os_bsd.cpp revision 2767:436b4a3231bf
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_bsd.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_bsd.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_bsd.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef TARGET_ARCH_zero
74# include "assembler_zero.inline.hpp"
75# include "nativeInst_zero.hpp"
76#endif
77#ifdef TARGET_ARCH_arm
78# include "assembler_arm.inline.hpp"
79# include "nativeInst_arm.hpp"
80#endif
81#ifdef TARGET_ARCH_ppc
82# include "assembler_ppc.inline.hpp"
83# include "nativeInst_ppc.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_Runtime1.hpp"
87#endif
88#ifdef COMPILER2
89#include "opto/runtime.hpp"
90#endif
91
92// put OS-includes here
93# include <sys/types.h>
94# include <sys/mman.h>
95# include <sys/stat.h>
96# include <sys/select.h>
97# include <pthread.h>
98# include <signal.h>
99# include <errno.h>
100# include <dlfcn.h>
101# include <stdio.h>
102# include <unistd.h>
103# include <sys/resource.h>
104# include <pthread.h>
105# include <sys/stat.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/utsname.h>
109# include <sys/socket.h>
110# include <sys/wait.h>
111# include <time.h>
112# include <pwd.h>
113# include <poll.h>
114# include <semaphore.h>
115# include <fcntl.h>
116# include <string.h>
117#ifdef _ALLBSD_SOURCE
118# include <sys/param.h>
119# include <sys/sysctl.h>
120#else
121# include <syscall.h>
122# include <sys/sysinfo.h>
123# include <gnu/libc-version.h>
124#endif
125# include <sys/ipc.h>
126# include <sys/shm.h>
127#ifndef __APPLE__
128# include <link.h>
129#endif
130# include <stdint.h>
131# include <inttypes.h>
132# include <sys/ioctl.h>
133
134#if defined(__FreeBSD__) || defined(__NetBSD__)
135# include <elf.h>
136#endif
137
138#ifdef __APPLE__
139# include <mach/mach.h> // semaphore_* API
140# include <mach-o/dyld.h>
141# include <sys/proc_info.h>
142# include <objc/objc-auto.h>
143#endif
144
145#ifndef MAP_ANONYMOUS
146#define MAP_ANONYMOUS MAP_ANON
147#endif
148
149#define MAX_PATH    (2 * K)
150
151// for timer info max values which include all bits
152#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
153#define SEC_IN_NANOSECS  1000000000LL
154
155#define LARGEPAGES_BIT (1 << 6)
156////////////////////////////////////////////////////////////////////////////////
157// global variables
158julong os::Bsd::_physical_memory = 0;
159
160#ifndef _ALLBSD_SOURCE
161address   os::Bsd::_initial_thread_stack_bottom = NULL;
162uintptr_t os::Bsd::_initial_thread_stack_size   = 0;
163#endif
164
165int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
166#ifndef _ALLBSD_SOURCE
167int (*os::Bsd::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
168Mutex* os::Bsd::_createThread_lock = NULL;
169#endif
170pthread_t os::Bsd::_main_thread;
171int os::Bsd::_page_size = -1;
172#ifndef _ALLBSD_SOURCE
173bool os::Bsd::_is_floating_stack = false;
174bool os::Bsd::_is_NPTL = false;
175bool os::Bsd::_supports_fast_thread_cpu_time = false;
176const char * os::Bsd::_glibc_version = NULL;
177const char * os::Bsd::_libpthread_version = NULL;
178#endif
179
180static jlong initial_time_count=0;
181
182static int clock_tics_per_sec = 100;
183
184// For diagnostics to print a message once. see run_periodic_checks
185static sigset_t check_signal_done;
186static bool check_signals = true;;
187
188static pid_t _initial_pid = 0;
189
190/* Signal number used to suspend/resume a thread */
191
192/* do not use any signal number less than SIGSEGV, see 4355769 */
193static int SR_signum = SIGUSR2;
194sigset_t SR_sigset;
195
196
197////////////////////////////////////////////////////////////////////////////////
198// utility functions
199
200static int SR_initialize();
201static int SR_finalize();
202
203julong os::available_memory() {
204  return Bsd::available_memory();
205}
206
207julong os::Bsd::available_memory() {
208#ifdef _ALLBSD_SOURCE
209  // XXXBSD: this is just a stopgap implementation
210  return physical_memory() >> 2;
211#else
212  // values in struct sysinfo are "unsigned long"
213  struct sysinfo si;
214  sysinfo(&si);
215
216  return (julong)si.freeram * si.mem_unit;
217#endif
218}
219
220julong os::physical_memory() {
221  return Bsd::physical_memory();
222}
223
224julong os::allocatable_physical_memory(julong size) {
225#ifdef _LP64
226  return size;
227#else
228  julong result = MIN2(size, (julong)3800*M);
229   if (!is_allocatable(result)) {
230     // See comments under solaris for alignment considerations
231     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
232     result =  MIN2(size, reasonable_size);
233   }
234   return result;
235#endif // _LP64
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// environment support
240
241bool os::getenv(const char* name, char* buf, int len) {
242  const char* val = ::getenv(name);
243  if (val != NULL && strlen(val) < (size_t)len) {
244    strcpy(buf, val);
245    return true;
246  }
247  if (len > 0) buf[0] = 0;  // return a null string
248  return false;
249}
250
251
252// Return true if user is running as root.
253
254bool os::have_special_privileges() {
255  static bool init = false;
256  static bool privileges = false;
257  if (!init) {
258    privileges = (getuid() != geteuid()) || (getgid() != getegid());
259    init = true;
260  }
261  return privileges;
262}
263
264
265#ifndef _ALLBSD_SOURCE
266#ifndef SYS_gettid
267// i386: 224, ia64: 1105, amd64: 186, sparc 143
268#ifdef __ia64__
269#define SYS_gettid 1105
270#elif __i386__
271#define SYS_gettid 224
272#elif __amd64__
273#define SYS_gettid 186
274#elif __sparc__
275#define SYS_gettid 143
276#else
277#error define gettid for the arch
278#endif
279#endif
280#endif
281
282// Cpu architecture string
283#if   defined(ZERO)
284static char cpu_arch[] = ZERO_LIBARCH;
285#elif defined(IA64)
286static char cpu_arch[] = "ia64";
287#elif defined(IA32)
288static char cpu_arch[] = "i386";
289#elif defined(AMD64)
290static char cpu_arch[] = "amd64";
291#elif defined(ARM)
292static char cpu_arch[] = "arm";
293#elif defined(PPC)
294static char cpu_arch[] = "ppc";
295#elif defined(SPARC)
296#  ifdef _LP64
297static char cpu_arch[] = "sparcv9";
298#  else
299static char cpu_arch[] = "sparc";
300#  endif
301#else
302#error Add appropriate cpu_arch setting
303#endif
304
305
306#ifndef _ALLBSD_SOURCE
307// pid_t gettid()
308//
309// Returns the kernel thread id of the currently running thread. Kernel
310// thread id is used to access /proc.
311//
312// (Note that getpid() on BsdThreads returns kernel thread id too; but
313// on NPTL, it returns the same pid for all threads, as required by POSIX.)
314//
315pid_t os::Bsd::gettid() {
316  int rslt = syscall(SYS_gettid);
317  if (rslt == -1) {
318     // old kernel, no NPTL support
319     return getpid();
320  } else {
321     return (pid_t)rslt;
322  }
323}
324
325// Most versions of bsd have a bug where the number of processors are
326// determined by looking at the /proc file system.  In a chroot environment,
327// the system call returns 1.  This causes the VM to act as if it is
328// a single processor and elide locking (see is_MP() call).
329static bool unsafe_chroot_detected = false;
330static const char *unstable_chroot_error = "/proc file system not found.\n"
331                     "Java may be unstable running multithreaded in a chroot "
332                     "environment on Bsd when /proc filesystem is not mounted.";
333#endif
334
335#ifdef _ALLBSD_SOURCE
336void os::Bsd::initialize_system_info() {
337  int mib[2];
338  size_t len;
339  int cpu_val;
340  u_long mem_val;
341
342  /* get processors count via hw.ncpus sysctl */
343  mib[0] = CTL_HW;
344  mib[1] = HW_NCPU;
345  len = sizeof(cpu_val);
346  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
347       set_processor_count(cpu_val);
348  }
349  else {
350       set_processor_count(1);   // fallback
351  }
352
353  /* get physical memory via hw.usermem sysctl (hw.usermem is used
354   * instead of hw.physmem because we need size of allocatable memory
355   */
356  mib[0] = CTL_HW;
357  mib[1] = HW_USERMEM;
358  len = sizeof(mem_val);
359  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
360       _physical_memory = mem_val;
361  else
362       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
363
364#ifdef __OpenBSD__
365  {
366       // limit _physical_memory memory view on OpenBSD since
367       // datasize rlimit restricts us anyway.
368       struct rlimit limits;
369       getrlimit(RLIMIT_DATA, &limits);
370       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
371  }
372#endif
373}
374#else
375void os::Bsd::initialize_system_info() {
376  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
377  if (processor_count() == 1) {
378    pid_t pid = os::Bsd::gettid();
379    char fname[32];
380    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
381    FILE *fp = fopen(fname, "r");
382    if (fp == NULL) {
383      unsafe_chroot_detected = true;
384    } else {
385      fclose(fp);
386    }
387  }
388  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
389  assert(processor_count() > 0, "bsd error");
390}
391#endif
392
393#ifdef __APPLE__
394static const char *get_home() {
395  const char *home_dir = ::getenv("HOME");
396  if ((home_dir == NULL) || (*home_dir == '\0')) {
397    struct passwd *passwd_info = getpwuid(geteuid());
398    if (passwd_info != NULL) {
399      home_dir = passwd_info->pw_dir;
400    }
401  }
402
403  return home_dir;
404}
405#endif
406
407void os::init_system_properties_values() {
408//  char arch[12];
409//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
410
411  // The next steps are taken in the product version:
412  //
413  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
414  // This library should be located at:
415  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
416  //
417  // If "/jre/lib/" appears at the right place in the path, then we
418  // assume libjvm[_g].so is installed in a JDK and we use this path.
419  //
420  // Otherwise exit with message: "Could not create the Java virtual machine."
421  //
422  // The following extra steps are taken in the debugging version:
423  //
424  // If "/jre/lib/" does NOT appear at the right place in the path
425  // instead of exit check for $JAVA_HOME environment variable.
426  //
427  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
428  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
429  // it looks like libjvm[_g].so is installed there
430  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
431  //
432  // Otherwise exit.
433  //
434  // Important note: if the location of libjvm.so changes this
435  // code needs to be changed accordingly.
436
437  // The next few definitions allow the code to be verbatim:
438#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
439#define getenv(n) ::getenv(n)
440
441/*
442 * See ld(1):
443 *      The linker uses the following search paths to locate required
444 *      shared libraries:
445 *        1: ...
446 *        ...
447 *        7: The default directories, normally /lib and /usr/lib.
448 */
449#ifndef DEFAULT_LIBPATH
450#define DEFAULT_LIBPATH "/lib:/usr/lib"
451#endif
452
453#define EXTENSIONS_DIR  "/lib/ext"
454#define ENDORSED_DIR    "/lib/endorsed"
455#define REG_DIR         "/usr/java/packages"
456
457#ifdef __APPLE__
458#define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
459#define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
460        const char *user_home_dir = get_home();
461        // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
462        int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
463            sizeof(SYS_EXTENSIONS_DIRS);
464#endif
465
466  {
467    /* sysclasspath, java_home, dll_dir */
468    {
469        char *home_path;
470        char *dll_path;
471        char *pslash;
472        char buf[MAXPATHLEN];
473        os::jvm_path(buf, sizeof(buf));
474
475        // Found the full path to libjvm.so.
476        // Now cut the path to <java_home>/jre if we can.
477        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
478        pslash = strrchr(buf, '/');
479        if (pslash != NULL)
480            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
481        dll_path = malloc(strlen(buf) + 1);
482        if (dll_path == NULL)
483            return;
484        strcpy(dll_path, buf);
485        Arguments::set_dll_dir(dll_path);
486
487        if (pslash != NULL) {
488            pslash = strrchr(buf, '/');
489            if (pslash != NULL) {
490                *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
491#ifndef __APPLE__
492                pslash = strrchr(buf, '/');
493                if (pslash != NULL)
494                    *pslash = '\0';   /* get rid of /lib */
495#endif
496            }
497        }
498
499        home_path = malloc(strlen(buf) + 1);
500        if (home_path == NULL)
501            return;
502        strcpy(home_path, buf);
503        Arguments::set_java_home(home_path);
504
505        if (!set_boot_path('/', ':'))
506            return;
507    }
508
509    /*
510     * Where to look for native libraries
511     *
512     * Note: Due to a legacy implementation, most of the library path
513     * is set in the launcher.  This was to accomodate linking restrictions
514     * on legacy Bsd implementations (which are no longer supported).
515     * Eventually, all the library path setting will be done here.
516     *
517     * However, to prevent the proliferation of improperly built native
518     * libraries, the new path component /usr/java/packages is added here.
519     * Eventually, all the library path setting will be done here.
520     */
521    {
522        char *ld_library_path;
523
524        /*
525         * Construct the invariant part of ld_library_path. Note that the
526         * space for the colon and the trailing null are provided by the
527         * nulls included by the sizeof operator (so actually we allocate
528         * a byte more than necessary).
529         */
530#ifdef __APPLE__
531        ld_library_path = (char *) malloc(system_ext_size);
532        sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
533#else
534        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
535            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
536        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
537#endif
538
539        /*
540         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
541         * should always exist (until the legacy problem cited above is
542         * addressed).
543         */
544#ifdef __APPLE__
545        // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
546        char *l = getenv("JAVA_LIBRARY_PATH");
547        if (l != NULL) {
548            char *t = ld_library_path;
549            /* That's +1 for the colon and +1 for the trailing '\0' */
550            ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
551            sprintf(ld_library_path, "%s:%s", l, t);
552            free(t);
553        }
554
555        char *v = getenv("DYLD_LIBRARY_PATH");
556#else
557        char *v = getenv("LD_LIBRARY_PATH");
558#endif
559        if (v != NULL) {
560            char *t = ld_library_path;
561            /* That's +1 for the colon and +1 for the trailing '\0' */
562            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
563            sprintf(ld_library_path, "%s:%s", v, t);
564            free(t);
565        }
566        Arguments::set_library_path(ld_library_path);
567    }
568
569    /*
570     * Extensions directories.
571     *
572     * Note that the space for the colon and the trailing null are provided
573     * by the nulls included by the sizeof operator (so actually one byte more
574     * than necessary is allocated).
575     */
576    {
577#ifdef __APPLE__
578        char *buf = malloc(strlen(Arguments::get_java_home()) +
579            sizeof(EXTENSIONS_DIR) + system_ext_size);
580        sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
581            SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
582#else
583        char *buf = malloc(strlen(Arguments::get_java_home()) +
584            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
585        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
586            Arguments::get_java_home());
587#endif
588
589        Arguments::set_ext_dirs(buf);
590    }
591
592    /* Endorsed standards default directory. */
593    {
594        char * buf;
595        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
596        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
597        Arguments::set_endorsed_dirs(buf);
598    }
599  }
600
601#ifdef __APPLE__
602#undef SYS_EXTENSIONS_DIR
603#endif
604#undef malloc
605#undef getenv
606#undef EXTENSIONS_DIR
607#undef ENDORSED_DIR
608
609  // Done
610  return;
611}
612
613////////////////////////////////////////////////////////////////////////////////
614// breakpoint support
615
616void os::breakpoint() {
617  BREAKPOINT;
618}
619
620extern "C" void breakpoint() {
621  // use debugger to set breakpoint here
622}
623
624////////////////////////////////////////////////////////////////////////////////
625// signal support
626
627debug_only(static bool signal_sets_initialized = false);
628static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
629
630bool os::Bsd::is_sig_ignored(int sig) {
631      struct sigaction oact;
632      sigaction(sig, (struct sigaction*)NULL, &oact);
633      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
634                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
635      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
636           return true;
637      else
638           return false;
639}
640
641void os::Bsd::signal_sets_init() {
642  // Should also have an assertion stating we are still single-threaded.
643  assert(!signal_sets_initialized, "Already initialized");
644  // Fill in signals that are necessarily unblocked for all threads in
645  // the VM. Currently, we unblock the following signals:
646  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
647  //                         by -Xrs (=ReduceSignalUsage));
648  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
649  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
650  // the dispositions or masks wrt these signals.
651  // Programs embedding the VM that want to use the above signals for their
652  // own purposes must, at this time, use the "-Xrs" option to prevent
653  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
654  // (See bug 4345157, and other related bugs).
655  // In reality, though, unblocking these signals is really a nop, since
656  // these signals are not blocked by default.
657  sigemptyset(&unblocked_sigs);
658  sigemptyset(&allowdebug_blocked_sigs);
659  sigaddset(&unblocked_sigs, SIGILL);
660  sigaddset(&unblocked_sigs, SIGSEGV);
661  sigaddset(&unblocked_sigs, SIGBUS);
662  sigaddset(&unblocked_sigs, SIGFPE);
663  sigaddset(&unblocked_sigs, SR_signum);
664
665  if (!ReduceSignalUsage) {
666   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
667      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
668      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
669   }
670   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
671      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
672      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
673   }
674   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
675      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
676      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
677   }
678  }
679  // Fill in signals that are blocked by all but the VM thread.
680  sigemptyset(&vm_sigs);
681  if (!ReduceSignalUsage)
682    sigaddset(&vm_sigs, BREAK_SIGNAL);
683  debug_only(signal_sets_initialized = true);
684
685}
686
687// These are signals that are unblocked while a thread is running Java.
688// (For some reason, they get blocked by default.)
689sigset_t* os::Bsd::unblocked_signals() {
690  assert(signal_sets_initialized, "Not initialized");
691  return &unblocked_sigs;
692}
693
694// These are the signals that are blocked while a (non-VM) thread is
695// running Java. Only the VM thread handles these signals.
696sigset_t* os::Bsd::vm_signals() {
697  assert(signal_sets_initialized, "Not initialized");
698  return &vm_sigs;
699}
700
701// These are signals that are blocked during cond_wait to allow debugger in
702sigset_t* os::Bsd::allowdebug_blocked_signals() {
703  assert(signal_sets_initialized, "Not initialized");
704  return &allowdebug_blocked_sigs;
705}
706
707void os::Bsd::hotspot_sigmask(Thread* thread) {
708
709  //Save caller's signal mask before setting VM signal mask
710  sigset_t caller_sigmask;
711  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
712
713  OSThread* osthread = thread->osthread();
714  osthread->set_caller_sigmask(caller_sigmask);
715
716  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
717
718  if (!ReduceSignalUsage) {
719    if (thread->is_VM_thread()) {
720      // Only the VM thread handles BREAK_SIGNAL ...
721      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
722    } else {
723      // ... all other threads block BREAK_SIGNAL
724      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
725    }
726  }
727}
728
729#ifndef _ALLBSD_SOURCE
730//////////////////////////////////////////////////////////////////////////////
731// detecting pthread library
732
733void os::Bsd::libpthread_init() {
734  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
735  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
736  // generic name for earlier versions.
737  // Define macros here so we can build HotSpot on old systems.
738# ifndef _CS_GNU_LIBC_VERSION
739# define _CS_GNU_LIBC_VERSION 2
740# endif
741# ifndef _CS_GNU_LIBPTHREAD_VERSION
742# define _CS_GNU_LIBPTHREAD_VERSION 3
743# endif
744
745  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
746  if (n > 0) {
747     char *str = (char *)malloc(n);
748     confstr(_CS_GNU_LIBC_VERSION, str, n);
749     os::Bsd::set_glibc_version(str);
750  } else {
751     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
752     static char _gnu_libc_version[32];
753     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
754              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
755     os::Bsd::set_glibc_version(_gnu_libc_version);
756  }
757
758  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
759  if (n > 0) {
760     char *str = (char *)malloc(n);
761     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
762     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
763     // us "NPTL-0.29" even we are running with BsdThreads. Check if this
764     // is the case. BsdThreads has a hard limit on max number of threads.
765     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
766     // On the other hand, NPTL does not have such a limit, sysconf()
767     // will return -1 and errno is not changed. Check if it is really NPTL.
768     if (strcmp(os::Bsd::glibc_version(), "glibc 2.3.2") == 0 &&
769         strstr(str, "NPTL") &&
770         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
771       free(str);
772       os::Bsd::set_libpthread_version("bsdthreads");
773     } else {
774       os::Bsd::set_libpthread_version(str);
775     }
776  } else {
777    // glibc before 2.3.2 only has BsdThreads.
778    os::Bsd::set_libpthread_version("bsdthreads");
779  }
780
781  if (strstr(libpthread_version(), "NPTL")) {
782     os::Bsd::set_is_NPTL();
783  } else {
784     os::Bsd::set_is_BsdThreads();
785  }
786
787  // BsdThreads have two flavors: floating-stack mode, which allows variable
788  // stack size; and fixed-stack mode. NPTL is always floating-stack.
789  if (os::Bsd::is_NPTL() || os::Bsd::supports_variable_stack_size()) {
790     os::Bsd::set_is_floating_stack();
791  }
792}
793
794/////////////////////////////////////////////////////////////////////////////
795// thread stack
796
797// Force Bsd kernel to expand current thread stack. If "bottom" is close
798// to the stack guard, caller should block all signals.
799//
800// MAP_GROWSDOWN:
801//   A special mmap() flag that is used to implement thread stacks. It tells
802//   kernel that the memory region should extend downwards when needed. This
803//   allows early versions of BsdThreads to only mmap the first few pages
804//   when creating a new thread. Bsd kernel will automatically expand thread
805//   stack as needed (on page faults).
806//
807//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
808//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
809//   region, it's hard to tell if the fault is due to a legitimate stack
810//   access or because of reading/writing non-exist memory (e.g. buffer
811//   overrun). As a rule, if the fault happens below current stack pointer,
812//   Bsd kernel does not expand stack, instead a SIGSEGV is sent to the
813//   application (see Bsd kernel fault.c).
814//
815//   This Bsd feature can cause SIGSEGV when VM bangs thread stack for
816//   stack overflow detection.
817//
818//   Newer version of BsdThreads (since glibc-2.2, or, RH-7.x) and NPTL do
819//   not use this flag. However, the stack of initial thread is not created
820//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
821//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
822//   and then attach the thread to JVM.
823//
824// To get around the problem and allow stack banging on Bsd, we need to
825// manually expand thread stack after receiving the SIGSEGV.
826//
827// There are two ways to expand thread stack to address "bottom", we used
828// both of them in JVM before 1.5:
829//   1. adjust stack pointer first so that it is below "bottom", and then
830//      touch "bottom"
831//   2. mmap() the page in question
832//
833// Now alternate signal stack is gone, it's harder to use 2. For instance,
834// if current sp is already near the lower end of page 101, and we need to
835// call mmap() to map page 100, it is possible that part of the mmap() frame
836// will be placed in page 100. When page 100 is mapped, it is zero-filled.
837// That will destroy the mmap() frame and cause VM to crash.
838//
839// The following code works by adjusting sp first, then accessing the "bottom"
840// page to force a page fault. Bsd kernel will then automatically expand the
841// stack mapping.
842//
843// _expand_stack_to() assumes its frame size is less than page size, which
844// should always be true if the function is not inlined.
845
846#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
847#define NOINLINE
848#else
849#define NOINLINE __attribute__ ((noinline))
850#endif
851
852static void _expand_stack_to(address bottom) NOINLINE;
853
854static void _expand_stack_to(address bottom) {
855  address sp;
856  size_t size;
857  volatile char *p;
858
859  // Adjust bottom to point to the largest address within the same page, it
860  // gives us a one-page buffer if alloca() allocates slightly more memory.
861  bottom = (address)align_size_down((uintptr_t)bottom, os::Bsd::page_size());
862  bottom += os::Bsd::page_size() - 1;
863
864  // sp might be slightly above current stack pointer; if that's the case, we
865  // will alloca() a little more space than necessary, which is OK. Don't use
866  // os::current_stack_pointer(), as its result can be slightly below current
867  // stack pointer, causing us to not alloca enough to reach "bottom".
868  sp = (address)&sp;
869
870  if (sp > bottom) {
871    size = sp - bottom;
872    p = (volatile char *)alloca(size);
873    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
874    p[0] = '\0';
875  }
876}
877
878bool os::Bsd::manually_expand_stack(JavaThread * t, address addr) {
879  assert(t!=NULL, "just checking");
880  assert(t->osthread()->expanding_stack(), "expand should be set");
881  assert(t->stack_base() != NULL, "stack_base was not initialized");
882
883  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
884    sigset_t mask_all, old_sigset;
885    sigfillset(&mask_all);
886    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
887    _expand_stack_to(addr);
888    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
889    return true;
890  }
891  return false;
892}
893#endif
894
895//////////////////////////////////////////////////////////////////////////////
896// create new thread
897
898static address highest_vm_reserved_address();
899
900// check if it's safe to start a new thread
901static bool _thread_safety_check(Thread* thread) {
902#ifdef _ALLBSD_SOURCE
903    return true;
904#else
905  if (os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack()) {
906    // Fixed stack BsdThreads (SuSE Bsd/x86, and some versions of Redhat)
907    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
908    //   allocated (MAP_FIXED) from high address space. Every thread stack
909    //   occupies a fixed size slot (usually 2Mbytes, but user can change
910    //   it to other values if they rebuild BsdThreads).
911    //
912    // Problem with MAP_FIXED is that mmap() can still succeed even part of
913    // the memory region has already been mmap'ed. That means if we have too
914    // many threads and/or very large heap, eventually thread stack will
915    // collide with heap.
916    //
917    // Here we try to prevent heap/stack collision by comparing current
918    // stack bottom with the highest address that has been mmap'ed by JVM
919    // plus a safety margin for memory maps created by native code.
920    //
921    // This feature can be disabled by setting ThreadSafetyMargin to 0
922    //
923    if (ThreadSafetyMargin > 0) {
924      address stack_bottom = os::current_stack_base() - os::current_stack_size();
925
926      // not safe if our stack extends below the safety margin
927      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
928    } else {
929      return true;
930    }
931  } else {
932    // Floating stack BsdThreads or NPTL:
933    //   Unlike fixed stack BsdThreads, thread stacks are not MAP_FIXED. When
934    //   there's not enough space left, pthread_create() will fail. If we come
935    //   here, that means enough space has been reserved for stack.
936    return true;
937  }
938#endif
939}
940
941#ifdef __APPLE__
942// library handle for calling objc_registerThreadWithCollector()
943// without static linking to the libobjc library
944#define OBJC_LIB "/usr/lib/libobjc.dylib"
945#define OBJC_GCREGISTER "objc_registerThreadWithCollector"
946typedef void (*objc_registerThreadWithCollector_t)();
947extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
948objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
949#endif
950
951// Thread start routine for all newly created threads
952static void *java_start(Thread *thread) {
953  // Try to randomize the cache line index of hot stack frames.
954  // This helps when threads of the same stack traces evict each other's
955  // cache lines. The threads can be either from the same JVM instance, or
956  // from different JVM instances. The benefit is especially true for
957  // processors with hyperthreading technology.
958  static int counter = 0;
959  int pid = os::current_process_id();
960  alloca(((pid ^ counter++) & 7) * 128);
961
962  ThreadLocalStorage::set_thread(thread);
963
964  OSThread* osthread = thread->osthread();
965  Monitor* sync = osthread->startThread_lock();
966
967  // non floating stack BsdThreads needs extra check, see above
968  if (!_thread_safety_check(thread)) {
969    // notify parent thread
970    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
971    osthread->set_state(ZOMBIE);
972    sync->notify_all();
973    return NULL;
974  }
975
976#ifdef _ALLBSD_SOURCE
977  // thread_id is pthread_id on BSD
978  osthread->set_thread_id(::pthread_self());
979#else
980  // thread_id is kernel thread id (similar to Solaris LWP id)
981  osthread->set_thread_id(os::Bsd::gettid());
982
983  if (UseNUMA) {
984    int lgrp_id = os::numa_get_group_id();
985    if (lgrp_id != -1) {
986      thread->set_lgrp_id(lgrp_id);
987    }
988  }
989#endif
990  // initialize signal mask for this thread
991  os::Bsd::hotspot_sigmask(thread);
992
993  // initialize floating point control register
994  os::Bsd::init_thread_fpu_state();
995
996#ifdef __APPLE__
997  // register thread with objc gc
998  if (objc_registerThreadWithCollectorFunction != NULL) {
999    objc_registerThreadWithCollectorFunction();
1000  }
1001#endif
1002
1003  // handshaking with parent thread
1004  {
1005    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
1006
1007    // notify parent thread
1008    osthread->set_state(INITIALIZED);
1009    sync->notify_all();
1010
1011    // wait until os::start_thread()
1012    while (osthread->get_state() == INITIALIZED) {
1013      sync->wait(Mutex::_no_safepoint_check_flag);
1014    }
1015  }
1016
1017  // call one more level start routine
1018  thread->run();
1019
1020  return 0;
1021}
1022
1023bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
1024  assert(thread->osthread() == NULL, "caller responsible");
1025
1026  // Allocate the OSThread object
1027  OSThread* osthread = new OSThread(NULL, NULL);
1028  if (osthread == NULL) {
1029    return false;
1030  }
1031
1032  // set the correct thread state
1033  osthread->set_thread_type(thr_type);
1034
1035  // Initial state is ALLOCATED but not INITIALIZED
1036  osthread->set_state(ALLOCATED);
1037
1038  thread->set_osthread(osthread);
1039
1040  // init thread attributes
1041  pthread_attr_t attr;
1042  pthread_attr_init(&attr);
1043  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
1044
1045  // stack size
1046  if (os::Bsd::supports_variable_stack_size()) {
1047    // calculate stack size if it's not specified by caller
1048    if (stack_size == 0) {
1049      stack_size = os::Bsd::default_stack_size(thr_type);
1050
1051      switch (thr_type) {
1052      case os::java_thread:
1053        // Java threads use ThreadStackSize which default value can be
1054        // changed with the flag -Xss
1055        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
1056        stack_size = JavaThread::stack_size_at_create();
1057        break;
1058      case os::compiler_thread:
1059        if (CompilerThreadStackSize > 0) {
1060          stack_size = (size_t)(CompilerThreadStackSize * K);
1061          break;
1062        } // else fall through:
1063          // use VMThreadStackSize if CompilerThreadStackSize is not defined
1064      case os::vm_thread:
1065      case os::pgc_thread:
1066      case os::cgc_thread:
1067      case os::watcher_thread:
1068        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
1069        break;
1070      }
1071    }
1072
1073    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
1074    pthread_attr_setstacksize(&attr, stack_size);
1075  } else {
1076    // let pthread_create() pick the default value.
1077  }
1078
1079#ifndef _ALLBSD_SOURCE
1080  // glibc guard page
1081  pthread_attr_setguardsize(&attr, os::Bsd::default_guard_size(thr_type));
1082#endif
1083
1084  ThreadState state;
1085
1086  {
1087
1088#ifndef _ALLBSD_SOURCE
1089    // Serialize thread creation if we are running with fixed stack BsdThreads
1090    bool lock = os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack();
1091    if (lock) {
1092      os::Bsd::createThread_lock()->lock_without_safepoint_check();
1093    }
1094#endif
1095
1096    pthread_t tid;
1097    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1098
1099    pthread_attr_destroy(&attr);
1100
1101    if (ret != 0) {
1102      if (PrintMiscellaneous && (Verbose || WizardMode)) {
1103        perror("pthread_create()");
1104      }
1105      // Need to clean up stuff we've allocated so far
1106      thread->set_osthread(NULL);
1107      delete osthread;
1108#ifndef _ALLBSD_SOURCE
1109      if (lock) os::Bsd::createThread_lock()->unlock();
1110#endif
1111      return false;
1112    }
1113
1114    // Store pthread info into the OSThread
1115    osthread->set_pthread_id(tid);
1116
1117    // Wait until child thread is either initialized or aborted
1118    {
1119      Monitor* sync_with_child = osthread->startThread_lock();
1120      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1121      while ((state = osthread->get_state()) == ALLOCATED) {
1122        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
1123      }
1124    }
1125
1126#ifndef _ALLBSD_SOURCE
1127    if (lock) {
1128      os::Bsd::createThread_lock()->unlock();
1129    }
1130#endif
1131  }
1132
1133  // Aborted due to thread limit being reached
1134  if (state == ZOMBIE) {
1135      thread->set_osthread(NULL);
1136      delete osthread;
1137      return false;
1138  }
1139
1140  // The thread is returned suspended (in state INITIALIZED),
1141  // and is started higher up in the call chain
1142  assert(state == INITIALIZED, "race condition");
1143  return true;
1144}
1145
1146/////////////////////////////////////////////////////////////////////////////
1147// attach existing thread
1148
1149// bootstrap the main thread
1150bool os::create_main_thread(JavaThread* thread) {
1151  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
1152  return create_attached_thread(thread);
1153}
1154
1155bool os::create_attached_thread(JavaThread* thread) {
1156#ifdef ASSERT
1157    thread->verify_not_published();
1158#endif
1159
1160  // Allocate the OSThread object
1161  OSThread* osthread = new OSThread(NULL, NULL);
1162
1163  if (osthread == NULL) {
1164    return false;
1165  }
1166
1167  // Store pthread info into the OSThread
1168#ifdef _ALLBSD_SOURCE
1169  osthread->set_thread_id(::pthread_self());
1170#else
1171  osthread->set_thread_id(os::Bsd::gettid());
1172#endif
1173  osthread->set_pthread_id(::pthread_self());
1174
1175  // initialize floating point control register
1176  os::Bsd::init_thread_fpu_state();
1177
1178  // Initial thread state is RUNNABLE
1179  osthread->set_state(RUNNABLE);
1180
1181  thread->set_osthread(osthread);
1182
1183#ifndef _ALLBSD_SOURCE
1184  if (UseNUMA) {
1185    int lgrp_id = os::numa_get_group_id();
1186    if (lgrp_id != -1) {
1187      thread->set_lgrp_id(lgrp_id);
1188    }
1189  }
1190
1191  if (os::Bsd::is_initial_thread()) {
1192    // If current thread is initial thread, its stack is mapped on demand,
1193    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1194    // the entire stack region to avoid SEGV in stack banging.
1195    // It is also useful to get around the heap-stack-gap problem on SuSE
1196    // kernel (see 4821821 for details). We first expand stack to the top
1197    // of yellow zone, then enable stack yellow zone (order is significant,
1198    // enabling yellow zone first will crash JVM on SuSE Bsd), so there
1199    // is no gap between the last two virtual memory regions.
1200
1201    JavaThread *jt = (JavaThread *)thread;
1202    address addr = jt->stack_yellow_zone_base();
1203    assert(addr != NULL, "initialization problem?");
1204    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1205
1206    osthread->set_expanding_stack();
1207    os::Bsd::manually_expand_stack(jt, addr);
1208    osthread->clear_expanding_stack();
1209  }
1210#endif
1211
1212  // initialize signal mask for this thread
1213  // and save the caller's signal mask
1214  os::Bsd::hotspot_sigmask(thread);
1215
1216  return true;
1217}
1218
1219void os::pd_start_thread(Thread* thread) {
1220  OSThread * osthread = thread->osthread();
1221  assert(osthread->get_state() != INITIALIZED, "just checking");
1222  Monitor* sync_with_child = osthread->startThread_lock();
1223  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1224  sync_with_child->notify();
1225}
1226
1227// Free Bsd resources related to the OSThread
1228void os::free_thread(OSThread* osthread) {
1229  assert(osthread != NULL, "osthread not set");
1230
1231  if (Thread::current()->osthread() == osthread) {
1232    // Restore caller's signal mask
1233    sigset_t sigmask = osthread->caller_sigmask();
1234    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1235   }
1236
1237  delete osthread;
1238}
1239
1240//////////////////////////////////////////////////////////////////////////////
1241// thread local storage
1242
1243int os::allocate_thread_local_storage() {
1244  pthread_key_t key;
1245  int rslt = pthread_key_create(&key, NULL);
1246  assert(rslt == 0, "cannot allocate thread local storage");
1247  return (int)key;
1248}
1249
1250// Note: This is currently not used by VM, as we don't destroy TLS key
1251// on VM exit.
1252void os::free_thread_local_storage(int index) {
1253  int rslt = pthread_key_delete((pthread_key_t)index);
1254  assert(rslt == 0, "invalid index");
1255}
1256
1257void os::thread_local_storage_at_put(int index, void* value) {
1258  int rslt = pthread_setspecific((pthread_key_t)index, value);
1259  assert(rslt == 0, "pthread_setspecific failed");
1260}
1261
1262extern "C" Thread* get_thread() {
1263  return ThreadLocalStorage::thread();
1264}
1265
1266//////////////////////////////////////////////////////////////////////////////
1267// initial thread
1268
1269#ifndef _ALLBSD_SOURCE
1270// Check if current thread is the initial thread, similar to Solaris thr_main.
1271bool os::Bsd::is_initial_thread(void) {
1272  char dummy;
1273  // If called before init complete, thread stack bottom will be null.
1274  // Can be called if fatal error occurs before initialization.
1275  if (initial_thread_stack_bottom() == NULL) return false;
1276  assert(initial_thread_stack_bottom() != NULL &&
1277         initial_thread_stack_size()   != 0,
1278         "os::init did not locate initial thread's stack region");
1279  if ((address)&dummy >= initial_thread_stack_bottom() &&
1280      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1281       return true;
1282  else return false;
1283}
1284
1285// Find the virtual memory area that contains addr
1286static bool find_vma(address addr, address* vma_low, address* vma_high) {
1287  FILE *fp = fopen("/proc/self/maps", "r");
1288  if (fp) {
1289    address low, high;
1290    while (!feof(fp)) {
1291      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1292        if (low <= addr && addr < high) {
1293           if (vma_low)  *vma_low  = low;
1294           if (vma_high) *vma_high = high;
1295           fclose (fp);
1296           return true;
1297        }
1298      }
1299      for (;;) {
1300        int ch = fgetc(fp);
1301        if (ch == EOF || ch == (int)'\n') break;
1302      }
1303    }
1304    fclose(fp);
1305  }
1306  return false;
1307}
1308
1309// Locate initial thread stack. This special handling of initial thread stack
1310// is needed because pthread_getattr_np() on most (all?) Bsd distros returns
1311// bogus value for initial thread.
1312void os::Bsd::capture_initial_stack(size_t max_size) {
1313  // stack size is the easy part, get it from RLIMIT_STACK
1314  size_t stack_size;
1315  struct rlimit rlim;
1316  getrlimit(RLIMIT_STACK, &rlim);
1317  stack_size = rlim.rlim_cur;
1318
1319  // 6308388: a bug in ld.so will relocate its own .data section to the
1320  //   lower end of primordial stack; reduce ulimit -s value a little bit
1321  //   so we won't install guard page on ld.so's data section.
1322  stack_size -= 2 * page_size();
1323
1324  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1325  //   7.1, in both cases we will get 2G in return value.
1326  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1327  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1328  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1329  //   in case other parts in glibc still assumes 2M max stack size.
1330  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1331#ifndef IA64
1332  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1333#else
1334  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1335  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1336#endif
1337
1338  // Try to figure out where the stack base (top) is. This is harder.
1339  //
1340  // When an application is started, glibc saves the initial stack pointer in
1341  // a global variable "__libc_stack_end", which is then used by system
1342  // libraries. __libc_stack_end should be pretty close to stack top. The
1343  // variable is available since the very early days. However, because it is
1344  // a private interface, it could disappear in the future.
1345  //
1346  // Bsd kernel saves start_stack information in /proc/<pid>/stat. Similar
1347  // to __libc_stack_end, it is very close to stack top, but isn't the real
1348  // stack top. Note that /proc may not exist if VM is running as a chroot
1349  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1350  // /proc/<pid>/stat could change in the future (though unlikely).
1351  //
1352  // We try __libc_stack_end first. If that doesn't work, look for
1353  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1354  // as a hint, which should work well in most cases.
1355
1356  uintptr_t stack_start;
1357
1358  // try __libc_stack_end first
1359  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1360  if (p && *p) {
1361    stack_start = *p;
1362  } else {
1363    // see if we can get the start_stack field from /proc/self/stat
1364    FILE *fp;
1365    int pid;
1366    char state;
1367    int ppid;
1368    int pgrp;
1369    int session;
1370    int nr;
1371    int tpgrp;
1372    unsigned long flags;
1373    unsigned long minflt;
1374    unsigned long cminflt;
1375    unsigned long majflt;
1376    unsigned long cmajflt;
1377    unsigned long utime;
1378    unsigned long stime;
1379    long cutime;
1380    long cstime;
1381    long prio;
1382    long nice;
1383    long junk;
1384    long it_real;
1385    uintptr_t start;
1386    uintptr_t vsize;
1387    intptr_t rss;
1388    uintptr_t rsslim;
1389    uintptr_t scodes;
1390    uintptr_t ecode;
1391    int i;
1392
1393    // Figure what the primordial thread stack base is. Code is inspired
1394    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1395    // followed by command name surrounded by parentheses, state, etc.
1396    char stat[2048];
1397    int statlen;
1398
1399    fp = fopen("/proc/self/stat", "r");
1400    if (fp) {
1401      statlen = fread(stat, 1, 2047, fp);
1402      stat[statlen] = '\0';
1403      fclose(fp);
1404
1405      // Skip pid and the command string. Note that we could be dealing with
1406      // weird command names, e.g. user could decide to rename java launcher
1407      // to "java 1.4.2 :)", then the stat file would look like
1408      //                1234 (java 1.4.2 :)) R ... ...
1409      // We don't really need to know the command string, just find the last
1410      // occurrence of ")" and then start parsing from there. See bug 4726580.
1411      char * s = strrchr(stat, ')');
1412
1413      i = 0;
1414      if (s) {
1415        // Skip blank chars
1416        do s++; while (isspace(*s));
1417
1418#define _UFM UINTX_FORMAT
1419#define _DFM INTX_FORMAT
1420
1421        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1422        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1423        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1424             &state,          /* 3  %c  */
1425             &ppid,           /* 4  %d  */
1426             &pgrp,           /* 5  %d  */
1427             &session,        /* 6  %d  */
1428             &nr,             /* 7  %d  */
1429             &tpgrp,          /* 8  %d  */
1430             &flags,          /* 9  %lu  */
1431             &minflt,         /* 10 %lu  */
1432             &cminflt,        /* 11 %lu  */
1433             &majflt,         /* 12 %lu  */
1434             &cmajflt,        /* 13 %lu  */
1435             &utime,          /* 14 %lu  */
1436             &stime,          /* 15 %lu  */
1437             &cutime,         /* 16 %ld  */
1438             &cstime,         /* 17 %ld  */
1439             &prio,           /* 18 %ld  */
1440             &nice,           /* 19 %ld  */
1441             &junk,           /* 20 %ld  */
1442             &it_real,        /* 21 %ld  */
1443             &start,          /* 22 UINTX_FORMAT */
1444             &vsize,          /* 23 UINTX_FORMAT */
1445             &rss,            /* 24 INTX_FORMAT  */
1446             &rsslim,         /* 25 UINTX_FORMAT */
1447             &scodes,         /* 26 UINTX_FORMAT */
1448             &ecode,          /* 27 UINTX_FORMAT */
1449             &stack_start);   /* 28 UINTX_FORMAT */
1450      }
1451
1452#undef _UFM
1453#undef _DFM
1454
1455      if (i != 28 - 2) {
1456         assert(false, "Bad conversion from /proc/self/stat");
1457         // product mode - assume we are the initial thread, good luck in the
1458         // embedded case.
1459         warning("Can't detect initial thread stack location - bad conversion");
1460         stack_start = (uintptr_t) &rlim;
1461      }
1462    } else {
1463      // For some reason we can't open /proc/self/stat (for example, running on
1464      // FreeBSD with a Bsd emulator, or inside chroot), this should work for
1465      // most cases, so don't abort:
1466      warning("Can't detect initial thread stack location - no /proc/self/stat");
1467      stack_start = (uintptr_t) &rlim;
1468    }
1469  }
1470
1471  // Now we have a pointer (stack_start) very close to the stack top, the
1472  // next thing to do is to figure out the exact location of stack top. We
1473  // can find out the virtual memory area that contains stack_start by
1474  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1475  // and its upper limit is the real stack top. (again, this would fail if
1476  // running inside chroot, because /proc may not exist.)
1477
1478  uintptr_t stack_top;
1479  address low, high;
1480  if (find_vma((address)stack_start, &low, &high)) {
1481    // success, "high" is the true stack top. (ignore "low", because initial
1482    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1483    stack_top = (uintptr_t)high;
1484  } else {
1485    // failed, likely because /proc/self/maps does not exist
1486    warning("Can't detect initial thread stack location - find_vma failed");
1487    // best effort: stack_start is normally within a few pages below the real
1488    // stack top, use it as stack top, and reduce stack size so we won't put
1489    // guard page outside stack.
1490    stack_top = stack_start;
1491    stack_size -= 16 * page_size();
1492  }
1493
1494  // stack_top could be partially down the page so align it
1495  stack_top = align_size_up(stack_top, page_size());
1496
1497  if (max_size && stack_size > max_size) {
1498     _initial_thread_stack_size = max_size;
1499  } else {
1500     _initial_thread_stack_size = stack_size;
1501  }
1502
1503  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1504  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1505}
1506#endif
1507
1508////////////////////////////////////////////////////////////////////////////////
1509// time support
1510
1511// Time since start-up in seconds to a fine granularity.
1512// Used by VMSelfDestructTimer and the MemProfiler.
1513double os::elapsedTime() {
1514
1515  return (double)(os::elapsed_counter()) * 0.000001;
1516}
1517
1518jlong os::elapsed_counter() {
1519  timeval time;
1520  int status = gettimeofday(&time, NULL);
1521  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1522}
1523
1524jlong os::elapsed_frequency() {
1525  return (1000 * 1000);
1526}
1527
1528// XXX: For now, code this as if BSD does not support vtime.
1529bool os::supports_vtime() { return false; }
1530bool os::enable_vtime()   { return false; }
1531bool os::vtime_enabled()  { return false; }
1532double os::elapsedVTime() {
1533  // better than nothing, but not much
1534  return elapsedTime();
1535}
1536
1537jlong os::javaTimeMillis() {
1538  timeval time;
1539  int status = gettimeofday(&time, NULL);
1540  assert(status != -1, "bsd error");
1541  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1542}
1543
1544#ifndef CLOCK_MONOTONIC
1545#define CLOCK_MONOTONIC (1)
1546#endif
1547
1548#ifdef __APPLE__
1549void os::Bsd::clock_init() {
1550        // XXXDARWIN: Investigate replacement monotonic clock
1551}
1552#elif defined(_ALLBSD_SOURCE)
1553void os::Bsd::clock_init() {
1554  struct timespec res;
1555  struct timespec tp;
1556  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1557      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1558    // yes, monotonic clock is supported
1559    _clock_gettime = ::clock_gettime;
1560  }
1561}
1562#else
1563void os::Bsd::clock_init() {
1564  // we do dlopen's in this particular order due to bug in bsd
1565  // dynamical loader (see 6348968) leading to crash on exit
1566  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1567  if (handle == NULL) {
1568    handle = dlopen("librt.so", RTLD_LAZY);
1569  }
1570
1571  if (handle) {
1572    int (*clock_getres_func)(clockid_t, struct timespec*) =
1573           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1574    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1575           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1576    if (clock_getres_func && clock_gettime_func) {
1577      // See if monotonic clock is supported by the kernel. Note that some
1578      // early implementations simply return kernel jiffies (updated every
1579      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1580      // for nano time (though the monotonic property is still nice to have).
1581      // It's fixed in newer kernels, however clock_getres() still returns
1582      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1583      // resolution for now. Hopefully as people move to new kernels, this
1584      // won't be a problem.
1585      struct timespec res;
1586      struct timespec tp;
1587      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1588          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1589        // yes, monotonic clock is supported
1590        _clock_gettime = clock_gettime_func;
1591      } else {
1592        // close librt if there is no monotonic clock
1593        dlclose(handle);
1594      }
1595    }
1596  }
1597}
1598#endif
1599
1600#ifndef _ALLBSD_SOURCE
1601#ifndef SYS_clock_getres
1602
1603#if defined(IA32) || defined(AMD64)
1604#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1605#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1606#else
1607#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1608#define sys_clock_getres(x,y)  -1
1609#endif
1610
1611#else
1612#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1613#endif
1614
1615void os::Bsd::fast_thread_clock_init() {
1616  if (!UseBsdPosixThreadCPUClocks) {
1617    return;
1618  }
1619  clockid_t clockid;
1620  struct timespec tp;
1621  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1622      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1623
1624  // Switch to using fast clocks for thread cpu time if
1625  // the sys_clock_getres() returns 0 error code.
1626  // Note, that some kernels may support the current thread
1627  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1628  // returned by the pthread_getcpuclockid().
1629  // If the fast Posix clocks are supported then the sys_clock_getres()
1630  // must return at least tp.tv_sec == 0 which means a resolution
1631  // better than 1 sec. This is extra check for reliability.
1632
1633  if(pthread_getcpuclockid_func &&
1634     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1635     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1636
1637    _supports_fast_thread_cpu_time = true;
1638    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1639  }
1640}
1641#endif
1642
1643jlong os::javaTimeNanos() {
1644  if (Bsd::supports_monotonic_clock()) {
1645    struct timespec tp;
1646    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1647    assert(status == 0, "gettime error");
1648    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1649    return result;
1650  } else {
1651    timeval time;
1652    int status = gettimeofday(&time, NULL);
1653    assert(status != -1, "bsd error");
1654    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1655    return 1000 * usecs;
1656  }
1657}
1658
1659void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1660  if (Bsd::supports_monotonic_clock()) {
1661    info_ptr->max_value = ALL_64_BITS;
1662
1663    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1664    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1665    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1666  } else {
1667    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1668    info_ptr->max_value = ALL_64_BITS;
1669
1670    // gettimeofday is a real time clock so it skips
1671    info_ptr->may_skip_backward = true;
1672    info_ptr->may_skip_forward = true;
1673  }
1674
1675  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1676}
1677
1678// Return the real, user, and system times in seconds from an
1679// arbitrary fixed point in the past.
1680bool os::getTimesSecs(double* process_real_time,
1681                      double* process_user_time,
1682                      double* process_system_time) {
1683  struct tms ticks;
1684  clock_t real_ticks = times(&ticks);
1685
1686  if (real_ticks == (clock_t) (-1)) {
1687    return false;
1688  } else {
1689    double ticks_per_second = (double) clock_tics_per_sec;
1690    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1691    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1692    *process_real_time = ((double) real_ticks) / ticks_per_second;
1693
1694    return true;
1695  }
1696}
1697
1698
1699char * os::local_time_string(char *buf, size_t buflen) {
1700  struct tm t;
1701  time_t long_time;
1702  time(&long_time);
1703  localtime_r(&long_time, &t);
1704  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1705               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1706               t.tm_hour, t.tm_min, t.tm_sec);
1707  return buf;
1708}
1709
1710struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1711  return localtime_r(clock, res);
1712}
1713
1714////////////////////////////////////////////////////////////////////////////////
1715// runtime exit support
1716
1717// Note: os::shutdown() might be called very early during initialization, or
1718// called from signal handler. Before adding something to os::shutdown(), make
1719// sure it is async-safe and can handle partially initialized VM.
1720void os::shutdown() {
1721
1722  // allow PerfMemory to attempt cleanup of any persistent resources
1723  perfMemory_exit();
1724
1725  // needs to remove object in file system
1726  AttachListener::abort();
1727
1728  // flush buffered output, finish log files
1729  ostream_abort();
1730
1731  // Check for abort hook
1732  abort_hook_t abort_hook = Arguments::abort_hook();
1733  if (abort_hook != NULL) {
1734    abort_hook();
1735  }
1736
1737}
1738
1739// Note: os::abort() might be called very early during initialization, or
1740// called from signal handler. Before adding something to os::abort(), make
1741// sure it is async-safe and can handle partially initialized VM.
1742void os::abort(bool dump_core) {
1743  os::shutdown();
1744  if (dump_core) {
1745#ifndef PRODUCT
1746    fdStream out(defaultStream::output_fd());
1747    out.print_raw("Current thread is ");
1748    char buf[16];
1749    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1750    out.print_raw_cr(buf);
1751    out.print_raw_cr("Dumping core ...");
1752#endif
1753    ::abort(); // dump core
1754  }
1755
1756  ::exit(1);
1757}
1758
1759// Die immediately, no exit hook, no abort hook, no cleanup.
1760void os::die() {
1761  // _exit() on BsdThreads only kills current thread
1762  ::abort();
1763}
1764
1765// unused on bsd for now.
1766void os::set_error_file(const char *logfile) {}
1767
1768
1769// This method is a copy of JDK's sysGetLastErrorString
1770// from src/solaris/hpi/src/system_md.c
1771
1772size_t os::lasterror(char *buf, size_t len) {
1773
1774  if (errno == 0)  return 0;
1775
1776  const char *s = ::strerror(errno);
1777  size_t n = ::strlen(s);
1778  if (n >= len) {
1779    n = len - 1;
1780  }
1781  ::strncpy(buf, s, n);
1782  buf[n] = '\0';
1783  return n;
1784}
1785
1786intx os::current_thread_id() { return (intx)pthread_self(); }
1787int os::current_process_id() {
1788
1789  // Under the old bsd thread library, bsd gives each thread
1790  // its own process id. Because of this each thread will return
1791  // a different pid if this method were to return the result
1792  // of getpid(2). Bsd provides no api that returns the pid
1793  // of the launcher thread for the vm. This implementation
1794  // returns a unique pid, the pid of the launcher thread
1795  // that starts the vm 'process'.
1796
1797  // Under the NPTL, getpid() returns the same pid as the
1798  // launcher thread rather than a unique pid per thread.
1799  // Use gettid() if you want the old pre NPTL behaviour.
1800
1801  // if you are looking for the result of a call to getpid() that
1802  // returns a unique pid for the calling thread, then look at the
1803  // OSThread::thread_id() method in osThread_bsd.hpp file
1804
1805  return (int)(_initial_pid ? _initial_pid : getpid());
1806}
1807
1808// DLL functions
1809
1810#define JNI_LIB_PREFIX "lib"
1811#ifdef __APPLE__
1812#define JNI_LIB_SUFFIX ".dylib"
1813#else
1814#define JNI_LIB_SUFFIX ".so"
1815#endif
1816
1817const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1818
1819// This must be hard coded because it's the system's temporary
1820// directory not the java application's temp directory, ala java.io.tmpdir.
1821#ifdef __APPLE__
1822// macosx has a secure per-user temporary directory
1823char temp_path_storage[PATH_MAX];
1824const char* os::get_temp_directory() {
1825  static char *temp_path = NULL;
1826  if (temp_path == NULL) {
1827    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1828    if (pathSize == 0 || pathSize > PATH_MAX) {
1829      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1830    }
1831    temp_path = temp_path_storage;
1832  }
1833  return temp_path;
1834}
1835#else /* __APPLE__ */
1836const char* os::get_temp_directory() { return "/tmp"; }
1837#endif /* __APPLE__ */
1838
1839static bool file_exists(const char* filename) {
1840  struct stat statbuf;
1841  if (filename == NULL || strlen(filename) == 0) {
1842    return false;
1843  }
1844  return os::stat(filename, &statbuf) == 0;
1845}
1846
1847void os::dll_build_name(char* buffer, size_t buflen,
1848                        const char* pname, const char* fname) {
1849  // Copied from libhpi
1850  const size_t pnamelen = pname ? strlen(pname) : 0;
1851
1852  // Quietly truncate on buffer overflow.  Should be an error.
1853  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1854      *buffer = '\0';
1855      return;
1856  }
1857
1858  if (pnamelen == 0) {
1859    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1860  } else if (strchr(pname, *os::path_separator()) != NULL) {
1861    int n;
1862    char** pelements = split_path(pname, &n);
1863    for (int i = 0 ; i < n ; i++) {
1864      // Really shouldn't be NULL, but check can't hurt
1865      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1866        continue; // skip the empty path values
1867      }
1868      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1869          pelements[i], fname);
1870      if (file_exists(buffer)) {
1871        break;
1872      }
1873    }
1874    // release the storage
1875    for (int i = 0 ; i < n ; i++) {
1876      if (pelements[i] != NULL) {
1877        FREE_C_HEAP_ARRAY(char, pelements[i]);
1878      }
1879    }
1880    if (pelements != NULL) {
1881      FREE_C_HEAP_ARRAY(char*, pelements);
1882    }
1883  } else {
1884    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1885  }
1886}
1887
1888const char* os::get_current_directory(char *buf, int buflen) {
1889  return getcwd(buf, buflen);
1890}
1891
1892// check if addr is inside libjvm[_g].so
1893bool os::address_is_in_vm(address addr) {
1894  static address libjvm_base_addr;
1895  Dl_info dlinfo;
1896
1897  if (libjvm_base_addr == NULL) {
1898    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1899    libjvm_base_addr = (address)dlinfo.dli_fbase;
1900    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1901  }
1902
1903  if (dladdr((void *)addr, &dlinfo)) {
1904    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1905  }
1906
1907  return false;
1908}
1909
1910bool os::dll_address_to_function_name(address addr, char *buf,
1911                                      int buflen, int *offset) {
1912  Dl_info dlinfo;
1913
1914  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1915    if (buf != NULL) {
1916      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1917        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1918      }
1919    }
1920    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1921    return true;
1922  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1923    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1924       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1925       return true;
1926    }
1927  }
1928
1929  if (buf != NULL) buf[0] = '\0';
1930  if (offset != NULL) *offset = -1;
1931  return false;
1932}
1933
1934#ifdef _ALLBSD_SOURCE
1935// ported from solaris version
1936bool os::dll_address_to_library_name(address addr, char* buf,
1937                                     int buflen, int* offset) {
1938  Dl_info dlinfo;
1939
1940  if (dladdr((void*)addr, &dlinfo)){
1941     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1942     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1943     return true;
1944  } else {
1945     if (buf) buf[0] = '\0';
1946     if (offset) *offset = -1;
1947     return false;
1948  }
1949}
1950#else
1951struct _address_to_library_name {
1952  address addr;          // input : memory address
1953  size_t  buflen;        //         size of fname
1954  char*   fname;         // output: library name
1955  address base;          //         library base addr
1956};
1957
1958static int address_to_library_name_callback(struct dl_phdr_info *info,
1959                                            size_t size, void *data) {
1960  int i;
1961  bool found = false;
1962  address libbase = NULL;
1963  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1964
1965  // iterate through all loadable segments
1966  for (i = 0; i < info->dlpi_phnum; i++) {
1967    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1968    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1969      // base address of a library is the lowest address of its loaded
1970      // segments.
1971      if (libbase == NULL || libbase > segbase) {
1972        libbase = segbase;
1973      }
1974      // see if 'addr' is within current segment
1975      if (segbase <= d->addr &&
1976          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1977        found = true;
1978      }
1979    }
1980  }
1981
1982  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1983  // so dll_address_to_library_name() can fall through to use dladdr() which
1984  // can figure out executable name from argv[0].
1985  if (found && info->dlpi_name && info->dlpi_name[0]) {
1986    d->base = libbase;
1987    if (d->fname) {
1988      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1989    }
1990    return 1;
1991  }
1992  return 0;
1993}
1994
1995bool os::dll_address_to_library_name(address addr, char* buf,
1996                                     int buflen, int* offset) {
1997  Dl_info dlinfo;
1998  struct _address_to_library_name data;
1999
2000  // There is a bug in old glibc dladdr() implementation that it could resolve
2001  // to wrong library name if the .so file has a base address != NULL. Here
2002  // we iterate through the program headers of all loaded libraries to find
2003  // out which library 'addr' really belongs to. This workaround can be
2004  // removed once the minimum requirement for glibc is moved to 2.3.x.
2005  data.addr = addr;
2006  data.fname = buf;
2007  data.buflen = buflen;
2008  data.base = NULL;
2009  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
2010
2011  if (rslt) {
2012     // buf already contains library name
2013     if (offset) *offset = addr - data.base;
2014     return true;
2015  } else if (dladdr((void*)addr, &dlinfo)){
2016     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
2017     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
2018     return true;
2019  } else {
2020     if (buf) buf[0] = '\0';
2021     if (offset) *offset = -1;
2022     return false;
2023  }
2024}
2025#endif
2026
2027  // Loads .dll/.so and
2028  // in case of error it checks if .dll/.so was built for the
2029  // same architecture as Hotspot is running on
2030
2031#ifdef __APPLE__
2032void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
2033  void * result= ::dlopen(filename, RTLD_LAZY);
2034  if (result != NULL) {
2035    // Successful loading
2036    return result;
2037  }
2038
2039  // Read system error message into ebuf
2040  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2041  ebuf[ebuflen-1]='\0';
2042
2043  return NULL;
2044}
2045#else
2046void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
2047{
2048  void * result= ::dlopen(filename, RTLD_LAZY);
2049  if (result != NULL) {
2050    // Successful loading
2051    return result;
2052  }
2053
2054  Elf32_Ehdr elf_head;
2055
2056  // Read system error message into ebuf
2057  // It may or may not be overwritten below
2058  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
2059  ebuf[ebuflen-1]='\0';
2060  int diag_msg_max_length=ebuflen-strlen(ebuf);
2061  char* diag_msg_buf=ebuf+strlen(ebuf);
2062
2063  if (diag_msg_max_length==0) {
2064    // No more space in ebuf for additional diagnostics message
2065    return NULL;
2066  }
2067
2068
2069  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
2070
2071  if (file_descriptor < 0) {
2072    // Can't open library, report dlerror() message
2073    return NULL;
2074  }
2075
2076  bool failed_to_read_elf_head=
2077    (sizeof(elf_head)!=
2078        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
2079
2080  ::close(file_descriptor);
2081  if (failed_to_read_elf_head) {
2082    // file i/o error - report dlerror() msg
2083    return NULL;
2084  }
2085
2086  typedef struct {
2087    Elf32_Half  code;         // Actual value as defined in elf.h
2088    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2089    char        elf_class;    // 32 or 64 bit
2090    char        endianess;    // MSB or LSB
2091    char*       name;         // String representation
2092  } arch_t;
2093
2094  #ifndef EM_486
2095  #define EM_486          6               /* Intel 80486 */
2096  #endif
2097
2098  #ifndef EM_MIPS_RS3_LE
2099  #define EM_MIPS_RS3_LE  10              /* MIPS */
2100  #endif
2101
2102  #ifndef EM_PPC64
2103  #define EM_PPC64        21              /* PowerPC64 */
2104  #endif
2105
2106  #ifndef EM_S390
2107  #define EM_S390         22              /* IBM System/390 */
2108  #endif
2109
2110  #ifndef EM_IA_64
2111  #define EM_IA_64        50              /* HP/Intel IA-64 */
2112  #endif
2113
2114  #ifndef EM_X86_64
2115  #define EM_X86_64       62              /* AMD x86-64 */
2116  #endif
2117
2118  static const arch_t arch_array[]={
2119    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2120    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2121    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2122    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2123    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2124    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2125    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2126    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2127    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2128    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
2129    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
2130    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
2131    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
2132    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
2133    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
2134    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
2135  };
2136
2137  #if  (defined IA32)
2138    static  Elf32_Half running_arch_code=EM_386;
2139  #elif   (defined AMD64)
2140    static  Elf32_Half running_arch_code=EM_X86_64;
2141  #elif  (defined IA64)
2142    static  Elf32_Half running_arch_code=EM_IA_64;
2143  #elif  (defined __sparc) && (defined _LP64)
2144    static  Elf32_Half running_arch_code=EM_SPARCV9;
2145  #elif  (defined __sparc) && (!defined _LP64)
2146    static  Elf32_Half running_arch_code=EM_SPARC;
2147  #elif  (defined __powerpc64__)
2148    static  Elf32_Half running_arch_code=EM_PPC64;
2149  #elif  (defined __powerpc__)
2150    static  Elf32_Half running_arch_code=EM_PPC;
2151  #elif  (defined ARM)
2152    static  Elf32_Half running_arch_code=EM_ARM;
2153  #elif  (defined S390)
2154    static  Elf32_Half running_arch_code=EM_S390;
2155  #elif  (defined ALPHA)
2156    static  Elf32_Half running_arch_code=EM_ALPHA;
2157  #elif  (defined MIPSEL)
2158    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
2159  #elif  (defined PARISC)
2160    static  Elf32_Half running_arch_code=EM_PARISC;
2161  #elif  (defined MIPS)
2162    static  Elf32_Half running_arch_code=EM_MIPS;
2163  #elif  (defined M68K)
2164    static  Elf32_Half running_arch_code=EM_68K;
2165  #else
2166    #error Method os::dll_load requires that one of following is defined:\
2167         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2168  #endif
2169
2170  // Identify compatability class for VM's architecture and library's architecture
2171  // Obtain string descriptions for architectures
2172
2173  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2174  int running_arch_index=-1;
2175
2176  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2177    if (running_arch_code == arch_array[i].code) {
2178      running_arch_index    = i;
2179    }
2180    if (lib_arch.code == arch_array[i].code) {
2181      lib_arch.compat_class = arch_array[i].compat_class;
2182      lib_arch.name         = arch_array[i].name;
2183    }
2184  }
2185
2186  assert(running_arch_index != -1,
2187    "Didn't find running architecture code (running_arch_code) in arch_array");
2188  if (running_arch_index == -1) {
2189    // Even though running architecture detection failed
2190    // we may still continue with reporting dlerror() message
2191    return NULL;
2192  }
2193
2194  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2195    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2196    return NULL;
2197  }
2198
2199#ifndef S390
2200  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2201    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2202    return NULL;
2203  }
2204#endif // !S390
2205
2206  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2207    if ( lib_arch.name!=NULL ) {
2208      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2209        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2210        lib_arch.name, arch_array[running_arch_index].name);
2211    } else {
2212      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2213      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2214        lib_arch.code,
2215        arch_array[running_arch_index].name);
2216    }
2217  }
2218
2219  return NULL;
2220}
2221#endif /* !__APPLE__ */
2222
2223// XXX: Do we need a lock around this as per Linux?
2224void* os::dll_lookup(void* handle, const char* name) {
2225  return dlsym(handle, name);
2226}
2227
2228
2229static bool _print_ascii_file(const char* filename, outputStream* st) {
2230  int fd = ::open(filename, O_RDONLY);
2231  if (fd == -1) {
2232     return false;
2233  }
2234
2235  char buf[32];
2236  int bytes;
2237  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2238    st->print_raw(buf, bytes);
2239  }
2240
2241  ::close(fd);
2242
2243  return true;
2244}
2245
2246void os::print_dll_info(outputStream *st) {
2247   st->print_cr("Dynamic libraries:");
2248#ifdef _ALLBSD_SOURCE
2249#ifdef RTLD_DI_LINKMAP
2250    Dl_info dli;
2251    void *handle;
2252    Link_map *map;
2253    Link_map *p;
2254
2255    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
2256        st->print_cr("Error: Cannot print dynamic libraries.");
2257        return;
2258    }
2259    handle = dlopen(dli.dli_fname, RTLD_LAZY);
2260    if (handle == NULL) {
2261        st->print_cr("Error: Cannot print dynamic libraries.");
2262        return;
2263    }
2264    dlinfo(handle, RTLD_DI_LINKMAP, &map);
2265    if (map == NULL) {
2266        st->print_cr("Error: Cannot print dynamic libraries.");
2267        return;
2268    }
2269
2270    while (map->l_prev != NULL)
2271        map = map->l_prev;
2272
2273    while (map != NULL) {
2274        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2275        map = map->l_next;
2276    }
2277
2278    dlclose(handle);
2279#elif defined(__APPLE__)
2280    uint32_t count;
2281    uint32_t i;
2282
2283    count = _dyld_image_count();
2284    for (i = 1; i < count; i++) {
2285        const char *name = _dyld_get_image_name(i);
2286        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
2287        st->print_cr(PTR_FORMAT " \t%s", slide, name);
2288    }
2289#else
2290   st->print_cr("Error: Cannot print dynamic libraries.");
2291#endif
2292#else
2293   char fname[32];
2294   pid_t pid = os::Bsd::gettid();
2295
2296   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2297
2298   if (!_print_ascii_file(fname, st)) {
2299     st->print("Can not get library information for pid = %d\n", pid);
2300   }
2301#endif
2302}
2303
2304
2305void os::print_os_info(outputStream* st) {
2306  st->print("OS:");
2307
2308  // Try to identify popular distros.
2309  // Most Bsd distributions have /etc/XXX-release file, which contains
2310  // the OS version string. Some have more than one /etc/XXX-release file
2311  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2312  // so the order is important.
2313  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2314      !_print_ascii_file("/etc/sun-release", st) &&
2315      !_print_ascii_file("/etc/redhat-release", st) &&
2316      !_print_ascii_file("/etc/SuSE-release", st) &&
2317      !_print_ascii_file("/etc/turbobsd-release", st) &&
2318      !_print_ascii_file("/etc/gentoo-release", st) &&
2319      !_print_ascii_file("/etc/debian_version", st) &&
2320      !_print_ascii_file("/etc/ltib-release", st) &&
2321      !_print_ascii_file("/etc/angstrom-version", st)) {
2322      st->print("Bsd");
2323  }
2324  st->cr();
2325
2326  // kernel
2327  st->print("uname:");
2328  struct utsname name;
2329  uname(&name);
2330  st->print(name.sysname); st->print(" ");
2331  st->print(name.release); st->print(" ");
2332  st->print(name.version); st->print(" ");
2333  st->print(name.machine);
2334  st->cr();
2335
2336#ifndef _ALLBSD_SOURCE
2337  // Print warning if unsafe chroot environment detected
2338  if (unsafe_chroot_detected) {
2339    st->print("WARNING!! ");
2340    st->print_cr(unstable_chroot_error);
2341  }
2342
2343  // libc, pthread
2344  st->print("libc:");
2345  st->print(os::Bsd::glibc_version()); st->print(" ");
2346  st->print(os::Bsd::libpthread_version()); st->print(" ");
2347  if (os::Bsd::is_BsdThreads()) {
2348     st->print("(%s stack)", os::Bsd::is_floating_stack() ? "floating" : "fixed");
2349  }
2350  st->cr();
2351#endif
2352
2353  // rlimit
2354  st->print("rlimit:");
2355  struct rlimit rlim;
2356
2357  st->print(" STACK ");
2358  getrlimit(RLIMIT_STACK, &rlim);
2359  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2360  else st->print("%uk", rlim.rlim_cur >> 10);
2361
2362  st->print(", CORE ");
2363  getrlimit(RLIMIT_CORE, &rlim);
2364  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2365  else st->print("%uk", rlim.rlim_cur >> 10);
2366
2367  st->print(", NPROC ");
2368  getrlimit(RLIMIT_NPROC, &rlim);
2369  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2370  else st->print("%d", rlim.rlim_cur);
2371
2372  st->print(", NOFILE ");
2373  getrlimit(RLIMIT_NOFILE, &rlim);
2374  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2375  else st->print("%d", rlim.rlim_cur);
2376
2377#ifndef _ALLBSD_SOURCE
2378  st->print(", AS ");
2379  getrlimit(RLIMIT_AS, &rlim);
2380  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2381  else st->print("%uk", rlim.rlim_cur >> 10);
2382  st->cr();
2383
2384  // load average
2385  st->print("load average:");
2386  double loadavg[3];
2387  os::loadavg(loadavg, 3);
2388  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2389  st->cr();
2390#endif
2391}
2392
2393void os::pd_print_cpu_info(outputStream* st) {
2394  // Nothing to do for now.
2395}
2396
2397void os::print_memory_info(outputStream* st) {
2398
2399  st->print("Memory:");
2400  st->print(" %dk page", os::vm_page_size()>>10);
2401
2402#ifndef _ALLBSD_SOURCE
2403  // values in struct sysinfo are "unsigned long"
2404  struct sysinfo si;
2405  sysinfo(&si);
2406#endif
2407
2408  st->print(", physical " UINT64_FORMAT "k",
2409            os::physical_memory() >> 10);
2410  st->print("(" UINT64_FORMAT "k free)",
2411            os::available_memory() >> 10);
2412#ifndef _ALLBSD_SOURCE
2413  st->print(", swap " UINT64_FORMAT "k",
2414            ((jlong)si.totalswap * si.mem_unit) >> 10);
2415  st->print("(" UINT64_FORMAT "k free)",
2416            ((jlong)si.freeswap * si.mem_unit) >> 10);
2417#endif
2418  st->cr();
2419
2420  // meminfo
2421  st->print("\n/proc/meminfo:\n");
2422  _print_ascii_file("/proc/meminfo", st);
2423  st->cr();
2424}
2425
2426// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2427// but they're the same for all the bsd arch that we support
2428// and they're the same for solaris but there's no common place to put this.
2429const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2430                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2431                          "ILL_COPROC", "ILL_BADSTK" };
2432
2433const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2434                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2435                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2436
2437const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2438
2439const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2440
2441void os::print_siginfo(outputStream* st, void* siginfo) {
2442  st->print("siginfo:");
2443
2444  const int buflen = 100;
2445  char buf[buflen];
2446  siginfo_t *si = (siginfo_t*)siginfo;
2447  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2448  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2449    st->print("si_errno=%s", buf);
2450  } else {
2451    st->print("si_errno=%d", si->si_errno);
2452  }
2453  const int c = si->si_code;
2454  assert(c > 0, "unexpected si_code");
2455  switch (si->si_signo) {
2456  case SIGILL:
2457    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2458    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2459    break;
2460  case SIGFPE:
2461    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2462    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2463    break;
2464  case SIGSEGV:
2465    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2466    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2467    break;
2468  case SIGBUS:
2469    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2470    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2471    break;
2472  default:
2473    st->print(", si_code=%d", si->si_code);
2474    // no si_addr
2475  }
2476
2477  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2478      UseSharedSpaces) {
2479    FileMapInfo* mapinfo = FileMapInfo::current_info();
2480    if (mapinfo->is_in_shared_space(si->si_addr)) {
2481      st->print("\n\nError accessing class data sharing archive."   \
2482                " Mapped file inaccessible during execution, "      \
2483                " possible disk/network problem.");
2484    }
2485  }
2486  st->cr();
2487}
2488
2489
2490static void print_signal_handler(outputStream* st, int sig,
2491                                 char* buf, size_t buflen);
2492
2493void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2494  st->print_cr("Signal Handlers:");
2495  print_signal_handler(st, SIGSEGV, buf, buflen);
2496  print_signal_handler(st, SIGBUS , buf, buflen);
2497  print_signal_handler(st, SIGFPE , buf, buflen);
2498  print_signal_handler(st, SIGPIPE, buf, buflen);
2499  print_signal_handler(st, SIGXFSZ, buf, buflen);
2500  print_signal_handler(st, SIGILL , buf, buflen);
2501  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2502  print_signal_handler(st, SR_signum, buf, buflen);
2503  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2504  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2505  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2506  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2507}
2508
2509static char saved_jvm_path[MAXPATHLEN] = {0};
2510
2511// Find the full path to the current module, libjvm.so or libjvm_g.so
2512void os::jvm_path(char *buf, jint buflen) {
2513  // Error checking.
2514  if (buflen < MAXPATHLEN) {
2515    assert(false, "must use a large-enough buffer");
2516    buf[0] = '\0';
2517    return;
2518  }
2519  // Lazy resolve the path to current module.
2520  if (saved_jvm_path[0] != 0) {
2521    strcpy(buf, saved_jvm_path);
2522    return;
2523  }
2524
2525  char dli_fname[MAXPATHLEN];
2526  bool ret = dll_address_to_library_name(
2527                CAST_FROM_FN_PTR(address, os::jvm_path),
2528                dli_fname, sizeof(dli_fname), NULL);
2529  assert(ret != 0, "cannot locate libjvm");
2530  char *rp = realpath(dli_fname, buf);
2531  if (rp == NULL)
2532    return;
2533
2534  if (Arguments::created_by_gamma_launcher()) {
2535    // Support for the gamma launcher.  Typical value for buf is
2536    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2537    // the right place in the string, then assume we are installed in a JDK and
2538    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2539    // up the path so it looks like libjvm.so is installed there (append a
2540    // fake suffix hotspot/libjvm.so).
2541    const char *p = buf + strlen(buf) - 1;
2542    for (int count = 0; p > buf && count < 5; ++count) {
2543      for (--p; p > buf && *p != '/'; --p)
2544        /* empty */ ;
2545    }
2546
2547    if (strncmp(p, "/jre/lib/", 9) != 0) {
2548      // Look for JAVA_HOME in the environment.
2549      char* java_home_var = ::getenv("JAVA_HOME");
2550      if (java_home_var != NULL && java_home_var[0] != 0) {
2551        char* jrelib_p;
2552        int len;
2553
2554        // Check the current module name "libjvm.so" or "libjvm_g.so".
2555        p = strrchr(buf, '/');
2556        assert(strstr(p, "/libjvm") == p, "invalid library name");
2557        p = strstr(p, "_g") ? "_g" : "";
2558
2559        rp = realpath(java_home_var, buf);
2560        if (rp == NULL)
2561          return;
2562
2563        // determine if this is a legacy image or modules image
2564        // modules image doesn't have "jre" subdirectory
2565        len = strlen(buf);
2566        jrelib_p = buf + len;
2567        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2568        if (0 != access(buf, F_OK)) {
2569          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2570        }
2571
2572        if (0 == access(buf, F_OK)) {
2573          // Use current module name "libjvm[_g].so" instead of
2574          // "libjvm"debug_only("_g")".so" since for fastdebug version
2575          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2576          len = strlen(buf);
2577          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2578        } else {
2579          // Go back to path of .so
2580          rp = realpath(dli_fname, buf);
2581          if (rp == NULL)
2582            return;
2583        }
2584      }
2585    }
2586  }
2587
2588  strcpy(saved_jvm_path, buf);
2589}
2590
2591void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2592  // no prefix required, not even "_"
2593}
2594
2595void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2596  // no suffix required
2597}
2598
2599////////////////////////////////////////////////////////////////////////////////
2600// sun.misc.Signal support
2601
2602static volatile jint sigint_count = 0;
2603
2604static void
2605UserHandler(int sig, void *siginfo, void *context) {
2606  // 4511530 - sem_post is serialized and handled by the manager thread. When
2607  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2608  // don't want to flood the manager thread with sem_post requests.
2609  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2610      return;
2611
2612  // Ctrl-C is pressed during error reporting, likely because the error
2613  // handler fails to abort. Let VM die immediately.
2614  if (sig == SIGINT && is_error_reported()) {
2615     os::die();
2616  }
2617
2618  os::signal_notify(sig);
2619}
2620
2621void* os::user_handler() {
2622  return CAST_FROM_FN_PTR(void*, UserHandler);
2623}
2624
2625extern "C" {
2626  typedef void (*sa_handler_t)(int);
2627  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2628}
2629
2630void* os::signal(int signal_number, void* handler) {
2631  struct sigaction sigAct, oldSigAct;
2632
2633  sigfillset(&(sigAct.sa_mask));
2634  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2635  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2636
2637  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2638    // -1 means registration failed
2639    return (void *)-1;
2640  }
2641
2642  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2643}
2644
2645void os::signal_raise(int signal_number) {
2646  ::raise(signal_number);
2647}
2648
2649/*
2650 * The following code is moved from os.cpp for making this
2651 * code platform specific, which it is by its very nature.
2652 */
2653
2654// Will be modified when max signal is changed to be dynamic
2655int os::sigexitnum_pd() {
2656  return NSIG;
2657}
2658
2659// a counter for each possible signal value
2660static volatile jint pending_signals[NSIG+1] = { 0 };
2661
2662// Bsd(POSIX) specific hand shaking semaphore.
2663#ifdef __APPLE__
2664static semaphore_t sig_sem;
2665#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
2666#define SEM_WAIT(sem)           semaphore_wait(sem);
2667#define SEM_POST(sem)           semaphore_signal(sem);
2668#else
2669static sem_t sig_sem;
2670#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
2671#define SEM_WAIT(sem)           sem_wait(&sem);
2672#define SEM_POST(sem)           sem_post(&sem);
2673#endif
2674
2675void os::signal_init_pd() {
2676  // Initialize signal structures
2677  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2678
2679  // Initialize signal semaphore
2680  ::SEM_INIT(sig_sem, 0);
2681}
2682
2683void os::signal_notify(int sig) {
2684  Atomic::inc(&pending_signals[sig]);
2685  ::SEM_POST(sig_sem);
2686}
2687
2688static int check_pending_signals(bool wait) {
2689  Atomic::store(0, &sigint_count);
2690  for (;;) {
2691    for (int i = 0; i < NSIG + 1; i++) {
2692      jint n = pending_signals[i];
2693      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2694        return i;
2695      }
2696    }
2697    if (!wait) {
2698      return -1;
2699    }
2700    JavaThread *thread = JavaThread::current();
2701    ThreadBlockInVM tbivm(thread);
2702
2703    bool threadIsSuspended;
2704    do {
2705      thread->set_suspend_equivalent();
2706      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2707      ::SEM_WAIT(sig_sem);
2708
2709      // were we externally suspended while we were waiting?
2710      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2711      if (threadIsSuspended) {
2712        //
2713        // The semaphore has been incremented, but while we were waiting
2714        // another thread suspended us. We don't want to continue running
2715        // while suspended because that would surprise the thread that
2716        // suspended us.
2717        //
2718        ::SEM_POST(sig_sem);
2719
2720        thread->java_suspend_self();
2721      }
2722    } while (threadIsSuspended);
2723  }
2724}
2725
2726int os::signal_lookup() {
2727  return check_pending_signals(false);
2728}
2729
2730int os::signal_wait() {
2731  return check_pending_signals(true);
2732}
2733
2734////////////////////////////////////////////////////////////////////////////////
2735// Virtual Memory
2736
2737int os::vm_page_size() {
2738  // Seems redundant as all get out
2739  assert(os::Bsd::page_size() != -1, "must call os::init");
2740  return os::Bsd::page_size();
2741}
2742
2743// Solaris allocates memory by pages.
2744int os::vm_allocation_granularity() {
2745  assert(os::Bsd::page_size() != -1, "must call os::init");
2746  return os::Bsd::page_size();
2747}
2748
2749// Rationale behind this function:
2750//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2751//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2752//  samples for JITted code. Here we create private executable mapping over the code cache
2753//  and then we can use standard (well, almost, as mapping can change) way to provide
2754//  info for the reporting script by storing timestamp and location of symbol
2755void bsd_wrap_code(char* base, size_t size) {
2756  static volatile jint cnt = 0;
2757
2758  if (!UseOprofile) {
2759    return;
2760  }
2761
2762  char buf[PATH_MAX + 1];
2763  int num = Atomic::add(1, &cnt);
2764
2765  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2766           os::get_temp_directory(), os::current_process_id(), num);
2767  unlink(buf);
2768
2769  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2770
2771  if (fd != -1) {
2772    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2773    if (rv != (off_t)-1) {
2774      if (::write(fd, "", 1) == 1) {
2775        mmap(base, size,
2776             PROT_READ|PROT_WRITE|PROT_EXEC,
2777             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2778      }
2779    }
2780    ::close(fd);
2781    unlink(buf);
2782  }
2783}
2784
2785// NOTE: Bsd kernel does not really reserve the pages for us.
2786//       All it does is to check if there are enough free pages
2787//       left at the time of mmap(). This could be a potential
2788//       problem.
2789bool os::commit_memory(char* addr, size_t size, bool exec) {
2790  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2791#ifdef __OpenBSD__
2792  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2793  return ::mprotect(addr, size, prot) == 0;
2794#else
2795  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2796                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2797  return res != (uintptr_t) MAP_FAILED;
2798#endif
2799}
2800
2801#ifndef _ALLBSD_SOURCE
2802// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2803#ifndef MAP_HUGETLB
2804#define MAP_HUGETLB 0x40000
2805#endif
2806
2807// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2808#ifndef MADV_HUGEPAGE
2809#define MADV_HUGEPAGE 14
2810#endif
2811#endif
2812
2813bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2814                       bool exec) {
2815#ifndef _ALLBSD_SOURCE
2816  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2817    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2818    uintptr_t res =
2819      (uintptr_t) ::mmap(addr, size, prot,
2820                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2821                         -1, 0);
2822    return res != (uintptr_t) MAP_FAILED;
2823  }
2824#endif
2825
2826  return commit_memory(addr, size, exec);
2827}
2828
2829void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2830#ifndef _ALLBSD_SOURCE
2831  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2832    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2833    // be supported or the memory may already be backed by huge pages.
2834    ::madvise(addr, bytes, MADV_HUGEPAGE);
2835  }
2836#endif
2837}
2838
2839void os::free_memory(char *addr, size_t bytes) {
2840  ::madvise(addr, bytes, MADV_DONTNEED);
2841}
2842
2843void os::numa_make_global(char *addr, size_t bytes) {
2844}
2845
2846void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2847}
2848
2849bool os::numa_topology_changed()   { return false; }
2850
2851size_t os::numa_get_groups_num() {
2852  return 1;
2853}
2854
2855int os::numa_get_group_id() {
2856  return 0;
2857}
2858
2859size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2860  if (size > 0) {
2861    ids[0] = 0;
2862    return 1;
2863  }
2864  return 0;
2865}
2866
2867bool os::get_page_info(char *start, page_info* info) {
2868  return false;
2869}
2870
2871char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2872  return end;
2873}
2874
2875#ifndef _ALLBSD_SOURCE
2876// Something to do with the numa-aware allocator needs these symbols
2877extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2878extern "C" JNIEXPORT void numa_error(char *where) { }
2879extern "C" JNIEXPORT int fork1() { return fork(); }
2880
2881
2882// If we are running with libnuma version > 2, then we should
2883// be trying to use symbols with versions 1.1
2884// If we are running with earlier version, which did not have symbol versions,
2885// we should use the base version.
2886void* os::Bsd::libnuma_dlsym(void* handle, const char *name) {
2887  void *f = dlvsym(handle, name, "libnuma_1.1");
2888  if (f == NULL) {
2889    f = dlsym(handle, name);
2890  }
2891  return f;
2892}
2893
2894bool os::Bsd::libnuma_init() {
2895  // sched_getcpu() should be in libc.
2896  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2897                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2898
2899  if (sched_getcpu() != -1) { // Does it work?
2900    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2901    if (handle != NULL) {
2902      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2903                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2904      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2905                                       libnuma_dlsym(handle, "numa_max_node")));
2906      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2907                                        libnuma_dlsym(handle, "numa_available")));
2908      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2909                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2910      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2911                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2912
2913
2914      if (numa_available() != -1) {
2915        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2916        // Create a cpu -> node mapping
2917        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2918        rebuild_cpu_to_node_map();
2919        return true;
2920      }
2921    }
2922  }
2923  return false;
2924}
2925
2926// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2927// The table is later used in get_node_by_cpu().
2928void os::Bsd::rebuild_cpu_to_node_map() {
2929  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2930                              // in libnuma (possible values are starting from 16,
2931                              // and continuing up with every other power of 2, but less
2932                              // than the maximum number of CPUs supported by kernel), and
2933                              // is a subject to change (in libnuma version 2 the requirements
2934                              // are more reasonable) we'll just hardcode the number they use
2935                              // in the library.
2936  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2937
2938  size_t cpu_num = os::active_processor_count();
2939  size_t cpu_map_size = NCPUS / BitsPerCLong;
2940  size_t cpu_map_valid_size =
2941    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2942
2943  cpu_to_node()->clear();
2944  cpu_to_node()->at_grow(cpu_num - 1);
2945  size_t node_num = numa_get_groups_num();
2946
2947  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2948  for (size_t i = 0; i < node_num; i++) {
2949    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2950      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2951        if (cpu_map[j] != 0) {
2952          for (size_t k = 0; k < BitsPerCLong; k++) {
2953            if (cpu_map[j] & (1UL << k)) {
2954              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2955            }
2956          }
2957        }
2958      }
2959    }
2960  }
2961  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2962}
2963
2964int os::Bsd::get_node_by_cpu(int cpu_id) {
2965  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2966    return cpu_to_node()->at(cpu_id);
2967  }
2968  return -1;
2969}
2970
2971GrowableArray<int>* os::Bsd::_cpu_to_node;
2972os::Bsd::sched_getcpu_func_t os::Bsd::_sched_getcpu;
2973os::Bsd::numa_node_to_cpus_func_t os::Bsd::_numa_node_to_cpus;
2974os::Bsd::numa_max_node_func_t os::Bsd::_numa_max_node;
2975os::Bsd::numa_available_func_t os::Bsd::_numa_available;
2976os::Bsd::numa_tonode_memory_func_t os::Bsd::_numa_tonode_memory;
2977os::Bsd::numa_interleave_memory_func_t os::Bsd::_numa_interleave_memory;
2978unsigned long* os::Bsd::_numa_all_nodes;
2979#endif
2980
2981bool os::uncommit_memory(char* addr, size_t size) {
2982#ifdef __OpenBSD__
2983  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2984  return ::mprotect(addr, size, PROT_NONE) == 0;
2985#else
2986  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2987                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2988  return res  != (uintptr_t) MAP_FAILED;
2989#endif
2990}
2991
2992bool os::create_stack_guard_pages(char* addr, size_t size) {
2993  return os::commit_memory(addr, size);
2994}
2995
2996// If this is a growable mapping, remove the guard pages entirely by
2997// munmap()ping them.  If not, just call uncommit_memory().
2998bool os::remove_stack_guard_pages(char* addr, size_t size) {
2999  return os::uncommit_memory(addr, size);
3000}
3001
3002static address _highest_vm_reserved_address = NULL;
3003
3004// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3005// at 'requested_addr'. If there are existing memory mappings at the same
3006// location, however, they will be overwritten. If 'fixed' is false,
3007// 'requested_addr' is only treated as a hint, the return value may or
3008// may not start from the requested address. Unlike Bsd mmap(), this
3009// function returns NULL to indicate failure.
3010static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3011  char * addr;
3012  int flags;
3013
3014  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3015  if (fixed) {
3016    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
3017    flags |= MAP_FIXED;
3018  }
3019
3020  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
3021  // to PROT_EXEC if executable when we commit the page.
3022  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
3023                       flags, -1, 0);
3024
3025  if (addr != MAP_FAILED) {
3026    // anon_mmap() should only get called during VM initialization,
3027    // don't need lock (actually we can skip locking even it can be called
3028    // from multiple threads, because _highest_vm_reserved_address is just a
3029    // hint about the upper limit of non-stack memory regions.)
3030    if ((address)addr + bytes > _highest_vm_reserved_address) {
3031      _highest_vm_reserved_address = (address)addr + bytes;
3032    }
3033  }
3034
3035  return addr == MAP_FAILED ? NULL : addr;
3036}
3037
3038// Don't update _highest_vm_reserved_address, because there might be memory
3039// regions above addr + size. If so, releasing a memory region only creates
3040// a hole in the address space, it doesn't help prevent heap-stack collision.
3041//
3042static int anon_munmap(char * addr, size_t size) {
3043  return ::munmap(addr, size) == 0;
3044}
3045
3046char* os::reserve_memory(size_t bytes, char* requested_addr,
3047                         size_t alignment_hint) {
3048  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3049}
3050
3051bool os::release_memory(char* addr, size_t size) {
3052  return anon_munmap(addr, size);
3053}
3054
3055static address highest_vm_reserved_address() {
3056  return _highest_vm_reserved_address;
3057}
3058
3059static bool bsd_mprotect(char* addr, size_t size, int prot) {
3060  // Bsd wants the mprotect address argument to be page aligned.
3061  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
3062
3063  // According to SUSv3, mprotect() should only be used with mappings
3064  // established by mmap(), and mmap() always maps whole pages. Unaligned
3065  // 'addr' likely indicates problem in the VM (e.g. trying to change
3066  // protection of malloc'ed or statically allocated memory). Check the
3067  // caller if you hit this assert.
3068  assert(addr == bottom, "sanity check");
3069
3070  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
3071  return ::mprotect(bottom, size, prot) == 0;
3072}
3073
3074// Set protections specified
3075bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3076                        bool is_committed) {
3077  unsigned int p = 0;
3078  switch (prot) {
3079  case MEM_PROT_NONE: p = PROT_NONE; break;
3080  case MEM_PROT_READ: p = PROT_READ; break;
3081  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3082  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3083  default:
3084    ShouldNotReachHere();
3085  }
3086  // is_committed is unused.
3087  return bsd_mprotect(addr, bytes, p);
3088}
3089
3090bool os::guard_memory(char* addr, size_t size) {
3091  return bsd_mprotect(addr, size, PROT_NONE);
3092}
3093
3094bool os::unguard_memory(char* addr, size_t size) {
3095  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
3096}
3097
3098bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3099  bool result = false;
3100#ifndef _ALLBSD_SOURCE
3101  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3102                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3103                  -1, 0);
3104
3105  if (p != (void *) -1) {
3106    // We don't know if this really is a huge page or not.
3107    FILE *fp = fopen("/proc/self/maps", "r");
3108    if (fp) {
3109      while (!feof(fp)) {
3110        char chars[257];
3111        long x = 0;
3112        if (fgets(chars, sizeof(chars), fp)) {
3113          if (sscanf(chars, "%lx-%*x", &x) == 1
3114              && x == (long)p) {
3115            if (strstr (chars, "hugepage")) {
3116              result = true;
3117              break;
3118            }
3119          }
3120        }
3121      }
3122      fclose(fp);
3123    }
3124    munmap (p, page_size);
3125    if (result)
3126      return true;
3127  }
3128
3129  if (warn) {
3130    warning("HugeTLBFS is not supported by the operating system.");
3131  }
3132#endif
3133
3134  return result;
3135}
3136
3137/*
3138* Set the coredump_filter bits to include largepages in core dump (bit 6)
3139*
3140* From the coredump_filter documentation:
3141*
3142* - (bit 0) anonymous private memory
3143* - (bit 1) anonymous shared memory
3144* - (bit 2) file-backed private memory
3145* - (bit 3) file-backed shared memory
3146* - (bit 4) ELF header pages in file-backed private memory areas (it is
3147*           effective only if the bit 2 is cleared)
3148* - (bit 5) hugetlb private memory
3149* - (bit 6) hugetlb shared memory
3150*/
3151static void set_coredump_filter(void) {
3152  FILE *f;
3153  long cdm;
3154
3155  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3156    return;
3157  }
3158
3159  if (fscanf(f, "%lx", &cdm) != 1) {
3160    fclose(f);
3161    return;
3162  }
3163
3164  rewind(f);
3165
3166  if ((cdm & LARGEPAGES_BIT) == 0) {
3167    cdm |= LARGEPAGES_BIT;
3168    fprintf(f, "%#lx", cdm);
3169  }
3170
3171  fclose(f);
3172}
3173
3174// Large page support
3175
3176static size_t _large_page_size = 0;
3177
3178void os::large_page_init() {
3179#ifndef _ALLBSD_SOURCE
3180  if (!UseLargePages) {
3181    UseHugeTLBFS = false;
3182    UseSHM = false;
3183    return;
3184  }
3185
3186  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3187    // If UseLargePages is specified on the command line try both methods,
3188    // if it's default, then try only HugeTLBFS.
3189    if (FLAG_IS_DEFAULT(UseLargePages)) {
3190      UseHugeTLBFS = true;
3191    } else {
3192      UseHugeTLBFS = UseSHM = true;
3193    }
3194  }
3195
3196  if (LargePageSizeInBytes) {
3197    _large_page_size = LargePageSizeInBytes;
3198  } else {
3199    // large_page_size on Bsd is used to round up heap size. x86 uses either
3200    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3201    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3202    // page as large as 256M.
3203    //
3204    // Here we try to figure out page size by parsing /proc/meminfo and looking
3205    // for a line with the following format:
3206    //    Hugepagesize:     2048 kB
3207    //
3208    // If we can't determine the value (e.g. /proc is not mounted, or the text
3209    // format has been changed), we'll use the largest page size supported by
3210    // the processor.
3211
3212#ifndef ZERO
3213    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3214                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3215#endif // ZERO
3216
3217    FILE *fp = fopen("/proc/meminfo", "r");
3218    if (fp) {
3219      while (!feof(fp)) {
3220        int x = 0;
3221        char buf[16];
3222        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3223          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3224            _large_page_size = x * K;
3225            break;
3226          }
3227        } else {
3228          // skip to next line
3229          for (;;) {
3230            int ch = fgetc(fp);
3231            if (ch == EOF || ch == (int)'\n') break;
3232          }
3233        }
3234      }
3235      fclose(fp);
3236    }
3237  }
3238
3239  // print a warning if any large page related flag is specified on command line
3240  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3241
3242  const size_t default_page_size = (size_t)Bsd::page_size();
3243  if (_large_page_size > default_page_size) {
3244    _page_sizes[0] = _large_page_size;
3245    _page_sizes[1] = default_page_size;
3246    _page_sizes[2] = 0;
3247  }
3248  UseHugeTLBFS = UseHugeTLBFS &&
3249                 Bsd::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3250
3251  if (UseHugeTLBFS)
3252    UseSHM = false;
3253
3254  UseLargePages = UseHugeTLBFS || UseSHM;
3255
3256  set_coredump_filter();
3257#endif
3258}
3259
3260#ifndef _ALLBSD_SOURCE
3261#ifndef SHM_HUGETLB
3262#define SHM_HUGETLB 04000
3263#endif
3264#endif
3265
3266char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3267  // "exec" is passed in but not used.  Creating the shared image for
3268  // the code cache doesn't have an SHM_X executable permission to check.
3269  assert(UseLargePages && UseSHM, "only for SHM large pages");
3270
3271  key_t key = IPC_PRIVATE;
3272  char *addr;
3273
3274  bool warn_on_failure = UseLargePages &&
3275                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3276                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3277                        );
3278  char msg[128];
3279
3280  // Create a large shared memory region to attach to based on size.
3281  // Currently, size is the total size of the heap
3282#ifndef _ALLBSD_SOURCE
3283  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3284#else
3285  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
3286#endif
3287  if (shmid == -1) {
3288     // Possible reasons for shmget failure:
3289     // 1. shmmax is too small for Java heap.
3290     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3291     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3292     // 2. not enough large page memory.
3293     //    > check available large pages: cat /proc/meminfo
3294     //    > increase amount of large pages:
3295     //          echo new_value > /proc/sys/vm/nr_hugepages
3296     //      Note 1: different Bsd may use different name for this property,
3297     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3298     //      Note 2: it's possible there's enough physical memory available but
3299     //            they are so fragmented after a long run that they can't
3300     //            coalesce into large pages. Try to reserve large pages when
3301     //            the system is still "fresh".
3302     if (warn_on_failure) {
3303       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3304       warning(msg);
3305     }
3306     return NULL;
3307  }
3308
3309  // attach to the region
3310  addr = (char*)shmat(shmid, req_addr, 0);
3311  int err = errno;
3312
3313  // Remove shmid. If shmat() is successful, the actual shared memory segment
3314  // will be deleted when it's detached by shmdt() or when the process
3315  // terminates. If shmat() is not successful this will remove the shared
3316  // segment immediately.
3317  shmctl(shmid, IPC_RMID, NULL);
3318
3319  if ((intptr_t)addr == -1) {
3320     if (warn_on_failure) {
3321       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3322       warning(msg);
3323     }
3324     return NULL;
3325  }
3326
3327  return addr;
3328}
3329
3330bool os::release_memory_special(char* base, size_t bytes) {
3331  // detaching the SHM segment will also delete it, see reserve_memory_special()
3332  int rslt = shmdt(base);
3333  return rslt == 0;
3334}
3335
3336size_t os::large_page_size() {
3337  return _large_page_size;
3338}
3339
3340// HugeTLBFS allows application to commit large page memory on demand;
3341// with SysV SHM the entire memory region must be allocated as shared
3342// memory.
3343bool os::can_commit_large_page_memory() {
3344  return UseHugeTLBFS;
3345}
3346
3347bool os::can_execute_large_page_memory() {
3348  return UseHugeTLBFS;
3349}
3350
3351// Reserve memory at an arbitrary address, only if that area is
3352// available (and not reserved for something else).
3353
3354char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3355  const int max_tries = 10;
3356  char* base[max_tries];
3357  size_t size[max_tries];
3358  const size_t gap = 0x000000;
3359
3360  // Assert only that the size is a multiple of the page size, since
3361  // that's all that mmap requires, and since that's all we really know
3362  // about at this low abstraction level.  If we need higher alignment,
3363  // we can either pass an alignment to this method or verify alignment
3364  // in one of the methods further up the call chain.  See bug 5044738.
3365  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3366
3367  // Repeatedly allocate blocks until the block is allocated at the
3368  // right spot. Give up after max_tries. Note that reserve_memory() will
3369  // automatically update _highest_vm_reserved_address if the call is
3370  // successful. The variable tracks the highest memory address every reserved
3371  // by JVM. It is used to detect heap-stack collision if running with
3372  // fixed-stack BsdThreads. Because here we may attempt to reserve more
3373  // space than needed, it could confuse the collision detecting code. To
3374  // solve the problem, save current _highest_vm_reserved_address and
3375  // calculate the correct value before return.
3376  address old_highest = _highest_vm_reserved_address;
3377
3378  // Bsd mmap allows caller to pass an address as hint; give it a try first,
3379  // if kernel honors the hint then we can return immediately.
3380  char * addr = anon_mmap(requested_addr, bytes, false);
3381  if (addr == requested_addr) {
3382     return requested_addr;
3383  }
3384
3385  if (addr != NULL) {
3386     // mmap() is successful but it fails to reserve at the requested address
3387     anon_munmap(addr, bytes);
3388  }
3389
3390  int i;
3391  for (i = 0; i < max_tries; ++i) {
3392    base[i] = reserve_memory(bytes);
3393
3394    if (base[i] != NULL) {
3395      // Is this the block we wanted?
3396      if (base[i] == requested_addr) {
3397        size[i] = bytes;
3398        break;
3399      }
3400
3401      // Does this overlap the block we wanted? Give back the overlapped
3402      // parts and try again.
3403
3404      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3405      if (top_overlap >= 0 && top_overlap < bytes) {
3406        unmap_memory(base[i], top_overlap);
3407        base[i] += top_overlap;
3408        size[i] = bytes - top_overlap;
3409      } else {
3410        size_t bottom_overlap = base[i] + bytes - requested_addr;
3411        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3412          unmap_memory(requested_addr, bottom_overlap);
3413          size[i] = bytes - bottom_overlap;
3414        } else {
3415          size[i] = bytes;
3416        }
3417      }
3418    }
3419  }
3420
3421  // Give back the unused reserved pieces.
3422
3423  for (int j = 0; j < i; ++j) {
3424    if (base[j] != NULL) {
3425      unmap_memory(base[j], size[j]);
3426    }
3427  }
3428
3429  if (i < max_tries) {
3430    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3431    return requested_addr;
3432  } else {
3433    _highest_vm_reserved_address = old_highest;
3434    return NULL;
3435  }
3436}
3437
3438size_t os::read(int fd, void *buf, unsigned int nBytes) {
3439  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
3440}
3441
3442// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
3443// Solaris uses poll(), bsd uses park().
3444// Poll() is likely a better choice, assuming that Thread.interrupt()
3445// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3446// SIGSEGV, see 4355769.
3447
3448const int NANOSECS_PER_MILLISECS = 1000000;
3449
3450int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3451  assert(thread == Thread::current(),  "thread consistency check");
3452
3453  ParkEvent * const slp = thread->_SleepEvent ;
3454  slp->reset() ;
3455  OrderAccess::fence() ;
3456
3457  if (interruptible) {
3458    jlong prevtime = javaTimeNanos();
3459
3460    for (;;) {
3461      if (os::is_interrupted(thread, true)) {
3462        return OS_INTRPT;
3463      }
3464
3465      jlong newtime = javaTimeNanos();
3466
3467      if (newtime - prevtime < 0) {
3468        // time moving backwards, should only happen if no monotonic clock
3469        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3470        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3471      } else {
3472        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3473      }
3474
3475      if(millis <= 0) {
3476        return OS_OK;
3477      }
3478
3479      prevtime = newtime;
3480
3481      {
3482        assert(thread->is_Java_thread(), "sanity check");
3483        JavaThread *jt = (JavaThread *) thread;
3484        ThreadBlockInVM tbivm(jt);
3485        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3486
3487        jt->set_suspend_equivalent();
3488        // cleared by handle_special_suspend_equivalent_condition() or
3489        // java_suspend_self() via check_and_wait_while_suspended()
3490
3491        slp->park(millis);
3492
3493        // were we externally suspended while we were waiting?
3494        jt->check_and_wait_while_suspended();
3495      }
3496    }
3497  } else {
3498    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3499    jlong prevtime = javaTimeNanos();
3500
3501    for (;;) {
3502      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3503      // the 1st iteration ...
3504      jlong newtime = javaTimeNanos();
3505
3506      if (newtime - prevtime < 0) {
3507        // time moving backwards, should only happen if no monotonic clock
3508        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3509        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3510      } else {
3511        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3512      }
3513
3514      if(millis <= 0) break ;
3515
3516      prevtime = newtime;
3517      slp->park(millis);
3518    }
3519    return OS_OK ;
3520  }
3521}
3522
3523int os::naked_sleep() {
3524  // %% make the sleep time an integer flag. for now use 1 millisec.
3525  return os::sleep(Thread::current(), 1, false);
3526}
3527
3528// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3529void os::infinite_sleep() {
3530  while (true) {    // sleep forever ...
3531    ::sleep(100);   // ... 100 seconds at a time
3532  }
3533}
3534
3535// Used to convert frequent JVM_Yield() to nops
3536bool os::dont_yield() {
3537  return DontYieldALot;
3538}
3539
3540void os::yield() {
3541  sched_yield();
3542}
3543
3544os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3545
3546void os::yield_all(int attempts) {
3547  // Yields to all threads, including threads with lower priorities
3548  // Threads on Bsd are all with same priority. The Solaris style
3549  // os::yield_all() with nanosleep(1ms) is not necessary.
3550  sched_yield();
3551}
3552
3553// Called from the tight loops to possibly influence time-sharing heuristics
3554void os::loop_breaker(int attempts) {
3555  os::yield_all(attempts);
3556}
3557
3558////////////////////////////////////////////////////////////////////////////////
3559// thread priority support
3560
3561// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
3562// only supports dynamic priority, static priority must be zero. For real-time
3563// applications, Bsd supports SCHED_RR which allows static priority (1-99).
3564// However, for large multi-threaded applications, SCHED_RR is not only slower
3565// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3566// of 5 runs - Sep 2005).
3567//
3568// The following code actually changes the niceness of kernel-thread/LWP. It
3569// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3570// not the entire user process, and user level threads are 1:1 mapped to kernel
3571// threads. It has always been the case, but could change in the future. For
3572// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3573// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3574
3575#if defined(_ALLBSD_SOURCE) && !defined(__APPLE__)
3576int os::java_to_os_priority[MaxPriority + 1] = {
3577  19,              // 0 Entry should never be used
3578
3579   0,              // 1 MinPriority
3580   3,              // 2
3581   6,              // 3
3582
3583   10,              // 4
3584   15,              // 5 NormPriority
3585   18,              // 6
3586
3587   21,              // 7
3588   25,              // 8
3589   28,              // 9 NearMaxPriority
3590
3591   31              // 10 MaxPriority
3592};
3593#elif defined(__APPLE__)
3594/* Using Mach high-level priority assignments */
3595int os::java_to_os_priority[MaxPriority + 1] = {
3596   0,              // 0 Entry should never be used (MINPRI_USER)
3597
3598  27,              // 1 MinPriority
3599  28,              // 2
3600  29,              // 3
3601
3602  30,              // 4
3603  31,              // 5 NormPriority (BASEPRI_DEFAULT)
3604  32,              // 6
3605
3606  33,              // 7
3607  34,              // 8
3608  35,              // 9 NearMaxPriority
3609
3610  36               // 10 MaxPriority
3611};
3612#else
3613int os::java_to_os_priority[MaxPriority + 1] = {
3614  19,              // 0 Entry should never be used
3615
3616   4,              // 1 MinPriority
3617   3,              // 2
3618   2,              // 3
3619
3620   1,              // 4
3621   0,              // 5 NormPriority
3622  -1,              // 6
3623
3624  -2,              // 7
3625  -3,              // 8
3626  -4,              // 9 NearMaxPriority
3627
3628  -5               // 10 MaxPriority
3629};
3630#endif
3631
3632static int prio_init() {
3633  if (ThreadPriorityPolicy == 1) {
3634    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3635    // if effective uid is not root. Perhaps, a more elegant way of doing
3636    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3637    if (geteuid() != 0) {
3638      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3639        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
3640      }
3641      ThreadPriorityPolicy = 0;
3642    }
3643  }
3644  return 0;
3645}
3646
3647OSReturn os::set_native_priority(Thread* thread, int newpri) {
3648  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3649
3650#ifdef __OpenBSD__
3651  // OpenBSD pthread_setprio starves low priority threads
3652  return OS_OK;
3653#elif defined(__FreeBSD__)
3654  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
3655#elif defined(__APPLE__) || defined(__NetBSD__)
3656  struct sched_param sp;
3657  int policy;
3658  pthread_t self = pthread_self();
3659
3660  if (pthread_getschedparam(self, &policy, &sp) != 0)
3661    return OS_ERR;
3662
3663  sp.sched_priority = newpri;
3664  if (pthread_setschedparam(self, policy, &sp) != 0)
3665    return OS_ERR;
3666
3667  return OS_OK;
3668#else
3669  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3670  return (ret == 0) ? OS_OK : OS_ERR;
3671#endif
3672}
3673
3674OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3675  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3676    *priority_ptr = java_to_os_priority[NormPriority];
3677    return OS_OK;
3678  }
3679
3680  errno = 0;
3681#if defined(__OpenBSD__) || defined(__FreeBSD__)
3682  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
3683#elif defined(__APPLE__) || defined(__NetBSD__)
3684  int policy;
3685  struct sched_param sp;
3686
3687  pthread_getschedparam(pthread_self(), &policy, &sp);
3688  *priority_ptr = sp.sched_priority;
3689#else
3690  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3691#endif
3692  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3693}
3694
3695// Hint to the underlying OS that a task switch would not be good.
3696// Void return because it's a hint and can fail.
3697void os::hint_no_preempt() {}
3698
3699////////////////////////////////////////////////////////////////////////////////
3700// suspend/resume support
3701
3702//  the low-level signal-based suspend/resume support is a remnant from the
3703//  old VM-suspension that used to be for java-suspension, safepoints etc,
3704//  within hotspot. Now there is a single use-case for this:
3705//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3706//      that runs in the watcher thread.
3707//  The remaining code is greatly simplified from the more general suspension
3708//  code that used to be used.
3709//
3710//  The protocol is quite simple:
3711//  - suspend:
3712//      - sends a signal to the target thread
3713//      - polls the suspend state of the osthread using a yield loop
3714//      - target thread signal handler (SR_handler) sets suspend state
3715//        and blocks in sigsuspend until continued
3716//  - resume:
3717//      - sets target osthread state to continue
3718//      - sends signal to end the sigsuspend loop in the SR_handler
3719//
3720//  Note that the SR_lock plays no role in this suspend/resume protocol.
3721//
3722
3723static void resume_clear_context(OSThread *osthread) {
3724  osthread->set_ucontext(NULL);
3725  osthread->set_siginfo(NULL);
3726
3727  // notify the suspend action is completed, we have now resumed
3728  osthread->sr.clear_suspended();
3729}
3730
3731static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3732  osthread->set_ucontext(context);
3733  osthread->set_siginfo(siginfo);
3734}
3735
3736//
3737// Handler function invoked when a thread's execution is suspended or
3738// resumed. We have to be careful that only async-safe functions are
3739// called here (Note: most pthread functions are not async safe and
3740// should be avoided.)
3741//
3742// Note: sigwait() is a more natural fit than sigsuspend() from an
3743// interface point of view, but sigwait() prevents the signal hander
3744// from being run. libpthread would get very confused by not having
3745// its signal handlers run and prevents sigwait()'s use with the
3746// mutex granting granting signal.
3747//
3748// Currently only ever called on the VMThread
3749//
3750static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3751  // Save and restore errno to avoid confusing native code with EINTR
3752  // after sigsuspend.
3753  int old_errno = errno;
3754
3755  Thread* thread = Thread::current();
3756  OSThread* osthread = thread->osthread();
3757  assert(thread->is_VM_thread(), "Must be VMThread");
3758  // read current suspend action
3759  int action = osthread->sr.suspend_action();
3760  if (action == SR_SUSPEND) {
3761    suspend_save_context(osthread, siginfo, context);
3762
3763    // Notify the suspend action is about to be completed. do_suspend()
3764    // waits until SR_SUSPENDED is set and then returns. We will wait
3765    // here for a resume signal and that completes the suspend-other
3766    // action. do_suspend/do_resume is always called as a pair from
3767    // the same thread - so there are no races
3768
3769    // notify the caller
3770    osthread->sr.set_suspended();
3771
3772    sigset_t suspend_set;  // signals for sigsuspend()
3773
3774    // get current set of blocked signals and unblock resume signal
3775    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3776    sigdelset(&suspend_set, SR_signum);
3777
3778    // wait here until we are resumed
3779    do {
3780      sigsuspend(&suspend_set);
3781      // ignore all returns until we get a resume signal
3782    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3783
3784    resume_clear_context(osthread);
3785
3786  } else {
3787    assert(action == SR_CONTINUE, "unexpected sr action");
3788    // nothing special to do - just leave the handler
3789  }
3790
3791  errno = old_errno;
3792}
3793
3794
3795static int SR_initialize() {
3796  struct sigaction act;
3797  char *s;
3798  /* Get signal number to use for suspend/resume */
3799  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3800    int sig = ::strtol(s, 0, 10);
3801    if (sig > 0 || sig < NSIG) {
3802        SR_signum = sig;
3803    }
3804  }
3805
3806  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3807        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3808
3809  sigemptyset(&SR_sigset);
3810  sigaddset(&SR_sigset, SR_signum);
3811
3812  /* Set up signal handler for suspend/resume */
3813  act.sa_flags = SA_RESTART|SA_SIGINFO;
3814  act.sa_handler = (void (*)(int)) SR_handler;
3815
3816  // SR_signum is blocked by default.
3817  // 4528190 - We also need to block pthread restart signal (32 on all
3818  // supported Bsd platforms). Note that BsdThreads need to block
3819  // this signal for all threads to work properly. So we don't have
3820  // to use hard-coded signal number when setting up the mask.
3821  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3822
3823  if (sigaction(SR_signum, &act, 0) == -1) {
3824    return -1;
3825  }
3826
3827  // Save signal flag
3828  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
3829  return 0;
3830}
3831
3832static int SR_finalize() {
3833  return 0;
3834}
3835
3836
3837// returns true on success and false on error - really an error is fatal
3838// but this seems the normal response to library errors
3839static bool do_suspend(OSThread* osthread) {
3840  // mark as suspended and send signal
3841  osthread->sr.set_suspend_action(SR_SUSPEND);
3842  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3843  assert_status(status == 0, status, "pthread_kill");
3844
3845  // check status and wait until notified of suspension
3846  if (status == 0) {
3847    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3848      os::yield_all(i);
3849    }
3850    osthread->sr.set_suspend_action(SR_NONE);
3851    return true;
3852  }
3853  else {
3854    osthread->sr.set_suspend_action(SR_NONE);
3855    return false;
3856  }
3857}
3858
3859static void do_resume(OSThread* osthread) {
3860  assert(osthread->sr.is_suspended(), "thread should be suspended");
3861  osthread->sr.set_suspend_action(SR_CONTINUE);
3862
3863  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3864  assert_status(status == 0, status, "pthread_kill");
3865  // check status and wait unit notified of resumption
3866  if (status == 0) {
3867    for (int i = 0; osthread->sr.is_suspended(); i++) {
3868      os::yield_all(i);
3869    }
3870  }
3871  osthread->sr.set_suspend_action(SR_NONE);
3872}
3873
3874////////////////////////////////////////////////////////////////////////////////
3875// interrupt support
3876
3877void os::interrupt(Thread* thread) {
3878  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3879    "possibility of dangling Thread pointer");
3880
3881  OSThread* osthread = thread->osthread();
3882
3883  if (!osthread->interrupted()) {
3884    osthread->set_interrupted(true);
3885    // More than one thread can get here with the same value of osthread,
3886    // resulting in multiple notifications.  We do, however, want the store
3887    // to interrupted() to be visible to other threads before we execute unpark().
3888    OrderAccess::fence();
3889    ParkEvent * const slp = thread->_SleepEvent ;
3890    if (slp != NULL) slp->unpark() ;
3891  }
3892
3893  // For JSR166. Unpark even if interrupt status already was set
3894  if (thread->is_Java_thread())
3895    ((JavaThread*)thread)->parker()->unpark();
3896
3897  ParkEvent * ev = thread->_ParkEvent ;
3898  if (ev != NULL) ev->unpark() ;
3899
3900}
3901
3902bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3903  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3904    "possibility of dangling Thread pointer");
3905
3906  OSThread* osthread = thread->osthread();
3907
3908  bool interrupted = osthread->interrupted();
3909
3910  if (interrupted && clear_interrupted) {
3911    osthread->set_interrupted(false);
3912    // consider thread->_SleepEvent->reset() ... optional optimization
3913  }
3914
3915  return interrupted;
3916}
3917
3918///////////////////////////////////////////////////////////////////////////////////
3919// signal handling (except suspend/resume)
3920
3921// This routine may be used by user applications as a "hook" to catch signals.
3922// The user-defined signal handler must pass unrecognized signals to this
3923// routine, and if it returns true (non-zero), then the signal handler must
3924// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3925// routine will never retun false (zero), but instead will execute a VM panic
3926// routine kill the process.
3927//
3928// If this routine returns false, it is OK to call it again.  This allows
3929// the user-defined signal handler to perform checks either before or after
3930// the VM performs its own checks.  Naturally, the user code would be making
3931// a serious error if it tried to handle an exception (such as a null check
3932// or breakpoint) that the VM was generating for its own correct operation.
3933//
3934// This routine may recognize any of the following kinds of signals:
3935//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3936// It should be consulted by handlers for any of those signals.
3937//
3938// The caller of this routine must pass in the three arguments supplied
3939// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3940// field of the structure passed to sigaction().  This routine assumes that
3941// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3942//
3943// Note that the VM will print warnings if it detects conflicting signal
3944// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3945//
3946extern "C" JNIEXPORT int
3947JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3948                        void* ucontext, int abort_if_unrecognized);
3949
3950void signalHandler(int sig, siginfo_t* info, void* uc) {
3951  assert(info != NULL && uc != NULL, "it must be old kernel");
3952  JVM_handle_bsd_signal(sig, info, uc, true);
3953}
3954
3955
3956// This boolean allows users to forward their own non-matching signals
3957// to JVM_handle_bsd_signal, harmlessly.
3958bool os::Bsd::signal_handlers_are_installed = false;
3959
3960// For signal-chaining
3961struct sigaction os::Bsd::sigact[MAXSIGNUM];
3962unsigned int os::Bsd::sigs = 0;
3963bool os::Bsd::libjsig_is_loaded = false;
3964typedef struct sigaction *(*get_signal_t)(int);
3965get_signal_t os::Bsd::get_signal_action = NULL;
3966
3967struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3968  struct sigaction *actp = NULL;
3969
3970  if (libjsig_is_loaded) {
3971    // Retrieve the old signal handler from libjsig
3972    actp = (*get_signal_action)(sig);
3973  }
3974  if (actp == NULL) {
3975    // Retrieve the preinstalled signal handler from jvm
3976    actp = get_preinstalled_handler(sig);
3977  }
3978
3979  return actp;
3980}
3981
3982static bool call_chained_handler(struct sigaction *actp, int sig,
3983                                 siginfo_t *siginfo, void *context) {
3984  // Call the old signal handler
3985  if (actp->sa_handler == SIG_DFL) {
3986    // It's more reasonable to let jvm treat it as an unexpected exception
3987    // instead of taking the default action.
3988    return false;
3989  } else if (actp->sa_handler != SIG_IGN) {
3990    if ((actp->sa_flags & SA_NODEFER) == 0) {
3991      // automaticlly block the signal
3992      sigaddset(&(actp->sa_mask), sig);
3993    }
3994
3995    sa_handler_t hand;
3996    sa_sigaction_t sa;
3997    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3998    // retrieve the chained handler
3999    if (siginfo_flag_set) {
4000      sa = actp->sa_sigaction;
4001    } else {
4002      hand = actp->sa_handler;
4003    }
4004
4005    if ((actp->sa_flags & SA_RESETHAND) != 0) {
4006      actp->sa_handler = SIG_DFL;
4007    }
4008
4009    // try to honor the signal mask
4010    sigset_t oset;
4011    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4012
4013    // call into the chained handler
4014    if (siginfo_flag_set) {
4015      (*sa)(sig, siginfo, context);
4016    } else {
4017      (*hand)(sig);
4018    }
4019
4020    // restore the signal mask
4021    pthread_sigmask(SIG_SETMASK, &oset, 0);
4022  }
4023  // Tell jvm's signal handler the signal is taken care of.
4024  return true;
4025}
4026
4027bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4028  bool chained = false;
4029  // signal-chaining
4030  if (UseSignalChaining) {
4031    struct sigaction *actp = get_chained_signal_action(sig);
4032    if (actp != NULL) {
4033      chained = call_chained_handler(actp, sig, siginfo, context);
4034    }
4035  }
4036  return chained;
4037}
4038
4039struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
4040  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4041    return &sigact[sig];
4042  }
4043  return NULL;
4044}
4045
4046void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4047  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4048  sigact[sig] = oldAct;
4049  sigs |= (unsigned int)1 << sig;
4050}
4051
4052// for diagnostic
4053int os::Bsd::sigflags[MAXSIGNUM];
4054
4055int os::Bsd::get_our_sigflags(int sig) {
4056  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4057  return sigflags[sig];
4058}
4059
4060void os::Bsd::set_our_sigflags(int sig, int flags) {
4061  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4062  sigflags[sig] = flags;
4063}
4064
4065void os::Bsd::set_signal_handler(int sig, bool set_installed) {
4066  // Check for overwrite.
4067  struct sigaction oldAct;
4068  sigaction(sig, (struct sigaction*)NULL, &oldAct);
4069
4070  void* oldhand = oldAct.sa_sigaction
4071                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4072                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4073  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4074      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4075      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4076    if (AllowUserSignalHandlers || !set_installed) {
4077      // Do not overwrite; user takes responsibility to forward to us.
4078      return;
4079    } else if (UseSignalChaining) {
4080      // save the old handler in jvm
4081      save_preinstalled_handler(sig, oldAct);
4082      // libjsig also interposes the sigaction() call below and saves the
4083      // old sigaction on it own.
4084    } else {
4085      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4086                    "%#lx for signal %d.", (long)oldhand, sig));
4087    }
4088  }
4089
4090  struct sigaction sigAct;
4091  sigfillset(&(sigAct.sa_mask));
4092  sigAct.sa_handler = SIG_DFL;
4093  if (!set_installed) {
4094    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4095  } else {
4096    sigAct.sa_sigaction = signalHandler;
4097    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4098  }
4099  // Save flags, which are set by ours
4100  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4101  sigflags[sig] = sigAct.sa_flags;
4102
4103  int ret = sigaction(sig, &sigAct, &oldAct);
4104  assert(ret == 0, "check");
4105
4106  void* oldhand2  = oldAct.sa_sigaction
4107                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4108                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4109  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4110}
4111
4112// install signal handlers for signals that HotSpot needs to
4113// handle in order to support Java-level exception handling.
4114
4115void os::Bsd::install_signal_handlers() {
4116  if (!signal_handlers_are_installed) {
4117    signal_handlers_are_installed = true;
4118
4119    // signal-chaining
4120    typedef void (*signal_setting_t)();
4121    signal_setting_t begin_signal_setting = NULL;
4122    signal_setting_t end_signal_setting = NULL;
4123    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4124                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4125    if (begin_signal_setting != NULL) {
4126      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4127                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4128      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4129                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4130      libjsig_is_loaded = true;
4131      assert(UseSignalChaining, "should enable signal-chaining");
4132    }
4133    if (libjsig_is_loaded) {
4134      // Tell libjsig jvm is setting signal handlers
4135      (*begin_signal_setting)();
4136    }
4137
4138    set_signal_handler(SIGSEGV, true);
4139    set_signal_handler(SIGPIPE, true);
4140    set_signal_handler(SIGBUS, true);
4141    set_signal_handler(SIGILL, true);
4142    set_signal_handler(SIGFPE, true);
4143    set_signal_handler(SIGXFSZ, true);
4144
4145#if defined(__APPLE__)
4146    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
4147    // signals caught and handled by the JVM. To work around this, we reset the mach task
4148    // signal handler that's placed on our process by CrashReporter. This disables
4149    // CrashReporter-based reporting.
4150    //
4151    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
4152    // on caught fatal signals.
4153    //
4154    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
4155    // handlers. By replacing the existing task exception handler, we disable gdb's mach
4156    // exception handling, while leaving the standard BSD signal handlers functional.
4157    kern_return_t kr;
4158    kr = task_set_exception_ports(mach_task_self(),
4159        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
4160        MACH_PORT_NULL,
4161        EXCEPTION_STATE_IDENTITY,
4162        MACHINE_THREAD_STATE);
4163
4164    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
4165#endif
4166
4167    if (libjsig_is_loaded) {
4168      // Tell libjsig jvm finishes setting signal handlers
4169      (*end_signal_setting)();
4170    }
4171
4172    // We don't activate signal checker if libjsig is in place, we trust ourselves
4173    // and if UserSignalHandler is installed all bets are off
4174    if (CheckJNICalls) {
4175      if (libjsig_is_loaded) {
4176        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4177        check_signals = false;
4178      }
4179      if (AllowUserSignalHandlers) {
4180        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4181        check_signals = false;
4182      }
4183    }
4184  }
4185}
4186
4187#ifndef _ALLBSD_SOURCE
4188// This is the fastest way to get thread cpu time on Bsd.
4189// Returns cpu time (user+sys) for any thread, not only for current.
4190// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4191// It might work on 2.6.10+ with a special kernel/glibc patch.
4192// For reference, please, see IEEE Std 1003.1-2004:
4193//   http://www.unix.org/single_unix_specification
4194
4195jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) {
4196  struct timespec tp;
4197  int rc = os::Bsd::clock_gettime(clockid, &tp);
4198  assert(rc == 0, "clock_gettime is expected to return 0 code");
4199
4200  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
4201}
4202#endif
4203
4204/////
4205// glibc on Bsd platform uses non-documented flag
4206// to indicate, that some special sort of signal
4207// trampoline is used.
4208// We will never set this flag, and we should
4209// ignore this flag in our diagnostic
4210#ifdef SIGNIFICANT_SIGNAL_MASK
4211#undef SIGNIFICANT_SIGNAL_MASK
4212#endif
4213#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4214
4215static const char* get_signal_handler_name(address handler,
4216                                           char* buf, int buflen) {
4217  int offset;
4218  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4219  if (found) {
4220    // skip directory names
4221    const char *p1, *p2;
4222    p1 = buf;
4223    size_t len = strlen(os::file_separator());
4224    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4225    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4226  } else {
4227    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4228  }
4229  return buf;
4230}
4231
4232static void print_signal_handler(outputStream* st, int sig,
4233                                 char* buf, size_t buflen) {
4234  struct sigaction sa;
4235
4236  sigaction(sig, NULL, &sa);
4237
4238  // See comment for SIGNIFICANT_SIGNAL_MASK define
4239  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4240
4241  st->print("%s: ", os::exception_name(sig, buf, buflen));
4242
4243  address handler = (sa.sa_flags & SA_SIGINFO)
4244    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4245    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4246
4247  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4248    st->print("SIG_DFL");
4249  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4250    st->print("SIG_IGN");
4251  } else {
4252    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4253  }
4254
4255  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4256
4257  address rh = VMError::get_resetted_sighandler(sig);
4258  // May be, handler was resetted by VMError?
4259  if(rh != NULL) {
4260    handler = rh;
4261    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4262  }
4263
4264  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4265
4266  // Check: is it our handler?
4267  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4268     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4269    // It is our signal handler
4270    // check for flags, reset system-used one!
4271    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4272      st->print(
4273                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4274                os::Bsd::get_our_sigflags(sig));
4275    }
4276  }
4277  st->cr();
4278}
4279
4280
4281#define DO_SIGNAL_CHECK(sig) \
4282  if (!sigismember(&check_signal_done, sig)) \
4283    os::Bsd::check_signal_handler(sig)
4284
4285// This method is a periodic task to check for misbehaving JNI applications
4286// under CheckJNI, we can add any periodic checks here
4287
4288void os::run_periodic_checks() {
4289
4290  if (check_signals == false) return;
4291
4292  // SEGV and BUS if overridden could potentially prevent
4293  // generation of hs*.log in the event of a crash, debugging
4294  // such a case can be very challenging, so we absolutely
4295  // check the following for a good measure:
4296  DO_SIGNAL_CHECK(SIGSEGV);
4297  DO_SIGNAL_CHECK(SIGILL);
4298  DO_SIGNAL_CHECK(SIGFPE);
4299  DO_SIGNAL_CHECK(SIGBUS);
4300  DO_SIGNAL_CHECK(SIGPIPE);
4301  DO_SIGNAL_CHECK(SIGXFSZ);
4302
4303
4304  // ReduceSignalUsage allows the user to override these handlers
4305  // see comments at the very top and jvm_solaris.h
4306  if (!ReduceSignalUsage) {
4307    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4308    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4309    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4310    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4311  }
4312
4313  DO_SIGNAL_CHECK(SR_signum);
4314  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4315}
4316
4317typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4318
4319static os_sigaction_t os_sigaction = NULL;
4320
4321void os::Bsd::check_signal_handler(int sig) {
4322  char buf[O_BUFLEN];
4323  address jvmHandler = NULL;
4324
4325
4326  struct sigaction act;
4327  if (os_sigaction == NULL) {
4328    // only trust the default sigaction, in case it has been interposed
4329    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4330    if (os_sigaction == NULL) return;
4331  }
4332
4333  os_sigaction(sig, (struct sigaction*)NULL, &act);
4334
4335
4336  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4337
4338  address thisHandler = (act.sa_flags & SA_SIGINFO)
4339    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4340    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4341
4342
4343  switch(sig) {
4344  case SIGSEGV:
4345  case SIGBUS:
4346  case SIGFPE:
4347  case SIGPIPE:
4348  case SIGILL:
4349  case SIGXFSZ:
4350    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4351    break;
4352
4353  case SHUTDOWN1_SIGNAL:
4354  case SHUTDOWN2_SIGNAL:
4355  case SHUTDOWN3_SIGNAL:
4356  case BREAK_SIGNAL:
4357    jvmHandler = (address)user_handler();
4358    break;
4359
4360  case INTERRUPT_SIGNAL:
4361    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4362    break;
4363
4364  default:
4365    if (sig == SR_signum) {
4366      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4367    } else {
4368      return;
4369    }
4370    break;
4371  }
4372
4373  if (thisHandler != jvmHandler) {
4374    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4375    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4376    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4377    // No need to check this sig any longer
4378    sigaddset(&check_signal_done, sig);
4379  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4380    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4381    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
4382    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4383    // No need to check this sig any longer
4384    sigaddset(&check_signal_done, sig);
4385  }
4386
4387  // Dump all the signal
4388  if (sigismember(&check_signal_done, sig)) {
4389    print_signal_handlers(tty, buf, O_BUFLEN);
4390  }
4391}
4392
4393extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4394
4395extern bool signal_name(int signo, char* buf, size_t len);
4396
4397const char* os::exception_name(int exception_code, char* buf, size_t size) {
4398  if (0 < exception_code && exception_code <= SIGRTMAX) {
4399    // signal
4400    if (!signal_name(exception_code, buf, size)) {
4401      jio_snprintf(buf, size, "SIG%d", exception_code);
4402    }
4403    return buf;
4404  } else {
4405    return NULL;
4406  }
4407}
4408
4409// this is called _before_ the most of global arguments have been parsed
4410void os::init(void) {
4411  char dummy;   /* used to get a guess on initial stack address */
4412//  first_hrtime = gethrtime();
4413
4414  // With BsdThreads the JavaMain thread pid (primordial thread)
4415  // is different than the pid of the java launcher thread.
4416  // So, on Bsd, the launcher thread pid is passed to the VM
4417  // via the sun.java.launcher.pid property.
4418  // Use this property instead of getpid() if it was correctly passed.
4419  // See bug 6351349.
4420  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4421
4422  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4423
4424  clock_tics_per_sec = CLK_TCK;
4425
4426  init_random(1234567);
4427
4428  ThreadCritical::initialize();
4429
4430  Bsd::set_page_size(getpagesize());
4431  if (Bsd::page_size() == -1) {
4432    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
4433                  strerror(errno)));
4434  }
4435  init_page_sizes((size_t) Bsd::page_size());
4436
4437  Bsd::initialize_system_info();
4438
4439  // main_thread points to the aboriginal thread
4440  Bsd::_main_thread = pthread_self();
4441
4442  Bsd::clock_init();
4443  initial_time_count = os::elapsed_counter();
4444
4445#ifdef __APPLE__
4446  // XXXDARWIN
4447  // Work around the unaligned VM callbacks in hotspot's
4448  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
4449  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
4450  // alignment when doing symbol lookup. To work around this, we force early
4451  // binding of all symbols now, thus binding when alignment is known-good.
4452  _dyld_bind_fully_image_containing_address((const void *) &os::init);
4453#endif
4454}
4455
4456// To install functions for atexit system call
4457extern "C" {
4458  static void perfMemory_exit_helper() {
4459    perfMemory_exit();
4460  }
4461}
4462
4463// this is called _after_ the global arguments have been parsed
4464jint os::init_2(void)
4465{
4466#ifndef _ALLBSD_SOURCE
4467  Bsd::fast_thread_clock_init();
4468#endif
4469
4470  // Allocate a single page and mark it as readable for safepoint polling
4471  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4472  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4473
4474  os::set_polling_page( polling_page );
4475
4476#ifndef PRODUCT
4477  if(Verbose && PrintMiscellaneous)
4478    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4479#endif
4480
4481  if (!UseMembar) {
4482    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4483    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4484    os::set_memory_serialize_page( mem_serialize_page );
4485
4486#ifndef PRODUCT
4487    if(Verbose && PrintMiscellaneous)
4488      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4489#endif
4490  }
4491
4492  os::large_page_init();
4493
4494  // initialize suspend/resume support - must do this before signal_sets_init()
4495  if (SR_initialize() != 0) {
4496    perror("SR_initialize failed");
4497    return JNI_ERR;
4498  }
4499
4500  Bsd::signal_sets_init();
4501  Bsd::install_signal_handlers();
4502
4503  // Check minimum allowable stack size for thread creation and to initialize
4504  // the java system classes, including StackOverflowError - depends on page
4505  // size.  Add a page for compiler2 recursion in main thread.
4506  // Add in 2*BytesPerWord times page size to account for VM stack during
4507  // class initialization depending on 32 or 64 bit VM.
4508  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
4509            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4510                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
4511
4512  size_t threadStackSizeInBytes = ThreadStackSize * K;
4513  if (threadStackSizeInBytes != 0 &&
4514      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
4515        tty->print_cr("\nThe stack size specified is too small, "
4516                      "Specify at least %dk",
4517                      os::Bsd::min_stack_allowed/ K);
4518        return JNI_ERR;
4519  }
4520
4521  // Make the stack size a multiple of the page size so that
4522  // the yellow/red zones can be guarded.
4523  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4524        vm_page_size()));
4525
4526#ifndef _ALLBSD_SOURCE
4527  Bsd::capture_initial_stack(JavaThread::stack_size_at_create());
4528
4529  Bsd::libpthread_init();
4530  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4531     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4532          Bsd::glibc_version(), Bsd::libpthread_version(),
4533          Bsd::is_floating_stack() ? "floating stack" : "fixed stack");
4534  }
4535
4536  if (UseNUMA) {
4537    if (!Bsd::libnuma_init()) {
4538      UseNUMA = false;
4539    } else {
4540      if ((Bsd::numa_max_node() < 1)) {
4541        // There's only one node(they start from 0), disable NUMA.
4542        UseNUMA = false;
4543      }
4544    }
4545    // With SHM large pages we cannot uncommit a page, so there's not way
4546    // we can make the adaptive lgrp chunk resizing work. If the user specified
4547    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4548    // disable adaptive resizing.
4549    if (UseNUMA && UseLargePages && UseSHM) {
4550      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4551        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4552          UseLargePages = false;
4553        } else {
4554          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4555          UseAdaptiveSizePolicy = false;
4556          UseAdaptiveNUMAChunkSizing = false;
4557        }
4558      } else {
4559        UseNUMA = false;
4560      }
4561    }
4562    if (!UseNUMA && ForceNUMA) {
4563      UseNUMA = true;
4564    }
4565  }
4566#endif
4567
4568  if (MaxFDLimit) {
4569    // set the number of file descriptors to max. print out error
4570    // if getrlimit/setrlimit fails but continue regardless.
4571    struct rlimit nbr_files;
4572    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4573    if (status != 0) {
4574      if (PrintMiscellaneous && (Verbose || WizardMode))
4575        perror("os::init_2 getrlimit failed");
4576    } else {
4577      nbr_files.rlim_cur = nbr_files.rlim_max;
4578
4579#ifdef __APPLE__
4580      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
4581      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
4582      // be used instead
4583      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
4584#endif
4585
4586      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4587      if (status != 0) {
4588        if (PrintMiscellaneous && (Verbose || WizardMode))
4589          perror("os::init_2 setrlimit failed");
4590      }
4591    }
4592  }
4593
4594#ifndef _ALLBSD_SOURCE
4595  // Initialize lock used to serialize thread creation (see os::create_thread)
4596  Bsd::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4597#endif
4598
4599  // at-exit methods are called in the reverse order of their registration.
4600  // atexit functions are called on return from main or as a result of a
4601  // call to exit(3C). There can be only 32 of these functions registered
4602  // and atexit() does not set errno.
4603
4604  if (PerfAllowAtExitRegistration) {
4605    // only register atexit functions if PerfAllowAtExitRegistration is set.
4606    // atexit functions can be delayed until process exit time, which
4607    // can be problematic for embedded VM situations. Embedded VMs should
4608    // call DestroyJavaVM() to assure that VM resources are released.
4609
4610    // note: perfMemory_exit_helper atexit function may be removed in
4611    // the future if the appropriate cleanup code can be added to the
4612    // VM_Exit VMOperation's doit method.
4613    if (atexit(perfMemory_exit_helper) != 0) {
4614      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4615    }
4616  }
4617
4618  // initialize thread priority policy
4619  prio_init();
4620
4621#ifdef __APPLE__
4622  // dynamically link to objective c gc registration
4623  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
4624  if (handleLibObjc != NULL) {
4625    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
4626  }
4627#endif
4628
4629  return JNI_OK;
4630}
4631
4632// this is called at the end of vm_initialization
4633void os::init_3(void) { }
4634
4635// Mark the polling page as unreadable
4636void os::make_polling_page_unreadable(void) {
4637  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
4638    fatal("Could not disable polling page");
4639};
4640
4641// Mark the polling page as readable
4642void os::make_polling_page_readable(void) {
4643  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
4644    fatal("Could not enable polling page");
4645  }
4646};
4647
4648int os::active_processor_count() {
4649#ifdef _ALLBSD_SOURCE
4650  return _processor_count;
4651#else
4652  // Bsd doesn't yet have a (official) notion of processor sets,
4653  // so just return the number of online processors.
4654  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4655  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4656  return online_cpus;
4657#endif
4658}
4659
4660void os::set_native_thread_name(const char *name) {
4661#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
4662  // This is only supported in Snow Leopard and beyond
4663  if (name != NULL) {
4664    // Add a "Java: " prefix to the name
4665    char buf[MAXTHREADNAMESIZE];
4666    snprintf(buf, sizeof(buf), "Java: %s", name);
4667    pthread_setname_np(buf);
4668  }
4669#endif
4670}
4671
4672bool os::distribute_processes(uint length, uint* distribution) {
4673  // Not yet implemented.
4674  return false;
4675}
4676
4677bool os::bind_to_processor(uint processor_id) {
4678  // Not yet implemented.
4679  return false;
4680}
4681
4682///
4683
4684// Suspends the target using the signal mechanism and then grabs the PC before
4685// resuming the target. Used by the flat-profiler only
4686ExtendedPC os::get_thread_pc(Thread* thread) {
4687  // Make sure that it is called by the watcher for the VMThread
4688  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4689  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4690
4691  ExtendedPC epc;
4692
4693  OSThread* osthread = thread->osthread();
4694  if (do_suspend(osthread)) {
4695    if (osthread->ucontext() != NULL) {
4696      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
4697    } else {
4698      // NULL context is unexpected, double-check this is the VMThread
4699      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4700    }
4701    do_resume(osthread);
4702  }
4703  // failure means pthread_kill failed for some reason - arguably this is
4704  // a fatal problem, but such problems are ignored elsewhere
4705
4706  return epc;
4707}
4708
4709int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4710{
4711#ifdef _ALLBSD_SOURCE
4712  return pthread_cond_timedwait(_cond, _mutex, _abstime);
4713#else
4714   if (is_NPTL()) {
4715      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4716   } else {
4717#ifndef IA64
4718      // 6292965: BsdThreads pthread_cond_timedwait() resets FPU control
4719      // word back to default 64bit precision if condvar is signaled. Java
4720      // wants 53bit precision.  Save and restore current value.
4721      int fpu = get_fpu_control_word();
4722#endif // IA64
4723      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4724#ifndef IA64
4725      set_fpu_control_word(fpu);
4726#endif // IA64
4727      return status;
4728   }
4729#endif
4730}
4731
4732////////////////////////////////////////////////////////////////////////////////
4733// debug support
4734
4735static address same_page(address x, address y) {
4736  int page_bits = -os::vm_page_size();
4737  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4738    return x;
4739  else if (x > y)
4740    return (address)(intptr_t(y) | ~page_bits) + 1;
4741  else
4742    return (address)(intptr_t(y) & page_bits);
4743}
4744
4745bool os::find(address addr, outputStream* st) {
4746  Dl_info dlinfo;
4747  memset(&dlinfo, 0, sizeof(dlinfo));
4748  if (dladdr(addr, &dlinfo)) {
4749    st->print(PTR_FORMAT ": ", addr);
4750    if (dlinfo.dli_sname != NULL) {
4751      st->print("%s+%#x", dlinfo.dli_sname,
4752                 addr - (intptr_t)dlinfo.dli_saddr);
4753    } else if (dlinfo.dli_fname) {
4754      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4755    } else {
4756      st->print("<absolute address>");
4757    }
4758    if (dlinfo.dli_fname) {
4759      st->print(" in %s", dlinfo.dli_fname);
4760    }
4761    if (dlinfo.dli_fbase) {
4762      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4763    }
4764    st->cr();
4765
4766    if (Verbose) {
4767      // decode some bytes around the PC
4768      address begin = same_page(addr-40, addr);
4769      address end   = same_page(addr+40, addr);
4770      address       lowest = (address) dlinfo.dli_sname;
4771      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4772      if (begin < lowest)  begin = lowest;
4773      Dl_info dlinfo2;
4774      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4775          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4776        end = (address) dlinfo2.dli_saddr;
4777      Disassembler::decode(begin, end, st);
4778    }
4779    return true;
4780  }
4781  return false;
4782}
4783
4784////////////////////////////////////////////////////////////////////////////////
4785// misc
4786
4787// This does not do anything on Bsd. This is basically a hook for being
4788// able to use structured exception handling (thread-local exception filters)
4789// on, e.g., Win32.
4790void
4791os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4792                         JavaCallArguments* args, Thread* thread) {
4793  f(value, method, args, thread);
4794}
4795
4796void os::print_statistics() {
4797}
4798
4799int os::message_box(const char* title, const char* message) {
4800  int i;
4801  fdStream err(defaultStream::error_fd());
4802  for (i = 0; i < 78; i++) err.print_raw("=");
4803  err.cr();
4804  err.print_raw_cr(title);
4805  for (i = 0; i < 78; i++) err.print_raw("-");
4806  err.cr();
4807  err.print_raw_cr(message);
4808  for (i = 0; i < 78; i++) err.print_raw("=");
4809  err.cr();
4810
4811  char buf[16];
4812  // Prevent process from exiting upon "read error" without consuming all CPU
4813  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4814
4815  return buf[0] == 'y' || buf[0] == 'Y';
4816}
4817
4818int os::stat(const char *path, struct stat *sbuf) {
4819  char pathbuf[MAX_PATH];
4820  if (strlen(path) > MAX_PATH - 1) {
4821    errno = ENAMETOOLONG;
4822    return -1;
4823  }
4824  os::native_path(strcpy(pathbuf, path));
4825  return ::stat(pathbuf, sbuf);
4826}
4827
4828bool os::check_heap(bool force) {
4829  return true;
4830}
4831
4832int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4833  return ::vsnprintf(buf, count, format, args);
4834}
4835
4836// Is a (classpath) directory empty?
4837bool os::dir_is_empty(const char* path) {
4838  DIR *dir = NULL;
4839  struct dirent *ptr;
4840
4841  dir = opendir(path);
4842  if (dir == NULL) return true;
4843
4844  /* Scan the directory */
4845  bool result = true;
4846  char buf[sizeof(struct dirent) + MAX_PATH];
4847  while (result && (ptr = ::readdir(dir)) != NULL) {
4848    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4849      result = false;
4850    }
4851  }
4852  closedir(dir);
4853  return result;
4854}
4855
4856// This code originates from JDK's sysOpen and open64_w
4857// from src/solaris/hpi/src/system_md.c
4858
4859#ifndef O_DELETE
4860#define O_DELETE 0x10000
4861#endif
4862
4863// Open a file. Unlink the file immediately after open returns
4864// if the specified oflag has the O_DELETE flag set.
4865// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4866
4867int os::open(const char *path, int oflag, int mode) {
4868
4869  if (strlen(path) > MAX_PATH - 1) {
4870    errno = ENAMETOOLONG;
4871    return -1;
4872  }
4873  int fd;
4874  int o_delete = (oflag & O_DELETE);
4875  oflag = oflag & ~O_DELETE;
4876
4877  fd = ::open(path, oflag, mode);
4878  if (fd == -1) return -1;
4879
4880  //If the open succeeded, the file might still be a directory
4881  {
4882    struct stat buf;
4883    int ret = ::fstat(fd, &buf);
4884    int st_mode = buf.st_mode;
4885
4886    if (ret != -1) {
4887      if ((st_mode & S_IFMT) == S_IFDIR) {
4888        errno = EISDIR;
4889        ::close(fd);
4890        return -1;
4891      }
4892    } else {
4893      ::close(fd);
4894      return -1;
4895    }
4896  }
4897
4898    /*
4899     * All file descriptors that are opened in the JVM and not
4900     * specifically destined for a subprocess should have the
4901     * close-on-exec flag set.  If we don't set it, then careless 3rd
4902     * party native code might fork and exec without closing all
4903     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4904     * UNIXProcess.c), and this in turn might:
4905     *
4906     * - cause end-of-file to fail to be detected on some file
4907     *   descriptors, resulting in mysterious hangs, or
4908     *
4909     * - might cause an fopen in the subprocess to fail on a system
4910     *   suffering from bug 1085341.
4911     *
4912     * (Yes, the default setting of the close-on-exec flag is a Unix
4913     * design flaw)
4914     *
4915     * See:
4916     * 1085341: 32-bit stdio routines should support file descriptors >255
4917     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4918     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4919     */
4920#ifdef FD_CLOEXEC
4921    {
4922        int flags = ::fcntl(fd, F_GETFD);
4923        if (flags != -1)
4924            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4925    }
4926#endif
4927
4928  if (o_delete != 0) {
4929    ::unlink(path);
4930  }
4931  return fd;
4932}
4933
4934
4935// create binary file, rewriting existing file if required
4936int os::create_binary_file(const char* path, bool rewrite_existing) {
4937  int oflags = O_WRONLY | O_CREAT;
4938  if (!rewrite_existing) {
4939    oflags |= O_EXCL;
4940  }
4941  return ::open(path, oflags, S_IREAD | S_IWRITE);
4942}
4943
4944// return current position of file pointer
4945jlong os::current_file_offset(int fd) {
4946  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4947}
4948
4949// move file pointer to the specified offset
4950jlong os::seek_to_file_offset(int fd, jlong offset) {
4951  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4952}
4953
4954// This code originates from JDK's sysAvailable
4955// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4956
4957int os::available(int fd, jlong *bytes) {
4958  jlong cur, end;
4959  int mode;
4960  struct stat buf;
4961
4962  if (::fstat(fd, &buf) >= 0) {
4963    mode = buf.st_mode;
4964    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4965      /*
4966      * XXX: is the following call interruptible? If so, this might
4967      * need to go through the INTERRUPT_IO() wrapper as for other
4968      * blocking, interruptible calls in this file.
4969      */
4970      int n;
4971      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4972        *bytes = n;
4973        return 1;
4974      }
4975    }
4976  }
4977  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4978    return 0;
4979  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4980    return 0;
4981  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4982    return 0;
4983  }
4984  *bytes = end - cur;
4985  return 1;
4986}
4987
4988int os::socket_available(int fd, jint *pbytes) {
4989   if (fd < 0)
4990     return OS_OK;
4991
4992   int ret;
4993
4994   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4995
4996   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4997   // is expected to return 0 on failure and 1 on success to the jdk.
4998
4999   return (ret == OS_ERR) ? 0 : 1;
5000}
5001
5002// Map a block of memory.
5003char* os::map_memory(int fd, const char* file_name, size_t file_offset,
5004                     char *addr, size_t bytes, bool read_only,
5005                     bool allow_exec) {
5006  int prot;
5007  int flags;
5008
5009  if (read_only) {
5010    prot = PROT_READ;
5011    flags = MAP_SHARED;
5012  } else {
5013    prot = PROT_READ | PROT_WRITE;
5014    flags = MAP_PRIVATE;
5015  }
5016
5017  if (allow_exec) {
5018    prot |= PROT_EXEC;
5019  }
5020
5021  if (addr != NULL) {
5022    flags |= MAP_FIXED;
5023  }
5024
5025  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5026                                     fd, file_offset);
5027  if (mapped_address == MAP_FAILED) {
5028    return NULL;
5029  }
5030  return mapped_address;
5031}
5032
5033
5034// Remap a block of memory.
5035char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
5036                       char *addr, size_t bytes, bool read_only,
5037                       bool allow_exec) {
5038  // same as map_memory() on this OS
5039  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5040                        allow_exec);
5041}
5042
5043
5044// Unmap a block of memory.
5045bool os::unmap_memory(char* addr, size_t bytes) {
5046  return munmap(addr, bytes) == 0;
5047}
5048
5049#ifndef _ALLBSD_SOURCE
5050static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5051
5052static clockid_t thread_cpu_clockid(Thread* thread) {
5053  pthread_t tid = thread->osthread()->pthread_id();
5054  clockid_t clockid;
5055
5056  // Get thread clockid
5057  int rc = os::Bsd::pthread_getcpuclockid(tid, &clockid);
5058  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5059  return clockid;
5060}
5061#endif
5062
5063// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5064// are used by JVM M&M and JVMTI to get user+sys or user CPU time
5065// of a thread.
5066//
5067// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5068// the fast estimate available on the platform.
5069
5070jlong os::current_thread_cpu_time() {
5071#ifdef __APPLE__
5072  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
5073#elif !defined(_ALLBSD_SOURCE)
5074  if (os::Bsd::supports_fast_thread_cpu_time()) {
5075    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5076  } else {
5077    // return user + sys since the cost is the same
5078    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5079  }
5080#endif
5081}
5082
5083jlong os::thread_cpu_time(Thread* thread) {
5084#ifndef _ALLBSD_SOURCE
5085  // consistent with what current_thread_cpu_time() returns
5086  if (os::Bsd::supports_fast_thread_cpu_time()) {
5087    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5088  } else {
5089    return slow_thread_cpu_time(thread, true /* user + sys */);
5090  }
5091#endif
5092}
5093
5094jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5095#ifdef __APPLE__
5096  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5097#elif !defined(_ALLBSD_SOURCE)
5098  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5099    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5100  } else {
5101    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5102  }
5103#endif
5104}
5105
5106jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5107#ifdef __APPLE__
5108  struct thread_basic_info tinfo;
5109  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
5110  kern_return_t kr;
5111  mach_port_t mach_thread;
5112
5113  mach_thread = pthread_mach_thread_np(thread->osthread()->thread_id());
5114  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
5115  if (kr != KERN_SUCCESS)
5116    return -1;
5117
5118  if (user_sys_cpu_time) {
5119    jlong nanos;
5120    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
5121    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
5122    return nanos;
5123  } else {
5124    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
5125  }
5126#elif !defined(_ALLBSD_SOURCE)
5127  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5128    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5129  } else {
5130    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5131  }
5132#endif
5133}
5134
5135#ifndef _ALLBSD_SOURCE
5136//
5137//  -1 on error.
5138//
5139
5140static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5141  static bool proc_pid_cpu_avail = true;
5142  static bool proc_task_unchecked = true;
5143  static const char *proc_stat_path = "/proc/%d/stat";
5144  pid_t  tid = thread->osthread()->thread_id();
5145  int i;
5146  char *s;
5147  char stat[2048];
5148  int statlen;
5149  char proc_name[64];
5150  int count;
5151  long sys_time, user_time;
5152  char string[64];
5153  char cdummy;
5154  int idummy;
5155  long ldummy;
5156  FILE *fp;
5157
5158  // We first try accessing /proc/<pid>/cpu since this is faster to
5159  // process.  If this file is not present (bsd kernels 2.5 and above)
5160  // then we open /proc/<pid>/stat.
5161  if ( proc_pid_cpu_avail ) {
5162    sprintf(proc_name, "/proc/%d/cpu", tid);
5163    fp =  fopen(proc_name, "r");
5164    if ( fp != NULL ) {
5165      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
5166      fclose(fp);
5167      if ( count != 3 ) return -1;
5168
5169      if (user_sys_cpu_time) {
5170        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5171      } else {
5172        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5173      }
5174    }
5175    else proc_pid_cpu_avail = false;
5176  }
5177
5178  // The /proc/<tid>/stat aggregates per-process usage on
5179  // new Bsd kernels 2.6+ where NPTL is supported.
5180  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5181  // See bug 6328462.
5182  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
5183  // and possibly in some other cases, so we check its availability.
5184  if (proc_task_unchecked && os::Bsd::is_NPTL()) {
5185    // This is executed only once
5186    proc_task_unchecked = false;
5187    fp = fopen("/proc/self/task", "r");
5188    if (fp != NULL) {
5189      proc_stat_path = "/proc/self/task/%d/stat";
5190      fclose(fp);
5191    }
5192  }
5193
5194  sprintf(proc_name, proc_stat_path, tid);
5195  fp = fopen(proc_name, "r");
5196  if ( fp == NULL ) return -1;
5197  statlen = fread(stat, 1, 2047, fp);
5198  stat[statlen] = '\0';
5199  fclose(fp);
5200
5201  // Skip pid and the command string. Note that we could be dealing with
5202  // weird command names, e.g. user could decide to rename java launcher
5203  // to "java 1.4.2 :)", then the stat file would look like
5204  //                1234 (java 1.4.2 :)) R ... ...
5205  // We don't really need to know the command string, just find the last
5206  // occurrence of ")" and then start parsing from there. See bug 4726580.
5207  s = strrchr(stat, ')');
5208  i = 0;
5209  if (s == NULL ) return -1;
5210
5211  // Skip blank chars
5212  do s++; while (isspace(*s));
5213
5214  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5215                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5216                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5217                 &user_time, &sys_time);
5218  if ( count != 13 ) return -1;
5219  if (user_sys_cpu_time) {
5220    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5221  } else {
5222    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5223  }
5224}
5225#endif
5226
5227void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5228  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5229  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5230  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5231  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5232}
5233
5234void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5235  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5236  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5237  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5238  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5239}
5240
5241bool os::is_thread_cpu_time_supported() {
5242#ifdef __APPLE__
5243  return true;
5244#elif defined(_ALLBSD_SOURCE)
5245  return false;
5246#else
5247  return true;
5248#endif
5249}
5250
5251// System loadavg support.  Returns -1 if load average cannot be obtained.
5252// Bsd doesn't yet have a (official) notion of processor sets,
5253// so just return the system wide load average.
5254int os::loadavg(double loadavg[], int nelem) {
5255  return ::getloadavg(loadavg, nelem);
5256}
5257
5258void os::pause() {
5259  char filename[MAX_PATH];
5260  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5261    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5262  } else {
5263    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5264  }
5265
5266  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5267  if (fd != -1) {
5268    struct stat buf;
5269    ::close(fd);
5270    while (::stat(filename, &buf) == 0) {
5271      (void)::poll(NULL, 0, 100);
5272    }
5273  } else {
5274    jio_fprintf(stderr,
5275      "Could not open pause file '%s', continuing immediately.\n", filename);
5276  }
5277}
5278
5279
5280// Refer to the comments in os_solaris.cpp park-unpark.
5281//
5282// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5283// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5284// For specifics regarding the bug see GLIBC BUGID 261237 :
5285//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5286// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5287// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5288// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5289// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5290// and monitorenter when we're using 1-0 locking.  All those operations may result in
5291// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5292// of libpthread avoids the problem, but isn't practical.
5293//
5294// Possible remedies:
5295//
5296// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5297//      This is palliative and probabilistic, however.  If the thread is preempted
5298//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5299//      than the minimum period may have passed, and the abstime may be stale (in the
5300//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5301//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5302//
5303// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5304//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5305//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5306//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5307//      thread.
5308//
5309// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5310//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5311//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5312//      This also works well.  In fact it avoids kernel-level scalability impediments
5313//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5314//      timers in a graceful fashion.
5315//
5316// 4.   When the abstime value is in the past it appears that control returns
5317//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5318//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5319//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5320//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5321//      It may be possible to avoid reinitialization by checking the return
5322//      value from pthread_cond_timedwait().  In addition to reinitializing the
5323//      condvar we must establish the invariant that cond_signal() is only called
5324//      within critical sections protected by the adjunct mutex.  This prevents
5325//      cond_signal() from "seeing" a condvar that's in the midst of being
5326//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5327//      desirable signal-after-unlock optimization that avoids futile context switching.
5328//
5329//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5330//      structure when a condvar is used or initialized.  cond_destroy()  would
5331//      release the helper structure.  Our reinitialize-after-timedwait fix
5332//      put excessive stress on malloc/free and locks protecting the c-heap.
5333//
5334// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5335// It may be possible to refine (4) by checking the kernel and NTPL verisons
5336// and only enabling the work-around for vulnerable environments.
5337
5338// utility to compute the abstime argument to timedwait:
5339// millis is the relative timeout time
5340// abstime will be the absolute timeout time
5341// TODO: replace compute_abstime() with unpackTime()
5342
5343static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
5344  if (millis < 0)  millis = 0;
5345  struct timeval now;
5346  int status = gettimeofday(&now, NULL);
5347  assert(status == 0, "gettimeofday");
5348  jlong seconds = millis / 1000;
5349  millis %= 1000;
5350  if (seconds > 50000000) { // see man cond_timedwait(3T)
5351    seconds = 50000000;
5352  }
5353  abstime->tv_sec = now.tv_sec  + seconds;
5354  long       usec = now.tv_usec + millis * 1000;
5355  if (usec >= 1000000) {
5356    abstime->tv_sec += 1;
5357    usec -= 1000000;
5358  }
5359  abstime->tv_nsec = usec * 1000;
5360  return abstime;
5361}
5362
5363
5364// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5365// Conceptually TryPark() should be equivalent to park(0).
5366
5367int os::PlatformEvent::TryPark() {
5368  for (;;) {
5369    const int v = _Event ;
5370    guarantee ((v == 0) || (v == 1), "invariant") ;
5371    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5372  }
5373}
5374
5375void os::PlatformEvent::park() {       // AKA "down()"
5376  // Invariant: Only the thread associated with the Event/PlatformEvent
5377  // may call park().
5378  // TODO: assert that _Assoc != NULL or _Assoc == Self
5379  int v ;
5380  for (;;) {
5381      v = _Event ;
5382      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5383  }
5384  guarantee (v >= 0, "invariant") ;
5385  if (v == 0) {
5386     // Do this the hard way by blocking ...
5387     int status = pthread_mutex_lock(_mutex);
5388     assert_status(status == 0, status, "mutex_lock");
5389     guarantee (_nParked == 0, "invariant") ;
5390     ++ _nParked ;
5391     while (_Event < 0) {
5392        status = pthread_cond_wait(_cond, _mutex);
5393        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5394        // Treat this the same as if the wait was interrupted
5395        if (status == ETIMEDOUT) { status = EINTR; }
5396        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5397     }
5398     -- _nParked ;
5399
5400    // In theory we could move the ST of 0 into _Event past the unlock(),
5401    // but then we'd need a MEMBAR after the ST.
5402    _Event = 0 ;
5403     status = pthread_mutex_unlock(_mutex);
5404     assert_status(status == 0, status, "mutex_unlock");
5405  }
5406  guarantee (_Event >= 0, "invariant") ;
5407}
5408
5409int os::PlatformEvent::park(jlong millis) {
5410  guarantee (_nParked == 0, "invariant") ;
5411
5412  int v ;
5413  for (;;) {
5414      v = _Event ;
5415      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5416  }
5417  guarantee (v >= 0, "invariant") ;
5418  if (v != 0) return OS_OK ;
5419
5420  // We do this the hard way, by blocking the thread.
5421  // Consider enforcing a minimum timeout value.
5422  struct timespec abst;
5423  compute_abstime(&abst, millis);
5424
5425  int ret = OS_TIMEOUT;
5426  int status = pthread_mutex_lock(_mutex);
5427  assert_status(status == 0, status, "mutex_lock");
5428  guarantee (_nParked == 0, "invariant") ;
5429  ++_nParked ;
5430
5431  // Object.wait(timo) will return because of
5432  // (a) notification
5433  // (b) timeout
5434  // (c) thread.interrupt
5435  //
5436  // Thread.interrupt and object.notify{All} both call Event::set.
5437  // That is, we treat thread.interrupt as a special case of notification.
5438  // The underlying Solaris implementation, cond_timedwait, admits
5439  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5440  // JVM from making those visible to Java code.  As such, we must
5441  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5442  //
5443  // TODO: properly differentiate simultaneous notify+interrupt.
5444  // In that case, we should propagate the notify to another waiter.
5445
5446  while (_Event < 0) {
5447    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
5448    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5449      pthread_cond_destroy (_cond);
5450      pthread_cond_init (_cond, NULL) ;
5451    }
5452    assert_status(status == 0 || status == EINTR ||
5453                  status == ETIMEDOUT,
5454                  status, "cond_timedwait");
5455    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5456    if (status == ETIMEDOUT) break ;
5457    // We consume and ignore EINTR and spurious wakeups.
5458  }
5459  --_nParked ;
5460  if (_Event >= 0) {
5461     ret = OS_OK;
5462  }
5463  _Event = 0 ;
5464  status = pthread_mutex_unlock(_mutex);
5465  assert_status(status == 0, status, "mutex_unlock");
5466  assert (_nParked == 0, "invariant") ;
5467  return ret;
5468}
5469
5470void os::PlatformEvent::unpark() {
5471  int v, AnyWaiters ;
5472  for (;;) {
5473      v = _Event ;
5474      if (v > 0) {
5475         // The LD of _Event could have reordered or be satisfied
5476         // by a read-aside from this processor's write buffer.
5477         // To avoid problems execute a barrier and then
5478         // ratify the value.
5479         OrderAccess::fence() ;
5480         if (_Event == v) return ;
5481         continue ;
5482      }
5483      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5484  }
5485  if (v < 0) {
5486     // Wait for the thread associated with the event to vacate
5487     int status = pthread_mutex_lock(_mutex);
5488     assert_status(status == 0, status, "mutex_lock");
5489     AnyWaiters = _nParked ;
5490     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5491     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5492        AnyWaiters = 0 ;
5493        pthread_cond_signal (_cond);
5494     }
5495     status = pthread_mutex_unlock(_mutex);
5496     assert_status(status == 0, status, "mutex_unlock");
5497     if (AnyWaiters != 0) {
5498        status = pthread_cond_signal(_cond);
5499        assert_status(status == 0, status, "cond_signal");
5500     }
5501  }
5502
5503  // Note that we signal() _after dropping the lock for "immortal" Events.
5504  // This is safe and avoids a common class of  futile wakeups.  In rare
5505  // circumstances this can cause a thread to return prematurely from
5506  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5507  // simply re-test the condition and re-park itself.
5508}
5509
5510
5511// JSR166
5512// -------------------------------------------------------
5513
5514/*
5515 * The solaris and bsd implementations of park/unpark are fairly
5516 * conservative for now, but can be improved. They currently use a
5517 * mutex/condvar pair, plus a a count.
5518 * Park decrements count if > 0, else does a condvar wait.  Unpark
5519 * sets count to 1 and signals condvar.  Only one thread ever waits
5520 * on the condvar. Contention seen when trying to park implies that someone
5521 * is unparking you, so don't wait. And spurious returns are fine, so there
5522 * is no need to track notifications.
5523 */
5524
5525
5526#define NANOSECS_PER_SEC 1000000000
5527#define NANOSECS_PER_MILLISEC 1000000
5528#define MAX_SECS 100000000
5529/*
5530 * This code is common to bsd and solaris and will be moved to a
5531 * common place in dolphin.
5532 *
5533 * The passed in time value is either a relative time in nanoseconds
5534 * or an absolute time in milliseconds. Either way it has to be unpacked
5535 * into suitable seconds and nanoseconds components and stored in the
5536 * given timespec structure.
5537 * Given time is a 64-bit value and the time_t used in the timespec is only
5538 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
5539 * overflow if times way in the future are given. Further on Solaris versions
5540 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5541 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5542 * As it will be 28 years before "now + 100000000" will overflow we can
5543 * ignore overflow and just impose a hard-limit on seconds using the value
5544 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5545 * years from "now".
5546 */
5547
5548static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
5549  assert (time > 0, "convertTime");
5550
5551  struct timeval now;
5552  int status = gettimeofday(&now, NULL);
5553  assert(status == 0, "gettimeofday");
5554
5555  time_t max_secs = now.tv_sec + MAX_SECS;
5556
5557  if (isAbsolute) {
5558    jlong secs = time / 1000;
5559    if (secs > max_secs) {
5560      absTime->tv_sec = max_secs;
5561    }
5562    else {
5563      absTime->tv_sec = secs;
5564    }
5565    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5566  }
5567  else {
5568    jlong secs = time / NANOSECS_PER_SEC;
5569    if (secs >= MAX_SECS) {
5570      absTime->tv_sec = max_secs;
5571      absTime->tv_nsec = 0;
5572    }
5573    else {
5574      absTime->tv_sec = now.tv_sec + secs;
5575      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5576      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5577        absTime->tv_nsec -= NANOSECS_PER_SEC;
5578        ++absTime->tv_sec; // note: this must be <= max_secs
5579      }
5580    }
5581  }
5582  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5583  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5584  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5585  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5586}
5587
5588void Parker::park(bool isAbsolute, jlong time) {
5589  // Optional fast-path check:
5590  // Return immediately if a permit is available.
5591  if (_counter > 0) {
5592      _counter = 0 ;
5593      OrderAccess::fence();
5594      return ;
5595  }
5596
5597  Thread* thread = Thread::current();
5598  assert(thread->is_Java_thread(), "Must be JavaThread");
5599  JavaThread *jt = (JavaThread *)thread;
5600
5601  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5602  // Check interrupt before trying to wait
5603  if (Thread::is_interrupted(thread, false)) {
5604    return;
5605  }
5606
5607  // Next, demultiplex/decode time arguments
5608  struct timespec absTime;
5609  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5610    return;
5611  }
5612  if (time > 0) {
5613    unpackTime(&absTime, isAbsolute, time);
5614  }
5615
5616
5617  // Enter safepoint region
5618  // Beware of deadlocks such as 6317397.
5619  // The per-thread Parker:: mutex is a classic leaf-lock.
5620  // In particular a thread must never block on the Threads_lock while
5621  // holding the Parker:: mutex.  If safepoints are pending both the
5622  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5623  ThreadBlockInVM tbivm(jt);
5624
5625  // Don't wait if cannot get lock since interference arises from
5626  // unblocking.  Also. check interrupt before trying wait
5627  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5628    return;
5629  }
5630
5631  int status ;
5632  if (_counter > 0)  { // no wait needed
5633    _counter = 0;
5634    status = pthread_mutex_unlock(_mutex);
5635    assert (status == 0, "invariant") ;
5636    OrderAccess::fence();
5637    return;
5638  }
5639
5640#ifdef ASSERT
5641  // Don't catch signals while blocked; let the running threads have the signals.
5642  // (This allows a debugger to break into the running thread.)
5643  sigset_t oldsigs;
5644  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
5645  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5646#endif
5647
5648  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5649  jt->set_suspend_equivalent();
5650  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5651
5652  if (time == 0) {
5653    status = pthread_cond_wait (_cond, _mutex) ;
5654  } else {
5655    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5656    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5657      pthread_cond_destroy (_cond) ;
5658      pthread_cond_init    (_cond, NULL);
5659    }
5660  }
5661  assert_status(status == 0 || status == EINTR ||
5662                status == ETIMEDOUT,
5663                status, "cond_timedwait");
5664
5665#ifdef ASSERT
5666  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5667#endif
5668
5669  _counter = 0 ;
5670  status = pthread_mutex_unlock(_mutex) ;
5671  assert_status(status == 0, status, "invariant") ;
5672  // If externally suspended while waiting, re-suspend
5673  if (jt->handle_special_suspend_equivalent_condition()) {
5674    jt->java_suspend_self();
5675  }
5676
5677  OrderAccess::fence();
5678}
5679
5680void Parker::unpark() {
5681  int s, status ;
5682  status = pthread_mutex_lock(_mutex);
5683  assert (status == 0, "invariant") ;
5684  s = _counter;
5685  _counter = 1;
5686  if (s < 1) {
5687     if (WorkAroundNPTLTimedWaitHang) {
5688        status = pthread_cond_signal (_cond) ;
5689        assert (status == 0, "invariant") ;
5690        status = pthread_mutex_unlock(_mutex);
5691        assert (status == 0, "invariant") ;
5692     } else {
5693        status = pthread_mutex_unlock(_mutex);
5694        assert (status == 0, "invariant") ;
5695        status = pthread_cond_signal (_cond) ;
5696        assert (status == 0, "invariant") ;
5697     }
5698  } else {
5699    pthread_mutex_unlock(_mutex);
5700    assert (status == 0, "invariant") ;
5701  }
5702}
5703
5704
5705/* Darwin has no "environ" in a dynamic library. */
5706#ifdef __APPLE__
5707#include <crt_externs.h>
5708#define environ (*_NSGetEnviron())
5709#else
5710extern char** environ;
5711#endif
5712
5713// Run the specified command in a separate process. Return its exit value,
5714// or -1 on failure (e.g. can't fork a new process).
5715// Unlike system(), this function can be called from signal handler. It
5716// doesn't block SIGINT et al.
5717int os::fork_and_exec(char* cmd) {
5718  const char * argv[4] = {"sh", "-c", cmd, NULL};
5719
5720  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
5721  // pthread_atfork handlers and reset pthread library. All we need is a
5722  // separate process to execve. Make a direct syscall to fork process.
5723  // On IA64 there's no fork syscall, we have to use fork() and hope for
5724  // the best...
5725  pid_t pid = fork();
5726
5727  if (pid < 0) {
5728    // fork failed
5729    return -1;
5730
5731  } else if (pid == 0) {
5732    // child process
5733
5734    // execve() in BsdThreads will call pthread_kill_other_threads_np()
5735    // first to kill every thread on the thread list. Because this list is
5736    // not reset by fork() (see notes above), execve() will instead kill
5737    // every thread in the parent process. We know this is the only thread
5738    // in the new process, so make a system call directly.
5739    // IA64 should use normal execve() from glibc to match the glibc fork()
5740    // above.
5741    execve("/bin/sh", (char* const*)argv, environ);
5742
5743    // execve failed
5744    _exit(-1);
5745
5746  } else  {
5747    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5748    // care about the actual exit code, for now.
5749
5750    int status;
5751
5752    // Wait for the child process to exit.  This returns immediately if
5753    // the child has already exited. */
5754    while (waitpid(pid, &status, 0) < 0) {
5755        switch (errno) {
5756        case ECHILD: return 0;
5757        case EINTR: break;
5758        default: return -1;
5759        }
5760    }
5761
5762    if (WIFEXITED(status)) {
5763       // The child exited normally; get its exit code.
5764       return WEXITSTATUS(status);
5765    } else if (WIFSIGNALED(status)) {
5766       // The child exited because of a signal
5767       // The best value to return is 0x80 + signal number,
5768       // because that is what all Unix shells do, and because
5769       // it allows callers to distinguish between process exit and
5770       // process death by signal.
5771       return 0x80 + WTERMSIG(status);
5772    } else {
5773       // Unknown exit code; pass it through
5774       return status;
5775    }
5776  }
5777}
5778
5779// is_headless_jre()
5780//
5781// Test for the existence of libmawt in motif21 or xawt directories
5782// in order to report if we are running in a headless jre
5783//
5784bool os::is_headless_jre() {
5785    struct stat statbuf;
5786    char buf[MAXPATHLEN];
5787    char libmawtpath[MAXPATHLEN];
5788    const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
5789    const char *motifstr = "/motif21/libmawt" JNI_LIB_SUFFIX;
5790    char *p;
5791
5792    // Get path to libjvm.so
5793    os::jvm_path(buf, sizeof(buf));
5794
5795    // Get rid of libjvm.so
5796    p = strrchr(buf, '/');
5797    if (p == NULL) return false;
5798    else *p = '\0';
5799
5800    // Get rid of client or server
5801    p = strrchr(buf, '/');
5802    if (p == NULL) return false;
5803    else *p = '\0';
5804
5805    // check xawt/libmawt.so
5806    strcpy(libmawtpath, buf);
5807    strcat(libmawtpath, xawtstr);
5808    if (::stat(libmawtpath, &statbuf) == 0) return false;
5809
5810    // check motif21/libmawt.so
5811    strcpy(libmawtpath, buf);
5812    strcat(libmawtpath, motifstr);
5813    if (::stat(libmawtpath, &statbuf) == 0) return false;
5814
5815    return true;
5816}
5817