os_bsd.cpp revision 12970:fdc31f43d8b1
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Bsd::_physical_memory = 0;
134
135#ifdef __APPLE__
136mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137volatile uint64_t         os::Bsd::_max_abstime   = 0;
138#else
139int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140#endif
141pthread_t os::Bsd::_main_thread;
142int os::Bsd::_page_size = -1;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167julong os::available_memory() {
168  return Bsd::available_memory();
169}
170
171// available here means free
172julong os::Bsd::available_memory() {
173  uint64_t available = physical_memory() >> 2;
174#ifdef __APPLE__
175  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176  vm_statistics64_data_t vmstat;
177  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178                                         (host_info64_t)&vmstat, &count);
179  assert(kerr == KERN_SUCCESS,
180         "host_statistics64 failed - check mach_host_self() and count");
181  if (kerr == KERN_SUCCESS) {
182    available = vmstat.free_count * os::vm_page_size();
183  }
184#endif
185  return available;
186}
187
188julong os::physical_memory() {
189  return Bsd::physical_memory();
190}
191
192// Return true if user is running as root.
193
194bool os::have_special_privileges() {
195  static bool init = false;
196  static bool privileges = false;
197  if (!init) {
198    privileges = (getuid() != geteuid()) || (getgid() != getegid());
199    init = true;
200  }
201  return privileges;
202}
203
204
205
206// Cpu architecture string
207#if   defined(ZERO)
208static char cpu_arch[] = ZERO_LIBARCH;
209#elif defined(IA64)
210static char cpu_arch[] = "ia64";
211#elif defined(IA32)
212static char cpu_arch[] = "i386";
213#elif defined(AMD64)
214static char cpu_arch[] = "amd64";
215#elif defined(ARM)
216static char cpu_arch[] = "arm";
217#elif defined(PPC32)
218static char cpu_arch[] = "ppc";
219#elif defined(SPARC)
220  #ifdef _LP64
221static char cpu_arch[] = "sparcv9";
222  #else
223static char cpu_arch[] = "sparc";
224  #endif
225#else
226  #error Add appropriate cpu_arch setting
227#endif
228
229// Compiler variant
230#ifdef COMPILER2
231  #define COMPILER_VARIANT "server"
232#else
233  #define COMPILER_VARIANT "client"
234#endif
235
236
237void os::Bsd::initialize_system_info() {
238  int mib[2];
239  size_t len;
240  int cpu_val;
241  julong mem_val;
242
243  // get processors count via hw.ncpus sysctl
244  mib[0] = CTL_HW;
245  mib[1] = HW_NCPU;
246  len = sizeof(cpu_val);
247  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
248    assert(len == sizeof(cpu_val), "unexpected data size");
249    set_processor_count(cpu_val);
250  } else {
251    set_processor_count(1);   // fallback
252  }
253
254  // get physical memory via hw.memsize sysctl (hw.memsize is used
255  // since it returns a 64 bit value)
256  mib[0] = CTL_HW;
257
258#if defined (HW_MEMSIZE) // Apple
259  mib[1] = HW_MEMSIZE;
260#elif defined(HW_PHYSMEM) // Most of BSD
261  mib[1] = HW_PHYSMEM;
262#elif defined(HW_REALMEM) // Old FreeBSD
263  mib[1] = HW_REALMEM;
264#else
265  #error No ways to get physmem
266#endif
267
268  len = sizeof(mem_val);
269  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
270    assert(len == sizeof(mem_val), "unexpected data size");
271    _physical_memory = mem_val;
272  } else {
273    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
274  }
275
276#ifdef __OpenBSD__
277  {
278    // limit _physical_memory memory view on OpenBSD since
279    // datasize rlimit restricts us anyway.
280    struct rlimit limits;
281    getrlimit(RLIMIT_DATA, &limits);
282    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
283  }
284#endif
285}
286
287#ifdef __APPLE__
288static const char *get_home() {
289  const char *home_dir = ::getenv("HOME");
290  if ((home_dir == NULL) || (*home_dir == '\0')) {
291    struct passwd *passwd_info = getpwuid(geteuid());
292    if (passwd_info != NULL) {
293      home_dir = passwd_info->pw_dir;
294    }
295  }
296
297  return home_dir;
298}
299#endif
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#ifndef DEFAULT_LIBPATH
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342#ifndef __APPLE__
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Bsd implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf);
412
413#else // __APPLE__
414
415  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
416  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
417
418  const char *user_home_dir = get_home();
419  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
420  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
421    sizeof(SYS_EXTENSIONS_DIRS);
422
423  // Buffer that fits several sprintfs.
424  // Note that the space for the colon and the trailing null are provided
425  // by the nulls included by the sizeof operator.
426  const size_t bufsize =
427    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
428         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
429  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
430
431  // sysclasspath, java_home, dll_dir
432  {
433    char *pslash;
434    os::jvm_path(buf, bufsize);
435
436    // Found the full path to libjvm.so.
437    // Now cut the path to <java_home>/jre if we can.
438    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
439    pslash = strrchr(buf, '/');
440    if (pslash != NULL) {
441      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
442    }
443#ifdef STATIC_BUILD
444    strcat(buf, "/lib");
445#endif
446
447    Arguments::set_dll_dir(buf);
448
449    if (pslash != NULL) {
450      pslash = strrchr(buf, '/');
451      if (pslash != NULL) {
452        *pslash = '\0';          // Get rid of /lib.
453      }
454    }
455    Arguments::set_java_home(buf);
456    set_boot_path('/', ':');
457  }
458
459  // Where to look for native libraries.
460  //
461  // Note: Due to a legacy implementation, most of the library path
462  // is set in the launcher. This was to accomodate linking restrictions
463  // on legacy Bsd implementations (which are no longer supported).
464  // Eventually, all the library path setting will be done here.
465  //
466  // However, to prevent the proliferation of improperly built native
467  // libraries, the new path component /usr/java/packages is added here.
468  // Eventually, all the library path setting will be done here.
469  {
470    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471    // should always exist (until the legacy problem cited above is
472    // addressed).
473    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
474    // can specify a directory inside an app wrapper
475    const char *l = ::getenv("JAVA_LIBRARY_PATH");
476    const char *l_colon = ":";
477    if (l == NULL) { l = ""; l_colon = ""; }
478
479    const char *v = ::getenv("DYLD_LIBRARY_PATH");
480    const char *v_colon = ":";
481    if (v == NULL) { v = ""; v_colon = ""; }
482
483    // Apple's Java6 has "." at the beginning of java.library.path.
484    // OpenJDK on Windows has "." at the end of java.library.path.
485    // OpenJDK on Linux and Solaris don't have "." in java.library.path
486    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
487    // "." is appended to the end of java.library.path. Yes, this
488    // could cause a change in behavior, but Apple's Java6 behavior
489    // can be achieved by putting "." at the beginning of the
490    // JAVA_LIBRARY_PATH environment variable.
491    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
492                                                     strlen(v) + 1 + strlen(l) + 1 +
493                                                     system_ext_size + 3,
494                                                     mtInternal);
495    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
496            v, v_colon, l, l_colon, user_home_dir);
497    Arguments::set_library_path(ld_library_path);
498    FREE_C_HEAP_ARRAY(char, ld_library_path);
499  }
500
501  // Extensions directories.
502  //
503  // Note that the space for the colon and the trailing null are provided
504  // by the nulls included by the sizeof operator (so actually one byte more
505  // than necessary is allocated).
506  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
507          user_home_dir, Arguments::get_java_home());
508  Arguments::set_ext_dirs(buf);
509
510  FREE_C_HEAP_ARRAY(char, buf);
511
512#undef SYS_EXTENSIONS_DIR
513#undef SYS_EXTENSIONS_DIRS
514
515#endif // __APPLE__
516
517#undef SYS_EXT_DIR
518#undef EXTENSIONS_DIR
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539  struct sigaction oact;
540  sigaction(sig, (struct sigaction*)NULL, &oact);
541  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
544    return true;
545  } else {
546    return false;
547  }
548}
549
550void os::Bsd::signal_sets_init() {
551  // Should also have an assertion stating we are still single-threaded.
552  assert(!signal_sets_initialized, "Already initialized");
553  // Fill in signals that are necessarily unblocked for all threads in
554  // the VM. Currently, we unblock the following signals:
555  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
556  //                         by -Xrs (=ReduceSignalUsage));
557  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
558  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
559  // the dispositions or masks wrt these signals.
560  // Programs embedding the VM that want to use the above signals for their
561  // own purposes must, at this time, use the "-Xrs" option to prevent
562  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
563  // (See bug 4345157, and other related bugs).
564  // In reality, though, unblocking these signals is really a nop, since
565  // these signals are not blocked by default.
566  sigemptyset(&unblocked_sigs);
567  sigemptyset(&allowdebug_blocked_sigs);
568  sigaddset(&unblocked_sigs, SIGILL);
569  sigaddset(&unblocked_sigs, SIGSEGV);
570  sigaddset(&unblocked_sigs, SIGBUS);
571  sigaddset(&unblocked_sigs, SIGFPE);
572  sigaddset(&unblocked_sigs, SR_signum);
573
574  if (!ReduceSignalUsage) {
575    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
576      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
577      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
578    }
579    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
580      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
581      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
582    }
583    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
584      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
585      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
586    }
587  }
588  // Fill in signals that are blocked by all but the VM thread.
589  sigemptyset(&vm_sigs);
590  if (!ReduceSignalUsage) {
591    sigaddset(&vm_sigs, BREAK_SIGNAL);
592  }
593  debug_only(signal_sets_initialized = true);
594
595}
596
597// These are signals that are unblocked while a thread is running Java.
598// (For some reason, they get blocked by default.)
599sigset_t* os::Bsd::unblocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &unblocked_sigs;
602}
603
604// These are the signals that are blocked while a (non-VM) thread is
605// running Java. Only the VM thread handles these signals.
606sigset_t* os::Bsd::vm_signals() {
607  assert(signal_sets_initialized, "Not initialized");
608  return &vm_sigs;
609}
610
611// These are signals that are blocked during cond_wait to allow debugger in
612sigset_t* os::Bsd::allowdebug_blocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &allowdebug_blocked_sigs;
615}
616
617void os::Bsd::hotspot_sigmask(Thread* thread) {
618
619  //Save caller's signal mask before setting VM signal mask
620  sigset_t caller_sigmask;
621  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
622
623  OSThread* osthread = thread->osthread();
624  osthread->set_caller_sigmask(caller_sigmask);
625
626  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
627
628  if (!ReduceSignalUsage) {
629    if (thread->is_VM_thread()) {
630      // Only the VM thread handles BREAK_SIGNAL ...
631      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
632    } else {
633      // ... all other threads block BREAK_SIGNAL
634      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
635    }
636  }
637}
638
639
640//////////////////////////////////////////////////////////////////////////////
641// create new thread
642
643#ifdef __APPLE__
644// library handle for calling objc_registerThreadWithCollector()
645// without static linking to the libobjc library
646  #define OBJC_LIB "/usr/lib/libobjc.dylib"
647  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
648typedef void (*objc_registerThreadWithCollector_t)();
649extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
650objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
651#endif
652
653#ifdef __APPLE__
654static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
655  // Additional thread_id used to correlate threads in SA
656  thread_identifier_info_data_t     m_ident_info;
657  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
658
659  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
660              (thread_info_t) &m_ident_info, &count);
661
662  return m_ident_info.thread_id;
663}
664#endif
665
666// Thread start routine for all newly created threads
667static void *thread_native_entry(Thread *thread) {
668  // Try to randomize the cache line index of hot stack frames.
669  // This helps when threads of the same stack traces evict each other's
670  // cache lines. The threads can be either from the same JVM instance, or
671  // from different JVM instances. The benefit is especially true for
672  // processors with hyperthreading technology.
673  static int counter = 0;
674  int pid = os::current_process_id();
675  alloca(((pid ^ counter++) & 7) * 128);
676
677  thread->initialize_thread_current();
678
679  OSThread* osthread = thread->osthread();
680  Monitor* sync = osthread->startThread_lock();
681
682  osthread->set_thread_id(os::Bsd::gettid());
683
684  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
685    os::current_thread_id(), (uintx) pthread_self());
686
687#ifdef __APPLE__
688  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
689  guarantee(unique_thread_id != 0, "unique thread id was not found");
690  osthread->set_unique_thread_id(unique_thread_id);
691#endif
692  // initialize signal mask for this thread
693  os::Bsd::hotspot_sigmask(thread);
694
695  // initialize floating point control register
696  os::Bsd::init_thread_fpu_state();
697
698#ifdef __APPLE__
699  // register thread with objc gc
700  if (objc_registerThreadWithCollectorFunction != NULL) {
701    objc_registerThreadWithCollectorFunction();
702  }
703#endif
704
705  // handshaking with parent thread
706  {
707    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
708
709    // notify parent thread
710    osthread->set_state(INITIALIZED);
711    sync->notify_all();
712
713    // wait until os::start_thread()
714    while (osthread->get_state() == INITIALIZED) {
715      sync->wait(Mutex::_no_safepoint_check_flag);
716    }
717  }
718
719  // call one more level start routine
720  thread->run();
721
722  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
723    os::current_thread_id(), (uintx) pthread_self());
724
725  // If a thread has not deleted itself ("delete this") as part of its
726  // termination sequence, we have to ensure thread-local-storage is
727  // cleared before we actually terminate. No threads should ever be
728  // deleted asynchronously with respect to their termination.
729  if (Thread::current_or_null_safe() != NULL) {
730    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
731    thread->clear_thread_current();
732  }
733
734  return 0;
735}
736
737bool os::create_thread(Thread* thread, ThreadType thr_type,
738                       size_t req_stack_size) {
739  assert(thread->osthread() == NULL, "caller responsible");
740
741  // Allocate the OSThread object
742  OSThread* osthread = new OSThread(NULL, NULL);
743  if (osthread == NULL) {
744    return false;
745  }
746
747  // set the correct thread state
748  osthread->set_thread_type(thr_type);
749
750  // Initial state is ALLOCATED but not INITIALIZED
751  osthread->set_state(ALLOCATED);
752
753  thread->set_osthread(osthread);
754
755  // init thread attributes
756  pthread_attr_t attr;
757  pthread_attr_init(&attr);
758  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
759
760  // calculate stack size if it's not specified by caller
761  size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
762  int status = pthread_attr_setstacksize(&attr, stack_size);
763  assert_status(status == 0, status, "pthread_attr_setstacksize");
764
765  ThreadState state;
766
767  {
768    pthread_t tid;
769    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
770
771    char buf[64];
772    if (ret == 0) {
773      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
774        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
775    } else {
776      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
777        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
778    }
779
780    pthread_attr_destroy(&attr);
781
782    if (ret != 0) {
783      // Need to clean up stuff we've allocated so far
784      thread->set_osthread(NULL);
785      delete osthread;
786      return false;
787    }
788
789    // Store pthread info into the OSThread
790    osthread->set_pthread_id(tid);
791
792    // Wait until child thread is either initialized or aborted
793    {
794      Monitor* sync_with_child = osthread->startThread_lock();
795      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
796      while ((state = osthread->get_state()) == ALLOCATED) {
797        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
798      }
799    }
800
801  }
802
803  // Aborted due to thread limit being reached
804  if (state == ZOMBIE) {
805    thread->set_osthread(NULL);
806    delete osthread;
807    return false;
808  }
809
810  // The thread is returned suspended (in state INITIALIZED),
811  // and is started higher up in the call chain
812  assert(state == INITIALIZED, "race condition");
813  return true;
814}
815
816/////////////////////////////////////////////////////////////////////////////
817// attach existing thread
818
819// bootstrap the main thread
820bool os::create_main_thread(JavaThread* thread) {
821  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
822  return create_attached_thread(thread);
823}
824
825bool os::create_attached_thread(JavaThread* thread) {
826#ifdef ASSERT
827  thread->verify_not_published();
828#endif
829
830  // Allocate the OSThread object
831  OSThread* osthread = new OSThread(NULL, NULL);
832
833  if (osthread == NULL) {
834    return false;
835  }
836
837  osthread->set_thread_id(os::Bsd::gettid());
838
839  // Store pthread info into the OSThread
840#ifdef __APPLE__
841  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
842  guarantee(unique_thread_id != 0, "just checking");
843  osthread->set_unique_thread_id(unique_thread_id);
844#endif
845  osthread->set_pthread_id(::pthread_self());
846
847  // initialize floating point control register
848  os::Bsd::init_thread_fpu_state();
849
850  // Initial thread state is RUNNABLE
851  osthread->set_state(RUNNABLE);
852
853  thread->set_osthread(osthread);
854
855  // initialize signal mask for this thread
856  // and save the caller's signal mask
857  os::Bsd::hotspot_sigmask(thread);
858
859  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
860    os::current_thread_id(), (uintx) pthread_self());
861
862  return true;
863}
864
865void os::pd_start_thread(Thread* thread) {
866  OSThread * osthread = thread->osthread();
867  assert(osthread->get_state() != INITIALIZED, "just checking");
868  Monitor* sync_with_child = osthread->startThread_lock();
869  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
870  sync_with_child->notify();
871}
872
873// Free Bsd resources related to the OSThread
874void os::free_thread(OSThread* osthread) {
875  assert(osthread != NULL, "osthread not set");
876
877  // We are told to free resources of the argument thread,
878  // but we can only really operate on the current thread.
879  assert(Thread::current()->osthread() == osthread,
880         "os::free_thread but not current thread");
881
882  // Restore caller's signal mask
883  sigset_t sigmask = osthread->caller_sigmask();
884  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
885
886  delete osthread;
887}
888
889////////////////////////////////////////////////////////////////////////////////
890// time support
891
892// Time since start-up in seconds to a fine granularity.
893// Used by VMSelfDestructTimer and the MemProfiler.
894double os::elapsedTime() {
895
896  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
897}
898
899jlong os::elapsed_counter() {
900  return javaTimeNanos() - initial_time_count;
901}
902
903jlong os::elapsed_frequency() {
904  return NANOSECS_PER_SEC; // nanosecond resolution
905}
906
907bool os::supports_vtime() { return true; }
908bool os::enable_vtime()   { return false; }
909bool os::vtime_enabled()  { return false; }
910
911double os::elapsedVTime() {
912  // better than nothing, but not much
913  return elapsedTime();
914}
915
916jlong os::javaTimeMillis() {
917  timeval time;
918  int status = gettimeofday(&time, NULL);
919  assert(status != -1, "bsd error");
920  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
921}
922
923void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
924  timeval time;
925  int status = gettimeofday(&time, NULL);
926  assert(status != -1, "bsd error");
927  seconds = jlong(time.tv_sec);
928  nanos = jlong(time.tv_usec) * 1000;
929}
930
931#ifndef __APPLE__
932  #ifndef CLOCK_MONOTONIC
933    #define CLOCK_MONOTONIC (1)
934  #endif
935#endif
936
937#ifdef __APPLE__
938void os::Bsd::clock_init() {
939  mach_timebase_info(&_timebase_info);
940}
941#else
942void os::Bsd::clock_init() {
943  struct timespec res;
944  struct timespec tp;
945  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
946      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
947    // yes, monotonic clock is supported
948    _clock_gettime = ::clock_gettime;
949  }
950}
951#endif
952
953
954
955#ifdef __APPLE__
956
957jlong os::javaTimeNanos() {
958  const uint64_t tm = mach_absolute_time();
959  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
960  const uint64_t prev = Bsd::_max_abstime;
961  if (now <= prev) {
962    return prev;   // same or retrograde time;
963  }
964  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
965  assert(obsv >= prev, "invariant");   // Monotonicity
966  // If the CAS succeeded then we're done and return "now".
967  // If the CAS failed and the observed value "obsv" is >= now then
968  // we should return "obsv".  If the CAS failed and now > obsv > prv then
969  // some other thread raced this thread and installed a new value, in which case
970  // we could either (a) retry the entire operation, (b) retry trying to install now
971  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
972  // we might discard a higher "now" value in deference to a slightly lower but freshly
973  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
974  // to (a) or (b) -- and greatly reduces coherence traffic.
975  // We might also condition (c) on the magnitude of the delta between obsv and now.
976  // Avoiding excessive CAS operations to hot RW locations is critical.
977  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
978  return (prev == obsv) ? now : obsv;
979}
980
981#else // __APPLE__
982
983jlong os::javaTimeNanos() {
984  if (os::supports_monotonic_clock()) {
985    struct timespec tp;
986    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
987    assert(status == 0, "gettime error");
988    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
989    return result;
990  } else {
991    timeval time;
992    int status = gettimeofday(&time, NULL);
993    assert(status != -1, "bsd error");
994    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
995    return 1000 * usecs;
996  }
997}
998
999#endif // __APPLE__
1000
1001void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1002  if (os::supports_monotonic_clock()) {
1003    info_ptr->max_value = ALL_64_BITS;
1004
1005    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1006    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1007    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1008  } else {
1009    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1010    info_ptr->max_value = ALL_64_BITS;
1011
1012    // gettimeofday is a real time clock so it skips
1013    info_ptr->may_skip_backward = true;
1014    info_ptr->may_skip_forward = true;
1015  }
1016
1017  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1018}
1019
1020// Return the real, user, and system times in seconds from an
1021// arbitrary fixed point in the past.
1022bool os::getTimesSecs(double* process_real_time,
1023                      double* process_user_time,
1024                      double* process_system_time) {
1025  struct tms ticks;
1026  clock_t real_ticks = times(&ticks);
1027
1028  if (real_ticks == (clock_t) (-1)) {
1029    return false;
1030  } else {
1031    double ticks_per_second = (double) clock_tics_per_sec;
1032    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1033    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1034    *process_real_time = ((double) real_ticks) / ticks_per_second;
1035
1036    return true;
1037  }
1038}
1039
1040
1041char * os::local_time_string(char *buf, size_t buflen) {
1042  struct tm t;
1043  time_t long_time;
1044  time(&long_time);
1045  localtime_r(&long_time, &t);
1046  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1047               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1048               t.tm_hour, t.tm_min, t.tm_sec);
1049  return buf;
1050}
1051
1052struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1053  return localtime_r(clock, res);
1054}
1055
1056////////////////////////////////////////////////////////////////////////////////
1057// runtime exit support
1058
1059// Note: os::shutdown() might be called very early during initialization, or
1060// called from signal handler. Before adding something to os::shutdown(), make
1061// sure it is async-safe and can handle partially initialized VM.
1062void os::shutdown() {
1063
1064  // allow PerfMemory to attempt cleanup of any persistent resources
1065  perfMemory_exit();
1066
1067  // needs to remove object in file system
1068  AttachListener::abort();
1069
1070  // flush buffered output, finish log files
1071  ostream_abort();
1072
1073  // Check for abort hook
1074  abort_hook_t abort_hook = Arguments::abort_hook();
1075  if (abort_hook != NULL) {
1076    abort_hook();
1077  }
1078
1079}
1080
1081// Note: os::abort() might be called very early during initialization, or
1082// called from signal handler. Before adding something to os::abort(), make
1083// sure it is async-safe and can handle partially initialized VM.
1084void os::abort(bool dump_core, void* siginfo, const void* context) {
1085  os::shutdown();
1086  if (dump_core) {
1087#ifndef PRODUCT
1088    fdStream out(defaultStream::output_fd());
1089    out.print_raw("Current thread is ");
1090    char buf[16];
1091    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1092    out.print_raw_cr(buf);
1093    out.print_raw_cr("Dumping core ...");
1094#endif
1095    ::abort(); // dump core
1096  }
1097
1098  ::exit(1);
1099}
1100
1101// Die immediately, no exit hook, no abort hook, no cleanup.
1102void os::die() {
1103  // _exit() on BsdThreads only kills current thread
1104  ::abort();
1105}
1106
1107// This method is a copy of JDK's sysGetLastErrorString
1108// from src/solaris/hpi/src/system_md.c
1109
1110size_t os::lasterror(char *buf, size_t len) {
1111  if (errno == 0)  return 0;
1112
1113  const char *s = os::strerror(errno);
1114  size_t n = ::strlen(s);
1115  if (n >= len) {
1116    n = len - 1;
1117  }
1118  ::strncpy(buf, s, n);
1119  buf[n] = '\0';
1120  return n;
1121}
1122
1123// Information of current thread in variety of formats
1124pid_t os::Bsd::gettid() {
1125  int retval = -1;
1126
1127#ifdef __APPLE__ //XNU kernel
1128  // despite the fact mach port is actually not a thread id use it
1129  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1130  retval = ::pthread_mach_thread_np(::pthread_self());
1131  guarantee(retval != 0, "just checking");
1132  return retval;
1133
1134#else
1135  #ifdef __FreeBSD__
1136  retval = syscall(SYS_thr_self);
1137  #else
1138    #ifdef __OpenBSD__
1139  retval = syscall(SYS_getthrid);
1140    #else
1141      #ifdef __NetBSD__
1142  retval = (pid_t) syscall(SYS__lwp_self);
1143      #endif
1144    #endif
1145  #endif
1146#endif
1147
1148  if (retval == -1) {
1149    return getpid();
1150  }
1151}
1152
1153intx os::current_thread_id() {
1154#ifdef __APPLE__
1155  return (intx)::pthread_mach_thread_np(::pthread_self());
1156#else
1157  return (intx)::pthread_self();
1158#endif
1159}
1160
1161int os::current_process_id() {
1162
1163  // Under the old bsd thread library, bsd gives each thread
1164  // its own process id. Because of this each thread will return
1165  // a different pid if this method were to return the result
1166  // of getpid(2). Bsd provides no api that returns the pid
1167  // of the launcher thread for the vm. This implementation
1168  // returns a unique pid, the pid of the launcher thread
1169  // that starts the vm 'process'.
1170
1171  // Under the NPTL, getpid() returns the same pid as the
1172  // launcher thread rather than a unique pid per thread.
1173  // Use gettid() if you want the old pre NPTL behaviour.
1174
1175  // if you are looking for the result of a call to getpid() that
1176  // returns a unique pid for the calling thread, then look at the
1177  // OSThread::thread_id() method in osThread_bsd.hpp file
1178
1179  return (int)(_initial_pid ? _initial_pid : getpid());
1180}
1181
1182// DLL functions
1183
1184#define JNI_LIB_PREFIX "lib"
1185#ifdef __APPLE__
1186  #define JNI_LIB_SUFFIX ".dylib"
1187#else
1188  #define JNI_LIB_SUFFIX ".so"
1189#endif
1190
1191const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1192
1193// This must be hard coded because it's the system's temporary
1194// directory not the java application's temp directory, ala java.io.tmpdir.
1195#ifdef __APPLE__
1196// macosx has a secure per-user temporary directory
1197char temp_path_storage[PATH_MAX];
1198const char* os::get_temp_directory() {
1199  static char *temp_path = NULL;
1200  if (temp_path == NULL) {
1201    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1202    if (pathSize == 0 || pathSize > PATH_MAX) {
1203      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1204    }
1205    temp_path = temp_path_storage;
1206  }
1207  return temp_path;
1208}
1209#else // __APPLE__
1210const char* os::get_temp_directory() { return "/tmp"; }
1211#endif // __APPLE__
1212
1213static bool file_exists(const char* filename) {
1214  struct stat statbuf;
1215  if (filename == NULL || strlen(filename) == 0) {
1216    return false;
1217  }
1218  return os::stat(filename, &statbuf) == 0;
1219}
1220
1221bool os::dll_build_name(char* buffer, size_t buflen,
1222                        const char* pname, const char* fname) {
1223  bool retval = false;
1224  // Copied from libhpi
1225  const size_t pnamelen = pname ? strlen(pname) : 0;
1226
1227  // Return error on buffer overflow.
1228  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1229    return retval;
1230  }
1231
1232  if (pnamelen == 0) {
1233    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1234    retval = true;
1235  } else if (strchr(pname, *os::path_separator()) != NULL) {
1236    int n;
1237    char** pelements = split_path(pname, &n);
1238    if (pelements == NULL) {
1239      return false;
1240    }
1241    for (int i = 0; i < n; i++) {
1242      // Really shouldn't be NULL, but check can't hurt
1243      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1244        continue; // skip the empty path values
1245      }
1246      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1247               pelements[i], fname);
1248      if (file_exists(buffer)) {
1249        retval = true;
1250        break;
1251      }
1252    }
1253    // release the storage
1254    for (int i = 0; i < n; i++) {
1255      if (pelements[i] != NULL) {
1256        FREE_C_HEAP_ARRAY(char, pelements[i]);
1257      }
1258    }
1259    if (pelements != NULL) {
1260      FREE_C_HEAP_ARRAY(char*, pelements);
1261    }
1262  } else {
1263    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1264    retval = true;
1265  }
1266  return retval;
1267}
1268
1269// check if addr is inside libjvm.so
1270bool os::address_is_in_vm(address addr) {
1271  static address libjvm_base_addr;
1272  Dl_info dlinfo;
1273
1274  if (libjvm_base_addr == NULL) {
1275    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1276      libjvm_base_addr = (address)dlinfo.dli_fbase;
1277    }
1278    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1279  }
1280
1281  if (dladdr((void *)addr, &dlinfo) != 0) {
1282    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1283  }
1284
1285  return false;
1286}
1287
1288
1289#define MACH_MAXSYMLEN 256
1290
1291bool os::dll_address_to_function_name(address addr, char *buf,
1292                                      int buflen, int *offset,
1293                                      bool demangle) {
1294  // buf is not optional, but offset is optional
1295  assert(buf != NULL, "sanity check");
1296
1297  Dl_info dlinfo;
1298  char localbuf[MACH_MAXSYMLEN];
1299
1300  if (dladdr((void*)addr, &dlinfo) != 0) {
1301    // see if we have a matching symbol
1302    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1303      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1304        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1305      }
1306      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1307      return true;
1308    }
1309    // no matching symbol so try for just file info
1310    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1311      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1312                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1313        return true;
1314      }
1315    }
1316
1317    // Handle non-dynamic manually:
1318    if (dlinfo.dli_fbase != NULL &&
1319        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1320                        dlinfo.dli_fbase)) {
1321      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1322        jio_snprintf(buf, buflen, "%s", localbuf);
1323      }
1324      return true;
1325    }
1326  }
1327  buf[0] = '\0';
1328  if (offset != NULL) *offset = -1;
1329  return false;
1330}
1331
1332// ported from solaris version
1333bool os::dll_address_to_library_name(address addr, char* buf,
1334                                     int buflen, int* offset) {
1335  // buf is not optional, but offset is optional
1336  assert(buf != NULL, "sanity check");
1337
1338  Dl_info dlinfo;
1339
1340  if (dladdr((void*)addr, &dlinfo) != 0) {
1341    if (dlinfo.dli_fname != NULL) {
1342      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1343    }
1344    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1345      *offset = addr - (address)dlinfo.dli_fbase;
1346    }
1347    return true;
1348  }
1349
1350  buf[0] = '\0';
1351  if (offset) *offset = -1;
1352  return false;
1353}
1354
1355// Loads .dll/.so and
1356// in case of error it checks if .dll/.so was built for the
1357// same architecture as Hotspot is running on
1358
1359#ifdef __APPLE__
1360void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1361#ifdef STATIC_BUILD
1362  return os::get_default_process_handle();
1363#else
1364  void * result= ::dlopen(filename, RTLD_LAZY);
1365  if (result != NULL) {
1366    // Successful loading
1367    return result;
1368  }
1369
1370  // Read system error message into ebuf
1371  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1372  ebuf[ebuflen-1]='\0';
1373
1374  return NULL;
1375#endif // STATIC_BUILD
1376}
1377#else
1378void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1379#ifdef STATIC_BUILD
1380  return os::get_default_process_handle();
1381#else
1382  void * result= ::dlopen(filename, RTLD_LAZY);
1383  if (result != NULL) {
1384    // Successful loading
1385    return result;
1386  }
1387
1388  Elf32_Ehdr elf_head;
1389
1390  // Read system error message into ebuf
1391  // It may or may not be overwritten below
1392  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1393  ebuf[ebuflen-1]='\0';
1394  int diag_msg_max_length=ebuflen-strlen(ebuf);
1395  char* diag_msg_buf=ebuf+strlen(ebuf);
1396
1397  if (diag_msg_max_length==0) {
1398    // No more space in ebuf for additional diagnostics message
1399    return NULL;
1400  }
1401
1402
1403  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1404
1405  if (file_descriptor < 0) {
1406    // Can't open library, report dlerror() message
1407    return NULL;
1408  }
1409
1410  bool failed_to_read_elf_head=
1411    (sizeof(elf_head)!=
1412     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1413
1414  ::close(file_descriptor);
1415  if (failed_to_read_elf_head) {
1416    // file i/o error - report dlerror() msg
1417    return NULL;
1418  }
1419
1420  typedef struct {
1421    Elf32_Half  code;         // Actual value as defined in elf.h
1422    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1423    char        elf_class;    // 32 or 64 bit
1424    char        endianess;    // MSB or LSB
1425    char*       name;         // String representation
1426  } arch_t;
1427
1428  #ifndef EM_486
1429    #define EM_486          6               /* Intel 80486 */
1430  #endif
1431
1432  #ifndef EM_MIPS_RS3_LE
1433    #define EM_MIPS_RS3_LE  10              /* MIPS */
1434  #endif
1435
1436  #ifndef EM_PPC64
1437    #define EM_PPC64        21              /* PowerPC64 */
1438  #endif
1439
1440  #ifndef EM_S390
1441    #define EM_S390         22              /* IBM System/390 */
1442  #endif
1443
1444  #ifndef EM_IA_64
1445    #define EM_IA_64        50              /* HP/Intel IA-64 */
1446  #endif
1447
1448  #ifndef EM_X86_64
1449    #define EM_X86_64       62              /* AMD x86-64 */
1450  #endif
1451
1452  static const arch_t arch_array[]={
1453    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1454    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1455    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1456    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1457    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1458    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1459    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1460    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1461    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1462    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1463    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1464    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1465    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1466    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1467    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1468    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1469  };
1470
1471  #if  (defined IA32)
1472  static  Elf32_Half running_arch_code=EM_386;
1473  #elif   (defined AMD64)
1474  static  Elf32_Half running_arch_code=EM_X86_64;
1475  #elif  (defined IA64)
1476  static  Elf32_Half running_arch_code=EM_IA_64;
1477  #elif  (defined __sparc) && (defined _LP64)
1478  static  Elf32_Half running_arch_code=EM_SPARCV9;
1479  #elif  (defined __sparc) && (!defined _LP64)
1480  static  Elf32_Half running_arch_code=EM_SPARC;
1481  #elif  (defined __powerpc64__)
1482  static  Elf32_Half running_arch_code=EM_PPC64;
1483  #elif  (defined __powerpc__)
1484  static  Elf32_Half running_arch_code=EM_PPC;
1485  #elif  (defined ARM)
1486  static  Elf32_Half running_arch_code=EM_ARM;
1487  #elif  (defined S390)
1488  static  Elf32_Half running_arch_code=EM_S390;
1489  #elif  (defined ALPHA)
1490  static  Elf32_Half running_arch_code=EM_ALPHA;
1491  #elif  (defined MIPSEL)
1492  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1493  #elif  (defined PARISC)
1494  static  Elf32_Half running_arch_code=EM_PARISC;
1495  #elif  (defined MIPS)
1496  static  Elf32_Half running_arch_code=EM_MIPS;
1497  #elif  (defined M68K)
1498  static  Elf32_Half running_arch_code=EM_68K;
1499  #else
1500    #error Method os::dll_load requires that one of following is defined:\
1501         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1502  #endif
1503
1504  // Identify compatability class for VM's architecture and library's architecture
1505  // Obtain string descriptions for architectures
1506
1507  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1508  int running_arch_index=-1;
1509
1510  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1511    if (running_arch_code == arch_array[i].code) {
1512      running_arch_index    = i;
1513    }
1514    if (lib_arch.code == arch_array[i].code) {
1515      lib_arch.compat_class = arch_array[i].compat_class;
1516      lib_arch.name         = arch_array[i].name;
1517    }
1518  }
1519
1520  assert(running_arch_index != -1,
1521         "Didn't find running architecture code (running_arch_code) in arch_array");
1522  if (running_arch_index == -1) {
1523    // Even though running architecture detection failed
1524    // we may still continue with reporting dlerror() message
1525    return NULL;
1526  }
1527
1528  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1529    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1530    return NULL;
1531  }
1532
1533#ifndef S390
1534  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1535    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1536    return NULL;
1537  }
1538#endif // !S390
1539
1540  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1541    if (lib_arch.name!=NULL) {
1542      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1543                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1544                 lib_arch.name, arch_array[running_arch_index].name);
1545    } else {
1546      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1547                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1548                 lib_arch.code,
1549                 arch_array[running_arch_index].name);
1550    }
1551  }
1552
1553  return NULL;
1554#endif // STATIC_BUILD
1555}
1556#endif // !__APPLE__
1557
1558void* os::get_default_process_handle() {
1559#ifdef __APPLE__
1560  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1561  // to avoid finding unexpected symbols on second (or later)
1562  // loads of a library.
1563  return (void*)::dlopen(NULL, RTLD_FIRST);
1564#else
1565  return (void*)::dlopen(NULL, RTLD_LAZY);
1566#endif
1567}
1568
1569// XXX: Do we need a lock around this as per Linux?
1570void* os::dll_lookup(void* handle, const char* name) {
1571  return dlsym(handle, name);
1572}
1573
1574int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1575  outputStream * out = (outputStream *) param;
1576  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1577  return 0;
1578}
1579
1580void os::print_dll_info(outputStream *st) {
1581  st->print_cr("Dynamic libraries:");
1582  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1583    st->print_cr("Error: Cannot print dynamic libraries.");
1584  }
1585}
1586
1587int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1588#ifdef RTLD_DI_LINKMAP
1589  Dl_info dli;
1590  void *handle;
1591  Link_map *map;
1592  Link_map *p;
1593
1594  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1595      dli.dli_fname == NULL) {
1596    return 1;
1597  }
1598  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1599  if (handle == NULL) {
1600    return 1;
1601  }
1602  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1603  if (map == NULL) {
1604    dlclose(handle);
1605    return 1;
1606  }
1607
1608  while (map->l_prev != NULL)
1609    map = map->l_prev;
1610
1611  while (map != NULL) {
1612    // Value for top_address is returned as 0 since we don't have any information about module size
1613    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1614      dlclose(handle);
1615      return 1;
1616    }
1617    map = map->l_next;
1618  }
1619
1620  dlclose(handle);
1621#elif defined(__APPLE__)
1622  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1623    // Value for top_address is returned as 0 since we don't have any information about module size
1624    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1625      return 1;
1626    }
1627  }
1628  return 0;
1629#else
1630  return 1;
1631#endif
1632}
1633
1634void os::get_summary_os_info(char* buf, size_t buflen) {
1635  // These buffers are small because we want this to be brief
1636  // and not use a lot of stack while generating the hs_err file.
1637  char os[100];
1638  size_t size = sizeof(os);
1639  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1640  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1641#ifdef __APPLE__
1642      strncpy(os, "Darwin", sizeof(os));
1643#elif __OpenBSD__
1644      strncpy(os, "OpenBSD", sizeof(os));
1645#else
1646      strncpy(os, "BSD", sizeof(os));
1647#endif
1648  }
1649
1650  char release[100];
1651  size = sizeof(release);
1652  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1653  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1654      // if error, leave blank
1655      strncpy(release, "", sizeof(release));
1656  }
1657  snprintf(buf, buflen, "%s %s", os, release);
1658}
1659
1660void os::print_os_info_brief(outputStream* st) {
1661  os::Posix::print_uname_info(st);
1662}
1663
1664void os::print_os_info(outputStream* st) {
1665  st->print("OS:");
1666
1667  os::Posix::print_uname_info(st);
1668
1669  os::Posix::print_rlimit_info(st);
1670
1671  os::Posix::print_load_average(st);
1672}
1673
1674void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1675  // Nothing to do for now.
1676}
1677
1678void os::get_summary_cpu_info(char* buf, size_t buflen) {
1679  unsigned int mhz;
1680  size_t size = sizeof(mhz);
1681  int mib[] = { CTL_HW, HW_CPU_FREQ };
1682  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1683    mhz = 1;  // looks like an error but can be divided by
1684  } else {
1685    mhz /= 1000000;  // reported in millions
1686  }
1687
1688  char model[100];
1689  size = sizeof(model);
1690  int mib_model[] = { CTL_HW, HW_MODEL };
1691  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1692    strncpy(model, cpu_arch, sizeof(model));
1693  }
1694
1695  char machine[100];
1696  size = sizeof(machine);
1697  int mib_machine[] = { CTL_HW, HW_MACHINE };
1698  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1699      strncpy(machine, "", sizeof(machine));
1700  }
1701
1702  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1703}
1704
1705void os::print_memory_info(outputStream* st) {
1706
1707  st->print("Memory:");
1708  st->print(" %dk page", os::vm_page_size()>>10);
1709
1710  st->print(", physical " UINT64_FORMAT "k",
1711            os::physical_memory() >> 10);
1712  st->print("(" UINT64_FORMAT "k free)",
1713            os::available_memory() >> 10);
1714  st->cr();
1715}
1716
1717static void print_signal_handler(outputStream* st, int sig,
1718                                 char* buf, size_t buflen);
1719
1720void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1721  st->print_cr("Signal Handlers:");
1722  print_signal_handler(st, SIGSEGV, buf, buflen);
1723  print_signal_handler(st, SIGBUS , buf, buflen);
1724  print_signal_handler(st, SIGFPE , buf, buflen);
1725  print_signal_handler(st, SIGPIPE, buf, buflen);
1726  print_signal_handler(st, SIGXFSZ, buf, buflen);
1727  print_signal_handler(st, SIGILL , buf, buflen);
1728  print_signal_handler(st, SR_signum, buf, buflen);
1729  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1730  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1731  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1732  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1733}
1734
1735static char saved_jvm_path[MAXPATHLEN] = {0};
1736
1737// Find the full path to the current module, libjvm
1738void os::jvm_path(char *buf, jint buflen) {
1739  // Error checking.
1740  if (buflen < MAXPATHLEN) {
1741    assert(false, "must use a large-enough buffer");
1742    buf[0] = '\0';
1743    return;
1744  }
1745  // Lazy resolve the path to current module.
1746  if (saved_jvm_path[0] != 0) {
1747    strcpy(buf, saved_jvm_path);
1748    return;
1749  }
1750
1751  char dli_fname[MAXPATHLEN];
1752  bool ret = dll_address_to_library_name(
1753                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1754                                         dli_fname, sizeof(dli_fname), NULL);
1755  assert(ret, "cannot locate libjvm");
1756  char *rp = NULL;
1757  if (ret && dli_fname[0] != '\0') {
1758    rp = os::Posix::realpath(dli_fname, buf, buflen);
1759  }
1760  if (rp == NULL) {
1761    return;
1762  }
1763
1764  if (Arguments::sun_java_launcher_is_altjvm()) {
1765    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1766    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1767    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1768    // appears at the right place in the string, then assume we are
1769    // installed in a JDK and we're done. Otherwise, check for a
1770    // JAVA_HOME environment variable and construct a path to the JVM
1771    // being overridden.
1772
1773    const char *p = buf + strlen(buf) - 1;
1774    for (int count = 0; p > buf && count < 5; ++count) {
1775      for (--p; p > buf && *p != '/'; --p)
1776        /* empty */ ;
1777    }
1778
1779    if (strncmp(p, "/jre/lib/", 9) != 0) {
1780      // Look for JAVA_HOME in the environment.
1781      char* java_home_var = ::getenv("JAVA_HOME");
1782      if (java_home_var != NULL && java_home_var[0] != 0) {
1783        char* jrelib_p;
1784        int len;
1785
1786        // Check the current module name "libjvm"
1787        p = strrchr(buf, '/');
1788        assert(strstr(p, "/libjvm") == p, "invalid library name");
1789
1790        rp = os::Posix::realpath(java_home_var, buf, buflen);
1791        if (rp == NULL) {
1792          return;
1793        }
1794
1795        // determine if this is a legacy image or modules image
1796        // modules image doesn't have "jre" subdirectory
1797        len = strlen(buf);
1798        assert(len < buflen, "Ran out of buffer space");
1799        jrelib_p = buf + len;
1800
1801        // Add the appropriate library subdir
1802        snprintf(jrelib_p, buflen-len, "/jre/lib");
1803        if (0 != access(buf, F_OK)) {
1804          snprintf(jrelib_p, buflen-len, "/lib");
1805        }
1806
1807        // Add the appropriate client or server subdir
1808        len = strlen(buf);
1809        jrelib_p = buf + len;
1810        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1811        if (0 != access(buf, F_OK)) {
1812          snprintf(jrelib_p, buflen-len, "%s", "");
1813        }
1814
1815        // If the path exists within JAVA_HOME, add the JVM library name
1816        // to complete the path to JVM being overridden.  Otherwise fallback
1817        // to the path to the current library.
1818        if (0 == access(buf, F_OK)) {
1819          // Use current module name "libjvm"
1820          len = strlen(buf);
1821          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1822        } else {
1823          // Fall back to path of current library
1824          rp = os::Posix::realpath(dli_fname, buf, buflen);
1825          if (rp == NULL) {
1826            return;
1827          }
1828        }
1829      }
1830    }
1831  }
1832
1833  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1834  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1835}
1836
1837void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1838  // no prefix required, not even "_"
1839}
1840
1841void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1842  // no suffix required
1843}
1844
1845////////////////////////////////////////////////////////////////////////////////
1846// sun.misc.Signal support
1847
1848static volatile jint sigint_count = 0;
1849
1850static void UserHandler(int sig, void *siginfo, void *context) {
1851  // 4511530 - sem_post is serialized and handled by the manager thread. When
1852  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1853  // don't want to flood the manager thread with sem_post requests.
1854  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1855    return;
1856  }
1857
1858  // Ctrl-C is pressed during error reporting, likely because the error
1859  // handler fails to abort. Let VM die immediately.
1860  if (sig == SIGINT && is_error_reported()) {
1861    os::die();
1862  }
1863
1864  os::signal_notify(sig);
1865}
1866
1867void* os::user_handler() {
1868  return CAST_FROM_FN_PTR(void*, UserHandler);
1869}
1870
1871extern "C" {
1872  typedef void (*sa_handler_t)(int);
1873  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1874}
1875
1876void* os::signal(int signal_number, void* handler) {
1877  struct sigaction sigAct, oldSigAct;
1878
1879  sigfillset(&(sigAct.sa_mask));
1880  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1881  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1882
1883  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1884    // -1 means registration failed
1885    return (void *)-1;
1886  }
1887
1888  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1889}
1890
1891void os::signal_raise(int signal_number) {
1892  ::raise(signal_number);
1893}
1894
1895// The following code is moved from os.cpp for making this
1896// code platform specific, which it is by its very nature.
1897
1898// Will be modified when max signal is changed to be dynamic
1899int os::sigexitnum_pd() {
1900  return NSIG;
1901}
1902
1903// a counter for each possible signal value
1904static volatile jint pending_signals[NSIG+1] = { 0 };
1905
1906// Bsd(POSIX) specific hand shaking semaphore.
1907#ifdef __APPLE__
1908typedef semaphore_t os_semaphore_t;
1909
1910  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1911  #define SEM_WAIT(sem)           semaphore_wait(sem)
1912  #define SEM_POST(sem)           semaphore_signal(sem)
1913  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1914#else
1915typedef sem_t os_semaphore_t;
1916
1917  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1918  #define SEM_WAIT(sem)           sem_wait(&sem)
1919  #define SEM_POST(sem)           sem_post(&sem)
1920  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1921#endif
1922
1923#ifdef __APPLE__
1924// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1925
1926static const char* sem_init_strerror(kern_return_t value) {
1927  switch (value) {
1928    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1929    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1930    default:                     return "Unknown";
1931  }
1932}
1933
1934OSXSemaphore::OSXSemaphore(uint value) {
1935  kern_return_t ret = SEM_INIT(_semaphore, value);
1936
1937  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1938}
1939
1940OSXSemaphore::~OSXSemaphore() {
1941  SEM_DESTROY(_semaphore);
1942}
1943
1944void OSXSemaphore::signal(uint count) {
1945  for (uint i = 0; i < count; i++) {
1946    kern_return_t ret = SEM_POST(_semaphore);
1947
1948    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1949  }
1950}
1951
1952void OSXSemaphore::wait() {
1953  kern_return_t ret;
1954  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1955    // Semaphore was interrupted. Retry.
1956  }
1957  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1958}
1959
1960jlong OSXSemaphore::currenttime() {
1961  struct timeval tv;
1962  gettimeofday(&tv, NULL);
1963  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1964}
1965
1966bool OSXSemaphore::trywait() {
1967  return timedwait(0, 0);
1968}
1969
1970bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1971  kern_return_t kr = KERN_ABORTED;
1972  mach_timespec_t waitspec;
1973  waitspec.tv_sec = sec;
1974  waitspec.tv_nsec = nsec;
1975
1976  jlong starttime = currenttime();
1977
1978  kr = semaphore_timedwait(_semaphore, waitspec);
1979  while (kr == KERN_ABORTED) {
1980    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1981
1982    jlong current = currenttime();
1983    jlong passedtime = current - starttime;
1984
1985    if (passedtime >= totalwait) {
1986      waitspec.tv_sec = 0;
1987      waitspec.tv_nsec = 0;
1988    } else {
1989      jlong waittime = totalwait - (current - starttime);
1990      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1991      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1992    }
1993
1994    kr = semaphore_timedwait(_semaphore, waitspec);
1995  }
1996
1997  return kr == KERN_SUCCESS;
1998}
1999
2000#else
2001// Use POSIX implementation of semaphores.
2002
2003struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2004  struct timespec ts;
2005  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2006
2007  return ts;
2008}
2009
2010#endif // __APPLE__
2011
2012static os_semaphore_t sig_sem;
2013
2014#ifdef __APPLE__
2015static OSXSemaphore sr_semaphore;
2016#else
2017static PosixSemaphore sr_semaphore;
2018#endif
2019
2020void os::signal_init_pd() {
2021  // Initialize signal structures
2022  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2023
2024  // Initialize signal semaphore
2025  ::SEM_INIT(sig_sem, 0);
2026}
2027
2028void os::signal_notify(int sig) {
2029  Atomic::inc(&pending_signals[sig]);
2030  ::SEM_POST(sig_sem);
2031}
2032
2033static int check_pending_signals(bool wait) {
2034  Atomic::store(0, &sigint_count);
2035  for (;;) {
2036    for (int i = 0; i < NSIG + 1; i++) {
2037      jint n = pending_signals[i];
2038      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2039        return i;
2040      }
2041    }
2042    if (!wait) {
2043      return -1;
2044    }
2045    JavaThread *thread = JavaThread::current();
2046    ThreadBlockInVM tbivm(thread);
2047
2048    bool threadIsSuspended;
2049    do {
2050      thread->set_suspend_equivalent();
2051      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2052      ::SEM_WAIT(sig_sem);
2053
2054      // were we externally suspended while we were waiting?
2055      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2056      if (threadIsSuspended) {
2057        // The semaphore has been incremented, but while we were waiting
2058        // another thread suspended us. We don't want to continue running
2059        // while suspended because that would surprise the thread that
2060        // suspended us.
2061        ::SEM_POST(sig_sem);
2062
2063        thread->java_suspend_self();
2064      }
2065    } while (threadIsSuspended);
2066  }
2067}
2068
2069int os::signal_lookup() {
2070  return check_pending_signals(false);
2071}
2072
2073int os::signal_wait() {
2074  return check_pending_signals(true);
2075}
2076
2077////////////////////////////////////////////////////////////////////////////////
2078// Virtual Memory
2079
2080int os::vm_page_size() {
2081  // Seems redundant as all get out
2082  assert(os::Bsd::page_size() != -1, "must call os::init");
2083  return os::Bsd::page_size();
2084}
2085
2086// Solaris allocates memory by pages.
2087int os::vm_allocation_granularity() {
2088  assert(os::Bsd::page_size() != -1, "must call os::init");
2089  return os::Bsd::page_size();
2090}
2091
2092// Rationale behind this function:
2093//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2094//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2095//  samples for JITted code. Here we create private executable mapping over the code cache
2096//  and then we can use standard (well, almost, as mapping can change) way to provide
2097//  info for the reporting script by storing timestamp and location of symbol
2098void bsd_wrap_code(char* base, size_t size) {
2099  static volatile jint cnt = 0;
2100
2101  if (!UseOprofile) {
2102    return;
2103  }
2104
2105  char buf[PATH_MAX + 1];
2106  int num = Atomic::add(1, &cnt);
2107
2108  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2109           os::get_temp_directory(), os::current_process_id(), num);
2110  unlink(buf);
2111
2112  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2113
2114  if (fd != -1) {
2115    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2116    if (rv != (off_t)-1) {
2117      if (::write(fd, "", 1) == 1) {
2118        mmap(base, size,
2119             PROT_READ|PROT_WRITE|PROT_EXEC,
2120             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2121      }
2122    }
2123    ::close(fd);
2124    unlink(buf);
2125  }
2126}
2127
2128static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2129                                    int err) {
2130  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2131          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2132          os::errno_name(err), err);
2133}
2134
2135// NOTE: Bsd kernel does not really reserve the pages for us.
2136//       All it does is to check if there are enough free pages
2137//       left at the time of mmap(). This could be a potential
2138//       problem.
2139bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2140  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2141#ifdef __OpenBSD__
2142  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2143  if (::mprotect(addr, size, prot) == 0) {
2144    return true;
2145  }
2146#else
2147  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2148                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2149  if (res != (uintptr_t) MAP_FAILED) {
2150    return true;
2151  }
2152#endif
2153
2154  // Warn about any commit errors we see in non-product builds just
2155  // in case mmap() doesn't work as described on the man page.
2156  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2157
2158  return false;
2159}
2160
2161bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2162                          bool exec) {
2163  // alignment_hint is ignored on this OS
2164  return pd_commit_memory(addr, size, exec);
2165}
2166
2167void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2168                                  const char* mesg) {
2169  assert(mesg != NULL, "mesg must be specified");
2170  if (!pd_commit_memory(addr, size, exec)) {
2171    // add extra info in product mode for vm_exit_out_of_memory():
2172    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2173    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2174  }
2175}
2176
2177void os::pd_commit_memory_or_exit(char* addr, size_t size,
2178                                  size_t alignment_hint, bool exec,
2179                                  const char* mesg) {
2180  // alignment_hint is ignored on this OS
2181  pd_commit_memory_or_exit(addr, size, exec, mesg);
2182}
2183
2184void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2185}
2186
2187void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2188  ::madvise(addr, bytes, MADV_DONTNEED);
2189}
2190
2191void os::numa_make_global(char *addr, size_t bytes) {
2192}
2193
2194void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2195}
2196
2197bool os::numa_topology_changed()   { return false; }
2198
2199size_t os::numa_get_groups_num() {
2200  return 1;
2201}
2202
2203int os::numa_get_group_id() {
2204  return 0;
2205}
2206
2207size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2208  if (size > 0) {
2209    ids[0] = 0;
2210    return 1;
2211  }
2212  return 0;
2213}
2214
2215bool os::get_page_info(char *start, page_info* info) {
2216  return false;
2217}
2218
2219char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2220  return end;
2221}
2222
2223
2224bool os::pd_uncommit_memory(char* addr, size_t size) {
2225#ifdef __OpenBSD__
2226  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2227  return ::mprotect(addr, size, PROT_NONE) == 0;
2228#else
2229  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2230                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2231  return res  != (uintptr_t) MAP_FAILED;
2232#endif
2233}
2234
2235bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2236  return os::commit_memory(addr, size, !ExecMem);
2237}
2238
2239// If this is a growable mapping, remove the guard pages entirely by
2240// munmap()ping them.  If not, just call uncommit_memory().
2241bool os::remove_stack_guard_pages(char* addr, size_t size) {
2242  return os::uncommit_memory(addr, size);
2243}
2244
2245// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2246// at 'requested_addr'. If there are existing memory mappings at the same
2247// location, however, they will be overwritten. If 'fixed' is false,
2248// 'requested_addr' is only treated as a hint, the return value may or
2249// may not start from the requested address. Unlike Bsd mmap(), this
2250// function returns NULL to indicate failure.
2251static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2252  char * addr;
2253  int flags;
2254
2255  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2256  if (fixed) {
2257    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2258    flags |= MAP_FIXED;
2259  }
2260
2261  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2262  // touch an uncommitted page. Otherwise, the read/write might
2263  // succeed if we have enough swap space to back the physical page.
2264  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2265                       flags, -1, 0);
2266
2267  return addr == MAP_FAILED ? NULL : addr;
2268}
2269
2270static int anon_munmap(char * addr, size_t size) {
2271  return ::munmap(addr, size) == 0;
2272}
2273
2274char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2275                            size_t alignment_hint) {
2276  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2277}
2278
2279bool os::pd_release_memory(char* addr, size_t size) {
2280  return anon_munmap(addr, size);
2281}
2282
2283static bool bsd_mprotect(char* addr, size_t size, int prot) {
2284  // Bsd wants the mprotect address argument to be page aligned.
2285  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2286
2287  // According to SUSv3, mprotect() should only be used with mappings
2288  // established by mmap(), and mmap() always maps whole pages. Unaligned
2289  // 'addr' likely indicates problem in the VM (e.g. trying to change
2290  // protection of malloc'ed or statically allocated memory). Check the
2291  // caller if you hit this assert.
2292  assert(addr == bottom, "sanity check");
2293
2294  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2295  return ::mprotect(bottom, size, prot) == 0;
2296}
2297
2298// Set protections specified
2299bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2300                        bool is_committed) {
2301  unsigned int p = 0;
2302  switch (prot) {
2303  case MEM_PROT_NONE: p = PROT_NONE; break;
2304  case MEM_PROT_READ: p = PROT_READ; break;
2305  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2306  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2307  default:
2308    ShouldNotReachHere();
2309  }
2310  // is_committed is unused.
2311  return bsd_mprotect(addr, bytes, p);
2312}
2313
2314bool os::guard_memory(char* addr, size_t size) {
2315  return bsd_mprotect(addr, size, PROT_NONE);
2316}
2317
2318bool os::unguard_memory(char* addr, size_t size) {
2319  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2320}
2321
2322bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2323  return false;
2324}
2325
2326// Large page support
2327
2328static size_t _large_page_size = 0;
2329
2330void os::large_page_init() {
2331}
2332
2333
2334char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2335  fatal("This code is not used or maintained.");
2336
2337  // "exec" is passed in but not used.  Creating the shared image for
2338  // the code cache doesn't have an SHM_X executable permission to check.
2339  assert(UseLargePages && UseSHM, "only for SHM large pages");
2340
2341  key_t key = IPC_PRIVATE;
2342  char *addr;
2343
2344  bool warn_on_failure = UseLargePages &&
2345                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2346                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2347
2348  // Create a large shared memory region to attach to based on size.
2349  // Currently, size is the total size of the heap
2350  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2351  if (shmid == -1) {
2352    // Possible reasons for shmget failure:
2353    // 1. shmmax is too small for Java heap.
2354    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2355    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2356    // 2. not enough large page memory.
2357    //    > check available large pages: cat /proc/meminfo
2358    //    > increase amount of large pages:
2359    //          echo new_value > /proc/sys/vm/nr_hugepages
2360    //      Note 1: different Bsd may use different name for this property,
2361    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2362    //      Note 2: it's possible there's enough physical memory available but
2363    //            they are so fragmented after a long run that they can't
2364    //            coalesce into large pages. Try to reserve large pages when
2365    //            the system is still "fresh".
2366    if (warn_on_failure) {
2367      warning("Failed to reserve shared memory (errno = %d).", errno);
2368    }
2369    return NULL;
2370  }
2371
2372  // attach to the region
2373  addr = (char*)shmat(shmid, req_addr, 0);
2374  int err = errno;
2375
2376  // Remove shmid. If shmat() is successful, the actual shared memory segment
2377  // will be deleted when it's detached by shmdt() or when the process
2378  // terminates. If shmat() is not successful this will remove the shared
2379  // segment immediately.
2380  shmctl(shmid, IPC_RMID, NULL);
2381
2382  if ((intptr_t)addr == -1) {
2383    if (warn_on_failure) {
2384      warning("Failed to attach shared memory (errno = %d).", err);
2385    }
2386    return NULL;
2387  }
2388
2389  // The memory is committed
2390  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2391
2392  return addr;
2393}
2394
2395bool os::release_memory_special(char* base, size_t bytes) {
2396  if (MemTracker::tracking_level() > NMT_minimal) {
2397    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2398    // detaching the SHM segment will also delete it, see reserve_memory_special()
2399    int rslt = shmdt(base);
2400    if (rslt == 0) {
2401      tkr.record((address)base, bytes);
2402      return true;
2403    } else {
2404      return false;
2405    }
2406  } else {
2407    return shmdt(base) == 0;
2408  }
2409}
2410
2411size_t os::large_page_size() {
2412  return _large_page_size;
2413}
2414
2415// HugeTLBFS allows application to commit large page memory on demand;
2416// with SysV SHM the entire memory region must be allocated as shared
2417// memory.
2418bool os::can_commit_large_page_memory() {
2419  return UseHugeTLBFS;
2420}
2421
2422bool os::can_execute_large_page_memory() {
2423  return UseHugeTLBFS;
2424}
2425
2426// Reserve memory at an arbitrary address, only if that area is
2427// available (and not reserved for something else).
2428
2429char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2430  const int max_tries = 10;
2431  char* base[max_tries];
2432  size_t size[max_tries];
2433  const size_t gap = 0x000000;
2434
2435  // Assert only that the size is a multiple of the page size, since
2436  // that's all that mmap requires, and since that's all we really know
2437  // about at this low abstraction level.  If we need higher alignment,
2438  // we can either pass an alignment to this method or verify alignment
2439  // in one of the methods further up the call chain.  See bug 5044738.
2440  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2441
2442  // Repeatedly allocate blocks until the block is allocated at the
2443  // right spot.
2444
2445  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2446  // if kernel honors the hint then we can return immediately.
2447  char * addr = anon_mmap(requested_addr, bytes, false);
2448  if (addr == requested_addr) {
2449    return requested_addr;
2450  }
2451
2452  if (addr != NULL) {
2453    // mmap() is successful but it fails to reserve at the requested address
2454    anon_munmap(addr, bytes);
2455  }
2456
2457  int i;
2458  for (i = 0; i < max_tries; ++i) {
2459    base[i] = reserve_memory(bytes);
2460
2461    if (base[i] != NULL) {
2462      // Is this the block we wanted?
2463      if (base[i] == requested_addr) {
2464        size[i] = bytes;
2465        break;
2466      }
2467
2468      // Does this overlap the block we wanted? Give back the overlapped
2469      // parts and try again.
2470
2471      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2472      if (top_overlap >= 0 && top_overlap < bytes) {
2473        unmap_memory(base[i], top_overlap);
2474        base[i] += top_overlap;
2475        size[i] = bytes - top_overlap;
2476      } else {
2477        size_t bottom_overlap = base[i] + bytes - requested_addr;
2478        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2479          unmap_memory(requested_addr, bottom_overlap);
2480          size[i] = bytes - bottom_overlap;
2481        } else {
2482          size[i] = bytes;
2483        }
2484      }
2485    }
2486  }
2487
2488  // Give back the unused reserved pieces.
2489
2490  for (int j = 0; j < i; ++j) {
2491    if (base[j] != NULL) {
2492      unmap_memory(base[j], size[j]);
2493    }
2494  }
2495
2496  if (i < max_tries) {
2497    return requested_addr;
2498  } else {
2499    return NULL;
2500  }
2501}
2502
2503size_t os::read(int fd, void *buf, unsigned int nBytes) {
2504  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2505}
2506
2507size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2508  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2509}
2510
2511void os::naked_short_sleep(jlong ms) {
2512  struct timespec req;
2513
2514  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2515  req.tv_sec = 0;
2516  if (ms > 0) {
2517    req.tv_nsec = (ms % 1000) * 1000000;
2518  } else {
2519    req.tv_nsec = 1;
2520  }
2521
2522  nanosleep(&req, NULL);
2523
2524  return;
2525}
2526
2527// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2528void os::infinite_sleep() {
2529  while (true) {    // sleep forever ...
2530    ::sleep(100);   // ... 100 seconds at a time
2531  }
2532}
2533
2534// Used to convert frequent JVM_Yield() to nops
2535bool os::dont_yield() {
2536  return DontYieldALot;
2537}
2538
2539void os::naked_yield() {
2540  sched_yield();
2541}
2542
2543////////////////////////////////////////////////////////////////////////////////
2544// thread priority support
2545
2546// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2547// only supports dynamic priority, static priority must be zero. For real-time
2548// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2549// However, for large multi-threaded applications, SCHED_RR is not only slower
2550// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2551// of 5 runs - Sep 2005).
2552//
2553// The following code actually changes the niceness of kernel-thread/LWP. It
2554// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2555// not the entire user process, and user level threads are 1:1 mapped to kernel
2556// threads. It has always been the case, but could change in the future. For
2557// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2558// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2559
2560#if !defined(__APPLE__)
2561int os::java_to_os_priority[CriticalPriority + 1] = {
2562  19,              // 0 Entry should never be used
2563
2564   0,              // 1 MinPriority
2565   3,              // 2
2566   6,              // 3
2567
2568  10,              // 4
2569  15,              // 5 NormPriority
2570  18,              // 6
2571
2572  21,              // 7
2573  25,              // 8
2574  28,              // 9 NearMaxPriority
2575
2576  31,              // 10 MaxPriority
2577
2578  31               // 11 CriticalPriority
2579};
2580#else
2581// Using Mach high-level priority assignments
2582int os::java_to_os_priority[CriticalPriority + 1] = {
2583   0,              // 0 Entry should never be used (MINPRI_USER)
2584
2585  27,              // 1 MinPriority
2586  28,              // 2
2587  29,              // 3
2588
2589  30,              // 4
2590  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2591  32,              // 6
2592
2593  33,              // 7
2594  34,              // 8
2595  35,              // 9 NearMaxPriority
2596
2597  36,              // 10 MaxPriority
2598
2599  36               // 11 CriticalPriority
2600};
2601#endif
2602
2603static int prio_init() {
2604  if (ThreadPriorityPolicy == 1) {
2605    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2606    // if effective uid is not root. Perhaps, a more elegant way of doing
2607    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2608    if (geteuid() != 0) {
2609      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2610        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2611      }
2612      ThreadPriorityPolicy = 0;
2613    }
2614  }
2615  if (UseCriticalJavaThreadPriority) {
2616    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2617  }
2618  return 0;
2619}
2620
2621OSReturn os::set_native_priority(Thread* thread, int newpri) {
2622  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2623
2624#ifdef __OpenBSD__
2625  // OpenBSD pthread_setprio starves low priority threads
2626  return OS_OK;
2627#elif defined(__FreeBSD__)
2628  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2629#elif defined(__APPLE__) || defined(__NetBSD__)
2630  struct sched_param sp;
2631  int policy;
2632  pthread_t self = pthread_self();
2633
2634  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2635    return OS_ERR;
2636  }
2637
2638  sp.sched_priority = newpri;
2639  if (pthread_setschedparam(self, policy, &sp) != 0) {
2640    return OS_ERR;
2641  }
2642
2643  return OS_OK;
2644#else
2645  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2646  return (ret == 0) ? OS_OK : OS_ERR;
2647#endif
2648}
2649
2650OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2651  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2652    *priority_ptr = java_to_os_priority[NormPriority];
2653    return OS_OK;
2654  }
2655
2656  errno = 0;
2657#if defined(__OpenBSD__) || defined(__FreeBSD__)
2658  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2659#elif defined(__APPLE__) || defined(__NetBSD__)
2660  int policy;
2661  struct sched_param sp;
2662
2663  pthread_getschedparam(pthread_self(), &policy, &sp);
2664  *priority_ptr = sp.sched_priority;
2665#else
2666  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2667#endif
2668  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2669}
2670
2671// Hint to the underlying OS that a task switch would not be good.
2672// Void return because it's a hint and can fail.
2673void os::hint_no_preempt() {}
2674
2675////////////////////////////////////////////////////////////////////////////////
2676// suspend/resume support
2677
2678//  the low-level signal-based suspend/resume support is a remnant from the
2679//  old VM-suspension that used to be for java-suspension, safepoints etc,
2680//  within hotspot. Now there is a single use-case for this:
2681//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2682//      that runs in the watcher thread.
2683//  The remaining code is greatly simplified from the more general suspension
2684//  code that used to be used.
2685//
2686//  The protocol is quite simple:
2687//  - suspend:
2688//      - sends a signal to the target thread
2689//      - polls the suspend state of the osthread using a yield loop
2690//      - target thread signal handler (SR_handler) sets suspend state
2691//        and blocks in sigsuspend until continued
2692//  - resume:
2693//      - sets target osthread state to continue
2694//      - sends signal to end the sigsuspend loop in the SR_handler
2695//
2696//  Note that the SR_lock plays no role in this suspend/resume protocol,
2697//  but is checked for NULL in SR_handler as a thread termination indicator.
2698
2699static void resume_clear_context(OSThread *osthread) {
2700  osthread->set_ucontext(NULL);
2701  osthread->set_siginfo(NULL);
2702}
2703
2704static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2705  osthread->set_ucontext(context);
2706  osthread->set_siginfo(siginfo);
2707}
2708
2709// Handler function invoked when a thread's execution is suspended or
2710// resumed. We have to be careful that only async-safe functions are
2711// called here (Note: most pthread functions are not async safe and
2712// should be avoided.)
2713//
2714// Note: sigwait() is a more natural fit than sigsuspend() from an
2715// interface point of view, but sigwait() prevents the signal hander
2716// from being run. libpthread would get very confused by not having
2717// its signal handlers run and prevents sigwait()'s use with the
2718// mutex granting granting signal.
2719//
2720// Currently only ever called on the VMThread or JavaThread
2721//
2722static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2723  // Save and restore errno to avoid confusing native code with EINTR
2724  // after sigsuspend.
2725  int old_errno = errno;
2726
2727  Thread* thread = Thread::current_or_null_safe();
2728  assert(thread != NULL, "Missing current thread in SR_handler");
2729
2730  // On some systems we have seen signal delivery get "stuck" until the signal
2731  // mask is changed as part of thread termination. Check that the current thread
2732  // has not already terminated (via SR_lock()) - else the following assertion
2733  // will fail because the thread is no longer a JavaThread as the ~JavaThread
2734  // destructor has completed.
2735
2736  if (thread->SR_lock() == NULL) {
2737    return;
2738  }
2739
2740  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2741
2742  OSThread* osthread = thread->osthread();
2743
2744  os::SuspendResume::State current = osthread->sr.state();
2745  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2746    suspend_save_context(osthread, siginfo, context);
2747
2748    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2749    os::SuspendResume::State state = osthread->sr.suspended();
2750    if (state == os::SuspendResume::SR_SUSPENDED) {
2751      sigset_t suspend_set;  // signals for sigsuspend()
2752
2753      // get current set of blocked signals and unblock resume signal
2754      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2755      sigdelset(&suspend_set, SR_signum);
2756
2757      sr_semaphore.signal();
2758      // wait here until we are resumed
2759      while (1) {
2760        sigsuspend(&suspend_set);
2761
2762        os::SuspendResume::State result = osthread->sr.running();
2763        if (result == os::SuspendResume::SR_RUNNING) {
2764          sr_semaphore.signal();
2765          break;
2766        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2767          ShouldNotReachHere();
2768        }
2769      }
2770
2771    } else if (state == os::SuspendResume::SR_RUNNING) {
2772      // request was cancelled, continue
2773    } else {
2774      ShouldNotReachHere();
2775    }
2776
2777    resume_clear_context(osthread);
2778  } else if (current == os::SuspendResume::SR_RUNNING) {
2779    // request was cancelled, continue
2780  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2781    // ignore
2782  } else {
2783    // ignore
2784  }
2785
2786  errno = old_errno;
2787}
2788
2789
2790static int SR_initialize() {
2791  struct sigaction act;
2792  char *s;
2793  // Get signal number to use for suspend/resume
2794  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2795    int sig = ::strtol(s, 0, 10);
2796    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2797        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2798      SR_signum = sig;
2799    } else {
2800      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2801              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2802    }
2803  }
2804
2805  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2806         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2807
2808  sigemptyset(&SR_sigset);
2809  sigaddset(&SR_sigset, SR_signum);
2810
2811  // Set up signal handler for suspend/resume
2812  act.sa_flags = SA_RESTART|SA_SIGINFO;
2813  act.sa_handler = (void (*)(int)) SR_handler;
2814
2815  // SR_signum is blocked by default.
2816  // 4528190 - We also need to block pthread restart signal (32 on all
2817  // supported Bsd platforms). Note that BsdThreads need to block
2818  // this signal for all threads to work properly. So we don't have
2819  // to use hard-coded signal number when setting up the mask.
2820  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2821
2822  if (sigaction(SR_signum, &act, 0) == -1) {
2823    return -1;
2824  }
2825
2826  // Save signal flag
2827  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2828  return 0;
2829}
2830
2831static int sr_notify(OSThread* osthread) {
2832  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2833  assert_status(status == 0, status, "pthread_kill");
2834  return status;
2835}
2836
2837// "Randomly" selected value for how long we want to spin
2838// before bailing out on suspending a thread, also how often
2839// we send a signal to a thread we want to resume
2840static const int RANDOMLY_LARGE_INTEGER = 1000000;
2841static const int RANDOMLY_LARGE_INTEGER2 = 100;
2842
2843// returns true on success and false on error - really an error is fatal
2844// but this seems the normal response to library errors
2845static bool do_suspend(OSThread* osthread) {
2846  assert(osthread->sr.is_running(), "thread should be running");
2847  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2848
2849  // mark as suspended and send signal
2850  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2851    // failed to switch, state wasn't running?
2852    ShouldNotReachHere();
2853    return false;
2854  }
2855
2856  if (sr_notify(osthread) != 0) {
2857    ShouldNotReachHere();
2858  }
2859
2860  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2861  while (true) {
2862    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2863      break;
2864    } else {
2865      // timeout
2866      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2867      if (cancelled == os::SuspendResume::SR_RUNNING) {
2868        return false;
2869      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2870        // make sure that we consume the signal on the semaphore as well
2871        sr_semaphore.wait();
2872        break;
2873      } else {
2874        ShouldNotReachHere();
2875        return false;
2876      }
2877    }
2878  }
2879
2880  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2881  return true;
2882}
2883
2884static void do_resume(OSThread* osthread) {
2885  assert(osthread->sr.is_suspended(), "thread should be suspended");
2886  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2887
2888  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2889    // failed to switch to WAKEUP_REQUEST
2890    ShouldNotReachHere();
2891    return;
2892  }
2893
2894  while (true) {
2895    if (sr_notify(osthread) == 0) {
2896      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2897        if (osthread->sr.is_running()) {
2898          return;
2899        }
2900      }
2901    } else {
2902      ShouldNotReachHere();
2903    }
2904  }
2905
2906  guarantee(osthread->sr.is_running(), "Must be running!");
2907}
2908
2909///////////////////////////////////////////////////////////////////////////////////
2910// signal handling (except suspend/resume)
2911
2912// This routine may be used by user applications as a "hook" to catch signals.
2913// The user-defined signal handler must pass unrecognized signals to this
2914// routine, and if it returns true (non-zero), then the signal handler must
2915// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2916// routine will never retun false (zero), but instead will execute a VM panic
2917// routine kill the process.
2918//
2919// If this routine returns false, it is OK to call it again.  This allows
2920// the user-defined signal handler to perform checks either before or after
2921// the VM performs its own checks.  Naturally, the user code would be making
2922// a serious error if it tried to handle an exception (such as a null check
2923// or breakpoint) that the VM was generating for its own correct operation.
2924//
2925// This routine may recognize any of the following kinds of signals:
2926//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2927// It should be consulted by handlers for any of those signals.
2928//
2929// The caller of this routine must pass in the three arguments supplied
2930// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2931// field of the structure passed to sigaction().  This routine assumes that
2932// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2933//
2934// Note that the VM will print warnings if it detects conflicting signal
2935// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2936//
2937extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2938                                               void* ucontext,
2939                                               int abort_if_unrecognized);
2940
2941void signalHandler(int sig, siginfo_t* info, void* uc) {
2942  assert(info != NULL && uc != NULL, "it must be old kernel");
2943  int orig_errno = errno;  // Preserve errno value over signal handler.
2944  JVM_handle_bsd_signal(sig, info, uc, true);
2945  errno = orig_errno;
2946}
2947
2948
2949// This boolean allows users to forward their own non-matching signals
2950// to JVM_handle_bsd_signal, harmlessly.
2951bool os::Bsd::signal_handlers_are_installed = false;
2952
2953// For signal-chaining
2954struct sigaction sigact[NSIG];
2955uint32_t sigs = 0;
2956#if (32 < NSIG-1)
2957#error "Not all signals can be encoded in sigs. Adapt its type!"
2958#endif
2959bool os::Bsd::libjsig_is_loaded = false;
2960typedef struct sigaction *(*get_signal_t)(int);
2961get_signal_t os::Bsd::get_signal_action = NULL;
2962
2963struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2964  struct sigaction *actp = NULL;
2965
2966  if (libjsig_is_loaded) {
2967    // Retrieve the old signal handler from libjsig
2968    actp = (*get_signal_action)(sig);
2969  }
2970  if (actp == NULL) {
2971    // Retrieve the preinstalled signal handler from jvm
2972    actp = get_preinstalled_handler(sig);
2973  }
2974
2975  return actp;
2976}
2977
2978static bool call_chained_handler(struct sigaction *actp, int sig,
2979                                 siginfo_t *siginfo, void *context) {
2980  // Call the old signal handler
2981  if (actp->sa_handler == SIG_DFL) {
2982    // It's more reasonable to let jvm treat it as an unexpected exception
2983    // instead of taking the default action.
2984    return false;
2985  } else if (actp->sa_handler != SIG_IGN) {
2986    if ((actp->sa_flags & SA_NODEFER) == 0) {
2987      // automaticlly block the signal
2988      sigaddset(&(actp->sa_mask), sig);
2989    }
2990
2991    sa_handler_t hand;
2992    sa_sigaction_t sa;
2993    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2994    // retrieve the chained handler
2995    if (siginfo_flag_set) {
2996      sa = actp->sa_sigaction;
2997    } else {
2998      hand = actp->sa_handler;
2999    }
3000
3001    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3002      actp->sa_handler = SIG_DFL;
3003    }
3004
3005    // try to honor the signal mask
3006    sigset_t oset;
3007    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3008
3009    // call into the chained handler
3010    if (siginfo_flag_set) {
3011      (*sa)(sig, siginfo, context);
3012    } else {
3013      (*hand)(sig);
3014    }
3015
3016    // restore the signal mask
3017    pthread_sigmask(SIG_SETMASK, &oset, 0);
3018  }
3019  // Tell jvm's signal handler the signal is taken care of.
3020  return true;
3021}
3022
3023bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3024  bool chained = false;
3025  // signal-chaining
3026  if (UseSignalChaining) {
3027    struct sigaction *actp = get_chained_signal_action(sig);
3028    if (actp != NULL) {
3029      chained = call_chained_handler(actp, sig, siginfo, context);
3030    }
3031  }
3032  return chained;
3033}
3034
3035struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3036  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3037    return &sigact[sig];
3038  }
3039  return NULL;
3040}
3041
3042void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3043  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3044  sigact[sig] = oldAct;
3045  sigs |= (uint32_t)1 << (sig-1);
3046}
3047
3048// for diagnostic
3049int sigflags[NSIG];
3050
3051int os::Bsd::get_our_sigflags(int sig) {
3052  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3053  return sigflags[sig];
3054}
3055
3056void os::Bsd::set_our_sigflags(int sig, int flags) {
3057  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3058  if (sig > 0 && sig < NSIG) {
3059    sigflags[sig] = flags;
3060  }
3061}
3062
3063void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3064  // Check for overwrite.
3065  struct sigaction oldAct;
3066  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3067
3068  void* oldhand = oldAct.sa_sigaction
3069                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3070                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3071  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3072      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3073      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3074    if (AllowUserSignalHandlers || !set_installed) {
3075      // Do not overwrite; user takes responsibility to forward to us.
3076      return;
3077    } else if (UseSignalChaining) {
3078      // save the old handler in jvm
3079      save_preinstalled_handler(sig, oldAct);
3080      // libjsig also interposes the sigaction() call below and saves the
3081      // old sigaction on it own.
3082    } else {
3083      fatal("Encountered unexpected pre-existing sigaction handler "
3084            "%#lx for signal %d.", (long)oldhand, sig);
3085    }
3086  }
3087
3088  struct sigaction sigAct;
3089  sigfillset(&(sigAct.sa_mask));
3090  sigAct.sa_handler = SIG_DFL;
3091  if (!set_installed) {
3092    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3093  } else {
3094    sigAct.sa_sigaction = signalHandler;
3095    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3096  }
3097#ifdef __APPLE__
3098  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3099  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3100  // if the signal handler declares it will handle it on alternate stack.
3101  // Notice we only declare we will handle it on alt stack, but we are not
3102  // actually going to use real alt stack - this is just a workaround.
3103  // Please see ux_exception.c, method catch_mach_exception_raise for details
3104  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3105  if (sig == SIGSEGV) {
3106    sigAct.sa_flags |= SA_ONSTACK;
3107  }
3108#endif
3109
3110  // Save flags, which are set by ours
3111  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3112  sigflags[sig] = sigAct.sa_flags;
3113
3114  int ret = sigaction(sig, &sigAct, &oldAct);
3115  assert(ret == 0, "check");
3116
3117  void* oldhand2  = oldAct.sa_sigaction
3118                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3119                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3120  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3121}
3122
3123// install signal handlers for signals that HotSpot needs to
3124// handle in order to support Java-level exception handling.
3125
3126void os::Bsd::install_signal_handlers() {
3127  if (!signal_handlers_are_installed) {
3128    signal_handlers_are_installed = true;
3129
3130    // signal-chaining
3131    typedef void (*signal_setting_t)();
3132    signal_setting_t begin_signal_setting = NULL;
3133    signal_setting_t end_signal_setting = NULL;
3134    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3135                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3136    if (begin_signal_setting != NULL) {
3137      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3138                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3139      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3140                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3141      libjsig_is_loaded = true;
3142      assert(UseSignalChaining, "should enable signal-chaining");
3143    }
3144    if (libjsig_is_loaded) {
3145      // Tell libjsig jvm is setting signal handlers
3146      (*begin_signal_setting)();
3147    }
3148
3149    set_signal_handler(SIGSEGV, true);
3150    set_signal_handler(SIGPIPE, true);
3151    set_signal_handler(SIGBUS, true);
3152    set_signal_handler(SIGILL, true);
3153    set_signal_handler(SIGFPE, true);
3154    set_signal_handler(SIGXFSZ, true);
3155
3156#if defined(__APPLE__)
3157    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3158    // signals caught and handled by the JVM. To work around this, we reset the mach task
3159    // signal handler that's placed on our process by CrashReporter. This disables
3160    // CrashReporter-based reporting.
3161    //
3162    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3163    // on caught fatal signals.
3164    //
3165    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3166    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3167    // exception handling, while leaving the standard BSD signal handlers functional.
3168    kern_return_t kr;
3169    kr = task_set_exception_ports(mach_task_self(),
3170                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3171                                  MACH_PORT_NULL,
3172                                  EXCEPTION_STATE_IDENTITY,
3173                                  MACHINE_THREAD_STATE);
3174
3175    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3176#endif
3177
3178    if (libjsig_is_loaded) {
3179      // Tell libjsig jvm finishes setting signal handlers
3180      (*end_signal_setting)();
3181    }
3182
3183    // We don't activate signal checker if libjsig is in place, we trust ourselves
3184    // and if UserSignalHandler is installed all bets are off
3185    if (CheckJNICalls) {
3186      if (libjsig_is_loaded) {
3187        if (PrintJNIResolving) {
3188          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3189        }
3190        check_signals = false;
3191      }
3192      if (AllowUserSignalHandlers) {
3193        if (PrintJNIResolving) {
3194          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3195        }
3196        check_signals = false;
3197      }
3198    }
3199  }
3200}
3201
3202
3203/////
3204// glibc on Bsd platform uses non-documented flag
3205// to indicate, that some special sort of signal
3206// trampoline is used.
3207// We will never set this flag, and we should
3208// ignore this flag in our diagnostic
3209#ifdef SIGNIFICANT_SIGNAL_MASK
3210  #undef SIGNIFICANT_SIGNAL_MASK
3211#endif
3212#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3213
3214static const char* get_signal_handler_name(address handler,
3215                                           char* buf, int buflen) {
3216  int offset;
3217  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3218  if (found) {
3219    // skip directory names
3220    const char *p1, *p2;
3221    p1 = buf;
3222    size_t len = strlen(os::file_separator());
3223    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3224    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3225  } else {
3226    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3227  }
3228  return buf;
3229}
3230
3231static void print_signal_handler(outputStream* st, int sig,
3232                                 char* buf, size_t buflen) {
3233  struct sigaction sa;
3234
3235  sigaction(sig, NULL, &sa);
3236
3237  // See comment for SIGNIFICANT_SIGNAL_MASK define
3238  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3239
3240  st->print("%s: ", os::exception_name(sig, buf, buflen));
3241
3242  address handler = (sa.sa_flags & SA_SIGINFO)
3243    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3244    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3245
3246  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3247    st->print("SIG_DFL");
3248  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3249    st->print("SIG_IGN");
3250  } else {
3251    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3252  }
3253
3254  st->print(", sa_mask[0]=");
3255  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3256
3257  address rh = VMError::get_resetted_sighandler(sig);
3258  // May be, handler was resetted by VMError?
3259  if (rh != NULL) {
3260    handler = rh;
3261    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3262  }
3263
3264  st->print(", sa_flags=");
3265  os::Posix::print_sa_flags(st, sa.sa_flags);
3266
3267  // Check: is it our handler?
3268  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3269      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3270    // It is our signal handler
3271    // check for flags, reset system-used one!
3272    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3273      st->print(
3274                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3275                os::Bsd::get_our_sigflags(sig));
3276    }
3277  }
3278  st->cr();
3279}
3280
3281
3282#define DO_SIGNAL_CHECK(sig)                      \
3283  do {                                            \
3284    if (!sigismember(&check_signal_done, sig)) {  \
3285      os::Bsd::check_signal_handler(sig);         \
3286    }                                             \
3287  } while (0)
3288
3289// This method is a periodic task to check for misbehaving JNI applications
3290// under CheckJNI, we can add any periodic checks here
3291
3292void os::run_periodic_checks() {
3293
3294  if (check_signals == false) return;
3295
3296  // SEGV and BUS if overridden could potentially prevent
3297  // generation of hs*.log in the event of a crash, debugging
3298  // such a case can be very challenging, so we absolutely
3299  // check the following for a good measure:
3300  DO_SIGNAL_CHECK(SIGSEGV);
3301  DO_SIGNAL_CHECK(SIGILL);
3302  DO_SIGNAL_CHECK(SIGFPE);
3303  DO_SIGNAL_CHECK(SIGBUS);
3304  DO_SIGNAL_CHECK(SIGPIPE);
3305  DO_SIGNAL_CHECK(SIGXFSZ);
3306
3307
3308  // ReduceSignalUsage allows the user to override these handlers
3309  // see comments at the very top and jvm_solaris.h
3310  if (!ReduceSignalUsage) {
3311    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3312    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3313    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3314    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3315  }
3316
3317  DO_SIGNAL_CHECK(SR_signum);
3318}
3319
3320typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3321
3322static os_sigaction_t os_sigaction = NULL;
3323
3324void os::Bsd::check_signal_handler(int sig) {
3325  char buf[O_BUFLEN];
3326  address jvmHandler = NULL;
3327
3328
3329  struct sigaction act;
3330  if (os_sigaction == NULL) {
3331    // only trust the default sigaction, in case it has been interposed
3332    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3333    if (os_sigaction == NULL) return;
3334  }
3335
3336  os_sigaction(sig, (struct sigaction*)NULL, &act);
3337
3338
3339  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3340
3341  address thisHandler = (act.sa_flags & SA_SIGINFO)
3342    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3343    : CAST_FROM_FN_PTR(address, act.sa_handler);
3344
3345
3346  switch (sig) {
3347  case SIGSEGV:
3348  case SIGBUS:
3349  case SIGFPE:
3350  case SIGPIPE:
3351  case SIGILL:
3352  case SIGXFSZ:
3353    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3354    break;
3355
3356  case SHUTDOWN1_SIGNAL:
3357  case SHUTDOWN2_SIGNAL:
3358  case SHUTDOWN3_SIGNAL:
3359  case BREAK_SIGNAL:
3360    jvmHandler = (address)user_handler();
3361    break;
3362
3363  default:
3364    if (sig == SR_signum) {
3365      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3366    } else {
3367      return;
3368    }
3369    break;
3370  }
3371
3372  if (thisHandler != jvmHandler) {
3373    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3374    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3375    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3376    // No need to check this sig any longer
3377    sigaddset(&check_signal_done, sig);
3378    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3379    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3380      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3381                    exception_name(sig, buf, O_BUFLEN));
3382    }
3383  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3384    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3385    tty->print("expected:");
3386    os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3387    tty->cr();
3388    tty->print("  found:");
3389    os::Posix::print_sa_flags(tty, act.sa_flags);
3390    tty->cr();
3391    // No need to check this sig any longer
3392    sigaddset(&check_signal_done, sig);
3393  }
3394
3395  // Dump all the signal
3396  if (sigismember(&check_signal_done, sig)) {
3397    print_signal_handlers(tty, buf, O_BUFLEN);
3398  }
3399}
3400
3401extern void report_error(char* file_name, int line_no, char* title,
3402                         char* format, ...);
3403
3404// this is called _before_ the most of global arguments have been parsed
3405void os::init(void) {
3406  char dummy;   // used to get a guess on initial stack address
3407//  first_hrtime = gethrtime();
3408
3409  // With BsdThreads the JavaMain thread pid (primordial thread)
3410  // is different than the pid of the java launcher thread.
3411  // So, on Bsd, the launcher thread pid is passed to the VM
3412  // via the sun.java.launcher.pid property.
3413  // Use this property instead of getpid() if it was correctly passed.
3414  // See bug 6351349.
3415  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3416
3417  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3418
3419  clock_tics_per_sec = CLK_TCK;
3420
3421  init_random(1234567);
3422
3423  ThreadCritical::initialize();
3424
3425  Bsd::set_page_size(getpagesize());
3426  if (Bsd::page_size() == -1) {
3427    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3428  }
3429  init_page_sizes((size_t) Bsd::page_size());
3430
3431  Bsd::initialize_system_info();
3432
3433  // main_thread points to the aboriginal thread
3434  Bsd::_main_thread = pthread_self();
3435
3436  Bsd::clock_init();
3437  initial_time_count = javaTimeNanos();
3438
3439#ifdef __APPLE__
3440  // XXXDARWIN
3441  // Work around the unaligned VM callbacks in hotspot's
3442  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3443  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3444  // alignment when doing symbol lookup. To work around this, we force early
3445  // binding of all symbols now, thus binding when alignment is known-good.
3446  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3447#endif
3448}
3449
3450// To install functions for atexit system call
3451extern "C" {
3452  static void perfMemory_exit_helper() {
3453    perfMemory_exit();
3454  }
3455}
3456
3457// this is called _after_ the global arguments have been parsed
3458jint os::init_2(void) {
3459  // Allocate a single page and mark it as readable for safepoint polling
3460  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3461  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3462
3463  os::set_polling_page(polling_page);
3464  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3465
3466  if (!UseMembar) {
3467    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3468    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3469    os::set_memory_serialize_page(mem_serialize_page);
3470    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3471  }
3472
3473  // initialize suspend/resume support - must do this before signal_sets_init()
3474  if (SR_initialize() != 0) {
3475    perror("SR_initialize failed");
3476    return JNI_ERR;
3477  }
3478
3479  Bsd::signal_sets_init();
3480  Bsd::install_signal_handlers();
3481
3482  // Check and sets minimum stack sizes against command line options
3483  if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3484    return JNI_ERR;
3485  }
3486
3487  if (MaxFDLimit) {
3488    // set the number of file descriptors to max. print out error
3489    // if getrlimit/setrlimit fails but continue regardless.
3490    struct rlimit nbr_files;
3491    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3492    if (status != 0) {
3493      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3494    } else {
3495      nbr_files.rlim_cur = nbr_files.rlim_max;
3496
3497#ifdef __APPLE__
3498      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3499      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3500      // be used instead
3501      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3502#endif
3503
3504      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3505      if (status != 0) {
3506        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3507      }
3508    }
3509  }
3510
3511  // at-exit methods are called in the reverse order of their registration.
3512  // atexit functions are called on return from main or as a result of a
3513  // call to exit(3C). There can be only 32 of these functions registered
3514  // and atexit() does not set errno.
3515
3516  if (PerfAllowAtExitRegistration) {
3517    // only register atexit functions if PerfAllowAtExitRegistration is set.
3518    // atexit functions can be delayed until process exit time, which
3519    // can be problematic for embedded VM situations. Embedded VMs should
3520    // call DestroyJavaVM() to assure that VM resources are released.
3521
3522    // note: perfMemory_exit_helper atexit function may be removed in
3523    // the future if the appropriate cleanup code can be added to the
3524    // VM_Exit VMOperation's doit method.
3525    if (atexit(perfMemory_exit_helper) != 0) {
3526      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3527    }
3528  }
3529
3530  // initialize thread priority policy
3531  prio_init();
3532
3533#ifdef __APPLE__
3534  // dynamically link to objective c gc registration
3535  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3536  if (handleLibObjc != NULL) {
3537    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3538  }
3539#endif
3540
3541  return JNI_OK;
3542}
3543
3544// Mark the polling page as unreadable
3545void os::make_polling_page_unreadable(void) {
3546  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3547    fatal("Could not disable polling page");
3548  }
3549}
3550
3551// Mark the polling page as readable
3552void os::make_polling_page_readable(void) {
3553  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3554    fatal("Could not enable polling page");
3555  }
3556}
3557
3558int os::active_processor_count() {
3559  return _processor_count;
3560}
3561
3562void os::set_native_thread_name(const char *name) {
3563#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3564  // This is only supported in Snow Leopard and beyond
3565  if (name != NULL) {
3566    // Add a "Java: " prefix to the name
3567    char buf[MAXTHREADNAMESIZE];
3568    snprintf(buf, sizeof(buf), "Java: %s", name);
3569    pthread_setname_np(buf);
3570  }
3571#endif
3572}
3573
3574bool os::distribute_processes(uint length, uint* distribution) {
3575  // Not yet implemented.
3576  return false;
3577}
3578
3579bool os::bind_to_processor(uint processor_id) {
3580  // Not yet implemented.
3581  return false;
3582}
3583
3584void os::SuspendedThreadTask::internal_do_task() {
3585  if (do_suspend(_thread->osthread())) {
3586    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3587    do_task(context);
3588    do_resume(_thread->osthread());
3589  }
3590}
3591
3592///
3593class PcFetcher : public os::SuspendedThreadTask {
3594 public:
3595  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3596  ExtendedPC result();
3597 protected:
3598  void do_task(const os::SuspendedThreadTaskContext& context);
3599 private:
3600  ExtendedPC _epc;
3601};
3602
3603ExtendedPC PcFetcher::result() {
3604  guarantee(is_done(), "task is not done yet.");
3605  return _epc;
3606}
3607
3608void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3609  Thread* thread = context.thread();
3610  OSThread* osthread = thread->osthread();
3611  if (osthread->ucontext() != NULL) {
3612    _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3613  } else {
3614    // NULL context is unexpected, double-check this is the VMThread
3615    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3616  }
3617}
3618
3619// Suspends the target using the signal mechanism and then grabs the PC before
3620// resuming the target. Used by the flat-profiler only
3621ExtendedPC os::get_thread_pc(Thread* thread) {
3622  // Make sure that it is called by the watcher for the VMThread
3623  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3624  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3625
3626  PcFetcher fetcher(thread);
3627  fetcher.run();
3628  return fetcher.result();
3629}
3630
3631////////////////////////////////////////////////////////////////////////////////
3632// debug support
3633
3634bool os::find(address addr, outputStream* st) {
3635  Dl_info dlinfo;
3636  memset(&dlinfo, 0, sizeof(dlinfo));
3637  if (dladdr(addr, &dlinfo) != 0) {
3638    st->print(PTR_FORMAT ": ", addr);
3639    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3640      st->print("%s+%#x", dlinfo.dli_sname,
3641                addr - (intptr_t)dlinfo.dli_saddr);
3642    } else if (dlinfo.dli_fbase != NULL) {
3643      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3644    } else {
3645      st->print("<absolute address>");
3646    }
3647    if (dlinfo.dli_fname != NULL) {
3648      st->print(" in %s", dlinfo.dli_fname);
3649    }
3650    if (dlinfo.dli_fbase != NULL) {
3651      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3652    }
3653    st->cr();
3654
3655    if (Verbose) {
3656      // decode some bytes around the PC
3657      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3658      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3659      address       lowest = (address) dlinfo.dli_sname;
3660      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3661      if (begin < lowest)  begin = lowest;
3662      Dl_info dlinfo2;
3663      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3664          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3665        end = (address) dlinfo2.dli_saddr;
3666      }
3667      Disassembler::decode(begin, end, st);
3668    }
3669    return true;
3670  }
3671  return false;
3672}
3673
3674////////////////////////////////////////////////////////////////////////////////
3675// misc
3676
3677// This does not do anything on Bsd. This is basically a hook for being
3678// able to use structured exception handling (thread-local exception filters)
3679// on, e.g., Win32.
3680void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3681                              const methodHandle& method, JavaCallArguments* args,
3682                              Thread* thread) {
3683  f(value, method, args, thread);
3684}
3685
3686void os::print_statistics() {
3687}
3688
3689bool os::message_box(const char* title, const char* message) {
3690  int i;
3691  fdStream err(defaultStream::error_fd());
3692  for (i = 0; i < 78; i++) err.print_raw("=");
3693  err.cr();
3694  err.print_raw_cr(title);
3695  for (i = 0; i < 78; i++) err.print_raw("-");
3696  err.cr();
3697  err.print_raw_cr(message);
3698  for (i = 0; i < 78; i++) err.print_raw("=");
3699  err.cr();
3700
3701  char buf[16];
3702  // Prevent process from exiting upon "read error" without consuming all CPU
3703  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3704
3705  return buf[0] == 'y' || buf[0] == 'Y';
3706}
3707
3708int os::stat(const char *path, struct stat *sbuf) {
3709  char pathbuf[MAX_PATH];
3710  if (strlen(path) > MAX_PATH - 1) {
3711    errno = ENAMETOOLONG;
3712    return -1;
3713  }
3714  os::native_path(strcpy(pathbuf, path));
3715  return ::stat(pathbuf, sbuf);
3716}
3717
3718static inline struct timespec get_mtime(const char* filename) {
3719  struct stat st;
3720  int ret = os::stat(filename, &st);
3721  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3722#ifdef __APPLE__
3723  return st.st_mtimespec;
3724#else
3725  return st.st_mtim;
3726#endif
3727}
3728
3729int os::compare_file_modified_times(const char* file1, const char* file2) {
3730  struct timespec filetime1 = get_mtime(file1);
3731  struct timespec filetime2 = get_mtime(file2);
3732  int diff = filetime1.tv_sec - filetime2.tv_sec;
3733  if (diff == 0) {
3734    return filetime1.tv_nsec - filetime2.tv_nsec;
3735  }
3736  return diff;
3737}
3738
3739// Is a (classpath) directory empty?
3740bool os::dir_is_empty(const char* path) {
3741  DIR *dir = NULL;
3742  struct dirent *ptr;
3743
3744  dir = opendir(path);
3745  if (dir == NULL) return true;
3746
3747  // Scan the directory
3748  bool result = true;
3749  char buf[sizeof(struct dirent) + MAX_PATH];
3750  while (result && (ptr = ::readdir(dir)) != NULL) {
3751    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3752      result = false;
3753    }
3754  }
3755  closedir(dir);
3756  return result;
3757}
3758
3759// This code originates from JDK's sysOpen and open64_w
3760// from src/solaris/hpi/src/system_md.c
3761
3762int os::open(const char *path, int oflag, int mode) {
3763  if (strlen(path) > MAX_PATH - 1) {
3764    errno = ENAMETOOLONG;
3765    return -1;
3766  }
3767  int fd;
3768
3769  fd = ::open(path, oflag, mode);
3770  if (fd == -1) return -1;
3771
3772  // If the open succeeded, the file might still be a directory
3773  {
3774    struct stat buf;
3775    int ret = ::fstat(fd, &buf);
3776    int st_mode = buf.st_mode;
3777
3778    if (ret != -1) {
3779      if ((st_mode & S_IFMT) == S_IFDIR) {
3780        errno = EISDIR;
3781        ::close(fd);
3782        return -1;
3783      }
3784    } else {
3785      ::close(fd);
3786      return -1;
3787    }
3788  }
3789
3790  // All file descriptors that are opened in the JVM and not
3791  // specifically destined for a subprocess should have the
3792  // close-on-exec flag set.  If we don't set it, then careless 3rd
3793  // party native code might fork and exec without closing all
3794  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3795  // UNIXProcess.c), and this in turn might:
3796  //
3797  // - cause end-of-file to fail to be detected on some file
3798  //   descriptors, resulting in mysterious hangs, or
3799  //
3800  // - might cause an fopen in the subprocess to fail on a system
3801  //   suffering from bug 1085341.
3802  //
3803  // (Yes, the default setting of the close-on-exec flag is a Unix
3804  // design flaw)
3805  //
3806  // See:
3807  // 1085341: 32-bit stdio routines should support file descriptors >255
3808  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3809  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3810  //
3811#ifdef FD_CLOEXEC
3812  {
3813    int flags = ::fcntl(fd, F_GETFD);
3814    if (flags != -1) {
3815      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3816    }
3817  }
3818#endif
3819
3820  return fd;
3821}
3822
3823
3824// create binary file, rewriting existing file if required
3825int os::create_binary_file(const char* path, bool rewrite_existing) {
3826  int oflags = O_WRONLY | O_CREAT;
3827  if (!rewrite_existing) {
3828    oflags |= O_EXCL;
3829  }
3830  return ::open(path, oflags, S_IREAD | S_IWRITE);
3831}
3832
3833// return current position of file pointer
3834jlong os::current_file_offset(int fd) {
3835  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3836}
3837
3838// move file pointer to the specified offset
3839jlong os::seek_to_file_offset(int fd, jlong offset) {
3840  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3841}
3842
3843// This code originates from JDK's sysAvailable
3844// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3845
3846int os::available(int fd, jlong *bytes) {
3847  jlong cur, end;
3848  int mode;
3849  struct stat buf;
3850
3851  if (::fstat(fd, &buf) >= 0) {
3852    mode = buf.st_mode;
3853    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3854      int n;
3855      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3856        *bytes = n;
3857        return 1;
3858      }
3859    }
3860  }
3861  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3862    return 0;
3863  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3864    return 0;
3865  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3866    return 0;
3867  }
3868  *bytes = end - cur;
3869  return 1;
3870}
3871
3872// Map a block of memory.
3873char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3874                        char *addr, size_t bytes, bool read_only,
3875                        bool allow_exec) {
3876  int prot;
3877  int flags;
3878
3879  if (read_only) {
3880    prot = PROT_READ;
3881    flags = MAP_SHARED;
3882  } else {
3883    prot = PROT_READ | PROT_WRITE;
3884    flags = MAP_PRIVATE;
3885  }
3886
3887  if (allow_exec) {
3888    prot |= PROT_EXEC;
3889  }
3890
3891  if (addr != NULL) {
3892    flags |= MAP_FIXED;
3893  }
3894
3895  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3896                                     fd, file_offset);
3897  if (mapped_address == MAP_FAILED) {
3898    return NULL;
3899  }
3900  return mapped_address;
3901}
3902
3903
3904// Remap a block of memory.
3905char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3906                          char *addr, size_t bytes, bool read_only,
3907                          bool allow_exec) {
3908  // same as map_memory() on this OS
3909  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3910                        allow_exec);
3911}
3912
3913
3914// Unmap a block of memory.
3915bool os::pd_unmap_memory(char* addr, size_t bytes) {
3916  return munmap(addr, bytes) == 0;
3917}
3918
3919// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3920// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3921// of a thread.
3922//
3923// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3924// the fast estimate available on the platform.
3925
3926jlong os::current_thread_cpu_time() {
3927#ifdef __APPLE__
3928  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3929#else
3930  Unimplemented();
3931  return 0;
3932#endif
3933}
3934
3935jlong os::thread_cpu_time(Thread* thread) {
3936#ifdef __APPLE__
3937  return os::thread_cpu_time(thread, true /* user + sys */);
3938#else
3939  Unimplemented();
3940  return 0;
3941#endif
3942}
3943
3944jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3945#ifdef __APPLE__
3946  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3947#else
3948  Unimplemented();
3949  return 0;
3950#endif
3951}
3952
3953jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3954#ifdef __APPLE__
3955  struct thread_basic_info tinfo;
3956  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3957  kern_return_t kr;
3958  thread_t mach_thread;
3959
3960  mach_thread = thread->osthread()->thread_id();
3961  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3962  if (kr != KERN_SUCCESS) {
3963    return -1;
3964  }
3965
3966  if (user_sys_cpu_time) {
3967    jlong nanos;
3968    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3969    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3970    return nanos;
3971  } else {
3972    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3973  }
3974#else
3975  Unimplemented();
3976  return 0;
3977#endif
3978}
3979
3980
3981void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3982  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3983  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3984  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3985  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3986}
3987
3988void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3989  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3990  info_ptr->may_skip_backward = false;     // elapsed time not wall time
3991  info_ptr->may_skip_forward = false;      // elapsed time not wall time
3992  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3993}
3994
3995bool os::is_thread_cpu_time_supported() {
3996#ifdef __APPLE__
3997  return true;
3998#else
3999  return false;
4000#endif
4001}
4002
4003// System loadavg support.  Returns -1 if load average cannot be obtained.
4004// Bsd doesn't yet have a (official) notion of processor sets,
4005// so just return the system wide load average.
4006int os::loadavg(double loadavg[], int nelem) {
4007  return ::getloadavg(loadavg, nelem);
4008}
4009
4010void os::pause() {
4011  char filename[MAX_PATH];
4012  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4013    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4014  } else {
4015    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4016  }
4017
4018  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4019  if (fd != -1) {
4020    struct stat buf;
4021    ::close(fd);
4022    while (::stat(filename, &buf) == 0) {
4023      (void)::poll(NULL, 0, 100);
4024    }
4025  } else {
4026    jio_fprintf(stderr,
4027                "Could not open pause file '%s', continuing immediately.\n", filename);
4028  }
4029}
4030
4031
4032// Refer to the comments in os_solaris.cpp park-unpark. The next two
4033// comment paragraphs are worth repeating here:
4034//
4035// Assumption:
4036//    Only one parker can exist on an event, which is why we allocate
4037//    them per-thread. Multiple unparkers can coexist.
4038//
4039// _Event serves as a restricted-range semaphore.
4040//   -1 : thread is blocked, i.e. there is a waiter
4041//    0 : neutral: thread is running or ready,
4042//        could have been signaled after a wait started
4043//    1 : signaled - thread is running or ready
4044//
4045
4046// utility to compute the abstime argument to timedwait:
4047// millis is the relative timeout time
4048// abstime will be the absolute timeout time
4049// TODO: replace compute_abstime() with unpackTime()
4050
4051static struct timespec* compute_abstime(struct timespec* abstime,
4052                                        jlong millis) {
4053  if (millis < 0)  millis = 0;
4054  struct timeval now;
4055  int status = gettimeofday(&now, NULL);
4056  assert(status == 0, "gettimeofday");
4057  jlong seconds = millis / 1000;
4058  millis %= 1000;
4059  if (seconds > 50000000) { // see man cond_timedwait(3T)
4060    seconds = 50000000;
4061  }
4062  abstime->tv_sec = now.tv_sec  + seconds;
4063  long       usec = now.tv_usec + millis * 1000;
4064  if (usec >= 1000000) {
4065    abstime->tv_sec += 1;
4066    usec -= 1000000;
4067  }
4068  abstime->tv_nsec = usec * 1000;
4069  return abstime;
4070}
4071
4072void os::PlatformEvent::park() {       // AKA "down()"
4073  // Transitions for _Event:
4074  //   -1 => -1 : illegal
4075  //    1 =>  0 : pass - return immediately
4076  //    0 => -1 : block; then set _Event to 0 before returning
4077
4078  // Invariant: Only the thread associated with the Event/PlatformEvent
4079  // may call park().
4080  // TODO: assert that _Assoc != NULL or _Assoc == Self
4081  assert(_nParked == 0, "invariant");
4082
4083  int v;
4084  for (;;) {
4085    v = _Event;
4086    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4087  }
4088  guarantee(v >= 0, "invariant");
4089  if (v == 0) {
4090    // Do this the hard way by blocking ...
4091    int status = pthread_mutex_lock(_mutex);
4092    assert_status(status == 0, status, "mutex_lock");
4093    guarantee(_nParked == 0, "invariant");
4094    ++_nParked;
4095    while (_Event < 0) {
4096      status = pthread_cond_wait(_cond, _mutex);
4097      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4098      // Treat this the same as if the wait was interrupted
4099      if (status == ETIMEDOUT) { status = EINTR; }
4100      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4101    }
4102    --_nParked;
4103
4104    _Event = 0;
4105    status = pthread_mutex_unlock(_mutex);
4106    assert_status(status == 0, status, "mutex_unlock");
4107    // Paranoia to ensure our locked and lock-free paths interact
4108    // correctly with each other.
4109    OrderAccess::fence();
4110  }
4111  guarantee(_Event >= 0, "invariant");
4112}
4113
4114int os::PlatformEvent::park(jlong millis) {
4115  // Transitions for _Event:
4116  //   -1 => -1 : illegal
4117  //    1 =>  0 : pass - return immediately
4118  //    0 => -1 : block; then set _Event to 0 before returning
4119
4120  guarantee(_nParked == 0, "invariant");
4121
4122  int v;
4123  for (;;) {
4124    v = _Event;
4125    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4126  }
4127  guarantee(v >= 0, "invariant");
4128  if (v != 0) return OS_OK;
4129
4130  // We do this the hard way, by blocking the thread.
4131  // Consider enforcing a minimum timeout value.
4132  struct timespec abst;
4133  compute_abstime(&abst, millis);
4134
4135  int ret = OS_TIMEOUT;
4136  int status = pthread_mutex_lock(_mutex);
4137  assert_status(status == 0, status, "mutex_lock");
4138  guarantee(_nParked == 0, "invariant");
4139  ++_nParked;
4140
4141  // Object.wait(timo) will return because of
4142  // (a) notification
4143  // (b) timeout
4144  // (c) thread.interrupt
4145  //
4146  // Thread.interrupt and object.notify{All} both call Event::set.
4147  // That is, we treat thread.interrupt as a special case of notification.
4148  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4149  // We assume all ETIME returns are valid.
4150  //
4151  // TODO: properly differentiate simultaneous notify+interrupt.
4152  // In that case, we should propagate the notify to another waiter.
4153
4154  while (_Event < 0) {
4155    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4156    assert_status(status == 0 || status == EINTR ||
4157                  status == ETIMEDOUT,
4158                  status, "cond_timedwait");
4159    if (!FilterSpuriousWakeups) break;                 // previous semantics
4160    if (status == ETIMEDOUT) break;
4161    // We consume and ignore EINTR and spurious wakeups.
4162  }
4163  --_nParked;
4164  if (_Event >= 0) {
4165    ret = OS_OK;
4166  }
4167  _Event = 0;
4168  status = pthread_mutex_unlock(_mutex);
4169  assert_status(status == 0, status, "mutex_unlock");
4170  assert(_nParked == 0, "invariant");
4171  // Paranoia to ensure our locked and lock-free paths interact
4172  // correctly with each other.
4173  OrderAccess::fence();
4174  return ret;
4175}
4176
4177void os::PlatformEvent::unpark() {
4178  // Transitions for _Event:
4179  //    0 => 1 : just return
4180  //    1 => 1 : just return
4181  //   -1 => either 0 or 1; must signal target thread
4182  //         That is, we can safely transition _Event from -1 to either
4183  //         0 or 1.
4184  // See also: "Semaphores in Plan 9" by Mullender & Cox
4185  //
4186  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4187  // that it will take two back-to-back park() calls for the owning
4188  // thread to block. This has the benefit of forcing a spurious return
4189  // from the first park() call after an unpark() call which will help
4190  // shake out uses of park() and unpark() without condition variables.
4191
4192  if (Atomic::xchg(1, &_Event) >= 0) return;
4193
4194  // Wait for the thread associated with the event to vacate
4195  int status = pthread_mutex_lock(_mutex);
4196  assert_status(status == 0, status, "mutex_lock");
4197  int AnyWaiters = _nParked;
4198  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4199  status = pthread_mutex_unlock(_mutex);
4200  assert_status(status == 0, status, "mutex_unlock");
4201  if (AnyWaiters != 0) {
4202    // Note that we signal() *after* dropping the lock for "immortal" Events.
4203    // This is safe and avoids a common class of  futile wakeups.  In rare
4204    // circumstances this can cause a thread to return prematurely from
4205    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4206    // will simply re-test the condition and re-park itself.
4207    // This provides particular benefit if the underlying platform does not
4208    // provide wait morphing.
4209    status = pthread_cond_signal(_cond);
4210    assert_status(status == 0, status, "cond_signal");
4211  }
4212}
4213
4214
4215// JSR166
4216// -------------------------------------------------------
4217
4218// The solaris and bsd implementations of park/unpark are fairly
4219// conservative for now, but can be improved. They currently use a
4220// mutex/condvar pair, plus a a count.
4221// Park decrements count if > 0, else does a condvar wait.  Unpark
4222// sets count to 1 and signals condvar.  Only one thread ever waits
4223// on the condvar. Contention seen when trying to park implies that someone
4224// is unparking you, so don't wait. And spurious returns are fine, so there
4225// is no need to track notifications.
4226
4227#define MAX_SECS 100000000
4228
4229// This code is common to bsd and solaris and will be moved to a
4230// common place in dolphin.
4231//
4232// The passed in time value is either a relative time in nanoseconds
4233// or an absolute time in milliseconds. Either way it has to be unpacked
4234// into suitable seconds and nanoseconds components and stored in the
4235// given timespec structure.
4236// Given time is a 64-bit value and the time_t used in the timespec is only
4237// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4238// overflow if times way in the future are given. Further on Solaris versions
4239// prior to 10 there is a restriction (see cond_timedwait) that the specified
4240// number of seconds, in abstime, is less than current_time  + 100,000,000.
4241// As it will be 28 years before "now + 100000000" will overflow we can
4242// ignore overflow and just impose a hard-limit on seconds using the value
4243// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4244// years from "now".
4245
4246static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4247  assert(time > 0, "convertTime");
4248
4249  struct timeval now;
4250  int status = gettimeofday(&now, NULL);
4251  assert(status == 0, "gettimeofday");
4252
4253  time_t max_secs = now.tv_sec + MAX_SECS;
4254
4255  if (isAbsolute) {
4256    jlong secs = time / 1000;
4257    if (secs > max_secs) {
4258      absTime->tv_sec = max_secs;
4259    } else {
4260      absTime->tv_sec = secs;
4261    }
4262    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4263  } else {
4264    jlong secs = time / NANOSECS_PER_SEC;
4265    if (secs >= MAX_SECS) {
4266      absTime->tv_sec = max_secs;
4267      absTime->tv_nsec = 0;
4268    } else {
4269      absTime->tv_sec = now.tv_sec + secs;
4270      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4271      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4272        absTime->tv_nsec -= NANOSECS_PER_SEC;
4273        ++absTime->tv_sec; // note: this must be <= max_secs
4274      }
4275    }
4276  }
4277  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4278  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4279  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4280  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4281}
4282
4283void Parker::park(bool isAbsolute, jlong time) {
4284  // Ideally we'd do something useful while spinning, such
4285  // as calling unpackTime().
4286
4287  // Optional fast-path check:
4288  // Return immediately if a permit is available.
4289  // We depend on Atomic::xchg() having full barrier semantics
4290  // since we are doing a lock-free update to _counter.
4291  if (Atomic::xchg(0, &_counter) > 0) return;
4292
4293  Thread* thread = Thread::current();
4294  assert(thread->is_Java_thread(), "Must be JavaThread");
4295  JavaThread *jt = (JavaThread *)thread;
4296
4297  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4298  // Check interrupt before trying to wait
4299  if (Thread::is_interrupted(thread, false)) {
4300    return;
4301  }
4302
4303  // Next, demultiplex/decode time arguments
4304  struct timespec absTime;
4305  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4306    return;
4307  }
4308  if (time > 0) {
4309    unpackTime(&absTime, isAbsolute, time);
4310  }
4311
4312
4313  // Enter safepoint region
4314  // Beware of deadlocks such as 6317397.
4315  // The per-thread Parker:: mutex is a classic leaf-lock.
4316  // In particular a thread must never block on the Threads_lock while
4317  // holding the Parker:: mutex.  If safepoints are pending both the
4318  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4319  ThreadBlockInVM tbivm(jt);
4320
4321  // Don't wait if cannot get lock since interference arises from
4322  // unblocking.  Also. check interrupt before trying wait
4323  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4324    return;
4325  }
4326
4327  int status;
4328  if (_counter > 0)  { // no wait needed
4329    _counter = 0;
4330    status = pthread_mutex_unlock(_mutex);
4331    assert_status(status == 0, status, "invariant");
4332    // Paranoia to ensure our locked and lock-free paths interact
4333    // correctly with each other and Java-level accesses.
4334    OrderAccess::fence();
4335    return;
4336  }
4337
4338#ifdef ASSERT
4339  // Don't catch signals while blocked; let the running threads have the signals.
4340  // (This allows a debugger to break into the running thread.)
4341  sigset_t oldsigs;
4342  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4343  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4344#endif
4345
4346  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4347  jt->set_suspend_equivalent();
4348  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4349
4350  if (time == 0) {
4351    status = pthread_cond_wait(_cond, _mutex);
4352  } else {
4353    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4354  }
4355  assert_status(status == 0 || status == EINTR ||
4356                status == ETIMEDOUT,
4357                status, "cond_timedwait");
4358
4359#ifdef ASSERT
4360  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4361#endif
4362
4363  _counter = 0;
4364  status = pthread_mutex_unlock(_mutex);
4365  assert_status(status == 0, status, "invariant");
4366  // Paranoia to ensure our locked and lock-free paths interact
4367  // correctly with each other and Java-level accesses.
4368  OrderAccess::fence();
4369
4370  // If externally suspended while waiting, re-suspend
4371  if (jt->handle_special_suspend_equivalent_condition()) {
4372    jt->java_suspend_self();
4373  }
4374}
4375
4376void Parker::unpark() {
4377  int status = pthread_mutex_lock(_mutex);
4378  assert_status(status == 0, status, "invariant");
4379  const int s = _counter;
4380  _counter = 1;
4381  status = pthread_mutex_unlock(_mutex);
4382  assert_status(status == 0, status, "invariant");
4383  if (s < 1) {
4384    status = pthread_cond_signal(_cond);
4385    assert_status(status == 0, status, "invariant");
4386  }
4387}
4388
4389
4390// Darwin has no "environ" in a dynamic library.
4391#ifdef __APPLE__
4392  #include <crt_externs.h>
4393  #define environ (*_NSGetEnviron())
4394#else
4395extern char** environ;
4396#endif
4397
4398// Run the specified command in a separate process. Return its exit value,
4399// or -1 on failure (e.g. can't fork a new process).
4400// Unlike system(), this function can be called from signal handler. It
4401// doesn't block SIGINT et al.
4402int os::fork_and_exec(char* cmd) {
4403  const char * argv[4] = {"sh", "-c", cmd, NULL};
4404
4405  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4406  // pthread_atfork handlers and reset pthread library. All we need is a
4407  // separate process to execve. Make a direct syscall to fork process.
4408  // On IA64 there's no fork syscall, we have to use fork() and hope for
4409  // the best...
4410  pid_t pid = fork();
4411
4412  if (pid < 0) {
4413    // fork failed
4414    return -1;
4415
4416  } else if (pid == 0) {
4417    // child process
4418
4419    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4420    // first to kill every thread on the thread list. Because this list is
4421    // not reset by fork() (see notes above), execve() will instead kill
4422    // every thread in the parent process. We know this is the only thread
4423    // in the new process, so make a system call directly.
4424    // IA64 should use normal execve() from glibc to match the glibc fork()
4425    // above.
4426    execve("/bin/sh", (char* const*)argv, environ);
4427
4428    // execve failed
4429    _exit(-1);
4430
4431  } else  {
4432    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4433    // care about the actual exit code, for now.
4434
4435    int status;
4436
4437    // Wait for the child process to exit.  This returns immediately if
4438    // the child has already exited. */
4439    while (waitpid(pid, &status, 0) < 0) {
4440      switch (errno) {
4441      case ECHILD: return 0;
4442      case EINTR: break;
4443      default: return -1;
4444      }
4445    }
4446
4447    if (WIFEXITED(status)) {
4448      // The child exited normally; get its exit code.
4449      return WEXITSTATUS(status);
4450    } else if (WIFSIGNALED(status)) {
4451      // The child exited because of a signal
4452      // The best value to return is 0x80 + signal number,
4453      // because that is what all Unix shells do, and because
4454      // it allows callers to distinguish between process exit and
4455      // process death by signal.
4456      return 0x80 + WTERMSIG(status);
4457    } else {
4458      // Unknown exit code; pass it through
4459      return status;
4460    }
4461  }
4462}
4463
4464// is_headless_jre()
4465//
4466// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4467// in order to report if we are running in a headless jre
4468//
4469// Since JDK8 xawt/libmawt.so was moved into the same directory
4470// as libawt.so, and renamed libawt_xawt.so
4471//
4472bool os::is_headless_jre() {
4473#ifdef __APPLE__
4474  // We no longer build headless-only on Mac OS X
4475  return false;
4476#else
4477  struct stat statbuf;
4478  char buf[MAXPATHLEN];
4479  char libmawtpath[MAXPATHLEN];
4480  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4481  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4482  char *p;
4483
4484  // Get path to libjvm.so
4485  os::jvm_path(buf, sizeof(buf));
4486
4487  // Get rid of libjvm.so
4488  p = strrchr(buf, '/');
4489  if (p == NULL) {
4490    return false;
4491  } else {
4492    *p = '\0';
4493  }
4494
4495  // Get rid of client or server
4496  p = strrchr(buf, '/');
4497  if (p == NULL) {
4498    return false;
4499  } else {
4500    *p = '\0';
4501  }
4502
4503  // check xawt/libmawt.so
4504  strcpy(libmawtpath, buf);
4505  strcat(libmawtpath, xawtstr);
4506  if (::stat(libmawtpath, &statbuf) == 0) return false;
4507
4508  // check libawt_xawt.so
4509  strcpy(libmawtpath, buf);
4510  strcat(libmawtpath, new_xawtstr);
4511  if (::stat(libmawtpath, &statbuf) == 0) return false;
4512
4513  return true;
4514#endif
4515}
4516
4517// Get the default path to the core file
4518// Returns the length of the string
4519int os::get_core_path(char* buffer, size_t bufferSize) {
4520  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4521
4522  // Truncate if theoretical string was longer than bufferSize
4523  n = MIN2(n, (int)bufferSize);
4524
4525  return n;
4526}
4527
4528#ifndef PRODUCT
4529void TestReserveMemorySpecial_test() {
4530  // No tests available for this platform
4531}
4532#endif
4533
4534bool os::start_debugging(char *buf, int buflen) {
4535  int len = (int)strlen(buf);
4536  char *p = &buf[len];
4537
4538  jio_snprintf(p, buflen-len,
4539             "\n\n"
4540             "Do you want to debug the problem?\n\n"
4541             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4542             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4543             "Otherwise, press RETURN to abort...",
4544             os::current_process_id(), os::current_process_id(),
4545             os::current_thread_id(), os::current_thread_id());
4546
4547  bool yes = os::message_box("Unexpected Error", buf);
4548
4549  if (yes) {
4550    // yes, user asked VM to launch debugger
4551    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4552                     os::current_process_id(), os::current_process_id());
4553
4554    os::fork_and_exec(buf);
4555    yes = false;
4556  }
4557  return yes;
4558}
4559