os_bsd.cpp revision 11869:03762a0cf7e1
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "classfile/classLoader.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "compiler/compileBroker.hpp"
32#include "compiler/disassembler.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_bsd.h"
35#include "logging/log.hpp"
36#include "memory/allocation.inline.hpp"
37#include "memory/filemap.hpp"
38#include "oops/oop.inline.hpp"
39#include "os_bsd.inline.hpp"
40#include "os_share_bsd.hpp"
41#include "prims/jniFastGetField.hpp"
42#include "prims/jvm.h"
43#include "prims/jvm_misc.hpp"
44#include "runtime/arguments.hpp"
45#include "runtime/atomic.hpp"
46#include "runtime/extendedPC.hpp"
47#include "runtime/globals.hpp"
48#include "runtime/interfaceSupport.hpp"
49#include "runtime/java.hpp"
50#include "runtime/javaCalls.hpp"
51#include "runtime/mutexLocker.hpp"
52#include "runtime/objectMonitor.hpp"
53#include "runtime/orderAccess.inline.hpp"
54#include "runtime/osThread.hpp"
55#include "runtime/perfMemory.hpp"
56#include "runtime/sharedRuntime.hpp"
57#include "runtime/statSampler.hpp"
58#include "runtime/stubRoutines.hpp"
59#include "runtime/thread.inline.hpp"
60#include "runtime/threadCritical.hpp"
61#include "runtime/timer.hpp"
62#include "semaphore_bsd.hpp"
63#include "services/attachListener.hpp"
64#include "services/memTracker.hpp"
65#include "services/runtimeService.hpp"
66#include "utilities/decoder.hpp"
67#include "utilities/defaultStream.hpp"
68#include "utilities/events.hpp"
69#include "utilities/growableArray.hpp"
70#include "utilities/vmError.hpp"
71
72// put OS-includes here
73# include <sys/types.h>
74# include <sys/mman.h>
75# include <sys/stat.h>
76# include <sys/select.h>
77# include <pthread.h>
78# include <signal.h>
79# include <errno.h>
80# include <dlfcn.h>
81# include <stdio.h>
82# include <unistd.h>
83# include <sys/resource.h>
84# include <pthread.h>
85# include <sys/stat.h>
86# include <sys/time.h>
87# include <sys/times.h>
88# include <sys/utsname.h>
89# include <sys/socket.h>
90# include <sys/wait.h>
91# include <time.h>
92# include <pwd.h>
93# include <poll.h>
94# include <semaphore.h>
95# include <fcntl.h>
96# include <string.h>
97# include <sys/param.h>
98# include <sys/sysctl.h>
99# include <sys/ipc.h>
100# include <sys/shm.h>
101#ifndef __APPLE__
102# include <link.h>
103#endif
104# include <stdint.h>
105# include <inttypes.h>
106# include <sys/ioctl.h>
107# include <sys/syscall.h>
108
109#if defined(__FreeBSD__) || defined(__NetBSD__)
110  #include <elf.h>
111#endif
112
113#ifdef __APPLE__
114  #include <mach/mach.h> // semaphore_* API
115  #include <mach-o/dyld.h>
116  #include <sys/proc_info.h>
117  #include <objc/objc-auto.h>
118#endif
119
120#ifndef MAP_ANONYMOUS
121  #define MAP_ANONYMOUS MAP_ANON
122#endif
123
124#define MAX_PATH    (2 * K)
125
126// for timer info max values which include all bits
127#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
128
129#define LARGEPAGES_BIT (1 << 6)
130
131////////////////////////////////////////////////////////////////////////////////
132// global variables
133julong os::Bsd::_physical_memory = 0;
134
135#ifdef __APPLE__
136mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
137volatile uint64_t         os::Bsd::_max_abstime   = 0;
138#else
139int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
140#endif
141pthread_t os::Bsd::_main_thread;
142int os::Bsd::_page_size = -1;
143
144static jlong initial_time_count=0;
145
146static int clock_tics_per_sec = 100;
147
148// For diagnostics to print a message once. see run_periodic_checks
149static sigset_t check_signal_done;
150static bool check_signals = true;
151
152static pid_t _initial_pid = 0;
153
154// Signal number used to suspend/resume a thread
155
156// do not use any signal number less than SIGSEGV, see 4355769
157static int SR_signum = SIGUSR2;
158sigset_t SR_sigset;
159
160
161////////////////////////////////////////////////////////////////////////////////
162// utility functions
163
164static int SR_initialize();
165static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
166
167julong os::available_memory() {
168  return Bsd::available_memory();
169}
170
171// available here means free
172julong os::Bsd::available_memory() {
173  uint64_t available = physical_memory() >> 2;
174#ifdef __APPLE__
175  mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
176  vm_statistics64_data_t vmstat;
177  kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
178                                         (host_info64_t)&vmstat, &count);
179  assert(kerr == KERN_SUCCESS,
180         "host_statistics64 failed - check mach_host_self() and count");
181  if (kerr == KERN_SUCCESS) {
182    available = vmstat.free_count * os::vm_page_size();
183  }
184#endif
185  return available;
186}
187
188julong os::physical_memory() {
189  return Bsd::physical_memory();
190}
191
192// Return true if user is running as root.
193
194bool os::have_special_privileges() {
195  static bool init = false;
196  static bool privileges = false;
197  if (!init) {
198    privileges = (getuid() != geteuid()) || (getgid() != getegid());
199    init = true;
200  }
201  return privileges;
202}
203
204
205
206// Cpu architecture string
207#if   defined(ZERO)
208static char cpu_arch[] = ZERO_LIBARCH;
209#elif defined(IA64)
210static char cpu_arch[] = "ia64";
211#elif defined(IA32)
212static char cpu_arch[] = "i386";
213#elif defined(AMD64)
214static char cpu_arch[] = "amd64";
215#elif defined(ARM)
216static char cpu_arch[] = "arm";
217#elif defined(PPC32)
218static char cpu_arch[] = "ppc";
219#elif defined(SPARC)
220  #ifdef _LP64
221static char cpu_arch[] = "sparcv9";
222  #else
223static char cpu_arch[] = "sparc";
224  #endif
225#else
226  #error Add appropriate cpu_arch setting
227#endif
228
229// Compiler variant
230#ifdef COMPILER2
231  #define COMPILER_VARIANT "server"
232#else
233  #define COMPILER_VARIANT "client"
234#endif
235
236
237void os::Bsd::initialize_system_info() {
238  int mib[2];
239  size_t len;
240  int cpu_val;
241  julong mem_val;
242
243  // get processors count via hw.ncpus sysctl
244  mib[0] = CTL_HW;
245  mib[1] = HW_NCPU;
246  len = sizeof(cpu_val);
247  if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
248    assert(len == sizeof(cpu_val), "unexpected data size");
249    set_processor_count(cpu_val);
250  } else {
251    set_processor_count(1);   // fallback
252  }
253
254  // get physical memory via hw.memsize sysctl (hw.memsize is used
255  // since it returns a 64 bit value)
256  mib[0] = CTL_HW;
257
258#if defined (HW_MEMSIZE) // Apple
259  mib[1] = HW_MEMSIZE;
260#elif defined(HW_PHYSMEM) // Most of BSD
261  mib[1] = HW_PHYSMEM;
262#elif defined(HW_REALMEM) // Old FreeBSD
263  mib[1] = HW_REALMEM;
264#else
265  #error No ways to get physmem
266#endif
267
268  len = sizeof(mem_val);
269  if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
270    assert(len == sizeof(mem_val), "unexpected data size");
271    _physical_memory = mem_val;
272  } else {
273    _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
274  }
275
276#ifdef __OpenBSD__
277  {
278    // limit _physical_memory memory view on OpenBSD since
279    // datasize rlimit restricts us anyway.
280    struct rlimit limits;
281    getrlimit(RLIMIT_DATA, &limits);
282    _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
283  }
284#endif
285}
286
287#ifdef __APPLE__
288static const char *get_home() {
289  const char *home_dir = ::getenv("HOME");
290  if ((home_dir == NULL) || (*home_dir == '\0')) {
291    struct passwd *passwd_info = getpwuid(geteuid());
292    if (passwd_info != NULL) {
293      home_dir = passwd_info->pw_dir;
294    }
295  }
296
297  return home_dir;
298}
299#endif
300
301void os::init_system_properties_values() {
302  // The next steps are taken in the product version:
303  //
304  // Obtain the JAVA_HOME value from the location of libjvm.so.
305  // This library should be located at:
306  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
307  //
308  // If "/jre/lib/" appears at the right place in the path, then we
309  // assume libjvm.so is installed in a JDK and we use this path.
310  //
311  // Otherwise exit with message: "Could not create the Java virtual machine."
312  //
313  // The following extra steps are taken in the debugging version:
314  //
315  // If "/jre/lib/" does NOT appear at the right place in the path
316  // instead of exit check for $JAVA_HOME environment variable.
317  //
318  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
319  // then we append a fake suffix "hotspot/libjvm.so" to this path so
320  // it looks like libjvm.so is installed there
321  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
322  //
323  // Otherwise exit.
324  //
325  // Important note: if the location of libjvm.so changes this
326  // code needs to be changed accordingly.
327
328  // See ld(1):
329  //      The linker uses the following search paths to locate required
330  //      shared libraries:
331  //        1: ...
332  //        ...
333  //        7: The default directories, normally /lib and /usr/lib.
334#ifndef DEFAULT_LIBPATH
335  #define DEFAULT_LIBPATH "/lib:/usr/lib"
336#endif
337
338// Base path of extensions installed on the system.
339#define SYS_EXT_DIR     "/usr/java/packages"
340#define EXTENSIONS_DIR  "/lib/ext"
341
342#ifndef __APPLE__
343
344  // Buffer that fits several sprintfs.
345  // Note that the space for the colon and the trailing null are provided
346  // by the nulls included by the sizeof operator.
347  const size_t bufsize =
348    MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
349         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
350  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
351
352  // sysclasspath, java_home, dll_dir
353  {
354    char *pslash;
355    os::jvm_path(buf, bufsize);
356
357    // Found the full path to libjvm.so.
358    // Now cut the path to <java_home>/jre if we can.
359    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
360    pslash = strrchr(buf, '/');
361    if (pslash != NULL) {
362      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
363    }
364    Arguments::set_dll_dir(buf);
365
366    if (pslash != NULL) {
367      pslash = strrchr(buf, '/');
368      if (pslash != NULL) {
369        *pslash = '\0';          // Get rid of /<arch>.
370        pslash = strrchr(buf, '/');
371        if (pslash != NULL) {
372          *pslash = '\0';        // Get rid of /lib.
373        }
374      }
375    }
376    Arguments::set_java_home(buf);
377    set_boot_path('/', ':');
378  }
379
380  // Where to look for native libraries.
381  //
382  // Note: Due to a legacy implementation, most of the library path
383  // is set in the launcher. This was to accomodate linking restrictions
384  // on legacy Bsd implementations (which are no longer supported).
385  // Eventually, all the library path setting will be done here.
386  //
387  // However, to prevent the proliferation of improperly built native
388  // libraries, the new path component /usr/java/packages is added here.
389  // Eventually, all the library path setting will be done here.
390  {
391    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
392    // should always exist (until the legacy problem cited above is
393    // addressed).
394    const char *v = ::getenv("LD_LIBRARY_PATH");
395    const char *v_colon = ":";
396    if (v == NULL) { v = ""; v_colon = ""; }
397    // That's +1 for the colon and +1 for the trailing '\0'.
398    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
399                                                     strlen(v) + 1 +
400                                                     sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
401                                                     mtInternal);
402    sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
403    Arguments::set_library_path(ld_library_path);
404    FREE_C_HEAP_ARRAY(char, ld_library_path);
405  }
406
407  // Extensions directories.
408  sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
409  Arguments::set_ext_dirs(buf);
410
411  FREE_C_HEAP_ARRAY(char, buf);
412
413#else // __APPLE__
414
415  #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
416  #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
417
418  const char *user_home_dir = get_home();
419  // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
420  size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
421    sizeof(SYS_EXTENSIONS_DIRS);
422
423  // Buffer that fits several sprintfs.
424  // Note that the space for the colon and the trailing null are provided
425  // by the nulls included by the sizeof operator.
426  const size_t bufsize =
427    MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
428         (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
429  char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
430
431  // sysclasspath, java_home, dll_dir
432  {
433    char *pslash;
434    os::jvm_path(buf, bufsize);
435
436    // Found the full path to libjvm.so.
437    // Now cut the path to <java_home>/jre if we can.
438    *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
439    pslash = strrchr(buf, '/');
440    if (pslash != NULL) {
441      *pslash = '\0';            // Get rid of /{client|server|hotspot}.
442    }
443#ifdef STATIC_BUILD
444    strcat(buf, "/lib");
445#endif
446
447    Arguments::set_dll_dir(buf);
448
449    if (pslash != NULL) {
450      pslash = strrchr(buf, '/');
451      if (pslash != NULL) {
452        *pslash = '\0';          // Get rid of /lib.
453      }
454    }
455    Arguments::set_java_home(buf);
456    set_boot_path('/', ':');
457  }
458
459  // Where to look for native libraries.
460  //
461  // Note: Due to a legacy implementation, most of the library path
462  // is set in the launcher. This was to accomodate linking restrictions
463  // on legacy Bsd implementations (which are no longer supported).
464  // Eventually, all the library path setting will be done here.
465  //
466  // However, to prevent the proliferation of improperly built native
467  // libraries, the new path component /usr/java/packages is added here.
468  // Eventually, all the library path setting will be done here.
469  {
470    // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471    // should always exist (until the legacy problem cited above is
472    // addressed).
473    // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
474    // can specify a directory inside an app wrapper
475    const char *l = ::getenv("JAVA_LIBRARY_PATH");
476    const char *l_colon = ":";
477    if (l == NULL) { l = ""; l_colon = ""; }
478
479    const char *v = ::getenv("DYLD_LIBRARY_PATH");
480    const char *v_colon = ":";
481    if (v == NULL) { v = ""; v_colon = ""; }
482
483    // Apple's Java6 has "." at the beginning of java.library.path.
484    // OpenJDK on Windows has "." at the end of java.library.path.
485    // OpenJDK on Linux and Solaris don't have "." in java.library.path
486    // at all. To ease the transition from Apple's Java6 to OpenJDK7,
487    // "." is appended to the end of java.library.path. Yes, this
488    // could cause a change in behavior, but Apple's Java6 behavior
489    // can be achieved by putting "." at the beginning of the
490    // JAVA_LIBRARY_PATH environment variable.
491    char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
492                                                     strlen(v) + 1 + strlen(l) + 1 +
493                                                     system_ext_size + 3,
494                                                     mtInternal);
495    sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
496            v, v_colon, l, l_colon, user_home_dir);
497    Arguments::set_library_path(ld_library_path);
498    FREE_C_HEAP_ARRAY(char, ld_library_path);
499  }
500
501  // Extensions directories.
502  //
503  // Note that the space for the colon and the trailing null are provided
504  // by the nulls included by the sizeof operator (so actually one byte more
505  // than necessary is allocated).
506  sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
507          user_home_dir, Arguments::get_java_home());
508  Arguments::set_ext_dirs(buf);
509
510  FREE_C_HEAP_ARRAY(char, buf);
511
512#undef SYS_EXTENSIONS_DIR
513#undef SYS_EXTENSIONS_DIRS
514
515#endif // __APPLE__
516
517#undef SYS_EXT_DIR
518#undef EXTENSIONS_DIR
519}
520
521////////////////////////////////////////////////////////////////////////////////
522// breakpoint support
523
524void os::breakpoint() {
525  BREAKPOINT;
526}
527
528extern "C" void breakpoint() {
529  // use debugger to set breakpoint here
530}
531
532////////////////////////////////////////////////////////////////////////////////
533// signal support
534
535debug_only(static bool signal_sets_initialized = false);
536static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
537
538bool os::Bsd::is_sig_ignored(int sig) {
539  struct sigaction oact;
540  sigaction(sig, (struct sigaction*)NULL, &oact);
541  void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
542                                 : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
543  if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
544    return true;
545  } else {
546    return false;
547  }
548}
549
550void os::Bsd::signal_sets_init() {
551  // Should also have an assertion stating we are still single-threaded.
552  assert(!signal_sets_initialized, "Already initialized");
553  // Fill in signals that are necessarily unblocked for all threads in
554  // the VM. Currently, we unblock the following signals:
555  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
556  //                         by -Xrs (=ReduceSignalUsage));
557  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
558  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
559  // the dispositions or masks wrt these signals.
560  // Programs embedding the VM that want to use the above signals for their
561  // own purposes must, at this time, use the "-Xrs" option to prevent
562  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
563  // (See bug 4345157, and other related bugs).
564  // In reality, though, unblocking these signals is really a nop, since
565  // these signals are not blocked by default.
566  sigemptyset(&unblocked_sigs);
567  sigemptyset(&allowdebug_blocked_sigs);
568  sigaddset(&unblocked_sigs, SIGILL);
569  sigaddset(&unblocked_sigs, SIGSEGV);
570  sigaddset(&unblocked_sigs, SIGBUS);
571  sigaddset(&unblocked_sigs, SIGFPE);
572  sigaddset(&unblocked_sigs, SR_signum);
573
574  if (!ReduceSignalUsage) {
575    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
576      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
577      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
578    }
579    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
580      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
581      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
582    }
583    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
584      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
585      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
586    }
587  }
588  // Fill in signals that are blocked by all but the VM thread.
589  sigemptyset(&vm_sigs);
590  if (!ReduceSignalUsage) {
591    sigaddset(&vm_sigs, BREAK_SIGNAL);
592  }
593  debug_only(signal_sets_initialized = true);
594
595}
596
597// These are signals that are unblocked while a thread is running Java.
598// (For some reason, they get blocked by default.)
599sigset_t* os::Bsd::unblocked_signals() {
600  assert(signal_sets_initialized, "Not initialized");
601  return &unblocked_sigs;
602}
603
604// These are the signals that are blocked while a (non-VM) thread is
605// running Java. Only the VM thread handles these signals.
606sigset_t* os::Bsd::vm_signals() {
607  assert(signal_sets_initialized, "Not initialized");
608  return &vm_sigs;
609}
610
611// These are signals that are blocked during cond_wait to allow debugger in
612sigset_t* os::Bsd::allowdebug_blocked_signals() {
613  assert(signal_sets_initialized, "Not initialized");
614  return &allowdebug_blocked_sigs;
615}
616
617void os::Bsd::hotspot_sigmask(Thread* thread) {
618
619  //Save caller's signal mask before setting VM signal mask
620  sigset_t caller_sigmask;
621  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
622
623  OSThread* osthread = thread->osthread();
624  osthread->set_caller_sigmask(caller_sigmask);
625
626  pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
627
628  if (!ReduceSignalUsage) {
629    if (thread->is_VM_thread()) {
630      // Only the VM thread handles BREAK_SIGNAL ...
631      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
632    } else {
633      // ... all other threads block BREAK_SIGNAL
634      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
635    }
636  }
637}
638
639
640//////////////////////////////////////////////////////////////////////////////
641// create new thread
642
643#ifdef __APPLE__
644// library handle for calling objc_registerThreadWithCollector()
645// without static linking to the libobjc library
646  #define OBJC_LIB "/usr/lib/libobjc.dylib"
647  #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
648typedef void (*objc_registerThreadWithCollector_t)();
649extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
650objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
651#endif
652
653#ifdef __APPLE__
654static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
655  // Additional thread_id used to correlate threads in SA
656  thread_identifier_info_data_t     m_ident_info;
657  mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
658
659  thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
660              (thread_info_t) &m_ident_info, &count);
661
662  return m_ident_info.thread_id;
663}
664#endif
665
666// Thread start routine for all newly created threads
667static void *thread_native_entry(Thread *thread) {
668  // Try to randomize the cache line index of hot stack frames.
669  // This helps when threads of the same stack traces evict each other's
670  // cache lines. The threads can be either from the same JVM instance, or
671  // from different JVM instances. The benefit is especially true for
672  // processors with hyperthreading technology.
673  static int counter = 0;
674  int pid = os::current_process_id();
675  alloca(((pid ^ counter++) & 7) * 128);
676
677  thread->initialize_thread_current();
678
679  OSThread* osthread = thread->osthread();
680  Monitor* sync = osthread->startThread_lock();
681
682  osthread->set_thread_id(os::Bsd::gettid());
683
684  log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
685    os::current_thread_id(), (uintx) pthread_self());
686
687#ifdef __APPLE__
688  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
689  guarantee(unique_thread_id != 0, "unique thread id was not found");
690  osthread->set_unique_thread_id(unique_thread_id);
691#endif
692  // initialize signal mask for this thread
693  os::Bsd::hotspot_sigmask(thread);
694
695  // initialize floating point control register
696  os::Bsd::init_thread_fpu_state();
697
698#ifdef __APPLE__
699  // register thread with objc gc
700  if (objc_registerThreadWithCollectorFunction != NULL) {
701    objc_registerThreadWithCollectorFunction();
702  }
703#endif
704
705  // handshaking with parent thread
706  {
707    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
708
709    // notify parent thread
710    osthread->set_state(INITIALIZED);
711    sync->notify_all();
712
713    // wait until os::start_thread()
714    while (osthread->get_state() == INITIALIZED) {
715      sync->wait(Mutex::_no_safepoint_check_flag);
716    }
717  }
718
719  // call one more level start routine
720  thread->run();
721
722  log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
723    os::current_thread_id(), (uintx) pthread_self());
724
725  // If a thread has not deleted itself ("delete this") as part of its
726  // termination sequence, we have to ensure thread-local-storage is
727  // cleared before we actually terminate. No threads should ever be
728  // deleted asynchronously with respect to their termination.
729  if (Thread::current_or_null_safe() != NULL) {
730    assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
731    thread->clear_thread_current();
732  }
733
734  return 0;
735}
736
737bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
738  assert(thread->osthread() == NULL, "caller responsible");
739
740  // Allocate the OSThread object
741  OSThread* osthread = new OSThread(NULL, NULL);
742  if (osthread == NULL) {
743    return false;
744  }
745
746  // set the correct thread state
747  osthread->set_thread_type(thr_type);
748
749  // Initial state is ALLOCATED but not INITIALIZED
750  osthread->set_state(ALLOCATED);
751
752  thread->set_osthread(osthread);
753
754  // init thread attributes
755  pthread_attr_t attr;
756  pthread_attr_init(&attr);
757  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
758
759  // calculate stack size if it's not specified by caller
760  if (stack_size == 0) {
761    stack_size = os::Bsd::default_stack_size(thr_type);
762
763    switch (thr_type) {
764    case os::java_thread:
765      // Java threads use ThreadStackSize which default value can be
766      // changed with the flag -Xss
767      assert(JavaThread::stack_size_at_create() > 0, "this should be set");
768      stack_size = JavaThread::stack_size_at_create();
769      break;
770    case os::compiler_thread:
771      if (CompilerThreadStackSize > 0) {
772        stack_size = (size_t)(CompilerThreadStackSize * K);
773        break;
774      } // else fall through:
775        // use VMThreadStackSize if CompilerThreadStackSize is not defined
776    case os::vm_thread:
777    case os::pgc_thread:
778    case os::cgc_thread:
779    case os::watcher_thread:
780      if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
781      break;
782    }
783  }
784
785  stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
786  pthread_attr_setstacksize(&attr, stack_size);
787
788  ThreadState state;
789
790  {
791    pthread_t tid;
792    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
793
794    char buf[64];
795    if (ret == 0) {
796      log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
797        (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
798    } else {
799      log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
800        os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
801    }
802
803    pthread_attr_destroy(&attr);
804
805    if (ret != 0) {
806      // Need to clean up stuff we've allocated so far
807      thread->set_osthread(NULL);
808      delete osthread;
809      return false;
810    }
811
812    // Store pthread info into the OSThread
813    osthread->set_pthread_id(tid);
814
815    // Wait until child thread is either initialized or aborted
816    {
817      Monitor* sync_with_child = osthread->startThread_lock();
818      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
819      while ((state = osthread->get_state()) == ALLOCATED) {
820        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
821      }
822    }
823
824  }
825
826  // Aborted due to thread limit being reached
827  if (state == ZOMBIE) {
828    thread->set_osthread(NULL);
829    delete osthread;
830    return false;
831  }
832
833  // The thread is returned suspended (in state INITIALIZED),
834  // and is started higher up in the call chain
835  assert(state == INITIALIZED, "race condition");
836  return true;
837}
838
839/////////////////////////////////////////////////////////////////////////////
840// attach existing thread
841
842// bootstrap the main thread
843bool os::create_main_thread(JavaThread* thread) {
844  assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
845  return create_attached_thread(thread);
846}
847
848bool os::create_attached_thread(JavaThread* thread) {
849#ifdef ASSERT
850  thread->verify_not_published();
851#endif
852
853  // Allocate the OSThread object
854  OSThread* osthread = new OSThread(NULL, NULL);
855
856  if (osthread == NULL) {
857    return false;
858  }
859
860  osthread->set_thread_id(os::Bsd::gettid());
861
862  // Store pthread info into the OSThread
863#ifdef __APPLE__
864  uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
865  guarantee(unique_thread_id != 0, "just checking");
866  osthread->set_unique_thread_id(unique_thread_id);
867#endif
868  osthread->set_pthread_id(::pthread_self());
869
870  // initialize floating point control register
871  os::Bsd::init_thread_fpu_state();
872
873  // Initial thread state is RUNNABLE
874  osthread->set_state(RUNNABLE);
875
876  thread->set_osthread(osthread);
877
878  // initialize signal mask for this thread
879  // and save the caller's signal mask
880  os::Bsd::hotspot_sigmask(thread);
881
882  log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
883    os::current_thread_id(), (uintx) pthread_self());
884
885  return true;
886}
887
888void os::pd_start_thread(Thread* thread) {
889  OSThread * osthread = thread->osthread();
890  assert(osthread->get_state() != INITIALIZED, "just checking");
891  Monitor* sync_with_child = osthread->startThread_lock();
892  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
893  sync_with_child->notify();
894}
895
896// Free Bsd resources related to the OSThread
897void os::free_thread(OSThread* osthread) {
898  assert(osthread != NULL, "osthread not set");
899
900  // We are told to free resources of the argument thread,
901  // but we can only really operate on the current thread.
902  assert(Thread::current()->osthread() == osthread,
903         "os::free_thread but not current thread");
904
905  // Restore caller's signal mask
906  sigset_t sigmask = osthread->caller_sigmask();
907  pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
908
909  delete osthread;
910}
911
912////////////////////////////////////////////////////////////////////////////////
913// time support
914
915// Time since start-up in seconds to a fine granularity.
916// Used by VMSelfDestructTimer and the MemProfiler.
917double os::elapsedTime() {
918
919  return ((double)os::elapsed_counter()) / os::elapsed_frequency();
920}
921
922jlong os::elapsed_counter() {
923  return javaTimeNanos() - initial_time_count;
924}
925
926jlong os::elapsed_frequency() {
927  return NANOSECS_PER_SEC; // nanosecond resolution
928}
929
930bool os::supports_vtime() { return true; }
931bool os::enable_vtime()   { return false; }
932bool os::vtime_enabled()  { return false; }
933
934double os::elapsedVTime() {
935  // better than nothing, but not much
936  return elapsedTime();
937}
938
939jlong os::javaTimeMillis() {
940  timeval time;
941  int status = gettimeofday(&time, NULL);
942  assert(status != -1, "bsd error");
943  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
944}
945
946void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
947  timeval time;
948  int status = gettimeofday(&time, NULL);
949  assert(status != -1, "bsd error");
950  seconds = jlong(time.tv_sec);
951  nanos = jlong(time.tv_usec) * 1000;
952}
953
954#ifndef __APPLE__
955  #ifndef CLOCK_MONOTONIC
956    #define CLOCK_MONOTONIC (1)
957  #endif
958#endif
959
960#ifdef __APPLE__
961void os::Bsd::clock_init() {
962  mach_timebase_info(&_timebase_info);
963}
964#else
965void os::Bsd::clock_init() {
966  struct timespec res;
967  struct timespec tp;
968  if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
969      ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
970    // yes, monotonic clock is supported
971    _clock_gettime = ::clock_gettime;
972  }
973}
974#endif
975
976
977
978#ifdef __APPLE__
979
980jlong os::javaTimeNanos() {
981  const uint64_t tm = mach_absolute_time();
982  const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
983  const uint64_t prev = Bsd::_max_abstime;
984  if (now <= prev) {
985    return prev;   // same or retrograde time;
986  }
987  const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
988  assert(obsv >= prev, "invariant");   // Monotonicity
989  // If the CAS succeeded then we're done and return "now".
990  // If the CAS failed and the observed value "obsv" is >= now then
991  // we should return "obsv".  If the CAS failed and now > obsv > prv then
992  // some other thread raced this thread and installed a new value, in which case
993  // we could either (a) retry the entire operation, (b) retry trying to install now
994  // or (c) just return obsv.  We use (c).   No loop is required although in some cases
995  // we might discard a higher "now" value in deference to a slightly lower but freshly
996  // installed obsv value.   That's entirely benign -- it admits no new orderings compared
997  // to (a) or (b) -- and greatly reduces coherence traffic.
998  // We might also condition (c) on the magnitude of the delta between obsv and now.
999  // Avoiding excessive CAS operations to hot RW locations is critical.
1000  // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1001  return (prev == obsv) ? now : obsv;
1002}
1003
1004#else // __APPLE__
1005
1006jlong os::javaTimeNanos() {
1007  if (os::supports_monotonic_clock()) {
1008    struct timespec tp;
1009    int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1010    assert(status == 0, "gettime error");
1011    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1012    return result;
1013  } else {
1014    timeval time;
1015    int status = gettimeofday(&time, NULL);
1016    assert(status != -1, "bsd error");
1017    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1018    return 1000 * usecs;
1019  }
1020}
1021
1022#endif // __APPLE__
1023
1024void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1025  if (os::supports_monotonic_clock()) {
1026    info_ptr->max_value = ALL_64_BITS;
1027
1028    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1029    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1030    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1031  } else {
1032    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1033    info_ptr->max_value = ALL_64_BITS;
1034
1035    // gettimeofday is a real time clock so it skips
1036    info_ptr->may_skip_backward = true;
1037    info_ptr->may_skip_forward = true;
1038  }
1039
1040  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1041}
1042
1043// Return the real, user, and system times in seconds from an
1044// arbitrary fixed point in the past.
1045bool os::getTimesSecs(double* process_real_time,
1046                      double* process_user_time,
1047                      double* process_system_time) {
1048  struct tms ticks;
1049  clock_t real_ticks = times(&ticks);
1050
1051  if (real_ticks == (clock_t) (-1)) {
1052    return false;
1053  } else {
1054    double ticks_per_second = (double) clock_tics_per_sec;
1055    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1056    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1057    *process_real_time = ((double) real_ticks) / ticks_per_second;
1058
1059    return true;
1060  }
1061}
1062
1063
1064char * os::local_time_string(char *buf, size_t buflen) {
1065  struct tm t;
1066  time_t long_time;
1067  time(&long_time);
1068  localtime_r(&long_time, &t);
1069  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1070               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1071               t.tm_hour, t.tm_min, t.tm_sec);
1072  return buf;
1073}
1074
1075struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1076  return localtime_r(clock, res);
1077}
1078
1079////////////////////////////////////////////////////////////////////////////////
1080// runtime exit support
1081
1082// Note: os::shutdown() might be called very early during initialization, or
1083// called from signal handler. Before adding something to os::shutdown(), make
1084// sure it is async-safe and can handle partially initialized VM.
1085void os::shutdown() {
1086
1087  // allow PerfMemory to attempt cleanup of any persistent resources
1088  perfMemory_exit();
1089
1090  // needs to remove object in file system
1091  AttachListener::abort();
1092
1093  // flush buffered output, finish log files
1094  ostream_abort();
1095
1096  // Check for abort hook
1097  abort_hook_t abort_hook = Arguments::abort_hook();
1098  if (abort_hook != NULL) {
1099    abort_hook();
1100  }
1101
1102}
1103
1104// Note: os::abort() might be called very early during initialization, or
1105// called from signal handler. Before adding something to os::abort(), make
1106// sure it is async-safe and can handle partially initialized VM.
1107void os::abort(bool dump_core, void* siginfo, const void* context) {
1108  os::shutdown();
1109  if (dump_core) {
1110#ifndef PRODUCT
1111    fdStream out(defaultStream::output_fd());
1112    out.print_raw("Current thread is ");
1113    char buf[16];
1114    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1115    out.print_raw_cr(buf);
1116    out.print_raw_cr("Dumping core ...");
1117#endif
1118    ::abort(); // dump core
1119  }
1120
1121  ::exit(1);
1122}
1123
1124// Die immediately, no exit hook, no abort hook, no cleanup.
1125void os::die() {
1126  // _exit() on BsdThreads only kills current thread
1127  ::abort();
1128}
1129
1130// This method is a copy of JDK's sysGetLastErrorString
1131// from src/solaris/hpi/src/system_md.c
1132
1133size_t os::lasterror(char *buf, size_t len) {
1134  if (errno == 0)  return 0;
1135
1136  const char *s = os::strerror(errno);
1137  size_t n = ::strlen(s);
1138  if (n >= len) {
1139    n = len - 1;
1140  }
1141  ::strncpy(buf, s, n);
1142  buf[n] = '\0';
1143  return n;
1144}
1145
1146// Information of current thread in variety of formats
1147pid_t os::Bsd::gettid() {
1148  int retval = -1;
1149
1150#ifdef __APPLE__ //XNU kernel
1151  // despite the fact mach port is actually not a thread id use it
1152  // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1153  retval = ::pthread_mach_thread_np(::pthread_self());
1154  guarantee(retval != 0, "just checking");
1155  return retval;
1156
1157#else
1158  #ifdef __FreeBSD__
1159  retval = syscall(SYS_thr_self);
1160  #else
1161    #ifdef __OpenBSD__
1162  retval = syscall(SYS_getthrid);
1163    #else
1164      #ifdef __NetBSD__
1165  retval = (pid_t) syscall(SYS__lwp_self);
1166      #endif
1167    #endif
1168  #endif
1169#endif
1170
1171  if (retval == -1) {
1172    return getpid();
1173  }
1174}
1175
1176intx os::current_thread_id() {
1177#ifdef __APPLE__
1178  return (intx)::pthread_mach_thread_np(::pthread_self());
1179#else
1180  return (intx)::pthread_self();
1181#endif
1182}
1183
1184int os::current_process_id() {
1185
1186  // Under the old bsd thread library, bsd gives each thread
1187  // its own process id. Because of this each thread will return
1188  // a different pid if this method were to return the result
1189  // of getpid(2). Bsd provides no api that returns the pid
1190  // of the launcher thread for the vm. This implementation
1191  // returns a unique pid, the pid of the launcher thread
1192  // that starts the vm 'process'.
1193
1194  // Under the NPTL, getpid() returns the same pid as the
1195  // launcher thread rather than a unique pid per thread.
1196  // Use gettid() if you want the old pre NPTL behaviour.
1197
1198  // if you are looking for the result of a call to getpid() that
1199  // returns a unique pid for the calling thread, then look at the
1200  // OSThread::thread_id() method in osThread_bsd.hpp file
1201
1202  return (int)(_initial_pid ? _initial_pid : getpid());
1203}
1204
1205// DLL functions
1206
1207#define JNI_LIB_PREFIX "lib"
1208#ifdef __APPLE__
1209  #define JNI_LIB_SUFFIX ".dylib"
1210#else
1211  #define JNI_LIB_SUFFIX ".so"
1212#endif
1213
1214const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1215
1216// This must be hard coded because it's the system's temporary
1217// directory not the java application's temp directory, ala java.io.tmpdir.
1218#ifdef __APPLE__
1219// macosx has a secure per-user temporary directory
1220char temp_path_storage[PATH_MAX];
1221const char* os::get_temp_directory() {
1222  static char *temp_path = NULL;
1223  if (temp_path == NULL) {
1224    int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1225    if (pathSize == 0 || pathSize > PATH_MAX) {
1226      strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1227    }
1228    temp_path = temp_path_storage;
1229  }
1230  return temp_path;
1231}
1232#else // __APPLE__
1233const char* os::get_temp_directory() { return "/tmp"; }
1234#endif // __APPLE__
1235
1236static bool file_exists(const char* filename) {
1237  struct stat statbuf;
1238  if (filename == NULL || strlen(filename) == 0) {
1239    return false;
1240  }
1241  return os::stat(filename, &statbuf) == 0;
1242}
1243
1244bool os::dll_build_name(char* buffer, size_t buflen,
1245                        const char* pname, const char* fname) {
1246  bool retval = false;
1247  // Copied from libhpi
1248  const size_t pnamelen = pname ? strlen(pname) : 0;
1249
1250  // Return error on buffer overflow.
1251  if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1252    return retval;
1253  }
1254
1255  if (pnamelen == 0) {
1256    snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1257    retval = true;
1258  } else if (strchr(pname, *os::path_separator()) != NULL) {
1259    int n;
1260    char** pelements = split_path(pname, &n);
1261    if (pelements == NULL) {
1262      return false;
1263    }
1264    for (int i = 0; i < n; i++) {
1265      // Really shouldn't be NULL, but check can't hurt
1266      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1267        continue; // skip the empty path values
1268      }
1269      snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1270               pelements[i], fname);
1271      if (file_exists(buffer)) {
1272        retval = true;
1273        break;
1274      }
1275    }
1276    // release the storage
1277    for (int i = 0; i < n; i++) {
1278      if (pelements[i] != NULL) {
1279        FREE_C_HEAP_ARRAY(char, pelements[i]);
1280      }
1281    }
1282    if (pelements != NULL) {
1283      FREE_C_HEAP_ARRAY(char*, pelements);
1284    }
1285  } else {
1286    snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1287    retval = true;
1288  }
1289  return retval;
1290}
1291
1292// check if addr is inside libjvm.so
1293bool os::address_is_in_vm(address addr) {
1294  static address libjvm_base_addr;
1295  Dl_info dlinfo;
1296
1297  if (libjvm_base_addr == NULL) {
1298    if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1299      libjvm_base_addr = (address)dlinfo.dli_fbase;
1300    }
1301    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1302  }
1303
1304  if (dladdr((void *)addr, &dlinfo) != 0) {
1305    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1306  }
1307
1308  return false;
1309}
1310
1311
1312#define MACH_MAXSYMLEN 256
1313
1314bool os::dll_address_to_function_name(address addr, char *buf,
1315                                      int buflen, int *offset,
1316                                      bool demangle) {
1317  // buf is not optional, but offset is optional
1318  assert(buf != NULL, "sanity check");
1319
1320  Dl_info dlinfo;
1321  char localbuf[MACH_MAXSYMLEN];
1322
1323  if (dladdr((void*)addr, &dlinfo) != 0) {
1324    // see if we have a matching symbol
1325    if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1326      if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1327        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1328      }
1329      if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1330      return true;
1331    }
1332    // no matching symbol so try for just file info
1333    if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1334      if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1335                          buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1336        return true;
1337      }
1338    }
1339
1340    // Handle non-dynamic manually:
1341    if (dlinfo.dli_fbase != NULL &&
1342        Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1343                        dlinfo.dli_fbase)) {
1344      if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1345        jio_snprintf(buf, buflen, "%s", localbuf);
1346      }
1347      return true;
1348    }
1349  }
1350  buf[0] = '\0';
1351  if (offset != NULL) *offset = -1;
1352  return false;
1353}
1354
1355// ported from solaris version
1356bool os::dll_address_to_library_name(address addr, char* buf,
1357                                     int buflen, int* offset) {
1358  // buf is not optional, but offset is optional
1359  assert(buf != NULL, "sanity check");
1360
1361  Dl_info dlinfo;
1362
1363  if (dladdr((void*)addr, &dlinfo) != 0) {
1364    if (dlinfo.dli_fname != NULL) {
1365      jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1366    }
1367    if (dlinfo.dli_fbase != NULL && offset != NULL) {
1368      *offset = addr - (address)dlinfo.dli_fbase;
1369    }
1370    return true;
1371  }
1372
1373  buf[0] = '\0';
1374  if (offset) *offset = -1;
1375  return false;
1376}
1377
1378// Loads .dll/.so and
1379// in case of error it checks if .dll/.so was built for the
1380// same architecture as Hotspot is running on
1381
1382#ifdef __APPLE__
1383void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1384#ifdef STATIC_BUILD
1385  return os::get_default_process_handle();
1386#else
1387  void * result= ::dlopen(filename, RTLD_LAZY);
1388  if (result != NULL) {
1389    // Successful loading
1390    return result;
1391  }
1392
1393  // Read system error message into ebuf
1394  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1395  ebuf[ebuflen-1]='\0';
1396
1397  return NULL;
1398#endif // STATIC_BUILD
1399}
1400#else
1401void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1402#ifdef STATIC_BUILD
1403  return os::get_default_process_handle();
1404#else
1405  void * result= ::dlopen(filename, RTLD_LAZY);
1406  if (result != NULL) {
1407    // Successful loading
1408    return result;
1409  }
1410
1411  Elf32_Ehdr elf_head;
1412
1413  // Read system error message into ebuf
1414  // It may or may not be overwritten below
1415  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1416  ebuf[ebuflen-1]='\0';
1417  int diag_msg_max_length=ebuflen-strlen(ebuf);
1418  char* diag_msg_buf=ebuf+strlen(ebuf);
1419
1420  if (diag_msg_max_length==0) {
1421    // No more space in ebuf for additional diagnostics message
1422    return NULL;
1423  }
1424
1425
1426  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1427
1428  if (file_descriptor < 0) {
1429    // Can't open library, report dlerror() message
1430    return NULL;
1431  }
1432
1433  bool failed_to_read_elf_head=
1434    (sizeof(elf_head)!=
1435     (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1436
1437  ::close(file_descriptor);
1438  if (failed_to_read_elf_head) {
1439    // file i/o error - report dlerror() msg
1440    return NULL;
1441  }
1442
1443  typedef struct {
1444    Elf32_Half  code;         // Actual value as defined in elf.h
1445    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1446    char        elf_class;    // 32 or 64 bit
1447    char        endianess;    // MSB or LSB
1448    char*       name;         // String representation
1449  } arch_t;
1450
1451  #ifndef EM_486
1452    #define EM_486          6               /* Intel 80486 */
1453  #endif
1454
1455  #ifndef EM_MIPS_RS3_LE
1456    #define EM_MIPS_RS3_LE  10              /* MIPS */
1457  #endif
1458
1459  #ifndef EM_PPC64
1460    #define EM_PPC64        21              /* PowerPC64 */
1461  #endif
1462
1463  #ifndef EM_S390
1464    #define EM_S390         22              /* IBM System/390 */
1465  #endif
1466
1467  #ifndef EM_IA_64
1468    #define EM_IA_64        50              /* HP/Intel IA-64 */
1469  #endif
1470
1471  #ifndef EM_X86_64
1472    #define EM_X86_64       62              /* AMD x86-64 */
1473  #endif
1474
1475  static const arch_t arch_array[]={
1476    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1477    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1478    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1479    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1480    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1481    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1482    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1483    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1484    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1485    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1486    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1487    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1488    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1489    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1490    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1491    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1492  };
1493
1494  #if  (defined IA32)
1495  static  Elf32_Half running_arch_code=EM_386;
1496  #elif   (defined AMD64)
1497  static  Elf32_Half running_arch_code=EM_X86_64;
1498  #elif  (defined IA64)
1499  static  Elf32_Half running_arch_code=EM_IA_64;
1500  #elif  (defined __sparc) && (defined _LP64)
1501  static  Elf32_Half running_arch_code=EM_SPARCV9;
1502  #elif  (defined __sparc) && (!defined _LP64)
1503  static  Elf32_Half running_arch_code=EM_SPARC;
1504  #elif  (defined __powerpc64__)
1505  static  Elf32_Half running_arch_code=EM_PPC64;
1506  #elif  (defined __powerpc__)
1507  static  Elf32_Half running_arch_code=EM_PPC;
1508  #elif  (defined ARM)
1509  static  Elf32_Half running_arch_code=EM_ARM;
1510  #elif  (defined S390)
1511  static  Elf32_Half running_arch_code=EM_S390;
1512  #elif  (defined ALPHA)
1513  static  Elf32_Half running_arch_code=EM_ALPHA;
1514  #elif  (defined MIPSEL)
1515  static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1516  #elif  (defined PARISC)
1517  static  Elf32_Half running_arch_code=EM_PARISC;
1518  #elif  (defined MIPS)
1519  static  Elf32_Half running_arch_code=EM_MIPS;
1520  #elif  (defined M68K)
1521  static  Elf32_Half running_arch_code=EM_68K;
1522  #else
1523    #error Method os::dll_load requires that one of following is defined:\
1524         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1525  #endif
1526
1527  // Identify compatability class for VM's architecture and library's architecture
1528  // Obtain string descriptions for architectures
1529
1530  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1531  int running_arch_index=-1;
1532
1533  for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1534    if (running_arch_code == arch_array[i].code) {
1535      running_arch_index    = i;
1536    }
1537    if (lib_arch.code == arch_array[i].code) {
1538      lib_arch.compat_class = arch_array[i].compat_class;
1539      lib_arch.name         = arch_array[i].name;
1540    }
1541  }
1542
1543  assert(running_arch_index != -1,
1544         "Didn't find running architecture code (running_arch_code) in arch_array");
1545  if (running_arch_index == -1) {
1546    // Even though running architecture detection failed
1547    // we may still continue with reporting dlerror() message
1548    return NULL;
1549  }
1550
1551  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1552    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1553    return NULL;
1554  }
1555
1556#ifndef S390
1557  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1558    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1559    return NULL;
1560  }
1561#endif // !S390
1562
1563  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1564    if (lib_arch.name!=NULL) {
1565      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1566                 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1567                 lib_arch.name, arch_array[running_arch_index].name);
1568    } else {
1569      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1570                 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1571                 lib_arch.code,
1572                 arch_array[running_arch_index].name);
1573    }
1574  }
1575
1576  return NULL;
1577#endif // STATIC_BUILD
1578}
1579#endif // !__APPLE__
1580
1581void* os::get_default_process_handle() {
1582#ifdef __APPLE__
1583  // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1584  // to avoid finding unexpected symbols on second (or later)
1585  // loads of a library.
1586  return (void*)::dlopen(NULL, RTLD_FIRST);
1587#else
1588  return (void*)::dlopen(NULL, RTLD_LAZY);
1589#endif
1590}
1591
1592// XXX: Do we need a lock around this as per Linux?
1593void* os::dll_lookup(void* handle, const char* name) {
1594  return dlsym(handle, name);
1595}
1596
1597int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1598  outputStream * out = (outputStream *) param;
1599  out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1600  return 0;
1601}
1602
1603void os::print_dll_info(outputStream *st) {
1604  st->print_cr("Dynamic libraries:");
1605  if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1606    st->print_cr("Error: Cannot print dynamic libraries.");
1607  }
1608}
1609
1610int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1611#ifdef RTLD_DI_LINKMAP
1612  Dl_info dli;
1613  void *handle;
1614  Link_map *map;
1615  Link_map *p;
1616
1617  if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1618      dli.dli_fname == NULL) {
1619    return 1;
1620  }
1621  handle = dlopen(dli.dli_fname, RTLD_LAZY);
1622  if (handle == NULL) {
1623    return 1;
1624  }
1625  dlinfo(handle, RTLD_DI_LINKMAP, &map);
1626  if (map == NULL) {
1627    dlclose(handle);
1628    return 1;
1629  }
1630
1631  while (map->l_prev != NULL)
1632    map = map->l_prev;
1633
1634  while (map != NULL) {
1635    // Value for top_address is returned as 0 since we don't have any information about module size
1636    if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1637      dlclose(handle);
1638      return 1;
1639    }
1640    map = map->l_next;
1641  }
1642
1643  dlclose(handle);
1644#elif defined(__APPLE__)
1645  for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1646    // Value for top_address is returned as 0 since we don't have any information about module size
1647    if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1648      return 1;
1649    }
1650  }
1651  return 0;
1652#else
1653  return 1;
1654#endif
1655}
1656
1657void os::get_summary_os_info(char* buf, size_t buflen) {
1658  // These buffers are small because we want this to be brief
1659  // and not use a lot of stack while generating the hs_err file.
1660  char os[100];
1661  size_t size = sizeof(os);
1662  int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1663  if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1664#ifdef __APPLE__
1665      strncpy(os, "Darwin", sizeof(os));
1666#elif __OpenBSD__
1667      strncpy(os, "OpenBSD", sizeof(os));
1668#else
1669      strncpy(os, "BSD", sizeof(os));
1670#endif
1671  }
1672
1673  char release[100];
1674  size = sizeof(release);
1675  int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1676  if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1677      // if error, leave blank
1678      strncpy(release, "", sizeof(release));
1679  }
1680  snprintf(buf, buflen, "%s %s", os, release);
1681}
1682
1683void os::print_os_info_brief(outputStream* st) {
1684  os::Posix::print_uname_info(st);
1685}
1686
1687void os::print_os_info(outputStream* st) {
1688  st->print("OS:");
1689
1690  os::Posix::print_uname_info(st);
1691
1692  os::Posix::print_rlimit_info(st);
1693
1694  os::Posix::print_load_average(st);
1695}
1696
1697void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1698  // Nothing to do for now.
1699}
1700
1701void os::get_summary_cpu_info(char* buf, size_t buflen) {
1702  unsigned int mhz;
1703  size_t size = sizeof(mhz);
1704  int mib[] = { CTL_HW, HW_CPU_FREQ };
1705  if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1706    mhz = 1;  // looks like an error but can be divided by
1707  } else {
1708    mhz /= 1000000;  // reported in millions
1709  }
1710
1711  char model[100];
1712  size = sizeof(model);
1713  int mib_model[] = { CTL_HW, HW_MODEL };
1714  if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1715    strncpy(model, cpu_arch, sizeof(model));
1716  }
1717
1718  char machine[100];
1719  size = sizeof(machine);
1720  int mib_machine[] = { CTL_HW, HW_MACHINE };
1721  if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1722      strncpy(machine, "", sizeof(machine));
1723  }
1724
1725  snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1726}
1727
1728void os::print_memory_info(outputStream* st) {
1729
1730  st->print("Memory:");
1731  st->print(" %dk page", os::vm_page_size()>>10);
1732
1733  st->print(", physical " UINT64_FORMAT "k",
1734            os::physical_memory() >> 10);
1735  st->print("(" UINT64_FORMAT "k free)",
1736            os::available_memory() >> 10);
1737  st->cr();
1738}
1739
1740static void print_signal_handler(outputStream* st, int sig,
1741                                 char* buf, size_t buflen);
1742
1743void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1744  st->print_cr("Signal Handlers:");
1745  print_signal_handler(st, SIGSEGV, buf, buflen);
1746  print_signal_handler(st, SIGBUS , buf, buflen);
1747  print_signal_handler(st, SIGFPE , buf, buflen);
1748  print_signal_handler(st, SIGPIPE, buf, buflen);
1749  print_signal_handler(st, SIGXFSZ, buf, buflen);
1750  print_signal_handler(st, SIGILL , buf, buflen);
1751  print_signal_handler(st, SR_signum, buf, buflen);
1752  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1753  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1754  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1755  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1756}
1757
1758static char saved_jvm_path[MAXPATHLEN] = {0};
1759
1760// Find the full path to the current module, libjvm
1761void os::jvm_path(char *buf, jint buflen) {
1762  // Error checking.
1763  if (buflen < MAXPATHLEN) {
1764    assert(false, "must use a large-enough buffer");
1765    buf[0] = '\0';
1766    return;
1767  }
1768  // Lazy resolve the path to current module.
1769  if (saved_jvm_path[0] != 0) {
1770    strcpy(buf, saved_jvm_path);
1771    return;
1772  }
1773
1774  char dli_fname[MAXPATHLEN];
1775  bool ret = dll_address_to_library_name(
1776                                         CAST_FROM_FN_PTR(address, os::jvm_path),
1777                                         dli_fname, sizeof(dli_fname), NULL);
1778  assert(ret, "cannot locate libjvm");
1779  char *rp = NULL;
1780  if (ret && dli_fname[0] != '\0') {
1781    rp = realpath(dli_fname, buf);
1782  }
1783  if (rp == NULL) {
1784    return;
1785  }
1786
1787  if (Arguments::sun_java_launcher_is_altjvm()) {
1788    // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1789    // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1790    // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1791    // appears at the right place in the string, then assume we are
1792    // installed in a JDK and we're done. Otherwise, check for a
1793    // JAVA_HOME environment variable and construct a path to the JVM
1794    // being overridden.
1795
1796    const char *p = buf + strlen(buf) - 1;
1797    for (int count = 0; p > buf && count < 5; ++count) {
1798      for (--p; p > buf && *p != '/'; --p)
1799        /* empty */ ;
1800    }
1801
1802    if (strncmp(p, "/jre/lib/", 9) != 0) {
1803      // Look for JAVA_HOME in the environment.
1804      char* java_home_var = ::getenv("JAVA_HOME");
1805      if (java_home_var != NULL && java_home_var[0] != 0) {
1806        char* jrelib_p;
1807        int len;
1808
1809        // Check the current module name "libjvm"
1810        p = strrchr(buf, '/');
1811        assert(strstr(p, "/libjvm") == p, "invalid library name");
1812
1813        rp = realpath(java_home_var, buf);
1814        if (rp == NULL) {
1815          return;
1816        }
1817
1818        // determine if this is a legacy image or modules image
1819        // modules image doesn't have "jre" subdirectory
1820        len = strlen(buf);
1821        assert(len < buflen, "Ran out of buffer space");
1822        jrelib_p = buf + len;
1823
1824        // Add the appropriate library subdir
1825        snprintf(jrelib_p, buflen-len, "/jre/lib");
1826        if (0 != access(buf, F_OK)) {
1827          snprintf(jrelib_p, buflen-len, "/lib");
1828        }
1829
1830        // Add the appropriate client or server subdir
1831        len = strlen(buf);
1832        jrelib_p = buf + len;
1833        snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1834        if (0 != access(buf, F_OK)) {
1835          snprintf(jrelib_p, buflen-len, "%s", "");
1836        }
1837
1838        // If the path exists within JAVA_HOME, add the JVM library name
1839        // to complete the path to JVM being overridden.  Otherwise fallback
1840        // to the path to the current library.
1841        if (0 == access(buf, F_OK)) {
1842          // Use current module name "libjvm"
1843          len = strlen(buf);
1844          snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1845        } else {
1846          // Fall back to path of current library
1847          rp = realpath(dli_fname, buf);
1848          if (rp == NULL) {
1849            return;
1850          }
1851        }
1852      }
1853    }
1854  }
1855
1856  strncpy(saved_jvm_path, buf, MAXPATHLEN);
1857  saved_jvm_path[MAXPATHLEN - 1] = '\0';
1858}
1859
1860void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1861  // no prefix required, not even "_"
1862}
1863
1864void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1865  // no suffix required
1866}
1867
1868////////////////////////////////////////////////////////////////////////////////
1869// sun.misc.Signal support
1870
1871static volatile jint sigint_count = 0;
1872
1873static void UserHandler(int sig, void *siginfo, void *context) {
1874  // 4511530 - sem_post is serialized and handled by the manager thread. When
1875  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1876  // don't want to flood the manager thread with sem_post requests.
1877  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1878    return;
1879  }
1880
1881  // Ctrl-C is pressed during error reporting, likely because the error
1882  // handler fails to abort. Let VM die immediately.
1883  if (sig == SIGINT && is_error_reported()) {
1884    os::die();
1885  }
1886
1887  os::signal_notify(sig);
1888}
1889
1890void* os::user_handler() {
1891  return CAST_FROM_FN_PTR(void*, UserHandler);
1892}
1893
1894extern "C" {
1895  typedef void (*sa_handler_t)(int);
1896  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1897}
1898
1899void* os::signal(int signal_number, void* handler) {
1900  struct sigaction sigAct, oldSigAct;
1901
1902  sigfillset(&(sigAct.sa_mask));
1903  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1904  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1905
1906  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1907    // -1 means registration failed
1908    return (void *)-1;
1909  }
1910
1911  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1912}
1913
1914void os::signal_raise(int signal_number) {
1915  ::raise(signal_number);
1916}
1917
1918// The following code is moved from os.cpp for making this
1919// code platform specific, which it is by its very nature.
1920
1921// Will be modified when max signal is changed to be dynamic
1922int os::sigexitnum_pd() {
1923  return NSIG;
1924}
1925
1926// a counter for each possible signal value
1927static volatile jint pending_signals[NSIG+1] = { 0 };
1928
1929// Bsd(POSIX) specific hand shaking semaphore.
1930#ifdef __APPLE__
1931typedef semaphore_t os_semaphore_t;
1932
1933  #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1934  #define SEM_WAIT(sem)           semaphore_wait(sem)
1935  #define SEM_POST(sem)           semaphore_signal(sem)
1936  #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1937#else
1938typedef sem_t os_semaphore_t;
1939
1940  #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1941  #define SEM_WAIT(sem)           sem_wait(&sem)
1942  #define SEM_POST(sem)           sem_post(&sem)
1943  #define SEM_DESTROY(sem)        sem_destroy(&sem)
1944#endif
1945
1946#ifdef __APPLE__
1947// OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1948
1949static const char* sem_init_strerror(kern_return_t value) {
1950  switch (value) {
1951    case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1952    case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1953    default:                     return "Unknown";
1954  }
1955}
1956
1957OSXSemaphore::OSXSemaphore(uint value) {
1958  kern_return_t ret = SEM_INIT(_semaphore, value);
1959
1960  guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1961}
1962
1963OSXSemaphore::~OSXSemaphore() {
1964  SEM_DESTROY(_semaphore);
1965}
1966
1967void OSXSemaphore::signal(uint count) {
1968  for (uint i = 0; i < count; i++) {
1969    kern_return_t ret = SEM_POST(_semaphore);
1970
1971    assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1972  }
1973}
1974
1975void OSXSemaphore::wait() {
1976  kern_return_t ret;
1977  while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1978    // Semaphore was interrupted. Retry.
1979  }
1980  assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1981}
1982
1983jlong OSXSemaphore::currenttime() {
1984  struct timeval tv;
1985  gettimeofday(&tv, NULL);
1986  return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1987}
1988
1989bool OSXSemaphore::trywait() {
1990  return timedwait(0, 0);
1991}
1992
1993bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1994  kern_return_t kr = KERN_ABORTED;
1995  mach_timespec_t waitspec;
1996  waitspec.tv_sec = sec;
1997  waitspec.tv_nsec = nsec;
1998
1999  jlong starttime = currenttime();
2000
2001  kr = semaphore_timedwait(_semaphore, waitspec);
2002  while (kr == KERN_ABORTED) {
2003    jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2004
2005    jlong current = currenttime();
2006    jlong passedtime = current - starttime;
2007
2008    if (passedtime >= totalwait) {
2009      waitspec.tv_sec = 0;
2010      waitspec.tv_nsec = 0;
2011    } else {
2012      jlong waittime = totalwait - (current - starttime);
2013      waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2014      waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2015    }
2016
2017    kr = semaphore_timedwait(_semaphore, waitspec);
2018  }
2019
2020  return kr == KERN_SUCCESS;
2021}
2022
2023#else
2024// Use POSIX implementation of semaphores.
2025
2026struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2027  struct timespec ts;
2028  unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2029
2030  return ts;
2031}
2032
2033#endif // __APPLE__
2034
2035static os_semaphore_t sig_sem;
2036
2037#ifdef __APPLE__
2038static OSXSemaphore sr_semaphore;
2039#else
2040static PosixSemaphore sr_semaphore;
2041#endif
2042
2043void os::signal_init_pd() {
2044  // Initialize signal structures
2045  ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2046
2047  // Initialize signal semaphore
2048  ::SEM_INIT(sig_sem, 0);
2049}
2050
2051void os::signal_notify(int sig) {
2052  Atomic::inc(&pending_signals[sig]);
2053  ::SEM_POST(sig_sem);
2054}
2055
2056static int check_pending_signals(bool wait) {
2057  Atomic::store(0, &sigint_count);
2058  for (;;) {
2059    for (int i = 0; i < NSIG + 1; i++) {
2060      jint n = pending_signals[i];
2061      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2062        return i;
2063      }
2064    }
2065    if (!wait) {
2066      return -1;
2067    }
2068    JavaThread *thread = JavaThread::current();
2069    ThreadBlockInVM tbivm(thread);
2070
2071    bool threadIsSuspended;
2072    do {
2073      thread->set_suspend_equivalent();
2074      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2075      ::SEM_WAIT(sig_sem);
2076
2077      // were we externally suspended while we were waiting?
2078      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2079      if (threadIsSuspended) {
2080        // The semaphore has been incremented, but while we were waiting
2081        // another thread suspended us. We don't want to continue running
2082        // while suspended because that would surprise the thread that
2083        // suspended us.
2084        ::SEM_POST(sig_sem);
2085
2086        thread->java_suspend_self();
2087      }
2088    } while (threadIsSuspended);
2089  }
2090}
2091
2092int os::signal_lookup() {
2093  return check_pending_signals(false);
2094}
2095
2096int os::signal_wait() {
2097  return check_pending_signals(true);
2098}
2099
2100////////////////////////////////////////////////////////////////////////////////
2101// Virtual Memory
2102
2103int os::vm_page_size() {
2104  // Seems redundant as all get out
2105  assert(os::Bsd::page_size() != -1, "must call os::init");
2106  return os::Bsd::page_size();
2107}
2108
2109// Solaris allocates memory by pages.
2110int os::vm_allocation_granularity() {
2111  assert(os::Bsd::page_size() != -1, "must call os::init");
2112  return os::Bsd::page_size();
2113}
2114
2115// Rationale behind this function:
2116//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2117//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2118//  samples for JITted code. Here we create private executable mapping over the code cache
2119//  and then we can use standard (well, almost, as mapping can change) way to provide
2120//  info for the reporting script by storing timestamp and location of symbol
2121void bsd_wrap_code(char* base, size_t size) {
2122  static volatile jint cnt = 0;
2123
2124  if (!UseOprofile) {
2125    return;
2126  }
2127
2128  char buf[PATH_MAX + 1];
2129  int num = Atomic::add(1, &cnt);
2130
2131  snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2132           os::get_temp_directory(), os::current_process_id(), num);
2133  unlink(buf);
2134
2135  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2136
2137  if (fd != -1) {
2138    off_t rv = ::lseek(fd, size-2, SEEK_SET);
2139    if (rv != (off_t)-1) {
2140      if (::write(fd, "", 1) == 1) {
2141        mmap(base, size,
2142             PROT_READ|PROT_WRITE|PROT_EXEC,
2143             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2144      }
2145    }
2146    ::close(fd);
2147    unlink(buf);
2148  }
2149}
2150
2151static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2152                                    int err) {
2153  warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2154          ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2155          os::errno_name(err), err);
2156}
2157
2158// NOTE: Bsd kernel does not really reserve the pages for us.
2159//       All it does is to check if there are enough free pages
2160//       left at the time of mmap(). This could be a potential
2161//       problem.
2162bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2163  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2164#ifdef __OpenBSD__
2165  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2166  if (::mprotect(addr, size, prot) == 0) {
2167    return true;
2168  }
2169#else
2170  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2171                                     MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2172  if (res != (uintptr_t) MAP_FAILED) {
2173    return true;
2174  }
2175#endif
2176
2177  // Warn about any commit errors we see in non-product builds just
2178  // in case mmap() doesn't work as described on the man page.
2179  NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2180
2181  return false;
2182}
2183
2184bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2185                          bool exec) {
2186  // alignment_hint is ignored on this OS
2187  return pd_commit_memory(addr, size, exec);
2188}
2189
2190void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2191                                  const char* mesg) {
2192  assert(mesg != NULL, "mesg must be specified");
2193  if (!pd_commit_memory(addr, size, exec)) {
2194    // add extra info in product mode for vm_exit_out_of_memory():
2195    PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2196    vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2197  }
2198}
2199
2200void os::pd_commit_memory_or_exit(char* addr, size_t size,
2201                                  size_t alignment_hint, bool exec,
2202                                  const char* mesg) {
2203  // alignment_hint is ignored on this OS
2204  pd_commit_memory_or_exit(addr, size, exec, mesg);
2205}
2206
2207void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2208}
2209
2210void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2211  ::madvise(addr, bytes, MADV_DONTNEED);
2212}
2213
2214void os::numa_make_global(char *addr, size_t bytes) {
2215}
2216
2217void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2218}
2219
2220bool os::numa_topology_changed()   { return false; }
2221
2222size_t os::numa_get_groups_num() {
2223  return 1;
2224}
2225
2226int os::numa_get_group_id() {
2227  return 0;
2228}
2229
2230size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2231  if (size > 0) {
2232    ids[0] = 0;
2233    return 1;
2234  }
2235  return 0;
2236}
2237
2238bool os::get_page_info(char *start, page_info* info) {
2239  return false;
2240}
2241
2242char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2243  return end;
2244}
2245
2246
2247bool os::pd_uncommit_memory(char* addr, size_t size) {
2248#ifdef __OpenBSD__
2249  // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2250  return ::mprotect(addr, size, PROT_NONE) == 0;
2251#else
2252  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2253                                     MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2254  return res  != (uintptr_t) MAP_FAILED;
2255#endif
2256}
2257
2258bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2259  return os::commit_memory(addr, size, !ExecMem);
2260}
2261
2262// If this is a growable mapping, remove the guard pages entirely by
2263// munmap()ping them.  If not, just call uncommit_memory().
2264bool os::remove_stack_guard_pages(char* addr, size_t size) {
2265  return os::uncommit_memory(addr, size);
2266}
2267
2268// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2269// at 'requested_addr'. If there are existing memory mappings at the same
2270// location, however, they will be overwritten. If 'fixed' is false,
2271// 'requested_addr' is only treated as a hint, the return value may or
2272// may not start from the requested address. Unlike Bsd mmap(), this
2273// function returns NULL to indicate failure.
2274static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2275  char * addr;
2276  int flags;
2277
2278  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2279  if (fixed) {
2280    assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2281    flags |= MAP_FIXED;
2282  }
2283
2284  // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2285  // touch an uncommitted page. Otherwise, the read/write might
2286  // succeed if we have enough swap space to back the physical page.
2287  addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2288                       flags, -1, 0);
2289
2290  return addr == MAP_FAILED ? NULL : addr;
2291}
2292
2293static int anon_munmap(char * addr, size_t size) {
2294  return ::munmap(addr, size) == 0;
2295}
2296
2297char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2298                            size_t alignment_hint) {
2299  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2300}
2301
2302bool os::pd_release_memory(char* addr, size_t size) {
2303  return anon_munmap(addr, size);
2304}
2305
2306static bool bsd_mprotect(char* addr, size_t size, int prot) {
2307  // Bsd wants the mprotect address argument to be page aligned.
2308  char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2309
2310  // According to SUSv3, mprotect() should only be used with mappings
2311  // established by mmap(), and mmap() always maps whole pages. Unaligned
2312  // 'addr' likely indicates problem in the VM (e.g. trying to change
2313  // protection of malloc'ed or statically allocated memory). Check the
2314  // caller if you hit this assert.
2315  assert(addr == bottom, "sanity check");
2316
2317  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2318  return ::mprotect(bottom, size, prot) == 0;
2319}
2320
2321// Set protections specified
2322bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2323                        bool is_committed) {
2324  unsigned int p = 0;
2325  switch (prot) {
2326  case MEM_PROT_NONE: p = PROT_NONE; break;
2327  case MEM_PROT_READ: p = PROT_READ; break;
2328  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2329  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2330  default:
2331    ShouldNotReachHere();
2332  }
2333  // is_committed is unused.
2334  return bsd_mprotect(addr, bytes, p);
2335}
2336
2337bool os::guard_memory(char* addr, size_t size) {
2338  return bsd_mprotect(addr, size, PROT_NONE);
2339}
2340
2341bool os::unguard_memory(char* addr, size_t size) {
2342  return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2343}
2344
2345bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2346  return false;
2347}
2348
2349// Large page support
2350
2351static size_t _large_page_size = 0;
2352
2353void os::large_page_init() {
2354}
2355
2356
2357char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2358  fatal("This code is not used or maintained.");
2359
2360  // "exec" is passed in but not used.  Creating the shared image for
2361  // the code cache doesn't have an SHM_X executable permission to check.
2362  assert(UseLargePages && UseSHM, "only for SHM large pages");
2363
2364  key_t key = IPC_PRIVATE;
2365  char *addr;
2366
2367  bool warn_on_failure = UseLargePages &&
2368                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2369                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2370
2371  // Create a large shared memory region to attach to based on size.
2372  // Currently, size is the total size of the heap
2373  int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2374  if (shmid == -1) {
2375    // Possible reasons for shmget failure:
2376    // 1. shmmax is too small for Java heap.
2377    //    > check shmmax value: cat /proc/sys/kernel/shmmax
2378    //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2379    // 2. not enough large page memory.
2380    //    > check available large pages: cat /proc/meminfo
2381    //    > increase amount of large pages:
2382    //          echo new_value > /proc/sys/vm/nr_hugepages
2383    //      Note 1: different Bsd may use different name for this property,
2384    //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2385    //      Note 2: it's possible there's enough physical memory available but
2386    //            they are so fragmented after a long run that they can't
2387    //            coalesce into large pages. Try to reserve large pages when
2388    //            the system is still "fresh".
2389    if (warn_on_failure) {
2390      warning("Failed to reserve shared memory (errno = %d).", errno);
2391    }
2392    return NULL;
2393  }
2394
2395  // attach to the region
2396  addr = (char*)shmat(shmid, req_addr, 0);
2397  int err = errno;
2398
2399  // Remove shmid. If shmat() is successful, the actual shared memory segment
2400  // will be deleted when it's detached by shmdt() or when the process
2401  // terminates. If shmat() is not successful this will remove the shared
2402  // segment immediately.
2403  shmctl(shmid, IPC_RMID, NULL);
2404
2405  if ((intptr_t)addr == -1) {
2406    if (warn_on_failure) {
2407      warning("Failed to attach shared memory (errno = %d).", err);
2408    }
2409    return NULL;
2410  }
2411
2412  // The memory is committed
2413  MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2414
2415  return addr;
2416}
2417
2418bool os::release_memory_special(char* base, size_t bytes) {
2419  if (MemTracker::tracking_level() > NMT_minimal) {
2420    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2421    // detaching the SHM segment will also delete it, see reserve_memory_special()
2422    int rslt = shmdt(base);
2423    if (rslt == 0) {
2424      tkr.record((address)base, bytes);
2425      return true;
2426    } else {
2427      return false;
2428    }
2429  } else {
2430    return shmdt(base) == 0;
2431  }
2432}
2433
2434size_t os::large_page_size() {
2435  return _large_page_size;
2436}
2437
2438// HugeTLBFS allows application to commit large page memory on demand;
2439// with SysV SHM the entire memory region must be allocated as shared
2440// memory.
2441bool os::can_commit_large_page_memory() {
2442  return UseHugeTLBFS;
2443}
2444
2445bool os::can_execute_large_page_memory() {
2446  return UseHugeTLBFS;
2447}
2448
2449// Reserve memory at an arbitrary address, only if that area is
2450// available (and not reserved for something else).
2451
2452char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2453  const int max_tries = 10;
2454  char* base[max_tries];
2455  size_t size[max_tries];
2456  const size_t gap = 0x000000;
2457
2458  // Assert only that the size is a multiple of the page size, since
2459  // that's all that mmap requires, and since that's all we really know
2460  // about at this low abstraction level.  If we need higher alignment,
2461  // we can either pass an alignment to this method or verify alignment
2462  // in one of the methods further up the call chain.  See bug 5044738.
2463  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2464
2465  // Repeatedly allocate blocks until the block is allocated at the
2466  // right spot.
2467
2468  // Bsd mmap allows caller to pass an address as hint; give it a try first,
2469  // if kernel honors the hint then we can return immediately.
2470  char * addr = anon_mmap(requested_addr, bytes, false);
2471  if (addr == requested_addr) {
2472    return requested_addr;
2473  }
2474
2475  if (addr != NULL) {
2476    // mmap() is successful but it fails to reserve at the requested address
2477    anon_munmap(addr, bytes);
2478  }
2479
2480  int i;
2481  for (i = 0; i < max_tries; ++i) {
2482    base[i] = reserve_memory(bytes);
2483
2484    if (base[i] != NULL) {
2485      // Is this the block we wanted?
2486      if (base[i] == requested_addr) {
2487        size[i] = bytes;
2488        break;
2489      }
2490
2491      // Does this overlap the block we wanted? Give back the overlapped
2492      // parts and try again.
2493
2494      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2495      if (top_overlap >= 0 && top_overlap < bytes) {
2496        unmap_memory(base[i], top_overlap);
2497        base[i] += top_overlap;
2498        size[i] = bytes - top_overlap;
2499      } else {
2500        size_t bottom_overlap = base[i] + bytes - requested_addr;
2501        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2502          unmap_memory(requested_addr, bottom_overlap);
2503          size[i] = bytes - bottom_overlap;
2504        } else {
2505          size[i] = bytes;
2506        }
2507      }
2508    }
2509  }
2510
2511  // Give back the unused reserved pieces.
2512
2513  for (int j = 0; j < i; ++j) {
2514    if (base[j] != NULL) {
2515      unmap_memory(base[j], size[j]);
2516    }
2517  }
2518
2519  if (i < max_tries) {
2520    return requested_addr;
2521  } else {
2522    return NULL;
2523  }
2524}
2525
2526size_t os::read(int fd, void *buf, unsigned int nBytes) {
2527  RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2528}
2529
2530size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2531  RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2532}
2533
2534void os::naked_short_sleep(jlong ms) {
2535  struct timespec req;
2536
2537  assert(ms < 1000, "Un-interruptable sleep, short time use only");
2538  req.tv_sec = 0;
2539  if (ms > 0) {
2540    req.tv_nsec = (ms % 1000) * 1000000;
2541  } else {
2542    req.tv_nsec = 1;
2543  }
2544
2545  nanosleep(&req, NULL);
2546
2547  return;
2548}
2549
2550// Sleep forever; naked call to OS-specific sleep; use with CAUTION
2551void os::infinite_sleep() {
2552  while (true) {    // sleep forever ...
2553    ::sleep(100);   // ... 100 seconds at a time
2554  }
2555}
2556
2557// Used to convert frequent JVM_Yield() to nops
2558bool os::dont_yield() {
2559  return DontYieldALot;
2560}
2561
2562void os::naked_yield() {
2563  sched_yield();
2564}
2565
2566////////////////////////////////////////////////////////////////////////////////
2567// thread priority support
2568
2569// Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2570// only supports dynamic priority, static priority must be zero. For real-time
2571// applications, Bsd supports SCHED_RR which allows static priority (1-99).
2572// However, for large multi-threaded applications, SCHED_RR is not only slower
2573// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2574// of 5 runs - Sep 2005).
2575//
2576// The following code actually changes the niceness of kernel-thread/LWP. It
2577// has an assumption that setpriority() only modifies one kernel-thread/LWP,
2578// not the entire user process, and user level threads are 1:1 mapped to kernel
2579// threads. It has always been the case, but could change in the future. For
2580// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2581// It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2582
2583#if !defined(__APPLE__)
2584int os::java_to_os_priority[CriticalPriority + 1] = {
2585  19,              // 0 Entry should never be used
2586
2587   0,              // 1 MinPriority
2588   3,              // 2
2589   6,              // 3
2590
2591  10,              // 4
2592  15,              // 5 NormPriority
2593  18,              // 6
2594
2595  21,              // 7
2596  25,              // 8
2597  28,              // 9 NearMaxPriority
2598
2599  31,              // 10 MaxPriority
2600
2601  31               // 11 CriticalPriority
2602};
2603#else
2604// Using Mach high-level priority assignments
2605int os::java_to_os_priority[CriticalPriority + 1] = {
2606   0,              // 0 Entry should never be used (MINPRI_USER)
2607
2608  27,              // 1 MinPriority
2609  28,              // 2
2610  29,              // 3
2611
2612  30,              // 4
2613  31,              // 5 NormPriority (BASEPRI_DEFAULT)
2614  32,              // 6
2615
2616  33,              // 7
2617  34,              // 8
2618  35,              // 9 NearMaxPriority
2619
2620  36,              // 10 MaxPriority
2621
2622  36               // 11 CriticalPriority
2623};
2624#endif
2625
2626static int prio_init() {
2627  if (ThreadPriorityPolicy == 1) {
2628    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2629    // if effective uid is not root. Perhaps, a more elegant way of doing
2630    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2631    if (geteuid() != 0) {
2632      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2633        warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2634      }
2635      ThreadPriorityPolicy = 0;
2636    }
2637  }
2638  if (UseCriticalJavaThreadPriority) {
2639    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2640  }
2641  return 0;
2642}
2643
2644OSReturn os::set_native_priority(Thread* thread, int newpri) {
2645  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2646
2647#ifdef __OpenBSD__
2648  // OpenBSD pthread_setprio starves low priority threads
2649  return OS_OK;
2650#elif defined(__FreeBSD__)
2651  int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2652#elif defined(__APPLE__) || defined(__NetBSD__)
2653  struct sched_param sp;
2654  int policy;
2655  pthread_t self = pthread_self();
2656
2657  if (pthread_getschedparam(self, &policy, &sp) != 0) {
2658    return OS_ERR;
2659  }
2660
2661  sp.sched_priority = newpri;
2662  if (pthread_setschedparam(self, policy, &sp) != 0) {
2663    return OS_ERR;
2664  }
2665
2666  return OS_OK;
2667#else
2668  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2669  return (ret == 0) ? OS_OK : OS_ERR;
2670#endif
2671}
2672
2673OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2674  if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2675    *priority_ptr = java_to_os_priority[NormPriority];
2676    return OS_OK;
2677  }
2678
2679  errno = 0;
2680#if defined(__OpenBSD__) || defined(__FreeBSD__)
2681  *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2682#elif defined(__APPLE__) || defined(__NetBSD__)
2683  int policy;
2684  struct sched_param sp;
2685
2686  pthread_getschedparam(pthread_self(), &policy, &sp);
2687  *priority_ptr = sp.sched_priority;
2688#else
2689  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2690#endif
2691  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2692}
2693
2694// Hint to the underlying OS that a task switch would not be good.
2695// Void return because it's a hint and can fail.
2696void os::hint_no_preempt() {}
2697
2698////////////////////////////////////////////////////////////////////////////////
2699// suspend/resume support
2700
2701//  the low-level signal-based suspend/resume support is a remnant from the
2702//  old VM-suspension that used to be for java-suspension, safepoints etc,
2703//  within hotspot. Now there is a single use-case for this:
2704//    - calling get_thread_pc() on the VMThread by the flat-profiler task
2705//      that runs in the watcher thread.
2706//  The remaining code is greatly simplified from the more general suspension
2707//  code that used to be used.
2708//
2709//  The protocol is quite simple:
2710//  - suspend:
2711//      - sends a signal to the target thread
2712//      - polls the suspend state of the osthread using a yield loop
2713//      - target thread signal handler (SR_handler) sets suspend state
2714//        and blocks in sigsuspend until continued
2715//  - resume:
2716//      - sets target osthread state to continue
2717//      - sends signal to end the sigsuspend loop in the SR_handler
2718//
2719//  Note that the SR_lock plays no role in this suspend/resume protocol,
2720//  but is checked for NULL in SR_handler as a thread termination indicator.
2721
2722static void resume_clear_context(OSThread *osthread) {
2723  osthread->set_ucontext(NULL);
2724  osthread->set_siginfo(NULL);
2725}
2726
2727static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2728  osthread->set_ucontext(context);
2729  osthread->set_siginfo(siginfo);
2730}
2731
2732// Handler function invoked when a thread's execution is suspended or
2733// resumed. We have to be careful that only async-safe functions are
2734// called here (Note: most pthread functions are not async safe and
2735// should be avoided.)
2736//
2737// Note: sigwait() is a more natural fit than sigsuspend() from an
2738// interface point of view, but sigwait() prevents the signal hander
2739// from being run. libpthread would get very confused by not having
2740// its signal handlers run and prevents sigwait()'s use with the
2741// mutex granting granting signal.
2742//
2743// Currently only ever called on the VMThread or JavaThread
2744//
2745static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2746  // Save and restore errno to avoid confusing native code with EINTR
2747  // after sigsuspend.
2748  int old_errno = errno;
2749
2750  Thread* thread = Thread::current_or_null_safe();
2751  assert(thread != NULL, "Missing current thread in SR_handler");
2752
2753  // On some systems we have seen signal delivery get "stuck" until the signal
2754  // mask is changed as part of thread termination. Check that the current thread
2755  // has not already terminated (via SR_lock()) - else the following assertion
2756  // will fail because the thread is no longer a JavaThread as the ~JavaThread
2757  // destructor has completed.
2758
2759  if (thread->SR_lock() == NULL) {
2760    return;
2761  }
2762
2763  assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2764
2765  OSThread* osthread = thread->osthread();
2766
2767  os::SuspendResume::State current = osthread->sr.state();
2768  if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2769    suspend_save_context(osthread, siginfo, context);
2770
2771    // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2772    os::SuspendResume::State state = osthread->sr.suspended();
2773    if (state == os::SuspendResume::SR_SUSPENDED) {
2774      sigset_t suspend_set;  // signals for sigsuspend()
2775
2776      // get current set of blocked signals and unblock resume signal
2777      pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2778      sigdelset(&suspend_set, SR_signum);
2779
2780      sr_semaphore.signal();
2781      // wait here until we are resumed
2782      while (1) {
2783        sigsuspend(&suspend_set);
2784
2785        os::SuspendResume::State result = osthread->sr.running();
2786        if (result == os::SuspendResume::SR_RUNNING) {
2787          sr_semaphore.signal();
2788          break;
2789        } else if (result != os::SuspendResume::SR_SUSPENDED) {
2790          ShouldNotReachHere();
2791        }
2792      }
2793
2794    } else if (state == os::SuspendResume::SR_RUNNING) {
2795      // request was cancelled, continue
2796    } else {
2797      ShouldNotReachHere();
2798    }
2799
2800    resume_clear_context(osthread);
2801  } else if (current == os::SuspendResume::SR_RUNNING) {
2802    // request was cancelled, continue
2803  } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2804    // ignore
2805  } else {
2806    // ignore
2807  }
2808
2809  errno = old_errno;
2810}
2811
2812
2813static int SR_initialize() {
2814  struct sigaction act;
2815  char *s;
2816  // Get signal number to use for suspend/resume
2817  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2818    int sig = ::strtol(s, 0, 10);
2819    if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2820        sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2821      SR_signum = sig;
2822    } else {
2823      warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2824              sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2825    }
2826  }
2827
2828  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2829         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2830
2831  sigemptyset(&SR_sigset);
2832  sigaddset(&SR_sigset, SR_signum);
2833
2834  // Set up signal handler for suspend/resume
2835  act.sa_flags = SA_RESTART|SA_SIGINFO;
2836  act.sa_handler = (void (*)(int)) SR_handler;
2837
2838  // SR_signum is blocked by default.
2839  // 4528190 - We also need to block pthread restart signal (32 on all
2840  // supported Bsd platforms). Note that BsdThreads need to block
2841  // this signal for all threads to work properly. So we don't have
2842  // to use hard-coded signal number when setting up the mask.
2843  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2844
2845  if (sigaction(SR_signum, &act, 0) == -1) {
2846    return -1;
2847  }
2848
2849  // Save signal flag
2850  os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2851  return 0;
2852}
2853
2854static int sr_notify(OSThread* osthread) {
2855  int status = pthread_kill(osthread->pthread_id(), SR_signum);
2856  assert_status(status == 0, status, "pthread_kill");
2857  return status;
2858}
2859
2860// "Randomly" selected value for how long we want to spin
2861// before bailing out on suspending a thread, also how often
2862// we send a signal to a thread we want to resume
2863static const int RANDOMLY_LARGE_INTEGER = 1000000;
2864static const int RANDOMLY_LARGE_INTEGER2 = 100;
2865
2866// returns true on success and false on error - really an error is fatal
2867// but this seems the normal response to library errors
2868static bool do_suspend(OSThread* osthread) {
2869  assert(osthread->sr.is_running(), "thread should be running");
2870  assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2871
2872  // mark as suspended and send signal
2873  if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2874    // failed to switch, state wasn't running?
2875    ShouldNotReachHere();
2876    return false;
2877  }
2878
2879  if (sr_notify(osthread) != 0) {
2880    ShouldNotReachHere();
2881  }
2882
2883  // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2884  while (true) {
2885    if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2886      break;
2887    } else {
2888      // timeout
2889      os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2890      if (cancelled == os::SuspendResume::SR_RUNNING) {
2891        return false;
2892      } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2893        // make sure that we consume the signal on the semaphore as well
2894        sr_semaphore.wait();
2895        break;
2896      } else {
2897        ShouldNotReachHere();
2898        return false;
2899      }
2900    }
2901  }
2902
2903  guarantee(osthread->sr.is_suspended(), "Must be suspended");
2904  return true;
2905}
2906
2907static void do_resume(OSThread* osthread) {
2908  assert(osthread->sr.is_suspended(), "thread should be suspended");
2909  assert(!sr_semaphore.trywait(), "invalid semaphore state");
2910
2911  if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2912    // failed to switch to WAKEUP_REQUEST
2913    ShouldNotReachHere();
2914    return;
2915  }
2916
2917  while (true) {
2918    if (sr_notify(osthread) == 0) {
2919      if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2920        if (osthread->sr.is_running()) {
2921          return;
2922        }
2923      }
2924    } else {
2925      ShouldNotReachHere();
2926    }
2927  }
2928
2929  guarantee(osthread->sr.is_running(), "Must be running!");
2930}
2931
2932///////////////////////////////////////////////////////////////////////////////////
2933// signal handling (except suspend/resume)
2934
2935// This routine may be used by user applications as a "hook" to catch signals.
2936// The user-defined signal handler must pass unrecognized signals to this
2937// routine, and if it returns true (non-zero), then the signal handler must
2938// return immediately.  If the flag "abort_if_unrecognized" is true, then this
2939// routine will never retun false (zero), but instead will execute a VM panic
2940// routine kill the process.
2941//
2942// If this routine returns false, it is OK to call it again.  This allows
2943// the user-defined signal handler to perform checks either before or after
2944// the VM performs its own checks.  Naturally, the user code would be making
2945// a serious error if it tried to handle an exception (such as a null check
2946// or breakpoint) that the VM was generating for its own correct operation.
2947//
2948// This routine may recognize any of the following kinds of signals:
2949//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2950// It should be consulted by handlers for any of those signals.
2951//
2952// The caller of this routine must pass in the three arguments supplied
2953// to the function referred to in the "sa_sigaction" (not the "sa_handler")
2954// field of the structure passed to sigaction().  This routine assumes that
2955// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2956//
2957// Note that the VM will print warnings if it detects conflicting signal
2958// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2959//
2960extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2961                                               void* ucontext,
2962                                               int abort_if_unrecognized);
2963
2964void signalHandler(int sig, siginfo_t* info, void* uc) {
2965  assert(info != NULL && uc != NULL, "it must be old kernel");
2966  int orig_errno = errno;  // Preserve errno value over signal handler.
2967  JVM_handle_bsd_signal(sig, info, uc, true);
2968  errno = orig_errno;
2969}
2970
2971
2972// This boolean allows users to forward their own non-matching signals
2973// to JVM_handle_bsd_signal, harmlessly.
2974bool os::Bsd::signal_handlers_are_installed = false;
2975
2976// For signal-chaining
2977struct sigaction sigact[NSIG];
2978uint32_t sigs = 0;
2979#if (32 < NSIG-1)
2980#error "Not all signals can be encoded in sigs. Adapt its type!"
2981#endif
2982bool os::Bsd::libjsig_is_loaded = false;
2983typedef struct sigaction *(*get_signal_t)(int);
2984get_signal_t os::Bsd::get_signal_action = NULL;
2985
2986struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2987  struct sigaction *actp = NULL;
2988
2989  if (libjsig_is_loaded) {
2990    // Retrieve the old signal handler from libjsig
2991    actp = (*get_signal_action)(sig);
2992  }
2993  if (actp == NULL) {
2994    // Retrieve the preinstalled signal handler from jvm
2995    actp = get_preinstalled_handler(sig);
2996  }
2997
2998  return actp;
2999}
3000
3001static bool call_chained_handler(struct sigaction *actp, int sig,
3002                                 siginfo_t *siginfo, void *context) {
3003  // Call the old signal handler
3004  if (actp->sa_handler == SIG_DFL) {
3005    // It's more reasonable to let jvm treat it as an unexpected exception
3006    // instead of taking the default action.
3007    return false;
3008  } else if (actp->sa_handler != SIG_IGN) {
3009    if ((actp->sa_flags & SA_NODEFER) == 0) {
3010      // automaticlly block the signal
3011      sigaddset(&(actp->sa_mask), sig);
3012    }
3013
3014    sa_handler_t hand;
3015    sa_sigaction_t sa;
3016    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3017    // retrieve the chained handler
3018    if (siginfo_flag_set) {
3019      sa = actp->sa_sigaction;
3020    } else {
3021      hand = actp->sa_handler;
3022    }
3023
3024    if ((actp->sa_flags & SA_RESETHAND) != 0) {
3025      actp->sa_handler = SIG_DFL;
3026    }
3027
3028    // try to honor the signal mask
3029    sigset_t oset;
3030    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3031
3032    // call into the chained handler
3033    if (siginfo_flag_set) {
3034      (*sa)(sig, siginfo, context);
3035    } else {
3036      (*hand)(sig);
3037    }
3038
3039    // restore the signal mask
3040    pthread_sigmask(SIG_SETMASK, &oset, 0);
3041  }
3042  // Tell jvm's signal handler the signal is taken care of.
3043  return true;
3044}
3045
3046bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3047  bool chained = false;
3048  // signal-chaining
3049  if (UseSignalChaining) {
3050    struct sigaction *actp = get_chained_signal_action(sig);
3051    if (actp != NULL) {
3052      chained = call_chained_handler(actp, sig, siginfo, context);
3053    }
3054  }
3055  return chained;
3056}
3057
3058struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3059  if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3060    return &sigact[sig];
3061  }
3062  return NULL;
3063}
3064
3065void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3066  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3067  sigact[sig] = oldAct;
3068  sigs |= (uint32_t)1 << (sig-1);
3069}
3070
3071// for diagnostic
3072int sigflags[NSIG];
3073
3074int os::Bsd::get_our_sigflags(int sig) {
3075  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3076  return sigflags[sig];
3077}
3078
3079void os::Bsd::set_our_sigflags(int sig, int flags) {
3080  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3081  if (sig > 0 && sig < NSIG) {
3082    sigflags[sig] = flags;
3083  }
3084}
3085
3086void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3087  // Check for overwrite.
3088  struct sigaction oldAct;
3089  sigaction(sig, (struct sigaction*)NULL, &oldAct);
3090
3091  void* oldhand = oldAct.sa_sigaction
3092                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3093                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3094  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3095      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3096      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3097    if (AllowUserSignalHandlers || !set_installed) {
3098      // Do not overwrite; user takes responsibility to forward to us.
3099      return;
3100    } else if (UseSignalChaining) {
3101      // save the old handler in jvm
3102      save_preinstalled_handler(sig, oldAct);
3103      // libjsig also interposes the sigaction() call below and saves the
3104      // old sigaction on it own.
3105    } else {
3106      fatal("Encountered unexpected pre-existing sigaction handler "
3107            "%#lx for signal %d.", (long)oldhand, sig);
3108    }
3109  }
3110
3111  struct sigaction sigAct;
3112  sigfillset(&(sigAct.sa_mask));
3113  sigAct.sa_handler = SIG_DFL;
3114  if (!set_installed) {
3115    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3116  } else {
3117    sigAct.sa_sigaction = signalHandler;
3118    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3119  }
3120#ifdef __APPLE__
3121  // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3122  // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3123  // if the signal handler declares it will handle it on alternate stack.
3124  // Notice we only declare we will handle it on alt stack, but we are not
3125  // actually going to use real alt stack - this is just a workaround.
3126  // Please see ux_exception.c, method catch_mach_exception_raise for details
3127  // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3128  if (sig == SIGSEGV) {
3129    sigAct.sa_flags |= SA_ONSTACK;
3130  }
3131#endif
3132
3133  // Save flags, which are set by ours
3134  assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3135  sigflags[sig] = sigAct.sa_flags;
3136
3137  int ret = sigaction(sig, &sigAct, &oldAct);
3138  assert(ret == 0, "check");
3139
3140  void* oldhand2  = oldAct.sa_sigaction
3141                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3142                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3143  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3144}
3145
3146// install signal handlers for signals that HotSpot needs to
3147// handle in order to support Java-level exception handling.
3148
3149void os::Bsd::install_signal_handlers() {
3150  if (!signal_handlers_are_installed) {
3151    signal_handlers_are_installed = true;
3152
3153    // signal-chaining
3154    typedef void (*signal_setting_t)();
3155    signal_setting_t begin_signal_setting = NULL;
3156    signal_setting_t end_signal_setting = NULL;
3157    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3158                                          dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3159    if (begin_signal_setting != NULL) {
3160      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3161                                          dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3162      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3163                                         dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3164      libjsig_is_loaded = true;
3165      assert(UseSignalChaining, "should enable signal-chaining");
3166    }
3167    if (libjsig_is_loaded) {
3168      // Tell libjsig jvm is setting signal handlers
3169      (*begin_signal_setting)();
3170    }
3171
3172    set_signal_handler(SIGSEGV, true);
3173    set_signal_handler(SIGPIPE, true);
3174    set_signal_handler(SIGBUS, true);
3175    set_signal_handler(SIGILL, true);
3176    set_signal_handler(SIGFPE, true);
3177    set_signal_handler(SIGXFSZ, true);
3178
3179#if defined(__APPLE__)
3180    // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3181    // signals caught and handled by the JVM. To work around this, we reset the mach task
3182    // signal handler that's placed on our process by CrashReporter. This disables
3183    // CrashReporter-based reporting.
3184    //
3185    // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3186    // on caught fatal signals.
3187    //
3188    // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3189    // handlers. By replacing the existing task exception handler, we disable gdb's mach
3190    // exception handling, while leaving the standard BSD signal handlers functional.
3191    kern_return_t kr;
3192    kr = task_set_exception_ports(mach_task_self(),
3193                                  EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3194                                  MACH_PORT_NULL,
3195                                  EXCEPTION_STATE_IDENTITY,
3196                                  MACHINE_THREAD_STATE);
3197
3198    assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3199#endif
3200
3201    if (libjsig_is_loaded) {
3202      // Tell libjsig jvm finishes setting signal handlers
3203      (*end_signal_setting)();
3204    }
3205
3206    // We don't activate signal checker if libjsig is in place, we trust ourselves
3207    // and if UserSignalHandler is installed all bets are off
3208    if (CheckJNICalls) {
3209      if (libjsig_is_loaded) {
3210        if (PrintJNIResolving) {
3211          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3212        }
3213        check_signals = false;
3214      }
3215      if (AllowUserSignalHandlers) {
3216        if (PrintJNIResolving) {
3217          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3218        }
3219        check_signals = false;
3220      }
3221    }
3222  }
3223}
3224
3225
3226/////
3227// glibc on Bsd platform uses non-documented flag
3228// to indicate, that some special sort of signal
3229// trampoline is used.
3230// We will never set this flag, and we should
3231// ignore this flag in our diagnostic
3232#ifdef SIGNIFICANT_SIGNAL_MASK
3233  #undef SIGNIFICANT_SIGNAL_MASK
3234#endif
3235#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3236
3237static const char* get_signal_handler_name(address handler,
3238                                           char* buf, int buflen) {
3239  int offset;
3240  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3241  if (found) {
3242    // skip directory names
3243    const char *p1, *p2;
3244    p1 = buf;
3245    size_t len = strlen(os::file_separator());
3246    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3247    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3248  } else {
3249    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3250  }
3251  return buf;
3252}
3253
3254static void print_signal_handler(outputStream* st, int sig,
3255                                 char* buf, size_t buflen) {
3256  struct sigaction sa;
3257
3258  sigaction(sig, NULL, &sa);
3259
3260  // See comment for SIGNIFICANT_SIGNAL_MASK define
3261  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3262
3263  st->print("%s: ", os::exception_name(sig, buf, buflen));
3264
3265  address handler = (sa.sa_flags & SA_SIGINFO)
3266    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3267    : CAST_FROM_FN_PTR(address, sa.sa_handler);
3268
3269  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3270    st->print("SIG_DFL");
3271  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3272    st->print("SIG_IGN");
3273  } else {
3274    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3275  }
3276
3277  st->print(", sa_mask[0]=");
3278  os::Posix::print_signal_set_short(st, &sa.sa_mask);
3279
3280  address rh = VMError::get_resetted_sighandler(sig);
3281  // May be, handler was resetted by VMError?
3282  if (rh != NULL) {
3283    handler = rh;
3284    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3285  }
3286
3287  st->print(", sa_flags=");
3288  os::Posix::print_sa_flags(st, sa.sa_flags);
3289
3290  // Check: is it our handler?
3291  if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3292      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3293    // It is our signal handler
3294    // check for flags, reset system-used one!
3295    if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3296      st->print(
3297                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3298                os::Bsd::get_our_sigflags(sig));
3299    }
3300  }
3301  st->cr();
3302}
3303
3304
3305#define DO_SIGNAL_CHECK(sig)                      \
3306  do {                                            \
3307    if (!sigismember(&check_signal_done, sig)) {  \
3308      os::Bsd::check_signal_handler(sig);         \
3309    }                                             \
3310  } while (0)
3311
3312// This method is a periodic task to check for misbehaving JNI applications
3313// under CheckJNI, we can add any periodic checks here
3314
3315void os::run_periodic_checks() {
3316
3317  if (check_signals == false) return;
3318
3319  // SEGV and BUS if overridden could potentially prevent
3320  // generation of hs*.log in the event of a crash, debugging
3321  // such a case can be very challenging, so we absolutely
3322  // check the following for a good measure:
3323  DO_SIGNAL_CHECK(SIGSEGV);
3324  DO_SIGNAL_CHECK(SIGILL);
3325  DO_SIGNAL_CHECK(SIGFPE);
3326  DO_SIGNAL_CHECK(SIGBUS);
3327  DO_SIGNAL_CHECK(SIGPIPE);
3328  DO_SIGNAL_CHECK(SIGXFSZ);
3329
3330
3331  // ReduceSignalUsage allows the user to override these handlers
3332  // see comments at the very top and jvm_solaris.h
3333  if (!ReduceSignalUsage) {
3334    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3335    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3336    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3337    DO_SIGNAL_CHECK(BREAK_SIGNAL);
3338  }
3339
3340  DO_SIGNAL_CHECK(SR_signum);
3341}
3342
3343typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3344
3345static os_sigaction_t os_sigaction = NULL;
3346
3347void os::Bsd::check_signal_handler(int sig) {
3348  char buf[O_BUFLEN];
3349  address jvmHandler = NULL;
3350
3351
3352  struct sigaction act;
3353  if (os_sigaction == NULL) {
3354    // only trust the default sigaction, in case it has been interposed
3355    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3356    if (os_sigaction == NULL) return;
3357  }
3358
3359  os_sigaction(sig, (struct sigaction*)NULL, &act);
3360
3361
3362  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3363
3364  address thisHandler = (act.sa_flags & SA_SIGINFO)
3365    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3366    : CAST_FROM_FN_PTR(address, act.sa_handler);
3367
3368
3369  switch (sig) {
3370  case SIGSEGV:
3371  case SIGBUS:
3372  case SIGFPE:
3373  case SIGPIPE:
3374  case SIGILL:
3375  case SIGXFSZ:
3376    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3377    break;
3378
3379  case SHUTDOWN1_SIGNAL:
3380  case SHUTDOWN2_SIGNAL:
3381  case SHUTDOWN3_SIGNAL:
3382  case BREAK_SIGNAL:
3383    jvmHandler = (address)user_handler();
3384    break;
3385
3386  default:
3387    if (sig == SR_signum) {
3388      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3389    } else {
3390      return;
3391    }
3392    break;
3393  }
3394
3395  if (thisHandler != jvmHandler) {
3396    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3397    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3398    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3399    // No need to check this sig any longer
3400    sigaddset(&check_signal_done, sig);
3401    // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3402    if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3403      tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3404                    exception_name(sig, buf, O_BUFLEN));
3405    }
3406  } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3407    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3408    tty->print("expected:");
3409    os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3410    tty->cr();
3411    tty->print("  found:");
3412    os::Posix::print_sa_flags(tty, act.sa_flags);
3413    tty->cr();
3414    // No need to check this sig any longer
3415    sigaddset(&check_signal_done, sig);
3416  }
3417
3418  // Dump all the signal
3419  if (sigismember(&check_signal_done, sig)) {
3420    print_signal_handlers(tty, buf, O_BUFLEN);
3421  }
3422}
3423
3424extern void report_error(char* file_name, int line_no, char* title,
3425                         char* format, ...);
3426
3427// this is called _before_ the most of global arguments have been parsed
3428void os::init(void) {
3429  char dummy;   // used to get a guess on initial stack address
3430//  first_hrtime = gethrtime();
3431
3432  // With BsdThreads the JavaMain thread pid (primordial thread)
3433  // is different than the pid of the java launcher thread.
3434  // So, on Bsd, the launcher thread pid is passed to the VM
3435  // via the sun.java.launcher.pid property.
3436  // Use this property instead of getpid() if it was correctly passed.
3437  // See bug 6351349.
3438  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3439
3440  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3441
3442  clock_tics_per_sec = CLK_TCK;
3443
3444  init_random(1234567);
3445
3446  ThreadCritical::initialize();
3447
3448  Bsd::set_page_size(getpagesize());
3449  if (Bsd::page_size() == -1) {
3450    fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3451  }
3452  init_page_sizes((size_t) Bsd::page_size());
3453
3454  Bsd::initialize_system_info();
3455
3456  // main_thread points to the aboriginal thread
3457  Bsd::_main_thread = pthread_self();
3458
3459  Bsd::clock_init();
3460  initial_time_count = javaTimeNanos();
3461
3462#ifdef __APPLE__
3463  // XXXDARWIN
3464  // Work around the unaligned VM callbacks in hotspot's
3465  // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3466  // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3467  // alignment when doing symbol lookup. To work around this, we force early
3468  // binding of all symbols now, thus binding when alignment is known-good.
3469  _dyld_bind_fully_image_containing_address((const void *) &os::init);
3470#endif
3471}
3472
3473// To install functions for atexit system call
3474extern "C" {
3475  static void perfMemory_exit_helper() {
3476    perfMemory_exit();
3477  }
3478}
3479
3480// this is called _after_ the global arguments have been parsed
3481jint os::init_2(void) {
3482  // Allocate a single page and mark it as readable for safepoint polling
3483  address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3484  guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3485
3486  os::set_polling_page(polling_page);
3487  log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
3488
3489  if (!UseMembar) {
3490    address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3491    guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3492    os::set_memory_serialize_page(mem_serialize_page);
3493    log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
3494  }
3495
3496  // initialize suspend/resume support - must do this before signal_sets_init()
3497  if (SR_initialize() != 0) {
3498    perror("SR_initialize failed");
3499    return JNI_ERR;
3500  }
3501
3502  Bsd::signal_sets_init();
3503  Bsd::install_signal_handlers();
3504
3505  // Check minimum allowable stack size for thread creation and to initialize
3506  // the java system classes, including StackOverflowError - depends on page
3507  // size.  Add two 4K pages for compiler2 recursion in main thread.
3508  // Add in 4*BytesPerWord 4K pages to account for VM stack during
3509  // class initialization depending on 32 or 64 bit VM.
3510  os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3511                                    JavaThread::stack_guard_zone_size() +
3512                                    JavaThread::stack_shadow_zone_size() +
3513                                    (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
3514
3515  os::Bsd::min_stack_allowed = align_size_up(os::Bsd::min_stack_allowed, os::vm_page_size());
3516
3517  size_t threadStackSizeInBytes = ThreadStackSize * K;
3518  if (threadStackSizeInBytes != 0 &&
3519      threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3520    tty->print_cr("\nThe stack size specified is too small, "
3521                  "Specify at least %dk",
3522                  os::Bsd::min_stack_allowed/ K);
3523    return JNI_ERR;
3524  }
3525
3526  // Make the stack size a multiple of the page size so that
3527  // the yellow/red zones can be guarded.
3528  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3529                                                vm_page_size()));
3530
3531  if (MaxFDLimit) {
3532    // set the number of file descriptors to max. print out error
3533    // if getrlimit/setrlimit fails but continue regardless.
3534    struct rlimit nbr_files;
3535    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3536    if (status != 0) {
3537      log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3538    } else {
3539      nbr_files.rlim_cur = nbr_files.rlim_max;
3540
3541#ifdef __APPLE__
3542      // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3543      // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3544      // be used instead
3545      nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3546#endif
3547
3548      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3549      if (status != 0) {
3550        log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3551      }
3552    }
3553  }
3554
3555  // at-exit methods are called in the reverse order of their registration.
3556  // atexit functions are called on return from main or as a result of a
3557  // call to exit(3C). There can be only 32 of these functions registered
3558  // and atexit() does not set errno.
3559
3560  if (PerfAllowAtExitRegistration) {
3561    // only register atexit functions if PerfAllowAtExitRegistration is set.
3562    // atexit functions can be delayed until process exit time, which
3563    // can be problematic for embedded VM situations. Embedded VMs should
3564    // call DestroyJavaVM() to assure that VM resources are released.
3565
3566    // note: perfMemory_exit_helper atexit function may be removed in
3567    // the future if the appropriate cleanup code can be added to the
3568    // VM_Exit VMOperation's doit method.
3569    if (atexit(perfMemory_exit_helper) != 0) {
3570      warning("os::init2 atexit(perfMemory_exit_helper) failed");
3571    }
3572  }
3573
3574  // initialize thread priority policy
3575  prio_init();
3576
3577#ifdef __APPLE__
3578  // dynamically link to objective c gc registration
3579  void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3580  if (handleLibObjc != NULL) {
3581    objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3582  }
3583#endif
3584
3585  return JNI_OK;
3586}
3587
3588// Mark the polling page as unreadable
3589void os::make_polling_page_unreadable(void) {
3590  if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3591    fatal("Could not disable polling page");
3592  }
3593}
3594
3595// Mark the polling page as readable
3596void os::make_polling_page_readable(void) {
3597  if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3598    fatal("Could not enable polling page");
3599  }
3600}
3601
3602int os::active_processor_count() {
3603  return _processor_count;
3604}
3605
3606void os::set_native_thread_name(const char *name) {
3607#if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3608  // This is only supported in Snow Leopard and beyond
3609  if (name != NULL) {
3610    // Add a "Java: " prefix to the name
3611    char buf[MAXTHREADNAMESIZE];
3612    snprintf(buf, sizeof(buf), "Java: %s", name);
3613    pthread_setname_np(buf);
3614  }
3615#endif
3616}
3617
3618bool os::distribute_processes(uint length, uint* distribution) {
3619  // Not yet implemented.
3620  return false;
3621}
3622
3623bool os::bind_to_processor(uint processor_id) {
3624  // Not yet implemented.
3625  return false;
3626}
3627
3628void os::SuspendedThreadTask::internal_do_task() {
3629  if (do_suspend(_thread->osthread())) {
3630    SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3631    do_task(context);
3632    do_resume(_thread->osthread());
3633  }
3634}
3635
3636///
3637class PcFetcher : public os::SuspendedThreadTask {
3638 public:
3639  PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3640  ExtendedPC result();
3641 protected:
3642  void do_task(const os::SuspendedThreadTaskContext& context);
3643 private:
3644  ExtendedPC _epc;
3645};
3646
3647ExtendedPC PcFetcher::result() {
3648  guarantee(is_done(), "task is not done yet.");
3649  return _epc;
3650}
3651
3652void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3653  Thread* thread = context.thread();
3654  OSThread* osthread = thread->osthread();
3655  if (osthread->ucontext() != NULL) {
3656    _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3657  } else {
3658    // NULL context is unexpected, double-check this is the VMThread
3659    guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3660  }
3661}
3662
3663// Suspends the target using the signal mechanism and then grabs the PC before
3664// resuming the target. Used by the flat-profiler only
3665ExtendedPC os::get_thread_pc(Thread* thread) {
3666  // Make sure that it is called by the watcher for the VMThread
3667  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3668  assert(thread->is_VM_thread(), "Can only be called for VMThread");
3669
3670  PcFetcher fetcher(thread);
3671  fetcher.run();
3672  return fetcher.result();
3673}
3674
3675////////////////////////////////////////////////////////////////////////////////
3676// debug support
3677
3678bool os::find(address addr, outputStream* st) {
3679  Dl_info dlinfo;
3680  memset(&dlinfo, 0, sizeof(dlinfo));
3681  if (dladdr(addr, &dlinfo) != 0) {
3682    st->print(PTR_FORMAT ": ", addr);
3683    if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3684      st->print("%s+%#x", dlinfo.dli_sname,
3685                addr - (intptr_t)dlinfo.dli_saddr);
3686    } else if (dlinfo.dli_fbase != NULL) {
3687      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3688    } else {
3689      st->print("<absolute address>");
3690    }
3691    if (dlinfo.dli_fname != NULL) {
3692      st->print(" in %s", dlinfo.dli_fname);
3693    }
3694    if (dlinfo.dli_fbase != NULL) {
3695      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3696    }
3697    st->cr();
3698
3699    if (Verbose) {
3700      // decode some bytes around the PC
3701      address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3702      address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3703      address       lowest = (address) dlinfo.dli_sname;
3704      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3705      if (begin < lowest)  begin = lowest;
3706      Dl_info dlinfo2;
3707      if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3708          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3709        end = (address) dlinfo2.dli_saddr;
3710      }
3711      Disassembler::decode(begin, end, st);
3712    }
3713    return true;
3714  }
3715  return false;
3716}
3717
3718////////////////////////////////////////////////////////////////////////////////
3719// misc
3720
3721// This does not do anything on Bsd. This is basically a hook for being
3722// able to use structured exception handling (thread-local exception filters)
3723// on, e.g., Win32.
3724void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3725                              const methodHandle& method, JavaCallArguments* args,
3726                              Thread* thread) {
3727  f(value, method, args, thread);
3728}
3729
3730void os::print_statistics() {
3731}
3732
3733bool os::message_box(const char* title, const char* message) {
3734  int i;
3735  fdStream err(defaultStream::error_fd());
3736  for (i = 0; i < 78; i++) err.print_raw("=");
3737  err.cr();
3738  err.print_raw_cr(title);
3739  for (i = 0; i < 78; i++) err.print_raw("-");
3740  err.cr();
3741  err.print_raw_cr(message);
3742  for (i = 0; i < 78; i++) err.print_raw("=");
3743  err.cr();
3744
3745  char buf[16];
3746  // Prevent process from exiting upon "read error" without consuming all CPU
3747  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3748
3749  return buf[0] == 'y' || buf[0] == 'Y';
3750}
3751
3752int os::stat(const char *path, struct stat *sbuf) {
3753  char pathbuf[MAX_PATH];
3754  if (strlen(path) > MAX_PATH - 1) {
3755    errno = ENAMETOOLONG;
3756    return -1;
3757  }
3758  os::native_path(strcpy(pathbuf, path));
3759  return ::stat(pathbuf, sbuf);
3760}
3761
3762static inline struct timespec get_mtime(const char* filename) {
3763  struct stat st;
3764  int ret = os::stat(filename, &st);
3765  assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3766#ifdef __APPLE__
3767  return st.st_mtimespec;
3768#else
3769  return st.st_mtim;
3770#endif
3771}
3772
3773int os::compare_file_modified_times(const char* file1, const char* file2) {
3774  struct timespec filetime1 = get_mtime(file1);
3775  struct timespec filetime2 = get_mtime(file2);
3776  int diff = filetime1.tv_sec - filetime2.tv_sec;
3777  if (diff == 0) {
3778    return filetime1.tv_nsec - filetime2.tv_nsec;
3779  }
3780  return diff;
3781}
3782
3783// Is a (classpath) directory empty?
3784bool os::dir_is_empty(const char* path) {
3785  DIR *dir = NULL;
3786  struct dirent *ptr;
3787
3788  dir = opendir(path);
3789  if (dir == NULL) return true;
3790
3791  // Scan the directory
3792  bool result = true;
3793  char buf[sizeof(struct dirent) + MAX_PATH];
3794  while (result && (ptr = ::readdir(dir)) != NULL) {
3795    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3796      result = false;
3797    }
3798  }
3799  closedir(dir);
3800  return result;
3801}
3802
3803// This code originates from JDK's sysOpen and open64_w
3804// from src/solaris/hpi/src/system_md.c
3805
3806int os::open(const char *path, int oflag, int mode) {
3807  if (strlen(path) > MAX_PATH - 1) {
3808    errno = ENAMETOOLONG;
3809    return -1;
3810  }
3811  int fd;
3812
3813  fd = ::open(path, oflag, mode);
3814  if (fd == -1) return -1;
3815
3816  // If the open succeeded, the file might still be a directory
3817  {
3818    struct stat buf;
3819    int ret = ::fstat(fd, &buf);
3820    int st_mode = buf.st_mode;
3821
3822    if (ret != -1) {
3823      if ((st_mode & S_IFMT) == S_IFDIR) {
3824        errno = EISDIR;
3825        ::close(fd);
3826        return -1;
3827      }
3828    } else {
3829      ::close(fd);
3830      return -1;
3831    }
3832  }
3833
3834  // All file descriptors that are opened in the JVM and not
3835  // specifically destined for a subprocess should have the
3836  // close-on-exec flag set.  If we don't set it, then careless 3rd
3837  // party native code might fork and exec without closing all
3838  // appropriate file descriptors (e.g. as we do in closeDescriptors in
3839  // UNIXProcess.c), and this in turn might:
3840  //
3841  // - cause end-of-file to fail to be detected on some file
3842  //   descriptors, resulting in mysterious hangs, or
3843  //
3844  // - might cause an fopen in the subprocess to fail on a system
3845  //   suffering from bug 1085341.
3846  //
3847  // (Yes, the default setting of the close-on-exec flag is a Unix
3848  // design flaw)
3849  //
3850  // See:
3851  // 1085341: 32-bit stdio routines should support file descriptors >255
3852  // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3853  // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3854  //
3855#ifdef FD_CLOEXEC
3856  {
3857    int flags = ::fcntl(fd, F_GETFD);
3858    if (flags != -1) {
3859      ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3860    }
3861  }
3862#endif
3863
3864  return fd;
3865}
3866
3867
3868// create binary file, rewriting existing file if required
3869int os::create_binary_file(const char* path, bool rewrite_existing) {
3870  int oflags = O_WRONLY | O_CREAT;
3871  if (!rewrite_existing) {
3872    oflags |= O_EXCL;
3873  }
3874  return ::open(path, oflags, S_IREAD | S_IWRITE);
3875}
3876
3877// return current position of file pointer
3878jlong os::current_file_offset(int fd) {
3879  return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3880}
3881
3882// move file pointer to the specified offset
3883jlong os::seek_to_file_offset(int fd, jlong offset) {
3884  return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3885}
3886
3887// This code originates from JDK's sysAvailable
3888// from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3889
3890int os::available(int fd, jlong *bytes) {
3891  jlong cur, end;
3892  int mode;
3893  struct stat buf;
3894
3895  if (::fstat(fd, &buf) >= 0) {
3896    mode = buf.st_mode;
3897    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3898      int n;
3899      if (::ioctl(fd, FIONREAD, &n) >= 0) {
3900        *bytes = n;
3901        return 1;
3902      }
3903    }
3904  }
3905  if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3906    return 0;
3907  } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3908    return 0;
3909  } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3910    return 0;
3911  }
3912  *bytes = end - cur;
3913  return 1;
3914}
3915
3916// Map a block of memory.
3917char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3918                        char *addr, size_t bytes, bool read_only,
3919                        bool allow_exec) {
3920  int prot;
3921  int flags;
3922
3923  if (read_only) {
3924    prot = PROT_READ;
3925    flags = MAP_SHARED;
3926  } else {
3927    prot = PROT_READ | PROT_WRITE;
3928    flags = MAP_PRIVATE;
3929  }
3930
3931  if (allow_exec) {
3932    prot |= PROT_EXEC;
3933  }
3934
3935  if (addr != NULL) {
3936    flags |= MAP_FIXED;
3937  }
3938
3939  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3940                                     fd, file_offset);
3941  if (mapped_address == MAP_FAILED) {
3942    return NULL;
3943  }
3944  return mapped_address;
3945}
3946
3947
3948// Remap a block of memory.
3949char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3950                          char *addr, size_t bytes, bool read_only,
3951                          bool allow_exec) {
3952  // same as map_memory() on this OS
3953  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3954                        allow_exec);
3955}
3956
3957
3958// Unmap a block of memory.
3959bool os::pd_unmap_memory(char* addr, size_t bytes) {
3960  return munmap(addr, bytes) == 0;
3961}
3962
3963// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3964// are used by JVM M&M and JVMTI to get user+sys or user CPU time
3965// of a thread.
3966//
3967// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3968// the fast estimate available on the platform.
3969
3970jlong os::current_thread_cpu_time() {
3971#ifdef __APPLE__
3972  return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3973#else
3974  Unimplemented();
3975  return 0;
3976#endif
3977}
3978
3979jlong os::thread_cpu_time(Thread* thread) {
3980#ifdef __APPLE__
3981  return os::thread_cpu_time(thread, true /* user + sys */);
3982#else
3983  Unimplemented();
3984  return 0;
3985#endif
3986}
3987
3988jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3989#ifdef __APPLE__
3990  return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3991#else
3992  Unimplemented();
3993  return 0;
3994#endif
3995}
3996
3997jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3998#ifdef __APPLE__
3999  struct thread_basic_info tinfo;
4000  mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4001  kern_return_t kr;
4002  thread_t mach_thread;
4003
4004  mach_thread = thread->osthread()->thread_id();
4005  kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4006  if (kr != KERN_SUCCESS) {
4007    return -1;
4008  }
4009
4010  if (user_sys_cpu_time) {
4011    jlong nanos;
4012    nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4013    nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4014    return nanos;
4015  } else {
4016    return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4017  }
4018#else
4019  Unimplemented();
4020  return 0;
4021#endif
4022}
4023
4024
4025void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4026  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4027  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4028  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4029  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4030}
4031
4032void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4033  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4034  info_ptr->may_skip_backward = false;     // elapsed time not wall time
4035  info_ptr->may_skip_forward = false;      // elapsed time not wall time
4036  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4037}
4038
4039bool os::is_thread_cpu_time_supported() {
4040#ifdef __APPLE__
4041  return true;
4042#else
4043  return false;
4044#endif
4045}
4046
4047// System loadavg support.  Returns -1 if load average cannot be obtained.
4048// Bsd doesn't yet have a (official) notion of processor sets,
4049// so just return the system wide load average.
4050int os::loadavg(double loadavg[], int nelem) {
4051  return ::getloadavg(loadavg, nelem);
4052}
4053
4054void os::pause() {
4055  char filename[MAX_PATH];
4056  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4057    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4058  } else {
4059    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4060  }
4061
4062  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4063  if (fd != -1) {
4064    struct stat buf;
4065    ::close(fd);
4066    while (::stat(filename, &buf) == 0) {
4067      (void)::poll(NULL, 0, 100);
4068    }
4069  } else {
4070    jio_fprintf(stderr,
4071                "Could not open pause file '%s', continuing immediately.\n", filename);
4072  }
4073}
4074
4075
4076// Refer to the comments in os_solaris.cpp park-unpark. The next two
4077// comment paragraphs are worth repeating here:
4078//
4079// Assumption:
4080//    Only one parker can exist on an event, which is why we allocate
4081//    them per-thread. Multiple unparkers can coexist.
4082//
4083// _Event serves as a restricted-range semaphore.
4084//   -1 : thread is blocked, i.e. there is a waiter
4085//    0 : neutral: thread is running or ready,
4086//        could have been signaled after a wait started
4087//    1 : signaled - thread is running or ready
4088//
4089
4090// utility to compute the abstime argument to timedwait:
4091// millis is the relative timeout time
4092// abstime will be the absolute timeout time
4093// TODO: replace compute_abstime() with unpackTime()
4094
4095static struct timespec* compute_abstime(struct timespec* abstime,
4096                                        jlong millis) {
4097  if (millis < 0)  millis = 0;
4098  struct timeval now;
4099  int status = gettimeofday(&now, NULL);
4100  assert(status == 0, "gettimeofday");
4101  jlong seconds = millis / 1000;
4102  millis %= 1000;
4103  if (seconds > 50000000) { // see man cond_timedwait(3T)
4104    seconds = 50000000;
4105  }
4106  abstime->tv_sec = now.tv_sec  + seconds;
4107  long       usec = now.tv_usec + millis * 1000;
4108  if (usec >= 1000000) {
4109    abstime->tv_sec += 1;
4110    usec -= 1000000;
4111  }
4112  abstime->tv_nsec = usec * 1000;
4113  return abstime;
4114}
4115
4116void os::PlatformEvent::park() {       // AKA "down()"
4117  // Transitions for _Event:
4118  //   -1 => -1 : illegal
4119  //    1 =>  0 : pass - return immediately
4120  //    0 => -1 : block; then set _Event to 0 before returning
4121
4122  // Invariant: Only the thread associated with the Event/PlatformEvent
4123  // may call park().
4124  // TODO: assert that _Assoc != NULL or _Assoc == Self
4125  assert(_nParked == 0, "invariant");
4126
4127  int v;
4128  for (;;) {
4129    v = _Event;
4130    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4131  }
4132  guarantee(v >= 0, "invariant");
4133  if (v == 0) {
4134    // Do this the hard way by blocking ...
4135    int status = pthread_mutex_lock(_mutex);
4136    assert_status(status == 0, status, "mutex_lock");
4137    guarantee(_nParked == 0, "invariant");
4138    ++_nParked;
4139    while (_Event < 0) {
4140      status = pthread_cond_wait(_cond, _mutex);
4141      // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4142      // Treat this the same as if the wait was interrupted
4143      if (status == ETIMEDOUT) { status = EINTR; }
4144      assert_status(status == 0 || status == EINTR, status, "cond_wait");
4145    }
4146    --_nParked;
4147
4148    _Event = 0;
4149    status = pthread_mutex_unlock(_mutex);
4150    assert_status(status == 0, status, "mutex_unlock");
4151    // Paranoia to ensure our locked and lock-free paths interact
4152    // correctly with each other.
4153    OrderAccess::fence();
4154  }
4155  guarantee(_Event >= 0, "invariant");
4156}
4157
4158int os::PlatformEvent::park(jlong millis) {
4159  // Transitions for _Event:
4160  //   -1 => -1 : illegal
4161  //    1 =>  0 : pass - return immediately
4162  //    0 => -1 : block; then set _Event to 0 before returning
4163
4164  guarantee(_nParked == 0, "invariant");
4165
4166  int v;
4167  for (;;) {
4168    v = _Event;
4169    if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4170  }
4171  guarantee(v >= 0, "invariant");
4172  if (v != 0) return OS_OK;
4173
4174  // We do this the hard way, by blocking the thread.
4175  // Consider enforcing a minimum timeout value.
4176  struct timespec abst;
4177  compute_abstime(&abst, millis);
4178
4179  int ret = OS_TIMEOUT;
4180  int status = pthread_mutex_lock(_mutex);
4181  assert_status(status == 0, status, "mutex_lock");
4182  guarantee(_nParked == 0, "invariant");
4183  ++_nParked;
4184
4185  // Object.wait(timo) will return because of
4186  // (a) notification
4187  // (b) timeout
4188  // (c) thread.interrupt
4189  //
4190  // Thread.interrupt and object.notify{All} both call Event::set.
4191  // That is, we treat thread.interrupt as a special case of notification.
4192  // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4193  // We assume all ETIME returns are valid.
4194  //
4195  // TODO: properly differentiate simultaneous notify+interrupt.
4196  // In that case, we should propagate the notify to another waiter.
4197
4198  while (_Event < 0) {
4199    status = pthread_cond_timedwait(_cond, _mutex, &abst);
4200    assert_status(status == 0 || status == EINTR ||
4201                  status == ETIMEDOUT,
4202                  status, "cond_timedwait");
4203    if (!FilterSpuriousWakeups) break;                 // previous semantics
4204    if (status == ETIMEDOUT) break;
4205    // We consume and ignore EINTR and spurious wakeups.
4206  }
4207  --_nParked;
4208  if (_Event >= 0) {
4209    ret = OS_OK;
4210  }
4211  _Event = 0;
4212  status = pthread_mutex_unlock(_mutex);
4213  assert_status(status == 0, status, "mutex_unlock");
4214  assert(_nParked == 0, "invariant");
4215  // Paranoia to ensure our locked and lock-free paths interact
4216  // correctly with each other.
4217  OrderAccess::fence();
4218  return ret;
4219}
4220
4221void os::PlatformEvent::unpark() {
4222  // Transitions for _Event:
4223  //    0 => 1 : just return
4224  //    1 => 1 : just return
4225  //   -1 => either 0 or 1; must signal target thread
4226  //         That is, we can safely transition _Event from -1 to either
4227  //         0 or 1.
4228  // See also: "Semaphores in Plan 9" by Mullender & Cox
4229  //
4230  // Note: Forcing a transition from "-1" to "1" on an unpark() means
4231  // that it will take two back-to-back park() calls for the owning
4232  // thread to block. This has the benefit of forcing a spurious return
4233  // from the first park() call after an unpark() call which will help
4234  // shake out uses of park() and unpark() without condition variables.
4235
4236  if (Atomic::xchg(1, &_Event) >= 0) return;
4237
4238  // Wait for the thread associated with the event to vacate
4239  int status = pthread_mutex_lock(_mutex);
4240  assert_status(status == 0, status, "mutex_lock");
4241  int AnyWaiters = _nParked;
4242  assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4243  status = pthread_mutex_unlock(_mutex);
4244  assert_status(status == 0, status, "mutex_unlock");
4245  if (AnyWaiters != 0) {
4246    // Note that we signal() *after* dropping the lock for "immortal" Events.
4247    // This is safe and avoids a common class of  futile wakeups.  In rare
4248    // circumstances this can cause a thread to return prematurely from
4249    // cond_{timed}wait() but the spurious wakeup is benign and the victim
4250    // will simply re-test the condition and re-park itself.
4251    // This provides particular benefit if the underlying platform does not
4252    // provide wait morphing.
4253    status = pthread_cond_signal(_cond);
4254    assert_status(status == 0, status, "cond_signal");
4255  }
4256}
4257
4258
4259// JSR166
4260// -------------------------------------------------------
4261
4262// The solaris and bsd implementations of park/unpark are fairly
4263// conservative for now, but can be improved. They currently use a
4264// mutex/condvar pair, plus a a count.
4265// Park decrements count if > 0, else does a condvar wait.  Unpark
4266// sets count to 1 and signals condvar.  Only one thread ever waits
4267// on the condvar. Contention seen when trying to park implies that someone
4268// is unparking you, so don't wait. And spurious returns are fine, so there
4269// is no need to track notifications.
4270
4271#define MAX_SECS 100000000
4272
4273// This code is common to bsd and solaris and will be moved to a
4274// common place in dolphin.
4275//
4276// The passed in time value is either a relative time in nanoseconds
4277// or an absolute time in milliseconds. Either way it has to be unpacked
4278// into suitable seconds and nanoseconds components and stored in the
4279// given timespec structure.
4280// Given time is a 64-bit value and the time_t used in the timespec is only
4281// a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4282// overflow if times way in the future are given. Further on Solaris versions
4283// prior to 10 there is a restriction (see cond_timedwait) that the specified
4284// number of seconds, in abstime, is less than current_time  + 100,000,000.
4285// As it will be 28 years before "now + 100000000" will overflow we can
4286// ignore overflow and just impose a hard-limit on seconds using the value
4287// of "now + 100,000,000". This places a limit on the timeout of about 3.17
4288// years from "now".
4289
4290static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4291  assert(time > 0, "convertTime");
4292
4293  struct timeval now;
4294  int status = gettimeofday(&now, NULL);
4295  assert(status == 0, "gettimeofday");
4296
4297  time_t max_secs = now.tv_sec + MAX_SECS;
4298
4299  if (isAbsolute) {
4300    jlong secs = time / 1000;
4301    if (secs > max_secs) {
4302      absTime->tv_sec = max_secs;
4303    } else {
4304      absTime->tv_sec = secs;
4305    }
4306    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4307  } else {
4308    jlong secs = time / NANOSECS_PER_SEC;
4309    if (secs >= MAX_SECS) {
4310      absTime->tv_sec = max_secs;
4311      absTime->tv_nsec = 0;
4312    } else {
4313      absTime->tv_sec = now.tv_sec + secs;
4314      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4315      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4316        absTime->tv_nsec -= NANOSECS_PER_SEC;
4317        ++absTime->tv_sec; // note: this must be <= max_secs
4318      }
4319    }
4320  }
4321  assert(absTime->tv_sec >= 0, "tv_sec < 0");
4322  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4323  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4324  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4325}
4326
4327void Parker::park(bool isAbsolute, jlong time) {
4328  // Ideally we'd do something useful while spinning, such
4329  // as calling unpackTime().
4330
4331  // Optional fast-path check:
4332  // Return immediately if a permit is available.
4333  // We depend on Atomic::xchg() having full barrier semantics
4334  // since we are doing a lock-free update to _counter.
4335  if (Atomic::xchg(0, &_counter) > 0) return;
4336
4337  Thread* thread = Thread::current();
4338  assert(thread->is_Java_thread(), "Must be JavaThread");
4339  JavaThread *jt = (JavaThread *)thread;
4340
4341  // Optional optimization -- avoid state transitions if there's an interrupt pending.
4342  // Check interrupt before trying to wait
4343  if (Thread::is_interrupted(thread, false)) {
4344    return;
4345  }
4346
4347  // Next, demultiplex/decode time arguments
4348  struct timespec absTime;
4349  if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4350    return;
4351  }
4352  if (time > 0) {
4353    unpackTime(&absTime, isAbsolute, time);
4354  }
4355
4356
4357  // Enter safepoint region
4358  // Beware of deadlocks such as 6317397.
4359  // The per-thread Parker:: mutex is a classic leaf-lock.
4360  // In particular a thread must never block on the Threads_lock while
4361  // holding the Parker:: mutex.  If safepoints are pending both the
4362  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4363  ThreadBlockInVM tbivm(jt);
4364
4365  // Don't wait if cannot get lock since interference arises from
4366  // unblocking.  Also. check interrupt before trying wait
4367  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4368    return;
4369  }
4370
4371  int status;
4372  if (_counter > 0)  { // no wait needed
4373    _counter = 0;
4374    status = pthread_mutex_unlock(_mutex);
4375    assert_status(status == 0, status, "invariant");
4376    // Paranoia to ensure our locked and lock-free paths interact
4377    // correctly with each other and Java-level accesses.
4378    OrderAccess::fence();
4379    return;
4380  }
4381
4382#ifdef ASSERT
4383  // Don't catch signals while blocked; let the running threads have the signals.
4384  // (This allows a debugger to break into the running thread.)
4385  sigset_t oldsigs;
4386  sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4387  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4388#endif
4389
4390  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4391  jt->set_suspend_equivalent();
4392  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4393
4394  if (time == 0) {
4395    status = pthread_cond_wait(_cond, _mutex);
4396  } else {
4397    status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4398  }
4399  assert_status(status == 0 || status == EINTR ||
4400                status == ETIMEDOUT,
4401                status, "cond_timedwait");
4402
4403#ifdef ASSERT
4404  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4405#endif
4406
4407  _counter = 0;
4408  status = pthread_mutex_unlock(_mutex);
4409  assert_status(status == 0, status, "invariant");
4410  // Paranoia to ensure our locked and lock-free paths interact
4411  // correctly with each other and Java-level accesses.
4412  OrderAccess::fence();
4413
4414  // If externally suspended while waiting, re-suspend
4415  if (jt->handle_special_suspend_equivalent_condition()) {
4416    jt->java_suspend_self();
4417  }
4418}
4419
4420void Parker::unpark() {
4421  int status = pthread_mutex_lock(_mutex);
4422  assert_status(status == 0, status, "invariant");
4423  const int s = _counter;
4424  _counter = 1;
4425  status = pthread_mutex_unlock(_mutex);
4426  assert_status(status == 0, status, "invariant");
4427  if (s < 1) {
4428    status = pthread_cond_signal(_cond);
4429    assert_status(status == 0, status, "invariant");
4430  }
4431}
4432
4433
4434// Darwin has no "environ" in a dynamic library.
4435#ifdef __APPLE__
4436  #include <crt_externs.h>
4437  #define environ (*_NSGetEnviron())
4438#else
4439extern char** environ;
4440#endif
4441
4442// Run the specified command in a separate process. Return its exit value,
4443// or -1 on failure (e.g. can't fork a new process).
4444// Unlike system(), this function can be called from signal handler. It
4445// doesn't block SIGINT et al.
4446int os::fork_and_exec(char* cmd) {
4447  const char * argv[4] = {"sh", "-c", cmd, NULL};
4448
4449  // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4450  // pthread_atfork handlers and reset pthread library. All we need is a
4451  // separate process to execve. Make a direct syscall to fork process.
4452  // On IA64 there's no fork syscall, we have to use fork() and hope for
4453  // the best...
4454  pid_t pid = fork();
4455
4456  if (pid < 0) {
4457    // fork failed
4458    return -1;
4459
4460  } else if (pid == 0) {
4461    // child process
4462
4463    // execve() in BsdThreads will call pthread_kill_other_threads_np()
4464    // first to kill every thread on the thread list. Because this list is
4465    // not reset by fork() (see notes above), execve() will instead kill
4466    // every thread in the parent process. We know this is the only thread
4467    // in the new process, so make a system call directly.
4468    // IA64 should use normal execve() from glibc to match the glibc fork()
4469    // above.
4470    execve("/bin/sh", (char* const*)argv, environ);
4471
4472    // execve failed
4473    _exit(-1);
4474
4475  } else  {
4476    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4477    // care about the actual exit code, for now.
4478
4479    int status;
4480
4481    // Wait for the child process to exit.  This returns immediately if
4482    // the child has already exited. */
4483    while (waitpid(pid, &status, 0) < 0) {
4484      switch (errno) {
4485      case ECHILD: return 0;
4486      case EINTR: break;
4487      default: return -1;
4488      }
4489    }
4490
4491    if (WIFEXITED(status)) {
4492      // The child exited normally; get its exit code.
4493      return WEXITSTATUS(status);
4494    } else if (WIFSIGNALED(status)) {
4495      // The child exited because of a signal
4496      // The best value to return is 0x80 + signal number,
4497      // because that is what all Unix shells do, and because
4498      // it allows callers to distinguish between process exit and
4499      // process death by signal.
4500      return 0x80 + WTERMSIG(status);
4501    } else {
4502      // Unknown exit code; pass it through
4503      return status;
4504    }
4505  }
4506}
4507
4508// is_headless_jre()
4509//
4510// Test for the existence of xawt/libmawt.so or libawt_xawt.so
4511// in order to report if we are running in a headless jre
4512//
4513// Since JDK8 xawt/libmawt.so was moved into the same directory
4514// as libawt.so, and renamed libawt_xawt.so
4515//
4516bool os::is_headless_jre() {
4517#ifdef __APPLE__
4518  // We no longer build headless-only on Mac OS X
4519  return false;
4520#else
4521  struct stat statbuf;
4522  char buf[MAXPATHLEN];
4523  char libmawtpath[MAXPATHLEN];
4524  const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4525  const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4526  char *p;
4527
4528  // Get path to libjvm.so
4529  os::jvm_path(buf, sizeof(buf));
4530
4531  // Get rid of libjvm.so
4532  p = strrchr(buf, '/');
4533  if (p == NULL) {
4534    return false;
4535  } else {
4536    *p = '\0';
4537  }
4538
4539  // Get rid of client or server
4540  p = strrchr(buf, '/');
4541  if (p == NULL) {
4542    return false;
4543  } else {
4544    *p = '\0';
4545  }
4546
4547  // check xawt/libmawt.so
4548  strcpy(libmawtpath, buf);
4549  strcat(libmawtpath, xawtstr);
4550  if (::stat(libmawtpath, &statbuf) == 0) return false;
4551
4552  // check libawt_xawt.so
4553  strcpy(libmawtpath, buf);
4554  strcat(libmawtpath, new_xawtstr);
4555  if (::stat(libmawtpath, &statbuf) == 0) return false;
4556
4557  return true;
4558#endif
4559}
4560
4561// Get the default path to the core file
4562// Returns the length of the string
4563int os::get_core_path(char* buffer, size_t bufferSize) {
4564  int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4565
4566  // Truncate if theoretical string was longer than bufferSize
4567  n = MIN2(n, (int)bufferSize);
4568
4569  return n;
4570}
4571
4572#ifndef PRODUCT
4573void TestReserveMemorySpecial_test() {
4574  // No tests available for this platform
4575}
4576#endif
4577
4578bool os::start_debugging(char *buf, int buflen) {
4579  int len = (int)strlen(buf);
4580  char *p = &buf[len];
4581
4582  jio_snprintf(p, buflen-len,
4583             "\n\n"
4584             "Do you want to debug the problem?\n\n"
4585             "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4586             "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4587             "Otherwise, press RETURN to abort...",
4588             os::current_process_id(), os::current_process_id(),
4589             os::current_thread_id(), os::current_thread_id());
4590
4591  bool yes = os::message_box("Unexpected Error", buf);
4592
4593  if (yes) {
4594    // yes, user asked VM to launch debugger
4595    jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4596                     os::current_process_id(), os::current_process_id());
4597
4598    os::fork_and_exec(buf);
4599    yes = false;
4600  }
4601  return yes;
4602}
4603