os_bsd.cpp revision 2721:f08d439fab8c
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_bsd.h"
34#include "memory/allocation.inline.hpp"
35#include "memory/filemap.hpp"
36#include "mutex_bsd.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "os_share_bsd.hpp"
39#include "prims/jniFastGetField.hpp"
40#include "prims/jvm.h"
41#include "prims/jvm_misc.hpp"
42#include "runtime/arguments.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/globals.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/objectMonitor.hpp"
50#include "runtime/osThread.hpp"
51#include "runtime/perfMemory.hpp"
52#include "runtime/sharedRuntime.hpp"
53#include "runtime/statSampler.hpp"
54#include "runtime/stubRoutines.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/timer.hpp"
57#include "services/attachListener.hpp"
58#include "services/runtimeService.hpp"
59#include "thread_bsd.inline.hpp"
60#include "utilities/decoder.hpp"
61#include "utilities/defaultStream.hpp"
62#include "utilities/events.hpp"
63#include "utilities/growableArray.hpp"
64#include "utilities/vmError.hpp"
65#ifdef TARGET_ARCH_x86
66# include "assembler_x86.inline.hpp"
67# include "nativeInst_x86.hpp"
68#endif
69#ifdef TARGET_ARCH_sparc
70# include "assembler_sparc.inline.hpp"
71# include "nativeInst_sparc.hpp"
72#endif
73#ifdef TARGET_ARCH_zero
74# include "assembler_zero.inline.hpp"
75# include "nativeInst_zero.hpp"
76#endif
77#ifdef TARGET_ARCH_arm
78# include "assembler_arm.inline.hpp"
79# include "nativeInst_arm.hpp"
80#endif
81#ifdef TARGET_ARCH_ppc
82# include "assembler_ppc.inline.hpp"
83# include "nativeInst_ppc.hpp"
84#endif
85#ifdef COMPILER1
86#include "c1/c1_Runtime1.hpp"
87#endif
88#ifdef COMPILER2
89#include "opto/runtime.hpp"
90#endif
91
92// put OS-includes here
93# include <sys/types.h>
94# include <sys/mman.h>
95# include <sys/stat.h>
96# include <sys/select.h>
97# include <pthread.h>
98# include <signal.h>
99# include <errno.h>
100# include <dlfcn.h>
101# include <stdio.h>
102# include <unistd.h>
103# include <sys/resource.h>
104# include <pthread.h>
105# include <sys/stat.h>
106# include <sys/time.h>
107# include <sys/times.h>
108# include <sys/utsname.h>
109# include <sys/socket.h>
110# include <sys/wait.h>
111# include <time.h>
112# include <pwd.h>
113# include <poll.h>
114# include <semaphore.h>
115# include <fcntl.h>
116# include <string.h>
117#ifdef _ALLBSD_SOURCE
118# include <sys/param.h>
119# include <sys/sysctl.h>
120#else
121# include <syscall.h>
122# include <sys/sysinfo.h>
123# include <gnu/libc-version.h>
124#endif
125# include <sys/ipc.h>
126# include <sys/shm.h>
127#ifndef __APPLE__
128# include <link.h>
129#endif
130# include <stdint.h>
131# include <inttypes.h>
132# include <sys/ioctl.h>
133
134#if defined(__FreeBSD__) || defined(__NetBSD__)
135# include <elf.h>
136#endif
137
138#ifdef __APPLE__
139#include <mach/mach.h> // semaphore_* API
140#include <mach-o/dyld.h>
141#endif
142
143#ifndef MAP_ANONYMOUS
144#define MAP_ANONYMOUS MAP_ANON
145#endif
146
147#define MAX_PATH    (2 * K)
148
149// for timer info max values which include all bits
150#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
151#define SEC_IN_NANOSECS  1000000000LL
152
153#define LARGEPAGES_BIT (1 << 6)
154////////////////////////////////////////////////////////////////////////////////
155// global variables
156julong os::Bsd::_physical_memory = 0;
157
158#ifndef _ALLBSD_SOURCE
159address   os::Bsd::_initial_thread_stack_bottom = NULL;
160uintptr_t os::Bsd::_initial_thread_stack_size   = 0;
161#endif
162
163int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
164#ifndef _ALLBSD_SOURCE
165int (*os::Bsd::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
166Mutex* os::Bsd::_createThread_lock = NULL;
167#endif
168pthread_t os::Bsd::_main_thread;
169int os::Bsd::_page_size = -1;
170#ifndef _ALLBSD_SOURCE
171bool os::Bsd::_is_floating_stack = false;
172bool os::Bsd::_is_NPTL = false;
173bool os::Bsd::_supports_fast_thread_cpu_time = false;
174const char * os::Bsd::_glibc_version = NULL;
175const char * os::Bsd::_libpthread_version = NULL;
176#endif
177
178static jlong initial_time_count=0;
179
180static int clock_tics_per_sec = 100;
181
182// For diagnostics to print a message once. see run_periodic_checks
183static sigset_t check_signal_done;
184static bool check_signals = true;;
185
186static pid_t _initial_pid = 0;
187
188/* Signal number used to suspend/resume a thread */
189
190/* do not use any signal number less than SIGSEGV, see 4355769 */
191static int SR_signum = SIGUSR2;
192sigset_t SR_sigset;
193
194
195////////////////////////////////////////////////////////////////////////////////
196// utility functions
197
198static int SR_initialize();
199static int SR_finalize();
200
201julong os::available_memory() {
202  return Bsd::available_memory();
203}
204
205julong os::Bsd::available_memory() {
206#ifdef _ALLBSD_SOURCE
207  // XXXBSD: this is just a stopgap implementation
208  return physical_memory() >> 2;
209#else
210  // values in struct sysinfo are "unsigned long"
211  struct sysinfo si;
212  sysinfo(&si);
213
214  return (julong)si.freeram * si.mem_unit;
215#endif
216}
217
218julong os::physical_memory() {
219  return Bsd::physical_memory();
220}
221
222julong os::allocatable_physical_memory(julong size) {
223#ifdef _LP64
224  return size;
225#else
226  julong result = MIN2(size, (julong)3800*M);
227   if (!is_allocatable(result)) {
228     // See comments under solaris for alignment considerations
229     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
230     result =  MIN2(size, reasonable_size);
231   }
232   return result;
233#endif // _LP64
234}
235
236////////////////////////////////////////////////////////////////////////////////
237// environment support
238
239bool os::getenv(const char* name, char* buf, int len) {
240  const char* val = ::getenv(name);
241  if (val != NULL && strlen(val) < (size_t)len) {
242    strcpy(buf, val);
243    return true;
244  }
245  if (len > 0) buf[0] = 0;  // return a null string
246  return false;
247}
248
249
250// Return true if user is running as root.
251
252bool os::have_special_privileges() {
253  static bool init = false;
254  static bool privileges = false;
255  if (!init) {
256    privileges = (getuid() != geteuid()) || (getgid() != getegid());
257    init = true;
258  }
259  return privileges;
260}
261
262
263#ifndef _ALLBSD_SOURCE
264#ifndef SYS_gettid
265// i386: 224, ia64: 1105, amd64: 186, sparc 143
266#ifdef __ia64__
267#define SYS_gettid 1105
268#elif __i386__
269#define SYS_gettid 224
270#elif __amd64__
271#define SYS_gettid 186
272#elif __sparc__
273#define SYS_gettid 143
274#else
275#error define gettid for the arch
276#endif
277#endif
278#endif
279
280// Cpu architecture string
281#if   defined(ZERO)
282static char cpu_arch[] = ZERO_LIBARCH;
283#elif defined(IA64)
284static char cpu_arch[] = "ia64";
285#elif defined(IA32)
286static char cpu_arch[] = "i386";
287#elif defined(AMD64)
288static char cpu_arch[] = "amd64";
289#elif defined(ARM)
290static char cpu_arch[] = "arm";
291#elif defined(PPC)
292static char cpu_arch[] = "ppc";
293#elif defined(SPARC)
294#  ifdef _LP64
295static char cpu_arch[] = "sparcv9";
296#  else
297static char cpu_arch[] = "sparc";
298#  endif
299#else
300#error Add appropriate cpu_arch setting
301#endif
302
303
304#ifndef _ALLBSD_SOURCE
305// pid_t gettid()
306//
307// Returns the kernel thread id of the currently running thread. Kernel
308// thread id is used to access /proc.
309//
310// (Note that getpid() on BsdThreads returns kernel thread id too; but
311// on NPTL, it returns the same pid for all threads, as required by POSIX.)
312//
313pid_t os::Bsd::gettid() {
314  int rslt = syscall(SYS_gettid);
315  if (rslt == -1) {
316     // old kernel, no NPTL support
317     return getpid();
318  } else {
319     return (pid_t)rslt;
320  }
321}
322
323// Most versions of bsd have a bug where the number of processors are
324// determined by looking at the /proc file system.  In a chroot environment,
325// the system call returns 1.  This causes the VM to act as if it is
326// a single processor and elide locking (see is_MP() call).
327static bool unsafe_chroot_detected = false;
328static const char *unstable_chroot_error = "/proc file system not found.\n"
329                     "Java may be unstable running multithreaded in a chroot "
330                     "environment on Bsd when /proc filesystem is not mounted.";
331#endif
332
333#ifdef _ALLBSD_SOURCE
334void os::Bsd::initialize_system_info() {
335  int mib[2];
336  size_t len;
337  int cpu_val;
338  u_long mem_val;
339
340  /* get processors count via hw.ncpus sysctl */
341  mib[0] = CTL_HW;
342  mib[1] = HW_NCPU;
343  len = sizeof(cpu_val);
344  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
345       set_processor_count(cpu_val);
346  }
347  else {
348       set_processor_count(1);   // fallback
349  }
350
351  /* get physical memory via hw.usermem sysctl (hw.usermem is used
352   * instead of hw.physmem because we need size of allocatable memory
353   */
354  mib[0] = CTL_HW;
355  mib[1] = HW_USERMEM;
356  len = sizeof(mem_val);
357  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
358       _physical_memory = mem_val;
359  else
360       _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
361
362#ifdef __OpenBSD__
363  {
364       // limit _physical_memory memory view on OpenBSD since
365       // datasize rlimit restricts us anyway.
366       struct rlimit limits;
367       getrlimit(RLIMIT_DATA, &limits);
368       _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
369  }
370#endif
371}
372#else
373void os::Bsd::initialize_system_info() {
374  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
375  if (processor_count() == 1) {
376    pid_t pid = os::Bsd::gettid();
377    char fname[32];
378    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
379    FILE *fp = fopen(fname, "r");
380    if (fp == NULL) {
381      unsafe_chroot_detected = true;
382    } else {
383      fclose(fp);
384    }
385  }
386  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
387  assert(processor_count() > 0, "bsd error");
388}
389#endif
390
391void os::init_system_properties_values() {
392//  char arch[12];
393//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
394
395  // The next steps are taken in the product version:
396  //
397  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
398  // This library should be located at:
399  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
400  //
401  // If "/jre/lib/" appears at the right place in the path, then we
402  // assume libjvm[_g].so is installed in a JDK and we use this path.
403  //
404  // Otherwise exit with message: "Could not create the Java virtual machine."
405  //
406  // The following extra steps are taken in the debugging version:
407  //
408  // If "/jre/lib/" does NOT appear at the right place in the path
409  // instead of exit check for $JAVA_HOME environment variable.
410  //
411  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
412  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
413  // it looks like libjvm[_g].so is installed there
414  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
415  //
416  // Otherwise exit.
417  //
418  // Important note: if the location of libjvm.so changes this
419  // code needs to be changed accordingly.
420
421  // The next few definitions allow the code to be verbatim:
422#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
423#define getenv(n) ::getenv(n)
424
425/*
426 * See ld(1):
427 *      The linker uses the following search paths to locate required
428 *      shared libraries:
429 *        1: ...
430 *        ...
431 *        7: The default directories, normally /lib and /usr/lib.
432 */
433#ifndef DEFAULT_LIBPATH
434#define DEFAULT_LIBPATH "/lib:/usr/lib"
435#endif
436
437#define EXTENSIONS_DIR  "/lib/ext"
438#define ENDORSED_DIR    "/lib/endorsed"
439#define REG_DIR         "/usr/java/packages"
440
441  {
442    /* sysclasspath, java_home, dll_dir */
443    {
444        char *home_path;
445        char *dll_path;
446        char *pslash;
447        char buf[MAXPATHLEN];
448        os::jvm_path(buf, sizeof(buf));
449
450        // Found the full path to libjvm.so.
451        // Now cut the path to <java_home>/jre if we can.
452        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
453        pslash = strrchr(buf, '/');
454        if (pslash != NULL)
455            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
456        dll_path = malloc(strlen(buf) + 1);
457        if (dll_path == NULL)
458            return;
459        strcpy(dll_path, buf);
460        Arguments::set_dll_dir(dll_path);
461
462        if (pslash != NULL) {
463            pslash = strrchr(buf, '/');
464            if (pslash != NULL) {
465                *pslash = '\0';       /* get rid of /<arch> */
466                pslash = strrchr(buf, '/');
467                if (pslash != NULL)
468                    *pslash = '\0';   /* get rid of /lib */
469            }
470        }
471
472        home_path = malloc(strlen(buf) + 1);
473        if (home_path == NULL)
474            return;
475        strcpy(home_path, buf);
476        Arguments::set_java_home(home_path);
477
478        if (!set_boot_path('/', ':'))
479            return;
480    }
481
482    /*
483     * Where to look for native libraries
484     *
485     * Note: Due to a legacy implementation, most of the library path
486     * is set in the launcher.  This was to accomodate linking restrictions
487     * on legacy Bsd implementations (which are no longer supported).
488     * Eventually, all the library path setting will be done here.
489     *
490     * However, to prevent the proliferation of improperly built native
491     * libraries, the new path component /usr/java/packages is added here.
492     * Eventually, all the library path setting will be done here.
493     */
494    {
495        char *ld_library_path;
496
497        /*
498         * Construct the invariant part of ld_library_path. Note that the
499         * space for the colon and the trailing null are provided by the
500         * nulls included by the sizeof operator (so actually we allocate
501         * a byte more than necessary).
502         */
503        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
504            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
505        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
506
507        /*
508         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
509         * should always exist (until the legacy problem cited above is
510         * addressed).
511         */
512#ifdef __APPLE__
513        char *v = getenv("DYLD_LIBRARY_PATH");
514#else
515        char *v = getenv("LD_LIBRARY_PATH");
516#endif
517        if (v != NULL) {
518            char *t = ld_library_path;
519            /* That's +1 for the colon and +1 for the trailing '\0' */
520            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
521            sprintf(ld_library_path, "%s:%s", v, t);
522        }
523        Arguments::set_library_path(ld_library_path);
524    }
525
526    /*
527     * Extensions directories.
528     *
529     * Note that the space for the colon and the trailing null are provided
530     * by the nulls included by the sizeof operator (so actually one byte more
531     * than necessary is allocated).
532     */
533    {
534        char *buf = malloc(strlen(Arguments::get_java_home()) +
535            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
536        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
537            Arguments::get_java_home());
538        Arguments::set_ext_dirs(buf);
539    }
540
541    /* Endorsed standards default directory. */
542    {
543        char * buf;
544        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
545        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
546        Arguments::set_endorsed_dirs(buf);
547    }
548  }
549
550#undef malloc
551#undef getenv
552#undef EXTENSIONS_DIR
553#undef ENDORSED_DIR
554
555  // Done
556  return;
557}
558
559////////////////////////////////////////////////////////////////////////////////
560// breakpoint support
561
562void os::breakpoint() {
563  BREAKPOINT;
564}
565
566extern "C" void breakpoint() {
567  // use debugger to set breakpoint here
568}
569
570////////////////////////////////////////////////////////////////////////////////
571// signal support
572
573debug_only(static bool signal_sets_initialized = false);
574static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
575
576bool os::Bsd::is_sig_ignored(int sig) {
577      struct sigaction oact;
578      sigaction(sig, (struct sigaction*)NULL, &oact);
579      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
580                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
581      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
582           return true;
583      else
584           return false;
585}
586
587void os::Bsd::signal_sets_init() {
588  // Should also have an assertion stating we are still single-threaded.
589  assert(!signal_sets_initialized, "Already initialized");
590  // Fill in signals that are necessarily unblocked for all threads in
591  // the VM. Currently, we unblock the following signals:
592  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
593  //                         by -Xrs (=ReduceSignalUsage));
594  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
595  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
596  // the dispositions or masks wrt these signals.
597  // Programs embedding the VM that want to use the above signals for their
598  // own purposes must, at this time, use the "-Xrs" option to prevent
599  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
600  // (See bug 4345157, and other related bugs).
601  // In reality, though, unblocking these signals is really a nop, since
602  // these signals are not blocked by default.
603  sigemptyset(&unblocked_sigs);
604  sigemptyset(&allowdebug_blocked_sigs);
605  sigaddset(&unblocked_sigs, SIGILL);
606  sigaddset(&unblocked_sigs, SIGSEGV);
607  sigaddset(&unblocked_sigs, SIGBUS);
608  sigaddset(&unblocked_sigs, SIGFPE);
609  sigaddset(&unblocked_sigs, SR_signum);
610
611  if (!ReduceSignalUsage) {
612   if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
613      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
614      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
615   }
616   if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
617      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
618      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
619   }
620   if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
621      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
622      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
623   }
624  }
625  // Fill in signals that are blocked by all but the VM thread.
626  sigemptyset(&vm_sigs);
627  if (!ReduceSignalUsage)
628    sigaddset(&vm_sigs, BREAK_SIGNAL);
629  debug_only(signal_sets_initialized = true);
630
631}
632
633// These are signals that are unblocked while a thread is running Java.
634// (For some reason, they get blocked by default.)
635sigset_t* os::Bsd::unblocked_signals() {
636  assert(signal_sets_initialized, "Not initialized");
637  return &unblocked_sigs;
638}
639
640// These are the signals that are blocked while a (non-VM) thread is
641// running Java. Only the VM thread handles these signals.
642sigset_t* os::Bsd::vm_signals() {
643  assert(signal_sets_initialized, "Not initialized");
644  return &vm_sigs;
645}
646
647// These are signals that are blocked during cond_wait to allow debugger in
648sigset_t* os::Bsd::allowdebug_blocked_signals() {
649  assert(signal_sets_initialized, "Not initialized");
650  return &allowdebug_blocked_sigs;
651}
652
653void os::Bsd::hotspot_sigmask(Thread* thread) {
654
655  //Save caller's signal mask before setting VM signal mask
656  sigset_t caller_sigmask;
657  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
658
659  OSThread* osthread = thread->osthread();
660  osthread->set_caller_sigmask(caller_sigmask);
661
662  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
663
664  if (!ReduceSignalUsage) {
665    if (thread->is_VM_thread()) {
666      // Only the VM thread handles BREAK_SIGNAL ...
667      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
668    } else {
669      // ... all other threads block BREAK_SIGNAL
670      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
671    }
672  }
673}
674
675#ifndef _ALLBSD_SOURCE
676//////////////////////////////////////////////////////////////////////////////
677// detecting pthread library
678
679void os::Bsd::libpthread_init() {
680  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
681  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
682  // generic name for earlier versions.
683  // Define macros here so we can build HotSpot on old systems.
684# ifndef _CS_GNU_LIBC_VERSION
685# define _CS_GNU_LIBC_VERSION 2
686# endif
687# ifndef _CS_GNU_LIBPTHREAD_VERSION
688# define _CS_GNU_LIBPTHREAD_VERSION 3
689# endif
690
691  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
692  if (n > 0) {
693     char *str = (char *)malloc(n);
694     confstr(_CS_GNU_LIBC_VERSION, str, n);
695     os::Bsd::set_glibc_version(str);
696  } else {
697     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
698     static char _gnu_libc_version[32];
699     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
700              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
701     os::Bsd::set_glibc_version(_gnu_libc_version);
702  }
703
704  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
705  if (n > 0) {
706     char *str = (char *)malloc(n);
707     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
708     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
709     // us "NPTL-0.29" even we are running with BsdThreads. Check if this
710     // is the case. BsdThreads has a hard limit on max number of threads.
711     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
712     // On the other hand, NPTL does not have such a limit, sysconf()
713     // will return -1 and errno is not changed. Check if it is really NPTL.
714     if (strcmp(os::Bsd::glibc_version(), "glibc 2.3.2") == 0 &&
715         strstr(str, "NPTL") &&
716         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
717       free(str);
718       os::Bsd::set_libpthread_version("bsdthreads");
719     } else {
720       os::Bsd::set_libpthread_version(str);
721     }
722  } else {
723    // glibc before 2.3.2 only has BsdThreads.
724    os::Bsd::set_libpthread_version("bsdthreads");
725  }
726
727  if (strstr(libpthread_version(), "NPTL")) {
728     os::Bsd::set_is_NPTL();
729  } else {
730     os::Bsd::set_is_BsdThreads();
731  }
732
733  // BsdThreads have two flavors: floating-stack mode, which allows variable
734  // stack size; and fixed-stack mode. NPTL is always floating-stack.
735  if (os::Bsd::is_NPTL() || os::Bsd::supports_variable_stack_size()) {
736     os::Bsd::set_is_floating_stack();
737  }
738}
739
740/////////////////////////////////////////////////////////////////////////////
741// thread stack
742
743// Force Bsd kernel to expand current thread stack. If "bottom" is close
744// to the stack guard, caller should block all signals.
745//
746// MAP_GROWSDOWN:
747//   A special mmap() flag that is used to implement thread stacks. It tells
748//   kernel that the memory region should extend downwards when needed. This
749//   allows early versions of BsdThreads to only mmap the first few pages
750//   when creating a new thread. Bsd kernel will automatically expand thread
751//   stack as needed (on page faults).
752//
753//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
754//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
755//   region, it's hard to tell if the fault is due to a legitimate stack
756//   access or because of reading/writing non-exist memory (e.g. buffer
757//   overrun). As a rule, if the fault happens below current stack pointer,
758//   Bsd kernel does not expand stack, instead a SIGSEGV is sent to the
759//   application (see Bsd kernel fault.c).
760//
761//   This Bsd feature can cause SIGSEGV when VM bangs thread stack for
762//   stack overflow detection.
763//
764//   Newer version of BsdThreads (since glibc-2.2, or, RH-7.x) and NPTL do
765//   not use this flag. However, the stack of initial thread is not created
766//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
767//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
768//   and then attach the thread to JVM.
769//
770// To get around the problem and allow stack banging on Bsd, we need to
771// manually expand thread stack after receiving the SIGSEGV.
772//
773// There are two ways to expand thread stack to address "bottom", we used
774// both of them in JVM before 1.5:
775//   1. adjust stack pointer first so that it is below "bottom", and then
776//      touch "bottom"
777//   2. mmap() the page in question
778//
779// Now alternate signal stack is gone, it's harder to use 2. For instance,
780// if current sp is already near the lower end of page 101, and we need to
781// call mmap() to map page 100, it is possible that part of the mmap() frame
782// will be placed in page 100. When page 100 is mapped, it is zero-filled.
783// That will destroy the mmap() frame and cause VM to crash.
784//
785// The following code works by adjusting sp first, then accessing the "bottom"
786// page to force a page fault. Bsd kernel will then automatically expand the
787// stack mapping.
788//
789// _expand_stack_to() assumes its frame size is less than page size, which
790// should always be true if the function is not inlined.
791
792#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
793#define NOINLINE
794#else
795#define NOINLINE __attribute__ ((noinline))
796#endif
797
798static void _expand_stack_to(address bottom) NOINLINE;
799
800static void _expand_stack_to(address bottom) {
801  address sp;
802  size_t size;
803  volatile char *p;
804
805  // Adjust bottom to point to the largest address within the same page, it
806  // gives us a one-page buffer if alloca() allocates slightly more memory.
807  bottom = (address)align_size_down((uintptr_t)bottom, os::Bsd::page_size());
808  bottom += os::Bsd::page_size() - 1;
809
810  // sp might be slightly above current stack pointer; if that's the case, we
811  // will alloca() a little more space than necessary, which is OK. Don't use
812  // os::current_stack_pointer(), as its result can be slightly below current
813  // stack pointer, causing us to not alloca enough to reach "bottom".
814  sp = (address)&sp;
815
816  if (sp > bottom) {
817    size = sp - bottom;
818    p = (volatile char *)alloca(size);
819    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
820    p[0] = '\0';
821  }
822}
823
824bool os::Bsd::manually_expand_stack(JavaThread * t, address addr) {
825  assert(t!=NULL, "just checking");
826  assert(t->osthread()->expanding_stack(), "expand should be set");
827  assert(t->stack_base() != NULL, "stack_base was not initialized");
828
829  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
830    sigset_t mask_all, old_sigset;
831    sigfillset(&mask_all);
832    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
833    _expand_stack_to(addr);
834    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
835    return true;
836  }
837  return false;
838}
839#endif
840
841//////////////////////////////////////////////////////////////////////////////
842// create new thread
843
844static address highest_vm_reserved_address();
845
846// check if it's safe to start a new thread
847static bool _thread_safety_check(Thread* thread) {
848#ifdef _ALLBSD_SOURCE
849    return true;
850#else
851  if (os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack()) {
852    // Fixed stack BsdThreads (SuSE Bsd/x86, and some versions of Redhat)
853    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
854    //   allocated (MAP_FIXED) from high address space. Every thread stack
855    //   occupies a fixed size slot (usually 2Mbytes, but user can change
856    //   it to other values if they rebuild BsdThreads).
857    //
858    // Problem with MAP_FIXED is that mmap() can still succeed even part of
859    // the memory region has already been mmap'ed. That means if we have too
860    // many threads and/or very large heap, eventually thread stack will
861    // collide with heap.
862    //
863    // Here we try to prevent heap/stack collision by comparing current
864    // stack bottom with the highest address that has been mmap'ed by JVM
865    // plus a safety margin for memory maps created by native code.
866    //
867    // This feature can be disabled by setting ThreadSafetyMargin to 0
868    //
869    if (ThreadSafetyMargin > 0) {
870      address stack_bottom = os::current_stack_base() - os::current_stack_size();
871
872      // not safe if our stack extends below the safety margin
873      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
874    } else {
875      return true;
876    }
877  } else {
878    // Floating stack BsdThreads or NPTL:
879    //   Unlike fixed stack BsdThreads, thread stacks are not MAP_FIXED. When
880    //   there's not enough space left, pthread_create() will fail. If we come
881    //   here, that means enough space has been reserved for stack.
882    return true;
883  }
884#endif
885}
886
887// Thread start routine for all newly created threads
888static void *java_start(Thread *thread) {
889  // Try to randomize the cache line index of hot stack frames.
890  // This helps when threads of the same stack traces evict each other's
891  // cache lines. The threads can be either from the same JVM instance, or
892  // from different JVM instances. The benefit is especially true for
893  // processors with hyperthreading technology.
894  static int counter = 0;
895  int pid = os::current_process_id();
896  alloca(((pid ^ counter++) & 7) * 128);
897
898  ThreadLocalStorage::set_thread(thread);
899
900  OSThread* osthread = thread->osthread();
901  Monitor* sync = osthread->startThread_lock();
902
903  // non floating stack BsdThreads needs extra check, see above
904  if (!_thread_safety_check(thread)) {
905    // notify parent thread
906    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
907    osthread->set_state(ZOMBIE);
908    sync->notify_all();
909    return NULL;
910  }
911
912#ifdef _ALLBSD_SOURCE
913  // thread_id is pthread_id on BSD
914  osthread->set_thread_id(::pthread_self());
915#else
916  // thread_id is kernel thread id (similar to Solaris LWP id)
917  osthread->set_thread_id(os::Bsd::gettid());
918
919  if (UseNUMA) {
920    int lgrp_id = os::numa_get_group_id();
921    if (lgrp_id != -1) {
922      thread->set_lgrp_id(lgrp_id);
923    }
924  }
925#endif
926  // initialize signal mask for this thread
927  os::Bsd::hotspot_sigmask(thread);
928
929  // initialize floating point control register
930  os::Bsd::init_thread_fpu_state();
931
932  // handshaking with parent thread
933  {
934    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
935
936    // notify parent thread
937    osthread->set_state(INITIALIZED);
938    sync->notify_all();
939
940    // wait until os::start_thread()
941    while (osthread->get_state() == INITIALIZED) {
942      sync->wait(Mutex::_no_safepoint_check_flag);
943    }
944  }
945
946  // call one more level start routine
947  thread->run();
948
949  return 0;
950}
951
952bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
953  assert(thread->osthread() == NULL, "caller responsible");
954
955  // Allocate the OSThread object
956  OSThread* osthread = new OSThread(NULL, NULL);
957  if (osthread == NULL) {
958    return false;
959  }
960
961  // set the correct thread state
962  osthread->set_thread_type(thr_type);
963
964  // Initial state is ALLOCATED but not INITIALIZED
965  osthread->set_state(ALLOCATED);
966
967  thread->set_osthread(osthread);
968
969  // init thread attributes
970  pthread_attr_t attr;
971  pthread_attr_init(&attr);
972  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
973
974  // stack size
975  if (os::Bsd::supports_variable_stack_size()) {
976    // calculate stack size if it's not specified by caller
977    if (stack_size == 0) {
978      stack_size = os::Bsd::default_stack_size(thr_type);
979
980      switch (thr_type) {
981      case os::java_thread:
982        // Java threads use ThreadStackSize which default value can be
983        // changed with the flag -Xss
984        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
985        stack_size = JavaThread::stack_size_at_create();
986        break;
987      case os::compiler_thread:
988        if (CompilerThreadStackSize > 0) {
989          stack_size = (size_t)(CompilerThreadStackSize * K);
990          break;
991        } // else fall through:
992          // use VMThreadStackSize if CompilerThreadStackSize is not defined
993      case os::vm_thread:
994      case os::pgc_thread:
995      case os::cgc_thread:
996      case os::watcher_thread:
997        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
998        break;
999      }
1000    }
1001
1002    stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
1003    pthread_attr_setstacksize(&attr, stack_size);
1004  } else {
1005    // let pthread_create() pick the default value.
1006  }
1007
1008#ifndef _ALLBSD_SOURCE
1009  // glibc guard page
1010  pthread_attr_setguardsize(&attr, os::Bsd::default_guard_size(thr_type));
1011#endif
1012
1013  ThreadState state;
1014
1015  {
1016
1017#ifndef _ALLBSD_SOURCE
1018    // Serialize thread creation if we are running with fixed stack BsdThreads
1019    bool lock = os::Bsd::is_BsdThreads() && !os::Bsd::is_floating_stack();
1020    if (lock) {
1021      os::Bsd::createThread_lock()->lock_without_safepoint_check();
1022    }
1023#endif
1024
1025    pthread_t tid;
1026    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
1027
1028    pthread_attr_destroy(&attr);
1029
1030    if (ret != 0) {
1031      if (PrintMiscellaneous && (Verbose || WizardMode)) {
1032        perror("pthread_create()");
1033      }
1034      // Need to clean up stuff we've allocated so far
1035      thread->set_osthread(NULL);
1036      delete osthread;
1037#ifndef _ALLBSD_SOURCE
1038      if (lock) os::Bsd::createThread_lock()->unlock();
1039#endif
1040      return false;
1041    }
1042
1043    // Store pthread info into the OSThread
1044    osthread->set_pthread_id(tid);
1045
1046    // Wait until child thread is either initialized or aborted
1047    {
1048      Monitor* sync_with_child = osthread->startThread_lock();
1049      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1050      while ((state = osthread->get_state()) == ALLOCATED) {
1051        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
1052      }
1053    }
1054
1055#ifndef _ALLBSD_SOURCE
1056    if (lock) {
1057      os::Bsd::createThread_lock()->unlock();
1058    }
1059#endif
1060  }
1061
1062  // Aborted due to thread limit being reached
1063  if (state == ZOMBIE) {
1064      thread->set_osthread(NULL);
1065      delete osthread;
1066      return false;
1067  }
1068
1069  // The thread is returned suspended (in state INITIALIZED),
1070  // and is started higher up in the call chain
1071  assert(state == INITIALIZED, "race condition");
1072  return true;
1073}
1074
1075/////////////////////////////////////////////////////////////////////////////
1076// attach existing thread
1077
1078// bootstrap the main thread
1079bool os::create_main_thread(JavaThread* thread) {
1080  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
1081  return create_attached_thread(thread);
1082}
1083
1084bool os::create_attached_thread(JavaThread* thread) {
1085#ifdef ASSERT
1086    thread->verify_not_published();
1087#endif
1088
1089  // Allocate the OSThread object
1090  OSThread* osthread = new OSThread(NULL, NULL);
1091
1092  if (osthread == NULL) {
1093    return false;
1094  }
1095
1096  // Store pthread info into the OSThread
1097#ifdef _ALLBSD_SOURCE
1098  osthread->set_thread_id(::pthread_self());
1099#else
1100  osthread->set_thread_id(os::Bsd::gettid());
1101#endif
1102  osthread->set_pthread_id(::pthread_self());
1103
1104  // initialize floating point control register
1105  os::Bsd::init_thread_fpu_state();
1106
1107  // Initial thread state is RUNNABLE
1108  osthread->set_state(RUNNABLE);
1109
1110  thread->set_osthread(osthread);
1111
1112#ifndef _ALLBSD_SOURCE
1113  if (UseNUMA) {
1114    int lgrp_id = os::numa_get_group_id();
1115    if (lgrp_id != -1) {
1116      thread->set_lgrp_id(lgrp_id);
1117    }
1118  }
1119
1120  if (os::Bsd::is_initial_thread()) {
1121    // If current thread is initial thread, its stack is mapped on demand,
1122    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1123    // the entire stack region to avoid SEGV in stack banging.
1124    // It is also useful to get around the heap-stack-gap problem on SuSE
1125    // kernel (see 4821821 for details). We first expand stack to the top
1126    // of yellow zone, then enable stack yellow zone (order is significant,
1127    // enabling yellow zone first will crash JVM on SuSE Bsd), so there
1128    // is no gap between the last two virtual memory regions.
1129
1130    JavaThread *jt = (JavaThread *)thread;
1131    address addr = jt->stack_yellow_zone_base();
1132    assert(addr != NULL, "initialization problem?");
1133    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1134
1135    osthread->set_expanding_stack();
1136    os::Bsd::manually_expand_stack(jt, addr);
1137    osthread->clear_expanding_stack();
1138  }
1139#endif
1140
1141  // initialize signal mask for this thread
1142  // and save the caller's signal mask
1143  os::Bsd::hotspot_sigmask(thread);
1144
1145  return true;
1146}
1147
1148void os::pd_start_thread(Thread* thread) {
1149  OSThread * osthread = thread->osthread();
1150  assert(osthread->get_state() != INITIALIZED, "just checking");
1151  Monitor* sync_with_child = osthread->startThread_lock();
1152  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1153  sync_with_child->notify();
1154}
1155
1156// Free Bsd resources related to the OSThread
1157void os::free_thread(OSThread* osthread) {
1158  assert(osthread != NULL, "osthread not set");
1159
1160  if (Thread::current()->osthread() == osthread) {
1161    // Restore caller's signal mask
1162    sigset_t sigmask = osthread->caller_sigmask();
1163    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1164   }
1165
1166  delete osthread;
1167}
1168
1169//////////////////////////////////////////////////////////////////////////////
1170// thread local storage
1171
1172int os::allocate_thread_local_storage() {
1173  pthread_key_t key;
1174  int rslt = pthread_key_create(&key, NULL);
1175  assert(rslt == 0, "cannot allocate thread local storage");
1176  return (int)key;
1177}
1178
1179// Note: This is currently not used by VM, as we don't destroy TLS key
1180// on VM exit.
1181void os::free_thread_local_storage(int index) {
1182  int rslt = pthread_key_delete((pthread_key_t)index);
1183  assert(rslt == 0, "invalid index");
1184}
1185
1186void os::thread_local_storage_at_put(int index, void* value) {
1187  int rslt = pthread_setspecific((pthread_key_t)index, value);
1188  assert(rslt == 0, "pthread_setspecific failed");
1189}
1190
1191extern "C" Thread* get_thread() {
1192  return ThreadLocalStorage::thread();
1193}
1194
1195//////////////////////////////////////////////////////////////////////////////
1196// initial thread
1197
1198#ifndef _ALLBSD_SOURCE
1199// Check if current thread is the initial thread, similar to Solaris thr_main.
1200bool os::Bsd::is_initial_thread(void) {
1201  char dummy;
1202  // If called before init complete, thread stack bottom will be null.
1203  // Can be called if fatal error occurs before initialization.
1204  if (initial_thread_stack_bottom() == NULL) return false;
1205  assert(initial_thread_stack_bottom() != NULL &&
1206         initial_thread_stack_size()   != 0,
1207         "os::init did not locate initial thread's stack region");
1208  if ((address)&dummy >= initial_thread_stack_bottom() &&
1209      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1210       return true;
1211  else return false;
1212}
1213
1214// Find the virtual memory area that contains addr
1215static bool find_vma(address addr, address* vma_low, address* vma_high) {
1216  FILE *fp = fopen("/proc/self/maps", "r");
1217  if (fp) {
1218    address low, high;
1219    while (!feof(fp)) {
1220      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1221        if (low <= addr && addr < high) {
1222           if (vma_low)  *vma_low  = low;
1223           if (vma_high) *vma_high = high;
1224           fclose (fp);
1225           return true;
1226        }
1227      }
1228      for (;;) {
1229        int ch = fgetc(fp);
1230        if (ch == EOF || ch == (int)'\n') break;
1231      }
1232    }
1233    fclose(fp);
1234  }
1235  return false;
1236}
1237
1238// Locate initial thread stack. This special handling of initial thread stack
1239// is needed because pthread_getattr_np() on most (all?) Bsd distros returns
1240// bogus value for initial thread.
1241void os::Bsd::capture_initial_stack(size_t max_size) {
1242  // stack size is the easy part, get it from RLIMIT_STACK
1243  size_t stack_size;
1244  struct rlimit rlim;
1245  getrlimit(RLIMIT_STACK, &rlim);
1246  stack_size = rlim.rlim_cur;
1247
1248  // 6308388: a bug in ld.so will relocate its own .data section to the
1249  //   lower end of primordial stack; reduce ulimit -s value a little bit
1250  //   so we won't install guard page on ld.so's data section.
1251  stack_size -= 2 * page_size();
1252
1253  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1254  //   7.1, in both cases we will get 2G in return value.
1255  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1256  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1257  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1258  //   in case other parts in glibc still assumes 2M max stack size.
1259  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1260#ifndef IA64
1261  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1262#else
1263  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1264  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1265#endif
1266
1267  // Try to figure out where the stack base (top) is. This is harder.
1268  //
1269  // When an application is started, glibc saves the initial stack pointer in
1270  // a global variable "__libc_stack_end", which is then used by system
1271  // libraries. __libc_stack_end should be pretty close to stack top. The
1272  // variable is available since the very early days. However, because it is
1273  // a private interface, it could disappear in the future.
1274  //
1275  // Bsd kernel saves start_stack information in /proc/<pid>/stat. Similar
1276  // to __libc_stack_end, it is very close to stack top, but isn't the real
1277  // stack top. Note that /proc may not exist if VM is running as a chroot
1278  // program, so reading /proc/<pid>/stat could fail. Also the contents of
1279  // /proc/<pid>/stat could change in the future (though unlikely).
1280  //
1281  // We try __libc_stack_end first. If that doesn't work, look for
1282  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1283  // as a hint, which should work well in most cases.
1284
1285  uintptr_t stack_start;
1286
1287  // try __libc_stack_end first
1288  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1289  if (p && *p) {
1290    stack_start = *p;
1291  } else {
1292    // see if we can get the start_stack field from /proc/self/stat
1293    FILE *fp;
1294    int pid;
1295    char state;
1296    int ppid;
1297    int pgrp;
1298    int session;
1299    int nr;
1300    int tpgrp;
1301    unsigned long flags;
1302    unsigned long minflt;
1303    unsigned long cminflt;
1304    unsigned long majflt;
1305    unsigned long cmajflt;
1306    unsigned long utime;
1307    unsigned long stime;
1308    long cutime;
1309    long cstime;
1310    long prio;
1311    long nice;
1312    long junk;
1313    long it_real;
1314    uintptr_t start;
1315    uintptr_t vsize;
1316    intptr_t rss;
1317    uintptr_t rsslim;
1318    uintptr_t scodes;
1319    uintptr_t ecode;
1320    int i;
1321
1322    // Figure what the primordial thread stack base is. Code is inspired
1323    // by email from Hans Boehm. /proc/self/stat begins with current pid,
1324    // followed by command name surrounded by parentheses, state, etc.
1325    char stat[2048];
1326    int statlen;
1327
1328    fp = fopen("/proc/self/stat", "r");
1329    if (fp) {
1330      statlen = fread(stat, 1, 2047, fp);
1331      stat[statlen] = '\0';
1332      fclose(fp);
1333
1334      // Skip pid and the command string. Note that we could be dealing with
1335      // weird command names, e.g. user could decide to rename java launcher
1336      // to "java 1.4.2 :)", then the stat file would look like
1337      //                1234 (java 1.4.2 :)) R ... ...
1338      // We don't really need to know the command string, just find the last
1339      // occurrence of ")" and then start parsing from there. See bug 4726580.
1340      char * s = strrchr(stat, ')');
1341
1342      i = 0;
1343      if (s) {
1344        // Skip blank chars
1345        do s++; while (isspace(*s));
1346
1347#define _UFM UINTX_FORMAT
1348#define _DFM INTX_FORMAT
1349
1350        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1351        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1352        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1353             &state,          /* 3  %c  */
1354             &ppid,           /* 4  %d  */
1355             &pgrp,           /* 5  %d  */
1356             &session,        /* 6  %d  */
1357             &nr,             /* 7  %d  */
1358             &tpgrp,          /* 8  %d  */
1359             &flags,          /* 9  %lu  */
1360             &minflt,         /* 10 %lu  */
1361             &cminflt,        /* 11 %lu  */
1362             &majflt,         /* 12 %lu  */
1363             &cmajflt,        /* 13 %lu  */
1364             &utime,          /* 14 %lu  */
1365             &stime,          /* 15 %lu  */
1366             &cutime,         /* 16 %ld  */
1367             &cstime,         /* 17 %ld  */
1368             &prio,           /* 18 %ld  */
1369             &nice,           /* 19 %ld  */
1370             &junk,           /* 20 %ld  */
1371             &it_real,        /* 21 %ld  */
1372             &start,          /* 22 UINTX_FORMAT */
1373             &vsize,          /* 23 UINTX_FORMAT */
1374             &rss,            /* 24 INTX_FORMAT  */
1375             &rsslim,         /* 25 UINTX_FORMAT */
1376             &scodes,         /* 26 UINTX_FORMAT */
1377             &ecode,          /* 27 UINTX_FORMAT */
1378             &stack_start);   /* 28 UINTX_FORMAT */
1379      }
1380
1381#undef _UFM
1382#undef _DFM
1383
1384      if (i != 28 - 2) {
1385         assert(false, "Bad conversion from /proc/self/stat");
1386         // product mode - assume we are the initial thread, good luck in the
1387         // embedded case.
1388         warning("Can't detect initial thread stack location - bad conversion");
1389         stack_start = (uintptr_t) &rlim;
1390      }
1391    } else {
1392      // For some reason we can't open /proc/self/stat (for example, running on
1393      // FreeBSD with a Bsd emulator, or inside chroot), this should work for
1394      // most cases, so don't abort:
1395      warning("Can't detect initial thread stack location - no /proc/self/stat");
1396      stack_start = (uintptr_t) &rlim;
1397    }
1398  }
1399
1400  // Now we have a pointer (stack_start) very close to the stack top, the
1401  // next thing to do is to figure out the exact location of stack top. We
1402  // can find out the virtual memory area that contains stack_start by
1403  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1404  // and its upper limit is the real stack top. (again, this would fail if
1405  // running inside chroot, because /proc may not exist.)
1406
1407  uintptr_t stack_top;
1408  address low, high;
1409  if (find_vma((address)stack_start, &low, &high)) {
1410    // success, "high" is the true stack top. (ignore "low", because initial
1411    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1412    stack_top = (uintptr_t)high;
1413  } else {
1414    // failed, likely because /proc/self/maps does not exist
1415    warning("Can't detect initial thread stack location - find_vma failed");
1416    // best effort: stack_start is normally within a few pages below the real
1417    // stack top, use it as stack top, and reduce stack size so we won't put
1418    // guard page outside stack.
1419    stack_top = stack_start;
1420    stack_size -= 16 * page_size();
1421  }
1422
1423  // stack_top could be partially down the page so align it
1424  stack_top = align_size_up(stack_top, page_size());
1425
1426  if (max_size && stack_size > max_size) {
1427     _initial_thread_stack_size = max_size;
1428  } else {
1429     _initial_thread_stack_size = stack_size;
1430  }
1431
1432  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1433  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1434}
1435#endif
1436
1437////////////////////////////////////////////////////////////////////////////////
1438// time support
1439
1440// Time since start-up in seconds to a fine granularity.
1441// Used by VMSelfDestructTimer and the MemProfiler.
1442double os::elapsedTime() {
1443
1444  return (double)(os::elapsed_counter()) * 0.000001;
1445}
1446
1447jlong os::elapsed_counter() {
1448  timeval time;
1449  int status = gettimeofday(&time, NULL);
1450  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1451}
1452
1453jlong os::elapsed_frequency() {
1454  return (1000 * 1000);
1455}
1456
1457// XXX: For now, code this as if BSD does not support vtime.
1458bool os::supports_vtime() { return false; }
1459bool os::enable_vtime()   { return false; }
1460bool os::vtime_enabled()  { return false; }
1461double os::elapsedVTime() {
1462  // better than nothing, but not much
1463  return elapsedTime();
1464}
1465
1466jlong os::javaTimeMillis() {
1467  timeval time;
1468  int status = gettimeofday(&time, NULL);
1469  assert(status != -1, "bsd error");
1470  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1471}
1472
1473#ifndef CLOCK_MONOTONIC
1474#define CLOCK_MONOTONIC (1)
1475#endif
1476
1477#ifdef __APPLE__
1478void os::Bsd::clock_init() {
1479        // XXXDARWIN: Investigate replacement monotonic clock
1480}
1481#elif defined(_ALLBSD_SOURCE)
1482void os::Bsd::clock_init() {
1483  struct timespec res;
1484  struct timespec tp;
1485  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1486      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1487    // yes, monotonic clock is supported
1488    _clock_gettime = ::clock_gettime;
1489  }
1490}
1491#else
1492void os::Bsd::clock_init() {
1493  // we do dlopen's in this particular order due to bug in bsd
1494  // dynamical loader (see 6348968) leading to crash on exit
1495  void* handle = dlopen("librt.so.1", RTLD_LAZY);
1496  if (handle == NULL) {
1497    handle = dlopen("librt.so", RTLD_LAZY);
1498  }
1499
1500  if (handle) {
1501    int (*clock_getres_func)(clockid_t, struct timespec*) =
1502           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1503    int (*clock_gettime_func)(clockid_t, struct timespec*) =
1504           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1505    if (clock_getres_func && clock_gettime_func) {
1506      // See if monotonic clock is supported by the kernel. Note that some
1507      // early implementations simply return kernel jiffies (updated every
1508      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1509      // for nano time (though the monotonic property is still nice to have).
1510      // It's fixed in newer kernels, however clock_getres() still returns
1511      // 1/HZ. We check if clock_getres() works, but will ignore its reported
1512      // resolution for now. Hopefully as people move to new kernels, this
1513      // won't be a problem.
1514      struct timespec res;
1515      struct timespec tp;
1516      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1517          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1518        // yes, monotonic clock is supported
1519        _clock_gettime = clock_gettime_func;
1520      } else {
1521        // close librt if there is no monotonic clock
1522        dlclose(handle);
1523      }
1524    }
1525  }
1526}
1527#endif
1528
1529#ifndef _ALLBSD_SOURCE
1530#ifndef SYS_clock_getres
1531
1532#if defined(IA32) || defined(AMD64)
1533#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1534#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1535#else
1536#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1537#define sys_clock_getres(x,y)  -1
1538#endif
1539
1540#else
1541#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1542#endif
1543
1544void os::Bsd::fast_thread_clock_init() {
1545  if (!UseBsdPosixThreadCPUClocks) {
1546    return;
1547  }
1548  clockid_t clockid;
1549  struct timespec tp;
1550  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1551      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1552
1553  // Switch to using fast clocks for thread cpu time if
1554  // the sys_clock_getres() returns 0 error code.
1555  // Note, that some kernels may support the current thread
1556  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1557  // returned by the pthread_getcpuclockid().
1558  // If the fast Posix clocks are supported then the sys_clock_getres()
1559  // must return at least tp.tv_sec == 0 which means a resolution
1560  // better than 1 sec. This is extra check for reliability.
1561
1562  if(pthread_getcpuclockid_func &&
1563     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1564     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1565
1566    _supports_fast_thread_cpu_time = true;
1567    _pthread_getcpuclockid = pthread_getcpuclockid_func;
1568  }
1569}
1570#endif
1571
1572jlong os::javaTimeNanos() {
1573  if (Bsd::supports_monotonic_clock()) {
1574    struct timespec tp;
1575    int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1576    assert(status == 0, "gettime error");
1577    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1578    return result;
1579  } else {
1580    timeval time;
1581    int status = gettimeofday(&time, NULL);
1582    assert(status != -1, "bsd error");
1583    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1584    return 1000 * usecs;
1585  }
1586}
1587
1588void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1589  if (Bsd::supports_monotonic_clock()) {
1590    info_ptr->max_value = ALL_64_BITS;
1591
1592    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1593    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1594    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1595  } else {
1596    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1597    info_ptr->max_value = ALL_64_BITS;
1598
1599    // gettimeofday is a real time clock so it skips
1600    info_ptr->may_skip_backward = true;
1601    info_ptr->may_skip_forward = true;
1602  }
1603
1604  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1605}
1606
1607// Return the real, user, and system times in seconds from an
1608// arbitrary fixed point in the past.
1609bool os::getTimesSecs(double* process_real_time,
1610                      double* process_user_time,
1611                      double* process_system_time) {
1612  struct tms ticks;
1613  clock_t real_ticks = times(&ticks);
1614
1615  if (real_ticks == (clock_t) (-1)) {
1616    return false;
1617  } else {
1618    double ticks_per_second = (double) clock_tics_per_sec;
1619    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1620    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1621    *process_real_time = ((double) real_ticks) / ticks_per_second;
1622
1623    return true;
1624  }
1625}
1626
1627
1628char * os::local_time_string(char *buf, size_t buflen) {
1629  struct tm t;
1630  time_t long_time;
1631  time(&long_time);
1632  localtime_r(&long_time, &t);
1633  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1634               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1635               t.tm_hour, t.tm_min, t.tm_sec);
1636  return buf;
1637}
1638
1639struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1640  return localtime_r(clock, res);
1641}
1642
1643////////////////////////////////////////////////////////////////////////////////
1644// runtime exit support
1645
1646// Note: os::shutdown() might be called very early during initialization, or
1647// called from signal handler. Before adding something to os::shutdown(), make
1648// sure it is async-safe and can handle partially initialized VM.
1649void os::shutdown() {
1650
1651  // allow PerfMemory to attempt cleanup of any persistent resources
1652  perfMemory_exit();
1653
1654  // needs to remove object in file system
1655  AttachListener::abort();
1656
1657  // flush buffered output, finish log files
1658  ostream_abort();
1659
1660  // Check for abort hook
1661  abort_hook_t abort_hook = Arguments::abort_hook();
1662  if (abort_hook != NULL) {
1663    abort_hook();
1664  }
1665
1666}
1667
1668// Note: os::abort() might be called very early during initialization, or
1669// called from signal handler. Before adding something to os::abort(), make
1670// sure it is async-safe and can handle partially initialized VM.
1671void os::abort(bool dump_core) {
1672  os::shutdown();
1673  if (dump_core) {
1674#ifndef PRODUCT
1675    fdStream out(defaultStream::output_fd());
1676    out.print_raw("Current thread is ");
1677    char buf[16];
1678    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1679    out.print_raw_cr(buf);
1680    out.print_raw_cr("Dumping core ...");
1681#endif
1682    ::abort(); // dump core
1683  }
1684
1685  ::exit(1);
1686}
1687
1688// Die immediately, no exit hook, no abort hook, no cleanup.
1689void os::die() {
1690  // _exit() on BsdThreads only kills current thread
1691  ::abort();
1692}
1693
1694// unused on bsd for now.
1695void os::set_error_file(const char *logfile) {}
1696
1697
1698// This method is a copy of JDK's sysGetLastErrorString
1699// from src/solaris/hpi/src/system_md.c
1700
1701size_t os::lasterror(char *buf, size_t len) {
1702
1703  if (errno == 0)  return 0;
1704
1705  const char *s = ::strerror(errno);
1706  size_t n = ::strlen(s);
1707  if (n >= len) {
1708    n = len - 1;
1709  }
1710  ::strncpy(buf, s, n);
1711  buf[n] = '\0';
1712  return n;
1713}
1714
1715intx os::current_thread_id() { return (intx)pthread_self(); }
1716int os::current_process_id() {
1717
1718  // Under the old bsd thread library, bsd gives each thread
1719  // its own process id. Because of this each thread will return
1720  // a different pid if this method were to return the result
1721  // of getpid(2). Bsd provides no api that returns the pid
1722  // of the launcher thread for the vm. This implementation
1723  // returns a unique pid, the pid of the launcher thread
1724  // that starts the vm 'process'.
1725
1726  // Under the NPTL, getpid() returns the same pid as the
1727  // launcher thread rather than a unique pid per thread.
1728  // Use gettid() if you want the old pre NPTL behaviour.
1729
1730  // if you are looking for the result of a call to getpid() that
1731  // returns a unique pid for the calling thread, then look at the
1732  // OSThread::thread_id() method in osThread_bsd.hpp file
1733
1734  return (int)(_initial_pid ? _initial_pid : getpid());
1735}
1736
1737// DLL functions
1738
1739#define JNI_LIB_PREFIX "lib"
1740#ifdef __APPLE__
1741#define JNI_LIB_SUFFIX ".dylib"
1742#else
1743#define JNI_LIB_SUFFIX ".so"
1744#endif
1745
1746const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1747
1748// This must be hard coded because it's the system's temporary
1749// directory not the java application's temp directory, ala java.io.tmpdir.
1750const char* os::get_temp_directory() { return "/tmp"; }
1751
1752static bool file_exists(const char* filename) {
1753  struct stat statbuf;
1754  if (filename == NULL || strlen(filename) == 0) {
1755    return false;
1756  }
1757  return os::stat(filename, &statbuf) == 0;
1758}
1759
1760void os::dll_build_name(char* buffer, size_t buflen,
1761                        const char* pname, const char* fname) {
1762  // Copied from libhpi
1763  const size_t pnamelen = pname ? strlen(pname) : 0;
1764
1765  // Quietly truncate on buffer overflow.  Should be an error.
1766  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1767      *buffer = '\0';
1768      return;
1769  }
1770
1771  if (pnamelen == 0) {
1772    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1773  } else if (strchr(pname, *os::path_separator()) != NULL) {
1774    int n;
1775    char** pelements = split_path(pname, &n);
1776    for (int i = 0 ; i < n ; i++) {
1777      // Really shouldn't be NULL, but check can't hurt
1778      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1779        continue; // skip the empty path values
1780      }
1781      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1782          pelements[i], fname);
1783      if (file_exists(buffer)) {
1784        break;
1785      }
1786    }
1787    // release the storage
1788    for (int i = 0 ; i < n ; i++) {
1789      if (pelements[i] != NULL) {
1790        FREE_C_HEAP_ARRAY(char, pelements[i]);
1791      }
1792    }
1793    if (pelements != NULL) {
1794      FREE_C_HEAP_ARRAY(char*, pelements);
1795    }
1796  } else {
1797    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1798  }
1799}
1800
1801const char* os::get_current_directory(char *buf, int buflen) {
1802  return getcwd(buf, buflen);
1803}
1804
1805// check if addr is inside libjvm[_g].so
1806bool os::address_is_in_vm(address addr) {
1807  static address libjvm_base_addr;
1808  Dl_info dlinfo;
1809
1810  if (libjvm_base_addr == NULL) {
1811    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1812    libjvm_base_addr = (address)dlinfo.dli_fbase;
1813    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1814  }
1815
1816  if (dladdr((void *)addr, &dlinfo)) {
1817    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1818  }
1819
1820  return false;
1821}
1822
1823bool os::dll_address_to_function_name(address addr, char *buf,
1824                                      int buflen, int *offset) {
1825  Dl_info dlinfo;
1826
1827  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1828    if (buf != NULL) {
1829      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1830        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1831      }
1832    }
1833    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1834    return true;
1835  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1836    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1837       dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
1838       return true;
1839    }
1840  }
1841
1842  if (buf != NULL) buf[0] = '\0';
1843  if (offset != NULL) *offset = -1;
1844  return false;
1845}
1846
1847#ifdef _ALLBSD_SOURCE
1848// ported from solaris version
1849bool os::dll_address_to_library_name(address addr, char* buf,
1850                                     int buflen, int* offset) {
1851  Dl_info dlinfo;
1852
1853  if (dladdr((void*)addr, &dlinfo)){
1854     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1855     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1856     return true;
1857  } else {
1858     if (buf) buf[0] = '\0';
1859     if (offset) *offset = -1;
1860     return false;
1861  }
1862}
1863#else
1864struct _address_to_library_name {
1865  address addr;          // input : memory address
1866  size_t  buflen;        //         size of fname
1867  char*   fname;         // output: library name
1868  address base;          //         library base addr
1869};
1870
1871static int address_to_library_name_callback(struct dl_phdr_info *info,
1872                                            size_t size, void *data) {
1873  int i;
1874  bool found = false;
1875  address libbase = NULL;
1876  struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1877
1878  // iterate through all loadable segments
1879  for (i = 0; i < info->dlpi_phnum; i++) {
1880    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1881    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1882      // base address of a library is the lowest address of its loaded
1883      // segments.
1884      if (libbase == NULL || libbase > segbase) {
1885        libbase = segbase;
1886      }
1887      // see if 'addr' is within current segment
1888      if (segbase <= d->addr &&
1889          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1890        found = true;
1891      }
1892    }
1893  }
1894
1895  // dlpi_name is NULL or empty if the ELF file is executable, return 0
1896  // so dll_address_to_library_name() can fall through to use dladdr() which
1897  // can figure out executable name from argv[0].
1898  if (found && info->dlpi_name && info->dlpi_name[0]) {
1899    d->base = libbase;
1900    if (d->fname) {
1901      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1902    }
1903    return 1;
1904  }
1905  return 0;
1906}
1907
1908bool os::dll_address_to_library_name(address addr, char* buf,
1909                                     int buflen, int* offset) {
1910  Dl_info dlinfo;
1911  struct _address_to_library_name data;
1912
1913  // There is a bug in old glibc dladdr() implementation that it could resolve
1914  // to wrong library name if the .so file has a base address != NULL. Here
1915  // we iterate through the program headers of all loaded libraries to find
1916  // out which library 'addr' really belongs to. This workaround can be
1917  // removed once the minimum requirement for glibc is moved to 2.3.x.
1918  data.addr = addr;
1919  data.fname = buf;
1920  data.buflen = buflen;
1921  data.base = NULL;
1922  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1923
1924  if (rslt) {
1925     // buf already contains library name
1926     if (offset) *offset = addr - data.base;
1927     return true;
1928  } else if (dladdr((void*)addr, &dlinfo)){
1929     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1930     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1931     return true;
1932  } else {
1933     if (buf) buf[0] = '\0';
1934     if (offset) *offset = -1;
1935     return false;
1936  }
1937}
1938#endif
1939
1940  // Loads .dll/.so and
1941  // in case of error it checks if .dll/.so was built for the
1942  // same architecture as Hotspot is running on
1943
1944#ifdef __APPLE__
1945void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1946  void * result= ::dlopen(filename, RTLD_LAZY);
1947  if (result != NULL) {
1948    // Successful loading
1949    return result;
1950  }
1951
1952  // Read system error message into ebuf
1953  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1954  ebuf[ebuflen-1]='\0';
1955
1956  return NULL;
1957}
1958#else
1959void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1960{
1961  void * result= ::dlopen(filename, RTLD_LAZY);
1962  if (result != NULL) {
1963    // Successful loading
1964    return result;
1965  }
1966
1967  Elf32_Ehdr elf_head;
1968
1969  // Read system error message into ebuf
1970  // It may or may not be overwritten below
1971  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1972  ebuf[ebuflen-1]='\0';
1973  int diag_msg_max_length=ebuflen-strlen(ebuf);
1974  char* diag_msg_buf=ebuf+strlen(ebuf);
1975
1976  if (diag_msg_max_length==0) {
1977    // No more space in ebuf for additional diagnostics message
1978    return NULL;
1979  }
1980
1981
1982  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1983
1984  if (file_descriptor < 0) {
1985    // Can't open library, report dlerror() message
1986    return NULL;
1987  }
1988
1989  bool failed_to_read_elf_head=
1990    (sizeof(elf_head)!=
1991        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1992
1993  ::close(file_descriptor);
1994  if (failed_to_read_elf_head) {
1995    // file i/o error - report dlerror() msg
1996    return NULL;
1997  }
1998
1999  typedef struct {
2000    Elf32_Half  code;         // Actual value as defined in elf.h
2001    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
2002    char        elf_class;    // 32 or 64 bit
2003    char        endianess;    // MSB or LSB
2004    char*       name;         // String representation
2005  } arch_t;
2006
2007  #ifndef EM_486
2008  #define EM_486          6               /* Intel 80486 */
2009  #endif
2010
2011  #ifndef EM_MIPS_RS3_LE
2012  #define EM_MIPS_RS3_LE  10              /* MIPS */
2013  #endif
2014
2015  #ifndef EM_PPC64
2016  #define EM_PPC64        21              /* PowerPC64 */
2017  #endif
2018
2019  #ifndef EM_S390
2020  #define EM_S390         22              /* IBM System/390 */
2021  #endif
2022
2023  #ifndef EM_IA_64
2024  #define EM_IA_64        50              /* HP/Intel IA-64 */
2025  #endif
2026
2027  #ifndef EM_X86_64
2028  #define EM_X86_64       62              /* AMD x86-64 */
2029  #endif
2030
2031  static const arch_t arch_array[]={
2032    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2033    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
2034    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
2035    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
2036    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2037    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
2038    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
2039    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
2040    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
2041    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
2042    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
2043    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
2044    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
2045    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
2046    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
2047    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
2048  };
2049
2050  #if  (defined IA32)
2051    static  Elf32_Half running_arch_code=EM_386;
2052  #elif   (defined AMD64)
2053    static  Elf32_Half running_arch_code=EM_X86_64;
2054  #elif  (defined IA64)
2055    static  Elf32_Half running_arch_code=EM_IA_64;
2056  #elif  (defined __sparc) && (defined _LP64)
2057    static  Elf32_Half running_arch_code=EM_SPARCV9;
2058  #elif  (defined __sparc) && (!defined _LP64)
2059    static  Elf32_Half running_arch_code=EM_SPARC;
2060  #elif  (defined __powerpc64__)
2061    static  Elf32_Half running_arch_code=EM_PPC64;
2062  #elif  (defined __powerpc__)
2063    static  Elf32_Half running_arch_code=EM_PPC;
2064  #elif  (defined ARM)
2065    static  Elf32_Half running_arch_code=EM_ARM;
2066  #elif  (defined S390)
2067    static  Elf32_Half running_arch_code=EM_S390;
2068  #elif  (defined ALPHA)
2069    static  Elf32_Half running_arch_code=EM_ALPHA;
2070  #elif  (defined MIPSEL)
2071    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
2072  #elif  (defined PARISC)
2073    static  Elf32_Half running_arch_code=EM_PARISC;
2074  #elif  (defined MIPS)
2075    static  Elf32_Half running_arch_code=EM_MIPS;
2076  #elif  (defined M68K)
2077    static  Elf32_Half running_arch_code=EM_68K;
2078  #else
2079    #error Method os::dll_load requires that one of following is defined:\
2080         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2081  #endif
2082
2083  // Identify compatability class for VM's architecture and library's architecture
2084  // Obtain string descriptions for architectures
2085
2086  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2087  int running_arch_index=-1;
2088
2089  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2090    if (running_arch_code == arch_array[i].code) {
2091      running_arch_index    = i;
2092    }
2093    if (lib_arch.code == arch_array[i].code) {
2094      lib_arch.compat_class = arch_array[i].compat_class;
2095      lib_arch.name         = arch_array[i].name;
2096    }
2097  }
2098
2099  assert(running_arch_index != -1,
2100    "Didn't find running architecture code (running_arch_code) in arch_array");
2101  if (running_arch_index == -1) {
2102    // Even though running architecture detection failed
2103    // we may still continue with reporting dlerror() message
2104    return NULL;
2105  }
2106
2107  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2108    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2109    return NULL;
2110  }
2111
2112#ifndef S390
2113  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2114    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2115    return NULL;
2116  }
2117#endif // !S390
2118
2119  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2120    if ( lib_arch.name!=NULL ) {
2121      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2122        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2123        lib_arch.name, arch_array[running_arch_index].name);
2124    } else {
2125      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2126      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2127        lib_arch.code,
2128        arch_array[running_arch_index].name);
2129    }
2130  }
2131
2132  return NULL;
2133}
2134#endif /* !__APPLE__ */
2135
2136// XXX: Do we need a lock around this as per Linux?
2137void* os::dll_lookup(void* handle, const char* name) {
2138  return dlsym(handle, name);
2139}
2140
2141
2142static bool _print_ascii_file(const char* filename, outputStream* st) {
2143  int fd = ::open(filename, O_RDONLY);
2144  if (fd == -1) {
2145     return false;
2146  }
2147
2148  char buf[32];
2149  int bytes;
2150  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2151    st->print_raw(buf, bytes);
2152  }
2153
2154  ::close(fd);
2155
2156  return true;
2157}
2158
2159void os::print_dll_info(outputStream *st) {
2160   st->print_cr("Dynamic libraries:");
2161#ifdef _ALLBSD_SOURCE
2162#ifdef RTLD_DI_LINKMAP
2163    Dl_info dli;
2164    void *handle;
2165    Link_map *map;
2166    Link_map *p;
2167
2168    if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
2169        st->print_cr("Error: Cannot print dynamic libraries.");
2170        return;
2171    }
2172    handle = dlopen(dli.dli_fname, RTLD_LAZY);
2173    if (handle == NULL) {
2174        st->print_cr("Error: Cannot print dynamic libraries.");
2175        return;
2176    }
2177    dlinfo(handle, RTLD_DI_LINKMAP, &map);
2178    if (map == NULL) {
2179        st->print_cr("Error: Cannot print dynamic libraries.");
2180        return;
2181    }
2182
2183    while (map->l_prev != NULL)
2184        map = map->l_prev;
2185
2186    while (map != NULL) {
2187        st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
2188        map = map->l_next;
2189    }
2190
2191    dlclose(handle);
2192#elif defined(__APPLE__)
2193    uint32_t count;
2194    uint32_t i;
2195
2196    count = _dyld_image_count();
2197    for (i = 1; i < count; i++) {
2198        const char *name = _dyld_get_image_name(i);
2199        intptr_t slide = _dyld_get_image_vmaddr_slide(i);
2200        st->print_cr(PTR_FORMAT " \t%s", slide, name);
2201    }
2202#else
2203   st->print_cr("Error: Cannot print dynamic libraries.");
2204#endif
2205#else
2206   char fname[32];
2207   pid_t pid = os::Bsd::gettid();
2208
2209   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2210
2211   if (!_print_ascii_file(fname, st)) {
2212     st->print("Can not get library information for pid = %d\n", pid);
2213   }
2214#endif
2215}
2216
2217
2218void os::print_os_info(outputStream* st) {
2219  st->print("OS:");
2220
2221  // Try to identify popular distros.
2222  // Most Bsd distributions have /etc/XXX-release file, which contains
2223  // the OS version string. Some have more than one /etc/XXX-release file
2224  // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2225  // so the order is important.
2226  if (!_print_ascii_file("/etc/mandrake-release", st) &&
2227      !_print_ascii_file("/etc/sun-release", st) &&
2228      !_print_ascii_file("/etc/redhat-release", st) &&
2229      !_print_ascii_file("/etc/SuSE-release", st) &&
2230      !_print_ascii_file("/etc/turbobsd-release", st) &&
2231      !_print_ascii_file("/etc/gentoo-release", st) &&
2232      !_print_ascii_file("/etc/debian_version", st) &&
2233      !_print_ascii_file("/etc/ltib-release", st) &&
2234      !_print_ascii_file("/etc/angstrom-version", st)) {
2235      st->print("Bsd");
2236  }
2237  st->cr();
2238
2239  // kernel
2240  st->print("uname:");
2241  struct utsname name;
2242  uname(&name);
2243  st->print(name.sysname); st->print(" ");
2244  st->print(name.release); st->print(" ");
2245  st->print(name.version); st->print(" ");
2246  st->print(name.machine);
2247  st->cr();
2248
2249#ifndef _ALLBSD_SOURCE
2250  // Print warning if unsafe chroot environment detected
2251  if (unsafe_chroot_detected) {
2252    st->print("WARNING!! ");
2253    st->print_cr(unstable_chroot_error);
2254  }
2255
2256  // libc, pthread
2257  st->print("libc:");
2258  st->print(os::Bsd::glibc_version()); st->print(" ");
2259  st->print(os::Bsd::libpthread_version()); st->print(" ");
2260  if (os::Bsd::is_BsdThreads()) {
2261     st->print("(%s stack)", os::Bsd::is_floating_stack() ? "floating" : "fixed");
2262  }
2263  st->cr();
2264#endif
2265
2266  // rlimit
2267  st->print("rlimit:");
2268  struct rlimit rlim;
2269
2270  st->print(" STACK ");
2271  getrlimit(RLIMIT_STACK, &rlim);
2272  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2273  else st->print("%uk", rlim.rlim_cur >> 10);
2274
2275  st->print(", CORE ");
2276  getrlimit(RLIMIT_CORE, &rlim);
2277  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2278  else st->print("%uk", rlim.rlim_cur >> 10);
2279
2280  st->print(", NPROC ");
2281  getrlimit(RLIMIT_NPROC, &rlim);
2282  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2283  else st->print("%d", rlim.rlim_cur);
2284
2285  st->print(", NOFILE ");
2286  getrlimit(RLIMIT_NOFILE, &rlim);
2287  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2288  else st->print("%d", rlim.rlim_cur);
2289
2290#ifndef _ALLBSD_SOURCE
2291  st->print(", AS ");
2292  getrlimit(RLIMIT_AS, &rlim);
2293  if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
2294  else st->print("%uk", rlim.rlim_cur >> 10);
2295  st->cr();
2296
2297  // load average
2298  st->print("load average:");
2299  double loadavg[3];
2300  os::loadavg(loadavg, 3);
2301  st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
2302  st->cr();
2303#endif
2304}
2305
2306void os::pd_print_cpu_info(outputStream* st) {
2307  // Nothing to do for now.
2308}
2309
2310void os::print_memory_info(outputStream* st) {
2311
2312  st->print("Memory:");
2313  st->print(" %dk page", os::vm_page_size()>>10);
2314
2315#ifndef _ALLBSD_SOURCE
2316  // values in struct sysinfo are "unsigned long"
2317  struct sysinfo si;
2318  sysinfo(&si);
2319#endif
2320
2321  st->print(", physical " UINT64_FORMAT "k",
2322            os::physical_memory() >> 10);
2323  st->print("(" UINT64_FORMAT "k free)",
2324            os::available_memory() >> 10);
2325#ifndef _ALLBSD_SOURCE
2326  st->print(", swap " UINT64_FORMAT "k",
2327            ((jlong)si.totalswap * si.mem_unit) >> 10);
2328  st->print("(" UINT64_FORMAT "k free)",
2329            ((jlong)si.freeswap * si.mem_unit) >> 10);
2330#endif
2331  st->cr();
2332
2333  // meminfo
2334  st->print("\n/proc/meminfo:\n");
2335  _print_ascii_file("/proc/meminfo", st);
2336  st->cr();
2337}
2338
2339// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2340// but they're the same for all the bsd arch that we support
2341// and they're the same for solaris but there's no common place to put this.
2342const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2343                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2344                          "ILL_COPROC", "ILL_BADSTK" };
2345
2346const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2347                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2348                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2349
2350const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2351
2352const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2353
2354void os::print_siginfo(outputStream* st, void* siginfo) {
2355  st->print("siginfo:");
2356
2357  const int buflen = 100;
2358  char buf[buflen];
2359  siginfo_t *si = (siginfo_t*)siginfo;
2360  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2361  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2362    st->print("si_errno=%s", buf);
2363  } else {
2364    st->print("si_errno=%d", si->si_errno);
2365  }
2366  const int c = si->si_code;
2367  assert(c > 0, "unexpected si_code");
2368  switch (si->si_signo) {
2369  case SIGILL:
2370    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2371    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2372    break;
2373  case SIGFPE:
2374    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2375    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2376    break;
2377  case SIGSEGV:
2378    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2379    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2380    break;
2381  case SIGBUS:
2382    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2383    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2384    break;
2385  default:
2386    st->print(", si_code=%d", si->si_code);
2387    // no si_addr
2388  }
2389
2390  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2391      UseSharedSpaces) {
2392    FileMapInfo* mapinfo = FileMapInfo::current_info();
2393    if (mapinfo->is_in_shared_space(si->si_addr)) {
2394      st->print("\n\nError accessing class data sharing archive."   \
2395                " Mapped file inaccessible during execution, "      \
2396                " possible disk/network problem.");
2397    }
2398  }
2399  st->cr();
2400}
2401
2402
2403static void print_signal_handler(outputStream* st, int sig,
2404                                 char* buf, size_t buflen);
2405
2406void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2407  st->print_cr("Signal Handlers:");
2408  print_signal_handler(st, SIGSEGV, buf, buflen);
2409  print_signal_handler(st, SIGBUS , buf, buflen);
2410  print_signal_handler(st, SIGFPE , buf, buflen);
2411  print_signal_handler(st, SIGPIPE, buf, buflen);
2412  print_signal_handler(st, SIGXFSZ, buf, buflen);
2413  print_signal_handler(st, SIGILL , buf, buflen);
2414  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2415  print_signal_handler(st, SR_signum, buf, buflen);
2416  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2417  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2418  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2419  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2420}
2421
2422static char saved_jvm_path[MAXPATHLEN] = {0};
2423
2424// Find the full path to the current module, libjvm.so or libjvm_g.so
2425void os::jvm_path(char *buf, jint buflen) {
2426  // Error checking.
2427  if (buflen < MAXPATHLEN) {
2428    assert(false, "must use a large-enough buffer");
2429    buf[0] = '\0';
2430    return;
2431  }
2432  // Lazy resolve the path to current module.
2433  if (saved_jvm_path[0] != 0) {
2434    strcpy(buf, saved_jvm_path);
2435    return;
2436  }
2437
2438  char dli_fname[MAXPATHLEN];
2439  bool ret = dll_address_to_library_name(
2440                CAST_FROM_FN_PTR(address, os::jvm_path),
2441                dli_fname, sizeof(dli_fname), NULL);
2442  assert(ret != 0, "cannot locate libjvm");
2443  char *rp = realpath(dli_fname, buf);
2444  if (rp == NULL)
2445    return;
2446
2447  if (Arguments::created_by_gamma_launcher()) {
2448    // Support for the gamma launcher.  Typical value for buf is
2449    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2450    // the right place in the string, then assume we are installed in a JDK and
2451    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2452    // up the path so it looks like libjvm.so is installed there (append a
2453    // fake suffix hotspot/libjvm.so).
2454    const char *p = buf + strlen(buf) - 1;
2455    for (int count = 0; p > buf && count < 5; ++count) {
2456      for (--p; p > buf && *p != '/'; --p)
2457        /* empty */ ;
2458    }
2459
2460    if (strncmp(p, "/jre/lib/", 9) != 0) {
2461      // Look for JAVA_HOME in the environment.
2462      char* java_home_var = ::getenv("JAVA_HOME");
2463      if (java_home_var != NULL && java_home_var[0] != 0) {
2464        char* jrelib_p;
2465        int len;
2466
2467        // Check the current module name "libjvm.so" or "libjvm_g.so".
2468        p = strrchr(buf, '/');
2469        assert(strstr(p, "/libjvm") == p, "invalid library name");
2470        p = strstr(p, "_g") ? "_g" : "";
2471
2472        rp = realpath(java_home_var, buf);
2473        if (rp == NULL)
2474          return;
2475
2476        // determine if this is a legacy image or modules image
2477        // modules image doesn't have "jre" subdirectory
2478        len = strlen(buf);
2479        jrelib_p = buf + len;
2480        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2481        if (0 != access(buf, F_OK)) {
2482          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2483        }
2484
2485        if (0 == access(buf, F_OK)) {
2486          // Use current module name "libjvm[_g].so" instead of
2487          // "libjvm"debug_only("_g")".so" since for fastdebug version
2488          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2489          len = strlen(buf);
2490          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2491        } else {
2492          // Go back to path of .so
2493          rp = realpath(dli_fname, buf);
2494          if (rp == NULL)
2495            return;
2496        }
2497      }
2498    }
2499  }
2500
2501  strcpy(saved_jvm_path, buf);
2502}
2503
2504void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2505  // no prefix required, not even "_"
2506}
2507
2508void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2509  // no suffix required
2510}
2511
2512////////////////////////////////////////////////////////////////////////////////
2513// sun.misc.Signal support
2514
2515static volatile jint sigint_count = 0;
2516
2517static void
2518UserHandler(int sig, void *siginfo, void *context) {
2519  // 4511530 - sem_post is serialized and handled by the manager thread. When
2520  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2521  // don't want to flood the manager thread with sem_post requests.
2522  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2523      return;
2524
2525  // Ctrl-C is pressed during error reporting, likely because the error
2526  // handler fails to abort. Let VM die immediately.
2527  if (sig == SIGINT && is_error_reported()) {
2528     os::die();
2529  }
2530
2531  os::signal_notify(sig);
2532}
2533
2534void* os::user_handler() {
2535  return CAST_FROM_FN_PTR(void*, UserHandler);
2536}
2537
2538extern "C" {
2539  typedef void (*sa_handler_t)(int);
2540  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2541}
2542
2543void* os::signal(int signal_number, void* handler) {
2544  struct sigaction sigAct, oldSigAct;
2545
2546  sigfillset(&(sigAct.sa_mask));
2547  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2548  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2549
2550  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2551    // -1 means registration failed
2552    return (void *)-1;
2553  }
2554
2555  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2556}
2557
2558void os::signal_raise(int signal_number) {
2559  ::raise(signal_number);
2560}
2561
2562/*
2563 * The following code is moved from os.cpp for making this
2564 * code platform specific, which it is by its very nature.
2565 */
2566
2567// Will be modified when max signal is changed to be dynamic
2568int os::sigexitnum_pd() {
2569  return NSIG;
2570}
2571
2572// a counter for each possible signal value
2573static volatile jint pending_signals[NSIG+1] = { 0 };
2574
2575// Bsd(POSIX) specific hand shaking semaphore.
2576#ifdef __APPLE__
2577static semaphore_t sig_sem;
2578#define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
2579#define SEM_WAIT(sem)           semaphore_wait(sem);
2580#define SEM_POST(sem)           semaphore_signal(sem);
2581#else
2582static sem_t sig_sem;
2583#define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
2584#define SEM_WAIT(sem)           sem_wait(&sem);
2585#define SEM_POST(sem)           sem_post(&sem);
2586#endif
2587
2588void os::signal_init_pd() {
2589  // Initialize signal structures
2590  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2591
2592  // Initialize signal semaphore
2593  ::SEM_INIT(sig_sem, 0);
2594}
2595
2596void os::signal_notify(int sig) {
2597  Atomic::inc(&pending_signals[sig]);
2598  ::SEM_POST(sig_sem);
2599}
2600
2601static int check_pending_signals(bool wait) {
2602  Atomic::store(0, &sigint_count);
2603  for (;;) {
2604    for (int i = 0; i < NSIG + 1; i++) {
2605      jint n = pending_signals[i];
2606      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2607        return i;
2608      }
2609    }
2610    if (!wait) {
2611      return -1;
2612    }
2613    JavaThread *thread = JavaThread::current();
2614    ThreadBlockInVM tbivm(thread);
2615
2616    bool threadIsSuspended;
2617    do {
2618      thread->set_suspend_equivalent();
2619      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2620      ::SEM_WAIT(sig_sem);
2621
2622      // were we externally suspended while we were waiting?
2623      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2624      if (threadIsSuspended) {
2625        //
2626        // The semaphore has been incremented, but while we were waiting
2627        // another thread suspended us. We don't want to continue running
2628        // while suspended because that would surprise the thread that
2629        // suspended us.
2630        //
2631        ::SEM_POST(sig_sem);
2632
2633        thread->java_suspend_self();
2634      }
2635    } while (threadIsSuspended);
2636  }
2637}
2638
2639int os::signal_lookup() {
2640  return check_pending_signals(false);
2641}
2642
2643int os::signal_wait() {
2644  return check_pending_signals(true);
2645}
2646
2647////////////////////////////////////////////////////////////////////////////////
2648// Virtual Memory
2649
2650int os::vm_page_size() {
2651  // Seems redundant as all get out
2652  assert(os::Bsd::page_size() != -1, "must call os::init");
2653  return os::Bsd::page_size();
2654}
2655
2656// Solaris allocates memory by pages.
2657int os::vm_allocation_granularity() {
2658  assert(os::Bsd::page_size() != -1, "must call os::init");
2659  return os::Bsd::page_size();
2660}
2661
2662// Rationale behind this function:
2663//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2664//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2665//  samples for JITted code. Here we create private executable mapping over the code cache
2666//  and then we can use standard (well, almost, as mapping can change) way to provide
2667//  info for the reporting script by storing timestamp and location of symbol
2668void bsd_wrap_code(char* base, size_t size) {
2669  static volatile jint cnt = 0;
2670
2671  if (!UseOprofile) {
2672    return;
2673  }
2674
2675  char buf[PATH_MAX + 1];
2676  int num = Atomic::add(1, &cnt);
2677
2678  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2679           os::get_temp_directory(), os::current_process_id(), num);
2680  unlink(buf);
2681
2682  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2683
2684  if (fd != -1) {
2685    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2686    if (rv != (off_t)-1) {
2687      if (::write(fd, "", 1) == 1) {
2688        mmap(base, size,
2689             PROT_READ|PROT_WRITE|PROT_EXEC,
2690             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2691      }
2692    }
2693    ::close(fd);
2694    unlink(buf);
2695  }
2696}
2697
2698// NOTE: Bsd kernel does not really reserve the pages for us.
2699//       All it does is to check if there are enough free pages
2700//       left at the time of mmap(). This could be a potential
2701//       problem.
2702bool os::commit_memory(char* addr, size_t size, bool exec) {
2703  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2704#ifdef __OpenBSD__
2705  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2706  return ::mprotect(addr, size, prot) == 0;
2707#else
2708  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2709                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2710  return res != (uintptr_t) MAP_FAILED;
2711#endif
2712}
2713
2714#ifndef _ALLBSD_SOURCE
2715// Define MAP_HUGETLB here so we can build HotSpot on old systems.
2716#ifndef MAP_HUGETLB
2717#define MAP_HUGETLB 0x40000
2718#endif
2719
2720// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2721#ifndef MADV_HUGEPAGE
2722#define MADV_HUGEPAGE 14
2723#endif
2724#endif
2725
2726bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2727                       bool exec) {
2728#ifndef _ALLBSD_SOURCE
2729  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2730    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2731    uintptr_t res =
2732      (uintptr_t) ::mmap(addr, size, prot,
2733                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2734                         -1, 0);
2735    return res != (uintptr_t) MAP_FAILED;
2736  }
2737#endif
2738
2739  return commit_memory(addr, size, exec);
2740}
2741
2742void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2743#ifndef _ALLBSD_SOURCE
2744  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2745    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2746    // be supported or the memory may already be backed by huge pages.
2747    ::madvise(addr, bytes, MADV_HUGEPAGE);
2748  }
2749#endif
2750}
2751
2752void os::free_memory(char *addr, size_t bytes) {
2753  ::madvise(addr, bytes, MADV_DONTNEED);
2754}
2755
2756void os::numa_make_global(char *addr, size_t bytes) {
2757}
2758
2759void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2760}
2761
2762bool os::numa_topology_changed()   { return false; }
2763
2764size_t os::numa_get_groups_num() {
2765  return 1;
2766}
2767
2768int os::numa_get_group_id() {
2769  return 0;
2770}
2771
2772size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2773  if (size > 0) {
2774    ids[0] = 0;
2775    return 1;
2776  }
2777  return 0;
2778}
2779
2780bool os::get_page_info(char *start, page_info* info) {
2781  return false;
2782}
2783
2784char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2785  return end;
2786}
2787
2788#ifndef _ALLBSD_SOURCE
2789// Something to do with the numa-aware allocator needs these symbols
2790extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2791extern "C" JNIEXPORT void numa_error(char *where) { }
2792extern "C" JNIEXPORT int fork1() { return fork(); }
2793
2794
2795// If we are running with libnuma version > 2, then we should
2796// be trying to use symbols with versions 1.1
2797// If we are running with earlier version, which did not have symbol versions,
2798// we should use the base version.
2799void* os::Bsd::libnuma_dlsym(void* handle, const char *name) {
2800  void *f = dlvsym(handle, name, "libnuma_1.1");
2801  if (f == NULL) {
2802    f = dlsym(handle, name);
2803  }
2804  return f;
2805}
2806
2807bool os::Bsd::libnuma_init() {
2808  // sched_getcpu() should be in libc.
2809  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2810                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));
2811
2812  if (sched_getcpu() != -1) { // Does it work?
2813    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2814    if (handle != NULL) {
2815      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2816                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
2817      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2818                                       libnuma_dlsym(handle, "numa_max_node")));
2819      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2820                                        libnuma_dlsym(handle, "numa_available")));
2821      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2822                                            libnuma_dlsym(handle, "numa_tonode_memory")));
2823      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2824                                            libnuma_dlsym(handle, "numa_interleave_memory")));
2825
2826
2827      if (numa_available() != -1) {
2828        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2829        // Create a cpu -> node mapping
2830        _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2831        rebuild_cpu_to_node_map();
2832        return true;
2833      }
2834    }
2835  }
2836  return false;
2837}
2838
2839// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2840// The table is later used in get_node_by_cpu().
2841void os::Bsd::rebuild_cpu_to_node_map() {
2842  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2843                              // in libnuma (possible values are starting from 16,
2844                              // and continuing up with every other power of 2, but less
2845                              // than the maximum number of CPUs supported by kernel), and
2846                              // is a subject to change (in libnuma version 2 the requirements
2847                              // are more reasonable) we'll just hardcode the number they use
2848                              // in the library.
2849  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2850
2851  size_t cpu_num = os::active_processor_count();
2852  size_t cpu_map_size = NCPUS / BitsPerCLong;
2853  size_t cpu_map_valid_size =
2854    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2855
2856  cpu_to_node()->clear();
2857  cpu_to_node()->at_grow(cpu_num - 1);
2858  size_t node_num = numa_get_groups_num();
2859
2860  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2861  for (size_t i = 0; i < node_num; i++) {
2862    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2863      for (size_t j = 0; j < cpu_map_valid_size; j++) {
2864        if (cpu_map[j] != 0) {
2865          for (size_t k = 0; k < BitsPerCLong; k++) {
2866            if (cpu_map[j] & (1UL << k)) {
2867              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2868            }
2869          }
2870        }
2871      }
2872    }
2873  }
2874  FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2875}
2876
2877int os::Bsd::get_node_by_cpu(int cpu_id) {
2878  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2879    return cpu_to_node()->at(cpu_id);
2880  }
2881  return -1;
2882}
2883
2884GrowableArray<int>* os::Bsd::_cpu_to_node;
2885os::Bsd::sched_getcpu_func_t os::Bsd::_sched_getcpu;
2886os::Bsd::numa_node_to_cpus_func_t os::Bsd::_numa_node_to_cpus;
2887os::Bsd::numa_max_node_func_t os::Bsd::_numa_max_node;
2888os::Bsd::numa_available_func_t os::Bsd::_numa_available;
2889os::Bsd::numa_tonode_memory_func_t os::Bsd::_numa_tonode_memory;
2890os::Bsd::numa_interleave_memory_func_t os::Bsd::_numa_interleave_memory;
2891unsigned long* os::Bsd::_numa_all_nodes;
2892#endif
2893
2894bool os::uncommit_memory(char* addr, size_t size) {
2895#ifdef __OpenBSD__
2896  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2897  return ::mprotect(addr, size, PROT_NONE) == 0;
2898#else
2899  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2900                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2901  return res  != (uintptr_t) MAP_FAILED;
2902#endif
2903}
2904
2905bool os::create_stack_guard_pages(char* addr, size_t size) {
2906  return os::commit_memory(addr, size);
2907}
2908
2909// If this is a growable mapping, remove the guard pages entirely by
2910// munmap()ping them.  If not, just call uncommit_memory().
2911bool os::remove_stack_guard_pages(char* addr, size_t size) {
2912  return os::uncommit_memory(addr, size);
2913}
2914
2915static address _highest_vm_reserved_address = NULL;
2916
2917// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2918// at 'requested_addr'. If there are existing memory mappings at the same
2919// location, however, they will be overwritten. If 'fixed' is false,
2920// 'requested_addr' is only treated as a hint, the return value may or
2921// may not start from the requested address. Unlike Bsd mmap(), this
2922// function returns NULL to indicate failure.
2923static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2924  char * addr;
2925  int flags;
2926
2927  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2928  if (fixed) {
2929    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2930    flags |= MAP_FIXED;
2931  }
2932
2933  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2934  // to PROT_EXEC if executable when we commit the page.
2935  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2936                       flags, -1, 0);
2937
2938  if (addr != MAP_FAILED) {
2939    // anon_mmap() should only get called during VM initialization,
2940    // don't need lock (actually we can skip locking even it can be called
2941    // from multiple threads, because _highest_vm_reserved_address is just a
2942    // hint about the upper limit of non-stack memory regions.)
2943    if ((address)addr + bytes > _highest_vm_reserved_address) {
2944      _highest_vm_reserved_address = (address)addr + bytes;
2945    }
2946  }
2947
2948  return addr == MAP_FAILED ? NULL : addr;
2949}
2950
2951// Don't update _highest_vm_reserved_address, because there might be memory
2952// regions above addr + size. If so, releasing a memory region only creates
2953// a hole in the address space, it doesn't help prevent heap-stack collision.
2954//
2955static int anon_munmap(char * addr, size_t size) {
2956  return ::munmap(addr, size) == 0;
2957}
2958
2959char* os::reserve_memory(size_t bytes, char* requested_addr,
2960                         size_t alignment_hint) {
2961  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2962}
2963
2964bool os::release_memory(char* addr, size_t size) {
2965  return anon_munmap(addr, size);
2966}
2967
2968static address highest_vm_reserved_address() {
2969  return _highest_vm_reserved_address;
2970}
2971
2972static bool bsd_mprotect(char* addr, size_t size, int prot) {
2973  // Bsd wants the mprotect address argument to be page aligned.
2974  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2975
2976  // According to SUSv3, mprotect() should only be used with mappings
2977  // established by mmap(), and mmap() always maps whole pages. Unaligned
2978  // 'addr' likely indicates problem in the VM (e.g. trying to change
2979  // protection of malloc'ed or statically allocated memory). Check the
2980  // caller if you hit this assert.
2981  assert(addr == bottom, "sanity check");
2982
2983  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2984  return ::mprotect(bottom, size, prot) == 0;
2985}
2986
2987// Set protections specified
2988bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2989                        bool is_committed) {
2990  unsigned int p = 0;
2991  switch (prot) {
2992  case MEM_PROT_NONE: p = PROT_NONE; break;
2993  case MEM_PROT_READ: p = PROT_READ; break;
2994  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2995  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2996  default:
2997    ShouldNotReachHere();
2998  }
2999  // is_committed is unused.
3000  return bsd_mprotect(addr, bytes, p);
3001}
3002
3003bool os::guard_memory(char* addr, size_t size) {
3004  return bsd_mprotect(addr, size, PROT_NONE);
3005}
3006
3007bool os::unguard_memory(char* addr, size_t size) {
3008  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
3009}
3010
3011bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3012  bool result = false;
3013#ifndef _ALLBSD_SOURCE
3014  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
3015                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3016                  -1, 0);
3017
3018  if (p != (void *) -1) {
3019    // We don't know if this really is a huge page or not.
3020    FILE *fp = fopen("/proc/self/maps", "r");
3021    if (fp) {
3022      while (!feof(fp)) {
3023        char chars[257];
3024        long x = 0;
3025        if (fgets(chars, sizeof(chars), fp)) {
3026          if (sscanf(chars, "%lx-%*x", &x) == 1
3027              && x == (long)p) {
3028            if (strstr (chars, "hugepage")) {
3029              result = true;
3030              break;
3031            }
3032          }
3033        }
3034      }
3035      fclose(fp);
3036    }
3037    munmap (p, page_size);
3038    if (result)
3039      return true;
3040  }
3041
3042  if (warn) {
3043    warning("HugeTLBFS is not supported by the operating system.");
3044  }
3045#endif
3046
3047  return result;
3048}
3049
3050/*
3051* Set the coredump_filter bits to include largepages in core dump (bit 6)
3052*
3053* From the coredump_filter documentation:
3054*
3055* - (bit 0) anonymous private memory
3056* - (bit 1) anonymous shared memory
3057* - (bit 2) file-backed private memory
3058* - (bit 3) file-backed shared memory
3059* - (bit 4) ELF header pages in file-backed private memory areas (it is
3060*           effective only if the bit 2 is cleared)
3061* - (bit 5) hugetlb private memory
3062* - (bit 6) hugetlb shared memory
3063*/
3064static void set_coredump_filter(void) {
3065  FILE *f;
3066  long cdm;
3067
3068  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3069    return;
3070  }
3071
3072  if (fscanf(f, "%lx", &cdm) != 1) {
3073    fclose(f);
3074    return;
3075  }
3076
3077  rewind(f);
3078
3079  if ((cdm & LARGEPAGES_BIT) == 0) {
3080    cdm |= LARGEPAGES_BIT;
3081    fprintf(f, "%#lx", cdm);
3082  }
3083
3084  fclose(f);
3085}
3086
3087// Large page support
3088
3089static size_t _large_page_size = 0;
3090
3091void os::large_page_init() {
3092#ifndef _ALLBSD_SOURCE
3093  if (!UseLargePages) {
3094    UseHugeTLBFS = false;
3095    UseSHM = false;
3096    return;
3097  }
3098
3099  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3100    // If UseLargePages is specified on the command line try both methods,
3101    // if it's default, then try only HugeTLBFS.
3102    if (FLAG_IS_DEFAULT(UseLargePages)) {
3103      UseHugeTLBFS = true;
3104    } else {
3105      UseHugeTLBFS = UseSHM = true;
3106    }
3107  }
3108
3109  if (LargePageSizeInBytes) {
3110    _large_page_size = LargePageSizeInBytes;
3111  } else {
3112    // large_page_size on Bsd is used to round up heap size. x86 uses either
3113    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3114    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3115    // page as large as 256M.
3116    //
3117    // Here we try to figure out page size by parsing /proc/meminfo and looking
3118    // for a line with the following format:
3119    //    Hugepagesize:     2048 kB
3120    //
3121    // If we can't determine the value (e.g. /proc is not mounted, or the text
3122    // format has been changed), we'll use the largest page size supported by
3123    // the processor.
3124
3125#ifndef ZERO
3126    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3127                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3128#endif // ZERO
3129
3130    FILE *fp = fopen("/proc/meminfo", "r");
3131    if (fp) {
3132      while (!feof(fp)) {
3133        int x = 0;
3134        char buf[16];
3135        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3136          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3137            _large_page_size = x * K;
3138            break;
3139          }
3140        } else {
3141          // skip to next line
3142          for (;;) {
3143            int ch = fgetc(fp);
3144            if (ch == EOF || ch == (int)'\n') break;
3145          }
3146        }
3147      }
3148      fclose(fp);
3149    }
3150  }
3151
3152  // print a warning if any large page related flag is specified on command line
3153  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3154
3155  const size_t default_page_size = (size_t)Bsd::page_size();
3156  if (_large_page_size > default_page_size) {
3157    _page_sizes[0] = _large_page_size;
3158    _page_sizes[1] = default_page_size;
3159    _page_sizes[2] = 0;
3160  }
3161  UseHugeTLBFS = UseHugeTLBFS &&
3162                 Bsd::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3163
3164  if (UseHugeTLBFS)
3165    UseSHM = false;
3166
3167  UseLargePages = UseHugeTLBFS || UseSHM;
3168
3169  set_coredump_filter();
3170#endif
3171}
3172
3173#ifndef _ALLBSD_SOURCE
3174#ifndef SHM_HUGETLB
3175#define SHM_HUGETLB 04000
3176#endif
3177#endif
3178
3179char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3180  // "exec" is passed in but not used.  Creating the shared image for
3181  // the code cache doesn't have an SHM_X executable permission to check.
3182  assert(UseLargePages && UseSHM, "only for SHM large pages");
3183
3184  key_t key = IPC_PRIVATE;
3185  char *addr;
3186
3187  bool warn_on_failure = UseLargePages &&
3188                        (!FLAG_IS_DEFAULT(UseLargePages) ||
3189                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3190                        );
3191  char msg[128];
3192
3193  // Create a large shared memory region to attach to based on size.
3194  // Currently, size is the total size of the heap
3195#ifndef _ALLBSD_SOURCE
3196  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3197#else
3198  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
3199#endif
3200  if (shmid == -1) {
3201     // Possible reasons for shmget failure:
3202     // 1. shmmax is too small for Java heap.
3203     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3204     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3205     // 2. not enough large page memory.
3206     //    > check available large pages: cat /proc/meminfo
3207     //    > increase amount of large pages:
3208     //          echo new_value > /proc/sys/vm/nr_hugepages
3209     //      Note 1: different Bsd may use different name for this property,
3210     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3211     //      Note 2: it's possible there's enough physical memory available but
3212     //            they are so fragmented after a long run that they can't
3213     //            coalesce into large pages. Try to reserve large pages when
3214     //            the system is still "fresh".
3215     if (warn_on_failure) {
3216       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3217       warning(msg);
3218     }
3219     return NULL;
3220  }
3221
3222  // attach to the region
3223  addr = (char*)shmat(shmid, req_addr, 0);
3224  int err = errno;
3225
3226  // Remove shmid. If shmat() is successful, the actual shared memory segment
3227  // will be deleted when it's detached by shmdt() or when the process
3228  // terminates. If shmat() is not successful this will remove the shared
3229  // segment immediately.
3230  shmctl(shmid, IPC_RMID, NULL);
3231
3232  if ((intptr_t)addr == -1) {
3233     if (warn_on_failure) {
3234       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3235       warning(msg);
3236     }
3237     return NULL;
3238  }
3239
3240  return addr;
3241}
3242
3243bool os::release_memory_special(char* base, size_t bytes) {
3244  // detaching the SHM segment will also delete it, see reserve_memory_special()
3245  int rslt = shmdt(base);
3246  return rslt == 0;
3247}
3248
3249size_t os::large_page_size() {
3250  return _large_page_size;
3251}
3252
3253// HugeTLBFS allows application to commit large page memory on demand;
3254// with SysV SHM the entire memory region must be allocated as shared
3255// memory.
3256bool os::can_commit_large_page_memory() {
3257  return UseHugeTLBFS;
3258}
3259
3260bool os::can_execute_large_page_memory() {
3261  return UseHugeTLBFS;
3262}
3263
3264// Reserve memory at an arbitrary address, only if that area is
3265// available (and not reserved for something else).
3266
3267char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3268  const int max_tries = 10;
3269  char* base[max_tries];
3270  size_t size[max_tries];
3271  const size_t gap = 0x000000;
3272
3273  // Assert only that the size is a multiple of the page size, since
3274  // that's all that mmap requires, and since that's all we really know
3275  // about at this low abstraction level.  If we need higher alignment,
3276  // we can either pass an alignment to this method or verify alignment
3277  // in one of the methods further up the call chain.  See bug 5044738.
3278  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3279
3280  // Repeatedly allocate blocks until the block is allocated at the
3281  // right spot. Give up after max_tries. Note that reserve_memory() will
3282  // automatically update _highest_vm_reserved_address if the call is
3283  // successful. The variable tracks the highest memory address every reserved
3284  // by JVM. It is used to detect heap-stack collision if running with
3285  // fixed-stack BsdThreads. Because here we may attempt to reserve more
3286  // space than needed, it could confuse the collision detecting code. To
3287  // solve the problem, save current _highest_vm_reserved_address and
3288  // calculate the correct value before return.
3289  address old_highest = _highest_vm_reserved_address;
3290
3291  // Bsd mmap allows caller to pass an address as hint; give it a try first,
3292  // if kernel honors the hint then we can return immediately.
3293  char * addr = anon_mmap(requested_addr, bytes, false);
3294  if (addr == requested_addr) {
3295     return requested_addr;
3296  }
3297
3298  if (addr != NULL) {
3299     // mmap() is successful but it fails to reserve at the requested address
3300     anon_munmap(addr, bytes);
3301  }
3302
3303  int i;
3304  for (i = 0; i < max_tries; ++i) {
3305    base[i] = reserve_memory(bytes);
3306
3307    if (base[i] != NULL) {
3308      // Is this the block we wanted?
3309      if (base[i] == requested_addr) {
3310        size[i] = bytes;
3311        break;
3312      }
3313
3314      // Does this overlap the block we wanted? Give back the overlapped
3315      // parts and try again.
3316
3317      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3318      if (top_overlap >= 0 && top_overlap < bytes) {
3319        unmap_memory(base[i], top_overlap);
3320        base[i] += top_overlap;
3321        size[i] = bytes - top_overlap;
3322      } else {
3323        size_t bottom_overlap = base[i] + bytes - requested_addr;
3324        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3325          unmap_memory(requested_addr, bottom_overlap);
3326          size[i] = bytes - bottom_overlap;
3327        } else {
3328          size[i] = bytes;
3329        }
3330      }
3331    }
3332  }
3333
3334  // Give back the unused reserved pieces.
3335
3336  for (int j = 0; j < i; ++j) {
3337    if (base[j] != NULL) {
3338      unmap_memory(base[j], size[j]);
3339    }
3340  }
3341
3342  if (i < max_tries) {
3343    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3344    return requested_addr;
3345  } else {
3346    _highest_vm_reserved_address = old_highest;
3347    return NULL;
3348  }
3349}
3350
3351size_t os::read(int fd, void *buf, unsigned int nBytes) {
3352  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
3353}
3354
3355// TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
3356// Solaris uses poll(), bsd uses park().
3357// Poll() is likely a better choice, assuming that Thread.interrupt()
3358// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3359// SIGSEGV, see 4355769.
3360
3361const int NANOSECS_PER_MILLISECS = 1000000;
3362
3363int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3364  assert(thread == Thread::current(),  "thread consistency check");
3365
3366  ParkEvent * const slp = thread->_SleepEvent ;
3367  slp->reset() ;
3368  OrderAccess::fence() ;
3369
3370  if (interruptible) {
3371    jlong prevtime = javaTimeNanos();
3372
3373    for (;;) {
3374      if (os::is_interrupted(thread, true)) {
3375        return OS_INTRPT;
3376      }
3377
3378      jlong newtime = javaTimeNanos();
3379
3380      if (newtime - prevtime < 0) {
3381        // time moving backwards, should only happen if no monotonic clock
3382        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3383        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3384      } else {
3385        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3386      }
3387
3388      if(millis <= 0) {
3389        return OS_OK;
3390      }
3391
3392      prevtime = newtime;
3393
3394      {
3395        assert(thread->is_Java_thread(), "sanity check");
3396        JavaThread *jt = (JavaThread *) thread;
3397        ThreadBlockInVM tbivm(jt);
3398        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3399
3400        jt->set_suspend_equivalent();
3401        // cleared by handle_special_suspend_equivalent_condition() or
3402        // java_suspend_self() via check_and_wait_while_suspended()
3403
3404        slp->park(millis);
3405
3406        // were we externally suspended while we were waiting?
3407        jt->check_and_wait_while_suspended();
3408      }
3409    }
3410  } else {
3411    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3412    jlong prevtime = javaTimeNanos();
3413
3414    for (;;) {
3415      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3416      // the 1st iteration ...
3417      jlong newtime = javaTimeNanos();
3418
3419      if (newtime - prevtime < 0) {
3420        // time moving backwards, should only happen if no monotonic clock
3421        // not a guarantee() because JVM should not abort on kernel/glibc bugs
3422        assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
3423      } else {
3424        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
3425      }
3426
3427      if(millis <= 0) break ;
3428
3429      prevtime = newtime;
3430      slp->park(millis);
3431    }
3432    return OS_OK ;
3433  }
3434}
3435
3436int os::naked_sleep() {
3437  // %% make the sleep time an integer flag. for now use 1 millisec.
3438  return os::sleep(Thread::current(), 1, false);
3439}
3440
3441// Sleep forever; naked call to OS-specific sleep; use with CAUTION
3442void os::infinite_sleep() {
3443  while (true) {    // sleep forever ...
3444    ::sleep(100);   // ... 100 seconds at a time
3445  }
3446}
3447
3448// Used to convert frequent JVM_Yield() to nops
3449bool os::dont_yield() {
3450  return DontYieldALot;
3451}
3452
3453void os::yield() {
3454  sched_yield();
3455}
3456
3457os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3458
3459void os::yield_all(int attempts) {
3460  // Yields to all threads, including threads with lower priorities
3461  // Threads on Bsd are all with same priority. The Solaris style
3462  // os::yield_all() with nanosleep(1ms) is not necessary.
3463  sched_yield();
3464}
3465
3466// Called from the tight loops to possibly influence time-sharing heuristics
3467void os::loop_breaker(int attempts) {
3468  os::yield_all(attempts);
3469}
3470
3471////////////////////////////////////////////////////////////////////////////////
3472// thread priority support
3473
3474// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
3475// only supports dynamic priority, static priority must be zero. For real-time
3476// applications, Bsd supports SCHED_RR which allows static priority (1-99).
3477// However, for large multi-threaded applications, SCHED_RR is not only slower
3478// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3479// of 5 runs - Sep 2005).
3480//
3481// The following code actually changes the niceness of kernel-thread/LWP. It
3482// has an assumption that setpriority() only modifies one kernel-thread/LWP,
3483// not the entire user process, and user level threads are 1:1 mapped to kernel
3484// threads. It has always been the case, but could change in the future. For
3485// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3486// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3487
3488#if defined(_ALLBSD_SOURCE) && !defined(__APPLE__)
3489int os::java_to_os_priority[MaxPriority + 1] = {
3490  19,              // 0 Entry should never be used
3491
3492   0,              // 1 MinPriority
3493   3,              // 2
3494   6,              // 3
3495
3496   10,              // 4
3497   15,              // 5 NormPriority
3498   18,              // 6
3499
3500   21,              // 7
3501   25,              // 8
3502   28,              // 9 NearMaxPriority
3503
3504   31              // 10 MaxPriority
3505};
3506#elif defined(__APPLE__)
3507/* Using Mach high-level priority assignments */
3508int os::java_to_os_priority[MaxPriority + 1] = {
3509   0,              // 0 Entry should never be used (MINPRI_USER)
3510
3511  27,              // 1 MinPriority
3512  28,              // 2
3513  29,              // 3
3514
3515  30,              // 4
3516  31,              // 5 NormPriority (BASEPRI_DEFAULT)
3517  32,              // 6
3518
3519  33,              // 7
3520  34,              // 8
3521  35,              // 9 NearMaxPriority
3522
3523  36               // 10 MaxPriority
3524};
3525#else
3526int os::java_to_os_priority[MaxPriority + 1] = {
3527  19,              // 0 Entry should never be used
3528
3529   4,              // 1 MinPriority
3530   3,              // 2
3531   2,              // 3
3532
3533   1,              // 4
3534   0,              // 5 NormPriority
3535  -1,              // 6
3536
3537  -2,              // 7
3538  -3,              // 8
3539  -4,              // 9 NearMaxPriority
3540
3541  -5               // 10 MaxPriority
3542};
3543#endif
3544
3545static int prio_init() {
3546  if (ThreadPriorityPolicy == 1) {
3547    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3548    // if effective uid is not root. Perhaps, a more elegant way of doing
3549    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3550    if (geteuid() != 0) {
3551      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3552        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
3553      }
3554      ThreadPriorityPolicy = 0;
3555    }
3556  }
3557  return 0;
3558}
3559
3560OSReturn os::set_native_priority(Thread* thread, int newpri) {
3561  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3562
3563#ifdef __OpenBSD__
3564  // OpenBSD pthread_setprio starves low priority threads
3565  return OS_OK;
3566#elif defined(__FreeBSD__)
3567  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
3568#elif defined(__APPLE__) || defined(__NetBSD__)
3569  struct sched_param sp;
3570  int policy;
3571  pthread_t self = pthread_self();
3572
3573  if (pthread_getschedparam(self, &policy, &sp) != 0)
3574    return OS_ERR;
3575
3576  sp.sched_priority = newpri;
3577  if (pthread_setschedparam(self, policy, &sp) != 0)
3578    return OS_ERR;
3579
3580  return OS_OK;
3581#else
3582  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3583  return (ret == 0) ? OS_OK : OS_ERR;
3584#endif
3585}
3586
3587OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3588  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3589    *priority_ptr = java_to_os_priority[NormPriority];
3590    return OS_OK;
3591  }
3592
3593  errno = 0;
3594#if defined(__OpenBSD__) || defined(__FreeBSD__)
3595  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
3596#elif defined(__APPLE__) || defined(__NetBSD__)
3597  int policy;
3598  struct sched_param sp;
3599
3600  pthread_getschedparam(pthread_self(), &policy, &sp);
3601  *priority_ptr = sp.sched_priority;
3602#else
3603  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3604#endif
3605  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3606}
3607
3608// Hint to the underlying OS that a task switch would not be good.
3609// Void return because it's a hint and can fail.
3610void os::hint_no_preempt() {}
3611
3612////////////////////////////////////////////////////////////////////////////////
3613// suspend/resume support
3614
3615//  the low-level signal-based suspend/resume support is a remnant from the
3616//  old VM-suspension that used to be for java-suspension, safepoints etc,
3617//  within hotspot. Now there is a single use-case for this:
3618//    - calling get_thread_pc() on the VMThread by the flat-profiler task
3619//      that runs in the watcher thread.
3620//  The remaining code is greatly simplified from the more general suspension
3621//  code that used to be used.
3622//
3623//  The protocol is quite simple:
3624//  - suspend:
3625//      - sends a signal to the target thread
3626//      - polls the suspend state of the osthread using a yield loop
3627//      - target thread signal handler (SR_handler) sets suspend state
3628//        and blocks in sigsuspend until continued
3629//  - resume:
3630//      - sets target osthread state to continue
3631//      - sends signal to end the sigsuspend loop in the SR_handler
3632//
3633//  Note that the SR_lock plays no role in this suspend/resume protocol.
3634//
3635
3636static void resume_clear_context(OSThread *osthread) {
3637  osthread->set_ucontext(NULL);
3638  osthread->set_siginfo(NULL);
3639
3640  // notify the suspend action is completed, we have now resumed
3641  osthread->sr.clear_suspended();
3642}
3643
3644static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3645  osthread->set_ucontext(context);
3646  osthread->set_siginfo(siginfo);
3647}
3648
3649//
3650// Handler function invoked when a thread's execution is suspended or
3651// resumed. We have to be careful that only async-safe functions are
3652// called here (Note: most pthread functions are not async safe and
3653// should be avoided.)
3654//
3655// Note: sigwait() is a more natural fit than sigsuspend() from an
3656// interface point of view, but sigwait() prevents the signal hander
3657// from being run. libpthread would get very confused by not having
3658// its signal handlers run and prevents sigwait()'s use with the
3659// mutex granting granting signal.
3660//
3661// Currently only ever called on the VMThread
3662//
3663static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3664  // Save and restore errno to avoid confusing native code with EINTR
3665  // after sigsuspend.
3666  int old_errno = errno;
3667
3668  Thread* thread = Thread::current();
3669  OSThread* osthread = thread->osthread();
3670  assert(thread->is_VM_thread(), "Must be VMThread");
3671  // read current suspend action
3672  int action = osthread->sr.suspend_action();
3673  if (action == SR_SUSPEND) {
3674    suspend_save_context(osthread, siginfo, context);
3675
3676    // Notify the suspend action is about to be completed. do_suspend()
3677    // waits until SR_SUSPENDED is set and then returns. We will wait
3678    // here for a resume signal and that completes the suspend-other
3679    // action. do_suspend/do_resume is always called as a pair from
3680    // the same thread - so there are no races
3681
3682    // notify the caller
3683    osthread->sr.set_suspended();
3684
3685    sigset_t suspend_set;  // signals for sigsuspend()
3686
3687    // get current set of blocked signals and unblock resume signal
3688    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3689    sigdelset(&suspend_set, SR_signum);
3690
3691    // wait here until we are resumed
3692    do {
3693      sigsuspend(&suspend_set);
3694      // ignore all returns until we get a resume signal
3695    } while (osthread->sr.suspend_action() != SR_CONTINUE);
3696
3697    resume_clear_context(osthread);
3698
3699  } else {
3700    assert(action == SR_CONTINUE, "unexpected sr action");
3701    // nothing special to do - just leave the handler
3702  }
3703
3704  errno = old_errno;
3705}
3706
3707
3708static int SR_initialize() {
3709  struct sigaction act;
3710  char *s;
3711  /* Get signal number to use for suspend/resume */
3712  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3713    int sig = ::strtol(s, 0, 10);
3714    if (sig > 0 || sig < NSIG) {
3715        SR_signum = sig;
3716    }
3717  }
3718
3719  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3720        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3721
3722  sigemptyset(&SR_sigset);
3723  sigaddset(&SR_sigset, SR_signum);
3724
3725  /* Set up signal handler for suspend/resume */
3726  act.sa_flags = SA_RESTART|SA_SIGINFO;
3727  act.sa_handler = (void (*)(int)) SR_handler;
3728
3729  // SR_signum is blocked by default.
3730  // 4528190 - We also need to block pthread restart signal (32 on all
3731  // supported Bsd platforms). Note that BsdThreads need to block
3732  // this signal for all threads to work properly. So we don't have
3733  // to use hard-coded signal number when setting up the mask.
3734  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3735
3736  if (sigaction(SR_signum, &act, 0) == -1) {
3737    return -1;
3738  }
3739
3740  // Save signal flag
3741  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
3742  return 0;
3743}
3744
3745static int SR_finalize() {
3746  return 0;
3747}
3748
3749
3750// returns true on success and false on error - really an error is fatal
3751// but this seems the normal response to library errors
3752static bool do_suspend(OSThread* osthread) {
3753  // mark as suspended and send signal
3754  osthread->sr.set_suspend_action(SR_SUSPEND);
3755  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3756  assert_status(status == 0, status, "pthread_kill");
3757
3758  // check status and wait until notified of suspension
3759  if (status == 0) {
3760    for (int i = 0; !osthread->sr.is_suspended(); i++) {
3761      os::yield_all(i);
3762    }
3763    osthread->sr.set_suspend_action(SR_NONE);
3764    return true;
3765  }
3766  else {
3767    osthread->sr.set_suspend_action(SR_NONE);
3768    return false;
3769  }
3770}
3771
3772static void do_resume(OSThread* osthread) {
3773  assert(osthread->sr.is_suspended(), "thread should be suspended");
3774  osthread->sr.set_suspend_action(SR_CONTINUE);
3775
3776  int status = pthread_kill(osthread->pthread_id(), SR_signum);
3777  assert_status(status == 0, status, "pthread_kill");
3778  // check status and wait unit notified of resumption
3779  if (status == 0) {
3780    for (int i = 0; osthread->sr.is_suspended(); i++) {
3781      os::yield_all(i);
3782    }
3783  }
3784  osthread->sr.set_suspend_action(SR_NONE);
3785}
3786
3787////////////////////////////////////////////////////////////////////////////////
3788// interrupt support
3789
3790void os::interrupt(Thread* thread) {
3791  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3792    "possibility of dangling Thread pointer");
3793
3794  OSThread* osthread = thread->osthread();
3795
3796  if (!osthread->interrupted()) {
3797    osthread->set_interrupted(true);
3798    // More than one thread can get here with the same value of osthread,
3799    // resulting in multiple notifications.  We do, however, want the store
3800    // to interrupted() to be visible to other threads before we execute unpark().
3801    OrderAccess::fence();
3802    ParkEvent * const slp = thread->_SleepEvent ;
3803    if (slp != NULL) slp->unpark() ;
3804  }
3805
3806  // For JSR166. Unpark even if interrupt status already was set
3807  if (thread->is_Java_thread())
3808    ((JavaThread*)thread)->parker()->unpark();
3809
3810  ParkEvent * ev = thread->_ParkEvent ;
3811  if (ev != NULL) ev->unpark() ;
3812
3813}
3814
3815bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3816  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3817    "possibility of dangling Thread pointer");
3818
3819  OSThread* osthread = thread->osthread();
3820
3821  bool interrupted = osthread->interrupted();
3822
3823  if (interrupted && clear_interrupted) {
3824    osthread->set_interrupted(false);
3825    // consider thread->_SleepEvent->reset() ... optional optimization
3826  }
3827
3828  return interrupted;
3829}
3830
3831///////////////////////////////////////////////////////////////////////////////////
3832// signal handling (except suspend/resume)
3833
3834// This routine may be used by user applications as a "hook" to catch signals.
3835// The user-defined signal handler must pass unrecognized signals to this
3836// routine, and if it returns true (non-zero), then the signal handler must
3837// return immediately.  If the flag "abort_if_unrecognized" is true, then this
3838// routine will never retun false (zero), but instead will execute a VM panic
3839// routine kill the process.
3840//
3841// If this routine returns false, it is OK to call it again.  This allows
3842// the user-defined signal handler to perform checks either before or after
3843// the VM performs its own checks.  Naturally, the user code would be making
3844// a serious error if it tried to handle an exception (such as a null check
3845// or breakpoint) that the VM was generating for its own correct operation.
3846//
3847// This routine may recognize any of the following kinds of signals:
3848//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3849// It should be consulted by handlers for any of those signals.
3850//
3851// The caller of this routine must pass in the three arguments supplied
3852// to the function referred to in the "sa_sigaction" (not the "sa_handler")
3853// field of the structure passed to sigaction().  This routine assumes that
3854// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3855//
3856// Note that the VM will print warnings if it detects conflicting signal
3857// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3858//
3859extern "C" JNIEXPORT int
3860JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3861                        void* ucontext, int abort_if_unrecognized);
3862
3863void signalHandler(int sig, siginfo_t* info, void* uc) {
3864  assert(info != NULL && uc != NULL, "it must be old kernel");
3865  JVM_handle_bsd_signal(sig, info, uc, true);
3866}
3867
3868
3869// This boolean allows users to forward their own non-matching signals
3870// to JVM_handle_bsd_signal, harmlessly.
3871bool os::Bsd::signal_handlers_are_installed = false;
3872
3873// For signal-chaining
3874struct sigaction os::Bsd::sigact[MAXSIGNUM];
3875unsigned int os::Bsd::sigs = 0;
3876bool os::Bsd::libjsig_is_loaded = false;
3877typedef struct sigaction *(*get_signal_t)(int);
3878get_signal_t os::Bsd::get_signal_action = NULL;
3879
3880struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3881  struct sigaction *actp = NULL;
3882
3883  if (libjsig_is_loaded) {
3884    // Retrieve the old signal handler from libjsig
3885    actp = (*get_signal_action)(sig);
3886  }
3887  if (actp == NULL) {
3888    // Retrieve the preinstalled signal handler from jvm
3889    actp = get_preinstalled_handler(sig);
3890  }
3891
3892  return actp;
3893}
3894
3895static bool call_chained_handler(struct sigaction *actp, int sig,
3896                                 siginfo_t *siginfo, void *context) {
3897  // Call the old signal handler
3898  if (actp->sa_handler == SIG_DFL) {
3899    // It's more reasonable to let jvm treat it as an unexpected exception
3900    // instead of taking the default action.
3901    return false;
3902  } else if (actp->sa_handler != SIG_IGN) {
3903    if ((actp->sa_flags & SA_NODEFER) == 0) {
3904      // automaticlly block the signal
3905      sigaddset(&(actp->sa_mask), sig);
3906    }
3907
3908    sa_handler_t hand;
3909    sa_sigaction_t sa;
3910    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3911    // retrieve the chained handler
3912    if (siginfo_flag_set) {
3913      sa = actp->sa_sigaction;
3914    } else {
3915      hand = actp->sa_handler;
3916    }
3917
3918    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3919      actp->sa_handler = SIG_DFL;
3920    }
3921
3922    // try to honor the signal mask
3923    sigset_t oset;
3924    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3925
3926    // call into the chained handler
3927    if (siginfo_flag_set) {
3928      (*sa)(sig, siginfo, context);
3929    } else {
3930      (*hand)(sig);
3931    }
3932
3933    // restore the signal mask
3934    pthread_sigmask(SIG_SETMASK, &oset, 0);
3935  }
3936  // Tell jvm's signal handler the signal is taken care of.
3937  return true;
3938}
3939
3940bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3941  bool chained = false;
3942  // signal-chaining
3943  if (UseSignalChaining) {
3944    struct sigaction *actp = get_chained_signal_action(sig);
3945    if (actp != NULL) {
3946      chained = call_chained_handler(actp, sig, siginfo, context);
3947    }
3948  }
3949  return chained;
3950}
3951
3952struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3953  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3954    return &sigact[sig];
3955  }
3956  return NULL;
3957}
3958
3959void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3960  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3961  sigact[sig] = oldAct;
3962  sigs |= (unsigned int)1 << sig;
3963}
3964
3965// for diagnostic
3966int os::Bsd::sigflags[MAXSIGNUM];
3967
3968int os::Bsd::get_our_sigflags(int sig) {
3969  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3970  return sigflags[sig];
3971}
3972
3973void os::Bsd::set_our_sigflags(int sig, int flags) {
3974  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3975  sigflags[sig] = flags;
3976}
3977
3978void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3979  // Check for overwrite.
3980  struct sigaction oldAct;
3981  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3982
3983  void* oldhand = oldAct.sa_sigaction
3984                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3985                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3986  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3987      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3988      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3989    if (AllowUserSignalHandlers || !set_installed) {
3990      // Do not overwrite; user takes responsibility to forward to us.
3991      return;
3992    } else if (UseSignalChaining) {
3993      // save the old handler in jvm
3994      save_preinstalled_handler(sig, oldAct);
3995      // libjsig also interposes the sigaction() call below and saves the
3996      // old sigaction on it own.
3997    } else {
3998      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3999                    "%#lx for signal %d.", (long)oldhand, sig));
4000    }
4001  }
4002
4003  struct sigaction sigAct;
4004  sigfillset(&(sigAct.sa_mask));
4005  sigAct.sa_handler = SIG_DFL;
4006  if (!set_installed) {
4007    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4008  } else {
4009    sigAct.sa_sigaction = signalHandler;
4010    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4011  }
4012  // Save flags, which are set by ours
4013  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4014  sigflags[sig] = sigAct.sa_flags;
4015
4016  int ret = sigaction(sig, &sigAct, &oldAct);
4017  assert(ret == 0, "check");
4018
4019  void* oldhand2  = oldAct.sa_sigaction
4020                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4021                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4022  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4023}
4024
4025// install signal handlers for signals that HotSpot needs to
4026// handle in order to support Java-level exception handling.
4027
4028void os::Bsd::install_signal_handlers() {
4029  if (!signal_handlers_are_installed) {
4030    signal_handlers_are_installed = true;
4031
4032    // signal-chaining
4033    typedef void (*signal_setting_t)();
4034    signal_setting_t begin_signal_setting = NULL;
4035    signal_setting_t end_signal_setting = NULL;
4036    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4037                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4038    if (begin_signal_setting != NULL) {
4039      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4040                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4041      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4042                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4043      libjsig_is_loaded = true;
4044      assert(UseSignalChaining, "should enable signal-chaining");
4045    }
4046    if (libjsig_is_loaded) {
4047      // Tell libjsig jvm is setting signal handlers
4048      (*begin_signal_setting)();
4049    }
4050
4051    set_signal_handler(SIGSEGV, true);
4052    set_signal_handler(SIGPIPE, true);
4053    set_signal_handler(SIGBUS, true);
4054    set_signal_handler(SIGILL, true);
4055    set_signal_handler(SIGFPE, true);
4056    set_signal_handler(SIGXFSZ, true);
4057
4058#if defined(__APPLE__)
4059    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
4060    // signals caught and handled by the JVM. To work around this, we reset the mach task
4061    // signal handler that's placed on our process by CrashReporter. This disables
4062    // CrashReporter-based reporting.
4063    //
4064    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
4065    // on caught fatal signals.
4066    //
4067    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
4068    // handlers. By replacing the existing task exception handler, we disable gdb's mach
4069    // exception handling, while leaving the standard BSD signal handlers functional.
4070    kern_return_t kr;
4071    kr = task_set_exception_ports(mach_task_self(),
4072        EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
4073        MACH_PORT_NULL,
4074        EXCEPTION_STATE_IDENTITY,
4075        MACHINE_THREAD_STATE);
4076
4077    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
4078#endif
4079
4080    if (libjsig_is_loaded) {
4081      // Tell libjsig jvm finishes setting signal handlers
4082      (*end_signal_setting)();
4083    }
4084
4085    // We don't activate signal checker if libjsig is in place, we trust ourselves
4086    // and if UserSignalHandler is installed all bets are off
4087    if (CheckJNICalls) {
4088      if (libjsig_is_loaded) {
4089        tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4090        check_signals = false;
4091      }
4092      if (AllowUserSignalHandlers) {
4093        tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4094        check_signals = false;
4095      }
4096    }
4097  }
4098}
4099
4100#ifndef _ALLBSD_SOURCE
4101// This is the fastest way to get thread cpu time on Bsd.
4102// Returns cpu time (user+sys) for any thread, not only for current.
4103// POSIX compliant clocks are implemented in the kernels 2.6.16+.
4104// It might work on 2.6.10+ with a special kernel/glibc patch.
4105// For reference, please, see IEEE Std 1003.1-2004:
4106//   http://www.unix.org/single_unix_specification
4107
4108jlong os::Bsd::fast_thread_cpu_time(clockid_t clockid) {
4109  struct timespec tp;
4110  int rc = os::Bsd::clock_gettime(clockid, &tp);
4111  assert(rc == 0, "clock_gettime is expected to return 0 code");
4112
4113  return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
4114}
4115#endif
4116
4117/////
4118// glibc on Bsd platform uses non-documented flag
4119// to indicate, that some special sort of signal
4120// trampoline is used.
4121// We will never set this flag, and we should
4122// ignore this flag in our diagnostic
4123#ifdef SIGNIFICANT_SIGNAL_MASK
4124#undef SIGNIFICANT_SIGNAL_MASK
4125#endif
4126#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4127
4128static const char* get_signal_handler_name(address handler,
4129                                           char* buf, int buflen) {
4130  int offset;
4131  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4132  if (found) {
4133    // skip directory names
4134    const char *p1, *p2;
4135    p1 = buf;
4136    size_t len = strlen(os::file_separator());
4137    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4138    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4139  } else {
4140    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4141  }
4142  return buf;
4143}
4144
4145static void print_signal_handler(outputStream* st, int sig,
4146                                 char* buf, size_t buflen) {
4147  struct sigaction sa;
4148
4149  sigaction(sig, NULL, &sa);
4150
4151  // See comment for SIGNIFICANT_SIGNAL_MASK define
4152  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4153
4154  st->print("%s: ", os::exception_name(sig, buf, buflen));
4155
4156  address handler = (sa.sa_flags & SA_SIGINFO)
4157    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4158    : CAST_FROM_FN_PTR(address, sa.sa_handler);
4159
4160  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4161    st->print("SIG_DFL");
4162  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4163    st->print("SIG_IGN");
4164  } else {
4165    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4166  }
4167
4168  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4169
4170  address rh = VMError::get_resetted_sighandler(sig);
4171  // May be, handler was resetted by VMError?
4172  if(rh != NULL) {
4173    handler = rh;
4174    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4175  }
4176
4177  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4178
4179  // Check: is it our handler?
4180  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4181     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4182    // It is our signal handler
4183    // check for flags, reset system-used one!
4184    if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4185      st->print(
4186                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4187                os::Bsd::get_our_sigflags(sig));
4188    }
4189  }
4190  st->cr();
4191}
4192
4193
4194#define DO_SIGNAL_CHECK(sig) \
4195  if (!sigismember(&check_signal_done, sig)) \
4196    os::Bsd::check_signal_handler(sig)
4197
4198// This method is a periodic task to check for misbehaving JNI applications
4199// under CheckJNI, we can add any periodic checks here
4200
4201void os::run_periodic_checks() {
4202
4203  if (check_signals == false) return;
4204
4205  // SEGV and BUS if overridden could potentially prevent
4206  // generation of hs*.log in the event of a crash, debugging
4207  // such a case can be very challenging, so we absolutely
4208  // check the following for a good measure:
4209  DO_SIGNAL_CHECK(SIGSEGV);
4210  DO_SIGNAL_CHECK(SIGILL);
4211  DO_SIGNAL_CHECK(SIGFPE);
4212  DO_SIGNAL_CHECK(SIGBUS);
4213  DO_SIGNAL_CHECK(SIGPIPE);
4214  DO_SIGNAL_CHECK(SIGXFSZ);
4215
4216
4217  // ReduceSignalUsage allows the user to override these handlers
4218  // see comments at the very top and jvm_solaris.h
4219  if (!ReduceSignalUsage) {
4220    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4221    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4222    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4223    DO_SIGNAL_CHECK(BREAK_SIGNAL);
4224  }
4225
4226  DO_SIGNAL_CHECK(SR_signum);
4227  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4228}
4229
4230typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4231
4232static os_sigaction_t os_sigaction = NULL;
4233
4234void os::Bsd::check_signal_handler(int sig) {
4235  char buf[O_BUFLEN];
4236  address jvmHandler = NULL;
4237
4238
4239  struct sigaction act;
4240  if (os_sigaction == NULL) {
4241    // only trust the default sigaction, in case it has been interposed
4242    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4243    if (os_sigaction == NULL) return;
4244  }
4245
4246  os_sigaction(sig, (struct sigaction*)NULL, &act);
4247
4248
4249  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4250
4251  address thisHandler = (act.sa_flags & SA_SIGINFO)
4252    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4253    : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4254
4255
4256  switch(sig) {
4257  case SIGSEGV:
4258  case SIGBUS:
4259  case SIGFPE:
4260  case SIGPIPE:
4261  case SIGILL:
4262  case SIGXFSZ:
4263    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4264    break;
4265
4266  case SHUTDOWN1_SIGNAL:
4267  case SHUTDOWN2_SIGNAL:
4268  case SHUTDOWN3_SIGNAL:
4269  case BREAK_SIGNAL:
4270    jvmHandler = (address)user_handler();
4271    break;
4272
4273  case INTERRUPT_SIGNAL:
4274    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4275    break;
4276
4277  default:
4278    if (sig == SR_signum) {
4279      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4280    } else {
4281      return;
4282    }
4283    break;
4284  }
4285
4286  if (thisHandler != jvmHandler) {
4287    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4288    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4289    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4290    // No need to check this sig any longer
4291    sigaddset(&check_signal_done, sig);
4292  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
4293    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4294    tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
4295    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4296    // No need to check this sig any longer
4297    sigaddset(&check_signal_done, sig);
4298  }
4299
4300  // Dump all the signal
4301  if (sigismember(&check_signal_done, sig)) {
4302    print_signal_handlers(tty, buf, O_BUFLEN);
4303  }
4304}
4305
4306extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4307
4308extern bool signal_name(int signo, char* buf, size_t len);
4309
4310const char* os::exception_name(int exception_code, char* buf, size_t size) {
4311  if (0 < exception_code && exception_code <= SIGRTMAX) {
4312    // signal
4313    if (!signal_name(exception_code, buf, size)) {
4314      jio_snprintf(buf, size, "SIG%d", exception_code);
4315    }
4316    return buf;
4317  } else {
4318    return NULL;
4319  }
4320}
4321
4322// this is called _before_ the most of global arguments have been parsed
4323void os::init(void) {
4324  char dummy;   /* used to get a guess on initial stack address */
4325//  first_hrtime = gethrtime();
4326
4327  // With BsdThreads the JavaMain thread pid (primordial thread)
4328  // is different than the pid of the java launcher thread.
4329  // So, on Bsd, the launcher thread pid is passed to the VM
4330  // via the sun.java.launcher.pid property.
4331  // Use this property instead of getpid() if it was correctly passed.
4332  // See bug 6351349.
4333  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4334
4335  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4336
4337  clock_tics_per_sec = CLK_TCK;
4338
4339  init_random(1234567);
4340
4341  ThreadCritical::initialize();
4342
4343  Bsd::set_page_size(getpagesize());
4344  if (Bsd::page_size() == -1) {
4345    fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
4346                  strerror(errno)));
4347  }
4348  init_page_sizes((size_t) Bsd::page_size());
4349
4350  Bsd::initialize_system_info();
4351
4352  // main_thread points to the aboriginal thread
4353  Bsd::_main_thread = pthread_self();
4354
4355  Bsd::clock_init();
4356  initial_time_count = os::elapsed_counter();
4357
4358#ifdef __APPLE__
4359  // XXXDARWIN
4360  // Work around the unaligned VM callbacks in hotspot's
4361  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
4362  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
4363  // alignment when doing symbol lookup. To work around this, we force early
4364  // binding of all symbols now, thus binding when alignment is known-good.
4365  _dyld_bind_fully_image_containing_address((const void *) &os::init);
4366#endif
4367}
4368
4369// To install functions for atexit system call
4370extern "C" {
4371  static void perfMemory_exit_helper() {
4372    perfMemory_exit();
4373  }
4374}
4375
4376// this is called _after_ the global arguments have been parsed
4377jint os::init_2(void)
4378{
4379#ifndef _ALLBSD_SOURCE
4380  Bsd::fast_thread_clock_init();
4381#endif
4382
4383  // Allocate a single page and mark it as readable for safepoint polling
4384  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4385  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4386
4387  os::set_polling_page( polling_page );
4388
4389#ifndef PRODUCT
4390  if(Verbose && PrintMiscellaneous)
4391    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4392#endif
4393
4394  if (!UseMembar) {
4395    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4396    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4397    os::set_memory_serialize_page( mem_serialize_page );
4398
4399#ifndef PRODUCT
4400    if(Verbose && PrintMiscellaneous)
4401      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4402#endif
4403  }
4404
4405  os::large_page_init();
4406
4407  // initialize suspend/resume support - must do this before signal_sets_init()
4408  if (SR_initialize() != 0) {
4409    perror("SR_initialize failed");
4410    return JNI_ERR;
4411  }
4412
4413  Bsd::signal_sets_init();
4414  Bsd::install_signal_handlers();
4415
4416  // Check minimum allowable stack size for thread creation and to initialize
4417  // the java system classes, including StackOverflowError - depends on page
4418  // size.  Add a page for compiler2 recursion in main thread.
4419  // Add in 2*BytesPerWord times page size to account for VM stack during
4420  // class initialization depending on 32 or 64 bit VM.
4421  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
4422            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4423                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
4424
4425  size_t threadStackSizeInBytes = ThreadStackSize * K;
4426  if (threadStackSizeInBytes != 0 &&
4427      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
4428        tty->print_cr("\nThe stack size specified is too small, "
4429                      "Specify at least %dk",
4430                      os::Bsd::min_stack_allowed/ K);
4431        return JNI_ERR;
4432  }
4433
4434  // Make the stack size a multiple of the page size so that
4435  // the yellow/red zones can be guarded.
4436  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4437        vm_page_size()));
4438
4439#ifndef _ALLBSD_SOURCE
4440  Bsd::capture_initial_stack(JavaThread::stack_size_at_create());
4441
4442  Bsd::libpthread_init();
4443  if (PrintMiscellaneous && (Verbose || WizardMode)) {
4444     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4445          Bsd::glibc_version(), Bsd::libpthread_version(),
4446          Bsd::is_floating_stack() ? "floating stack" : "fixed stack");
4447  }
4448
4449  if (UseNUMA) {
4450    if (!Bsd::libnuma_init()) {
4451      UseNUMA = false;
4452    } else {
4453      if ((Bsd::numa_max_node() < 1)) {
4454        // There's only one node(they start from 0), disable NUMA.
4455        UseNUMA = false;
4456      }
4457    }
4458    // With SHM large pages we cannot uncommit a page, so there's not way
4459    // we can make the adaptive lgrp chunk resizing work. If the user specified
4460    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4461    // disable adaptive resizing.
4462    if (UseNUMA && UseLargePages && UseSHM) {
4463      if (!FLAG_IS_DEFAULT(UseNUMA)) {
4464        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4465          UseLargePages = false;
4466        } else {
4467          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4468          UseAdaptiveSizePolicy = false;
4469          UseAdaptiveNUMAChunkSizing = false;
4470        }
4471      } else {
4472        UseNUMA = false;
4473      }
4474    }
4475    if (!UseNUMA && ForceNUMA) {
4476      UseNUMA = true;
4477    }
4478  }
4479#endif
4480
4481  if (MaxFDLimit) {
4482    // set the number of file descriptors to max. print out error
4483    // if getrlimit/setrlimit fails but continue regardless.
4484    struct rlimit nbr_files;
4485    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4486    if (status != 0) {
4487      if (PrintMiscellaneous && (Verbose || WizardMode))
4488        perror("os::init_2 getrlimit failed");
4489    } else {
4490      nbr_files.rlim_cur = nbr_files.rlim_max;
4491
4492#ifdef __APPLE__
4493      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
4494      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
4495      // be used instead
4496      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
4497#endif
4498
4499      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4500      if (status != 0) {
4501        if (PrintMiscellaneous && (Verbose || WizardMode))
4502          perror("os::init_2 setrlimit failed");
4503      }
4504    }
4505  }
4506
4507#ifndef _ALLBSD_SOURCE
4508  // Initialize lock used to serialize thread creation (see os::create_thread)
4509  Bsd::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4510#endif
4511
4512  // at-exit methods are called in the reverse order of their registration.
4513  // atexit functions are called on return from main or as a result of a
4514  // call to exit(3C). There can be only 32 of these functions registered
4515  // and atexit() does not set errno.
4516
4517  if (PerfAllowAtExitRegistration) {
4518    // only register atexit functions if PerfAllowAtExitRegistration is set.
4519    // atexit functions can be delayed until process exit time, which
4520    // can be problematic for embedded VM situations. Embedded VMs should
4521    // call DestroyJavaVM() to assure that VM resources are released.
4522
4523    // note: perfMemory_exit_helper atexit function may be removed in
4524    // the future if the appropriate cleanup code can be added to the
4525    // VM_Exit VMOperation's doit method.
4526    if (atexit(perfMemory_exit_helper) != 0) {
4527      warning("os::init2 atexit(perfMemory_exit_helper) failed");
4528    }
4529  }
4530
4531  // initialize thread priority policy
4532  prio_init();
4533
4534  return JNI_OK;
4535}
4536
4537// this is called at the end of vm_initialization
4538void os::init_3(void) { }
4539
4540// Mark the polling page as unreadable
4541void os::make_polling_page_unreadable(void) {
4542  if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
4543    fatal("Could not disable polling page");
4544};
4545
4546// Mark the polling page as readable
4547void os::make_polling_page_readable(void) {
4548  if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
4549    fatal("Could not enable polling page");
4550  }
4551};
4552
4553int os::active_processor_count() {
4554#ifdef _ALLBSD_SOURCE
4555  return _processor_count;
4556#else
4557  // Bsd doesn't yet have a (official) notion of processor sets,
4558  // so just return the number of online processors.
4559  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4560  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4561  return online_cpus;
4562#endif
4563}
4564
4565bool os::distribute_processes(uint length, uint* distribution) {
4566  // Not yet implemented.
4567  return false;
4568}
4569
4570bool os::bind_to_processor(uint processor_id) {
4571  // Not yet implemented.
4572  return false;
4573}
4574
4575///
4576
4577// Suspends the target using the signal mechanism and then grabs the PC before
4578// resuming the target. Used by the flat-profiler only
4579ExtendedPC os::get_thread_pc(Thread* thread) {
4580  // Make sure that it is called by the watcher for the VMThread
4581  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4582  assert(thread->is_VM_thread(), "Can only be called for VMThread");
4583
4584  ExtendedPC epc;
4585
4586  OSThread* osthread = thread->osthread();
4587  if (do_suspend(osthread)) {
4588    if (osthread->ucontext() != NULL) {
4589      epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
4590    } else {
4591      // NULL context is unexpected, double-check this is the VMThread
4592      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4593    }
4594    do_resume(osthread);
4595  }
4596  // failure means pthread_kill failed for some reason - arguably this is
4597  // a fatal problem, but such problems are ignored elsewhere
4598
4599  return epc;
4600}
4601
4602int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4603{
4604#ifdef _ALLBSD_SOURCE
4605  return pthread_cond_timedwait(_cond, _mutex, _abstime);
4606#else
4607   if (is_NPTL()) {
4608      return pthread_cond_timedwait(_cond, _mutex, _abstime);
4609   } else {
4610#ifndef IA64
4611      // 6292965: BsdThreads pthread_cond_timedwait() resets FPU control
4612      // word back to default 64bit precision if condvar is signaled. Java
4613      // wants 53bit precision.  Save and restore current value.
4614      int fpu = get_fpu_control_word();
4615#endif // IA64
4616      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4617#ifndef IA64
4618      set_fpu_control_word(fpu);
4619#endif // IA64
4620      return status;
4621   }
4622#endif
4623}
4624
4625////////////////////////////////////////////////////////////////////////////////
4626// debug support
4627
4628static address same_page(address x, address y) {
4629  int page_bits = -os::vm_page_size();
4630  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4631    return x;
4632  else if (x > y)
4633    return (address)(intptr_t(y) | ~page_bits) + 1;
4634  else
4635    return (address)(intptr_t(y) & page_bits);
4636}
4637
4638bool os::find(address addr, outputStream* st) {
4639  Dl_info dlinfo;
4640  memset(&dlinfo, 0, sizeof(dlinfo));
4641  if (dladdr(addr, &dlinfo)) {
4642    st->print(PTR_FORMAT ": ", addr);
4643    if (dlinfo.dli_sname != NULL) {
4644      st->print("%s+%#x", dlinfo.dli_sname,
4645                 addr - (intptr_t)dlinfo.dli_saddr);
4646    } else if (dlinfo.dli_fname) {
4647      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4648    } else {
4649      st->print("<absolute address>");
4650    }
4651    if (dlinfo.dli_fname) {
4652      st->print(" in %s", dlinfo.dli_fname);
4653    }
4654    if (dlinfo.dli_fbase) {
4655      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4656    }
4657    st->cr();
4658
4659    if (Verbose) {
4660      // decode some bytes around the PC
4661      address begin = same_page(addr-40, addr);
4662      address end   = same_page(addr+40, addr);
4663      address       lowest = (address) dlinfo.dli_sname;
4664      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4665      if (begin < lowest)  begin = lowest;
4666      Dl_info dlinfo2;
4667      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4668          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4669        end = (address) dlinfo2.dli_saddr;
4670      Disassembler::decode(begin, end, st);
4671    }
4672    return true;
4673  }
4674  return false;
4675}
4676
4677////////////////////////////////////////////////////////////////////////////////
4678// misc
4679
4680// This does not do anything on Bsd. This is basically a hook for being
4681// able to use structured exception handling (thread-local exception filters)
4682// on, e.g., Win32.
4683void
4684os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4685                         JavaCallArguments* args, Thread* thread) {
4686  f(value, method, args, thread);
4687}
4688
4689void os::print_statistics() {
4690}
4691
4692int os::message_box(const char* title, const char* message) {
4693  int i;
4694  fdStream err(defaultStream::error_fd());
4695  for (i = 0; i < 78; i++) err.print_raw("=");
4696  err.cr();
4697  err.print_raw_cr(title);
4698  for (i = 0; i < 78; i++) err.print_raw("-");
4699  err.cr();
4700  err.print_raw_cr(message);
4701  for (i = 0; i < 78; i++) err.print_raw("=");
4702  err.cr();
4703
4704  char buf[16];
4705  // Prevent process from exiting upon "read error" without consuming all CPU
4706  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4707
4708  return buf[0] == 'y' || buf[0] == 'Y';
4709}
4710
4711int os::stat(const char *path, struct stat *sbuf) {
4712  char pathbuf[MAX_PATH];
4713  if (strlen(path) > MAX_PATH - 1) {
4714    errno = ENAMETOOLONG;
4715    return -1;
4716  }
4717  os::native_path(strcpy(pathbuf, path));
4718  return ::stat(pathbuf, sbuf);
4719}
4720
4721bool os::check_heap(bool force) {
4722  return true;
4723}
4724
4725int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4726  return ::vsnprintf(buf, count, format, args);
4727}
4728
4729// Is a (classpath) directory empty?
4730bool os::dir_is_empty(const char* path) {
4731  DIR *dir = NULL;
4732  struct dirent *ptr;
4733
4734  dir = opendir(path);
4735  if (dir == NULL) return true;
4736
4737  /* Scan the directory */
4738  bool result = true;
4739  char buf[sizeof(struct dirent) + MAX_PATH];
4740  while (result && (ptr = ::readdir(dir)) != NULL) {
4741    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4742      result = false;
4743    }
4744  }
4745  closedir(dir);
4746  return result;
4747}
4748
4749// This code originates from JDK's sysOpen and open64_w
4750// from src/solaris/hpi/src/system_md.c
4751
4752#ifndef O_DELETE
4753#define O_DELETE 0x10000
4754#endif
4755
4756// Open a file. Unlink the file immediately after open returns
4757// if the specified oflag has the O_DELETE flag set.
4758// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4759
4760int os::open(const char *path, int oflag, int mode) {
4761
4762  if (strlen(path) > MAX_PATH - 1) {
4763    errno = ENAMETOOLONG;
4764    return -1;
4765  }
4766  int fd;
4767  int o_delete = (oflag & O_DELETE);
4768  oflag = oflag & ~O_DELETE;
4769
4770  fd = ::open(path, oflag, mode);
4771  if (fd == -1) return -1;
4772
4773  //If the open succeeded, the file might still be a directory
4774  {
4775    struct stat buf;
4776    int ret = ::fstat(fd, &buf);
4777    int st_mode = buf.st_mode;
4778
4779    if (ret != -1) {
4780      if ((st_mode & S_IFMT) == S_IFDIR) {
4781        errno = EISDIR;
4782        ::close(fd);
4783        return -1;
4784      }
4785    } else {
4786      ::close(fd);
4787      return -1;
4788    }
4789  }
4790
4791    /*
4792     * All file descriptors that are opened in the JVM and not
4793     * specifically destined for a subprocess should have the
4794     * close-on-exec flag set.  If we don't set it, then careless 3rd
4795     * party native code might fork and exec without closing all
4796     * appropriate file descriptors (e.g. as we do in closeDescriptors in
4797     * UNIXProcess.c), and this in turn might:
4798     *
4799     * - cause end-of-file to fail to be detected on some file
4800     *   descriptors, resulting in mysterious hangs, or
4801     *
4802     * - might cause an fopen in the subprocess to fail on a system
4803     *   suffering from bug 1085341.
4804     *
4805     * (Yes, the default setting of the close-on-exec flag is a Unix
4806     * design flaw)
4807     *
4808     * See:
4809     * 1085341: 32-bit stdio routines should support file descriptors >255
4810     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4811     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4812     */
4813#ifdef FD_CLOEXEC
4814    {
4815        int flags = ::fcntl(fd, F_GETFD);
4816        if (flags != -1)
4817            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4818    }
4819#endif
4820
4821  if (o_delete != 0) {
4822    ::unlink(path);
4823  }
4824  return fd;
4825}
4826
4827
4828// create binary file, rewriting existing file if required
4829int os::create_binary_file(const char* path, bool rewrite_existing) {
4830  int oflags = O_WRONLY | O_CREAT;
4831  if (!rewrite_existing) {
4832    oflags |= O_EXCL;
4833  }
4834  return ::open(path, oflags, S_IREAD | S_IWRITE);
4835}
4836
4837// return current position of file pointer
4838jlong os::current_file_offset(int fd) {
4839  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4840}
4841
4842// move file pointer to the specified offset
4843jlong os::seek_to_file_offset(int fd, jlong offset) {
4844  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4845}
4846
4847// This code originates from JDK's sysAvailable
4848// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4849
4850int os::available(int fd, jlong *bytes) {
4851  jlong cur, end;
4852  int mode;
4853  struct stat buf;
4854
4855  if (::fstat(fd, &buf) >= 0) {
4856    mode = buf.st_mode;
4857    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4858      /*
4859      * XXX: is the following call interruptible? If so, this might
4860      * need to go through the INTERRUPT_IO() wrapper as for other
4861      * blocking, interruptible calls in this file.
4862      */
4863      int n;
4864      if (::ioctl(fd, FIONREAD, &n) >= 0) {
4865        *bytes = n;
4866        return 1;
4867      }
4868    }
4869  }
4870  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4871    return 0;
4872  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4873    return 0;
4874  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4875    return 0;
4876  }
4877  *bytes = end - cur;
4878  return 1;
4879}
4880
4881int os::socket_available(int fd, jint *pbytes) {
4882   if (fd < 0)
4883     return OS_OK;
4884
4885   int ret;
4886
4887   RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4888
4889   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4890   // is expected to return 0 on failure and 1 on success to the jdk.
4891
4892   return (ret == OS_ERR) ? 0 : 1;
4893}
4894
4895// Map a block of memory.
4896char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4897                     char *addr, size_t bytes, bool read_only,
4898                     bool allow_exec) {
4899  int prot;
4900  int flags;
4901
4902  if (read_only) {
4903    prot = PROT_READ;
4904    flags = MAP_SHARED;
4905  } else {
4906    prot = PROT_READ | PROT_WRITE;
4907    flags = MAP_PRIVATE;
4908  }
4909
4910  if (allow_exec) {
4911    prot |= PROT_EXEC;
4912  }
4913
4914  if (addr != NULL) {
4915    flags |= MAP_FIXED;
4916  }
4917
4918  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4919                                     fd, file_offset);
4920  if (mapped_address == MAP_FAILED) {
4921    return NULL;
4922  }
4923  return mapped_address;
4924}
4925
4926
4927// Remap a block of memory.
4928char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4929                       char *addr, size_t bytes, bool read_only,
4930                       bool allow_exec) {
4931  // same as map_memory() on this OS
4932  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4933                        allow_exec);
4934}
4935
4936
4937// Unmap a block of memory.
4938bool os::unmap_memory(char* addr, size_t bytes) {
4939  return munmap(addr, bytes) == 0;
4940}
4941
4942#ifndef _ALLBSD_SOURCE
4943static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4944
4945static clockid_t thread_cpu_clockid(Thread* thread) {
4946  pthread_t tid = thread->osthread()->pthread_id();
4947  clockid_t clockid;
4948
4949  // Get thread clockid
4950  int rc = os::Bsd::pthread_getcpuclockid(tid, &clockid);
4951  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4952  return clockid;
4953}
4954#endif
4955
4956// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4957// are used by JVM M&M and JVMTI to get user+sys or user CPU time
4958// of a thread.
4959//
4960// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4961// the fast estimate available on the platform.
4962
4963jlong os::current_thread_cpu_time() {
4964#ifdef __APPLE__
4965  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4966#elif !defined(_ALLBSD_SOURCE)
4967  if (os::Bsd::supports_fast_thread_cpu_time()) {
4968    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4969  } else {
4970    // return user + sys since the cost is the same
4971    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4972  }
4973#endif
4974}
4975
4976jlong os::thread_cpu_time(Thread* thread) {
4977#ifndef _ALLBSD_SOURCE
4978  // consistent with what current_thread_cpu_time() returns
4979  if (os::Bsd::supports_fast_thread_cpu_time()) {
4980    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
4981  } else {
4982    return slow_thread_cpu_time(thread, true /* user + sys */);
4983  }
4984#endif
4985}
4986
4987jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4988#ifdef __APPLE__
4989  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4990#elif !defined(_ALLBSD_SOURCE)
4991  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
4992    return os::Bsd::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4993  } else {
4994    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4995  }
4996#endif
4997}
4998
4999jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5000#ifdef __APPLE__
5001  struct thread_basic_info tinfo;
5002  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
5003  kern_return_t kr;
5004  mach_port_t mach_thread;
5005
5006  mach_thread = pthread_mach_thread_np(thread->osthread()->thread_id());
5007  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
5008  if (kr != KERN_SUCCESS)
5009    return -1;
5010
5011  if (user_sys_cpu_time) {
5012    jlong nanos;
5013    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
5014    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
5015    return nanos;
5016  } else {
5017    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
5018  }
5019#elif !defined(_ALLBSD_SOURCE)
5020  if (user_sys_cpu_time && os::Bsd::supports_fast_thread_cpu_time()) {
5021    return os::Bsd::fast_thread_cpu_time(thread_cpu_clockid(thread));
5022  } else {
5023    return slow_thread_cpu_time(thread, user_sys_cpu_time);
5024  }
5025#endif
5026}
5027
5028#ifndef _ALLBSD_SOURCE
5029//
5030//  -1 on error.
5031//
5032
5033static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5034  static bool proc_pid_cpu_avail = true;
5035  static bool proc_task_unchecked = true;
5036  static const char *proc_stat_path = "/proc/%d/stat";
5037  pid_t  tid = thread->osthread()->thread_id();
5038  int i;
5039  char *s;
5040  char stat[2048];
5041  int statlen;
5042  char proc_name[64];
5043  int count;
5044  long sys_time, user_time;
5045  char string[64];
5046  char cdummy;
5047  int idummy;
5048  long ldummy;
5049  FILE *fp;
5050
5051  // We first try accessing /proc/<pid>/cpu since this is faster to
5052  // process.  If this file is not present (bsd kernels 2.5 and above)
5053  // then we open /proc/<pid>/stat.
5054  if ( proc_pid_cpu_avail ) {
5055    sprintf(proc_name, "/proc/%d/cpu", tid);
5056    fp =  fopen(proc_name, "r");
5057    if ( fp != NULL ) {
5058      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
5059      fclose(fp);
5060      if ( count != 3 ) return -1;
5061
5062      if (user_sys_cpu_time) {
5063        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5064      } else {
5065        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5066      }
5067    }
5068    else proc_pid_cpu_avail = false;
5069  }
5070
5071  // The /proc/<tid>/stat aggregates per-process usage on
5072  // new Bsd kernels 2.6+ where NPTL is supported.
5073  // The /proc/self/task/<tid>/stat still has the per-thread usage.
5074  // See bug 6328462.
5075  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
5076  // and possibly in some other cases, so we check its availability.
5077  if (proc_task_unchecked && os::Bsd::is_NPTL()) {
5078    // This is executed only once
5079    proc_task_unchecked = false;
5080    fp = fopen("/proc/self/task", "r");
5081    if (fp != NULL) {
5082      proc_stat_path = "/proc/self/task/%d/stat";
5083      fclose(fp);
5084    }
5085  }
5086
5087  sprintf(proc_name, proc_stat_path, tid);
5088  fp = fopen(proc_name, "r");
5089  if ( fp == NULL ) return -1;
5090  statlen = fread(stat, 1, 2047, fp);
5091  stat[statlen] = '\0';
5092  fclose(fp);
5093
5094  // Skip pid and the command string. Note that we could be dealing with
5095  // weird command names, e.g. user could decide to rename java launcher
5096  // to "java 1.4.2 :)", then the stat file would look like
5097  //                1234 (java 1.4.2 :)) R ... ...
5098  // We don't really need to know the command string, just find the last
5099  // occurrence of ")" and then start parsing from there. See bug 4726580.
5100  s = strrchr(stat, ')');
5101  i = 0;
5102  if (s == NULL ) return -1;
5103
5104  // Skip blank chars
5105  do s++; while (isspace(*s));
5106
5107  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5108                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5109                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5110                 &user_time, &sys_time);
5111  if ( count != 13 ) return -1;
5112  if (user_sys_cpu_time) {
5113    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5114  } else {
5115    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5116  }
5117}
5118#endif
5119
5120void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5121  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5122  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5123  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5124  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5125}
5126
5127void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5128  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5129  info_ptr->may_skip_backward = false;     // elapsed time not wall time
5130  info_ptr->may_skip_forward = false;      // elapsed time not wall time
5131  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5132}
5133
5134bool os::is_thread_cpu_time_supported() {
5135#ifdef __APPLE__
5136  return true;
5137#elif defined(_ALLBSD_SOURCE)
5138  return false;
5139#else
5140  return true;
5141#endif
5142}
5143
5144// System loadavg support.  Returns -1 if load average cannot be obtained.
5145// Bsd doesn't yet have a (official) notion of processor sets,
5146// so just return the system wide load average.
5147int os::loadavg(double loadavg[], int nelem) {
5148  return ::getloadavg(loadavg, nelem);
5149}
5150
5151void os::pause() {
5152  char filename[MAX_PATH];
5153  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5154    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5155  } else {
5156    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5157  }
5158
5159  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5160  if (fd != -1) {
5161    struct stat buf;
5162    ::close(fd);
5163    while (::stat(filename, &buf) == 0) {
5164      (void)::poll(NULL, 0, 100);
5165    }
5166  } else {
5167    jio_fprintf(stderr,
5168      "Could not open pause file '%s', continuing immediately.\n", filename);
5169  }
5170}
5171
5172
5173// Refer to the comments in os_solaris.cpp park-unpark.
5174//
5175// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5176// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5177// For specifics regarding the bug see GLIBC BUGID 261237 :
5178//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5179// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5180// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5181// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5182// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5183// and monitorenter when we're using 1-0 locking.  All those operations may result in
5184// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5185// of libpthread avoids the problem, but isn't practical.
5186//
5187// Possible remedies:
5188//
5189// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5190//      This is palliative and probabilistic, however.  If the thread is preempted
5191//      between the call to compute_abstime() and pthread_cond_timedwait(), more
5192//      than the minimum period may have passed, and the abstime may be stale (in the
5193//      past) resultin in a hang.   Using this technique reduces the odds of a hang
5194//      but the JVM is still vulnerable, particularly on heavily loaded systems.
5195//
5196// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5197//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5198//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5199//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5200//      thread.
5201//
5202// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5203//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5204//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5205//      This also works well.  In fact it avoids kernel-level scalability impediments
5206//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5207//      timers in a graceful fashion.
5208//
5209// 4.   When the abstime value is in the past it appears that control returns
5210//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5211//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5212//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5213//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5214//      It may be possible to avoid reinitialization by checking the return
5215//      value from pthread_cond_timedwait().  In addition to reinitializing the
5216//      condvar we must establish the invariant that cond_signal() is only called
5217//      within critical sections protected by the adjunct mutex.  This prevents
5218//      cond_signal() from "seeing" a condvar that's in the midst of being
5219//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5220//      desirable signal-after-unlock optimization that avoids futile context switching.
5221//
5222//      I'm also concerned that some versions of NTPL might allocate an auxilliary
5223//      structure when a condvar is used or initialized.  cond_destroy()  would
5224//      release the helper structure.  Our reinitialize-after-timedwait fix
5225//      put excessive stress on malloc/free and locks protecting the c-heap.
5226//
5227// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5228// It may be possible to refine (4) by checking the kernel and NTPL verisons
5229// and only enabling the work-around for vulnerable environments.
5230
5231// utility to compute the abstime argument to timedwait:
5232// millis is the relative timeout time
5233// abstime will be the absolute timeout time
5234// TODO: replace compute_abstime() with unpackTime()
5235
5236static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
5237  if (millis < 0)  millis = 0;
5238  struct timeval now;
5239  int status = gettimeofday(&now, NULL);
5240  assert(status == 0, "gettimeofday");
5241  jlong seconds = millis / 1000;
5242  millis %= 1000;
5243  if (seconds > 50000000) { // see man cond_timedwait(3T)
5244    seconds = 50000000;
5245  }
5246  abstime->tv_sec = now.tv_sec  + seconds;
5247  long       usec = now.tv_usec + millis * 1000;
5248  if (usec >= 1000000) {
5249    abstime->tv_sec += 1;
5250    usec -= 1000000;
5251  }
5252  abstime->tv_nsec = usec * 1000;
5253  return abstime;
5254}
5255
5256
5257// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5258// Conceptually TryPark() should be equivalent to park(0).
5259
5260int os::PlatformEvent::TryPark() {
5261  for (;;) {
5262    const int v = _Event ;
5263    guarantee ((v == 0) || (v == 1), "invariant") ;
5264    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5265  }
5266}
5267
5268void os::PlatformEvent::park() {       // AKA "down()"
5269  // Invariant: Only the thread associated with the Event/PlatformEvent
5270  // may call park().
5271  // TODO: assert that _Assoc != NULL or _Assoc == Self
5272  int v ;
5273  for (;;) {
5274      v = _Event ;
5275      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5276  }
5277  guarantee (v >= 0, "invariant") ;
5278  if (v == 0) {
5279     // Do this the hard way by blocking ...
5280     int status = pthread_mutex_lock(_mutex);
5281     assert_status(status == 0, status, "mutex_lock");
5282     guarantee (_nParked == 0, "invariant") ;
5283     ++ _nParked ;
5284     while (_Event < 0) {
5285        status = pthread_cond_wait(_cond, _mutex);
5286        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5287        // Treat this the same as if the wait was interrupted
5288        if (status == ETIMEDOUT) { status = EINTR; }
5289        assert_status(status == 0 || status == EINTR, status, "cond_wait");
5290     }
5291     -- _nParked ;
5292
5293    // In theory we could move the ST of 0 into _Event past the unlock(),
5294    // but then we'd need a MEMBAR after the ST.
5295    _Event = 0 ;
5296     status = pthread_mutex_unlock(_mutex);
5297     assert_status(status == 0, status, "mutex_unlock");
5298  }
5299  guarantee (_Event >= 0, "invariant") ;
5300}
5301
5302int os::PlatformEvent::park(jlong millis) {
5303  guarantee (_nParked == 0, "invariant") ;
5304
5305  int v ;
5306  for (;;) {
5307      v = _Event ;
5308      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5309  }
5310  guarantee (v >= 0, "invariant") ;
5311  if (v != 0) return OS_OK ;
5312
5313  // We do this the hard way, by blocking the thread.
5314  // Consider enforcing a minimum timeout value.
5315  struct timespec abst;
5316  compute_abstime(&abst, millis);
5317
5318  int ret = OS_TIMEOUT;
5319  int status = pthread_mutex_lock(_mutex);
5320  assert_status(status == 0, status, "mutex_lock");
5321  guarantee (_nParked == 0, "invariant") ;
5322  ++_nParked ;
5323
5324  // Object.wait(timo) will return because of
5325  // (a) notification
5326  // (b) timeout
5327  // (c) thread.interrupt
5328  //
5329  // Thread.interrupt and object.notify{All} both call Event::set.
5330  // That is, we treat thread.interrupt as a special case of notification.
5331  // The underlying Solaris implementation, cond_timedwait, admits
5332  // spurious/premature wakeups, but the JLS/JVM spec prevents the
5333  // JVM from making those visible to Java code.  As such, we must
5334  // filter out spurious wakeups.  We assume all ETIME returns are valid.
5335  //
5336  // TODO: properly differentiate simultaneous notify+interrupt.
5337  // In that case, we should propagate the notify to another waiter.
5338
5339  while (_Event < 0) {
5340    status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
5341    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5342      pthread_cond_destroy (_cond);
5343      pthread_cond_init (_cond, NULL) ;
5344    }
5345    assert_status(status == 0 || status == EINTR ||
5346                  status == ETIMEDOUT,
5347                  status, "cond_timedwait");
5348    if (!FilterSpuriousWakeups) break ;                 // previous semantics
5349    if (status == ETIMEDOUT) break ;
5350    // We consume and ignore EINTR and spurious wakeups.
5351  }
5352  --_nParked ;
5353  if (_Event >= 0) {
5354     ret = OS_OK;
5355  }
5356  _Event = 0 ;
5357  status = pthread_mutex_unlock(_mutex);
5358  assert_status(status == 0, status, "mutex_unlock");
5359  assert (_nParked == 0, "invariant") ;
5360  return ret;
5361}
5362
5363void os::PlatformEvent::unpark() {
5364  int v, AnyWaiters ;
5365  for (;;) {
5366      v = _Event ;
5367      if (v > 0) {
5368         // The LD of _Event could have reordered or be satisfied
5369         // by a read-aside from this processor's write buffer.
5370         // To avoid problems execute a barrier and then
5371         // ratify the value.
5372         OrderAccess::fence() ;
5373         if (_Event == v) return ;
5374         continue ;
5375      }
5376      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5377  }
5378  if (v < 0) {
5379     // Wait for the thread associated with the event to vacate
5380     int status = pthread_mutex_lock(_mutex);
5381     assert_status(status == 0, status, "mutex_lock");
5382     AnyWaiters = _nParked ;
5383     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5384     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5385        AnyWaiters = 0 ;
5386        pthread_cond_signal (_cond);
5387     }
5388     status = pthread_mutex_unlock(_mutex);
5389     assert_status(status == 0, status, "mutex_unlock");
5390     if (AnyWaiters != 0) {
5391        status = pthread_cond_signal(_cond);
5392        assert_status(status == 0, status, "cond_signal");
5393     }
5394  }
5395
5396  // Note that we signal() _after dropping the lock for "immortal" Events.
5397  // This is safe and avoids a common class of  futile wakeups.  In rare
5398  // circumstances this can cause a thread to return prematurely from
5399  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5400  // simply re-test the condition and re-park itself.
5401}
5402
5403
5404// JSR166
5405// -------------------------------------------------------
5406
5407/*
5408 * The solaris and bsd implementations of park/unpark are fairly
5409 * conservative for now, but can be improved. They currently use a
5410 * mutex/condvar pair, plus a a count.
5411 * Park decrements count if > 0, else does a condvar wait.  Unpark
5412 * sets count to 1 and signals condvar.  Only one thread ever waits
5413 * on the condvar. Contention seen when trying to park implies that someone
5414 * is unparking you, so don't wait. And spurious returns are fine, so there
5415 * is no need to track notifications.
5416 */
5417
5418
5419#define NANOSECS_PER_SEC 1000000000
5420#define NANOSECS_PER_MILLISEC 1000000
5421#define MAX_SECS 100000000
5422/*
5423 * This code is common to bsd and solaris and will be moved to a
5424 * common place in dolphin.
5425 *
5426 * The passed in time value is either a relative time in nanoseconds
5427 * or an absolute time in milliseconds. Either way it has to be unpacked
5428 * into suitable seconds and nanoseconds components and stored in the
5429 * given timespec structure.
5430 * Given time is a 64-bit value and the time_t used in the timespec is only
5431 * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
5432 * overflow if times way in the future are given. Further on Solaris versions
5433 * prior to 10 there is a restriction (see cond_timedwait) that the specified
5434 * number of seconds, in abstime, is less than current_time  + 100,000,000.
5435 * As it will be 28 years before "now + 100000000" will overflow we can
5436 * ignore overflow and just impose a hard-limit on seconds using the value
5437 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5438 * years from "now".
5439 */
5440
5441static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
5442  assert (time > 0, "convertTime");
5443
5444  struct timeval now;
5445  int status = gettimeofday(&now, NULL);
5446  assert(status == 0, "gettimeofday");
5447
5448  time_t max_secs = now.tv_sec + MAX_SECS;
5449
5450  if (isAbsolute) {
5451    jlong secs = time / 1000;
5452    if (secs > max_secs) {
5453      absTime->tv_sec = max_secs;
5454    }
5455    else {
5456      absTime->tv_sec = secs;
5457    }
5458    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5459  }
5460  else {
5461    jlong secs = time / NANOSECS_PER_SEC;
5462    if (secs >= MAX_SECS) {
5463      absTime->tv_sec = max_secs;
5464      absTime->tv_nsec = 0;
5465    }
5466    else {
5467      absTime->tv_sec = now.tv_sec + secs;
5468      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5469      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5470        absTime->tv_nsec -= NANOSECS_PER_SEC;
5471        ++absTime->tv_sec; // note: this must be <= max_secs
5472      }
5473    }
5474  }
5475  assert(absTime->tv_sec >= 0, "tv_sec < 0");
5476  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5477  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5478  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5479}
5480
5481void Parker::park(bool isAbsolute, jlong time) {
5482  // Optional fast-path check:
5483  // Return immediately if a permit is available.
5484  if (_counter > 0) {
5485      _counter = 0 ;
5486      OrderAccess::fence();
5487      return ;
5488  }
5489
5490  Thread* thread = Thread::current();
5491  assert(thread->is_Java_thread(), "Must be JavaThread");
5492  JavaThread *jt = (JavaThread *)thread;
5493
5494  // Optional optimization -- avoid state transitions if there's an interrupt pending.
5495  // Check interrupt before trying to wait
5496  if (Thread::is_interrupted(thread, false)) {
5497    return;
5498  }
5499
5500  // Next, demultiplex/decode time arguments
5501  struct timespec absTime;
5502  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5503    return;
5504  }
5505  if (time > 0) {
5506    unpackTime(&absTime, isAbsolute, time);
5507  }
5508
5509
5510  // Enter safepoint region
5511  // Beware of deadlocks such as 6317397.
5512  // The per-thread Parker:: mutex is a classic leaf-lock.
5513  // In particular a thread must never block on the Threads_lock while
5514  // holding the Parker:: mutex.  If safepoints are pending both the
5515  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5516  ThreadBlockInVM tbivm(jt);
5517
5518  // Don't wait if cannot get lock since interference arises from
5519  // unblocking.  Also. check interrupt before trying wait
5520  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5521    return;
5522  }
5523
5524  int status ;
5525  if (_counter > 0)  { // no wait needed
5526    _counter = 0;
5527    status = pthread_mutex_unlock(_mutex);
5528    assert (status == 0, "invariant") ;
5529    OrderAccess::fence();
5530    return;
5531  }
5532
5533#ifdef ASSERT
5534  // Don't catch signals while blocked; let the running threads have the signals.
5535  // (This allows a debugger to break into the running thread.)
5536  sigset_t oldsigs;
5537  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
5538  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5539#endif
5540
5541  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5542  jt->set_suspend_equivalent();
5543  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5544
5545  if (time == 0) {
5546    status = pthread_cond_wait (_cond, _mutex) ;
5547  } else {
5548    status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5549    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5550      pthread_cond_destroy (_cond) ;
5551      pthread_cond_init    (_cond, NULL);
5552    }
5553  }
5554  assert_status(status == 0 || status == EINTR ||
5555                status == ETIMEDOUT,
5556                status, "cond_timedwait");
5557
5558#ifdef ASSERT
5559  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5560#endif
5561
5562  _counter = 0 ;
5563  status = pthread_mutex_unlock(_mutex) ;
5564  assert_status(status == 0, status, "invariant") ;
5565  // If externally suspended while waiting, re-suspend
5566  if (jt->handle_special_suspend_equivalent_condition()) {
5567    jt->java_suspend_self();
5568  }
5569
5570  OrderAccess::fence();
5571}
5572
5573void Parker::unpark() {
5574  int s, status ;
5575  status = pthread_mutex_lock(_mutex);
5576  assert (status == 0, "invariant") ;
5577  s = _counter;
5578  _counter = 1;
5579  if (s < 1) {
5580     if (WorkAroundNPTLTimedWaitHang) {
5581        status = pthread_cond_signal (_cond) ;
5582        assert (status == 0, "invariant") ;
5583        status = pthread_mutex_unlock(_mutex);
5584        assert (status == 0, "invariant") ;
5585     } else {
5586        status = pthread_mutex_unlock(_mutex);
5587        assert (status == 0, "invariant") ;
5588        status = pthread_cond_signal (_cond) ;
5589        assert (status == 0, "invariant") ;
5590     }
5591  } else {
5592    pthread_mutex_unlock(_mutex);
5593    assert (status == 0, "invariant") ;
5594  }
5595}
5596
5597
5598/* Darwin has no "environ" in a dynamic library. */
5599#ifdef __APPLE__
5600#include <crt_externs.h>
5601#define environ (*_NSGetEnviron())
5602#else
5603extern char** environ;
5604#endif
5605
5606// Run the specified command in a separate process. Return its exit value,
5607// or -1 on failure (e.g. can't fork a new process).
5608// Unlike system(), this function can be called from signal handler. It
5609// doesn't block SIGINT et al.
5610int os::fork_and_exec(char* cmd) {
5611  const char * argv[4] = {"sh", "-c", cmd, NULL};
5612
5613  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
5614  // pthread_atfork handlers and reset pthread library. All we need is a
5615  // separate process to execve. Make a direct syscall to fork process.
5616  // On IA64 there's no fork syscall, we have to use fork() and hope for
5617  // the best...
5618  pid_t pid = fork();
5619
5620  if (pid < 0) {
5621    // fork failed
5622    return -1;
5623
5624  } else if (pid == 0) {
5625    // child process
5626
5627    // execve() in BsdThreads will call pthread_kill_other_threads_np()
5628    // first to kill every thread on the thread list. Because this list is
5629    // not reset by fork() (see notes above), execve() will instead kill
5630    // every thread in the parent process. We know this is the only thread
5631    // in the new process, so make a system call directly.
5632    // IA64 should use normal execve() from glibc to match the glibc fork()
5633    // above.
5634    execve("/bin/sh", (char* const*)argv, environ);
5635
5636    // execve failed
5637    _exit(-1);
5638
5639  } else  {
5640    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5641    // care about the actual exit code, for now.
5642
5643    int status;
5644
5645    // Wait for the child process to exit.  This returns immediately if
5646    // the child has already exited. */
5647    while (waitpid(pid, &status, 0) < 0) {
5648        switch (errno) {
5649        case ECHILD: return 0;
5650        case EINTR: break;
5651        default: return -1;
5652        }
5653    }
5654
5655    if (WIFEXITED(status)) {
5656       // The child exited normally; get its exit code.
5657       return WEXITSTATUS(status);
5658    } else if (WIFSIGNALED(status)) {
5659       // The child exited because of a signal
5660       // The best value to return is 0x80 + signal number,
5661       // because that is what all Unix shells do, and because
5662       // it allows callers to distinguish between process exit and
5663       // process death by signal.
5664       return 0x80 + WTERMSIG(status);
5665    } else {
5666       // Unknown exit code; pass it through
5667       return status;
5668    }
5669  }
5670}
5671
5672// is_headless_jre()
5673//
5674// Test for the existence of libmawt in motif21 or xawt directories
5675// in order to report if we are running in a headless jre
5676//
5677bool os::is_headless_jre() {
5678    struct stat statbuf;
5679    char buf[MAXPATHLEN];
5680    char libmawtpath[MAXPATHLEN];
5681    const char *xawtstr  = "/xawt/libmawt.so";
5682    const char *motifstr = "/motif21/libmawt.so";
5683    char *p;
5684
5685    // Get path to libjvm.so
5686    os::jvm_path(buf, sizeof(buf));
5687
5688    // Get rid of libjvm.so
5689    p = strrchr(buf, '/');
5690    if (p == NULL) return false;
5691    else *p = '\0';
5692
5693    // Get rid of client or server
5694    p = strrchr(buf, '/');
5695    if (p == NULL) return false;
5696    else *p = '\0';
5697
5698    // check xawt/libmawt.so
5699    strcpy(libmawtpath, buf);
5700    strcat(libmawtpath, xawtstr);
5701    if (::stat(libmawtpath, &statbuf) == 0) return false;
5702
5703    // check motif21/libmawt.so
5704    strcpy(libmawtpath, buf);
5705    strcat(libmawtpath, motifstr);
5706    if (::stat(libmawtpath, &statbuf) == 0) return false;
5707
5708    return true;
5709}
5710