os_bsd.cpp revision 3038:e8a4934564b2
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_bsd.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_bsd.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_bsd.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef TARGET_ARCH_zero
74# include "assembler_zero.inline.hpp"
75# include "nativeInst_zero.hpp"
76#endif
77#ifdef TARGET_ARCH_arm
78# include "assembler_arm.inline.hpp"
79# include "nativeInst_arm.hpp"
80#endif
81#ifdef TARGET_ARCH_ppc
82# include "assembler_ppc.inline.hpp"
83# include "nativeInst_ppc.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_Runtime1.hpp"
87#endif
88#ifdef COMPILER2
89#include "opto/runtime.hpp"
90#endif
91
92// put OS-includes here
93# include <sys/types.h>
94# include <sys/mman.h>
95# include <sys/stat.h>
96# include <sys/select.h>
97# include <pthread.h>
98# include <signal.h>
99# include <errno.h>
100# include <dlfcn.h>
101# include <stdio.h>
102# include <unistd.h>
103# include <sys/resource.h>
104# include <pthread.h>
105# include <sys/stat.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/utsname.h>
109# include <sys/socket.h>
110# include <sys/wait.h>
111# include <time.h>
112# include <pwd.h>
113# include <poll.h>
114# include <semaphore.h>
115# include <fcntl.h>
116# include <string.h>
117#ifdef _ALLBSD_SOURCE
118# include <sys/param.h>
119# include <sys/sysctl.h>
120#else
121# include <syscall.h>
122# include <sys/sysinfo.h>
123# include <gnu/libc-version.h>
124#endif
125# include <sys/ipc.h>
126# include <sys/shm.h>
127#ifndef __APPLE__
128# include <link.h>
129#endif
130# include <stdint.h>
131# include <inttypes.h>
132# include <sys/ioctl.h>
133
134#if defined(__FreeBSD__) || defined(__NetBSD__)
135# include <elf.h>
136#endif
137
138#ifdef __APPLE__
139# include <mach/mach.h> // semaphore_* API
140# include <mach-o/dyld.h>
141# include <sys/proc_info.h>
142# include <objc/objc-auto.h>
143#endif
144
145#ifndef MAP_ANONYMOUS
146#define MAP_ANONYMOUS MAP_ANON
147#endif
148
149#define MAX_PATH    (2 * K)
150
151// for timer info max values which include all bits
152#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
153
154#define LARGEPAGES_BIT (1 << 6)
155////////////////////////////////////////////////////////////////////////////////
156// global variables
157julong os::Bsd::_physical_memory = 0;
158
159#ifndef _ALLBSD_SOURCE
160address   os::Bsd::_initial_thread_stack_bottom = NULL;
161uintptr_t os::Bsd::_initial_thread_stack_size   = 0;
162#endif
163
164int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
165#ifndef _ALLBSD_SOURCE
166int (*os::Bsd::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
167Mutex* os::Bsd::_createThread_lock = NULL;
168#endif
169pthread_t os::Bsd::_main_thread;
170int os::Bsd::_page_size = -1;
171#ifndef _ALLBSD_SOURCE
172bool os::Bsd::_is_floating_stack = false;
173bool os::Bsd::_is_NPTL = false;
174bool os::Bsd::_supports_fast_thread_cpu_time = false;
175const char * os::Bsd::_glibc_version = NULL;
176const char * os::Bsd::_libpthread_version = NULL;
177#endif
178
179static jlong initial_time_count=0;
180
181static int clock_tics_per_sec = 100;
182
183// For diagnostics to print a message once. see run_periodic_checks
184static sigset_t check_signal_done;
185static bool check_signals = true;;
186
187static pid_t _initial_pid = 0;
188
189/* Signal number used to suspend/resume a thread */
190
191/* do not use any signal number less than SIGSEGV, see 4355769 */
192static int SR_signum = SIGUSR2;
193sigset_t SR_sigset;
194
195
196////////////////////////////////////////////////////////////////////////////////
197// utility functions
198
199static int SR_initialize();
200static int SR_finalize();
201
202julong os::available_memory() {
203  return Bsd::available_memory();
204}
205
206julong os::Bsd::available_memory() {
207#ifdef _ALLBSD_SOURCE
208  // XXXBSD: this is just a stopgap implementation
209  return physical_memory() >> 2;
210#else
211  // values in struct sysinfo are "unsigned long"
212  struct sysinfo si;
213  sysinfo(&si);
214
215  return (julong)si.freeram * si.mem_unit;
216#endif
217}
218
219julong os::physical_memory() {
220  return Bsd::physical_memory();
221}
222
223julong os::allocatable_physical_memory(julong size) {
224#ifdef _LP64
225  return size;
226#else
227  julong result = MIN2(size, (julong)3800*M);
228   if (!is_allocatable(result)) {
229     // See comments under solaris for alignment considerations
230     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
231     result =  MIN2(size, reasonable_size);
232   }
233   return result;
234#endif // _LP64
235}
236
237////////////////////////////////////////////////////////////////////////////////
238// environment support
239
240bool os::getenv(const char* name, char* buf, int len) {
241  const char* val = ::getenv(name);
242  if (val != NULL && strlen(val) < (size_t)len) {
243    strcpy(buf, val);
244    return true;
245  }
246  if (len > 0) buf[0] = 0;  // return a null string
247  return false;
248}
249
250
251// Return true if user is running as root.
252
253bool os::have_special_privileges() {
254  static bool init = false;
255  static bool privileges = false;
256  if (!init) {
257    privileges = (getuid() != geteuid()) || (getgid() != getegid());
258    init = true;
259  }
260  return privileges;
261}
262
263
264#ifndef _ALLBSD_SOURCE
265#ifndef SYS_gettid
266// i386: 224, ia64: 1105, amd64: 186, sparc 143
267#ifdef __ia64__
268#define SYS_gettid 1105
269#elif __i386__
270#define SYS_gettid 224
271#elif __amd64__
272#define SYS_gettid 186
273#elif __sparc__
274#define SYS_gettid 143
275#else
276#error define gettid for the arch
277#endif
278#endif
279#endif
280
281// Cpu architecture string
282#if   defined(ZERO)
283static char cpu_arch[] = ZERO_LIBARCH;
284#elif defined(IA64)
285static char cpu_arch[] = "ia64";
286#elif defined(IA32)
287static char cpu_arch[] = "i386";
288#elif defined(AMD64)
289static char cpu_arch[] = "amd64";
290#elif defined(ARM)
291static char cpu_arch[] = "arm";
292#elif defined(PPC)
293static char cpu_arch[] = "ppc";
294#elif defined(SPARC)
295#  ifdef _LP64
296static char cpu_arch[] = "sparcv9";
297#  else
298static char cpu_arch[] = "sparc";
299#  endif
300#else
301#error Add appropriate cpu_arch setting
302#endif
303
304// Compiler variant
305#ifdef COMPILER2
306#define COMPILER_VARIANT "server"
307#else
308#define COMPILER_VARIANT "client"
309#endif
310
311#ifndef _ALLBSD_SOURCE
312// pid_t gettid()
313//
314// Returns the kernel thread id of the currently running thread. Kernel
315// thread id is used to access /proc.
316//
317// (Note that getpid() on BsdThreads returns kernel thread id too; but
318// on NPTL, it returns the same pid for all threads, as required by POSIX.)
319//
320pid_t os::Bsd::gettid() {
321  int rslt = syscall(SYS_gettid);
322  if (rslt == -1) {
323     // old kernel, no NPTL support
324     return getpid();
325  } else {
326     return (pid_t)rslt;
327  }
328}
329
330// Most versions of bsd have a bug where the number of processors are
331// determined by looking at the /proc file system.  In a chroot environment,
332// the system call returns 1.  This causes the VM to act as if it is
333// a single processor and elide locking (see is_MP() call).
334static bool unsafe_chroot_detected = false;
335static const char *unstable_chroot_error = "/proc file system not found.\n"
336                     "Java may be unstable running multithreaded in a chroot "
337                     "environment on Bsd when /proc filesystem is not mounted.";
338#endif
339
340#ifdef _ALLBSD_SOURCE
341void os::Bsd::initialize_system_info() {
342  int mib[2];
343  size_t len;
344  int cpu_val;
345  u_long mem_val;
346
347  /* get processors count via hw.ncpus sysctl */
348  mib[0] = CTL_HW;
349  mib[1] = HW_NCPU;
350  len = sizeof(cpu_val);
351  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
352       set_processor_count(cpu_val);
353  }
354  else {
355       set_processor_count(1);   // fallback
356  }
357
358  /* get physical memory via hw.usermem sysctl (hw.usermem is used
359   * instead of hw.physmem because we need size of allocatable memory
360   */
361  mib[0] = CTL_HW;
362  mib[1] = HW_USERMEM;
363  len = sizeof(mem_val);
364  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
365       _physical_memory = mem_val;
366  else
367       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
368
369#ifdef __OpenBSD__
370  {
371       // limit _physical_memory memory view on OpenBSD since
372       // datasize rlimit restricts us anyway.
373       struct rlimit limits;
374       getrlimit(RLIMIT_DATA, &limits);
375       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
376  }
377#endif
378}
379#else
380void os::Bsd::initialize_system_info() {
381  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
382  if (processor_count() == 1) {
383    pid_t pid = os::Bsd::gettid();
384    char fname[32];
385    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
386    FILE *fp = fopen(fname, "r");
387    if (fp == NULL) {
388      unsafe_chroot_detected = true;
389    } else {
390      fclose(fp);
391    }
392  }
393  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
394  assert(processor_count() > 0, "bsd error");
395}
396#endif
397
398#ifdef __APPLE__
399static const char *get_home() {
400  const char *home_dir = ::getenv("HOME");
401  if ((home_dir == NULL) || (*home_dir == '\0')) {
402    struct passwd *passwd_info = getpwuid(geteuid());
403    if (passwd_info != NULL) {
404      home_dir = passwd_info->pw_dir;
405    }
406  }
407
408  return home_dir;
409}
410#endif
411
412void os::init_system_properties_values() {
413//  char arch[12];
414//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
415
416  // The next steps are taken in the product version:
417  //
418  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
419  // This library should be located at:
420  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
421  //
422  // If "/jre/lib/" appears at the right place in the path, then we
423  // assume libjvm[_g].so is installed in a JDK and we use this path.
424  //
425  // Otherwise exit with message: "Could not create the Java virtual machine."
426  //
427  // The following extra steps are taken in the debugging version:
428  //
429  // If "/jre/lib/" does NOT appear at the right place in the path
430  // instead of exit check for $JAVA_HOME environment variable.
431  //
432  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
433  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
434  // it looks like libjvm[_g].so is installed there
435  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
436  //
437  // Otherwise exit.
438  //
439  // Important note: if the location of libjvm.so changes this
440  // code needs to be changed accordingly.
441
442  // The next few definitions allow the code to be verbatim:
443#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
444#define getenv(n) ::getenv(n)
445
446/*
447 * See ld(1):
448 *      The linker uses the following search paths to locate required
449 *      shared libraries:
450 *        1: ...
451 *        ...
452 *        7: The default directories, normally /lib and /usr/lib.
453 */
454#ifndef DEFAULT_LIBPATH
455#define DEFAULT_LIBPATH "/lib:/usr/lib"
456#endif
457
458#define EXTENSIONS_DIR  "/lib/ext"
459#define ENDORSED_DIR    "/lib/endorsed"
460#define REG_DIR         "/usr/java/packages"
461
462#ifdef __APPLE__
463#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
464#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
465        const char *user_home_dir = get_home();
466        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
467        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
468            sizeof(SYS_EXTENSIONS_DIRS);
469#endif
470
471  {
472    /* sysclasspath, java_home, dll_dir */
473    {
474        char *home_path;
475        char *dll_path;
476        char *pslash;
477        char buf[MAXPATHLEN];
478        os::jvm_path(buf, sizeof(buf));
479
480        // Found the full path to libjvm.so.
481        // Now cut the path to <java_home>/jre if we can.
482        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
483        pslash = strrchr(buf, '/');
484        if (pslash != NULL)
485            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
486        dll_path = malloc(strlen(buf) + 1);
487        if (dll_path == NULL)
488            return;
489        strcpy(dll_path, buf);
490        Arguments::set_dll_dir(dll_path);
491
492        if (pslash != NULL) {
493            pslash = strrchr(buf, '/');
494            if (pslash != NULL) {
495                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
496#ifndef __APPLE__
497                pslash = strrchr(buf, '/');
498                if (pslash != NULL)
499                    *pslash = '\0';   /* get rid of /lib */
500#endif
501            }
502        }
503
504        home_path = malloc(strlen(buf) + 1);
505        if (home_path == NULL)
506            return;
507        strcpy(home_path, buf);
508        Arguments::set_java_home(home_path);
509
510        if (!set_boot_path('/', ':'))
511            return;
512    }
513
514    /*
515     * Where to look for native libraries
516     *
517     * Note: Due to a legacy implementation, most of the library path
518     * is set in the launcher.  This was to accomodate linking restrictions
519     * on legacy Bsd implementations (which are no longer supported).
520     * Eventually, all the library path setting will be done here.
521     *
522     * However, to prevent the proliferation of improperly built native
523     * libraries, the new path component /usr/java/packages is added here.
524     * Eventually, all the library path setting will be done here.
525     */
526    {
527        char *ld_library_path;
528
529        /*
530         * Construct the invariant part of ld_library_path. Note that the
531         * space for the colon and the trailing null are provided by the
532         * nulls included by the sizeof operator (so actually we allocate
533         * a byte more than necessary).
534         */
535#ifdef __APPLE__
536        ld_library_path = (char *) malloc(system_ext_size);
537        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
538#else
539        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
540            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
541        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
542#endif
543
544        /*
545         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
546         * should always exist (until the legacy problem cited above is
547         * addressed).
548         */
549#ifdef __APPLE__
550        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
551        char *l = getenv("JAVA_LIBRARY_PATH");
552        if (l != NULL) {
553            char *t = ld_library_path;
554            /* That's +1 for the colon and +1 for the trailing '\0' */
555            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
556            sprintf(ld_library_path, "%s:%s", l, t);
557            free(t);
558        }
559
560        char *v = getenv("DYLD_LIBRARY_PATH");
561#else
562        char *v = getenv("LD_LIBRARY_PATH");
563#endif
564        if (v != NULL) {
565            char *t = ld_library_path;
566            /* That's +1 for the colon and +1 for the trailing '\0' */
567            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
568            sprintf(ld_library_path, "%s:%s", v, t);
569            free(t);
570        }
571        Arguments::set_library_path(ld_library_path);
572    }
573
574    /*
575     * Extensions directories.
576     *
577     * Note that the space for the colon and the trailing null are provided
578     * by the nulls included by the sizeof operator (so actually one byte more
579     * than necessary is allocated).
580     */
581    {
582#ifdef __APPLE__
583        char *buf = malloc(strlen(Arguments::get_java_home()) +
584            sizeof(EXTENSIONS_DIR) + system_ext_size);
585        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
586            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
587#else
588        char *buf = malloc(strlen(Arguments::get_java_home()) +
589            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
590        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
591            Arguments::get_java_home());
592#endif
593
594        Arguments::set_ext_dirs(buf);
595    }
596
597    /* Endorsed standards default directory. */
598    {
599        char * buf;
600        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
601        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
602        Arguments::set_endorsed_dirs(buf);
603    }
604  }
605
606#ifdef __APPLE__
607#undef SYS_EXTENSIONS_DIR
608#endif
609#undef malloc
610#undef getenv
611#undef EXTENSIONS_DIR
612#undef ENDORSED_DIR
613
614  // Done
615  return;
616}
617
618////////////////////////////////////////////////////////////////////////////////
619// breakpoint support
620
621void os::breakpoint() {
622  BREAKPOINT;
623}
624
625extern "C" void breakpoint() {
626  // use debugger to set breakpoint here
627}
628
629////////////////////////////////////////////////////////////////////////////////
630// signal support
631
632debug_only(static bool signal_sets_initialized = false);
633static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
634
635bool os::Bsd::is_sig_ignored(int sig) {
636      struct sigaction oact;
637      sigaction(sig, (struct sigaction*)NULL, &oact);
638      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
639                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
640      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
641           return true;
642      else
643           return false;
644}
645
646void os::Bsd::signal_sets_init() {
647  // Should also have an assertion stating we are still single-threaded.
648  assert(!signal_sets_initialized, "Already initialized");
649  // Fill in signals that are necessarily unblocked for all threads in
650  // the VM. Currently, we unblock the following signals:
651  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
652  //                         by -Xrs (=ReduceSignalUsage));
653  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
654  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
655  // the dispositions or masks wrt these signals.
656  // Programs embedding the VM that want to use the above signals for their
657  // own purposes must, at this time, use the "-Xrs" option to prevent
658  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
659  // (See bug 4345157, and other related bugs).
660  // In reality, though, unblocking these signals is really a nop, since
661  // these signals are not blocked by default.
662  sigemptyset(&unblocked_sigs);
663  sigemptyset(&allowdebug_blocked_sigs);
664  sigaddset(&unblocked_sigs, SIGILL);
665  sigaddset(&unblocked_sigs, SIGSEGV);
666  sigaddset(&unblocked_sigs, SIGBUS);
667  sigaddset(&unblocked_sigs, SIGFPE);
668  sigaddset(&unblocked_sigs, SR_signum);
669
670  if (!ReduceSignalUsage) {
671   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
672      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
673      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
674   }
675   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
676      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
677      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
678   }
679   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
680      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
681      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
682   }
683  }
684  // Fill in signals that are blocked by all but the VM thread.
685  sigemptyset(&vm_sigs);
686  if (!ReduceSignalUsage)
687    sigaddset(&vm_sigs, BREAK_SIGNAL);
688  debug_only(signal_sets_initialized = true);
689
690}
691
692// These are signals that are unblocked while a thread is running Java.
693// (For some reason, they get blocked by default.)
694sigset_t* os::Bsd::unblocked_signals() {
695  assert(signal_sets_initialized, "Not initialized");
696  return &unblocked_sigs;
697}
698
699// These are the signals that are blocked while a (non-VM) thread is
700// running Java. Only the VM thread handles these signals.
701sigset_t* os::Bsd::vm_signals() {
702  assert(signal_sets_initialized, "Not initialized");
703  return &vm_sigs;
704}
705
706// These are signals that are blocked during cond_wait to allow debugger in
707sigset_t* os::Bsd::allowdebug_blocked_signals() {
708  assert(signal_sets_initialized, "Not initialized");
709  return &allowdebug_blocked_sigs;
710}
711
712void os::Bsd::hotspot_sigmask(Thread* thread) {
713
714  //Save caller's signal mask before setting VM signal mask
715  sigset_t caller_sigmask;
716  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
717
718  OSThread* osthread = thread->osthread();
719  osthread->set_caller_sigmask(caller_sigmask);
720
721  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
722
723  if (!ReduceSignalUsage) {
724    if (thread->is_VM_thread()) {
725      // Only the VM thread handles BREAK_SIGNAL ...
726      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
727    } else {
728      // ... all other threads block BREAK_SIGNAL
729      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
730    }
731  }
732}
733
734#ifndef _ALLBSD_SOURCE
735//////////////////////////////////////////////////////////////////////////////
736// detecting pthread library
737
738void os::Bsd::libpthread_init() {
739  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
740  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
741  // generic name for earlier versions.
742  // Define macros here so we can build HotSpot on old systems.
743# ifndef _CS_GNU_LIBC_VERSION
744# define _CS_GNU_LIBC_VERSION 2
745# endif
746# ifndef _CS_GNU_LIBPTHREAD_VERSION
747# define _CS_GNU_LIBPTHREAD_VERSION 3
748# endif
749
750  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
751  if (n > 0) {
752     char *str = (char *)malloc(n);
753     confstr(_CS_GNU_LIBC_VERSION, str, n);
754     os::Bsd::set_glibc_version(str);
755  } else {
756     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
757     static char _gnu_libc_version[32];
758     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
759              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
760     os::Bsd::set_glibc_version(_gnu_libc_version);
761  }
762
763  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
764  if (n > 0) {
765     char *str = (char *)malloc(n);
766     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
767     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
768     // us "NPTL-0.29" even we are running with BsdThreads. Check if this
769     // is the case. BsdThreads has a hard limit on max number of threads.
770     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
771     // On the other hand, NPTL does not have such a limit, sysconf()
772     // will return -1 and errno is not changed. Check if it is really NPTL.
773     if (strcmp(os::Bsd::glibc_version(), "glibc 2.3.2") == 0 &&
774         strstr(str, "NPTL") &&
775         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
776       free(str);
777       os::Bsd::set_libpthread_version("bsdthreads");
778     } else {
779       os::Bsd::set_libpthread_version(str);
780     }
781  } else {
782    // glibc before 2.3.2 only has BsdThreads.
783    os::Bsd::set_libpthread_version("bsdthreads");
784  }
785
786  if (strstr(libpthread_version(), "NPTL")) {
787     os::Bsd::set_is_NPTL();
788  } else {
789     os::Bsd::set_is_BsdThreads();
790  }
791
792  // BsdThreads have two flavors: floating-stack mode, which allows variable
793  // stack size; and fixed-stack mode. NPTL is always floating-stack.
794  if (os::Bsd::is_NPTL() || os::Bsd::supports_variable_stack_size()) {
795     os::Bsd::set_is_floating_stack();
796  }
797}
798
799/////////////////////////////////////////////////////////////////////////////
800// thread stack
801
802// Force Bsd kernel to expand current thread stack. If "bottom" is close
803// to the stack guard, caller should block all signals.
804//
805// MAP_GROWSDOWN:
806//   A special mmap() flag that is used to implement thread stacks. It tells
807//   kernel that the memory region should extend downwards when needed. This
808//   allows early versions of BsdThreads to only mmap the first few pages
809//   when creating a new thread. Bsd kernel will automatically expand thread
810//   stack as needed (on page faults).
811//
812//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
813//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
814//   region, it's hard to tell if the fault is due to a legitimate stack
815//   access or because of reading/writing non-exist memory (e.g. buffer
816//   overrun). As a rule, if the fault happens below current stack pointer,
817//   Bsd kernel does not expand stack, instead a SIGSEGV is sent to the
818//   application (see Bsd kernel fault.c).
819//
820//   This Bsd feature can cause SIGSEGV when VM bangs thread stack for
821//   stack overflow detection.
822//
823//   Newer version of BsdThreads (since glibc-2.2, or, RH-7.x) and NPTL do
824//   not use this flag. However, the stack of initial thread is not created
825//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
826//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
827//   and then attach the thread to JVM.
828//
829// To get around the problem and allow stack banging on Bsd, we need to
830// manually expand thread stack after receiving the SIGSEGV.
831//
832// There are two ways to expand thread stack to address "bottom", we used
833// both of them in JVM before 1.5:
834//   1. adjust stack pointer first so that it is below "bottom", and then
835//      touch "bottom"
836//   2. mmap() the page in question
837//
838// Now alternate signal stack is gone, it's harder to use 2. For instance,
839// if current sp is already near the lower end of page 101, and we need to
840// call mmap() to map page 100, it is possible that part of the mmap() frame
841// will be placed in page 100. When page 100 is mapped, it is zero-filled.
842// That will destroy the mmap() frame and cause VM to crash.
843//
844// The following code works by adjusting sp first, then accessing the "bottom"
845// page to force a page fault. Bsd kernel will then automatically expand the
846// stack mapping.
847//
848// _expand_stack_to() assumes its frame size is less than page size, which
849// should always be true if the function is not inlined.
850
851#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
852#define NOINLINE
853#else
854#define NOINLINE __attribute__ ((noinline))
855#endif
856
857static void _expand_stack_to(address bottom) NOINLINE;
858
859static void _expand_stack_to(address bottom) {
860  address sp;
861  size_t size;
862  volatile char *p;
863
864  // Adjust bottom to point to the largest address within the same page, it
865  // gives us a one-page buffer if alloca() allocates slightly more memory.
866  bottom = (address)align_size_down((uintptr_t)bottom, os::Bsd::page_size());
867  bottom += os::Bsd::page_size() - 1;
868
869  // sp might be slightly above current stack pointer; if that's the case, we
870  // will alloca() a little more space than necessary, which is OK. Don't use
871  // os::current_stack_pointer(), as its result can be slightly below current
872  // stack pointer, causing us to not alloca enough to reach "bottom".
873  sp = (address)&sp;
874
875  if (sp > bottom) {
876    size = sp - bottom;
877    p = (volatile char *)alloca(size);
878    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
879    p[0] = '\0';
880  }
881}
882
883bool os::Bsd::manually_expand_stack(JavaThread * t, address addr) {
884  assert(t!=NULL, "just checking");
885  assert(t->osthread()->expanding_stack(), "expand should be set");
886  assert(t->stack_base() != NULL, "stack_base was not initialized");
887
888  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
889    sigset_t mask_all, old_sigset;
890    sigfillset(&mask_all);
891    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
892    _expand_stack_to(addr);
893    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
894    return true;
895  }
896  return false;
897}
898#endif
899
900//////////////////////////////////////////////////////////////////////////////
901// create new thread
902
903static address highest_vm_reserved_address();
904
905// check if it's safe to start a new thread
906static bool _thread_safety_check(Thread* thread) {
907#ifdef _ALLBSD_SOURCE
908    return true;
909#else
910  if (os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack()) {
911    // Fixed stack BsdThreads (SuSE Bsd/x86, and some versions of Redhat)
912    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
913    //   allocated (MAP_FIXED) from high address space. Every thread stack
914    //   occupies a fixed size slot (usually 2Mbytes, but user can change
915    //   it to other values if they rebuild BsdThreads).
916    //
917    // Problem with MAP_FIXED is that mmap() can still succeed even part of
918    // the memory region has already been mmap'ed. That means if we have too
919    // many threads and/or very large heap, eventually thread stack will
920    // collide with heap.
921    //
922    // Here we try to prevent heap/stack collision by comparing current
923    // stack bottom with the highest address that has been mmap'ed by JVM
924    // plus a safety margin for memory maps created by native code.
925    //
926    // This feature can be disabled by setting ThreadSafetyMargin to 0
927    //
928    if (ThreadSafetyMargin > 0) {
929      address stack_bottom = os::current_stack_base() - os::current_stack_size();
930
931      // not safe if our stack extends below the safety margin
932      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
933    } else {
934      return true;
935    }
936  } else {
937    // Floating stack BsdThreads or NPTL:
938    //   Unlike fixed stack BsdThreads, thread stacks are not MAP_FIXED. When
939    //   there's not enough space left, pthread_create() will fail. If we come
940    //   here, that means enough space has been reserved for stack.
941    return true;
942  }
943#endif
944}
945
946#ifdef __APPLE__
947// library handle for calling objc_registerThreadWithCollector()
948// without static linking to the libobjc library
949#define OBJC_LIB "/usr/lib/libobjc.dylib"
950#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
951typedef void (*objc_registerThreadWithCollector_t)();
952extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
953objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
954#endif
955
956// Thread start routine for all newly created threads
957static void *java_start(Thread *thread) {
958  // Try to randomize the cache line index of hot stack frames.
959  // This helps when threads of the same stack traces evict each other's
960  // cache lines. The threads can be either from the same JVM instance, or
961  // from different JVM instances. The benefit is especially true for
962  // processors with hyperthreading technology.
963  static int counter = 0;
964  int pid = os::current_process_id();
965  alloca(((pid ^ counter++) & 7) * 128);
966
967  ThreadLocalStorage::set_thread(thread);
968
969  OSThread* osthread = thread->osthread();
970  Monitor* sync = osthread->startThread_lock();
971
972  // non floating stack BsdThreads needs extra check, see above
973  if (!_thread_safety_check(thread)) {
974    // notify parent thread
975    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
976    osthread->set_state(ZOMBIE);
977    sync->notify_all();
978    return NULL;
979  }
980
981#ifdef _ALLBSD_SOURCE
982  // thread_id is pthread_id on BSD
983  osthread->set_thread_id(::pthread_self());
984#else
985  // thread_id is kernel thread id (similar to Solaris LWP id)
986  osthread->set_thread_id(os::Bsd::gettid());
987
988  if (UseNUMA) {
989    int lgrp_id = os::numa_get_group_id();
990    if (lgrp_id != -1) {
991      thread->set_lgrp_id(lgrp_id);
992    }
993  }
994#endif
995  // initialize signal mask for this thread
996  os::Bsd::hotspot_sigmask(thread);
997
998  // initialize floating point control register
999  os::Bsd::init_thread_fpu_state();
1000
1001#ifdef __APPLE__
1002  // register thread with objc gc
1003  if (objc_registerThreadWithCollectorFunction != NULL) {
1004    objc_registerThreadWithCollectorFunction();
1005  }
1006#endif
1007
1008  // handshaking with parent thread
1009  {
1010    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
1011
1012    // notify parent thread
1013    osthread->set_state(INITIALIZED);
1014    sync->notify_all();
1015
1016    // wait until os::start_thread()
1017    while (osthread->get_state() == INITIALIZED) {
1018      sync->wait(Mutex::_no_safepoint_check_flag);
1019    }
1020  }
1021
1022  // call one more level start routine
1023  thread->run();
1024
1025  return 0;
1026}
1027
1028bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1029  assert(thread->osthread() == NULL, "caller responsible");
1030
1031  // Allocate the OSThread object
1032  OSThread* osthread = new OSThread(NULL, NULL);
1033  if (osthread == NULL) {
1034    return false;
1035  }
1036
1037  // set the correct thread state
1038  osthread->set_thread_type(thr_type);
1039
1040  // Initial state is ALLOCATED but not INITIALIZED
1041  osthread->set_state(ALLOCATED);
1042
1043  thread->set_osthread(osthread);
1044
1045  // init thread attributes
1046  pthread_attr_t attr;
1047  pthread_attr_init(&attr);
1048  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
1049
1050  // stack size
1051  if (os::Bsd::supports_variable_stack_size()) {
1052    // calculate stack size if it's not specified by caller
1053    if (stack_size == 0) {
1054      stack_size = os::Bsd::default_stack_size(thr_type);
1055
1056      switch (thr_type) {
1057      case os::java_thread:
1058        // Java threads use ThreadStackSize which default value can be
1059        // changed with the flag -Xss
1060        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
1061        stack_size = JavaThread::stack_size_at_create();
1062        break;
1063      case os::compiler_thread:
1064        if (CompilerThreadStackSize > 0) {
1065          stack_size = (size_t)(CompilerThreadStackSize * K);
1066          break;
1067        } // else fall through:
1068          // use VMThreadStackSize if CompilerThreadStackSize is not defined
1069      case os::vm_thread:
1070      case os::pgc_thread:
1071      case os::cgc_thread:
1072      case os::watcher_thread:
1073        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1074        break;
1075      }
1076    }
1077
1078    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
1079    pthread_attr_setstacksize(&attr, stack_size);
1080  } else {
1081    // let pthread_create() pick the default value.
1082  }
1083
1084#ifndef _ALLBSD_SOURCE
1085  // glibc guard page
1086  pthread_attr_setguardsize(&attr, os::Bsd::default_guard_size(thr_type));
1087#endif
1088
1089  ThreadState state;
1090
1091  {
1092
1093#ifndef _ALLBSD_SOURCE
1094    // Serialize thread creation if we are running with fixed stack BsdThreads
1095    bool lock = os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack();
1096    if (lock) {
1097      os::Bsd::createThread_lock()->lock_without_safepoint_check();
1098    }
1099#endif
1100
1101    pthread_t tid;
1102    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1103
1104    pthread_attr_destroy(&attr);
1105
1106    if (ret != 0) {
1107      if (PrintMiscellaneous && (Verbose || WizardMode)) {
1108        perror("pthread_create()");
1109      }
1110      // Need to clean up stuff we've allocated so far
1111      thread->set_osthread(NULL);
1112      delete osthread;
1113#ifndef _ALLBSD_SOURCE
1114      if (lock) os::Bsd::createThread_lock()->unlock();
1115#endif
1116      return false;
1117    }
1118
1119    // Store pthread info into the OSThread
1120    osthread->set_pthread_id(tid);
1121
1122    // Wait until child thread is either initialized or aborted
1123    {
1124      Monitor* sync_with_child = osthread->startThread_lock();
1125      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1126      while ((state = osthread->get_state()) == ALLOCATED) {
1127        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
1128      }
1129    }
1130
1131#ifndef _ALLBSD_SOURCE
1132    if (lock) {
1133      os::Bsd::createThread_lock()->unlock();
1134    }
1135#endif
1136  }
1137
1138  // Aborted due to thread limit being reached
1139  if (state == ZOMBIE) {
1140      thread->set_osthread(NULL);
1141      delete osthread;
1142      return false;
1143  }
1144
1145  // The thread is returned suspended (in state INITIALIZED),
1146  // and is started higher up in the call chain
1147  assert(state == INITIALIZED, "race condition");
1148  return true;
1149}
1150
1151/////////////////////////////////////////////////////////////////////////////
1152// attach existing thread
1153
1154// bootstrap the main thread
1155bool os::create_main_thread(JavaThread* thread) {
1156  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
1157  return create_attached_thread(thread);
1158}
1159
1160bool os::create_attached_thread(JavaThread* thread) {
1161#ifdef ASSERT
1162    thread->verify_not_published();
1163#endif
1164
1165  // Allocate the OSThread object
1166  OSThread* osthread = new OSThread(NULL, NULL);
1167
1168  if (osthread == NULL) {
1169    return false;
1170  }
1171
1172  // Store pthread info into the OSThread
1173#ifdef _ALLBSD_SOURCE
1174  osthread->set_thread_id(::pthread_self());
1175#else
1176  osthread->set_thread_id(os::Bsd::gettid());
1177#endif
1178  osthread->set_pthread_id(::pthread_self());
1179
1180  // initialize floating point control register
1181  os::Bsd::init_thread_fpu_state();
1182
1183  // Initial thread state is RUNNABLE
1184  osthread->set_state(RUNNABLE);
1185
1186  thread->set_osthread(osthread);
1187
1188#ifndef _ALLBSD_SOURCE
1189  if (UseNUMA) {
1190    int lgrp_id = os::numa_get_group_id();
1191    if (lgrp_id != -1) {
1192      thread->set_lgrp_id(lgrp_id);
1193    }
1194  }
1195
1196  if (os::Bsd::is_initial_thread()) {
1197    // If current thread is initial thread, its stack is mapped on demand,
1198    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1199    // the entire stack region to avoid SEGV in stack banging.
1200    // It is also useful to get around the heap-stack-gap problem on SuSE
1201    // kernel (see 4821821 for details). We first expand stack to the top
1202    // of yellow zone, then enable stack yellow zone (order is significant,
1203    // enabling yellow zone first will crash JVM on SuSE Bsd), so there
1204    // is no gap between the last two virtual memory regions.
1205
1206    JavaThread *jt = (JavaThread *)thread;
1207    address addr = jt->stack_yellow_zone_base();
1208    assert(addr != NULL, "initialization problem?");
1209    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1210
1211    osthread->set_expanding_stack();
1212    os::Bsd::manually_expand_stack(jt, addr);
1213    osthread->clear_expanding_stack();
1214  }
1215#endif
1216
1217  // initialize signal mask for this thread
1218  // and save the caller's signal mask
1219  os::Bsd::hotspot_sigmask(thread);
1220
1221  return true;
1222}
1223
1224void os::pd_start_thread(Thread* thread) {
1225  OSThread * osthread = thread->osthread();
1226  assert(osthread->get_state() != INITIALIZED, "just checking");
1227  Monitor* sync_with_child = osthread->startThread_lock();
1228  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1229  sync_with_child->notify();
1230}
1231
1232// Free Bsd resources related to the OSThread
1233void os::free_thread(OSThread* osthread) {
1234  assert(osthread != NULL, "osthread not set");
1235
1236  if (Thread::current()->osthread() == osthread) {
1237    // Restore caller's signal mask
1238    sigset_t sigmask = osthread->caller_sigmask();
1239    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1240   }
1241
1242  delete osthread;
1243}
1244
1245//////////////////////////////////////////////////////////////////////////////
1246// thread local storage
1247
1248int os::allocate_thread_local_storage() {
1249  pthread_key_t key;
1250  int rslt = pthread_key_create(&key, NULL);
1251  assert(rslt == 0, "cannot allocate thread local storage");
1252  return (int)key;
1253}
1254
1255// Note: This is currently not used by VM, as we don't destroy TLS key
1256// on VM exit.
1257void os::free_thread_local_storage(int index) {
1258  int rslt = pthread_key_delete((pthread_key_t)index);
1259  assert(rslt == 0, "invalid index");
1260}
1261
1262void os::thread_local_storage_at_put(int index, void* value) {
1263  int rslt = pthread_setspecific((pthread_key_t)index, value);
1264  assert(rslt == 0, "pthread_setspecific failed");
1265}
1266
1267extern "C" Thread* get_thread() {
1268  return ThreadLocalStorage::thread();
1269}
1270
1271//////////////////////////////////////////////////////////////////////////////
1272// initial thread
1273
1274#ifndef _ALLBSD_SOURCE
1275// Check if current thread is the initial thread, similar to Solaris thr_main.
1276bool os::Bsd::is_initial_thread(void) {
1277  char dummy;
1278  // If called before init complete, thread stack bottom will be null.
1279  // Can be called if fatal error occurs before initialization.
1280  if (initial_thread_stack_bottom() == NULL) return false;
1281  assert(initial_thread_stack_bottom() != NULL &&
1282         initial_thread_stack_size()   != 0,
1283         "os::init did not locate initial thread's stack region");
1284  if ((address)&dummy >= initial_thread_stack_bottom() &&
1285      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1286       return true;
1287  else return false;
1288}
1289
1290// Find the virtual memory area that contains addr
1291static bool find_vma(address addr, address* vma_low, address* vma_high) {
1292  FILE *fp = fopen("/proc/self/maps", "r");
1293  if (fp) {
1294    address low, high;
1295    while (!feof(fp)) {
1296      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1297        if (low <= addr && addr < high) {
1298           if (vma_low)  *vma_low  = low;
1299           if (vma_high) *vma_high = high;
1300           fclose (fp);
1301           return true;
1302        }
1303      }
1304      for (;;) {
1305        int ch = fgetc(fp);
1306        if (ch == EOF || ch == (int)'\n') break;
1307      }
1308    }
1309    fclose(fp);
1310  }
1311  return false;
1312}
1313
1314// Locate initial thread stack. This special handling of initial thread stack
1315// is needed because pthread_getattr_np() on most (all?) Bsd distros returns
1316// bogus value for initial thread.
1317void os::Bsd::capture_initial_stack(size_t max_size) {
1318  // stack size is the easy part, get it from RLIMIT_STACK
1319  size_t stack_size;
1320  struct rlimit rlim;
1321  getrlimit(RLIMIT_STACK, &rlim);
1322  stack_size = rlim.rlim_cur;
1323
1324  // 6308388: a bug in ld.so will relocate its own .data section to the
1325  //   lower end of primordial stack; reduce ulimit -s value a little bit
1326  //   so we won't install guard page on ld.so's data section.
1327  stack_size -= 2 * page_size();
1328
1329  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1330  //   7.1, in both cases we will get 2G in return value.
1331  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1332  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1333  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1334  //   in case other parts in glibc still assumes 2M max stack size.
1335  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1336#ifndef IA64
1337  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1338#else
1339  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1340  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1341#endif
1342
1343  // Try to figure out where the stack base (top) is. This is harder.
1344  //
1345  // When an application is started, glibc saves the initial stack pointer in
1346  // a global variable "__libc_stack_end", which is then used by system
1347  // libraries. __libc_stack_end should be pretty close to stack top. The
1348  // variable is available since the very early days. However, because it is
1349  // a private interface, it could disappear in the future.
1350  //
1351  // Bsd kernel saves start_stack information in /proc/<pid>/stat. Similar
1352  // to __libc_stack_end, it is very close to stack top, but isn't the real
1353  // stack top. Note that /proc may not exist if VM is running as a chroot
1354  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1355  // /proc/<pid>/stat could change in the future (though unlikely).
1356  //
1357  // We try __libc_stack_end first. If that doesn't work, look for
1358  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1359  // as a hint, which should work well in most cases.
1360
1361  uintptr_t stack_start;
1362
1363  // try __libc_stack_end first
1364  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1365  if (p && *p) {
1366    stack_start = *p;
1367  } else {
1368    // see if we can get the start_stack field from /proc/self/stat
1369    FILE *fp;
1370    int pid;
1371    char state;
1372    int ppid;
1373    int pgrp;
1374    int session;
1375    int nr;
1376    int tpgrp;
1377    unsigned long flags;
1378    unsigned long minflt;
1379    unsigned long cminflt;
1380    unsigned long majflt;
1381    unsigned long cmajflt;
1382    unsigned long utime;
1383    unsigned long stime;
1384    long cutime;
1385    long cstime;
1386    long prio;
1387    long nice;
1388    long junk;
1389    long it_real;
1390    uintptr_t start;
1391    uintptr_t vsize;
1392    intptr_t rss;
1393    uintptr_t rsslim;
1394    uintptr_t scodes;
1395    uintptr_t ecode;
1396    int i;
1397
1398    // Figure what the primordial thread stack base is. Code is inspired
1399    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1400    // followed by command name surrounded by parentheses, state, etc.
1401    char stat[2048];
1402    int statlen;
1403
1404    fp = fopen("/proc/self/stat", "r");
1405    if (fp) {
1406      statlen = fread(stat, 1, 2047, fp);
1407      stat[statlen] = '\0';
1408      fclose(fp);
1409
1410      // Skip pid and the command string. Note that we could be dealing with
1411      // weird command names, e.g. user could decide to rename java launcher
1412      // to "java 1.4.2 :)", then the stat file would look like
1413      //                1234 (java 1.4.2 :)) R ... ...
1414      // We don't really need to know the command string, just find the last
1415      // occurrence of ")" and then start parsing from there. See bug 4726580.
1416      char * s = strrchr(stat, ')');
1417
1418      i = 0;
1419      if (s) {
1420        // Skip blank chars
1421        do s++; while (isspace(*s));
1422
1423#define _UFM UINTX_FORMAT
1424#define _DFM INTX_FORMAT
1425
1426        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1427        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1428        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1429             &state,          /* 3  %c  */
1430             &ppid,           /* 4  %d  */
1431             &pgrp,           /* 5  %d  */
1432             &session,        /* 6  %d  */
1433             &nr,             /* 7  %d  */
1434             &tpgrp,          /* 8  %d  */
1435             &flags,          /* 9  %lu  */
1436             &minflt,         /* 10 %lu  */
1437             &cminflt,        /* 11 %lu  */
1438             &majflt,         /* 12 %lu  */
1439             &cmajflt,        /* 13 %lu  */
1440             &utime,          /* 14 %lu  */
1441             &stime,          /* 15 %lu  */
1442             &cutime,         /* 16 %ld  */
1443             &cstime,         /* 17 %ld  */
1444             &prio,           /* 18 %ld  */
1445             &nice,           /* 19 %ld  */
1446             &junk,           /* 20 %ld  */
1447             &it_real,        /* 21 %ld  */
1448             &start,          /* 22 UINTX_FORMAT */
1449             &vsize,          /* 23 UINTX_FORMAT */
1450             &rss,            /* 24 INTX_FORMAT  */
1451             &rsslim,         /* 25 UINTX_FORMAT */
1452             &scodes,         /* 26 UINTX_FORMAT */
1453             &ecode,          /* 27 UINTX_FORMAT */
1454             &stack_start);   /* 28 UINTX_FORMAT */
1455      }
1456
1457#undef _UFM
1458#undef _DFM
1459
1460      if (i != 28 - 2) {
1461         assert(false, "Bad conversion from /proc/self/stat");
1462         // product mode - assume we are the initial thread, good luck in the
1463         // embedded case.
1464         warning("Can't detect initial thread stack location - bad conversion");
1465         stack_start = (uintptr_t) &rlim;
1466      }
1467    } else {
1468      // For some reason we can't open /proc/self/stat (for example, running on
1469      // FreeBSD with a Bsd emulator, or inside chroot), this should work for
1470      // most cases, so don't abort:
1471      warning("Can't detect initial thread stack location - no /proc/self/stat");
1472      stack_start = (uintptr_t) &rlim;
1473    }
1474  }
1475
1476  // Now we have a pointer (stack_start) very close to the stack top, the
1477  // next thing to do is to figure out the exact location of stack top. We
1478  // can find out the virtual memory area that contains stack_start by
1479  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1480  // and its upper limit is the real stack top. (again, this would fail if
1481  // running inside chroot, because /proc may not exist.)
1482
1483  uintptr_t stack_top;
1484  address low, high;
1485  if (find_vma((address)stack_start, &low, &high)) {
1486    // success, "high" is the true stack top. (ignore "low", because initial
1487    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1488    stack_top = (uintptr_t)high;
1489  } else {
1490    // failed, likely because /proc/self/maps does not exist
1491    warning("Can't detect initial thread stack location - find_vma failed");
1492    // best effort: stack_start is normally within a few pages below the real
1493    // stack top, use it as stack top, and reduce stack size so we won't put
1494    // guard page outside stack.
1495    stack_top = stack_start;
1496    stack_size -= 16 * page_size();
1497  }
1498
1499  // stack_top could be partially down the page so align it
1500  stack_top = align_size_up(stack_top, page_size());
1501
1502  if (max_size && stack_size > max_size) {
1503     _initial_thread_stack_size = max_size;
1504  } else {
1505     _initial_thread_stack_size = stack_size;
1506  }
1507
1508  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1509  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1510}
1511#endif
1512
1513////////////////////////////////////////////////////////////////////////////////
1514// time support
1515
1516// Time since start-up in seconds to a fine granularity.
1517// Used by VMSelfDestructTimer and the MemProfiler.
1518double os::elapsedTime() {
1519
1520  return (double)(os::elapsed_counter()) * 0.000001;
1521}
1522
1523jlong os::elapsed_counter() {
1524  timeval time;
1525  int status = gettimeofday(&time, NULL);
1526  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1527}
1528
1529jlong os::elapsed_frequency() {
1530  return (1000 * 1000);
1531}
1532
1533// XXX: For now, code this as if BSD does not support vtime.
1534bool os::supports_vtime() { return false; }
1535bool os::enable_vtime()   { return false; }
1536bool os::vtime_enabled()  { return false; }
1537double os::elapsedVTime() {
1538  // better than nothing, but not much
1539  return elapsedTime();
1540}
1541
1542jlong os::javaTimeMillis() {
1543  timeval time;
1544  int status = gettimeofday(&time, NULL);
1545  assert(status != -1, "bsd error");
1546  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1547}
1548
1549#ifndef CLOCK_MONOTONIC
1550#define CLOCK_MONOTONIC (1)
1551#endif
1552
1553#ifdef __APPLE__
1554void os::Bsd::clock_init() {
1555        // XXXDARWIN: Investigate replacement monotonic clock
1556}
1557#elif defined(_ALLBSD_SOURCE)
1558void os::Bsd::clock_init() {
1559  struct timespec res;
1560  struct timespec tp;
1561  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1562      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1563    // yes, monotonic clock is supported
1564    _clock_gettime = ::clock_gettime;
1565  }
1566}
1567#else
1568void os::Bsd::clock_init() {
1569  // we do dlopen's in this particular order due to bug in bsd
1570  // dynamical loader (see 6348968) leading to crash on exit
1571  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1572  if (handle == NULL) {
1573    handle = dlopen("librt.so", RTLD_LAZY);
1574  }
1575
1576  if (handle) {
1577    int (*clock_getres_func)(clockid_t, struct timespec*) =
1578           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1579    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1580           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1581    if (clock_getres_func && clock_gettime_func) {
1582      // See if monotonic clock is supported by the kernel. Note that some
1583      // early implementations simply return kernel jiffies (updated every
1584      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1585      // for nano time (though the monotonic property is still nice to have).
1586      // It's fixed in newer kernels, however clock_getres() still returns
1587      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1588      // resolution for now. Hopefully as people move to new kernels, this
1589      // won't be a problem.
1590      struct timespec res;
1591      struct timespec tp;
1592      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1593          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1594        // yes, monotonic clock is supported
1595        _clock_gettime = clock_gettime_func;
1596      } else {
1597        // close librt if there is no monotonic clock
1598        dlclose(handle);
1599      }
1600    }
1601  }
1602}
1603#endif
1604
1605#ifndef _ALLBSD_SOURCE
1606#ifndef SYS_clock_getres
1607
1608#if defined(IA32) || defined(AMD64)
1609#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1610#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1611#else
1612#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1613#define sys_clock_getres(x,y)  -1
1614#endif
1615
1616#else
1617#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1618#endif
1619
1620void os::Bsd::fast_thread_clock_init() {
1621  if (!UseBsdPosixThreadCPUClocks) {
1622    return;
1623  }
1624  clockid_t clockid;
1625  struct timespec tp;
1626  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1627      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1628
1629  // Switch to using fast clocks for thread cpu time if
1630  // the sys_clock_getres() returns 0 error code.
1631  // Note, that some kernels may support the current thread
1632  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1633  // returned by the pthread_getcpuclockid().
1634  // If the fast Posix clocks are supported then the sys_clock_getres()
1635  // must return at least tp.tv_sec == 0 which means a resolution
1636  // better than 1 sec. This is extra check for reliability.
1637
1638  if(pthread_getcpuclockid_func &&
1639     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1640     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1641
1642    _supports_fast_thread_cpu_time = true;
1643    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1644  }
1645}
1646#endif
1647
1648jlong os::javaTimeNanos() {
1649  if (Bsd::supports_monotonic_clock()) {
1650    struct timespec tp;
1651    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1652    assert(status == 0, "gettime error");
1653    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1654    return result;
1655  } else {
1656    timeval time;
1657    int status = gettimeofday(&time, NULL);
1658    assert(status != -1, "bsd error");
1659    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1660    return 1000 * usecs;
1661  }
1662}
1663
1664void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1665  if (Bsd::supports_monotonic_clock()) {
1666    info_ptr->max_value = ALL_64_BITS;
1667
1668    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1669    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1670    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1671  } else {
1672    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1673    info_ptr->max_value = ALL_64_BITS;
1674
1675    // gettimeofday is a real time clock so it skips
1676    info_ptr->may_skip_backward = true;
1677    info_ptr->may_skip_forward = true;
1678  }
1679
1680  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1681}
1682
1683// Return the real, user, and system times in seconds from an
1684// arbitrary fixed point in the past.
1685bool os::getTimesSecs(double* process_real_time,
1686                      double* process_user_time,
1687                      double* process_system_time) {
1688  struct tms ticks;
1689  clock_t real_ticks = times(&ticks);
1690
1691  if (real_ticks == (clock_t) (-1)) {
1692    return false;
1693  } else {
1694    double ticks_per_second = (double) clock_tics_per_sec;
1695    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1696    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1697    *process_real_time = ((double) real_ticks) / ticks_per_second;
1698
1699    return true;
1700  }
1701}
1702
1703
1704char * os::local_time_string(char *buf, size_t buflen) {
1705  struct tm t;
1706  time_t long_time;
1707  time(&long_time);
1708  localtime_r(&long_time, &t);
1709  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1710               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1711               t.tm_hour, t.tm_min, t.tm_sec);
1712  return buf;
1713}
1714
1715struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1716  return localtime_r(clock, res);
1717}
1718
1719////////////////////////////////////////////////////////////////////////////////
1720// runtime exit support
1721
1722// Note: os::shutdown() might be called very early during initialization, or
1723// called from signal handler. Before adding something to os::shutdown(), make
1724// sure it is async-safe and can handle partially initialized VM.
1725void os::shutdown() {
1726
1727  // allow PerfMemory to attempt cleanup of any persistent resources
1728  perfMemory_exit();
1729
1730  // needs to remove object in file system
1731  AttachListener::abort();
1732
1733  // flush buffered output, finish log files
1734  ostream_abort();
1735
1736  // Check for abort hook
1737  abort_hook_t abort_hook = Arguments::abort_hook();
1738  if (abort_hook != NULL) {
1739    abort_hook();
1740  }
1741
1742}
1743
1744// Note: os::abort() might be called very early during initialization, or
1745// called from signal handler. Before adding something to os::abort(), make
1746// sure it is async-safe and can handle partially initialized VM.
1747void os::abort(bool dump_core) {
1748  os::shutdown();
1749  if (dump_core) {
1750#ifndef PRODUCT
1751    fdStream out(defaultStream::output_fd());
1752    out.print_raw("Current thread is ");
1753    char buf[16];
1754    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1755    out.print_raw_cr(buf);
1756    out.print_raw_cr("Dumping core ...");
1757#endif
1758    ::abort(); // dump core
1759  }
1760
1761  ::exit(1);
1762}
1763
1764// Die immediately, no exit hook, no abort hook, no cleanup.
1765void os::die() {
1766  // _exit() on BsdThreads only kills current thread
1767  ::abort();
1768}
1769
1770// unused on bsd for now.
1771void os::set_error_file(const char *logfile) {}
1772
1773
1774// This method is a copy of JDK's sysGetLastErrorString
1775// from src/solaris/hpi/src/system_md.c
1776
1777size_t os::lasterror(char *buf, size_t len) {
1778
1779  if (errno == 0)  return 0;
1780
1781  const char *s = ::strerror(errno);
1782  size_t n = ::strlen(s);
1783  if (n >= len) {
1784    n = len - 1;
1785  }
1786  ::strncpy(buf, s, n);
1787  buf[n] = '\0';
1788  return n;
1789}
1790
1791intx os::current_thread_id() { return (intx)pthread_self(); }
1792int os::current_process_id() {
1793
1794  // Under the old bsd thread library, bsd gives each thread
1795  // its own process id. Because of this each thread will return
1796  // a different pid if this method were to return the result
1797  // of getpid(2). Bsd provides no api that returns the pid
1798  // of the launcher thread for the vm. This implementation
1799  // returns a unique pid, the pid of the launcher thread
1800  // that starts the vm 'process'.
1801
1802  // Under the NPTL, getpid() returns the same pid as the
1803  // launcher thread rather than a unique pid per thread.
1804  // Use gettid() if you want the old pre NPTL behaviour.
1805
1806  // if you are looking for the result of a call to getpid() that
1807  // returns a unique pid for the calling thread, then look at the
1808  // OSThread::thread_id() method in osThread_bsd.hpp file
1809
1810  return (int)(_initial_pid ? _initial_pid : getpid());
1811}
1812
1813// DLL functions
1814
1815#define JNI_LIB_PREFIX "lib"
1816#ifdef __APPLE__
1817#define JNI_LIB_SUFFIX ".dylib"
1818#else
1819#define JNI_LIB_SUFFIX ".so"
1820#endif
1821
1822const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1823
1824// This must be hard coded because it's the system's temporary
1825// directory not the java application's temp directory, ala java.io.tmpdir.
1826#ifdef __APPLE__
1827// macosx has a secure per-user temporary directory
1828char temp_path_storage[PATH_MAX];
1829const char* os::get_temp_directory() {
1830  static char *temp_path = NULL;
1831  if (temp_path == NULL) {
1832    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1833    if (pathSize == 0 || pathSize > PATH_MAX) {
1834      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1835    }
1836    temp_path = temp_path_storage;
1837  }
1838  return temp_path;
1839}
1840#else /* __APPLE__ */
1841const char* os::get_temp_directory() { return "/tmp"; }
1842#endif /* __APPLE__ */
1843
1844static bool file_exists(const char* filename) {
1845  struct stat statbuf;
1846  if (filename == NULL || strlen(filename) == 0) {
1847    return false;
1848  }
1849  return os::stat(filename, &statbuf) == 0;
1850}
1851
1852void os::dll_build_name(char* buffer, size_t buflen,
1853                        const char* pname, const char* fname) {
1854  // Copied from libhpi
1855  const size_t pnamelen = pname ? strlen(pname) : 0;
1856
1857  // Quietly truncate on buffer overflow.  Should be an error.
1858  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1859      *buffer = '\0';
1860      return;
1861  }
1862
1863  if (pnamelen == 0) {
1864    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1865  } else if (strchr(pname, *os::path_separator()) != NULL) {
1866    int n;
1867    char** pelements = split_path(pname, &n);
1868    for (int i = 0 ; i < n ; i++) {
1869      // Really shouldn't be NULL, but check can't hurt
1870      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1871        continue; // skip the empty path values
1872      }
1873      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1874          pelements[i], fname);
1875      if (file_exists(buffer)) {
1876        break;
1877      }
1878    }
1879    // release the storage
1880    for (int i = 0 ; i < n ; i++) {
1881      if (pelements[i] != NULL) {
1882        FREE_C_HEAP_ARRAY(char, pelements[i]);
1883      }
1884    }
1885    if (pelements != NULL) {
1886      FREE_C_HEAP_ARRAY(char*, pelements);
1887    }
1888  } else {
1889    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1890  }
1891}
1892
1893const char* os::get_current_directory(char *buf, int buflen) {
1894  return getcwd(buf, buflen);
1895}
1896
1897// check if addr is inside libjvm[_g].so
1898bool os::address_is_in_vm(address addr) {
1899  static address libjvm_base_addr;
1900  Dl_info dlinfo;
1901
1902  if (libjvm_base_addr == NULL) {
1903    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1904    libjvm_base_addr = (address)dlinfo.dli_fbase;
1905    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1906  }
1907
1908  if (dladdr((void *)addr, &dlinfo)) {
1909    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1910  }
1911
1912  return false;
1913}
1914
1915bool os::dll_address_to_function_name(address addr, char *buf,
1916                                      int buflen, int *offset) {
1917  Dl_info dlinfo;
1918
1919  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1920    if (buf != NULL) {
1921      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1922        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1923      }
1924    }
1925    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1926    return true;
1927  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1928    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1929       buf, buflen, offset, dlinfo.dli_fname)) {
1930       return true;
1931    }
1932  }
1933
1934  if (buf != NULL) buf[0] = '\0';
1935  if (offset != NULL) *offset = -1;
1936  return false;
1937}
1938
1939#ifdef _ALLBSD_SOURCE
1940// ported from solaris version
1941bool os::dll_address_to_library_name(address addr, char* buf,
1942                                     int buflen, int* offset) {
1943  Dl_info dlinfo;
1944
1945  if (dladdr((void*)addr, &dlinfo)){
1946     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1947     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1948     return true;
1949  } else {
1950     if (buf) buf[0] = '\0';
1951     if (offset) *offset = -1;
1952     return false;
1953  }
1954}
1955#else
1956struct _address_to_library_name {
1957  address addr;          // input : memory address
1958  size_t  buflen;        //         size of fname
1959  char*   fname;         // output: library name
1960  address base;          //         library base addr
1961};
1962
1963static int address_to_library_name_callback(struct dl_phdr_info *info,
1964                                            size_t size, void *data) {
1965  int i;
1966  bool found = false;
1967  address libbase = NULL;
1968  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1969
1970  // iterate through all loadable segments
1971  for (i = 0; i < info->dlpi_phnum; i++) {
1972    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1973    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1974      // base address of a library is the lowest address of its loaded
1975      // segments.
1976      if (libbase == NULL || libbase > segbase) {
1977        libbase = segbase;
1978      }
1979      // see if 'addr' is within current segment
1980      if (segbase <= d->addr &&
1981          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1982        found = true;
1983      }
1984    }
1985  }
1986
1987  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1988  // so dll_address_to_library_name() can fall through to use dladdr() which
1989  // can figure out executable name from argv[0].
1990  if (found && info->dlpi_name && info->dlpi_name[0]) {
1991    d->base = libbase;
1992    if (d->fname) {
1993      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1994    }
1995    return 1;
1996  }
1997  return 0;
1998}
1999
2000bool os::dll_address_to_library_name(address addr, char* buf,
2001                                     int buflen, int* offset) {
2002  Dl_info dlinfo;
2003  struct _address_to_library_name data;
2004
2005  // There is a bug in old glibc dladdr() implementation that it could resolve
2006  // to wrong library name if the .so file has a base address != NULL. Here
2007  // we iterate through the program headers of all loaded libraries to find
2008  // out which library 'addr' really belongs to. This workaround can be
2009  // removed once the minimum requirement for glibc is moved to 2.3.x.
2010  data.addr = addr;
2011  data.fname = buf;
2012  data.buflen = buflen;
2013  data.base = NULL;
2014  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
2015
2016  if (rslt) {
2017     // buf already contains library name
2018     if (offset) *offset = addr - data.base;
2019     return true;
2020  } else if (dladdr((void*)addr, &dlinfo)){
2021     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
2022     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
2023     return true;
2024  } else {
2025     if (buf) buf[0] = '\0';
2026     if (offset) *offset = -1;
2027     return false;
2028  }
2029}
2030#endif
2031
2032  // Loads .dll/.so and
2033  // in case of error it checks if .dll/.so was built for the
2034  // same architecture as Hotspot is running on
2035
2036#ifdef __APPLE__
2037void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
2038  void * result= ::dlopen(filename, RTLD_LAZY);
2039  if (result != NULL) {
2040    // Successful loading
2041    return result;
2042  }
2043
2044  // Read system error message into ebuf
2045  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2046  ebuf[ebuflen-1]='\0';
2047
2048  return NULL;
2049}
2050#else
2051void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2052{
2053  void * result= ::dlopen(filename, RTLD_LAZY);
2054  if (result != NULL) {
2055    // Successful loading
2056    return result;
2057  }
2058
2059  Elf32_Ehdr elf_head;
2060
2061  // Read system error message into ebuf
2062  // It may or may not be overwritten below
2063  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2064  ebuf[ebuflen-1]='\0';
2065  int diag_msg_max_length=ebuflen-strlen(ebuf);
2066  char* diag_msg_buf=ebuf+strlen(ebuf);
2067
2068  if (diag_msg_max_length==0) {
2069    // No more space in ebuf for additional diagnostics message
2070    return NULL;
2071  }
2072
2073
2074  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2075
2076  if (file_descriptor < 0) {
2077    // Can't open library, report dlerror() message
2078    return NULL;
2079  }
2080
2081  bool failed_to_read_elf_head=
2082    (sizeof(elf_head)!=
2083        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2084
2085  ::close(file_descriptor);
2086  if (failed_to_read_elf_head) {
2087    // file i/o error - report dlerror() msg
2088    return NULL;
2089  }
2090
2091  typedef struct {
2092    Elf32_Half  code;         // Actual value as defined in elf.h
2093    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2094    char        elf_class;    // 32 or 64 bit
2095    char        endianess;    // MSB or LSB
2096    char*       name;         // String representation
2097  } arch_t;
2098
2099  #ifndef EM_486
2100  #define EM_486          6               /* Intel 80486 */
2101  #endif
2102
2103  #ifndef EM_MIPS_RS3_LE
2104  #define EM_MIPS_RS3_LE  10              /* MIPS */
2105  #endif
2106
2107  #ifndef EM_PPC64
2108  #define EM_PPC64        21              /* PowerPC64 */
2109  #endif
2110
2111  #ifndef EM_S390
2112  #define EM_S390         22              /* IBM System/390 */
2113  #endif
2114
2115  #ifndef EM_IA_64
2116  #define EM_IA_64        50              /* HP/Intel IA-64 */
2117  #endif
2118
2119  #ifndef EM_X86_64
2120  #define EM_X86_64       62              /* AMD x86-64 */
2121  #endif
2122
2123  static const arch_t arch_array[]={
2124    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2125    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2126    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2127    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2128    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2129    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2130    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2131    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2132    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2133    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
2134    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
2135    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
2136    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
2137    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
2138    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
2139    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
2140  };
2141
2142  #if  (defined IA32)
2143    static  Elf32_Half running_arch_code=EM_386;
2144  #elif   (defined AMD64)
2145    static  Elf32_Half running_arch_code=EM_X86_64;
2146  #elif  (defined IA64)
2147    static  Elf32_Half running_arch_code=EM_IA_64;
2148  #elif  (defined __sparc) && (defined _LP64)
2149    static  Elf32_Half running_arch_code=EM_SPARCV9;
2150  #elif  (defined __sparc) && (!defined _LP64)
2151    static  Elf32_Half running_arch_code=EM_SPARC;
2152  #elif  (defined __powerpc64__)
2153    static  Elf32_Half running_arch_code=EM_PPC64;
2154  #elif  (defined __powerpc__)
2155    static  Elf32_Half running_arch_code=EM_PPC;
2156  #elif  (defined ARM)
2157    static  Elf32_Half running_arch_code=EM_ARM;
2158  #elif  (defined S390)
2159    static  Elf32_Half running_arch_code=EM_S390;
2160  #elif  (defined ALPHA)
2161    static  Elf32_Half running_arch_code=EM_ALPHA;
2162  #elif  (defined MIPSEL)
2163    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
2164  #elif  (defined PARISC)
2165    static  Elf32_Half running_arch_code=EM_PARISC;
2166  #elif  (defined MIPS)
2167    static  Elf32_Half running_arch_code=EM_MIPS;
2168  #elif  (defined M68K)
2169    static  Elf32_Half running_arch_code=EM_68K;
2170  #else
2171    #error Method os::dll_load requires that one of following is defined:\
2172         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2173  #endif
2174
2175  // Identify compatability class for VM's architecture and library's architecture
2176  // Obtain string descriptions for architectures
2177
2178  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2179  int running_arch_index=-1;
2180
2181  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2182    if (running_arch_code == arch_array[i].code) {
2183      running_arch_index    = i;
2184    }
2185    if (lib_arch.code == arch_array[i].code) {
2186      lib_arch.compat_class = arch_array[i].compat_class;
2187      lib_arch.name         = arch_array[i].name;
2188    }
2189  }
2190
2191  assert(running_arch_index != -1,
2192    "Didn't find running architecture code (running_arch_code) in arch_array");
2193  if (running_arch_index == -1) {
2194    // Even though running architecture detection failed
2195    // we may still continue with reporting dlerror() message
2196    return NULL;
2197  }
2198
2199  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2200    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2201    return NULL;
2202  }
2203
2204#ifndef S390
2205  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2206    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2207    return NULL;
2208  }
2209#endif // !S390
2210
2211  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2212    if ( lib_arch.name!=NULL ) {
2213      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2214        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2215        lib_arch.name, arch_array[running_arch_index].name);
2216    } else {
2217      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2218      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2219        lib_arch.code,
2220        arch_array[running_arch_index].name);
2221    }
2222  }
2223
2224  return NULL;
2225}
2226#endif /* !__APPLE__ */
2227
2228// XXX: Do we need a lock around this as per Linux?
2229void* os::dll_lookup(void* handle, const char* name) {
2230  return dlsym(handle, name);
2231}
2232
2233
2234static bool _print_ascii_file(const char* filename, outputStream* st) {
2235  int fd = ::open(filename, O_RDONLY);
2236  if (fd == -1) {
2237     return false;
2238  }
2239
2240  char buf[32];
2241  int bytes;
2242  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2243    st->print_raw(buf, bytes);
2244  }
2245
2246  ::close(fd);
2247
2248  return true;
2249}
2250
2251void os::print_dll_info(outputStream *st) {
2252   st->print_cr("Dynamic libraries:");
2253#ifdef _ALLBSD_SOURCE
2254#ifdef RTLD_DI_LINKMAP
2255    Dl_info dli;
2256    void *handle;
2257    Link_map *map;
2258    Link_map *p;
2259
2260    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
2261        st->print_cr("Error: Cannot print dynamic libraries.");
2262        return;
2263    }
2264    handle = dlopen(dli.dli_fname, RTLD_LAZY);
2265    if (handle == NULL) {
2266        st->print_cr("Error: Cannot print dynamic libraries.");
2267        return;
2268    }
2269    dlinfo(handle, RTLD_DI_LINKMAP, &map);
2270    if (map == NULL) {
2271        st->print_cr("Error: Cannot print dynamic libraries.");
2272        return;
2273    }
2274
2275    while (map->l_prev != NULL)
2276        map = map->l_prev;
2277
2278    while (map != NULL) {
2279        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2280        map = map->l_next;
2281    }
2282
2283    dlclose(handle);
2284#elif defined(__APPLE__)
2285    uint32_t count;
2286    uint32_t i;
2287
2288    count = _dyld_image_count();
2289    for (i = 1; i < count; i++) {
2290        const char *name = _dyld_get_image_name(i);
2291        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
2292        st->print_cr(PTR_FORMAT " \t%s", slide, name);
2293    }
2294#else
2295   st->print_cr("Error: Cannot print dynamic libraries.");
2296#endif
2297#else
2298   char fname[32];
2299   pid_t pid = os::Bsd::gettid();
2300
2301   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2302
2303   if (!_print_ascii_file(fname, st)) {
2304     st->print("Can not get library information for pid = %d\n", pid);
2305   }
2306#endif
2307}
2308
2309
2310void os::print_os_info(outputStream* st) {
2311  st->print("OS:");
2312
2313  // Try to identify popular distros.
2314  // Most Bsd distributions have /etc/XXX-release file, which contains
2315  // the OS version string. Some have more than one /etc/XXX-release file
2316  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2317  // so the order is important.
2318  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2319      !_print_ascii_file("/etc/sun-release", st) &&
2320      !_print_ascii_file("/etc/redhat-release", st) &&
2321      !_print_ascii_file("/etc/SuSE-release", st) &&
2322      !_print_ascii_file("/etc/turbobsd-release", st) &&
2323      !_print_ascii_file("/etc/gentoo-release", st) &&
2324      !_print_ascii_file("/etc/debian_version", st) &&
2325      !_print_ascii_file("/etc/ltib-release", st) &&
2326      !_print_ascii_file("/etc/angstrom-version", st)) {
2327      st->print("Bsd");
2328  }
2329  st->cr();
2330
2331  // kernel
2332  st->print("uname:");
2333  struct utsname name;
2334  uname(&name);
2335  st->print(name.sysname); st->print(" ");
2336  st->print(name.release); st->print(" ");
2337  st->print(name.version); st->print(" ");
2338  st->print(name.machine);
2339  st->cr();
2340
2341#ifndef _ALLBSD_SOURCE
2342  // Print warning if unsafe chroot environment detected
2343  if (unsafe_chroot_detected) {
2344    st->print("WARNING!! ");
2345    st->print_cr(unstable_chroot_error);
2346  }
2347
2348  // libc, pthread
2349  st->print("libc:");
2350  st->print(os::Bsd::glibc_version()); st->print(" ");
2351  st->print(os::Bsd::libpthread_version()); st->print(" ");
2352  if (os::Bsd::is_BsdThreads()) {
2353     st->print("(%s stack)", os::Bsd::is_floating_stack() ? "floating" : "fixed");
2354  }
2355  st->cr();
2356#endif
2357
2358  // rlimit
2359  st->print("rlimit:");
2360  struct rlimit rlim;
2361
2362  st->print(" STACK ");
2363  getrlimit(RLIMIT_STACK, &rlim);
2364  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2365  else st->print("%uk", rlim.rlim_cur >> 10);
2366
2367  st->print(", CORE ");
2368  getrlimit(RLIMIT_CORE, &rlim);
2369  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2370  else st->print("%uk", rlim.rlim_cur >> 10);
2371
2372  st->print(", NPROC ");
2373  getrlimit(RLIMIT_NPROC, &rlim);
2374  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2375  else st->print("%d", rlim.rlim_cur);
2376
2377  st->print(", NOFILE ");
2378  getrlimit(RLIMIT_NOFILE, &rlim);
2379  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2380  else st->print("%d", rlim.rlim_cur);
2381
2382#ifndef _ALLBSD_SOURCE
2383  st->print(", AS ");
2384  getrlimit(RLIMIT_AS, &rlim);
2385  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2386  else st->print("%uk", rlim.rlim_cur >> 10);
2387  st->cr();
2388
2389  // load average
2390  st->print("load average:");
2391  double loadavg[3];
2392  os::loadavg(loadavg, 3);
2393  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2394  st->cr();
2395#endif
2396}
2397
2398void os::pd_print_cpu_info(outputStream* st) {
2399  // Nothing to do for now.
2400}
2401
2402void os::print_memory_info(outputStream* st) {
2403
2404  st->print("Memory:");
2405  st->print(" %dk page", os::vm_page_size()>>10);
2406
2407#ifndef _ALLBSD_SOURCE
2408  // values in struct sysinfo are "unsigned long"
2409  struct sysinfo si;
2410  sysinfo(&si);
2411#endif
2412
2413  st->print(", physical " UINT64_FORMAT "k",
2414            os::physical_memory() >> 10);
2415  st->print("(" UINT64_FORMAT "k free)",
2416            os::available_memory() >> 10);
2417#ifndef _ALLBSD_SOURCE
2418  st->print(", swap " UINT64_FORMAT "k",
2419            ((jlong)si.totalswap * si.mem_unit) >> 10);
2420  st->print("(" UINT64_FORMAT "k free)",
2421            ((jlong)si.freeswap * si.mem_unit) >> 10);
2422#endif
2423  st->cr();
2424
2425  // meminfo
2426  st->print("\n/proc/meminfo:\n");
2427  _print_ascii_file("/proc/meminfo", st);
2428  st->cr();
2429}
2430
2431// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2432// but they're the same for all the bsd arch that we support
2433// and they're the same for solaris but there's no common place to put this.
2434const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2435                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2436                          "ILL_COPROC", "ILL_BADSTK" };
2437
2438const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2439                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2440                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2441
2442const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2443
2444const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2445
2446void os::print_siginfo(outputStream* st, void* siginfo) {
2447  st->print("siginfo:");
2448
2449  const int buflen = 100;
2450  char buf[buflen];
2451  siginfo_t *si = (siginfo_t*)siginfo;
2452  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2453  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2454    st->print("si_errno=%s", buf);
2455  } else {
2456    st->print("si_errno=%d", si->si_errno);
2457  }
2458  const int c = si->si_code;
2459  assert(c > 0, "unexpected si_code");
2460  switch (si->si_signo) {
2461  case SIGILL:
2462    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2463    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2464    break;
2465  case SIGFPE:
2466    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2467    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2468    break;
2469  case SIGSEGV:
2470    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2471    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2472    break;
2473  case SIGBUS:
2474    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2475    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2476    break;
2477  default:
2478    st->print(", si_code=%d", si->si_code);
2479    // no si_addr
2480  }
2481
2482  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2483      UseSharedSpaces) {
2484    FileMapInfo* mapinfo = FileMapInfo::current_info();
2485    if (mapinfo->is_in_shared_space(si->si_addr)) {
2486      st->print("\n\nError accessing class data sharing archive."   \
2487                " Mapped file inaccessible during execution, "      \
2488                " possible disk/network problem.");
2489    }
2490  }
2491  st->cr();
2492}
2493
2494
2495static void print_signal_handler(outputStream* st, int sig,
2496                                 char* buf, size_t buflen);
2497
2498void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2499  st->print_cr("Signal Handlers:");
2500  print_signal_handler(st, SIGSEGV, buf, buflen);
2501  print_signal_handler(st, SIGBUS , buf, buflen);
2502  print_signal_handler(st, SIGFPE , buf, buflen);
2503  print_signal_handler(st, SIGPIPE, buf, buflen);
2504  print_signal_handler(st, SIGXFSZ, buf, buflen);
2505  print_signal_handler(st, SIGILL , buf, buflen);
2506  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2507  print_signal_handler(st, SR_signum, buf, buflen);
2508  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2509  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2510  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2511  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2512}
2513
2514static char saved_jvm_path[MAXPATHLEN] = {0};
2515
2516// Find the full path to the current module, libjvm or libjvm_g
2517void os::jvm_path(char *buf, jint buflen) {
2518  // Error checking.
2519  if (buflen < MAXPATHLEN) {
2520    assert(false, "must use a large-enough buffer");
2521    buf[0] = '\0';
2522    return;
2523  }
2524  // Lazy resolve the path to current module.
2525  if (saved_jvm_path[0] != 0) {
2526    strcpy(buf, saved_jvm_path);
2527    return;
2528  }
2529
2530  char dli_fname[MAXPATHLEN];
2531  bool ret = dll_address_to_library_name(
2532                CAST_FROM_FN_PTR(address, os::jvm_path),
2533                dli_fname, sizeof(dli_fname), NULL);
2534  assert(ret != 0, "cannot locate libjvm");
2535  char *rp = realpath(dli_fname, buf);
2536  if (rp == NULL)
2537    return;
2538
2539  if (Arguments::created_by_gamma_launcher()) {
2540    // Support for the gamma launcher.  Typical value for buf is
2541    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
2542    // the right place in the string, then assume we are installed in a JDK and
2543    // we're done.  Otherwise, check for a JAVA_HOME environment variable and
2544    // construct a path to the JVM being overridden.
2545
2546    const char *p = buf + strlen(buf) - 1;
2547    for (int count = 0; p > buf && count < 5; ++count) {
2548      for (--p; p > buf && *p != '/'; --p)
2549        /* empty */ ;
2550    }
2551
2552    if (strncmp(p, "/jre/lib/", 9) != 0) {
2553      // Look for JAVA_HOME in the environment.
2554      char* java_home_var = ::getenv("JAVA_HOME");
2555      if (java_home_var != NULL && java_home_var[0] != 0) {
2556        char* jrelib_p;
2557        int len;
2558
2559        // Check the current module name "libjvm" or "libjvm_g".
2560        p = strrchr(buf, '/');
2561        assert(strstr(p, "/libjvm") == p, "invalid library name");
2562        p = strstr(p, "_g") ? "_g" : "";
2563
2564        rp = realpath(java_home_var, buf);
2565        if (rp == NULL)
2566          return;
2567
2568        // determine if this is a legacy image or modules image
2569        // modules image doesn't have "jre" subdirectory
2570        len = strlen(buf);
2571        jrelib_p = buf + len;
2572
2573        // Add the appropriate library subdir
2574        snprintf(jrelib_p, buflen-len, "/jre/lib");
2575        if (0 != access(buf, F_OK)) {
2576          snprintf(jrelib_p, buflen-len, "/lib");
2577        }
2578
2579        // Add the appropriate client or server subdir
2580        len = strlen(buf);
2581        jrelib_p = buf + len;
2582        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
2583        if (0 != access(buf, F_OK)) {
2584          snprintf(jrelib_p, buflen-len, "");
2585        }
2586
2587        // If the path exists within JAVA_HOME, add the JVM library name
2588        // to complete the path to JVM being overridden.  Otherwise fallback
2589        // to the path to the current library.
2590        if (0 == access(buf, F_OK)) {
2591          // Use current module name "libjvm[_g]" instead of
2592          // "libjvm"debug_only("_g")"" since for fastdebug version
2593          // we should have "libjvm" but debug_only("_g") adds "_g"!
2594          len = strlen(buf);
2595          snprintf(buf + len, buflen-len, "/libjvm%s%s", p, JNI_LIB_SUFFIX);
2596        } else {
2597          // Fall back to path of current library
2598          rp = realpath(dli_fname, buf);
2599          if (rp == NULL)
2600            return;
2601        }
2602      }
2603    }
2604  }
2605
2606  strcpy(saved_jvm_path, buf);
2607}
2608
2609void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2610  // no prefix required, not even "_"
2611}
2612
2613void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2614  // no suffix required
2615}
2616
2617////////////////////////////////////////////////////////////////////////////////
2618// sun.misc.Signal support
2619
2620static volatile jint sigint_count = 0;
2621
2622static void
2623UserHandler(int sig, void *siginfo, void *context) {
2624  // 4511530 - sem_post is serialized and handled by the manager thread. When
2625  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2626  // don't want to flood the manager thread with sem_post requests.
2627  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2628      return;
2629
2630  // Ctrl-C is pressed during error reporting, likely because the error
2631  // handler fails to abort. Let VM die immediately.
2632  if (sig == SIGINT && is_error_reported()) {
2633     os::die();
2634  }
2635
2636  os::signal_notify(sig);
2637}
2638
2639void* os::user_handler() {
2640  return CAST_FROM_FN_PTR(void*, UserHandler);
2641}
2642
2643extern "C" {
2644  typedef void (*sa_handler_t)(int);
2645  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2646}
2647
2648void* os::signal(int signal_number, void* handler) {
2649  struct sigaction sigAct, oldSigAct;
2650
2651  sigfillset(&(sigAct.sa_mask));
2652  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2653  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2654
2655  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2656    // -1 means registration failed
2657    return (void *)-1;
2658  }
2659
2660  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2661}
2662
2663void os::signal_raise(int signal_number) {
2664  ::raise(signal_number);
2665}
2666
2667/*
2668 * The following code is moved from os.cpp for making this
2669 * code platform specific, which it is by its very nature.
2670 */
2671
2672// Will be modified when max signal is changed to be dynamic
2673int os::sigexitnum_pd() {
2674  return NSIG;
2675}
2676
2677// a counter for each possible signal value
2678static volatile jint pending_signals[NSIG+1] = { 0 };
2679
2680// Bsd(POSIX) specific hand shaking semaphore.
2681#ifdef __APPLE__
2682static semaphore_t sig_sem;
2683#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
2684#define SEM_WAIT(sem)           semaphore_wait(sem);
2685#define SEM_POST(sem)           semaphore_signal(sem);
2686#else
2687static sem_t sig_sem;
2688#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
2689#define SEM_WAIT(sem)           sem_wait(&sem);
2690#define SEM_POST(sem)           sem_post(&sem);
2691#endif
2692
2693void os::signal_init_pd() {
2694  // Initialize signal structures
2695  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2696
2697  // Initialize signal semaphore
2698  ::SEM_INIT(sig_sem, 0);
2699}
2700
2701void os::signal_notify(int sig) {
2702  Atomic::inc(&pending_signals[sig]);
2703  ::SEM_POST(sig_sem);
2704}
2705
2706static int check_pending_signals(bool wait) {
2707  Atomic::store(0, &sigint_count);
2708  for (;;) {
2709    for (int i = 0; i < NSIG + 1; i++) {
2710      jint n = pending_signals[i];
2711      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2712        return i;
2713      }
2714    }
2715    if (!wait) {
2716      return -1;
2717    }
2718    JavaThread *thread = JavaThread::current();
2719    ThreadBlockInVM tbivm(thread);
2720
2721    bool threadIsSuspended;
2722    do {
2723      thread->set_suspend_equivalent();
2724      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2725      ::SEM_WAIT(sig_sem);
2726
2727      // were we externally suspended while we were waiting?
2728      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2729      if (threadIsSuspended) {
2730        //
2731        // The semaphore has been incremented, but while we were waiting
2732        // another thread suspended us. We don't want to continue running
2733        // while suspended because that would surprise the thread that
2734        // suspended us.
2735        //
2736        ::SEM_POST(sig_sem);
2737
2738        thread->java_suspend_self();
2739      }
2740    } while (threadIsSuspended);
2741  }
2742}
2743
2744int os::signal_lookup() {
2745  return check_pending_signals(false);
2746}
2747
2748int os::signal_wait() {
2749  return check_pending_signals(true);
2750}
2751
2752////////////////////////////////////////////////////////////////////////////////
2753// Virtual Memory
2754
2755int os::vm_page_size() {
2756  // Seems redundant as all get out
2757  assert(os::Bsd::page_size() != -1, "must call os::init");
2758  return os::Bsd::page_size();
2759}
2760
2761// Solaris allocates memory by pages.
2762int os::vm_allocation_granularity() {
2763  assert(os::Bsd::page_size() != -1, "must call os::init");
2764  return os::Bsd::page_size();
2765}
2766
2767// Rationale behind this function:
2768//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2769//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2770//  samples for JITted code. Here we create private executable mapping over the code cache
2771//  and then we can use standard (well, almost, as mapping can change) way to provide
2772//  info for the reporting script by storing timestamp and location of symbol
2773void bsd_wrap_code(char* base, size_t size) {
2774  static volatile jint cnt = 0;
2775
2776  if (!UseOprofile) {
2777    return;
2778  }
2779
2780  char buf[PATH_MAX + 1];
2781  int num = Atomic::add(1, &cnt);
2782
2783  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2784           os::get_temp_directory(), os::current_process_id(), num);
2785  unlink(buf);
2786
2787  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2788
2789  if (fd != -1) {
2790    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2791    if (rv != (off_t)-1) {
2792      if (::write(fd, "", 1) == 1) {
2793        mmap(base, size,
2794             PROT_READ|PROT_WRITE|PROT_EXEC,
2795             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2796      }
2797    }
2798    ::close(fd);
2799    unlink(buf);
2800  }
2801}
2802
2803// NOTE: Bsd kernel does not really reserve the pages for us.
2804//       All it does is to check if there are enough free pages
2805//       left at the time of mmap(). This could be a potential
2806//       problem.
2807bool os::commit_memory(char* addr, size_t size, bool exec) {
2808  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2809#ifdef __OpenBSD__
2810  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2811  return ::mprotect(addr, size, prot) == 0;
2812#else
2813  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2814                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2815  return res != (uintptr_t) MAP_FAILED;
2816#endif
2817}
2818
2819#ifndef _ALLBSD_SOURCE
2820// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2821#ifndef MAP_HUGETLB
2822#define MAP_HUGETLB 0x40000
2823#endif
2824
2825// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2826#ifndef MADV_HUGEPAGE
2827#define MADV_HUGEPAGE 14
2828#endif
2829#endif
2830
2831bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2832                       bool exec) {
2833#ifndef _ALLBSD_SOURCE
2834  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2835    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2836    uintptr_t res =
2837      (uintptr_t) ::mmap(addr, size, prot,
2838                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2839                         -1, 0);
2840    return res != (uintptr_t) MAP_FAILED;
2841  }
2842#endif
2843
2844  return commit_memory(addr, size, exec);
2845}
2846
2847void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2848#ifndef _ALLBSD_SOURCE
2849  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2850    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2851    // be supported or the memory may already be backed by huge pages.
2852    ::madvise(addr, bytes, MADV_HUGEPAGE);
2853  }
2854#endif
2855}
2856
2857void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2858  ::madvise(addr, bytes, MADV_DONTNEED);
2859}
2860
2861void os::numa_make_global(char *addr, size_t bytes) {
2862}
2863
2864void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2865}
2866
2867bool os::numa_topology_changed()   { return false; }
2868
2869size_t os::numa_get_groups_num() {
2870  return 1;
2871}
2872
2873int os::numa_get_group_id() {
2874  return 0;
2875}
2876
2877size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2878  if (size > 0) {
2879    ids[0] = 0;
2880    return 1;
2881  }
2882  return 0;
2883}
2884
2885bool os::get_page_info(char *start, page_info* info) {
2886  return false;
2887}
2888
2889char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2890  return end;
2891}
2892
2893#ifndef _ALLBSD_SOURCE
2894// Something to do with the numa-aware allocator needs these symbols
2895extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2896extern "C" JNIEXPORT void numa_error(char *where) { }
2897extern "C" JNIEXPORT int fork1() { return fork(); }
2898
2899
2900// If we are running with libnuma version > 2, then we should
2901// be trying to use symbols with versions 1.1
2902// If we are running with earlier version, which did not have symbol versions,
2903// we should use the base version.
2904void* os::Bsd::libnuma_dlsym(void* handle, const char *name) {
2905  void *f = dlvsym(handle, name, "libnuma_1.1");
2906  if (f == NULL) {
2907    f = dlsym(handle, name);
2908  }
2909  return f;
2910}
2911
2912bool os::Bsd::libnuma_init() {
2913  // sched_getcpu() should be in libc.
2914  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2915                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2916
2917  if (sched_getcpu() != -1) { // Does it work?
2918    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2919    if (handle != NULL) {
2920      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2921                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2922      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2923                                       libnuma_dlsym(handle, "numa_max_node")));
2924      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2925                                        libnuma_dlsym(handle, "numa_available")));
2926      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2927                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2928      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2929                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2930
2931
2932      if (numa_available() != -1) {
2933        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2934        // Create a cpu -> node mapping
2935        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2936        rebuild_cpu_to_node_map();
2937        return true;
2938      }
2939    }
2940  }
2941  return false;
2942}
2943
2944// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2945// The table is later used in get_node_by_cpu().
2946void os::Bsd::rebuild_cpu_to_node_map() {
2947  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2948                              // in libnuma (possible values are starting from 16,
2949                              // and continuing up with every other power of 2, but less
2950                              // than the maximum number of CPUs supported by kernel), and
2951                              // is a subject to change (in libnuma version 2 the requirements
2952                              // are more reasonable) we'll just hardcode the number they use
2953                              // in the library.
2954  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2955
2956  size_t cpu_num = os::active_processor_count();
2957  size_t cpu_map_size = NCPUS / BitsPerCLong;
2958  size_t cpu_map_valid_size =
2959    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2960
2961  cpu_to_node()->clear();
2962  cpu_to_node()->at_grow(cpu_num - 1);
2963  size_t node_num = numa_get_groups_num();
2964
2965  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2966  for (size_t i = 0; i < node_num; i++) {
2967    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2968      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2969        if (cpu_map[j] != 0) {
2970          for (size_t k = 0; k < BitsPerCLong; k++) {
2971            if (cpu_map[j] & (1UL << k)) {
2972              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2973            }
2974          }
2975        }
2976      }
2977    }
2978  }
2979  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2980}
2981
2982int os::Bsd::get_node_by_cpu(int cpu_id) {
2983  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2984    return cpu_to_node()->at(cpu_id);
2985  }
2986  return -1;
2987}
2988
2989GrowableArray<int>* os::Bsd::_cpu_to_node;
2990os::Bsd::sched_getcpu_func_t os::Bsd::_sched_getcpu;
2991os::Bsd::numa_node_to_cpus_func_t os::Bsd::_numa_node_to_cpus;
2992os::Bsd::numa_max_node_func_t os::Bsd::_numa_max_node;
2993os::Bsd::numa_available_func_t os::Bsd::_numa_available;
2994os::Bsd::numa_tonode_memory_func_t os::Bsd::_numa_tonode_memory;
2995os::Bsd::numa_interleave_memory_func_t os::Bsd::_numa_interleave_memory;
2996unsigned long* os::Bsd::_numa_all_nodes;
2997#endif
2998
2999bool os::uncommit_memory(char* addr, size_t size) {
3000#ifdef __OpenBSD__
3001  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
3002  return ::mprotect(addr, size, PROT_NONE) == 0;
3003#else
3004  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3005                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3006  return res  != (uintptr_t) MAP_FAILED;
3007#endif
3008}
3009
3010bool os::create_stack_guard_pages(char* addr, size_t size) {
3011  return os::commit_memory(addr, size);
3012}
3013
3014// If this is a growable mapping, remove the guard pages entirely by
3015// munmap()ping them.  If not, just call uncommit_memory().
3016bool os::remove_stack_guard_pages(char* addr, size_t size) {
3017  return os::uncommit_memory(addr, size);
3018}
3019
3020static address _highest_vm_reserved_address = NULL;
3021
3022// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3023// at 'requested_addr'. If there are existing memory mappings at the same
3024// location, however, they will be overwritten. If 'fixed' is false,
3025// 'requested_addr' is only treated as a hint, the return value may or
3026// may not start from the requested address. Unlike Bsd mmap(), this
3027// function returns NULL to indicate failure.
3028static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3029  char * addr;
3030  int flags;
3031
3032  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3033  if (fixed) {
3034    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
3035    flags |= MAP_FIXED;
3036  }
3037
3038  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
3039  // to PROT_EXEC if executable when we commit the page.
3040  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
3041                       flags, -1, 0);
3042
3043  if (addr != MAP_FAILED) {
3044    // anon_mmap() should only get called during VM initialization,
3045    // don't need lock (actually we can skip locking even it can be called
3046    // from multiple threads, because _highest_vm_reserved_address is just a
3047    // hint about the upper limit of non-stack memory regions.)
3048    if ((address)addr + bytes > _highest_vm_reserved_address) {
3049      _highest_vm_reserved_address = (address)addr + bytes;
3050    }
3051  }
3052
3053  return addr == MAP_FAILED ? NULL : addr;
3054}
3055
3056// Don't update _highest_vm_reserved_address, because there might be memory
3057// regions above addr + size. If so, releasing a memory region only creates
3058// a hole in the address space, it doesn't help prevent heap-stack collision.
3059//
3060static int anon_munmap(char * addr, size_t size) {
3061  return ::munmap(addr, size) == 0;
3062}
3063
3064char* os::reserve_memory(size_t bytes, char* requested_addr,
3065                         size_t alignment_hint) {
3066  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3067}
3068
3069bool os::release_memory(char* addr, size_t size) {
3070  return anon_munmap(addr, size);
3071}
3072
3073static address highest_vm_reserved_address() {
3074  return _highest_vm_reserved_address;
3075}
3076
3077static bool bsd_mprotect(char* addr, size_t size, int prot) {
3078  // Bsd wants the mprotect address argument to be page aligned.
3079  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
3080
3081  // According to SUSv3, mprotect() should only be used with mappings
3082  // established by mmap(), and mmap() always maps whole pages. Unaligned
3083  // 'addr' likely indicates problem in the VM (e.g. trying to change
3084  // protection of malloc'ed or statically allocated memory). Check the
3085  // caller if you hit this assert.
3086  assert(addr == bottom, "sanity check");
3087
3088  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
3089  return ::mprotect(bottom, size, prot) == 0;
3090}
3091
3092// Set protections specified
3093bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3094                        bool is_committed) {
3095  unsigned int p = 0;
3096  switch (prot) {
3097  case MEM_PROT_NONE: p = PROT_NONE; break;
3098  case MEM_PROT_READ: p = PROT_READ; break;
3099  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3100  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3101  default:
3102    ShouldNotReachHere();
3103  }
3104  // is_committed is unused.
3105  return bsd_mprotect(addr, bytes, p);
3106}
3107
3108bool os::guard_memory(char* addr, size_t size) {
3109  return bsd_mprotect(addr, size, PROT_NONE);
3110}
3111
3112bool os::unguard_memory(char* addr, size_t size) {
3113  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
3114}
3115
3116bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3117  bool result = false;
3118#ifndef _ALLBSD_SOURCE
3119  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3120                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3121                  -1, 0);
3122
3123  if (p != (void *) -1) {
3124    // We don't know if this really is a huge page or not.
3125    FILE *fp = fopen("/proc/self/maps", "r");
3126    if (fp) {
3127      while (!feof(fp)) {
3128        char chars[257];
3129        long x = 0;
3130        if (fgets(chars, sizeof(chars), fp)) {
3131          if (sscanf(chars, "%lx-%*x", &x) == 1
3132              && x == (long)p) {
3133            if (strstr (chars, "hugepage")) {
3134              result = true;
3135              break;
3136            }
3137          }
3138        }
3139      }
3140      fclose(fp);
3141    }
3142    munmap (p, page_size);
3143    if (result)
3144      return true;
3145  }
3146
3147  if (warn) {
3148    warning("HugeTLBFS is not supported by the operating system.");
3149  }
3150#endif
3151
3152  return result;
3153}
3154
3155/*
3156* Set the coredump_filter bits to include largepages in core dump (bit 6)
3157*
3158* From the coredump_filter documentation:
3159*
3160* - (bit 0) anonymous private memory
3161* - (bit 1) anonymous shared memory
3162* - (bit 2) file-backed private memory
3163* - (bit 3) file-backed shared memory
3164* - (bit 4) ELF header pages in file-backed private memory areas (it is
3165*           effective only if the bit 2 is cleared)
3166* - (bit 5) hugetlb private memory
3167* - (bit 6) hugetlb shared memory
3168*/
3169static void set_coredump_filter(void) {
3170  FILE *f;
3171  long cdm;
3172
3173  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3174    return;
3175  }
3176
3177  if (fscanf(f, "%lx", &cdm) != 1) {
3178    fclose(f);
3179    return;
3180  }
3181
3182  rewind(f);
3183
3184  if ((cdm & LARGEPAGES_BIT) == 0) {
3185    cdm |= LARGEPAGES_BIT;
3186    fprintf(f, "%#lx", cdm);
3187  }
3188
3189  fclose(f);
3190}
3191
3192// Large page support
3193
3194static size_t _large_page_size = 0;
3195
3196void os::large_page_init() {
3197#ifndef _ALLBSD_SOURCE
3198  if (!UseLargePages) {
3199    UseHugeTLBFS = false;
3200    UseSHM = false;
3201    return;
3202  }
3203
3204  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3205    // If UseLargePages is specified on the command line try both methods,
3206    // if it's default, then try only HugeTLBFS.
3207    if (FLAG_IS_DEFAULT(UseLargePages)) {
3208      UseHugeTLBFS = true;
3209    } else {
3210      UseHugeTLBFS = UseSHM = true;
3211    }
3212  }
3213
3214  if (LargePageSizeInBytes) {
3215    _large_page_size = LargePageSizeInBytes;
3216  } else {
3217    // large_page_size on Bsd is used to round up heap size. x86 uses either
3218    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3219    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3220    // page as large as 256M.
3221    //
3222    // Here we try to figure out page size by parsing /proc/meminfo and looking
3223    // for a line with the following format:
3224    //    Hugepagesize:     2048 kB
3225    //
3226    // If we can't determine the value (e.g. /proc is not mounted, or the text
3227    // format has been changed), we'll use the largest page size supported by
3228    // the processor.
3229
3230#ifndef ZERO
3231    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3232                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3233#endif // ZERO
3234
3235    FILE *fp = fopen("/proc/meminfo", "r");
3236    if (fp) {
3237      while (!feof(fp)) {
3238        int x = 0;
3239        char buf[16];
3240        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3241          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3242            _large_page_size = x * K;
3243            break;
3244          }
3245        } else {
3246          // skip to next line
3247          for (;;) {
3248            int ch = fgetc(fp);
3249            if (ch == EOF || ch == (int)'\n') break;
3250          }
3251        }
3252      }
3253      fclose(fp);
3254    }
3255  }
3256
3257  // print a warning if any large page related flag is specified on command line
3258  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3259
3260  const size_t default_page_size = (size_t)Bsd::page_size();
3261  if (_large_page_size > default_page_size) {
3262    _page_sizes[0] = _large_page_size;
3263    _page_sizes[1] = default_page_size;
3264    _page_sizes[2] = 0;
3265  }
3266  UseHugeTLBFS = UseHugeTLBFS &&
3267                 Bsd::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3268
3269  if (UseHugeTLBFS)
3270    UseSHM = false;
3271
3272  UseLargePages = UseHugeTLBFS || UseSHM;
3273
3274  set_coredump_filter();
3275#endif
3276}
3277
3278#ifndef _ALLBSD_SOURCE
3279#ifndef SHM_HUGETLB
3280#define SHM_HUGETLB 04000
3281#endif
3282#endif
3283
3284char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3285  // "exec" is passed in but not used.  Creating the shared image for
3286  // the code cache doesn't have an SHM_X executable permission to check.
3287  assert(UseLargePages && UseSHM, "only for SHM large pages");
3288
3289  key_t key = IPC_PRIVATE;
3290  char *addr;
3291
3292  bool warn_on_failure = UseLargePages &&
3293                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3294                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3295                        );
3296  char msg[128];
3297
3298  // Create a large shared memory region to attach to based on size.
3299  // Currently, size is the total size of the heap
3300#ifndef _ALLBSD_SOURCE
3301  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3302#else
3303  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
3304#endif
3305  if (shmid == -1) {
3306     // Possible reasons for shmget failure:
3307     // 1. shmmax is too small for Java heap.
3308     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3309     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3310     // 2. not enough large page memory.
3311     //    > check available large pages: cat /proc/meminfo
3312     //    > increase amount of large pages:
3313     //          echo new_value > /proc/sys/vm/nr_hugepages
3314     //      Note 1: different Bsd may use different name for this property,
3315     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3316     //      Note 2: it's possible there's enough physical memory available but
3317     //            they are so fragmented after a long run that they can't
3318     //            coalesce into large pages. Try to reserve large pages when
3319     //            the system is still "fresh".
3320     if (warn_on_failure) {
3321       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3322       warning(msg);
3323     }
3324     return NULL;
3325  }
3326
3327  // attach to the region
3328  addr = (char*)shmat(shmid, req_addr, 0);
3329  int err = errno;
3330
3331  // Remove shmid. If shmat() is successful, the actual shared memory segment
3332  // will be deleted when it's detached by shmdt() or when the process
3333  // terminates. If shmat() is not successful this will remove the shared
3334  // segment immediately.
3335  shmctl(shmid, IPC_RMID, NULL);
3336
3337  if ((intptr_t)addr == -1) {
3338     if (warn_on_failure) {
3339       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3340       warning(msg);
3341     }
3342     return NULL;
3343  }
3344
3345  return addr;
3346}
3347
3348bool os::release_memory_special(char* base, size_t bytes) {
3349  // detaching the SHM segment will also delete it, see reserve_memory_special()
3350  int rslt = shmdt(base);
3351  return rslt == 0;
3352}
3353
3354size_t os::large_page_size() {
3355  return _large_page_size;
3356}
3357
3358// HugeTLBFS allows application to commit large page memory on demand;
3359// with SysV SHM the entire memory region must be allocated as shared
3360// memory.
3361bool os::can_commit_large_page_memory() {
3362  return UseHugeTLBFS;
3363}
3364
3365bool os::can_execute_large_page_memory() {
3366  return UseHugeTLBFS;
3367}
3368
3369// Reserve memory at an arbitrary address, only if that area is
3370// available (and not reserved for something else).
3371
3372char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3373  const int max_tries = 10;
3374  char* base[max_tries];
3375  size_t size[max_tries];
3376  const size_t gap = 0x000000;
3377
3378  // Assert only that the size is a multiple of the page size, since
3379  // that's all that mmap requires, and since that's all we really know
3380  // about at this low abstraction level.  If we need higher alignment,
3381  // we can either pass an alignment to this method or verify alignment
3382  // in one of the methods further up the call chain.  See bug 5044738.
3383  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3384
3385  // Repeatedly allocate blocks until the block is allocated at the
3386  // right spot. Give up after max_tries. Note that reserve_memory() will
3387  // automatically update _highest_vm_reserved_address if the call is
3388  // successful. The variable tracks the highest memory address every reserved
3389  // by JVM. It is used to detect heap-stack collision if running with
3390  // fixed-stack BsdThreads. Because here we may attempt to reserve more
3391  // space than needed, it could confuse the collision detecting code. To
3392  // solve the problem, save current _highest_vm_reserved_address and
3393  // calculate the correct value before return.
3394  address old_highest = _highest_vm_reserved_address;
3395
3396  // Bsd mmap allows caller to pass an address as hint; give it a try first,
3397  // if kernel honors the hint then we can return immediately.
3398  char * addr = anon_mmap(requested_addr, bytes, false);
3399  if (addr == requested_addr) {
3400     return requested_addr;
3401  }
3402
3403  if (addr != NULL) {
3404     // mmap() is successful but it fails to reserve at the requested address
3405     anon_munmap(addr, bytes);
3406  }
3407
3408  int i;
3409  for (i = 0; i < max_tries; ++i) {
3410    base[i] = reserve_memory(bytes);
3411
3412    if (base[i] != NULL) {
3413      // Is this the block we wanted?
3414      if (base[i] == requested_addr) {
3415        size[i] = bytes;
3416        break;
3417      }
3418
3419      // Does this overlap the block we wanted? Give back the overlapped
3420      // parts and try again.
3421
3422      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3423      if (top_overlap >= 0 && top_overlap < bytes) {
3424        unmap_memory(base[i], top_overlap);
3425        base[i] += top_overlap;
3426        size[i] = bytes - top_overlap;
3427      } else {
3428        size_t bottom_overlap = base[i] + bytes - requested_addr;
3429        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3430          unmap_memory(requested_addr, bottom_overlap);
3431          size[i] = bytes - bottom_overlap;
3432        } else {
3433          size[i] = bytes;
3434        }
3435      }
3436    }
3437  }
3438
3439  // Give back the unused reserved pieces.
3440
3441  for (int j = 0; j < i; ++j) {
3442    if (base[j] != NULL) {
3443      unmap_memory(base[j], size[j]);
3444    }
3445  }
3446
3447  if (i < max_tries) {
3448    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3449    return requested_addr;
3450  } else {
3451    _highest_vm_reserved_address = old_highest;
3452    return NULL;
3453  }
3454}
3455
3456size_t os::read(int fd, void *buf, unsigned int nBytes) {
3457  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
3458}
3459
3460// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
3461// Solaris uses poll(), bsd uses park().
3462// Poll() is likely a better choice, assuming that Thread.interrupt()
3463// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3464// SIGSEGV, see 4355769.
3465
3466int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3467  assert(thread == Thread::current(),  "thread consistency check");
3468
3469  ParkEvent * const slp = thread->_SleepEvent ;
3470  slp->reset() ;
3471  OrderAccess::fence() ;
3472
3473  if (interruptible) {
3474    jlong prevtime = javaTimeNanos();
3475
3476    for (;;) {
3477      if (os::is_interrupted(thread, true)) {
3478        return OS_INTRPT;
3479      }
3480
3481      jlong newtime = javaTimeNanos();
3482
3483      if (newtime - prevtime < 0) {
3484        // time moving backwards, should only happen if no monotonic clock
3485        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3486        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3487      } else {
3488        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3489      }
3490
3491      if(millis <= 0) {
3492        return OS_OK;
3493      }
3494
3495      prevtime = newtime;
3496
3497      {
3498        assert(thread->is_Java_thread(), "sanity check");
3499        JavaThread *jt = (JavaThread *) thread;
3500        ThreadBlockInVM tbivm(jt);
3501        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3502
3503        jt->set_suspend_equivalent();
3504        // cleared by handle_special_suspend_equivalent_condition() or
3505        // java_suspend_self() via check_and_wait_while_suspended()
3506
3507        slp->park(millis);
3508
3509        // were we externally suspended while we were waiting?
3510        jt->check_and_wait_while_suspended();
3511      }
3512    }
3513  } else {
3514    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3515    jlong prevtime = javaTimeNanos();
3516
3517    for (;;) {
3518      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3519      // the 1st iteration ...
3520      jlong newtime = javaTimeNanos();
3521
3522      if (newtime - prevtime < 0) {
3523        // time moving backwards, should only happen if no monotonic clock
3524        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3525        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3526      } else {
3527        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3528      }
3529
3530      if(millis <= 0) break ;
3531
3532      prevtime = newtime;
3533      slp->park(millis);
3534    }
3535    return OS_OK ;
3536  }
3537}
3538
3539int os::naked_sleep() {
3540  // %% make the sleep time an integer flag. for now use 1 millisec.
3541  return os::sleep(Thread::current(), 1, false);
3542}
3543
3544// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3545void os::infinite_sleep() {
3546  while (true) {    // sleep forever ...
3547    ::sleep(100);   // ... 100 seconds at a time
3548  }
3549}
3550
3551// Used to convert frequent JVM_Yield() to nops
3552bool os::dont_yield() {
3553  return DontYieldALot;
3554}
3555
3556void os::yield() {
3557  sched_yield();
3558}
3559
3560os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3561
3562void os::yield_all(int attempts) {
3563  // Yields to all threads, including threads with lower priorities
3564  // Threads on Bsd are all with same priority. The Solaris style
3565  // os::yield_all() with nanosleep(1ms) is not necessary.
3566  sched_yield();
3567}
3568
3569// Called from the tight loops to possibly influence time-sharing heuristics
3570void os::loop_breaker(int attempts) {
3571  os::yield_all(attempts);
3572}
3573
3574////////////////////////////////////////////////////////////////////////////////
3575// thread priority support
3576
3577// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
3578// only supports dynamic priority, static priority must be zero. For real-time
3579// applications, Bsd supports SCHED_RR which allows static priority (1-99).
3580// However, for large multi-threaded applications, SCHED_RR is not only slower
3581// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3582// of 5 runs - Sep 2005).
3583//
3584// The following code actually changes the niceness of kernel-thread/LWP. It
3585// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3586// not the entire user process, and user level threads are 1:1 mapped to kernel
3587// threads. It has always been the case, but could change in the future. For
3588// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3589// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3590
3591#if defined(_ALLBSD_SOURCE) && !defined(__APPLE__)
3592int os::java_to_os_priority[MaxPriority + 1] = {
3593  19,              // 0 Entry should never be used
3594
3595   0,              // 1 MinPriority
3596   3,              // 2
3597   6,              // 3
3598
3599   10,              // 4
3600   15,              // 5 NormPriority
3601   18,              // 6
3602
3603   21,              // 7
3604   25,              // 8
3605   28,              // 9 NearMaxPriority
3606
3607   31              // 10 MaxPriority
3608};
3609#elif defined(__APPLE__)
3610/* Using Mach high-level priority assignments */
3611int os::java_to_os_priority[MaxPriority + 1] = {
3612   0,              // 0 Entry should never be used (MINPRI_USER)
3613
3614  27,              // 1 MinPriority
3615  28,              // 2
3616  29,              // 3
3617
3618  30,              // 4
3619  31,              // 5 NormPriority (BASEPRI_DEFAULT)
3620  32,              // 6
3621
3622  33,              // 7
3623  34,              // 8
3624  35,              // 9 NearMaxPriority
3625
3626  36               // 10 MaxPriority
3627};
3628#else
3629int os::java_to_os_priority[MaxPriority + 1] = {
3630  19,              // 0 Entry should never be used
3631
3632   4,              // 1 MinPriority
3633   3,              // 2
3634   2,              // 3
3635
3636   1,              // 4
3637   0,              // 5 NormPriority
3638  -1,              // 6
3639
3640  -2,              // 7
3641  -3,              // 8
3642  -4,              // 9 NearMaxPriority
3643
3644  -5               // 10 MaxPriority
3645};
3646#endif
3647
3648static int prio_init() {
3649  if (ThreadPriorityPolicy == 1) {
3650    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3651    // if effective uid is not root. Perhaps, a more elegant way of doing
3652    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3653    if (geteuid() != 0) {
3654      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3655        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
3656      }
3657      ThreadPriorityPolicy = 0;
3658    }
3659  }
3660  return 0;
3661}
3662
3663OSReturn os::set_native_priority(Thread* thread, int newpri) {
3664  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3665
3666#ifdef __OpenBSD__
3667  // OpenBSD pthread_setprio starves low priority threads
3668  return OS_OK;
3669#elif defined(__FreeBSD__)
3670  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
3671#elif defined(__APPLE__) || defined(__NetBSD__)
3672  struct sched_param sp;
3673  int policy;
3674  pthread_t self = pthread_self();
3675
3676  if (pthread_getschedparam(self, &policy, &sp) != 0)
3677    return OS_ERR;
3678
3679  sp.sched_priority = newpri;
3680  if (pthread_setschedparam(self, policy, &sp) != 0)
3681    return OS_ERR;
3682
3683  return OS_OK;
3684#else
3685  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3686  return (ret == 0) ? OS_OK : OS_ERR;
3687#endif
3688}
3689
3690OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3691  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3692    *priority_ptr = java_to_os_priority[NormPriority];
3693    return OS_OK;
3694  }
3695
3696  errno = 0;
3697#if defined(__OpenBSD__) || defined(__FreeBSD__)
3698  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
3699#elif defined(__APPLE__) || defined(__NetBSD__)
3700  int policy;
3701  struct sched_param sp;
3702
3703  pthread_getschedparam(pthread_self(), &policy, &sp);
3704  *priority_ptr = sp.sched_priority;
3705#else
3706  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3707#endif
3708  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3709}
3710
3711// Hint to the underlying OS that a task switch would not be good.
3712// Void return because it's a hint and can fail.
3713void os::hint_no_preempt() {}
3714
3715////////////////////////////////////////////////////////////////////////////////
3716// suspend/resume support
3717
3718//  the low-level signal-based suspend/resume support is a remnant from the
3719//  old VM-suspension that used to be for java-suspension, safepoints etc,
3720//  within hotspot. Now there is a single use-case for this:
3721//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3722//      that runs in the watcher thread.
3723//  The remaining code is greatly simplified from the more general suspension
3724//  code that used to be used.
3725//
3726//  The protocol is quite simple:
3727//  - suspend:
3728//      - sends a signal to the target thread
3729//      - polls the suspend state of the osthread using a yield loop
3730//      - target thread signal handler (SR_handler) sets suspend state
3731//        and blocks in sigsuspend until continued
3732//  - resume:
3733//      - sets target osthread state to continue
3734//      - sends signal to end the sigsuspend loop in the SR_handler
3735//
3736//  Note that the SR_lock plays no role in this suspend/resume protocol.
3737//
3738
3739static void resume_clear_context(OSThread *osthread) {
3740  osthread->set_ucontext(NULL);
3741  osthread->set_siginfo(NULL);
3742
3743  // notify the suspend action is completed, we have now resumed
3744  osthread->sr.clear_suspended();
3745}
3746
3747static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3748  osthread->set_ucontext(context);
3749  osthread->set_siginfo(siginfo);
3750}
3751
3752//
3753// Handler function invoked when a thread's execution is suspended or
3754// resumed. We have to be careful that only async-safe functions are
3755// called here (Note: most pthread functions are not async safe and
3756// should be avoided.)
3757//
3758// Note: sigwait() is a more natural fit than sigsuspend() from an
3759// interface point of view, but sigwait() prevents the signal hander
3760// from being run. libpthread would get very confused by not having
3761// its signal handlers run and prevents sigwait()'s use with the
3762// mutex granting granting signal.
3763//
3764// Currently only ever called on the VMThread
3765//
3766static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3767  // Save and restore errno to avoid confusing native code with EINTR
3768  // after sigsuspend.
3769  int old_errno = errno;
3770
3771  Thread* thread = Thread::current();
3772  OSThread* osthread = thread->osthread();
3773  assert(thread->is_VM_thread(), "Must be VMThread");
3774  // read current suspend action
3775  int action = osthread->sr.suspend_action();
3776  if (action == SR_SUSPEND) {
3777    suspend_save_context(osthread, siginfo, context);
3778
3779    // Notify the suspend action is about to be completed. do_suspend()
3780    // waits until SR_SUSPENDED is set and then returns. We will wait
3781    // here for a resume signal and that completes the suspend-other
3782    // action. do_suspend/do_resume is always called as a pair from
3783    // the same thread - so there are no races
3784
3785    // notify the caller
3786    osthread->sr.set_suspended();
3787
3788    sigset_t suspend_set;  // signals for sigsuspend()
3789
3790    // get current set of blocked signals and unblock resume signal
3791    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3792    sigdelset(&suspend_set, SR_signum);
3793
3794    // wait here until we are resumed
3795    do {
3796      sigsuspend(&suspend_set);
3797      // ignore all returns until we get a resume signal
3798    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3799
3800    resume_clear_context(osthread);
3801
3802  } else {
3803    assert(action == SR_CONTINUE, "unexpected sr action");
3804    // nothing special to do - just leave the handler
3805  }
3806
3807  errno = old_errno;
3808}
3809
3810
3811static int SR_initialize() {
3812  struct sigaction act;
3813  char *s;
3814  /* Get signal number to use for suspend/resume */
3815  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3816    int sig = ::strtol(s, 0, 10);
3817    if (sig > 0 || sig < NSIG) {
3818        SR_signum = sig;
3819    }
3820  }
3821
3822  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3823        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3824
3825  sigemptyset(&SR_sigset);
3826  sigaddset(&SR_sigset, SR_signum);
3827
3828  /* Set up signal handler for suspend/resume */
3829  act.sa_flags = SA_RESTART|SA_SIGINFO;
3830  act.sa_handler = (void (*)(int)) SR_handler;
3831
3832  // SR_signum is blocked by default.
3833  // 4528190 - We also need to block pthread restart signal (32 on all
3834  // supported Bsd platforms). Note that BsdThreads need to block
3835  // this signal for all threads to work properly. So we don't have
3836  // to use hard-coded signal number when setting up the mask.
3837  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3838
3839  if (sigaction(SR_signum, &act, 0) == -1) {
3840    return -1;
3841  }
3842
3843  // Save signal flag
3844  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
3845  return 0;
3846}
3847
3848static int SR_finalize() {
3849  return 0;
3850}
3851
3852
3853// returns true on success and false on error - really an error is fatal
3854// but this seems the normal response to library errors
3855static bool do_suspend(OSThread* osthread) {
3856  // mark as suspended and send signal
3857  osthread->sr.set_suspend_action(SR_SUSPEND);
3858  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3859  assert_status(status == 0, status, "pthread_kill");
3860
3861  // check status and wait until notified of suspension
3862  if (status == 0) {
3863    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3864      os::yield_all(i);
3865    }
3866    osthread->sr.set_suspend_action(SR_NONE);
3867    return true;
3868  }
3869  else {
3870    osthread->sr.set_suspend_action(SR_NONE);
3871    return false;
3872  }
3873}
3874
3875static void do_resume(OSThread* osthread) {
3876  assert(osthread->sr.is_suspended(), "thread should be suspended");
3877  osthread->sr.set_suspend_action(SR_CONTINUE);
3878
3879  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3880  assert_status(status == 0, status, "pthread_kill");
3881  // check status and wait unit notified of resumption
3882  if (status == 0) {
3883    for (int i = 0; osthread->sr.is_suspended(); i++) {
3884      os::yield_all(i);
3885    }
3886  }
3887  osthread->sr.set_suspend_action(SR_NONE);
3888}
3889
3890////////////////////////////////////////////////////////////////////////////////
3891// interrupt support
3892
3893void os::interrupt(Thread* thread) {
3894  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3895    "possibility of dangling Thread pointer");
3896
3897  OSThread* osthread = thread->osthread();
3898
3899  if (!osthread->interrupted()) {
3900    osthread->set_interrupted(true);
3901    // More than one thread can get here with the same value of osthread,
3902    // resulting in multiple notifications.  We do, however, want the store
3903    // to interrupted() to be visible to other threads before we execute unpark().
3904    OrderAccess::fence();
3905    ParkEvent * const slp = thread->_SleepEvent ;
3906    if (slp != NULL) slp->unpark() ;
3907  }
3908
3909  // For JSR166. Unpark even if interrupt status already was set
3910  if (thread->is_Java_thread())
3911    ((JavaThread*)thread)->parker()->unpark();
3912
3913  ParkEvent * ev = thread->_ParkEvent ;
3914  if (ev != NULL) ev->unpark() ;
3915
3916}
3917
3918bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3919  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3920    "possibility of dangling Thread pointer");
3921
3922  OSThread* osthread = thread->osthread();
3923
3924  bool interrupted = osthread->interrupted();
3925
3926  if (interrupted && clear_interrupted) {
3927    osthread->set_interrupted(false);
3928    // consider thread->_SleepEvent->reset() ... optional optimization
3929  }
3930
3931  return interrupted;
3932}
3933
3934///////////////////////////////////////////////////////////////////////////////////
3935// signal handling (except suspend/resume)
3936
3937// This routine may be used by user applications as a "hook" to catch signals.
3938// The user-defined signal handler must pass unrecognized signals to this
3939// routine, and if it returns true (non-zero), then the signal handler must
3940// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3941// routine will never retun false (zero), but instead will execute a VM panic
3942// routine kill the process.
3943//
3944// If this routine returns false, it is OK to call it again.  This allows
3945// the user-defined signal handler to perform checks either before or after
3946// the VM performs its own checks.  Naturally, the user code would be making
3947// a serious error if it tried to handle an exception (such as a null check
3948// or breakpoint) that the VM was generating for its own correct operation.
3949//
3950// This routine may recognize any of the following kinds of signals:
3951//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3952// It should be consulted by handlers for any of those signals.
3953//
3954// The caller of this routine must pass in the three arguments supplied
3955// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3956// field of the structure passed to sigaction().  This routine assumes that
3957// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3958//
3959// Note that the VM will print warnings if it detects conflicting signal
3960// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3961//
3962extern "C" JNIEXPORT int
3963JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3964                        void* ucontext, int abort_if_unrecognized);
3965
3966void signalHandler(int sig, siginfo_t* info, void* uc) {
3967  assert(info != NULL && uc != NULL, "it must be old kernel");
3968  JVM_handle_bsd_signal(sig, info, uc, true);
3969}
3970
3971
3972// This boolean allows users to forward their own non-matching signals
3973// to JVM_handle_bsd_signal, harmlessly.
3974bool os::Bsd::signal_handlers_are_installed = false;
3975
3976// For signal-chaining
3977struct sigaction os::Bsd::sigact[MAXSIGNUM];
3978unsigned int os::Bsd::sigs = 0;
3979bool os::Bsd::libjsig_is_loaded = false;
3980typedef struct sigaction *(*get_signal_t)(int);
3981get_signal_t os::Bsd::get_signal_action = NULL;
3982
3983struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3984  struct sigaction *actp = NULL;
3985
3986  if (libjsig_is_loaded) {
3987    // Retrieve the old signal handler from libjsig
3988    actp = (*get_signal_action)(sig);
3989  }
3990  if (actp == NULL) {
3991    // Retrieve the preinstalled signal handler from jvm
3992    actp = get_preinstalled_handler(sig);
3993  }
3994
3995  return actp;
3996}
3997
3998static bool call_chained_handler(struct sigaction *actp, int sig,
3999                                 siginfo_t *siginfo, void *context) {
4000  // Call the old signal handler
4001  if (actp->sa_handler == SIG_DFL) {
4002    // It's more reasonable to let jvm treat it as an unexpected exception
4003    // instead of taking the default action.
4004    return false;
4005  } else if (actp->sa_handler != SIG_IGN) {
4006    if ((actp->sa_flags & SA_NODEFER) == 0) {
4007      // automaticlly block the signal
4008      sigaddset(&(actp->sa_mask), sig);
4009    }
4010
4011    sa_handler_t hand;
4012    sa_sigaction_t sa;
4013    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4014    // retrieve the chained handler
4015    if (siginfo_flag_set) {
4016      sa = actp->sa_sigaction;
4017    } else {
4018      hand = actp->sa_handler;
4019    }
4020
4021    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4022      actp->sa_handler = SIG_DFL;
4023    }
4024
4025    // try to honor the signal mask
4026    sigset_t oset;
4027    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4028
4029    // call into the chained handler
4030    if (siginfo_flag_set) {
4031      (*sa)(sig, siginfo, context);
4032    } else {
4033      (*hand)(sig);
4034    }
4035
4036    // restore the signal mask
4037    pthread_sigmask(SIG_SETMASK, &oset, 0);
4038  }
4039  // Tell jvm's signal handler the signal is taken care of.
4040  return true;
4041}
4042
4043bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4044  bool chained = false;
4045  // signal-chaining
4046  if (UseSignalChaining) {
4047    struct sigaction *actp = get_chained_signal_action(sig);
4048    if (actp != NULL) {
4049      chained = call_chained_handler(actp, sig, siginfo, context);
4050    }
4051  }
4052  return chained;
4053}
4054
4055struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
4056  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4057    return &sigact[sig];
4058  }
4059  return NULL;
4060}
4061
4062void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4063  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4064  sigact[sig] = oldAct;
4065  sigs |= (unsigned int)1 << sig;
4066}
4067
4068// for diagnostic
4069int os::Bsd::sigflags[MAXSIGNUM];
4070
4071int os::Bsd::get_our_sigflags(int sig) {
4072  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4073  return sigflags[sig];
4074}
4075
4076void os::Bsd::set_our_sigflags(int sig, int flags) {
4077  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4078  sigflags[sig] = flags;
4079}
4080
4081void os::Bsd::set_signal_handler(int sig, bool set_installed) {
4082  // Check for overwrite.
4083  struct sigaction oldAct;
4084  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4085
4086  void* oldhand = oldAct.sa_sigaction
4087                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4088                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4089  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4090      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4091      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4092    if (AllowUserSignalHandlers || !set_installed) {
4093      // Do not overwrite; user takes responsibility to forward to us.
4094      return;
4095    } else if (UseSignalChaining) {
4096      // save the old handler in jvm
4097      save_preinstalled_handler(sig, oldAct);
4098      // libjsig also interposes the sigaction() call below and saves the
4099      // old sigaction on it own.
4100    } else {
4101      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4102                    "%#lx for signal %d.", (long)oldhand, sig));
4103    }
4104  }
4105
4106  struct sigaction sigAct;
4107  sigfillset(&(sigAct.sa_mask));
4108  sigAct.sa_handler = SIG_DFL;
4109  if (!set_installed) {
4110    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4111  } else {
4112    sigAct.sa_sigaction = signalHandler;
4113    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4114  }
4115  // Save flags, which are set by ours
4116  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4117  sigflags[sig] = sigAct.sa_flags;
4118
4119  int ret = sigaction(sig, &sigAct, &oldAct);
4120  assert(ret == 0, "check");
4121
4122  void* oldhand2  = oldAct.sa_sigaction
4123                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4124                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4125  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4126}
4127
4128// install signal handlers for signals that HotSpot needs to
4129// handle in order to support Java-level exception handling.
4130
4131void os::Bsd::install_signal_handlers() {
4132  if (!signal_handlers_are_installed) {
4133    signal_handlers_are_installed = true;
4134
4135    // signal-chaining
4136    typedef void (*signal_setting_t)();
4137    signal_setting_t begin_signal_setting = NULL;
4138    signal_setting_t end_signal_setting = NULL;
4139    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4140                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4141    if (begin_signal_setting != NULL) {
4142      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4143                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4144      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4145                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4146      libjsig_is_loaded = true;
4147      assert(UseSignalChaining, "should enable signal-chaining");
4148    }
4149    if (libjsig_is_loaded) {
4150      // Tell libjsig jvm is setting signal handlers
4151      (*begin_signal_setting)();
4152    }
4153
4154    set_signal_handler(SIGSEGV, true);
4155    set_signal_handler(SIGPIPE, true);
4156    set_signal_handler(SIGBUS, true);
4157    set_signal_handler(SIGILL, true);
4158    set_signal_handler(SIGFPE, true);
4159    set_signal_handler(SIGXFSZ, true);
4160
4161#if defined(__APPLE__)
4162    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
4163    // signals caught and handled by the JVM. To work around this, we reset the mach task
4164    // signal handler that's placed on our process by CrashReporter. This disables
4165    // CrashReporter-based reporting.
4166    //
4167    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
4168    // on caught fatal signals.
4169    //
4170    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
4171    // handlers. By replacing the existing task exception handler, we disable gdb's mach
4172    // exception handling, while leaving the standard BSD signal handlers functional.
4173    kern_return_t kr;
4174    kr = task_set_exception_ports(mach_task_self(),
4175        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
4176        MACH_PORT_NULL,
4177        EXCEPTION_STATE_IDENTITY,
4178        MACHINE_THREAD_STATE);
4179
4180    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
4181#endif
4182
4183    if (libjsig_is_loaded) {
4184      // Tell libjsig jvm finishes setting signal handlers
4185      (*end_signal_setting)();
4186    }
4187
4188    // We don't activate signal checker if libjsig is in place, we trust ourselves
4189    // and if UserSignalHandler is installed all bets are off
4190    if (CheckJNICalls) {
4191      if (libjsig_is_loaded) {
4192        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4193        check_signals = false;
4194      }
4195      if (AllowUserSignalHandlers) {
4196        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4197        check_signals = false;
4198      }
4199    }
4200  }
4201}
4202
4203#ifndef _ALLBSD_SOURCE
4204// This is the fastest way to get thread cpu time on Bsd.
4205// Returns cpu time (user+sys) for any thread, not only for current.
4206// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4207// It might work on 2.6.10+ with a special kernel/glibc patch.
4208// For reference, please, see IEEE Std 1003.1-2004:
4209//   http://www.unix.org/single_unix_specification
4210
4211jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) {
4212  struct timespec tp;
4213  int rc = os::Bsd::clock_gettime(clockid, &tp);
4214  assert(rc == 0, "clock_gettime is expected to return 0 code");
4215
4216  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4217}
4218#endif
4219
4220/////
4221// glibc on Bsd platform uses non-documented flag
4222// to indicate, that some special sort of signal
4223// trampoline is used.
4224// We will never set this flag, and we should
4225// ignore this flag in our diagnostic
4226#ifdef SIGNIFICANT_SIGNAL_MASK
4227#undef SIGNIFICANT_SIGNAL_MASK
4228#endif
4229#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4230
4231static const char* get_signal_handler_name(address handler,
4232                                           char* buf, int buflen) {
4233  int offset;
4234  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4235  if (found) {
4236    // skip directory names
4237    const char *p1, *p2;
4238    p1 = buf;
4239    size_t len = strlen(os::file_separator());
4240    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4241    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4242  } else {
4243    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4244  }
4245  return buf;
4246}
4247
4248static void print_signal_handler(outputStream* st, int sig,
4249                                 char* buf, size_t buflen) {
4250  struct sigaction sa;
4251
4252  sigaction(sig, NULL, &sa);
4253
4254  // See comment for SIGNIFICANT_SIGNAL_MASK define
4255  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4256
4257  st->print("%s: ", os::exception_name(sig, buf, buflen));
4258
4259  address handler = (sa.sa_flags & SA_SIGINFO)
4260    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4261    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4262
4263  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4264    st->print("SIG_DFL");
4265  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4266    st->print("SIG_IGN");
4267  } else {
4268    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4269  }
4270
4271  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4272
4273  address rh = VMError::get_resetted_sighandler(sig);
4274  // May be, handler was resetted by VMError?
4275  if(rh != NULL) {
4276    handler = rh;
4277    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4278  }
4279
4280  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4281
4282  // Check: is it our handler?
4283  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4284     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4285    // It is our signal handler
4286    // check for flags, reset system-used one!
4287    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4288      st->print(
4289                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4290                os::Bsd::get_our_sigflags(sig));
4291    }
4292  }
4293  st->cr();
4294}
4295
4296
4297#define DO_SIGNAL_CHECK(sig) \
4298  if (!sigismember(&check_signal_done, sig)) \
4299    os::Bsd::check_signal_handler(sig)
4300
4301// This method is a periodic task to check for misbehaving JNI applications
4302// under CheckJNI, we can add any periodic checks here
4303
4304void os::run_periodic_checks() {
4305
4306  if (check_signals == false) return;
4307
4308  // SEGV and BUS if overridden could potentially prevent
4309  // generation of hs*.log in the event of a crash, debugging
4310  // such a case can be very challenging, so we absolutely
4311  // check the following for a good measure:
4312  DO_SIGNAL_CHECK(SIGSEGV);
4313  DO_SIGNAL_CHECK(SIGILL);
4314  DO_SIGNAL_CHECK(SIGFPE);
4315  DO_SIGNAL_CHECK(SIGBUS);
4316  DO_SIGNAL_CHECK(SIGPIPE);
4317  DO_SIGNAL_CHECK(SIGXFSZ);
4318
4319
4320  // ReduceSignalUsage allows the user to override these handlers
4321  // see comments at the very top and jvm_solaris.h
4322  if (!ReduceSignalUsage) {
4323    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4324    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4325    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4326    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4327  }
4328
4329  DO_SIGNAL_CHECK(SR_signum);
4330  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4331}
4332
4333typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4334
4335static os_sigaction_t os_sigaction = NULL;
4336
4337void os::Bsd::check_signal_handler(int sig) {
4338  char buf[O_BUFLEN];
4339  address jvmHandler = NULL;
4340
4341
4342  struct sigaction act;
4343  if (os_sigaction == NULL) {
4344    // only trust the default sigaction, in case it has been interposed
4345    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4346    if (os_sigaction == NULL) return;
4347  }
4348
4349  os_sigaction(sig, (struct sigaction*)NULL, &act);
4350
4351
4352  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4353
4354  address thisHandler = (act.sa_flags & SA_SIGINFO)
4355    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4356    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4357
4358
4359  switch(sig) {
4360  case SIGSEGV:
4361  case SIGBUS:
4362  case SIGFPE:
4363  case SIGPIPE:
4364  case SIGILL:
4365  case SIGXFSZ:
4366    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4367    break;
4368
4369  case SHUTDOWN1_SIGNAL:
4370  case SHUTDOWN2_SIGNAL:
4371  case SHUTDOWN3_SIGNAL:
4372  case BREAK_SIGNAL:
4373    jvmHandler = (address)user_handler();
4374    break;
4375
4376  case INTERRUPT_SIGNAL:
4377    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4378    break;
4379
4380  default:
4381    if (sig == SR_signum) {
4382      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4383    } else {
4384      return;
4385    }
4386    break;
4387  }
4388
4389  if (thisHandler != jvmHandler) {
4390    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4391    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4392    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4393    // No need to check this sig any longer
4394    sigaddset(&check_signal_done, sig);
4395  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4396    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4397    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
4398    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4399    // No need to check this sig any longer
4400    sigaddset(&check_signal_done, sig);
4401  }
4402
4403  // Dump all the signal
4404  if (sigismember(&check_signal_done, sig)) {
4405    print_signal_handlers(tty, buf, O_BUFLEN);
4406  }
4407}
4408
4409extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4410
4411extern bool signal_name(int signo, char* buf, size_t len);
4412
4413const char* os::exception_name(int exception_code, char* buf, size_t size) {
4414  if (0 < exception_code && exception_code <= SIGRTMAX) {
4415    // signal
4416    if (!signal_name(exception_code, buf, size)) {
4417      jio_snprintf(buf, size, "SIG%d", exception_code);
4418    }
4419    return buf;
4420  } else {
4421    return NULL;
4422  }
4423}
4424
4425// this is called _before_ the most of global arguments have been parsed
4426void os::init(void) {
4427  char dummy;   /* used to get a guess on initial stack address */
4428//  first_hrtime = gethrtime();
4429
4430  // With BsdThreads the JavaMain thread pid (primordial thread)
4431  // is different than the pid of the java launcher thread.
4432  // So, on Bsd, the launcher thread pid is passed to the VM
4433  // via the sun.java.launcher.pid property.
4434  // Use this property instead of getpid() if it was correctly passed.
4435  // See bug 6351349.
4436  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4437
4438  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4439
4440  clock_tics_per_sec = CLK_TCK;
4441
4442  init_random(1234567);
4443
4444  ThreadCritical::initialize();
4445
4446  Bsd::set_page_size(getpagesize());
4447  if (Bsd::page_size() == -1) {
4448    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
4449                  strerror(errno)));
4450  }
4451  init_page_sizes((size_t) Bsd::page_size());
4452
4453  Bsd::initialize_system_info();
4454
4455  // main_thread points to the aboriginal thread
4456  Bsd::_main_thread = pthread_self();
4457
4458  Bsd::clock_init();
4459  initial_time_count = os::elapsed_counter();
4460
4461#ifdef __APPLE__
4462  // XXXDARWIN
4463  // Work around the unaligned VM callbacks in hotspot's
4464  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
4465  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
4466  // alignment when doing symbol lookup. To work around this, we force early
4467  // binding of all symbols now, thus binding when alignment is known-good.
4468  _dyld_bind_fully_image_containing_address((const void *) &os::init);
4469#endif
4470}
4471
4472// To install functions for atexit system call
4473extern "C" {
4474  static void perfMemory_exit_helper() {
4475    perfMemory_exit();
4476  }
4477}
4478
4479// this is called _after_ the global arguments have been parsed
4480jint os::init_2(void)
4481{
4482#ifndef _ALLBSD_SOURCE
4483  Bsd::fast_thread_clock_init();
4484#endif
4485
4486  // Allocate a single page and mark it as readable for safepoint polling
4487  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4488  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4489
4490  os::set_polling_page( polling_page );
4491
4492#ifndef PRODUCT
4493  if(Verbose && PrintMiscellaneous)
4494    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4495#endif
4496
4497  if (!UseMembar) {
4498    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4499    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4500    os::set_memory_serialize_page( mem_serialize_page );
4501
4502#ifndef PRODUCT
4503    if(Verbose && PrintMiscellaneous)
4504      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4505#endif
4506  }
4507
4508  os::large_page_init();
4509
4510  // initialize suspend/resume support - must do this before signal_sets_init()
4511  if (SR_initialize() != 0) {
4512    perror("SR_initialize failed");
4513    return JNI_ERR;
4514  }
4515
4516  Bsd::signal_sets_init();
4517  Bsd::install_signal_handlers();
4518
4519  // Check minimum allowable stack size for thread creation and to initialize
4520  // the java system classes, including StackOverflowError - depends on page
4521  // size.  Add a page for compiler2 recursion in main thread.
4522  // Add in 2*BytesPerWord times page size to account for VM stack during
4523  // class initialization depending on 32 or 64 bit VM.
4524  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
4525            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4526                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
4527
4528  size_t threadStackSizeInBytes = ThreadStackSize * K;
4529  if (threadStackSizeInBytes != 0 &&
4530      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
4531        tty->print_cr("\nThe stack size specified is too small, "
4532                      "Specify at least %dk",
4533                      os::Bsd::min_stack_allowed/ K);
4534        return JNI_ERR;
4535  }
4536
4537  // Make the stack size a multiple of the page size so that
4538  // the yellow/red zones can be guarded.
4539  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4540        vm_page_size()));
4541
4542#ifndef _ALLBSD_SOURCE
4543  Bsd::capture_initial_stack(JavaThread::stack_size_at_create());
4544
4545  Bsd::libpthread_init();
4546  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4547     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4548          Bsd::glibc_version(), Bsd::libpthread_version(),
4549          Bsd::is_floating_stack() ? "floating stack" : "fixed stack");
4550  }
4551
4552  if (UseNUMA) {
4553    if (!Bsd::libnuma_init()) {
4554      UseNUMA = false;
4555    } else {
4556      if ((Bsd::numa_max_node() < 1)) {
4557        // There's only one node(they start from 0), disable NUMA.
4558        UseNUMA = false;
4559      }
4560    }
4561    // With SHM large pages we cannot uncommit a page, so there's not way
4562    // we can make the adaptive lgrp chunk resizing work. If the user specified
4563    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4564    // disable adaptive resizing.
4565    if (UseNUMA && UseLargePages && UseSHM) {
4566      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4567        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4568          UseLargePages = false;
4569        } else {
4570          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4571          UseAdaptiveSizePolicy = false;
4572          UseAdaptiveNUMAChunkSizing = false;
4573        }
4574      } else {
4575        UseNUMA = false;
4576      }
4577    }
4578    if (!UseNUMA && ForceNUMA) {
4579      UseNUMA = true;
4580    }
4581  }
4582#endif
4583
4584  if (MaxFDLimit) {
4585    // set the number of file descriptors to max. print out error
4586    // if getrlimit/setrlimit fails but continue regardless.
4587    struct rlimit nbr_files;
4588    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4589    if (status != 0) {
4590      if (PrintMiscellaneous && (Verbose || WizardMode))
4591        perror("os::init_2 getrlimit failed");
4592    } else {
4593      nbr_files.rlim_cur = nbr_files.rlim_max;
4594
4595#ifdef __APPLE__
4596      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
4597      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
4598      // be used instead
4599      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
4600#endif
4601
4602      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4603      if (status != 0) {
4604        if (PrintMiscellaneous && (Verbose || WizardMode))
4605          perror("os::init_2 setrlimit failed");
4606      }
4607    }
4608  }
4609
4610#ifndef _ALLBSD_SOURCE
4611  // Initialize lock used to serialize thread creation (see os::create_thread)
4612  Bsd::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4613#endif
4614
4615  // at-exit methods are called in the reverse order of their registration.
4616  // atexit functions are called on return from main or as a result of a
4617  // call to exit(3C). There can be only 32 of these functions registered
4618  // and atexit() does not set errno.
4619
4620  if (PerfAllowAtExitRegistration) {
4621    // only register atexit functions if PerfAllowAtExitRegistration is set.
4622    // atexit functions can be delayed until process exit time, which
4623    // can be problematic for embedded VM situations. Embedded VMs should
4624    // call DestroyJavaVM() to assure that VM resources are released.
4625
4626    // note: perfMemory_exit_helper atexit function may be removed in
4627    // the future if the appropriate cleanup code can be added to the
4628    // VM_Exit VMOperation's doit method.
4629    if (atexit(perfMemory_exit_helper) != 0) {
4630      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4631    }
4632  }
4633
4634  // initialize thread priority policy
4635  prio_init();
4636
4637#ifdef __APPLE__
4638  // dynamically link to objective c gc registration
4639  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
4640  if (handleLibObjc != NULL) {
4641    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
4642  }
4643#endif
4644
4645  return JNI_OK;
4646}
4647
4648// this is called at the end of vm_initialization
4649void os::init_3(void) { }
4650
4651// Mark the polling page as unreadable
4652void os::make_polling_page_unreadable(void) {
4653  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
4654    fatal("Could not disable polling page");
4655};
4656
4657// Mark the polling page as readable
4658void os::make_polling_page_readable(void) {
4659  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
4660    fatal("Could not enable polling page");
4661  }
4662};
4663
4664int os::active_processor_count() {
4665#ifdef _ALLBSD_SOURCE
4666  return _processor_count;
4667#else
4668  // Bsd doesn't yet have a (official) notion of processor sets,
4669  // so just return the number of online processors.
4670  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4671  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4672  return online_cpus;
4673#endif
4674}
4675
4676void os::set_native_thread_name(const char *name) {
4677#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
4678  // This is only supported in Snow Leopard and beyond
4679  if (name != NULL) {
4680    // Add a "Java: " prefix to the name
4681    char buf[MAXTHREADNAMESIZE];
4682    snprintf(buf, sizeof(buf), "Java: %s", name);
4683    pthread_setname_np(buf);
4684  }
4685#endif
4686}
4687
4688bool os::distribute_processes(uint length, uint* distribution) {
4689  // Not yet implemented.
4690  return false;
4691}
4692
4693bool os::bind_to_processor(uint processor_id) {
4694  // Not yet implemented.
4695  return false;
4696}
4697
4698///
4699
4700// Suspends the target using the signal mechanism and then grabs the PC before
4701// resuming the target. Used by the flat-profiler only
4702ExtendedPC os::get_thread_pc(Thread* thread) {
4703  // Make sure that it is called by the watcher for the VMThread
4704  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4705  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4706
4707  ExtendedPC epc;
4708
4709  OSThread* osthread = thread->osthread();
4710  if (do_suspend(osthread)) {
4711    if (osthread->ucontext() != NULL) {
4712      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
4713    } else {
4714      // NULL context is unexpected, double-check this is the VMThread
4715      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4716    }
4717    do_resume(osthread);
4718  }
4719  // failure means pthread_kill failed for some reason - arguably this is
4720  // a fatal problem, but such problems are ignored elsewhere
4721
4722  return epc;
4723}
4724
4725int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4726{
4727#ifdef _ALLBSD_SOURCE
4728  return pthread_cond_timedwait(_cond, _mutex, _abstime);
4729#else
4730   if (is_NPTL()) {
4731      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4732   } else {
4733#ifndef IA64
4734      // 6292965: BsdThreads pthread_cond_timedwait() resets FPU control
4735      // word back to default 64bit precision if condvar is signaled. Java
4736      // wants 53bit precision.  Save and restore current value.
4737      int fpu = get_fpu_control_word();
4738#endif // IA64
4739      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4740#ifndef IA64
4741      set_fpu_control_word(fpu);
4742#endif // IA64
4743      return status;
4744   }
4745#endif
4746}
4747
4748////////////////////////////////////////////////////////////////////////////////
4749// debug support
4750
4751static address same_page(address x, address y) {
4752  int page_bits = -os::vm_page_size();
4753  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4754    return x;
4755  else if (x > y)
4756    return (address)(intptr_t(y) | ~page_bits) + 1;
4757  else
4758    return (address)(intptr_t(y) & page_bits);
4759}
4760
4761bool os::find(address addr, outputStream* st) {
4762  Dl_info dlinfo;
4763  memset(&dlinfo, 0, sizeof(dlinfo));
4764  if (dladdr(addr, &dlinfo)) {
4765    st->print(PTR_FORMAT ": ", addr);
4766    if (dlinfo.dli_sname != NULL) {
4767      st->print("%s+%#x", dlinfo.dli_sname,
4768                 addr - (intptr_t)dlinfo.dli_saddr);
4769    } else if (dlinfo.dli_fname) {
4770      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4771    } else {
4772      st->print("<absolute address>");
4773    }
4774    if (dlinfo.dli_fname) {
4775      st->print(" in %s", dlinfo.dli_fname);
4776    }
4777    if (dlinfo.dli_fbase) {
4778      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4779    }
4780    st->cr();
4781
4782    if (Verbose) {
4783      // decode some bytes around the PC
4784      address begin = same_page(addr-40, addr);
4785      address end   = same_page(addr+40, addr);
4786      address       lowest = (address) dlinfo.dli_sname;
4787      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4788      if (begin < lowest)  begin = lowest;
4789      Dl_info dlinfo2;
4790      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4791          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4792        end = (address) dlinfo2.dli_saddr;
4793      Disassembler::decode(begin, end, st);
4794    }
4795    return true;
4796  }
4797  return false;
4798}
4799
4800////////////////////////////////////////////////////////////////////////////////
4801// misc
4802
4803// This does not do anything on Bsd. This is basically a hook for being
4804// able to use structured exception handling (thread-local exception filters)
4805// on, e.g., Win32.
4806void
4807os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4808                         JavaCallArguments* args, Thread* thread) {
4809  f(value, method, args, thread);
4810}
4811
4812void os::print_statistics() {
4813}
4814
4815int os::message_box(const char* title, const char* message) {
4816  int i;
4817  fdStream err(defaultStream::error_fd());
4818  for (i = 0; i < 78; i++) err.print_raw("=");
4819  err.cr();
4820  err.print_raw_cr(title);
4821  for (i = 0; i < 78; i++) err.print_raw("-");
4822  err.cr();
4823  err.print_raw_cr(message);
4824  for (i = 0; i < 78; i++) err.print_raw("=");
4825  err.cr();
4826
4827  char buf[16];
4828  // Prevent process from exiting upon "read error" without consuming all CPU
4829  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4830
4831  return buf[0] == 'y' || buf[0] == 'Y';
4832}
4833
4834int os::stat(const char *path, struct stat *sbuf) {
4835  char pathbuf[MAX_PATH];
4836  if (strlen(path) > MAX_PATH - 1) {
4837    errno = ENAMETOOLONG;
4838    return -1;
4839  }
4840  os::native_path(strcpy(pathbuf, path));
4841  return ::stat(pathbuf, sbuf);
4842}
4843
4844bool os::check_heap(bool force) {
4845  return true;
4846}
4847
4848int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4849  return ::vsnprintf(buf, count, format, args);
4850}
4851
4852// Is a (classpath) directory empty?
4853bool os::dir_is_empty(const char* path) {
4854  DIR *dir = NULL;
4855  struct dirent *ptr;
4856
4857  dir = opendir(path);
4858  if (dir == NULL) return true;
4859
4860  /* Scan the directory */
4861  bool result = true;
4862  char buf[sizeof(struct dirent) + MAX_PATH];
4863  while (result && (ptr = ::readdir(dir)) != NULL) {
4864    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4865      result = false;
4866    }
4867  }
4868  closedir(dir);
4869  return result;
4870}
4871
4872// This code originates from JDK's sysOpen and open64_w
4873// from src/solaris/hpi/src/system_md.c
4874
4875#ifndef O_DELETE
4876#define O_DELETE 0x10000
4877#endif
4878
4879// Open a file. Unlink the file immediately after open returns
4880// if the specified oflag has the O_DELETE flag set.
4881// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4882
4883int os::open(const char *path, int oflag, int mode) {
4884
4885  if (strlen(path) > MAX_PATH - 1) {
4886    errno = ENAMETOOLONG;
4887    return -1;
4888  }
4889  int fd;
4890  int o_delete = (oflag & O_DELETE);
4891  oflag = oflag & ~O_DELETE;
4892
4893  fd = ::open(path, oflag, mode);
4894  if (fd == -1) return -1;
4895
4896  //If the open succeeded, the file might still be a directory
4897  {
4898    struct stat buf;
4899    int ret = ::fstat(fd, &buf);
4900    int st_mode = buf.st_mode;
4901
4902    if (ret != -1) {
4903      if ((st_mode & S_IFMT) == S_IFDIR) {
4904        errno = EISDIR;
4905        ::close(fd);
4906        return -1;
4907      }
4908    } else {
4909      ::close(fd);
4910      return -1;
4911    }
4912  }
4913
4914    /*
4915     * All file descriptors that are opened in the JVM and not
4916     * specifically destined for a subprocess should have the
4917     * close-on-exec flag set.  If we don't set it, then careless 3rd
4918     * party native code might fork and exec without closing all
4919     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4920     * UNIXProcess.c), and this in turn might:
4921     *
4922     * - cause end-of-file to fail to be detected on some file
4923     *   descriptors, resulting in mysterious hangs, or
4924     *
4925     * - might cause an fopen in the subprocess to fail on a system
4926     *   suffering from bug 1085341.
4927     *
4928     * (Yes, the default setting of the close-on-exec flag is a Unix
4929     * design flaw)
4930     *
4931     * See:
4932     * 1085341: 32-bit stdio routines should support file descriptors >255
4933     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4934     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4935     */
4936#ifdef FD_CLOEXEC
4937    {
4938        int flags = ::fcntl(fd, F_GETFD);
4939        if (flags != -1)
4940            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4941    }
4942#endif
4943
4944  if (o_delete != 0) {
4945    ::unlink(path);
4946  }
4947  return fd;
4948}
4949
4950
4951// create binary file, rewriting existing file if required
4952int os::create_binary_file(const char* path, bool rewrite_existing) {
4953  int oflags = O_WRONLY | O_CREAT;
4954  if (!rewrite_existing) {
4955    oflags |= O_EXCL;
4956  }
4957  return ::open(path, oflags, S_IREAD | S_IWRITE);
4958}
4959
4960// return current position of file pointer
4961jlong os::current_file_offset(int fd) {
4962  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4963}
4964
4965// move file pointer to the specified offset
4966jlong os::seek_to_file_offset(int fd, jlong offset) {
4967  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4968}
4969
4970// This code originates from JDK's sysAvailable
4971// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4972
4973int os::available(int fd, jlong *bytes) {
4974  jlong cur, end;
4975  int mode;
4976  struct stat buf;
4977
4978  if (::fstat(fd, &buf) >= 0) {
4979    mode = buf.st_mode;
4980    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4981      /*
4982      * XXX: is the following call interruptible? If so, this might
4983      * need to go through the INTERRUPT_IO() wrapper as for other
4984      * blocking, interruptible calls in this file.
4985      */
4986      int n;
4987      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4988        *bytes = n;
4989        return 1;
4990      }
4991    }
4992  }
4993  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4994    return 0;
4995  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4996    return 0;
4997  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4998    return 0;
4999  }
5000  *bytes = end - cur;
5001  return 1;
5002}
5003
5004int os::socket_available(int fd, jint *pbytes) {
5005   if (fd < 0)
5006     return OS_OK;
5007
5008   int ret;
5009
5010   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
5011
5012   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5013   // is expected to return 0 on failure and 1 on success to the jdk.
5014
5015   return (ret == OS_ERR) ? 0 : 1;
5016}
5017
5018// Map a block of memory.
5019char* os::map_memory(int fd, const char* file_name, size_t file_offset,
5020                     char *addr, size_t bytes, bool read_only,
5021                     bool allow_exec) {
5022  int prot;
5023  int flags;
5024
5025  if (read_only) {
5026    prot = PROT_READ;
5027    flags = MAP_SHARED;
5028  } else {
5029    prot = PROT_READ | PROT_WRITE;
5030    flags = MAP_PRIVATE;
5031  }
5032
5033  if (allow_exec) {
5034    prot |= PROT_EXEC;
5035  }
5036
5037  if (addr != NULL) {
5038    flags |= MAP_FIXED;
5039  }
5040
5041  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5042                                     fd, file_offset);
5043  if (mapped_address == MAP_FAILED) {
5044    return NULL;
5045  }
5046  return mapped_address;
5047}
5048
5049
5050// Remap a block of memory.
5051char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
5052                       char *addr, size_t bytes, bool read_only,
5053                       bool allow_exec) {
5054  // same as map_memory() on this OS
5055  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5056                        allow_exec);
5057}
5058
5059
5060// Unmap a block of memory.
5061bool os::unmap_memory(char* addr, size_t bytes) {
5062  return munmap(addr, bytes) == 0;
5063}
5064
5065#ifndef _ALLBSD_SOURCE
5066static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5067
5068static clockid_t thread_cpu_clockid(Thread* thread) {
5069  pthread_t tid = thread->osthread()->pthread_id();
5070  clockid_t clockid;
5071
5072  // Get thread clockid
5073  int rc = os::Bsd::pthread_getcpuclockid(tid, &clockid);
5074  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5075  return clockid;
5076}
5077#endif
5078
5079// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5080// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5081// of a thread.
5082//
5083// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5084// the fast estimate available on the platform.
5085
5086jlong os::current_thread_cpu_time() {
5087#ifdef __APPLE__
5088  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
5089#elif !defined(_ALLBSD_SOURCE)
5090  if (os::Bsd::supports_fast_thread_cpu_time()) {
5091    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5092  } else {
5093    // return user + sys since the cost is the same
5094    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5095  }
5096#endif
5097}
5098
5099jlong os::thread_cpu_time(Thread* thread) {
5100#ifndef _ALLBSD_SOURCE
5101  // consistent with what current_thread_cpu_time() returns
5102  if (os::Bsd::supports_fast_thread_cpu_time()) {
5103    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5104  } else {
5105    return slow_thread_cpu_time(thread, true /* user + sys */);
5106  }
5107#endif
5108}
5109
5110jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5111#ifdef __APPLE__
5112  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5113#elif !defined(_ALLBSD_SOURCE)
5114  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5115    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5116  } else {
5117    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5118  }
5119#endif
5120}
5121
5122jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5123#ifdef __APPLE__
5124  struct thread_basic_info tinfo;
5125  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
5126  kern_return_t kr;
5127  mach_port_t mach_thread;
5128
5129  mach_thread = pthread_mach_thread_np(thread->osthread()->thread_id());
5130  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
5131  if (kr != KERN_SUCCESS)
5132    return -1;
5133
5134  if (user_sys_cpu_time) {
5135    jlong nanos;
5136    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
5137    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
5138    return nanos;
5139  } else {
5140    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
5141  }
5142#elif !defined(_ALLBSD_SOURCE)
5143  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5144    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5145  } else {
5146    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5147  }
5148#endif
5149}
5150
5151#ifndef _ALLBSD_SOURCE
5152//
5153//  -1 on error.
5154//
5155
5156static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5157  static bool proc_pid_cpu_avail = true;
5158  static bool proc_task_unchecked = true;
5159  static const char *proc_stat_path = "/proc/%d/stat";
5160  pid_t  tid = thread->osthread()->thread_id();
5161  int i;
5162  char *s;
5163  char stat[2048];
5164  int statlen;
5165  char proc_name[64];
5166  int count;
5167  long sys_time, user_time;
5168  char string[64];
5169  char cdummy;
5170  int idummy;
5171  long ldummy;
5172  FILE *fp;
5173
5174  // We first try accessing /proc/<pid>/cpu since this is faster to
5175  // process.  If this file is not present (bsd kernels 2.5 and above)
5176  // then we open /proc/<pid>/stat.
5177  if ( proc_pid_cpu_avail ) {
5178    sprintf(proc_name, "/proc/%d/cpu", tid);
5179    fp =  fopen(proc_name, "r");
5180    if ( fp != NULL ) {
5181      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
5182      fclose(fp);
5183      if ( count != 3 ) return -1;
5184
5185      if (user_sys_cpu_time) {
5186        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5187      } else {
5188        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5189      }
5190    }
5191    else proc_pid_cpu_avail = false;
5192  }
5193
5194  // The /proc/<tid>/stat aggregates per-process usage on
5195  // new Bsd kernels 2.6+ where NPTL is supported.
5196  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5197  // See bug 6328462.
5198  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
5199  // and possibly in some other cases, so we check its availability.
5200  if (proc_task_unchecked && os::Bsd::is_NPTL()) {
5201    // This is executed only once
5202    proc_task_unchecked = false;
5203    fp = fopen("/proc/self/task", "r");
5204    if (fp != NULL) {
5205      proc_stat_path = "/proc/self/task/%d/stat";
5206      fclose(fp);
5207    }
5208  }
5209
5210  sprintf(proc_name, proc_stat_path, tid);
5211  fp = fopen(proc_name, "r");
5212  if ( fp == NULL ) return -1;
5213  statlen = fread(stat, 1, 2047, fp);
5214  stat[statlen] = '\0';
5215  fclose(fp);
5216
5217  // Skip pid and the command string. Note that we could be dealing with
5218  // weird command names, e.g. user could decide to rename java launcher
5219  // to "java 1.4.2 :)", then the stat file would look like
5220  //                1234 (java 1.4.2 :)) R ... ...
5221  // We don't really need to know the command string, just find the last
5222  // occurrence of ")" and then start parsing from there. See bug 4726580.
5223  s = strrchr(stat, ')');
5224  i = 0;
5225  if (s == NULL ) return -1;
5226
5227  // Skip blank chars
5228  do s++; while (isspace(*s));
5229
5230  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5231                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5232                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5233                 &user_time, &sys_time);
5234  if ( count != 13 ) return -1;
5235  if (user_sys_cpu_time) {
5236    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5237  } else {
5238    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5239  }
5240}
5241#endif
5242
5243void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5244  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5245  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5246  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5247  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5248}
5249
5250void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5251  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5252  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5253  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5254  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5255}
5256
5257bool os::is_thread_cpu_time_supported() {
5258#ifdef __APPLE__
5259  return true;
5260#elif defined(_ALLBSD_SOURCE)
5261  return false;
5262#else
5263  return true;
5264#endif
5265}
5266
5267// System loadavg support.  Returns -1 if load average cannot be obtained.
5268// Bsd doesn't yet have a (official) notion of processor sets,
5269// so just return the system wide load average.
5270int os::loadavg(double loadavg[], int nelem) {
5271  return ::getloadavg(loadavg, nelem);
5272}
5273
5274void os::pause() {
5275  char filename[MAX_PATH];
5276  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5277    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5278  } else {
5279    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5280  }
5281
5282  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5283  if (fd != -1) {
5284    struct stat buf;
5285    ::close(fd);
5286    while (::stat(filename, &buf) == 0) {
5287      (void)::poll(NULL, 0, 100);
5288    }
5289  } else {
5290    jio_fprintf(stderr,
5291      "Could not open pause file '%s', continuing immediately.\n", filename);
5292  }
5293}
5294
5295
5296// Refer to the comments in os_solaris.cpp park-unpark.
5297//
5298// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5299// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5300// For specifics regarding the bug see GLIBC BUGID 261237 :
5301//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5302// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5303// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5304// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5305// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5306// and monitorenter when we're using 1-0 locking.  All those operations may result in
5307// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5308// of libpthread avoids the problem, but isn't practical.
5309//
5310// Possible remedies:
5311//
5312// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5313//      This is palliative and probabilistic, however.  If the thread is preempted
5314//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5315//      than the minimum period may have passed, and the abstime may be stale (in the
5316//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5317//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5318//
5319// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5320//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5321//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5322//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5323//      thread.
5324//
5325// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5326//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5327//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5328//      This also works well.  In fact it avoids kernel-level scalability impediments
5329//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5330//      timers in a graceful fashion.
5331//
5332// 4.   When the abstime value is in the past it appears that control returns
5333//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5334//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5335//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5336//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5337//      It may be possible to avoid reinitialization by checking the return
5338//      value from pthread_cond_timedwait().  In addition to reinitializing the
5339//      condvar we must establish the invariant that cond_signal() is only called
5340//      within critical sections protected by the adjunct mutex.  This prevents
5341//      cond_signal() from "seeing" a condvar that's in the midst of being
5342//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5343//      desirable signal-after-unlock optimization that avoids futile context switching.
5344//
5345//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5346//      structure when a condvar is used or initialized.  cond_destroy()  would
5347//      release the helper structure.  Our reinitialize-after-timedwait fix
5348//      put excessive stress on malloc/free and locks protecting the c-heap.
5349//
5350// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5351// It may be possible to refine (4) by checking the kernel and NTPL verisons
5352// and only enabling the work-around for vulnerable environments.
5353
5354// utility to compute the abstime argument to timedwait:
5355// millis is the relative timeout time
5356// abstime will be the absolute timeout time
5357// TODO: replace compute_abstime() with unpackTime()
5358
5359static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
5360  if (millis < 0)  millis = 0;
5361  struct timeval now;
5362  int status = gettimeofday(&now, NULL);
5363  assert(status == 0, "gettimeofday");
5364  jlong seconds = millis / 1000;
5365  millis %= 1000;
5366  if (seconds > 50000000) { // see man cond_timedwait(3T)
5367    seconds = 50000000;
5368  }
5369  abstime->tv_sec = now.tv_sec  + seconds;
5370  long       usec = now.tv_usec + millis * 1000;
5371  if (usec >= 1000000) {
5372    abstime->tv_sec += 1;
5373    usec -= 1000000;
5374  }
5375  abstime->tv_nsec = usec * 1000;
5376  return abstime;
5377}
5378
5379
5380// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5381// Conceptually TryPark() should be equivalent to park(0).
5382
5383int os::PlatformEvent::TryPark() {
5384  for (;;) {
5385    const int v = _Event ;
5386    guarantee ((v == 0) || (v == 1), "invariant") ;
5387    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5388  }
5389}
5390
5391void os::PlatformEvent::park() {       // AKA "down()"
5392  // Invariant: Only the thread associated with the Event/PlatformEvent
5393  // may call park().
5394  // TODO: assert that _Assoc != NULL or _Assoc == Self
5395  int v ;
5396  for (;;) {
5397      v = _Event ;
5398      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5399  }
5400  guarantee (v >= 0, "invariant") ;
5401  if (v == 0) {
5402     // Do this the hard way by blocking ...
5403     int status = pthread_mutex_lock(_mutex);
5404     assert_status(status == 0, status, "mutex_lock");
5405     guarantee (_nParked == 0, "invariant") ;
5406     ++ _nParked ;
5407     while (_Event < 0) {
5408        status = pthread_cond_wait(_cond, _mutex);
5409        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5410        // Treat this the same as if the wait was interrupted
5411        if (status == ETIMEDOUT) { status = EINTR; }
5412        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5413     }
5414     -- _nParked ;
5415
5416    // In theory we could move the ST of 0 into _Event past the unlock(),
5417    // but then we'd need a MEMBAR after the ST.
5418    _Event = 0 ;
5419     status = pthread_mutex_unlock(_mutex);
5420     assert_status(status == 0, status, "mutex_unlock");
5421  }
5422  guarantee (_Event >= 0, "invariant") ;
5423}
5424
5425int os::PlatformEvent::park(jlong millis) {
5426  guarantee (_nParked == 0, "invariant") ;
5427
5428  int v ;
5429  for (;;) {
5430      v = _Event ;
5431      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5432  }
5433  guarantee (v >= 0, "invariant") ;
5434  if (v != 0) return OS_OK ;
5435
5436  // We do this the hard way, by blocking the thread.
5437  // Consider enforcing a minimum timeout value.
5438  struct timespec abst;
5439  compute_abstime(&abst, millis);
5440
5441  int ret = OS_TIMEOUT;
5442  int status = pthread_mutex_lock(_mutex);
5443  assert_status(status == 0, status, "mutex_lock");
5444  guarantee (_nParked == 0, "invariant") ;
5445  ++_nParked ;
5446
5447  // Object.wait(timo) will return because of
5448  // (a) notification
5449  // (b) timeout
5450  // (c) thread.interrupt
5451  //
5452  // Thread.interrupt and object.notify{All} both call Event::set.
5453  // That is, we treat thread.interrupt as a special case of notification.
5454  // The underlying Solaris implementation, cond_timedwait, admits
5455  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5456  // JVM from making those visible to Java code.  As such, we must
5457  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5458  //
5459  // TODO: properly differentiate simultaneous notify+interrupt.
5460  // In that case, we should propagate the notify to another waiter.
5461
5462  while (_Event < 0) {
5463    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
5464    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5465      pthread_cond_destroy (_cond);
5466      pthread_cond_init (_cond, NULL) ;
5467    }
5468    assert_status(status == 0 || status == EINTR ||
5469                  status == ETIMEDOUT,
5470                  status, "cond_timedwait");
5471    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5472    if (status == ETIMEDOUT) break ;
5473    // We consume and ignore EINTR and spurious wakeups.
5474  }
5475  --_nParked ;
5476  if (_Event >= 0) {
5477     ret = OS_OK;
5478  }
5479  _Event = 0 ;
5480  status = pthread_mutex_unlock(_mutex);
5481  assert_status(status == 0, status, "mutex_unlock");
5482  assert (_nParked == 0, "invariant") ;
5483  return ret;
5484}
5485
5486void os::PlatformEvent::unpark() {
5487  int v, AnyWaiters ;
5488  for (;;) {
5489      v = _Event ;
5490      if (v > 0) {
5491         // The LD of _Event could have reordered or be satisfied
5492         // by a read-aside from this processor's write buffer.
5493         // To avoid problems execute a barrier and then
5494         // ratify the value.
5495         OrderAccess::fence() ;
5496         if (_Event == v) return ;
5497         continue ;
5498      }
5499      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5500  }
5501  if (v < 0) {
5502     // Wait for the thread associated with the event to vacate
5503     int status = pthread_mutex_lock(_mutex);
5504     assert_status(status == 0, status, "mutex_lock");
5505     AnyWaiters = _nParked ;
5506     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5507     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5508        AnyWaiters = 0 ;
5509        pthread_cond_signal (_cond);
5510     }
5511     status = pthread_mutex_unlock(_mutex);
5512     assert_status(status == 0, status, "mutex_unlock");
5513     if (AnyWaiters != 0) {
5514        status = pthread_cond_signal(_cond);
5515        assert_status(status == 0, status, "cond_signal");
5516     }
5517  }
5518
5519  // Note that we signal() _after dropping the lock for "immortal" Events.
5520  // This is safe and avoids a common class of  futile wakeups.  In rare
5521  // circumstances this can cause a thread to return prematurely from
5522  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5523  // simply re-test the condition and re-park itself.
5524}
5525
5526
5527// JSR166
5528// -------------------------------------------------------
5529
5530/*
5531 * The solaris and bsd implementations of park/unpark are fairly
5532 * conservative for now, but can be improved. They currently use a
5533 * mutex/condvar pair, plus a a count.
5534 * Park decrements count if > 0, else does a condvar wait.  Unpark
5535 * sets count to 1 and signals condvar.  Only one thread ever waits
5536 * on the condvar. Contention seen when trying to park implies that someone
5537 * is unparking you, so don't wait. And spurious returns are fine, so there
5538 * is no need to track notifications.
5539 */
5540
5541#define MAX_SECS 100000000
5542/*
5543 * This code is common to bsd and solaris and will be moved to a
5544 * common place in dolphin.
5545 *
5546 * The passed in time value is either a relative time in nanoseconds
5547 * or an absolute time in milliseconds. Either way it has to be unpacked
5548 * into suitable seconds and nanoseconds components and stored in the
5549 * given timespec structure.
5550 * Given time is a 64-bit value and the time_t used in the timespec is only
5551 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
5552 * overflow if times way in the future are given. Further on Solaris versions
5553 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5554 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5555 * As it will be 28 years before "now + 100000000" will overflow we can
5556 * ignore overflow and just impose a hard-limit on seconds using the value
5557 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5558 * years from "now".
5559 */
5560
5561static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
5562  assert (time > 0, "convertTime");
5563
5564  struct timeval now;
5565  int status = gettimeofday(&now, NULL);
5566  assert(status == 0, "gettimeofday");
5567
5568  time_t max_secs = now.tv_sec + MAX_SECS;
5569
5570  if (isAbsolute) {
5571    jlong secs = time / 1000;
5572    if (secs > max_secs) {
5573      absTime->tv_sec = max_secs;
5574    }
5575    else {
5576      absTime->tv_sec = secs;
5577    }
5578    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5579  }
5580  else {
5581    jlong secs = time / NANOSECS_PER_SEC;
5582    if (secs >= MAX_SECS) {
5583      absTime->tv_sec = max_secs;
5584      absTime->tv_nsec = 0;
5585    }
5586    else {
5587      absTime->tv_sec = now.tv_sec + secs;
5588      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5589      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5590        absTime->tv_nsec -= NANOSECS_PER_SEC;
5591        ++absTime->tv_sec; // note: this must be <= max_secs
5592      }
5593    }
5594  }
5595  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5596  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5597  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5598  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5599}
5600
5601void Parker::park(bool isAbsolute, jlong time) {
5602  // Optional fast-path check:
5603  // Return immediately if a permit is available.
5604  if (_counter > 0) {
5605      _counter = 0 ;
5606      OrderAccess::fence();
5607      return ;
5608  }
5609
5610  Thread* thread = Thread::current();
5611  assert(thread->is_Java_thread(), "Must be JavaThread");
5612  JavaThread *jt = (JavaThread *)thread;
5613
5614  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5615  // Check interrupt before trying to wait
5616  if (Thread::is_interrupted(thread, false)) {
5617    return;
5618  }
5619
5620  // Next, demultiplex/decode time arguments
5621  struct timespec absTime;
5622  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5623    return;
5624  }
5625  if (time > 0) {
5626    unpackTime(&absTime, isAbsolute, time);
5627  }
5628
5629
5630  // Enter safepoint region
5631  // Beware of deadlocks such as 6317397.
5632  // The per-thread Parker:: mutex is a classic leaf-lock.
5633  // In particular a thread must never block on the Threads_lock while
5634  // holding the Parker:: mutex.  If safepoints are pending both the
5635  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5636  ThreadBlockInVM tbivm(jt);
5637
5638  // Don't wait if cannot get lock since interference arises from
5639  // unblocking.  Also. check interrupt before trying wait
5640  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5641    return;
5642  }
5643
5644  int status ;
5645  if (_counter > 0)  { // no wait needed
5646    _counter = 0;
5647    status = pthread_mutex_unlock(_mutex);
5648    assert (status == 0, "invariant") ;
5649    OrderAccess::fence();
5650    return;
5651  }
5652
5653#ifdef ASSERT
5654  // Don't catch signals while blocked; let the running threads have the signals.
5655  // (This allows a debugger to break into the running thread.)
5656  sigset_t oldsigs;
5657  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
5658  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5659#endif
5660
5661  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5662  jt->set_suspend_equivalent();
5663  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5664
5665  if (time == 0) {
5666    status = pthread_cond_wait (_cond, _mutex) ;
5667  } else {
5668    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5669    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5670      pthread_cond_destroy (_cond) ;
5671      pthread_cond_init    (_cond, NULL);
5672    }
5673  }
5674  assert_status(status == 0 || status == EINTR ||
5675                status == ETIMEDOUT,
5676                status, "cond_timedwait");
5677
5678#ifdef ASSERT
5679  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5680#endif
5681
5682  _counter = 0 ;
5683  status = pthread_mutex_unlock(_mutex) ;
5684  assert_status(status == 0, status, "invariant") ;
5685  // If externally suspended while waiting, re-suspend
5686  if (jt->handle_special_suspend_equivalent_condition()) {
5687    jt->java_suspend_self();
5688  }
5689
5690  OrderAccess::fence();
5691}
5692
5693void Parker::unpark() {
5694  int s, status ;
5695  status = pthread_mutex_lock(_mutex);
5696  assert (status == 0, "invariant") ;
5697  s = _counter;
5698  _counter = 1;
5699  if (s < 1) {
5700     if (WorkAroundNPTLTimedWaitHang) {
5701        status = pthread_cond_signal (_cond) ;
5702        assert (status == 0, "invariant") ;
5703        status = pthread_mutex_unlock(_mutex);
5704        assert (status == 0, "invariant") ;
5705     } else {
5706        status = pthread_mutex_unlock(_mutex);
5707        assert (status == 0, "invariant") ;
5708        status = pthread_cond_signal (_cond) ;
5709        assert (status == 0, "invariant") ;
5710     }
5711  } else {
5712    pthread_mutex_unlock(_mutex);
5713    assert (status == 0, "invariant") ;
5714  }
5715}
5716
5717
5718/* Darwin has no "environ" in a dynamic library. */
5719#ifdef __APPLE__
5720#include <crt_externs.h>
5721#define environ (*_NSGetEnviron())
5722#else
5723extern char** environ;
5724#endif
5725
5726// Run the specified command in a separate process. Return its exit value,
5727// or -1 on failure (e.g. can't fork a new process).
5728// Unlike system(), this function can be called from signal handler. It
5729// doesn't block SIGINT et al.
5730int os::fork_and_exec(char* cmd) {
5731  const char * argv[4] = {"sh", "-c", cmd, NULL};
5732
5733  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
5734  // pthread_atfork handlers and reset pthread library. All we need is a
5735  // separate process to execve. Make a direct syscall to fork process.
5736  // On IA64 there's no fork syscall, we have to use fork() and hope for
5737  // the best...
5738  pid_t pid = fork();
5739
5740  if (pid < 0) {
5741    // fork failed
5742    return -1;
5743
5744  } else if (pid == 0) {
5745    // child process
5746
5747    // execve() in BsdThreads will call pthread_kill_other_threads_np()
5748    // first to kill every thread on the thread list. Because this list is
5749    // not reset by fork() (see notes above), execve() will instead kill
5750    // every thread in the parent process. We know this is the only thread
5751    // in the new process, so make a system call directly.
5752    // IA64 should use normal execve() from glibc to match the glibc fork()
5753    // above.
5754    execve("/bin/sh", (char* const*)argv, environ);
5755
5756    // execve failed
5757    _exit(-1);
5758
5759  } else  {
5760    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5761    // care about the actual exit code, for now.
5762
5763    int status;
5764
5765    // Wait for the child process to exit.  This returns immediately if
5766    // the child has already exited. */
5767    while (waitpid(pid, &status, 0) < 0) {
5768        switch (errno) {
5769        case ECHILD: return 0;
5770        case EINTR: break;
5771        default: return -1;
5772        }
5773    }
5774
5775    if (WIFEXITED(status)) {
5776       // The child exited normally; get its exit code.
5777       return WEXITSTATUS(status);
5778    } else if (WIFSIGNALED(status)) {
5779       // The child exited because of a signal
5780       // The best value to return is 0x80 + signal number,
5781       // because that is what all Unix shells do, and because
5782       // it allows callers to distinguish between process exit and
5783       // process death by signal.
5784       return 0x80 + WTERMSIG(status);
5785    } else {
5786       // Unknown exit code; pass it through
5787       return status;
5788    }
5789  }
5790}
5791
5792// is_headless_jre()
5793//
5794// Test for the existence of xawt/libmawt.so or libawt_xawt.so
5795// in order to report if we are running in a headless jre
5796//
5797// Since JDK8 xawt/libmawt.so was moved into the same directory
5798// as libawt.so, and renamed libawt_xawt.so
5799//
5800bool os::is_headless_jre() {
5801    struct stat statbuf;
5802    char buf[MAXPATHLEN];
5803    char libmawtpath[MAXPATHLEN];
5804    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
5805    const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
5806    char *p;
5807
5808    // Get path to libjvm.so
5809    os::jvm_path(buf, sizeof(buf));
5810
5811    // Get rid of libjvm.so
5812    p = strrchr(buf, '/');
5813    if (p == NULL) return false;
5814    else *p = '\0';
5815
5816    // Get rid of client or server
5817    p = strrchr(buf, '/');
5818    if (p == NULL) return false;
5819    else *p = '\0';
5820
5821    // check xawt/libmawt.so
5822    strcpy(libmawtpath, buf);
5823    strcat(libmawtpath, xawtstr);
5824    if (::stat(libmawtpath, &statbuf) == 0) return false;
5825
5826    // check libawt_xawt.so
5827    strcpy(libmawtpath, buf);
5828    strcat(libmawtpath, new_xawtstr);
5829    if (::stat(libmawtpath, &statbuf) == 0) return false;
5830
5831    return true;
5832}
5833