os_bsd.cpp revision 3883:cd3d6a6b95d9
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "memory/allocation.inline.hpp"
36#include "memory/filemap.hpp"
37#include "mutex_bsd.inline.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_share_bsd.hpp"
40#include "prims/jniFastGetField.hpp"
41#include "prims/jvm.h"
42#include "prims/jvm_misc.hpp"
43#include "runtime/arguments.hpp"
44#include "runtime/extendedPC.hpp"
45#include "runtime/globals.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/java.hpp"
48#include "runtime/javaCalls.hpp"
49#include "runtime/mutexLocker.hpp"
50#include "runtime/objectMonitor.hpp"
51#include "runtime/osThread.hpp"
52#include "runtime/perfMemory.hpp"
53#include "runtime/sharedRuntime.hpp"
54#include "runtime/statSampler.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/threadCritical.hpp"
57#include "runtime/timer.hpp"
58#include "services/attachListener.hpp"
59#include "services/runtimeService.hpp"
60#include "thread_bsd.inline.hpp"
61#include "utilities/decoder.hpp"
62#include "utilities/defaultStream.hpp"
63#include "utilities/events.hpp"
64#include "utilities/growableArray.hpp"
65#include "utilities/vmError.hpp"
66
67// put OS-includes here
68# include <sys/types.h>
69# include <sys/mman.h>
70# include <sys/stat.h>
71# include <sys/select.h>
72# include <pthread.h>
73# include <signal.h>
74# include <errno.h>
75# include <dlfcn.h>
76# include <stdio.h>
77# include <unistd.h>
78# include <sys/resource.h>
79# include <pthread.h>
80# include <sys/stat.h>
81# include <sys/time.h>
82# include <sys/times.h>
83# include <sys/utsname.h>
84# include <sys/socket.h>
85# include <sys/wait.h>
86# include <time.h>
87# include <pwd.h>
88# include <poll.h>
89# include <semaphore.h>
90# include <fcntl.h>
91# include <string.h>
92# include <sys/param.h>
93# include <sys/sysctl.h>
94# include <sys/ipc.h>
95# include <sys/shm.h>
96#ifndef __APPLE__
97# include <link.h>
98#endif
99# include <stdint.h>
100# include <inttypes.h>
101# include <sys/ioctl.h>
102
103#if defined(__FreeBSD__) || defined(__NetBSD__)
104# include <elf.h>
105#endif
106
107#ifdef __APPLE__
108# include <mach/mach.h> // semaphore_* API
109# include <mach-o/dyld.h>
110# include <sys/proc_info.h>
111# include <objc/objc-auto.h>
112#endif
113
114#ifndef MAP_ANONYMOUS
115#define MAP_ANONYMOUS MAP_ANON
116#endif
117
118#define MAX_PATH    (2 * K)
119
120// for timer info max values which include all bits
121#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
122
123#define LARGEPAGES_BIT (1 << 6)
124////////////////////////////////////////////////////////////////////////////////
125// global variables
126julong os::Bsd::_physical_memory = 0;
127
128
129int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
130pthread_t os::Bsd::_main_thread;
131int os::Bsd::_page_size = -1;
132
133static jlong initial_time_count=0;
134
135static int clock_tics_per_sec = 100;
136
137// For diagnostics to print a message once. see run_periodic_checks
138static sigset_t check_signal_done;
139static bool check_signals = true;
140
141static pid_t _initial_pid = 0;
142
143/* Signal number used to suspend/resume a thread */
144
145/* do not use any signal number less than SIGSEGV, see 4355769 */
146static int SR_signum = SIGUSR2;
147sigset_t SR_sigset;
148
149
150////////////////////////////////////////////////////////////////////////////////
151// utility functions
152
153static int SR_initialize();
154static int SR_finalize();
155
156julong os::available_memory() {
157  return Bsd::available_memory();
158}
159
160julong os::Bsd::available_memory() {
161  // XXXBSD: this is just a stopgap implementation
162  return physical_memory() >> 2;
163}
164
165julong os::physical_memory() {
166  return Bsd::physical_memory();
167}
168
169julong os::allocatable_physical_memory(julong size) {
170#ifdef _LP64
171  return size;
172#else
173  julong result = MIN2(size, (julong)3800*M);
174   if (!is_allocatable(result)) {
175     // See comments under solaris for alignment considerations
176     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
177     result =  MIN2(size, reasonable_size);
178   }
179   return result;
180#endif // _LP64
181}
182
183////////////////////////////////////////////////////////////////////////////////
184// environment support
185
186bool os::getenv(const char* name, char* buf, int len) {
187  const char* val = ::getenv(name);
188  if (val != NULL && strlen(val) < (size_t)len) {
189    strcpy(buf, val);
190    return true;
191  }
192  if (len > 0) buf[0] = 0;  // return a null string
193  return false;
194}
195
196
197// Return true if user is running as root.
198
199bool os::have_special_privileges() {
200  static bool init = false;
201  static bool privileges = false;
202  if (!init) {
203    privileges = (getuid() != geteuid()) || (getgid() != getegid());
204    init = true;
205  }
206  return privileges;
207}
208
209
210
211// Cpu architecture string
212#if   defined(ZERO)
213static char cpu_arch[] = ZERO_LIBARCH;
214#elif defined(IA64)
215static char cpu_arch[] = "ia64";
216#elif defined(IA32)
217static char cpu_arch[] = "i386";
218#elif defined(AMD64)
219static char cpu_arch[] = "amd64";
220#elif defined(ARM)
221static char cpu_arch[] = "arm";
222#elif defined(PPC)
223static char cpu_arch[] = "ppc";
224#elif defined(SPARC)
225#  ifdef _LP64
226static char cpu_arch[] = "sparcv9";
227#  else
228static char cpu_arch[] = "sparc";
229#  endif
230#else
231#error Add appropriate cpu_arch setting
232#endif
233
234// Compiler variant
235#ifdef COMPILER2
236#define COMPILER_VARIANT "server"
237#else
238#define COMPILER_VARIANT "client"
239#endif
240
241
242void os::Bsd::initialize_system_info() {
243  int mib[2];
244  size_t len;
245  int cpu_val;
246  u_long mem_val;
247
248  /* get processors count via hw.ncpus sysctl */
249  mib[0] = CTL_HW;
250  mib[1] = HW_NCPU;
251  len = sizeof(cpu_val);
252  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
253       set_processor_count(cpu_val);
254  }
255  else {
256       set_processor_count(1);   // fallback
257  }
258
259  /* get physical memory via hw.usermem sysctl (hw.usermem is used
260   * instead of hw.physmem because we need size of allocatable memory
261   */
262  mib[0] = CTL_HW;
263  mib[1] = HW_USERMEM;
264  len = sizeof(mem_val);
265  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
266       _physical_memory = mem_val;
267  else
268       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
269
270#ifdef __OpenBSD__
271  {
272       // limit _physical_memory memory view on OpenBSD since
273       // datasize rlimit restricts us anyway.
274       struct rlimit limits;
275       getrlimit(RLIMIT_DATA, &limits);
276       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
277  }
278#endif
279}
280
281#ifdef __APPLE__
282static const char *get_home() {
283  const char *home_dir = ::getenv("HOME");
284  if ((home_dir == NULL) || (*home_dir == '\0')) {
285    struct passwd *passwd_info = getpwuid(geteuid());
286    if (passwd_info != NULL) {
287      home_dir = passwd_info->pw_dir;
288    }
289  }
290
291  return home_dir;
292}
293#endif
294
295void os::init_system_properties_values() {
296//  char arch[12];
297//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
298
299  // The next steps are taken in the product version:
300  //
301  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
302  // This library should be located at:
303  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
304  //
305  // If "/jre/lib/" appears at the right place in the path, then we
306  // assume libjvm[_g].so is installed in a JDK and we use this path.
307  //
308  // Otherwise exit with message: "Could not create the Java virtual machine."
309  //
310  // The following extra steps are taken in the debugging version:
311  //
312  // If "/jre/lib/" does NOT appear at the right place in the path
313  // instead of exit check for $JAVA_HOME environment variable.
314  //
315  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
316  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
317  // it looks like libjvm[_g].so is installed there
318  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
319  //
320  // Otherwise exit.
321  //
322  // Important note: if the location of libjvm.so changes this
323  // code needs to be changed accordingly.
324
325  // The next few definitions allow the code to be verbatim:
326#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
327#define getenv(n) ::getenv(n)
328
329/*
330 * See ld(1):
331 *      The linker uses the following search paths to locate required
332 *      shared libraries:
333 *        1: ...
334 *        ...
335 *        7: The default directories, normally /lib and /usr/lib.
336 */
337#ifndef DEFAULT_LIBPATH
338#define DEFAULT_LIBPATH "/lib:/usr/lib"
339#endif
340
341#define EXTENSIONS_DIR  "/lib/ext"
342#define ENDORSED_DIR    "/lib/endorsed"
343#define REG_DIR         "/usr/java/packages"
344
345#ifdef __APPLE__
346#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
347#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
348        const char *user_home_dir = get_home();
349        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
350        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
351            sizeof(SYS_EXTENSIONS_DIRS);
352#endif
353
354  {
355    /* sysclasspath, java_home, dll_dir */
356    {
357        char *home_path;
358        char *dll_path;
359        char *pslash;
360        char buf[MAXPATHLEN];
361        os::jvm_path(buf, sizeof(buf));
362
363        // Found the full path to libjvm.so.
364        // Now cut the path to <java_home>/jre if we can.
365        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
366        pslash = strrchr(buf, '/');
367        if (pslash != NULL)
368            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
369        dll_path = malloc(strlen(buf) + 1);
370        if (dll_path == NULL)
371            return;
372        strcpy(dll_path, buf);
373        Arguments::set_dll_dir(dll_path);
374
375        if (pslash != NULL) {
376            pslash = strrchr(buf, '/');
377            if (pslash != NULL) {
378                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
379#ifndef __APPLE__
380                pslash = strrchr(buf, '/');
381                if (pslash != NULL)
382                    *pslash = '\0';   /* get rid of /lib */
383#endif
384            }
385        }
386
387        home_path = malloc(strlen(buf) + 1);
388        if (home_path == NULL)
389            return;
390        strcpy(home_path, buf);
391        Arguments::set_java_home(home_path);
392
393        if (!set_boot_path('/', ':'))
394            return;
395    }
396
397    /*
398     * Where to look for native libraries
399     *
400     * Note: Due to a legacy implementation, most of the library path
401     * is set in the launcher.  This was to accomodate linking restrictions
402     * on legacy Bsd implementations (which are no longer supported).
403     * Eventually, all the library path setting will be done here.
404     *
405     * However, to prevent the proliferation of improperly built native
406     * libraries, the new path component /usr/java/packages is added here.
407     * Eventually, all the library path setting will be done here.
408     */
409    {
410        char *ld_library_path;
411
412        /*
413         * Construct the invariant part of ld_library_path. Note that the
414         * space for the colon and the trailing null are provided by the
415         * nulls included by the sizeof operator (so actually we allocate
416         * a byte more than necessary).
417         */
418#ifdef __APPLE__
419        ld_library_path = (char *) malloc(system_ext_size);
420        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
421#else
422        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
423            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
424        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
425#endif
426
427        /*
428         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
429         * should always exist (until the legacy problem cited above is
430         * addressed).
431         */
432#ifdef __APPLE__
433        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
434        char *l = getenv("JAVA_LIBRARY_PATH");
435        if (l != NULL) {
436            char *t = ld_library_path;
437            /* That's +1 for the colon and +1 for the trailing '\0' */
438            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
439            sprintf(ld_library_path, "%s:%s", l, t);
440            free(t);
441        }
442
443        char *v = getenv("DYLD_LIBRARY_PATH");
444#else
445        char *v = getenv("LD_LIBRARY_PATH");
446#endif
447        if (v != NULL) {
448            char *t = ld_library_path;
449            /* That's +1 for the colon and +1 for the trailing '\0' */
450            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
451            sprintf(ld_library_path, "%s:%s", v, t);
452            free(t);
453        }
454
455#ifdef __APPLE__
456        // Apple's Java6 has "." at the beginning of java.library.path.
457        // OpenJDK on Windows has "." at the end of java.library.path.
458        // OpenJDK on Linux and Solaris don't have "." in java.library.path
459        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
460        // "." is appended to the end of java.library.path. Yes, this
461        // could cause a change in behavior, but Apple's Java6 behavior
462        // can be achieved by putting "." at the beginning of the
463        // JAVA_LIBRARY_PATH environment variable.
464        {
465            char *t = ld_library_path;
466            // that's +3 for appending ":." and the trailing '\0'
467            ld_library_path = (char *) malloc(strlen(t) + 3);
468            sprintf(ld_library_path, "%s:%s", t, ".");
469            free(t);
470        }
471#endif
472
473        Arguments::set_library_path(ld_library_path);
474    }
475
476    /*
477     * Extensions directories.
478     *
479     * Note that the space for the colon and the trailing null are provided
480     * by the nulls included by the sizeof operator (so actually one byte more
481     * than necessary is allocated).
482     */
483    {
484#ifdef __APPLE__
485        char *buf = malloc(strlen(Arguments::get_java_home()) +
486            sizeof(EXTENSIONS_DIR) + system_ext_size);
487        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
488            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
489#else
490        char *buf = malloc(strlen(Arguments::get_java_home()) +
491            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
492        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
493            Arguments::get_java_home());
494#endif
495
496        Arguments::set_ext_dirs(buf);
497    }
498
499    /* Endorsed standards default directory. */
500    {
501        char * buf;
502        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
503        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
504        Arguments::set_endorsed_dirs(buf);
505    }
506  }
507
508#ifdef __APPLE__
509#undef SYS_EXTENSIONS_DIR
510#endif
511#undef malloc
512#undef getenv
513#undef EXTENSIONS_DIR
514#undef ENDORSED_DIR
515
516  // Done
517  return;
518}
519
520////////////////////////////////////////////////////////////////////////////////
521// breakpoint support
522
523void os::breakpoint() {
524  BREAKPOINT;
525}
526
527extern "C" void breakpoint() {
528  // use debugger to set breakpoint here
529}
530
531////////////////////////////////////////////////////////////////////////////////
532// signal support
533
534debug_only(static bool signal_sets_initialized = false);
535static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
536
537bool os::Bsd::is_sig_ignored(int sig) {
538      struct sigaction oact;
539      sigaction(sig, (struct sigaction*)NULL, &oact);
540      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
541                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
542      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
543           return true;
544      else
545           return false;
546}
547
548void os::Bsd::signal_sets_init() {
549  // Should also have an assertion stating we are still single-threaded.
550  assert(!signal_sets_initialized, "Already initialized");
551  // Fill in signals that are necessarily unblocked for all threads in
552  // the VM. Currently, we unblock the following signals:
553  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
554  //                         by -Xrs (=ReduceSignalUsage));
555  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
556  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
557  // the dispositions or masks wrt these signals.
558  // Programs embedding the VM that want to use the above signals for their
559  // own purposes must, at this time, use the "-Xrs" option to prevent
560  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
561  // (See bug 4345157, and other related bugs).
562  // In reality, though, unblocking these signals is really a nop, since
563  // these signals are not blocked by default.
564  sigemptyset(&unblocked_sigs);
565  sigemptyset(&allowdebug_blocked_sigs);
566  sigaddset(&unblocked_sigs, SIGILL);
567  sigaddset(&unblocked_sigs, SIGSEGV);
568  sigaddset(&unblocked_sigs, SIGBUS);
569  sigaddset(&unblocked_sigs, SIGFPE);
570  sigaddset(&unblocked_sigs, SR_signum);
571
572  if (!ReduceSignalUsage) {
573   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
574      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
575      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
576   }
577   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
578      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
579      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
580   }
581   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
582      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
583      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
584   }
585  }
586  // Fill in signals that are blocked by all but the VM thread.
587  sigemptyset(&vm_sigs);
588  if (!ReduceSignalUsage)
589    sigaddset(&vm_sigs, BREAK_SIGNAL);
590  debug_only(signal_sets_initialized = true);
591
592}
593
594// These are signals that are unblocked while a thread is running Java.
595// (For some reason, they get blocked by default.)
596sigset_t* os::Bsd::unblocked_signals() {
597  assert(signal_sets_initialized, "Not initialized");
598  return &unblocked_sigs;
599}
600
601// These are the signals that are blocked while a (non-VM) thread is
602// running Java. Only the VM thread handles these signals.
603sigset_t* os::Bsd::vm_signals() {
604  assert(signal_sets_initialized, "Not initialized");
605  return &vm_sigs;
606}
607
608// These are signals that are blocked during cond_wait to allow debugger in
609sigset_t* os::Bsd::allowdebug_blocked_signals() {
610  assert(signal_sets_initialized, "Not initialized");
611  return &allowdebug_blocked_sigs;
612}
613
614void os::Bsd::hotspot_sigmask(Thread* thread) {
615
616  //Save caller's signal mask before setting VM signal mask
617  sigset_t caller_sigmask;
618  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
619
620  OSThread* osthread = thread->osthread();
621  osthread->set_caller_sigmask(caller_sigmask);
622
623  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
624
625  if (!ReduceSignalUsage) {
626    if (thread->is_VM_thread()) {
627      // Only the VM thread handles BREAK_SIGNAL ...
628      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
629    } else {
630      // ... all other threads block BREAK_SIGNAL
631      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
632    }
633  }
634}
635
636
637//////////////////////////////////////////////////////////////////////////////
638// create new thread
639
640static address highest_vm_reserved_address();
641
642// check if it's safe to start a new thread
643static bool _thread_safety_check(Thread* thread) {
644  return true;
645}
646
647#ifdef __APPLE__
648// library handle for calling objc_registerThreadWithCollector()
649// without static linking to the libobjc library
650#define OBJC_LIB "/usr/lib/libobjc.dylib"
651#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
652typedef void (*objc_registerThreadWithCollector_t)();
653extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
654objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
655#endif
656
657// Thread start routine for all newly created threads
658static void *java_start(Thread *thread) {
659  // Try to randomize the cache line index of hot stack frames.
660  // This helps when threads of the same stack traces evict each other's
661  // cache lines. The threads can be either from the same JVM instance, or
662  // from different JVM instances. The benefit is especially true for
663  // processors with hyperthreading technology.
664  static int counter = 0;
665  int pid = os::current_process_id();
666  alloca(((pid ^ counter++) & 7) * 128);
667
668  ThreadLocalStorage::set_thread(thread);
669
670  OSThread* osthread = thread->osthread();
671  Monitor* sync = osthread->startThread_lock();
672
673  // non floating stack BsdThreads needs extra check, see above
674  if (!_thread_safety_check(thread)) {
675    // notify parent thread
676    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
677    osthread->set_state(ZOMBIE);
678    sync->notify_all();
679    return NULL;
680  }
681
682#ifdef __APPLE__
683  // thread_id is mach thread on macos
684  osthread->set_thread_id(::mach_thread_self());
685#else
686  // thread_id is pthread_id on BSD
687  osthread->set_thread_id(::pthread_self());
688#endif
689  // initialize signal mask for this thread
690  os::Bsd::hotspot_sigmask(thread);
691
692  // initialize floating point control register
693  os::Bsd::init_thread_fpu_state();
694
695#ifdef __APPLE__
696  // register thread with objc gc
697  if (objc_registerThreadWithCollectorFunction != NULL) {
698    objc_registerThreadWithCollectorFunction();
699  }
700#endif
701
702  // handshaking with parent thread
703  {
704    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
705
706    // notify parent thread
707    osthread->set_state(INITIALIZED);
708    sync->notify_all();
709
710    // wait until os::start_thread()
711    while (osthread->get_state() == INITIALIZED) {
712      sync->wait(Mutex::_no_safepoint_check_flag);
713    }
714  }
715
716  // call one more level start routine
717  thread->run();
718
719  return 0;
720}
721
722bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
723  assert(thread->osthread() == NULL, "caller responsible");
724
725  // Allocate the OSThread object
726  OSThread* osthread = new OSThread(NULL, NULL);
727  if (osthread == NULL) {
728    return false;
729  }
730
731  // set the correct thread state
732  osthread->set_thread_type(thr_type);
733
734  // Initial state is ALLOCATED but not INITIALIZED
735  osthread->set_state(ALLOCATED);
736
737  thread->set_osthread(osthread);
738
739  // init thread attributes
740  pthread_attr_t attr;
741  pthread_attr_init(&attr);
742  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
743
744  // stack size
745  if (os::Bsd::supports_variable_stack_size()) {
746    // calculate stack size if it's not specified by caller
747    if (stack_size == 0) {
748      stack_size = os::Bsd::default_stack_size(thr_type);
749
750      switch (thr_type) {
751      case os::java_thread:
752        // Java threads use ThreadStackSize which default value can be
753        // changed with the flag -Xss
754        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
755        stack_size = JavaThread::stack_size_at_create();
756        break;
757      case os::compiler_thread:
758        if (CompilerThreadStackSize > 0) {
759          stack_size = (size_t)(CompilerThreadStackSize * K);
760          break;
761        } // else fall through:
762          // use VMThreadStackSize if CompilerThreadStackSize is not defined
763      case os::vm_thread:
764      case os::pgc_thread:
765      case os::cgc_thread:
766      case os::watcher_thread:
767        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
768        break;
769      }
770    }
771
772    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
773    pthread_attr_setstacksize(&attr, stack_size);
774  } else {
775    // let pthread_create() pick the default value.
776  }
777
778  ThreadState state;
779
780  {
781    pthread_t tid;
782    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
783
784    pthread_attr_destroy(&attr);
785
786    if (ret != 0) {
787      if (PrintMiscellaneous && (Verbose || WizardMode)) {
788        perror("pthread_create()");
789      }
790      // Need to clean up stuff we've allocated so far
791      thread->set_osthread(NULL);
792      delete osthread;
793      return false;
794    }
795
796    // Store pthread info into the OSThread
797    osthread->set_pthread_id(tid);
798
799    // Wait until child thread is either initialized or aborted
800    {
801      Monitor* sync_with_child = osthread->startThread_lock();
802      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
803      while ((state = osthread->get_state()) == ALLOCATED) {
804        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
805      }
806    }
807
808  }
809
810  // Aborted due to thread limit being reached
811  if (state == ZOMBIE) {
812      thread->set_osthread(NULL);
813      delete osthread;
814      return false;
815  }
816
817  // The thread is returned suspended (in state INITIALIZED),
818  // and is started higher up in the call chain
819  assert(state == INITIALIZED, "race condition");
820  return true;
821}
822
823/////////////////////////////////////////////////////////////////////////////
824// attach existing thread
825
826// bootstrap the main thread
827bool os::create_main_thread(JavaThread* thread) {
828  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
829  return create_attached_thread(thread);
830}
831
832bool os::create_attached_thread(JavaThread* thread) {
833#ifdef ASSERT
834    thread->verify_not_published();
835#endif
836
837  // Allocate the OSThread object
838  OSThread* osthread = new OSThread(NULL, NULL);
839
840  if (osthread == NULL) {
841    return false;
842  }
843
844  // Store pthread info into the OSThread
845#ifdef __APPLE__
846  osthread->set_thread_id(::mach_thread_self());
847#else
848  osthread->set_thread_id(::pthread_self());
849#endif
850  osthread->set_pthread_id(::pthread_self());
851
852  // initialize floating point control register
853  os::Bsd::init_thread_fpu_state();
854
855  // Initial thread state is RUNNABLE
856  osthread->set_state(RUNNABLE);
857
858  thread->set_osthread(osthread);
859
860  // initialize signal mask for this thread
861  // and save the caller's signal mask
862  os::Bsd::hotspot_sigmask(thread);
863
864  return true;
865}
866
867void os::pd_start_thread(Thread* thread) {
868  OSThread * osthread = thread->osthread();
869  assert(osthread->get_state() != INITIALIZED, "just checking");
870  Monitor* sync_with_child = osthread->startThread_lock();
871  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
872  sync_with_child->notify();
873}
874
875// Free Bsd resources related to the OSThread
876void os::free_thread(OSThread* osthread) {
877  assert(osthread != NULL, "osthread not set");
878
879  if (Thread::current()->osthread() == osthread) {
880    // Restore caller's signal mask
881    sigset_t sigmask = osthread->caller_sigmask();
882    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
883   }
884
885  delete osthread;
886}
887
888//////////////////////////////////////////////////////////////////////////////
889// thread local storage
890
891int os::allocate_thread_local_storage() {
892  pthread_key_t key;
893  int rslt = pthread_key_create(&key, NULL);
894  assert(rslt == 0, "cannot allocate thread local storage");
895  return (int)key;
896}
897
898// Note: This is currently not used by VM, as we don't destroy TLS key
899// on VM exit.
900void os::free_thread_local_storage(int index) {
901  int rslt = pthread_key_delete((pthread_key_t)index);
902  assert(rslt == 0, "invalid index");
903}
904
905void os::thread_local_storage_at_put(int index, void* value) {
906  int rslt = pthread_setspecific((pthread_key_t)index, value);
907  assert(rslt == 0, "pthread_setspecific failed");
908}
909
910extern "C" Thread* get_thread() {
911  return ThreadLocalStorage::thread();
912}
913
914
915////////////////////////////////////////////////////////////////////////////////
916// time support
917
918// Time since start-up in seconds to a fine granularity.
919// Used by VMSelfDestructTimer and the MemProfiler.
920double os::elapsedTime() {
921
922  return (double)(os::elapsed_counter()) * 0.000001;
923}
924
925jlong os::elapsed_counter() {
926  timeval time;
927  int status = gettimeofday(&time, NULL);
928  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
929}
930
931jlong os::elapsed_frequency() {
932  return (1000 * 1000);
933}
934
935// XXX: For now, code this as if BSD does not support vtime.
936bool os::supports_vtime() { return false; }
937bool os::enable_vtime()   { return false; }
938bool os::vtime_enabled()  { return false; }
939double os::elapsedVTime() {
940  // better than nothing, but not much
941  return elapsedTime();
942}
943
944jlong os::javaTimeMillis() {
945  timeval time;
946  int status = gettimeofday(&time, NULL);
947  assert(status != -1, "bsd error");
948  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
949}
950
951#ifndef CLOCK_MONOTONIC
952#define CLOCK_MONOTONIC (1)
953#endif
954
955#ifdef __APPLE__
956void os::Bsd::clock_init() {
957        // XXXDARWIN: Investigate replacement monotonic clock
958}
959#else
960void os::Bsd::clock_init() {
961  struct timespec res;
962  struct timespec tp;
963  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
964      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
965    // yes, monotonic clock is supported
966    _clock_gettime = ::clock_gettime;
967  }
968}
969#endif
970
971
972jlong os::javaTimeNanos() {
973  if (Bsd::supports_monotonic_clock()) {
974    struct timespec tp;
975    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
976    assert(status == 0, "gettime error");
977    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
978    return result;
979  } else {
980    timeval time;
981    int status = gettimeofday(&time, NULL);
982    assert(status != -1, "bsd error");
983    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
984    return 1000 * usecs;
985  }
986}
987
988void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
989  if (Bsd::supports_monotonic_clock()) {
990    info_ptr->max_value = ALL_64_BITS;
991
992    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
993    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
994    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
995  } else {
996    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
997    info_ptr->max_value = ALL_64_BITS;
998
999    // gettimeofday is a real time clock so it skips
1000    info_ptr->may_skip_backward = true;
1001    info_ptr->may_skip_forward = true;
1002  }
1003
1004  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1005}
1006
1007// Return the real, user, and system times in seconds from an
1008// arbitrary fixed point in the past.
1009bool os::getTimesSecs(double* process_real_time,
1010                      double* process_user_time,
1011                      double* process_system_time) {
1012  struct tms ticks;
1013  clock_t real_ticks = times(&ticks);
1014
1015  if (real_ticks == (clock_t) (-1)) {
1016    return false;
1017  } else {
1018    double ticks_per_second = (double) clock_tics_per_sec;
1019    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1020    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1021    *process_real_time = ((double) real_ticks) / ticks_per_second;
1022
1023    return true;
1024  }
1025}
1026
1027
1028char * os::local_time_string(char *buf, size_t buflen) {
1029  struct tm t;
1030  time_t long_time;
1031  time(&long_time);
1032  localtime_r(&long_time, &t);
1033  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1034               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1035               t.tm_hour, t.tm_min, t.tm_sec);
1036  return buf;
1037}
1038
1039struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1040  return localtime_r(clock, res);
1041}
1042
1043////////////////////////////////////////////////////////////////////////////////
1044// runtime exit support
1045
1046// Note: os::shutdown() might be called very early during initialization, or
1047// called from signal handler. Before adding something to os::shutdown(), make
1048// sure it is async-safe and can handle partially initialized VM.
1049void os::shutdown() {
1050
1051  // allow PerfMemory to attempt cleanup of any persistent resources
1052  perfMemory_exit();
1053
1054  // needs to remove object in file system
1055  AttachListener::abort();
1056
1057  // flush buffered output, finish log files
1058  ostream_abort();
1059
1060  // Check for abort hook
1061  abort_hook_t abort_hook = Arguments::abort_hook();
1062  if (abort_hook != NULL) {
1063    abort_hook();
1064  }
1065
1066}
1067
1068// Note: os::abort() might be called very early during initialization, or
1069// called from signal handler. Before adding something to os::abort(), make
1070// sure it is async-safe and can handle partially initialized VM.
1071void os::abort(bool dump_core) {
1072  os::shutdown();
1073  if (dump_core) {
1074#ifndef PRODUCT
1075    fdStream out(defaultStream::output_fd());
1076    out.print_raw("Current thread is ");
1077    char buf[16];
1078    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1079    out.print_raw_cr(buf);
1080    out.print_raw_cr("Dumping core ...");
1081#endif
1082    ::abort(); // dump core
1083  }
1084
1085  ::exit(1);
1086}
1087
1088// Die immediately, no exit hook, no abort hook, no cleanup.
1089void os::die() {
1090  // _exit() on BsdThreads only kills current thread
1091  ::abort();
1092}
1093
1094// unused on bsd for now.
1095void os::set_error_file(const char *logfile) {}
1096
1097
1098// This method is a copy of JDK's sysGetLastErrorString
1099// from src/solaris/hpi/src/system_md.c
1100
1101size_t os::lasterror(char *buf, size_t len) {
1102
1103  if (errno == 0)  return 0;
1104
1105  const char *s = ::strerror(errno);
1106  size_t n = ::strlen(s);
1107  if (n >= len) {
1108    n = len - 1;
1109  }
1110  ::strncpy(buf, s, n);
1111  buf[n] = '\0';
1112  return n;
1113}
1114
1115intx os::current_thread_id() {
1116#ifdef __APPLE__
1117  return (intx)::mach_thread_self();
1118#else
1119  return (intx)::pthread_self();
1120#endif
1121}
1122int os::current_process_id() {
1123
1124  // Under the old bsd thread library, bsd gives each thread
1125  // its own process id. Because of this each thread will return
1126  // a different pid if this method were to return the result
1127  // of getpid(2). Bsd provides no api that returns the pid
1128  // of the launcher thread for the vm. This implementation
1129  // returns a unique pid, the pid of the launcher thread
1130  // that starts the vm 'process'.
1131
1132  // Under the NPTL, getpid() returns the same pid as the
1133  // launcher thread rather than a unique pid per thread.
1134  // Use gettid() if you want the old pre NPTL behaviour.
1135
1136  // if you are looking for the result of a call to getpid() that
1137  // returns a unique pid for the calling thread, then look at the
1138  // OSThread::thread_id() method in osThread_bsd.hpp file
1139
1140  return (int)(_initial_pid ? _initial_pid : getpid());
1141}
1142
1143// DLL functions
1144
1145#define JNI_LIB_PREFIX "lib"
1146#ifdef __APPLE__
1147#define JNI_LIB_SUFFIX ".dylib"
1148#else
1149#define JNI_LIB_SUFFIX ".so"
1150#endif
1151
1152const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1153
1154// This must be hard coded because it's the system's temporary
1155// directory not the java application's temp directory, ala java.io.tmpdir.
1156#ifdef __APPLE__
1157// macosx has a secure per-user temporary directory
1158char temp_path_storage[PATH_MAX];
1159const char* os::get_temp_directory() {
1160  static char *temp_path = NULL;
1161  if (temp_path == NULL) {
1162    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1163    if (pathSize == 0 || pathSize > PATH_MAX) {
1164      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1165    }
1166    temp_path = temp_path_storage;
1167  }
1168  return temp_path;
1169}
1170#else /* __APPLE__ */
1171const char* os::get_temp_directory() { return "/tmp"; }
1172#endif /* __APPLE__ */
1173
1174static bool file_exists(const char* filename) {
1175  struct stat statbuf;
1176  if (filename == NULL || strlen(filename) == 0) {
1177    return false;
1178  }
1179  return os::stat(filename, &statbuf) == 0;
1180}
1181
1182bool os::dll_build_name(char* buffer, size_t buflen,
1183                        const char* pname, const char* fname) {
1184  bool retval = false;
1185  // Copied from libhpi
1186  const size_t pnamelen = pname ? strlen(pname) : 0;
1187
1188  // Return error on buffer overflow.
1189  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1190    return retval;
1191  }
1192
1193  if (pnamelen == 0) {
1194    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1195    retval = true;
1196  } else if (strchr(pname, *os::path_separator()) != NULL) {
1197    int n;
1198    char** pelements = split_path(pname, &n);
1199    for (int i = 0 ; i < n ; i++) {
1200      // Really shouldn't be NULL, but check can't hurt
1201      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1202        continue; // skip the empty path values
1203      }
1204      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1205          pelements[i], fname);
1206      if (file_exists(buffer)) {
1207        retval = true;
1208        break;
1209      }
1210    }
1211    // release the storage
1212    for (int i = 0 ; i < n ; i++) {
1213      if (pelements[i] != NULL) {
1214        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1215      }
1216    }
1217    if (pelements != NULL) {
1218      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1219    }
1220  } else {
1221    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1222    retval = true;
1223  }
1224  return retval;
1225}
1226
1227const char* os::get_current_directory(char *buf, int buflen) {
1228  return getcwd(buf, buflen);
1229}
1230
1231// check if addr is inside libjvm[_g].so
1232bool os::address_is_in_vm(address addr) {
1233  static address libjvm_base_addr;
1234  Dl_info dlinfo;
1235
1236  if (libjvm_base_addr == NULL) {
1237    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1238    libjvm_base_addr = (address)dlinfo.dli_fbase;
1239    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1240  }
1241
1242  if (dladdr((void *)addr, &dlinfo)) {
1243    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1244  }
1245
1246  return false;
1247}
1248
1249
1250#define MACH_MAXSYMLEN 256
1251
1252bool os::dll_address_to_function_name(address addr, char *buf,
1253                                      int buflen, int *offset) {
1254  Dl_info dlinfo;
1255  char localbuf[MACH_MAXSYMLEN];
1256
1257  // dladdr will find names of dynamic functions only, but does
1258  // it set dli_fbase with mach_header address when it "fails" ?
1259  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1260    if (buf != NULL) {
1261      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1262        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1263      }
1264    }
1265    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1266    return true;
1267  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1268    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1269       buf, buflen, offset, dlinfo.dli_fname)) {
1270       return true;
1271    }
1272  }
1273
1274  // Handle non-dymanic manually:
1275  if (dlinfo.dli_fbase != NULL &&
1276      Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
1277    if(!Decoder::demangle(localbuf, buf, buflen)) {
1278      jio_snprintf(buf, buflen, "%s", localbuf);
1279    }
1280    return true;
1281  }
1282  if (buf != NULL) buf[0] = '\0';
1283  if (offset != NULL) *offset = -1;
1284  return false;
1285}
1286
1287// ported from solaris version
1288bool os::dll_address_to_library_name(address addr, char* buf,
1289                                     int buflen, int* offset) {
1290  Dl_info dlinfo;
1291
1292  if (dladdr((void*)addr, &dlinfo)){
1293     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1294     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1295     return true;
1296  } else {
1297     if (buf) buf[0] = '\0';
1298     if (offset) *offset = -1;
1299     return false;
1300  }
1301}
1302
1303// Loads .dll/.so and
1304// in case of error it checks if .dll/.so was built for the
1305// same architecture as Hotspot is running on
1306
1307#ifdef __APPLE__
1308void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1309  void * result= ::dlopen(filename, RTLD_LAZY);
1310  if (result != NULL) {
1311    // Successful loading
1312    return result;
1313  }
1314
1315  // Read system error message into ebuf
1316  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1317  ebuf[ebuflen-1]='\0';
1318
1319  return NULL;
1320}
1321#else
1322void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1323{
1324  void * result= ::dlopen(filename, RTLD_LAZY);
1325  if (result != NULL) {
1326    // Successful loading
1327    return result;
1328  }
1329
1330  Elf32_Ehdr elf_head;
1331
1332  // Read system error message into ebuf
1333  // It may or may not be overwritten below
1334  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1335  ebuf[ebuflen-1]='\0';
1336  int diag_msg_max_length=ebuflen-strlen(ebuf);
1337  char* diag_msg_buf=ebuf+strlen(ebuf);
1338
1339  if (diag_msg_max_length==0) {
1340    // No more space in ebuf for additional diagnostics message
1341    return NULL;
1342  }
1343
1344
1345  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1346
1347  if (file_descriptor < 0) {
1348    // Can't open library, report dlerror() message
1349    return NULL;
1350  }
1351
1352  bool failed_to_read_elf_head=
1353    (sizeof(elf_head)!=
1354        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1355
1356  ::close(file_descriptor);
1357  if (failed_to_read_elf_head) {
1358    // file i/o error - report dlerror() msg
1359    return NULL;
1360  }
1361
1362  typedef struct {
1363    Elf32_Half  code;         // Actual value as defined in elf.h
1364    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1365    char        elf_class;    // 32 or 64 bit
1366    char        endianess;    // MSB or LSB
1367    char*       name;         // String representation
1368  } arch_t;
1369
1370  #ifndef EM_486
1371  #define EM_486          6               /* Intel 80486 */
1372  #endif
1373
1374  #ifndef EM_MIPS_RS3_LE
1375  #define EM_MIPS_RS3_LE  10              /* MIPS */
1376  #endif
1377
1378  #ifndef EM_PPC64
1379  #define EM_PPC64        21              /* PowerPC64 */
1380  #endif
1381
1382  #ifndef EM_S390
1383  #define EM_S390         22              /* IBM System/390 */
1384  #endif
1385
1386  #ifndef EM_IA_64
1387  #define EM_IA_64        50              /* HP/Intel IA-64 */
1388  #endif
1389
1390  #ifndef EM_X86_64
1391  #define EM_X86_64       62              /* AMD x86-64 */
1392  #endif
1393
1394  static const arch_t arch_array[]={
1395    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1396    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1397    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1398    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1399    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1400    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1401    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1402    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1403    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1404    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1405    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1406    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1407    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1408    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1409    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1410    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1411  };
1412
1413  #if  (defined IA32)
1414    static  Elf32_Half running_arch_code=EM_386;
1415  #elif   (defined AMD64)
1416    static  Elf32_Half running_arch_code=EM_X86_64;
1417  #elif  (defined IA64)
1418    static  Elf32_Half running_arch_code=EM_IA_64;
1419  #elif  (defined __sparc) && (defined _LP64)
1420    static  Elf32_Half running_arch_code=EM_SPARCV9;
1421  #elif  (defined __sparc) && (!defined _LP64)
1422    static  Elf32_Half running_arch_code=EM_SPARC;
1423  #elif  (defined __powerpc64__)
1424    static  Elf32_Half running_arch_code=EM_PPC64;
1425  #elif  (defined __powerpc__)
1426    static  Elf32_Half running_arch_code=EM_PPC;
1427  #elif  (defined ARM)
1428    static  Elf32_Half running_arch_code=EM_ARM;
1429  #elif  (defined S390)
1430    static  Elf32_Half running_arch_code=EM_S390;
1431  #elif  (defined ALPHA)
1432    static  Elf32_Half running_arch_code=EM_ALPHA;
1433  #elif  (defined MIPSEL)
1434    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1435  #elif  (defined PARISC)
1436    static  Elf32_Half running_arch_code=EM_PARISC;
1437  #elif  (defined MIPS)
1438    static  Elf32_Half running_arch_code=EM_MIPS;
1439  #elif  (defined M68K)
1440    static  Elf32_Half running_arch_code=EM_68K;
1441  #else
1442    #error Method os::dll_load requires that one of following is defined:\
1443         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1444  #endif
1445
1446  // Identify compatability class for VM's architecture and library's architecture
1447  // Obtain string descriptions for architectures
1448
1449  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1450  int running_arch_index=-1;
1451
1452  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1453    if (running_arch_code == arch_array[i].code) {
1454      running_arch_index    = i;
1455    }
1456    if (lib_arch.code == arch_array[i].code) {
1457      lib_arch.compat_class = arch_array[i].compat_class;
1458      lib_arch.name         = arch_array[i].name;
1459    }
1460  }
1461
1462  assert(running_arch_index != -1,
1463    "Didn't find running architecture code (running_arch_code) in arch_array");
1464  if (running_arch_index == -1) {
1465    // Even though running architecture detection failed
1466    // we may still continue with reporting dlerror() message
1467    return NULL;
1468  }
1469
1470  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1471    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1472    return NULL;
1473  }
1474
1475#ifndef S390
1476  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1477    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1478    return NULL;
1479  }
1480#endif // !S390
1481
1482  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1483    if ( lib_arch.name!=NULL ) {
1484      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1485        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1486        lib_arch.name, arch_array[running_arch_index].name);
1487    } else {
1488      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1489      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1490        lib_arch.code,
1491        arch_array[running_arch_index].name);
1492    }
1493  }
1494
1495  return NULL;
1496}
1497#endif /* !__APPLE__ */
1498
1499// XXX: Do we need a lock around this as per Linux?
1500void* os::dll_lookup(void* handle, const char* name) {
1501  return dlsym(handle, name);
1502}
1503
1504
1505static bool _print_ascii_file(const char* filename, outputStream* st) {
1506  int fd = ::open(filename, O_RDONLY);
1507  if (fd == -1) {
1508     return false;
1509  }
1510
1511  char buf[32];
1512  int bytes;
1513  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1514    st->print_raw(buf, bytes);
1515  }
1516
1517  ::close(fd);
1518
1519  return true;
1520}
1521
1522void os::print_dll_info(outputStream *st) {
1523   st->print_cr("Dynamic libraries:");
1524#ifdef RTLD_DI_LINKMAP
1525    Dl_info dli;
1526    void *handle;
1527    Link_map *map;
1528    Link_map *p;
1529
1530    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
1531        st->print_cr("Error: Cannot print dynamic libraries.");
1532        return;
1533    }
1534    handle = dlopen(dli.dli_fname, RTLD_LAZY);
1535    if (handle == NULL) {
1536        st->print_cr("Error: Cannot print dynamic libraries.");
1537        return;
1538    }
1539    dlinfo(handle, RTLD_DI_LINKMAP, &map);
1540    if (map == NULL) {
1541        st->print_cr("Error: Cannot print dynamic libraries.");
1542        return;
1543    }
1544
1545    while (map->l_prev != NULL)
1546        map = map->l_prev;
1547
1548    while (map != NULL) {
1549        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1550        map = map->l_next;
1551    }
1552
1553    dlclose(handle);
1554#elif defined(__APPLE__)
1555    uint32_t count;
1556    uint32_t i;
1557
1558    count = _dyld_image_count();
1559    for (i = 1; i < count; i++) {
1560        const char *name = _dyld_get_image_name(i);
1561        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1562        st->print_cr(PTR_FORMAT " \t%s", slide, name);
1563    }
1564#else
1565   st->print_cr("Error: Cannot print dynamic libraries.");
1566#endif
1567}
1568
1569void os::print_os_info_brief(outputStream* st) {
1570  st->print("Bsd");
1571
1572  os::Posix::print_uname_info(st);
1573}
1574
1575void os::print_os_info(outputStream* st) {
1576  st->print("OS:");
1577  st->print("Bsd");
1578
1579  os::Posix::print_uname_info(st);
1580
1581  os::Posix::print_rlimit_info(st);
1582
1583  os::Posix::print_load_average(st);
1584}
1585
1586void os::pd_print_cpu_info(outputStream* st) {
1587  // Nothing to do for now.
1588}
1589
1590void os::print_memory_info(outputStream* st) {
1591
1592  st->print("Memory:");
1593  st->print(" %dk page", os::vm_page_size()>>10);
1594
1595  st->print(", physical " UINT64_FORMAT "k",
1596            os::physical_memory() >> 10);
1597  st->print("(" UINT64_FORMAT "k free)",
1598            os::available_memory() >> 10);
1599  st->cr();
1600
1601  // meminfo
1602  st->print("\n/proc/meminfo:\n");
1603  _print_ascii_file("/proc/meminfo", st);
1604  st->cr();
1605}
1606
1607// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1608// but they're the same for all the bsd arch that we support
1609// and they're the same for solaris but there's no common place to put this.
1610const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1611                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1612                          "ILL_COPROC", "ILL_BADSTK" };
1613
1614const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1615                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1616                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1617
1618const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1619
1620const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1621
1622void os::print_siginfo(outputStream* st, void* siginfo) {
1623  st->print("siginfo:");
1624
1625  const int buflen = 100;
1626  char buf[buflen];
1627  siginfo_t *si = (siginfo_t*)siginfo;
1628  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1629  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1630    st->print("si_errno=%s", buf);
1631  } else {
1632    st->print("si_errno=%d", si->si_errno);
1633  }
1634  const int c = si->si_code;
1635  assert(c > 0, "unexpected si_code");
1636  switch (si->si_signo) {
1637  case SIGILL:
1638    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1639    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1640    break;
1641  case SIGFPE:
1642    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1643    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1644    break;
1645  case SIGSEGV:
1646    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
1647    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1648    break;
1649  case SIGBUS:
1650    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
1651    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1652    break;
1653  default:
1654    st->print(", si_code=%d", si->si_code);
1655    // no si_addr
1656  }
1657
1658  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1659      UseSharedSpaces) {
1660    FileMapInfo* mapinfo = FileMapInfo::current_info();
1661    if (mapinfo->is_in_shared_space(si->si_addr)) {
1662      st->print("\n\nError accessing class data sharing archive."   \
1663                " Mapped file inaccessible during execution, "      \
1664                " possible disk/network problem.");
1665    }
1666  }
1667  st->cr();
1668}
1669
1670
1671static void print_signal_handler(outputStream* st, int sig,
1672                                 char* buf, size_t buflen);
1673
1674void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1675  st->print_cr("Signal Handlers:");
1676  print_signal_handler(st, SIGSEGV, buf, buflen);
1677  print_signal_handler(st, SIGBUS , buf, buflen);
1678  print_signal_handler(st, SIGFPE , buf, buflen);
1679  print_signal_handler(st, SIGPIPE, buf, buflen);
1680  print_signal_handler(st, SIGXFSZ, buf, buflen);
1681  print_signal_handler(st, SIGILL , buf, buflen);
1682  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1683  print_signal_handler(st, SR_signum, buf, buflen);
1684  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1685  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1686  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1687  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1688}
1689
1690static char saved_jvm_path[MAXPATHLEN] = {0};
1691
1692// Find the full path to the current module, libjvm or libjvm_g
1693void os::jvm_path(char *buf, jint buflen) {
1694  // Error checking.
1695  if (buflen < MAXPATHLEN) {
1696    assert(false, "must use a large-enough buffer");
1697    buf[0] = '\0';
1698    return;
1699  }
1700  // Lazy resolve the path to current module.
1701  if (saved_jvm_path[0] != 0) {
1702    strcpy(buf, saved_jvm_path);
1703    return;
1704  }
1705
1706  char dli_fname[MAXPATHLEN];
1707  bool ret = dll_address_to_library_name(
1708                CAST_FROM_FN_PTR(address, os::jvm_path),
1709                dli_fname, sizeof(dli_fname), NULL);
1710  assert(ret != 0, "cannot locate libjvm");
1711  char *rp = realpath(dli_fname, buf);
1712  if (rp == NULL)
1713    return;
1714
1715  if (Arguments::created_by_gamma_launcher()) {
1716    // Support for the gamma launcher.  Typical value for buf is
1717    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1718    // the right place in the string, then assume we are installed in a JDK and
1719    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1720    // construct a path to the JVM being overridden.
1721
1722    const char *p = buf + strlen(buf) - 1;
1723    for (int count = 0; p > buf && count < 5; ++count) {
1724      for (--p; p > buf && *p != '/'; --p)
1725        /* empty */ ;
1726    }
1727
1728    if (strncmp(p, "/jre/lib/", 9) != 0) {
1729      // Look for JAVA_HOME in the environment.
1730      char* java_home_var = ::getenv("JAVA_HOME");
1731      if (java_home_var != NULL && java_home_var[0] != 0) {
1732        char* jrelib_p;
1733        int len;
1734
1735        // Check the current module name "libjvm" or "libjvm_g".
1736        p = strrchr(buf, '/');
1737        assert(strstr(p, "/libjvm") == p, "invalid library name");
1738        p = strstr(p, "_g") ? "_g" : "";
1739
1740        rp = realpath(java_home_var, buf);
1741        if (rp == NULL)
1742          return;
1743
1744        // determine if this is a legacy image or modules image
1745        // modules image doesn't have "jre" subdirectory
1746        len = strlen(buf);
1747        jrelib_p = buf + len;
1748
1749        // Add the appropriate library subdir
1750        snprintf(jrelib_p, buflen-len, "/jre/lib");
1751        if (0 != access(buf, F_OK)) {
1752          snprintf(jrelib_p, buflen-len, "/lib");
1753        }
1754
1755        // Add the appropriate client or server subdir
1756        len = strlen(buf);
1757        jrelib_p = buf + len;
1758        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1759        if (0 != access(buf, F_OK)) {
1760          snprintf(jrelib_p, buflen-len, "");
1761        }
1762
1763        // If the path exists within JAVA_HOME, add the JVM library name
1764        // to complete the path to JVM being overridden.  Otherwise fallback
1765        // to the path to the current library.
1766        if (0 == access(buf, F_OK)) {
1767          // Use current module name "libjvm[_g]" instead of
1768          // "libjvm"debug_only("_g")"" since for fastdebug version
1769          // we should have "libjvm" but debug_only("_g") adds "_g"!
1770          len = strlen(buf);
1771          snprintf(buf + len, buflen-len, "/libjvm%s%s", p, JNI_LIB_SUFFIX);
1772        } else {
1773          // Fall back to path of current library
1774          rp = realpath(dli_fname, buf);
1775          if (rp == NULL)
1776            return;
1777        }
1778      }
1779    }
1780  }
1781
1782  strcpy(saved_jvm_path, buf);
1783}
1784
1785void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1786  // no prefix required, not even "_"
1787}
1788
1789void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1790  // no suffix required
1791}
1792
1793////////////////////////////////////////////////////////////////////////////////
1794// sun.misc.Signal support
1795
1796static volatile jint sigint_count = 0;
1797
1798static void
1799UserHandler(int sig, void *siginfo, void *context) {
1800  // 4511530 - sem_post is serialized and handled by the manager thread. When
1801  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1802  // don't want to flood the manager thread with sem_post requests.
1803  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1804      return;
1805
1806  // Ctrl-C is pressed during error reporting, likely because the error
1807  // handler fails to abort. Let VM die immediately.
1808  if (sig == SIGINT && is_error_reported()) {
1809     os::die();
1810  }
1811
1812  os::signal_notify(sig);
1813}
1814
1815void* os::user_handler() {
1816  return CAST_FROM_FN_PTR(void*, UserHandler);
1817}
1818
1819extern "C" {
1820  typedef void (*sa_handler_t)(int);
1821  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1822}
1823
1824void* os::signal(int signal_number, void* handler) {
1825  struct sigaction sigAct, oldSigAct;
1826
1827  sigfillset(&(sigAct.sa_mask));
1828  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1829  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1830
1831  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1832    // -1 means registration failed
1833    return (void *)-1;
1834  }
1835
1836  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1837}
1838
1839void os::signal_raise(int signal_number) {
1840  ::raise(signal_number);
1841}
1842
1843/*
1844 * The following code is moved from os.cpp for making this
1845 * code platform specific, which it is by its very nature.
1846 */
1847
1848// Will be modified when max signal is changed to be dynamic
1849int os::sigexitnum_pd() {
1850  return NSIG;
1851}
1852
1853// a counter for each possible signal value
1854static volatile jint pending_signals[NSIG+1] = { 0 };
1855
1856// Bsd(POSIX) specific hand shaking semaphore.
1857#ifdef __APPLE__
1858static semaphore_t sig_sem;
1859#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1860#define SEM_WAIT(sem)           semaphore_wait(sem);
1861#define SEM_POST(sem)           semaphore_signal(sem);
1862#else
1863static sem_t sig_sem;
1864#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1865#define SEM_WAIT(sem)           sem_wait(&sem);
1866#define SEM_POST(sem)           sem_post(&sem);
1867#endif
1868
1869void os::signal_init_pd() {
1870  // Initialize signal structures
1871  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1872
1873  // Initialize signal semaphore
1874  ::SEM_INIT(sig_sem, 0);
1875}
1876
1877void os::signal_notify(int sig) {
1878  Atomic::inc(&pending_signals[sig]);
1879  ::SEM_POST(sig_sem);
1880}
1881
1882static int check_pending_signals(bool wait) {
1883  Atomic::store(0, &sigint_count);
1884  for (;;) {
1885    for (int i = 0; i < NSIG + 1; i++) {
1886      jint n = pending_signals[i];
1887      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1888        return i;
1889      }
1890    }
1891    if (!wait) {
1892      return -1;
1893    }
1894    JavaThread *thread = JavaThread::current();
1895    ThreadBlockInVM tbivm(thread);
1896
1897    bool threadIsSuspended;
1898    do {
1899      thread->set_suspend_equivalent();
1900      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1901      ::SEM_WAIT(sig_sem);
1902
1903      // were we externally suspended while we were waiting?
1904      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1905      if (threadIsSuspended) {
1906        //
1907        // The semaphore has been incremented, but while we were waiting
1908        // another thread suspended us. We don't want to continue running
1909        // while suspended because that would surprise the thread that
1910        // suspended us.
1911        //
1912        ::SEM_POST(sig_sem);
1913
1914        thread->java_suspend_self();
1915      }
1916    } while (threadIsSuspended);
1917  }
1918}
1919
1920int os::signal_lookup() {
1921  return check_pending_signals(false);
1922}
1923
1924int os::signal_wait() {
1925  return check_pending_signals(true);
1926}
1927
1928////////////////////////////////////////////////////////////////////////////////
1929// Virtual Memory
1930
1931int os::vm_page_size() {
1932  // Seems redundant as all get out
1933  assert(os::Bsd::page_size() != -1, "must call os::init");
1934  return os::Bsd::page_size();
1935}
1936
1937// Solaris allocates memory by pages.
1938int os::vm_allocation_granularity() {
1939  assert(os::Bsd::page_size() != -1, "must call os::init");
1940  return os::Bsd::page_size();
1941}
1942
1943// Rationale behind this function:
1944//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
1945//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
1946//  samples for JITted code. Here we create private executable mapping over the code cache
1947//  and then we can use standard (well, almost, as mapping can change) way to provide
1948//  info for the reporting script by storing timestamp and location of symbol
1949void bsd_wrap_code(char* base, size_t size) {
1950  static volatile jint cnt = 0;
1951
1952  if (!UseOprofile) {
1953    return;
1954  }
1955
1956  char buf[PATH_MAX + 1];
1957  int num = Atomic::add(1, &cnt);
1958
1959  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
1960           os::get_temp_directory(), os::current_process_id(), num);
1961  unlink(buf);
1962
1963  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
1964
1965  if (fd != -1) {
1966    off_t rv = ::lseek(fd, size-2, SEEK_SET);
1967    if (rv != (off_t)-1) {
1968      if (::write(fd, "", 1) == 1) {
1969        mmap(base, size,
1970             PROT_READ|PROT_WRITE|PROT_EXEC,
1971             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
1972      }
1973    }
1974    ::close(fd);
1975    unlink(buf);
1976  }
1977}
1978
1979// NOTE: Bsd kernel does not really reserve the pages for us.
1980//       All it does is to check if there are enough free pages
1981//       left at the time of mmap(). This could be a potential
1982//       problem.
1983bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
1984  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
1985#ifdef __OpenBSD__
1986  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
1987  return ::mprotect(addr, size, prot) == 0;
1988#else
1989  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
1990                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
1991  return res != (uintptr_t) MAP_FAILED;
1992#endif
1993}
1994
1995
1996bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
1997                       bool exec) {
1998  return commit_memory(addr, size, exec);
1999}
2000
2001void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2002}
2003
2004void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2005  ::madvise(addr, bytes, MADV_DONTNEED);
2006}
2007
2008void os::numa_make_global(char *addr, size_t bytes) {
2009}
2010
2011void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2012}
2013
2014bool os::numa_topology_changed()   { return false; }
2015
2016size_t os::numa_get_groups_num() {
2017  return 1;
2018}
2019
2020int os::numa_get_group_id() {
2021  return 0;
2022}
2023
2024size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2025  if (size > 0) {
2026    ids[0] = 0;
2027    return 1;
2028  }
2029  return 0;
2030}
2031
2032bool os::get_page_info(char *start, page_info* info) {
2033  return false;
2034}
2035
2036char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2037  return end;
2038}
2039
2040
2041bool os::pd_uncommit_memory(char* addr, size_t size) {
2042#ifdef __OpenBSD__
2043  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2044  return ::mprotect(addr, size, PROT_NONE) == 0;
2045#else
2046  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2047                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2048  return res  != (uintptr_t) MAP_FAILED;
2049#endif
2050}
2051
2052bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2053  return os::commit_memory(addr, size);
2054}
2055
2056// If this is a growable mapping, remove the guard pages entirely by
2057// munmap()ping them.  If not, just call uncommit_memory().
2058bool os::remove_stack_guard_pages(char* addr, size_t size) {
2059  return os::uncommit_memory(addr, size);
2060}
2061
2062static address _highest_vm_reserved_address = NULL;
2063
2064// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2065// at 'requested_addr'. If there are existing memory mappings at the same
2066// location, however, they will be overwritten. If 'fixed' is false,
2067// 'requested_addr' is only treated as a hint, the return value may or
2068// may not start from the requested address. Unlike Bsd mmap(), this
2069// function returns NULL to indicate failure.
2070static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2071  char * addr;
2072  int flags;
2073
2074  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2075  if (fixed) {
2076    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2077    flags |= MAP_FIXED;
2078  }
2079
2080  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2081  // to PROT_EXEC if executable when we commit the page.
2082  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2083                       flags, -1, 0);
2084
2085  if (addr != MAP_FAILED) {
2086    // anon_mmap() should only get called during VM initialization,
2087    // don't need lock (actually we can skip locking even it can be called
2088    // from multiple threads, because _highest_vm_reserved_address is just a
2089    // hint about the upper limit of non-stack memory regions.)
2090    if ((address)addr + bytes > _highest_vm_reserved_address) {
2091      _highest_vm_reserved_address = (address)addr + bytes;
2092    }
2093  }
2094
2095  return addr == MAP_FAILED ? NULL : addr;
2096}
2097
2098// Don't update _highest_vm_reserved_address, because there might be memory
2099// regions above addr + size. If so, releasing a memory region only creates
2100// a hole in the address space, it doesn't help prevent heap-stack collision.
2101//
2102static int anon_munmap(char * addr, size_t size) {
2103  return ::munmap(addr, size) == 0;
2104}
2105
2106char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2107                         size_t alignment_hint) {
2108  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2109}
2110
2111bool os::pd_release_memory(char* addr, size_t size) {
2112  return anon_munmap(addr, size);
2113}
2114
2115static address highest_vm_reserved_address() {
2116  return _highest_vm_reserved_address;
2117}
2118
2119static bool bsd_mprotect(char* addr, size_t size, int prot) {
2120  // Bsd wants the mprotect address argument to be page aligned.
2121  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2122
2123  // According to SUSv3, mprotect() should only be used with mappings
2124  // established by mmap(), and mmap() always maps whole pages. Unaligned
2125  // 'addr' likely indicates problem in the VM (e.g. trying to change
2126  // protection of malloc'ed or statically allocated memory). Check the
2127  // caller if you hit this assert.
2128  assert(addr == bottom, "sanity check");
2129
2130  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2131  return ::mprotect(bottom, size, prot) == 0;
2132}
2133
2134// Set protections specified
2135bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2136                        bool is_committed) {
2137  unsigned int p = 0;
2138  switch (prot) {
2139  case MEM_PROT_NONE: p = PROT_NONE; break;
2140  case MEM_PROT_READ: p = PROT_READ; break;
2141  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2142  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2143  default:
2144    ShouldNotReachHere();
2145  }
2146  // is_committed is unused.
2147  return bsd_mprotect(addr, bytes, p);
2148}
2149
2150bool os::guard_memory(char* addr, size_t size) {
2151  return bsd_mprotect(addr, size, PROT_NONE);
2152}
2153
2154bool os::unguard_memory(char* addr, size_t size) {
2155  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2156}
2157
2158bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2159  return false;
2160}
2161
2162/*
2163* Set the coredump_filter bits to include largepages in core dump (bit 6)
2164*
2165* From the coredump_filter documentation:
2166*
2167* - (bit 0) anonymous private memory
2168* - (bit 1) anonymous shared memory
2169* - (bit 2) file-backed private memory
2170* - (bit 3) file-backed shared memory
2171* - (bit 4) ELF header pages in file-backed private memory areas (it is
2172*           effective only if the bit 2 is cleared)
2173* - (bit 5) hugetlb private memory
2174* - (bit 6) hugetlb shared memory
2175*/
2176static void set_coredump_filter(void) {
2177  FILE *f;
2178  long cdm;
2179
2180  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2181    return;
2182  }
2183
2184  if (fscanf(f, "%lx", &cdm) != 1) {
2185    fclose(f);
2186    return;
2187  }
2188
2189  rewind(f);
2190
2191  if ((cdm & LARGEPAGES_BIT) == 0) {
2192    cdm |= LARGEPAGES_BIT;
2193    fprintf(f, "%#lx", cdm);
2194  }
2195
2196  fclose(f);
2197}
2198
2199// Large page support
2200
2201static size_t _large_page_size = 0;
2202
2203void os::large_page_init() {
2204}
2205
2206
2207char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
2208  // "exec" is passed in but not used.  Creating the shared image for
2209  // the code cache doesn't have an SHM_X executable permission to check.
2210  assert(UseLargePages && UseSHM, "only for SHM large pages");
2211
2212  key_t key = IPC_PRIVATE;
2213  char *addr;
2214
2215  bool warn_on_failure = UseLargePages &&
2216                        (!FLAG_IS_DEFAULT(UseLargePages) ||
2217                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2218                        );
2219  char msg[128];
2220
2221  // Create a large shared memory region to attach to based on size.
2222  // Currently, size is the total size of the heap
2223  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2224  if (shmid == -1) {
2225     // Possible reasons for shmget failure:
2226     // 1. shmmax is too small for Java heap.
2227     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2228     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2229     // 2. not enough large page memory.
2230     //    > check available large pages: cat /proc/meminfo
2231     //    > increase amount of large pages:
2232     //          echo new_value > /proc/sys/vm/nr_hugepages
2233     //      Note 1: different Bsd may use different name for this property,
2234     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2235     //      Note 2: it's possible there's enough physical memory available but
2236     //            they are so fragmented after a long run that they can't
2237     //            coalesce into large pages. Try to reserve large pages when
2238     //            the system is still "fresh".
2239     if (warn_on_failure) {
2240       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2241       warning(msg);
2242     }
2243     return NULL;
2244  }
2245
2246  // attach to the region
2247  addr = (char*)shmat(shmid, req_addr, 0);
2248  int err = errno;
2249
2250  // Remove shmid. If shmat() is successful, the actual shared memory segment
2251  // will be deleted when it's detached by shmdt() or when the process
2252  // terminates. If shmat() is not successful this will remove the shared
2253  // segment immediately.
2254  shmctl(shmid, IPC_RMID, NULL);
2255
2256  if ((intptr_t)addr == -1) {
2257     if (warn_on_failure) {
2258       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2259       warning(msg);
2260     }
2261     return NULL;
2262  }
2263
2264  return addr;
2265}
2266
2267bool os::release_memory_special(char* base, size_t bytes) {
2268  // detaching the SHM segment will also delete it, see reserve_memory_special()
2269  int rslt = shmdt(base);
2270  return rslt == 0;
2271}
2272
2273size_t os::large_page_size() {
2274  return _large_page_size;
2275}
2276
2277// HugeTLBFS allows application to commit large page memory on demand;
2278// with SysV SHM the entire memory region must be allocated as shared
2279// memory.
2280bool os::can_commit_large_page_memory() {
2281  return UseHugeTLBFS;
2282}
2283
2284bool os::can_execute_large_page_memory() {
2285  return UseHugeTLBFS;
2286}
2287
2288// Reserve memory at an arbitrary address, only if that area is
2289// available (and not reserved for something else).
2290
2291char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2292  const int max_tries = 10;
2293  char* base[max_tries];
2294  size_t size[max_tries];
2295  const size_t gap = 0x000000;
2296
2297  // Assert only that the size is a multiple of the page size, since
2298  // that's all that mmap requires, and since that's all we really know
2299  // about at this low abstraction level.  If we need higher alignment,
2300  // we can either pass an alignment to this method or verify alignment
2301  // in one of the methods further up the call chain.  See bug 5044738.
2302  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2303
2304  // Repeatedly allocate blocks until the block is allocated at the
2305  // right spot. Give up after max_tries. Note that reserve_memory() will
2306  // automatically update _highest_vm_reserved_address if the call is
2307  // successful. The variable tracks the highest memory address every reserved
2308  // by JVM. It is used to detect heap-stack collision if running with
2309  // fixed-stack BsdThreads. Because here we may attempt to reserve more
2310  // space than needed, it could confuse the collision detecting code. To
2311  // solve the problem, save current _highest_vm_reserved_address and
2312  // calculate the correct value before return.
2313  address old_highest = _highest_vm_reserved_address;
2314
2315  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2316  // if kernel honors the hint then we can return immediately.
2317  char * addr = anon_mmap(requested_addr, bytes, false);
2318  if (addr == requested_addr) {
2319     return requested_addr;
2320  }
2321
2322  if (addr != NULL) {
2323     // mmap() is successful but it fails to reserve at the requested address
2324     anon_munmap(addr, bytes);
2325  }
2326
2327  int i;
2328  for (i = 0; i < max_tries; ++i) {
2329    base[i] = reserve_memory(bytes);
2330
2331    if (base[i] != NULL) {
2332      // Is this the block we wanted?
2333      if (base[i] == requested_addr) {
2334        size[i] = bytes;
2335        break;
2336      }
2337
2338      // Does this overlap the block we wanted? Give back the overlapped
2339      // parts and try again.
2340
2341      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2342      if (top_overlap >= 0 && top_overlap < bytes) {
2343        unmap_memory(base[i], top_overlap);
2344        base[i] += top_overlap;
2345        size[i] = bytes - top_overlap;
2346      } else {
2347        size_t bottom_overlap = base[i] + bytes - requested_addr;
2348        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2349          unmap_memory(requested_addr, bottom_overlap);
2350          size[i] = bytes - bottom_overlap;
2351        } else {
2352          size[i] = bytes;
2353        }
2354      }
2355    }
2356  }
2357
2358  // Give back the unused reserved pieces.
2359
2360  for (int j = 0; j < i; ++j) {
2361    if (base[j] != NULL) {
2362      unmap_memory(base[j], size[j]);
2363    }
2364  }
2365
2366  if (i < max_tries) {
2367    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2368    return requested_addr;
2369  } else {
2370    _highest_vm_reserved_address = old_highest;
2371    return NULL;
2372  }
2373}
2374
2375size_t os::read(int fd, void *buf, unsigned int nBytes) {
2376  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2377}
2378
2379// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2380// Solaris uses poll(), bsd uses park().
2381// Poll() is likely a better choice, assuming that Thread.interrupt()
2382// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2383// SIGSEGV, see 4355769.
2384
2385int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2386  assert(thread == Thread::current(),  "thread consistency check");
2387
2388  ParkEvent * const slp = thread->_SleepEvent ;
2389  slp->reset() ;
2390  OrderAccess::fence() ;
2391
2392  if (interruptible) {
2393    jlong prevtime = javaTimeNanos();
2394
2395    for (;;) {
2396      if (os::is_interrupted(thread, true)) {
2397        return OS_INTRPT;
2398      }
2399
2400      jlong newtime = javaTimeNanos();
2401
2402      if (newtime - prevtime < 0) {
2403        // time moving backwards, should only happen if no monotonic clock
2404        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2405        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2406      } else {
2407        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2408      }
2409
2410      if(millis <= 0) {
2411        return OS_OK;
2412      }
2413
2414      prevtime = newtime;
2415
2416      {
2417        assert(thread->is_Java_thread(), "sanity check");
2418        JavaThread *jt = (JavaThread *) thread;
2419        ThreadBlockInVM tbivm(jt);
2420        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2421
2422        jt->set_suspend_equivalent();
2423        // cleared by handle_special_suspend_equivalent_condition() or
2424        // java_suspend_self() via check_and_wait_while_suspended()
2425
2426        slp->park(millis);
2427
2428        // were we externally suspended while we were waiting?
2429        jt->check_and_wait_while_suspended();
2430      }
2431    }
2432  } else {
2433    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2434    jlong prevtime = javaTimeNanos();
2435
2436    for (;;) {
2437      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2438      // the 1st iteration ...
2439      jlong newtime = javaTimeNanos();
2440
2441      if (newtime - prevtime < 0) {
2442        // time moving backwards, should only happen if no monotonic clock
2443        // not a guarantee() because JVM should not abort on kernel/glibc bugs
2444        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2445      } else {
2446        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2447      }
2448
2449      if(millis <= 0) break ;
2450
2451      prevtime = newtime;
2452      slp->park(millis);
2453    }
2454    return OS_OK ;
2455  }
2456}
2457
2458int os::naked_sleep() {
2459  // %% make the sleep time an integer flag. for now use 1 millisec.
2460  return os::sleep(Thread::current(), 1, false);
2461}
2462
2463// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2464void os::infinite_sleep() {
2465  while (true) {    // sleep forever ...
2466    ::sleep(100);   // ... 100 seconds at a time
2467  }
2468}
2469
2470// Used to convert frequent JVM_Yield() to nops
2471bool os::dont_yield() {
2472  return DontYieldALot;
2473}
2474
2475void os::yield() {
2476  sched_yield();
2477}
2478
2479os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2480
2481void os::yield_all(int attempts) {
2482  // Yields to all threads, including threads with lower priorities
2483  // Threads on Bsd are all with same priority. The Solaris style
2484  // os::yield_all() with nanosleep(1ms) is not necessary.
2485  sched_yield();
2486}
2487
2488// Called from the tight loops to possibly influence time-sharing heuristics
2489void os::loop_breaker(int attempts) {
2490  os::yield_all(attempts);
2491}
2492
2493////////////////////////////////////////////////////////////////////////////////
2494// thread priority support
2495
2496// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2497// only supports dynamic priority, static priority must be zero. For real-time
2498// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2499// However, for large multi-threaded applications, SCHED_RR is not only slower
2500// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2501// of 5 runs - Sep 2005).
2502//
2503// The following code actually changes the niceness of kernel-thread/LWP. It
2504// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2505// not the entire user process, and user level threads are 1:1 mapped to kernel
2506// threads. It has always been the case, but could change in the future. For
2507// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2508// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2509
2510#if !defined(__APPLE__)
2511int os::java_to_os_priority[CriticalPriority + 1] = {
2512  19,              // 0 Entry should never be used
2513
2514   0,              // 1 MinPriority
2515   3,              // 2
2516   6,              // 3
2517
2518  10,              // 4
2519  15,              // 5 NormPriority
2520  18,              // 6
2521
2522  21,              // 7
2523  25,              // 8
2524  28,              // 9 NearMaxPriority
2525
2526  31,              // 10 MaxPriority
2527
2528  31               // 11 CriticalPriority
2529};
2530#else
2531/* Using Mach high-level priority assignments */
2532int os::java_to_os_priority[CriticalPriority + 1] = {
2533   0,              // 0 Entry should never be used (MINPRI_USER)
2534
2535  27,              // 1 MinPriority
2536  28,              // 2
2537  29,              // 3
2538
2539  30,              // 4
2540  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2541  32,              // 6
2542
2543  33,              // 7
2544  34,              // 8
2545  35,              // 9 NearMaxPriority
2546
2547  36,              // 10 MaxPriority
2548
2549  36               // 11 CriticalPriority
2550};
2551#endif
2552
2553static int prio_init() {
2554  if (ThreadPriorityPolicy == 1) {
2555    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2556    // if effective uid is not root. Perhaps, a more elegant way of doing
2557    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2558    if (geteuid() != 0) {
2559      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2560        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2561      }
2562      ThreadPriorityPolicy = 0;
2563    }
2564  }
2565  if (UseCriticalJavaThreadPriority) {
2566    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2567  }
2568  return 0;
2569}
2570
2571OSReturn os::set_native_priority(Thread* thread, int newpri) {
2572  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2573
2574#ifdef __OpenBSD__
2575  // OpenBSD pthread_setprio starves low priority threads
2576  return OS_OK;
2577#elif defined(__FreeBSD__)
2578  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2579#elif defined(__APPLE__) || defined(__NetBSD__)
2580  struct sched_param sp;
2581  int policy;
2582  pthread_t self = pthread_self();
2583
2584  if (pthread_getschedparam(self, &policy, &sp) != 0)
2585    return OS_ERR;
2586
2587  sp.sched_priority = newpri;
2588  if (pthread_setschedparam(self, policy, &sp) != 0)
2589    return OS_ERR;
2590
2591  return OS_OK;
2592#else
2593  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2594  return (ret == 0) ? OS_OK : OS_ERR;
2595#endif
2596}
2597
2598OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2599  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2600    *priority_ptr = java_to_os_priority[NormPriority];
2601    return OS_OK;
2602  }
2603
2604  errno = 0;
2605#if defined(__OpenBSD__) || defined(__FreeBSD__)
2606  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2607#elif defined(__APPLE__) || defined(__NetBSD__)
2608  int policy;
2609  struct sched_param sp;
2610
2611  pthread_getschedparam(pthread_self(), &policy, &sp);
2612  *priority_ptr = sp.sched_priority;
2613#else
2614  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2615#endif
2616  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2617}
2618
2619// Hint to the underlying OS that a task switch would not be good.
2620// Void return because it's a hint and can fail.
2621void os::hint_no_preempt() {}
2622
2623////////////////////////////////////////////////////////////////////////////////
2624// suspend/resume support
2625
2626//  the low-level signal-based suspend/resume support is a remnant from the
2627//  old VM-suspension that used to be for java-suspension, safepoints etc,
2628//  within hotspot. Now there is a single use-case for this:
2629//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2630//      that runs in the watcher thread.
2631//  The remaining code is greatly simplified from the more general suspension
2632//  code that used to be used.
2633//
2634//  The protocol is quite simple:
2635//  - suspend:
2636//      - sends a signal to the target thread
2637//      - polls the suspend state of the osthread using a yield loop
2638//      - target thread signal handler (SR_handler) sets suspend state
2639//        and blocks in sigsuspend until continued
2640//  - resume:
2641//      - sets target osthread state to continue
2642//      - sends signal to end the sigsuspend loop in the SR_handler
2643//
2644//  Note that the SR_lock plays no role in this suspend/resume protocol.
2645//
2646
2647static void resume_clear_context(OSThread *osthread) {
2648  osthread->set_ucontext(NULL);
2649  osthread->set_siginfo(NULL);
2650
2651  // notify the suspend action is completed, we have now resumed
2652  osthread->sr.clear_suspended();
2653}
2654
2655static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2656  osthread->set_ucontext(context);
2657  osthread->set_siginfo(siginfo);
2658}
2659
2660//
2661// Handler function invoked when a thread's execution is suspended or
2662// resumed. We have to be careful that only async-safe functions are
2663// called here (Note: most pthread functions are not async safe and
2664// should be avoided.)
2665//
2666// Note: sigwait() is a more natural fit than sigsuspend() from an
2667// interface point of view, but sigwait() prevents the signal hander
2668// from being run. libpthread would get very confused by not having
2669// its signal handlers run and prevents sigwait()'s use with the
2670// mutex granting granting signal.
2671//
2672// Currently only ever called on the VMThread
2673//
2674static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2675  // Save and restore errno to avoid confusing native code with EINTR
2676  // after sigsuspend.
2677  int old_errno = errno;
2678
2679  Thread* thread = Thread::current();
2680  OSThread* osthread = thread->osthread();
2681  assert(thread->is_VM_thread(), "Must be VMThread");
2682  // read current suspend action
2683  int action = osthread->sr.suspend_action();
2684  if (action == SR_SUSPEND) {
2685    suspend_save_context(osthread, siginfo, context);
2686
2687    // Notify the suspend action is about to be completed. do_suspend()
2688    // waits until SR_SUSPENDED is set and then returns. We will wait
2689    // here for a resume signal and that completes the suspend-other
2690    // action. do_suspend/do_resume is always called as a pair from
2691    // the same thread - so there are no races
2692
2693    // notify the caller
2694    osthread->sr.set_suspended();
2695
2696    sigset_t suspend_set;  // signals for sigsuspend()
2697
2698    // get current set of blocked signals and unblock resume signal
2699    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2700    sigdelset(&suspend_set, SR_signum);
2701
2702    // wait here until we are resumed
2703    do {
2704      sigsuspend(&suspend_set);
2705      // ignore all returns until we get a resume signal
2706    } while (osthread->sr.suspend_action() != SR_CONTINUE);
2707
2708    resume_clear_context(osthread);
2709
2710  } else {
2711    assert(action == SR_CONTINUE, "unexpected sr action");
2712    // nothing special to do - just leave the handler
2713  }
2714
2715  errno = old_errno;
2716}
2717
2718
2719static int SR_initialize() {
2720  struct sigaction act;
2721  char *s;
2722  /* Get signal number to use for suspend/resume */
2723  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2724    int sig = ::strtol(s, 0, 10);
2725    if (sig > 0 || sig < NSIG) {
2726        SR_signum = sig;
2727    }
2728  }
2729
2730  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2731        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2732
2733  sigemptyset(&SR_sigset);
2734  sigaddset(&SR_sigset, SR_signum);
2735
2736  /* Set up signal handler for suspend/resume */
2737  act.sa_flags = SA_RESTART|SA_SIGINFO;
2738  act.sa_handler = (void (*)(int)) SR_handler;
2739
2740  // SR_signum is blocked by default.
2741  // 4528190 - We also need to block pthread restart signal (32 on all
2742  // supported Bsd platforms). Note that BsdThreads need to block
2743  // this signal for all threads to work properly. So we don't have
2744  // to use hard-coded signal number when setting up the mask.
2745  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2746
2747  if (sigaction(SR_signum, &act, 0) == -1) {
2748    return -1;
2749  }
2750
2751  // Save signal flag
2752  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2753  return 0;
2754}
2755
2756static int SR_finalize() {
2757  return 0;
2758}
2759
2760
2761// returns true on success and false on error - really an error is fatal
2762// but this seems the normal response to library errors
2763static bool do_suspend(OSThread* osthread) {
2764  // mark as suspended and send signal
2765  osthread->sr.set_suspend_action(SR_SUSPEND);
2766  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2767  assert_status(status == 0, status, "pthread_kill");
2768
2769  // check status and wait until notified of suspension
2770  if (status == 0) {
2771    for (int i = 0; !osthread->sr.is_suspended(); i++) {
2772      os::yield_all(i);
2773    }
2774    osthread->sr.set_suspend_action(SR_NONE);
2775    return true;
2776  }
2777  else {
2778    osthread->sr.set_suspend_action(SR_NONE);
2779    return false;
2780  }
2781}
2782
2783static void do_resume(OSThread* osthread) {
2784  assert(osthread->sr.is_suspended(), "thread should be suspended");
2785  osthread->sr.set_suspend_action(SR_CONTINUE);
2786
2787  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2788  assert_status(status == 0, status, "pthread_kill");
2789  // check status and wait unit notified of resumption
2790  if (status == 0) {
2791    for (int i = 0; osthread->sr.is_suspended(); i++) {
2792      os::yield_all(i);
2793    }
2794  }
2795  osthread->sr.set_suspend_action(SR_NONE);
2796}
2797
2798////////////////////////////////////////////////////////////////////////////////
2799// interrupt support
2800
2801void os::interrupt(Thread* thread) {
2802  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2803    "possibility of dangling Thread pointer");
2804
2805  OSThread* osthread = thread->osthread();
2806
2807  if (!osthread->interrupted()) {
2808    osthread->set_interrupted(true);
2809    // More than one thread can get here with the same value of osthread,
2810    // resulting in multiple notifications.  We do, however, want the store
2811    // to interrupted() to be visible to other threads before we execute unpark().
2812    OrderAccess::fence();
2813    ParkEvent * const slp = thread->_SleepEvent ;
2814    if (slp != NULL) slp->unpark() ;
2815  }
2816
2817  // For JSR166. Unpark even if interrupt status already was set
2818  if (thread->is_Java_thread())
2819    ((JavaThread*)thread)->parker()->unpark();
2820
2821  ParkEvent * ev = thread->_ParkEvent ;
2822  if (ev != NULL) ev->unpark() ;
2823
2824}
2825
2826bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
2827  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
2828    "possibility of dangling Thread pointer");
2829
2830  OSThread* osthread = thread->osthread();
2831
2832  bool interrupted = osthread->interrupted();
2833
2834  if (interrupted && clear_interrupted) {
2835    osthread->set_interrupted(false);
2836    // consider thread->_SleepEvent->reset() ... optional optimization
2837  }
2838
2839  return interrupted;
2840}
2841
2842///////////////////////////////////////////////////////////////////////////////////
2843// signal handling (except suspend/resume)
2844
2845// This routine may be used by user applications as a "hook" to catch signals.
2846// The user-defined signal handler must pass unrecognized signals to this
2847// routine, and if it returns true (non-zero), then the signal handler must
2848// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2849// routine will never retun false (zero), but instead will execute a VM panic
2850// routine kill the process.
2851//
2852// If this routine returns false, it is OK to call it again.  This allows
2853// the user-defined signal handler to perform checks either before or after
2854// the VM performs its own checks.  Naturally, the user code would be making
2855// a serious error if it tried to handle an exception (such as a null check
2856// or breakpoint) that the VM was generating for its own correct operation.
2857//
2858// This routine may recognize any of the following kinds of signals:
2859//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2860// It should be consulted by handlers for any of those signals.
2861//
2862// The caller of this routine must pass in the three arguments supplied
2863// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2864// field of the structure passed to sigaction().  This routine assumes that
2865// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2866//
2867// Note that the VM will print warnings if it detects conflicting signal
2868// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2869//
2870extern "C" JNIEXPORT int
2871JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2872                        void* ucontext, int abort_if_unrecognized);
2873
2874void signalHandler(int sig, siginfo_t* info, void* uc) {
2875  assert(info != NULL && uc != NULL, "it must be old kernel");
2876  JVM_handle_bsd_signal(sig, info, uc, true);
2877}
2878
2879
2880// This boolean allows users to forward their own non-matching signals
2881// to JVM_handle_bsd_signal, harmlessly.
2882bool os::Bsd::signal_handlers_are_installed = false;
2883
2884// For signal-chaining
2885struct sigaction os::Bsd::sigact[MAXSIGNUM];
2886unsigned int os::Bsd::sigs = 0;
2887bool os::Bsd::libjsig_is_loaded = false;
2888typedef struct sigaction *(*get_signal_t)(int);
2889get_signal_t os::Bsd::get_signal_action = NULL;
2890
2891struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2892  struct sigaction *actp = NULL;
2893
2894  if (libjsig_is_loaded) {
2895    // Retrieve the old signal handler from libjsig
2896    actp = (*get_signal_action)(sig);
2897  }
2898  if (actp == NULL) {
2899    // Retrieve the preinstalled signal handler from jvm
2900    actp = get_preinstalled_handler(sig);
2901  }
2902
2903  return actp;
2904}
2905
2906static bool call_chained_handler(struct sigaction *actp, int sig,
2907                                 siginfo_t *siginfo, void *context) {
2908  // Call the old signal handler
2909  if (actp->sa_handler == SIG_DFL) {
2910    // It's more reasonable to let jvm treat it as an unexpected exception
2911    // instead of taking the default action.
2912    return false;
2913  } else if (actp->sa_handler != SIG_IGN) {
2914    if ((actp->sa_flags & SA_NODEFER) == 0) {
2915      // automaticlly block the signal
2916      sigaddset(&(actp->sa_mask), sig);
2917    }
2918
2919    sa_handler_t hand;
2920    sa_sigaction_t sa;
2921    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2922    // retrieve the chained handler
2923    if (siginfo_flag_set) {
2924      sa = actp->sa_sigaction;
2925    } else {
2926      hand = actp->sa_handler;
2927    }
2928
2929    if ((actp->sa_flags & SA_RESETHAND) != 0) {
2930      actp->sa_handler = SIG_DFL;
2931    }
2932
2933    // try to honor the signal mask
2934    sigset_t oset;
2935    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2936
2937    // call into the chained handler
2938    if (siginfo_flag_set) {
2939      (*sa)(sig, siginfo, context);
2940    } else {
2941      (*hand)(sig);
2942    }
2943
2944    // restore the signal mask
2945    pthread_sigmask(SIG_SETMASK, &oset, 0);
2946  }
2947  // Tell jvm's signal handler the signal is taken care of.
2948  return true;
2949}
2950
2951bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
2952  bool chained = false;
2953  // signal-chaining
2954  if (UseSignalChaining) {
2955    struct sigaction *actp = get_chained_signal_action(sig);
2956    if (actp != NULL) {
2957      chained = call_chained_handler(actp, sig, siginfo, context);
2958    }
2959  }
2960  return chained;
2961}
2962
2963struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
2964  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
2965    return &sigact[sig];
2966  }
2967  return NULL;
2968}
2969
2970void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
2971  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2972  sigact[sig] = oldAct;
2973  sigs |= (unsigned int)1 << sig;
2974}
2975
2976// for diagnostic
2977int os::Bsd::sigflags[MAXSIGNUM];
2978
2979int os::Bsd::get_our_sigflags(int sig) {
2980  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2981  return sigflags[sig];
2982}
2983
2984void os::Bsd::set_our_sigflags(int sig, int flags) {
2985  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
2986  sigflags[sig] = flags;
2987}
2988
2989void os::Bsd::set_signal_handler(int sig, bool set_installed) {
2990  // Check for overwrite.
2991  struct sigaction oldAct;
2992  sigaction(sig, (struct sigaction*)NULL, &oldAct);
2993
2994  void* oldhand = oldAct.sa_sigaction
2995                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
2996                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
2997  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
2998      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
2999      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3000    if (AllowUserSignalHandlers || !set_installed) {
3001      // Do not overwrite; user takes responsibility to forward to us.
3002      return;
3003    } else if (UseSignalChaining) {
3004      // save the old handler in jvm
3005      save_preinstalled_handler(sig, oldAct);
3006      // libjsig also interposes the sigaction() call below and saves the
3007      // old sigaction on it own.
3008    } else {
3009      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3010                    "%#lx for signal %d.", (long)oldhand, sig));
3011    }
3012  }
3013
3014  struct sigaction sigAct;
3015  sigfillset(&(sigAct.sa_mask));
3016  sigAct.sa_handler = SIG_DFL;
3017  if (!set_installed) {
3018    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3019  } else {
3020    sigAct.sa_sigaction = signalHandler;
3021    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3022  }
3023  // Save flags, which are set by ours
3024  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3025  sigflags[sig] = sigAct.sa_flags;
3026
3027  int ret = sigaction(sig, &sigAct, &oldAct);
3028  assert(ret == 0, "check");
3029
3030  void* oldhand2  = oldAct.sa_sigaction
3031                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3032                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3033  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3034}
3035
3036// install signal handlers for signals that HotSpot needs to
3037// handle in order to support Java-level exception handling.
3038
3039void os::Bsd::install_signal_handlers() {
3040  if (!signal_handlers_are_installed) {
3041    signal_handlers_are_installed = true;
3042
3043    // signal-chaining
3044    typedef void (*signal_setting_t)();
3045    signal_setting_t begin_signal_setting = NULL;
3046    signal_setting_t end_signal_setting = NULL;
3047    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3048                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3049    if (begin_signal_setting != NULL) {
3050      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3051                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3052      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3053                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3054      libjsig_is_loaded = true;
3055      assert(UseSignalChaining, "should enable signal-chaining");
3056    }
3057    if (libjsig_is_loaded) {
3058      // Tell libjsig jvm is setting signal handlers
3059      (*begin_signal_setting)();
3060    }
3061
3062    set_signal_handler(SIGSEGV, true);
3063    set_signal_handler(SIGPIPE, true);
3064    set_signal_handler(SIGBUS, true);
3065    set_signal_handler(SIGILL, true);
3066    set_signal_handler(SIGFPE, true);
3067    set_signal_handler(SIGXFSZ, true);
3068
3069#if defined(__APPLE__)
3070    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3071    // signals caught and handled by the JVM. To work around this, we reset the mach task
3072    // signal handler that's placed on our process by CrashReporter. This disables
3073    // CrashReporter-based reporting.
3074    //
3075    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3076    // on caught fatal signals.
3077    //
3078    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3079    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3080    // exception handling, while leaving the standard BSD signal handlers functional.
3081    kern_return_t kr;
3082    kr = task_set_exception_ports(mach_task_self(),
3083        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3084        MACH_PORT_NULL,
3085        EXCEPTION_STATE_IDENTITY,
3086        MACHINE_THREAD_STATE);
3087
3088    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3089#endif
3090
3091    if (libjsig_is_loaded) {
3092      // Tell libjsig jvm finishes setting signal handlers
3093      (*end_signal_setting)();
3094    }
3095
3096    // We don't activate signal checker if libjsig is in place, we trust ourselves
3097    // and if UserSignalHandler is installed all bets are off
3098    if (CheckJNICalls) {
3099      if (libjsig_is_loaded) {
3100        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3101        check_signals = false;
3102      }
3103      if (AllowUserSignalHandlers) {
3104        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3105        check_signals = false;
3106      }
3107    }
3108  }
3109}
3110
3111
3112/////
3113// glibc on Bsd platform uses non-documented flag
3114// to indicate, that some special sort of signal
3115// trampoline is used.
3116// We will never set this flag, and we should
3117// ignore this flag in our diagnostic
3118#ifdef SIGNIFICANT_SIGNAL_MASK
3119#undef SIGNIFICANT_SIGNAL_MASK
3120#endif
3121#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3122
3123static const char* get_signal_handler_name(address handler,
3124                                           char* buf, int buflen) {
3125  int offset;
3126  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3127  if (found) {
3128    // skip directory names
3129    const char *p1, *p2;
3130    p1 = buf;
3131    size_t len = strlen(os::file_separator());
3132    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3133    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3134  } else {
3135    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3136  }
3137  return buf;
3138}
3139
3140static void print_signal_handler(outputStream* st, int sig,
3141                                 char* buf, size_t buflen) {
3142  struct sigaction sa;
3143
3144  sigaction(sig, NULL, &sa);
3145
3146  // See comment for SIGNIFICANT_SIGNAL_MASK define
3147  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3148
3149  st->print("%s: ", os::exception_name(sig, buf, buflen));
3150
3151  address handler = (sa.sa_flags & SA_SIGINFO)
3152    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3153    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3154
3155  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3156    st->print("SIG_DFL");
3157  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3158    st->print("SIG_IGN");
3159  } else {
3160    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3161  }
3162
3163  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3164
3165  address rh = VMError::get_resetted_sighandler(sig);
3166  // May be, handler was resetted by VMError?
3167  if(rh != NULL) {
3168    handler = rh;
3169    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3170  }
3171
3172  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3173
3174  // Check: is it our handler?
3175  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3176     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3177    // It is our signal handler
3178    // check for flags, reset system-used one!
3179    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3180      st->print(
3181                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3182                os::Bsd::get_our_sigflags(sig));
3183    }
3184  }
3185  st->cr();
3186}
3187
3188
3189#define DO_SIGNAL_CHECK(sig) \
3190  if (!sigismember(&check_signal_done, sig)) \
3191    os::Bsd::check_signal_handler(sig)
3192
3193// This method is a periodic task to check for misbehaving JNI applications
3194// under CheckJNI, we can add any periodic checks here
3195
3196void os::run_periodic_checks() {
3197
3198  if (check_signals == false) return;
3199
3200  // SEGV and BUS if overridden could potentially prevent
3201  // generation of hs*.log in the event of a crash, debugging
3202  // such a case can be very challenging, so we absolutely
3203  // check the following for a good measure:
3204  DO_SIGNAL_CHECK(SIGSEGV);
3205  DO_SIGNAL_CHECK(SIGILL);
3206  DO_SIGNAL_CHECK(SIGFPE);
3207  DO_SIGNAL_CHECK(SIGBUS);
3208  DO_SIGNAL_CHECK(SIGPIPE);
3209  DO_SIGNAL_CHECK(SIGXFSZ);
3210
3211
3212  // ReduceSignalUsage allows the user to override these handlers
3213  // see comments at the very top and jvm_solaris.h
3214  if (!ReduceSignalUsage) {
3215    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3216    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3217    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3218    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3219  }
3220
3221  DO_SIGNAL_CHECK(SR_signum);
3222  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3223}
3224
3225typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3226
3227static os_sigaction_t os_sigaction = NULL;
3228
3229void os::Bsd::check_signal_handler(int sig) {
3230  char buf[O_BUFLEN];
3231  address jvmHandler = NULL;
3232
3233
3234  struct sigaction act;
3235  if (os_sigaction == NULL) {
3236    // only trust the default sigaction, in case it has been interposed
3237    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3238    if (os_sigaction == NULL) return;
3239  }
3240
3241  os_sigaction(sig, (struct sigaction*)NULL, &act);
3242
3243
3244  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3245
3246  address thisHandler = (act.sa_flags & SA_SIGINFO)
3247    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3248    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3249
3250
3251  switch(sig) {
3252  case SIGSEGV:
3253  case SIGBUS:
3254  case SIGFPE:
3255  case SIGPIPE:
3256  case SIGILL:
3257  case SIGXFSZ:
3258    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3259    break;
3260
3261  case SHUTDOWN1_SIGNAL:
3262  case SHUTDOWN2_SIGNAL:
3263  case SHUTDOWN3_SIGNAL:
3264  case BREAK_SIGNAL:
3265    jvmHandler = (address)user_handler();
3266    break;
3267
3268  case INTERRUPT_SIGNAL:
3269    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3270    break;
3271
3272  default:
3273    if (sig == SR_signum) {
3274      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3275    } else {
3276      return;
3277    }
3278    break;
3279  }
3280
3281  if (thisHandler != jvmHandler) {
3282    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3283    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3284    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3285    // No need to check this sig any longer
3286    sigaddset(&check_signal_done, sig);
3287  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3288    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3289    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3290    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3291    // No need to check this sig any longer
3292    sigaddset(&check_signal_done, sig);
3293  }
3294
3295  // Dump all the signal
3296  if (sigismember(&check_signal_done, sig)) {
3297    print_signal_handlers(tty, buf, O_BUFLEN);
3298  }
3299}
3300
3301extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3302
3303extern bool signal_name(int signo, char* buf, size_t len);
3304
3305const char* os::exception_name(int exception_code, char* buf, size_t size) {
3306  if (0 < exception_code && exception_code <= SIGRTMAX) {
3307    // signal
3308    if (!signal_name(exception_code, buf, size)) {
3309      jio_snprintf(buf, size, "SIG%d", exception_code);
3310    }
3311    return buf;
3312  } else {
3313    return NULL;
3314  }
3315}
3316
3317// this is called _before_ the most of global arguments have been parsed
3318void os::init(void) {
3319  char dummy;   /* used to get a guess on initial stack address */
3320//  first_hrtime = gethrtime();
3321
3322  // With BsdThreads the JavaMain thread pid (primordial thread)
3323  // is different than the pid of the java launcher thread.
3324  // So, on Bsd, the launcher thread pid is passed to the VM
3325  // via the sun.java.launcher.pid property.
3326  // Use this property instead of getpid() if it was correctly passed.
3327  // See bug 6351349.
3328  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3329
3330  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3331
3332  clock_tics_per_sec = CLK_TCK;
3333
3334  init_random(1234567);
3335
3336  ThreadCritical::initialize();
3337
3338  Bsd::set_page_size(getpagesize());
3339  if (Bsd::page_size() == -1) {
3340    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3341                  strerror(errno)));
3342  }
3343  init_page_sizes((size_t) Bsd::page_size());
3344
3345  Bsd::initialize_system_info();
3346
3347  // main_thread points to the aboriginal thread
3348  Bsd::_main_thread = pthread_self();
3349
3350  Bsd::clock_init();
3351  initial_time_count = os::elapsed_counter();
3352
3353#ifdef __APPLE__
3354  // XXXDARWIN
3355  // Work around the unaligned VM callbacks in hotspot's
3356  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3357  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3358  // alignment when doing symbol lookup. To work around this, we force early
3359  // binding of all symbols now, thus binding when alignment is known-good.
3360  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3361#endif
3362}
3363
3364// To install functions for atexit system call
3365extern "C" {
3366  static void perfMemory_exit_helper() {
3367    perfMemory_exit();
3368  }
3369}
3370
3371// this is called _after_ the global arguments have been parsed
3372jint os::init_2(void)
3373{
3374  // Allocate a single page and mark it as readable for safepoint polling
3375  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3376  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3377
3378  os::set_polling_page( polling_page );
3379
3380#ifndef PRODUCT
3381  if(Verbose && PrintMiscellaneous)
3382    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3383#endif
3384
3385  if (!UseMembar) {
3386    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3387    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3388    os::set_memory_serialize_page( mem_serialize_page );
3389
3390#ifndef PRODUCT
3391    if(Verbose && PrintMiscellaneous)
3392      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3393#endif
3394  }
3395
3396  os::large_page_init();
3397
3398  // initialize suspend/resume support - must do this before signal_sets_init()
3399  if (SR_initialize() != 0) {
3400    perror("SR_initialize failed");
3401    return JNI_ERR;
3402  }
3403
3404  Bsd::signal_sets_init();
3405  Bsd::install_signal_handlers();
3406
3407  // Check minimum allowable stack size for thread creation and to initialize
3408  // the java system classes, including StackOverflowError - depends on page
3409  // size.  Add a page for compiler2 recursion in main thread.
3410  // Add in 2*BytesPerWord times page size to account for VM stack during
3411  // class initialization depending on 32 or 64 bit VM.
3412  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3413            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3414                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3415
3416  size_t threadStackSizeInBytes = ThreadStackSize * K;
3417  if (threadStackSizeInBytes != 0 &&
3418      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3419        tty->print_cr("\nThe stack size specified is too small, "
3420                      "Specify at least %dk",
3421                      os::Bsd::min_stack_allowed/ K);
3422        return JNI_ERR;
3423  }
3424
3425  // Make the stack size a multiple of the page size so that
3426  // the yellow/red zones can be guarded.
3427  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3428        vm_page_size()));
3429
3430  if (MaxFDLimit) {
3431    // set the number of file descriptors to max. print out error
3432    // if getrlimit/setrlimit fails but continue regardless.
3433    struct rlimit nbr_files;
3434    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3435    if (status != 0) {
3436      if (PrintMiscellaneous && (Verbose || WizardMode))
3437        perror("os::init_2 getrlimit failed");
3438    } else {
3439      nbr_files.rlim_cur = nbr_files.rlim_max;
3440
3441#ifdef __APPLE__
3442      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3443      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3444      // be used instead
3445      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3446#endif
3447
3448      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3449      if (status != 0) {
3450        if (PrintMiscellaneous && (Verbose || WizardMode))
3451          perror("os::init_2 setrlimit failed");
3452      }
3453    }
3454  }
3455
3456  // at-exit methods are called in the reverse order of their registration.
3457  // atexit functions are called on return from main or as a result of a
3458  // call to exit(3C). There can be only 32 of these functions registered
3459  // and atexit() does not set errno.
3460
3461  if (PerfAllowAtExitRegistration) {
3462    // only register atexit functions if PerfAllowAtExitRegistration is set.
3463    // atexit functions can be delayed until process exit time, which
3464    // can be problematic for embedded VM situations. Embedded VMs should
3465    // call DestroyJavaVM() to assure that VM resources are released.
3466
3467    // note: perfMemory_exit_helper atexit function may be removed in
3468    // the future if the appropriate cleanup code can be added to the
3469    // VM_Exit VMOperation's doit method.
3470    if (atexit(perfMemory_exit_helper) != 0) {
3471      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3472    }
3473  }
3474
3475  // initialize thread priority policy
3476  prio_init();
3477
3478#ifdef __APPLE__
3479  // dynamically link to objective c gc registration
3480  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3481  if (handleLibObjc != NULL) {
3482    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3483  }
3484#endif
3485
3486  return JNI_OK;
3487}
3488
3489// this is called at the end of vm_initialization
3490void os::init_3(void) { }
3491
3492// Mark the polling page as unreadable
3493void os::make_polling_page_unreadable(void) {
3494  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3495    fatal("Could not disable polling page");
3496};
3497
3498// Mark the polling page as readable
3499void os::make_polling_page_readable(void) {
3500  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3501    fatal("Could not enable polling page");
3502  }
3503};
3504
3505int os::active_processor_count() {
3506  return _processor_count;
3507}
3508
3509void os::set_native_thread_name(const char *name) {
3510#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3511  // This is only supported in Snow Leopard and beyond
3512  if (name != NULL) {
3513    // Add a "Java: " prefix to the name
3514    char buf[MAXTHREADNAMESIZE];
3515    snprintf(buf, sizeof(buf), "Java: %s", name);
3516    pthread_setname_np(buf);
3517  }
3518#endif
3519}
3520
3521bool os::distribute_processes(uint length, uint* distribution) {
3522  // Not yet implemented.
3523  return false;
3524}
3525
3526bool os::bind_to_processor(uint processor_id) {
3527  // Not yet implemented.
3528  return false;
3529}
3530
3531///
3532
3533// Suspends the target using the signal mechanism and then grabs the PC before
3534// resuming the target. Used by the flat-profiler only
3535ExtendedPC os::get_thread_pc(Thread* thread) {
3536  // Make sure that it is called by the watcher for the VMThread
3537  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3538  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3539
3540  ExtendedPC epc;
3541
3542  OSThread* osthread = thread->osthread();
3543  if (do_suspend(osthread)) {
3544    if (osthread->ucontext() != NULL) {
3545      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
3546    } else {
3547      // NULL context is unexpected, double-check this is the VMThread
3548      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3549    }
3550    do_resume(osthread);
3551  }
3552  // failure means pthread_kill failed for some reason - arguably this is
3553  // a fatal problem, but such problems are ignored elsewhere
3554
3555  return epc;
3556}
3557
3558int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3559{
3560  return pthread_cond_timedwait(_cond, _mutex, _abstime);
3561}
3562
3563////////////////////////////////////////////////////////////////////////////////
3564// debug support
3565
3566static address same_page(address x, address y) {
3567  int page_bits = -os::vm_page_size();
3568  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3569    return x;
3570  else if (x > y)
3571    return (address)(intptr_t(y) | ~page_bits) + 1;
3572  else
3573    return (address)(intptr_t(y) & page_bits);
3574}
3575
3576bool os::find(address addr, outputStream* st) {
3577  Dl_info dlinfo;
3578  memset(&dlinfo, 0, sizeof(dlinfo));
3579  if (dladdr(addr, &dlinfo)) {
3580    st->print(PTR_FORMAT ": ", addr);
3581    if (dlinfo.dli_sname != NULL) {
3582      st->print("%s+%#x", dlinfo.dli_sname,
3583                 addr - (intptr_t)dlinfo.dli_saddr);
3584    } else if (dlinfo.dli_fname) {
3585      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3586    } else {
3587      st->print("<absolute address>");
3588    }
3589    if (dlinfo.dli_fname) {
3590      st->print(" in %s", dlinfo.dli_fname);
3591    }
3592    if (dlinfo.dli_fbase) {
3593      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3594    }
3595    st->cr();
3596
3597    if (Verbose) {
3598      // decode some bytes around the PC
3599      address begin = same_page(addr-40, addr);
3600      address end   = same_page(addr+40, addr);
3601      address       lowest = (address) dlinfo.dli_sname;
3602      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3603      if (begin < lowest)  begin = lowest;
3604      Dl_info dlinfo2;
3605      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3606          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3607        end = (address) dlinfo2.dli_saddr;
3608      Disassembler::decode(begin, end, st);
3609    }
3610    return true;
3611  }
3612  return false;
3613}
3614
3615////////////////////////////////////////////////////////////////////////////////
3616// misc
3617
3618// This does not do anything on Bsd. This is basically a hook for being
3619// able to use structured exception handling (thread-local exception filters)
3620// on, e.g., Win32.
3621void
3622os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3623                         JavaCallArguments* args, Thread* thread) {
3624  f(value, method, args, thread);
3625}
3626
3627void os::print_statistics() {
3628}
3629
3630int os::message_box(const char* title, const char* message) {
3631  int i;
3632  fdStream err(defaultStream::error_fd());
3633  for (i = 0; i < 78; i++) err.print_raw("=");
3634  err.cr();
3635  err.print_raw_cr(title);
3636  for (i = 0; i < 78; i++) err.print_raw("-");
3637  err.cr();
3638  err.print_raw_cr(message);
3639  for (i = 0; i < 78; i++) err.print_raw("=");
3640  err.cr();
3641
3642  char buf[16];
3643  // Prevent process from exiting upon "read error" without consuming all CPU
3644  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3645
3646  return buf[0] == 'y' || buf[0] == 'Y';
3647}
3648
3649int os::stat(const char *path, struct stat *sbuf) {
3650  char pathbuf[MAX_PATH];
3651  if (strlen(path) > MAX_PATH - 1) {
3652    errno = ENAMETOOLONG;
3653    return -1;
3654  }
3655  os::native_path(strcpy(pathbuf, path));
3656  return ::stat(pathbuf, sbuf);
3657}
3658
3659bool os::check_heap(bool force) {
3660  return true;
3661}
3662
3663int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3664  return ::vsnprintf(buf, count, format, args);
3665}
3666
3667// Is a (classpath) directory empty?
3668bool os::dir_is_empty(const char* path) {
3669  DIR *dir = NULL;
3670  struct dirent *ptr;
3671
3672  dir = opendir(path);
3673  if (dir == NULL) return true;
3674
3675  /* Scan the directory */
3676  bool result = true;
3677  char buf[sizeof(struct dirent) + MAX_PATH];
3678  while (result && (ptr = ::readdir(dir)) != NULL) {
3679    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3680      result = false;
3681    }
3682  }
3683  closedir(dir);
3684  return result;
3685}
3686
3687// This code originates from JDK's sysOpen and open64_w
3688// from src/solaris/hpi/src/system_md.c
3689
3690#ifndef O_DELETE
3691#define O_DELETE 0x10000
3692#endif
3693
3694// Open a file. Unlink the file immediately after open returns
3695// if the specified oflag has the O_DELETE flag set.
3696// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3697
3698int os::open(const char *path, int oflag, int mode) {
3699
3700  if (strlen(path) > MAX_PATH - 1) {
3701    errno = ENAMETOOLONG;
3702    return -1;
3703  }
3704  int fd;
3705  int o_delete = (oflag & O_DELETE);
3706  oflag = oflag & ~O_DELETE;
3707
3708  fd = ::open(path, oflag, mode);
3709  if (fd == -1) return -1;
3710
3711  //If the open succeeded, the file might still be a directory
3712  {
3713    struct stat buf;
3714    int ret = ::fstat(fd, &buf);
3715    int st_mode = buf.st_mode;
3716
3717    if (ret != -1) {
3718      if ((st_mode & S_IFMT) == S_IFDIR) {
3719        errno = EISDIR;
3720        ::close(fd);
3721        return -1;
3722      }
3723    } else {
3724      ::close(fd);
3725      return -1;
3726    }
3727  }
3728
3729    /*
3730     * All file descriptors that are opened in the JVM and not
3731     * specifically destined for a subprocess should have the
3732     * close-on-exec flag set.  If we don't set it, then careless 3rd
3733     * party native code might fork and exec without closing all
3734     * appropriate file descriptors (e.g. as we do in closeDescriptors in
3735     * UNIXProcess.c), and this in turn might:
3736     *
3737     * - cause end-of-file to fail to be detected on some file
3738     *   descriptors, resulting in mysterious hangs, or
3739     *
3740     * - might cause an fopen in the subprocess to fail on a system
3741     *   suffering from bug 1085341.
3742     *
3743     * (Yes, the default setting of the close-on-exec flag is a Unix
3744     * design flaw)
3745     *
3746     * See:
3747     * 1085341: 32-bit stdio routines should support file descriptors >255
3748     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3749     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3750     */
3751#ifdef FD_CLOEXEC
3752    {
3753        int flags = ::fcntl(fd, F_GETFD);
3754        if (flags != -1)
3755            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3756    }
3757#endif
3758
3759  if (o_delete != 0) {
3760    ::unlink(path);
3761  }
3762  return fd;
3763}
3764
3765
3766// create binary file, rewriting existing file if required
3767int os::create_binary_file(const char* path, bool rewrite_existing) {
3768  int oflags = O_WRONLY | O_CREAT;
3769  if (!rewrite_existing) {
3770    oflags |= O_EXCL;
3771  }
3772  return ::open(path, oflags, S_IREAD | S_IWRITE);
3773}
3774
3775// return current position of file pointer
3776jlong os::current_file_offset(int fd) {
3777  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3778}
3779
3780// move file pointer to the specified offset
3781jlong os::seek_to_file_offset(int fd, jlong offset) {
3782  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3783}
3784
3785// This code originates from JDK's sysAvailable
3786// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3787
3788int os::available(int fd, jlong *bytes) {
3789  jlong cur, end;
3790  int mode;
3791  struct stat buf;
3792
3793  if (::fstat(fd, &buf) >= 0) {
3794    mode = buf.st_mode;
3795    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3796      /*
3797      * XXX: is the following call interruptible? If so, this might
3798      * need to go through the INTERRUPT_IO() wrapper as for other
3799      * blocking, interruptible calls in this file.
3800      */
3801      int n;
3802      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3803        *bytes = n;
3804        return 1;
3805      }
3806    }
3807  }
3808  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3809    return 0;
3810  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3811    return 0;
3812  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3813    return 0;
3814  }
3815  *bytes = end - cur;
3816  return 1;
3817}
3818
3819int os::socket_available(int fd, jint *pbytes) {
3820   if (fd < 0)
3821     return OS_OK;
3822
3823   int ret;
3824
3825   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3826
3827   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3828   // is expected to return 0 on failure and 1 on success to the jdk.
3829
3830   return (ret == OS_ERR) ? 0 : 1;
3831}
3832
3833// Map a block of memory.
3834char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3835                     char *addr, size_t bytes, bool read_only,
3836                     bool allow_exec) {
3837  int prot;
3838  int flags;
3839
3840  if (read_only) {
3841    prot = PROT_READ;
3842    flags = MAP_SHARED;
3843  } else {
3844    prot = PROT_READ | PROT_WRITE;
3845    flags = MAP_PRIVATE;
3846  }
3847
3848  if (allow_exec) {
3849    prot |= PROT_EXEC;
3850  }
3851
3852  if (addr != NULL) {
3853    flags |= MAP_FIXED;
3854  }
3855
3856  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3857                                     fd, file_offset);
3858  if (mapped_address == MAP_FAILED) {
3859    return NULL;
3860  }
3861  return mapped_address;
3862}
3863
3864
3865// Remap a block of memory.
3866char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3867                       char *addr, size_t bytes, bool read_only,
3868                       bool allow_exec) {
3869  // same as map_memory() on this OS
3870  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3871                        allow_exec);
3872}
3873
3874
3875// Unmap a block of memory.
3876bool os::pd_unmap_memory(char* addr, size_t bytes) {
3877  return munmap(addr, bytes) == 0;
3878}
3879
3880// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3881// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3882// of a thread.
3883//
3884// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3885// the fast estimate available on the platform.
3886
3887jlong os::current_thread_cpu_time() {
3888#ifdef __APPLE__
3889  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3890#endif
3891}
3892
3893jlong os::thread_cpu_time(Thread* thread) {
3894}
3895
3896jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3897#ifdef __APPLE__
3898  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3899#endif
3900}
3901
3902jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3903#ifdef __APPLE__
3904  struct thread_basic_info tinfo;
3905  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3906  kern_return_t kr;
3907  thread_t mach_thread;
3908
3909  mach_thread = thread->osthread()->thread_id();
3910  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3911  if (kr != KERN_SUCCESS)
3912    return -1;
3913
3914  if (user_sys_cpu_time) {
3915    jlong nanos;
3916    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3917    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3918    return nanos;
3919  } else {
3920    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3921  }
3922#endif
3923}
3924
3925
3926void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3927  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3928  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3929  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3930  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3931}
3932
3933void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3934  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3935  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3936  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3937  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3938}
3939
3940bool os::is_thread_cpu_time_supported() {
3941#ifdef __APPLE__
3942  return true;
3943#else
3944  return false;
3945#endif
3946}
3947
3948// System loadavg support.  Returns -1 if load average cannot be obtained.
3949// Bsd doesn't yet have a (official) notion of processor sets,
3950// so just return the system wide load average.
3951int os::loadavg(double loadavg[], int nelem) {
3952  return ::getloadavg(loadavg, nelem);
3953}
3954
3955void os::pause() {
3956  char filename[MAX_PATH];
3957  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3958    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3959  } else {
3960    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3961  }
3962
3963  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3964  if (fd != -1) {
3965    struct stat buf;
3966    ::close(fd);
3967    while (::stat(filename, &buf) == 0) {
3968      (void)::poll(NULL, 0, 100);
3969    }
3970  } else {
3971    jio_fprintf(stderr,
3972      "Could not open pause file '%s', continuing immediately.\n", filename);
3973  }
3974}
3975
3976
3977// Refer to the comments in os_solaris.cpp park-unpark.
3978//
3979// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
3980// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
3981// For specifics regarding the bug see GLIBC BUGID 261237 :
3982//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
3983// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
3984// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
3985// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
3986// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
3987// and monitorenter when we're using 1-0 locking.  All those operations may result in
3988// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
3989// of libpthread avoids the problem, but isn't practical.
3990//
3991// Possible remedies:
3992//
3993// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
3994//      This is palliative and probabilistic, however.  If the thread is preempted
3995//      between the call to compute_abstime() and pthread_cond_timedwait(), more
3996//      than the minimum period may have passed, and the abstime may be stale (in the
3997//      past) resultin in a hang.   Using this technique reduces the odds of a hang
3998//      but the JVM is still vulnerable, particularly on heavily loaded systems.
3999//
4000// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4001//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4002//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4003//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4004//      thread.
4005//
4006// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4007//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4008//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4009//      This also works well.  In fact it avoids kernel-level scalability impediments
4010//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4011//      timers in a graceful fashion.
4012//
4013// 4.   When the abstime value is in the past it appears that control returns
4014//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4015//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4016//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4017//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4018//      It may be possible to avoid reinitialization by checking the return
4019//      value from pthread_cond_timedwait().  In addition to reinitializing the
4020//      condvar we must establish the invariant that cond_signal() is only called
4021//      within critical sections protected by the adjunct mutex.  This prevents
4022//      cond_signal() from "seeing" a condvar that's in the midst of being
4023//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4024//      desirable signal-after-unlock optimization that avoids futile context switching.
4025//
4026//      I'm also concerned that some versions of NTPL might allocate an auxilliary
4027//      structure when a condvar is used or initialized.  cond_destroy()  would
4028//      release the helper structure.  Our reinitialize-after-timedwait fix
4029//      put excessive stress on malloc/free and locks protecting the c-heap.
4030//
4031// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4032// It may be possible to refine (4) by checking the kernel and NTPL verisons
4033// and only enabling the work-around for vulnerable environments.
4034
4035// utility to compute the abstime argument to timedwait:
4036// millis is the relative timeout time
4037// abstime will be the absolute timeout time
4038// TODO: replace compute_abstime() with unpackTime()
4039
4040static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4041  if (millis < 0)  millis = 0;
4042  struct timeval now;
4043  int status = gettimeofday(&now, NULL);
4044  assert(status == 0, "gettimeofday");
4045  jlong seconds = millis / 1000;
4046  millis %= 1000;
4047  if (seconds > 50000000) { // see man cond_timedwait(3T)
4048    seconds = 50000000;
4049  }
4050  abstime->tv_sec = now.tv_sec  + seconds;
4051  long       usec = now.tv_usec + millis * 1000;
4052  if (usec >= 1000000) {
4053    abstime->tv_sec += 1;
4054    usec -= 1000000;
4055  }
4056  abstime->tv_nsec = usec * 1000;
4057  return abstime;
4058}
4059
4060
4061// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4062// Conceptually TryPark() should be equivalent to park(0).
4063
4064int os::PlatformEvent::TryPark() {
4065  for (;;) {
4066    const int v = _Event ;
4067    guarantee ((v == 0) || (v == 1), "invariant") ;
4068    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4069  }
4070}
4071
4072void os::PlatformEvent::park() {       // AKA "down()"
4073  // Invariant: Only the thread associated with the Event/PlatformEvent
4074  // may call park().
4075  // TODO: assert that _Assoc != NULL or _Assoc == Self
4076  int v ;
4077  for (;;) {
4078      v = _Event ;
4079      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4080  }
4081  guarantee (v >= 0, "invariant") ;
4082  if (v == 0) {
4083     // Do this the hard way by blocking ...
4084     int status = pthread_mutex_lock(_mutex);
4085     assert_status(status == 0, status, "mutex_lock");
4086     guarantee (_nParked == 0, "invariant") ;
4087     ++ _nParked ;
4088     while (_Event < 0) {
4089        status = pthread_cond_wait(_cond, _mutex);
4090        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4091        // Treat this the same as if the wait was interrupted
4092        if (status == ETIMEDOUT) { status = EINTR; }
4093        assert_status(status == 0 || status == EINTR, status, "cond_wait");
4094     }
4095     -- _nParked ;
4096
4097    // In theory we could move the ST of 0 into _Event past the unlock(),
4098    // but then we'd need a MEMBAR after the ST.
4099    _Event = 0 ;
4100     status = pthread_mutex_unlock(_mutex);
4101     assert_status(status == 0, status, "mutex_unlock");
4102  }
4103  guarantee (_Event >= 0, "invariant") ;
4104}
4105
4106int os::PlatformEvent::park(jlong millis) {
4107  guarantee (_nParked == 0, "invariant") ;
4108
4109  int v ;
4110  for (;;) {
4111      v = _Event ;
4112      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4113  }
4114  guarantee (v >= 0, "invariant") ;
4115  if (v != 0) return OS_OK ;
4116
4117  // We do this the hard way, by blocking the thread.
4118  // Consider enforcing a minimum timeout value.
4119  struct timespec abst;
4120  compute_abstime(&abst, millis);
4121
4122  int ret = OS_TIMEOUT;
4123  int status = pthread_mutex_lock(_mutex);
4124  assert_status(status == 0, status, "mutex_lock");
4125  guarantee (_nParked == 0, "invariant") ;
4126  ++_nParked ;
4127
4128  // Object.wait(timo) will return because of
4129  // (a) notification
4130  // (b) timeout
4131  // (c) thread.interrupt
4132  //
4133  // Thread.interrupt and object.notify{All} both call Event::set.
4134  // That is, we treat thread.interrupt as a special case of notification.
4135  // The underlying Solaris implementation, cond_timedwait, admits
4136  // spurious/premature wakeups, but the JLS/JVM spec prevents the
4137  // JVM from making those visible to Java code.  As such, we must
4138  // filter out spurious wakeups.  We assume all ETIME returns are valid.
4139  //
4140  // TODO: properly differentiate simultaneous notify+interrupt.
4141  // In that case, we should propagate the notify to another waiter.
4142
4143  while (_Event < 0) {
4144    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4145    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4146      pthread_cond_destroy (_cond);
4147      pthread_cond_init (_cond, NULL) ;
4148    }
4149    assert_status(status == 0 || status == EINTR ||
4150                  status == ETIMEDOUT,
4151                  status, "cond_timedwait");
4152    if (!FilterSpuriousWakeups) break ;                 // previous semantics
4153    if (status == ETIMEDOUT) break ;
4154    // We consume and ignore EINTR and spurious wakeups.
4155  }
4156  --_nParked ;
4157  if (_Event >= 0) {
4158     ret = OS_OK;
4159  }
4160  _Event = 0 ;
4161  status = pthread_mutex_unlock(_mutex);
4162  assert_status(status == 0, status, "mutex_unlock");
4163  assert (_nParked == 0, "invariant") ;
4164  return ret;
4165}
4166
4167void os::PlatformEvent::unpark() {
4168  int v, AnyWaiters ;
4169  for (;;) {
4170      v = _Event ;
4171      if (v > 0) {
4172         // The LD of _Event could have reordered or be satisfied
4173         // by a read-aside from this processor's write buffer.
4174         // To avoid problems execute a barrier and then
4175         // ratify the value.
4176         OrderAccess::fence() ;
4177         if (_Event == v) return ;
4178         continue ;
4179      }
4180      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
4181  }
4182  if (v < 0) {
4183     // Wait for the thread associated with the event to vacate
4184     int status = pthread_mutex_lock(_mutex);
4185     assert_status(status == 0, status, "mutex_lock");
4186     AnyWaiters = _nParked ;
4187     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
4188     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4189        AnyWaiters = 0 ;
4190        pthread_cond_signal (_cond);
4191     }
4192     status = pthread_mutex_unlock(_mutex);
4193     assert_status(status == 0, status, "mutex_unlock");
4194     if (AnyWaiters != 0) {
4195        status = pthread_cond_signal(_cond);
4196        assert_status(status == 0, status, "cond_signal");
4197     }
4198  }
4199
4200  // Note that we signal() _after dropping the lock for "immortal" Events.
4201  // This is safe and avoids a common class of  futile wakeups.  In rare
4202  // circumstances this can cause a thread to return prematurely from
4203  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4204  // simply re-test the condition and re-park itself.
4205}
4206
4207
4208// JSR166
4209// -------------------------------------------------------
4210
4211/*
4212 * The solaris and bsd implementations of park/unpark are fairly
4213 * conservative for now, but can be improved. They currently use a
4214 * mutex/condvar pair, plus a a count.
4215 * Park decrements count if > 0, else does a condvar wait.  Unpark
4216 * sets count to 1 and signals condvar.  Only one thread ever waits
4217 * on the condvar. Contention seen when trying to park implies that someone
4218 * is unparking you, so don't wait. And spurious returns are fine, so there
4219 * is no need to track notifications.
4220 */
4221
4222#define MAX_SECS 100000000
4223/*
4224 * This code is common to bsd and solaris and will be moved to a
4225 * common place in dolphin.
4226 *
4227 * The passed in time value is either a relative time in nanoseconds
4228 * or an absolute time in milliseconds. Either way it has to be unpacked
4229 * into suitable seconds and nanoseconds components and stored in the
4230 * given timespec structure.
4231 * Given time is a 64-bit value and the time_t used in the timespec is only
4232 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4233 * overflow if times way in the future are given. Further on Solaris versions
4234 * prior to 10 there is a restriction (see cond_timedwait) that the specified
4235 * number of seconds, in abstime, is less than current_time  + 100,000,000.
4236 * As it will be 28 years before "now + 100000000" will overflow we can
4237 * ignore overflow and just impose a hard-limit on seconds using the value
4238 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4239 * years from "now".
4240 */
4241
4242static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4243  assert (time > 0, "convertTime");
4244
4245  struct timeval now;
4246  int status = gettimeofday(&now, NULL);
4247  assert(status == 0, "gettimeofday");
4248
4249  time_t max_secs = now.tv_sec + MAX_SECS;
4250
4251  if (isAbsolute) {
4252    jlong secs = time / 1000;
4253    if (secs > max_secs) {
4254      absTime->tv_sec = max_secs;
4255    }
4256    else {
4257      absTime->tv_sec = secs;
4258    }
4259    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4260  }
4261  else {
4262    jlong secs = time / NANOSECS_PER_SEC;
4263    if (secs >= MAX_SECS) {
4264      absTime->tv_sec = max_secs;
4265      absTime->tv_nsec = 0;
4266    }
4267    else {
4268      absTime->tv_sec = now.tv_sec + secs;
4269      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4270      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4271        absTime->tv_nsec -= NANOSECS_PER_SEC;
4272        ++absTime->tv_sec; // note: this must be <= max_secs
4273      }
4274    }
4275  }
4276  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4277  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4278  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4279  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4280}
4281
4282void Parker::park(bool isAbsolute, jlong time) {
4283  // Optional fast-path check:
4284  // Return immediately if a permit is available.
4285  if (_counter > 0) {
4286      _counter = 0 ;
4287      OrderAccess::fence();
4288      return ;
4289  }
4290
4291  Thread* thread = Thread::current();
4292  assert(thread->is_Java_thread(), "Must be JavaThread");
4293  JavaThread *jt = (JavaThread *)thread;
4294
4295  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4296  // Check interrupt before trying to wait
4297  if (Thread::is_interrupted(thread, false)) {
4298    return;
4299  }
4300
4301  // Next, demultiplex/decode time arguments
4302  struct timespec absTime;
4303  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4304    return;
4305  }
4306  if (time > 0) {
4307    unpackTime(&absTime, isAbsolute, time);
4308  }
4309
4310
4311  // Enter safepoint region
4312  // Beware of deadlocks such as 6317397.
4313  // The per-thread Parker:: mutex is a classic leaf-lock.
4314  // In particular a thread must never block on the Threads_lock while
4315  // holding the Parker:: mutex.  If safepoints are pending both the
4316  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4317  ThreadBlockInVM tbivm(jt);
4318
4319  // Don't wait if cannot get lock since interference arises from
4320  // unblocking.  Also. check interrupt before trying wait
4321  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4322    return;
4323  }
4324
4325  int status ;
4326  if (_counter > 0)  { // no wait needed
4327    _counter = 0;
4328    status = pthread_mutex_unlock(_mutex);
4329    assert (status == 0, "invariant") ;
4330    OrderAccess::fence();
4331    return;
4332  }
4333
4334#ifdef ASSERT
4335  // Don't catch signals while blocked; let the running threads have the signals.
4336  // (This allows a debugger to break into the running thread.)
4337  sigset_t oldsigs;
4338  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4339  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4340#endif
4341
4342  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4343  jt->set_suspend_equivalent();
4344  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4345
4346  if (time == 0) {
4347    status = pthread_cond_wait (_cond, _mutex) ;
4348  } else {
4349    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4350    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4351      pthread_cond_destroy (_cond) ;
4352      pthread_cond_init    (_cond, NULL);
4353    }
4354  }
4355  assert_status(status == 0 || status == EINTR ||
4356                status == ETIMEDOUT,
4357                status, "cond_timedwait");
4358
4359#ifdef ASSERT
4360  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4361#endif
4362
4363  _counter = 0 ;
4364  status = pthread_mutex_unlock(_mutex) ;
4365  assert_status(status == 0, status, "invariant") ;
4366  // If externally suspended while waiting, re-suspend
4367  if (jt->handle_special_suspend_equivalent_condition()) {
4368    jt->java_suspend_self();
4369  }
4370
4371  OrderAccess::fence();
4372}
4373
4374void Parker::unpark() {
4375  int s, status ;
4376  status = pthread_mutex_lock(_mutex);
4377  assert (status == 0, "invariant") ;
4378  s = _counter;
4379  _counter = 1;
4380  if (s < 1) {
4381     if (WorkAroundNPTLTimedWaitHang) {
4382        status = pthread_cond_signal (_cond) ;
4383        assert (status == 0, "invariant") ;
4384        status = pthread_mutex_unlock(_mutex);
4385        assert (status == 0, "invariant") ;
4386     } else {
4387        status = pthread_mutex_unlock(_mutex);
4388        assert (status == 0, "invariant") ;
4389        status = pthread_cond_signal (_cond) ;
4390        assert (status == 0, "invariant") ;
4391     }
4392  } else {
4393    pthread_mutex_unlock(_mutex);
4394    assert (status == 0, "invariant") ;
4395  }
4396}
4397
4398
4399/* Darwin has no "environ" in a dynamic library. */
4400#ifdef __APPLE__
4401#include <crt_externs.h>
4402#define environ (*_NSGetEnviron())
4403#else
4404extern char** environ;
4405#endif
4406
4407// Run the specified command in a separate process. Return its exit value,
4408// or -1 on failure (e.g. can't fork a new process).
4409// Unlike system(), this function can be called from signal handler. It
4410// doesn't block SIGINT et al.
4411int os::fork_and_exec(char* cmd) {
4412  const char * argv[4] = {"sh", "-c", cmd, NULL};
4413
4414  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4415  // pthread_atfork handlers and reset pthread library. All we need is a
4416  // separate process to execve. Make a direct syscall to fork process.
4417  // On IA64 there's no fork syscall, we have to use fork() and hope for
4418  // the best...
4419  pid_t pid = fork();
4420
4421  if (pid < 0) {
4422    // fork failed
4423    return -1;
4424
4425  } else if (pid == 0) {
4426    // child process
4427
4428    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4429    // first to kill every thread on the thread list. Because this list is
4430    // not reset by fork() (see notes above), execve() will instead kill
4431    // every thread in the parent process. We know this is the only thread
4432    // in the new process, so make a system call directly.
4433    // IA64 should use normal execve() from glibc to match the glibc fork()
4434    // above.
4435    execve("/bin/sh", (char* const*)argv, environ);
4436
4437    // execve failed
4438    _exit(-1);
4439
4440  } else  {
4441    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4442    // care about the actual exit code, for now.
4443
4444    int status;
4445
4446    // Wait for the child process to exit.  This returns immediately if
4447    // the child has already exited. */
4448    while (waitpid(pid, &status, 0) < 0) {
4449        switch (errno) {
4450        case ECHILD: return 0;
4451        case EINTR: break;
4452        default: return -1;
4453        }
4454    }
4455
4456    if (WIFEXITED(status)) {
4457       // The child exited normally; get its exit code.
4458       return WEXITSTATUS(status);
4459    } else if (WIFSIGNALED(status)) {
4460       // The child exited because of a signal
4461       // The best value to return is 0x80 + signal number,
4462       // because that is what all Unix shells do, and because
4463       // it allows callers to distinguish between process exit and
4464       // process death by signal.
4465       return 0x80 + WTERMSIG(status);
4466    } else {
4467       // Unknown exit code; pass it through
4468       return status;
4469    }
4470  }
4471}
4472
4473// is_headless_jre()
4474//
4475// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4476// in order to report if we are running in a headless jre
4477//
4478// Since JDK8 xawt/libmawt.so was moved into the same directory
4479// as libawt.so, and renamed libawt_xawt.so
4480//
4481bool os::is_headless_jre() {
4482    struct stat statbuf;
4483    char buf[MAXPATHLEN];
4484    char libmawtpath[MAXPATHLEN];
4485    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4486    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4487    char *p;
4488
4489    // Get path to libjvm.so
4490    os::jvm_path(buf, sizeof(buf));
4491
4492    // Get rid of libjvm.so
4493    p = strrchr(buf, '/');
4494    if (p == NULL) return false;
4495    else *p = '\0';
4496
4497    // Get rid of client or server
4498    p = strrchr(buf, '/');
4499    if (p == NULL) return false;
4500    else *p = '\0';
4501
4502    // check xawt/libmawt.so
4503    strcpy(libmawtpath, buf);
4504    strcat(libmawtpath, xawtstr);
4505    if (::stat(libmawtpath, &statbuf) == 0) return false;
4506
4507    // check libawt_xawt.so
4508    strcpy(libmawtpath, buf);
4509    strcat(libmawtpath, new_xawtstr);
4510    if (::stat(libmawtpath, &statbuf) == 0) return false;
4511
4512    return true;
4513}
4514
4515// Get the default path to the core file
4516// Returns the length of the string
4517int os::get_core_path(char* buffer, size_t bufferSize) {
4518  int n = jio_snprintf(buffer, bufferSize, "/cores");
4519
4520  // Truncate if theoretical string was longer than bufferSize
4521  n = MIN2(n, (int)bufferSize);
4522
4523  return n;
4524}
4525