;
2708
2709  Thread* thread = Thread::current();
2710  OSThread* osthread = thread->osthread();
2711  assert(thread->is_VM_thread(), "Must be VMThread");
2712  // read current suspend action
2713  int action = osthread->sr.suspend_action();
2714  if (action == os::Bsd::SuspendResume::SR_SUSPEND) {
2715    suspend_save_context(osthread, siginfo, context);
2716
2717    // Notify the suspend action is about to be completed. do_suspend()
2718    // waits until SR_SUSPENDED is set and then returns. We will wait
2719    // here for a resume signal and that completes the suspend-other
2720    // action. do_suspend/do_resume is always called as a pair from
2721    // the same thread - so there are no races
2722
2723    // notify the caller
2724    osthread->sr.set_suspended();
2725
2726    sigset_t suspend_set;  // signals for sigsuspend()
2727
2728    // get current set of blocked signals and unblock resume signal
2729    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2730    sigdelset(&suspend_set, SR_signum);
2731
2732    // wait here until we are resumed
2733    do {
2734      sigsuspend(&suspend_set);
2735      // ignore all returns until we get a resume signal
2736    } while (osthread->sr.suspend_action() != os::Bsd::SuspendResume::SR_CONTINUE);
2737
2738    resume_clear_context(osthread);
2739
2740  } else {
2741    assert(action == os::Bsd::SuspendResume::SR_CONTINUE, "unexpected sr action");
2742    // nothing special to do - just leave the handler
2743  }
2744
2745  errno = old_errno;
2746}
2747
2748
2749static int SR_initialize() {
2750  struct sigaction act;
2751  char *s;
2752  /* Get signal number to use for suspend/resume */
2753  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2754    int sig = ::strtol(s, 0, 10);
2755    if (sig > 0 || sig < NSIG) {
2756        SR_signum = sig;
2757    }
2758  }
2759
2760  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2761        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2762
2763  sigemptyset(&SR_sigset);
2764  sigaddset(&SR_sigset, SR_signum);
2765
2766  /* Set up signal handler for suspend/resume */
2767  act.sa_flags = SA_RESTART|SA_SIGINFO;
2768  act.sa_handler = (void (*)(int)) SR_handler;
2769
2770  // SR_signum is blocked by default.
2771  // 4528190 - We also need to block pthread restart signal (32 on all
2772  // supported Bsd platforms). Note that BsdThreads need to block
2773  // this signal for all threads to work properly. So we don't have
2774  // to use hard-coded signal number when setting up the mask.
2775  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2776
2777  if (sigaction(SR_signum, &act, 0) == -1) {
2778    return -1;
2779  }
2780
2781  // Save signal flag
2782  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2783  return 0;
2784}
2785
2786static int SR_finalize() {
2787  return 0;
2788}
2789
2790
2791// returns true on success and false on error - really an error is fatal
2792// but this seems the normal response to library errors
2793static bool do_suspend(OSThread* osthread) {
2794  // mark as suspended and send signal
2795  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_SUSPEND);
2796  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2797  assert_status(status == 0, status, "pthread_kill");
2798
2799  // check status and wait until notified of suspension
2800  if (status == 0) {
2801    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2802      os::yield_all(i);
2803    }
2804    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2805    return true;
2806  }
2807  else {
2808    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2809    return false;
2810  }
2811}
2812
2813static void do_resume(OSThread* osthread) {
2814  assert(osthread->sr.is_suspended(), "thread should be suspended");
2815  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_CONTINUE);
2816
2817  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2818  assert_status(status == 0, status, "pthread_kill");
2819  // check status and wait unit notified of resumption
2820  if (status == 0) {
2821    for (int i = 0; osthread->sr.is_suspended(); i++) {
2822      os::yield_all(i);
2823    }
2824  }
2825  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2826}
2827
2828////////////////////////////////////////////////////////////////////////////////
2829// interrupt support
2830
2831void os::interrupt(Thread* thread) {
2832  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2833    "possibility of dangling Thread pointer");
2834
2835  OSThread* osthread = thread->osthread();
2836
2837  if (!osthread->interrupted()) {
2838    osthread->set_interrupted(true);
2839    // More than one thread can get here with the same value of osthread,
2840    // resulting in multiple notifications.  We do, however, want the store
2841    // to interrupted() to be visible to other threads before we execute unpark().
2842    OrderAccess::fence();
2843    ParkEvent * const slp = thread->_SleepEvent ;
2844    if (slp != NULL) slp->unpark() ;
2845  }
2846
2847  // For JSR166. Unpark even if interrupt status already was set
2848  if (thread->is_Java_thread())
2849    ((JavaThread*)thread)->parker()->unpark();
2850
2851  ParkEvent * ev = thread->_ParkEvent ;
2852  if (ev != NULL) ev->unpark() ;
2853
2854}
2855
2856bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2857  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2858    "possibility of dangling Thread pointer");
2859
2860  OSThread* osthread = thread->osthread();
2861
2862  bool interrupted = osthread->interrupted();
2863
2864  if (interrupted && clear_interrupted) {
2865    osthread->set_interrupted(false);
2866    // consider thread->_SleepEvent->reset() ... optional optimization
2867  }
2868
2869  return interrupted;
2870}
2871
2872///////////////////////////////////////////////////////////////////////////////////
2873// signal handling (except suspend/resume)
2874
2875// This routine may be used by user applications as a "hook" to catch signals.
2876// The user-defined signal handler must pass unrecognized signals to this
2877// routine, and if it returns true (non-zero), then the signal handler must
2878// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2879// routine will never retun false (zero), but instead will execute a VM panic
2880// routine kill the process.
2881//
2882// If this routine returns false, it is OK to call it again.  This allows
2883// the user-defined signal handler to perform checks either before or after
2884// the VM performs its own checks.  Naturally, the user code would be making
2885// a serious error if it tried to handle an exception (such as a null check
2886// or breakpoint) that the VM was generating for its own correct operation.
2887//
2888// This routine may recognize any of the following kinds of signals:
2889//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2890// It should be consulted by handlers for any of those signals.
2891//
2892// The caller of this routine must pass in the three arguments supplied
2893// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2894// field of the structure passed to sigaction().  This routine assumes that
2895// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2896//
2897// Note that the VM will print warnings if it detects conflicting signal
2898// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2899//
2900extern "C" JNIEXPORT int
2901JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2902                        void* ucontext, int abort_if_unrecognized);
2903
2904void signalHandler(int sig, siginfo_t* info, void* uc) {
2905  assert(info != NULL && uc != NULL, "it must be old kernel");
2906  int orig_errno = errno;  // Preserve errno value over signal handler.
2907  JVM_handle_bsd_signal(sig, info, uc, true);
2908  errno = orig_errno;
2909}
2910
2911
2912// This boolean allows users to forward their own non-matching signals
2913// to JVM_handle_bsd_signal, harmlessly.
2914bool os::Bsd::signal_handlers_are_installed = false;
2915
2916// For signal-chaining
2917struct sigaction os::Bsd::sigact[MAXSIGNUM];
2918unsigned int os::Bsd::sigs = 0;
2919bool os::Bsd::libjsig_is_loaded = false;
2920typedef struct sigaction *(*get_signal_t)(int);
2921get_signal_t os::Bsd::get_signal_action = NULL;
2922
2923struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2924  struct sigaction *actp = NULL;
2925
2926  if (libjsig_is_loaded) {
2927    // Retrieve the old signal handler from libjsig
2928    actp = (*get_signal_action)(sig);
2929  }
2930  if (actp == NULL) {
2931    // Retrieve the preinstalled signal handler from jvm
2932    actp = get_preinstalled_handler(sig);
2933  }
2934
2935  return actp;
2936}
2937
2938static bool call_chained_handler(struct sigaction *actp, int sig,
2939                                 siginfo_t *siginfo, void *context) {
2940  // Call the old signal handler
2941  if (actp->sa_handler == SIG_DFL) {
2942    // It's more reasonable to let jvm treat it as an unexpected exception
2943    // instead of taking the default action.
2944    return false;
2945  } else if (actp->sa_handler != SIG_IGN) {
2946    if ((actp->sa_flags & SA_NODEFER) == 0) {
2947      // automaticlly block the signal
2948      sigaddset(&(actp->sa_mask), sig);
2949    }
2950
2951    sa_handler_t hand;
2952    sa_sigaction_t sa;
2953    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2954    // retrieve the chained handler
2955    if (siginfo_flag_set) {
2956      sa = actp->sa_sigaction;
2957    } else {
2958      hand = actp->sa_handler;
2959    }
2960
2961    if ((actp->sa_flags & SA_RESETHAND) != 0) {
2962      actp->sa_handler = SIG_DFL;
2963    }
2964
2965    // try to honor the signal mask
2966    sigset_t oset;
2967    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2968
2969    // call into the chained handler
2970    if (siginfo_flag_set) {
2971      (*sa)(sig, siginfo, context);
2972    } else {
2973      (*hand)(sig);
2974    }
2975
2976    // restore the signal mask
2977    pthread_sigmask(SIG_SETMASK, &oset, 0);
2978  }
2979  // Tell jvm's signal handler the signal is taken care of.
2980  return true;
2981}
2982
2983bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
2984  bool chained = false;
2985  // signal-chaining
2986  if (UseSignalChaining) {
2987    struct sigaction *actp = get_chained_signal_action(sig);
2988    if (actp != NULL) {
2989      chained = call_chained_handler(actp, sig, siginfo, context);
2990    }
2991  }
2992  return chained;
2993}
2994
2995struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
2996  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
2997    return &sigact[sig];
2998  }
2999  return NULL;
3000}
3001
3002void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3003  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3004  sigact[sig] = oldAct;
3005  sigs |= (unsigned int)1 << sig;
3006}
3007
3008// for diagnostic
3009int os::Bsd::sigflags[MAXSIGNUM];
3010
3011int os::Bsd::get_our_sigflags(int sig) {
3012  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3013  return sigflags[sig];
3014}
3015
3016void os::Bsd::set_our_sigflags(int sig, int flags) {
3017  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3018  sigflags[sig] = flags;
3019}
3020
3021void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3022  // Check for overwrite.
3023  struct sigaction oldAct;
3024  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3025
3026  void* oldhand = oldAct.sa_sigaction
3027                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3028                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3029  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3030      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3031      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3032    if (AllowUserSignalHandlers || !set_installed) {
3033      // Do not overwrite; user takes responsibility to forward to us.
3034      return;
3035    } else if (UseSignalChaining) {
3036      // save the old handler in jvm
3037      save_preinstalled_handler(sig, oldAct);
3038      // libjsig also interposes the sigaction() call below and saves the
3039      // old sigaction on it own.
3040    } else {
3041      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3042                    "%#lx for signal %d.", (long)oldhand, sig));
3043    }
3044  }
3045
3046  struct sigaction sigAct;
3047  sigfillset(&(sigAct.sa_mask));
3048  sigAct.sa_handler = SIG_DFL;
3049  if (!set_installed) {
3050    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3051  } else {
3052    sigAct.sa_sigaction = signalHandler;
3053    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3054  }
3055  // Save flags, which are set by ours
3056  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3057  sigflags[sig] = sigAct.sa_flags;
3058
3059  int ret = sigaction(sig, &sigAct, &oldAct);
3060  assert(ret == 0, "check");
3061
3062  void* oldhand2  = oldAct.sa_sigaction
3063                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3064                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3065  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3066}
3067
3068// install signal handlers for signals that HotSpot needs to
3069// handle in order to support Java-level exception handling.
3070
3071void os::Bsd::install_signal_handlers() {
3072  if (!signal_handlers_are_installed) {
3073    signal_handlers_are_installed = true;
3074
3075    // signal-chaining
3076    typedef void (*signal_setting_t)();
3077    signal_setting_t begin_signal_setting = NULL;
3078    signal_setting_t end_signal_setting = NULL;
3079    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3080                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3081    if (begin_signal_setting != NULL) {
3082      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3083                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3084      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3085                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3086      libjsig_is_loaded = true;
3087      assert(UseSignalChaining, "should enable signal-chaining");
3088    }
3089    if (libjsig_is_loaded) {
3090      // Tell libjsig jvm is setting signal handlers
3091      (*begin_signal_setting)();
3092    }
3093
3094    set_signal_handler(SIGSEGV, true);
3095    set_signal_handler(SIGPIPE, true);
3096    set_signal_handler(SIGBUS, true);
3097    set_signal_handler(SIGILL, true);
3098    set_signal_handler(SIGFPE, true);
3099    set_signal_handler(SIGXFSZ, true);
3100
3101#if defined(__APPLE__)
3102    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3103    // signals caught and handled by the JVM. To work around this, we reset the mach task
3104    // signal handler that's placed on our process by CrashReporter. This disables
3105    // CrashReporter-based reporting.
3106    //
3107    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3108    // on caught fatal signals.
3109    //
3110    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3111    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3112    // exception handling, while leaving the standard BSD signal handlers functional.
3113    kern_return_t kr;
3114    kr = task_set_exception_ports(mach_task_self(),
3115        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3116        MACH_PORT_NULL,
3117        EXCEPTION_STATE_IDENTITY,
3118        MACHINE_THREAD_STATE);
3119
3120    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3121#endif
3122
3123    if (libjsig_is_loaded) {
3124      // Tell libjsig jvm finishes setting signal handlers
3125      (*end_signal_setting)();
3126    }
3127
3128    // We don't activate signal checker if libjsig is in place, we trust ourselves
3129    // and if UserSignalHandler is installed all bets are off
3130    if (CheckJNICalls) {
3131      if (libjsig_is_loaded) {
3132        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3133        check_signals = false;
3134      }
3135      if (AllowUserSignalHandlers) {
3136        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3137        check_signals = false;
3138      }
3139    }
3140  }
3141}
3142
3143
3144/////
3145// glibc on Bsd platform uses non-documented flag
3146// to indicate, that some special sort of signal
3147// trampoline is used.
3148// We will never set this flag, and we should
3149// ignore this flag in our diagnostic
3150#ifdef SIGNIFICANT_SIGNAL_MASK
3151#undef SIGNIFICANT_SIGNAL_MASK
3152#endif
3153#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3154
3155static const char* get_signal_handler_name(address handler,
3156                                           char* buf, int buflen) {
3157  int offset;
3158  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3159  if (found) {
3160    // skip directory names
3161    const char *p1, *p2;
3162    p1 = buf;
3163    size_t len = strlen(os::file_separator());
3164    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3165    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3166  } else {
3167    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3168  }
3169  return buf;
3170}
3171
3172static void print_signal_handler(outputStream* st, int sig,
3173                                 char* buf, size_t buflen) {
3174  struct sigaction sa;
3175
3176  sigaction(sig, NULL, &sa);
3177
3178  // See comment for SIGNIFICANT_SIGNAL_MASK define
3179  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3180
3181  st->print("%s: ", os::exception_name(sig, buf, buflen));
3182
3183  address handler = (sa.sa_flags & SA_SIGINFO)
3184    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3185    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3186
3187  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3188    st->print("SIG_DFL");
3189  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3190    st->print("SIG_IGN");
3191  } else {
3192    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3193  }
3194
3195  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3196
3197  address rh = VMError::get_resetted_sighandler(sig);
3198  // May be, handler was resetted by VMError?
3199  if(rh != NULL) {
3200    handler = rh;
3201    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3202  }
3203
3204  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3205
3206  // Check: is it our handler?
3207  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3208     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3209    // It is our signal handler
3210    // check for flags, reset system-used one!
3211    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3212      st->print(
3213                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3214                os::Bsd::get_our_sigflags(sig));
3215    }
3216  }
3217  st->cr();
3218}
3219
3220
3221#define DO_SIGNAL_CHECK(sig) \
3222  if (!sigismember(&check_signal_done, sig)) \
3223    os::Bsd::check_signal_handler(sig)
3224
3225// This method is a periodic task to check for misbehaving JNI applications
3226// under CheckJNI, we can add any periodic checks here
3227
3228void os::run_periodic_checks() {
3229
3230  if (check_signals == false) return;
3231
3232  // SEGV and BUS if overridden could potentially prevent
3233  // generation of hs*.log in the event of a crash, debugging
3234  // such a case can be very challenging, so we absolutely
3235  // check the following for a good measure:
3236  DO_SIGNAL_CHECK(SIGSEGV);
3237  DO_SIGNAL_CHECK(SIGILL);
3238  DO_SIGNAL_CHECK(SIGFPE);
3239  DO_SIGNAL_CHECK(SIGBUS);
3240  DO_SIGNAL_CHECK(SIGPIPE);
3241  DO_SIGNAL_CHECK(SIGXFSZ);
3242
3243
3244  // ReduceSignalUsage allows the user to override these handlers
3245  // see comments at the very top and jvm_solaris.h
3246  if (!ReduceSignalUsage) {
3247    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3248    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3249    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3250    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3251  }
3252
3253  DO_SIGNAL_CHECK(SR_signum);
3254  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3255}
3256
3257typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3258
3259static os_sigaction_t os_sigaction = NULL;
3260
3261void os::Bsd::check_signal_handler(int sig) {
3262  char buf[O_BUFLEN];
3263  address jvmHandler = NULL;
3264
3265
3266  struct sigaction act;
3267  if (os_sigaction == NULL) {
3268    // only trust the default sigaction, in case it has been interposed
3269    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3270    if (os_sigaction == NULL) return;
3271  }
3272
3273  os_sigaction(sig, (struct sigaction*)NULL, &act);
3274
3275
3276  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3277
3278  address thisHandler = (act.sa_flags & SA_SIGINFO)
3279    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3280    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3281
3282
3283  switch(sig) {
3284  case SIGSEGV:
3285  case SIGBUS:
3286  case SIGFPE:
3287  case SIGPIPE:
3288  case SIGILL:
3289  case SIGXFSZ:
3290    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3291    break;
3292
3293  case SHUTDOWN1_SIGNAL:
3294  case SHUTDOWN2_SIGNAL:
3295  case SHUTDOWN3_SIGNAL:
3296  case BREAK_SIGNAL:
3297    jvmHandler = (address)user_handler();
3298    break;
3299
3300  case INTERRUPT_SIGNAL:
3301    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3302    break;
3303
3304  default:
3305    if (sig == SR_signum) {
3306      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3307    } else {
3308      return;
3309    }
3310    break;
3311  }
3312
3313  if (thisHandler != jvmHandler) {
3314    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3315    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3316    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3317    // No need to check this sig any longer
3318    sigaddset(&check_signal_done, sig);
3319  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3320    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3321    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3322    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3323    // No need to check this sig any longer
3324    sigaddset(&check_signal_done, sig);
3325  }
3326
3327  // Dump all the signal
3328  if (sigismember(&check_signal_done, sig)) {
3329    print_signal_handlers(tty, buf, O_BUFLEN);
3330  }
3331}
3332
3333extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3334
3335extern bool signal_name(int signo, char* buf, size_t len);
3336
3337const char* os::exception_name(int exception_code, char* buf, size_t size) {
3338  if (0 < exception_code && exception_code <= SIGRTMAX) {
3339    // signal
3340    if (!signal_name(exception_code, buf, size)) {
3341      jio_snprintf(buf, size, "SIG%d", exception_code);
3342    }
3343    return buf;
3344  } else {
3345    return NULL;
3346  }
3347}
3348
3349// this is called _before_ the most of global arguments have been parsed
3350void os::init(void) {
3351  char dummy;   /* used to get a guess on initial stack address */
3352//  first_hrtime = gethrtime();
3353
3354  // With BsdThreads the JavaMain thread pid (primordial thread)
3355  // is different than the pid of the java launcher thread.
3356  // So, on Bsd, the launcher thread pid is passed to the VM
3357  // via the sun.java.launcher.pid property.
3358  // Use this property instead of getpid() if it was correctly passed.
3359  // See bug 6351349.
3360  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3361
3362  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3363
3364  clock_tics_per_sec = CLK_TCK;
3365
3366  init_random(1234567);
3367
3368  ThreadCritical::initialize();
3369
3370  Bsd::set_page_size(getpagesize());
3371  if (Bsd::page_size() == -1) {
3372    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3373                  strerror(errno)));
3374  }
3375  init_page_sizes((size_t) Bsd::page_size());
3376
3377  Bsd::initialize_system_info();
3378
3379  // main_thread points to the aboriginal thread
3380  Bsd::_main_thread = pthread_self();
3381
3382  Bsd::clock_init();
3383  initial_time_count = os::elapsed_counter();
3384
3385#ifdef __APPLE__
3386  // XXXDARWIN
3387  // Work around the unaligned VM callbacks in hotspot's
3388  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3389  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3390  // alignment when doing symbol lookup. To work around this, we force early
3391  // binding of all symbols now, thus binding when alignment is known-good.
3392  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3393#endif
3394}
3395
3396// To install functions for atexit system call
3397extern "C" {
3398  static void perfMemory_exit_helper() {
3399    perfMemory_exit();
3400  }
3401}
3402
3403// this is called _after_ the global arguments have been parsed
3404jint os::init_2(void)
3405{
3406  // Allocate a single page and mark it as readable for safepoint polling
3407  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3408  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3409
3410  os::set_polling_page( polling_page );
3411
3412#ifndef PRODUCT
3413  if(Verbose && PrintMiscellaneous)
3414    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3415#endif
3416
3417  if (!UseMembar) {
3418    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3419    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3420    os::set_memory_serialize_page( mem_serialize_page );
3421
3422#ifndef PRODUCT
3423    if(Verbose && PrintMiscellaneous)
3424      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3425#endif
3426  }
3427
3428  os::large_page_init();
3429
3430  // initialize suspend/resume support - must do this before signal_sets_init()
3431  if (SR_initialize() != 0) {
3432    perror("SR_initialize failed");
3433    return JNI_ERR;
3434  }
3435
3436  Bsd::signal_sets_init();
3437  Bsd::install_signal_handlers();
3438
3439  // Check minimum allowable stack size for thread creation and to initialize
3440  // the java system classes, including StackOverflowError - depends on page
3441  // size.  Add a page for compiler2 recursion in main thread.
3442  // Add in 2*BytesPerWord times page size to account for VM stack during
3443  // class initialization depending on 32 or 64 bit VM.
3444  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3445            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3446                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3447
3448  size_t threadStackSizeInBytes = ThreadStackSize * K;
3449  if (threadStackSizeInBytes != 0 &&
3450      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3451        tty->print_cr("\nThe stack size specified is too small, "
3452                      "Specify at least %dk",
3453                      os::Bsd::min_stack_allowed/ K);
3454        return JNI_ERR;
3455  }
3456
3457  // Make the stack size a multiple of the page size so that
3458  // the yellow/red zones can be guarded.
3459  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3460        vm_page_size()));
3461
3462  if (MaxFDLimit) {
3463    // set the number of file descriptors to max. print out error
3464    // if getrlimit/setrlimit fails but continue regardless.
3465    struct rlimit nbr_files;
3466    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3467    if (status != 0) {
3468      if (PrintMiscellaneous && (Verbose || WizardMode))
3469        perror("os::init_2 getrlimit failed");
3470    } else {
3471      nbr_files.rlim_cur = nbr_files.rlim_max;
3472
3473#ifdef __APPLE__
3474      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3475      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3476      // be used instead
3477      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3478#endif
3479
3480      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3481      if (status != 0) {
3482        if (PrintMiscellaneous && (Verbose || WizardMode))
3483          perror("os::init_2 setrlimit failed");
3484      }
3485    }
3486  }
3487
3488  // at-exit methods are called in the reverse order of their registration.
3489  // atexit functions are called on return from main or as a result of a
3490  // call to exit(3C). There can be only 32 of these functions registered
3491  // and atexit() does not set errno.
3492
3493  if (PerfAllowAtExitRegistration) {
3494    // only register atexit functions if PerfAllowAtExitRegistration is set.
3495    // atexit functions can be delayed until process exit time, which
3496    // can be problematic for embedded VM situations. Embedded VMs should
3497    // call DestroyJavaVM() to assure that VM resources are released.
3498
3499    // note: perfMemory_exit_helper atexit function may be removed in
3500    // the future if the appropriate cleanup code can be added to the
3501    // VM_Exit VMOperation's doit method.
3502    if (atexit(perfMemory_exit_helper) != 0) {
3503      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3504    }
3505  }
3506
3507  // initialize thread priority policy
3508  prio_init();
3509
3510#ifdef __APPLE__
3511  // dynamically link to objective c gc registration
3512  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3513  if (handleLibObjc != NULL) {
3514    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3515  }
3516#endif
3517
3518  return JNI_OK;
3519}
3520
3521// this is called at the end of vm_initialization
3522void os::init_3(void) { }
3523
3524// Mark the polling page as unreadable
3525void os::make_polling_page_unreadable(void) {
3526  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3527    fatal("Could not disable polling page");
3528};
3529
3530// Mark the polling page as readable
3531void os::make_polling_page_readable(void) {
3532  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3533    fatal("Could not enable polling page");
3534  }
3535};
3536
3537int os::active_processor_count() {
3538  return _processor_count;
3539}
3540
3541void os::set_native_thread_name(const char *name) {
3542#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3543  // This is only supported in Snow Leopard and beyond
3544  if (name != NULL) {
3545    // Add a "Java: " prefix to the name
3546    char buf[MAXTHREADNAMESIZE];
3547    snprintf(buf, sizeof(buf), "Java: %s", name);
3548    pthread_setname_np(buf);
3549  }
3550#endif
3551}
3552
3553bool os::distribute_processes(uint length, uint* distribution) {
3554  // Not yet implemented.
3555  return false;
3556}
3557
3558bool os::bind_to_processor(uint processor_id) {
3559  // Not yet implemented.
3560  return false;
3561}
3562
3563///
3564
3565// Suspends the target using the signal mechanism and then grabs the PC before
3566// resuming the target. Used by the flat-profiler only
3567ExtendedPC os::get_thread_pc(Thread* thread) {
3568  // Make sure that it is called by the watcher for the VMThread
3569  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3570  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3571
3572  ExtendedPC epc;
3573
3574  OSThread* osthread = thread->osthread();
3575  if (do_suspend(osthread)) {
3576    if (osthread->ucontext() != NULL) {
3577      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
3578    } else {
3579      // NULL context is unexpected, double-check this is the VMThread
3580      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3581    }
3582    do_resume(osthread);
3583  }
3584  // failure means pthread_kill failed for some reason - arguably this is
3585  // a fatal problem, but such problems are ignored elsewhere
3586
3587  return epc;
3588}
3589
3590int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3591{
3592  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3593}
3594
3595////////////////////////////////////////////////////////////////////////////////
3596// debug support
3597
3598static address same_page(address x, address y) {
3599  int page_bits = -os::vm_page_size();
3600  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3601    return x;
3602  else if (x > y)
3603    return (address)(intptr_t(y) | ~page_bits) + 1;
3604  else
3605    return (address)(intptr_t(y) & page_bits);
3606}
3607
3608bool os::find(address addr, outputStream* st) {
3609  Dl_info dlinfo;
3610  memset(&dlinfo, 0, sizeof(dlinfo));
3611  if (dladdr(addr, &dlinfo)) {
3612    st->print(PTR_FORMAT ": ", addr);
3613    if (dlinfo.dli_sname != NULL) {
3614      st->print("%s+%#x", dlinfo.dli_sname,
3615                 addr - (intptr_t)dlinfo.dli_saddr);
3616    } else if (dlinfo.dli_fname) {
3617      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3618    } else {
3619      st->print("<absolute address>");
3620    }
3621    if (dlinfo.dli_fname) {
3622      st->print(" in %s", dlinfo.dli_fname);
3623    }
3624    if (dlinfo.dli_fbase) {
3625      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3626    }
3627    st->cr();
3628
3629    if (Verbose) {
3630      // decode some bytes around the PC
3631      address begin = same_page(addr-40, addr);
3632      address end   = same_page(addr+40, addr);
3633      address       lowest = (address) dlinfo.dli_sname;
3634      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3635      if (begin < lowest)  begin = lowest;
3636      Dl_info dlinfo2;
3637      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3638          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3639        end = (address) dlinfo2.dli_saddr;
3640      Disassembler::decode(begin, end, st);
3641    }
3642    return true;
3643  }
3644  return false;
3645}
3646
3647////////////////////////////////////////////////////////////////////////////////
3648// misc
3649
3650// This does not do anything on Bsd. This is basically a hook for being
3651// able to use structured exception handling (thread-local exception filters)
3652// on, e.g., Win32.
3653void
3654os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3655                         JavaCallArguments* args, Thread* thread) {
3656  f(value, method, args, thread);
3657}
3658
3659void os::print_statistics() {
3660}
3661
3662int os::message_box(const char* title, const char* message) {
3663  int i;
3664  fdStream err(defaultStream::error_fd());
3665  for (i = 0; i < 78; i++) err.print_raw("=");
3666  err.cr();
3667  err.print_raw_cr(title);
3668  for (i = 0; i < 78; i++) err.print_raw("-");
3669  err.cr();
3670  err.print_raw_cr(message);
3671  for (i = 0; i < 78; i++) err.print_raw("=");
3672  err.cr();
3673
3674  char buf[16];
3675  // Prevent process from exiting upon "read error" without consuming all CPU
3676  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3677
3678  return buf[0] == 'y' || buf[0] == 'Y';
3679}
3680
3681int os::stat(const char *path, struct stat *sbuf) {
3682  char pathbuf[MAX_PATH];
3683  if (strlen(path) > MAX_PATH - 1) {
3684    errno = ENAMETOOLONG;
3685    return -1;
3686  }
3687  os::native_path(strcpy(pathbuf, path));
3688  return ::stat(pathbuf, sbuf);
3689}
3690
3691bool os::check_heap(bool force) {
3692  return true;
3693}
3694
3695int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3696  return ::vsnprintf(buf, count, format, args);
3697}
3698
3699// Is a (classpath) directory empty?
3700bool os::dir_is_empty(const char* path) {
3701  DIR *dir = NULL;
3702  struct dirent *ptr;
3703
3704  dir = opendir(path);
3705  if (dir == NULL) return true;
3706
3707  /* Scan the directory */
3708  bool result = true;
3709  char buf[sizeof(struct dirent) + MAX_PATH];
3710  while (result && (ptr = ::readdir(dir)) != NULL) {
3711    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3712      result = false;
3713    }
3714  }
3715  closedir(dir);
3716  return result;
3717}
3718
3719// This code originates from JDK's sysOpen and open64_w
3720// from src/solaris/hpi/src/system_md.c
3721
3722#ifndef O_DELETE
3723#define O_DELETE 0x10000
3724#endif
3725
3726// Open a file. Unlink the file immediately after open returns
3727// if the specified oflag has the O_DELETE flag set.
3728// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3729
3730int os::open(const char *path, int oflag, int mode) {
3731
3732  if (strlen(path) > MAX_PATH - 1) {
3733    errno = ENAMETOOLONG;
3734    return -1;
3735  }
3736  int fd;
3737  int o_delete = (oflag & O_DELETE);
3738  oflag = oflag & ~O_DELETE;
3739
3740  fd = ::open(path, oflag, mode);
3741  if (fd == -1) return -1;
3742
3743  //If the open succeeded, the file might still be a directory
3744  {
3745    struct stat buf;
3746    int ret = ::fstat(fd, &buf);
3747    int st_mode = buf.st_mode;
3748
3749    if (ret != -1) {
3750      if ((st_mode & S_IFMT) == S_IFDIR) {
3751        errno = EISDIR;
3752        ::close(fd);
3753        return -1;
3754      }
3755    } else {
3756      ::close(fd);
3757      return -1;
3758    }
3759  }
3760
3761    /*
3762     * All file descriptors that are opened in the JVM and not
3763     * specifically destined for a subprocess should have the
3764     * close-on-exec flag set.  If we don't set it, then careless 3rd
3765     * party native code might fork and exec without closing all
3766     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3767     * UNIXProcess.c), and this in turn might:
3768     *
3769     * - cause end-of-file to fail to be detected on some file
3770     *   descriptors, resulting in mysterious hangs, or
3771     *
3772     * - might cause an fopen in the subprocess to fail on a system
3773     *   suffering from bug 1085341.
3774     *
3775     * (Yes, the default setting of the close-on-exec flag is a Unix
3776     * design flaw)
3777     *
3778     * See:
3779     * 1085341: 32-bit stdio routines should support file descriptors >255
3780     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3781     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3782     */
3783#ifdef FD_CLOEXEC
3784    {
3785        int flags = ::fcntl(fd, F_GETFD);
3786        if (flags != -1)
3787            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3788    }
3789#endif
3790
3791  if (o_delete != 0) {
3792    ::unlink(path);
3793  }
3794  return fd;
3795}
3796
3797
3798// create binary file, rewriting existing file if required
3799int os::create_binary_file(const char* path, bool rewrite_existing) {
3800  int oflags = O_WRONLY | O_CREAT;
3801  if (!rewrite_existing) {
3802    oflags |= O_EXCL;
3803  }
3804  return ::open(path, oflags, S_IREAD | S_IWRITE);
3805}
3806
3807// return current position of file pointer
3808jlong os::current_file_offset(int fd) {
3809  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3810}
3811
3812// move file pointer to the specified offset
3813jlong os::seek_to_file_offset(int fd, jlong offset) {
3814  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3815}
3816
3817// This code originates from JDK's sysAvailable
3818// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3819
3820int os::available(int fd, jlong *bytes) {
3821  jlong cur, end;
3822  int mode;
3823  struct stat buf;
3824
3825  if (::fstat(fd, &buf) >= 0) {
3826    mode = buf.st_mode;
3827    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3828      /*
3829      * XXX: is the following call interruptible? If so, this might
3830      * need to go through the INTERRUPT_IO() wrapper as for other
3831      * blocking, interruptible calls in this file.
3832      */
3833      int n;
3834      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3835        *bytes = n;
3836        return 1;
3837      }
3838    }
3839  }
3840  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3841    return 0;
3842  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3843    return 0;
3844  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3845    return 0;
3846  }
3847  *bytes = end - cur;
3848  return 1;
3849}
3850
3851int os::socket_available(int fd, jint *pbytes) {
3852   if (fd < 0)
3853     return OS_OK;
3854
3855   int ret;
3856
3857   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3858
3859   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3860   // is expected to return 0 on failure and 1 on success to the jdk.
3861
3862   return (ret == OS_ERR) ? 0 : 1;
3863}
3864
3865// Map a block of memory.
3866char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3867                     char *addr, size_t bytes, bool read_only,
3868                     bool allow_exec) {
3869  int prot;
3870  int flags;
3871
3872  if (read_only) {
3873    prot = PROT_READ;
3874    flags = MAP_SHARED;
3875  } else {
3876    prot = PROT_READ | PROT_WRITE;
3877    flags = MAP_PRIVATE;
3878  }
3879
3880  if (allow_exec) {
3881    prot |= PROT_EXEC;
3882  }
3883
3884  if (addr != NULL) {
3885    flags |= MAP_FIXED;
3886  }
3887
3888  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3889                                     fd, file_offset);
3890  if (mapped_address == MAP_FAILED) {
3891    return NULL;
3892  }
3893  return mapped_address;
3894}
3895
3896
3897// Remap a block of memory.
3898char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3899                       char *addr, size_t bytes, bool read_only,
3900                       bool allow_exec) {
3901  // same as map_memory() on this OS
3902  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3903                        allow_exec);
3904}
3905
3906
3907// Unmap a block of memory.
3908bool os::pd_unmap_memory(char* addr, size_t bytes) {
3909  return munmap(addr, bytes) == 0;
3910}
3911
3912// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3913// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3914// of a thread.
3915//
3916// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3917// the fast estimate available on the platform.
3918
3919jlong os::current_thread_cpu_time() {
3920#ifdef __APPLE__
3921  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3922#else
3923  Unimplemented();
3924  return 0;
3925#endif
3926}
3927
3928jlong os::thread_cpu_time(Thread* thread) {
3929#ifdef __APPLE__
3930  return os::thread_cpu_time(thread, true /* user + sys */);
3931#else
3932  Unimplemented();
3933  return 0;
3934#endif
3935}
3936
3937jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3938#ifdef __APPLE__
3939  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3940#else
3941  Unimplemented();
3942  return 0;
3943#endif
3944}
3945
3946jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3947#ifdef __APPLE__
3948  struct thread_basic_info tinfo;
3949  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3950  kern_return_t kr;
3951  thread_t mach_thread;
3952
3953  mach_thread = thread->osthread()->thread_id();
3954  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3955  if (kr != KERN_SUCCESS)
3956    return -1;
3957
3958  if (user_sys_cpu_time) {
3959    jlong nanos;
3960    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3961    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3962    return nanos;
3963  } else {
3964    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3965  }
3966#else
3967  Unimplemented();
3968  return 0;
3969#endif
3970}
3971
3972
3973void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3974  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3975  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3976  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3977  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3978}
3979
3980void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3981  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3982  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3983  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3984  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3985}
3986
3987bool os::is_thread_cpu_time_supported() {
3988#ifdef __APPLE__
3989  return true;
3990#else
3991  return false;
3992#endif
3993}
3994
3995// System loadavg support.  Returns -1 if load average cannot be obtained.
3996// Bsd doesn't yet have a (official) notion of processor sets,
3997// so just return the system wide load average.
3998int os::loadavg(double loadavg[], int nelem) {
3999  return ::getloadavg(loadavg, nelem);
4000}
4001
4002void os::pause() {
4003  char filename[MAX_PATH];
4004  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4005    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4006  } else {
4007    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4008  }
4009
4010  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4011  if (fd != -1) {
4012    struct stat buf;
4013    ::close(fd);
4014    while (::stat(filename, &buf) == 0) {
4015      (void)::poll(NULL, 0, 100);
4016    }
4017  } else {
4018    jio_fprintf(stderr,
4019      "Could not open pause file '%s', continuing immediately.\n", filename);
4020  }
4021}
4022
4023
4024// Refer to the comments in os_solaris.cpp park-unpark.
4025//
4026// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4027// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4028// For specifics regarding the bug see GLIBC BUGID 261237 :
4029//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4030// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4031// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4032// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4033// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4034// and monitorenter when we're using 1-0 locking.  All those operations may result in
4035// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4036// of libpthread avoids the problem, but isn't practical.
4037//
4038// Possible remedies:
4039//
4040// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4041//      This is palliative and probabilistic, however.  If the thread is preempted
4042//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4043//      than the minimum period may have passed, and the abstime may be stale (in the
4044//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4045//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4046//
4047// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4048//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4049//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4050//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4051//      thread.
4052//
4053// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4054//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4055//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4056//      This also works well.  In fact it avoids kernel-level scalability impediments
4057//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4058//      timers in a graceful fashion.
4059//
4060// 4.   When the abstime value is in the past it appears that control returns
4061//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4062//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4063//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4064//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4065//      It may be possible to avoid reinitialization by checking the return
4066//      value from pthread_cond_timedwait().  In addition to reinitializing the
4067//      condvar we must establish the invariant that cond_signal() is only called
4068//      within critical sections protected by the adjunct mutex.  This prevents
4069//      cond_signal() from "seeing" a condvar that's in the midst of being
4070//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4071//      desirable signal-after-unlock optimization that avoids futile context switching.
4072//
4073//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4074//      structure when a condvar is used or initialized.  cond_destroy()  would
4075//      release the helper structure.  Our reinitialize-after-timedwait fix
4076//      put excessive stress on malloc/free and locks protecting the c-heap.
4077//
4078// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4079// It may be possible to refine (4) by checking the kernel and NTPL verisons
4080// and only enabling the work-around for vulnerable environments.
4081
4082// utility to compute the abstime argument to timedwait:
4083// millis is the relative timeout time
4084// abstime will be the absolute timeout time
4085// TODO: replace compute_abstime() with unpackTime()
4086
4087static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4088  if (millis < 0)  millis = 0;
4089  struct timeval now;
4090  int status = gettimeofday(&now, NULL);
4091  assert(status == 0, "gettimeofday");
4092  jlong seconds = millis / 1000;
4093  millis %= 1000;
4094  if (seconds > 50000000) { // see man cond_timedwait(3T)
4095    seconds = 50000000;
4096  }
4097  abstime->tv_sec = now.tv_sec  + seconds;
4098  long       usec = now.tv_usec + millis * 1000;
4099  if (usec >= 1000000) {
4100    abstime->tv_sec += 1;
4101    usec -= 1000000;
4102  }
4103  abstime->tv_nsec = usec * 1000;
4104  return abstime;
4105}
4106
4107
4108// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4109// Conceptually TryPark() should be equivalent to park(0).
4110
4111int os::PlatformEvent::TryPark() {
4112  for (;;) {
4113    const int v = _Event ;
4114    guarantee ((v == 0) || (v == 1), "invariant") ;
4115    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4116  }
4117}
4118
4119void os::PlatformEvent::park() {       // AKA "down()"
4120  // Invariant: Only the thread associated with the Event/PlatformEvent
4121  // may call park().
4122  // TODO: assert that _Assoc != NULL or _Assoc == Self
4123  int v ;
4124  for (;;) {
4125      v = _Event ;
4126      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4127  }
4128  guarantee (v >= 0, "invariant") ;
4129  if (v == 0) {
4130     // Do this the hard way by blocking ...
4131     int status = pthread_mutex_lock(_mutex);
4132     assert_status(status == 0, status, "mutex_lock");
4133     guarantee (_nParked == 0, "invariant") ;
4134     ++ _nParked ;
4135     while (_Event < 0) {
4136        status = pthread_cond_wait(_cond, _mutex);
4137        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4138        // Treat this the same as if the wait was interrupted
4139        if (status == ETIMEDOUT) { status = EINTR; }
4140        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4141     }
4142     -- _nParked ;
4143
4144    _Event = 0 ;
4145     status = pthread_mutex_unlock(_mutex);
4146     assert_status(status == 0, status, "mutex_unlock");
4147    // Paranoia to ensure our locked and lock-free paths interact
4148    // correctly with each other.
4149    OrderAccess::fence();
4150  }
4151  guarantee (_Event >= 0, "invariant") ;
4152}
4153
4154int os::PlatformEvent::park(jlong millis) {
4155  guarantee (_nParked == 0, "invariant") ;
4156
4157  int v ;
4158  for (;;) {
4159      v = _Event ;
4160      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4161  }
4162  guarantee (v >= 0, "invariant") ;
4163  if (v != 0) return OS_OK ;
4164
4165  // We do this the hard way, by blocking the thread.
4166  // Consider enforcing a minimum timeout value.
4167  struct timespec abst;
4168  compute_abstime(&abst, millis);
4169
4170  int ret = OS_TIMEOUT;
4171  int status = pthread_mutex_lock(_mutex);
4172  assert_status(status == 0, status, "mutex_lock");
4173  guarantee (_nParked == 0, "invariant") ;
4174  ++_nParked ;
4175
4176  // Object.wait(timo) will return because of
4177  // (a) notification
4178  // (b) timeout
4179  // (c) thread.interrupt
4180  //
4181  // Thread.interrupt and object.notify{All} both call Event::set.
4182  // That is, we treat thread.interrupt as a special case of notification.
4183  // The underlying Solaris implementation, cond_timedwait, admits
4184  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4185  // JVM from making those visible to Java code.  As such, we must
4186  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4187  //
4188  // TODO: properly differentiate simultaneous notify+interrupt.
4189  // In that case, we should propagate the notify to another waiter.
4190
4191  while (_Event < 0) {
4192    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4193    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4194      pthread_cond_destroy (_cond);
4195      pthread_cond_init (_cond, NULL) ;
4196    }
4197    assert_status(status == 0 || status == EINTR ||
4198                  status == ETIMEDOUT,
4199                  status, "cond_timedwait");
4200    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4201    if (status == ETIMEDOUT) break ;
4202    // We consume and ignore EINTR and spurious wakeups.
4203  }
4204  --_nParked ;
4205  if (_Event >= 0) {
4206     ret = OS_OK;
4207  }
4208  _Event = 0 ;
4209  status = pthread_mutex_unlock(_mutex);
4210  assert_status(status == 0, status, "mutex_unlock");
4211  assert (_nParked == 0, "invariant") ;
4212  // Paranoia to ensure our locked and lock-free paths interact
4213  // correctly with each other.
4214  OrderAccess::fence();
4215  return ret;
4216}
4217
4218void os::PlatformEvent::unpark() {
4219  // Transitions for _Event:
4220  //    0 :=> 1
4221  //    1 :=> 1
4222  //   -1 :=> either 0 or 1; must signal target thread
4223  //          That is, we can safely transition _Event from -1 to either
4224  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4225  //          unpark() calls.
4226  // See also: "Semaphores in Plan 9" by Mullender & Cox
4227  //
4228  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4229  // that it will take two back-to-back park() calls for the owning
4230  // thread to block. This has the benefit of forcing a spurious return
4231  // from the first park() call after an unpark() call which will help
4232  // shake out uses of park() and unpark() without condition variables.
4233
4234  if (Atomic::xchg(1, &_Event) >= 0) return;
4235
4236  // Wait for the thread associated with the event to vacate
4237  int status = pthread_mutex_lock(_mutex);
4238  assert_status(status == 0, status, "mutex_lock");
4239  int AnyWaiters = _nParked;
4240  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4241  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4242    AnyWaiters = 0;
4243    pthread_cond_signal(_cond);
4244  }
4245  status = pthread_mutex_unlock(_mutex);
4246  assert_status(status == 0, status, "mutex_unlock");
4247  if (AnyWaiters != 0) {
4248    status = pthread_cond_signal(_cond);
4249    assert_status(status == 0, status, "cond_signal");
4250  }
4251
4252  // Note that we signal() _after dropping the lock for "immortal" Events.
4253  // This is safe and avoids a common class of  futile wakeups.  In rare
4254  // circumstances this can cause a thread to return prematurely from
4255  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4256  // simply re-test the condition and re-park itself.
4257}
4258
4259
4260// JSR166
4261// -------------------------------------------------------
4262
4263/*
4264 * The solaris and bsd implementations of park/unpark are fairly
4265 * conservative for now, but can be improved. They currently use a
4266 * mutex/condvar pair, plus a a count.
4267 * Park decrements count if > 0, else does a condvar wait.  Unpark
4268 * sets count to 1 and signals condvar.  Only one thread ever waits
4269 * on the condvar. Contention seen when trying to park implies that someone
4270 * is unparking you, so don't wait. And spurious returns are fine, so there
4271 * is no need to track notifications.
4272 */
4273
4274#define MAX_SECS 100000000
4275/*
4276 * This code is common to bsd and solaris and will be moved to a
4277 * common place in dolphin.
4278 *
4279 * The passed in time value is either a relative time in nanoseconds
4280 * or an absolute time in milliseconds. Either way it has to be unpacked
4281 * into suitable seconds and nanoseconds components and stored in the
4282 * given timespec structure.
4283 * Given time is a 64-bit value and the time_t used in the timespec is only
4284 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4285 * overflow if times way in the future are given. Further on Solaris versions
4286 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4287 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4288 * As it will be 28 years before "now + 100000000" will overflow we can
4289 * ignore overflow and just impose a hard-limit on seconds using the value
4290 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4291 * years from "now".
4292 */
4293
4294static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4295  assert (time > 0, "convertTime");
4296
4297  struct timeval now;
4298  int status = gettimeofday(&now, NULL);
4299  assert(status == 0, "gettimeofday");
4300
4301  time_t max_secs = now.tv_sec + MAX_SECS;
4302
4303  if (isAbsolute) {
4304    jlong secs = time / 1000;
4305    if (secs > max_secs) {
4306      absTime->tv_sec = max_secs;
4307    }
4308    else {
4309      absTime->tv_sec = secs;
4310    }
4311    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4312  }
4313  else {
4314    jlong secs = time / NANOSECS_PER_SEC;
4315    if (secs >= MAX_SECS) {
4316      absTime->tv_sec = max_secs;
4317      absTime->tv_nsec = 0;
4318    }
4319    else {
4320      absTime->tv_sec = now.tv_sec + secs;
4321      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4322      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4323        absTime->tv_nsec -= NANOSECS_PER_SEC;
4324        ++absTime->tv_sec; // note: this must be <= max_secs
4325      }
4326    }
4327  }
4328  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4329  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4330  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4331  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4332}
4333
4334void Parker::park(bool isAbsolute, jlong time) {
4335  // Ideally we'd do something useful while spinning, such
4336  // as calling unpackTime().
4337
4338  // Optional fast-path check:
4339  // Return immediately if a permit is available.
4340  // We depend on Atomic::xchg() having full barrier semantics
4341  // since we are doing a lock-free update to _counter.
4342  if (Atomic::xchg(0, &_counter) > 0) return;
4343
4344  Thread* thread = Thread::current();
4345  assert(thread->is_Java_thread(), "Must be JavaThread");
4346  JavaThread *jt = (JavaThread *)thread;
4347
4348  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4349  // Check interrupt before trying to wait
4350  if (Thread::is_interrupted(thread, false)) {
4351    return;
4352  }
4353
4354  // Next, demultiplex/decode time arguments
4355  struct timespec absTime;
4356  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4357    return;
4358  }
4359  if (time > 0) {
4360    unpackTime(&absTime, isAbsolute, time);
4361  }
4362
4363
4364  // Enter safepoint region
4365  // Beware of deadlocks such as 6317397.
4366  // The per-thread Parker:: mutex is a classic leaf-lock.
4367  // In particular a thread must never block on the Threads_lock while
4368  // holding the Parker:: mutex.  If safepoints are pending both the
4369  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4370  ThreadBlockInVM tbivm(jt);
4371
4372  // Don't wait if cannot get lock since interference arises from
4373  // unblocking.  Also. check interrupt before trying wait
4374  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4375    return;
4376  }
4377
4378  int status ;
4379  if (_counter > 0)  { // no wait needed
4380    _counter = 0;
4381    status = pthread_mutex_unlock(_mutex);
4382    assert (status == 0, "invariant") ;
4383    // Paranoia to ensure our locked and lock-free paths interact
4384    // correctly with each other and Java-level accesses.
4385    OrderAccess::fence();
4386    return;
4387  }
4388
4389#ifdef ASSERT
4390  // Don't catch signals while blocked; let the running threads have the signals.
4391  // (This allows a debugger to break into the running thread.)
4392  sigset_t oldsigs;
4393  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4394  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4395#endif
4396
4397  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4398  jt->set_suspend_equivalent();
4399  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4400
4401  if (time == 0) {
4402    status = pthread_cond_wait (_cond, _mutex) ;
4403  } else {
4404    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4405    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4406      pthread_cond_destroy (_cond) ;
4407      pthread_cond_init    (_cond, NULL);
4408    }
4409  }
4410  assert_status(status == 0 || status == EINTR ||
4411                status == ETIMEDOUT,
4412                status, "cond_timedwait");
4413
4414#ifdef ASSERT
4415  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4416#endif
4417
4418  _counter = 0 ;
4419  status = pthread_mutex_unlock(_mutex) ;
4420  assert_status(status == 0, status, "invariant") ;
4421  // Paranoia to ensure our locked and lock-free paths interact
4422  // correctly with each other and Java-level accesses.
4423  OrderAccess::fence();
4424
4425  // If externally suspended while waiting, re-suspend
4426  if (jt->handle_special_suspend_equivalent_condition()) {
4427    jt->java_suspend_self();
4428  }
4429}
4430
4431void Parker::unpark() {
4432  int s, status ;
4433  status = pthread_mutex_lock(_mutex);
4434  assert (status == 0, "invariant") ;
4435  s = _counter;
4436  _counter = 1;
4437  if (s < 1) {
4438     if (WorkAroundNPTLTimedWaitHang) {
4439        status = pthread_cond_signal (_cond) ;
4440        assert (status == 0, "invariant") ;
4441        status = pthread_mutex_unlock(_mutex);
4442        assert (status == 0, "invariant") ;
4443     } else {
4444        status = pthread_mutex_unlock(_mutex);
4445        assert (status == 0, "invariant") ;
4446        status = pthread_cond_signal (_cond) ;
4447        assert (status == 0, "invariant") ;
4448     }
4449  } else {
4450    pthread_mutex_unlock(_mutex);
4451    assert (status == 0, "invariant") ;
4452  }
4453}
4454
4455
4456/* Darwin has no "environ" in a dynamic library. */
4457#ifdef __APPLE__
4458#include <crt_externs.h>
4459#define environ (*_NSGetEnviron())
4460#else
4461extern char** environ;
4462#endif
4463
4464// Run the specified command in a separate process. Return its exit value,
4465// or -1 on failure (e.g. can't fork a new process).
4466// Unlike system(), this function can be called from signal handler. It
4467// doesn't block SIGINT et al.
4468int os::fork_and_exec(char* cmd) {
4469  const char * argv[4] = {"sh", "-c", cmd, NULL};
4470
4471  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4472  // pthread_atfork handlers and reset pthread library. All we need is a
4473  // separate process to execve. Make a direct syscall to fork process.
4474  // On IA64 there's no fork syscall, we have to use fork() and hope for
4475  // the best...
4476  pid_t pid = fork();
4477
4478  if (pid < 0) {
4479    // fork failed
4480    return -1;
4481
4482  } else if (pid == 0) {
4483    // child process
4484
4485    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4486    // first to kill every thread on the thread list. Because this list is
4487    // not reset by fork() (see notes above), execve() will instead kill
4488    // every thread in the parent process. We know this is the only thread
4489    // in the new process, so make a system call directly.
4490    // IA64 should use normal execve() from glibc to match the glibc fork()
4491    // above.
4492    execve("/bin/sh", (char* const*)argv, environ);
4493
4494    // execve failed
4495    _exit(-1);
4496
4497  } else  {
4498    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4499    // care about the actual exit code, for now.
4500
4501    int status;
4502
4503    // Wait for the child process to exit.  This returns immediately if
4504    // the child has already exited. */
4505    while (waitpid(pid, &status, 0) < 0) {
4506        switch (errno) {
4507        case ECHILD: return 0;
4508        case EINTR: break;
4509        default: return -1;
4510        }
4511    }
4512
4513    if (WIFEXITED(status)) {
4514       // The child exited normally; get its exit code.
4515       return WEXITSTATUS(status);
4516    } else if (WIFSIGNALED(status)) {
4517       // The child exited because of a signal
4518       // The best value to return is 0x80 + signal number,
4519       // because that is what all Unix shells do, and because
4520       // it allows callers to distinguish between process exit and
4521       // process death by signal.
4522       return 0x80 + WTERMSIG(status);
4523    } else {
4524       // Unknown exit code; pass it through
4525       return status;
4526    }
4527  }
4528}
4529
4530// is_headless_jre()
4531//
4532// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4533// in order to report if we are running in a headless jre
4534//
4535// Since JDK8 xawt/libmawt.so was moved into the same directory
4536// as libawt.so, and renamed libawt_xawt.so
4537//
4538bool os::is_headless_jre() {
4539    struct stat statbuf;
4540    char buf[MAXPATHLEN];
4541    char libmawtpath[MAXPATHLEN];
4542    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4543    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4544    char *p;
4545
4546    // Get path to libjvm.so
4547    os::jvm_path(buf, sizeof(buf));
4548
4549    // Get rid of libjvm.so
4550    p = strrchr(buf, '/');
4551    if (p == NULL) return false;
4552    else *p = '\0';
4553
4554    // Get rid of client or server
4555    p = strrchr(buf, '/');
4556    if (p == NULL) return false;
4557    else *p = '\0';
4558
4559    // check xawt/libmawt.so
4560    strcpy(libmawtpath, buf);
4561    strcat(libmawtpath, xawtstr);
4562    if (::stat(libmawtpath, &statbuf) == 0) return false;
4563
4564    // check libawt_xawt.so
4565    strcpy(libmawtpath, buf);
4566    strcat(libmawtpath, new_xawtstr);
4567    if (::stat(libmawtpath, &statbuf) == 0) return false;
4568
4569    return true;
4570}
4571
4572// Get the default path to the core file
4573// Returns the length of the string
4574int os::get_core_path(char* buffer, size_t bufferSize) {
4575  int n = jio_snprintf(buffer, bufferSize, "/cores");
4576
4577  // Truncate if theoretical string was longer than bufferSize
4578  n = MIN2(n, (int)bufferSize);
4579
4580  return n;
4581}
4582