os_bsd.cpp revision 3190:fdf4deca44ec
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_bsd.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_bsd.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_bsd.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef TARGET_ARCH_zero
74# include "assembler_zero.inline.hpp"
75# include "nativeInst_zero.hpp"
76#endif
77#ifdef TARGET_ARCH_arm
78# include "assembler_arm.inline.hpp"
79# include "nativeInst_arm.hpp"
80#endif
81#ifdef TARGET_ARCH_ppc
82# include "assembler_ppc.inline.hpp"
83# include "nativeInst_ppc.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_Runtime1.hpp"
87#endif
88#ifdef COMPILER2
89#include "opto/runtime.hpp"
90#endif
91
92// put OS-includes here
93# include <sys/types.h>
94# include <sys/mman.h>
95# include <sys/stat.h>
96# include <sys/select.h>
97# include <pthread.h>
98# include <signal.h>
99# include <errno.h>
100# include <dlfcn.h>
101# include <stdio.h>
102# include <unistd.h>
103# include <sys/resource.h>
104# include <pthread.h>
105# include <sys/stat.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/utsname.h>
109# include <sys/socket.h>
110# include <sys/wait.h>
111# include <time.h>
112# include <pwd.h>
113# include <poll.h>
114# include <semaphore.h>
115# include <fcntl.h>
116# include <string.h>
117#ifdef _ALLBSD_SOURCE
118# include <sys/param.h>
119# include <sys/sysctl.h>
120#else
121# include <syscall.h>
122# include <sys/sysinfo.h>
123# include <gnu/libc-version.h>
124#endif
125# include <sys/ipc.h>
126# include <sys/shm.h>
127#ifndef __APPLE__
128# include <link.h>
129#endif
130# include <stdint.h>
131# include <inttypes.h>
132# include <sys/ioctl.h>
133
134#if defined(__FreeBSD__) || defined(__NetBSD__)
135# include <elf.h>
136#endif
137
138#ifdef __APPLE__
139# include <mach/mach.h> // semaphore_* API
140# include <mach-o/dyld.h>
141# include <sys/proc_info.h>
142# include <objc/objc-auto.h>
143#endif
144
145#ifndef MAP_ANONYMOUS
146#define MAP_ANONYMOUS MAP_ANON
147#endif
148
149#define MAX_PATH    (2 * K)
150
151// for timer info max values which include all bits
152#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
153
154#define LARGEPAGES_BIT (1 << 6)
155////////////////////////////////////////////////////////////////////////////////
156// global variables
157julong os::Bsd::_physical_memory = 0;
158
159#ifndef _ALLBSD_SOURCE
160address   os::Bsd::_initial_thread_stack_bottom = NULL;
161uintptr_t os::Bsd::_initial_thread_stack_size   = 0;
162#endif
163
164int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
165#ifndef _ALLBSD_SOURCE
166int (*os::Bsd::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
167Mutex* os::Bsd::_createThread_lock = NULL;
168#endif
169pthread_t os::Bsd::_main_thread;
170int os::Bsd::_page_size = -1;
171#ifndef _ALLBSD_SOURCE
172bool os::Bsd::_is_floating_stack = false;
173bool os::Bsd::_is_NPTL = false;
174bool os::Bsd::_supports_fast_thread_cpu_time = false;
175const char * os::Bsd::_glibc_version = NULL;
176const char * os::Bsd::_libpthread_version = NULL;
177#endif
178
179static jlong initial_time_count=0;
180
181static int clock_tics_per_sec = 100;
182
183// For diagnostics to print a message once. see run_periodic_checks
184static sigset_t check_signal_done;
185static bool check_signals = true;;
186
187static pid_t _initial_pid = 0;
188
189/* Signal number used to suspend/resume a thread */
190
191/* do not use any signal number less than SIGSEGV, see 4355769 */
192static int SR_signum = SIGUSR2;
193sigset_t SR_sigset;
194
195
196////////////////////////////////////////////////////////////////////////////////
197// utility functions
198
199static int SR_initialize();
200static int SR_finalize();
201
202julong os::available_memory() {
203  return Bsd::available_memory();
204}
205
206julong os::Bsd::available_memory() {
207#ifdef _ALLBSD_SOURCE
208  // XXXBSD: this is just a stopgap implementation
209  return physical_memory() >> 2;
210#else
211  // values in struct sysinfo are "unsigned long"
212  struct sysinfo si;
213  sysinfo(&si);
214
215  return (julong)si.freeram * si.mem_unit;
216#endif
217}
218
219julong os::physical_memory() {
220  return Bsd::physical_memory();
221}
222
223julong os::allocatable_physical_memory(julong size) {
224#ifdef _LP64
225  return size;
226#else
227  julong result = MIN2(size, (julong)3800*M);
228   if (!is_allocatable(result)) {
229     // See comments under solaris for alignment considerations
230     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
231     result =  MIN2(size, reasonable_size);
232   }
233   return result;
234#endif // _LP64
235}
236
237////////////////////////////////////////////////////////////////////////////////
238// environment support
239
240bool os::getenv(const char* name, char* buf, int len) {
241  const char* val = ::getenv(name);
242  if (val != NULL && strlen(val) < (size_t)len) {
243    strcpy(buf, val);
244    return true;
245  }
246  if (len > 0) buf[0] = 0;  // return a null string
247  return false;
248}
249
250
251// Return true if user is running as root.
252
253bool os::have_special_privileges() {
254  static bool init = false;
255  static bool privileges = false;
256  if (!init) {
257    privileges = (getuid() != geteuid()) || (getgid() != getegid());
258    init = true;
259  }
260  return privileges;
261}
262
263
264#ifndef _ALLBSD_SOURCE
265#ifndef SYS_gettid
266// i386: 224, ia64: 1105, amd64: 186, sparc 143
267#ifdef __ia64__
268#define SYS_gettid 1105
269#elif __i386__
270#define SYS_gettid 224
271#elif __amd64__
272#define SYS_gettid 186
273#elif __sparc__
274#define SYS_gettid 143
275#else
276#error define gettid for the arch
277#endif
278#endif
279#endif
280
281// Cpu architecture string
282#if   defined(ZERO)
283static char cpu_arch[] = ZERO_LIBARCH;
284#elif defined(IA64)
285static char cpu_arch[] = "ia64";
286#elif defined(IA32)
287static char cpu_arch[] = "i386";
288#elif defined(AMD64)
289static char cpu_arch[] = "amd64";
290#elif defined(ARM)
291static char cpu_arch[] = "arm";
292#elif defined(PPC)
293static char cpu_arch[] = "ppc";
294#elif defined(SPARC)
295#  ifdef _LP64
296static char cpu_arch[] = "sparcv9";
297#  else
298static char cpu_arch[] = "sparc";
299#  endif
300#else
301#error Add appropriate cpu_arch setting
302#endif
303
304// Compiler variant
305#ifdef COMPILER2
306#define COMPILER_VARIANT "server"
307#else
308#define COMPILER_VARIANT "client"
309#endif
310
311#ifndef _ALLBSD_SOURCE
312// pid_t gettid()
313//
314// Returns the kernel thread id of the currently running thread. Kernel
315// thread id is used to access /proc.
316//
317// (Note that getpid() on BsdThreads returns kernel thread id too; but
318// on NPTL, it returns the same pid for all threads, as required by POSIX.)
319//
320pid_t os::Bsd::gettid() {
321  int rslt = syscall(SYS_gettid);
322  if (rslt == -1) {
323     // old kernel, no NPTL support
324     return getpid();
325  } else {
326     return (pid_t)rslt;
327  }
328}
329
330// Most versions of bsd have a bug where the number of processors are
331// determined by looking at the /proc file system.  In a chroot environment,
332// the system call returns 1.  This causes the VM to act as if it is
333// a single processor and elide locking (see is_MP() call).
334static bool unsafe_chroot_detected = false;
335static const char *unstable_chroot_error = "/proc file system not found.\n"
336                     "Java may be unstable running multithreaded in a chroot "
337                     "environment on Bsd when /proc filesystem is not mounted.";
338#endif
339
340#ifdef _ALLBSD_SOURCE
341void os::Bsd::initialize_system_info() {
342  int mib[2];
343  size_t len;
344  int cpu_val;
345  u_long mem_val;
346
347  /* get processors count via hw.ncpus sysctl */
348  mib[0] = CTL_HW;
349  mib[1] = HW_NCPU;
350  len = sizeof(cpu_val);
351  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
352       set_processor_count(cpu_val);
353  }
354  else {
355       set_processor_count(1);   // fallback
356  }
357
358  /* get physical memory via hw.usermem sysctl (hw.usermem is used
359   * instead of hw.physmem because we need size of allocatable memory
360   */
361  mib[0] = CTL_HW;
362  mib[1] = HW_USERMEM;
363  len = sizeof(mem_val);
364  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
365       _physical_memory = mem_val;
366  else
367       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
368
369#ifdef __OpenBSD__
370  {
371       // limit _physical_memory memory view on OpenBSD since
372       // datasize rlimit restricts us anyway.
373       struct rlimit limits;
374       getrlimit(RLIMIT_DATA, &limits);
375       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
376  }
377#endif
378}
379#else
380void os::Bsd::initialize_system_info() {
381  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
382  if (processor_count() == 1) {
383    pid_t pid = os::Bsd::gettid();
384    char fname[32];
385    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
386    FILE *fp = fopen(fname, "r");
387    if (fp == NULL) {
388      unsafe_chroot_detected = true;
389    } else {
390      fclose(fp);
391    }
392  }
393  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
394  assert(processor_count() > 0, "bsd error");
395}
396#endif
397
398#ifdef __APPLE__
399static const char *get_home() {
400  const char *home_dir = ::getenv("HOME");
401  if ((home_dir == NULL) || (*home_dir == '\0')) {
402    struct passwd *passwd_info = getpwuid(geteuid());
403    if (passwd_info != NULL) {
404      home_dir = passwd_info->pw_dir;
405    }
406  }
407
408  return home_dir;
409}
410#endif
411
412void os::init_system_properties_values() {
413//  char arch[12];
414//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
415
416  // The next steps are taken in the product version:
417  //
418  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
419  // This library should be located at:
420  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
421  //
422  // If "/jre/lib/" appears at the right place in the path, then we
423  // assume libjvm[_g].so is installed in a JDK and we use this path.
424  //
425  // Otherwise exit with message: "Could not create the Java virtual machine."
426  //
427  // The following extra steps are taken in the debugging version:
428  //
429  // If "/jre/lib/" does NOT appear at the right place in the path
430  // instead of exit check for $JAVA_HOME environment variable.
431  //
432  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
433  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
434  // it looks like libjvm[_g].so is installed there
435  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
436  //
437  // Otherwise exit.
438  //
439  // Important note: if the location of libjvm.so changes this
440  // code needs to be changed accordingly.
441
442  // The next few definitions allow the code to be verbatim:
443#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
444#define getenv(n) ::getenv(n)
445
446/*
447 * See ld(1):
448 *      The linker uses the following search paths to locate required
449 *      shared libraries:
450 *        1: ...
451 *        ...
452 *        7: The default directories, normally /lib and /usr/lib.
453 */
454#ifndef DEFAULT_LIBPATH
455#define DEFAULT_LIBPATH "/lib:/usr/lib"
456#endif
457
458#define EXTENSIONS_DIR  "/lib/ext"
459#define ENDORSED_DIR    "/lib/endorsed"
460#define REG_DIR         "/usr/java/packages"
461
462#ifdef __APPLE__
463#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
464#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
465        const char *user_home_dir = get_home();
466        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
467        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
468            sizeof(SYS_EXTENSIONS_DIRS);
469#endif
470
471  {
472    /* sysclasspath, java_home, dll_dir */
473    {
474        char *home_path;
475        char *dll_path;
476        char *pslash;
477        char buf[MAXPATHLEN];
478        os::jvm_path(buf, sizeof(buf));
479
480        // Found the full path to libjvm.so.
481        // Now cut the path to <java_home>/jre if we can.
482        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
483        pslash = strrchr(buf, '/');
484        if (pslash != NULL)
485            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
486        dll_path = malloc(strlen(buf) + 1);
487        if (dll_path == NULL)
488            return;
489        strcpy(dll_path, buf);
490        Arguments::set_dll_dir(dll_path);
491
492        if (pslash != NULL) {
493            pslash = strrchr(buf, '/');
494            if (pslash != NULL) {
495                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
496#ifndef __APPLE__
497                pslash = strrchr(buf, '/');
498                if (pslash != NULL)
499                    *pslash = '\0';   /* get rid of /lib */
500#endif
501            }
502        }
503
504        home_path = malloc(strlen(buf) + 1);
505        if (home_path == NULL)
506            return;
507        strcpy(home_path, buf);
508        Arguments::set_java_home(home_path);
509
510        if (!set_boot_path('/', ':'))
511            return;
512    }
513
514    /*
515     * Where to look for native libraries
516     *
517     * Note: Due to a legacy implementation, most of the library path
518     * is set in the launcher.  This was to accomodate linking restrictions
519     * on legacy Bsd implementations (which are no longer supported).
520     * Eventually, all the library path setting will be done here.
521     *
522     * However, to prevent the proliferation of improperly built native
523     * libraries, the new path component /usr/java/packages is added here.
524     * Eventually, all the library path setting will be done here.
525     */
526    {
527        char *ld_library_path;
528
529        /*
530         * Construct the invariant part of ld_library_path. Note that the
531         * space for the colon and the trailing null are provided by the
532         * nulls included by the sizeof operator (so actually we allocate
533         * a byte more than necessary).
534         */
535#ifdef __APPLE__
536        ld_library_path = (char *) malloc(system_ext_size);
537        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
538#else
539        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
540            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
541        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
542#endif
543
544        /*
545         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
546         * should always exist (until the legacy problem cited above is
547         * addressed).
548         */
549#ifdef __APPLE__
550        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
551        char *l = getenv("JAVA_LIBRARY_PATH");
552        if (l != NULL) {
553            char *t = ld_library_path;
554            /* That's +1 for the colon and +1 for the trailing '\0' */
555            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
556            sprintf(ld_library_path, "%s:%s", l, t);
557            free(t);
558        }
559
560        char *v = getenv("DYLD_LIBRARY_PATH");
561#else
562        char *v = getenv("LD_LIBRARY_PATH");
563#endif
564        if (v != NULL) {
565            char *t = ld_library_path;
566            /* That's +1 for the colon and +1 for the trailing '\0' */
567            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
568            sprintf(ld_library_path, "%s:%s", v, t);
569            free(t);
570        }
571
572#ifdef __APPLE__
573        // Apple's Java6 has "." at the beginning of java.library.path.
574        // OpenJDK on Windows has "." at the end of java.library.path.
575        // OpenJDK on Linux and Solaris don't have "." in java.library.path
576        // at all. To ease the transition from Apple's Java6 to OpenJDK7,
577        // "." is appended to the end of java.library.path. Yes, this
578        // could cause a change in behavior, but Apple's Java6 behavior
579        // can be achieved by putting "." at the beginning of the
580        // JAVA_LIBRARY_PATH environment variable.
581        {
582            char *t = ld_library_path;
583            // that's +3 for appending ":." and the trailing '\0'
584            ld_library_path = (char *) malloc(strlen(t) + 3);
585            sprintf(ld_library_path, "%s:%s", t, ".");
586            free(t);
587        }
588#endif
589
590        Arguments::set_library_path(ld_library_path);
591    }
592
593    /*
594     * Extensions directories.
595     *
596     * Note that the space for the colon and the trailing null are provided
597     * by the nulls included by the sizeof operator (so actually one byte more
598     * than necessary is allocated).
599     */
600    {
601#ifdef __APPLE__
602        char *buf = malloc(strlen(Arguments::get_java_home()) +
603            sizeof(EXTENSIONS_DIR) + system_ext_size);
604        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
605            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
606#else
607        char *buf = malloc(strlen(Arguments::get_java_home()) +
608            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
609        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
610            Arguments::get_java_home());
611#endif
612
613        Arguments::set_ext_dirs(buf);
614    }
615
616    /* Endorsed standards default directory. */
617    {
618        char * buf;
619        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
620        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
621        Arguments::set_endorsed_dirs(buf);
622    }
623  }
624
625#ifdef __APPLE__
626#undef SYS_EXTENSIONS_DIR
627#endif
628#undef malloc
629#undef getenv
630#undef EXTENSIONS_DIR
631#undef ENDORSED_DIR
632
633  // Done
634  return;
635}
636
637////////////////////////////////////////////////////////////////////////////////
638// breakpoint support
639
640void os::breakpoint() {
641  BREAKPOINT;
642}
643
644extern "C" void breakpoint() {
645  // use debugger to set breakpoint here
646}
647
648////////////////////////////////////////////////////////////////////////////////
649// signal support
650
651debug_only(static bool signal_sets_initialized = false);
652static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
653
654bool os::Bsd::is_sig_ignored(int sig) {
655      struct sigaction oact;
656      sigaction(sig, (struct sigaction*)NULL, &oact);
657      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
658                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
659      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
660           return true;
661      else
662           return false;
663}
664
665void os::Bsd::signal_sets_init() {
666  // Should also have an assertion stating we are still single-threaded.
667  assert(!signal_sets_initialized, "Already initialized");
668  // Fill in signals that are necessarily unblocked for all threads in
669  // the VM. Currently, we unblock the following signals:
670  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
671  //                         by -Xrs (=ReduceSignalUsage));
672  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
673  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
674  // the dispositions or masks wrt these signals.
675  // Programs embedding the VM that want to use the above signals for their
676  // own purposes must, at this time, use the "-Xrs" option to prevent
677  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
678  // (See bug 4345157, and other related bugs).
679  // In reality, though, unblocking these signals is really a nop, since
680  // these signals are not blocked by default.
681  sigemptyset(&unblocked_sigs);
682  sigemptyset(&allowdebug_blocked_sigs);
683  sigaddset(&unblocked_sigs, SIGILL);
684  sigaddset(&unblocked_sigs, SIGSEGV);
685  sigaddset(&unblocked_sigs, SIGBUS);
686  sigaddset(&unblocked_sigs, SIGFPE);
687  sigaddset(&unblocked_sigs, SR_signum);
688
689  if (!ReduceSignalUsage) {
690   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
691      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
692      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
693   }
694   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
695      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
696      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
697   }
698   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
699      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
700      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
701   }
702  }
703  // Fill in signals that are blocked by all but the VM thread.
704  sigemptyset(&vm_sigs);
705  if (!ReduceSignalUsage)
706    sigaddset(&vm_sigs, BREAK_SIGNAL);
707  debug_only(signal_sets_initialized = true);
708
709}
710
711// These are signals that are unblocked while a thread is running Java.
712// (For some reason, they get blocked by default.)
713sigset_t* os::Bsd::unblocked_signals() {
714  assert(signal_sets_initialized, "Not initialized");
715  return &unblocked_sigs;
716}
717
718// These are the signals that are blocked while a (non-VM) thread is
719// running Java. Only the VM thread handles these signals.
720sigset_t* os::Bsd::vm_signals() {
721  assert(signal_sets_initialized, "Not initialized");
722  return &vm_sigs;
723}
724
725// These are signals that are blocked during cond_wait to allow debugger in
726sigset_t* os::Bsd::allowdebug_blocked_signals() {
727  assert(signal_sets_initialized, "Not initialized");
728  return &allowdebug_blocked_sigs;
729}
730
731void os::Bsd::hotspot_sigmask(Thread* thread) {
732
733  //Save caller's signal mask before setting VM signal mask
734  sigset_t caller_sigmask;
735  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
736
737  OSThread* osthread = thread->osthread();
738  osthread->set_caller_sigmask(caller_sigmask);
739
740  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
741
742  if (!ReduceSignalUsage) {
743    if (thread->is_VM_thread()) {
744      // Only the VM thread handles BREAK_SIGNAL ...
745      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
746    } else {
747      // ... all other threads block BREAK_SIGNAL
748      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
749    }
750  }
751}
752
753#ifndef _ALLBSD_SOURCE
754//////////////////////////////////////////////////////////////////////////////
755// detecting pthread library
756
757void os::Bsd::libpthread_init() {
758  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
759  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
760  // generic name for earlier versions.
761  // Define macros here so we can build HotSpot on old systems.
762# ifndef _CS_GNU_LIBC_VERSION
763# define _CS_GNU_LIBC_VERSION 2
764# endif
765# ifndef _CS_GNU_LIBPTHREAD_VERSION
766# define _CS_GNU_LIBPTHREAD_VERSION 3
767# endif
768
769  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
770  if (n > 0) {
771     char *str = (char *)malloc(n);
772     confstr(_CS_GNU_LIBC_VERSION, str, n);
773     os::Bsd::set_glibc_version(str);
774  } else {
775     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
776     static char _gnu_libc_version[32];
777     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
778              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
779     os::Bsd::set_glibc_version(_gnu_libc_version);
780  }
781
782  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
783  if (n > 0) {
784     char *str = (char *)malloc(n);
785     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
786     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
787     // us "NPTL-0.29" even we are running with BsdThreads. Check if this
788     // is the case. BsdThreads has a hard limit on max number of threads.
789     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
790     // On the other hand, NPTL does not have such a limit, sysconf()
791     // will return -1 and errno is not changed. Check if it is really NPTL.
792     if (strcmp(os::Bsd::glibc_version(), "glibc 2.3.2") == 0 &&
793         strstr(str, "NPTL") &&
794         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
795       free(str);
796       os::Bsd::set_libpthread_version("bsdthreads");
797     } else {
798       os::Bsd::set_libpthread_version(str);
799     }
800  } else {
801    // glibc before 2.3.2 only has BsdThreads.
802    os::Bsd::set_libpthread_version("bsdthreads");
803  }
804
805  if (strstr(libpthread_version(), "NPTL")) {
806     os::Bsd::set_is_NPTL();
807  } else {
808     os::Bsd::set_is_BsdThreads();
809  }
810
811  // BsdThreads have two flavors: floating-stack mode, which allows variable
812  // stack size; and fixed-stack mode. NPTL is always floating-stack.
813  if (os::Bsd::is_NPTL() || os::Bsd::supports_variable_stack_size()) {
814     os::Bsd::set_is_floating_stack();
815  }
816}
817
818/////////////////////////////////////////////////////////////////////////////
819// thread stack
820
821// Force Bsd kernel to expand current thread stack. If "bottom" is close
822// to the stack guard, caller should block all signals.
823//
824// MAP_GROWSDOWN:
825//   A special mmap() flag that is used to implement thread stacks. It tells
826//   kernel that the memory region should extend downwards when needed. This
827//   allows early versions of BsdThreads to only mmap the first few pages
828//   when creating a new thread. Bsd kernel will automatically expand thread
829//   stack as needed (on page faults).
830//
831//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
832//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
833//   region, it's hard to tell if the fault is due to a legitimate stack
834//   access or because of reading/writing non-exist memory (e.g. buffer
835//   overrun). As a rule, if the fault happens below current stack pointer,
836//   Bsd kernel does not expand stack, instead a SIGSEGV is sent to the
837//   application (see Bsd kernel fault.c).
838//
839//   This Bsd feature can cause SIGSEGV when VM bangs thread stack for
840//   stack overflow detection.
841//
842//   Newer version of BsdThreads (since glibc-2.2, or, RH-7.x) and NPTL do
843//   not use this flag. However, the stack of initial thread is not created
844//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
845//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
846//   and then attach the thread to JVM.
847//
848// To get around the problem and allow stack banging on Bsd, we need to
849// manually expand thread stack after receiving the SIGSEGV.
850//
851// There are two ways to expand thread stack to address "bottom", we used
852// both of them in JVM before 1.5:
853//   1. adjust stack pointer first so that it is below "bottom", and then
854//      touch "bottom"
855//   2. mmap() the page in question
856//
857// Now alternate signal stack is gone, it's harder to use 2. For instance,
858// if current sp is already near the lower end of page 101, and we need to
859// call mmap() to map page 100, it is possible that part of the mmap() frame
860// will be placed in page 100. When page 100 is mapped, it is zero-filled.
861// That will destroy the mmap() frame and cause VM to crash.
862//
863// The following code works by adjusting sp first, then accessing the "bottom"
864// page to force a page fault. Bsd kernel will then automatically expand the
865// stack mapping.
866//
867// _expand_stack_to() assumes its frame size is less than page size, which
868// should always be true if the function is not inlined.
869
870#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
871#define NOINLINE
872#else
873#define NOINLINE __attribute__ ((noinline))
874#endif
875
876static void _expand_stack_to(address bottom) NOINLINE;
877
878static void _expand_stack_to(address bottom) {
879  address sp;
880  size_t size;
881  volatile char *p;
882
883  // Adjust bottom to point to the largest address within the same page, it
884  // gives us a one-page buffer if alloca() allocates slightly more memory.
885  bottom = (address)align_size_down((uintptr_t)bottom, os::Bsd::page_size());
886  bottom += os::Bsd::page_size() - 1;
887
888  // sp might be slightly above current stack pointer; if that's the case, we
889  // will alloca() a little more space than necessary, which is OK. Don't use
890  // os::current_stack_pointer(), as its result can be slightly below current
891  // stack pointer, causing us to not alloca enough to reach "bottom".
892  sp = (address)&sp;
893
894  if (sp > bottom) {
895    size = sp - bottom;
896    p = (volatile char *)alloca(size);
897    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
898    p[0] = '\0';
899  }
900}
901
902bool os::Bsd::manually_expand_stack(JavaThread * t, address addr) {
903  assert(t!=NULL, "just checking");
904  assert(t->osthread()->expanding_stack(), "expand should be set");
905  assert(t->stack_base() != NULL, "stack_base was not initialized");
906
907  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
908    sigset_t mask_all, old_sigset;
909    sigfillset(&mask_all);
910    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
911    _expand_stack_to(addr);
912    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
913    return true;
914  }
915  return false;
916}
917#endif
918
919//////////////////////////////////////////////////////////////////////////////
920// create new thread
921
922static address highest_vm_reserved_address();
923
924// check if it's safe to start a new thread
925static bool _thread_safety_check(Thread* thread) {
926#ifdef _ALLBSD_SOURCE
927    return true;
928#else
929  if (os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack()) {
930    // Fixed stack BsdThreads (SuSE Bsd/x86, and some versions of Redhat)
931    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
932    //   allocated (MAP_FIXED) from high address space. Every thread stack
933    //   occupies a fixed size slot (usually 2Mbytes, but user can change
934    //   it to other values if they rebuild BsdThreads).
935    //
936    // Problem with MAP_FIXED is that mmap() can still succeed even part of
937    // the memory region has already been mmap'ed. That means if we have too
938    // many threads and/or very large heap, eventually thread stack will
939    // collide with heap.
940    //
941    // Here we try to prevent heap/stack collision by comparing current
942    // stack bottom with the highest address that has been mmap'ed by JVM
943    // plus a safety margin for memory maps created by native code.
944    //
945    // This feature can be disabled by setting ThreadSafetyMargin to 0
946    //
947    if (ThreadSafetyMargin > 0) {
948      address stack_bottom = os::current_stack_base() - os::current_stack_size();
949
950      // not safe if our stack extends below the safety margin
951      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
952    } else {
953      return true;
954    }
955  } else {
956    // Floating stack BsdThreads or NPTL:
957    //   Unlike fixed stack BsdThreads, thread stacks are not MAP_FIXED. When
958    //   there's not enough space left, pthread_create() will fail. If we come
959    //   here, that means enough space has been reserved for stack.
960    return true;
961  }
962#endif
963}
964
965#ifdef __APPLE__
966// library handle for calling objc_registerThreadWithCollector()
967// without static linking to the libobjc library
968#define OBJC_LIB "/usr/lib/libobjc.dylib"
969#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
970typedef void (*objc_registerThreadWithCollector_t)();
971extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
972objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
973#endif
974
975// Thread start routine for all newly created threads
976static void *java_start(Thread *thread) {
977  // Try to randomize the cache line index of hot stack frames.
978  // This helps when threads of the same stack traces evict each other's
979  // cache lines. The threads can be either from the same JVM instance, or
980  // from different JVM instances. The benefit is especially true for
981  // processors with hyperthreading technology.
982  static int counter = 0;
983  int pid = os::current_process_id();
984  alloca(((pid ^ counter++) & 7) * 128);
985
986  ThreadLocalStorage::set_thread(thread);
987
988  OSThread* osthread = thread->osthread();
989  Monitor* sync = osthread->startThread_lock();
990
991  // non floating stack BsdThreads needs extra check, see above
992  if (!_thread_safety_check(thread)) {
993    // notify parent thread
994    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
995    osthread->set_state(ZOMBIE);
996    sync->notify_all();
997    return NULL;
998  }
999
1000#ifdef _ALLBSD_SOURCE
1001#ifdef __APPLE__
1002  // thread_id is mach thread on macos
1003  osthread->set_thread_id(::mach_thread_self());
1004#else
1005  // thread_id is pthread_id on BSD
1006  osthread->set_thread_id(::pthread_self());
1007#endif
1008#else
1009  // thread_id is kernel thread id (similar to Solaris LWP id)
1010  osthread->set_thread_id(os::Bsd::gettid());
1011
1012  if (UseNUMA) {
1013    int lgrp_id = os::numa_get_group_id();
1014    if (lgrp_id != -1) {
1015      thread->set_lgrp_id(lgrp_id);
1016    }
1017  }
1018#endif
1019  // initialize signal mask for this thread
1020  os::Bsd::hotspot_sigmask(thread);
1021
1022  // initialize floating point control register
1023  os::Bsd::init_thread_fpu_state();
1024
1025#ifdef __APPLE__
1026  // register thread with objc gc
1027  if (objc_registerThreadWithCollectorFunction != NULL) {
1028    objc_registerThreadWithCollectorFunction();
1029  }
1030#endif
1031
1032  // handshaking with parent thread
1033  {
1034    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
1035
1036    // notify parent thread
1037    osthread->set_state(INITIALIZED);
1038    sync->notify_all();
1039
1040    // wait until os::start_thread()
1041    while (osthread->get_state() == INITIALIZED) {
1042      sync->wait(Mutex::_no_safepoint_check_flag);
1043    }
1044  }
1045
1046  // call one more level start routine
1047  thread->run();
1048
1049  return 0;
1050}
1051
1052bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1053  assert(thread->osthread() == NULL, "caller responsible");
1054
1055  // Allocate the OSThread object
1056  OSThread* osthread = new OSThread(NULL, NULL);
1057  if (osthread == NULL) {
1058    return false;
1059  }
1060
1061  // set the correct thread state
1062  osthread->set_thread_type(thr_type);
1063
1064  // Initial state is ALLOCATED but not INITIALIZED
1065  osthread->set_state(ALLOCATED);
1066
1067  thread->set_osthread(osthread);
1068
1069  // init thread attributes
1070  pthread_attr_t attr;
1071  pthread_attr_init(&attr);
1072  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
1073
1074  // stack size
1075  if (os::Bsd::supports_variable_stack_size()) {
1076    // calculate stack size if it's not specified by caller
1077    if (stack_size == 0) {
1078      stack_size = os::Bsd::default_stack_size(thr_type);
1079
1080      switch (thr_type) {
1081      case os::java_thread:
1082        // Java threads use ThreadStackSize which default value can be
1083        // changed with the flag -Xss
1084        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
1085        stack_size = JavaThread::stack_size_at_create();
1086        break;
1087      case os::compiler_thread:
1088        if (CompilerThreadStackSize > 0) {
1089          stack_size = (size_t)(CompilerThreadStackSize * K);
1090          break;
1091        } // else fall through:
1092          // use VMThreadStackSize if CompilerThreadStackSize is not defined
1093      case os::vm_thread:
1094      case os::pgc_thread:
1095      case os::cgc_thread:
1096      case os::watcher_thread:
1097        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1098        break;
1099      }
1100    }
1101
1102    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
1103    pthread_attr_setstacksize(&attr, stack_size);
1104  } else {
1105    // let pthread_create() pick the default value.
1106  }
1107
1108#ifndef _ALLBSD_SOURCE
1109  // glibc guard page
1110  pthread_attr_setguardsize(&attr, os::Bsd::default_guard_size(thr_type));
1111#endif
1112
1113  ThreadState state;
1114
1115  {
1116
1117#ifndef _ALLBSD_SOURCE
1118    // Serialize thread creation if we are running with fixed stack BsdThreads
1119    bool lock = os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack();
1120    if (lock) {
1121      os::Bsd::createThread_lock()->lock_without_safepoint_check();
1122    }
1123#endif
1124
1125    pthread_t tid;
1126    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1127
1128    pthread_attr_destroy(&attr);
1129
1130    if (ret != 0) {
1131      if (PrintMiscellaneous && (Verbose || WizardMode)) {
1132        perror("pthread_create()");
1133      }
1134      // Need to clean up stuff we've allocated so far
1135      thread->set_osthread(NULL);
1136      delete osthread;
1137#ifndef _ALLBSD_SOURCE
1138      if (lock) os::Bsd::createThread_lock()->unlock();
1139#endif
1140      return false;
1141    }
1142
1143    // Store pthread info into the OSThread
1144    osthread->set_pthread_id(tid);
1145
1146    // Wait until child thread is either initialized or aborted
1147    {
1148      Monitor* sync_with_child = osthread->startThread_lock();
1149      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1150      while ((state = osthread->get_state()) == ALLOCATED) {
1151        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
1152      }
1153    }
1154
1155#ifndef _ALLBSD_SOURCE
1156    if (lock) {
1157      os::Bsd::createThread_lock()->unlock();
1158    }
1159#endif
1160  }
1161
1162  // Aborted due to thread limit being reached
1163  if (state == ZOMBIE) {
1164      thread->set_osthread(NULL);
1165      delete osthread;
1166      return false;
1167  }
1168
1169  // The thread is returned suspended (in state INITIALIZED),
1170  // and is started higher up in the call chain
1171  assert(state == INITIALIZED, "race condition");
1172  return true;
1173}
1174
1175/////////////////////////////////////////////////////////////////////////////
1176// attach existing thread
1177
1178// bootstrap the main thread
1179bool os::create_main_thread(JavaThread* thread) {
1180  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
1181  return create_attached_thread(thread);
1182}
1183
1184bool os::create_attached_thread(JavaThread* thread) {
1185#ifdef ASSERT
1186    thread->verify_not_published();
1187#endif
1188
1189  // Allocate the OSThread object
1190  OSThread* osthread = new OSThread(NULL, NULL);
1191
1192  if (osthread == NULL) {
1193    return false;
1194  }
1195
1196  // Store pthread info into the OSThread
1197#ifdef _ALLBSD_SOURCE
1198#ifdef __APPLE__
1199  osthread->set_thread_id(::mach_thread_self());
1200#else
1201  osthread->set_thread_id(::pthread_self());
1202#endif
1203#else
1204  osthread->set_thread_id(os::Bsd::gettid());
1205#endif
1206  osthread->set_pthread_id(::pthread_self());
1207
1208  // initialize floating point control register
1209  os::Bsd::init_thread_fpu_state();
1210
1211  // Initial thread state is RUNNABLE
1212  osthread->set_state(RUNNABLE);
1213
1214  thread->set_osthread(osthread);
1215
1216#ifndef _ALLBSD_SOURCE
1217  if (UseNUMA) {
1218    int lgrp_id = os::numa_get_group_id();
1219    if (lgrp_id != -1) {
1220      thread->set_lgrp_id(lgrp_id);
1221    }
1222  }
1223
1224  if (os::Bsd::is_initial_thread()) {
1225    // If current thread is initial thread, its stack is mapped on demand,
1226    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1227    // the entire stack region to avoid SEGV in stack banging.
1228    // It is also useful to get around the heap-stack-gap problem on SuSE
1229    // kernel (see 4821821 for details). We first expand stack to the top
1230    // of yellow zone, then enable stack yellow zone (order is significant,
1231    // enabling yellow zone first will crash JVM on SuSE Bsd), so there
1232    // is no gap between the last two virtual memory regions.
1233
1234    JavaThread *jt = (JavaThread *)thread;
1235    address addr = jt->stack_yellow_zone_base();
1236    assert(addr != NULL, "initialization problem?");
1237    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1238
1239    osthread->set_expanding_stack();
1240    os::Bsd::manually_expand_stack(jt, addr);
1241    osthread->clear_expanding_stack();
1242  }
1243#endif
1244
1245  // initialize signal mask for this thread
1246  // and save the caller's signal mask
1247  os::Bsd::hotspot_sigmask(thread);
1248
1249  return true;
1250}
1251
1252void os::pd_start_thread(Thread* thread) {
1253  OSThread * osthread = thread->osthread();
1254  assert(osthread->get_state() != INITIALIZED, "just checking");
1255  Monitor* sync_with_child = osthread->startThread_lock();
1256  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1257  sync_with_child->notify();
1258}
1259
1260// Free Bsd resources related to the OSThread
1261void os::free_thread(OSThread* osthread) {
1262  assert(osthread != NULL, "osthread not set");
1263
1264  if (Thread::current()->osthread() == osthread) {
1265    // Restore caller's signal mask
1266    sigset_t sigmask = osthread->caller_sigmask();
1267    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1268   }
1269
1270  delete osthread;
1271}
1272
1273//////////////////////////////////////////////////////////////////////////////
1274// thread local storage
1275
1276int os::allocate_thread_local_storage() {
1277  pthread_key_t key;
1278  int rslt = pthread_key_create(&key, NULL);
1279  assert(rslt == 0, "cannot allocate thread local storage");
1280  return (int)key;
1281}
1282
1283// Note: This is currently not used by VM, as we don't destroy TLS key
1284// on VM exit.
1285void os::free_thread_local_storage(int index) {
1286  int rslt = pthread_key_delete((pthread_key_t)index);
1287  assert(rslt == 0, "invalid index");
1288}
1289
1290void os::thread_local_storage_at_put(int index, void* value) {
1291  int rslt = pthread_setspecific((pthread_key_t)index, value);
1292  assert(rslt == 0, "pthread_setspecific failed");
1293}
1294
1295extern "C" Thread* get_thread() {
1296  return ThreadLocalStorage::thread();
1297}
1298
1299//////////////////////////////////////////////////////////////////////////////
1300// initial thread
1301
1302#ifndef _ALLBSD_SOURCE
1303// Check if current thread is the initial thread, similar to Solaris thr_main.
1304bool os::Bsd::is_initial_thread(void) {
1305  char dummy;
1306  // If called before init complete, thread stack bottom will be null.
1307  // Can be called if fatal error occurs before initialization.
1308  if (initial_thread_stack_bottom() == NULL) return false;
1309  assert(initial_thread_stack_bottom() != NULL &&
1310         initial_thread_stack_size()   != 0,
1311         "os::init did not locate initial thread's stack region");
1312  if ((address)&dummy >= initial_thread_stack_bottom() &&
1313      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1314       return true;
1315  else return false;
1316}
1317
1318// Find the virtual memory area that contains addr
1319static bool find_vma(address addr, address* vma_low, address* vma_high) {
1320  FILE *fp = fopen("/proc/self/maps", "r");
1321  if (fp) {
1322    address low, high;
1323    while (!feof(fp)) {
1324      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1325        if (low <= addr && addr < high) {
1326           if (vma_low)  *vma_low  = low;
1327           if (vma_high) *vma_high = high;
1328           fclose (fp);
1329           return true;
1330        }
1331      }
1332      for (;;) {
1333        int ch = fgetc(fp);
1334        if (ch == EOF || ch == (int)'\n') break;
1335      }
1336    }
1337    fclose(fp);
1338  }
1339  return false;
1340}
1341
1342// Locate initial thread stack. This special handling of initial thread stack
1343// is needed because pthread_getattr_np() on most (all?) Bsd distros returns
1344// bogus value for initial thread.
1345void os::Bsd::capture_initial_stack(size_t max_size) {
1346  // stack size is the easy part, get it from RLIMIT_STACK
1347  size_t stack_size;
1348  struct rlimit rlim;
1349  getrlimit(RLIMIT_STACK, &rlim);
1350  stack_size = rlim.rlim_cur;
1351
1352  // 6308388: a bug in ld.so will relocate its own .data section to the
1353  //   lower end of primordial stack; reduce ulimit -s value a little bit
1354  //   so we won't install guard page on ld.so's data section.
1355  stack_size -= 2 * page_size();
1356
1357  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1358  //   7.1, in both cases we will get 2G in return value.
1359  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1360  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1361  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1362  //   in case other parts in glibc still assumes 2M max stack size.
1363  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1364#ifndef IA64
1365  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1366#else
1367  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1368  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1369#endif
1370
1371  // Try to figure out where the stack base (top) is. This is harder.
1372  //
1373  // When an application is started, glibc saves the initial stack pointer in
1374  // a global variable "__libc_stack_end", which is then used by system
1375  // libraries. __libc_stack_end should be pretty close to stack top. The
1376  // variable is available since the very early days. However, because it is
1377  // a private interface, it could disappear in the future.
1378  //
1379  // Bsd kernel saves start_stack information in /proc/<pid>/stat. Similar
1380  // to __libc_stack_end, it is very close to stack top, but isn't the real
1381  // stack top. Note that /proc may not exist if VM is running as a chroot
1382  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1383  // /proc/<pid>/stat could change in the future (though unlikely).
1384  //
1385  // We try __libc_stack_end first. If that doesn't work, look for
1386  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1387  // as a hint, which should work well in most cases.
1388
1389  uintptr_t stack_start;
1390
1391  // try __libc_stack_end first
1392  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1393  if (p && *p) {
1394    stack_start = *p;
1395  } else {
1396    // see if we can get the start_stack field from /proc/self/stat
1397    FILE *fp;
1398    int pid;
1399    char state;
1400    int ppid;
1401    int pgrp;
1402    int session;
1403    int nr;
1404    int tpgrp;
1405    unsigned long flags;
1406    unsigned long minflt;
1407    unsigned long cminflt;
1408    unsigned long majflt;
1409    unsigned long cmajflt;
1410    unsigned long utime;
1411    unsigned long stime;
1412    long cutime;
1413    long cstime;
1414    long prio;
1415    long nice;
1416    long junk;
1417    long it_real;
1418    uintptr_t start;
1419    uintptr_t vsize;
1420    intptr_t rss;
1421    uintptr_t rsslim;
1422    uintptr_t scodes;
1423    uintptr_t ecode;
1424    int i;
1425
1426    // Figure what the primordial thread stack base is. Code is inspired
1427    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1428    // followed by command name surrounded by parentheses, state, etc.
1429    char stat[2048];
1430    int statlen;
1431
1432    fp = fopen("/proc/self/stat", "r");
1433    if (fp) {
1434      statlen = fread(stat, 1, 2047, fp);
1435      stat[statlen] = '\0';
1436      fclose(fp);
1437
1438      // Skip pid and the command string. Note that we could be dealing with
1439      // weird command names, e.g. user could decide to rename java launcher
1440      // to "java 1.4.2 :)", then the stat file would look like
1441      //                1234 (java 1.4.2 :)) R ... ...
1442      // We don't really need to know the command string, just find the last
1443      // occurrence of ")" and then start parsing from there. See bug 4726580.
1444      char * s = strrchr(stat, ')');
1445
1446      i = 0;
1447      if (s) {
1448        // Skip blank chars
1449        do s++; while (isspace(*s));
1450
1451#define _UFM UINTX_FORMAT
1452#define _DFM INTX_FORMAT
1453
1454        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1455        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1456        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1457             &state,          /* 3  %c  */
1458             &ppid,           /* 4  %d  */
1459             &pgrp,           /* 5  %d  */
1460             &session,        /* 6  %d  */
1461             &nr,             /* 7  %d  */
1462             &tpgrp,          /* 8  %d  */
1463             &flags,          /* 9  %lu  */
1464             &minflt,         /* 10 %lu  */
1465             &cminflt,        /* 11 %lu  */
1466             &majflt,         /* 12 %lu  */
1467             &cmajflt,        /* 13 %lu  */
1468             &utime,          /* 14 %lu  */
1469             &stime,          /* 15 %lu  */
1470             &cutime,         /* 16 %ld  */
1471             &cstime,         /* 17 %ld  */
1472             &prio,           /* 18 %ld  */
1473             &nice,           /* 19 %ld  */
1474             &junk,           /* 20 %ld  */
1475             &it_real,        /* 21 %ld  */
1476             &start,          /* 22 UINTX_FORMAT */
1477             &vsize,          /* 23 UINTX_FORMAT */
1478             &rss,            /* 24 INTX_FORMAT  */
1479             &rsslim,         /* 25 UINTX_FORMAT */
1480             &scodes,         /* 26 UINTX_FORMAT */
1481             &ecode,          /* 27 UINTX_FORMAT */
1482             &stack_start);   /* 28 UINTX_FORMAT */
1483      }
1484
1485#undef _UFM
1486#undef _DFM
1487
1488      if (i != 28 - 2) {
1489         assert(false, "Bad conversion from /proc/self/stat");
1490         // product mode - assume we are the initial thread, good luck in the
1491         // embedded case.
1492         warning("Can't detect initial thread stack location - bad conversion");
1493         stack_start = (uintptr_t) &rlim;
1494      }
1495    } else {
1496      // For some reason we can't open /proc/self/stat (for example, running on
1497      // FreeBSD with a Bsd emulator, or inside chroot), this should work for
1498      // most cases, so don't abort:
1499      warning("Can't detect initial thread stack location - no /proc/self/stat");
1500      stack_start = (uintptr_t) &rlim;
1501    }
1502  }
1503
1504  // Now we have a pointer (stack_start) very close to the stack top, the
1505  // next thing to do is to figure out the exact location of stack top. We
1506  // can find out the virtual memory area that contains stack_start by
1507  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1508  // and its upper limit is the real stack top. (again, this would fail if
1509  // running inside chroot, because /proc may not exist.)
1510
1511  uintptr_t stack_top;
1512  address low, high;
1513  if (find_vma((address)stack_start, &low, &high)) {
1514    // success, "high" is the true stack top. (ignore "low", because initial
1515    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1516    stack_top = (uintptr_t)high;
1517  } else {
1518    // failed, likely because /proc/self/maps does not exist
1519    warning("Can't detect initial thread stack location - find_vma failed");
1520    // best effort: stack_start is normally within a few pages below the real
1521    // stack top, use it as stack top, and reduce stack size so we won't put
1522    // guard page outside stack.
1523    stack_top = stack_start;
1524    stack_size -= 16 * page_size();
1525  }
1526
1527  // stack_top could be partially down the page so align it
1528  stack_top = align_size_up(stack_top, page_size());
1529
1530  if (max_size && stack_size > max_size) {
1531     _initial_thread_stack_size = max_size;
1532  } else {
1533     _initial_thread_stack_size = stack_size;
1534  }
1535
1536  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1537  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1538}
1539#endif
1540
1541////////////////////////////////////////////////////////////////////////////////
1542// time support
1543
1544// Time since start-up in seconds to a fine granularity.
1545// Used by VMSelfDestructTimer and the MemProfiler.
1546double os::elapsedTime() {
1547
1548  return (double)(os::elapsed_counter()) * 0.000001;
1549}
1550
1551jlong os::elapsed_counter() {
1552  timeval time;
1553  int status = gettimeofday(&time, NULL);
1554  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1555}
1556
1557jlong os::elapsed_frequency() {
1558  return (1000 * 1000);
1559}
1560
1561// XXX: For now, code this as if BSD does not support vtime.
1562bool os::supports_vtime() { return false; }
1563bool os::enable_vtime()   { return false; }
1564bool os::vtime_enabled()  { return false; }
1565double os::elapsedVTime() {
1566  // better than nothing, but not much
1567  return elapsedTime();
1568}
1569
1570jlong os::javaTimeMillis() {
1571  timeval time;
1572  int status = gettimeofday(&time, NULL);
1573  assert(status != -1, "bsd error");
1574  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1575}
1576
1577#ifndef CLOCK_MONOTONIC
1578#define CLOCK_MONOTONIC (1)
1579#endif
1580
1581#ifdef __APPLE__
1582void os::Bsd::clock_init() {
1583        // XXXDARWIN: Investigate replacement monotonic clock
1584}
1585#elif defined(_ALLBSD_SOURCE)
1586void os::Bsd::clock_init() {
1587  struct timespec res;
1588  struct timespec tp;
1589  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1590      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1591    // yes, monotonic clock is supported
1592    _clock_gettime = ::clock_gettime;
1593  }
1594}
1595#else
1596void os::Bsd::clock_init() {
1597  // we do dlopen's in this particular order due to bug in bsd
1598  // dynamical loader (see 6348968) leading to crash on exit
1599  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1600  if (handle == NULL) {
1601    handle = dlopen("librt.so", RTLD_LAZY);
1602  }
1603
1604  if (handle) {
1605    int (*clock_getres_func)(clockid_t, struct timespec*) =
1606           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1607    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1608           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1609    if (clock_getres_func && clock_gettime_func) {
1610      // See if monotonic clock is supported by the kernel. Note that some
1611      // early implementations simply return kernel jiffies (updated every
1612      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1613      // for nano time (though the monotonic property is still nice to have).
1614      // It's fixed in newer kernels, however clock_getres() still returns
1615      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1616      // resolution for now. Hopefully as people move to new kernels, this
1617      // won't be a problem.
1618      struct timespec res;
1619      struct timespec tp;
1620      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1621          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1622        // yes, monotonic clock is supported
1623        _clock_gettime = clock_gettime_func;
1624      } else {
1625        // close librt if there is no monotonic clock
1626        dlclose(handle);
1627      }
1628    }
1629  }
1630}
1631#endif
1632
1633#ifndef _ALLBSD_SOURCE
1634#ifndef SYS_clock_getres
1635
1636#if defined(IA32) || defined(AMD64)
1637#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1638#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1639#else
1640#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1641#define sys_clock_getres(x,y)  -1
1642#endif
1643
1644#else
1645#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1646#endif
1647
1648void os::Bsd::fast_thread_clock_init() {
1649  if (!UseBsdPosixThreadCPUClocks) {
1650    return;
1651  }
1652  clockid_t clockid;
1653  struct timespec tp;
1654  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1655      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1656
1657  // Switch to using fast clocks for thread cpu time if
1658  // the sys_clock_getres() returns 0 error code.
1659  // Note, that some kernels may support the current thread
1660  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1661  // returned by the pthread_getcpuclockid().
1662  // If the fast Posix clocks are supported then the sys_clock_getres()
1663  // must return at least tp.tv_sec == 0 which means a resolution
1664  // better than 1 sec. This is extra check for reliability.
1665
1666  if(pthread_getcpuclockid_func &&
1667     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1668     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1669
1670    _supports_fast_thread_cpu_time = true;
1671    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1672  }
1673}
1674#endif
1675
1676jlong os::javaTimeNanos() {
1677  if (Bsd::supports_monotonic_clock()) {
1678    struct timespec tp;
1679    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1680    assert(status == 0, "gettime error");
1681    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1682    return result;
1683  } else {
1684    timeval time;
1685    int status = gettimeofday(&time, NULL);
1686    assert(status != -1, "bsd error");
1687    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1688    return 1000 * usecs;
1689  }
1690}
1691
1692void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1693  if (Bsd::supports_monotonic_clock()) {
1694    info_ptr->max_value = ALL_64_BITS;
1695
1696    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1697    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1698    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1699  } else {
1700    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1701    info_ptr->max_value = ALL_64_BITS;
1702
1703    // gettimeofday is a real time clock so it skips
1704    info_ptr->may_skip_backward = true;
1705    info_ptr->may_skip_forward = true;
1706  }
1707
1708  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1709}
1710
1711// Return the real, user, and system times in seconds from an
1712// arbitrary fixed point in the past.
1713bool os::getTimesSecs(double* process_real_time,
1714                      double* process_user_time,
1715                      double* process_system_time) {
1716  struct tms ticks;
1717  clock_t real_ticks = times(&ticks);
1718
1719  if (real_ticks == (clock_t) (-1)) {
1720    return false;
1721  } else {
1722    double ticks_per_second = (double) clock_tics_per_sec;
1723    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1724    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1725    *process_real_time = ((double) real_ticks) / ticks_per_second;
1726
1727    return true;
1728  }
1729}
1730
1731
1732char * os::local_time_string(char *buf, size_t buflen) {
1733  struct tm t;
1734  time_t long_time;
1735  time(&long_time);
1736  localtime_r(&long_time, &t);
1737  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1738               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1739               t.tm_hour, t.tm_min, t.tm_sec);
1740  return buf;
1741}
1742
1743struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1744  return localtime_r(clock, res);
1745}
1746
1747////////////////////////////////////////////////////////////////////////////////
1748// runtime exit support
1749
1750// Note: os::shutdown() might be called very early during initialization, or
1751// called from signal handler. Before adding something to os::shutdown(), make
1752// sure it is async-safe and can handle partially initialized VM.
1753void os::shutdown() {
1754
1755  // allow PerfMemory to attempt cleanup of any persistent resources
1756  perfMemory_exit();
1757
1758  // needs to remove object in file system
1759  AttachListener::abort();
1760
1761  // flush buffered output, finish log files
1762  ostream_abort();
1763
1764  // Check for abort hook
1765  abort_hook_t abort_hook = Arguments::abort_hook();
1766  if (abort_hook != NULL) {
1767    abort_hook();
1768  }
1769
1770}
1771
1772// Note: os::abort() might be called very early during initialization, or
1773// called from signal handler. Before adding something to os::abort(), make
1774// sure it is async-safe and can handle partially initialized VM.
1775void os::abort(bool dump_core) {
1776  os::shutdown();
1777  if (dump_core) {
1778#ifndef PRODUCT
1779    fdStream out(defaultStream::output_fd());
1780    out.print_raw("Current thread is ");
1781    char buf[16];
1782    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1783    out.print_raw_cr(buf);
1784    out.print_raw_cr("Dumping core ...");
1785#endif
1786    ::abort(); // dump core
1787  }
1788
1789  ::exit(1);
1790}
1791
1792// Die immediately, no exit hook, no abort hook, no cleanup.
1793void os::die() {
1794  // _exit() on BsdThreads only kills current thread
1795  ::abort();
1796}
1797
1798// unused on bsd for now.
1799void os::set_error_file(const char *logfile) {}
1800
1801
1802// This method is a copy of JDK's sysGetLastErrorString
1803// from src/solaris/hpi/src/system_md.c
1804
1805size_t os::lasterror(char *buf, size_t len) {
1806
1807  if (errno == 0)  return 0;
1808
1809  const char *s = ::strerror(errno);
1810  size_t n = ::strlen(s);
1811  if (n >= len) {
1812    n = len - 1;
1813  }
1814  ::strncpy(buf, s, n);
1815  buf[n] = '\0';
1816  return n;
1817}
1818
1819intx os::current_thread_id() {
1820#ifdef __APPLE__
1821  return (intx)::mach_thread_self();
1822#else
1823  return (intx)::pthread_self();
1824#endif
1825}
1826int os::current_process_id() {
1827
1828  // Under the old bsd thread library, bsd gives each thread
1829  // its own process id. Because of this each thread will return
1830  // a different pid if this method were to return the result
1831  // of getpid(2). Bsd provides no api that returns the pid
1832  // of the launcher thread for the vm. This implementation
1833  // returns a unique pid, the pid of the launcher thread
1834  // that starts the vm 'process'.
1835
1836  // Under the NPTL, getpid() returns the same pid as the
1837  // launcher thread rather than a unique pid per thread.
1838  // Use gettid() if you want the old pre NPTL behaviour.
1839
1840  // if you are looking for the result of a call to getpid() that
1841  // returns a unique pid for the calling thread, then look at the
1842  // OSThread::thread_id() method in osThread_bsd.hpp file
1843
1844  return (int)(_initial_pid ? _initial_pid : getpid());
1845}
1846
1847// DLL functions
1848
1849#define JNI_LIB_PREFIX "lib"
1850#ifdef __APPLE__
1851#define JNI_LIB_SUFFIX ".dylib"
1852#else
1853#define JNI_LIB_SUFFIX ".so"
1854#endif
1855
1856const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1857
1858// This must be hard coded because it's the system's temporary
1859// directory not the java application's temp directory, ala java.io.tmpdir.
1860#ifdef __APPLE__
1861// macosx has a secure per-user temporary directory
1862char temp_path_storage[PATH_MAX];
1863const char* os::get_temp_directory() {
1864  static char *temp_path = NULL;
1865  if (temp_path == NULL) {
1866    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1867    if (pathSize == 0 || pathSize > PATH_MAX) {
1868      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1869    }
1870    temp_path = temp_path_storage;
1871  }
1872  return temp_path;
1873}
1874#else /* __APPLE__ */
1875const char* os::get_temp_directory() { return "/tmp"; }
1876#endif /* __APPLE__ */
1877
1878static bool file_exists(const char* filename) {
1879  struct stat statbuf;
1880  if (filename == NULL || strlen(filename) == 0) {
1881    return false;
1882  }
1883  return os::stat(filename, &statbuf) == 0;
1884}
1885
1886void os::dll_build_name(char* buffer, size_t buflen,
1887                        const char* pname, const char* fname) {
1888  // Copied from libhpi
1889  const size_t pnamelen = pname ? strlen(pname) : 0;
1890
1891  // Quietly truncate on buffer overflow.  Should be an error.
1892  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1893      *buffer = '\0';
1894      return;
1895  }
1896
1897  if (pnamelen == 0) {
1898    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1899  } else if (strchr(pname, *os::path_separator()) != NULL) {
1900    int n;
1901    char** pelements = split_path(pname, &n);
1902    for (int i = 0 ; i < n ; i++) {
1903      // Really shouldn't be NULL, but check can't hurt
1904      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1905        continue; // skip the empty path values
1906      }
1907      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1908          pelements[i], fname);
1909      if (file_exists(buffer)) {
1910        break;
1911      }
1912    }
1913    // release the storage
1914    for (int i = 0 ; i < n ; i++) {
1915      if (pelements[i] != NULL) {
1916        FREE_C_HEAP_ARRAY(char, pelements[i]);
1917      }
1918    }
1919    if (pelements != NULL) {
1920      FREE_C_HEAP_ARRAY(char*, pelements);
1921    }
1922  } else {
1923    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1924  }
1925}
1926
1927const char* os::get_current_directory(char *buf, int buflen) {
1928  return getcwd(buf, buflen);
1929}
1930
1931// check if addr is inside libjvm[_g].so
1932bool os::address_is_in_vm(address addr) {
1933  static address libjvm_base_addr;
1934  Dl_info dlinfo;
1935
1936  if (libjvm_base_addr == NULL) {
1937    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1938    libjvm_base_addr = (address)dlinfo.dli_fbase;
1939    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1940  }
1941
1942  if (dladdr((void *)addr, &dlinfo)) {
1943    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1944  }
1945
1946  return false;
1947}
1948
1949bool os::dll_address_to_function_name(address addr, char *buf,
1950                                      int buflen, int *offset) {
1951  Dl_info dlinfo;
1952
1953  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1954    if (buf != NULL) {
1955      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1956        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1957      }
1958    }
1959    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1960    return true;
1961  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1962    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1963       buf, buflen, offset, dlinfo.dli_fname)) {
1964       return true;
1965    }
1966  }
1967
1968  if (buf != NULL) buf[0] = '\0';
1969  if (offset != NULL) *offset = -1;
1970  return false;
1971}
1972
1973#ifdef _ALLBSD_SOURCE
1974// ported from solaris version
1975bool os::dll_address_to_library_name(address addr, char* buf,
1976                                     int buflen, int* offset) {
1977  Dl_info dlinfo;
1978
1979  if (dladdr((void*)addr, &dlinfo)){
1980     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1981     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1982     return true;
1983  } else {
1984     if (buf) buf[0] = '\0';
1985     if (offset) *offset = -1;
1986     return false;
1987  }
1988}
1989#else
1990struct _address_to_library_name {
1991  address addr;          // input : memory address
1992  size_t  buflen;        //         size of fname
1993  char*   fname;         // output: library name
1994  address base;          //         library base addr
1995};
1996
1997static int address_to_library_name_callback(struct dl_phdr_info *info,
1998                                            size_t size, void *data) {
1999  int i;
2000  bool found = false;
2001  address libbase = NULL;
2002  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
2003
2004  // iterate through all loadable segments
2005  for (i = 0; i < info->dlpi_phnum; i++) {
2006    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
2007    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
2008      // base address of a library is the lowest address of its loaded
2009      // segments.
2010      if (libbase == NULL || libbase > segbase) {
2011        libbase = segbase;
2012      }
2013      // see if 'addr' is within current segment
2014      if (segbase <= d->addr &&
2015          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
2016        found = true;
2017      }
2018    }
2019  }
2020
2021  // dlpi_name is NULL or empty if the ELF file is executable, return 0
2022  // so dll_address_to_library_name() can fall through to use dladdr() which
2023  // can figure out executable name from argv[0].
2024  if (found && info->dlpi_name && info->dlpi_name[0]) {
2025    d->base = libbase;
2026    if (d->fname) {
2027      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
2028    }
2029    return 1;
2030  }
2031  return 0;
2032}
2033
2034bool os::dll_address_to_library_name(address addr, char* buf,
2035                                     int buflen, int* offset) {
2036  Dl_info dlinfo;
2037  struct _address_to_library_name data;
2038
2039  // There is a bug in old glibc dladdr() implementation that it could resolve
2040  // to wrong library name if the .so file has a base address != NULL. Here
2041  // we iterate through the program headers of all loaded libraries to find
2042  // out which library 'addr' really belongs to. This workaround can be
2043  // removed once the minimum requirement for glibc is moved to 2.3.x.
2044  data.addr = addr;
2045  data.fname = buf;
2046  data.buflen = buflen;
2047  data.base = NULL;
2048  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
2049
2050  if (rslt) {
2051     // buf already contains library name
2052     if (offset) *offset = addr - data.base;
2053     return true;
2054  } else if (dladdr((void*)addr, &dlinfo)){
2055     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
2056     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
2057     return true;
2058  } else {
2059     if (buf) buf[0] = '\0';
2060     if (offset) *offset = -1;
2061     return false;
2062  }
2063}
2064#endif
2065
2066  // Loads .dll/.so and
2067  // in case of error it checks if .dll/.so was built for the
2068  // same architecture as Hotspot is running on
2069
2070#ifdef __APPLE__
2071void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
2072  void * result= ::dlopen(filename, RTLD_LAZY);
2073  if (result != NULL) {
2074    // Successful loading
2075    return result;
2076  }
2077
2078  // Read system error message into ebuf
2079  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2080  ebuf[ebuflen-1]='\0';
2081
2082  return NULL;
2083}
2084#else
2085void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2086{
2087  void * result= ::dlopen(filename, RTLD_LAZY);
2088  if (result != NULL) {
2089    // Successful loading
2090    return result;
2091  }
2092
2093  Elf32_Ehdr elf_head;
2094
2095  // Read system error message into ebuf
2096  // It may or may not be overwritten below
2097  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2098  ebuf[ebuflen-1]='\0';
2099  int diag_msg_max_length=ebuflen-strlen(ebuf);
2100  char* diag_msg_buf=ebuf+strlen(ebuf);
2101
2102  if (diag_msg_max_length==0) {
2103    // No more space in ebuf for additional diagnostics message
2104    return NULL;
2105  }
2106
2107
2108  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2109
2110  if (file_descriptor < 0) {
2111    // Can't open library, report dlerror() message
2112    return NULL;
2113  }
2114
2115  bool failed_to_read_elf_head=
2116    (sizeof(elf_head)!=
2117        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2118
2119  ::close(file_descriptor);
2120  if (failed_to_read_elf_head) {
2121    // file i/o error - report dlerror() msg
2122    return NULL;
2123  }
2124
2125  typedef struct {
2126    Elf32_Half  code;         // Actual value as defined in elf.h
2127    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2128    char        elf_class;    // 32 or 64 bit
2129    char        endianess;    // MSB or LSB
2130    char*       name;         // String representation
2131  } arch_t;
2132
2133  #ifndef EM_486
2134  #define EM_486          6               /* Intel 80486 */
2135  #endif
2136
2137  #ifndef EM_MIPS_RS3_LE
2138  #define EM_MIPS_RS3_LE  10              /* MIPS */
2139  #endif
2140
2141  #ifndef EM_PPC64
2142  #define EM_PPC64        21              /* PowerPC64 */
2143  #endif
2144
2145  #ifndef EM_S390
2146  #define EM_S390         22              /* IBM System/390 */
2147  #endif
2148
2149  #ifndef EM_IA_64
2150  #define EM_IA_64        50              /* HP/Intel IA-64 */
2151  #endif
2152
2153  #ifndef EM_X86_64
2154  #define EM_X86_64       62              /* AMD x86-64 */
2155  #endif
2156
2157  static const arch_t arch_array[]={
2158    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2159    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2160    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2161    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2162    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2163    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2164    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2165    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2166    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2167    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
2168    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
2169    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
2170    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
2171    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
2172    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
2173    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
2174  };
2175
2176  #if  (defined IA32)
2177    static  Elf32_Half running_arch_code=EM_386;
2178  #elif   (defined AMD64)
2179    static  Elf32_Half running_arch_code=EM_X86_64;
2180  #elif  (defined IA64)
2181    static  Elf32_Half running_arch_code=EM_IA_64;
2182  #elif  (defined __sparc) && (defined _LP64)
2183    static  Elf32_Half running_arch_code=EM_SPARCV9;
2184  #elif  (defined __sparc) && (!defined _LP64)
2185    static  Elf32_Half running_arch_code=EM_SPARC;
2186  #elif  (defined __powerpc64__)
2187    static  Elf32_Half running_arch_code=EM_PPC64;
2188  #elif  (defined __powerpc__)
2189    static  Elf32_Half running_arch_code=EM_PPC;
2190  #elif  (defined ARM)
2191    static  Elf32_Half running_arch_code=EM_ARM;
2192  #elif  (defined S390)
2193    static  Elf32_Half running_arch_code=EM_S390;
2194  #elif  (defined ALPHA)
2195    static  Elf32_Half running_arch_code=EM_ALPHA;
2196  #elif  (defined MIPSEL)
2197    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
2198  #elif  (defined PARISC)
2199    static  Elf32_Half running_arch_code=EM_PARISC;
2200  #elif  (defined MIPS)
2201    static  Elf32_Half running_arch_code=EM_MIPS;
2202  #elif  (defined M68K)
2203    static  Elf32_Half running_arch_code=EM_68K;
2204  #else
2205    #error Method os::dll_load requires that one of following is defined:\
2206         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2207  #endif
2208
2209  // Identify compatability class for VM's architecture and library's architecture
2210  // Obtain string descriptions for architectures
2211
2212  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2213  int running_arch_index=-1;
2214
2215  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2216    if (running_arch_code == arch_array[i].code) {
2217      running_arch_index    = i;
2218    }
2219    if (lib_arch.code == arch_array[i].code) {
2220      lib_arch.compat_class = arch_array[i].compat_class;
2221      lib_arch.name         = arch_array[i].name;
2222    }
2223  }
2224
2225  assert(running_arch_index != -1,
2226    "Didn't find running architecture code (running_arch_code) in arch_array");
2227  if (running_arch_index == -1) {
2228    // Even though running architecture detection failed
2229    // we may still continue with reporting dlerror() message
2230    return NULL;
2231  }
2232
2233  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2234    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2235    return NULL;
2236  }
2237
2238#ifndef S390
2239  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2240    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2241    return NULL;
2242  }
2243#endif // !S390
2244
2245  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2246    if ( lib_arch.name!=NULL ) {
2247      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2248        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2249        lib_arch.name, arch_array[running_arch_index].name);
2250    } else {
2251      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2252      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2253        lib_arch.code,
2254        arch_array[running_arch_index].name);
2255    }
2256  }
2257
2258  return NULL;
2259}
2260#endif /* !__APPLE__ */
2261
2262// XXX: Do we need a lock around this as per Linux?
2263void* os::dll_lookup(void* handle, const char* name) {
2264  return dlsym(handle, name);
2265}
2266
2267
2268static bool _print_ascii_file(const char* filename, outputStream* st) {
2269  int fd = ::open(filename, O_RDONLY);
2270  if (fd == -1) {
2271     return false;
2272  }
2273
2274  char buf[32];
2275  int bytes;
2276  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2277    st->print_raw(buf, bytes);
2278  }
2279
2280  ::close(fd);
2281
2282  return true;
2283}
2284
2285void os::print_dll_info(outputStream *st) {
2286   st->print_cr("Dynamic libraries:");
2287#ifdef _ALLBSD_SOURCE
2288#ifdef RTLD_DI_LINKMAP
2289    Dl_info dli;
2290    void *handle;
2291    Link_map *map;
2292    Link_map *p;
2293
2294    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
2295        st->print_cr("Error: Cannot print dynamic libraries.");
2296        return;
2297    }
2298    handle = dlopen(dli.dli_fname, RTLD_LAZY);
2299    if (handle == NULL) {
2300        st->print_cr("Error: Cannot print dynamic libraries.");
2301        return;
2302    }
2303    dlinfo(handle, RTLD_DI_LINKMAP, &map);
2304    if (map == NULL) {
2305        st->print_cr("Error: Cannot print dynamic libraries.");
2306        return;
2307    }
2308
2309    while (map->l_prev != NULL)
2310        map = map->l_prev;
2311
2312    while (map != NULL) {
2313        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2314        map = map->l_next;
2315    }
2316
2317    dlclose(handle);
2318#elif defined(__APPLE__)
2319    uint32_t count;
2320    uint32_t i;
2321
2322    count = _dyld_image_count();
2323    for (i = 1; i < count; i++) {
2324        const char *name = _dyld_get_image_name(i);
2325        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
2326        st->print_cr(PTR_FORMAT " \t%s", slide, name);
2327    }
2328#else
2329   st->print_cr("Error: Cannot print dynamic libraries.");
2330#endif
2331#else
2332   char fname[32];
2333   pid_t pid = os::Bsd::gettid();
2334
2335   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2336
2337   if (!_print_ascii_file(fname, st)) {
2338     st->print("Can not get library information for pid = %d\n", pid);
2339   }
2340#endif
2341}
2342
2343
2344void os::print_os_info(outputStream* st) {
2345  st->print("OS:");
2346
2347  // Try to identify popular distros.
2348  // Most Bsd distributions have /etc/XXX-release file, which contains
2349  // the OS version string. Some have more than one /etc/XXX-release file
2350  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2351  // so the order is important.
2352  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2353      !_print_ascii_file("/etc/sun-release", st) &&
2354      !_print_ascii_file("/etc/redhat-release", st) &&
2355      !_print_ascii_file("/etc/SuSE-release", st) &&
2356      !_print_ascii_file("/etc/turbobsd-release", st) &&
2357      !_print_ascii_file("/etc/gentoo-release", st) &&
2358      !_print_ascii_file("/etc/debian_version", st) &&
2359      !_print_ascii_file("/etc/ltib-release", st) &&
2360      !_print_ascii_file("/etc/angstrom-version", st)) {
2361      st->print("Bsd");
2362  }
2363  st->cr();
2364
2365  // kernel
2366  st->print("uname:");
2367  struct utsname name;
2368  uname(&name);
2369  st->print(name.sysname); st->print(" ");
2370  st->print(name.release); st->print(" ");
2371  st->print(name.version); st->print(" ");
2372  st->print(name.machine);
2373  st->cr();
2374
2375#ifndef _ALLBSD_SOURCE
2376  // Print warning if unsafe chroot environment detected
2377  if (unsafe_chroot_detected) {
2378    st->print("WARNING!! ");
2379    st->print_cr(unstable_chroot_error);
2380  }
2381
2382  // libc, pthread
2383  st->print("libc:");
2384  st->print(os::Bsd::glibc_version()); st->print(" ");
2385  st->print(os::Bsd::libpthread_version()); st->print(" ");
2386  if (os::Bsd::is_BsdThreads()) {
2387     st->print("(%s stack)", os::Bsd::is_floating_stack() ? "floating" : "fixed");
2388  }
2389  st->cr();
2390#endif
2391
2392  // rlimit
2393  st->print("rlimit:");
2394  struct rlimit rlim;
2395
2396  st->print(" STACK ");
2397  getrlimit(RLIMIT_STACK, &rlim);
2398  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2399  else st->print("%uk", rlim.rlim_cur >> 10);
2400
2401  st->print(", CORE ");
2402  getrlimit(RLIMIT_CORE, &rlim);
2403  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2404  else st->print("%uk", rlim.rlim_cur >> 10);
2405
2406  st->print(", NPROC ");
2407  getrlimit(RLIMIT_NPROC, &rlim);
2408  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2409  else st->print("%d", rlim.rlim_cur);
2410
2411  st->print(", NOFILE ");
2412  getrlimit(RLIMIT_NOFILE, &rlim);
2413  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2414  else st->print("%d", rlim.rlim_cur);
2415
2416#ifndef _ALLBSD_SOURCE
2417  st->print(", AS ");
2418  getrlimit(RLIMIT_AS, &rlim);
2419  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2420  else st->print("%uk", rlim.rlim_cur >> 10);
2421  st->cr();
2422
2423  // load average
2424  st->print("load average:");
2425  double loadavg[3];
2426  os::loadavg(loadavg, 3);
2427  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2428  st->cr();
2429#endif
2430}
2431
2432void os::pd_print_cpu_info(outputStream* st) {
2433  // Nothing to do for now.
2434}
2435
2436void os::print_memory_info(outputStream* st) {
2437
2438  st->print("Memory:");
2439  st->print(" %dk page", os::vm_page_size()>>10);
2440
2441#ifndef _ALLBSD_SOURCE
2442  // values in struct sysinfo are "unsigned long"
2443  struct sysinfo si;
2444  sysinfo(&si);
2445#endif
2446
2447  st->print(", physical " UINT64_FORMAT "k",
2448            os::physical_memory() >> 10);
2449  st->print("(" UINT64_FORMAT "k free)",
2450            os::available_memory() >> 10);
2451#ifndef _ALLBSD_SOURCE
2452  st->print(", swap " UINT64_FORMAT "k",
2453            ((jlong)si.totalswap * si.mem_unit) >> 10);
2454  st->print("(" UINT64_FORMAT "k free)",
2455            ((jlong)si.freeswap * si.mem_unit) >> 10);
2456#endif
2457  st->cr();
2458
2459  // meminfo
2460  st->print("\n/proc/meminfo:\n");
2461  _print_ascii_file("/proc/meminfo", st);
2462  st->cr();
2463}
2464
2465// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2466// but they're the same for all the bsd arch that we support
2467// and they're the same for solaris but there's no common place to put this.
2468const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2469                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2470                          "ILL_COPROC", "ILL_BADSTK" };
2471
2472const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2473                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2474                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2475
2476const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2477
2478const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2479
2480void os::print_siginfo(outputStream* st, void* siginfo) {
2481  st->print("siginfo:");
2482
2483  const int buflen = 100;
2484  char buf[buflen];
2485  siginfo_t *si = (siginfo_t*)siginfo;
2486  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2487  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2488    st->print("si_errno=%s", buf);
2489  } else {
2490    st->print("si_errno=%d", si->si_errno);
2491  }
2492  const int c = si->si_code;
2493  assert(c > 0, "unexpected si_code");
2494  switch (si->si_signo) {
2495  case SIGILL:
2496    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2497    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2498    break;
2499  case SIGFPE:
2500    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2501    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2502    break;
2503  case SIGSEGV:
2504    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2505    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2506    break;
2507  case SIGBUS:
2508    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2509    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2510    break;
2511  default:
2512    st->print(", si_code=%d", si->si_code);
2513    // no si_addr
2514  }
2515
2516  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2517      UseSharedSpaces) {
2518    FileMapInfo* mapinfo = FileMapInfo::current_info();
2519    if (mapinfo->is_in_shared_space(si->si_addr)) {
2520      st->print("\n\nError accessing class data sharing archive."   \
2521                " Mapped file inaccessible during execution, "      \
2522                " possible disk/network problem.");
2523    }
2524  }
2525  st->cr();
2526}
2527
2528
2529static void print_signal_handler(outputStream* st, int sig,
2530                                 char* buf, size_t buflen);
2531
2532void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2533  st->print_cr("Signal Handlers:");
2534  print_signal_handler(st, SIGSEGV, buf, buflen);
2535  print_signal_handler(st, SIGBUS , buf, buflen);
2536  print_signal_handler(st, SIGFPE , buf, buflen);
2537  print_signal_handler(st, SIGPIPE, buf, buflen);
2538  print_signal_handler(st, SIGXFSZ, buf, buflen);
2539  print_signal_handler(st, SIGILL , buf, buflen);
2540  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2541  print_signal_handler(st, SR_signum, buf, buflen);
2542  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2543  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2544  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2545  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2546}
2547
2548static char saved_jvm_path[MAXPATHLEN] = {0};
2549
2550// Find the full path to the current module, libjvm or libjvm_g
2551void os::jvm_path(char *buf, jint buflen) {
2552  // Error checking.
2553  if (buflen < MAXPATHLEN) {
2554    assert(false, "must use a large-enough buffer");
2555    buf[0] = '\0';
2556    return;
2557  }
2558  // Lazy resolve the path to current module.
2559  if (saved_jvm_path[0] != 0) {
2560    strcpy(buf, saved_jvm_path);
2561    return;
2562  }
2563
2564  char dli_fname[MAXPATHLEN];
2565  bool ret = dll_address_to_library_name(
2566                CAST_FROM_FN_PTR(address, os::jvm_path),
2567                dli_fname, sizeof(dli_fname), NULL);
2568  assert(ret != 0, "cannot locate libjvm");
2569  char *rp = realpath(dli_fname, buf);
2570  if (rp == NULL)
2571    return;
2572
2573  if (Arguments::created_by_gamma_launcher()) {
2574    // Support for the gamma launcher.  Typical value for buf is
2575    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
2576    // the right place in the string, then assume we are installed in a JDK and
2577    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
2578    // construct a path to the JVM being overridden.
2579
2580    const char *p = buf + strlen(buf) - 1;
2581    for (int count = 0; p > buf && count < 5; ++count) {
2582      for (--p; p > buf && *p != '/'; --p)
2583        /* empty */ ;
2584    }
2585
2586    if (strncmp(p, "/jre/lib/", 9) != 0) {
2587      // Look for JAVA_HOME in the environment.
2588      char* java_home_var = ::getenv("JAVA_HOME");
2589      if (java_home_var != NULL && java_home_var[0] != 0) {
2590        char* jrelib_p;
2591        int len;
2592
2593        // Check the current module name "libjvm" or "libjvm_g".
2594        p = strrchr(buf, '/');
2595        assert(strstr(p, "/libjvm") == p, "invalid library name");
2596        p = strstr(p, "_g") ? "_g" : "";
2597
2598        rp = realpath(java_home_var, buf);
2599        if (rp == NULL)
2600          return;
2601
2602        // determine if this is a legacy image or modules image
2603        // modules image doesn't have "jre" subdirectory
2604        len = strlen(buf);
2605        jrelib_p = buf + len;
2606
2607        // Add the appropriate library subdir
2608        snprintf(jrelib_p, buflen-len, "/jre/lib");
2609        if (0 != access(buf, F_OK)) {
2610          snprintf(jrelib_p, buflen-len, "/lib");
2611        }
2612
2613        // Add the appropriate client or server subdir
2614        len = strlen(buf);
2615        jrelib_p = buf + len;
2616        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
2617        if (0 != access(buf, F_OK)) {
2618          snprintf(jrelib_p, buflen-len, "");
2619        }
2620
2621        // If the path exists within JAVA_HOME, add the JVM library name
2622        // to complete the path to JVM being overridden.  Otherwise fallback
2623        // to the path to the current library.
2624        if (0 == access(buf, F_OK)) {
2625          // Use current module name "libjvm[_g]" instead of
2626          // "libjvm"debug_only("_g")"" since for fastdebug version
2627          // we should have "libjvm" but debug_only("_g") adds "_g"!
2628          len = strlen(buf);
2629          snprintf(buf + len, buflen-len, "/libjvm%s%s", p, JNI_LIB_SUFFIX);
2630        } else {
2631          // Fall back to path of current library
2632          rp = realpath(dli_fname, buf);
2633          if (rp == NULL)
2634            return;
2635        }
2636      }
2637    }
2638  }
2639
2640  strcpy(saved_jvm_path, buf);
2641}
2642
2643void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2644  // no prefix required, not even "_"
2645}
2646
2647void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2648  // no suffix required
2649}
2650
2651////////////////////////////////////////////////////////////////////////////////
2652// sun.misc.Signal support
2653
2654static volatile jint sigint_count = 0;
2655
2656static void
2657UserHandler(int sig, void *siginfo, void *context) {
2658  // 4511530 - sem_post is serialized and handled by the manager thread. When
2659  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2660  // don't want to flood the manager thread with sem_post requests.
2661  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2662      return;
2663
2664  // Ctrl-C is pressed during error reporting, likely because the error
2665  // handler fails to abort. Let VM die immediately.
2666  if (sig == SIGINT && is_error_reported()) {
2667     os::die();
2668  }
2669
2670  os::signal_notify(sig);
2671}
2672
2673void* os::user_handler() {
2674  return CAST_FROM_FN_PTR(void*, UserHandler);
2675}
2676
2677extern "C" {
2678  typedef void (*sa_handler_t)(int);
2679  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2680}
2681
2682void* os::signal(int signal_number, void* handler) {
2683  struct sigaction sigAct, oldSigAct;
2684
2685  sigfillset(&(sigAct.sa_mask));
2686  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2687  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2688
2689  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2690    // -1 means registration failed
2691    return (void *)-1;
2692  }
2693
2694  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2695}
2696
2697void os::signal_raise(int signal_number) {
2698  ::raise(signal_number);
2699}
2700
2701/*
2702 * The following code is moved from os.cpp for making this
2703 * code platform specific, which it is by its very nature.
2704 */
2705
2706// Will be modified when max signal is changed to be dynamic
2707int os::sigexitnum_pd() {
2708  return NSIG;
2709}
2710
2711// a counter for each possible signal value
2712static volatile jint pending_signals[NSIG+1] = { 0 };
2713
2714// Bsd(POSIX) specific hand shaking semaphore.
2715#ifdef __APPLE__
2716static semaphore_t sig_sem;
2717#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
2718#define SEM_WAIT(sem)           semaphore_wait(sem);
2719#define SEM_POST(sem)           semaphore_signal(sem);
2720#else
2721static sem_t sig_sem;
2722#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
2723#define SEM_WAIT(sem)           sem_wait(&sem);
2724#define SEM_POST(sem)           sem_post(&sem);
2725#endif
2726
2727void os::signal_init_pd() {
2728  // Initialize signal structures
2729  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2730
2731  // Initialize signal semaphore
2732  ::SEM_INIT(sig_sem, 0);
2733}
2734
2735void os::signal_notify(int sig) {
2736  Atomic::inc(&pending_signals[sig]);
2737  ::SEM_POST(sig_sem);
2738}
2739
2740static int check_pending_signals(bool wait) {
2741  Atomic::store(0, &sigint_count);
2742  for (;;) {
2743    for (int i = 0; i < NSIG + 1; i++) {
2744      jint n = pending_signals[i];
2745      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2746        return i;
2747      }
2748    }
2749    if (!wait) {
2750      return -1;
2751    }
2752    JavaThread *thread = JavaThread::current();
2753    ThreadBlockInVM tbivm(thread);
2754
2755    bool threadIsSuspended;
2756    do {
2757      thread->set_suspend_equivalent();
2758      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2759      ::SEM_WAIT(sig_sem);
2760
2761      // were we externally suspended while we were waiting?
2762      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2763      if (threadIsSuspended) {
2764        //
2765        // The semaphore has been incremented, but while we were waiting
2766        // another thread suspended us. We don't want to continue running
2767        // while suspended because that would surprise the thread that
2768        // suspended us.
2769        //
2770        ::SEM_POST(sig_sem);
2771
2772        thread->java_suspend_self();
2773      }
2774    } while (threadIsSuspended);
2775  }
2776}
2777
2778int os::signal_lookup() {
2779  return check_pending_signals(false);
2780}
2781
2782int os::signal_wait() {
2783  return check_pending_signals(true);
2784}
2785
2786////////////////////////////////////////////////////////////////////////////////
2787// Virtual Memory
2788
2789int os::vm_page_size() {
2790  // Seems redundant as all get out
2791  assert(os::Bsd::page_size() != -1, "must call os::init");
2792  return os::Bsd::page_size();
2793}
2794
2795// Solaris allocates memory by pages.
2796int os::vm_allocation_granularity() {
2797  assert(os::Bsd::page_size() != -1, "must call os::init");
2798  return os::Bsd::page_size();
2799}
2800
2801// Rationale behind this function:
2802//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2803//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2804//  samples for JITted code. Here we create private executable mapping over the code cache
2805//  and then we can use standard (well, almost, as mapping can change) way to provide
2806//  info for the reporting script by storing timestamp and location of symbol
2807void bsd_wrap_code(char* base, size_t size) {
2808  static volatile jint cnt = 0;
2809
2810  if (!UseOprofile) {
2811    return;
2812  }
2813
2814  char buf[PATH_MAX + 1];
2815  int num = Atomic::add(1, &cnt);
2816
2817  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2818           os::get_temp_directory(), os::current_process_id(), num);
2819  unlink(buf);
2820
2821  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2822
2823  if (fd != -1) {
2824    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2825    if (rv != (off_t)-1) {
2826      if (::write(fd, "", 1) == 1) {
2827        mmap(base, size,
2828             PROT_READ|PROT_WRITE|PROT_EXEC,
2829             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2830      }
2831    }
2832    ::close(fd);
2833    unlink(buf);
2834  }
2835}
2836
2837// NOTE: Bsd kernel does not really reserve the pages for us.
2838//       All it does is to check if there are enough free pages
2839//       left at the time of mmap(). This could be a potential
2840//       problem.
2841bool os::commit_memory(char* addr, size_t size, bool exec) {
2842  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2843#ifdef __OpenBSD__
2844  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2845  return ::mprotect(addr, size, prot) == 0;
2846#else
2847  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2848                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2849  return res != (uintptr_t) MAP_FAILED;
2850#endif
2851}
2852
2853#ifndef _ALLBSD_SOURCE
2854// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2855#ifndef MAP_HUGETLB
2856#define MAP_HUGETLB 0x40000
2857#endif
2858
2859// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2860#ifndef MADV_HUGEPAGE
2861#define MADV_HUGEPAGE 14
2862#endif
2863#endif
2864
2865bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2866                       bool exec) {
2867#ifndef _ALLBSD_SOURCE
2868  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2869    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2870    uintptr_t res =
2871      (uintptr_t) ::mmap(addr, size, prot,
2872                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2873                         -1, 0);
2874    return res != (uintptr_t) MAP_FAILED;
2875  }
2876#endif
2877
2878  return commit_memory(addr, size, exec);
2879}
2880
2881void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2882#ifndef _ALLBSD_SOURCE
2883  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2884    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2885    // be supported or the memory may already be backed by huge pages.
2886    ::madvise(addr, bytes, MADV_HUGEPAGE);
2887  }
2888#endif
2889}
2890
2891void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2892  ::madvise(addr, bytes, MADV_DONTNEED);
2893}
2894
2895void os::numa_make_global(char *addr, size_t bytes) {
2896}
2897
2898void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2899}
2900
2901bool os::numa_topology_changed()   { return false; }
2902
2903size_t os::numa_get_groups_num() {
2904  return 1;
2905}
2906
2907int os::numa_get_group_id() {
2908  return 0;
2909}
2910
2911size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2912  if (size > 0) {
2913    ids[0] = 0;
2914    return 1;
2915  }
2916  return 0;
2917}
2918
2919bool os::get_page_info(char *start, page_info* info) {
2920  return false;
2921}
2922
2923char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2924  return end;
2925}
2926
2927#ifndef _ALLBSD_SOURCE
2928// Something to do with the numa-aware allocator needs these symbols
2929extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2930extern "C" JNIEXPORT void numa_error(char *where) { }
2931extern "C" JNIEXPORT int fork1() { return fork(); }
2932
2933
2934// If we are running with libnuma version > 2, then we should
2935// be trying to use symbols with versions 1.1
2936// If we are running with earlier version, which did not have symbol versions,
2937// we should use the base version.
2938void* os::Bsd::libnuma_dlsym(void* handle, const char *name) {
2939  void *f = dlvsym(handle, name, "libnuma_1.1");
2940  if (f == NULL) {
2941    f = dlsym(handle, name);
2942  }
2943  return f;
2944}
2945
2946bool os::Bsd::libnuma_init() {
2947  // sched_getcpu() should be in libc.
2948  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2949                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2950
2951  if (sched_getcpu() != -1) { // Does it work?
2952    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2953    if (handle != NULL) {
2954      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2955                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2956      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2957                                       libnuma_dlsym(handle, "numa_max_node")));
2958      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2959                                        libnuma_dlsym(handle, "numa_available")));
2960      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2961                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2962      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2963                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2964
2965
2966      if (numa_available() != -1) {
2967        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2968        // Create a cpu -> node mapping
2969        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2970        rebuild_cpu_to_node_map();
2971        return true;
2972      }
2973    }
2974  }
2975  return false;
2976}
2977
2978// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2979// The table is later used in get_node_by_cpu().
2980void os::Bsd::rebuild_cpu_to_node_map() {
2981  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2982                              // in libnuma (possible values are starting from 16,
2983                              // and continuing up with every other power of 2, but less
2984                              // than the maximum number of CPUs supported by kernel), and
2985                              // is a subject to change (in libnuma version 2 the requirements
2986                              // are more reasonable) we'll just hardcode the number they use
2987                              // in the library.
2988  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2989
2990  size_t cpu_num = os::active_processor_count();
2991  size_t cpu_map_size = NCPUS / BitsPerCLong;
2992  size_t cpu_map_valid_size =
2993    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2994
2995  cpu_to_node()->clear();
2996  cpu_to_node()->at_grow(cpu_num - 1);
2997  size_t node_num = numa_get_groups_num();
2998
2999  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
3000  for (size_t i = 0; i < node_num; i++) {
3001    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3002      for (size_t j = 0; j < cpu_map_valid_size; j++) {
3003        if (cpu_map[j] != 0) {
3004          for (size_t k = 0; k < BitsPerCLong; k++) {
3005            if (cpu_map[j] & (1UL << k)) {
3006              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
3007            }
3008          }
3009        }
3010      }
3011    }
3012  }
3013  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3014}
3015
3016int os::Bsd::get_node_by_cpu(int cpu_id) {
3017  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3018    return cpu_to_node()->at(cpu_id);
3019  }
3020  return -1;
3021}
3022
3023GrowableArray<int>* os::Bsd::_cpu_to_node;
3024os::Bsd::sched_getcpu_func_t os::Bsd::_sched_getcpu;
3025os::Bsd::numa_node_to_cpus_func_t os::Bsd::_numa_node_to_cpus;
3026os::Bsd::numa_max_node_func_t os::Bsd::_numa_max_node;
3027os::Bsd::numa_available_func_t os::Bsd::_numa_available;
3028os::Bsd::numa_tonode_memory_func_t os::Bsd::_numa_tonode_memory;
3029os::Bsd::numa_interleave_memory_func_t os::Bsd::_numa_interleave_memory;
3030unsigned long* os::Bsd::_numa_all_nodes;
3031#endif
3032
3033bool os::uncommit_memory(char* addr, size_t size) {
3034#ifdef __OpenBSD__
3035  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
3036  return ::mprotect(addr, size, PROT_NONE) == 0;
3037#else
3038  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3039                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3040  return res  != (uintptr_t) MAP_FAILED;
3041#endif
3042}
3043
3044bool os::create_stack_guard_pages(char* addr, size_t size) {
3045  return os::commit_memory(addr, size);
3046}
3047
3048// If this is a growable mapping, remove the guard pages entirely by
3049// munmap()ping them.  If not, just call uncommit_memory().
3050bool os::remove_stack_guard_pages(char* addr, size_t size) {
3051  return os::uncommit_memory(addr, size);
3052}
3053
3054static address _highest_vm_reserved_address = NULL;
3055
3056// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3057// at 'requested_addr'. If there are existing memory mappings at the same
3058// location, however, they will be overwritten. If 'fixed' is false,
3059// 'requested_addr' is only treated as a hint, the return value may or
3060// may not start from the requested address. Unlike Bsd mmap(), this
3061// function returns NULL to indicate failure.
3062static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3063  char * addr;
3064  int flags;
3065
3066  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3067  if (fixed) {
3068    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
3069    flags |= MAP_FIXED;
3070  }
3071
3072  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
3073  // to PROT_EXEC if executable when we commit the page.
3074  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
3075                       flags, -1, 0);
3076
3077  if (addr != MAP_FAILED) {
3078    // anon_mmap() should only get called during VM initialization,
3079    // don't need lock (actually we can skip locking even it can be called
3080    // from multiple threads, because _highest_vm_reserved_address is just a
3081    // hint about the upper limit of non-stack memory regions.)
3082    if ((address)addr + bytes > _highest_vm_reserved_address) {
3083      _highest_vm_reserved_address = (address)addr + bytes;
3084    }
3085  }
3086
3087  return addr == MAP_FAILED ? NULL : addr;
3088}
3089
3090// Don't update _highest_vm_reserved_address, because there might be memory
3091// regions above addr + size. If so, releasing a memory region only creates
3092// a hole in the address space, it doesn't help prevent heap-stack collision.
3093//
3094static int anon_munmap(char * addr, size_t size) {
3095  return ::munmap(addr, size) == 0;
3096}
3097
3098char* os::reserve_memory(size_t bytes, char* requested_addr,
3099                         size_t alignment_hint) {
3100  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3101}
3102
3103bool os::release_memory(char* addr, size_t size) {
3104  return anon_munmap(addr, size);
3105}
3106
3107static address highest_vm_reserved_address() {
3108  return _highest_vm_reserved_address;
3109}
3110
3111static bool bsd_mprotect(char* addr, size_t size, int prot) {
3112  // Bsd wants the mprotect address argument to be page aligned.
3113  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
3114
3115  // According to SUSv3, mprotect() should only be used with mappings
3116  // established by mmap(), and mmap() always maps whole pages. Unaligned
3117  // 'addr' likely indicates problem in the VM (e.g. trying to change
3118  // protection of malloc'ed or statically allocated memory). Check the
3119  // caller if you hit this assert.
3120  assert(addr == bottom, "sanity check");
3121
3122  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
3123  return ::mprotect(bottom, size, prot) == 0;
3124}
3125
3126// Set protections specified
3127bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3128                        bool is_committed) {
3129  unsigned int p = 0;
3130  switch (prot) {
3131  case MEM_PROT_NONE: p = PROT_NONE; break;
3132  case MEM_PROT_READ: p = PROT_READ; break;
3133  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3134  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3135  default:
3136    ShouldNotReachHere();
3137  }
3138  // is_committed is unused.
3139  return bsd_mprotect(addr, bytes, p);
3140}
3141
3142bool os::guard_memory(char* addr, size_t size) {
3143  return bsd_mprotect(addr, size, PROT_NONE);
3144}
3145
3146bool os::unguard_memory(char* addr, size_t size) {
3147  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
3148}
3149
3150bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3151  bool result = false;
3152#ifndef _ALLBSD_SOURCE
3153  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3154                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3155                  -1, 0);
3156
3157  if (p != (void *) -1) {
3158    // We don't know if this really is a huge page or not.
3159    FILE *fp = fopen("/proc/self/maps", "r");
3160    if (fp) {
3161      while (!feof(fp)) {
3162        char chars[257];
3163        long x = 0;
3164        if (fgets(chars, sizeof(chars), fp)) {
3165          if (sscanf(chars, "%lx-%*x", &x) == 1
3166              && x == (long)p) {
3167            if (strstr (chars, "hugepage")) {
3168              result = true;
3169              break;
3170            }
3171          }
3172        }
3173      }
3174      fclose(fp);
3175    }
3176    munmap (p, page_size);
3177    if (result)
3178      return true;
3179  }
3180
3181  if (warn) {
3182    warning("HugeTLBFS is not supported by the operating system.");
3183  }
3184#endif
3185
3186  return result;
3187}
3188
3189/*
3190* Set the coredump_filter bits to include largepages in core dump (bit 6)
3191*
3192* From the coredump_filter documentation:
3193*
3194* - (bit 0) anonymous private memory
3195* - (bit 1) anonymous shared memory
3196* - (bit 2) file-backed private memory
3197* - (bit 3) file-backed shared memory
3198* - (bit 4) ELF header pages in file-backed private memory areas (it is
3199*           effective only if the bit 2 is cleared)
3200* - (bit 5) hugetlb private memory
3201* - (bit 6) hugetlb shared memory
3202*/
3203static void set_coredump_filter(void) {
3204  FILE *f;
3205  long cdm;
3206
3207  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3208    return;
3209  }
3210
3211  if (fscanf(f, "%lx", &cdm) != 1) {
3212    fclose(f);
3213    return;
3214  }
3215
3216  rewind(f);
3217
3218  if ((cdm & LARGEPAGES_BIT) == 0) {
3219    cdm |= LARGEPAGES_BIT;
3220    fprintf(f, "%#lx", cdm);
3221  }
3222
3223  fclose(f);
3224}
3225
3226// Large page support
3227
3228static size_t _large_page_size = 0;
3229
3230void os::large_page_init() {
3231#ifndef _ALLBSD_SOURCE
3232  if (!UseLargePages) {
3233    UseHugeTLBFS = false;
3234    UseSHM = false;
3235    return;
3236  }
3237
3238  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3239    // If UseLargePages is specified on the command line try both methods,
3240    // if it's default, then try only HugeTLBFS.
3241    if (FLAG_IS_DEFAULT(UseLargePages)) {
3242      UseHugeTLBFS = true;
3243    } else {
3244      UseHugeTLBFS = UseSHM = true;
3245    }
3246  }
3247
3248  if (LargePageSizeInBytes) {
3249    _large_page_size = LargePageSizeInBytes;
3250  } else {
3251    // large_page_size on Bsd is used to round up heap size. x86 uses either
3252    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3253    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3254    // page as large as 256M.
3255    //
3256    // Here we try to figure out page size by parsing /proc/meminfo and looking
3257    // for a line with the following format:
3258    //    Hugepagesize:     2048 kB
3259    //
3260    // If we can't determine the value (e.g. /proc is not mounted, or the text
3261    // format has been changed), we'll use the largest page size supported by
3262    // the processor.
3263
3264#ifndef ZERO
3265    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3266                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3267#endif // ZERO
3268
3269    FILE *fp = fopen("/proc/meminfo", "r");
3270    if (fp) {
3271      while (!feof(fp)) {
3272        int x = 0;
3273        char buf[16];
3274        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3275          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3276            _large_page_size = x * K;
3277            break;
3278          }
3279        } else {
3280          // skip to next line
3281          for (;;) {
3282            int ch = fgetc(fp);
3283            if (ch == EOF || ch == (int)'\n') break;
3284          }
3285        }
3286      }
3287      fclose(fp);
3288    }
3289  }
3290
3291  // print a warning if any large page related flag is specified on command line
3292  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3293
3294  const size_t default_page_size = (size_t)Bsd::page_size();
3295  if (_large_page_size > default_page_size) {
3296    _page_sizes[0] = _large_page_size;
3297    _page_sizes[1] = default_page_size;
3298    _page_sizes[2] = 0;
3299  }
3300  UseHugeTLBFS = UseHugeTLBFS &&
3301                 Bsd::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3302
3303  if (UseHugeTLBFS)
3304    UseSHM = false;
3305
3306  UseLargePages = UseHugeTLBFS || UseSHM;
3307
3308  set_coredump_filter();
3309#endif
3310}
3311
3312#ifndef _ALLBSD_SOURCE
3313#ifndef SHM_HUGETLB
3314#define SHM_HUGETLB 04000
3315#endif
3316#endif
3317
3318char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3319  // "exec" is passed in but not used.  Creating the shared image for
3320  // the code cache doesn't have an SHM_X executable permission to check.
3321  assert(UseLargePages && UseSHM, "only for SHM large pages");
3322
3323  key_t key = IPC_PRIVATE;
3324  char *addr;
3325
3326  bool warn_on_failure = UseLargePages &&
3327                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3328                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3329                        );
3330  char msg[128];
3331
3332  // Create a large shared memory region to attach to based on size.
3333  // Currently, size is the total size of the heap
3334#ifndef _ALLBSD_SOURCE
3335  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3336#else
3337  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
3338#endif
3339  if (shmid == -1) {
3340     // Possible reasons for shmget failure:
3341     // 1. shmmax is too small for Java heap.
3342     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3343     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3344     // 2. not enough large page memory.
3345     //    > check available large pages: cat /proc/meminfo
3346     //    > increase amount of large pages:
3347     //          echo new_value > /proc/sys/vm/nr_hugepages
3348     //      Note 1: different Bsd may use different name for this property,
3349     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3350     //      Note 2: it's possible there's enough physical memory available but
3351     //            they are so fragmented after a long run that they can't
3352     //            coalesce into large pages. Try to reserve large pages when
3353     //            the system is still "fresh".
3354     if (warn_on_failure) {
3355       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3356       warning(msg);
3357     }
3358     return NULL;
3359  }
3360
3361  // attach to the region
3362  addr = (char*)shmat(shmid, req_addr, 0);
3363  int err = errno;
3364
3365  // Remove shmid. If shmat() is successful, the actual shared memory segment
3366  // will be deleted when it's detached by shmdt() or when the process
3367  // terminates. If shmat() is not successful this will remove the shared
3368  // segment immediately.
3369  shmctl(shmid, IPC_RMID, NULL);
3370
3371  if ((intptr_t)addr == -1) {
3372     if (warn_on_failure) {
3373       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3374       warning(msg);
3375     }
3376     return NULL;
3377  }
3378
3379  return addr;
3380}
3381
3382bool os::release_memory_special(char* base, size_t bytes) {
3383  // detaching the SHM segment will also delete it, see reserve_memory_special()
3384  int rslt = shmdt(base);
3385  return rslt == 0;
3386}
3387
3388size_t os::large_page_size() {
3389  return _large_page_size;
3390}
3391
3392// HugeTLBFS allows application to commit large page memory on demand;
3393// with SysV SHM the entire memory region must be allocated as shared
3394// memory.
3395bool os::can_commit_large_page_memory() {
3396  return UseHugeTLBFS;
3397}
3398
3399bool os::can_execute_large_page_memory() {
3400  return UseHugeTLBFS;
3401}
3402
3403// Reserve memory at an arbitrary address, only if that area is
3404// available (and not reserved for something else).
3405
3406char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3407  const int max_tries = 10;
3408  char* base[max_tries];
3409  size_t size[max_tries];
3410  const size_t gap = 0x000000;
3411
3412  // Assert only that the size is a multiple of the page size, since
3413  // that's all that mmap requires, and since that's all we really know
3414  // about at this low abstraction level.  If we need higher alignment,
3415  // we can either pass an alignment to this method or verify alignment
3416  // in one of the methods further up the call chain.  See bug 5044738.
3417  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3418
3419  // Repeatedly allocate blocks until the block is allocated at the
3420  // right spot. Give up after max_tries. Note that reserve_memory() will
3421  // automatically update _highest_vm_reserved_address if the call is
3422  // successful. The variable tracks the highest memory address every reserved
3423  // by JVM. It is used to detect heap-stack collision if running with
3424  // fixed-stack BsdThreads. Because here we may attempt to reserve more
3425  // space than needed, it could confuse the collision detecting code. To
3426  // solve the problem, save current _highest_vm_reserved_address and
3427  // calculate the correct value before return.
3428  address old_highest = _highest_vm_reserved_address;
3429
3430  // Bsd mmap allows caller to pass an address as hint; give it a try first,
3431  // if kernel honors the hint then we can return immediately.
3432  char * addr = anon_mmap(requested_addr, bytes, false);
3433  if (addr == requested_addr) {
3434     return requested_addr;
3435  }
3436
3437  if (addr != NULL) {
3438     // mmap() is successful but it fails to reserve at the requested address
3439     anon_munmap(addr, bytes);
3440  }
3441
3442  int i;
3443  for (i = 0; i < max_tries; ++i) {
3444    base[i] = reserve_memory(bytes);
3445
3446    if (base[i] != NULL) {
3447      // Is this the block we wanted?
3448      if (base[i] == requested_addr) {
3449        size[i] = bytes;
3450        break;
3451      }
3452
3453      // Does this overlap the block we wanted? Give back the overlapped
3454      // parts and try again.
3455
3456      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3457      if (top_overlap >= 0 && top_overlap < bytes) {
3458        unmap_memory(base[i], top_overlap);
3459        base[i] += top_overlap;
3460        size[i] = bytes - top_overlap;
3461      } else {
3462        size_t bottom_overlap = base[i] + bytes - requested_addr;
3463        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3464          unmap_memory(requested_addr, bottom_overlap);
3465          size[i] = bytes - bottom_overlap;
3466        } else {
3467          size[i] = bytes;
3468        }
3469      }
3470    }
3471  }
3472
3473  // Give back the unused reserved pieces.
3474
3475  for (int j = 0; j < i; ++j) {
3476    if (base[j] != NULL) {
3477      unmap_memory(base[j], size[j]);
3478    }
3479  }
3480
3481  if (i < max_tries) {
3482    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3483    return requested_addr;
3484  } else {
3485    _highest_vm_reserved_address = old_highest;
3486    return NULL;
3487  }
3488}
3489
3490size_t os::read(int fd, void *buf, unsigned int nBytes) {
3491  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
3492}
3493
3494// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
3495// Solaris uses poll(), bsd uses park().
3496// Poll() is likely a better choice, assuming that Thread.interrupt()
3497// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3498// SIGSEGV, see 4355769.
3499
3500int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3501  assert(thread == Thread::current(),  "thread consistency check");
3502
3503  ParkEvent * const slp = thread->_SleepEvent ;
3504  slp->reset() ;
3505  OrderAccess::fence() ;
3506
3507  if (interruptible) {
3508    jlong prevtime = javaTimeNanos();
3509
3510    for (;;) {
3511      if (os::is_interrupted(thread, true)) {
3512        return OS_INTRPT;
3513      }
3514
3515      jlong newtime = javaTimeNanos();
3516
3517      if (newtime - prevtime < 0) {
3518        // time moving backwards, should only happen if no monotonic clock
3519        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3520        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3521      } else {
3522        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3523      }
3524
3525      if(millis <= 0) {
3526        return OS_OK;
3527      }
3528
3529      prevtime = newtime;
3530
3531      {
3532        assert(thread->is_Java_thread(), "sanity check");
3533        JavaThread *jt = (JavaThread *) thread;
3534        ThreadBlockInVM tbivm(jt);
3535        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3536
3537        jt->set_suspend_equivalent();
3538        // cleared by handle_special_suspend_equivalent_condition() or
3539        // java_suspend_self() via check_and_wait_while_suspended()
3540
3541        slp->park(millis);
3542
3543        // were we externally suspended while we were waiting?
3544        jt->check_and_wait_while_suspended();
3545      }
3546    }
3547  } else {
3548    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3549    jlong prevtime = javaTimeNanos();
3550
3551    for (;;) {
3552      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3553      // the 1st iteration ...
3554      jlong newtime = javaTimeNanos();
3555
3556      if (newtime - prevtime < 0) {
3557        // time moving backwards, should only happen if no monotonic clock
3558        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3559        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3560      } else {
3561        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3562      }
3563
3564      if(millis <= 0) break ;
3565
3566      prevtime = newtime;
3567      slp->park(millis);
3568    }
3569    return OS_OK ;
3570  }
3571}
3572
3573int os::naked_sleep() {
3574  // %% make the sleep time an integer flag. for now use 1 millisec.
3575  return os::sleep(Thread::current(), 1, false);
3576}
3577
3578// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3579void os::infinite_sleep() {
3580  while (true) {    // sleep forever ...
3581    ::sleep(100);   // ... 100 seconds at a time
3582  }
3583}
3584
3585// Used to convert frequent JVM_Yield() to nops
3586bool os::dont_yield() {
3587  return DontYieldALot;
3588}
3589
3590void os::yield() {
3591  sched_yield();
3592}
3593
3594os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3595
3596void os::yield_all(int attempts) {
3597  // Yields to all threads, including threads with lower priorities
3598  // Threads on Bsd are all with same priority. The Solaris style
3599  // os::yield_all() with nanosleep(1ms) is not necessary.
3600  sched_yield();
3601}
3602
3603// Called from the tight loops to possibly influence time-sharing heuristics
3604void os::loop_breaker(int attempts) {
3605  os::yield_all(attempts);
3606}
3607
3608////////////////////////////////////////////////////////////////////////////////
3609// thread priority support
3610
3611// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
3612// only supports dynamic priority, static priority must be zero. For real-time
3613// applications, Bsd supports SCHED_RR which allows static priority (1-99).
3614// However, for large multi-threaded applications, SCHED_RR is not only slower
3615// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3616// of 5 runs - Sep 2005).
3617//
3618// The following code actually changes the niceness of kernel-thread/LWP. It
3619// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3620// not the entire user process, and user level threads are 1:1 mapped to kernel
3621// threads. It has always been the case, but could change in the future. For
3622// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3623// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3624
3625#if defined(_ALLBSD_SOURCE) && !defined(__APPLE__)
3626int os::java_to_os_priority[CriticalPriority + 1] = {
3627  19,              // 0 Entry should never be used
3628
3629   0,              // 1 MinPriority
3630   3,              // 2
3631   6,              // 3
3632
3633  10,              // 4
3634  15,              // 5 NormPriority
3635  18,              // 6
3636
3637  21,              // 7
3638  25,              // 8
3639  28,              // 9 NearMaxPriority
3640
3641  31,              // 10 MaxPriority
3642
3643  31               // 11 CriticalPriority
3644};
3645#elif defined(__APPLE__)
3646/* Using Mach high-level priority assignments */
3647int os::java_to_os_priority[CriticalPriority + 1] = {
3648   0,              // 0 Entry should never be used (MINPRI_USER)
3649
3650  27,              // 1 MinPriority
3651  28,              // 2
3652  29,              // 3
3653
3654  30,              // 4
3655  31,              // 5 NormPriority (BASEPRI_DEFAULT)
3656  32,              // 6
3657
3658  33,              // 7
3659  34,              // 8
3660  35,              // 9 NearMaxPriority
3661
3662  36,              // 10 MaxPriority
3663
3664  36               // 11 CriticalPriority
3665};
3666#else
3667int os::java_to_os_priority[CriticalPriority + 1] = {
3668  19,              // 0 Entry should never be used
3669
3670   4,              // 1 MinPriority
3671   3,              // 2
3672   2,              // 3
3673
3674   1,              // 4
3675   0,              // 5 NormPriority
3676  -1,              // 6
3677
3678  -2,              // 7
3679  -3,              // 8
3680  -4,              // 9 NearMaxPriority
3681
3682  -5,              // 10 MaxPriority
3683
3684  -5               // 11 CriticalPriority
3685};
3686#endif
3687
3688static int prio_init() {
3689  if (ThreadPriorityPolicy == 1) {
3690    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3691    // if effective uid is not root. Perhaps, a more elegant way of doing
3692    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3693    if (geteuid() != 0) {
3694      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3695        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
3696      }
3697      ThreadPriorityPolicy = 0;
3698    }
3699  }
3700  if (UseCriticalJavaThreadPriority) {
3701    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3702  }
3703  return 0;
3704}
3705
3706OSReturn os::set_native_priority(Thread* thread, int newpri) {
3707  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3708
3709#ifdef __OpenBSD__
3710  // OpenBSD pthread_setprio starves low priority threads
3711  return OS_OK;
3712#elif defined(__FreeBSD__)
3713  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
3714#elif defined(__APPLE__) || defined(__NetBSD__)
3715  struct sched_param sp;
3716  int policy;
3717  pthread_t self = pthread_self();
3718
3719  if (pthread_getschedparam(self, &policy, &sp) != 0)
3720    return OS_ERR;
3721
3722  sp.sched_priority = newpri;
3723  if (pthread_setschedparam(self, policy, &sp) != 0)
3724    return OS_ERR;
3725
3726  return OS_OK;
3727#else
3728  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3729  return (ret == 0) ? OS_OK : OS_ERR;
3730#endif
3731}
3732
3733OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3734  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3735    *priority_ptr = java_to_os_priority[NormPriority];
3736    return OS_OK;
3737  }
3738
3739  errno = 0;
3740#if defined(__OpenBSD__) || defined(__FreeBSD__)
3741  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
3742#elif defined(__APPLE__) || defined(__NetBSD__)
3743  int policy;
3744  struct sched_param sp;
3745
3746  pthread_getschedparam(pthread_self(), &policy, &sp);
3747  *priority_ptr = sp.sched_priority;
3748#else
3749  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3750#endif
3751  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3752}
3753
3754// Hint to the underlying OS that a task switch would not be good.
3755// Void return because it's a hint and can fail.
3756void os::hint_no_preempt() {}
3757
3758////////////////////////////////////////////////////////////////////////////////
3759// suspend/resume support
3760
3761//  the low-level signal-based suspend/resume support is a remnant from the
3762//  old VM-suspension that used to be for java-suspension, safepoints etc,
3763//  within hotspot. Now there is a single use-case for this:
3764//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3765//      that runs in the watcher thread.
3766//  The remaining code is greatly simplified from the more general suspension
3767//  code that used to be used.
3768//
3769//  The protocol is quite simple:
3770//  - suspend:
3771//      - sends a signal to the target thread
3772//      - polls the suspend state of the osthread using a yield loop
3773//      - target thread signal handler (SR_handler) sets suspend state
3774//        and blocks in sigsuspend until continued
3775//  - resume:
3776//      - sets target osthread state to continue
3777//      - sends signal to end the sigsuspend loop in the SR_handler
3778//
3779//  Note that the SR_lock plays no role in this suspend/resume protocol.
3780//
3781
3782static void resume_clear_context(OSThread *osthread) {
3783  osthread->set_ucontext(NULL);
3784  osthread->set_siginfo(NULL);
3785
3786  // notify the suspend action is completed, we have now resumed
3787  osthread->sr.clear_suspended();
3788}
3789
3790static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3791  osthread->set_ucontext(context);
3792  osthread->set_siginfo(siginfo);
3793}
3794
3795//
3796// Handler function invoked when a thread's execution is suspended or
3797// resumed. We have to be careful that only async-safe functions are
3798// called here (Note: most pthread functions are not async safe and
3799// should be avoided.)
3800//
3801// Note: sigwait() is a more natural fit than sigsuspend() from an
3802// interface point of view, but sigwait() prevents the signal hander
3803// from being run. libpthread would get very confused by not having
3804// its signal handlers run and prevents sigwait()'s use with the
3805// mutex granting granting signal.
3806//
3807// Currently only ever called on the VMThread
3808//
3809static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3810  // Save and restore errno to avoid confusing native code with EINTR
3811  // after sigsuspend.
3812  int old_errno = errno;
3813
3814  Thread* thread = Thread::current();
3815  OSThread* osthread = thread->osthread();
3816  assert(thread->is_VM_thread(), "Must be VMThread");
3817  // read current suspend action
3818  int action = osthread->sr.suspend_action();
3819  if (action == SR_SUSPEND) {
3820    suspend_save_context(osthread, siginfo, context);
3821
3822    // Notify the suspend action is about to be completed. do_suspend()
3823    // waits until SR_SUSPENDED is set and then returns. We will wait
3824    // here for a resume signal and that completes the suspend-other
3825    // action. do_suspend/do_resume is always called as a pair from
3826    // the same thread - so there are no races
3827
3828    // notify the caller
3829    osthread->sr.set_suspended();
3830
3831    sigset_t suspend_set;  // signals for sigsuspend()
3832
3833    // get current set of blocked signals and unblock resume signal
3834    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3835    sigdelset(&suspend_set, SR_signum);
3836
3837    // wait here until we are resumed
3838    do {
3839      sigsuspend(&suspend_set);
3840      // ignore all returns until we get a resume signal
3841    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3842
3843    resume_clear_context(osthread);
3844
3845  } else {
3846    assert(action == SR_CONTINUE, "unexpected sr action");
3847    // nothing special to do - just leave the handler
3848  }
3849
3850  errno = old_errno;
3851}
3852
3853
3854static int SR_initialize() {
3855  struct sigaction act;
3856  char *s;
3857  /* Get signal number to use for suspend/resume */
3858  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3859    int sig = ::strtol(s, 0, 10);
3860    if (sig > 0 || sig < NSIG) {
3861        SR_signum = sig;
3862    }
3863  }
3864
3865  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3866        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3867
3868  sigemptyset(&SR_sigset);
3869  sigaddset(&SR_sigset, SR_signum);
3870
3871  /* Set up signal handler for suspend/resume */
3872  act.sa_flags = SA_RESTART|SA_SIGINFO;
3873  act.sa_handler = (void (*)(int)) SR_handler;
3874
3875  // SR_signum is blocked by default.
3876  // 4528190 - We also need to block pthread restart signal (32 on all
3877  // supported Bsd platforms). Note that BsdThreads need to block
3878  // this signal for all threads to work properly. So we don't have
3879  // to use hard-coded signal number when setting up the mask.
3880  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3881
3882  if (sigaction(SR_signum, &act, 0) == -1) {
3883    return -1;
3884  }
3885
3886  // Save signal flag
3887  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
3888  return 0;
3889}
3890
3891static int SR_finalize() {
3892  return 0;
3893}
3894
3895
3896// returns true on success and false on error - really an error is fatal
3897// but this seems the normal response to library errors
3898static bool do_suspend(OSThread* osthread) {
3899  // mark as suspended and send signal
3900  osthread->sr.set_suspend_action(SR_SUSPEND);
3901  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3902  assert_status(status == 0, status, "pthread_kill");
3903
3904  // check status and wait until notified of suspension
3905  if (status == 0) {
3906    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3907      os::yield_all(i);
3908    }
3909    osthread->sr.set_suspend_action(SR_NONE);
3910    return true;
3911  }
3912  else {
3913    osthread->sr.set_suspend_action(SR_NONE);
3914    return false;
3915  }
3916}
3917
3918static void do_resume(OSThread* osthread) {
3919  assert(osthread->sr.is_suspended(), "thread should be suspended");
3920  osthread->sr.set_suspend_action(SR_CONTINUE);
3921
3922  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3923  assert_status(status == 0, status, "pthread_kill");
3924  // check status and wait unit notified of resumption
3925  if (status == 0) {
3926    for (int i = 0; osthread->sr.is_suspended(); i++) {
3927      os::yield_all(i);
3928    }
3929  }
3930  osthread->sr.set_suspend_action(SR_NONE);
3931}
3932
3933////////////////////////////////////////////////////////////////////////////////
3934// interrupt support
3935
3936void os::interrupt(Thread* thread) {
3937  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3938    "possibility of dangling Thread pointer");
3939
3940  OSThread* osthread = thread->osthread();
3941
3942  if (!osthread->interrupted()) {
3943    osthread->set_interrupted(true);
3944    // More than one thread can get here with the same value of osthread,
3945    // resulting in multiple notifications.  We do, however, want the store
3946    // to interrupted() to be visible to other threads before we execute unpark().
3947    OrderAccess::fence();
3948    ParkEvent * const slp = thread->_SleepEvent ;
3949    if (slp != NULL) slp->unpark() ;
3950  }
3951
3952  // For JSR166. Unpark even if interrupt status already was set
3953  if (thread->is_Java_thread())
3954    ((JavaThread*)thread)->parker()->unpark();
3955
3956  ParkEvent * ev = thread->_ParkEvent ;
3957  if (ev != NULL) ev->unpark() ;
3958
3959}
3960
3961bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3962  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3963    "possibility of dangling Thread pointer");
3964
3965  OSThread* osthread = thread->osthread();
3966
3967  bool interrupted = osthread->interrupted();
3968
3969  if (interrupted && clear_interrupted) {
3970    osthread->set_interrupted(false);
3971    // consider thread->_SleepEvent->reset() ... optional optimization
3972  }
3973
3974  return interrupted;
3975}
3976
3977///////////////////////////////////////////////////////////////////////////////////
3978// signal handling (except suspend/resume)
3979
3980// This routine may be used by user applications as a "hook" to catch signals.
3981// The user-defined signal handler must pass unrecognized signals to this
3982// routine, and if it returns true (non-zero), then the signal handler must
3983// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3984// routine will never retun false (zero), but instead will execute a VM panic
3985// routine kill the process.
3986//
3987// If this routine returns false, it is OK to call it again.  This allows
3988// the user-defined signal handler to perform checks either before or after
3989// the VM performs its own checks.  Naturally, the user code would be making
3990// a serious error if it tried to handle an exception (such as a null check
3991// or breakpoint) that the VM was generating for its own correct operation.
3992//
3993// This routine may recognize any of the following kinds of signals:
3994//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3995// It should be consulted by handlers for any of those signals.
3996//
3997// The caller of this routine must pass in the three arguments supplied
3998// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3999// field of the structure passed to sigaction().  This routine assumes that
4000// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4001//
4002// Note that the VM will print warnings if it detects conflicting signal
4003// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4004//
4005extern "C" JNIEXPORT int
4006JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
4007                        void* ucontext, int abort_if_unrecognized);
4008
4009void signalHandler(int sig, siginfo_t* info, void* uc) {
4010  assert(info != NULL && uc != NULL, "it must be old kernel");
4011  JVM_handle_bsd_signal(sig, info, uc, true);
4012}
4013
4014
4015// This boolean allows users to forward their own non-matching signals
4016// to JVM_handle_bsd_signal, harmlessly.
4017bool os::Bsd::signal_handlers_are_installed = false;
4018
4019// For signal-chaining
4020struct sigaction os::Bsd::sigact[MAXSIGNUM];
4021unsigned int os::Bsd::sigs = 0;
4022bool os::Bsd::libjsig_is_loaded = false;
4023typedef struct sigaction *(*get_signal_t)(int);
4024get_signal_t os::Bsd::get_signal_action = NULL;
4025
4026struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
4027  struct sigaction *actp = NULL;
4028
4029  if (libjsig_is_loaded) {
4030    // Retrieve the old signal handler from libjsig
4031    actp = (*get_signal_action)(sig);
4032  }
4033  if (actp == NULL) {
4034    // Retrieve the preinstalled signal handler from jvm
4035    actp = get_preinstalled_handler(sig);
4036  }
4037
4038  return actp;
4039}
4040
4041static bool call_chained_handler(struct sigaction *actp, int sig,
4042                                 siginfo_t *siginfo, void *context) {
4043  // Call the old signal handler
4044  if (actp->sa_handler == SIG_DFL) {
4045    // It's more reasonable to let jvm treat it as an unexpected exception
4046    // instead of taking the default action.
4047    return false;
4048  } else if (actp->sa_handler != SIG_IGN) {
4049    if ((actp->sa_flags & SA_NODEFER) == 0) {
4050      // automaticlly block the signal
4051      sigaddset(&(actp->sa_mask), sig);
4052    }
4053
4054    sa_handler_t hand;
4055    sa_sigaction_t sa;
4056    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4057    // retrieve the chained handler
4058    if (siginfo_flag_set) {
4059      sa = actp->sa_sigaction;
4060    } else {
4061      hand = actp->sa_handler;
4062    }
4063
4064    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4065      actp->sa_handler = SIG_DFL;
4066    }
4067
4068    // try to honor the signal mask
4069    sigset_t oset;
4070    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4071
4072    // call into the chained handler
4073    if (siginfo_flag_set) {
4074      (*sa)(sig, siginfo, context);
4075    } else {
4076      (*hand)(sig);
4077    }
4078
4079    // restore the signal mask
4080    pthread_sigmask(SIG_SETMASK, &oset, 0);
4081  }
4082  // Tell jvm's signal handler the signal is taken care of.
4083  return true;
4084}
4085
4086bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4087  bool chained = false;
4088  // signal-chaining
4089  if (UseSignalChaining) {
4090    struct sigaction *actp = get_chained_signal_action(sig);
4091    if (actp != NULL) {
4092      chained = call_chained_handler(actp, sig, siginfo, context);
4093    }
4094  }
4095  return chained;
4096}
4097
4098struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
4099  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4100    return &sigact[sig];
4101  }
4102  return NULL;
4103}
4104
4105void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4106  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4107  sigact[sig] = oldAct;
4108  sigs |= (unsigned int)1 << sig;
4109}
4110
4111// for diagnostic
4112int os::Bsd::sigflags[MAXSIGNUM];
4113
4114int os::Bsd::get_our_sigflags(int sig) {
4115  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4116  return sigflags[sig];
4117}
4118
4119void os::Bsd::set_our_sigflags(int sig, int flags) {
4120  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4121  sigflags[sig] = flags;
4122}
4123
4124void os::Bsd::set_signal_handler(int sig, bool set_installed) {
4125  // Check for overwrite.
4126  struct sigaction oldAct;
4127  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4128
4129  void* oldhand = oldAct.sa_sigaction
4130                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4131                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4132  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4133      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4134      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4135    if (AllowUserSignalHandlers || !set_installed) {
4136      // Do not overwrite; user takes responsibility to forward to us.
4137      return;
4138    } else if (UseSignalChaining) {
4139      // save the old handler in jvm
4140      save_preinstalled_handler(sig, oldAct);
4141      // libjsig also interposes the sigaction() call below and saves the
4142      // old sigaction on it own.
4143    } else {
4144      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4145                    "%#lx for signal %d.", (long)oldhand, sig));
4146    }
4147  }
4148
4149  struct sigaction sigAct;
4150  sigfillset(&(sigAct.sa_mask));
4151  sigAct.sa_handler = SIG_DFL;
4152  if (!set_installed) {
4153    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4154  } else {
4155    sigAct.sa_sigaction = signalHandler;
4156    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4157  }
4158  // Save flags, which are set by ours
4159  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4160  sigflags[sig] = sigAct.sa_flags;
4161
4162  int ret = sigaction(sig, &sigAct, &oldAct);
4163  assert(ret == 0, "check");
4164
4165  void* oldhand2  = oldAct.sa_sigaction
4166                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4167                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4168  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4169}
4170
4171// install signal handlers for signals that HotSpot needs to
4172// handle in order to support Java-level exception handling.
4173
4174void os::Bsd::install_signal_handlers() {
4175  if (!signal_handlers_are_installed) {
4176    signal_handlers_are_installed = true;
4177
4178    // signal-chaining
4179    typedef void (*signal_setting_t)();
4180    signal_setting_t begin_signal_setting = NULL;
4181    signal_setting_t end_signal_setting = NULL;
4182    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4183                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4184    if (begin_signal_setting != NULL) {
4185      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4186                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4187      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4188                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4189      libjsig_is_loaded = true;
4190      assert(UseSignalChaining, "should enable signal-chaining");
4191    }
4192    if (libjsig_is_loaded) {
4193      // Tell libjsig jvm is setting signal handlers
4194      (*begin_signal_setting)();
4195    }
4196
4197    set_signal_handler(SIGSEGV, true);
4198    set_signal_handler(SIGPIPE, true);
4199    set_signal_handler(SIGBUS, true);
4200    set_signal_handler(SIGILL, true);
4201    set_signal_handler(SIGFPE, true);
4202    set_signal_handler(SIGXFSZ, true);
4203
4204#if defined(__APPLE__)
4205    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
4206    // signals caught and handled by the JVM. To work around this, we reset the mach task
4207    // signal handler that's placed on our process by CrashReporter. This disables
4208    // CrashReporter-based reporting.
4209    //
4210    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
4211    // on caught fatal signals.
4212    //
4213    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
4214    // handlers. By replacing the existing task exception handler, we disable gdb's mach
4215    // exception handling, while leaving the standard BSD signal handlers functional.
4216    kern_return_t kr;
4217    kr = task_set_exception_ports(mach_task_self(),
4218        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
4219        MACH_PORT_NULL,
4220        EXCEPTION_STATE_IDENTITY,
4221        MACHINE_THREAD_STATE);
4222
4223    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
4224#endif
4225
4226    if (libjsig_is_loaded) {
4227      // Tell libjsig jvm finishes setting signal handlers
4228      (*end_signal_setting)();
4229    }
4230
4231    // We don't activate signal checker if libjsig is in place, we trust ourselves
4232    // and if UserSignalHandler is installed all bets are off
4233    if (CheckJNICalls) {
4234      if (libjsig_is_loaded) {
4235        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4236        check_signals = false;
4237      }
4238      if (AllowUserSignalHandlers) {
4239        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4240        check_signals = false;
4241      }
4242    }
4243  }
4244}
4245
4246#ifndef _ALLBSD_SOURCE
4247// This is the fastest way to get thread cpu time on Bsd.
4248// Returns cpu time (user+sys) for any thread, not only for current.
4249// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4250// It might work on 2.6.10+ with a special kernel/glibc patch.
4251// For reference, please, see IEEE Std 1003.1-2004:
4252//   http://www.unix.org/single_unix_specification
4253
4254jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) {
4255  struct timespec tp;
4256  int rc = os::Bsd::clock_gettime(clockid, &tp);
4257  assert(rc == 0, "clock_gettime is expected to return 0 code");
4258
4259  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4260}
4261#endif
4262
4263/////
4264// glibc on Bsd platform uses non-documented flag
4265// to indicate, that some special sort of signal
4266// trampoline is used.
4267// We will never set this flag, and we should
4268// ignore this flag in our diagnostic
4269#ifdef SIGNIFICANT_SIGNAL_MASK
4270#undef SIGNIFICANT_SIGNAL_MASK
4271#endif
4272#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4273
4274static const char* get_signal_handler_name(address handler,
4275                                           char* buf, int buflen) {
4276  int offset;
4277  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4278  if (found) {
4279    // skip directory names
4280    const char *p1, *p2;
4281    p1 = buf;
4282    size_t len = strlen(os::file_separator());
4283    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4284    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4285  } else {
4286    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4287  }
4288  return buf;
4289}
4290
4291static void print_signal_handler(outputStream* st, int sig,
4292                                 char* buf, size_t buflen) {
4293  struct sigaction sa;
4294
4295  sigaction(sig, NULL, &sa);
4296
4297  // See comment for SIGNIFICANT_SIGNAL_MASK define
4298  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4299
4300  st->print("%s: ", os::exception_name(sig, buf, buflen));
4301
4302  address handler = (sa.sa_flags & SA_SIGINFO)
4303    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4304    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4305
4306  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4307    st->print("SIG_DFL");
4308  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4309    st->print("SIG_IGN");
4310  } else {
4311    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4312  }
4313
4314  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4315
4316  address rh = VMError::get_resetted_sighandler(sig);
4317  // May be, handler was resetted by VMError?
4318  if(rh != NULL) {
4319    handler = rh;
4320    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4321  }
4322
4323  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4324
4325  // Check: is it our handler?
4326  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4327     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4328    // It is our signal handler
4329    // check for flags, reset system-used one!
4330    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4331      st->print(
4332                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4333                os::Bsd::get_our_sigflags(sig));
4334    }
4335  }
4336  st->cr();
4337}
4338
4339
4340#define DO_SIGNAL_CHECK(sig) \
4341  if (!sigismember(&check_signal_done, sig)) \
4342    os::Bsd::check_signal_handler(sig)
4343
4344// This method is a periodic task to check for misbehaving JNI applications
4345// under CheckJNI, we can add any periodic checks here
4346
4347void os::run_periodic_checks() {
4348
4349  if (check_signals == false) return;
4350
4351  // SEGV and BUS if overridden could potentially prevent
4352  // generation of hs*.log in the event of a crash, debugging
4353  // such a case can be very challenging, so we absolutely
4354  // check the following for a good measure:
4355  DO_SIGNAL_CHECK(SIGSEGV);
4356  DO_SIGNAL_CHECK(SIGILL);
4357  DO_SIGNAL_CHECK(SIGFPE);
4358  DO_SIGNAL_CHECK(SIGBUS);
4359  DO_SIGNAL_CHECK(SIGPIPE);
4360  DO_SIGNAL_CHECK(SIGXFSZ);
4361
4362
4363  // ReduceSignalUsage allows the user to override these handlers
4364  // see comments at the very top and jvm_solaris.h
4365  if (!ReduceSignalUsage) {
4366    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4367    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4368    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4369    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4370  }
4371
4372  DO_SIGNAL_CHECK(SR_signum);
4373  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4374}
4375
4376typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4377
4378static os_sigaction_t os_sigaction = NULL;
4379
4380void os::Bsd::check_signal_handler(int sig) {
4381  char buf[O_BUFLEN];
4382  address jvmHandler = NULL;
4383
4384
4385  struct sigaction act;
4386  if (os_sigaction == NULL) {
4387    // only trust the default sigaction, in case it has been interposed
4388    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4389    if (os_sigaction == NULL) return;
4390  }
4391
4392  os_sigaction(sig, (struct sigaction*)NULL, &act);
4393
4394
4395  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4396
4397  address thisHandler = (act.sa_flags & SA_SIGINFO)
4398    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4399    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4400
4401
4402  switch(sig) {
4403  case SIGSEGV:
4404  case SIGBUS:
4405  case SIGFPE:
4406  case SIGPIPE:
4407  case SIGILL:
4408  case SIGXFSZ:
4409    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4410    break;
4411
4412  case SHUTDOWN1_SIGNAL:
4413  case SHUTDOWN2_SIGNAL:
4414  case SHUTDOWN3_SIGNAL:
4415  case BREAK_SIGNAL:
4416    jvmHandler = (address)user_handler();
4417    break;
4418
4419  case INTERRUPT_SIGNAL:
4420    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4421    break;
4422
4423  default:
4424    if (sig == SR_signum) {
4425      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4426    } else {
4427      return;
4428    }
4429    break;
4430  }
4431
4432  if (thisHandler != jvmHandler) {
4433    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4434    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4435    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4436    // No need to check this sig any longer
4437    sigaddset(&check_signal_done, sig);
4438  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4439    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4440    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
4441    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4442    // No need to check this sig any longer
4443    sigaddset(&check_signal_done, sig);
4444  }
4445
4446  // Dump all the signal
4447  if (sigismember(&check_signal_done, sig)) {
4448    print_signal_handlers(tty, buf, O_BUFLEN);
4449  }
4450}
4451
4452extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4453
4454extern bool signal_name(int signo, char* buf, size_t len);
4455
4456const char* os::exception_name(int exception_code, char* buf, size_t size) {
4457  if (0 < exception_code && exception_code <= SIGRTMAX) {
4458    // signal
4459    if (!signal_name(exception_code, buf, size)) {
4460      jio_snprintf(buf, size, "SIG%d", exception_code);
4461    }
4462    return buf;
4463  } else {
4464    return NULL;
4465  }
4466}
4467
4468// this is called _before_ the most of global arguments have been parsed
4469void os::init(void) {
4470  char dummy;   /* used to get a guess on initial stack address */
4471//  first_hrtime = gethrtime();
4472
4473  // With BsdThreads the JavaMain thread pid (primordial thread)
4474  // is different than the pid of the java launcher thread.
4475  // So, on Bsd, the launcher thread pid is passed to the VM
4476  // via the sun.java.launcher.pid property.
4477  // Use this property instead of getpid() if it was correctly passed.
4478  // See bug 6351349.
4479  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4480
4481  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4482
4483  clock_tics_per_sec = CLK_TCK;
4484
4485  init_random(1234567);
4486
4487  ThreadCritical::initialize();
4488
4489  Bsd::set_page_size(getpagesize());
4490  if (Bsd::page_size() == -1) {
4491    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
4492                  strerror(errno)));
4493  }
4494  init_page_sizes((size_t) Bsd::page_size());
4495
4496  Bsd::initialize_system_info();
4497
4498  // main_thread points to the aboriginal thread
4499  Bsd::_main_thread = pthread_self();
4500
4501  Bsd::clock_init();
4502  initial_time_count = os::elapsed_counter();
4503
4504#ifdef __APPLE__
4505  // XXXDARWIN
4506  // Work around the unaligned VM callbacks in hotspot's
4507  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
4508  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
4509  // alignment when doing symbol lookup. To work around this, we force early
4510  // binding of all symbols now, thus binding when alignment is known-good.
4511  _dyld_bind_fully_image_containing_address((const void *) &os::init);
4512#endif
4513}
4514
4515// To install functions for atexit system call
4516extern "C" {
4517  static void perfMemory_exit_helper() {
4518    perfMemory_exit();
4519  }
4520}
4521
4522// this is called _after_ the global arguments have been parsed
4523jint os::init_2(void)
4524{
4525#ifndef _ALLBSD_SOURCE
4526  Bsd::fast_thread_clock_init();
4527#endif
4528
4529  // Allocate a single page and mark it as readable for safepoint polling
4530  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4531  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4532
4533  os::set_polling_page( polling_page );
4534
4535#ifndef PRODUCT
4536  if(Verbose && PrintMiscellaneous)
4537    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4538#endif
4539
4540  if (!UseMembar) {
4541    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4542    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4543    os::set_memory_serialize_page( mem_serialize_page );
4544
4545#ifndef PRODUCT
4546    if(Verbose && PrintMiscellaneous)
4547      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4548#endif
4549  }
4550
4551  os::large_page_init();
4552
4553  // initialize suspend/resume support - must do this before signal_sets_init()
4554  if (SR_initialize() != 0) {
4555    perror("SR_initialize failed");
4556    return JNI_ERR;
4557  }
4558
4559  Bsd::signal_sets_init();
4560  Bsd::install_signal_handlers();
4561
4562  // Check minimum allowable stack size for thread creation and to initialize
4563  // the java system classes, including StackOverflowError - depends on page
4564  // size.  Add a page for compiler2 recursion in main thread.
4565  // Add in 2*BytesPerWord times page size to account for VM stack during
4566  // class initialization depending on 32 or 64 bit VM.
4567  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
4568            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4569                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
4570
4571  size_t threadStackSizeInBytes = ThreadStackSize * K;
4572  if (threadStackSizeInBytes != 0 &&
4573      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
4574        tty->print_cr("\nThe stack size specified is too small, "
4575                      "Specify at least %dk",
4576                      os::Bsd::min_stack_allowed/ K);
4577        return JNI_ERR;
4578  }
4579
4580  // Make the stack size a multiple of the page size so that
4581  // the yellow/red zones can be guarded.
4582  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4583        vm_page_size()));
4584
4585#ifndef _ALLBSD_SOURCE
4586  Bsd::capture_initial_stack(JavaThread::stack_size_at_create());
4587
4588  Bsd::libpthread_init();
4589  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4590     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4591          Bsd::glibc_version(), Bsd::libpthread_version(),
4592          Bsd::is_floating_stack() ? "floating stack" : "fixed stack");
4593  }
4594
4595  if (UseNUMA) {
4596    if (!Bsd::libnuma_init()) {
4597      UseNUMA = false;
4598    } else {
4599      if ((Bsd::numa_max_node() < 1)) {
4600        // There's only one node(they start from 0), disable NUMA.
4601        UseNUMA = false;
4602      }
4603    }
4604    // With SHM large pages we cannot uncommit a page, so there's not way
4605    // we can make the adaptive lgrp chunk resizing work. If the user specified
4606    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4607    // disable adaptive resizing.
4608    if (UseNUMA && UseLargePages && UseSHM) {
4609      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4610        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4611          UseLargePages = false;
4612        } else {
4613          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4614          UseAdaptiveSizePolicy = false;
4615          UseAdaptiveNUMAChunkSizing = false;
4616        }
4617      } else {
4618        UseNUMA = false;
4619      }
4620    }
4621    if (!UseNUMA && ForceNUMA) {
4622      UseNUMA = true;
4623    }
4624  }
4625#endif
4626
4627  if (MaxFDLimit) {
4628    // set the number of file descriptors to max. print out error
4629    // if getrlimit/setrlimit fails but continue regardless.
4630    struct rlimit nbr_files;
4631    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4632    if (status != 0) {
4633      if (PrintMiscellaneous && (Verbose || WizardMode))
4634        perror("os::init_2 getrlimit failed");
4635    } else {
4636      nbr_files.rlim_cur = nbr_files.rlim_max;
4637
4638#ifdef __APPLE__
4639      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
4640      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
4641      // be used instead
4642      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
4643#endif
4644
4645      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4646      if (status != 0) {
4647        if (PrintMiscellaneous && (Verbose || WizardMode))
4648          perror("os::init_2 setrlimit failed");
4649      }
4650    }
4651  }
4652
4653#ifndef _ALLBSD_SOURCE
4654  // Initialize lock used to serialize thread creation (see os::create_thread)
4655  Bsd::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4656#endif
4657
4658  // at-exit methods are called in the reverse order of their registration.
4659  // atexit functions are called on return from main or as a result of a
4660  // call to exit(3C). There can be only 32 of these functions registered
4661  // and atexit() does not set errno.
4662
4663  if (PerfAllowAtExitRegistration) {
4664    // only register atexit functions if PerfAllowAtExitRegistration is set.
4665    // atexit functions can be delayed until process exit time, which
4666    // can be problematic for embedded VM situations. Embedded VMs should
4667    // call DestroyJavaVM() to assure that VM resources are released.
4668
4669    // note: perfMemory_exit_helper atexit function may be removed in
4670    // the future if the appropriate cleanup code can be added to the
4671    // VM_Exit VMOperation's doit method.
4672    if (atexit(perfMemory_exit_helper) != 0) {
4673      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4674    }
4675  }
4676
4677  // initialize thread priority policy
4678  prio_init();
4679
4680#ifdef __APPLE__
4681  // dynamically link to objective c gc registration
4682  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
4683  if (handleLibObjc != NULL) {
4684    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
4685  }
4686#endif
4687
4688  return JNI_OK;
4689}
4690
4691// this is called at the end of vm_initialization
4692void os::init_3(void) { }
4693
4694// Mark the polling page as unreadable
4695void os::make_polling_page_unreadable(void) {
4696  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
4697    fatal("Could not disable polling page");
4698};
4699
4700// Mark the polling page as readable
4701void os::make_polling_page_readable(void) {
4702  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
4703    fatal("Could not enable polling page");
4704  }
4705};
4706
4707int os::active_processor_count() {
4708#ifdef _ALLBSD_SOURCE
4709  return _processor_count;
4710#else
4711  // Bsd doesn't yet have a (official) notion of processor sets,
4712  // so just return the number of online processors.
4713  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4714  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4715  return online_cpus;
4716#endif
4717}
4718
4719void os::set_native_thread_name(const char *name) {
4720#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
4721  // This is only supported in Snow Leopard and beyond
4722  if (name != NULL) {
4723    // Add a "Java: " prefix to the name
4724    char buf[MAXTHREADNAMESIZE];
4725    snprintf(buf, sizeof(buf), "Java: %s", name);
4726    pthread_setname_np(buf);
4727  }
4728#endif
4729}
4730
4731bool os::distribute_processes(uint length, uint* distribution) {
4732  // Not yet implemented.
4733  return false;
4734}
4735
4736bool os::bind_to_processor(uint processor_id) {
4737  // Not yet implemented.
4738  return false;
4739}
4740
4741///
4742
4743// Suspends the target using the signal mechanism and then grabs the PC before
4744// resuming the target. Used by the flat-profiler only
4745ExtendedPC os::get_thread_pc(Thread* thread) {
4746  // Make sure that it is called by the watcher for the VMThread
4747  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4748  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4749
4750  ExtendedPC epc;
4751
4752  OSThread* osthread = thread->osthread();
4753  if (do_suspend(osthread)) {
4754    if (osthread->ucontext() != NULL) {
4755      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
4756    } else {
4757      // NULL context is unexpected, double-check this is the VMThread
4758      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4759    }
4760    do_resume(osthread);
4761  }
4762  // failure means pthread_kill failed for some reason - arguably this is
4763  // a fatal problem, but such problems are ignored elsewhere
4764
4765  return epc;
4766}
4767
4768int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4769{
4770#ifdef _ALLBSD_SOURCE
4771  return pthread_cond_timedwait(_cond, _mutex, _abstime);
4772#else
4773   if (is_NPTL()) {
4774      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4775   } else {
4776#ifndef IA64
4777      // 6292965: BsdThreads pthread_cond_timedwait() resets FPU control
4778      // word back to default 64bit precision if condvar is signaled. Java
4779      // wants 53bit precision.  Save and restore current value.
4780      int fpu = get_fpu_control_word();
4781#endif // IA64
4782      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4783#ifndef IA64
4784      set_fpu_control_word(fpu);
4785#endif // IA64
4786      return status;
4787   }
4788#endif
4789}
4790
4791////////////////////////////////////////////////////////////////////////////////
4792// debug support
4793
4794static address same_page(address x, address y) {
4795  int page_bits = -os::vm_page_size();
4796  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4797    return x;
4798  else if (x > y)
4799    return (address)(intptr_t(y) | ~page_bits) + 1;
4800  else
4801    return (address)(intptr_t(y) & page_bits);
4802}
4803
4804bool os::find(address addr, outputStream* st) {
4805  Dl_info dlinfo;
4806  memset(&dlinfo, 0, sizeof(dlinfo));
4807  if (dladdr(addr, &dlinfo)) {
4808    st->print(PTR_FORMAT ": ", addr);
4809    if (dlinfo.dli_sname != NULL) {
4810      st->print("%s+%#x", dlinfo.dli_sname,
4811                 addr - (intptr_t)dlinfo.dli_saddr);
4812    } else if (dlinfo.dli_fname) {
4813      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4814    } else {
4815      st->print("<absolute address>");
4816    }
4817    if (dlinfo.dli_fname) {
4818      st->print(" in %s", dlinfo.dli_fname);
4819    }
4820    if (dlinfo.dli_fbase) {
4821      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4822    }
4823    st->cr();
4824
4825    if (Verbose) {
4826      // decode some bytes around the PC
4827      address begin = same_page(addr-40, addr);
4828      address end   = same_page(addr+40, addr);
4829      address       lowest = (address) dlinfo.dli_sname;
4830      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4831      if (begin < lowest)  begin = lowest;
4832      Dl_info dlinfo2;
4833      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4834          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4835        end = (address) dlinfo2.dli_saddr;
4836      Disassembler::decode(begin, end, st);
4837    }
4838    return true;
4839  }
4840  return false;
4841}
4842
4843////////////////////////////////////////////////////////////////////////////////
4844// misc
4845
4846// This does not do anything on Bsd. This is basically a hook for being
4847// able to use structured exception handling (thread-local exception filters)
4848// on, e.g., Win32.
4849void
4850os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4851                         JavaCallArguments* args, Thread* thread) {
4852  f(value, method, args, thread);
4853}
4854
4855void os::print_statistics() {
4856}
4857
4858int os::message_box(const char* title, const char* message) {
4859  int i;
4860  fdStream err(defaultStream::error_fd());
4861  for (i = 0; i < 78; i++) err.print_raw("=");
4862  err.cr();
4863  err.print_raw_cr(title);
4864  for (i = 0; i < 78; i++) err.print_raw("-");
4865  err.cr();
4866  err.print_raw_cr(message);
4867  for (i = 0; i < 78; i++) err.print_raw("=");
4868  err.cr();
4869
4870  char buf[16];
4871  // Prevent process from exiting upon "read error" without consuming all CPU
4872  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4873
4874  return buf[0] == 'y' || buf[0] == 'Y';
4875}
4876
4877int os::stat(const char *path, struct stat *sbuf) {
4878  char pathbuf[MAX_PATH];
4879  if (strlen(path) > MAX_PATH - 1) {
4880    errno = ENAMETOOLONG;
4881    return -1;
4882  }
4883  os::native_path(strcpy(pathbuf, path));
4884  return ::stat(pathbuf, sbuf);
4885}
4886
4887bool os::check_heap(bool force) {
4888  return true;
4889}
4890
4891int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4892  return ::vsnprintf(buf, count, format, args);
4893}
4894
4895// Is a (classpath) directory empty?
4896bool os::dir_is_empty(const char* path) {
4897  DIR *dir = NULL;
4898  struct dirent *ptr;
4899
4900  dir = opendir(path);
4901  if (dir == NULL) return true;
4902
4903  /* Scan the directory */
4904  bool result = true;
4905  char buf[sizeof(struct dirent) + MAX_PATH];
4906  while (result && (ptr = ::readdir(dir)) != NULL) {
4907    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4908      result = false;
4909    }
4910  }
4911  closedir(dir);
4912  return result;
4913}
4914
4915// This code originates from JDK's sysOpen and open64_w
4916// from src/solaris/hpi/src/system_md.c
4917
4918#ifndef O_DELETE
4919#define O_DELETE 0x10000
4920#endif
4921
4922// Open a file. Unlink the file immediately after open returns
4923// if the specified oflag has the O_DELETE flag set.
4924// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4925
4926int os::open(const char *path, int oflag, int mode) {
4927
4928  if (strlen(path) > MAX_PATH - 1) {
4929    errno = ENAMETOOLONG;
4930    return -1;
4931  }
4932  int fd;
4933  int o_delete = (oflag & O_DELETE);
4934  oflag = oflag & ~O_DELETE;
4935
4936  fd = ::open(path, oflag, mode);
4937  if (fd == -1) return -1;
4938
4939  //If the open succeeded, the file might still be a directory
4940  {
4941    struct stat buf;
4942    int ret = ::fstat(fd, &buf);
4943    int st_mode = buf.st_mode;
4944
4945    if (ret != -1) {
4946      if ((st_mode & S_IFMT) == S_IFDIR) {
4947        errno = EISDIR;
4948        ::close(fd);
4949        return -1;
4950      }
4951    } else {
4952      ::close(fd);
4953      return -1;
4954    }
4955  }
4956
4957    /*
4958     * All file descriptors that are opened in the JVM and not
4959     * specifically destined for a subprocess should have the
4960     * close-on-exec flag set.  If we don't set it, then careless 3rd
4961     * party native code might fork and exec without closing all
4962     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4963     * UNIXProcess.c), and this in turn might:
4964     *
4965     * - cause end-of-file to fail to be detected on some file
4966     *   descriptors, resulting in mysterious hangs, or
4967     *
4968     * - might cause an fopen in the subprocess to fail on a system
4969     *   suffering from bug 1085341.
4970     *
4971     * (Yes, the default setting of the close-on-exec flag is a Unix
4972     * design flaw)
4973     *
4974     * See:
4975     * 1085341: 32-bit stdio routines should support file descriptors >255
4976     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4977     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4978     */
4979#ifdef FD_CLOEXEC
4980    {
4981        int flags = ::fcntl(fd, F_GETFD);
4982        if (flags != -1)
4983            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4984    }
4985#endif
4986
4987  if (o_delete != 0) {
4988    ::unlink(path);
4989  }
4990  return fd;
4991}
4992
4993
4994// create binary file, rewriting existing file if required
4995int os::create_binary_file(const char* path, bool rewrite_existing) {
4996  int oflags = O_WRONLY | O_CREAT;
4997  if (!rewrite_existing) {
4998    oflags |= O_EXCL;
4999  }
5000  return ::open(path, oflags, S_IREAD | S_IWRITE);
5001}
5002
5003// return current position of file pointer
5004jlong os::current_file_offset(int fd) {
5005  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
5006}
5007
5008// move file pointer to the specified offset
5009jlong os::seek_to_file_offset(int fd, jlong offset) {
5010  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
5011}
5012
5013// This code originates from JDK's sysAvailable
5014// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5015
5016int os::available(int fd, jlong *bytes) {
5017  jlong cur, end;
5018  int mode;
5019  struct stat buf;
5020
5021  if (::fstat(fd, &buf) >= 0) {
5022    mode = buf.st_mode;
5023    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5024      /*
5025      * XXX: is the following call interruptible? If so, this might
5026      * need to go through the INTERRUPT_IO() wrapper as for other
5027      * blocking, interruptible calls in this file.
5028      */
5029      int n;
5030      if (::ioctl(fd, FIONREAD, &n) >= 0) {
5031        *bytes = n;
5032        return 1;
5033      }
5034    }
5035  }
5036  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
5037    return 0;
5038  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
5039    return 0;
5040  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
5041    return 0;
5042  }
5043  *bytes = end - cur;
5044  return 1;
5045}
5046
5047int os::socket_available(int fd, jint *pbytes) {
5048   if (fd < 0)
5049     return OS_OK;
5050
5051   int ret;
5052
5053   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
5054
5055   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5056   // is expected to return 0 on failure and 1 on success to the jdk.
5057
5058   return (ret == OS_ERR) ? 0 : 1;
5059}
5060
5061// Map a block of memory.
5062char* os::map_memory(int fd, const char* file_name, size_t file_offset,
5063                     char *addr, size_t bytes, bool read_only,
5064                     bool allow_exec) {
5065  int prot;
5066  int flags;
5067
5068  if (read_only) {
5069    prot = PROT_READ;
5070    flags = MAP_SHARED;
5071  } else {
5072    prot = PROT_READ | PROT_WRITE;
5073    flags = MAP_PRIVATE;
5074  }
5075
5076  if (allow_exec) {
5077    prot |= PROT_EXEC;
5078  }
5079
5080  if (addr != NULL) {
5081    flags |= MAP_FIXED;
5082  }
5083
5084  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5085                                     fd, file_offset);
5086  if (mapped_address == MAP_FAILED) {
5087    return NULL;
5088  }
5089  return mapped_address;
5090}
5091
5092
5093// Remap a block of memory.
5094char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
5095                       char *addr, size_t bytes, bool read_only,
5096                       bool allow_exec) {
5097  // same as map_memory() on this OS
5098  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5099                        allow_exec);
5100}
5101
5102
5103// Unmap a block of memory.
5104bool os::unmap_memory(char* addr, size_t bytes) {
5105  return munmap(addr, bytes) == 0;
5106}
5107
5108#ifndef _ALLBSD_SOURCE
5109static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5110
5111static clockid_t thread_cpu_clockid(Thread* thread) {
5112  pthread_t tid = thread->osthread()->pthread_id();
5113  clockid_t clockid;
5114
5115  // Get thread clockid
5116  int rc = os::Bsd::pthread_getcpuclockid(tid, &clockid);
5117  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5118  return clockid;
5119}
5120#endif
5121
5122// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5123// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5124// of a thread.
5125//
5126// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5127// the fast estimate available on the platform.
5128
5129jlong os::current_thread_cpu_time() {
5130#ifdef __APPLE__
5131  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
5132#elif !defined(_ALLBSD_SOURCE)
5133  if (os::Bsd::supports_fast_thread_cpu_time()) {
5134    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5135  } else {
5136    // return user + sys since the cost is the same
5137    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5138  }
5139#endif
5140}
5141
5142jlong os::thread_cpu_time(Thread* thread) {
5143#ifndef _ALLBSD_SOURCE
5144  // consistent with what current_thread_cpu_time() returns
5145  if (os::Bsd::supports_fast_thread_cpu_time()) {
5146    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5147  } else {
5148    return slow_thread_cpu_time(thread, true /* user + sys */);
5149  }
5150#endif
5151}
5152
5153jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5154#ifdef __APPLE__
5155  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5156#elif !defined(_ALLBSD_SOURCE)
5157  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5158    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5159  } else {
5160    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5161  }
5162#endif
5163}
5164
5165jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5166#ifdef __APPLE__
5167  struct thread_basic_info tinfo;
5168  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
5169  kern_return_t kr;
5170  thread_t mach_thread;
5171
5172  mach_thread = thread->osthread()->thread_id();
5173  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
5174  if (kr != KERN_SUCCESS)
5175    return -1;
5176
5177  if (user_sys_cpu_time) {
5178    jlong nanos;
5179    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
5180    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
5181    return nanos;
5182  } else {
5183    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
5184  }
5185#elif !defined(_ALLBSD_SOURCE)
5186  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5187    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5188  } else {
5189    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5190  }
5191#endif
5192}
5193
5194#ifndef _ALLBSD_SOURCE
5195//
5196//  -1 on error.
5197//
5198
5199static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5200  static bool proc_pid_cpu_avail = true;
5201  static bool proc_task_unchecked = true;
5202  static const char *proc_stat_path = "/proc/%d/stat";
5203  pid_t  tid = thread->osthread()->thread_id();
5204  int i;
5205  char *s;
5206  char stat[2048];
5207  int statlen;
5208  char proc_name[64];
5209  int count;
5210  long sys_time, user_time;
5211  char string[64];
5212  char cdummy;
5213  int idummy;
5214  long ldummy;
5215  FILE *fp;
5216
5217  // We first try accessing /proc/<pid>/cpu since this is faster to
5218  // process.  If this file is not present (bsd kernels 2.5 and above)
5219  // then we open /proc/<pid>/stat.
5220  if ( proc_pid_cpu_avail ) {
5221    sprintf(proc_name, "/proc/%d/cpu", tid);
5222    fp =  fopen(proc_name, "r");
5223    if ( fp != NULL ) {
5224      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
5225      fclose(fp);
5226      if ( count != 3 ) return -1;
5227
5228      if (user_sys_cpu_time) {
5229        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5230      } else {
5231        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5232      }
5233    }
5234    else proc_pid_cpu_avail = false;
5235  }
5236
5237  // The /proc/<tid>/stat aggregates per-process usage on
5238  // new Bsd kernels 2.6+ where NPTL is supported.
5239  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5240  // See bug 6328462.
5241  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
5242  // and possibly in some other cases, so we check its availability.
5243  if (proc_task_unchecked && os::Bsd::is_NPTL()) {
5244    // This is executed only once
5245    proc_task_unchecked = false;
5246    fp = fopen("/proc/self/task", "r");
5247    if (fp != NULL) {
5248      proc_stat_path = "/proc/self/task/%d/stat";
5249      fclose(fp);
5250    }
5251  }
5252
5253  sprintf(proc_name, proc_stat_path, tid);
5254  fp = fopen(proc_name, "r");
5255  if ( fp == NULL ) return -1;
5256  statlen = fread(stat, 1, 2047, fp);
5257  stat[statlen] = '\0';
5258  fclose(fp);
5259
5260  // Skip pid and the command string. Note that we could be dealing with
5261  // weird command names, e.g. user could decide to rename java launcher
5262  // to "java 1.4.2 :)", then the stat file would look like
5263  //                1234 (java 1.4.2 :)) R ... ...
5264  // We don't really need to know the command string, just find the last
5265  // occurrence of ")" and then start parsing from there. See bug 4726580.
5266  s = strrchr(stat, ')');
5267  i = 0;
5268  if (s == NULL ) return -1;
5269
5270  // Skip blank chars
5271  do s++; while (isspace(*s));
5272
5273  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5274                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5275                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5276                 &user_time, &sys_time);
5277  if ( count != 13 ) return -1;
5278  if (user_sys_cpu_time) {
5279    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5280  } else {
5281    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5282  }
5283}
5284#endif
5285
5286void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5287  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5288  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5289  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5290  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5291}
5292
5293void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5294  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5295  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5296  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5297  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5298}
5299
5300bool os::is_thread_cpu_time_supported() {
5301#ifdef __APPLE__
5302  return true;
5303#elif defined(_ALLBSD_SOURCE)
5304  return false;
5305#else
5306  return true;
5307#endif
5308}
5309
5310// System loadavg support.  Returns -1 if load average cannot be obtained.
5311// Bsd doesn't yet have a (official) notion of processor sets,
5312// so just return the system wide load average.
5313int os::loadavg(double loadavg[], int nelem) {
5314  return ::getloadavg(loadavg, nelem);
5315}
5316
5317void os::pause() {
5318  char filename[MAX_PATH];
5319  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5320    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5321  } else {
5322    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5323  }
5324
5325  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5326  if (fd != -1) {
5327    struct stat buf;
5328    ::close(fd);
5329    while (::stat(filename, &buf) == 0) {
5330      (void)::poll(NULL, 0, 100);
5331    }
5332  } else {
5333    jio_fprintf(stderr,
5334      "Could not open pause file '%s', continuing immediately.\n", filename);
5335  }
5336}
5337
5338
5339// Refer to the comments in os_solaris.cpp park-unpark.
5340//
5341// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5342// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5343// For specifics regarding the bug see GLIBC BUGID 261237 :
5344//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5345// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5346// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5347// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5348// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5349// and monitorenter when we're using 1-0 locking.  All those operations may result in
5350// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5351// of libpthread avoids the problem, but isn't practical.
5352//
5353// Possible remedies:
5354//
5355// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5356//      This is palliative and probabilistic, however.  If the thread is preempted
5357//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5358//      than the minimum period may have passed, and the abstime may be stale (in the
5359//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5360//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5361//
5362// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5363//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5364//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5365//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5366//      thread.
5367//
5368// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5369//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5370//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5371//      This also works well.  In fact it avoids kernel-level scalability impediments
5372//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5373//      timers in a graceful fashion.
5374//
5375// 4.   When the abstime value is in the past it appears that control returns
5376//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5377//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5378//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5379//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5380//      It may be possible to avoid reinitialization by checking the return
5381//      value from pthread_cond_timedwait().  In addition to reinitializing the
5382//      condvar we must establish the invariant that cond_signal() is only called
5383//      within critical sections protected by the adjunct mutex.  This prevents
5384//      cond_signal() from "seeing" a condvar that's in the midst of being
5385//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5386//      desirable signal-after-unlock optimization that avoids futile context switching.
5387//
5388//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5389//      structure when a condvar is used or initialized.  cond_destroy()  would
5390//      release the helper structure.  Our reinitialize-after-timedwait fix
5391//      put excessive stress on malloc/free and locks protecting the c-heap.
5392//
5393// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5394// It may be possible to refine (4) by checking the kernel and NTPL verisons
5395// and only enabling the work-around for vulnerable environments.
5396
5397// utility to compute the abstime argument to timedwait:
5398// millis is the relative timeout time
5399// abstime will be the absolute timeout time
5400// TODO: replace compute_abstime() with unpackTime()
5401
5402static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
5403  if (millis < 0)  millis = 0;
5404  struct timeval now;
5405  int status = gettimeofday(&now, NULL);
5406  assert(status == 0, "gettimeofday");
5407  jlong seconds = millis / 1000;
5408  millis %= 1000;
5409  if (seconds > 50000000) { // see man cond_timedwait(3T)
5410    seconds = 50000000;
5411  }
5412  abstime->tv_sec = now.tv_sec  + seconds;
5413  long       usec = now.tv_usec + millis * 1000;
5414  if (usec >= 1000000) {
5415    abstime->tv_sec += 1;
5416    usec -= 1000000;
5417  }
5418  abstime->tv_nsec = usec * 1000;
5419  return abstime;
5420}
5421
5422
5423// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5424// Conceptually TryPark() should be equivalent to park(0).
5425
5426int os::PlatformEvent::TryPark() {
5427  for (;;) {
5428    const int v = _Event ;
5429    guarantee ((v == 0) || (v == 1), "invariant") ;
5430    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5431  }
5432}
5433
5434void os::PlatformEvent::park() {       // AKA "down()"
5435  // Invariant: Only the thread associated with the Event/PlatformEvent
5436  // may call park().
5437  // TODO: assert that _Assoc != NULL or _Assoc == Self
5438  int v ;
5439  for (;;) {
5440      v = _Event ;
5441      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5442  }
5443  guarantee (v >= 0, "invariant") ;
5444  if (v == 0) {
5445     // Do this the hard way by blocking ...
5446     int status = pthread_mutex_lock(_mutex);
5447     assert_status(status == 0, status, "mutex_lock");
5448     guarantee (_nParked == 0, "invariant") ;
5449     ++ _nParked ;
5450     while (_Event < 0) {
5451        status = pthread_cond_wait(_cond, _mutex);
5452        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5453        // Treat this the same as if the wait was interrupted
5454        if (status == ETIMEDOUT) { status = EINTR; }
5455        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5456     }
5457     -- _nParked ;
5458
5459    // In theory we could move the ST of 0 into _Event past the unlock(),
5460    // but then we'd need a MEMBAR after the ST.
5461    _Event = 0 ;
5462     status = pthread_mutex_unlock(_mutex);
5463     assert_status(status == 0, status, "mutex_unlock");
5464  }
5465  guarantee (_Event >= 0, "invariant") ;
5466}
5467
5468int os::PlatformEvent::park(jlong millis) {
5469  guarantee (_nParked == 0, "invariant") ;
5470
5471  int v ;
5472  for (;;) {
5473      v = _Event ;
5474      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5475  }
5476  guarantee (v >= 0, "invariant") ;
5477  if (v != 0) return OS_OK ;
5478
5479  // We do this the hard way, by blocking the thread.
5480  // Consider enforcing a minimum timeout value.
5481  struct timespec abst;
5482  compute_abstime(&abst, millis);
5483
5484  int ret = OS_TIMEOUT;
5485  int status = pthread_mutex_lock(_mutex);
5486  assert_status(status == 0, status, "mutex_lock");
5487  guarantee (_nParked == 0, "invariant") ;
5488  ++_nParked ;
5489
5490  // Object.wait(timo) will return because of
5491  // (a) notification
5492  // (b) timeout
5493  // (c) thread.interrupt
5494  //
5495  // Thread.interrupt and object.notify{All} both call Event::set.
5496  // That is, we treat thread.interrupt as a special case of notification.
5497  // The underlying Solaris implementation, cond_timedwait, admits
5498  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5499  // JVM from making those visible to Java code.  As such, we must
5500  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5501  //
5502  // TODO: properly differentiate simultaneous notify+interrupt.
5503  // In that case, we should propagate the notify to another waiter.
5504
5505  while (_Event < 0) {
5506    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
5507    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5508      pthread_cond_destroy (_cond);
5509      pthread_cond_init (_cond, NULL) ;
5510    }
5511    assert_status(status == 0 || status == EINTR ||
5512                  status == ETIMEDOUT,
5513                  status, "cond_timedwait");
5514    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5515    if (status == ETIMEDOUT) break ;
5516    // We consume and ignore EINTR and spurious wakeups.
5517  }
5518  --_nParked ;
5519  if (_Event >= 0) {
5520     ret = OS_OK;
5521  }
5522  _Event = 0 ;
5523  status = pthread_mutex_unlock(_mutex);
5524  assert_status(status == 0, status, "mutex_unlock");
5525  assert (_nParked == 0, "invariant") ;
5526  return ret;
5527}
5528
5529void os::PlatformEvent::unpark() {
5530  int v, AnyWaiters ;
5531  for (;;) {
5532      v = _Event ;
5533      if (v > 0) {
5534         // The LD of _Event could have reordered or be satisfied
5535         // by a read-aside from this processor's write buffer.
5536         // To avoid problems execute a barrier and then
5537         // ratify the value.
5538         OrderAccess::fence() ;
5539         if (_Event == v) return ;
5540         continue ;
5541      }
5542      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5543  }
5544  if (v < 0) {
5545     // Wait for the thread associated with the event to vacate
5546     int status = pthread_mutex_lock(_mutex);
5547     assert_status(status == 0, status, "mutex_lock");
5548     AnyWaiters = _nParked ;
5549     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5550     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5551        AnyWaiters = 0 ;
5552        pthread_cond_signal (_cond);
5553     }
5554     status = pthread_mutex_unlock(_mutex);
5555     assert_status(status == 0, status, "mutex_unlock");
5556     if (AnyWaiters != 0) {
5557        status = pthread_cond_signal(_cond);
5558        assert_status(status == 0, status, "cond_signal");
5559     }
5560  }
5561
5562  // Note that we signal() _after dropping the lock for "immortal" Events.
5563  // This is safe and avoids a common class of  futile wakeups.  In rare
5564  // circumstances this can cause a thread to return prematurely from
5565  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5566  // simply re-test the condition and re-park itself.
5567}
5568
5569
5570// JSR166
5571// -------------------------------------------------------
5572
5573/*
5574 * The solaris and bsd implementations of park/unpark are fairly
5575 * conservative for now, but can be improved. They currently use a
5576 * mutex/condvar pair, plus a a count.
5577 * Park decrements count if > 0, else does a condvar wait.  Unpark
5578 * sets count to 1 and signals condvar.  Only one thread ever waits
5579 * on the condvar. Contention seen when trying to park implies that someone
5580 * is unparking you, so don't wait. And spurious returns are fine, so there
5581 * is no need to track notifications.
5582 */
5583
5584#define MAX_SECS 100000000
5585/*
5586 * This code is common to bsd and solaris and will be moved to a
5587 * common place in dolphin.
5588 *
5589 * The passed in time value is either a relative time in nanoseconds
5590 * or an absolute time in milliseconds. Either way it has to be unpacked
5591 * into suitable seconds and nanoseconds components and stored in the
5592 * given timespec structure.
5593 * Given time is a 64-bit value and the time_t used in the timespec is only
5594 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
5595 * overflow if times way in the future are given. Further on Solaris versions
5596 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5597 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5598 * As it will be 28 years before "now + 100000000" will overflow we can
5599 * ignore overflow and just impose a hard-limit on seconds using the value
5600 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5601 * years from "now".
5602 */
5603
5604static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
5605  assert (time > 0, "convertTime");
5606
5607  struct timeval now;
5608  int status = gettimeofday(&now, NULL);
5609  assert(status == 0, "gettimeofday");
5610
5611  time_t max_secs = now.tv_sec + MAX_SECS;
5612
5613  if (isAbsolute) {
5614    jlong secs = time / 1000;
5615    if (secs > max_secs) {
5616      absTime->tv_sec = max_secs;
5617    }
5618    else {
5619      absTime->tv_sec = secs;
5620    }
5621    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5622  }
5623  else {
5624    jlong secs = time / NANOSECS_PER_SEC;
5625    if (secs >= MAX_SECS) {
5626      absTime->tv_sec = max_secs;
5627      absTime->tv_nsec = 0;
5628    }
5629    else {
5630      absTime->tv_sec = now.tv_sec + secs;
5631      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5632      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5633        absTime->tv_nsec -= NANOSECS_PER_SEC;
5634        ++absTime->tv_sec; // note: this must be <= max_secs
5635      }
5636    }
5637  }
5638  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5639  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5640  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5641  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5642}
5643
5644void Parker::park(bool isAbsolute, jlong time) {
5645  // Optional fast-path check:
5646  // Return immediately if a permit is available.
5647  if (_counter > 0) {
5648      _counter = 0 ;
5649      OrderAccess::fence();
5650      return ;
5651  }
5652
5653  Thread* thread = Thread::current();
5654  assert(thread->is_Java_thread(), "Must be JavaThread");
5655  JavaThread *jt = (JavaThread *)thread;
5656
5657  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5658  // Check interrupt before trying to wait
5659  if (Thread::is_interrupted(thread, false)) {
5660    return;
5661  }
5662
5663  // Next, demultiplex/decode time arguments
5664  struct timespec absTime;
5665  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5666    return;
5667  }
5668  if (time > 0) {
5669    unpackTime(&absTime, isAbsolute, time);
5670  }
5671
5672
5673  // Enter safepoint region
5674  // Beware of deadlocks such as 6317397.
5675  // The per-thread Parker:: mutex is a classic leaf-lock.
5676  // In particular a thread must never block on the Threads_lock while
5677  // holding the Parker:: mutex.  If safepoints are pending both the
5678  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5679  ThreadBlockInVM tbivm(jt);
5680
5681  // Don't wait if cannot get lock since interference arises from
5682  // unblocking.  Also. check interrupt before trying wait
5683  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5684    return;
5685  }
5686
5687  int status ;
5688  if (_counter > 0)  { // no wait needed
5689    _counter = 0;
5690    status = pthread_mutex_unlock(_mutex);
5691    assert (status == 0, "invariant") ;
5692    OrderAccess::fence();
5693    return;
5694  }
5695
5696#ifdef ASSERT
5697  // Don't catch signals while blocked; let the running threads have the signals.
5698  // (This allows a debugger to break into the running thread.)
5699  sigset_t oldsigs;
5700  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
5701  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5702#endif
5703
5704  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5705  jt->set_suspend_equivalent();
5706  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5707
5708  if (time == 0) {
5709    status = pthread_cond_wait (_cond, _mutex) ;
5710  } else {
5711    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5712    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5713      pthread_cond_destroy (_cond) ;
5714      pthread_cond_init    (_cond, NULL);
5715    }
5716  }
5717  assert_status(status == 0 || status == EINTR ||
5718                status == ETIMEDOUT,
5719                status, "cond_timedwait");
5720
5721#ifdef ASSERT
5722  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5723#endif
5724
5725  _counter = 0 ;
5726  status = pthread_mutex_unlock(_mutex) ;
5727  assert_status(status == 0, status, "invariant") ;
5728  // If externally suspended while waiting, re-suspend
5729  if (jt->handle_special_suspend_equivalent_condition()) {
5730    jt->java_suspend_self();
5731  }
5732
5733  OrderAccess::fence();
5734}
5735
5736void Parker::unpark() {
5737  int s, status ;
5738  status = pthread_mutex_lock(_mutex);
5739  assert (status == 0, "invariant") ;
5740  s = _counter;
5741  _counter = 1;
5742  if (s < 1) {
5743     if (WorkAroundNPTLTimedWaitHang) {
5744        status = pthread_cond_signal (_cond) ;
5745        assert (status == 0, "invariant") ;
5746        status = pthread_mutex_unlock(_mutex);
5747        assert (status == 0, "invariant") ;
5748     } else {
5749        status = pthread_mutex_unlock(_mutex);
5750        assert (status == 0, "invariant") ;
5751        status = pthread_cond_signal (_cond) ;
5752        assert (status == 0, "invariant") ;
5753     }
5754  } else {
5755    pthread_mutex_unlock(_mutex);
5756    assert (status == 0, "invariant") ;
5757  }
5758}
5759
5760
5761/* Darwin has no "environ" in a dynamic library. */
5762#ifdef __APPLE__
5763#include <crt_externs.h>
5764#define environ (*_NSGetEnviron())
5765#else
5766extern char** environ;
5767#endif
5768
5769// Run the specified command in a separate process. Return its exit value,
5770// or -1 on failure (e.g. can't fork a new process).
5771// Unlike system(), this function can be called from signal handler. It
5772// doesn't block SIGINT et al.
5773int os::fork_and_exec(char* cmd) {
5774  const char * argv[4] = {"sh", "-c", cmd, NULL};
5775
5776  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
5777  // pthread_atfork handlers and reset pthread library. All we need is a
5778  // separate process to execve. Make a direct syscall to fork process.
5779  // On IA64 there's no fork syscall, we have to use fork() and hope for
5780  // the best...
5781  pid_t pid = fork();
5782
5783  if (pid < 0) {
5784    // fork failed
5785    return -1;
5786
5787  } else if (pid == 0) {
5788    // child process
5789
5790    // execve() in BsdThreads will call pthread_kill_other_threads_np()
5791    // first to kill every thread on the thread list. Because this list is
5792    // not reset by fork() (see notes above), execve() will instead kill
5793    // every thread in the parent process. We know this is the only thread
5794    // in the new process, so make a system call directly.
5795    // IA64 should use normal execve() from glibc to match the glibc fork()
5796    // above.
5797    execve("/bin/sh", (char* const*)argv, environ);
5798
5799    // execve failed
5800    _exit(-1);
5801
5802  } else  {
5803    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5804    // care about the actual exit code, for now.
5805
5806    int status;
5807
5808    // Wait for the child process to exit.  This returns immediately if
5809    // the child has already exited. */
5810    while (waitpid(pid, &status, 0) < 0) {
5811        switch (errno) {
5812        case ECHILD: return 0;
5813        case EINTR: break;
5814        default: return -1;
5815        }
5816    }
5817
5818    if (WIFEXITED(status)) {
5819       // The child exited normally; get its exit code.
5820       return WEXITSTATUS(status);
5821    } else if (WIFSIGNALED(status)) {
5822       // The child exited because of a signal
5823       // The best value to return is 0x80 + signal number,
5824       // because that is what all Unix shells do, and because
5825       // it allows callers to distinguish between process exit and
5826       // process death by signal.
5827       return 0x80 + WTERMSIG(status);
5828    } else {
5829       // Unknown exit code; pass it through
5830       return status;
5831    }
5832  }
5833}
5834
5835// is_headless_jre()
5836//
5837// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5838// in order to report if we are running in a headless jre
5839//
5840// Since JDK8 xawt/libmawt.so was moved into the same directory
5841// as libawt.so, and renamed libawt_xawt.so
5842//
5843bool os::is_headless_jre() {
5844    struct stat statbuf;
5845    char buf[MAXPATHLEN];
5846    char libmawtpath[MAXPATHLEN];
5847    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
5848    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
5849    char *p;
5850
5851    // Get path to libjvm.so
5852    os::jvm_path(buf, sizeof(buf));
5853
5854    // Get rid of libjvm.so
5855    p = strrchr(buf, '/');
5856    if (p == NULL) return false;
5857    else *p = '\0';
5858
5859    // Get rid of client or server
5860    p = strrchr(buf, '/');
5861    if (p == NULL) return false;
5862    else *p = '\0';
5863
5864    // check xawt/libmawt.so
5865    strcpy(libmawtpath, buf);
5866    strcat(libmawtpath, xawtstr);
5867    if (::stat(libmawtpath, &statbuf) == 0) return false;
5868
5869    // check libawt_xawt.so
5870    strcpy(libmawtpath, buf);
5871    strcat(libmawtpath, new_xawtstr);
5872    if (::stat(libmawtpath, &statbuf) == 0) return false;
5873
5874    return true;
5875}
5876