os_bsd.cpp revision 4419:754c24457b20
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/threadCritical.hpp"
58#include "runtime/timer.hpp"
59#include "services/attachListener.hpp"
60#include "services/memTracker.hpp"
61#include "services/runtimeService.hpp"
62#include "utilities/decoder.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65#include "utilities/growableArray.hpp"
66#include "utilities/vmError.hpp"
67
68// put OS-includes here
69# include <sys/types.h>
70# include <sys/mman.h>
71# include <sys/stat.h>
72# include <sys/select.h>
73# include <pthread.h>
74# include <signal.h>
75# include <errno.h>
76# include <dlfcn.h>
77# include <stdio.h>
78# include <unistd.h>
79# include <sys/resource.h>
80# include <pthread.h>
81# include <sys/stat.h>
82# include <sys/time.h>
83# include <sys/times.h>
84# include <sys/utsname.h>
85# include <sys/socket.h>
86# include <sys/wait.h>
87# include <time.h>
88# include <pwd.h>
89# include <poll.h>
90# include <semaphore.h>
91# include <fcntl.h>
92# include <string.h>
93# include <sys/param.h>
94# include <sys/sysctl.h>
95# include <sys/ipc.h>
96# include <sys/shm.h>
97#ifndef __APPLE__
98# include <link.h>
99#endif
100# include <stdint.h>
101# include <inttypes.h>
102# include <sys/ioctl.h>
103
104#if defined(__FreeBSD__) || defined(__NetBSD__)
105# include <elf.h>
106#endif
107
108#ifdef __APPLE__
109# include <mach/mach.h> // semaphore_* API
110# include <mach-o/dyld.h>
111# include <sys/proc_info.h>
112# include <objc/objc-auto.h>
113#endif
114
115#ifndef MAP_ANONYMOUS
116#define MAP_ANONYMOUS MAP_ANON
117#endif
118
119#define MAX_PATH    (2 * K)
120
121// for timer info max values which include all bits
122#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124#define LARGEPAGES_BIT (1 << 6)
125////////////////////////////////////////////////////////////////////////////////
126// global variables
127julong os::Bsd::_physical_memory = 0;
128
129
130int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
131pthread_t os::Bsd::_main_thread;
132int os::Bsd::_page_size = -1;
133
134static jlong initial_time_count=0;
135
136static int clock_tics_per_sec = 100;
137
138// For diagnostics to print a message once. see run_periodic_checks
139static sigset_t check_signal_done;
140static bool check_signals = true;
141
142static pid_t _initial_pid = 0;
143
144/* Signal number used to suspend/resume a thread */
145
146/* do not use any signal number less than SIGSEGV, see 4355769 */
147static int SR_signum = SIGUSR2;
148sigset_t SR_sigset;
149
150
151////////////////////////////////////////////////////////////////////////////////
152// utility functions
153
154static int SR_initialize();
155static int SR_finalize();
156
157julong os::available_memory() {
158  return Bsd::available_memory();
159}
160
161julong os::Bsd::available_memory() {
162  // XXXBSD: this is just a stopgap implementation
163  return physical_memory() >> 2;
164}
165
166julong os::physical_memory() {
167  return Bsd::physical_memory();
168}
169
170////////////////////////////////////////////////////////////////////////////////
171// environment support
172
173bool os::getenv(const char* name, char* buf, int len) {
174  const char* val = ::getenv(name);
175  if (val != NULL && strlen(val) < (size_t)len) {
176    strcpy(buf, val);
177    return true;
178  }
179  if (len > 0) buf[0] = 0;  // return a null string
180  return false;
181}
182
183
184// Return true if user is running as root.
185
186bool os::have_special_privileges() {
187  static bool init = false;
188  static bool privileges = false;
189  if (!init) {
190    privileges = (getuid() != geteuid()) || (getgid() != getegid());
191    init = true;
192  }
193  return privileges;
194}
195
196
197
198// Cpu architecture string
199#if   defined(ZERO)
200static char cpu_arch[] = ZERO_LIBARCH;
201#elif defined(IA64)
202static char cpu_arch[] = "ia64";
203#elif defined(IA32)
204static char cpu_arch[] = "i386";
205#elif defined(AMD64)
206static char cpu_arch[] = "amd64";
207#elif defined(ARM)
208static char cpu_arch[] = "arm";
209#elif defined(PPC)
210static char cpu_arch[] = "ppc";
211#elif defined(SPARC)
212#  ifdef _LP64
213static char cpu_arch[] = "sparcv9";
214#  else
215static char cpu_arch[] = "sparc";
216#  endif
217#else
218#error Add appropriate cpu_arch setting
219#endif
220
221// Compiler variant
222#ifdef COMPILER2
223#define COMPILER_VARIANT "server"
224#else
225#define COMPILER_VARIANT "client"
226#endif
227
228
229void os::Bsd::initialize_system_info() {
230  int mib[2];
231  size_t len;
232  int cpu_val;
233  julong mem_val;
234
235  /* get processors count via hw.ncpus sysctl */
236  mib[0] = CTL_HW;
237  mib[1] = HW_NCPU;
238  len = sizeof(cpu_val);
239  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
240       assert(len == sizeof(cpu_val), "unexpected data size");
241       set_processor_count(cpu_val);
242  }
243  else {
244       set_processor_count(1);   // fallback
245  }
246
247  /* get physical memory via hw.memsize sysctl (hw.memsize is used
248   * since it returns a 64 bit value)
249   */
250  mib[0] = CTL_HW;
251  mib[1] = HW_MEMSIZE;
252  len = sizeof(mem_val);
253  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
254       assert(len == sizeof(mem_val), "unexpected data size");
255       _physical_memory = mem_val;
256  } else {
257       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
258  }
259
260#ifdef __OpenBSD__
261  {
262       // limit _physical_memory memory view on OpenBSD since
263       // datasize rlimit restricts us anyway.
264       struct rlimit limits;
265       getrlimit(RLIMIT_DATA, &limits);
266       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
267  }
268#endif
269}
270
271#ifdef __APPLE__
272static const char *get_home() {
273  const char *home_dir = ::getenv("HOME");
274  if ((home_dir == NULL) || (*home_dir == '\0')) {
275    struct passwd *passwd_info = getpwuid(geteuid());
276    if (passwd_info != NULL) {
277      home_dir = passwd_info->pw_dir;
278    }
279  }
280
281  return home_dir;
282}
283#endif
284
285void os::init_system_properties_values() {
286//  char arch[12];
287//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
288
289  // The next steps are taken in the product version:
290  //
291  // Obtain the JAVA_HOME value from the location of libjvm.so.
292  // This library should be located at:
293  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
294  //
295  // If "/jre/lib/" appears at the right place in the path, then we
296  // assume libjvm.so is installed in a JDK and we use this path.
297  //
298  // Otherwise exit with message: "Could not create the Java virtual machine."
299  //
300  // The following extra steps are taken in the debugging version:
301  //
302  // If "/jre/lib/" does NOT appear at the right place in the path
303  // instead of exit check for $JAVA_HOME environment variable.
304  //
305  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
306  // then we append a fake suffix "hotspot/libjvm.so" to this path so
307  // it looks like libjvm.so is installed there
308  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
309  //
310  // Otherwise exit.
311  //
312  // Important note: if the location of libjvm.so changes this
313  // code needs to be changed accordingly.
314
315  // The next few definitions allow the code to be verbatim:
316#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
317#define getenv(n) ::getenv(n)
318
319/*
320 * See ld(1):
321 *      The linker uses the following search paths to locate required
322 *      shared libraries:
323 *        1: ...
324 *        ...
325 *        7: The default directories, normally /lib and /usr/lib.
326 */
327#ifndef DEFAULT_LIBPATH
328#define DEFAULT_LIBPATH "/lib:/usr/lib"
329#endif
330
331#define EXTENSIONS_DIR  "/lib/ext"
332#define ENDORSED_DIR    "/lib/endorsed"
333#define REG_DIR         "/usr/java/packages"
334
335#ifdef __APPLE__
336#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
337#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
338        const char *user_home_dir = get_home();
339        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
340        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
341            sizeof(SYS_EXTENSIONS_DIRS);
342#endif
343
344  {
345    /* sysclasspath, java_home, dll_dir */
346    {
347        char *home_path;
348        char *dll_path;
349        char *pslash;
350        char buf[MAXPATHLEN];
351        os::jvm_path(buf, sizeof(buf));
352
353        // Found the full path to libjvm.so.
354        // Now cut the path to <java_home>/jre if we can.
355        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
356        pslash = strrchr(buf, '/');
357        if (pslash != NULL)
358            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
359        dll_path = malloc(strlen(buf) + 1);
360        if (dll_path == NULL)
361            return;
362        strcpy(dll_path, buf);
363        Arguments::set_dll_dir(dll_path);
364
365        if (pslash != NULL) {
366            pslash = strrchr(buf, '/');
367            if (pslash != NULL) {
368                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
369#ifndef __APPLE__
370                pslash = strrchr(buf, '/');
371                if (pslash != NULL)
372                    *pslash = '\0';   /* get rid of /lib */
373#endif
374            }
375        }
376
377        home_path = malloc(strlen(buf) + 1);
378        if (home_path == NULL)
379            return;
380        strcpy(home_path, buf);
381        Arguments::set_java_home(home_path);
382
383        if (!set_boot_path('/', ':'))
384            return;
385    }
386
387    /*
388     * Where to look for native libraries
389     *
390     * Note: Due to a legacy implementation, most of the library path
391     * is set in the launcher.  This was to accomodate linking restrictions
392     * on legacy Bsd implementations (which are no longer supported).
393     * Eventually, all the library path setting will be done here.
394     *
395     * However, to prevent the proliferation of improperly built native
396     * libraries, the new path component /usr/java/packages is added here.
397     * Eventually, all the library path setting will be done here.
398     */
399    {
400        char *ld_library_path;
401
402        /*
403         * Construct the invariant part of ld_library_path. Note that the
404         * space for the colon and the trailing null are provided by the
405         * nulls included by the sizeof operator (so actually we allocate
406         * a byte more than necessary).
407         */
408#ifdef __APPLE__
409        ld_library_path = (char *) malloc(system_ext_size);
410        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
411#else
412        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
413            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
414        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
415#endif
416
417        /*
418         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
419         * should always exist (until the legacy problem cited above is
420         * addressed).
421         */
422#ifdef __APPLE__
423        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
424        char *l = getenv("JAVA_LIBRARY_PATH");
425        if (l != NULL) {
426            char *t = ld_library_path;
427            /* That's +1 for the colon and +1 for the trailing '\0' */
428            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
429            sprintf(ld_library_path, "%s:%s", l, t);
430            free(t);
431        }
432
433        char *v = getenv("DYLD_LIBRARY_PATH");
434#else
435        char *v = getenv("LD_LIBRARY_PATH");
436#endif
437        if (v != NULL) {
438            char *t = ld_library_path;
439            /* That's +1 for the colon and +1 for the trailing '\0' */
440            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
441            sprintf(ld_library_path, "%s:%s", v, t);
442            free(t);
443        }
444
445#ifdef __APPLE__
446        // Apple's Java6 has "." at the beginning of java.library.path.
447        // OpenJDK on Windows has "." at the end of java.library.path.
448        // OpenJDK on Linux and Solaris don't have "." in java.library.path
449        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
450        // "." is appended to the end of java.library.path. Yes, this
451        // could cause a change in behavior, but Apple's Java6 behavior
452        // can be achieved by putting "." at the beginning of the
453        // JAVA_LIBRARY_PATH environment variable.
454        {
455            char *t = ld_library_path;
456            // that's +3 for appending ":." and the trailing '\0'
457            ld_library_path = (char *) malloc(strlen(t) + 3);
458            sprintf(ld_library_path, "%s:%s", t, ".");
459            free(t);
460        }
461#endif
462
463        Arguments::set_library_path(ld_library_path);
464    }
465
466    /*
467     * Extensions directories.
468     *
469     * Note that the space for the colon and the trailing null are provided
470     * by the nulls included by the sizeof operator (so actually one byte more
471     * than necessary is allocated).
472     */
473    {
474#ifdef __APPLE__
475        char *buf = malloc(strlen(Arguments::get_java_home()) +
476            sizeof(EXTENSIONS_DIR) + system_ext_size);
477        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
478            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
479#else
480        char *buf = malloc(strlen(Arguments::get_java_home()) +
481            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
482        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
483            Arguments::get_java_home());
484#endif
485
486        Arguments::set_ext_dirs(buf);
487    }
488
489    /* Endorsed standards default directory. */
490    {
491        char * buf;
492        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
493        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
494        Arguments::set_endorsed_dirs(buf);
495    }
496  }
497
498#ifdef __APPLE__
499#undef SYS_EXTENSIONS_DIR
500#endif
501#undef malloc
502#undef getenv
503#undef EXTENSIONS_DIR
504#undef ENDORSED_DIR
505
506  // Done
507  return;
508}
509
510////////////////////////////////////////////////////////////////////////////////
511// breakpoint support
512
513void os::breakpoint() {
514  BREAKPOINT;
515}
516
517extern "C" void breakpoint() {
518  // use debugger to set breakpoint here
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// signal support
523
524debug_only(static bool signal_sets_initialized = false);
525static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
526
527bool os::Bsd::is_sig_ignored(int sig) {
528      struct sigaction oact;
529      sigaction(sig, (struct sigaction*)NULL, &oact);
530      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
531                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
532      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
533           return true;
534      else
535           return false;
536}
537
538void os::Bsd::signal_sets_init() {
539  // Should also have an assertion stating we are still single-threaded.
540  assert(!signal_sets_initialized, "Already initialized");
541  // Fill in signals that are necessarily unblocked for all threads in
542  // the VM. Currently, we unblock the following signals:
543  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
544  //                         by -Xrs (=ReduceSignalUsage));
545  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
546  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
547  // the dispositions or masks wrt these signals.
548  // Programs embedding the VM that want to use the above signals for their
549  // own purposes must, at this time, use the "-Xrs" option to prevent
550  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
551  // (See bug 4345157, and other related bugs).
552  // In reality, though, unblocking these signals is really a nop, since
553  // these signals are not blocked by default.
554  sigemptyset(&unblocked_sigs);
555  sigemptyset(&allowdebug_blocked_sigs);
556  sigaddset(&unblocked_sigs, SIGILL);
557  sigaddset(&unblocked_sigs, SIGSEGV);
558  sigaddset(&unblocked_sigs, SIGBUS);
559  sigaddset(&unblocked_sigs, SIGFPE);
560  sigaddset(&unblocked_sigs, SR_signum);
561
562  if (!ReduceSignalUsage) {
563   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
564      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
565      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
566   }
567   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
568      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
569      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
570   }
571   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
572      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
573      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
574   }
575  }
576  // Fill in signals that are blocked by all but the VM thread.
577  sigemptyset(&vm_sigs);
578  if (!ReduceSignalUsage)
579    sigaddset(&vm_sigs, BREAK_SIGNAL);
580  debug_only(signal_sets_initialized = true);
581
582}
583
584// These are signals that are unblocked while a thread is running Java.
585// (For some reason, they get blocked by default.)
586sigset_t* os::Bsd::unblocked_signals() {
587  assert(signal_sets_initialized, "Not initialized");
588  return &unblocked_sigs;
589}
590
591// These are the signals that are blocked while a (non-VM) thread is
592// running Java. Only the VM thread handles these signals.
593sigset_t* os::Bsd::vm_signals() {
594  assert(signal_sets_initialized, "Not initialized");
595  return &vm_sigs;
596}
597
598// These are signals that are blocked during cond_wait to allow debugger in
599sigset_t* os::Bsd::allowdebug_blocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &allowdebug_blocked_sigs;
602}
603
604void os::Bsd::hotspot_sigmask(Thread* thread) {
605
606  //Save caller's signal mask before setting VM signal mask
607  sigset_t caller_sigmask;
608  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
609
610  OSThread* osthread = thread->osthread();
611  osthread->set_caller_sigmask(caller_sigmask);
612
613  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
614
615  if (!ReduceSignalUsage) {
616    if (thread->is_VM_thread()) {
617      // Only the VM thread handles BREAK_SIGNAL ...
618      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
619    } else {
620      // ... all other threads block BREAK_SIGNAL
621      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
622    }
623  }
624}
625
626
627//////////////////////////////////////////////////////////////////////////////
628// create new thread
629
630static address highest_vm_reserved_address();
631
632// check if it's safe to start a new thread
633static bool _thread_safety_check(Thread* thread) {
634  return true;
635}
636
637#ifdef __APPLE__
638// library handle for calling objc_registerThreadWithCollector()
639// without static linking to the libobjc library
640#define OBJC_LIB "/usr/lib/libobjc.dylib"
641#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
642typedef void (*objc_registerThreadWithCollector_t)();
643extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
644objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
645#endif
646
647#ifdef __APPLE__
648static uint64_t locate_unique_thread_id() {
649  // Additional thread_id used to correlate threads in SA
650  thread_identifier_info_data_t     m_ident_info;
651  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
652
653  thread_info(::mach_thread_self(), THREAD_IDENTIFIER_INFO,
654              (thread_info_t) &m_ident_info, &count);
655  return m_ident_info.thread_id;
656}
657#endif
658
659// Thread start routine for all newly created threads
660static void *java_start(Thread *thread) {
661  // Try to randomize the cache line index of hot stack frames.
662  // This helps when threads of the same stack traces evict each other's
663  // cache lines. The threads can be either from the same JVM instance, or
664  // from different JVM instances. The benefit is especially true for
665  // processors with hyperthreading technology.
666  static int counter = 0;
667  int pid = os::current_process_id();
668  alloca(((pid ^ counter++) & 7) * 128);
669
670  ThreadLocalStorage::set_thread(thread);
671
672  OSThread* osthread = thread->osthread();
673  Monitor* sync = osthread->startThread_lock();
674
675  // non floating stack BsdThreads needs extra check, see above
676  if (!_thread_safety_check(thread)) {
677    // notify parent thread
678    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
679    osthread->set_state(ZOMBIE);
680    sync->notify_all();
681    return NULL;
682  }
683
684#ifdef __APPLE__
685  // thread_id is mach thread on macos
686  osthread->set_thread_id(::mach_thread_self());
687  osthread->set_unique_thread_id(locate_unique_thread_id());
688#else
689  // thread_id is pthread_id on BSD
690  osthread->set_thread_id(::pthread_self());
691#endif
692  // initialize signal mask for this thread
693  os::Bsd::hotspot_sigmask(thread);
694
695  // initialize floating point control register
696  os::Bsd::init_thread_fpu_state();
697
698#ifdef __APPLE__
699  // register thread with objc gc
700  if (objc_registerThreadWithCollectorFunction != NULL) {
701    objc_registerThreadWithCollectorFunction();
702  }
703#endif
704
705  // handshaking with parent thread
706  {
707    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
708
709    // notify parent thread
710    osthread->set_state(INITIALIZED);
711    sync->notify_all();
712
713    // wait until os::start_thread()
714    while (osthread->get_state() == INITIALIZED) {
715      sync->wait(Mutex::_no_safepoint_check_flag);
716    }
717  }
718
719  // call one more level start routine
720  thread->run();
721
722  return 0;
723}
724
725bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
726  assert(thread->osthread() == NULL, "caller responsible");
727
728  // Allocate the OSThread object
729  OSThread* osthread = new OSThread(NULL, NULL);
730  if (osthread == NULL) {
731    return false;
732  }
733
734  // set the correct thread state
735  osthread->set_thread_type(thr_type);
736
737  // Initial state is ALLOCATED but not INITIALIZED
738  osthread->set_state(ALLOCATED);
739
740  thread->set_osthread(osthread);
741
742  // init thread attributes
743  pthread_attr_t attr;
744  pthread_attr_init(&attr);
745  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
746
747  // stack size
748  if (os::Bsd::supports_variable_stack_size()) {
749    // calculate stack size if it's not specified by caller
750    if (stack_size == 0) {
751      stack_size = os::Bsd::default_stack_size(thr_type);
752
753      switch (thr_type) {
754      case os::java_thread:
755        // Java threads use ThreadStackSize which default value can be
756        // changed with the flag -Xss
757        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
758        stack_size = JavaThread::stack_size_at_create();
759        break;
760      case os::compiler_thread:
761        if (CompilerThreadStackSize > 0) {
762          stack_size = (size_t)(CompilerThreadStackSize * K);
763          break;
764        } // else fall through:
765          // use VMThreadStackSize if CompilerThreadStackSize is not defined
766      case os::vm_thread:
767      case os::pgc_thread:
768      case os::cgc_thread:
769      case os::watcher_thread:
770        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
771        break;
772      }
773    }
774
775    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
776    pthread_attr_setstacksize(&attr, stack_size);
777  } else {
778    // let pthread_create() pick the default value.
779  }
780
781  ThreadState state;
782
783  {
784    pthread_t tid;
785    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
786
787    pthread_attr_destroy(&attr);
788
789    if (ret != 0) {
790      if (PrintMiscellaneous && (Verbose || WizardMode)) {
791        perror("pthread_create()");
792      }
793      // Need to clean up stuff we've allocated so far
794      thread->set_osthread(NULL);
795      delete osthread;
796      return false;
797    }
798
799    // Store pthread info into the OSThread
800    osthread->set_pthread_id(tid);
801
802    // Wait until child thread is either initialized or aborted
803    {
804      Monitor* sync_with_child = osthread->startThread_lock();
805      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
806      while ((state = osthread->get_state()) == ALLOCATED) {
807        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
808      }
809    }
810
811  }
812
813  // Aborted due to thread limit being reached
814  if (state == ZOMBIE) {
815      thread->set_osthread(NULL);
816      delete osthread;
817      return false;
818  }
819
820  // The thread is returned suspended (in state INITIALIZED),
821  // and is started higher up in the call chain
822  assert(state == INITIALIZED, "race condition");
823  return true;
824}
825
826/////////////////////////////////////////////////////////////////////////////
827// attach existing thread
828
829// bootstrap the main thread
830bool os::create_main_thread(JavaThread* thread) {
831  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
832  return create_attached_thread(thread);
833}
834
835bool os::create_attached_thread(JavaThread* thread) {
836#ifdef ASSERT
837    thread->verify_not_published();
838#endif
839
840  // Allocate the OSThread object
841  OSThread* osthread = new OSThread(NULL, NULL);
842
843  if (osthread == NULL) {
844    return false;
845  }
846
847  // Store pthread info into the OSThread
848#ifdef __APPLE__
849  osthread->set_thread_id(::mach_thread_self());
850  osthread->set_unique_thread_id(locate_unique_thread_id());
851#else
852  osthread->set_thread_id(::pthread_self());
853#endif
854  osthread->set_pthread_id(::pthread_self());
855
856  // initialize floating point control register
857  os::Bsd::init_thread_fpu_state();
858
859  // Initial thread state is RUNNABLE
860  osthread->set_state(RUNNABLE);
861
862  thread->set_osthread(osthread);
863
864  // initialize signal mask for this thread
865  // and save the caller's signal mask
866  os::Bsd::hotspot_sigmask(thread);
867
868  return true;
869}
870
871void os::pd_start_thread(Thread* thread) {
872  OSThread * osthread = thread->osthread();
873  assert(osthread->get_state() != INITIALIZED, "just checking");
874  Monitor* sync_with_child = osthread->startThread_lock();
875  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
876  sync_with_child->notify();
877}
878
879// Free Bsd resources related to the OSThread
880void os::free_thread(OSThread* osthread) {
881  assert(osthread != NULL, "osthread not set");
882
883  if (Thread::current()->osthread() == osthread) {
884    // Restore caller's signal mask
885    sigset_t sigmask = osthread->caller_sigmask();
886    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
887   }
888
889  delete osthread;
890}
891
892//////////////////////////////////////////////////////////////////////////////
893// thread local storage
894
895int os::allocate_thread_local_storage() {
896  pthread_key_t key;
897  int rslt = pthread_key_create(&key, NULL);
898  assert(rslt == 0, "cannot allocate thread local storage");
899  return (int)key;
900}
901
902// Note: This is currently not used by VM, as we don't destroy TLS key
903// on VM exit.
904void os::free_thread_local_storage(int index) {
905  int rslt = pthread_key_delete((pthread_key_t)index);
906  assert(rslt == 0, "invalid index");
907}
908
909void os::thread_local_storage_at_put(int index, void* value) {
910  int rslt = pthread_setspecific((pthread_key_t)index, value);
911  assert(rslt == 0, "pthread_setspecific failed");
912}
913
914extern "C" Thread* get_thread() {
915  return ThreadLocalStorage::thread();
916}
917
918
919////////////////////////////////////////////////////////////////////////////////
920// time support
921
922// Time since start-up in seconds to a fine granularity.
923// Used by VMSelfDestructTimer and the MemProfiler.
924double os::elapsedTime() {
925
926  return (double)(os::elapsed_counter()) * 0.000001;
927}
928
929jlong os::elapsed_counter() {
930  timeval time;
931  int status = gettimeofday(&time, NULL);
932  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
933}
934
935jlong os::elapsed_frequency() {
936  return (1000 * 1000);
937}
938
939// XXX: For now, code this as if BSD does not support vtime.
940bool os::supports_vtime() { return false; }
941bool os::enable_vtime()   { return false; }
942bool os::vtime_enabled()  { return false; }
943double os::elapsedVTime() {
944  // better than nothing, but not much
945  return elapsedTime();
946}
947
948jlong os::javaTimeMillis() {
949  timeval time;
950  int status = gettimeofday(&time, NULL);
951  assert(status != -1, "bsd error");
952  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
953}
954
955#ifndef CLOCK_MONOTONIC
956#define CLOCK_MONOTONIC (1)
957#endif
958
959#ifdef __APPLE__
960void os::Bsd::clock_init() {
961        // XXXDARWIN: Investigate replacement monotonic clock
962}
963#else
964void os::Bsd::clock_init() {
965  struct timespec res;
966  struct timespec tp;
967  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
968      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
969    // yes, monotonic clock is supported
970    _clock_gettime = ::clock_gettime;
971  }
972}
973#endif
974
975
976jlong os::javaTimeNanos() {
977  if (Bsd::supports_monotonic_clock()) {
978    struct timespec tp;
979    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
980    assert(status == 0, "gettime error");
981    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
982    return result;
983  } else {
984    timeval time;
985    int status = gettimeofday(&time, NULL);
986    assert(status != -1, "bsd error");
987    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
988    return 1000 * usecs;
989  }
990}
991
992void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
993  if (Bsd::supports_monotonic_clock()) {
994    info_ptr->max_value = ALL_64_BITS;
995
996    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
997    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
998    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
999  } else {
1000    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1001    info_ptr->max_value = ALL_64_BITS;
1002
1003    // gettimeofday is a real time clock so it skips
1004    info_ptr->may_skip_backward = true;
1005    info_ptr->may_skip_forward = true;
1006  }
1007
1008  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1009}
1010
1011// Return the real, user, and system times in seconds from an
1012// arbitrary fixed point in the past.
1013bool os::getTimesSecs(double* process_real_time,
1014                      double* process_user_time,
1015                      double* process_system_time) {
1016  struct tms ticks;
1017  clock_t real_ticks = times(&ticks);
1018
1019  if (real_ticks == (clock_t) (-1)) {
1020    return false;
1021  } else {
1022    double ticks_per_second = (double) clock_tics_per_sec;
1023    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1024    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1025    *process_real_time = ((double) real_ticks) / ticks_per_second;
1026
1027    return true;
1028  }
1029}
1030
1031
1032char * os::local_time_string(char *buf, size_t buflen) {
1033  struct tm t;
1034  time_t long_time;
1035  time(&long_time);
1036  localtime_r(&long_time, &t);
1037  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1038               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1039               t.tm_hour, t.tm_min, t.tm_sec);
1040  return buf;
1041}
1042
1043struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1044  return localtime_r(clock, res);
1045}
1046
1047////////////////////////////////////////////////////////////////////////////////
1048// runtime exit support
1049
1050// Note: os::shutdown() might be called very early during initialization, or
1051// called from signal handler. Before adding something to os::shutdown(), make
1052// sure it is async-safe and can handle partially initialized VM.
1053void os::shutdown() {
1054
1055  // allow PerfMemory to attempt cleanup of any persistent resources
1056  perfMemory_exit();
1057
1058  // needs to remove object in file system
1059  AttachListener::abort();
1060
1061  // flush buffered output, finish log files
1062  ostream_abort();
1063
1064  // Check for abort hook
1065  abort_hook_t abort_hook = Arguments::abort_hook();
1066  if (abort_hook != NULL) {
1067    abort_hook();
1068  }
1069
1070}
1071
1072// Note: os::abort() might be called very early during initialization, or
1073// called from signal handler. Before adding something to os::abort(), make
1074// sure it is async-safe and can handle partially initialized VM.
1075void os::abort(bool dump_core) {
1076  os::shutdown();
1077  if (dump_core) {
1078#ifndef PRODUCT
1079    fdStream out(defaultStream::output_fd());
1080    out.print_raw("Current thread is ");
1081    char buf[16];
1082    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1083    out.print_raw_cr(buf);
1084    out.print_raw_cr("Dumping core ...");
1085#endif
1086    ::abort(); // dump core
1087  }
1088
1089  ::exit(1);
1090}
1091
1092// Die immediately, no exit hook, no abort hook, no cleanup.
1093void os::die() {
1094  // _exit() on BsdThreads only kills current thread
1095  ::abort();
1096}
1097
1098// unused on bsd for now.
1099void os::set_error_file(const char *logfile) {}
1100
1101
1102// This method is a copy of JDK's sysGetLastErrorString
1103// from src/solaris/hpi/src/system_md.c
1104
1105size_t os::lasterror(char *buf, size_t len) {
1106
1107  if (errno == 0)  return 0;
1108
1109  const char *s = ::strerror(errno);
1110  size_t n = ::strlen(s);
1111  if (n >= len) {
1112    n = len - 1;
1113  }
1114  ::strncpy(buf, s, n);
1115  buf[n] = '\0';
1116  return n;
1117}
1118
1119intx os::current_thread_id() {
1120#ifdef __APPLE__
1121  return (intx)::mach_thread_self();
1122#else
1123  return (intx)::pthread_self();
1124#endif
1125}
1126int os::current_process_id() {
1127
1128  // Under the old bsd thread library, bsd gives each thread
1129  // its own process id. Because of this each thread will return
1130  // a different pid if this method were to return the result
1131  // of getpid(2). Bsd provides no api that returns the pid
1132  // of the launcher thread for the vm. This implementation
1133  // returns a unique pid, the pid of the launcher thread
1134  // that starts the vm 'process'.
1135
1136  // Under the NPTL, getpid() returns the same pid as the
1137  // launcher thread rather than a unique pid per thread.
1138  // Use gettid() if you want the old pre NPTL behaviour.
1139
1140  // if you are looking for the result of a call to getpid() that
1141  // returns a unique pid for the calling thread, then look at the
1142  // OSThread::thread_id() method in osThread_bsd.hpp file
1143
1144  return (int)(_initial_pid ? _initial_pid : getpid());
1145}
1146
1147// DLL functions
1148
1149#define JNI_LIB_PREFIX "lib"
1150#ifdef __APPLE__
1151#define JNI_LIB_SUFFIX ".dylib"
1152#else
1153#define JNI_LIB_SUFFIX ".so"
1154#endif
1155
1156const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1157
1158// This must be hard coded because it's the system's temporary
1159// directory not the java application's temp directory, ala java.io.tmpdir.
1160#ifdef __APPLE__
1161// macosx has a secure per-user temporary directory
1162char temp_path_storage[PATH_MAX];
1163const char* os::get_temp_directory() {
1164  static char *temp_path = NULL;
1165  if (temp_path == NULL) {
1166    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1167    if (pathSize == 0 || pathSize > PATH_MAX) {
1168      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1169    }
1170    temp_path = temp_path_storage;
1171  }
1172  return temp_path;
1173}
1174#else /* __APPLE__ */
1175const char* os::get_temp_directory() { return "/tmp"; }
1176#endif /* __APPLE__ */
1177
1178static bool file_exists(const char* filename) {
1179  struct stat statbuf;
1180  if (filename == NULL || strlen(filename) == 0) {
1181    return false;
1182  }
1183  return os::stat(filename, &statbuf) == 0;
1184}
1185
1186bool os::dll_build_name(char* buffer, size_t buflen,
1187                        const char* pname, const char* fname) {
1188  bool retval = false;
1189  // Copied from libhpi
1190  const size_t pnamelen = pname ? strlen(pname) : 0;
1191
1192  // Return error on buffer overflow.
1193  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1194    return retval;
1195  }
1196
1197  if (pnamelen == 0) {
1198    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1199    retval = true;
1200  } else if (strchr(pname, *os::path_separator()) != NULL) {
1201    int n;
1202    char** pelements = split_path(pname, &n);
1203    for (int i = 0 ; i < n ; i++) {
1204      // Really shouldn't be NULL, but check can't hurt
1205      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1206        continue; // skip the empty path values
1207      }
1208      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1209          pelements[i], fname);
1210      if (file_exists(buffer)) {
1211        retval = true;
1212        break;
1213      }
1214    }
1215    // release the storage
1216    for (int i = 0 ; i < n ; i++) {
1217      if (pelements[i] != NULL) {
1218        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1219      }
1220    }
1221    if (pelements != NULL) {
1222      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1223    }
1224  } else {
1225    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1226    retval = true;
1227  }
1228  return retval;
1229}
1230
1231const char* os::get_current_directory(char *buf, int buflen) {
1232  return getcwd(buf, buflen);
1233}
1234
1235// check if addr is inside libjvm.so
1236bool os::address_is_in_vm(address addr) {
1237  static address libjvm_base_addr;
1238  Dl_info dlinfo;
1239
1240  if (libjvm_base_addr == NULL) {
1241    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1242    libjvm_base_addr = (address)dlinfo.dli_fbase;
1243    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1244  }
1245
1246  if (dladdr((void *)addr, &dlinfo)) {
1247    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1248  }
1249
1250  return false;
1251}
1252
1253
1254#define MACH_MAXSYMLEN 256
1255
1256bool os::dll_address_to_function_name(address addr, char *buf,
1257                                      int buflen, int *offset) {
1258  Dl_info dlinfo;
1259  char localbuf[MACH_MAXSYMLEN];
1260
1261  // dladdr will find names of dynamic functions only, but does
1262  // it set dli_fbase with mach_header address when it "fails" ?
1263  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1264    if (buf != NULL) {
1265      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1266        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1267      }
1268    }
1269    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1270    return true;
1271  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1272    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1273       buf, buflen, offset, dlinfo.dli_fname)) {
1274       return true;
1275    }
1276  }
1277
1278  // Handle non-dymanic manually:
1279  if (dlinfo.dli_fbase != NULL &&
1280      Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1281    if(!Decoder::demangle(localbuf, buf, buflen)) {
1282      jio_snprintf(buf, buflen, "%s", localbuf);
1283    }
1284    return true;
1285  }
1286  if (buf != NULL) buf[0] = '\0';
1287  if (offset != NULL) *offset = -1;
1288  return false;
1289}
1290
1291// ported from solaris version
1292bool os::dll_address_to_library_name(address addr, char* buf,
1293                                     int buflen, int* offset) {
1294  Dl_info dlinfo;
1295
1296  if (dladdr((void*)addr, &dlinfo)){
1297     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1298     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1299     return true;
1300  } else {
1301     if (buf) buf[0] = '\0';
1302     if (offset) *offset = -1;
1303     return false;
1304  }
1305}
1306
1307// Loads .dll/.so and
1308// in case of error it checks if .dll/.so was built for the
1309// same architecture as Hotspot is running on
1310
1311#ifdef __APPLE__
1312void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1313  void * result= ::dlopen(filename, RTLD_LAZY);
1314  if (result != NULL) {
1315    // Successful loading
1316    return result;
1317  }
1318
1319  // Read system error message into ebuf
1320  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1321  ebuf[ebuflen-1]='\0';
1322
1323  return NULL;
1324}
1325#else
1326void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1327{
1328  void * result= ::dlopen(filename, RTLD_LAZY);
1329  if (result != NULL) {
1330    // Successful loading
1331    return result;
1332  }
1333
1334  Elf32_Ehdr elf_head;
1335
1336  // Read system error message into ebuf
1337  // It may or may not be overwritten below
1338  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1339  ebuf[ebuflen-1]='\0';
1340  int diag_msg_max_length=ebuflen-strlen(ebuf);
1341  char* diag_msg_buf=ebuf+strlen(ebuf);
1342
1343  if (diag_msg_max_length==0) {
1344    // No more space in ebuf for additional diagnostics message
1345    return NULL;
1346  }
1347
1348
1349  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1350
1351  if (file_descriptor < 0) {
1352    // Can't open library, report dlerror() message
1353    return NULL;
1354  }
1355
1356  bool failed_to_read_elf_head=
1357    (sizeof(elf_head)!=
1358        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1359
1360  ::close(file_descriptor);
1361  if (failed_to_read_elf_head) {
1362    // file i/o error - report dlerror() msg
1363    return NULL;
1364  }
1365
1366  typedef struct {
1367    Elf32_Half  code;         // Actual value as defined in elf.h
1368    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1369    char        elf_class;    // 32 or 64 bit
1370    char        endianess;    // MSB or LSB
1371    char*       name;         // String representation
1372  } arch_t;
1373
1374  #ifndef EM_486
1375  #define EM_486          6               /* Intel 80486 */
1376  #endif
1377
1378  #ifndef EM_MIPS_RS3_LE
1379  #define EM_MIPS_RS3_LE  10              /* MIPS */
1380  #endif
1381
1382  #ifndef EM_PPC64
1383  #define EM_PPC64        21              /* PowerPC64 */
1384  #endif
1385
1386  #ifndef EM_S390
1387  #define EM_S390         22              /* IBM System/390 */
1388  #endif
1389
1390  #ifndef EM_IA_64
1391  #define EM_IA_64        50              /* HP/Intel IA-64 */
1392  #endif
1393
1394  #ifndef EM_X86_64
1395  #define EM_X86_64       62              /* AMD x86-64 */
1396  #endif
1397
1398  static const arch_t arch_array[]={
1399    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1400    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1401    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1402    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1403    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1404    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1405    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1406    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1407    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1408    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1409    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1410    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1411    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1412    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1413    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1414    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1415  };
1416
1417  #if  (defined IA32)
1418    static  Elf32_Half running_arch_code=EM_386;
1419  #elif   (defined AMD64)
1420    static  Elf32_Half running_arch_code=EM_X86_64;
1421  #elif  (defined IA64)
1422    static  Elf32_Half running_arch_code=EM_IA_64;
1423  #elif  (defined __sparc) && (defined _LP64)
1424    static  Elf32_Half running_arch_code=EM_SPARCV9;
1425  #elif  (defined __sparc) && (!defined _LP64)
1426    static  Elf32_Half running_arch_code=EM_SPARC;
1427  #elif  (defined __powerpc64__)
1428    static  Elf32_Half running_arch_code=EM_PPC64;
1429  #elif  (defined __powerpc__)
1430    static  Elf32_Half running_arch_code=EM_PPC;
1431  #elif  (defined ARM)
1432    static  Elf32_Half running_arch_code=EM_ARM;
1433  #elif  (defined S390)
1434    static  Elf32_Half running_arch_code=EM_S390;
1435  #elif  (defined ALPHA)
1436    static  Elf32_Half running_arch_code=EM_ALPHA;
1437  #elif  (defined MIPSEL)
1438    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1439  #elif  (defined PARISC)
1440    static  Elf32_Half running_arch_code=EM_PARISC;
1441  #elif  (defined MIPS)
1442    static  Elf32_Half running_arch_code=EM_MIPS;
1443  #elif  (defined M68K)
1444    static  Elf32_Half running_arch_code=EM_68K;
1445  #else
1446    #error Method os::dll_load requires that one of following is defined:\
1447         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1448  #endif
1449
1450  // Identify compatability class for VM's architecture and library's architecture
1451  // Obtain string descriptions for architectures
1452
1453  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1454  int running_arch_index=-1;
1455
1456  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1457    if (running_arch_code == arch_array[i].code) {
1458      running_arch_index    = i;
1459    }
1460    if (lib_arch.code == arch_array[i].code) {
1461      lib_arch.compat_class = arch_array[i].compat_class;
1462      lib_arch.name         = arch_array[i].name;
1463    }
1464  }
1465
1466  assert(running_arch_index != -1,
1467    "Didn't find running architecture code (running_arch_code) in arch_array");
1468  if (running_arch_index == -1) {
1469    // Even though running architecture detection failed
1470    // we may still continue with reporting dlerror() message
1471    return NULL;
1472  }
1473
1474  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1475    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1476    return NULL;
1477  }
1478
1479#ifndef S390
1480  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1481    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1482    return NULL;
1483  }
1484#endif // !S390
1485
1486  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1487    if ( lib_arch.name!=NULL ) {
1488      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1489        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1490        lib_arch.name, arch_array[running_arch_index].name);
1491    } else {
1492      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1493      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1494        lib_arch.code,
1495        arch_array[running_arch_index].name);
1496    }
1497  }
1498
1499  return NULL;
1500}
1501#endif /* !__APPLE__ */
1502
1503// XXX: Do we need a lock around this as per Linux?
1504void* os::dll_lookup(void* handle, const char* name) {
1505  return dlsym(handle, name);
1506}
1507
1508
1509static bool _print_ascii_file(const char* filename, outputStream* st) {
1510  int fd = ::open(filename, O_RDONLY);
1511  if (fd == -1) {
1512     return false;
1513  }
1514
1515  char buf[32];
1516  int bytes;
1517  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1518    st->print_raw(buf, bytes);
1519  }
1520
1521  ::close(fd);
1522
1523  return true;
1524}
1525
1526void os::print_dll_info(outputStream *st) {
1527   st->print_cr("Dynamic libraries:");
1528#ifdef RTLD_DI_LINKMAP
1529    Dl_info dli;
1530    void *handle;
1531    Link_map *map;
1532    Link_map *p;
1533
1534    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1535        st->print_cr("Error: Cannot print dynamic libraries.");
1536        return;
1537    }
1538    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1539    if (handle == NULL) {
1540        st->print_cr("Error: Cannot print dynamic libraries.");
1541        return;
1542    }
1543    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1544    if (map == NULL) {
1545        st->print_cr("Error: Cannot print dynamic libraries.");
1546        return;
1547    }
1548
1549    while (map->l_prev != NULL)
1550        map = map->l_prev;
1551
1552    while (map != NULL) {
1553        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1554        map = map->l_next;
1555    }
1556
1557    dlclose(handle);
1558#elif defined(__APPLE__)
1559    uint32_t count;
1560    uint32_t i;
1561
1562    count = _dyld_image_count();
1563    for (i = 1; i < count; i++) {
1564        const char *name = _dyld_get_image_name(i);
1565        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1566        st->print_cr(PTR_FORMAT " \t%s", slide, name);
1567    }
1568#else
1569   st->print_cr("Error: Cannot print dynamic libraries.");
1570#endif
1571}
1572
1573void os::print_os_info_brief(outputStream* st) {
1574  st->print("Bsd");
1575
1576  os::Posix::print_uname_info(st);
1577}
1578
1579void os::print_os_info(outputStream* st) {
1580  st->print("OS:");
1581  st->print("Bsd");
1582
1583  os::Posix::print_uname_info(st);
1584
1585  os::Posix::print_rlimit_info(st);
1586
1587  os::Posix::print_load_average(st);
1588}
1589
1590void os::pd_print_cpu_info(outputStream* st) {
1591  // Nothing to do for now.
1592}
1593
1594void os::print_memory_info(outputStream* st) {
1595
1596  st->print("Memory:");
1597  st->print(" %dk page", os::vm_page_size()>>10);
1598
1599  st->print(", physical " UINT64_FORMAT "k",
1600            os::physical_memory() >> 10);
1601  st->print("(" UINT64_FORMAT "k free)",
1602            os::available_memory() >> 10);
1603  st->cr();
1604
1605  // meminfo
1606  st->print("\n/proc/meminfo:\n");
1607  _print_ascii_file("/proc/meminfo", st);
1608  st->cr();
1609}
1610
1611// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1612// but they're the same for all the bsd arch that we support
1613// and they're the same for solaris but there's no common place to put this.
1614const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1615                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1616                          "ILL_COPROC", "ILL_BADSTK" };
1617
1618const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1619                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1620                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1621
1622const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1623
1624const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1625
1626void os::print_siginfo(outputStream* st, void* siginfo) {
1627  st->print("siginfo:");
1628
1629  const int buflen = 100;
1630  char buf[buflen];
1631  siginfo_t *si = (siginfo_t*)siginfo;
1632  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1633  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1634    st->print("si_errno=%s", buf);
1635  } else {
1636    st->print("si_errno=%d", si->si_errno);
1637  }
1638  const int c = si->si_code;
1639  assert(c > 0, "unexpected si_code");
1640  switch (si->si_signo) {
1641  case SIGILL:
1642    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1643    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1644    break;
1645  case SIGFPE:
1646    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1647    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1648    break;
1649  case SIGSEGV:
1650    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1651    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1652    break;
1653  case SIGBUS:
1654    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1655    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1656    break;
1657  default:
1658    st->print(", si_code=%d", si->si_code);
1659    // no si_addr
1660  }
1661
1662  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1663      UseSharedSpaces) {
1664    FileMapInfo* mapinfo = FileMapInfo::current_info();
1665    if (mapinfo->is_in_shared_space(si->si_addr)) {
1666      st->print("\n\nError accessing class data sharing archive."   \
1667                " Mapped file inaccessible during execution, "      \
1668                " possible disk/network problem.");
1669    }
1670  }
1671  st->cr();
1672}
1673
1674
1675static void print_signal_handler(outputStream* st, int sig,
1676                                 char* buf, size_t buflen);
1677
1678void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1679  st->print_cr("Signal Handlers:");
1680  print_signal_handler(st, SIGSEGV, buf, buflen);
1681  print_signal_handler(st, SIGBUS , buf, buflen);
1682  print_signal_handler(st, SIGFPE , buf, buflen);
1683  print_signal_handler(st, SIGPIPE, buf, buflen);
1684  print_signal_handler(st, SIGXFSZ, buf, buflen);
1685  print_signal_handler(st, SIGILL , buf, buflen);
1686  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1687  print_signal_handler(st, SR_signum, buf, buflen);
1688  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1689  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1690  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1691  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1692}
1693
1694static char saved_jvm_path[MAXPATHLEN] = {0};
1695
1696// Find the full path to the current module, libjvm
1697void os::jvm_path(char *buf, jint buflen) {
1698  // Error checking.
1699  if (buflen < MAXPATHLEN) {
1700    assert(false, "must use a large-enough buffer");
1701    buf[0] = '\0';
1702    return;
1703  }
1704  // Lazy resolve the path to current module.
1705  if (saved_jvm_path[0] != 0) {
1706    strcpy(buf, saved_jvm_path);
1707    return;
1708  }
1709
1710  char dli_fname[MAXPATHLEN];
1711  bool ret = dll_address_to_library_name(
1712                CAST_FROM_FN_PTR(address, os::jvm_path),
1713                dli_fname, sizeof(dli_fname), NULL);
1714  assert(ret != 0, "cannot locate libjvm");
1715  char *rp = realpath(dli_fname, buf);
1716  if (rp == NULL)
1717    return;
1718
1719  if (Arguments::created_by_gamma_launcher()) {
1720    // Support for the gamma launcher.  Typical value for buf is
1721    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1722    // the right place in the string, then assume we are installed in a JDK and
1723    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1724    // construct a path to the JVM being overridden.
1725
1726    const char *p = buf + strlen(buf) - 1;
1727    for (int count = 0; p > buf && count < 5; ++count) {
1728      for (--p; p > buf && *p != '/'; --p)
1729        /* empty */ ;
1730    }
1731
1732    if (strncmp(p, "/jre/lib/", 9) != 0) {
1733      // Look for JAVA_HOME in the environment.
1734      char* java_home_var = ::getenv("JAVA_HOME");
1735      if (java_home_var != NULL && java_home_var[0] != 0) {
1736        char* jrelib_p;
1737        int len;
1738
1739        // Check the current module name "libjvm"
1740        p = strrchr(buf, '/');
1741        assert(strstr(p, "/libjvm") == p, "invalid library name");
1742
1743        rp = realpath(java_home_var, buf);
1744        if (rp == NULL)
1745          return;
1746
1747        // determine if this is a legacy image or modules image
1748        // modules image doesn't have "jre" subdirectory
1749        len = strlen(buf);
1750        jrelib_p = buf + len;
1751
1752        // Add the appropriate library subdir
1753        snprintf(jrelib_p, buflen-len, "/jre/lib");
1754        if (0 != access(buf, F_OK)) {
1755          snprintf(jrelib_p, buflen-len, "/lib");
1756        }
1757
1758        // Add the appropriate client or server subdir
1759        len = strlen(buf);
1760        jrelib_p = buf + len;
1761        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1762        if (0 != access(buf, F_OK)) {
1763          snprintf(jrelib_p, buflen-len, "");
1764        }
1765
1766        // If the path exists within JAVA_HOME, add the JVM library name
1767        // to complete the path to JVM being overridden.  Otherwise fallback
1768        // to the path to the current library.
1769        if (0 == access(buf, F_OK)) {
1770          // Use current module name "libjvm"
1771          len = strlen(buf);
1772          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1773        } else {
1774          // Fall back to path of current library
1775          rp = realpath(dli_fname, buf);
1776          if (rp == NULL)
1777            return;
1778        }
1779      }
1780    }
1781  }
1782
1783  strcpy(saved_jvm_path, buf);
1784}
1785
1786void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1787  // no prefix required, not even "_"
1788}
1789
1790void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1791  // no suffix required
1792}
1793
1794////////////////////////////////////////////////////////////////////////////////
1795// sun.misc.Signal support
1796
1797static volatile jint sigint_count = 0;
1798
1799static void
1800UserHandler(int sig, void *siginfo, void *context) {
1801  // 4511530 - sem_post is serialized and handled by the manager thread. When
1802  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1803  // don't want to flood the manager thread with sem_post requests.
1804  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1805      return;
1806
1807  // Ctrl-C is pressed during error reporting, likely because the error
1808  // handler fails to abort. Let VM die immediately.
1809  if (sig == SIGINT && is_error_reported()) {
1810     os::die();
1811  }
1812
1813  os::signal_notify(sig);
1814}
1815
1816void* os::user_handler() {
1817  return CAST_FROM_FN_PTR(void*, UserHandler);
1818}
1819
1820extern "C" {
1821  typedef void (*sa_handler_t)(int);
1822  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1823}
1824
1825void* os::signal(int signal_number, void* handler) {
1826  struct sigaction sigAct, oldSigAct;
1827
1828  sigfillset(&(sigAct.sa_mask));
1829  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1830  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1831
1832  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1833    // -1 means registration failed
1834    return (void *)-1;
1835  }
1836
1837  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1838}
1839
1840void os::signal_raise(int signal_number) {
1841  ::raise(signal_number);
1842}
1843
1844/*
1845 * The following code is moved from os.cpp for making this
1846 * code platform specific, which it is by its very nature.
1847 */
1848
1849// Will be modified when max signal is changed to be dynamic
1850int os::sigexitnum_pd() {
1851  return NSIG;
1852}
1853
1854// a counter for each possible signal value
1855static volatile jint pending_signals[NSIG+1] = { 0 };
1856
1857// Bsd(POSIX) specific hand shaking semaphore.
1858#ifdef __APPLE__
1859static semaphore_t sig_sem;
1860#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1861#define SEM_WAIT(sem)           semaphore_wait(sem);
1862#define SEM_POST(sem)           semaphore_signal(sem);
1863#else
1864static sem_t sig_sem;
1865#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1866#define SEM_WAIT(sem)           sem_wait(&sem);
1867#define SEM_POST(sem)           sem_post(&sem);
1868#endif
1869
1870void os::signal_init_pd() {
1871  // Initialize signal structures
1872  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1873
1874  // Initialize signal semaphore
1875  ::SEM_INIT(sig_sem, 0);
1876}
1877
1878void os::signal_notify(int sig) {
1879  Atomic::inc(&pending_signals[sig]);
1880  ::SEM_POST(sig_sem);
1881}
1882
1883static int check_pending_signals(bool wait) {
1884  Atomic::store(0, &sigint_count);
1885  for (;;) {
1886    for (int i = 0; i < NSIG + 1; i++) {
1887      jint n = pending_signals[i];
1888      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1889        return i;
1890      }
1891    }
1892    if (!wait) {
1893      return -1;
1894    }
1895    JavaThread *thread = JavaThread::current();
1896    ThreadBlockInVM tbivm(thread);
1897
1898    bool threadIsSuspended;
1899    do {
1900      thread->set_suspend_equivalent();
1901      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1902      ::SEM_WAIT(sig_sem);
1903
1904      // were we externally suspended while we were waiting?
1905      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1906      if (threadIsSuspended) {
1907        //
1908        // The semaphore has been incremented, but while we were waiting
1909        // another thread suspended us. We don't want to continue running
1910        // while suspended because that would surprise the thread that
1911        // suspended us.
1912        //
1913        ::SEM_POST(sig_sem);
1914
1915        thread->java_suspend_self();
1916      }
1917    } while (threadIsSuspended);
1918  }
1919}
1920
1921int os::signal_lookup() {
1922  return check_pending_signals(false);
1923}
1924
1925int os::signal_wait() {
1926  return check_pending_signals(true);
1927}
1928
1929////////////////////////////////////////////////////////////////////////////////
1930// Virtual Memory
1931
1932int os::vm_page_size() {
1933  // Seems redundant as all get out
1934  assert(os::Bsd::page_size() != -1, "must call os::init");
1935  return os::Bsd::page_size();
1936}
1937
1938// Solaris allocates memory by pages.
1939int os::vm_allocation_granularity() {
1940  assert(os::Bsd::page_size() != -1, "must call os::init");
1941  return os::Bsd::page_size();
1942}
1943
1944// Rationale behind this function:
1945//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
1946//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
1947//  samples for JITted code. Here we create private executable mapping over the code cache
1948//  and then we can use standard (well, almost, as mapping can change) way to provide
1949//  info for the reporting script by storing timestamp and location of symbol
1950void bsd_wrap_code(char* base, size_t size) {
1951  static volatile jint cnt = 0;
1952
1953  if (!UseOprofile) {
1954    return;
1955  }
1956
1957  char buf[PATH_MAX + 1];
1958  int num = Atomic::add(1, &cnt);
1959
1960  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
1961           os::get_temp_directory(), os::current_process_id(), num);
1962  unlink(buf);
1963
1964  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
1965
1966  if (fd != -1) {
1967    off_t rv = ::lseek(fd, size-2, SEEK_SET);
1968    if (rv != (off_t)-1) {
1969      if (::write(fd, "", 1) == 1) {
1970        mmap(base, size,
1971             PROT_READ|PROT_WRITE|PROT_EXEC,
1972             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
1973      }
1974    }
1975    ::close(fd);
1976    unlink(buf);
1977  }
1978}
1979
1980// NOTE: Bsd kernel does not really reserve the pages for us.
1981//       All it does is to check if there are enough free pages
1982//       left at the time of mmap(). This could be a potential
1983//       problem.
1984bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
1985  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
1986#ifdef __OpenBSD__
1987  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
1988  return ::mprotect(addr, size, prot) == 0;
1989#else
1990  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
1991                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
1992  return res != (uintptr_t) MAP_FAILED;
1993#endif
1994}
1995
1996
1997bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
1998                       bool exec) {
1999  return commit_memory(addr, size, exec);
2000}
2001
2002void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2003}
2004
2005void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2006  ::madvise(addr, bytes, MADV_DONTNEED);
2007}
2008
2009void os::numa_make_global(char *addr, size_t bytes) {
2010}
2011
2012void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2013}
2014
2015bool os::numa_topology_changed()   { return false; }
2016
2017size_t os::numa_get_groups_num() {
2018  return 1;
2019}
2020
2021int os::numa_get_group_id() {
2022  return 0;
2023}
2024
2025size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2026  if (size > 0) {
2027    ids[0] = 0;
2028    return 1;
2029  }
2030  return 0;
2031}
2032
2033bool os::get_page_info(char *start, page_info* info) {
2034  return false;
2035}
2036
2037char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2038  return end;
2039}
2040
2041
2042bool os::pd_uncommit_memory(char* addr, size_t size) {
2043#ifdef __OpenBSD__
2044  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2045  return ::mprotect(addr, size, PROT_NONE) == 0;
2046#else
2047  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2048                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2049  return res  != (uintptr_t) MAP_FAILED;
2050#endif
2051}
2052
2053bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2054  return os::commit_memory(addr, size);
2055}
2056
2057// If this is a growable mapping, remove the guard pages entirely by
2058// munmap()ping them.  If not, just call uncommit_memory().
2059bool os::remove_stack_guard_pages(char* addr, size_t size) {
2060  return os::uncommit_memory(addr, size);
2061}
2062
2063static address _highest_vm_reserved_address = NULL;
2064
2065// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2066// at 'requested_addr'. If there are existing memory mappings at the same
2067// location, however, they will be overwritten. If 'fixed' is false,
2068// 'requested_addr' is only treated as a hint, the return value may or
2069// may not start from the requested address. Unlike Bsd mmap(), this
2070// function returns NULL to indicate failure.
2071static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2072  char * addr;
2073  int flags;
2074
2075  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2076  if (fixed) {
2077    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2078    flags |= MAP_FIXED;
2079  }
2080
2081  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2082  // to PROT_EXEC if executable when we commit the page.
2083  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2084                       flags, -1, 0);
2085
2086  if (addr != MAP_FAILED) {
2087    // anon_mmap() should only get called during VM initialization,
2088    // don't need lock (actually we can skip locking even it can be called
2089    // from multiple threads, because _highest_vm_reserved_address is just a
2090    // hint about the upper limit of non-stack memory regions.)
2091    if ((address)addr + bytes > _highest_vm_reserved_address) {
2092      _highest_vm_reserved_address = (address)addr + bytes;
2093    }
2094  }
2095
2096  return addr == MAP_FAILED ? NULL : addr;
2097}
2098
2099// Don't update _highest_vm_reserved_address, because there might be memory
2100// regions above addr + size. If so, releasing a memory region only creates
2101// a hole in the address space, it doesn't help prevent heap-stack collision.
2102//
2103static int anon_munmap(char * addr, size_t size) {
2104  return ::munmap(addr, size) == 0;
2105}
2106
2107char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2108                         size_t alignment_hint) {
2109  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2110}
2111
2112bool os::pd_release_memory(char* addr, size_t size) {
2113  return anon_munmap(addr, size);
2114}
2115
2116static address highest_vm_reserved_address() {
2117  return _highest_vm_reserved_address;
2118}
2119
2120static bool bsd_mprotect(char* addr, size_t size, int prot) {
2121  // Bsd wants the mprotect address argument to be page aligned.
2122  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2123
2124  // According to SUSv3, mprotect() should only be used with mappings
2125  // established by mmap(), and mmap() always maps whole pages. Unaligned
2126  // 'addr' likely indicates problem in the VM (e.g. trying to change
2127  // protection of malloc'ed or statically allocated memory). Check the
2128  // caller if you hit this assert.
2129  assert(addr == bottom, "sanity check");
2130
2131  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2132  return ::mprotect(bottom, size, prot) == 0;
2133}
2134
2135// Set protections specified
2136bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2137                        bool is_committed) {
2138  unsigned int p = 0;
2139  switch (prot) {
2140  case MEM_PROT_NONE: p = PROT_NONE; break;
2141  case MEM_PROT_READ: p = PROT_READ; break;
2142  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2143  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2144  default:
2145    ShouldNotReachHere();
2146  }
2147  // is_committed is unused.
2148  return bsd_mprotect(addr, bytes, p);
2149}
2150
2151bool os::guard_memory(char* addr, size_t size) {
2152  return bsd_mprotect(addr, size, PROT_NONE);
2153}
2154
2155bool os::unguard_memory(char* addr, size_t size) {
2156  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2157}
2158
2159bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2160  return false;
2161}
2162
2163/*
2164* Set the coredump_filter bits to include largepages in core dump (bit 6)
2165*
2166* From the coredump_filter documentation:
2167*
2168* - (bit 0) anonymous private memory
2169* - (bit 1) anonymous shared memory
2170* - (bit 2) file-backed private memory
2171* - (bit 3) file-backed shared memory
2172* - (bit 4) ELF header pages in file-backed private memory areas (it is
2173*           effective only if the bit 2 is cleared)
2174* - (bit 5) hugetlb private memory
2175* - (bit 6) hugetlb shared memory
2176*/
2177static void set_coredump_filter(void) {
2178  FILE *f;
2179  long cdm;
2180
2181  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2182    return;
2183  }
2184
2185  if (fscanf(f, "%lx", &cdm) != 1) {
2186    fclose(f);
2187    return;
2188  }
2189
2190  rewind(f);
2191
2192  if ((cdm & LARGEPAGES_BIT) == 0) {
2193    cdm |= LARGEPAGES_BIT;
2194    fprintf(f, "%#lx", cdm);
2195  }
2196
2197  fclose(f);
2198}
2199
2200// Large page support
2201
2202static size_t _large_page_size = 0;
2203
2204void os::large_page_init() {
2205}
2206
2207
2208char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2209  // "exec" is passed in but not used.  Creating the shared image for
2210  // the code cache doesn't have an SHM_X executable permission to check.
2211  assert(UseLargePages && UseSHM, "only for SHM large pages");
2212
2213  key_t key = IPC_PRIVATE;
2214  char *addr;
2215
2216  bool warn_on_failure = UseLargePages &&
2217                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2218                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2219                        );
2220  char msg[128];
2221
2222  // Create a large shared memory region to attach to based on size.
2223  // Currently, size is the total size of the heap
2224  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2225  if (shmid == -1) {
2226     // Possible reasons for shmget failure:
2227     // 1. shmmax is too small for Java heap.
2228     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2229     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2230     // 2. not enough large page memory.
2231     //    > check available large pages: cat /proc/meminfo
2232     //    > increase amount of large pages:
2233     //          echo new_value > /proc/sys/vm/nr_hugepages
2234     //      Note 1: different Bsd may use different name for this property,
2235     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2236     //      Note 2: it's possible there's enough physical memory available but
2237     //            they are so fragmented after a long run that they can't
2238     //            coalesce into large pages. Try to reserve large pages when
2239     //            the system is still "fresh".
2240     if (warn_on_failure) {
2241       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2242       warning(msg);
2243     }
2244     return NULL;
2245  }
2246
2247  // attach to the region
2248  addr = (char*)shmat(shmid, req_addr, 0);
2249  int err = errno;
2250
2251  // Remove shmid. If shmat() is successful, the actual shared memory segment
2252  // will be deleted when it's detached by shmdt() or when the process
2253  // terminates. If shmat() is not successful this will remove the shared
2254  // segment immediately.
2255  shmctl(shmid, IPC_RMID, NULL);
2256
2257  if ((intptr_t)addr == -1) {
2258     if (warn_on_failure) {
2259       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2260       warning(msg);
2261     }
2262     return NULL;
2263  }
2264
2265  // The memory is committed
2266  address pc = CALLER_PC;
2267  MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
2268  MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
2269
2270  return addr;
2271}
2272
2273bool os::release_memory_special(char* base, size_t bytes) {
2274  // detaching the SHM segment will also delete it, see reserve_memory_special()
2275  int rslt = shmdt(base);
2276  if (rslt == 0) {
2277    MemTracker::record_virtual_memory_uncommit((address)base, bytes);
2278    MemTracker::record_virtual_memory_release((address)base, bytes);
2279    return true;
2280  } else {
2281    return false;
2282  }
2283
2284}
2285
2286size_t os::large_page_size() {
2287  return _large_page_size;
2288}
2289
2290// HugeTLBFS allows application to commit large page memory on demand;
2291// with SysV SHM the entire memory region must be allocated as shared
2292// memory.
2293bool os::can_commit_large_page_memory() {
2294  return UseHugeTLBFS;
2295}
2296
2297bool os::can_execute_large_page_memory() {
2298  return UseHugeTLBFS;
2299}
2300
2301// Reserve memory at an arbitrary address, only if that area is
2302// available (and not reserved for something else).
2303
2304char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2305  const int max_tries = 10;
2306  char* base[max_tries];
2307  size_t size[max_tries];
2308  const size_t gap = 0x000000;
2309
2310  // Assert only that the size is a multiple of the page size, since
2311  // that's all that mmap requires, and since that's all we really know
2312  // about at this low abstraction level.  If we need higher alignment,
2313  // we can either pass an alignment to this method or verify alignment
2314  // in one of the methods further up the call chain.  See bug 5044738.
2315  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2316
2317  // Repeatedly allocate blocks until the block is allocated at the
2318  // right spot. Give up after max_tries. Note that reserve_memory() will
2319  // automatically update _highest_vm_reserved_address if the call is
2320  // successful. The variable tracks the highest memory address every reserved
2321  // by JVM. It is used to detect heap-stack collision if running with
2322  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2323  // space than needed, it could confuse the collision detecting code. To
2324  // solve the problem, save current _highest_vm_reserved_address and
2325  // calculate the correct value before return.
2326  address old_highest = _highest_vm_reserved_address;
2327
2328  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2329  // if kernel honors the hint then we can return immediately.
2330  char * addr = anon_mmap(requested_addr, bytes, false);
2331  if (addr == requested_addr) {
2332     return requested_addr;
2333  }
2334
2335  if (addr != NULL) {
2336     // mmap() is successful but it fails to reserve at the requested address
2337     anon_munmap(addr, bytes);
2338  }
2339
2340  int i;
2341  for (i = 0; i < max_tries; ++i) {
2342    base[i] = reserve_memory(bytes);
2343
2344    if (base[i] != NULL) {
2345      // Is this the block we wanted?
2346      if (base[i] == requested_addr) {
2347        size[i] = bytes;
2348        break;
2349      }
2350
2351      // Does this overlap the block we wanted? Give back the overlapped
2352      // parts and try again.
2353
2354      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2355      if (top_overlap >= 0 && top_overlap < bytes) {
2356        unmap_memory(base[i], top_overlap);
2357        base[i] += top_overlap;
2358        size[i] = bytes - top_overlap;
2359      } else {
2360        size_t bottom_overlap = base[i] + bytes - requested_addr;
2361        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2362          unmap_memory(requested_addr, bottom_overlap);
2363          size[i] = bytes - bottom_overlap;
2364        } else {
2365          size[i] = bytes;
2366        }
2367      }
2368    }
2369  }
2370
2371  // Give back the unused reserved pieces.
2372
2373  for (int j = 0; j < i; ++j) {
2374    if (base[j] != NULL) {
2375      unmap_memory(base[j], size[j]);
2376    }
2377  }
2378
2379  if (i < max_tries) {
2380    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2381    return requested_addr;
2382  } else {
2383    _highest_vm_reserved_address = old_highest;
2384    return NULL;
2385  }
2386}
2387
2388size_t os::read(int fd, void *buf, unsigned int nBytes) {
2389  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2390}
2391
2392// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2393// Solaris uses poll(), bsd uses park().
2394// Poll() is likely a better choice, assuming that Thread.interrupt()
2395// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2396// SIGSEGV, see 4355769.
2397
2398int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2399  assert(thread == Thread::current(),  "thread consistency check");
2400
2401  ParkEvent * const slp = thread->_SleepEvent ;
2402  slp->reset() ;
2403  OrderAccess::fence() ;
2404
2405  if (interruptible) {
2406    jlong prevtime = javaTimeNanos();
2407
2408    for (;;) {
2409      if (os::is_interrupted(thread, true)) {
2410        return OS_INTRPT;
2411      }
2412
2413      jlong newtime = javaTimeNanos();
2414
2415      if (newtime - prevtime < 0) {
2416        // time moving backwards, should only happen if no monotonic clock
2417        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2418        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2419      } else {
2420        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2421      }
2422
2423      if(millis <= 0) {
2424        return OS_OK;
2425      }
2426
2427      prevtime = newtime;
2428
2429      {
2430        assert(thread->is_Java_thread(), "sanity check");
2431        JavaThread *jt = (JavaThread *) thread;
2432        ThreadBlockInVM tbivm(jt);
2433        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2434
2435        jt->set_suspend_equivalent();
2436        // cleared by handle_special_suspend_equivalent_condition() or
2437        // java_suspend_self() via check_and_wait_while_suspended()
2438
2439        slp->park(millis);
2440
2441        // were we externally suspended while we were waiting?
2442        jt->check_and_wait_while_suspended();
2443      }
2444    }
2445  } else {
2446    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2447    jlong prevtime = javaTimeNanos();
2448
2449    for (;;) {
2450      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2451      // the 1st iteration ...
2452      jlong newtime = javaTimeNanos();
2453
2454      if (newtime - prevtime < 0) {
2455        // time moving backwards, should only happen if no monotonic clock
2456        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2457        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2458      } else {
2459        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2460      }
2461
2462      if(millis <= 0) break ;
2463
2464      prevtime = newtime;
2465      slp->park(millis);
2466    }
2467    return OS_OK ;
2468  }
2469}
2470
2471int os::naked_sleep() {
2472  // %% make the sleep time an integer flag. for now use 1 millisec.
2473  return os::sleep(Thread::current(), 1, false);
2474}
2475
2476// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2477void os::infinite_sleep() {
2478  while (true) {    // sleep forever ...
2479    ::sleep(100);   // ... 100 seconds at a time
2480  }
2481}
2482
2483// Used to convert frequent JVM_Yield() to nops
2484bool os::dont_yield() {
2485  return DontYieldALot;
2486}
2487
2488void os::yield() {
2489  sched_yield();
2490}
2491
2492os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2493
2494void os::yield_all(int attempts) {
2495  // Yields to all threads, including threads with lower priorities
2496  // Threads on Bsd are all with same priority. The Solaris style
2497  // os::yield_all() with nanosleep(1ms) is not necessary.
2498  sched_yield();
2499}
2500
2501// Called from the tight loops to possibly influence time-sharing heuristics
2502void os::loop_breaker(int attempts) {
2503  os::yield_all(attempts);
2504}
2505
2506////////////////////////////////////////////////////////////////////////////////
2507// thread priority support
2508
2509// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2510// only supports dynamic priority, static priority must be zero. For real-time
2511// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2512// However, for large multi-threaded applications, SCHED_RR is not only slower
2513// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2514// of 5 runs - Sep 2005).
2515//
2516// The following code actually changes the niceness of kernel-thread/LWP. It
2517// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2518// not the entire user process, and user level threads are 1:1 mapped to kernel
2519// threads. It has always been the case, but could change in the future. For
2520// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2521// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2522
2523#if !defined(__APPLE__)
2524int os::java_to_os_priority[CriticalPriority + 1] = {
2525  19,              // 0 Entry should never be used
2526
2527   0,              // 1 MinPriority
2528   3,              // 2
2529   6,              // 3
2530
2531  10,              // 4
2532  15,              // 5 NormPriority
2533  18,              // 6
2534
2535  21,              // 7
2536  25,              // 8
2537  28,              // 9 NearMaxPriority
2538
2539  31,              // 10 MaxPriority
2540
2541  31               // 11 CriticalPriority
2542};
2543#else
2544/* Using Mach high-level priority assignments */
2545int os::java_to_os_priority[CriticalPriority + 1] = {
2546   0,              // 0 Entry should never be used (MINPRI_USER)
2547
2548  27,              // 1 MinPriority
2549  28,              // 2
2550  29,              // 3
2551
2552  30,              // 4
2553  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2554  32,              // 6
2555
2556  33,              // 7
2557  34,              // 8
2558  35,              // 9 NearMaxPriority
2559
2560  36,              // 10 MaxPriority
2561
2562  36               // 11 CriticalPriority
2563};
2564#endif
2565
2566static int prio_init() {
2567  if (ThreadPriorityPolicy == 1) {
2568    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2569    // if effective uid is not root. Perhaps, a more elegant way of doing
2570    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2571    if (geteuid() != 0) {
2572      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2573        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2574      }
2575      ThreadPriorityPolicy = 0;
2576    }
2577  }
2578  if (UseCriticalJavaThreadPriority) {
2579    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2580  }
2581  return 0;
2582}
2583
2584OSReturn os::set_native_priority(Thread* thread, int newpri) {
2585  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2586
2587#ifdef __OpenBSD__
2588  // OpenBSD pthread_setprio starves low priority threads
2589  return OS_OK;
2590#elif defined(__FreeBSD__)
2591  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2592#elif defined(__APPLE__) || defined(__NetBSD__)
2593  struct sched_param sp;
2594  int policy;
2595  pthread_t self = pthread_self();
2596
2597  if (pthread_getschedparam(self, &policy, &sp) != 0)
2598    return OS_ERR;
2599
2600  sp.sched_priority = newpri;
2601  if (pthread_setschedparam(self, policy, &sp) != 0)
2602    return OS_ERR;
2603
2604  return OS_OK;
2605#else
2606  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2607  return (ret == 0) ? OS_OK : OS_ERR;
2608#endif
2609}
2610
2611OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2612  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2613    *priority_ptr = java_to_os_priority[NormPriority];
2614    return OS_OK;
2615  }
2616
2617  errno = 0;
2618#if defined(__OpenBSD__) || defined(__FreeBSD__)
2619  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2620#elif defined(__APPLE__) || defined(__NetBSD__)
2621  int policy;
2622  struct sched_param sp;
2623
2624  pthread_getschedparam(pthread_self(), &policy, &sp);
2625  *priority_ptr = sp.sched_priority;
2626#else
2627  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2628#endif
2629  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2630}
2631
2632// Hint to the underlying OS that a task switch would not be good.
2633// Void return because it's a hint and can fail.
2634void os::hint_no_preempt() {}
2635
2636////////////////////////////////////////////////////////////////////////////////
2637// suspend/resume support
2638
2639//  the low-level signal-based suspend/resume support is a remnant from the
2640//  old VM-suspension that used to be for java-suspension, safepoints etc,
2641//  within hotspot. Now there is a single use-case for this:
2642//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2643//      that runs in the watcher thread.
2644//  The remaining code is greatly simplified from the more general suspension
2645//  code that used to be used.
2646//
2647//  The protocol is quite simple:
2648//  - suspend:
2649//      - sends a signal to the target thread
2650//      - polls the suspend state of the osthread using a yield loop
2651//      - target thread signal handler (SR_handler) sets suspend state
2652//        and blocks in sigsuspend until continued
2653//  - resume:
2654//      - sets target osthread state to continue
2655//      - sends signal to end the sigsuspend loop in the SR_handler
2656//
2657//  Note that the SR_lock plays no role in this suspend/resume protocol.
2658//
2659
2660static void resume_clear_context(OSThread *osthread) {
2661  osthread->set_ucontext(NULL);
2662  osthread->set_siginfo(NULL);
2663
2664  // notify the suspend action is completed, we have now resumed
2665  osthread->sr.clear_suspended();
2666}
2667
2668static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2669  osthread->set_ucontext(context);
2670  osthread->set_siginfo(siginfo);
2671}
2672
2673//
2674// Handler function invoked when a thread's execution is suspended or
2675// resumed. We have to be careful that only async-safe functions are
2676// called here (Note: most pthread functions are not async safe and
2677// should be avoided.)
2678//
2679// Note: sigwait() is a more natural fit than sigsuspend() from an
2680// interface point of view, but sigwait() prevents the signal hander
2681// from being run. libpthread would get very confused by not having
2682// its signal handlers run and prevents sigwait()'s use with the
2683// mutex granting granting signal.
2684//
2685// Currently only ever called on the VMThread
2686//
2687static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2688  // Save and restore errno to avoid confusing native code with EINTR
2689  // after sigsuspend.
2690  int old_errno = errno;
2691
2692  Thread* thread = Thread::current();
2693  OSThread* osthread = thread->osthread();
2694  assert(thread->is_VM_thread(), "Must be VMThread");
2695  // read current suspend action
2696  int action = osthread->sr.suspend_action();
2697  if (action == os::Bsd::SuspendResume::SR_SUSPEND) {
2698    suspend_save_context(osthread, siginfo, context);
2699
2700    // Notify the suspend action is about to be completed. do_suspend()
2701    // waits until SR_SUSPENDED is set and then returns. We will wait
2702    // here for a resume signal and that completes the suspend-other
2703    // action. do_suspend/do_resume is always called as a pair from
2704    // the same thread - so there are no races
2705
2706    // notify the caller
2707    osthread->sr.set_suspended();
2708
2709    sigset_t suspend_set;  // signals for sigsuspend()
2710
2711    // get current set of blocked signals and unblock resume signal
2712    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2713    sigdelset(&suspend_set, SR_signum);
2714
2715    // wait here until we are resumed
2716    do {
2717      sigsuspend(&suspend_set);
2718      // ignore all returns until we get a resume signal
2719    } while (osthread->sr.suspend_action() != os::Bsd::SuspendResume::SR_CONTINUE);
2720
2721    resume_clear_context(osthread);
2722
2723  } else {
2724    assert(action == os::Bsd::SuspendResume::SR_CONTINUE, "unexpected sr action");
2725    // nothing special to do - just leave the handler
2726  }
2727
2728  errno = old_errno;
2729}
2730
2731
2732static int SR_initialize() {
2733  struct sigaction act;
2734  char *s;
2735  /* Get signal number to use for suspend/resume */
2736  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2737    int sig = ::strtol(s, 0, 10);
2738    if (sig > 0 || sig < NSIG) {
2739        SR_signum = sig;
2740    }
2741  }
2742
2743  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2744        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2745
2746  sigemptyset(&SR_sigset);
2747  sigaddset(&SR_sigset, SR_signum);
2748
2749  /* Set up signal handler for suspend/resume */
2750  act.sa_flags = SA_RESTART|SA_SIGINFO;
2751  act.sa_handler = (void (*)(int)) SR_handler;
2752
2753  // SR_signum is blocked by default.
2754  // 4528190 - We also need to block pthread restart signal (32 on all
2755  // supported Bsd platforms). Note that BsdThreads need to block
2756  // this signal for all threads to work properly. So we don't have
2757  // to use hard-coded signal number when setting up the mask.
2758  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2759
2760  if (sigaction(SR_signum, &act, 0) == -1) {
2761    return -1;
2762  }
2763
2764  // Save signal flag
2765  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2766  return 0;
2767}
2768
2769static int SR_finalize() {
2770  return 0;
2771}
2772
2773
2774// returns true on success and false on error - really an error is fatal
2775// but this seems the normal response to library errors
2776static bool do_suspend(OSThread* osthread) {
2777  // mark as suspended and send signal
2778  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_SUSPEND);
2779  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2780  assert_status(status == 0, status, "pthread_kill");
2781
2782  // check status and wait until notified of suspension
2783  if (status == 0) {
2784    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2785      os::yield_all(i);
2786    }
2787    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2788    return true;
2789  }
2790  else {
2791    osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2792    return false;
2793  }
2794}
2795
2796static void do_resume(OSThread* osthread) {
2797  assert(osthread->sr.is_suspended(), "thread should be suspended");
2798  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_CONTINUE);
2799
2800  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2801  assert_status(status == 0, status, "pthread_kill");
2802  // check status and wait unit notified of resumption
2803  if (status == 0) {
2804    for (int i = 0; osthread->sr.is_suspended(); i++) {
2805      os::yield_all(i);
2806    }
2807  }
2808  osthread->sr.set_suspend_action(os::Bsd::SuspendResume::SR_NONE);
2809}
2810
2811////////////////////////////////////////////////////////////////////////////////
2812// interrupt support
2813
2814void os::interrupt(Thread* thread) {
2815  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2816    "possibility of dangling Thread pointer");
2817
2818  OSThread* osthread = thread->osthread();
2819
2820  if (!osthread->interrupted()) {
2821    osthread->set_interrupted(true);
2822    // More than one thread can get here with the same value of osthread,
2823    // resulting in multiple notifications.  We do, however, want the store
2824    // to interrupted() to be visible to other threads before we execute unpark().
2825    OrderAccess::fence();
2826    ParkEvent * const slp = thread->_SleepEvent ;
2827    if (slp != NULL) slp->unpark() ;
2828  }
2829
2830  // For JSR166. Unpark even if interrupt status already was set
2831  if (thread->is_Java_thread())
2832    ((JavaThread*)thread)->parker()->unpark();
2833
2834  ParkEvent * ev = thread->_ParkEvent ;
2835  if (ev != NULL) ev->unpark() ;
2836
2837}
2838
2839bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2840  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2841    "possibility of dangling Thread pointer");
2842
2843  OSThread* osthread = thread->osthread();
2844
2845  bool interrupted = osthread->interrupted();
2846
2847  if (interrupted && clear_interrupted) {
2848    osthread->set_interrupted(false);
2849    // consider thread->_SleepEvent->reset() ... optional optimization
2850  }
2851
2852  return interrupted;
2853}
2854
2855///////////////////////////////////////////////////////////////////////////////////
2856// signal handling (except suspend/resume)
2857
2858// This routine may be used by user applications as a "hook" to catch signals.
2859// The user-defined signal handler must pass unrecognized signals to this
2860// routine, and if it returns true (non-zero), then the signal handler must
2861// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2862// routine will never retun false (zero), but instead will execute a VM panic
2863// routine kill the process.
2864//
2865// If this routine returns false, it is OK to call it again.  This allows
2866// the user-defined signal handler to perform checks either before or after
2867// the VM performs its own checks.  Naturally, the user code would be making
2868// a serious error if it tried to handle an exception (such as a null check
2869// or breakpoint) that the VM was generating for its own correct operation.
2870//
2871// This routine may recognize any of the following kinds of signals:
2872//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2873// It should be consulted by handlers for any of those signals.
2874//
2875// The caller of this routine must pass in the three arguments supplied
2876// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2877// field of the structure passed to sigaction().  This routine assumes that
2878// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2879//
2880// Note that the VM will print warnings if it detects conflicting signal
2881// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2882//
2883extern "C" JNIEXPORT int
2884JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2885                        void* ucontext, int abort_if_unrecognized);
2886
2887void signalHandler(int sig, siginfo_t* info, void* uc) {
2888  assert(info != NULL && uc != NULL, "it must be old kernel");
2889  int orig_errno = errno;  // Preserve errno value over signal handler.
2890  JVM_handle_bsd_signal(sig, info, uc, true);
2891  errno = orig_errno;
2892}
2893
2894
2895// This boolean allows users to forward their own non-matching signals
2896// to JVM_handle_bsd_signal, harmlessly.
2897bool os::Bsd::signal_handlers_are_installed = false;
2898
2899// For signal-chaining
2900struct sigaction os::Bsd::sigact[MAXSIGNUM];
2901unsigned int os::Bsd::sigs = 0;
2902bool os::Bsd::libjsig_is_loaded = false;
2903typedef struct sigaction *(*get_signal_t)(int);
2904get_signal_t os::Bsd::get_signal_action = NULL;
2905
2906struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2907  struct sigaction *actp = NULL;
2908
2909  if (libjsig_is_loaded) {
2910    // Retrieve the old signal handler from libjsig
2911    actp = (*get_signal_action)(sig);
2912  }
2913  if (actp == NULL) {
2914    // Retrieve the preinstalled signal handler from jvm
2915    actp = get_preinstalled_handler(sig);
2916  }
2917
2918  return actp;
2919}
2920
2921static bool call_chained_handler(struct sigaction *actp, int sig,
2922                                 siginfo_t *siginfo, void *context) {
2923  // Call the old signal handler
2924  if (actp->sa_handler == SIG_DFL) {
2925    // It's more reasonable to let jvm treat it as an unexpected exception
2926    // instead of taking the default action.
2927    return false;
2928  } else if (actp->sa_handler != SIG_IGN) {
2929    if ((actp->sa_flags & SA_NODEFER) == 0) {
2930      // automaticlly block the signal
2931      sigaddset(&(actp->sa_mask), sig);
2932    }
2933
2934    sa_handler_t hand;
2935    sa_sigaction_t sa;
2936    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2937    // retrieve the chained handler
2938    if (siginfo_flag_set) {
2939      sa = actp->sa_sigaction;
2940    } else {
2941      hand = actp->sa_handler;
2942    }
2943
2944    if ((actp->sa_flags & SA_RESETHAND) != 0) {
2945      actp->sa_handler = SIG_DFL;
2946    }
2947
2948    // try to honor the signal mask
2949    sigset_t oset;
2950    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2951
2952    // call into the chained handler
2953    if (siginfo_flag_set) {
2954      (*sa)(sig, siginfo, context);
2955    } else {
2956      (*hand)(sig);
2957    }
2958
2959    // restore the signal mask
2960    pthread_sigmask(SIG_SETMASK, &oset, 0);
2961  }
2962  // Tell jvm's signal handler the signal is taken care of.
2963  return true;
2964}
2965
2966bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
2967  bool chained = false;
2968  // signal-chaining
2969  if (UseSignalChaining) {
2970    struct sigaction *actp = get_chained_signal_action(sig);
2971    if (actp != NULL) {
2972      chained = call_chained_handler(actp, sig, siginfo, context);
2973    }
2974  }
2975  return chained;
2976}
2977
2978struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
2979  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
2980    return &sigact[sig];
2981  }
2982  return NULL;
2983}
2984
2985void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
2986  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2987  sigact[sig] = oldAct;
2988  sigs |= (unsigned int)1 << sig;
2989}
2990
2991// for diagnostic
2992int os::Bsd::sigflags[MAXSIGNUM];
2993
2994int os::Bsd::get_our_sigflags(int sig) {
2995  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2996  return sigflags[sig];
2997}
2998
2999void os::Bsd::set_our_sigflags(int sig, int flags) {
3000  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3001  sigflags[sig] = flags;
3002}
3003
3004void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3005  // Check for overwrite.
3006  struct sigaction oldAct;
3007  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3008
3009  void* oldhand = oldAct.sa_sigaction
3010                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3011                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3012  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3013      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3014      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3015    if (AllowUserSignalHandlers || !set_installed) {
3016      // Do not overwrite; user takes responsibility to forward to us.
3017      return;
3018    } else if (UseSignalChaining) {
3019      // save the old handler in jvm
3020      save_preinstalled_handler(sig, oldAct);
3021      // libjsig also interposes the sigaction() call below and saves the
3022      // old sigaction on it own.
3023    } else {
3024      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3025                    "%#lx for signal %d.", (long)oldhand, sig));
3026    }
3027  }
3028
3029  struct sigaction sigAct;
3030  sigfillset(&(sigAct.sa_mask));
3031  sigAct.sa_handler = SIG_DFL;
3032  if (!set_installed) {
3033    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3034  } else {
3035    sigAct.sa_sigaction = signalHandler;
3036    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3037  }
3038  // Save flags, which are set by ours
3039  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3040  sigflags[sig] = sigAct.sa_flags;
3041
3042  int ret = sigaction(sig, &sigAct, &oldAct);
3043  assert(ret == 0, "check");
3044
3045  void* oldhand2  = oldAct.sa_sigaction
3046                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3047                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3048  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3049}
3050
3051// install signal handlers for signals that HotSpot needs to
3052// handle in order to support Java-level exception handling.
3053
3054void os::Bsd::install_signal_handlers() {
3055  if (!signal_handlers_are_installed) {
3056    signal_handlers_are_installed = true;
3057
3058    // signal-chaining
3059    typedef void (*signal_setting_t)();
3060    signal_setting_t begin_signal_setting = NULL;
3061    signal_setting_t end_signal_setting = NULL;
3062    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3063                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3064    if (begin_signal_setting != NULL) {
3065      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3066                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3067      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3068                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3069      libjsig_is_loaded = true;
3070      assert(UseSignalChaining, "should enable signal-chaining");
3071    }
3072    if (libjsig_is_loaded) {
3073      // Tell libjsig jvm is setting signal handlers
3074      (*begin_signal_setting)();
3075    }
3076
3077    set_signal_handler(SIGSEGV, true);
3078    set_signal_handler(SIGPIPE, true);
3079    set_signal_handler(SIGBUS, true);
3080    set_signal_handler(SIGILL, true);
3081    set_signal_handler(SIGFPE, true);
3082    set_signal_handler(SIGXFSZ, true);
3083
3084#if defined(__APPLE__)
3085    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3086    // signals caught and handled by the JVM. To work around this, we reset the mach task
3087    // signal handler that's placed on our process by CrashReporter. This disables
3088    // CrashReporter-based reporting.
3089    //
3090    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3091    // on caught fatal signals.
3092    //
3093    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3094    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3095    // exception handling, while leaving the standard BSD signal handlers functional.
3096    kern_return_t kr;
3097    kr = task_set_exception_ports(mach_task_self(),
3098        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3099        MACH_PORT_NULL,
3100        EXCEPTION_STATE_IDENTITY,
3101        MACHINE_THREAD_STATE);
3102
3103    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3104#endif
3105
3106    if (libjsig_is_loaded) {
3107      // Tell libjsig jvm finishes setting signal handlers
3108      (*end_signal_setting)();
3109    }
3110
3111    // We don't activate signal checker if libjsig is in place, we trust ourselves
3112    // and if UserSignalHandler is installed all bets are off
3113    if (CheckJNICalls) {
3114      if (libjsig_is_loaded) {
3115        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3116        check_signals = false;
3117      }
3118      if (AllowUserSignalHandlers) {
3119        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3120        check_signals = false;
3121      }
3122    }
3123  }
3124}
3125
3126
3127/////
3128// glibc on Bsd platform uses non-documented flag
3129// to indicate, that some special sort of signal
3130// trampoline is used.
3131// We will never set this flag, and we should
3132// ignore this flag in our diagnostic
3133#ifdef SIGNIFICANT_SIGNAL_MASK
3134#undef SIGNIFICANT_SIGNAL_MASK
3135#endif
3136#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3137
3138static const char* get_signal_handler_name(address handler,
3139                                           char* buf, int buflen) {
3140  int offset;
3141  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3142  if (found) {
3143    // skip directory names
3144    const char *p1, *p2;
3145    p1 = buf;
3146    size_t len = strlen(os::file_separator());
3147    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3148    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3149  } else {
3150    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3151  }
3152  return buf;
3153}
3154
3155static void print_signal_handler(outputStream* st, int sig,
3156                                 char* buf, size_t buflen) {
3157  struct sigaction sa;
3158
3159  sigaction(sig, NULL, &sa);
3160
3161  // See comment for SIGNIFICANT_SIGNAL_MASK define
3162  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3163
3164  st->print("%s: ", os::exception_name(sig, buf, buflen));
3165
3166  address handler = (sa.sa_flags & SA_SIGINFO)
3167    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3168    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3169
3170  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3171    st->print("SIG_DFL");
3172  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3173    st->print("SIG_IGN");
3174  } else {
3175    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3176  }
3177
3178  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3179
3180  address rh = VMError::get_resetted_sighandler(sig);
3181  // May be, handler was resetted by VMError?
3182  if(rh != NULL) {
3183    handler = rh;
3184    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3185  }
3186
3187  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3188
3189  // Check: is it our handler?
3190  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3191     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3192    // It is our signal handler
3193    // check for flags, reset system-used one!
3194    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3195      st->print(
3196                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3197                os::Bsd::get_our_sigflags(sig));
3198    }
3199  }
3200  st->cr();
3201}
3202
3203
3204#define DO_SIGNAL_CHECK(sig) \
3205  if (!sigismember(&check_signal_done, sig)) \
3206    os::Bsd::check_signal_handler(sig)
3207
3208// This method is a periodic task to check for misbehaving JNI applications
3209// under CheckJNI, we can add any periodic checks here
3210
3211void os::run_periodic_checks() {
3212
3213  if (check_signals == false) return;
3214
3215  // SEGV and BUS if overridden could potentially prevent
3216  // generation of hs*.log in the event of a crash, debugging
3217  // such a case can be very challenging, so we absolutely
3218  // check the following for a good measure:
3219  DO_SIGNAL_CHECK(SIGSEGV);
3220  DO_SIGNAL_CHECK(SIGILL);
3221  DO_SIGNAL_CHECK(SIGFPE);
3222  DO_SIGNAL_CHECK(SIGBUS);
3223  DO_SIGNAL_CHECK(SIGPIPE);
3224  DO_SIGNAL_CHECK(SIGXFSZ);
3225
3226
3227  // ReduceSignalUsage allows the user to override these handlers
3228  // see comments at the very top and jvm_solaris.h
3229  if (!ReduceSignalUsage) {
3230    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3231    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3232    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3233    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3234  }
3235
3236  DO_SIGNAL_CHECK(SR_signum);
3237  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3238}
3239
3240typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3241
3242static os_sigaction_t os_sigaction = NULL;
3243
3244void os::Bsd::check_signal_handler(int sig) {
3245  char buf[O_BUFLEN];
3246  address jvmHandler = NULL;
3247
3248
3249  struct sigaction act;
3250  if (os_sigaction == NULL) {
3251    // only trust the default sigaction, in case it has been interposed
3252    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3253    if (os_sigaction == NULL) return;
3254  }
3255
3256  os_sigaction(sig, (struct sigaction*)NULL, &act);
3257
3258
3259  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3260
3261  address thisHandler = (act.sa_flags & SA_SIGINFO)
3262    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3263    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3264
3265
3266  switch(sig) {
3267  case SIGSEGV:
3268  case SIGBUS:
3269  case SIGFPE:
3270  case SIGPIPE:
3271  case SIGILL:
3272  case SIGXFSZ:
3273    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3274    break;
3275
3276  case SHUTDOWN1_SIGNAL:
3277  case SHUTDOWN2_SIGNAL:
3278  case SHUTDOWN3_SIGNAL:
3279  case BREAK_SIGNAL:
3280    jvmHandler = (address)user_handler();
3281    break;
3282
3283  case INTERRUPT_SIGNAL:
3284    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3285    break;
3286
3287  default:
3288    if (sig == SR_signum) {
3289      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3290    } else {
3291      return;
3292    }
3293    break;
3294  }
3295
3296  if (thisHandler != jvmHandler) {
3297    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3298    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3299    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3300    // No need to check this sig any longer
3301    sigaddset(&check_signal_done, sig);
3302  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3303    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3304    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3305    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3306    // No need to check this sig any longer
3307    sigaddset(&check_signal_done, sig);
3308  }
3309
3310  // Dump all the signal
3311  if (sigismember(&check_signal_done, sig)) {
3312    print_signal_handlers(tty, buf, O_BUFLEN);
3313  }
3314}
3315
3316extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3317
3318extern bool signal_name(int signo, char* buf, size_t len);
3319
3320const char* os::exception_name(int exception_code, char* buf, size_t size) {
3321  if (0 < exception_code && exception_code <= SIGRTMAX) {
3322    // signal
3323    if (!signal_name(exception_code, buf, size)) {
3324      jio_snprintf(buf, size, "SIG%d", exception_code);
3325    }
3326    return buf;
3327  } else {
3328    return NULL;
3329  }
3330}
3331
3332// this is called _before_ the most of global arguments have been parsed
3333void os::init(void) {
3334  char dummy;   /* used to get a guess on initial stack address */
3335//  first_hrtime = gethrtime();
3336
3337  // With BsdThreads the JavaMain thread pid (primordial thread)
3338  // is different than the pid of the java launcher thread.
3339  // So, on Bsd, the launcher thread pid is passed to the VM
3340  // via the sun.java.launcher.pid property.
3341  // Use this property instead of getpid() if it was correctly passed.
3342  // See bug 6351349.
3343  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3344
3345  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3346
3347  clock_tics_per_sec = CLK_TCK;
3348
3349  init_random(1234567);
3350
3351  ThreadCritical::initialize();
3352
3353  Bsd::set_page_size(getpagesize());
3354  if (Bsd::page_size() == -1) {
3355    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3356                  strerror(errno)));
3357  }
3358  init_page_sizes((size_t) Bsd::page_size());
3359
3360  Bsd::initialize_system_info();
3361
3362  // main_thread points to the aboriginal thread
3363  Bsd::_main_thread = pthread_self();
3364
3365  Bsd::clock_init();
3366  initial_time_count = os::elapsed_counter();
3367
3368#ifdef __APPLE__
3369  // XXXDARWIN
3370  // Work around the unaligned VM callbacks in hotspot's
3371  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3372  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3373  // alignment when doing symbol lookup. To work around this, we force early
3374  // binding of all symbols now, thus binding when alignment is known-good.
3375  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3376#endif
3377}
3378
3379// To install functions for atexit system call
3380extern "C" {
3381  static void perfMemory_exit_helper() {
3382    perfMemory_exit();
3383  }
3384}
3385
3386// this is called _after_ the global arguments have been parsed
3387jint os::init_2(void)
3388{
3389  // Allocate a single page and mark it as readable for safepoint polling
3390  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3391  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3392
3393  os::set_polling_page( polling_page );
3394
3395#ifndef PRODUCT
3396  if(Verbose && PrintMiscellaneous)
3397    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3398#endif
3399
3400  if (!UseMembar) {
3401    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3402    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3403    os::set_memory_serialize_page( mem_serialize_page );
3404
3405#ifndef PRODUCT
3406    if(Verbose && PrintMiscellaneous)
3407      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3408#endif
3409  }
3410
3411  os::large_page_init();
3412
3413  // initialize suspend/resume support - must do this before signal_sets_init()
3414  if (SR_initialize() != 0) {
3415    perror("SR_initialize failed");
3416    return JNI_ERR;
3417  }
3418
3419  Bsd::signal_sets_init();
3420  Bsd::install_signal_handlers();
3421
3422  // Check minimum allowable stack size for thread creation and to initialize
3423  // the java system classes, including StackOverflowError - depends on page
3424  // size.  Add a page for compiler2 recursion in main thread.
3425  // Add in 2*BytesPerWord times page size to account for VM stack during
3426  // class initialization depending on 32 or 64 bit VM.
3427  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3428            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3429                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3430
3431  size_t threadStackSizeInBytes = ThreadStackSize * K;
3432  if (threadStackSizeInBytes != 0 &&
3433      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3434        tty->print_cr("\nThe stack size specified is too small, "
3435                      "Specify at least %dk",
3436                      os::Bsd::min_stack_allowed/ K);
3437        return JNI_ERR;
3438  }
3439
3440  // Make the stack size a multiple of the page size so that
3441  // the yellow/red zones can be guarded.
3442  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3443        vm_page_size()));
3444
3445  if (MaxFDLimit) {
3446    // set the number of file descriptors to max. print out error
3447    // if getrlimit/setrlimit fails but continue regardless.
3448    struct rlimit nbr_files;
3449    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3450    if (status != 0) {
3451      if (PrintMiscellaneous && (Verbose || WizardMode))
3452        perror("os::init_2 getrlimit failed");
3453    } else {
3454      nbr_files.rlim_cur = nbr_files.rlim_max;
3455
3456#ifdef __APPLE__
3457      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3458      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3459      // be used instead
3460      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3461#endif
3462
3463      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3464      if (status != 0) {
3465        if (PrintMiscellaneous && (Verbose || WizardMode))
3466          perror("os::init_2 setrlimit failed");
3467      }
3468    }
3469  }
3470
3471  // at-exit methods are called in the reverse order of their registration.
3472  // atexit functions are called on return from main or as a result of a
3473  // call to exit(3C). There can be only 32 of these functions registered
3474  // and atexit() does not set errno.
3475
3476  if (PerfAllowAtExitRegistration) {
3477    // only register atexit functions if PerfAllowAtExitRegistration is set.
3478    // atexit functions can be delayed until process exit time, which
3479    // can be problematic for embedded VM situations. Embedded VMs should
3480    // call DestroyJavaVM() to assure that VM resources are released.
3481
3482    // note: perfMemory_exit_helper atexit function may be removed in
3483    // the future if the appropriate cleanup code can be added to the
3484    // VM_Exit VMOperation's doit method.
3485    if (atexit(perfMemory_exit_helper) != 0) {
3486      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3487    }
3488  }
3489
3490  // initialize thread priority policy
3491  prio_init();
3492
3493#ifdef __APPLE__
3494  // dynamically link to objective c gc registration
3495  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3496  if (handleLibObjc != NULL) {
3497    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3498  }
3499#endif
3500
3501  return JNI_OK;
3502}
3503
3504// this is called at the end of vm_initialization
3505void os::init_3(void) { }
3506
3507// Mark the polling page as unreadable
3508void os::make_polling_page_unreadable(void) {
3509  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3510    fatal("Could not disable polling page");
3511};
3512
3513// Mark the polling page as readable
3514void os::make_polling_page_readable(void) {
3515  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3516    fatal("Could not enable polling page");
3517  }
3518};
3519
3520int os::active_processor_count() {
3521  return _processor_count;
3522}
3523
3524void os::set_native_thread_name(const char *name) {
3525#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3526  // This is only supported in Snow Leopard and beyond
3527  if (name != NULL) {
3528    // Add a "Java: " prefix to the name
3529    char buf[MAXTHREADNAMESIZE];
3530    snprintf(buf, sizeof(buf), "Java: %s", name);
3531    pthread_setname_np(buf);
3532  }
3533#endif
3534}
3535
3536bool os::distribute_processes(uint length, uint* distribution) {
3537  // Not yet implemented.
3538  return false;
3539}
3540
3541bool os::bind_to_processor(uint processor_id) {
3542  // Not yet implemented.
3543  return false;
3544}
3545
3546///
3547
3548// Suspends the target using the signal mechanism and then grabs the PC before
3549// resuming the target. Used by the flat-profiler only
3550ExtendedPC os::get_thread_pc(Thread* thread) {
3551  // Make sure that it is called by the watcher for the VMThread
3552  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3553  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3554
3555  ExtendedPC epc;
3556
3557  OSThread* osthread = thread->osthread();
3558  if (do_suspend(osthread)) {
3559    if (osthread->ucontext() != NULL) {
3560      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
3561    } else {
3562      // NULL context is unexpected, double-check this is the VMThread
3563      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3564    }
3565    do_resume(osthread);
3566  }
3567  // failure means pthread_kill failed for some reason - arguably this is
3568  // a fatal problem, but such problems are ignored elsewhere
3569
3570  return epc;
3571}
3572
3573int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3574{
3575  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3576}
3577
3578////////////////////////////////////////////////////////////////////////////////
3579// debug support
3580
3581static address same_page(address x, address y) {
3582  int page_bits = -os::vm_page_size();
3583  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3584    return x;
3585  else if (x > y)
3586    return (address)(intptr_t(y) | ~page_bits) + 1;
3587  else
3588    return (address)(intptr_t(y) & page_bits);
3589}
3590
3591bool os::find(address addr, outputStream* st) {
3592  Dl_info dlinfo;
3593  memset(&dlinfo, 0, sizeof(dlinfo));
3594  if (dladdr(addr, &dlinfo)) {
3595    st->print(PTR_FORMAT ": ", addr);
3596    if (dlinfo.dli_sname != NULL) {
3597      st->print("%s+%#x", dlinfo.dli_sname,
3598                 addr - (intptr_t)dlinfo.dli_saddr);
3599    } else if (dlinfo.dli_fname) {
3600      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3601    } else {
3602      st->print("<absolute address>");
3603    }
3604    if (dlinfo.dli_fname) {
3605      st->print(" in %s", dlinfo.dli_fname);
3606    }
3607    if (dlinfo.dli_fbase) {
3608      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3609    }
3610    st->cr();
3611
3612    if (Verbose) {
3613      // decode some bytes around the PC
3614      address begin = same_page(addr-40, addr);
3615      address end   = same_page(addr+40, addr);
3616      address       lowest = (address) dlinfo.dli_sname;
3617      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3618      if (begin < lowest)  begin = lowest;
3619      Dl_info dlinfo2;
3620      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3621          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3622        end = (address) dlinfo2.dli_saddr;
3623      Disassembler::decode(begin, end, st);
3624    }
3625    return true;
3626  }
3627  return false;
3628}
3629
3630////////////////////////////////////////////////////////////////////////////////
3631// misc
3632
3633// This does not do anything on Bsd. This is basically a hook for being
3634// able to use structured exception handling (thread-local exception filters)
3635// on, e.g., Win32.
3636void
3637os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3638                         JavaCallArguments* args, Thread* thread) {
3639  f(value, method, args, thread);
3640}
3641
3642void os::print_statistics() {
3643}
3644
3645int os::message_box(const char* title, const char* message) {
3646  int i;
3647  fdStream err(defaultStream::error_fd());
3648  for (i = 0; i < 78; i++) err.print_raw("=");
3649  err.cr();
3650  err.print_raw_cr(title);
3651  for (i = 0; i < 78; i++) err.print_raw("-");
3652  err.cr();
3653  err.print_raw_cr(message);
3654  for (i = 0; i < 78; i++) err.print_raw("=");
3655  err.cr();
3656
3657  char buf[16];
3658  // Prevent process from exiting upon "read error" without consuming all CPU
3659  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3660
3661  return buf[0] == 'y' || buf[0] == 'Y';
3662}
3663
3664int os::stat(const char *path, struct stat *sbuf) {
3665  char pathbuf[MAX_PATH];
3666  if (strlen(path) > MAX_PATH - 1) {
3667    errno = ENAMETOOLONG;
3668    return -1;
3669  }
3670  os::native_path(strcpy(pathbuf, path));
3671  return ::stat(pathbuf, sbuf);
3672}
3673
3674bool os::check_heap(bool force) {
3675  return true;
3676}
3677
3678int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3679  return ::vsnprintf(buf, count, format, args);
3680}
3681
3682// Is a (classpath) directory empty?
3683bool os::dir_is_empty(const char* path) {
3684  DIR *dir = NULL;
3685  struct dirent *ptr;
3686
3687  dir = opendir(path);
3688  if (dir == NULL) return true;
3689
3690  /* Scan the directory */
3691  bool result = true;
3692  char buf[sizeof(struct dirent) + MAX_PATH];
3693  while (result && (ptr = ::readdir(dir)) != NULL) {
3694    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3695      result = false;
3696    }
3697  }
3698  closedir(dir);
3699  return result;
3700}
3701
3702// This code originates from JDK's sysOpen and open64_w
3703// from src/solaris/hpi/src/system_md.c
3704
3705#ifndef O_DELETE
3706#define O_DELETE 0x10000
3707#endif
3708
3709// Open a file. Unlink the file immediately after open returns
3710// if the specified oflag has the O_DELETE flag set.
3711// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3712
3713int os::open(const char *path, int oflag, int mode) {
3714
3715  if (strlen(path) > MAX_PATH - 1) {
3716    errno = ENAMETOOLONG;
3717    return -1;
3718  }
3719  int fd;
3720  int o_delete = (oflag & O_DELETE);
3721  oflag = oflag & ~O_DELETE;
3722
3723  fd = ::open(path, oflag, mode);
3724  if (fd == -1) return -1;
3725
3726  //If the open succeeded, the file might still be a directory
3727  {
3728    struct stat buf;
3729    int ret = ::fstat(fd, &buf);
3730    int st_mode = buf.st_mode;
3731
3732    if (ret != -1) {
3733      if ((st_mode & S_IFMT) == S_IFDIR) {
3734        errno = EISDIR;
3735        ::close(fd);
3736        return -1;
3737      }
3738    } else {
3739      ::close(fd);
3740      return -1;
3741    }
3742  }
3743
3744    /*
3745     * All file descriptors that are opened in the JVM and not
3746     * specifically destined for a subprocess should have the
3747     * close-on-exec flag set.  If we don't set it, then careless 3rd
3748     * party native code might fork and exec without closing all
3749     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3750     * UNIXProcess.c), and this in turn might:
3751     *
3752     * - cause end-of-file to fail to be detected on some file
3753     *   descriptors, resulting in mysterious hangs, or
3754     *
3755     * - might cause an fopen in the subprocess to fail on a system
3756     *   suffering from bug 1085341.
3757     *
3758     * (Yes, the default setting of the close-on-exec flag is a Unix
3759     * design flaw)
3760     *
3761     * See:
3762     * 1085341: 32-bit stdio routines should support file descriptors >255
3763     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3764     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3765     */
3766#ifdef FD_CLOEXEC
3767    {
3768        int flags = ::fcntl(fd, F_GETFD);
3769        if (flags != -1)
3770            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3771    }
3772#endif
3773
3774  if (o_delete != 0) {
3775    ::unlink(path);
3776  }
3777  return fd;
3778}
3779
3780
3781// create binary file, rewriting existing file if required
3782int os::create_binary_file(const char* path, bool rewrite_existing) {
3783  int oflags = O_WRONLY | O_CREAT;
3784  if (!rewrite_existing) {
3785    oflags |= O_EXCL;
3786  }
3787  return ::open(path, oflags, S_IREAD | S_IWRITE);
3788}
3789
3790// return current position of file pointer
3791jlong os::current_file_offset(int fd) {
3792  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3793}
3794
3795// move file pointer to the specified offset
3796jlong os::seek_to_file_offset(int fd, jlong offset) {
3797  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3798}
3799
3800// This code originates from JDK's sysAvailable
3801// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3802
3803int os::available(int fd, jlong *bytes) {
3804  jlong cur, end;
3805  int mode;
3806  struct stat buf;
3807
3808  if (::fstat(fd, &buf) >= 0) {
3809    mode = buf.st_mode;
3810    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3811      /*
3812      * XXX: is the following call interruptible? If so, this might
3813      * need to go through the INTERRUPT_IO() wrapper as for other
3814      * blocking, interruptible calls in this file.
3815      */
3816      int n;
3817      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3818        *bytes = n;
3819        return 1;
3820      }
3821    }
3822  }
3823  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3824    return 0;
3825  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3826    return 0;
3827  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3828    return 0;
3829  }
3830  *bytes = end - cur;
3831  return 1;
3832}
3833
3834int os::socket_available(int fd, jint *pbytes) {
3835   if (fd < 0)
3836     return OS_OK;
3837
3838   int ret;
3839
3840   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3841
3842   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3843   // is expected to return 0 on failure and 1 on success to the jdk.
3844
3845   return (ret == OS_ERR) ? 0 : 1;
3846}
3847
3848// Map a block of memory.
3849char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3850                     char *addr, size_t bytes, bool read_only,
3851                     bool allow_exec) {
3852  int prot;
3853  int flags;
3854
3855  if (read_only) {
3856    prot = PROT_READ;
3857    flags = MAP_SHARED;
3858  } else {
3859    prot = PROT_READ | PROT_WRITE;
3860    flags = MAP_PRIVATE;
3861  }
3862
3863  if (allow_exec) {
3864    prot |= PROT_EXEC;
3865  }
3866
3867  if (addr != NULL) {
3868    flags |= MAP_FIXED;
3869  }
3870
3871  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3872                                     fd, file_offset);
3873  if (mapped_address == MAP_FAILED) {
3874    return NULL;
3875  }
3876  return mapped_address;
3877}
3878
3879
3880// Remap a block of memory.
3881char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3882                       char *addr, size_t bytes, bool read_only,
3883                       bool allow_exec) {
3884  // same as map_memory() on this OS
3885  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3886                        allow_exec);
3887}
3888
3889
3890// Unmap a block of memory.
3891bool os::pd_unmap_memory(char* addr, size_t bytes) {
3892  return munmap(addr, bytes) == 0;
3893}
3894
3895// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3896// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3897// of a thread.
3898//
3899// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3900// the fast estimate available on the platform.
3901
3902jlong os::current_thread_cpu_time() {
3903#ifdef __APPLE__
3904  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3905#else
3906  Unimplemented();
3907  return 0;
3908#endif
3909}
3910
3911jlong os::thread_cpu_time(Thread* thread) {
3912#ifdef __APPLE__
3913  return os::thread_cpu_time(thread, true /* user + sys */);
3914#else
3915  Unimplemented();
3916  return 0;
3917#endif
3918}
3919
3920jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3921#ifdef __APPLE__
3922  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3923#else
3924  Unimplemented();
3925  return 0;
3926#endif
3927}
3928
3929jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3930#ifdef __APPLE__
3931  struct thread_basic_info tinfo;
3932  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3933  kern_return_t kr;
3934  thread_t mach_thread;
3935
3936  mach_thread = thread->osthread()->thread_id();
3937  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3938  if (kr != KERN_SUCCESS)
3939    return -1;
3940
3941  if (user_sys_cpu_time) {
3942    jlong nanos;
3943    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3944    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3945    return nanos;
3946  } else {
3947    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3948  }
3949#else
3950  Unimplemented();
3951  return 0;
3952#endif
3953}
3954
3955
3956void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3957  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3958  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3959  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3960  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3961}
3962
3963void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3964  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3965  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3966  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3967  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3968}
3969
3970bool os::is_thread_cpu_time_supported() {
3971#ifdef __APPLE__
3972  return true;
3973#else
3974  return false;
3975#endif
3976}
3977
3978// System loadavg support.  Returns -1 if load average cannot be obtained.
3979// Bsd doesn't yet have a (official) notion of processor sets,
3980// so just return the system wide load average.
3981int os::loadavg(double loadavg[], int nelem) {
3982  return ::getloadavg(loadavg, nelem);
3983}
3984
3985void os::pause() {
3986  char filename[MAX_PATH];
3987  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3988    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3989  } else {
3990    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3991  }
3992
3993  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3994  if (fd != -1) {
3995    struct stat buf;
3996    ::close(fd);
3997    while (::stat(filename, &buf) == 0) {
3998      (void)::poll(NULL, 0, 100);
3999    }
4000  } else {
4001    jio_fprintf(stderr,
4002      "Could not open pause file '%s', continuing immediately.\n", filename);
4003  }
4004}
4005
4006
4007// Refer to the comments in os_solaris.cpp park-unpark.
4008//
4009// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4010// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4011// For specifics regarding the bug see GLIBC BUGID 261237 :
4012//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4013// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4014// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4015// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4016// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4017// and monitorenter when we're using 1-0 locking.  All those operations may result in
4018// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4019// of libpthread avoids the problem, but isn't practical.
4020//
4021// Possible remedies:
4022//
4023// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4024//      This is palliative and probabilistic, however.  If the thread is preempted
4025//      between the call to compute_abstime() and pthread_cond_timedwait(), more
4026//      than the minimum period may have passed, and the abstime may be stale (in the
4027//      past) resultin in a hang.   Using this technique reduces the odds of a hang
4028//      but the JVM is still vulnerable, particularly on heavily loaded systems.
4029//
4030// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4031//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4032//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4033//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4034//      thread.
4035//
4036// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4037//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4038//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4039//      This also works well.  In fact it avoids kernel-level scalability impediments
4040//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4041//      timers in a graceful fashion.
4042//
4043// 4.   When the abstime value is in the past it appears that control returns
4044//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4045//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4046//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4047//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4048//      It may be possible to avoid reinitialization by checking the return
4049//      value from pthread_cond_timedwait().  In addition to reinitializing the
4050//      condvar we must establish the invariant that cond_signal() is only called
4051//      within critical sections protected by the adjunct mutex.  This prevents
4052//      cond_signal() from "seeing" a condvar that's in the midst of being
4053//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4054//      desirable signal-after-unlock optimization that avoids futile context switching.
4055//
4056//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4057//      structure when a condvar is used or initialized.  cond_destroy()  would
4058//      release the helper structure.  Our reinitialize-after-timedwait fix
4059//      put excessive stress on malloc/free and locks protecting the c-heap.
4060//
4061// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4062// It may be possible to refine (4) by checking the kernel and NTPL verisons
4063// and only enabling the work-around for vulnerable environments.
4064
4065// utility to compute the abstime argument to timedwait:
4066// millis is the relative timeout time
4067// abstime will be the absolute timeout time
4068// TODO: replace compute_abstime() with unpackTime()
4069
4070static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4071  if (millis < 0)  millis = 0;
4072  struct timeval now;
4073  int status = gettimeofday(&now, NULL);
4074  assert(status == 0, "gettimeofday");
4075  jlong seconds = millis / 1000;
4076  millis %= 1000;
4077  if (seconds > 50000000) { // see man cond_timedwait(3T)
4078    seconds = 50000000;
4079  }
4080  abstime->tv_sec = now.tv_sec  + seconds;
4081  long       usec = now.tv_usec + millis * 1000;
4082  if (usec >= 1000000) {
4083    abstime->tv_sec += 1;
4084    usec -= 1000000;
4085  }
4086  abstime->tv_nsec = usec * 1000;
4087  return abstime;
4088}
4089
4090
4091// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4092// Conceptually TryPark() should be equivalent to park(0).
4093
4094int os::PlatformEvent::TryPark() {
4095  for (;;) {
4096    const int v = _Event ;
4097    guarantee ((v == 0) || (v == 1), "invariant") ;
4098    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4099  }
4100}
4101
4102void os::PlatformEvent::park() {       // AKA "down()"
4103  // Invariant: Only the thread associated with the Event/PlatformEvent
4104  // may call park().
4105  // TODO: assert that _Assoc != NULL or _Assoc == Self
4106  int v ;
4107  for (;;) {
4108      v = _Event ;
4109      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4110  }
4111  guarantee (v >= 0, "invariant") ;
4112  if (v == 0) {
4113     // Do this the hard way by blocking ...
4114     int status = pthread_mutex_lock(_mutex);
4115     assert_status(status == 0, status, "mutex_lock");
4116     guarantee (_nParked == 0, "invariant") ;
4117     ++ _nParked ;
4118     while (_Event < 0) {
4119        status = pthread_cond_wait(_cond, _mutex);
4120        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4121        // Treat this the same as if the wait was interrupted
4122        if (status == ETIMEDOUT) { status = EINTR; }
4123        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4124     }
4125     -- _nParked ;
4126
4127    _Event = 0 ;
4128     status = pthread_mutex_unlock(_mutex);
4129     assert_status(status == 0, status, "mutex_unlock");
4130    // Paranoia to ensure our locked and lock-free paths interact
4131    // correctly with each other.
4132    OrderAccess::fence();
4133  }
4134  guarantee (_Event >= 0, "invariant") ;
4135}
4136
4137int os::PlatformEvent::park(jlong millis) {
4138  guarantee (_nParked == 0, "invariant") ;
4139
4140  int v ;
4141  for (;;) {
4142      v = _Event ;
4143      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4144  }
4145  guarantee (v >= 0, "invariant") ;
4146  if (v != 0) return OS_OK ;
4147
4148  // We do this the hard way, by blocking the thread.
4149  // Consider enforcing a minimum timeout value.
4150  struct timespec abst;
4151  compute_abstime(&abst, millis);
4152
4153  int ret = OS_TIMEOUT;
4154  int status = pthread_mutex_lock(_mutex);
4155  assert_status(status == 0, status, "mutex_lock");
4156  guarantee (_nParked == 0, "invariant") ;
4157  ++_nParked ;
4158
4159  // Object.wait(timo) will return because of
4160  // (a) notification
4161  // (b) timeout
4162  // (c) thread.interrupt
4163  //
4164  // Thread.interrupt and object.notify{All} both call Event::set.
4165  // That is, we treat thread.interrupt as a special case of notification.
4166  // The underlying Solaris implementation, cond_timedwait, admits
4167  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4168  // JVM from making those visible to Java code.  As such, we must
4169  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4170  //
4171  // TODO: properly differentiate simultaneous notify+interrupt.
4172  // In that case, we should propagate the notify to another waiter.
4173
4174  while (_Event < 0) {
4175    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4176    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4177      pthread_cond_destroy (_cond);
4178      pthread_cond_init (_cond, NULL) ;
4179    }
4180    assert_status(status == 0 || status == EINTR ||
4181                  status == ETIMEDOUT,
4182                  status, "cond_timedwait");
4183    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4184    if (status == ETIMEDOUT) break ;
4185    // We consume and ignore EINTR and spurious wakeups.
4186  }
4187  --_nParked ;
4188  if (_Event >= 0) {
4189     ret = OS_OK;
4190  }
4191  _Event = 0 ;
4192  status = pthread_mutex_unlock(_mutex);
4193  assert_status(status == 0, status, "mutex_unlock");
4194  assert (_nParked == 0, "invariant") ;
4195  // Paranoia to ensure our locked and lock-free paths interact
4196  // correctly with each other.
4197  OrderAccess::fence();
4198  return ret;
4199}
4200
4201void os::PlatformEvent::unpark() {
4202  // Transitions for _Event:
4203  //    0 :=> 1
4204  //    1 :=> 1
4205  //   -1 :=> either 0 or 1; must signal target thread
4206  //          That is, we can safely transition _Event from -1 to either
4207  //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4208  //          unpark() calls.
4209  // See also: "Semaphores in Plan 9" by Mullender & Cox
4210  //
4211  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4212  // that it will take two back-to-back park() calls for the owning
4213  // thread to block. This has the benefit of forcing a spurious return
4214  // from the first park() call after an unpark() call which will help
4215  // shake out uses of park() and unpark() without condition variables.
4216
4217  if (Atomic::xchg(1, &_Event) >= 0) return;
4218
4219  // Wait for the thread associated with the event to vacate
4220  int status = pthread_mutex_lock(_mutex);
4221  assert_status(status == 0, status, "mutex_lock");
4222  int AnyWaiters = _nParked;
4223  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4224  if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4225    AnyWaiters = 0;
4226    pthread_cond_signal(_cond);
4227  }
4228  status = pthread_mutex_unlock(_mutex);
4229  assert_status(status == 0, status, "mutex_unlock");
4230  if (AnyWaiters != 0) {
4231    status = pthread_cond_signal(_cond);
4232    assert_status(status == 0, status, "cond_signal");
4233  }
4234
4235  // Note that we signal() _after dropping the lock for "immortal" Events.
4236  // This is safe and avoids a common class of  futile wakeups.  In rare
4237  // circumstances this can cause a thread to return prematurely from
4238  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4239  // simply re-test the condition and re-park itself.
4240}
4241
4242
4243// JSR166
4244// -------------------------------------------------------
4245
4246/*
4247 * The solaris and bsd implementations of park/unpark are fairly
4248 * conservative for now, but can be improved. They currently use a
4249 * mutex/condvar pair, plus a a count.
4250 * Park decrements count if > 0, else does a condvar wait.  Unpark
4251 * sets count to 1 and signals condvar.  Only one thread ever waits
4252 * on the condvar. Contention seen when trying to park implies that someone
4253 * is unparking you, so don't wait. And spurious returns are fine, so there
4254 * is no need to track notifications.
4255 */
4256
4257#define MAX_SECS 100000000
4258/*
4259 * This code is common to bsd and solaris and will be moved to a
4260 * common place in dolphin.
4261 *
4262 * The passed in time value is either a relative time in nanoseconds
4263 * or an absolute time in milliseconds. Either way it has to be unpacked
4264 * into suitable seconds and nanoseconds components and stored in the
4265 * given timespec structure.
4266 * Given time is a 64-bit value and the time_t used in the timespec is only
4267 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4268 * overflow if times way in the future are given. Further on Solaris versions
4269 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4270 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4271 * As it will be 28 years before "now + 100000000" will overflow we can
4272 * ignore overflow and just impose a hard-limit on seconds using the value
4273 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4274 * years from "now".
4275 */
4276
4277static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4278  assert (time > 0, "convertTime");
4279
4280  struct timeval now;
4281  int status = gettimeofday(&now, NULL);
4282  assert(status == 0, "gettimeofday");
4283
4284  time_t max_secs = now.tv_sec + MAX_SECS;
4285
4286  if (isAbsolute) {
4287    jlong secs = time / 1000;
4288    if (secs > max_secs) {
4289      absTime->tv_sec = max_secs;
4290    }
4291    else {
4292      absTime->tv_sec = secs;
4293    }
4294    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4295  }
4296  else {
4297    jlong secs = time / NANOSECS_PER_SEC;
4298    if (secs >= MAX_SECS) {
4299      absTime->tv_sec = max_secs;
4300      absTime->tv_nsec = 0;
4301    }
4302    else {
4303      absTime->tv_sec = now.tv_sec + secs;
4304      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4305      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4306        absTime->tv_nsec -= NANOSECS_PER_SEC;
4307        ++absTime->tv_sec; // note: this must be <= max_secs
4308      }
4309    }
4310  }
4311  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4312  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4313  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4314  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4315}
4316
4317void Parker::park(bool isAbsolute, jlong time) {
4318  // Ideally we'd do something useful while spinning, such
4319  // as calling unpackTime().
4320
4321  // Optional fast-path check:
4322  // Return immediately if a permit is available.
4323  // We depend on Atomic::xchg() having full barrier semantics
4324  // since we are doing a lock-free update to _counter.
4325  if (Atomic::xchg(0, &_counter) > 0) return;
4326
4327  Thread* thread = Thread::current();
4328  assert(thread->is_Java_thread(), "Must be JavaThread");
4329  JavaThread *jt = (JavaThread *)thread;
4330
4331  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4332  // Check interrupt before trying to wait
4333  if (Thread::is_interrupted(thread, false)) {
4334    return;
4335  }
4336
4337  // Next, demultiplex/decode time arguments
4338  struct timespec absTime;
4339  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4340    return;
4341  }
4342  if (time > 0) {
4343    unpackTime(&absTime, isAbsolute, time);
4344  }
4345
4346
4347  // Enter safepoint region
4348  // Beware of deadlocks such as 6317397.
4349  // The per-thread Parker:: mutex is a classic leaf-lock.
4350  // In particular a thread must never block on the Threads_lock while
4351  // holding the Parker:: mutex.  If safepoints are pending both the
4352  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4353  ThreadBlockInVM tbivm(jt);
4354
4355  // Don't wait if cannot get lock since interference arises from
4356  // unblocking.  Also. check interrupt before trying wait
4357  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4358    return;
4359  }
4360
4361  int status ;
4362  if (_counter > 0)  { // no wait needed
4363    _counter = 0;
4364    status = pthread_mutex_unlock(_mutex);
4365    assert (status == 0, "invariant") ;
4366    // Paranoia to ensure our locked and lock-free paths interact
4367    // correctly with each other and Java-level accesses.
4368    OrderAccess::fence();
4369    return;
4370  }
4371
4372#ifdef ASSERT
4373  // Don't catch signals while blocked; let the running threads have the signals.
4374  // (This allows a debugger to break into the running thread.)
4375  sigset_t oldsigs;
4376  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4377  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4378#endif
4379
4380  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4381  jt->set_suspend_equivalent();
4382  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4383
4384  if (time == 0) {
4385    status = pthread_cond_wait (_cond, _mutex) ;
4386  } else {
4387    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4388    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4389      pthread_cond_destroy (_cond) ;
4390      pthread_cond_init    (_cond, NULL);
4391    }
4392  }
4393  assert_status(status == 0 || status == EINTR ||
4394                status == ETIMEDOUT,
4395                status, "cond_timedwait");
4396
4397#ifdef ASSERT
4398  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4399#endif
4400
4401  _counter = 0 ;
4402  status = pthread_mutex_unlock(_mutex) ;
4403  assert_status(status == 0, status, "invariant") ;
4404  // Paranoia to ensure our locked and lock-free paths interact
4405  // correctly with each other and Java-level accesses.
4406  OrderAccess::fence();
4407
4408  // If externally suspended while waiting, re-suspend
4409  if (jt->handle_special_suspend_equivalent_condition()) {
4410    jt->java_suspend_self();
4411  }
4412}
4413
4414void Parker::unpark() {
4415  int s, status ;
4416  status = pthread_mutex_lock(_mutex);
4417  assert (status == 0, "invariant") ;
4418  s = _counter;
4419  _counter = 1;
4420  if (s < 1) {
4421     if (WorkAroundNPTLTimedWaitHang) {
4422        status = pthread_cond_signal (_cond) ;
4423        assert (status == 0, "invariant") ;
4424        status = pthread_mutex_unlock(_mutex);
4425        assert (status == 0, "invariant") ;
4426     } else {
4427        status = pthread_mutex_unlock(_mutex);
4428        assert (status == 0, "invariant") ;
4429        status = pthread_cond_signal (_cond) ;
4430        assert (status == 0, "invariant") ;
4431     }
4432  } else {
4433    pthread_mutex_unlock(_mutex);
4434    assert (status == 0, "invariant") ;
4435  }
4436}
4437
4438
4439/* Darwin has no "environ" in a dynamic library. */
4440#ifdef __APPLE__
4441#include <crt_externs.h>
4442#define environ (*_NSGetEnviron())
4443#else
4444extern char** environ;
4445#endif
4446
4447// Run the specified command in a separate process. Return its exit value,
4448// or -1 on failure (e.g. can't fork a new process).
4449// Unlike system(), this function can be called from signal handler. It
4450// doesn't block SIGINT et al.
4451int os::fork_and_exec(char* cmd) {
4452  const char * argv[4] = {"sh", "-c", cmd, NULL};
4453
4454  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4455  // pthread_atfork handlers and reset pthread library. All we need is a
4456  // separate process to execve. Make a direct syscall to fork process.
4457  // On IA64 there's no fork syscall, we have to use fork() and hope for
4458  // the best...
4459  pid_t pid = fork();
4460
4461  if (pid < 0) {
4462    // fork failed
4463    return -1;
4464
4465  } else if (pid == 0) {
4466    // child process
4467
4468    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4469    // first to kill every thread on the thread list. Because this list is
4470    // not reset by fork() (see notes above), execve() will instead kill
4471    // every thread in the parent process. We know this is the only thread
4472    // in the new process, so make a system call directly.
4473    // IA64 should use normal execve() from glibc to match the glibc fork()
4474    // above.
4475    execve("/bin/sh", (char* const*)argv, environ);
4476
4477    // execve failed
4478    _exit(-1);
4479
4480  } else  {
4481    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4482    // care about the actual exit code, for now.
4483
4484    int status;
4485
4486    // Wait for the child process to exit.  This returns immediately if
4487    // the child has already exited. */
4488    while (waitpid(pid, &status, 0) < 0) {
4489        switch (errno) {
4490        case ECHILD: return 0;
4491        case EINTR: break;
4492        default: return -1;
4493        }
4494    }
4495
4496    if (WIFEXITED(status)) {
4497       // The child exited normally; get its exit code.
4498       return WEXITSTATUS(status);
4499    } else if (WIFSIGNALED(status)) {
4500       // The child exited because of a signal
4501       // The best value to return is 0x80 + signal number,
4502       // because that is what all Unix shells do, and because
4503       // it allows callers to distinguish between process exit and
4504       // process death by signal.
4505       return 0x80 + WTERMSIG(status);
4506    } else {
4507       // Unknown exit code; pass it through
4508       return status;
4509    }
4510  }
4511}
4512
4513// is_headless_jre()
4514//
4515// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4516// in order to report if we are running in a headless jre
4517//
4518// Since JDK8 xawt/libmawt.so was moved into the same directory
4519// as libawt.so, and renamed libawt_xawt.so
4520//
4521bool os::is_headless_jre() {
4522    struct stat statbuf;
4523    char buf[MAXPATHLEN];
4524    char libmawtpath[MAXPATHLEN];
4525    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4526    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4527    char *p;
4528
4529    // Get path to libjvm.so
4530    os::jvm_path(buf, sizeof(buf));
4531
4532    // Get rid of libjvm.so
4533    p = strrchr(buf, '/');
4534    if (p == NULL) return false;
4535    else *p = '\0';
4536
4537    // Get rid of client or server
4538    p = strrchr(buf, '/');
4539    if (p == NULL) return false;
4540    else *p = '\0';
4541
4542    // check xawt/libmawt.so
4543    strcpy(libmawtpath, buf);
4544    strcat(libmawtpath, xawtstr);
4545    if (::stat(libmawtpath, &statbuf) == 0) return false;
4546
4547    // check libawt_xawt.so
4548    strcpy(libmawtpath, buf);
4549    strcat(libmawtpath, new_xawtstr);
4550    if (::stat(libmawtpath, &statbuf) == 0) return false;
4551
4552    return true;
4553}
4554
4555// Get the default path to the core file
4556// Returns the length of the string
4557int os::get_core_path(char* buffer, size_t bufferSize) {
4558  int n = jio_snprintf(buffer, bufferSize, "/cores");
4559
4560  // Truncate if theoretical string was longer than bufferSize
4561  n = MIN2(n, (int)bufferSize);
4562
4563  return n;
4564}
4565