x86_32.ad revision 4438:e961c11b85fe
1//
2// Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// X86 Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31
32register %{
33//----------Architecture Description Register Definitions----------------------
34// General Registers
35// "reg_def"  name ( register save type, C convention save type,
36//                   ideal register type, encoding );
37// Register Save Types:
38//
39// NS  = No-Save:       The register allocator assumes that these registers
40//                      can be used without saving upon entry to the method, &
41//                      that they do not need to be saved at call sites.
42//
43// SOC = Save-On-Call:  The register allocator assumes that these registers
44//                      can be used without saving upon entry to the method,
45//                      but that they must be saved at call sites.
46//
47// SOE = Save-On-Entry: The register allocator assumes that these registers
48//                      must be saved before using them upon entry to the
49//                      method, but they do not need to be saved at call
50//                      sites.
51//
52// AS  = Always-Save:   The register allocator assumes that these registers
53//                      must be saved before using them upon entry to the
54//                      method, & that they must be saved at call sites.
55//
56// Ideal Register Type is used to determine how to save & restore a
57// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59//
60// The encoding number is the actual bit-pattern placed into the opcodes.
61
62// General Registers
63// Previously set EBX, ESI, and EDI as save-on-entry for java code
64// Turn off SOE in java-code due to frequent use of uncommon-traps.
65// Now that allocator is better, turn on ESI and EDI as SOE registers.
66
67reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
68reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
69reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
70reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
71// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
72reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
73reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
74reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
75reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
76
77// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
78// allocator, and only shows up in the encodings.
79reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
80reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
81// Ok so here's the trick FPR1 is really st(0) except in the midst
82// of emission of assembly for a machnode. During the emission the fpu stack
83// is pushed making FPR1 == st(1) temporarily. However at any safepoint
84// the stack will not have this element so FPR1 == st(0) from the
85// oopMap viewpoint. This same weirdness with numbering causes
86// instruction encoding to have to play games with the register
87// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
88// where it does flt->flt moves to see an example
89//
90reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
91reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
92reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
93reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
94reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
95reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
96reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
97reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
98reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
99reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
100reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
101reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
102reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
103reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
104
105// Specify priority of register selection within phases of register
106// allocation.  Highest priority is first.  A useful heuristic is to
107// give registers a low priority when they are required by machine
108// instructions, like EAX and EDX.  Registers which are used as
109// pairs must fall on an even boundary (witness the FPR#L's in this list).
110// For the Intel integer registers, the equivalent Long pairs are
111// EDX:EAX, EBX:ECX, and EDI:EBP.
112alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
113                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
114                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
115                    FPR6L, FPR6H, FPR7L, FPR7H );
116
117
118//----------Architecture Description Register Classes--------------------------
119// Several register classes are automatically defined based upon information in
120// this architecture description.
121// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
122// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
123// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
124// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
125//
126// Class for all registers
127reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
128// Class for general registers
129reg_class int_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
130// Class for general registers which may be used for implicit null checks on win95
131// Also safe for use by tailjump. We don't want to allocate in rbp,
132reg_class int_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
133// Class of "X" registers
134reg_class int_x_reg(EBX, ECX, EDX, EAX);
135// Class of registers that can appear in an address with no offset.
136// EBP and ESP require an extra instruction byte for zero offset.
137// Used in fast-unlock
138reg_class p_reg(EDX, EDI, ESI, EBX);
139// Class for general registers not including ECX
140reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
141// Class for general registers not including EAX
142reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
143// Class for general registers not including EAX or EBX.
144reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
145// Class of EAX (for multiply and divide operations)
146reg_class eax_reg(EAX);
147// Class of EBX (for atomic add)
148reg_class ebx_reg(EBX);
149// Class of ECX (for shift and JCXZ operations and cmpLTMask)
150reg_class ecx_reg(ECX);
151// Class of EDX (for multiply and divide operations)
152reg_class edx_reg(EDX);
153// Class of EDI (for synchronization)
154reg_class edi_reg(EDI);
155// Class of ESI (for synchronization)
156reg_class esi_reg(ESI);
157// Singleton class for interpreter's stack pointer
158reg_class ebp_reg(EBP);
159// Singleton class for stack pointer
160reg_class sp_reg(ESP);
161// Singleton class for instruction pointer
162// reg_class ip_reg(EIP);
163// Class of integer register pairs
164reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
165// Class of integer register pairs that aligns with calling convention
166reg_class eadx_reg( EAX,EDX );
167reg_class ebcx_reg( ECX,EBX );
168// Not AX or DX, used in divides
169reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
170
171// Floating point registers.  Notice FPR0 is not a choice.
172// FPR0 is not ever allocated; we use clever encodings to fake
173// a 2-address instructions out of Intels FP stack.
174reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
175
176reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
177                      FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
178                      FPR7L,FPR7H );
179
180reg_class fp_flt_reg0( FPR1L );
181reg_class fp_dbl_reg0( FPR1L,FPR1H );
182reg_class fp_dbl_reg1( FPR2L,FPR2H );
183reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
184                          FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
185
186%}
187
188
189//----------SOURCE BLOCK-------------------------------------------------------
190// This is a block of C++ code which provides values, functions, and
191// definitions necessary in the rest of the architecture description
192source_hpp %{
193// Must be visible to the DFA in dfa_x86_32.cpp
194extern bool is_operand_hi32_zero(Node* n);
195%}
196
197source %{
198#define   RELOC_IMM32    Assembler::imm_operand
199#define   RELOC_DISP32   Assembler::disp32_operand
200
201#define __ _masm.
202
203// How to find the high register of a Long pair, given the low register
204#define   HIGH_FROM_LOW(x) ((x)+2)
205
206// These masks are used to provide 128-bit aligned bitmasks to the XMM
207// instructions, to allow sign-masking or sign-bit flipping.  They allow
208// fast versions of NegF/NegD and AbsF/AbsD.
209
210// Note: 'double' and 'long long' have 32-bits alignment on x86.
211static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
212  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
213  // of 128-bits operands for SSE instructions.
214  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
215  // Store the value to a 128-bits operand.
216  operand[0] = lo;
217  operand[1] = hi;
218  return operand;
219}
220
221// Buffer for 128-bits masks used by SSE instructions.
222static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
223
224// Static initialization during VM startup.
225static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
226static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
227static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
228static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
229
230// Offset hacking within calls.
231static int pre_call_resets_size() {
232  int size = 0;
233  Compile* C = Compile::current();
234  if (C->in_24_bit_fp_mode()) {
235    size += 6; // fldcw
236  }
237  if (C->max_vector_size() > 16) {
238    size += 3; // vzeroupper
239  }
240  return size;
241}
242
243static int preserve_SP_size() {
244  return 2;  // op, rm(reg/reg)
245}
246
247// !!!!! Special hack to get all type of calls to specify the byte offset
248//       from the start of the call to the point where the return address
249//       will point.
250int MachCallStaticJavaNode::ret_addr_offset() {
251  int offset = 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points
252  if (_method_handle_invoke)
253    offset += preserve_SP_size();
254  return offset;
255}
256
257int MachCallDynamicJavaNode::ret_addr_offset() {
258  return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
259}
260
261static int sizeof_FFree_Float_Stack_All = -1;
262
263int MachCallRuntimeNode::ret_addr_offset() {
264  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
265  return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
266}
267
268// Indicate if the safepoint node needs the polling page as an input.
269// Since x86 does have absolute addressing, it doesn't.
270bool SafePointNode::needs_polling_address_input() {
271  return false;
272}
273
274//
275// Compute padding required for nodes which need alignment
276//
277
278// The address of the call instruction needs to be 4-byte aligned to
279// ensure that it does not span a cache line so that it can be patched.
280int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
281  current_offset += pre_call_resets_size();  // skip fldcw, if any
282  current_offset += 1;      // skip call opcode byte
283  return round_to(current_offset, alignment_required()) - current_offset;
284}
285
286// The address of the call instruction needs to be 4-byte aligned to
287// ensure that it does not span a cache line so that it can be patched.
288int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
289  current_offset += pre_call_resets_size();  // skip fldcw, if any
290  current_offset += preserve_SP_size();   // skip mov rbp, rsp
291  current_offset += 1;      // skip call opcode byte
292  return round_to(current_offset, alignment_required()) - current_offset;
293}
294
295// The address of the call instruction needs to be 4-byte aligned to
296// ensure that it does not span a cache line so that it can be patched.
297int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
298  current_offset += pre_call_resets_size();  // skip fldcw, if any
299  current_offset += 5;      // skip MOV instruction
300  current_offset += 1;      // skip call opcode byte
301  return round_to(current_offset, alignment_required()) - current_offset;
302}
303
304// EMIT_RM()
305void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
306  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
307  cbuf.insts()->emit_int8(c);
308}
309
310// EMIT_CC()
311void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
312  unsigned char c = (unsigned char)( f1 | f2 );
313  cbuf.insts()->emit_int8(c);
314}
315
316// EMIT_OPCODE()
317void emit_opcode(CodeBuffer &cbuf, int code) {
318  cbuf.insts()->emit_int8((unsigned char) code);
319}
320
321// EMIT_OPCODE() w/ relocation information
322void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
323  cbuf.relocate(cbuf.insts_mark() + offset, reloc);
324  emit_opcode(cbuf, code);
325}
326
327// EMIT_D8()
328void emit_d8(CodeBuffer &cbuf, int d8) {
329  cbuf.insts()->emit_int8((unsigned char) d8);
330}
331
332// EMIT_D16()
333void emit_d16(CodeBuffer &cbuf, int d16) {
334  cbuf.insts()->emit_int16(d16);
335}
336
337// EMIT_D32()
338void emit_d32(CodeBuffer &cbuf, int d32) {
339  cbuf.insts()->emit_int32(d32);
340}
341
342// emit 32 bit value and construct relocation entry from relocInfo::relocType
343void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
344        int format) {
345  cbuf.relocate(cbuf.insts_mark(), reloc, format);
346  cbuf.insts()->emit_int32(d32);
347}
348
349// emit 32 bit value and construct relocation entry from RelocationHolder
350void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
351        int format) {
352#ifdef ASSERT
353  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
354    assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
355  }
356#endif
357  cbuf.relocate(cbuf.insts_mark(), rspec, format);
358  cbuf.insts()->emit_int32(d32);
359}
360
361// Access stack slot for load or store
362void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
363  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
364  if( -128 <= disp && disp <= 127 ) {
365    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
366    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
367    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
368  } else {
369    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
370    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
371    emit_d32(cbuf, disp);     // Displacement  // R/M byte
372  }
373}
374
375   // rRegI ereg, memory mem) %{    // emit_reg_mem
376void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
377  // There is no index & no scale, use form without SIB byte
378  if ((index == 0x4) &&
379      (scale == 0) && (base != ESP_enc)) {
380    // If no displacement, mode is 0x0; unless base is [EBP]
381    if ( (displace == 0) && (base != EBP_enc) ) {
382      emit_rm(cbuf, 0x0, reg_encoding, base);
383    }
384    else {                    // If 8-bit displacement, mode 0x1
385      if ((displace >= -128) && (displace <= 127)
386          && (disp_reloc == relocInfo::none) ) {
387        emit_rm(cbuf, 0x1, reg_encoding, base);
388        emit_d8(cbuf, displace);
389      }
390      else {                  // If 32-bit displacement
391        if (base == -1) { // Special flag for absolute address
392          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
393          // (manual lies; no SIB needed here)
394          if ( disp_reloc != relocInfo::none ) {
395            emit_d32_reloc(cbuf, displace, disp_reloc, 1);
396          } else {
397            emit_d32      (cbuf, displace);
398          }
399        }
400        else {                // Normal base + offset
401          emit_rm(cbuf, 0x2, reg_encoding, base);
402          if ( disp_reloc != relocInfo::none ) {
403            emit_d32_reloc(cbuf, displace, disp_reloc, 1);
404          } else {
405            emit_d32      (cbuf, displace);
406          }
407        }
408      }
409    }
410  }
411  else {                      // Else, encode with the SIB byte
412    // If no displacement, mode is 0x0; unless base is [EBP]
413    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
414      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
415      emit_rm(cbuf, scale, index, base);
416    }
417    else {                    // If 8-bit displacement, mode 0x1
418      if ((displace >= -128) && (displace <= 127)
419          && (disp_reloc == relocInfo::none) ) {
420        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
421        emit_rm(cbuf, scale, index, base);
422        emit_d8(cbuf, displace);
423      }
424      else {                  // If 32-bit displacement
425        if (base == 0x04 ) {
426          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
427          emit_rm(cbuf, scale, index, 0x04);
428        } else {
429          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
430          emit_rm(cbuf, scale, index, base);
431        }
432        if ( disp_reloc != relocInfo::none ) {
433          emit_d32_reloc(cbuf, displace, disp_reloc, 1);
434        } else {
435          emit_d32      (cbuf, displace);
436        }
437      }
438    }
439  }
440}
441
442
443void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
444  if( dst_encoding == src_encoding ) {
445    // reg-reg copy, use an empty encoding
446  } else {
447    emit_opcode( cbuf, 0x8B );
448    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
449  }
450}
451
452void emit_cmpfp_fixup(MacroAssembler& _masm) {
453  Label exit;
454  __ jccb(Assembler::noParity, exit);
455  __ pushf();
456  //
457  // comiss/ucomiss instructions set ZF,PF,CF flags and
458  // zero OF,AF,SF for NaN values.
459  // Fixup flags by zeroing ZF,PF so that compare of NaN
460  // values returns 'less than' result (CF is set).
461  // Leave the rest of flags unchanged.
462  //
463  //    7 6 5 4 3 2 1 0
464  //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
465  //    0 0 1 0 1 0 1 1   (0x2B)
466  //
467  __ andl(Address(rsp, 0), 0xffffff2b);
468  __ popf();
469  __ bind(exit);
470}
471
472void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
473  Label done;
474  __ movl(dst, -1);
475  __ jcc(Assembler::parity, done);
476  __ jcc(Assembler::below, done);
477  __ setb(Assembler::notEqual, dst);
478  __ movzbl(dst, dst);
479  __ bind(done);
480}
481
482
483//=============================================================================
484const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
485
486int Compile::ConstantTable::calculate_table_base_offset() const {
487  return 0;  // absolute addressing, no offset
488}
489
490void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
491  // Empty encoding
492}
493
494uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
495  return 0;
496}
497
498#ifndef PRODUCT
499void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
500  st->print("# MachConstantBaseNode (empty encoding)");
501}
502#endif
503
504
505//=============================================================================
506#ifndef PRODUCT
507void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
508  Compile* C = ra_->C;
509
510  int framesize = C->frame_slots() << LogBytesPerInt;
511  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
512  // Remove wordSize for return addr which is already pushed.
513  framesize -= wordSize;
514
515  if (C->need_stack_bang(framesize)) {
516    framesize -= wordSize;
517    st->print("# stack bang");
518    st->print("\n\t");
519    st->print("PUSH   EBP\t# Save EBP");
520    if (framesize) {
521      st->print("\n\t");
522      st->print("SUB    ESP, #%d\t# Create frame",framesize);
523    }
524  } else {
525    st->print("SUB    ESP, #%d\t# Create frame",framesize);
526    st->print("\n\t");
527    framesize -= wordSize;
528    st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
529  }
530
531  if (VerifyStackAtCalls) {
532    st->print("\n\t");
533    framesize -= wordSize;
534    st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
535  }
536
537  if( C->in_24_bit_fp_mode() ) {
538    st->print("\n\t");
539    st->print("FLDCW  \t# load 24 bit fpu control word");
540  }
541  if (UseSSE >= 2 && VerifyFPU) {
542    st->print("\n\t");
543    st->print("# verify FPU stack (must be clean on entry)");
544  }
545
546#ifdef ASSERT
547  if (VerifyStackAtCalls) {
548    st->print("\n\t");
549    st->print("# stack alignment check");
550  }
551#endif
552  st->cr();
553}
554#endif
555
556
557void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
558  Compile* C = ra_->C;
559  MacroAssembler _masm(&cbuf);
560
561  int framesize = C->frame_slots() << LogBytesPerInt;
562
563  __ verified_entry(framesize, C->need_stack_bang(framesize), C->in_24_bit_fp_mode());
564
565  C->set_frame_complete(cbuf.insts_size());
566
567  if (C->has_mach_constant_base_node()) {
568    // NOTE: We set the table base offset here because users might be
569    // emitted before MachConstantBaseNode.
570    Compile::ConstantTable& constant_table = C->constant_table();
571    constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
572  }
573}
574
575uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
576  return MachNode::size(ra_); // too many variables; just compute it the hard way
577}
578
579int MachPrologNode::reloc() const {
580  return 0; // a large enough number
581}
582
583//=============================================================================
584#ifndef PRODUCT
585void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
586  Compile *C = ra_->C;
587  int framesize = C->frame_slots() << LogBytesPerInt;
588  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
589  // Remove two words for return addr and rbp,
590  framesize -= 2*wordSize;
591
592  if (C->max_vector_size() > 16) {
593    st->print("VZEROUPPER");
594    st->cr(); st->print("\t");
595  }
596  if (C->in_24_bit_fp_mode()) {
597    st->print("FLDCW  standard control word");
598    st->cr(); st->print("\t");
599  }
600  if (framesize) {
601    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
602    st->cr(); st->print("\t");
603  }
604  st->print_cr("POPL   EBP"); st->print("\t");
605  if (do_polling() && C->is_method_compilation()) {
606    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
607    st->cr(); st->print("\t");
608  }
609}
610#endif
611
612void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
613  Compile *C = ra_->C;
614
615  if (C->max_vector_size() > 16) {
616    // Clear upper bits of YMM registers when current compiled code uses
617    // wide vectors to avoid AVX <-> SSE transition penalty during call.
618    MacroAssembler masm(&cbuf);
619    masm.vzeroupper();
620  }
621  // If method set FPU control word, restore to standard control word
622  if (C->in_24_bit_fp_mode()) {
623    MacroAssembler masm(&cbuf);
624    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
625  }
626
627  int framesize = C->frame_slots() << LogBytesPerInt;
628  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
629  // Remove two words for return addr and rbp,
630  framesize -= 2*wordSize;
631
632  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
633
634  if (framesize >= 128) {
635    emit_opcode(cbuf, 0x81); // add  SP, #framesize
636    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
637    emit_d32(cbuf, framesize);
638  } else if (framesize) {
639    emit_opcode(cbuf, 0x83); // add  SP, #framesize
640    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
641    emit_d8(cbuf, framesize);
642  }
643
644  emit_opcode(cbuf, 0x58 | EBP_enc);
645
646  if (do_polling() && C->is_method_compilation()) {
647    cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
648    emit_opcode(cbuf,0x85);
649    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
650    emit_d32(cbuf, (intptr_t)os::get_polling_page());
651  }
652}
653
654uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
655  Compile *C = ra_->C;
656  // If method set FPU control word, restore to standard control word
657  int size = C->in_24_bit_fp_mode() ? 6 : 0;
658  if (C->max_vector_size() > 16) size += 3; // vzeroupper
659  if (do_polling() && C->is_method_compilation()) size += 6;
660
661  int framesize = C->frame_slots() << LogBytesPerInt;
662  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
663  // Remove two words for return addr and rbp,
664  framesize -= 2*wordSize;
665
666  size++; // popl rbp,
667
668  if (framesize >= 128) {
669    size += 6;
670  } else {
671    size += framesize ? 3 : 0;
672  }
673  return size;
674}
675
676int MachEpilogNode::reloc() const {
677  return 0; // a large enough number
678}
679
680const Pipeline * MachEpilogNode::pipeline() const {
681  return MachNode::pipeline_class();
682}
683
684int MachEpilogNode::safepoint_offset() const { return 0; }
685
686//=============================================================================
687
688enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
689static enum RC rc_class( OptoReg::Name reg ) {
690
691  if( !OptoReg::is_valid(reg)  ) return rc_bad;
692  if (OptoReg::is_stack(reg)) return rc_stack;
693
694  VMReg r = OptoReg::as_VMReg(reg);
695  if (r->is_Register()) return rc_int;
696  if (r->is_FloatRegister()) {
697    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
698    return rc_float;
699  }
700  assert(r->is_XMMRegister(), "must be");
701  return rc_xmm;
702}
703
704static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
705                        int opcode, const char *op_str, int size, outputStream* st ) {
706  if( cbuf ) {
707    emit_opcode  (*cbuf, opcode );
708    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
709#ifndef PRODUCT
710  } else if( !do_size ) {
711    if( size != 0 ) st->print("\n\t");
712    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
713      if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
714      else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
715    } else { // FLD, FST, PUSH, POP
716      st->print("%s [ESP + #%d]",op_str,offset);
717    }
718#endif
719  }
720  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
721  return size+3+offset_size;
722}
723
724// Helper for XMM registers.  Extra opcode bits, limited syntax.
725static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
726                         int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
727  if (cbuf) {
728    MacroAssembler _masm(cbuf);
729    if (reg_lo+1 == reg_hi) { // double move?
730      if (is_load) {
731        __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
732      } else {
733        __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
734      }
735    } else {
736      if (is_load) {
737        __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
738      } else {
739        __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
740      }
741    }
742#ifndef PRODUCT
743  } else if (!do_size) {
744    if (size != 0) st->print("\n\t");
745    if (reg_lo+1 == reg_hi) { // double move?
746      if (is_load) st->print("%s %s,[ESP + #%d]",
747                              UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
748                              Matcher::regName[reg_lo], offset);
749      else         st->print("MOVSD  [ESP + #%d],%s",
750                              offset, Matcher::regName[reg_lo]);
751    } else {
752      if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
753                              Matcher::regName[reg_lo], offset);
754      else         st->print("MOVSS  [ESP + #%d],%s",
755                              offset, Matcher::regName[reg_lo]);
756    }
757#endif
758  }
759  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
760  // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
761  return size+5+offset_size;
762}
763
764
765static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
766                            int src_hi, int dst_hi, int size, outputStream* st ) {
767  if (cbuf) {
768    MacroAssembler _masm(cbuf);
769    if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
770      __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
771                as_XMMRegister(Matcher::_regEncode[src_lo]));
772    } else {
773      __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
774                as_XMMRegister(Matcher::_regEncode[src_lo]));
775    }
776#ifndef PRODUCT
777  } else if (!do_size) {
778    if (size != 0) st->print("\n\t");
779    if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
780      if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
781        st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
782      } else {
783        st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
784      }
785    } else {
786      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
787        st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
788      } else {
789        st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
790      }
791    }
792#endif
793  }
794  // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
795  // Only MOVAPS SSE prefix uses 1 byte.
796  int sz = 4;
797  if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
798      UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
799  return size + sz;
800}
801
802static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
803                            int src_hi, int dst_hi, int size, outputStream* st ) {
804  // 32-bit
805  if (cbuf) {
806    MacroAssembler _masm(cbuf);
807    __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
808             as_Register(Matcher::_regEncode[src_lo]));
809#ifndef PRODUCT
810  } else if (!do_size) {
811    st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
812#endif
813  }
814  return 4;
815}
816
817
818static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
819                                 int src_hi, int dst_hi, int size, outputStream* st ) {
820  // 32-bit
821  if (cbuf) {
822    MacroAssembler _masm(cbuf);
823    __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
824             as_XMMRegister(Matcher::_regEncode[src_lo]));
825#ifndef PRODUCT
826  } else if (!do_size) {
827    st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
828#endif
829  }
830  return 4;
831}
832
833static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
834  if( cbuf ) {
835    emit_opcode(*cbuf, 0x8B );
836    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
837#ifndef PRODUCT
838  } else if( !do_size ) {
839    if( size != 0 ) st->print("\n\t");
840    st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
841#endif
842  }
843  return size+2;
844}
845
846static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
847                                 int offset, int size, outputStream* st ) {
848  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
849    if( cbuf ) {
850      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
851      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
852#ifndef PRODUCT
853    } else if( !do_size ) {
854      if( size != 0 ) st->print("\n\t");
855      st->print("FLD    %s",Matcher::regName[src_lo]);
856#endif
857    }
858    size += 2;
859  }
860
861  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
862  const char *op_str;
863  int op;
864  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
865    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
866    op = 0xDD;
867  } else {                   // 32-bit store
868    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
869    op = 0xD9;
870    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
871  }
872
873  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
874}
875
876// Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
877static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
878                          int src_hi, int dst_hi, uint ireg, outputStream* st);
879
880static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
881                            int stack_offset, int reg, uint ireg, outputStream* st);
882
883static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
884                                     int dst_offset, uint ireg, outputStream* st) {
885  int calc_size = 0;
886  int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
887  int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
888  switch (ireg) {
889  case Op_VecS:
890    calc_size = 3+src_offset_size + 3+dst_offset_size;
891    break;
892  case Op_VecD:
893    calc_size = 3+src_offset_size + 3+dst_offset_size;
894    src_offset += 4;
895    dst_offset += 4;
896    src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
897    dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
898    calc_size += 3+src_offset_size + 3+dst_offset_size;
899    break;
900  case Op_VecX:
901    calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
902    break;
903  case Op_VecY:
904    calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
905    break;
906  default:
907    ShouldNotReachHere();
908  }
909  if (cbuf) {
910    MacroAssembler _masm(cbuf);
911    int offset = __ offset();
912    switch (ireg) {
913    case Op_VecS:
914      __ pushl(Address(rsp, src_offset));
915      __ popl (Address(rsp, dst_offset));
916      break;
917    case Op_VecD:
918      __ pushl(Address(rsp, src_offset));
919      __ popl (Address(rsp, dst_offset));
920      __ pushl(Address(rsp, src_offset+4));
921      __ popl (Address(rsp, dst_offset+4));
922      break;
923    case Op_VecX:
924      __ movdqu(Address(rsp, -16), xmm0);
925      __ movdqu(xmm0, Address(rsp, src_offset));
926      __ movdqu(Address(rsp, dst_offset), xmm0);
927      __ movdqu(xmm0, Address(rsp, -16));
928      break;
929    case Op_VecY:
930      __ vmovdqu(Address(rsp, -32), xmm0);
931      __ vmovdqu(xmm0, Address(rsp, src_offset));
932      __ vmovdqu(Address(rsp, dst_offset), xmm0);
933      __ vmovdqu(xmm0, Address(rsp, -32));
934      break;
935    default:
936      ShouldNotReachHere();
937    }
938    int size = __ offset() - offset;
939    assert(size == calc_size, "incorrect size calculattion");
940    return size;
941#ifndef PRODUCT
942  } else if (!do_size) {
943    switch (ireg) {
944    case Op_VecS:
945      st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
946                "popl    [rsp + #%d]",
947                src_offset, dst_offset);
948      break;
949    case Op_VecD:
950      st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
951                "popq    [rsp + #%d]\n\t"
952                "pushl   [rsp + #%d]\n\t"
953                "popq    [rsp + #%d]",
954                src_offset, dst_offset, src_offset+4, dst_offset+4);
955      break;
956     case Op_VecX:
957      st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
958                "movdqu  xmm0, [rsp + #%d]\n\t"
959                "movdqu  [rsp + #%d], xmm0\n\t"
960                "movdqu  xmm0, [rsp - #16]",
961                src_offset, dst_offset);
962      break;
963    case Op_VecY:
964      st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
965                "vmovdqu xmm0, [rsp + #%d]\n\t"
966                "vmovdqu [rsp + #%d], xmm0\n\t"
967                "vmovdqu xmm0, [rsp - #32]",
968                src_offset, dst_offset);
969      break;
970    default:
971      ShouldNotReachHere();
972    }
973#endif
974  }
975  return calc_size;
976}
977
978uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
979  // Get registers to move
980  OptoReg::Name src_second = ra_->get_reg_second(in(1));
981  OptoReg::Name src_first = ra_->get_reg_first(in(1));
982  OptoReg::Name dst_second = ra_->get_reg_second(this );
983  OptoReg::Name dst_first = ra_->get_reg_first(this );
984
985  enum RC src_second_rc = rc_class(src_second);
986  enum RC src_first_rc = rc_class(src_first);
987  enum RC dst_second_rc = rc_class(dst_second);
988  enum RC dst_first_rc = rc_class(dst_first);
989
990  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
991
992  // Generate spill code!
993  int size = 0;
994
995  if( src_first == dst_first && src_second == dst_second )
996    return size;            // Self copy, no move
997
998  if (bottom_type()->isa_vect() != NULL) {
999    uint ireg = ideal_reg();
1000    assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1001    assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1002    assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1003    if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1004      // mem -> mem
1005      int src_offset = ra_->reg2offset(src_first);
1006      int dst_offset = ra_->reg2offset(dst_first);
1007      return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1008    } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1009      return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1010    } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1011      int stack_offset = ra_->reg2offset(dst_first);
1012      return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1013    } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1014      int stack_offset = ra_->reg2offset(src_first);
1015      return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1016    } else {
1017      ShouldNotReachHere();
1018    }
1019  }
1020
1021  // --------------------------------------
1022  // Check for mem-mem move.  push/pop to move.
1023  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1024    if( src_second == dst_first ) { // overlapping stack copy ranges
1025      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1026      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1027      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1028      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1029    }
1030    // move low bits
1031    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1032    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1033    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1034      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1035      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1036    }
1037    return size;
1038  }
1039
1040  // --------------------------------------
1041  // Check for integer reg-reg copy
1042  if( src_first_rc == rc_int && dst_first_rc == rc_int )
1043    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1044
1045  // Check for integer store
1046  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1047    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1048
1049  // Check for integer load
1050  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1051    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1052
1053  // Check for integer reg-xmm reg copy
1054  if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1055    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1056            "no 64 bit integer-float reg moves" );
1057    return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1058  }
1059  // --------------------------------------
1060  // Check for float reg-reg copy
1061  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1062    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1063            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1064    if( cbuf ) {
1065
1066      // Note the mucking with the register encode to compensate for the 0/1
1067      // indexing issue mentioned in a comment in the reg_def sections
1068      // for FPR registers many lines above here.
1069
1070      if( src_first != FPR1L_num ) {
1071        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1072        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1073        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1074        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1075     } else {
1076        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1077        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1078     }
1079#ifndef PRODUCT
1080    } else if( !do_size ) {
1081      if( size != 0 ) st->print("\n\t");
1082      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1083      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1084#endif
1085    }
1086    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1087  }
1088
1089  // Check for float store
1090  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1091    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1092  }
1093
1094  // Check for float load
1095  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1096    int offset = ra_->reg2offset(src_first);
1097    const char *op_str;
1098    int op;
1099    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1100      op_str = "FLD_D";
1101      op = 0xDD;
1102    } else {                   // 32-bit load
1103      op_str = "FLD_S";
1104      op = 0xD9;
1105      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1106    }
1107    if( cbuf ) {
1108      emit_opcode  (*cbuf, op );
1109      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1110      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1111      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1112#ifndef PRODUCT
1113    } else if( !do_size ) {
1114      if( size != 0 ) st->print("\n\t");
1115      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1116#endif
1117    }
1118    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1119    return size + 3+offset_size+2;
1120  }
1121
1122  // Check for xmm reg-reg copy
1123  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1124    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1125            (src_first+1 == src_second && dst_first+1 == dst_second),
1126            "no non-adjacent float-moves" );
1127    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1128  }
1129
1130  // Check for xmm reg-integer reg copy
1131  if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1132    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1133            "no 64 bit float-integer reg moves" );
1134    return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1135  }
1136
1137  // Check for xmm store
1138  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1139    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1140  }
1141
1142  // Check for float xmm load
1143  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1144    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1145  }
1146
1147  // Copy from float reg to xmm reg
1148  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1149    // copy to the top of stack from floating point reg
1150    // and use LEA to preserve flags
1151    if( cbuf ) {
1152      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1153      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1154      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1155      emit_d8(*cbuf,0xF8);
1156#ifndef PRODUCT
1157    } else if( !do_size ) {
1158      if( size != 0 ) st->print("\n\t");
1159      st->print("LEA    ESP,[ESP-8]");
1160#endif
1161    }
1162    size += 4;
1163
1164    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1165
1166    // Copy from the temp memory to the xmm reg.
1167    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1168
1169    if( cbuf ) {
1170      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1171      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1172      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1173      emit_d8(*cbuf,0x08);
1174#ifndef PRODUCT
1175    } else if( !do_size ) {
1176      if( size != 0 ) st->print("\n\t");
1177      st->print("LEA    ESP,[ESP+8]");
1178#endif
1179    }
1180    size += 4;
1181    return size;
1182  }
1183
1184  assert( size > 0, "missed a case" );
1185
1186  // --------------------------------------------------------------------
1187  // Check for second bits still needing moving.
1188  if( src_second == dst_second )
1189    return size;               // Self copy; no move
1190  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1191
1192  // Check for second word int-int move
1193  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1194    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1195
1196  // Check for second word integer store
1197  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1198    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1199
1200  // Check for second word integer load
1201  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1202    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1203
1204
1205  Unimplemented();
1206}
1207
1208#ifndef PRODUCT
1209void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1210  implementation( NULL, ra_, false, st );
1211}
1212#endif
1213
1214void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1215  implementation( &cbuf, ra_, false, NULL );
1216}
1217
1218uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1219  return implementation( NULL, ra_, true, NULL );
1220}
1221
1222
1223//=============================================================================
1224#ifndef PRODUCT
1225void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1226  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1227  int reg = ra_->get_reg_first(this);
1228  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1229}
1230#endif
1231
1232void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1234  int reg = ra_->get_encode(this);
1235  if( offset >= 128 ) {
1236    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1237    emit_rm(cbuf, 0x2, reg, 0x04);
1238    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1239    emit_d32(cbuf, offset);
1240  }
1241  else {
1242    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1243    emit_rm(cbuf, 0x1, reg, 0x04);
1244    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1245    emit_d8(cbuf, offset);
1246  }
1247}
1248
1249uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1250  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1251  if( offset >= 128 ) {
1252    return 7;
1253  }
1254  else {
1255    return 4;
1256  }
1257}
1258
1259//=============================================================================
1260
1261// emit call stub, compiled java to interpreter
1262void emit_java_to_interp(CodeBuffer &cbuf ) {
1263  // Stub is fixed up when the corresponding call is converted from calling
1264  // compiled code to calling interpreted code.
1265  // mov rbx,0
1266  // jmp -1
1267
1268  address mark = cbuf.insts_mark();  // get mark within main instrs section
1269
1270  // Note that the code buffer's insts_mark is always relative to insts.
1271  // That's why we must use the macroassembler to generate a stub.
1272  MacroAssembler _masm(&cbuf);
1273
1274  address base =
1275  __ start_a_stub(Compile::MAX_stubs_size);
1276  if (base == NULL)  return;  // CodeBuffer::expand failed
1277  // static stub relocation stores the instruction address of the call
1278  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1279  // static stub relocation also tags the Method* in the code-stream.
1280  __ mov_metadata(rbx, (Metadata*)NULL);  // method is zapped till fixup time
1281  // This is recognized as unresolved by relocs/nativeInst/ic code
1282  __ jump(RuntimeAddress(__ pc()));
1283
1284  __ end_a_stub();
1285  // Update current stubs pointer and restore insts_end.
1286}
1287// size of call stub, compiled java to interpretor
1288uint size_java_to_interp() {
1289  return 10;  // movl; jmp
1290}
1291// relocation entries for call stub, compiled java to interpretor
1292uint reloc_java_to_interp() {
1293  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1294}
1295
1296//=============================================================================
1297#ifndef PRODUCT
1298void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1299  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1300  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1301  st->print_cr("\tNOP");
1302  st->print_cr("\tNOP");
1303  if( !OptoBreakpoint )
1304    st->print_cr("\tNOP");
1305}
1306#endif
1307
1308void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1309  MacroAssembler masm(&cbuf);
1310#ifdef ASSERT
1311  uint insts_size = cbuf.insts_size();
1312#endif
1313  masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1314  masm.jump_cc(Assembler::notEqual,
1315               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1316  /* WARNING these NOPs are critical so that verified entry point is properly
1317     aligned for patching by NativeJump::patch_verified_entry() */
1318  int nops_cnt = 2;
1319  if( !OptoBreakpoint ) // Leave space for int3
1320     nops_cnt += 1;
1321  masm.nop(nops_cnt);
1322
1323  assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1324}
1325
1326uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1327  return OptoBreakpoint ? 11 : 12;
1328}
1329
1330
1331//=============================================================================
1332uint size_exception_handler() {
1333  // NativeCall instruction size is the same as NativeJump.
1334  // exception handler starts out as jump and can be patched to
1335  // a call be deoptimization.  (4932387)
1336  // Note that this value is also credited (in output.cpp) to
1337  // the size of the code section.
1338  return NativeJump::instruction_size;
1339}
1340
1341// Emit exception handler code.  Stuff framesize into a register
1342// and call a VM stub routine.
1343int emit_exception_handler(CodeBuffer& cbuf) {
1344
1345  // Note that the code buffer's insts_mark is always relative to insts.
1346  // That's why we must use the macroassembler to generate a handler.
1347  MacroAssembler _masm(&cbuf);
1348  address base =
1349  __ start_a_stub(size_exception_handler());
1350  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1351  int offset = __ offset();
1352  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1353  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1354  __ end_a_stub();
1355  return offset;
1356}
1357
1358uint size_deopt_handler() {
1359  // NativeCall instruction size is the same as NativeJump.
1360  // exception handler starts out as jump and can be patched to
1361  // a call be deoptimization.  (4932387)
1362  // Note that this value is also credited (in output.cpp) to
1363  // the size of the code section.
1364  return 5 + NativeJump::instruction_size; // pushl(); jmp;
1365}
1366
1367// Emit deopt handler code.
1368int emit_deopt_handler(CodeBuffer& cbuf) {
1369
1370  // Note that the code buffer's insts_mark is always relative to insts.
1371  // That's why we must use the macroassembler to generate a handler.
1372  MacroAssembler _masm(&cbuf);
1373  address base =
1374  __ start_a_stub(size_exception_handler());
1375  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1376  int offset = __ offset();
1377  InternalAddress here(__ pc());
1378  __ pushptr(here.addr());
1379
1380  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1381  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1382  __ end_a_stub();
1383  return offset;
1384}
1385
1386int Matcher::regnum_to_fpu_offset(int regnum) {
1387  return regnum - 32; // The FP registers are in the second chunk
1388}
1389
1390// This is UltraSparc specific, true just means we have fast l2f conversion
1391const bool Matcher::convL2FSupported(void) {
1392  return true;
1393}
1394
1395// Is this branch offset short enough that a short branch can be used?
1396//
1397// NOTE: If the platform does not provide any short branch variants, then
1398//       this method should return false for offset 0.
1399bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1400  // The passed offset is relative to address of the branch.
1401  // On 86 a branch displacement is calculated relative to address
1402  // of a next instruction.
1403  offset -= br_size;
1404
1405  // the short version of jmpConUCF2 contains multiple branches,
1406  // making the reach slightly less
1407  if (rule == jmpConUCF2_rule)
1408    return (-126 <= offset && offset <= 125);
1409  return (-128 <= offset && offset <= 127);
1410}
1411
1412const bool Matcher::isSimpleConstant64(jlong value) {
1413  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1414  return false;
1415}
1416
1417// The ecx parameter to rep stos for the ClearArray node is in dwords.
1418const bool Matcher::init_array_count_is_in_bytes = false;
1419
1420// Threshold size for cleararray.
1421const int Matcher::init_array_short_size = 8 * BytesPerLong;
1422
1423// Needs 2 CMOV's for longs.
1424const int Matcher::long_cmove_cost() { return 1; }
1425
1426// No CMOVF/CMOVD with SSE/SSE2
1427const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1428
1429// Should the Matcher clone shifts on addressing modes, expecting them to
1430// be subsumed into complex addressing expressions or compute them into
1431// registers?  True for Intel but false for most RISCs
1432const bool Matcher::clone_shift_expressions = true;
1433
1434// Do we need to mask the count passed to shift instructions or does
1435// the cpu only look at the lower 5/6 bits anyway?
1436const bool Matcher::need_masked_shift_count = false;
1437
1438bool Matcher::narrow_oop_use_complex_address() {
1439  ShouldNotCallThis();
1440  return true;
1441}
1442
1443bool Matcher::narrow_klass_use_complex_address() {
1444  ShouldNotCallThis();
1445  return true;
1446}
1447
1448
1449// Is it better to copy float constants, or load them directly from memory?
1450// Intel can load a float constant from a direct address, requiring no
1451// extra registers.  Most RISCs will have to materialize an address into a
1452// register first, so they would do better to copy the constant from stack.
1453const bool Matcher::rematerialize_float_constants = true;
1454
1455// If CPU can load and store mis-aligned doubles directly then no fixup is
1456// needed.  Else we split the double into 2 integer pieces and move it
1457// piece-by-piece.  Only happens when passing doubles into C code as the
1458// Java calling convention forces doubles to be aligned.
1459const bool Matcher::misaligned_doubles_ok = true;
1460
1461
1462void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1463  // Get the memory operand from the node
1464  uint numopnds = node->num_opnds();        // Virtual call for number of operands
1465  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1466  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1467  uint opcnt     = 1;                 // First operand
1468  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1469  while( idx >= skipped+num_edges ) {
1470    skipped += num_edges;
1471    opcnt++;                          // Bump operand count
1472    assert( opcnt < numopnds, "Accessing non-existent operand" );
1473    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1474  }
1475
1476  MachOper *memory = node->_opnds[opcnt];
1477  MachOper *new_memory = NULL;
1478  switch (memory->opcode()) {
1479  case DIRECT:
1480  case INDOFFSET32X:
1481    // No transformation necessary.
1482    return;
1483  case INDIRECT:
1484    new_memory = new (C) indirect_win95_safeOper( );
1485    break;
1486  case INDOFFSET8:
1487    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1488    break;
1489  case INDOFFSET32:
1490    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1491    break;
1492  case INDINDEXOFFSET:
1493    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1494    break;
1495  case INDINDEXSCALE:
1496    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1497    break;
1498  case INDINDEXSCALEOFFSET:
1499    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1500    break;
1501  case LOAD_LONG_INDIRECT:
1502  case LOAD_LONG_INDOFFSET32:
1503    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1504    return;
1505  default:
1506    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1507    return;
1508  }
1509  node->_opnds[opcnt] = new_memory;
1510}
1511
1512// Advertise here if the CPU requires explicit rounding operations
1513// to implement the UseStrictFP mode.
1514const bool Matcher::strict_fp_requires_explicit_rounding = true;
1515
1516// Are floats conerted to double when stored to stack during deoptimization?
1517// On x32 it is stored with convertion only when FPU is used for floats.
1518bool Matcher::float_in_double() { return (UseSSE == 0); }
1519
1520// Do ints take an entire long register or just half?
1521const bool Matcher::int_in_long = false;
1522
1523// Return whether or not this register is ever used as an argument.  This
1524// function is used on startup to build the trampoline stubs in generateOptoStub.
1525// Registers not mentioned will be killed by the VM call in the trampoline, and
1526// arguments in those registers not be available to the callee.
1527bool Matcher::can_be_java_arg( int reg ) {
1528  if(  reg == ECX_num   || reg == EDX_num   ) return true;
1529  if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1530  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1531  return false;
1532}
1533
1534bool Matcher::is_spillable_arg( int reg ) {
1535  return can_be_java_arg(reg);
1536}
1537
1538bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1539  // Use hardware integer DIV instruction when
1540  // it is faster than a code which use multiply.
1541  // Only when constant divisor fits into 32 bit
1542  // (min_jint is excluded to get only correct
1543  // positive 32 bit values from negative).
1544  return VM_Version::has_fast_idiv() &&
1545         (divisor == (int)divisor && divisor != min_jint);
1546}
1547
1548// Register for DIVI projection of divmodI
1549RegMask Matcher::divI_proj_mask() {
1550  return EAX_REG_mask();
1551}
1552
1553// Register for MODI projection of divmodI
1554RegMask Matcher::modI_proj_mask() {
1555  return EDX_REG_mask();
1556}
1557
1558// Register for DIVL projection of divmodL
1559RegMask Matcher::divL_proj_mask() {
1560  ShouldNotReachHere();
1561  return RegMask();
1562}
1563
1564// Register for MODL projection of divmodL
1565RegMask Matcher::modL_proj_mask() {
1566  ShouldNotReachHere();
1567  return RegMask();
1568}
1569
1570const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1571  return EBP_REG_mask();
1572}
1573
1574// Returns true if the high 32 bits of the value is known to be zero.
1575bool is_operand_hi32_zero(Node* n) {
1576  int opc = n->Opcode();
1577  if (opc == Op_AndL) {
1578    Node* o2 = n->in(2);
1579    if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1580      return true;
1581    }
1582  }
1583  if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1584    return true;
1585  }
1586  return false;
1587}
1588
1589%}
1590
1591//----------ENCODING BLOCK-----------------------------------------------------
1592// This block specifies the encoding classes used by the compiler to output
1593// byte streams.  Encoding classes generate functions which are called by
1594// Machine Instruction Nodes in order to generate the bit encoding of the
1595// instruction.  Operands specify their base encoding interface with the
1596// interface keyword.  There are currently supported four interfaces,
1597// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1598// operand to generate a function which returns its register number when
1599// queried.   CONST_INTER causes an operand to generate a function which
1600// returns the value of the constant when queried.  MEMORY_INTER causes an
1601// operand to generate four functions which return the Base Register, the
1602// Index Register, the Scale Value, and the Offset Value of the operand when
1603// queried.  COND_INTER causes an operand to generate six functions which
1604// return the encoding code (ie - encoding bits for the instruction)
1605// associated with each basic boolean condition for a conditional instruction.
1606// Instructions specify two basic values for encoding.  They use the
1607// ins_encode keyword to specify their encoding class (which must be one of
1608// the class names specified in the encoding block), and they use the
1609// opcode keyword to specify, in order, their primary, secondary, and
1610// tertiary opcode.  Only the opcode sections which a particular instruction
1611// needs for encoding need to be specified.
1612encode %{
1613  // Build emit functions for each basic byte or larger field in the intel
1614  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1615  // code in the enc_class source block.  Emit functions will live in the
1616  // main source block for now.  In future, we can generalize this by
1617  // adding a syntax that specifies the sizes of fields in an order,
1618  // so that the adlc can build the emit functions automagically
1619
1620  // Emit primary opcode
1621  enc_class OpcP %{
1622    emit_opcode(cbuf, $primary);
1623  %}
1624
1625  // Emit secondary opcode
1626  enc_class OpcS %{
1627    emit_opcode(cbuf, $secondary);
1628  %}
1629
1630  // Emit opcode directly
1631  enc_class Opcode(immI d8) %{
1632    emit_opcode(cbuf, $d8$$constant);
1633  %}
1634
1635  enc_class SizePrefix %{
1636    emit_opcode(cbuf,0x66);
1637  %}
1638
1639  enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1640    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1641  %}
1642
1643  enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1644    emit_opcode(cbuf,$opcode$$constant);
1645    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1646  %}
1647
1648  enc_class mov_r32_imm0( rRegI dst ) %{
1649    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1650    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1651  %}
1652
1653  enc_class cdq_enc %{
1654    // Full implementation of Java idiv and irem; checks for
1655    // special case as described in JVM spec., p.243 & p.271.
1656    //
1657    //         normal case                           special case
1658    //
1659    // input : rax,: dividend                         min_int
1660    //         reg: divisor                          -1
1661    //
1662    // output: rax,: quotient  (= rax, idiv reg)       min_int
1663    //         rdx: remainder (= rax, irem reg)       0
1664    //
1665    //  Code sequnce:
1666    //
1667    //  81 F8 00 00 00 80    cmp         rax,80000000h
1668    //  0F 85 0B 00 00 00    jne         normal_case
1669    //  33 D2                xor         rdx,edx
1670    //  83 F9 FF             cmp         rcx,0FFh
1671    //  0F 84 03 00 00 00    je          done
1672    //                  normal_case:
1673    //  99                   cdq
1674    //  F7 F9                idiv        rax,ecx
1675    //                  done:
1676    //
1677    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1678    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1679    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1680    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1681    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1682    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1683    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1684    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1685    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1686    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1687    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1688    // normal_case:
1689    emit_opcode(cbuf,0x99);                                         // cdq
1690    // idiv (note: must be emitted by the user of this rule)
1691    // normal:
1692  %}
1693
1694  // Dense encoding for older common ops
1695  enc_class Opc_plus(immI opcode, rRegI reg) %{
1696    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1697  %}
1698
1699
1700  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1701  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1702    // Check for 8-bit immediate, and set sign extend bit in opcode
1703    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1704      emit_opcode(cbuf, $primary | 0x02);
1705    }
1706    else {                          // If 32-bit immediate
1707      emit_opcode(cbuf, $primary);
1708    }
1709  %}
1710
1711  enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1712    // Emit primary opcode and set sign-extend bit
1713    // Check for 8-bit immediate, and set sign extend bit in opcode
1714    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1715      emit_opcode(cbuf, $primary | 0x02);    }
1716    else {                          // If 32-bit immediate
1717      emit_opcode(cbuf, $primary);
1718    }
1719    // Emit r/m byte with secondary opcode, after primary opcode.
1720    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1721  %}
1722
1723  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1724    // Check for 8-bit immediate, and set sign extend bit in opcode
1725    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1726      $$$emit8$imm$$constant;
1727    }
1728    else {                          // If 32-bit immediate
1729      // Output immediate
1730      $$$emit32$imm$$constant;
1731    }
1732  %}
1733
1734  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1735    // Emit primary opcode and set sign-extend bit
1736    // Check for 8-bit immediate, and set sign extend bit in opcode
1737    int con = (int)$imm$$constant; // Throw away top bits
1738    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1739    // Emit r/m byte with secondary opcode, after primary opcode.
1740    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1741    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1742    else                               emit_d32(cbuf,con);
1743  %}
1744
1745  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1746    // Emit primary opcode and set sign-extend bit
1747    // Check for 8-bit immediate, and set sign extend bit in opcode
1748    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1749    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1750    // Emit r/m byte with tertiary opcode, after primary opcode.
1751    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1752    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1753    else                               emit_d32(cbuf,con);
1754  %}
1755
1756  enc_class OpcSReg (rRegI dst) %{    // BSWAP
1757    emit_cc(cbuf, $secondary, $dst$$reg );
1758  %}
1759
1760  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1761    int destlo = $dst$$reg;
1762    int desthi = HIGH_FROM_LOW(destlo);
1763    // bswap lo
1764    emit_opcode(cbuf, 0x0F);
1765    emit_cc(cbuf, 0xC8, destlo);
1766    // bswap hi
1767    emit_opcode(cbuf, 0x0F);
1768    emit_cc(cbuf, 0xC8, desthi);
1769    // xchg lo and hi
1770    emit_opcode(cbuf, 0x87);
1771    emit_rm(cbuf, 0x3, destlo, desthi);
1772  %}
1773
1774  enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1775    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1776  %}
1777
1778  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1779    $$$emit8$primary;
1780    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1781  %}
1782
1783  enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1784    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1785    emit_d8(cbuf, op >> 8 );
1786    emit_d8(cbuf, op & 255);
1787  %}
1788
1789  // emulate a CMOV with a conditional branch around a MOV
1790  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1791    // Invert sense of branch from sense of CMOV
1792    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1793    emit_d8( cbuf, $brOffs$$constant );
1794  %}
1795
1796  enc_class enc_PartialSubtypeCheck( ) %{
1797    Register Redi = as_Register(EDI_enc); // result register
1798    Register Reax = as_Register(EAX_enc); // super class
1799    Register Recx = as_Register(ECX_enc); // killed
1800    Register Resi = as_Register(ESI_enc); // sub class
1801    Label miss;
1802
1803    MacroAssembler _masm(&cbuf);
1804    __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1805                                     NULL, &miss,
1806                                     /*set_cond_codes:*/ true);
1807    if ($primary) {
1808      __ xorptr(Redi, Redi);
1809    }
1810    __ bind(miss);
1811  %}
1812
1813  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1814    MacroAssembler masm(&cbuf);
1815    int start = masm.offset();
1816    if (UseSSE >= 2) {
1817      if (VerifyFPU) {
1818        masm.verify_FPU(0, "must be empty in SSE2+ mode");
1819      }
1820    } else {
1821      // External c_calling_convention expects the FPU stack to be 'clean'.
1822      // Compiled code leaves it dirty.  Do cleanup now.
1823      masm.empty_FPU_stack();
1824    }
1825    if (sizeof_FFree_Float_Stack_All == -1) {
1826      sizeof_FFree_Float_Stack_All = masm.offset() - start;
1827    } else {
1828      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1829    }
1830  %}
1831
1832  enc_class Verify_FPU_For_Leaf %{
1833    if( VerifyFPU ) {
1834      MacroAssembler masm(&cbuf);
1835      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1836    }
1837  %}
1838
1839  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1840    // This is the instruction starting address for relocation info.
1841    cbuf.set_insts_mark();
1842    $$$emit8$primary;
1843    // CALL directly to the runtime
1844    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1845                runtime_call_Relocation::spec(), RELOC_IMM32 );
1846
1847    if (UseSSE >= 2) {
1848      MacroAssembler _masm(&cbuf);
1849      BasicType rt = tf()->return_type();
1850
1851      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1852        // A C runtime call where the return value is unused.  In SSE2+
1853        // mode the result needs to be removed from the FPU stack.  It's
1854        // likely that this function call could be removed by the
1855        // optimizer if the C function is a pure function.
1856        __ ffree(0);
1857      } else if (rt == T_FLOAT) {
1858        __ lea(rsp, Address(rsp, -4));
1859        __ fstp_s(Address(rsp, 0));
1860        __ movflt(xmm0, Address(rsp, 0));
1861        __ lea(rsp, Address(rsp,  4));
1862      } else if (rt == T_DOUBLE) {
1863        __ lea(rsp, Address(rsp, -8));
1864        __ fstp_d(Address(rsp, 0));
1865        __ movdbl(xmm0, Address(rsp, 0));
1866        __ lea(rsp, Address(rsp,  8));
1867      }
1868    }
1869  %}
1870
1871
1872  enc_class pre_call_resets %{
1873    // If method sets FPU control word restore it here
1874    debug_only(int off0 = cbuf.insts_size());
1875    if (ra_->C->in_24_bit_fp_mode()) {
1876      MacroAssembler _masm(&cbuf);
1877      __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1878    }
1879    if (ra_->C->max_vector_size() > 16) {
1880      // Clear upper bits of YMM registers when current compiled code uses
1881      // wide vectors to avoid AVX <-> SSE transition penalty during call.
1882      MacroAssembler _masm(&cbuf);
1883      __ vzeroupper();
1884    }
1885    debug_only(int off1 = cbuf.insts_size());
1886    assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1887  %}
1888
1889  enc_class post_call_FPU %{
1890    // If method sets FPU control word do it here also
1891    if (Compile::current()->in_24_bit_fp_mode()) {
1892      MacroAssembler masm(&cbuf);
1893      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1894    }
1895  %}
1896
1897  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1898    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1899    // who we intended to call.
1900    cbuf.set_insts_mark();
1901    $$$emit8$primary;
1902    if (!_method) {
1903      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1904                     runtime_call_Relocation::spec(), RELOC_IMM32 );
1905    } else if (_optimized_virtual) {
1906      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1907                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1908    } else {
1909      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1910                     static_call_Relocation::spec(), RELOC_IMM32 );
1911    }
1912    if (_method) {  // Emit stub for static call
1913      emit_java_to_interp(cbuf);
1914    }
1915  %}
1916
1917  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1918    MacroAssembler _masm(&cbuf);
1919    __ ic_call((address)$meth$$method);
1920  %}
1921
1922  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1923    int disp = in_bytes(Method::from_compiled_offset());
1924    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1925
1926    // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1927    cbuf.set_insts_mark();
1928    $$$emit8$primary;
1929    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1930    emit_d8(cbuf, disp);             // Displacement
1931
1932  %}
1933
1934//   Following encoding is no longer used, but may be restored if calling
1935//   convention changes significantly.
1936//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1937//
1938//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1939//     // int ic_reg     = Matcher::inline_cache_reg();
1940//     // int ic_encode  = Matcher::_regEncode[ic_reg];
1941//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1942//     // int imo_encode = Matcher::_regEncode[imo_reg];
1943//
1944//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1945//     // // so we load it immediately before the call
1946//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1947//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1948//
1949//     // xor rbp,ebp
1950//     emit_opcode(cbuf, 0x33);
1951//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1952//
1953//     // CALL to interpreter.
1954//     cbuf.set_insts_mark();
1955//     $$$emit8$primary;
1956//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1957//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1958//   %}
1959
1960  enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1961    $$$emit8$primary;
1962    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1963    $$$emit8$shift$$constant;
1964  %}
1965
1966  enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1967    // Load immediate does not have a zero or sign extended version
1968    // for 8-bit immediates
1969    emit_opcode(cbuf, 0xB8 + $dst$$reg);
1970    $$$emit32$src$$constant;
1971  %}
1972
1973  enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1974    // Load immediate does not have a zero or sign extended version
1975    // for 8-bit immediates
1976    emit_opcode(cbuf, $primary + $dst$$reg);
1977    $$$emit32$src$$constant;
1978  %}
1979
1980  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1981    // Load immediate does not have a zero or sign extended version
1982    // for 8-bit immediates
1983    int dst_enc = $dst$$reg;
1984    int src_con = $src$$constant & 0x0FFFFFFFFL;
1985    if (src_con == 0) {
1986      // xor dst, dst
1987      emit_opcode(cbuf, 0x33);
1988      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1989    } else {
1990      emit_opcode(cbuf, $primary + dst_enc);
1991      emit_d32(cbuf, src_con);
1992    }
1993  %}
1994
1995  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1996    // Load immediate does not have a zero or sign extended version
1997    // for 8-bit immediates
1998    int dst_enc = $dst$$reg + 2;
1999    int src_con = ((julong)($src$$constant)) >> 32;
2000    if (src_con == 0) {
2001      // xor dst, dst
2002      emit_opcode(cbuf, 0x33);
2003      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
2004    } else {
2005      emit_opcode(cbuf, $primary + dst_enc);
2006      emit_d32(cbuf, src_con);
2007    }
2008  %}
2009
2010
2011  // Encode a reg-reg copy.  If it is useless, then empty encoding.
2012  enc_class enc_Copy( rRegI dst, rRegI src ) %{
2013    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2014  %}
2015
2016  enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
2017    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2018  %}
2019
2020  enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
2021    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2022  %}
2023
2024  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2025    $$$emit8$primary;
2026    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2027  %}
2028
2029  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2030    $$$emit8$secondary;
2031    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2032  %}
2033
2034  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2035    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2036  %}
2037
2038  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2039    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2040  %}
2041
2042  enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2043    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2044  %}
2045
2046  enc_class Con32 (immI src) %{    // Con32(storeImmI)
2047    // Output immediate
2048    $$$emit32$src$$constant;
2049  %}
2050
2051  enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2052    // Output Float immediate bits
2053    jfloat jf = $src$$constant;
2054    int    jf_as_bits = jint_cast( jf );
2055    emit_d32(cbuf, jf_as_bits);
2056  %}
2057
2058  enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2059    // Output Float immediate bits
2060    jfloat jf = $src$$constant;
2061    int    jf_as_bits = jint_cast( jf );
2062    emit_d32(cbuf, jf_as_bits);
2063  %}
2064
2065  enc_class Con16 (immI src) %{    // Con16(storeImmI)
2066    // Output immediate
2067    $$$emit16$src$$constant;
2068  %}
2069
2070  enc_class Con_d32(immI src) %{
2071    emit_d32(cbuf,$src$$constant);
2072  %}
2073
2074  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2075    // Output immediate memory reference
2076    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2077    emit_d32(cbuf, 0x00);
2078  %}
2079
2080  enc_class lock_prefix( ) %{
2081    if( os::is_MP() )
2082      emit_opcode(cbuf,0xF0);         // [Lock]
2083  %}
2084
2085  // Cmp-xchg long value.
2086  // Note: we need to swap rbx, and rcx before and after the
2087  //       cmpxchg8 instruction because the instruction uses
2088  //       rcx as the high order word of the new value to store but
2089  //       our register encoding uses rbx,.
2090  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2091
2092    // XCHG  rbx,ecx
2093    emit_opcode(cbuf,0x87);
2094    emit_opcode(cbuf,0xD9);
2095    // [Lock]
2096    if( os::is_MP() )
2097      emit_opcode(cbuf,0xF0);
2098    // CMPXCHG8 [Eptr]
2099    emit_opcode(cbuf,0x0F);
2100    emit_opcode(cbuf,0xC7);
2101    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2102    // XCHG  rbx,ecx
2103    emit_opcode(cbuf,0x87);
2104    emit_opcode(cbuf,0xD9);
2105  %}
2106
2107  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2108    // [Lock]
2109    if( os::is_MP() )
2110      emit_opcode(cbuf,0xF0);
2111
2112    // CMPXCHG [Eptr]
2113    emit_opcode(cbuf,0x0F);
2114    emit_opcode(cbuf,0xB1);
2115    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2116  %}
2117
2118  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2119    int res_encoding = $res$$reg;
2120
2121    // MOV  res,0
2122    emit_opcode( cbuf, 0xB8 + res_encoding);
2123    emit_d32( cbuf, 0 );
2124    // JNE,s  fail
2125    emit_opcode(cbuf,0x75);
2126    emit_d8(cbuf, 5 );
2127    // MOV  res,1
2128    emit_opcode( cbuf, 0xB8 + res_encoding);
2129    emit_d32( cbuf, 1 );
2130    // fail:
2131  %}
2132
2133  enc_class set_instruction_start( ) %{
2134    cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2135  %}
2136
2137  enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2138    int reg_encoding = $ereg$$reg;
2139    int base  = $mem$$base;
2140    int index = $mem$$index;
2141    int scale = $mem$$scale;
2142    int displace = $mem$$disp;
2143    relocInfo::relocType disp_reloc = $mem->disp_reloc();
2144    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2145  %}
2146
2147  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2148    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2149    int base  = $mem$$base;
2150    int index = $mem$$index;
2151    int scale = $mem$$scale;
2152    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2153    assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2154    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2155  %}
2156
2157  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2158    int r1, r2;
2159    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2160    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2161    emit_opcode(cbuf,0x0F);
2162    emit_opcode(cbuf,$tertiary);
2163    emit_rm(cbuf, 0x3, r1, r2);
2164    emit_d8(cbuf,$cnt$$constant);
2165    emit_d8(cbuf,$primary);
2166    emit_rm(cbuf, 0x3, $secondary, r1);
2167    emit_d8(cbuf,$cnt$$constant);
2168  %}
2169
2170  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2171    emit_opcode( cbuf, 0x8B ); // Move
2172    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2173    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2174      emit_d8(cbuf,$primary);
2175      emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2176      emit_d8(cbuf,$cnt$$constant-32);
2177    }
2178    emit_d8(cbuf,$primary);
2179    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2180    emit_d8(cbuf,31);
2181  %}
2182
2183  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2184    int r1, r2;
2185    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2186    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2187
2188    emit_opcode( cbuf, 0x8B ); // Move r1,r2
2189    emit_rm(cbuf, 0x3, r1, r2);
2190    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2191      emit_opcode(cbuf,$primary);
2192      emit_rm(cbuf, 0x3, $secondary, r1);
2193      emit_d8(cbuf,$cnt$$constant-32);
2194    }
2195    emit_opcode(cbuf,0x33);  // XOR r2,r2
2196    emit_rm(cbuf, 0x3, r2, r2);
2197  %}
2198
2199  // Clone of RegMem but accepts an extra parameter to access each
2200  // half of a double in memory; it never needs relocation info.
2201  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2202    emit_opcode(cbuf,$opcode$$constant);
2203    int reg_encoding = $rm_reg$$reg;
2204    int base     = $mem$$base;
2205    int index    = $mem$$index;
2206    int scale    = $mem$$scale;
2207    int displace = $mem$$disp + $disp_for_half$$constant;
2208    relocInfo::relocType disp_reloc = relocInfo::none;
2209    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2210  %}
2211
2212  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2213  //
2214  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2215  // and it never needs relocation information.
2216  // Frequently used to move data between FPU's Stack Top and memory.
2217  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2218    int rm_byte_opcode = $rm_opcode$$constant;
2219    int base     = $mem$$base;
2220    int index    = $mem$$index;
2221    int scale    = $mem$$scale;
2222    int displace = $mem$$disp;
2223    assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2224    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2225  %}
2226
2227  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2228    int rm_byte_opcode = $rm_opcode$$constant;
2229    int base     = $mem$$base;
2230    int index    = $mem$$index;
2231    int scale    = $mem$$scale;
2232    int displace = $mem$$disp;
2233    relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2234    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2235  %}
2236
2237  enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2238    int reg_encoding = $dst$$reg;
2239    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2240    int index        = 0x04;            // 0x04 indicates no index
2241    int scale        = 0x00;            // 0x00 indicates no scale
2242    int displace     = $src1$$constant; // 0x00 indicates no displacement
2243    relocInfo::relocType disp_reloc = relocInfo::none;
2244    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2245  %}
2246
2247  enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2248    // Compare dst,src
2249    emit_opcode(cbuf,0x3B);
2250    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2251    // jmp dst < src around move
2252    emit_opcode(cbuf,0x7C);
2253    emit_d8(cbuf,2);
2254    // move dst,src
2255    emit_opcode(cbuf,0x8B);
2256    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2257  %}
2258
2259  enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2260    // Compare dst,src
2261    emit_opcode(cbuf,0x3B);
2262    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2263    // jmp dst > src around move
2264    emit_opcode(cbuf,0x7F);
2265    emit_d8(cbuf,2);
2266    // move dst,src
2267    emit_opcode(cbuf,0x8B);
2268    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2269  %}
2270
2271  enc_class enc_FPR_store(memory mem, regDPR src) %{
2272    // If src is FPR1, we can just FST to store it.
2273    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2274    int reg_encoding = 0x2; // Just store
2275    int base  = $mem$$base;
2276    int index = $mem$$index;
2277    int scale = $mem$$scale;
2278    int displace = $mem$$disp;
2279    relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2280    if( $src$$reg != FPR1L_enc ) {
2281      reg_encoding = 0x3;  // Store & pop
2282      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2283      emit_d8( cbuf, 0xC0-1+$src$$reg );
2284    }
2285    cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2286    emit_opcode(cbuf,$primary);
2287    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2288  %}
2289
2290  enc_class neg_reg(rRegI dst) %{
2291    // NEG $dst
2292    emit_opcode(cbuf,0xF7);
2293    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2294  %}
2295
2296  enc_class setLT_reg(eCXRegI dst) %{
2297    // SETLT $dst
2298    emit_opcode(cbuf,0x0F);
2299    emit_opcode(cbuf,0x9C);
2300    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2301  %}
2302
2303  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2304    int tmpReg = $tmp$$reg;
2305
2306    // SUB $p,$q
2307    emit_opcode(cbuf,0x2B);
2308    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2309    // SBB $tmp,$tmp
2310    emit_opcode(cbuf,0x1B);
2311    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2312    // AND $tmp,$y
2313    emit_opcode(cbuf,0x23);
2314    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2315    // ADD $p,$tmp
2316    emit_opcode(cbuf,0x03);
2317    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2318  %}
2319
2320  enc_class enc_cmpLTP_mem(rRegI p, rRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2321    int tmpReg = $tmp$$reg;
2322
2323    // SUB $p,$q
2324    emit_opcode(cbuf,0x2B);
2325    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2326    // SBB $tmp,$tmp
2327    emit_opcode(cbuf,0x1B);
2328    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2329    // AND $tmp,$y
2330    cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2331    emit_opcode(cbuf,0x23);
2332    int reg_encoding = tmpReg;
2333    int base  = $mem$$base;
2334    int index = $mem$$index;
2335    int scale = $mem$$scale;
2336    int displace = $mem$$disp;
2337    relocInfo::relocType disp_reloc = $mem->disp_reloc();
2338    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2339    // ADD $p,$tmp
2340    emit_opcode(cbuf,0x03);
2341    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2342  %}
2343
2344  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2345    // TEST shift,32
2346    emit_opcode(cbuf,0xF7);
2347    emit_rm(cbuf, 0x3, 0, ECX_enc);
2348    emit_d32(cbuf,0x20);
2349    // JEQ,s small
2350    emit_opcode(cbuf, 0x74);
2351    emit_d8(cbuf, 0x04);
2352    // MOV    $dst.hi,$dst.lo
2353    emit_opcode( cbuf, 0x8B );
2354    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2355    // CLR    $dst.lo
2356    emit_opcode(cbuf, 0x33);
2357    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2358// small:
2359    // SHLD   $dst.hi,$dst.lo,$shift
2360    emit_opcode(cbuf,0x0F);
2361    emit_opcode(cbuf,0xA5);
2362    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2363    // SHL    $dst.lo,$shift"
2364    emit_opcode(cbuf,0xD3);
2365    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2366  %}
2367
2368  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2369    // TEST shift,32
2370    emit_opcode(cbuf,0xF7);
2371    emit_rm(cbuf, 0x3, 0, ECX_enc);
2372    emit_d32(cbuf,0x20);
2373    // JEQ,s small
2374    emit_opcode(cbuf, 0x74);
2375    emit_d8(cbuf, 0x04);
2376    // MOV    $dst.lo,$dst.hi
2377    emit_opcode( cbuf, 0x8B );
2378    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2379    // CLR    $dst.hi
2380    emit_opcode(cbuf, 0x33);
2381    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2382// small:
2383    // SHRD   $dst.lo,$dst.hi,$shift
2384    emit_opcode(cbuf,0x0F);
2385    emit_opcode(cbuf,0xAD);
2386    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2387    // SHR    $dst.hi,$shift"
2388    emit_opcode(cbuf,0xD3);
2389    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2390  %}
2391
2392  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2393    // TEST shift,32
2394    emit_opcode(cbuf,0xF7);
2395    emit_rm(cbuf, 0x3, 0, ECX_enc);
2396    emit_d32(cbuf,0x20);
2397    // JEQ,s small
2398    emit_opcode(cbuf, 0x74);
2399    emit_d8(cbuf, 0x05);
2400    // MOV    $dst.lo,$dst.hi
2401    emit_opcode( cbuf, 0x8B );
2402    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2403    // SAR    $dst.hi,31
2404    emit_opcode(cbuf, 0xC1);
2405    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2406    emit_d8(cbuf, 0x1F );
2407// small:
2408    // SHRD   $dst.lo,$dst.hi,$shift
2409    emit_opcode(cbuf,0x0F);
2410    emit_opcode(cbuf,0xAD);
2411    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2412    // SAR    $dst.hi,$shift"
2413    emit_opcode(cbuf,0xD3);
2414    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2415  %}
2416
2417
2418  // ----------------- Encodings for floating point unit -----------------
2419  // May leave result in FPU-TOS or FPU reg depending on opcodes
2420  enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2421    $$$emit8$primary;
2422    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2423  %}
2424
2425  // Pop argument in FPR0 with FSTP ST(0)
2426  enc_class PopFPU() %{
2427    emit_opcode( cbuf, 0xDD );
2428    emit_d8( cbuf, 0xD8 );
2429  %}
2430
2431  // !!!!! equivalent to Pop_Reg_F
2432  enc_class Pop_Reg_DPR( regDPR dst ) %{
2433    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2434    emit_d8( cbuf, 0xD8+$dst$$reg );
2435  %}
2436
2437  enc_class Push_Reg_DPR( regDPR dst ) %{
2438    emit_opcode( cbuf, 0xD9 );
2439    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2440  %}
2441
2442  enc_class strictfp_bias1( regDPR dst ) %{
2443    emit_opcode( cbuf, 0xDB );           // FLD m80real
2444    emit_opcode( cbuf, 0x2D );
2445    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2446    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2447    emit_opcode( cbuf, 0xC8+$dst$$reg );
2448  %}
2449
2450  enc_class strictfp_bias2( regDPR dst ) %{
2451    emit_opcode( cbuf, 0xDB );           // FLD m80real
2452    emit_opcode( cbuf, 0x2D );
2453    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2454    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2455    emit_opcode( cbuf, 0xC8+$dst$$reg );
2456  %}
2457
2458  // Special case for moving an integer register to a stack slot.
2459  enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2460    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2461  %}
2462
2463  // Special case for moving a register to a stack slot.
2464  enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2465    // Opcode already emitted
2466    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2467    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2468    emit_d32(cbuf, $dst$$disp);   // Displacement
2469  %}
2470
2471  // Push the integer in stackSlot 'src' onto FP-stack
2472  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2473    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2474  %}
2475
2476  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2477  enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2478    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2479  %}
2480
2481  // Same as Pop_Mem_F except for opcode
2482  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2483  enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2484    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2485  %}
2486
2487  enc_class Pop_Reg_FPR( regFPR dst ) %{
2488    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2489    emit_d8( cbuf, 0xD8+$dst$$reg );
2490  %}
2491
2492  enc_class Push_Reg_FPR( regFPR dst ) %{
2493    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2494    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2495  %}
2496
2497  // Push FPU's float to a stack-slot, and pop FPU-stack
2498  enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2499    int pop = 0x02;
2500    if ($src$$reg != FPR1L_enc) {
2501      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2502      emit_d8( cbuf, 0xC0-1+$src$$reg );
2503      pop = 0x03;
2504    }
2505    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2506  %}
2507
2508  // Push FPU's double to a stack-slot, and pop FPU-stack
2509  enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2510    int pop = 0x02;
2511    if ($src$$reg != FPR1L_enc) {
2512      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2513      emit_d8( cbuf, 0xC0-1+$src$$reg );
2514      pop = 0x03;
2515    }
2516    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2517  %}
2518
2519  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2520  enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2521    int pop = 0xD0 - 1; // -1 since we skip FLD
2522    if ($src$$reg != FPR1L_enc) {
2523      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2524      emit_d8( cbuf, 0xC0-1+$src$$reg );
2525      pop = 0xD8;
2526    }
2527    emit_opcode( cbuf, 0xDD );
2528    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2529  %}
2530
2531
2532  enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2533    // load dst in FPR0
2534    emit_opcode( cbuf, 0xD9 );
2535    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2536    if ($src$$reg != FPR1L_enc) {
2537      // fincstp
2538      emit_opcode (cbuf, 0xD9);
2539      emit_opcode (cbuf, 0xF7);
2540      // swap src with FPR1:
2541      // FXCH FPR1 with src
2542      emit_opcode(cbuf, 0xD9);
2543      emit_d8(cbuf, 0xC8-1+$src$$reg );
2544      // fdecstp
2545      emit_opcode (cbuf, 0xD9);
2546      emit_opcode (cbuf, 0xF6);
2547    }
2548  %}
2549
2550  enc_class Push_ModD_encoding(regD src0, regD src1) %{
2551    MacroAssembler _masm(&cbuf);
2552    __ subptr(rsp, 8);
2553    __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2554    __ fld_d(Address(rsp, 0));
2555    __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2556    __ fld_d(Address(rsp, 0));
2557  %}
2558
2559  enc_class Push_ModF_encoding(regF src0, regF src1) %{
2560    MacroAssembler _masm(&cbuf);
2561    __ subptr(rsp, 4);
2562    __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2563    __ fld_s(Address(rsp, 0));
2564    __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2565    __ fld_s(Address(rsp, 0));
2566  %}
2567
2568  enc_class Push_ResultD(regD dst) %{
2569    MacroAssembler _masm(&cbuf);
2570    __ fstp_d(Address(rsp, 0));
2571    __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2572    __ addptr(rsp, 8);
2573  %}
2574
2575  enc_class Push_ResultF(regF dst, immI d8) %{
2576    MacroAssembler _masm(&cbuf);
2577    __ fstp_s(Address(rsp, 0));
2578    __ movflt($dst$$XMMRegister, Address(rsp, 0));
2579    __ addptr(rsp, $d8$$constant);
2580  %}
2581
2582  enc_class Push_SrcD(regD src) %{
2583    MacroAssembler _masm(&cbuf);
2584    __ subptr(rsp, 8);
2585    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2586    __ fld_d(Address(rsp, 0));
2587  %}
2588
2589  enc_class push_stack_temp_qword() %{
2590    MacroAssembler _masm(&cbuf);
2591    __ subptr(rsp, 8);
2592  %}
2593
2594  enc_class pop_stack_temp_qword() %{
2595    MacroAssembler _masm(&cbuf);
2596    __ addptr(rsp, 8);
2597  %}
2598
2599  enc_class push_xmm_to_fpr1(regD src) %{
2600    MacroAssembler _masm(&cbuf);
2601    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2602    __ fld_d(Address(rsp, 0));
2603  %}
2604
2605  enc_class Push_Result_Mod_DPR( regDPR src) %{
2606    if ($src$$reg != FPR1L_enc) {
2607      // fincstp
2608      emit_opcode (cbuf, 0xD9);
2609      emit_opcode (cbuf, 0xF7);
2610      // FXCH FPR1 with src
2611      emit_opcode(cbuf, 0xD9);
2612      emit_d8(cbuf, 0xC8-1+$src$$reg );
2613      // fdecstp
2614      emit_opcode (cbuf, 0xD9);
2615      emit_opcode (cbuf, 0xF6);
2616    }
2617    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2618    // // FSTP   FPR$dst$$reg
2619    // emit_opcode( cbuf, 0xDD );
2620    // emit_d8( cbuf, 0xD8+$dst$$reg );
2621  %}
2622
2623  enc_class fnstsw_sahf_skip_parity() %{
2624    // fnstsw ax
2625    emit_opcode( cbuf, 0xDF );
2626    emit_opcode( cbuf, 0xE0 );
2627    // sahf
2628    emit_opcode( cbuf, 0x9E );
2629    // jnp  ::skip
2630    emit_opcode( cbuf, 0x7B );
2631    emit_opcode( cbuf, 0x05 );
2632  %}
2633
2634  enc_class emitModDPR() %{
2635    // fprem must be iterative
2636    // :: loop
2637    // fprem
2638    emit_opcode( cbuf, 0xD9 );
2639    emit_opcode( cbuf, 0xF8 );
2640    // wait
2641    emit_opcode( cbuf, 0x9b );
2642    // fnstsw ax
2643    emit_opcode( cbuf, 0xDF );
2644    emit_opcode( cbuf, 0xE0 );
2645    // sahf
2646    emit_opcode( cbuf, 0x9E );
2647    // jp  ::loop
2648    emit_opcode( cbuf, 0x0F );
2649    emit_opcode( cbuf, 0x8A );
2650    emit_opcode( cbuf, 0xF4 );
2651    emit_opcode( cbuf, 0xFF );
2652    emit_opcode( cbuf, 0xFF );
2653    emit_opcode( cbuf, 0xFF );
2654  %}
2655
2656  enc_class fpu_flags() %{
2657    // fnstsw_ax
2658    emit_opcode( cbuf, 0xDF);
2659    emit_opcode( cbuf, 0xE0);
2660    // test ax,0x0400
2661    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2662    emit_opcode( cbuf, 0xA9 );
2663    emit_d16   ( cbuf, 0x0400 );
2664    // // // This sequence works, but stalls for 12-16 cycles on PPro
2665    // // test rax,0x0400
2666    // emit_opcode( cbuf, 0xA9 );
2667    // emit_d32   ( cbuf, 0x00000400 );
2668    //
2669    // jz exit (no unordered comparison)
2670    emit_opcode( cbuf, 0x74 );
2671    emit_d8    ( cbuf, 0x02 );
2672    // mov ah,1 - treat as LT case (set carry flag)
2673    emit_opcode( cbuf, 0xB4 );
2674    emit_d8    ( cbuf, 0x01 );
2675    // sahf
2676    emit_opcode( cbuf, 0x9E);
2677  %}
2678
2679  enc_class cmpF_P6_fixup() %{
2680    // Fixup the integer flags in case comparison involved a NaN
2681    //
2682    // JNP exit (no unordered comparison, P-flag is set by NaN)
2683    emit_opcode( cbuf, 0x7B );
2684    emit_d8    ( cbuf, 0x03 );
2685    // MOV AH,1 - treat as LT case (set carry flag)
2686    emit_opcode( cbuf, 0xB4 );
2687    emit_d8    ( cbuf, 0x01 );
2688    // SAHF
2689    emit_opcode( cbuf, 0x9E);
2690    // NOP     // target for branch to avoid branch to branch
2691    emit_opcode( cbuf, 0x90);
2692  %}
2693
2694//     fnstsw_ax();
2695//     sahf();
2696//     movl(dst, nan_result);
2697//     jcc(Assembler::parity, exit);
2698//     movl(dst, less_result);
2699//     jcc(Assembler::below, exit);
2700//     movl(dst, equal_result);
2701//     jcc(Assembler::equal, exit);
2702//     movl(dst, greater_result);
2703
2704// less_result     =  1;
2705// greater_result  = -1;
2706// equal_result    = 0;
2707// nan_result      = -1;
2708
2709  enc_class CmpF_Result(rRegI dst) %{
2710    // fnstsw_ax();
2711    emit_opcode( cbuf, 0xDF);
2712    emit_opcode( cbuf, 0xE0);
2713    // sahf
2714    emit_opcode( cbuf, 0x9E);
2715    // movl(dst, nan_result);
2716    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2717    emit_d32( cbuf, -1 );
2718    // jcc(Assembler::parity, exit);
2719    emit_opcode( cbuf, 0x7A );
2720    emit_d8    ( cbuf, 0x13 );
2721    // movl(dst, less_result);
2722    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2723    emit_d32( cbuf, -1 );
2724    // jcc(Assembler::below, exit);
2725    emit_opcode( cbuf, 0x72 );
2726    emit_d8    ( cbuf, 0x0C );
2727    // movl(dst, equal_result);
2728    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2729    emit_d32( cbuf, 0 );
2730    // jcc(Assembler::equal, exit);
2731    emit_opcode( cbuf, 0x74 );
2732    emit_d8    ( cbuf, 0x05 );
2733    // movl(dst, greater_result);
2734    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2735    emit_d32( cbuf, 1 );
2736  %}
2737
2738
2739  // Compare the longs and set flags
2740  // BROKEN!  Do Not use as-is
2741  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2742    // CMP    $src1.hi,$src2.hi
2743    emit_opcode( cbuf, 0x3B );
2744    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2745    // JNE,s  done
2746    emit_opcode(cbuf,0x75);
2747    emit_d8(cbuf, 2 );
2748    // CMP    $src1.lo,$src2.lo
2749    emit_opcode( cbuf, 0x3B );
2750    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2751// done:
2752  %}
2753
2754  enc_class convert_int_long( regL dst, rRegI src ) %{
2755    // mov $dst.lo,$src
2756    int dst_encoding = $dst$$reg;
2757    int src_encoding = $src$$reg;
2758    encode_Copy( cbuf, dst_encoding  , src_encoding );
2759    // mov $dst.hi,$src
2760    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2761    // sar $dst.hi,31
2762    emit_opcode( cbuf, 0xC1 );
2763    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2764    emit_d8(cbuf, 0x1F );
2765  %}
2766
2767  enc_class convert_long_double( eRegL src ) %{
2768    // push $src.hi
2769    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2770    // push $src.lo
2771    emit_opcode(cbuf, 0x50+$src$$reg  );
2772    // fild 64-bits at [SP]
2773    emit_opcode(cbuf,0xdf);
2774    emit_d8(cbuf, 0x6C);
2775    emit_d8(cbuf, 0x24);
2776    emit_d8(cbuf, 0x00);
2777    // pop stack
2778    emit_opcode(cbuf, 0x83); // add  SP, #8
2779    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2780    emit_d8(cbuf, 0x8);
2781  %}
2782
2783  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2784    // IMUL   EDX:EAX,$src1
2785    emit_opcode( cbuf, 0xF7 );
2786    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2787    // SAR    EDX,$cnt-32
2788    int shift_count = ((int)$cnt$$constant) - 32;
2789    if (shift_count > 0) {
2790      emit_opcode(cbuf, 0xC1);
2791      emit_rm(cbuf, 0x3, 7, $dst$$reg );
2792      emit_d8(cbuf, shift_count);
2793    }
2794  %}
2795
2796  // this version doesn't have add sp, 8
2797  enc_class convert_long_double2( eRegL src ) %{
2798    // push $src.hi
2799    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2800    // push $src.lo
2801    emit_opcode(cbuf, 0x50+$src$$reg  );
2802    // fild 64-bits at [SP]
2803    emit_opcode(cbuf,0xdf);
2804    emit_d8(cbuf, 0x6C);
2805    emit_d8(cbuf, 0x24);
2806    emit_d8(cbuf, 0x00);
2807  %}
2808
2809  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2810    // Basic idea: long = (long)int * (long)int
2811    // IMUL EDX:EAX, src
2812    emit_opcode( cbuf, 0xF7 );
2813    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2814  %}
2815
2816  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2817    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2818    // MUL EDX:EAX, src
2819    emit_opcode( cbuf, 0xF7 );
2820    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2821  %}
2822
2823  enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2824    // Basic idea: lo(result) = lo(x_lo * y_lo)
2825    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2826    // MOV    $tmp,$src.lo
2827    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2828    // IMUL   $tmp,EDX
2829    emit_opcode( cbuf, 0x0F );
2830    emit_opcode( cbuf, 0xAF );
2831    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2832    // MOV    EDX,$src.hi
2833    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2834    // IMUL   EDX,EAX
2835    emit_opcode( cbuf, 0x0F );
2836    emit_opcode( cbuf, 0xAF );
2837    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2838    // ADD    $tmp,EDX
2839    emit_opcode( cbuf, 0x03 );
2840    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2841    // MUL   EDX:EAX,$src.lo
2842    emit_opcode( cbuf, 0xF7 );
2843    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2844    // ADD    EDX,ESI
2845    emit_opcode( cbuf, 0x03 );
2846    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2847  %}
2848
2849  enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2850    // Basic idea: lo(result) = lo(src * y_lo)
2851    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2852    // IMUL   $tmp,EDX,$src
2853    emit_opcode( cbuf, 0x6B );
2854    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2855    emit_d8( cbuf, (int)$src$$constant );
2856    // MOV    EDX,$src
2857    emit_opcode(cbuf, 0xB8 + EDX_enc);
2858    emit_d32( cbuf, (int)$src$$constant );
2859    // MUL   EDX:EAX,EDX
2860    emit_opcode( cbuf, 0xF7 );
2861    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2862    // ADD    EDX,ESI
2863    emit_opcode( cbuf, 0x03 );
2864    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2865  %}
2866
2867  enc_class long_div( eRegL src1, eRegL src2 ) %{
2868    // PUSH src1.hi
2869    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2870    // PUSH src1.lo
2871    emit_opcode(cbuf,               0x50+$src1$$reg  );
2872    // PUSH src2.hi
2873    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2874    // PUSH src2.lo
2875    emit_opcode(cbuf,               0x50+$src2$$reg  );
2876    // CALL directly to the runtime
2877    cbuf.set_insts_mark();
2878    emit_opcode(cbuf,0xE8);       // Call into runtime
2879    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2880    // Restore stack
2881    emit_opcode(cbuf, 0x83); // add  SP, #framesize
2882    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2883    emit_d8(cbuf, 4*4);
2884  %}
2885
2886  enc_class long_mod( eRegL src1, eRegL src2 ) %{
2887    // PUSH src1.hi
2888    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2889    // PUSH src1.lo
2890    emit_opcode(cbuf,               0x50+$src1$$reg  );
2891    // PUSH src2.hi
2892    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2893    // PUSH src2.lo
2894    emit_opcode(cbuf,               0x50+$src2$$reg  );
2895    // CALL directly to the runtime
2896    cbuf.set_insts_mark();
2897    emit_opcode(cbuf,0xE8);       // Call into runtime
2898    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2899    // Restore stack
2900    emit_opcode(cbuf, 0x83); // add  SP, #framesize
2901    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2902    emit_d8(cbuf, 4*4);
2903  %}
2904
2905  enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2906    // MOV   $tmp,$src.lo
2907    emit_opcode(cbuf, 0x8B);
2908    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2909    // OR    $tmp,$src.hi
2910    emit_opcode(cbuf, 0x0B);
2911    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2912  %}
2913
2914  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2915    // CMP    $src1.lo,$src2.lo
2916    emit_opcode( cbuf, 0x3B );
2917    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2918    // JNE,s  skip
2919    emit_cc(cbuf, 0x70, 0x5);
2920    emit_d8(cbuf,2);
2921    // CMP    $src1.hi,$src2.hi
2922    emit_opcode( cbuf, 0x3B );
2923    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2924  %}
2925
2926  enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2927    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2928    emit_opcode( cbuf, 0x3B );
2929    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2930    // MOV    $tmp,$src1.hi
2931    emit_opcode( cbuf, 0x8B );
2932    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2933    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2934    emit_opcode( cbuf, 0x1B );
2935    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2936  %}
2937
2938  enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2939    // XOR    $tmp,$tmp
2940    emit_opcode(cbuf,0x33);  // XOR
2941    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2942    // CMP    $tmp,$src.lo
2943    emit_opcode( cbuf, 0x3B );
2944    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2945    // SBB    $tmp,$src.hi
2946    emit_opcode( cbuf, 0x1B );
2947    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2948  %}
2949
2950 // Sniff, sniff... smells like Gnu Superoptimizer
2951  enc_class neg_long( eRegL dst ) %{
2952    emit_opcode(cbuf,0xF7);    // NEG hi
2953    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2954    emit_opcode(cbuf,0xF7);    // NEG lo
2955    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2956    emit_opcode(cbuf,0x83);    // SBB hi,0
2957    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2958    emit_d8    (cbuf,0 );
2959  %}
2960
2961
2962  // Because the transitions from emitted code to the runtime
2963  // monitorenter/exit helper stubs are so slow it's critical that
2964  // we inline both the stack-locking fast-path and the inflated fast path.
2965  //
2966  // See also: cmpFastLock and cmpFastUnlock.
2967  //
2968  // What follows is a specialized inline transliteration of the code
2969  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
2970  // another option would be to emit TrySlowEnter and TrySlowExit methods
2971  // at startup-time.  These methods would accept arguments as
2972  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
2973  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
2974  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
2975  // In practice, however, the # of lock sites is bounded and is usually small.
2976  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
2977  // if the processor uses simple bimodal branch predictors keyed by EIP
2978  // Since the helper routines would be called from multiple synchronization
2979  // sites.
2980  //
2981  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
2982  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
2983  // to those specialized methods.  That'd give us a mostly platform-independent
2984  // implementation that the JITs could optimize and inline at their pleasure.
2985  // Done correctly, the only time we'd need to cross to native could would be
2986  // to park() or unpark() threads.  We'd also need a few more unsafe operators
2987  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
2988  // (b) explicit barriers or fence operations.
2989  //
2990  // TODO:
2991  //
2992  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
2993  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
2994  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
2995  //    the lock operators would typically be faster than reifying Self.
2996  //
2997  // *  Ideally I'd define the primitives as:
2998  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
2999  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3000  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3001  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3002  //    Furthermore the register assignments are overconstrained, possibly resulting in
3003  //    sub-optimal code near the synchronization site.
3004  //
3005  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3006  //    Alternately, use a better sp-proximity test.
3007  //
3008  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3009  //    Either one is sufficient to uniquely identify a thread.
3010  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3011  //
3012  // *  Intrinsify notify() and notifyAll() for the common cases where the
3013  //    object is locked by the calling thread but the waitlist is empty.
3014  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3015  //
3016  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3017  //    But beware of excessive branch density on AMD Opterons.
3018  //
3019  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3020  //    or failure of the fast-path.  If the fast-path fails then we pass
3021  //    control to the slow-path, typically in C.  In Fast_Lock and
3022  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3023  //    will emit a conditional branch immediately after the node.
3024  //    So we have branches to branches and lots of ICC.ZF games.
3025  //    Instead, it might be better to have C2 pass a "FailureLabel"
3026  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3027  //    will drop through the node.  ICC.ZF is undefined at exit.
3028  //    In the case of failure, the node will branch directly to the
3029  //    FailureLabel
3030
3031
3032  // obj: object to lock
3033  // box: on-stack box address (displaced header location) - KILLED
3034  // rax,: tmp -- KILLED
3035  // scr: tmp -- KILLED
3036  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3037
3038    Register objReg = as_Register($obj$$reg);
3039    Register boxReg = as_Register($box$$reg);
3040    Register tmpReg = as_Register($tmp$$reg);
3041    Register scrReg = as_Register($scr$$reg);
3042
3043    // Ensure the register assignents are disjoint
3044    guarantee (objReg != boxReg, "") ;
3045    guarantee (objReg != tmpReg, "") ;
3046    guarantee (objReg != scrReg, "") ;
3047    guarantee (boxReg != tmpReg, "") ;
3048    guarantee (boxReg != scrReg, "") ;
3049    guarantee (tmpReg == as_Register(EAX_enc), "") ;
3050
3051    MacroAssembler masm(&cbuf);
3052
3053    if (_counters != NULL) {
3054      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3055    }
3056    if (EmitSync & 1) {
3057        // set box->dhw = unused_mark (3)
3058        // Force all sync thru slow-path: slow_enter() and slow_exit() 
3059        masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3060        masm.cmpptr (rsp, (int32_t)0) ;                        
3061    } else 
3062    if (EmitSync & 2) { 
3063        Label DONE_LABEL ;           
3064        if (UseBiasedLocking) {
3065           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3066           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3067        }
3068
3069        masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3070        masm.orptr (tmpReg, 0x1);
3071        masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3072        if (os::is_MP()) { masm.lock();  }
3073        masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3074        masm.jcc(Assembler::equal, DONE_LABEL);
3075        // Recursive locking
3076        masm.subptr(tmpReg, rsp);
3077        masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3078        masm.movptr(Address(boxReg, 0), tmpReg);
3079        masm.bind(DONE_LABEL) ; 
3080    } else {  
3081      // Possible cases that we'll encounter in fast_lock 
3082      // ------------------------------------------------
3083      // * Inflated
3084      //    -- unlocked
3085      //    -- Locked
3086      //       = by self
3087      //       = by other
3088      // * biased
3089      //    -- by Self
3090      //    -- by other
3091      // * neutral
3092      // * stack-locked
3093      //    -- by self
3094      //       = sp-proximity test hits
3095      //       = sp-proximity test generates false-negative
3096      //    -- by other
3097      //
3098
3099      Label IsInflated, DONE_LABEL, PopDone ;
3100
3101      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3102      // order to reduce the number of conditional branches in the most common cases.
3103      // Beware -- there's a subtle invariant that fetch of the markword
3104      // at [FETCH], below, will never observe a biased encoding (*101b).
3105      // If this invariant is not held we risk exclusion (safety) failure.
3106      if (UseBiasedLocking && !UseOptoBiasInlining) {
3107        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3108      }
3109
3110      masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3111      masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3112      masm.jccb  (Assembler::notZero, IsInflated) ;
3113
3114      // Attempt stack-locking ...
3115      masm.orptr (tmpReg, 0x1);
3116      masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3117      if (os::is_MP()) { masm.lock();  }
3118      masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3119      if (_counters != NULL) {
3120        masm.cond_inc32(Assembler::equal,
3121                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3122      }
3123      masm.jccb (Assembler::equal, DONE_LABEL);
3124
3125      // Recursive locking
3126      masm.subptr(tmpReg, rsp);
3127      masm.andptr(tmpReg, 0xFFFFF003 );
3128      masm.movptr(Address(boxReg, 0), tmpReg);
3129      if (_counters != NULL) {
3130        masm.cond_inc32(Assembler::equal,
3131                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3132      }
3133      masm.jmp  (DONE_LABEL) ;
3134
3135      masm.bind (IsInflated) ;
3136
3137      // The object is inflated.
3138      //
3139      // TODO-FIXME: eliminate the ugly use of manifest constants:
3140      //   Use markOopDesc::monitor_value instead of "2".
3141      //   use markOop::unused_mark() instead of "3".
3142      // The tmpReg value is an objectMonitor reference ORed with
3143      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3144      // objectmonitor pointer by masking off the "2" bit or we can just
3145      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3146      // field offsets with "-2" to compensate for and annul the low-order tag bit.
3147      //
3148      // I use the latter as it avoids AGI stalls.
3149      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3150      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3151      //
3152      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3153
3154      // boxReg refers to the on-stack BasicLock in the current frame.
3155      // We'd like to write:
3156      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3157      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3158      // additional latency as we have another ST in the store buffer that must drain.
3159
3160      if (EmitSync & 8192) { 
3161         masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3162         masm.get_thread (scrReg) ; 
3163         masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3164         masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3165         if (os::is_MP()) { masm.lock(); } 
3166         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3167      } else 
3168      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3169         masm.movptr(scrReg, boxReg) ; 
3170         masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3171
3172         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3173         if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3174            // prefetchw [eax + Offset(_owner)-2]
3175            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3176         }
3177
3178         if ((EmitSync & 64) == 0) {
3179           // Optimistic form: consider XORL tmpReg,tmpReg
3180           masm.movptr(tmpReg, NULL_WORD) ; 
3181         } else { 
3182           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3183           // Test-And-CAS instead of CAS
3184           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3185           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3186           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3187         }
3188
3189         // Appears unlocked - try to swing _owner from null to non-null.
3190         // Ideally, I'd manifest "Self" with get_thread and then attempt
3191         // to CAS the register containing Self into m->Owner.
3192         // But we don't have enough registers, so instead we can either try to CAS
3193         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3194         // we later store "Self" into m->Owner.  Transiently storing a stack address
3195         // (rsp or the address of the box) into  m->owner is harmless.
3196         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3197         if (os::is_MP()) { masm.lock();  }
3198         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3199         masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3200         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3201         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3202         masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3203         masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3204                       
3205         // If the CAS fails we can either retry or pass control to the slow-path.  
3206         // We use the latter tactic.  
3207         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3208         // If the CAS was successful ...
3209         //   Self has acquired the lock
3210         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3211         // Intentional fall-through into DONE_LABEL ...
3212      } else {
3213         masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3214         masm.movptr(boxReg, tmpReg) ; 
3215
3216         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3217         if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3218            // prefetchw [eax + Offset(_owner)-2]
3219            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3220         }
3221
3222         if ((EmitSync & 64) == 0) {
3223           // Optimistic form
3224           masm.xorptr  (tmpReg, tmpReg) ; 
3225         } else { 
3226           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3227           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3228           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3229           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3230         }
3231
3232         // Appears unlocked - try to swing _owner from null to non-null.
3233         // Use either "Self" (in scr) or rsp as thread identity in _owner.
3234         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3235         masm.get_thread (scrReg) ;
3236         if (os::is_MP()) { masm.lock(); }
3237         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3238
3239         // If the CAS fails we can either retry or pass control to the slow-path.
3240         // We use the latter tactic.
3241         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3242         // If the CAS was successful ...
3243         //   Self has acquired the lock
3244         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3245         // Intentional fall-through into DONE_LABEL ...
3246      }
3247
3248      // DONE_LABEL is a hot target - we'd really like to place it at the
3249      // start of cache line by padding with NOPs.
3250      // See the AMD and Intel software optimization manuals for the
3251      // most efficient "long" NOP encodings.
3252      // Unfortunately none of our alignment mechanisms suffice.
3253      masm.bind(DONE_LABEL);
3254
3255      // Avoid branch-to-branch on AMD processors
3256      // This appears to be superstition.
3257      if (EmitSync & 32) masm.nop() ;
3258
3259
3260      // At DONE_LABEL the icc ZFlag is set as follows ...
3261      // Fast_Unlock uses the same protocol.
3262      // ZFlag == 1 -> Success
3263      // ZFlag == 0 -> Failure - force control through the slow-path
3264    }
3265  %}
3266
3267  // obj: object to unlock
3268  // box: box address (displaced header location), killed.  Must be EAX.
3269  // rbx,: killed tmp; cannot be obj nor box.
3270  //
3271  // Some commentary on balanced locking:
3272  //
3273  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3274  // Methods that don't have provably balanced locking are forced to run in the
3275  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3276  // The interpreter provides two properties:
3277  // I1:  At return-time the interpreter automatically and quietly unlocks any
3278  //      objects acquired the current activation (frame).  Recall that the
3279  //      interpreter maintains an on-stack list of locks currently held by
3280  //      a frame.
3281  // I2:  If a method attempts to unlock an object that is not held by the
3282  //      the frame the interpreter throws IMSX.
3283  //
3284  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3285  // B() doesn't have provably balanced locking so it runs in the interpreter.
3286  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3287  // is still locked by A().
3288  //
3289  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3290  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3291  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3292  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3293
3294  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3295
3296    Register objReg = as_Register($obj$$reg);
3297    Register boxReg = as_Register($box$$reg);
3298    Register tmpReg = as_Register($tmp$$reg);
3299
3300    guarantee (objReg != boxReg, "") ;
3301    guarantee (objReg != tmpReg, "") ;
3302    guarantee (boxReg != tmpReg, "") ;
3303    guarantee (boxReg == as_Register(EAX_enc), "") ;
3304    MacroAssembler masm(&cbuf);
3305
3306    if (EmitSync & 4) {
3307      // Disable - inhibit all inlining.  Force control through the slow-path
3308      masm.cmpptr (rsp, 0) ; 
3309    } else 
3310    if (EmitSync & 8) {
3311      Label DONE_LABEL ;
3312      if (UseBiasedLocking) {
3313         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3314      }
3315      // classic stack-locking code ...
3316      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3317      masm.testptr(tmpReg, tmpReg) ;
3318      masm.jcc   (Assembler::zero, DONE_LABEL) ;
3319      if (os::is_MP()) { masm.lock(); }
3320      masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3321      masm.bind(DONE_LABEL);
3322    } else {
3323      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3324
3325      // Critically, the biased locking test must have precedence over
3326      // and appear before the (box->dhw == 0) recursive stack-lock test.
3327      if (UseBiasedLocking && !UseOptoBiasInlining) {
3328         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3329      }
3330      
3331      masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3332      masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3333      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3334
3335      masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3336      masm.jccb  (Assembler::zero, Stacked) ;
3337
3338      masm.bind  (Inflated) ;
3339      // It's inflated.
3340      // Despite our balanced locking property we still check that m->_owner == Self
3341      // as java routines or native JNI code called by this thread might
3342      // have released the lock.
3343      // Refer to the comments in synchronizer.cpp for how we might encode extra
3344      // state in _succ so we can avoid fetching EntryList|cxq.
3345      //
3346      // I'd like to add more cases in fast_lock() and fast_unlock() --
3347      // such as recursive enter and exit -- but we have to be wary of
3348      // I$ bloat, T$ effects and BP$ effects.
3349      //
3350      // If there's no contention try a 1-0 exit.  That is, exit without
3351      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3352      // we detect and recover from the race that the 1-0 exit admits.
3353      //
3354      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3355      // before it STs null into _owner, releasing the lock.  Updates
3356      // to data protected by the critical section must be visible before
3357      // we drop the lock (and thus before any other thread could acquire
3358      // the lock and observe the fields protected by the lock).
3359      // IA32's memory-model is SPO, so STs are ordered with respect to
3360      // each other and there's no need for an explicit barrier (fence).
3361      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3362
3363      masm.get_thread (boxReg) ;
3364      if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3365        // prefetchw [ebx + Offset(_owner)-2]
3366        masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3367      }
3368
3369      // Note that we could employ various encoding schemes to reduce
3370      // the number of loads below (currently 4) to just 2 or 3.
3371      // Refer to the comments in synchronizer.cpp.
3372      // In practice the chain of fetches doesn't seem to impact performance, however.
3373      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3374         // Attempt to reduce branch density - AMD's branch predictor.
3375         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3376         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3377         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3378         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3379         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3380         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3381         masm.jmpb  (DONE_LABEL) ; 
3382      } else { 
3383         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3384         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3385         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3386         masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3387         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3388         masm.jccb  (Assembler::notZero, CheckSucc) ; 
3389         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3390         masm.jmpb  (DONE_LABEL) ; 
3391      }
3392
3393      // The Following code fragment (EmitSync & 65536) improves the performance of
3394      // contended applications and contended synchronization microbenchmarks.
3395      // Unfortunately the emission of the code - even though not executed - causes regressions
3396      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3397      // with an equal number of never-executed NOPs results in the same regression.
3398      // We leave it off by default.
3399
3400      if ((EmitSync & 65536) != 0) {
3401         Label LSuccess, LGoSlowPath ;
3402
3403         masm.bind  (CheckSucc) ;
3404
3405         // Optional pre-test ... it's safe to elide this
3406         if ((EmitSync & 16) == 0) { 
3407            masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3408            masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3409         }
3410
3411         // We have a classic Dekker-style idiom:
3412         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3413         // There are a number of ways to implement the barrier:
3414         // (1) lock:andl &m->_owner, 0
3415         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3416         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3417         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3418         // (2) If supported, an explicit MFENCE is appealing.
3419         //     In older IA32 processors MFENCE is slower than lock:add or xchg
3420         //     particularly if the write-buffer is full as might be the case if
3421         //     if stores closely precede the fence or fence-equivalent instruction.
3422         //     In more modern implementations MFENCE appears faster, however.
3423         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3424         //     The $lines underlying the top-of-stack should be in M-state.
3425         //     The locked add instruction is serializing, of course.
3426         // (4) Use xchg, which is serializing
3427         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3428         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3429         //     The integer condition codes will tell us if succ was 0.
3430         //     Since _succ and _owner should reside in the same $line and
3431         //     we just stored into _owner, it's likely that the $line
3432         //     remains in M-state for the lock:orl.
3433         //
3434         // We currently use (3), although it's likely that switching to (2)
3435         // is correct for the future.
3436            
3437         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3438         if (os::is_MP()) { 
3439            if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3440              masm.mfence();
3441            } else { 
3442              masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3443            }
3444         }
3445         // Ratify _succ remains non-null
3446         masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3447         masm.jccb  (Assembler::notZero, LSuccess) ; 
3448
3449         masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3450         if (os::is_MP()) { masm.lock(); }
3451         masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3452         masm.jccb  (Assembler::notEqual, LSuccess) ;
3453         // Since we're low on registers we installed rsp as a placeholding in _owner.
3454         // Now install Self over rsp.  This is safe as we're transitioning from
3455         // non-null to non=null
3456         masm.get_thread (boxReg) ;
3457         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3458         // Intentional fall-through into LGoSlowPath ...
3459
3460         masm.bind  (LGoSlowPath) ; 
3461         masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3462         masm.jmpb  (DONE_LABEL) ; 
3463
3464         masm.bind  (LSuccess) ; 
3465         masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3466         masm.jmpb  (DONE_LABEL) ; 
3467      }
3468
3469      masm.bind (Stacked) ;
3470      // It's not inflated and it's not recursively stack-locked and it's not biased.
3471      // It must be stack-locked.
3472      // Try to reset the header to displaced header.
3473      // The "box" value on the stack is stable, so we can reload
3474      // and be assured we observe the same value as above.
3475      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3476      if (os::is_MP()) {   masm.lock();    }
3477      masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3478      // Intention fall-thru into DONE_LABEL
3479
3480
3481      // DONE_LABEL is a hot target - we'd really like to place it at the
3482      // start of cache line by padding with NOPs.
3483      // See the AMD and Intel software optimization manuals for the
3484      // most efficient "long" NOP encodings.
3485      // Unfortunately none of our alignment mechanisms suffice.
3486      if ((EmitSync & 65536) == 0) {
3487         masm.bind (CheckSucc) ;
3488      }
3489      masm.bind(DONE_LABEL);
3490
3491      // Avoid branch to branch on AMD processors
3492      if (EmitSync & 32768) { masm.nop() ; }
3493    }
3494  %}
3495
3496
3497  enc_class enc_pop_rdx() %{
3498    emit_opcode(cbuf,0x5A);
3499  %}
3500
3501  enc_class enc_rethrow() %{
3502    cbuf.set_insts_mark();
3503    emit_opcode(cbuf, 0xE9);        // jmp    entry
3504    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3505                   runtime_call_Relocation::spec(), RELOC_IMM32 );
3506  %}
3507
3508
3509  // Convert a double to an int.  Java semantics require we do complex
3510  // manglelations in the corner cases.  So we set the rounding mode to
3511  // 'zero', store the darned double down as an int, and reset the
3512  // rounding mode to 'nearest'.  The hardware throws an exception which
3513  // patches up the correct value directly to the stack.
3514  enc_class DPR2I_encoding( regDPR src ) %{
3515    // Flip to round-to-zero mode.  We attempted to allow invalid-op
3516    // exceptions here, so that a NAN or other corner-case value will
3517    // thrown an exception (but normal values get converted at full speed).
3518    // However, I2C adapters and other float-stack manglers leave pending
3519    // invalid-op exceptions hanging.  We would have to clear them before
3520    // enabling them and that is more expensive than just testing for the
3521    // invalid value Intel stores down in the corner cases.
3522    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3523    emit_opcode(cbuf,0x2D);
3524    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3525    // Allocate a word
3526    emit_opcode(cbuf,0x83);            // SUB ESP,4
3527    emit_opcode(cbuf,0xEC);
3528    emit_d8(cbuf,0x04);
3529    // Encoding assumes a double has been pushed into FPR0.
3530    // Store down the double as an int, popping the FPU stack
3531    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3532    emit_opcode(cbuf,0x1C);
3533    emit_d8(cbuf,0x24);
3534    // Restore the rounding mode; mask the exception
3535    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3536    emit_opcode(cbuf,0x2D);
3537    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3538        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3539        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3540
3541    // Load the converted int; adjust CPU stack
3542    emit_opcode(cbuf,0x58);       // POP EAX
3543    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3544    emit_d32   (cbuf,0x80000000); //         0x80000000
3545    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3546    emit_d8    (cbuf,0x07);       // Size of slow_call
3547    // Push src onto stack slow-path
3548    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3549    emit_d8    (cbuf,0xC0-1+$src$$reg );
3550    // CALL directly to the runtime
3551    cbuf.set_insts_mark();
3552    emit_opcode(cbuf,0xE8);       // Call into runtime
3553    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3554    // Carry on here...
3555  %}
3556
3557  enc_class DPR2L_encoding( regDPR src ) %{
3558    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3559    emit_opcode(cbuf,0x2D);
3560    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3561    // Allocate a word
3562    emit_opcode(cbuf,0x83);            // SUB ESP,8
3563    emit_opcode(cbuf,0xEC);
3564    emit_d8(cbuf,0x08);
3565    // Encoding assumes a double has been pushed into FPR0.
3566    // Store down the double as a long, popping the FPU stack
3567    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3568    emit_opcode(cbuf,0x3C);
3569    emit_d8(cbuf,0x24);
3570    // Restore the rounding mode; mask the exception
3571    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3572    emit_opcode(cbuf,0x2D);
3573    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3574        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3575        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3576
3577    // Load the converted int; adjust CPU stack
3578    emit_opcode(cbuf,0x58);       // POP EAX
3579    emit_opcode(cbuf,0x5A);       // POP EDX
3580    emit_opcode(cbuf,0x81);       // CMP EDX,imm
3581    emit_d8    (cbuf,0xFA);       // rdx
3582    emit_d32   (cbuf,0x80000000); //         0x80000000
3583    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3584    emit_d8    (cbuf,0x07+4);     // Size of slow_call
3585    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3586    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3587    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3588    emit_d8    (cbuf,0x07);       // Size of slow_call
3589    // Push src onto stack slow-path
3590    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3591    emit_d8    (cbuf,0xC0-1+$src$$reg );
3592    // CALL directly to the runtime
3593    cbuf.set_insts_mark();
3594    emit_opcode(cbuf,0xE8);       // Call into runtime
3595    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3596    // Carry on here...
3597  %}
3598
3599  enc_class FMul_ST_reg( eRegFPR src1 ) %{
3600    // Operand was loaded from memory into fp ST (stack top)
3601    // FMUL   ST,$src  /* D8 C8+i */
3602    emit_opcode(cbuf, 0xD8);
3603    emit_opcode(cbuf, 0xC8 + $src1$$reg);
3604  %}
3605
3606  enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3607    // FADDP  ST,src2  /* D8 C0+i */
3608    emit_opcode(cbuf, 0xD8);
3609    emit_opcode(cbuf, 0xC0 + $src2$$reg);
3610    //could use FADDP  src2,fpST  /* DE C0+i */
3611  %}
3612
3613  enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3614    // FADDP  src2,ST  /* DE C0+i */
3615    emit_opcode(cbuf, 0xDE);
3616    emit_opcode(cbuf, 0xC0 + $src2$$reg);
3617  %}
3618
3619  enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3620    // Operand has been loaded into fp ST (stack top)
3621      // FSUB   ST,$src1
3622      emit_opcode(cbuf, 0xD8);
3623      emit_opcode(cbuf, 0xE0 + $src1$$reg);
3624
3625      // FDIV
3626      emit_opcode(cbuf, 0xD8);
3627      emit_opcode(cbuf, 0xF0 + $src2$$reg);
3628  %}
3629
3630  enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3631    // Operand was loaded from memory into fp ST (stack top)
3632    // FADD   ST,$src  /* D8 C0+i */
3633    emit_opcode(cbuf, 0xD8);
3634    emit_opcode(cbuf, 0xC0 + $src1$$reg);
3635
3636    // FMUL  ST,src2  /* D8 C*+i */
3637    emit_opcode(cbuf, 0xD8);
3638    emit_opcode(cbuf, 0xC8 + $src2$$reg);
3639  %}
3640
3641
3642  enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3643    // Operand was loaded from memory into fp ST (stack top)
3644    // FADD   ST,$src  /* D8 C0+i */
3645    emit_opcode(cbuf, 0xD8);
3646    emit_opcode(cbuf, 0xC0 + $src1$$reg);
3647
3648    // FMULP  src2,ST  /* DE C8+i */
3649    emit_opcode(cbuf, 0xDE);
3650    emit_opcode(cbuf, 0xC8 + $src2$$reg);
3651  %}
3652
3653  // Atomically load the volatile long
3654  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3655    emit_opcode(cbuf,0xDF);
3656    int rm_byte_opcode = 0x05;
3657    int base     = $mem$$base;
3658    int index    = $mem$$index;
3659    int scale    = $mem$$scale;
3660    int displace = $mem$$disp;
3661    relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3662    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3663    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3664  %}
3665
3666  // Volatile Store Long.  Must be atomic, so move it into
3667  // the FP TOS and then do a 64-bit FIST.  Has to probe the
3668  // target address before the store (for null-ptr checks)
3669  // so the memory operand is used twice in the encoding.
3670  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3671    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3672    cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3673    emit_opcode(cbuf,0xDF);
3674    int rm_byte_opcode = 0x07;
3675    int base     = $mem$$base;
3676    int index    = $mem$$index;
3677    int scale    = $mem$$scale;
3678    int displace = $mem$$disp;
3679    relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3680    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3681  %}
3682
3683  // Safepoint Poll.  This polls the safepoint page, and causes an
3684  // exception if it is not readable. Unfortunately, it kills the condition code
3685  // in the process
3686  // We current use TESTL [spp],EDI
3687  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3688
3689  enc_class Safepoint_Poll() %{
3690    cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3691    emit_opcode(cbuf,0x85);
3692    emit_rm (cbuf, 0x0, 0x7, 0x5);
3693    emit_d32(cbuf, (intptr_t)os::get_polling_page());
3694  %}
3695%}
3696
3697
3698//----------FRAME--------------------------------------------------------------
3699// Definition of frame structure and management information.
3700//
3701//  S T A C K   L A Y O U T    Allocators stack-slot number
3702//                             |   (to get allocators register number
3703//  G  Owned by    |        |  v    add OptoReg::stack0())
3704//  r   CALLER     |        |
3705//  o     |        +--------+      pad to even-align allocators stack-slot
3706//  w     V        |  pad0  |        numbers; owned by CALLER
3707//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3708//  h     ^        |   in   |  5
3709//        |        |  args  |  4   Holes in incoming args owned by SELF
3710//  |     |        |        |  3
3711//  |     |        +--------+
3712//  V     |        | old out|      Empty on Intel, window on Sparc
3713//        |    old |preserve|      Must be even aligned.
3714//        |     SP-+--------+----> Matcher::_old_SP, even aligned
3715//        |        |   in   |  3   area for Intel ret address
3716//     Owned by    |preserve|      Empty on Sparc.
3717//       SELF      +--------+
3718//        |        |  pad2  |  2   pad to align old SP
3719//        |        +--------+  1
3720//        |        | locks  |  0
3721//        |        +--------+----> OptoReg::stack0(), even aligned
3722//        |        |  pad1  | 11   pad to align new SP
3723//        |        +--------+
3724//        |        |        | 10
3725//        |        | spills |  9   spills
3726//        V        |        |  8   (pad0 slot for callee)
3727//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3728//        ^        |  out   |  7
3729//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3730//     Owned by    +--------+
3731//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3732//        |    new |preserve|      Must be even-aligned.
3733//        |     SP-+--------+----> Matcher::_new_SP, even aligned
3734//        |        |        |
3735//
3736// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3737//         known from SELF's arguments and the Java calling convention.
3738//         Region 6-7 is determined per call site.
3739// Note 2: If the calling convention leaves holes in the incoming argument
3740//         area, those holes are owned by SELF.  Holes in the outgoing area
3741//         are owned by the CALLEE.  Holes should not be nessecary in the
3742//         incoming area, as the Java calling convention is completely under
3743//         the control of the AD file.  Doubles can be sorted and packed to
3744//         avoid holes.  Holes in the outgoing arguments may be nessecary for
3745//         varargs C calling conventions.
3746// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3747//         even aligned with pad0 as needed.
3748//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3749//         region 6-11 is even aligned; it may be padded out more so that
3750//         the region from SP to FP meets the minimum stack alignment.
3751
3752frame %{
3753  // What direction does stack grow in (assumed to be same for C & Java)
3754  stack_direction(TOWARDS_LOW);
3755
3756  // These three registers define part of the calling convention
3757  // between compiled code and the interpreter.
3758  inline_cache_reg(EAX);                // Inline Cache Register
3759  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3760
3761  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3762  cisc_spilling_operand_name(indOffset32);
3763
3764  // Number of stack slots consumed by locking an object
3765  sync_stack_slots(1);
3766
3767  // Compiled code's Frame Pointer
3768  frame_pointer(ESP);
3769  // Interpreter stores its frame pointer in a register which is
3770  // stored to the stack by I2CAdaptors.
3771  // I2CAdaptors convert from interpreted java to compiled java.
3772  interpreter_frame_pointer(EBP);
3773
3774  // Stack alignment requirement
3775  // Alignment size in bytes (128-bit -> 16 bytes)
3776  stack_alignment(StackAlignmentInBytes);
3777
3778  // Number of stack slots between incoming argument block and the start of
3779  // a new frame.  The PROLOG must add this many slots to the stack.  The
3780  // EPILOG must remove this many slots.  Intel needs one slot for
3781  // return address and one for rbp, (must save rbp)
3782  in_preserve_stack_slots(2+VerifyStackAtCalls);
3783
3784  // Number of outgoing stack slots killed above the out_preserve_stack_slots
3785  // for calls to C.  Supports the var-args backing area for register parms.
3786  varargs_C_out_slots_killed(0);
3787
3788  // The after-PROLOG location of the return address.  Location of
3789  // return address specifies a type (REG or STACK) and a number
3790  // representing the register number (i.e. - use a register name) or
3791  // stack slot.
3792  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3793  // Otherwise, it is above the locks and verification slot and alignment word
3794  return_addr(STACK - 1 +
3795              round_to((Compile::current()->in_preserve_stack_slots() +
3796                        Compile::current()->fixed_slots()),
3797                       stack_alignment_in_slots()));
3798
3799  // Body of function which returns an integer array locating
3800  // arguments either in registers or in stack slots.  Passed an array
3801  // of ideal registers called "sig" and a "length" count.  Stack-slot
3802  // offsets are based on outgoing arguments, i.e. a CALLER setting up
3803  // arguments for a CALLEE.  Incoming stack arguments are
3804  // automatically biased by the preserve_stack_slots field above.
3805  calling_convention %{
3806    // No difference between ingoing/outgoing just pass false
3807    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3808  %}
3809
3810
3811  // Body of function which returns an integer array locating
3812  // arguments either in registers or in stack slots.  Passed an array
3813  // of ideal registers called "sig" and a "length" count.  Stack-slot
3814  // offsets are based on outgoing arguments, i.e. a CALLER setting up
3815  // arguments for a CALLEE.  Incoming stack arguments are
3816  // automatically biased by the preserve_stack_slots field above.
3817  c_calling_convention %{
3818    // This is obviously always outgoing
3819    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3820  %}
3821
3822  // Location of C & interpreter return values
3823  c_return_value %{
3824    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3825    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3826    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3827
3828    // in SSE2+ mode we want to keep the FPU stack clean so pretend
3829    // that C functions return float and double results in XMM0.
3830    if( ideal_reg == Op_RegD && UseSSE>=2 )
3831      return OptoRegPair(XMM0b_num,XMM0_num);
3832    if( ideal_reg == Op_RegF && UseSSE>=2 )
3833      return OptoRegPair(OptoReg::Bad,XMM0_num);
3834
3835    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3836  %}
3837
3838  // Location of return values
3839  return_value %{
3840    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3841    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3842    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3843    if( ideal_reg == Op_RegD && UseSSE>=2 )
3844      return OptoRegPair(XMM0b_num,XMM0_num);
3845    if( ideal_reg == Op_RegF && UseSSE>=1 )
3846      return OptoRegPair(OptoReg::Bad,XMM0_num);
3847    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3848  %}
3849
3850%}
3851
3852//----------ATTRIBUTES---------------------------------------------------------
3853//----------Operand Attributes-------------------------------------------------
3854op_attrib op_cost(0);        // Required cost attribute
3855
3856//----------Instruction Attributes---------------------------------------------
3857ins_attrib ins_cost(100);       // Required cost attribute
3858ins_attrib ins_size(8);         // Required size attribute (in bits)
3859ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3860                                // non-matching short branch variant of some
3861                                                            // long branch?
3862ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3863                                // specifies the alignment that some part of the instruction (not
3864                                // necessarily the start) requires.  If > 1, a compute_padding()
3865                                // function must be provided for the instruction
3866
3867//----------OPERANDS-----------------------------------------------------------
3868// Operand definitions must precede instruction definitions for correct parsing
3869// in the ADLC because operands constitute user defined types which are used in
3870// instruction definitions.
3871
3872//----------Simple Operands----------------------------------------------------
3873// Immediate Operands
3874// Integer Immediate
3875operand immI() %{
3876  match(ConI);
3877
3878  op_cost(10);
3879  format %{ %}
3880  interface(CONST_INTER);
3881%}
3882
3883// Constant for test vs zero
3884operand immI0() %{
3885  predicate(n->get_int() == 0);
3886  match(ConI);
3887
3888  op_cost(0);
3889  format %{ %}
3890  interface(CONST_INTER);
3891%}
3892
3893// Constant for increment
3894operand immI1() %{
3895  predicate(n->get_int() == 1);
3896  match(ConI);
3897
3898  op_cost(0);
3899  format %{ %}
3900  interface(CONST_INTER);
3901%}
3902
3903// Constant for decrement
3904operand immI_M1() %{
3905  predicate(n->get_int() == -1);
3906  match(ConI);
3907
3908  op_cost(0);
3909  format %{ %}
3910  interface(CONST_INTER);
3911%}
3912
3913// Valid scale values for addressing modes
3914operand immI2() %{
3915  predicate(0 <= n->get_int() && (n->get_int() <= 3));
3916  match(ConI);
3917
3918  format %{ %}
3919  interface(CONST_INTER);
3920%}
3921
3922operand immI8() %{
3923  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3924  match(ConI);
3925
3926  op_cost(5);
3927  format %{ %}
3928  interface(CONST_INTER);
3929%}
3930
3931operand immI16() %{
3932  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3933  match(ConI);
3934
3935  op_cost(10);
3936  format %{ %}
3937  interface(CONST_INTER);
3938%}
3939
3940// Constant for long shifts
3941operand immI_32() %{
3942  predicate( n->get_int() == 32 );
3943  match(ConI);
3944
3945  op_cost(0);
3946  format %{ %}
3947  interface(CONST_INTER);
3948%}
3949
3950operand immI_1_31() %{
3951  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3952  match(ConI);
3953
3954  op_cost(0);
3955  format %{ %}
3956  interface(CONST_INTER);
3957%}
3958
3959operand immI_32_63() %{
3960  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3961  match(ConI);
3962  op_cost(0);
3963
3964  format %{ %}
3965  interface(CONST_INTER);
3966%}
3967
3968operand immI_1() %{
3969  predicate( n->get_int() == 1 );
3970  match(ConI);
3971
3972  op_cost(0);
3973  format %{ %}
3974  interface(CONST_INTER);
3975%}
3976
3977operand immI_2() %{
3978  predicate( n->get_int() == 2 );
3979  match(ConI);
3980
3981  op_cost(0);
3982  format %{ %}
3983  interface(CONST_INTER);
3984%}
3985
3986operand immI_3() %{
3987  predicate( n->get_int() == 3 );
3988  match(ConI);
3989
3990  op_cost(0);
3991  format %{ %}
3992  interface(CONST_INTER);
3993%}
3994
3995// Pointer Immediate
3996operand immP() %{
3997  match(ConP);
3998
3999  op_cost(10);
4000  format %{ %}
4001  interface(CONST_INTER);
4002%}
4003
4004// NULL Pointer Immediate
4005operand immP0() %{
4006  predicate( n->get_ptr() == 0 );
4007  match(ConP);
4008  op_cost(0);
4009
4010  format %{ %}
4011  interface(CONST_INTER);
4012%}
4013
4014// Long Immediate
4015operand immL() %{
4016  match(ConL);
4017
4018  op_cost(20);
4019  format %{ %}
4020  interface(CONST_INTER);
4021%}
4022
4023// Long Immediate zero
4024operand immL0() %{
4025  predicate( n->get_long() == 0L );
4026  match(ConL);
4027  op_cost(0);
4028
4029  format %{ %}
4030  interface(CONST_INTER);
4031%}
4032
4033// Long Immediate zero
4034operand immL_M1() %{
4035  predicate( n->get_long() == -1L );
4036  match(ConL);
4037  op_cost(0);
4038
4039  format %{ %}
4040  interface(CONST_INTER);
4041%}
4042
4043// Long immediate from 0 to 127.
4044// Used for a shorter form of long mul by 10.
4045operand immL_127() %{
4046  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4047  match(ConL);
4048  op_cost(0);
4049
4050  format %{ %}
4051  interface(CONST_INTER);
4052%}
4053
4054// Long Immediate: low 32-bit mask
4055operand immL_32bits() %{
4056  predicate(n->get_long() == 0xFFFFFFFFL);
4057  match(ConL);
4058  op_cost(0);
4059
4060  format %{ %}
4061  interface(CONST_INTER);
4062%}
4063
4064// Long Immediate: low 32-bit mask
4065operand immL32() %{
4066  predicate(n->get_long() == (int)(n->get_long()));
4067  match(ConL);
4068  op_cost(20);
4069
4070  format %{ %}
4071  interface(CONST_INTER);
4072%}
4073
4074//Double Immediate zero
4075operand immDPR0() %{
4076  // Do additional (and counter-intuitive) test against NaN to work around VC++
4077  // bug that generates code such that NaNs compare equal to 0.0
4078  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4079  match(ConD);
4080
4081  op_cost(5);
4082  format %{ %}
4083  interface(CONST_INTER);
4084%}
4085
4086// Double Immediate one
4087operand immDPR1() %{
4088  predicate( UseSSE<=1 && n->getd() == 1.0 );
4089  match(ConD);
4090
4091  op_cost(5);
4092  format %{ %}
4093  interface(CONST_INTER);
4094%}
4095
4096// Double Immediate
4097operand immDPR() %{
4098  predicate(UseSSE<=1);
4099  match(ConD);
4100
4101  op_cost(5);
4102  format %{ %}
4103  interface(CONST_INTER);
4104%}
4105
4106operand immD() %{
4107  predicate(UseSSE>=2);
4108  match(ConD);
4109
4110  op_cost(5);
4111  format %{ %}
4112  interface(CONST_INTER);
4113%}
4114
4115// Double Immediate zero
4116operand immD0() %{
4117  // Do additional (and counter-intuitive) test against NaN to work around VC++
4118  // bug that generates code such that NaNs compare equal to 0.0 AND do not
4119  // compare equal to -0.0.
4120  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4121  match(ConD);
4122
4123  format %{ %}
4124  interface(CONST_INTER);
4125%}
4126
4127// Float Immediate zero
4128operand immFPR0() %{
4129  predicate(UseSSE == 0 && n->getf() == 0.0F);
4130  match(ConF);
4131
4132  op_cost(5);
4133  format %{ %}
4134  interface(CONST_INTER);
4135%}
4136
4137// Float Immediate one
4138operand immFPR1() %{
4139  predicate(UseSSE == 0 && n->getf() == 1.0F);
4140  match(ConF);
4141
4142  op_cost(5);
4143  format %{ %}
4144  interface(CONST_INTER);
4145%}
4146
4147// Float Immediate
4148operand immFPR() %{
4149  predicate( UseSSE == 0 );
4150  match(ConF);
4151
4152  op_cost(5);
4153  format %{ %}
4154  interface(CONST_INTER);
4155%}
4156
4157// Float Immediate
4158operand immF() %{
4159  predicate(UseSSE >= 1);
4160  match(ConF);
4161
4162  op_cost(5);
4163  format %{ %}
4164  interface(CONST_INTER);
4165%}
4166
4167// Float Immediate zero.  Zero and not -0.0
4168operand immF0() %{
4169  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4170  match(ConF);
4171
4172  op_cost(5);
4173  format %{ %}
4174  interface(CONST_INTER);
4175%}
4176
4177// Immediates for special shifts (sign extend)
4178
4179// Constants for increment
4180operand immI_16() %{
4181  predicate( n->get_int() == 16 );
4182  match(ConI);
4183
4184  format %{ %}
4185  interface(CONST_INTER);
4186%}
4187
4188operand immI_24() %{
4189  predicate( n->get_int() == 24 );
4190  match(ConI);
4191
4192  format %{ %}
4193  interface(CONST_INTER);
4194%}
4195
4196// Constant for byte-wide masking
4197operand immI_255() %{
4198  predicate( n->get_int() == 255 );
4199  match(ConI);
4200
4201  format %{ %}
4202  interface(CONST_INTER);
4203%}
4204
4205// Constant for short-wide masking
4206operand immI_65535() %{
4207  predicate(n->get_int() == 65535);
4208  match(ConI);
4209
4210  format %{ %}
4211  interface(CONST_INTER);
4212%}
4213
4214// Register Operands
4215// Integer Register
4216operand rRegI() %{
4217  constraint(ALLOC_IN_RC(int_reg));
4218  match(RegI);
4219  match(xRegI);
4220  match(eAXRegI);
4221  match(eBXRegI);
4222  match(eCXRegI);
4223  match(eDXRegI);
4224  match(eDIRegI);
4225  match(eSIRegI);
4226
4227  format %{ %}
4228  interface(REG_INTER);
4229%}
4230
4231// Subset of Integer Register
4232operand xRegI(rRegI reg) %{
4233  constraint(ALLOC_IN_RC(int_x_reg));
4234  match(reg);
4235  match(eAXRegI);
4236  match(eBXRegI);
4237  match(eCXRegI);
4238  match(eDXRegI);
4239
4240  format %{ %}
4241  interface(REG_INTER);
4242%}
4243
4244// Special Registers
4245operand eAXRegI(xRegI reg) %{
4246  constraint(ALLOC_IN_RC(eax_reg));
4247  match(reg);
4248  match(rRegI);
4249
4250  format %{ "EAX" %}
4251  interface(REG_INTER);
4252%}
4253
4254// Special Registers
4255operand eBXRegI(xRegI reg) %{
4256  constraint(ALLOC_IN_RC(ebx_reg));
4257  match(reg);
4258  match(rRegI);
4259
4260  format %{ "EBX" %}
4261  interface(REG_INTER);
4262%}
4263
4264operand eCXRegI(xRegI reg) %{
4265  constraint(ALLOC_IN_RC(ecx_reg));
4266  match(reg);
4267  match(rRegI);
4268
4269  format %{ "ECX" %}
4270  interface(REG_INTER);
4271%}
4272
4273operand eDXRegI(xRegI reg) %{
4274  constraint(ALLOC_IN_RC(edx_reg));
4275  match(reg);
4276  match(rRegI);
4277
4278  format %{ "EDX" %}
4279  interface(REG_INTER);
4280%}
4281
4282operand eDIRegI(xRegI reg) %{
4283  constraint(ALLOC_IN_RC(edi_reg));
4284  match(reg);
4285  match(rRegI);
4286
4287  format %{ "EDI" %}
4288  interface(REG_INTER);
4289%}
4290
4291operand naxRegI() %{
4292  constraint(ALLOC_IN_RC(nax_reg));
4293  match(RegI);
4294  match(eCXRegI);
4295  match(eDXRegI);
4296  match(eSIRegI);
4297  match(eDIRegI);
4298
4299  format %{ %}
4300  interface(REG_INTER);
4301%}
4302
4303operand nadxRegI() %{
4304  constraint(ALLOC_IN_RC(nadx_reg));
4305  match(RegI);
4306  match(eBXRegI);
4307  match(eCXRegI);
4308  match(eSIRegI);
4309  match(eDIRegI);
4310
4311  format %{ %}
4312  interface(REG_INTER);
4313%}
4314
4315operand ncxRegI() %{
4316  constraint(ALLOC_IN_RC(ncx_reg));
4317  match(RegI);
4318  match(eAXRegI);
4319  match(eDXRegI);
4320  match(eSIRegI);
4321  match(eDIRegI);
4322
4323  format %{ %}
4324  interface(REG_INTER);
4325%}
4326
4327// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4328// //
4329operand eSIRegI(xRegI reg) %{
4330   constraint(ALLOC_IN_RC(esi_reg));
4331   match(reg);
4332   match(rRegI);
4333
4334   format %{ "ESI" %}
4335   interface(REG_INTER);
4336%}
4337
4338// Pointer Register
4339operand anyRegP() %{
4340  constraint(ALLOC_IN_RC(any_reg));
4341  match(RegP);
4342  match(eAXRegP);
4343  match(eBXRegP);
4344  match(eCXRegP);
4345  match(eDIRegP);
4346  match(eRegP);
4347
4348  format %{ %}
4349  interface(REG_INTER);
4350%}
4351
4352operand eRegP() %{
4353  constraint(ALLOC_IN_RC(int_reg));
4354  match(RegP);
4355  match(eAXRegP);
4356  match(eBXRegP);
4357  match(eCXRegP);
4358  match(eDIRegP);
4359
4360  format %{ %}
4361  interface(REG_INTER);
4362%}
4363
4364// On windows95, EBP is not safe to use for implicit null tests.
4365operand eRegP_no_EBP() %{
4366  constraint(ALLOC_IN_RC(int_reg_no_rbp));
4367  match(RegP);
4368  match(eAXRegP);
4369  match(eBXRegP);
4370  match(eCXRegP);
4371  match(eDIRegP);
4372
4373  op_cost(100);
4374  format %{ %}
4375  interface(REG_INTER);
4376%}
4377
4378operand naxRegP() %{
4379  constraint(ALLOC_IN_RC(nax_reg));
4380  match(RegP);
4381  match(eBXRegP);
4382  match(eDXRegP);
4383  match(eCXRegP);
4384  match(eSIRegP);
4385  match(eDIRegP);
4386
4387  format %{ %}
4388  interface(REG_INTER);
4389%}
4390
4391operand nabxRegP() %{
4392  constraint(ALLOC_IN_RC(nabx_reg));
4393  match(RegP);
4394  match(eCXRegP);
4395  match(eDXRegP);
4396  match(eSIRegP);
4397  match(eDIRegP);
4398
4399  format %{ %}
4400  interface(REG_INTER);
4401%}
4402
4403operand pRegP() %{
4404  constraint(ALLOC_IN_RC(p_reg));
4405  match(RegP);
4406  match(eBXRegP);
4407  match(eDXRegP);
4408  match(eSIRegP);
4409  match(eDIRegP);
4410
4411  format %{ %}
4412  interface(REG_INTER);
4413%}
4414
4415// Special Registers
4416// Return a pointer value
4417operand eAXRegP(eRegP reg) %{
4418  constraint(ALLOC_IN_RC(eax_reg));
4419  match(reg);
4420  format %{ "EAX" %}
4421  interface(REG_INTER);
4422%}
4423
4424// Used in AtomicAdd
4425operand eBXRegP(eRegP reg) %{
4426  constraint(ALLOC_IN_RC(ebx_reg));
4427  match(reg);
4428  format %{ "EBX" %}
4429  interface(REG_INTER);
4430%}
4431
4432// Tail-call (interprocedural jump) to interpreter
4433operand eCXRegP(eRegP reg) %{
4434  constraint(ALLOC_IN_RC(ecx_reg));
4435  match(reg);
4436  format %{ "ECX" %}
4437  interface(REG_INTER);
4438%}
4439
4440operand eSIRegP(eRegP reg) %{
4441  constraint(ALLOC_IN_RC(esi_reg));
4442  match(reg);
4443  format %{ "ESI" %}
4444  interface(REG_INTER);
4445%}
4446
4447// Used in rep stosw
4448operand eDIRegP(eRegP reg) %{
4449  constraint(ALLOC_IN_RC(edi_reg));
4450  match(reg);
4451  format %{ "EDI" %}
4452  interface(REG_INTER);
4453%}
4454
4455operand eBPRegP() %{
4456  constraint(ALLOC_IN_RC(ebp_reg));
4457  match(RegP);
4458  format %{ "EBP" %}
4459  interface(REG_INTER);
4460%}
4461
4462operand eRegL() %{
4463  constraint(ALLOC_IN_RC(long_reg));
4464  match(RegL);
4465  match(eADXRegL);
4466
4467  format %{ %}
4468  interface(REG_INTER);
4469%}
4470
4471operand eADXRegL( eRegL reg ) %{
4472  constraint(ALLOC_IN_RC(eadx_reg));
4473  match(reg);
4474
4475  format %{ "EDX:EAX" %}
4476  interface(REG_INTER);
4477%}
4478
4479operand eBCXRegL( eRegL reg ) %{
4480  constraint(ALLOC_IN_RC(ebcx_reg));
4481  match(reg);
4482
4483  format %{ "EBX:ECX" %}
4484  interface(REG_INTER);
4485%}
4486
4487// Special case for integer high multiply
4488operand eADXRegL_low_only() %{
4489  constraint(ALLOC_IN_RC(eadx_reg));
4490  match(RegL);
4491
4492  format %{ "EAX" %}
4493  interface(REG_INTER);
4494%}
4495
4496// Flags register, used as output of compare instructions
4497operand eFlagsReg() %{
4498  constraint(ALLOC_IN_RC(int_flags));
4499  match(RegFlags);
4500
4501  format %{ "EFLAGS" %}
4502  interface(REG_INTER);
4503%}
4504
4505// Flags register, used as output of FLOATING POINT compare instructions
4506operand eFlagsRegU() %{
4507  constraint(ALLOC_IN_RC(int_flags));
4508  match(RegFlags);
4509
4510  format %{ "EFLAGS_U" %}
4511  interface(REG_INTER);
4512%}
4513
4514operand eFlagsRegUCF() %{
4515  constraint(ALLOC_IN_RC(int_flags));
4516  match(RegFlags);
4517  predicate(false);
4518
4519  format %{ "EFLAGS_U_CF" %}
4520  interface(REG_INTER);
4521%}
4522
4523// Condition Code Register used by long compare
4524operand flagsReg_long_LTGE() %{
4525  constraint(ALLOC_IN_RC(int_flags));
4526  match(RegFlags);
4527  format %{ "FLAGS_LTGE" %}
4528  interface(REG_INTER);
4529%}
4530operand flagsReg_long_EQNE() %{
4531  constraint(ALLOC_IN_RC(int_flags));
4532  match(RegFlags);
4533  format %{ "FLAGS_EQNE" %}
4534  interface(REG_INTER);
4535%}
4536operand flagsReg_long_LEGT() %{
4537  constraint(ALLOC_IN_RC(int_flags));
4538  match(RegFlags);
4539  format %{ "FLAGS_LEGT" %}
4540  interface(REG_INTER);
4541%}
4542
4543// Float register operands
4544operand regDPR() %{
4545  predicate( UseSSE < 2 );
4546  constraint(ALLOC_IN_RC(fp_dbl_reg));
4547  match(RegD);
4548  match(regDPR1);
4549  match(regDPR2);
4550  format %{ %}
4551  interface(REG_INTER);
4552%}
4553
4554operand regDPR1(regDPR reg) %{
4555  predicate( UseSSE < 2 );
4556  constraint(ALLOC_IN_RC(fp_dbl_reg0));
4557  match(reg);
4558  format %{ "FPR1" %}
4559  interface(REG_INTER);
4560%}
4561
4562operand regDPR2(regDPR reg) %{
4563  predicate( UseSSE < 2 );
4564  constraint(ALLOC_IN_RC(fp_dbl_reg1));
4565  match(reg);
4566  format %{ "FPR2" %}
4567  interface(REG_INTER);
4568%}
4569
4570operand regnotDPR1(regDPR reg) %{
4571  predicate( UseSSE < 2 );
4572  constraint(ALLOC_IN_RC(fp_dbl_notreg0));
4573  match(reg);
4574  format %{ %}
4575  interface(REG_INTER);
4576%}
4577
4578// Float register operands
4579operand regFPR() %{
4580  predicate( UseSSE < 2 );
4581  constraint(ALLOC_IN_RC(fp_flt_reg));
4582  match(RegF);
4583  match(regFPR1);
4584  format %{ %}
4585  interface(REG_INTER);
4586%}
4587
4588// Float register operands
4589operand regFPR1(regFPR reg) %{
4590  predicate( UseSSE < 2 );
4591  constraint(ALLOC_IN_RC(fp_flt_reg0));
4592  match(reg);
4593  format %{ "FPR1" %}
4594  interface(REG_INTER);
4595%}
4596
4597// XMM Float register operands
4598operand regF() %{
4599  predicate( UseSSE>=1 );
4600  constraint(ALLOC_IN_RC(float_reg));
4601  match(RegF);
4602  format %{ %}
4603  interface(REG_INTER);
4604%}
4605
4606// XMM Double register operands
4607operand regD() %{
4608  predicate( UseSSE>=2 );
4609  constraint(ALLOC_IN_RC(double_reg));
4610  match(RegD);
4611  format %{ %}
4612  interface(REG_INTER);
4613%}
4614
4615
4616//----------Memory Operands----------------------------------------------------
4617// Direct Memory Operand
4618operand direct(immP addr) %{
4619  match(addr);
4620
4621  format %{ "[$addr]" %}
4622  interface(MEMORY_INTER) %{
4623    base(0xFFFFFFFF);
4624    index(0x4);
4625    scale(0x0);
4626    disp($addr);
4627  %}
4628%}
4629
4630// Indirect Memory Operand
4631operand indirect(eRegP reg) %{
4632  constraint(ALLOC_IN_RC(int_reg));
4633  match(reg);
4634
4635  format %{ "[$reg]" %}
4636  interface(MEMORY_INTER) %{
4637    base($reg);
4638    index(0x4);
4639    scale(0x0);
4640    disp(0x0);
4641  %}
4642%}
4643
4644// Indirect Memory Plus Short Offset Operand
4645operand indOffset8(eRegP reg, immI8 off) %{
4646  match(AddP reg off);
4647
4648  format %{ "[$reg + $off]" %}
4649  interface(MEMORY_INTER) %{
4650    base($reg);
4651    index(0x4);
4652    scale(0x0);
4653    disp($off);
4654  %}
4655%}
4656
4657// Indirect Memory Plus Long Offset Operand
4658operand indOffset32(eRegP reg, immI off) %{
4659  match(AddP reg off);
4660
4661  format %{ "[$reg + $off]" %}
4662  interface(MEMORY_INTER) %{
4663    base($reg);
4664    index(0x4);
4665    scale(0x0);
4666    disp($off);
4667  %}
4668%}
4669
4670// Indirect Memory Plus Long Offset Operand
4671operand indOffset32X(rRegI reg, immP off) %{
4672  match(AddP off reg);
4673
4674  format %{ "[$reg + $off]" %}
4675  interface(MEMORY_INTER) %{
4676    base($reg);
4677    index(0x4);
4678    scale(0x0);
4679    disp($off);
4680  %}
4681%}
4682
4683// Indirect Memory Plus Index Register Plus Offset Operand
4684operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4685  match(AddP (AddP reg ireg) off);
4686
4687  op_cost(10);
4688  format %{"[$reg + $off + $ireg]" %}
4689  interface(MEMORY_INTER) %{
4690    base($reg);
4691    index($ireg);
4692    scale(0x0);
4693    disp($off);
4694  %}
4695%}
4696
4697// Indirect Memory Plus Index Register Plus Offset Operand
4698operand indIndex(eRegP reg, rRegI ireg) %{
4699  match(AddP reg ireg);
4700
4701  op_cost(10);
4702  format %{"[$reg + $ireg]" %}
4703  interface(MEMORY_INTER) %{
4704    base($reg);
4705    index($ireg);
4706    scale(0x0);
4707    disp(0x0);
4708  %}
4709%}
4710
4711// // -------------------------------------------------------------------------
4712// // 486 architecture doesn't support "scale * index + offset" with out a base
4713// // -------------------------------------------------------------------------
4714// // Scaled Memory Operands
4715// // Indirect Memory Times Scale Plus Offset Operand
4716// operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4717//   match(AddP off (LShiftI ireg scale));
4718//
4719//   op_cost(10);
4720//   format %{"[$off + $ireg << $scale]" %}
4721//   interface(MEMORY_INTER) %{
4722//     base(0x4);
4723//     index($ireg);
4724//     scale($scale);
4725//     disp($off);
4726//   %}
4727// %}
4728
4729// Indirect Memory Times Scale Plus Index Register
4730operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4731  match(AddP reg (LShiftI ireg scale));
4732
4733  op_cost(10);
4734  format %{"[$reg + $ireg << $scale]" %}
4735  interface(MEMORY_INTER) %{
4736    base($reg);
4737    index($ireg);
4738    scale($scale);
4739    disp(0x0);
4740  %}
4741%}
4742
4743// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4744operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4745  match(AddP (AddP reg (LShiftI ireg scale)) off);
4746
4747  op_cost(10);
4748  format %{"[$reg + $off + $ireg << $scale]" %}
4749  interface(MEMORY_INTER) %{
4750    base($reg);
4751    index($ireg);
4752    scale($scale);
4753    disp($off);
4754  %}
4755%}
4756
4757//----------Load Long Memory Operands------------------------------------------
4758// The load-long idiom will use it's address expression again after loading
4759// the first word of the long.  If the load-long destination overlaps with
4760// registers used in the addressing expression, the 2nd half will be loaded
4761// from a clobbered address.  Fix this by requiring that load-long use
4762// address registers that do not overlap with the load-long target.
4763
4764// load-long support
4765operand load_long_RegP() %{
4766  constraint(ALLOC_IN_RC(esi_reg));
4767  match(RegP);
4768  match(eSIRegP);
4769  op_cost(100);
4770  format %{  %}
4771  interface(REG_INTER);
4772%}
4773
4774// Indirect Memory Operand Long
4775operand load_long_indirect(load_long_RegP reg) %{
4776  constraint(ALLOC_IN_RC(esi_reg));
4777  match(reg);
4778
4779  format %{ "[$reg]" %}
4780  interface(MEMORY_INTER) %{
4781    base($reg);
4782    index(0x4);
4783    scale(0x0);
4784    disp(0x0);
4785  %}
4786%}
4787
4788// Indirect Memory Plus Long Offset Operand
4789operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4790  match(AddP reg off);
4791
4792  format %{ "[$reg + $off]" %}
4793  interface(MEMORY_INTER) %{
4794    base($reg);
4795    index(0x4);
4796    scale(0x0);
4797    disp($off);
4798  %}
4799%}
4800
4801opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4802
4803
4804//----------Special Memory Operands--------------------------------------------
4805// Stack Slot Operand - This operand is used for loading and storing temporary
4806//                      values on the stack where a match requires a value to
4807//                      flow through memory.
4808operand stackSlotP(sRegP reg) %{
4809  constraint(ALLOC_IN_RC(stack_slots));
4810  // No match rule because this operand is only generated in matching
4811  format %{ "[$reg]" %}
4812  interface(MEMORY_INTER) %{
4813    base(0x4);   // ESP
4814    index(0x4);  // No Index
4815    scale(0x0);  // No Scale
4816    disp($reg);  // Stack Offset
4817  %}
4818%}
4819
4820operand stackSlotI(sRegI reg) %{
4821  constraint(ALLOC_IN_RC(stack_slots));
4822  // No match rule because this operand is only generated in matching
4823  format %{ "[$reg]" %}
4824  interface(MEMORY_INTER) %{
4825    base(0x4);   // ESP
4826    index(0x4);  // No Index
4827    scale(0x0);  // No Scale
4828    disp($reg);  // Stack Offset
4829  %}
4830%}
4831
4832operand stackSlotF(sRegF reg) %{
4833  constraint(ALLOC_IN_RC(stack_slots));
4834  // No match rule because this operand is only generated in matching
4835  format %{ "[$reg]" %}
4836  interface(MEMORY_INTER) %{
4837    base(0x4);   // ESP
4838    index(0x4);  // No Index
4839    scale(0x0);  // No Scale
4840    disp($reg);  // Stack Offset
4841  %}
4842%}
4843
4844operand stackSlotD(sRegD reg) %{
4845  constraint(ALLOC_IN_RC(stack_slots));
4846  // No match rule because this operand is only generated in matching
4847  format %{ "[$reg]" %}
4848  interface(MEMORY_INTER) %{
4849    base(0x4);   // ESP
4850    index(0x4);  // No Index
4851    scale(0x0);  // No Scale
4852    disp($reg);  // Stack Offset
4853  %}
4854%}
4855
4856operand stackSlotL(sRegL reg) %{
4857  constraint(ALLOC_IN_RC(stack_slots));
4858  // No match rule because this operand is only generated in matching
4859  format %{ "[$reg]" %}
4860  interface(MEMORY_INTER) %{
4861    base(0x4);   // ESP
4862    index(0x4);  // No Index
4863    scale(0x0);  // No Scale
4864    disp($reg);  // Stack Offset
4865  %}
4866%}
4867
4868//----------Memory Operands - Win95 Implicit Null Variants----------------
4869// Indirect Memory Operand
4870operand indirect_win95_safe(eRegP_no_EBP reg)
4871%{
4872  constraint(ALLOC_IN_RC(int_reg));
4873  match(reg);
4874
4875  op_cost(100);
4876  format %{ "[$reg]" %}
4877  interface(MEMORY_INTER) %{
4878    base($reg);
4879    index(0x4);
4880    scale(0x0);
4881    disp(0x0);
4882  %}
4883%}
4884
4885// Indirect Memory Plus Short Offset Operand
4886operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4887%{
4888  match(AddP reg off);
4889
4890  op_cost(100);
4891  format %{ "[$reg + $off]" %}
4892  interface(MEMORY_INTER) %{
4893    base($reg);
4894    index(0x4);
4895    scale(0x0);
4896    disp($off);
4897  %}
4898%}
4899
4900// Indirect Memory Plus Long Offset Operand
4901operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4902%{
4903  match(AddP reg off);
4904
4905  op_cost(100);
4906  format %{ "[$reg + $off]" %}
4907  interface(MEMORY_INTER) %{
4908    base($reg);
4909    index(0x4);
4910    scale(0x0);
4911    disp($off);
4912  %}
4913%}
4914
4915// Indirect Memory Plus Index Register Plus Offset Operand
4916operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4917%{
4918  match(AddP (AddP reg ireg) off);
4919
4920  op_cost(100);
4921  format %{"[$reg + $off + $ireg]" %}
4922  interface(MEMORY_INTER) %{
4923    base($reg);
4924    index($ireg);
4925    scale(0x0);
4926    disp($off);
4927  %}
4928%}
4929
4930// Indirect Memory Times Scale Plus Index Register
4931operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4932%{
4933  match(AddP reg (LShiftI ireg scale));
4934
4935  op_cost(100);
4936  format %{"[$reg + $ireg << $scale]" %}
4937  interface(MEMORY_INTER) %{
4938    base($reg);
4939    index($ireg);
4940    scale($scale);
4941    disp(0x0);
4942  %}
4943%}
4944
4945// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4946operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4947%{
4948  match(AddP (AddP reg (LShiftI ireg scale)) off);
4949
4950  op_cost(100);
4951  format %{"[$reg + $off + $ireg << $scale]" %}
4952  interface(MEMORY_INTER) %{
4953    base($reg);
4954    index($ireg);
4955    scale($scale);
4956    disp($off);
4957  %}
4958%}
4959
4960//----------Conditional Branch Operands----------------------------------------
4961// Comparison Op  - This is the operation of the comparison, and is limited to
4962//                  the following set of codes:
4963//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4964//
4965// Other attributes of the comparison, such as unsignedness, are specified
4966// by the comparison instruction that sets a condition code flags register.
4967// That result is represented by a flags operand whose subtype is appropriate
4968// to the unsignedness (etc.) of the comparison.
4969//
4970// Later, the instruction which matches both the Comparison Op (a Bool) and
4971// the flags (produced by the Cmp) specifies the coding of the comparison op
4972// by matching a specific subtype of Bool operand below, such as cmpOpU.
4973
4974// Comparision Code
4975operand cmpOp() %{
4976  match(Bool);
4977
4978  format %{ "" %}
4979  interface(COND_INTER) %{
4980    equal(0x4, "e");
4981    not_equal(0x5, "ne");
4982    less(0xC, "l");
4983    greater_equal(0xD, "ge");
4984    less_equal(0xE, "le");
4985    greater(0xF, "g");
4986  %}
4987%}
4988
4989// Comparison Code, unsigned compare.  Used by FP also, with
4990// C2 (unordered) turned into GT or LT already.  The other bits
4991// C0 and C3 are turned into Carry & Zero flags.
4992operand cmpOpU() %{
4993  match(Bool);
4994
4995  format %{ "" %}
4996  interface(COND_INTER) %{
4997    equal(0x4, "e");
4998    not_equal(0x5, "ne");
4999    less(0x2, "b");
5000    greater_equal(0x3, "nb");
5001    less_equal(0x6, "be");
5002    greater(0x7, "nbe");
5003  %}
5004%}
5005
5006// Floating comparisons that don't require any fixup for the unordered case
5007operand cmpOpUCF() %{
5008  match(Bool);
5009  predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5010            n->as_Bool()->_test._test == BoolTest::ge ||
5011            n->as_Bool()->_test._test == BoolTest::le ||
5012            n->as_Bool()->_test._test == BoolTest::gt);
5013  format %{ "" %}
5014  interface(COND_INTER) %{
5015    equal(0x4, "e");
5016    not_equal(0x5, "ne");
5017    less(0x2, "b");
5018    greater_equal(0x3, "nb");
5019    less_equal(0x6, "be");
5020    greater(0x7, "nbe");
5021  %}
5022%}
5023
5024
5025// Floating comparisons that can be fixed up with extra conditional jumps
5026operand cmpOpUCF2() %{
5027  match(Bool);
5028  predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5029            n->as_Bool()->_test._test == BoolTest::eq);
5030  format %{ "" %}
5031  interface(COND_INTER) %{
5032    equal(0x4, "e");
5033    not_equal(0x5, "ne");
5034    less(0x2, "b");
5035    greater_equal(0x3, "nb");
5036    less_equal(0x6, "be");
5037    greater(0x7, "nbe");
5038  %}
5039%}
5040
5041// Comparison Code for FP conditional move
5042operand cmpOp_fcmov() %{
5043  match(Bool);
5044
5045  format %{ "" %}
5046  interface(COND_INTER) %{
5047    equal        (0x0C8);
5048    not_equal    (0x1C8);
5049    less         (0x0C0);
5050    greater_equal(0x1C0);
5051    less_equal   (0x0D0);
5052    greater      (0x1D0);
5053  %}
5054%}
5055
5056// Comparision Code used in long compares
5057operand cmpOp_commute() %{
5058  match(Bool);
5059
5060  format %{ "" %}
5061  interface(COND_INTER) %{
5062    equal(0x4, "e");
5063    not_equal(0x5, "ne");
5064    less(0xF, "g");
5065    greater_equal(0xE, "le");
5066    less_equal(0xD, "ge");
5067    greater(0xC, "l");
5068  %}
5069%}
5070
5071//----------OPERAND CLASSES----------------------------------------------------
5072// Operand Classes are groups of operands that are used as to simplify
5073// instruction definitions by not requiring the AD writer to specify separate
5074// instructions for every form of operand when the instruction accepts
5075// multiple operand types with the same basic encoding and format.  The classic
5076// case of this is memory operands.
5077
5078opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5079               indIndex, indIndexScale, indIndexScaleOffset);
5080
5081// Long memory operations are encoded in 2 instructions and a +4 offset.
5082// This means some kind of offset is always required and you cannot use
5083// an oop as the offset (done when working on static globals).
5084opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5085                    indIndex, indIndexScale, indIndexScaleOffset);
5086
5087
5088//----------PIPELINE-----------------------------------------------------------
5089// Rules which define the behavior of the target architectures pipeline.
5090pipeline %{
5091
5092//----------ATTRIBUTES---------------------------------------------------------
5093attributes %{
5094  variable_size_instructions;        // Fixed size instructions
5095  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5096  instruction_unit_size = 1;         // An instruction is 1 bytes long
5097  instruction_fetch_unit_size = 16;  // The processor fetches one line
5098  instruction_fetch_units = 1;       // of 16 bytes
5099
5100  // List of nop instructions
5101  nops( MachNop );
5102%}
5103
5104//----------RESOURCES----------------------------------------------------------
5105// Resources are the functional units available to the machine
5106
5107// Generic P2/P3 pipeline
5108// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5109// 3 instructions decoded per cycle.
5110// 2 load/store ops per cycle, 1 branch, 1 FPU,
5111// 2 ALU op, only ALU0 handles mul/div instructions.
5112resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5113           MS0, MS1, MEM = MS0 | MS1,
5114           BR, FPU,
5115           ALU0, ALU1, ALU = ALU0 | ALU1 );
5116
5117//----------PIPELINE DESCRIPTION-----------------------------------------------
5118// Pipeline Description specifies the stages in the machine's pipeline
5119
5120// Generic P2/P3 pipeline
5121pipe_desc(S0, S1, S2, S3, S4, S5);
5122
5123//----------PIPELINE CLASSES---------------------------------------------------
5124// Pipeline Classes describe the stages in which input and output are
5125// referenced by the hardware pipeline.
5126
5127// Naming convention: ialu or fpu
5128// Then: _reg
5129// Then: _reg if there is a 2nd register
5130// Then: _long if it's a pair of instructions implementing a long
5131// Then: _fat if it requires the big decoder
5132//   Or: _mem if it requires the big decoder and a memory unit.
5133
5134// Integer ALU reg operation
5135pipe_class ialu_reg(rRegI dst) %{
5136    single_instruction;
5137    dst    : S4(write);
5138    dst    : S3(read);
5139    DECODE : S0;        // any decoder
5140    ALU    : S3;        // any alu
5141%}
5142
5143// Long ALU reg operation
5144pipe_class ialu_reg_long(eRegL dst) %{
5145    instruction_count(2);
5146    dst    : S4(write);
5147    dst    : S3(read);
5148    DECODE : S0(2);     // any 2 decoders
5149    ALU    : S3(2);     // both alus
5150%}
5151
5152// Integer ALU reg operation using big decoder
5153pipe_class ialu_reg_fat(rRegI dst) %{
5154    single_instruction;
5155    dst    : S4(write);
5156    dst    : S3(read);
5157    D0     : S0;        // big decoder only
5158    ALU    : S3;        // any alu
5159%}
5160
5161// Long ALU reg operation using big decoder
5162pipe_class ialu_reg_long_fat(eRegL dst) %{
5163    instruction_count(2);
5164    dst    : S4(write);
5165    dst    : S3(read);
5166    D0     : S0(2);     // big decoder only; twice
5167    ALU    : S3(2);     // any 2 alus
5168%}
5169
5170// Integer ALU reg-reg operation
5171pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
5172    single_instruction;
5173    dst    : S4(write);
5174    src    : S3(read);
5175    DECODE : S0;        // any decoder
5176    ALU    : S3;        // any alu
5177%}
5178
5179// Long ALU reg-reg operation
5180pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5181    instruction_count(2);
5182    dst    : S4(write);
5183    src    : S3(read);
5184    DECODE : S0(2);     // any 2 decoders
5185    ALU    : S3(2);     // both alus
5186%}
5187
5188// Integer ALU reg-reg operation
5189pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
5190    single_instruction;
5191    dst    : S4(write);
5192    src    : S3(read);
5193    D0     : S0;        // big decoder only
5194    ALU    : S3;        // any alu
5195%}
5196
5197// Long ALU reg-reg operation
5198pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5199    instruction_count(2);
5200    dst    : S4(write);
5201    src    : S3(read);
5202    D0     : S0(2);     // big decoder only; twice
5203    ALU    : S3(2);     // both alus
5204%}
5205
5206// Integer ALU reg-mem operation
5207pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
5208    single_instruction;
5209    dst    : S5(write);
5210    mem    : S3(read);
5211    D0     : S0;        // big decoder only
5212    ALU    : S4;        // any alu
5213    MEM    : S3;        // any mem
5214%}
5215
5216// Long ALU reg-mem operation
5217pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5218    instruction_count(2);
5219    dst    : S5(write);
5220    mem    : S3(read);
5221    D0     : S0(2);     // big decoder only; twice
5222    ALU    : S4(2);     // any 2 alus
5223    MEM    : S3(2);     // both mems
5224%}
5225
5226// Integer mem operation (prefetch)
5227pipe_class ialu_mem(memory mem)
5228%{
5229    single_instruction;
5230    mem    : S3(read);
5231    D0     : S0;        // big decoder only
5232    MEM    : S3;        // any mem
5233%}
5234
5235// Integer Store to Memory
5236pipe_class ialu_mem_reg(memory mem, rRegI src) %{
5237    single_instruction;
5238    mem    : S3(read);
5239    src    : S5(read);
5240    D0     : S0;        // big decoder only
5241    ALU    : S4;        // any alu
5242    MEM    : S3;
5243%}
5244
5245// Long Store to Memory
5246pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5247    instruction_count(2);
5248    mem    : S3(read);
5249    src    : S5(read);
5250    D0     : S0(2);     // big decoder only; twice
5251    ALU    : S4(2);     // any 2 alus
5252    MEM    : S3(2);     // Both mems
5253%}
5254
5255// Integer Store to Memory
5256pipe_class ialu_mem_imm(memory mem) %{
5257    single_instruction;
5258    mem    : S3(read);
5259    D0     : S0;        // big decoder only
5260    ALU    : S4;        // any alu
5261    MEM    : S3;
5262%}
5263
5264// Integer ALU0 reg-reg operation
5265pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
5266    single_instruction;
5267    dst    : S4(write);
5268    src    : S3(read);
5269    D0     : S0;        // Big decoder only
5270    ALU0   : S3;        // only alu0
5271%}
5272
5273// Integer ALU0 reg-mem operation
5274pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
5275    single_instruction;
5276    dst    : S5(write);
5277    mem    : S3(read);
5278    D0     : S0;        // big decoder only
5279    ALU0   : S4;        // ALU0 only
5280    MEM    : S3;        // any mem
5281%}
5282
5283// Integer ALU reg-reg operation
5284pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
5285    single_instruction;
5286    cr     : S4(write);
5287    src1   : S3(read);
5288    src2   : S3(read);
5289    DECODE : S0;        // any decoder
5290    ALU    : S3;        // any alu
5291%}
5292
5293// Integer ALU reg-imm operation
5294pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
5295    single_instruction;
5296    cr     : S4(write);
5297    src1   : S3(read);
5298    DECODE : S0;        // any decoder
5299    ALU    : S3;        // any alu
5300%}
5301
5302// Integer ALU reg-mem operation
5303pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
5304    single_instruction;
5305    cr     : S4(write);
5306    src1   : S3(read);
5307    src2   : S3(read);
5308    D0     : S0;        // big decoder only
5309    ALU    : S4;        // any alu
5310    MEM    : S3;
5311%}
5312
5313// Conditional move reg-reg
5314pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
5315    instruction_count(4);
5316    y      : S4(read);
5317    q      : S3(read);
5318    p      : S3(read);
5319    DECODE : S0(4);     // any decoder
5320%}
5321
5322// Conditional move reg-reg
5323pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
5324    single_instruction;
5325    dst    : S4(write);
5326    src    : S3(read);
5327    cr     : S3(read);
5328    DECODE : S0;        // any decoder
5329%}
5330
5331// Conditional move reg-mem
5332pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
5333    single_instruction;
5334    dst    : S4(write);
5335    src    : S3(read);
5336    cr     : S3(read);
5337    DECODE : S0;        // any decoder
5338    MEM    : S3;
5339%}
5340
5341// Conditional move reg-reg long
5342pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5343    single_instruction;
5344    dst    : S4(write);
5345    src    : S3(read);
5346    cr     : S3(read);
5347    DECODE : S0(2);     // any 2 decoders
5348%}
5349
5350// Conditional move double reg-reg
5351pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
5352    single_instruction;
5353    dst    : S4(write);
5354    src    : S3(read);
5355    cr     : S3(read);
5356    DECODE : S0;        // any decoder
5357%}
5358
5359// Float reg-reg operation
5360pipe_class fpu_reg(regDPR dst) %{
5361    instruction_count(2);
5362    dst    : S3(read);
5363    DECODE : S0(2);     // any 2 decoders
5364    FPU    : S3;
5365%}
5366
5367// Float reg-reg operation
5368pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
5369    instruction_count(2);
5370    dst    : S4(write);
5371    src    : S3(read);
5372    DECODE : S0(2);     // any 2 decoders
5373    FPU    : S3;
5374%}
5375
5376// Float reg-reg operation
5377pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
5378    instruction_count(3);
5379    dst    : S4(write);
5380    src1   : S3(read);
5381    src2   : S3(read);
5382    DECODE : S0(3);     // any 3 decoders
5383    FPU    : S3(2);
5384%}
5385
5386// Float reg-reg operation
5387pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
5388    instruction_count(4);
5389    dst    : S4(write);
5390    src1   : S3(read);
5391    src2   : S3(read);
5392    src3   : S3(read);
5393    DECODE : S0(4);     // any 3 decoders
5394    FPU    : S3(2);
5395%}
5396
5397// Float reg-reg operation
5398pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
5399    instruction_count(4);
5400    dst    : S4(write);
5401    src1   : S3(read);
5402    src2   : S3(read);
5403    src3   : S3(read);
5404    DECODE : S1(3);     // any 3 decoders
5405    D0     : S0;        // Big decoder only
5406    FPU    : S3(2);
5407    MEM    : S3;
5408%}
5409
5410// Float reg-mem operation
5411pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
5412    instruction_count(2);
5413    dst    : S5(write);
5414    mem    : S3(read);
5415    D0     : S0;        // big decoder only
5416    DECODE : S1;        // any decoder for FPU POP
5417    FPU    : S4;
5418    MEM    : S3;        // any mem
5419%}
5420
5421// Float reg-mem operation
5422pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
5423    instruction_count(3);
5424    dst    : S5(write);
5425    src1   : S3(read);
5426    mem    : S3(read);
5427    D0     : S0;        // big decoder only
5428    DECODE : S1(2);     // any decoder for FPU POP
5429    FPU    : S4;
5430    MEM    : S3;        // any mem
5431%}
5432
5433// Float mem-reg operation
5434pipe_class fpu_mem_reg(memory mem, regDPR src) %{
5435    instruction_count(2);
5436    src    : S5(read);
5437    mem    : S3(read);
5438    DECODE : S0;        // any decoder for FPU PUSH
5439    D0     : S1;        // big decoder only
5440    FPU    : S4;
5441    MEM    : S3;        // any mem
5442%}
5443
5444pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
5445    instruction_count(3);
5446    src1   : S3(read);
5447    src2   : S3(read);
5448    mem    : S3(read);
5449    DECODE : S0(2);     // any decoder for FPU PUSH
5450    D0     : S1;        // big decoder only
5451    FPU    : S4;
5452    MEM    : S3;        // any mem
5453%}
5454
5455pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
5456    instruction_count(3);
5457    src1   : S3(read);
5458    src2   : S3(read);
5459    mem    : S4(read);
5460    DECODE : S0;        // any decoder for FPU PUSH
5461    D0     : S0(2);     // big decoder only
5462    FPU    : S4;
5463    MEM    : S3(2);     // any mem
5464%}
5465
5466pipe_class fpu_mem_mem(memory dst, memory src1) %{
5467    instruction_count(2);
5468    src1   : S3(read);
5469    dst    : S4(read);
5470    D0     : S0(2);     // big decoder only
5471    MEM    : S3(2);     // any mem
5472%}
5473
5474pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
5475    instruction_count(3);
5476    src1   : S3(read);
5477    src2   : S3(read);
5478    dst    : S4(read);
5479    D0     : S0(3);     // big decoder only
5480    FPU    : S4;
5481    MEM    : S3(3);     // any mem
5482%}
5483
5484pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
5485    instruction_count(3);
5486    src1   : S4(read);
5487    mem    : S4(read);
5488    DECODE : S0;        // any decoder for FPU PUSH
5489    D0     : S0(2);     // big decoder only
5490    FPU    : S4;
5491    MEM    : S3(2);     // any mem
5492%}
5493
5494// Float load constant
5495pipe_class fpu_reg_con(regDPR dst) %{
5496    instruction_count(2);
5497    dst    : S5(write);
5498    D0     : S0;        // big decoder only for the load
5499    DECODE : S1;        // any decoder for FPU POP
5500    FPU    : S4;
5501    MEM    : S3;        // any mem
5502%}
5503
5504// Float load constant
5505pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
5506    instruction_count(3);
5507    dst    : S5(write);
5508    src    : S3(read);
5509    D0     : S0;        // big decoder only for the load
5510    DECODE : S1(2);     // any decoder for FPU POP
5511    FPU    : S4;
5512    MEM    : S3;        // any mem
5513%}
5514
5515// UnConditional branch
5516pipe_class pipe_jmp( label labl ) %{
5517    single_instruction;
5518    BR   : S3;
5519%}
5520
5521// Conditional branch
5522pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
5523    single_instruction;
5524    cr    : S1(read);
5525    BR    : S3;
5526%}
5527
5528// Allocation idiom
5529pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
5530    instruction_count(1); force_serialization;
5531    fixed_latency(6);
5532    heap_ptr : S3(read);
5533    DECODE   : S0(3);
5534    D0       : S2;
5535    MEM      : S3;
5536    ALU      : S3(2);
5537    dst      : S5(write);
5538    BR       : S5;
5539%}
5540
5541// Generic big/slow expanded idiom
5542pipe_class pipe_slow(  ) %{
5543    instruction_count(10); multiple_bundles; force_serialization;
5544    fixed_latency(100);
5545    D0  : S0(2);
5546    MEM : S3(2);
5547%}
5548
5549// The real do-nothing guy
5550pipe_class empty( ) %{
5551    instruction_count(0);
5552%}
5553
5554// Define the class for the Nop node
5555define %{
5556   MachNop = empty;
5557%}
5558
5559%}
5560
5561//----------INSTRUCTIONS-------------------------------------------------------
5562//
5563// match      -- States which machine-independent subtree may be replaced
5564//               by this instruction.
5565// ins_cost   -- The estimated cost of this instruction is used by instruction
5566//               selection to identify a minimum cost tree of machine
5567//               instructions that matches a tree of machine-independent
5568//               instructions.
5569// format     -- A string providing the disassembly for this instruction.
5570//               The value of an instruction's operand may be inserted
5571//               by referring to it with a '$' prefix.
5572// opcode     -- Three instruction opcodes may be provided.  These are referred
5573//               to within an encode class as $primary, $secondary, and $tertiary
5574//               respectively.  The primary opcode is commonly used to
5575//               indicate the type of machine instruction, while secondary
5576//               and tertiary are often used for prefix options or addressing
5577//               modes.
5578// ins_encode -- A list of encode classes with parameters. The encode class
5579//               name must have been defined in an 'enc_class' specification
5580//               in the encode section of the architecture description.
5581
5582//----------BSWAP-Instruction--------------------------------------------------
5583instruct bytes_reverse_int(rRegI dst) %{
5584  match(Set dst (ReverseBytesI dst));
5585
5586  format %{ "BSWAP  $dst" %}
5587  opcode(0x0F, 0xC8);
5588  ins_encode( OpcP, OpcSReg(dst) );
5589  ins_pipe( ialu_reg );
5590%}
5591
5592instruct bytes_reverse_long(eRegL dst) %{
5593  match(Set dst (ReverseBytesL dst));
5594
5595  format %{ "BSWAP  $dst.lo\n\t"
5596            "BSWAP  $dst.hi\n\t"
5597            "XCHG   $dst.lo $dst.hi" %}
5598
5599  ins_cost(125);
5600  ins_encode( bswap_long_bytes(dst) );
5601  ins_pipe( ialu_reg_reg);
5602%}
5603
5604instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5605  match(Set dst (ReverseBytesUS dst));
5606  effect(KILL cr);
5607
5608  format %{ "BSWAP  $dst\n\t" 
5609            "SHR    $dst,16\n\t" %}
5610  ins_encode %{
5611    __ bswapl($dst$$Register);
5612    __ shrl($dst$$Register, 16); 
5613  %}
5614  ins_pipe( ialu_reg );
5615%}
5616
5617instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5618  match(Set dst (ReverseBytesS dst));
5619  effect(KILL cr);
5620
5621  format %{ "BSWAP  $dst\n\t" 
5622            "SAR    $dst,16\n\t" %}
5623  ins_encode %{
5624    __ bswapl($dst$$Register);
5625    __ sarl($dst$$Register, 16); 
5626  %}
5627  ins_pipe( ialu_reg );
5628%}
5629
5630
5631//---------- Zeros Count Instructions ------------------------------------------
5632
5633instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5634  predicate(UseCountLeadingZerosInstruction);
5635  match(Set dst (CountLeadingZerosI src));
5636  effect(KILL cr);
5637
5638  format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5639  ins_encode %{
5640    __ lzcntl($dst$$Register, $src$$Register);
5641  %}
5642  ins_pipe(ialu_reg);
5643%}
5644
5645instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5646  predicate(!UseCountLeadingZerosInstruction);
5647  match(Set dst (CountLeadingZerosI src));
5648  effect(KILL cr);
5649
5650  format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5651            "JNZ    skip\n\t"
5652            "MOV    $dst, -1\n"
5653      "skip:\n\t"
5654            "NEG    $dst\n\t"
5655            "ADD    $dst, 31" %}
5656  ins_encode %{
5657    Register Rdst = $dst$$Register;
5658    Register Rsrc = $src$$Register;
5659    Label skip;
5660    __ bsrl(Rdst, Rsrc);
5661    __ jccb(Assembler::notZero, skip);
5662    __ movl(Rdst, -1);
5663    __ bind(skip);
5664    __ negl(Rdst);
5665    __ addl(Rdst, BitsPerInt - 1);
5666  %}
5667  ins_pipe(ialu_reg);
5668%}
5669
5670instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5671  predicate(UseCountLeadingZerosInstruction);
5672  match(Set dst (CountLeadingZerosL src));
5673  effect(TEMP dst, KILL cr);
5674
5675  format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5676            "JNC    done\n\t"
5677            "LZCNT  $dst, $src.lo\n\t"
5678            "ADD    $dst, 32\n"
5679      "done:" %}
5680  ins_encode %{
5681    Register Rdst = $dst$$Register;
5682    Register Rsrc = $src$$Register;
5683    Label done;
5684    __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5685    __ jccb(Assembler::carryClear, done);
5686    __ lzcntl(Rdst, Rsrc);
5687    __ addl(Rdst, BitsPerInt);
5688    __ bind(done);
5689  %}
5690  ins_pipe(ialu_reg);
5691%}
5692
5693instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5694  predicate(!UseCountLeadingZerosInstruction);
5695  match(Set dst (CountLeadingZerosL src));
5696  effect(TEMP dst, KILL cr);
5697
5698  format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5699            "JZ     msw_is_zero\n\t"
5700            "ADD    $dst, 32\n\t"
5701            "JMP    not_zero\n"
5702      "msw_is_zero:\n\t"
5703            "BSR    $dst, $src.lo\n\t"
5704            "JNZ    not_zero\n\t"
5705            "MOV    $dst, -1\n"
5706      "not_zero:\n\t"
5707            "NEG    $dst\n\t"
5708            "ADD    $dst, 63\n" %}
5709 ins_encode %{
5710    Register Rdst = $dst$$Register;
5711    Register Rsrc = $src$$Register;
5712    Label msw_is_zero;
5713    Label not_zero;
5714    __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5715    __ jccb(Assembler::zero, msw_is_zero);
5716    __ addl(Rdst, BitsPerInt);
5717    __ jmpb(not_zero);
5718    __ bind(msw_is_zero);
5719    __ bsrl(Rdst, Rsrc);
5720    __ jccb(Assembler::notZero, not_zero);
5721    __ movl(Rdst, -1);
5722    __ bind(not_zero);
5723    __ negl(Rdst);
5724    __ addl(Rdst, BitsPerLong - 1);
5725  %}
5726  ins_pipe(ialu_reg);
5727%}
5728
5729instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5730  match(Set dst (CountTrailingZerosI src));
5731  effect(KILL cr);
5732
5733  format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5734            "JNZ    done\n\t"
5735            "MOV    $dst, 32\n"
5736      "done:" %}
5737  ins_encode %{
5738    Register Rdst = $dst$$Register;
5739    Label done;
5740    __ bsfl(Rdst, $src$$Register);
5741    __ jccb(Assembler::notZero, done);
5742    __ movl(Rdst, BitsPerInt);
5743    __ bind(done);
5744  %}
5745  ins_pipe(ialu_reg);
5746%}
5747
5748instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5749  match(Set dst (CountTrailingZerosL src));
5750  effect(TEMP dst, KILL cr);
5751
5752  format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5753            "JNZ    done\n\t"
5754            "BSF    $dst, $src.hi\n\t"
5755            "JNZ    msw_not_zero\n\t"
5756            "MOV    $dst, 32\n"
5757      "msw_not_zero:\n\t"
5758            "ADD    $dst, 32\n"
5759      "done:" %}
5760  ins_encode %{
5761    Register Rdst = $dst$$Register;
5762    Register Rsrc = $src$$Register;
5763    Label msw_not_zero;
5764    Label done;
5765    __ bsfl(Rdst, Rsrc);
5766    __ jccb(Assembler::notZero, done);
5767    __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5768    __ jccb(Assembler::notZero, msw_not_zero);
5769    __ movl(Rdst, BitsPerInt);
5770    __ bind(msw_not_zero);
5771    __ addl(Rdst, BitsPerInt);
5772    __ bind(done);
5773  %}
5774  ins_pipe(ialu_reg);
5775%}
5776
5777
5778//---------- Population Count Instructions -------------------------------------
5779
5780instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5781  predicate(UsePopCountInstruction);
5782  match(Set dst (PopCountI src));
5783  effect(KILL cr);
5784
5785  format %{ "POPCNT $dst, $src" %}
5786  ins_encode %{
5787    __ popcntl($dst$$Register, $src$$Register);
5788  %}
5789  ins_pipe(ialu_reg);
5790%}
5791
5792instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5793  predicate(UsePopCountInstruction);
5794  match(Set dst (PopCountI (LoadI mem)));
5795  effect(KILL cr);
5796
5797  format %{ "POPCNT $dst, $mem" %}
5798  ins_encode %{
5799    __ popcntl($dst$$Register, $mem$$Address);
5800  %}
5801  ins_pipe(ialu_reg);
5802%}
5803
5804// Note: Long.bitCount(long) returns an int.
5805instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5806  predicate(UsePopCountInstruction);
5807  match(Set dst (PopCountL src));
5808  effect(KILL cr, TEMP tmp, TEMP dst);
5809
5810  format %{ "POPCNT $dst, $src.lo\n\t"
5811            "POPCNT $tmp, $src.hi\n\t"
5812            "ADD    $dst, $tmp" %}
5813  ins_encode %{
5814    __ popcntl($dst$$Register, $src$$Register);
5815    __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5816    __ addl($dst$$Register, $tmp$$Register);
5817  %}
5818  ins_pipe(ialu_reg);
5819%}
5820
5821// Note: Long.bitCount(long) returns an int.
5822instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5823  predicate(UsePopCountInstruction);
5824  match(Set dst (PopCountL (LoadL mem)));
5825  effect(KILL cr, TEMP tmp, TEMP dst);
5826
5827  format %{ "POPCNT $dst, $mem\n\t"
5828            "POPCNT $tmp, $mem+4\n\t"
5829            "ADD    $dst, $tmp" %}
5830  ins_encode %{
5831    //__ popcntl($dst$$Register, $mem$$Address$$first);
5832    //__ popcntl($tmp$$Register, $mem$$Address$$second);
5833    __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5834    __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5835    __ addl($dst$$Register, $tmp$$Register);
5836  %}
5837  ins_pipe(ialu_reg);
5838%}
5839
5840
5841//----------Load/Store/Move Instructions---------------------------------------
5842//----------Load Instructions--------------------------------------------------
5843// Load Byte (8bit signed)
5844instruct loadB(xRegI dst, memory mem) %{
5845  match(Set dst (LoadB mem));
5846
5847  ins_cost(125);
5848  format %{ "MOVSX8 $dst,$mem\t# byte" %}
5849
5850  ins_encode %{
5851    __ movsbl($dst$$Register, $mem$$Address);
5852  %}
5853
5854  ins_pipe(ialu_reg_mem);
5855%}
5856
5857// Load Byte (8bit signed) into Long Register
5858instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5859  match(Set dst (ConvI2L (LoadB mem)));
5860  effect(KILL cr);
5861
5862  ins_cost(375);
5863  format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5864            "MOV    $dst.hi,$dst.lo\n\t"
5865            "SAR    $dst.hi,7" %}
5866
5867  ins_encode %{
5868    __ movsbl($dst$$Register, $mem$$Address);
5869    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5870    __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5871  %}
5872
5873  ins_pipe(ialu_reg_mem);
5874%}
5875
5876// Load Unsigned Byte (8bit UNsigned)
5877instruct loadUB(xRegI dst, memory mem) %{
5878  match(Set dst (LoadUB mem));
5879
5880  ins_cost(125);
5881  format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5882
5883  ins_encode %{
5884    __ movzbl($dst$$Register, $mem$$Address);
5885  %}
5886
5887  ins_pipe(ialu_reg_mem);
5888%}
5889
5890// Load Unsigned Byte (8 bit UNsigned) into Long Register
5891instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5892  match(Set dst (ConvI2L (LoadUB mem)));
5893  effect(KILL cr);
5894
5895  ins_cost(250);
5896  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5897            "XOR    $dst.hi,$dst.hi" %}
5898
5899  ins_encode %{
5900    Register Rdst = $dst$$Register;
5901    __ movzbl(Rdst, $mem$$Address);
5902    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5903  %}
5904
5905  ins_pipe(ialu_reg_mem);
5906%}
5907
5908// Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5909instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5910  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5911  effect(KILL cr);
5912
5913  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5914            "XOR    $dst.hi,$dst.hi\n\t"
5915            "AND    $dst.lo,$mask" %}
5916  ins_encode %{
5917    Register Rdst = $dst$$Register;
5918    __ movzbl(Rdst, $mem$$Address);
5919    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5920    __ andl(Rdst, $mask$$constant);
5921  %}
5922  ins_pipe(ialu_reg_mem);
5923%}
5924
5925// Load Short (16bit signed)
5926instruct loadS(rRegI dst, memory mem) %{
5927  match(Set dst (LoadS mem));
5928
5929  ins_cost(125);
5930  format %{ "MOVSX  $dst,$mem\t# short" %}
5931
5932  ins_encode %{
5933    __ movswl($dst$$Register, $mem$$Address);
5934  %}
5935
5936  ins_pipe(ialu_reg_mem);
5937%}
5938
5939// Load Short (16 bit signed) to Byte (8 bit signed)
5940instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5941  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5942
5943  ins_cost(125);
5944  format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5945  ins_encode %{
5946    __ movsbl($dst$$Register, $mem$$Address);
5947  %}
5948  ins_pipe(ialu_reg_mem);
5949%}
5950
5951// Load Short (16bit signed) into Long Register
5952instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5953  match(Set dst (ConvI2L (LoadS mem)));
5954  effect(KILL cr);
5955
5956  ins_cost(375);
5957  format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5958            "MOV    $dst.hi,$dst.lo\n\t"
5959            "SAR    $dst.hi,15" %}
5960
5961  ins_encode %{
5962    __ movswl($dst$$Register, $mem$$Address);
5963    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5964    __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5965  %}
5966
5967  ins_pipe(ialu_reg_mem);
5968%}
5969
5970// Load Unsigned Short/Char (16bit unsigned)
5971instruct loadUS(rRegI dst, memory mem) %{
5972  match(Set dst (LoadUS mem));
5973
5974  ins_cost(125);
5975  format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5976
5977  ins_encode %{
5978    __ movzwl($dst$$Register, $mem$$Address);
5979  %}
5980
5981  ins_pipe(ialu_reg_mem);
5982%}
5983
5984// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5985instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5986  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5987
5988  ins_cost(125);
5989  format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5990  ins_encode %{
5991    __ movsbl($dst$$Register, $mem$$Address);
5992  %}
5993  ins_pipe(ialu_reg_mem);
5994%}
5995
5996// Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5997instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5998  match(Set dst (ConvI2L (LoadUS mem)));
5999  effect(KILL cr);
6000
6001  ins_cost(250);
6002  format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6003            "XOR    $dst.hi,$dst.hi" %}
6004
6005  ins_encode %{
6006    __ movzwl($dst$$Register, $mem$$Address);
6007    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6008  %}
6009
6010  ins_pipe(ialu_reg_mem);
6011%}
6012
6013// Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6014instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6015  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6016  effect(KILL cr);
6017
6018  format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6019            "XOR    $dst.hi,$dst.hi" %}
6020  ins_encode %{
6021    Register Rdst = $dst$$Register;
6022    __ movzbl(Rdst, $mem$$Address);
6023    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6024  %}
6025  ins_pipe(ialu_reg_mem);
6026%}
6027
6028// Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6029instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6030  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6031  effect(KILL cr);
6032
6033  format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6034            "XOR    $dst.hi,$dst.hi\n\t"
6035            "AND    $dst.lo,$mask" %}
6036  ins_encode %{
6037    Register Rdst = $dst$$Register;
6038    __ movzwl(Rdst, $mem$$Address);
6039    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6040    __ andl(Rdst, $mask$$constant);
6041  %}
6042  ins_pipe(ialu_reg_mem);
6043%}
6044
6045// Load Integer
6046instruct loadI(rRegI dst, memory mem) %{
6047  match(Set dst (LoadI mem));
6048
6049  ins_cost(125);
6050  format %{ "MOV    $dst,$mem\t# int" %}
6051
6052  ins_encode %{
6053    __ movl($dst$$Register, $mem$$Address);
6054  %}
6055
6056  ins_pipe(ialu_reg_mem);
6057%}
6058
6059// Load Integer (32 bit signed) to Byte (8 bit signed)
6060instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
6061  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6062
6063  ins_cost(125);
6064  format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6065  ins_encode %{
6066    __ movsbl($dst$$Register, $mem$$Address);
6067  %}
6068  ins_pipe(ialu_reg_mem);
6069%}
6070
6071// Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6072instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
6073  match(Set dst (AndI (LoadI mem) mask));
6074
6075  ins_cost(125);
6076  format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6077  ins_encode %{
6078    __ movzbl($dst$$Register, $mem$$Address);
6079  %}
6080  ins_pipe(ialu_reg_mem);
6081%}
6082
6083// Load Integer (32 bit signed) to Short (16 bit signed)
6084instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
6085  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6086
6087  ins_cost(125);
6088  format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6089  ins_encode %{
6090    __ movswl($dst$$Register, $mem$$Address);
6091  %}
6092  ins_pipe(ialu_reg_mem);
6093%}
6094
6095// Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6096instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
6097  match(Set dst (AndI (LoadI mem) mask));
6098
6099  ins_cost(125);
6100  format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6101  ins_encode %{
6102    __ movzwl($dst$$Register, $mem$$Address);
6103  %}
6104  ins_pipe(ialu_reg_mem);
6105%}
6106
6107// Load Integer into Long Register
6108instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6109  match(Set dst (ConvI2L (LoadI mem)));
6110  effect(KILL cr);
6111
6112  ins_cost(375);
6113  format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6114            "MOV    $dst.hi,$dst.lo\n\t"
6115            "SAR    $dst.hi,31" %}
6116
6117  ins_encode %{
6118    __ movl($dst$$Register, $mem$$Address);
6119    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6120    __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6121  %}
6122
6123  ins_pipe(ialu_reg_mem);
6124%}
6125
6126// Load Integer with mask 0xFF into Long Register
6127instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6128  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6129  effect(KILL cr);
6130
6131  format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6132            "XOR    $dst.hi,$dst.hi" %}
6133  ins_encode %{
6134    Register Rdst = $dst$$Register;
6135    __ movzbl(Rdst, $mem$$Address);
6136    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6137  %}
6138  ins_pipe(ialu_reg_mem);
6139%}
6140
6141// Load Integer with mask 0xFFFF into Long Register
6142instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6143  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6144  effect(KILL cr);
6145
6146  format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6147            "XOR    $dst.hi,$dst.hi" %}
6148  ins_encode %{
6149    Register Rdst = $dst$$Register;
6150    __ movzwl(Rdst, $mem$$Address);
6151    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6152  %}
6153  ins_pipe(ialu_reg_mem);
6154%}
6155
6156// Load Integer with 32-bit mask into Long Register
6157instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6158  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6159  effect(KILL cr);
6160
6161  format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6162            "XOR    $dst.hi,$dst.hi\n\t"
6163            "AND    $dst.lo,$mask" %}
6164  ins_encode %{
6165    Register Rdst = $dst$$Register;
6166    __ movl(Rdst, $mem$$Address);
6167    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6168    __ andl(Rdst, $mask$$constant);
6169  %}
6170  ins_pipe(ialu_reg_mem);
6171%}
6172
6173// Load Unsigned Integer into Long Register
6174instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
6175  match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
6176  effect(KILL cr);
6177
6178  ins_cost(250);
6179  format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6180            "XOR    $dst.hi,$dst.hi" %}
6181
6182  ins_encode %{
6183    __ movl($dst$$Register, $mem$$Address);
6184    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6185  %}
6186
6187  ins_pipe(ialu_reg_mem);
6188%}
6189
6190// Load Long.  Cannot clobber address while loading, so restrict address
6191// register to ESI
6192instruct loadL(eRegL dst, load_long_memory mem) %{
6193  predicate(!((LoadLNode*)n)->require_atomic_access());
6194  match(Set dst (LoadL mem));
6195
6196  ins_cost(250);
6197  format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6198            "MOV    $dst.hi,$mem+4" %}
6199
6200  ins_encode %{
6201    Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
6202    Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
6203    __ movl($dst$$Register, Amemlo);
6204    __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6205  %}
6206
6207  ins_pipe(ialu_reg_long_mem);
6208%}
6209
6210// Volatile Load Long.  Must be atomic, so do 64-bit FILD
6211// then store it down to the stack and reload on the int
6212// side.
6213instruct loadL_volatile(stackSlotL dst, memory mem) %{
6214  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6215  match(Set dst (LoadL mem));
6216
6217  ins_cost(200);
6218  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6219            "FISTp  $dst" %}
6220  ins_encode(enc_loadL_volatile(mem,dst));
6221  ins_pipe( fpu_reg_mem );
6222%}
6223
6224instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
6225  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6226  match(Set dst (LoadL mem));
6227  effect(TEMP tmp);
6228  ins_cost(180);
6229  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6230            "MOVSD  $dst,$tmp" %}
6231  ins_encode %{
6232    __ movdbl($tmp$$XMMRegister, $mem$$Address);
6233    __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
6234  %}
6235  ins_pipe( pipe_slow );
6236%}
6237
6238instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
6239  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6240  match(Set dst (LoadL mem));
6241  effect(TEMP tmp);
6242  ins_cost(160);
6243  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6244            "MOVD   $dst.lo,$tmp\n\t"
6245            "PSRLQ  $tmp,32\n\t"
6246            "MOVD   $dst.hi,$tmp" %}
6247  ins_encode %{
6248    __ movdbl($tmp$$XMMRegister, $mem$$Address);
6249    __ movdl($dst$$Register, $tmp$$XMMRegister);
6250    __ psrlq($tmp$$XMMRegister, 32);
6251    __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
6252  %}
6253  ins_pipe( pipe_slow );
6254%}
6255
6256// Load Range
6257instruct loadRange(rRegI dst, memory mem) %{
6258  match(Set dst (LoadRange mem));
6259
6260  ins_cost(125);
6261  format %{ "MOV    $dst,$mem" %}
6262  opcode(0x8B);
6263  ins_encode( OpcP, RegMem(dst,mem));
6264  ins_pipe( ialu_reg_mem );
6265%}
6266
6267
6268// Load Pointer
6269instruct loadP(eRegP dst, memory mem) %{
6270  match(Set dst (LoadP mem));
6271
6272  ins_cost(125);
6273  format %{ "MOV    $dst,$mem" %}
6274  opcode(0x8B);
6275  ins_encode( OpcP, RegMem(dst,mem));
6276  ins_pipe( ialu_reg_mem );
6277%}
6278
6279// Load Klass Pointer
6280instruct loadKlass(eRegP dst, memory mem) %{
6281  match(Set dst (LoadKlass mem));
6282
6283  ins_cost(125);
6284  format %{ "MOV    $dst,$mem" %}
6285  opcode(0x8B);
6286  ins_encode( OpcP, RegMem(dst,mem));
6287  ins_pipe( ialu_reg_mem );
6288%}
6289
6290// Load Double
6291instruct loadDPR(regDPR dst, memory mem) %{
6292  predicate(UseSSE<=1);
6293  match(Set dst (LoadD mem));
6294
6295  ins_cost(150);
6296  format %{ "FLD_D  ST,$mem\n\t"
6297            "FSTP   $dst" %}
6298  opcode(0xDD);               /* DD /0 */
6299  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6300              Pop_Reg_DPR(dst) );
6301  ins_pipe( fpu_reg_mem );
6302%}
6303
6304// Load Double to XMM
6305instruct loadD(regD dst, memory mem) %{
6306  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6307  match(Set dst (LoadD mem));
6308  ins_cost(145);
6309  format %{ "MOVSD  $dst,$mem" %}
6310  ins_encode %{
6311    __ movdbl ($dst$$XMMRegister, $mem$$Address);
6312  %}
6313  ins_pipe( pipe_slow );
6314%}
6315
6316instruct loadD_partial(regD dst, memory mem) %{
6317  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6318  match(Set dst (LoadD mem));
6319  ins_cost(145);
6320  format %{ "MOVLPD $dst,$mem" %}
6321  ins_encode %{
6322    __ movdbl ($dst$$XMMRegister, $mem$$Address);
6323  %}
6324  ins_pipe( pipe_slow );
6325%}
6326
6327// Load to XMM register (single-precision floating point)
6328// MOVSS instruction
6329instruct loadF(regF dst, memory mem) %{
6330  predicate(UseSSE>=1);
6331  match(Set dst (LoadF mem));
6332  ins_cost(145);
6333  format %{ "MOVSS  $dst,$mem" %}
6334  ins_encode %{
6335    __ movflt ($dst$$XMMRegister, $mem$$Address);
6336  %}
6337  ins_pipe( pipe_slow );
6338%}
6339
6340// Load Float
6341instruct loadFPR(regFPR dst, memory mem) %{
6342  predicate(UseSSE==0);
6343  match(Set dst (LoadF mem));
6344
6345  ins_cost(150);
6346  format %{ "FLD_S  ST,$mem\n\t"
6347            "FSTP   $dst" %}
6348  opcode(0xD9);               /* D9 /0 */
6349  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6350              Pop_Reg_FPR(dst) );
6351  ins_pipe( fpu_reg_mem );
6352%}
6353
6354// Load Effective Address
6355instruct leaP8(eRegP dst, indOffset8 mem) %{
6356  match(Set dst mem);
6357
6358  ins_cost(110);
6359  format %{ "LEA    $dst,$mem" %}
6360  opcode(0x8D);
6361  ins_encode( OpcP, RegMem(dst,mem));
6362  ins_pipe( ialu_reg_reg_fat );
6363%}
6364
6365instruct leaP32(eRegP dst, indOffset32 mem) %{
6366  match(Set dst mem);
6367
6368  ins_cost(110);
6369  format %{ "LEA    $dst,$mem" %}
6370  opcode(0x8D);
6371  ins_encode( OpcP, RegMem(dst,mem));
6372  ins_pipe( ialu_reg_reg_fat );
6373%}
6374
6375instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6376  match(Set dst mem);
6377
6378  ins_cost(110);
6379  format %{ "LEA    $dst,$mem" %}
6380  opcode(0x8D);
6381  ins_encode( OpcP, RegMem(dst,mem));
6382  ins_pipe( ialu_reg_reg_fat );
6383%}
6384
6385instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6386  match(Set dst mem);
6387
6388  ins_cost(110);
6389  format %{ "LEA    $dst,$mem" %}
6390  opcode(0x8D);
6391  ins_encode( OpcP, RegMem(dst,mem));
6392  ins_pipe( ialu_reg_reg_fat );
6393%}
6394
6395instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6396  match(Set dst mem);
6397
6398  ins_cost(110);
6399  format %{ "LEA    $dst,$mem" %}
6400  opcode(0x8D);
6401  ins_encode( OpcP, RegMem(dst,mem));
6402  ins_pipe( ialu_reg_reg_fat );
6403%}
6404
6405// Load Constant
6406instruct loadConI(rRegI dst, immI src) %{
6407  match(Set dst src);
6408
6409  format %{ "MOV    $dst,$src" %}
6410  ins_encode( LdImmI(dst, src) );
6411  ins_pipe( ialu_reg_fat );
6412%}
6413
6414// Load Constant zero
6415instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
6416  match(Set dst src);
6417  effect(KILL cr);
6418
6419  ins_cost(50);
6420  format %{ "XOR    $dst,$dst" %}
6421  opcode(0x33);  /* + rd */
6422  ins_encode( OpcP, RegReg( dst, dst ) );
6423  ins_pipe( ialu_reg );
6424%}
6425
6426instruct loadConP(eRegP dst, immP src) %{
6427  match(Set dst src);
6428
6429  format %{ "MOV    $dst,$src" %}
6430  opcode(0xB8);  /* + rd */
6431  ins_encode( LdImmP(dst, src) );
6432  ins_pipe( ialu_reg_fat );
6433%}
6434
6435instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6436  match(Set dst src);
6437  effect(KILL cr);
6438  ins_cost(200);
6439  format %{ "MOV    $dst.lo,$src.lo\n\t"
6440            "MOV    $dst.hi,$src.hi" %}
6441  opcode(0xB8);
6442  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6443  ins_pipe( ialu_reg_long_fat );
6444%}
6445
6446instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6447  match(Set dst src);
6448  effect(KILL cr);
6449  ins_cost(150);
6450  format %{ "XOR    $dst.lo,$dst.lo\n\t"
6451            "XOR    $dst.hi,$dst.hi" %}
6452  opcode(0x33,0x33);
6453  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6454  ins_pipe( ialu_reg_long );
6455%}
6456
6457// The instruction usage is guarded by predicate in operand immFPR().
6458instruct loadConFPR(regFPR dst, immFPR con) %{
6459  match(Set dst con);
6460  ins_cost(125);
6461  format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
6462            "FSTP   $dst" %}
6463  ins_encode %{
6464    __ fld_s($constantaddress($con));
6465    __ fstp_d($dst$$reg);
6466  %}
6467  ins_pipe(fpu_reg_con);
6468%}
6469
6470// The instruction usage is guarded by predicate in operand immFPR0().
6471instruct loadConFPR0(regFPR dst, immFPR0 con) %{
6472  match(Set dst con);
6473  ins_cost(125);
6474  format %{ "FLDZ   ST\n\t"
6475            "FSTP   $dst" %}
6476  ins_encode %{
6477    __ fldz();
6478    __ fstp_d($dst$$reg);
6479  %}
6480  ins_pipe(fpu_reg_con);
6481%}
6482
6483// The instruction usage is guarded by predicate in operand immFPR1().
6484instruct loadConFPR1(regFPR dst, immFPR1 con) %{
6485  match(Set dst con);
6486  ins_cost(125);
6487  format %{ "FLD1   ST\n\t"
6488            "FSTP   $dst" %}
6489  ins_encode %{
6490    __ fld1();
6491    __ fstp_d($dst$$reg);
6492  %}
6493  ins_pipe(fpu_reg_con);
6494%}
6495
6496// The instruction usage is guarded by predicate in operand immF().
6497instruct loadConF(regF dst, immF con) %{
6498  match(Set dst con);
6499  ins_cost(125);
6500  format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
6501  ins_encode %{
6502    __ movflt($dst$$XMMRegister, $constantaddress($con));
6503  %}
6504  ins_pipe(pipe_slow);
6505%}
6506
6507// The instruction usage is guarded by predicate in operand immF0().
6508instruct loadConF0(regF dst, immF0 src) %{
6509  match(Set dst src);
6510  ins_cost(100);
6511  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6512  ins_encode %{
6513    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
6514  %}
6515  ins_pipe(pipe_slow);
6516%}
6517
6518// The instruction usage is guarded by predicate in operand immDPR().
6519instruct loadConDPR(regDPR dst, immDPR con) %{
6520  match(Set dst con);
6521  ins_cost(125);
6522
6523  format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
6524            "FSTP   $dst" %}
6525  ins_encode %{
6526    __ fld_d($constantaddress($con));
6527    __ fstp_d($dst$$reg);
6528  %}
6529  ins_pipe(fpu_reg_con);
6530%}
6531
6532// The instruction usage is guarded by predicate in operand immDPR0().
6533instruct loadConDPR0(regDPR dst, immDPR0 con) %{
6534  match(Set dst con);
6535  ins_cost(125);
6536
6537  format %{ "FLDZ   ST\n\t"
6538            "FSTP   $dst" %}
6539  ins_encode %{
6540    __ fldz();
6541    __ fstp_d($dst$$reg);
6542  %}
6543  ins_pipe(fpu_reg_con);
6544%}
6545
6546// The instruction usage is guarded by predicate in operand immDPR1().
6547instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6548  match(Set dst con);
6549  ins_cost(125);
6550
6551  format %{ "FLD1   ST\n\t"
6552            "FSTP   $dst" %}
6553  ins_encode %{
6554    __ fld1();
6555    __ fstp_d($dst$$reg);
6556  %}
6557  ins_pipe(fpu_reg_con);
6558%}
6559
6560// The instruction usage is guarded by predicate in operand immD().
6561instruct loadConD(regD dst, immD con) %{
6562  match(Set dst con);
6563  ins_cost(125);
6564  format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6565  ins_encode %{
6566    __ movdbl($dst$$XMMRegister, $constantaddress($con));
6567  %}
6568  ins_pipe(pipe_slow);
6569%}
6570
6571// The instruction usage is guarded by predicate in operand immD0().
6572instruct loadConD0(regD dst, immD0 src) %{
6573  match(Set dst src);
6574  ins_cost(100);
6575  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6576  ins_encode %{
6577    __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6578  %}
6579  ins_pipe( pipe_slow );
6580%}
6581
6582// Load Stack Slot
6583instruct loadSSI(rRegI dst, stackSlotI src) %{
6584  match(Set dst src);
6585  ins_cost(125);
6586
6587  format %{ "MOV    $dst,$src" %}
6588  opcode(0x8B);
6589  ins_encode( OpcP, RegMem(dst,src));
6590  ins_pipe( ialu_reg_mem );
6591%}
6592
6593instruct loadSSL(eRegL dst, stackSlotL src) %{
6594  match(Set dst src);
6595
6596  ins_cost(200);
6597  format %{ "MOV    $dst,$src.lo\n\t"
6598            "MOV    $dst+4,$src.hi" %}
6599  opcode(0x8B, 0x8B);
6600  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6601  ins_pipe( ialu_mem_long_reg );
6602%}
6603
6604// Load Stack Slot
6605instruct loadSSP(eRegP dst, stackSlotP src) %{
6606  match(Set dst src);
6607  ins_cost(125);
6608
6609  format %{ "MOV    $dst,$src" %}
6610  opcode(0x8B);
6611  ins_encode( OpcP, RegMem(dst,src));
6612  ins_pipe( ialu_reg_mem );
6613%}
6614
6615// Load Stack Slot
6616instruct loadSSF(regFPR dst, stackSlotF src) %{
6617  match(Set dst src);
6618  ins_cost(125);
6619
6620  format %{ "FLD_S  $src\n\t"
6621            "FSTP   $dst" %}
6622  opcode(0xD9);               /* D9 /0, FLD m32real */
6623  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6624              Pop_Reg_FPR(dst) );
6625  ins_pipe( fpu_reg_mem );
6626%}
6627
6628// Load Stack Slot
6629instruct loadSSD(regDPR dst, stackSlotD src) %{
6630  match(Set dst src);
6631  ins_cost(125);
6632
6633  format %{ "FLD_D  $src\n\t"
6634            "FSTP   $dst" %}
6635  opcode(0xDD);               /* DD /0, FLD m64real */
6636  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6637              Pop_Reg_DPR(dst) );
6638  ins_pipe( fpu_reg_mem );
6639%}
6640
6641// Prefetch instructions.
6642// Must be safe to execute with invalid address (cannot fault).
6643
6644instruct prefetchr0( memory mem ) %{
6645  predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6646  match(PrefetchRead mem);
6647  ins_cost(0);
6648  size(0);
6649  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6650  ins_encode();
6651  ins_pipe(empty);
6652%}
6653
6654instruct prefetchr( memory mem ) %{
6655  predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6656  match(PrefetchRead mem);
6657  ins_cost(100);
6658
6659  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6660  ins_encode %{
6661    __ prefetchr($mem$$Address);
6662  %}
6663  ins_pipe(ialu_mem);
6664%}
6665
6666instruct prefetchrNTA( memory mem ) %{
6667  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6668  match(PrefetchRead mem);
6669  ins_cost(100);
6670
6671  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6672  ins_encode %{
6673    __ prefetchnta($mem$$Address);
6674  %}
6675  ins_pipe(ialu_mem);
6676%}
6677
6678instruct prefetchrT0( memory mem ) %{
6679  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6680  match(PrefetchRead mem);
6681  ins_cost(100);
6682
6683  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6684  ins_encode %{
6685    __ prefetcht0($mem$$Address);
6686  %}
6687  ins_pipe(ialu_mem);
6688%}
6689
6690instruct prefetchrT2( memory mem ) %{
6691  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6692  match(PrefetchRead mem);
6693  ins_cost(100);
6694
6695  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6696  ins_encode %{
6697    __ prefetcht2($mem$$Address);
6698  %}
6699  ins_pipe(ialu_mem);
6700%}
6701
6702instruct prefetchw0( memory mem ) %{
6703  predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6704  match(PrefetchWrite mem);
6705  ins_cost(0);
6706  size(0);
6707  format %{ "Prefetch (non-SSE is empty encoding)" %}
6708  ins_encode();
6709  ins_pipe(empty);
6710%}
6711
6712instruct prefetchw( memory mem ) %{
6713  predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6714  match( PrefetchWrite mem );
6715  ins_cost(100);
6716
6717  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6718  ins_encode %{
6719    __ prefetchw($mem$$Address);
6720  %}
6721  ins_pipe(ialu_mem);
6722%}
6723
6724instruct prefetchwNTA( memory mem ) %{
6725  predicate(UseSSE>=1);
6726  match(PrefetchWrite mem);
6727  ins_cost(100);
6728
6729  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6730  ins_encode %{
6731    __ prefetchnta($mem$$Address);
6732  %}
6733  ins_pipe(ialu_mem);
6734%}
6735
6736// Prefetch instructions for allocation.
6737
6738instruct prefetchAlloc0( memory mem ) %{
6739  predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6740  match(PrefetchAllocation mem);
6741  ins_cost(0);
6742  size(0);
6743  format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6744  ins_encode();
6745  ins_pipe(empty);
6746%}
6747
6748instruct prefetchAlloc( memory mem ) %{
6749  predicate(AllocatePrefetchInstr==3);
6750  match( PrefetchAllocation mem );
6751  ins_cost(100);
6752
6753  format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6754  ins_encode %{
6755    __ prefetchw($mem$$Address);
6756  %}
6757  ins_pipe(ialu_mem);
6758%}
6759
6760instruct prefetchAllocNTA( memory mem ) %{
6761  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6762  match(PrefetchAllocation mem);
6763  ins_cost(100);
6764
6765  format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6766  ins_encode %{
6767    __ prefetchnta($mem$$Address);
6768  %}
6769  ins_pipe(ialu_mem);
6770%}
6771
6772instruct prefetchAllocT0( memory mem ) %{
6773  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6774  match(PrefetchAllocation mem);
6775  ins_cost(100);
6776
6777  format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6778  ins_encode %{
6779    __ prefetcht0($mem$$Address);
6780  %}
6781  ins_pipe(ialu_mem);
6782%}
6783
6784instruct prefetchAllocT2( memory mem ) %{
6785  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6786  match(PrefetchAllocation mem);
6787  ins_cost(100);
6788
6789  format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6790  ins_encode %{
6791    __ prefetcht2($mem$$Address);
6792  %}
6793  ins_pipe(ialu_mem);
6794%}
6795
6796//----------Store Instructions-------------------------------------------------
6797
6798// Store Byte
6799instruct storeB(memory mem, xRegI src) %{
6800  match(Set mem (StoreB mem src));
6801
6802  ins_cost(125);
6803  format %{ "MOV8   $mem,$src" %}
6804  opcode(0x88);
6805  ins_encode( OpcP, RegMem( src, mem ) );
6806  ins_pipe( ialu_mem_reg );
6807%}
6808
6809// Store Char/Short
6810instruct storeC(memory mem, rRegI src) %{
6811  match(Set mem (StoreC mem src));
6812
6813  ins_cost(125);
6814  format %{ "MOV16  $mem,$src" %}
6815  opcode(0x89, 0x66);
6816  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6817  ins_pipe( ialu_mem_reg );
6818%}
6819
6820// Store Integer
6821instruct storeI(memory mem, rRegI src) %{
6822  match(Set mem (StoreI mem src));
6823
6824  ins_cost(125);
6825  format %{ "MOV    $mem,$src" %}
6826  opcode(0x89);
6827  ins_encode( OpcP, RegMem( src, mem ) );
6828  ins_pipe( ialu_mem_reg );
6829%}
6830
6831// Store Long
6832instruct storeL(long_memory mem, eRegL src) %{
6833  predicate(!((StoreLNode*)n)->require_atomic_access());
6834  match(Set mem (StoreL mem src));
6835
6836  ins_cost(200);
6837  format %{ "MOV    $mem,$src.lo\n\t"
6838            "MOV    $mem+4,$src.hi" %}
6839  opcode(0x89, 0x89);
6840  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6841  ins_pipe( ialu_mem_long_reg );
6842%}
6843
6844// Store Long to Integer
6845instruct storeL2I(memory mem, eRegL src) %{
6846  match(Set mem (StoreI mem (ConvL2I src)));
6847
6848  format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6849  ins_encode %{
6850    __ movl($mem$$Address, $src$$Register);
6851  %}
6852  ins_pipe(ialu_mem_reg);
6853%}
6854
6855// Volatile Store Long.  Must be atomic, so move it into
6856// the FP TOS and then do a 64-bit FIST.  Has to probe the
6857// target address before the store (for null-ptr checks)
6858// so the memory operand is used twice in the encoding.
6859instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6860  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6861  match(Set mem (StoreL mem src));
6862  effect( KILL cr );
6863  ins_cost(400);
6864  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6865            "FILD   $src\n\t"
6866            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6867  opcode(0x3B);
6868  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6869  ins_pipe( fpu_reg_mem );
6870%}
6871
6872instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6873  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6874  match(Set mem (StoreL mem src));
6875  effect( TEMP tmp, KILL cr );
6876  ins_cost(380);
6877  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6878            "MOVSD  $tmp,$src\n\t"
6879            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6880  ins_encode %{
6881    __ cmpl(rax, $mem$$Address);
6882    __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6883    __ movdbl($mem$$Address, $tmp$$XMMRegister);
6884  %}
6885  ins_pipe( pipe_slow );
6886%}
6887
6888instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6889  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6890  match(Set mem (StoreL mem src));
6891  effect( TEMP tmp2 , TEMP tmp, KILL cr );
6892  ins_cost(360);
6893  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6894            "MOVD   $tmp,$src.lo\n\t"
6895            "MOVD   $tmp2,$src.hi\n\t"
6896            "PUNPCKLDQ $tmp,$tmp2\n\t"
6897            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6898  ins_encode %{
6899    __ cmpl(rax, $mem$$Address);
6900    __ movdl($tmp$$XMMRegister, $src$$Register);
6901    __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6902    __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6903    __ movdbl($mem$$Address, $tmp$$XMMRegister);
6904  %}
6905  ins_pipe( pipe_slow );
6906%}
6907
6908// Store Pointer; for storing unknown oops and raw pointers
6909instruct storeP(memory mem, anyRegP src) %{
6910  match(Set mem (StoreP mem src));
6911
6912  ins_cost(125);
6913  format %{ "MOV    $mem,$src" %}
6914  opcode(0x89);
6915  ins_encode( OpcP, RegMem( src, mem ) );
6916  ins_pipe( ialu_mem_reg );
6917%}
6918
6919// Store Integer Immediate
6920instruct storeImmI(memory mem, immI src) %{
6921  match(Set mem (StoreI mem src));
6922
6923  ins_cost(150);
6924  format %{ "MOV    $mem,$src" %}
6925  opcode(0xC7);               /* C7 /0 */
6926  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6927  ins_pipe( ialu_mem_imm );
6928%}
6929
6930// Store Short/Char Immediate
6931instruct storeImmI16(memory mem, immI16 src) %{
6932  predicate(UseStoreImmI16);
6933  match(Set mem (StoreC mem src));
6934
6935  ins_cost(150);
6936  format %{ "MOV16  $mem,$src" %}
6937  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6938  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6939  ins_pipe( ialu_mem_imm );
6940%}
6941
6942// Store Pointer Immediate; null pointers or constant oops that do not
6943// need card-mark barriers.
6944instruct storeImmP(memory mem, immP src) %{
6945  match(Set mem (StoreP mem src));
6946
6947  ins_cost(150);
6948  format %{ "MOV    $mem,$src" %}
6949  opcode(0xC7);               /* C7 /0 */
6950  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6951  ins_pipe( ialu_mem_imm );
6952%}
6953
6954// Store Byte Immediate
6955instruct storeImmB(memory mem, immI8 src) %{
6956  match(Set mem (StoreB mem src));
6957
6958  ins_cost(150);
6959  format %{ "MOV8   $mem,$src" %}
6960  opcode(0xC6);               /* C6 /0 */
6961  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6962  ins_pipe( ialu_mem_imm );
6963%}
6964
6965// Store CMS card-mark Immediate
6966instruct storeImmCM(memory mem, immI8 src) %{
6967  match(Set mem (StoreCM mem src));
6968
6969  ins_cost(150);
6970  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6971  opcode(0xC6);               /* C6 /0 */
6972  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6973  ins_pipe( ialu_mem_imm );
6974%}
6975
6976// Store Double
6977instruct storeDPR( memory mem, regDPR1 src) %{
6978  predicate(UseSSE<=1);
6979  match(Set mem (StoreD mem src));
6980
6981  ins_cost(100);
6982  format %{ "FST_D  $mem,$src" %}
6983  opcode(0xDD);       /* DD /2 */
6984  ins_encode( enc_FPR_store(mem,src) );
6985  ins_pipe( fpu_mem_reg );
6986%}
6987
6988// Store double does rounding on x86
6989instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6990  predicate(UseSSE<=1);
6991  match(Set mem (StoreD mem (RoundDouble src)));
6992
6993  ins_cost(100);
6994  format %{ "FST_D  $mem,$src\t# round" %}
6995  opcode(0xDD);       /* DD /2 */
6996  ins_encode( enc_FPR_store(mem,src) );
6997  ins_pipe( fpu_mem_reg );
6998%}
6999
7000// Store XMM register to memory (double-precision floating points)
7001// MOVSD instruction
7002instruct storeD(memory mem, regD src) %{
7003  predicate(UseSSE>=2);
7004  match(Set mem (StoreD mem src));
7005  ins_cost(95);
7006  format %{ "MOVSD  $mem,$src" %}
7007  ins_encode %{
7008    __ movdbl($mem$$Address, $src$$XMMRegister);
7009  %}
7010  ins_pipe( pipe_slow );
7011%}
7012
7013// Store XMM register to memory (single-precision floating point)
7014// MOVSS instruction
7015instruct storeF(memory mem, regF src) %{
7016  predicate(UseSSE>=1);
7017  match(Set mem (StoreF mem src));
7018  ins_cost(95);
7019  format %{ "MOVSS  $mem,$src" %}
7020  ins_encode %{
7021    __ movflt($mem$$Address, $src$$XMMRegister);
7022  %}
7023  ins_pipe( pipe_slow );
7024%}
7025
7026// Store Float
7027instruct storeFPR( memory mem, regFPR1 src) %{
7028  predicate(UseSSE==0);
7029  match(Set mem (StoreF mem src));
7030
7031  ins_cost(100);
7032  format %{ "FST_S  $mem,$src" %}
7033  opcode(0xD9);       /* D9 /2 */
7034  ins_encode( enc_FPR_store(mem,src) );
7035  ins_pipe( fpu_mem_reg );
7036%}
7037
7038// Store Float does rounding on x86
7039instruct storeFPR_rounded( memory mem, regFPR1 src) %{
7040  predicate(UseSSE==0);
7041  match(Set mem (StoreF mem (RoundFloat src)));
7042
7043  ins_cost(100);
7044  format %{ "FST_S  $mem,$src\t# round" %}
7045  opcode(0xD9);       /* D9 /2 */
7046  ins_encode( enc_FPR_store(mem,src) );
7047  ins_pipe( fpu_mem_reg );
7048%}
7049
7050// Store Float does rounding on x86
7051instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
7052  predicate(UseSSE<=1);
7053  match(Set mem (StoreF mem (ConvD2F src)));
7054
7055  ins_cost(100);
7056  format %{ "FST_S  $mem,$src\t# D-round" %}
7057  opcode(0xD9);       /* D9 /2 */
7058  ins_encode( enc_FPR_store(mem,src) );
7059  ins_pipe( fpu_mem_reg );
7060%}
7061
7062// Store immediate Float value (it is faster than store from FPU register)
7063// The instruction usage is guarded by predicate in operand immFPR().
7064instruct storeFPR_imm( memory mem, immFPR src) %{
7065  match(Set mem (StoreF mem src));
7066
7067  ins_cost(50);
7068  format %{ "MOV    $mem,$src\t# store float" %}
7069  opcode(0xC7);               /* C7 /0 */
7070  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
7071  ins_pipe( ialu_mem_imm );
7072%}
7073
7074// Store immediate Float value (it is faster than store from XMM register)
7075// The instruction usage is guarded by predicate in operand immF().
7076instruct storeF_imm( memory mem, immF src) %{
7077  match(Set mem (StoreF mem src));
7078
7079  ins_cost(50);
7080  format %{ "MOV    $mem,$src\t# store float" %}
7081  opcode(0xC7);               /* C7 /0 */
7082  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7083  ins_pipe( ialu_mem_imm );
7084%}
7085
7086// Store Integer to stack slot
7087instruct storeSSI(stackSlotI dst, rRegI src) %{
7088  match(Set dst src);
7089
7090  ins_cost(100);
7091  format %{ "MOV    $dst,$src" %}
7092  opcode(0x89);
7093  ins_encode( OpcPRegSS( dst, src ) );
7094  ins_pipe( ialu_mem_reg );
7095%}
7096
7097// Store Integer to stack slot
7098instruct storeSSP(stackSlotP dst, eRegP src) %{
7099  match(Set dst src);
7100
7101  ins_cost(100);
7102  format %{ "MOV    $dst,$src" %}
7103  opcode(0x89);
7104  ins_encode( OpcPRegSS( dst, src ) );
7105  ins_pipe( ialu_mem_reg );
7106%}
7107
7108// Store Long to stack slot
7109instruct storeSSL(stackSlotL dst, eRegL src) %{
7110  match(Set dst src);
7111
7112  ins_cost(200);
7113  format %{ "MOV    $dst,$src.lo\n\t"
7114            "MOV    $dst+4,$src.hi" %}
7115  opcode(0x89, 0x89);
7116  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7117  ins_pipe( ialu_mem_long_reg );
7118%}
7119
7120//----------MemBar Instructions-----------------------------------------------
7121// Memory barrier flavors
7122
7123instruct membar_acquire() %{
7124  match(MemBarAcquire);
7125  ins_cost(400);
7126
7127  size(0);
7128  format %{ "MEMBAR-acquire ! (empty encoding)" %}
7129  ins_encode();
7130  ins_pipe(empty);
7131%}
7132
7133instruct membar_acquire_lock() %{
7134  match(MemBarAcquireLock);
7135  ins_cost(0);
7136
7137  size(0);
7138  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7139  ins_encode( );
7140  ins_pipe(empty);
7141%}
7142
7143instruct membar_release() %{
7144  match(MemBarRelease);
7145  ins_cost(400);
7146
7147  size(0);
7148  format %{ "MEMBAR-release ! (empty encoding)" %}
7149  ins_encode( );
7150  ins_pipe(empty);
7151%}
7152
7153instruct membar_release_lock() %{
7154  match(MemBarReleaseLock);
7155  ins_cost(0);
7156
7157  size(0);
7158  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7159  ins_encode( );
7160  ins_pipe(empty);
7161%}
7162
7163instruct membar_volatile(eFlagsReg cr) %{
7164  match(MemBarVolatile);
7165  effect(KILL cr);
7166  ins_cost(400);
7167
7168  format %{ 
7169    $$template
7170    if (os::is_MP()) {
7171      $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7172    } else {
7173      $$emit$$"MEMBAR-volatile ! (empty encoding)"
7174    }
7175  %}
7176  ins_encode %{
7177    __ membar(Assembler::StoreLoad);
7178  %}
7179  ins_pipe(pipe_slow);
7180%}
7181
7182instruct unnecessary_membar_volatile() %{
7183  match(MemBarVolatile);
7184  predicate(Matcher::post_store_load_barrier(n));
7185  ins_cost(0);
7186
7187  size(0);
7188  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7189  ins_encode( );
7190  ins_pipe(empty);
7191%}
7192
7193instruct membar_storestore() %{
7194  match(MemBarStoreStore);
7195  ins_cost(0);
7196
7197  size(0);
7198  format %{ "MEMBAR-storestore (empty encoding)" %}
7199  ins_encode( );
7200  ins_pipe(empty);
7201%}
7202
7203//----------Move Instructions--------------------------------------------------
7204instruct castX2P(eAXRegP dst, eAXRegI src) %{
7205  match(Set dst (CastX2P src));
7206  format %{ "# X2P  $dst, $src" %}
7207  ins_encode( /*empty encoding*/ );
7208  ins_cost(0);
7209  ins_pipe(empty);
7210%}
7211
7212instruct castP2X(rRegI dst, eRegP src ) %{
7213  match(Set dst (CastP2X src));
7214  ins_cost(50);
7215  format %{ "MOV    $dst, $src\t# CastP2X" %}
7216  ins_encode( enc_Copy( dst, src) );
7217  ins_pipe( ialu_reg_reg );
7218%}
7219
7220//----------Conditional Move---------------------------------------------------
7221// Conditional move
7222instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
7223  predicate(!VM_Version::supports_cmov() );
7224  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7225  ins_cost(200);
7226  format %{ "J$cop,us skip\t# signed cmove\n\t"
7227            "MOV    $dst,$src\n"
7228      "skip:" %}
7229  ins_encode %{
7230    Label Lskip;
7231    // Invert sense of branch from sense of CMOV
7232    __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7233    __ movl($dst$$Register, $src$$Register);
7234    __ bind(Lskip);
7235  %}
7236  ins_pipe( pipe_cmov_reg );
7237%}
7238
7239instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
7240  predicate(!VM_Version::supports_cmov() );
7241  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7242  ins_cost(200);
7243  format %{ "J$cop,us skip\t# unsigned cmove\n\t"
7244            "MOV    $dst,$src\n"
7245      "skip:" %}
7246  ins_encode %{
7247    Label Lskip;
7248    // Invert sense of branch from sense of CMOV
7249    __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
7250    __ movl($dst$$Register, $src$$Register);
7251    __ bind(Lskip);
7252  %}
7253  ins_pipe( pipe_cmov_reg );
7254%}
7255
7256instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
7257  predicate(VM_Version::supports_cmov() );
7258  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7259  ins_cost(200);
7260  format %{ "CMOV$cop $dst,$src" %}
7261  opcode(0x0F,0x40);
7262  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7263  ins_pipe( pipe_cmov_reg );
7264%}
7265
7266instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
7267  predicate(VM_Version::supports_cmov() );
7268  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7269  ins_cost(200);
7270  format %{ "CMOV$cop $dst,$src" %}
7271  opcode(0x0F,0x40);
7272  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7273  ins_pipe( pipe_cmov_reg );
7274%}
7275
7276instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
7277  predicate(VM_Version::supports_cmov() );
7278  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7279  ins_cost(200);
7280  expand %{
7281    cmovI_regU(cop, cr, dst, src);
7282  %}
7283%}
7284
7285// Conditional move
7286instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
7287  predicate(VM_Version::supports_cmov() );
7288  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7289  ins_cost(250);
7290  format %{ "CMOV$cop $dst,$src" %}
7291  opcode(0x0F,0x40);
7292  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7293  ins_pipe( pipe_cmov_mem );
7294%}
7295
7296// Conditional move
7297instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
7298  predicate(VM_Version::supports_cmov() );
7299  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7300  ins_cost(250);
7301  format %{ "CMOV$cop $dst,$src" %}
7302  opcode(0x0F,0x40);
7303  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7304  ins_pipe( pipe_cmov_mem );
7305%}
7306
7307instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
7308  predicate(VM_Version::supports_cmov() );
7309  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7310  ins_cost(250);
7311  expand %{
7312    cmovI_memU(cop, cr, dst, src);
7313  %}
7314%}
7315
7316// Conditional move
7317instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7318  predicate(VM_Version::supports_cmov() );
7319  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7320  ins_cost(200);
7321  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7322  opcode(0x0F,0x40);
7323  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7324  ins_pipe( pipe_cmov_reg );
7325%}
7326
7327// Conditional move (non-P6 version)
7328// Note:  a CMoveP is generated for  stubs and native wrappers
7329//        regardless of whether we are on a P6, so we
7330//        emulate a cmov here
7331instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7332  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7333  ins_cost(300);
7334  format %{ "Jn$cop   skip\n\t"
7335          "MOV    $dst,$src\t# pointer\n"
7336      "skip:" %}
7337  opcode(0x8b);
7338  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7339  ins_pipe( pipe_cmov_reg );
7340%}
7341
7342// Conditional move
7343instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7344  predicate(VM_Version::supports_cmov() );
7345  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7346  ins_cost(200);
7347  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7348  opcode(0x0F,0x40);
7349  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7350  ins_pipe( pipe_cmov_reg );
7351%}
7352
7353instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7354  predicate(VM_Version::supports_cmov() );
7355  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7356  ins_cost(200);
7357  expand %{
7358    cmovP_regU(cop, cr, dst, src);
7359  %}
7360%}
7361
7362// DISABLED: Requires the ADLC to emit a bottom_type call that
7363// correctly meets the two pointer arguments; one is an incoming
7364// register but the other is a memory operand.  ALSO appears to
7365// be buggy with implicit null checks.
7366//
7367//// Conditional move
7368//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7369//  predicate(VM_Version::supports_cmov() );
7370//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7371//  ins_cost(250);
7372//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7373//  opcode(0x0F,0x40);
7374//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7375//  ins_pipe( pipe_cmov_mem );
7376//%}
7377//
7378//// Conditional move
7379//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7380//  predicate(VM_Version::supports_cmov() );
7381//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7382//  ins_cost(250);
7383//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7384//  opcode(0x0F,0x40);
7385//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7386//  ins_pipe( pipe_cmov_mem );
7387//%}
7388
7389// Conditional move
7390instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
7391  predicate(UseSSE<=1);
7392  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7393  ins_cost(200);
7394  format %{ "FCMOV$cop $dst,$src\t# double" %}
7395  opcode(0xDA);
7396  ins_encode( enc_cmov_dpr(cop,src) );
7397  ins_pipe( pipe_cmovDPR_reg );
7398%}
7399
7400// Conditional move
7401instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
7402  predicate(UseSSE==0);
7403  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7404  ins_cost(200);
7405  format %{ "FCMOV$cop $dst,$src\t# float" %}
7406  opcode(0xDA);
7407  ins_encode( enc_cmov_dpr(cop,src) );
7408  ins_pipe( pipe_cmovDPR_reg );
7409%}
7410
7411// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7412instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
7413  predicate(UseSSE<=1);
7414  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7415  ins_cost(200);
7416  format %{ "Jn$cop   skip\n\t"
7417            "MOV    $dst,$src\t# double\n"
7418      "skip:" %}
7419  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7420  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
7421  ins_pipe( pipe_cmovDPR_reg );
7422%}
7423
7424// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7425instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
7426  predicate(UseSSE==0);
7427  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7428  ins_cost(200);
7429  format %{ "Jn$cop    skip\n\t"
7430            "MOV    $dst,$src\t# float\n"
7431      "skip:" %}
7432  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7433  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
7434  ins_pipe( pipe_cmovDPR_reg );
7435%}
7436
7437// No CMOVE with SSE/SSE2
7438instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7439  predicate (UseSSE>=1);
7440  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7441  ins_cost(200);
7442  format %{ "Jn$cop   skip\n\t"
7443            "MOVSS  $dst,$src\t# float\n"
7444      "skip:" %}
7445  ins_encode %{
7446    Label skip;
7447    // Invert sense of branch from sense of CMOV
7448    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7449    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7450    __ bind(skip);
7451  %}
7452  ins_pipe( pipe_slow );
7453%}
7454
7455// No CMOVE with SSE/SSE2
7456instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7457  predicate (UseSSE>=2);
7458  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7459  ins_cost(200);
7460  format %{ "Jn$cop   skip\n\t"
7461            "MOVSD  $dst,$src\t# float\n"
7462      "skip:" %}
7463  ins_encode %{
7464    Label skip;
7465    // Invert sense of branch from sense of CMOV
7466    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7467    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7468    __ bind(skip);
7469  %}
7470  ins_pipe( pipe_slow );
7471%}
7472
7473// unsigned version
7474instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
7475  predicate (UseSSE>=1);
7476  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7477  ins_cost(200);
7478  format %{ "Jn$cop   skip\n\t"
7479            "MOVSS  $dst,$src\t# float\n"
7480      "skip:" %}
7481  ins_encode %{
7482    Label skip;
7483    // Invert sense of branch from sense of CMOV
7484    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7485    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7486    __ bind(skip);
7487  %}
7488  ins_pipe( pipe_slow );
7489%}
7490
7491instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
7492  predicate (UseSSE>=1);
7493  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7494  ins_cost(200);
7495  expand %{
7496    fcmovF_regU(cop, cr, dst, src);
7497  %}
7498%}
7499
7500// unsigned version
7501instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
7502  predicate (UseSSE>=2);
7503  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7504  ins_cost(200);
7505  format %{ "Jn$cop   skip\n\t"
7506            "MOVSD  $dst,$src\t# float\n"
7507      "skip:" %}
7508  ins_encode %{
7509    Label skip;
7510    // Invert sense of branch from sense of CMOV
7511    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7512    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7513    __ bind(skip);
7514  %}
7515  ins_pipe( pipe_slow );
7516%}
7517
7518instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
7519  predicate (UseSSE>=2);
7520  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7521  ins_cost(200);
7522  expand %{
7523    fcmovD_regU(cop, cr, dst, src);
7524  %}
7525%}
7526
7527instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7528  predicate(VM_Version::supports_cmov() );
7529  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7530  ins_cost(200);
7531  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7532            "CMOV$cop $dst.hi,$src.hi" %}
7533  opcode(0x0F,0x40);
7534  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7535  ins_pipe( pipe_cmov_reg_long );
7536%}
7537
7538instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7539  predicate(VM_Version::supports_cmov() );
7540  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7541  ins_cost(200);
7542  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7543            "CMOV$cop $dst.hi,$src.hi" %}
7544  opcode(0x0F,0x40);
7545  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7546  ins_pipe( pipe_cmov_reg_long );
7547%}
7548
7549instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7550  predicate(VM_Version::supports_cmov() );
7551  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7552  ins_cost(200);
7553  expand %{
7554    cmovL_regU(cop, cr, dst, src);
7555  %}
7556%}
7557
7558//----------Arithmetic Instructions--------------------------------------------
7559//----------Addition Instructions----------------------------------------------
7560// Integer Addition Instructions
7561instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7562  match(Set dst (AddI dst src));
7563  effect(KILL cr);
7564
7565  size(2);
7566  format %{ "ADD    $dst,$src" %}
7567  opcode(0x03);
7568  ins_encode( OpcP, RegReg( dst, src) );
7569  ins_pipe( ialu_reg_reg );
7570%}
7571
7572instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7573  match(Set dst (AddI dst src));
7574  effect(KILL cr);
7575
7576  format %{ "ADD    $dst,$src" %}
7577  opcode(0x81, 0x00); /* /0 id */
7578  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7579  ins_pipe( ialu_reg );
7580%}
7581
7582instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7583  predicate(UseIncDec);
7584  match(Set dst (AddI dst src));
7585  effect(KILL cr);
7586
7587  size(1);
7588  format %{ "INC    $dst" %}
7589  opcode(0x40); /*  */
7590  ins_encode( Opc_plus( primary, dst ) );
7591  ins_pipe( ialu_reg );
7592%}
7593
7594instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7595  match(Set dst (AddI src0 src1));
7596  ins_cost(110);
7597
7598  format %{ "LEA    $dst,[$src0 + $src1]" %}
7599  opcode(0x8D); /* 0x8D /r */
7600  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7601  ins_pipe( ialu_reg_reg );
7602%}
7603
7604instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7605  match(Set dst (AddP src0 src1));
7606  ins_cost(110);
7607
7608  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7609  opcode(0x8D); /* 0x8D /r */
7610  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7611  ins_pipe( ialu_reg_reg );
7612%}
7613
7614instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7615  predicate(UseIncDec);
7616  match(Set dst (AddI dst src));
7617  effect(KILL cr);
7618
7619  size(1);
7620  format %{ "DEC    $dst" %}
7621  opcode(0x48); /*  */
7622  ins_encode( Opc_plus( primary, dst ) );
7623  ins_pipe( ialu_reg );
7624%}
7625
7626instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7627  match(Set dst (AddP dst src));
7628  effect(KILL cr);
7629
7630  size(2);
7631  format %{ "ADD    $dst,$src" %}
7632  opcode(0x03);
7633  ins_encode( OpcP, RegReg( dst, src) );
7634  ins_pipe( ialu_reg_reg );
7635%}
7636
7637instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7638  match(Set dst (AddP dst src));
7639  effect(KILL cr);
7640
7641  format %{ "ADD    $dst,$src" %}
7642  opcode(0x81,0x00); /* Opcode 81 /0 id */
7643  // ins_encode( RegImm( dst, src) );
7644  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7645  ins_pipe( ialu_reg );
7646%}
7647
7648instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7649  match(Set dst (AddI dst (LoadI src)));
7650  effect(KILL cr);
7651
7652  ins_cost(125);
7653  format %{ "ADD    $dst,$src" %}
7654  opcode(0x03);
7655  ins_encode( OpcP, RegMem( dst, src) );
7656  ins_pipe( ialu_reg_mem );
7657%}
7658
7659instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7660  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7661  effect(KILL cr);
7662
7663  ins_cost(150);
7664  format %{ "ADD    $dst,$src" %}
7665  opcode(0x01);  /* Opcode 01 /r */
7666  ins_encode( OpcP, RegMem( src, dst ) );
7667  ins_pipe( ialu_mem_reg );
7668%}
7669
7670// Add Memory with Immediate
7671instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7672  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7673  effect(KILL cr);
7674
7675  ins_cost(125);
7676  format %{ "ADD    $dst,$src" %}
7677  opcode(0x81);               /* Opcode 81 /0 id */
7678  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7679  ins_pipe( ialu_mem_imm );
7680%}
7681
7682instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7683  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7684  effect(KILL cr);
7685
7686  ins_cost(125);
7687  format %{ "INC    $dst" %}
7688  opcode(0xFF);               /* Opcode FF /0 */
7689  ins_encode( OpcP, RMopc_Mem(0x00,dst));
7690  ins_pipe( ialu_mem_imm );
7691%}
7692
7693instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7694  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7695  effect(KILL cr);
7696
7697  ins_cost(125);
7698  format %{ "DEC    $dst" %}
7699  opcode(0xFF);               /* Opcode FF /1 */
7700  ins_encode( OpcP, RMopc_Mem(0x01,dst));
7701  ins_pipe( ialu_mem_imm );
7702%}
7703
7704
7705instruct checkCastPP( eRegP dst ) %{
7706  match(Set dst (CheckCastPP dst));
7707
7708  size(0);
7709  format %{ "#checkcastPP of $dst" %}
7710  ins_encode( /*empty encoding*/ );
7711  ins_pipe( empty );
7712%}
7713
7714instruct castPP( eRegP dst ) %{
7715  match(Set dst (CastPP dst));
7716  format %{ "#castPP of $dst" %}
7717  ins_encode( /*empty encoding*/ );
7718  ins_pipe( empty );
7719%}
7720
7721instruct castII( rRegI dst ) %{
7722  match(Set dst (CastII dst));
7723  format %{ "#castII of $dst" %}
7724  ins_encode( /*empty encoding*/ );
7725  ins_cost(0);
7726  ins_pipe( empty );
7727%}
7728
7729
7730// Load-locked - same as a regular pointer load when used with compare-swap
7731instruct loadPLocked(eRegP dst, memory mem) %{
7732  match(Set dst (LoadPLocked mem));
7733
7734  ins_cost(125);
7735  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7736  opcode(0x8B);
7737  ins_encode( OpcP, RegMem(dst,mem));
7738  ins_pipe( ialu_reg_mem );
7739%}
7740
7741// Conditional-store of the updated heap-top.
7742// Used during allocation of the shared heap.
7743// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7744instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7745  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7746  // EAX is killed if there is contention, but then it's also unused.
7747  // In the common case of no contention, EAX holds the new oop address.
7748  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7749  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7750  ins_pipe( pipe_cmpxchg );
7751%}
7752
7753// Conditional-store of an int value.
7754// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7755instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7756  match(Set cr (StoreIConditional mem (Binary oldval newval)));
7757  effect(KILL oldval);
7758  format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7759  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7760  ins_pipe( pipe_cmpxchg );
7761%}
7762
7763// Conditional-store of a long value.
7764// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7765instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7766  match(Set cr (StoreLConditional mem (Binary oldval newval)));
7767  effect(KILL oldval);
7768  format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7769            "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7770            "XCHG   EBX,ECX"
7771  %}
7772  ins_encode %{
7773    // Note: we need to swap rbx, and rcx before and after the
7774    //       cmpxchg8 instruction because the instruction uses
7775    //       rcx as the high order word of the new value to store but
7776    //       our register encoding uses rbx.
7777    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7778    if( os::is_MP() )
7779      __ lock();
7780    __ cmpxchg8($mem$$Address);
7781    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7782  %}
7783  ins_pipe( pipe_cmpxchg );
7784%}
7785
7786// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7787
7788instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7789  predicate(VM_Version::supports_cx8());
7790  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7791  effect(KILL cr, KILL oldval);
7792  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7793            "MOV    $res,0\n\t"
7794            "JNE,s  fail\n\t"
7795            "MOV    $res,1\n"
7796          "fail:" %}
7797  ins_encode( enc_cmpxchg8(mem_ptr),
7798              enc_flags_ne_to_boolean(res) );
7799  ins_pipe( pipe_cmpxchg );
7800%}
7801
7802instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7803  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7804  effect(KILL cr, KILL oldval);
7805  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7806            "MOV    $res,0\n\t"
7807            "JNE,s  fail\n\t"
7808            "MOV    $res,1\n"
7809          "fail:" %}
7810  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7811  ins_pipe( pipe_cmpxchg );
7812%}
7813
7814instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7815  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7816  effect(KILL cr, KILL oldval);
7817  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7818            "MOV    $res,0\n\t"
7819            "JNE,s  fail\n\t"
7820            "MOV    $res,1\n"
7821          "fail:" %}
7822  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7823  ins_pipe( pipe_cmpxchg );
7824%}
7825
7826instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7827  predicate(n->as_LoadStore()->result_not_used());
7828  match(Set dummy (GetAndAddI mem add));
7829  effect(KILL cr);
7830  format %{ "ADDL  [$mem],$add" %}
7831  ins_encode %{
7832    if (os::is_MP()) { __ lock(); }
7833    __ addl($mem$$Address, $add$$constant);
7834  %}
7835  ins_pipe( pipe_cmpxchg );
7836%}
7837
7838instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7839  match(Set newval (GetAndAddI mem newval));
7840  effect(KILL cr);
7841  format %{ "XADDL  [$mem],$newval" %}
7842  ins_encode %{
7843    if (os::is_MP()) { __ lock(); }
7844    __ xaddl($mem$$Address, $newval$$Register);
7845  %}
7846  ins_pipe( pipe_cmpxchg );
7847%}
7848
7849instruct xchgI( memory mem, rRegI newval) %{
7850  match(Set newval (GetAndSetI mem newval));
7851  format %{ "XCHGL  $newval,[$mem]" %}
7852  ins_encode %{
7853    __ xchgl($newval$$Register, $mem$$Address);
7854  %}
7855  ins_pipe( pipe_cmpxchg );
7856%}
7857
7858instruct xchgP( memory mem, pRegP newval) %{
7859  match(Set newval (GetAndSetP mem newval));
7860  format %{ "XCHGL  $newval,[$mem]" %}
7861  ins_encode %{
7862    __ xchgl($newval$$Register, $mem$$Address);
7863  %}
7864  ins_pipe( pipe_cmpxchg );
7865%}
7866
7867//----------Subtraction Instructions-------------------------------------------
7868// Integer Subtraction Instructions
7869instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7870  match(Set dst (SubI dst src));
7871  effect(KILL cr);
7872
7873  size(2);
7874  format %{ "SUB    $dst,$src" %}
7875  opcode(0x2B);
7876  ins_encode( OpcP, RegReg( dst, src) );
7877  ins_pipe( ialu_reg_reg );
7878%}
7879
7880instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7881  match(Set dst (SubI dst src));
7882  effect(KILL cr);
7883
7884  format %{ "SUB    $dst,$src" %}
7885  opcode(0x81,0x05);  /* Opcode 81 /5 */
7886  // ins_encode( RegImm( dst, src) );
7887  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7888  ins_pipe( ialu_reg );
7889%}
7890
7891instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7892  match(Set dst (SubI dst (LoadI src)));
7893  effect(KILL cr);
7894
7895  ins_cost(125);
7896  format %{ "SUB    $dst,$src" %}
7897  opcode(0x2B);
7898  ins_encode( OpcP, RegMem( dst, src) );
7899  ins_pipe( ialu_reg_mem );
7900%}
7901
7902instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7903  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7904  effect(KILL cr);
7905
7906  ins_cost(150);
7907  format %{ "SUB    $dst,$src" %}
7908  opcode(0x29);  /* Opcode 29 /r */
7909  ins_encode( OpcP, RegMem( src, dst ) );
7910  ins_pipe( ialu_mem_reg );
7911%}
7912
7913// Subtract from a pointer
7914instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7915  match(Set dst (AddP dst (SubI zero src)));
7916  effect(KILL cr);
7917
7918  size(2);
7919  format %{ "SUB    $dst,$src" %}
7920  opcode(0x2B);
7921  ins_encode( OpcP, RegReg( dst, src) );
7922  ins_pipe( ialu_reg_reg );
7923%}
7924
7925instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7926  match(Set dst (SubI zero dst));
7927  effect(KILL cr);
7928
7929  size(2);
7930  format %{ "NEG    $dst" %}
7931  opcode(0xF7,0x03);  // Opcode F7 /3
7932  ins_encode( OpcP, RegOpc( dst ) );
7933  ins_pipe( ialu_reg );
7934%}
7935
7936
7937//----------Multiplication/Division Instructions-------------------------------
7938// Integer Multiplication Instructions
7939// Multiply Register
7940instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7941  match(Set dst (MulI dst src));
7942  effect(KILL cr);
7943
7944  size(3);
7945  ins_cost(300);
7946  format %{ "IMUL   $dst,$src" %}
7947  opcode(0xAF, 0x0F);
7948  ins_encode( OpcS, OpcP, RegReg( dst, src) );
7949  ins_pipe( ialu_reg_reg_alu0 );
7950%}
7951
7952// Multiply 32-bit Immediate
7953instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7954  match(Set dst (MulI src imm));
7955  effect(KILL cr);
7956
7957  ins_cost(300);
7958  format %{ "IMUL   $dst,$src,$imm" %}
7959  opcode(0x69);  /* 69 /r id */
7960  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7961  ins_pipe( ialu_reg_reg_alu0 );
7962%}
7963
7964instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7965  match(Set dst src);
7966  effect(KILL cr);
7967
7968  // Note that this is artificially increased to make it more expensive than loadConL
7969  ins_cost(250);
7970  format %{ "MOV    EAX,$src\t// low word only" %}
7971  opcode(0xB8);
7972  ins_encode( LdImmL_Lo(dst, src) );
7973  ins_pipe( ialu_reg_fat );
7974%}
7975
7976// Multiply by 32-bit Immediate, taking the shifted high order results
7977//  (special case for shift by 32)
7978instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7979  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7980  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7981             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7982             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7983  effect(USE src1, KILL cr);
7984
7985  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7986  ins_cost(0*100 + 1*400 - 150);
7987  format %{ "IMUL   EDX:EAX,$src1" %}
7988  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7989  ins_pipe( pipe_slow );
7990%}
7991
7992// Multiply by 32-bit Immediate, taking the shifted high order results
7993instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7994  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7995  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7996             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7997             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7998  effect(USE src1, KILL cr);
7999
8000  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8001  ins_cost(1*100 + 1*400 - 150);
8002  format %{ "IMUL   EDX:EAX,$src1\n\t"
8003            "SAR    EDX,$cnt-32" %}
8004  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8005  ins_pipe( pipe_slow );
8006%}
8007
8008// Multiply Memory 32-bit Immediate
8009instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
8010  match(Set dst (MulI (LoadI src) imm));
8011  effect(KILL cr);
8012
8013  ins_cost(300);
8014  format %{ "IMUL   $dst,$src,$imm" %}
8015  opcode(0x69);  /* 69 /r id */
8016  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8017  ins_pipe( ialu_reg_mem_alu0 );
8018%}
8019
8020// Multiply Memory
8021instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
8022  match(Set dst (MulI dst (LoadI src)));
8023  effect(KILL cr);
8024
8025  ins_cost(350);
8026  format %{ "IMUL   $dst,$src" %}
8027  opcode(0xAF, 0x0F);
8028  ins_encode( OpcS, OpcP, RegMem( dst, src) );
8029  ins_pipe( ialu_reg_mem_alu0 );
8030%}
8031
8032// Multiply Register Int to Long
8033instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8034  // Basic Idea: long = (long)int * (long)int
8035  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8036  effect(DEF dst, USE src, USE src1, KILL flags);
8037
8038  ins_cost(300);
8039  format %{ "IMUL   $dst,$src1" %}
8040
8041  ins_encode( long_int_multiply( dst, src1 ) );
8042  ins_pipe( ialu_reg_reg_alu0 );
8043%}
8044
8045instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8046  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8047  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8048  effect(KILL flags);
8049
8050  ins_cost(300);
8051  format %{ "MUL    $dst,$src1" %}
8052
8053  ins_encode( long_uint_multiply(dst, src1) );
8054  ins_pipe( ialu_reg_reg_alu0 );
8055%}
8056
8057// Multiply Register Long
8058instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8059  match(Set dst (MulL dst src));
8060  effect(KILL cr, TEMP tmp);
8061  ins_cost(4*100+3*400);
8062// Basic idea: lo(result) = lo(x_lo * y_lo)
8063//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8064  format %{ "MOV    $tmp,$src.lo\n\t"
8065            "IMUL   $tmp,EDX\n\t"
8066            "MOV    EDX,$src.hi\n\t"
8067            "IMUL   EDX,EAX\n\t"
8068            "ADD    $tmp,EDX\n\t"
8069            "MUL    EDX:EAX,$src.lo\n\t"
8070            "ADD    EDX,$tmp" %}
8071  ins_encode( long_multiply( dst, src, tmp ) );
8072  ins_pipe( pipe_slow );
8073%}
8074
8075// Multiply Register Long where the left operand's high 32 bits are zero
8076instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8077  predicate(is_operand_hi32_zero(n->in(1)));
8078  match(Set dst (MulL dst src));
8079  effect(KILL cr, TEMP tmp);
8080  ins_cost(2*100+2*400);
8081// Basic idea: lo(result) = lo(x_lo * y_lo)
8082//             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8083  format %{ "MOV    $tmp,$src.hi\n\t"
8084            "IMUL   $tmp,EAX\n\t"
8085            "MUL    EDX:EAX,$src.lo\n\t"
8086            "ADD    EDX,$tmp" %}
8087  ins_encode %{
8088    __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8089    __ imull($tmp$$Register, rax);
8090    __ mull($src$$Register);
8091    __ addl(rdx, $tmp$$Register);
8092  %}
8093  ins_pipe( pipe_slow );
8094%}
8095
8096// Multiply Register Long where the right operand's high 32 bits are zero
8097instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
8098  predicate(is_operand_hi32_zero(n->in(2)));
8099  match(Set dst (MulL dst src));
8100  effect(KILL cr, TEMP tmp);
8101  ins_cost(2*100+2*400);
8102// Basic idea: lo(result) = lo(x_lo * y_lo)
8103//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8104  format %{ "MOV    $tmp,$src.lo\n\t"
8105            "IMUL   $tmp,EDX\n\t"
8106            "MUL    EDX:EAX,$src.lo\n\t"
8107            "ADD    EDX,$tmp" %}
8108  ins_encode %{
8109    __ movl($tmp$$Register, $src$$Register);
8110    __ imull($tmp$$Register, rdx);
8111    __ mull($src$$Register);
8112    __ addl(rdx, $tmp$$Register);
8113  %}
8114  ins_pipe( pipe_slow );
8115%}
8116
8117// Multiply Register Long where the left and the right operands' high 32 bits are zero
8118instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8119  predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8120  match(Set dst (MulL dst src));
8121  effect(KILL cr);
8122  ins_cost(1*400);
8123// Basic idea: lo(result) = lo(x_lo * y_lo)
8124//             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8125  format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8126  ins_encode %{
8127    __ mull($src$$Register);
8128  %}
8129  ins_pipe( pipe_slow );
8130%}
8131
8132// Multiply Register Long by small constant
8133instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
8134  match(Set dst (MulL dst src));
8135  effect(KILL cr, TEMP tmp);
8136  ins_cost(2*100+2*400);
8137  size(12);
8138// Basic idea: lo(result) = lo(src * EAX)
8139//             hi(result) = hi(src * EAX) + lo(src * EDX)
8140  format %{ "IMUL   $tmp,EDX,$src\n\t"
8141            "MOV    EDX,$src\n\t"
8142            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8143            "ADD    EDX,$tmp" %}
8144  ins_encode( long_multiply_con( dst, src, tmp ) );
8145  ins_pipe( pipe_slow );
8146%}
8147
8148// Integer DIV with Register
8149instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8150  match(Set rax (DivI rax div));
8151  effect(KILL rdx, KILL cr);
8152  size(26);
8153  ins_cost(30*100+10*100);
8154  format %{ "CMP    EAX,0x80000000\n\t"
8155            "JNE,s  normal\n\t"
8156            "XOR    EDX,EDX\n\t"
8157            "CMP    ECX,-1\n\t"
8158            "JE,s   done\n"
8159    "normal: CDQ\n\t"
8160            "IDIV   $div\n\t"
8161    "done:"        %}
8162  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8163  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8164  ins_pipe( ialu_reg_reg_alu0 );
8165%}
8166
8167// Divide Register Long
8168instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8169  match(Set dst (DivL src1 src2));
8170  effect( KILL cr, KILL cx, KILL bx );
8171  ins_cost(10000);
8172  format %{ "PUSH   $src1.hi\n\t"
8173            "PUSH   $src1.lo\n\t"
8174            "PUSH   $src2.hi\n\t"
8175            "PUSH   $src2.lo\n\t"
8176            "CALL   SharedRuntime::ldiv\n\t"
8177            "ADD    ESP,16" %}
8178  ins_encode( long_div(src1,src2) );
8179  ins_pipe( pipe_slow );
8180%}
8181
8182// Integer DIVMOD with Register, both quotient and mod results
8183instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8184  match(DivModI rax div);
8185  effect(KILL cr);
8186  size(26);
8187  ins_cost(30*100+10*100);
8188  format %{ "CMP    EAX,0x80000000\n\t"
8189            "JNE,s  normal\n\t"
8190            "XOR    EDX,EDX\n\t"
8191            "CMP    ECX,-1\n\t"
8192            "JE,s   done\n"
8193    "normal: CDQ\n\t"
8194            "IDIV   $div\n\t"
8195    "done:"        %}
8196  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8197  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8198  ins_pipe( pipe_slow );
8199%}
8200
8201// Integer MOD with Register
8202instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8203  match(Set rdx (ModI rax div));
8204  effect(KILL rax, KILL cr);
8205
8206  size(26);
8207  ins_cost(300);
8208  format %{ "CDQ\n\t"
8209            "IDIV   $div" %}
8210  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8211  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8212  ins_pipe( ialu_reg_reg_alu0 );
8213%}
8214
8215// Remainder Register Long
8216instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8217  match(Set dst (ModL src1 src2));
8218  effect( KILL cr, KILL cx, KILL bx );
8219  ins_cost(10000);
8220  format %{ "PUSH   $src1.hi\n\t"
8221            "PUSH   $src1.lo\n\t"
8222            "PUSH   $src2.hi\n\t"
8223            "PUSH   $src2.lo\n\t"
8224            "CALL   SharedRuntime::lrem\n\t"
8225            "ADD    ESP,16" %}
8226  ins_encode( long_mod(src1,src2) );
8227  ins_pipe( pipe_slow );
8228%}
8229
8230// Divide Register Long (no special case since divisor != -1)
8231instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8232  match(Set dst (DivL dst imm));
8233  effect( TEMP tmp, TEMP tmp2, KILL cr );
8234  ins_cost(1000);
8235  format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8236            "XOR    $tmp2,$tmp2\n\t"
8237            "CMP    $tmp,EDX\n\t"
8238            "JA,s   fast\n\t"
8239            "MOV    $tmp2,EAX\n\t"
8240            "MOV    EAX,EDX\n\t"
8241            "MOV    EDX,0\n\t"
8242            "JLE,s  pos\n\t"
8243            "LNEG   EAX : $tmp2\n\t"
8244            "DIV    $tmp # unsigned division\n\t"
8245            "XCHG   EAX,$tmp2\n\t"
8246            "DIV    $tmp\n\t"
8247            "LNEG   $tmp2 : EAX\n\t"
8248            "JMP,s  done\n"
8249    "pos:\n\t"
8250            "DIV    $tmp\n\t"
8251            "XCHG   EAX,$tmp2\n"
8252    "fast:\n\t"
8253            "DIV    $tmp\n"
8254    "done:\n\t"
8255            "MOV    EDX,$tmp2\n\t"
8256            "NEG    EDX:EAX # if $imm < 0" %}
8257  ins_encode %{
8258    int con = (int)$imm$$constant;
8259    assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8260    int pcon = (con > 0) ? con : -con;
8261    Label Lfast, Lpos, Ldone;
8262
8263    __ movl($tmp$$Register, pcon);
8264    __ xorl($tmp2$$Register,$tmp2$$Register);
8265    __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8266    __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8267
8268    __ movl($tmp2$$Register, $dst$$Register); // save
8269    __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8270    __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8271    __ jccb(Assembler::lessEqual, Lpos); // result is positive
8272
8273    // Negative dividend.
8274    // convert value to positive to use unsigned division
8275    __ lneg($dst$$Register, $tmp2$$Register);
8276    __ divl($tmp$$Register);
8277    __ xchgl($dst$$Register, $tmp2$$Register);
8278    __ divl($tmp$$Register);
8279    // revert result back to negative
8280    __ lneg($tmp2$$Register, $dst$$Register);
8281    __ jmpb(Ldone);
8282
8283    __ bind(Lpos);
8284    __ divl($tmp$$Register); // Use unsigned division
8285    __ xchgl($dst$$Register, $tmp2$$Register);
8286    // Fallthrow for final divide, tmp2 has 32 bit hi result
8287
8288    __ bind(Lfast);
8289    // fast path: src is positive
8290    __ divl($tmp$$Register); // Use unsigned division
8291
8292    __ bind(Ldone);
8293    __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8294    if (con < 0) {
8295      __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8296    }
8297  %}
8298  ins_pipe( pipe_slow );
8299%}
8300
8301// Remainder Register Long (remainder fit into 32 bits)
8302instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
8303  match(Set dst (ModL dst imm));
8304  effect( TEMP tmp, TEMP tmp2, KILL cr );
8305  ins_cost(1000);
8306  format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8307            "CMP    $tmp,EDX\n\t"
8308            "JA,s   fast\n\t"
8309            "MOV    $tmp2,EAX\n\t"
8310            "MOV    EAX,EDX\n\t"
8311            "MOV    EDX,0\n\t"
8312            "JLE,s  pos\n\t"
8313            "LNEG   EAX : $tmp2\n\t"
8314            "DIV    $tmp # unsigned division\n\t"
8315            "MOV    EAX,$tmp2\n\t"
8316            "DIV    $tmp\n\t"
8317            "NEG    EDX\n\t"
8318            "JMP,s  done\n"
8319    "pos:\n\t"
8320            "DIV    $tmp\n\t"
8321            "MOV    EAX,$tmp2\n"
8322    "fast:\n\t"
8323            "DIV    $tmp\n"
8324    "done:\n\t"
8325            "MOV    EAX,EDX\n\t"
8326            "SAR    EDX,31\n\t" %}
8327  ins_encode %{
8328    int con = (int)$imm$$constant;
8329    assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8330    int pcon = (con > 0) ? con : -con;
8331    Label  Lfast, Lpos, Ldone;
8332
8333    __ movl($tmp$$Register, pcon);
8334    __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8335    __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8336
8337    __ movl($tmp2$$Register, $dst$$Register); // save
8338    __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8339    __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8340    __ jccb(Assembler::lessEqual, Lpos); // result is positive
8341
8342    // Negative dividend.
8343    // convert value to positive to use unsigned division
8344    __ lneg($dst$$Register, $tmp2$$Register);
8345    __ divl($tmp$$Register);
8346    __ movl($dst$$Register, $tmp2$$Register);
8347    __ divl($tmp$$Register);
8348    // revert remainder back to negative
8349    __ negl(HIGH_FROM_LOW($dst$$Register));
8350    __ jmpb(Ldone);
8351
8352    __ bind(Lpos);
8353    __ divl($tmp$$Register);
8354    __ movl($dst$$Register, $tmp2$$Register);
8355
8356    __ bind(Lfast);
8357    // fast path: src is positive
8358    __ divl($tmp$$Register);
8359
8360    __ bind(Ldone);
8361    __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8362    __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8363
8364  %}
8365  ins_pipe( pipe_slow );
8366%}
8367
8368// Integer Shift Instructions
8369// Shift Left by one
8370instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8371  match(Set dst (LShiftI dst shift));
8372  effect(KILL cr);
8373
8374  size(2);
8375  format %{ "SHL    $dst,$shift" %}
8376  opcode(0xD1, 0x4);  /* D1 /4 */
8377  ins_encode( OpcP, RegOpc( dst ) );
8378  ins_pipe( ialu_reg );
8379%}
8380
8381// Shift Left by 8-bit immediate
8382instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8383  match(Set dst (LShiftI dst shift));
8384  effect(KILL cr);
8385
8386  size(3);
8387  format %{ "SHL    $dst,$shift" %}
8388  opcode(0xC1, 0x4);  /* C1 /4 ib */
8389  ins_encode( RegOpcImm( dst, shift) );
8390  ins_pipe( ialu_reg );
8391%}
8392
8393// Shift Left by variable
8394instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8395  match(Set dst (LShiftI dst shift));
8396  effect(KILL cr);
8397
8398  size(2);
8399  format %{ "SHL    $dst,$shift" %}
8400  opcode(0xD3, 0x4);  /* D3 /4 */
8401  ins_encode( OpcP, RegOpc( dst ) );
8402  ins_pipe( ialu_reg_reg );
8403%}
8404
8405// Arithmetic shift right by one
8406instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8407  match(Set dst (RShiftI dst shift));
8408  effect(KILL cr);
8409
8410  size(2);
8411  format %{ "SAR    $dst,$shift" %}
8412  opcode(0xD1, 0x7);  /* D1 /7 */
8413  ins_encode( OpcP, RegOpc( dst ) );
8414  ins_pipe( ialu_reg );
8415%}
8416
8417// Arithmetic shift right by one
8418instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8419  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8420  effect(KILL cr);
8421  format %{ "SAR    $dst,$shift" %}
8422  opcode(0xD1, 0x7);  /* D1 /7 */
8423  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8424  ins_pipe( ialu_mem_imm );
8425%}
8426
8427// Arithmetic Shift Right by 8-bit immediate
8428instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8429  match(Set dst (RShiftI dst shift));
8430  effect(KILL cr);
8431
8432  size(3);
8433  format %{ "SAR    $dst,$shift" %}
8434  opcode(0xC1, 0x7);  /* C1 /7 ib */
8435  ins_encode( RegOpcImm( dst, shift ) );
8436  ins_pipe( ialu_mem_imm );
8437%}
8438
8439// Arithmetic Shift Right by 8-bit immediate
8440instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8441  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8442  effect(KILL cr);
8443
8444  format %{ "SAR    $dst,$shift" %}
8445  opcode(0xC1, 0x7);  /* C1 /7 ib */
8446  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8447  ins_pipe( ialu_mem_imm );
8448%}
8449
8450// Arithmetic Shift Right by variable
8451instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8452  match(Set dst (RShiftI dst shift));
8453  effect(KILL cr);
8454
8455  size(2);
8456  format %{ "SAR    $dst,$shift" %}
8457  opcode(0xD3, 0x7);  /* D3 /7 */
8458  ins_encode( OpcP, RegOpc( dst ) );
8459  ins_pipe( ialu_reg_reg );
8460%}
8461
8462// Logical shift right by one
8463instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8464  match(Set dst (URShiftI dst shift));
8465  effect(KILL cr);
8466
8467  size(2);
8468  format %{ "SHR    $dst,$shift" %}
8469  opcode(0xD1, 0x5);  /* D1 /5 */
8470  ins_encode( OpcP, RegOpc( dst ) );
8471  ins_pipe( ialu_reg );
8472%}
8473
8474// Logical Shift Right by 8-bit immediate
8475instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
8476  match(Set dst (URShiftI dst shift));
8477  effect(KILL cr);
8478
8479  size(3);
8480  format %{ "SHR    $dst,$shift" %}
8481  opcode(0xC1, 0x5);  /* C1 /5 ib */
8482  ins_encode( RegOpcImm( dst, shift) );
8483  ins_pipe( ialu_reg );
8484%}
8485
8486
8487// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8488// This idiom is used by the compiler for the i2b bytecode.
8489instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
8490  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8491
8492  size(3);
8493  format %{ "MOVSX  $dst,$src :8" %}
8494  ins_encode %{
8495    __ movsbl($dst$$Register, $src$$Register);
8496  %}
8497  ins_pipe(ialu_reg_reg);
8498%}
8499
8500// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8501// This idiom is used by the compiler the i2s bytecode.
8502instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
8503  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8504
8505  size(3);
8506  format %{ "MOVSX  $dst,$src :16" %}
8507  ins_encode %{
8508    __ movswl($dst$$Register, $src$$Register);
8509  %}
8510  ins_pipe(ialu_reg_reg);
8511%}
8512
8513
8514// Logical Shift Right by variable
8515instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
8516  match(Set dst (URShiftI dst shift));
8517  effect(KILL cr);
8518
8519  size(2);
8520  format %{ "SHR    $dst,$shift" %}
8521  opcode(0xD3, 0x5);  /* D3 /5 */
8522  ins_encode( OpcP, RegOpc( dst ) );
8523  ins_pipe( ialu_reg_reg );
8524%}
8525
8526
8527//----------Logical Instructions-----------------------------------------------
8528//----------Integer Logical Instructions---------------------------------------
8529// And Instructions
8530// And Register with Register
8531instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8532  match(Set dst (AndI dst src));
8533  effect(KILL cr);
8534
8535  size(2);
8536  format %{ "AND    $dst,$src" %}
8537  opcode(0x23);
8538  ins_encode( OpcP, RegReg( dst, src) );
8539  ins_pipe( ialu_reg_reg );
8540%}
8541
8542// And Register with Immediate
8543instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8544  match(Set dst (AndI dst src));
8545  effect(KILL cr);
8546
8547  format %{ "AND    $dst,$src" %}
8548  opcode(0x81,0x04);  /* Opcode 81 /4 */
8549  // ins_encode( RegImm( dst, src) );
8550  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8551  ins_pipe( ialu_reg );
8552%}
8553
8554// And Register with Memory
8555instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8556  match(Set dst (AndI dst (LoadI src)));
8557  effect(KILL cr);
8558
8559  ins_cost(125);
8560  format %{ "AND    $dst,$src" %}
8561  opcode(0x23);
8562  ins_encode( OpcP, RegMem( dst, src) );
8563  ins_pipe( ialu_reg_mem );
8564%}
8565
8566// And Memory with Register
8567instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8568  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8569  effect(KILL cr);
8570
8571  ins_cost(150);
8572  format %{ "AND    $dst,$src" %}
8573  opcode(0x21);  /* Opcode 21 /r */
8574  ins_encode( OpcP, RegMem( src, dst ) );
8575  ins_pipe( ialu_mem_reg );
8576%}
8577
8578// And Memory with Immediate
8579instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8580  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8581  effect(KILL cr);
8582
8583  ins_cost(125);
8584  format %{ "AND    $dst,$src" %}
8585  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8586  // ins_encode( MemImm( dst, src) );
8587  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8588  ins_pipe( ialu_mem_imm );
8589%}
8590
8591// Or Instructions
8592// Or Register with Register
8593instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8594  match(Set dst (OrI dst src));
8595  effect(KILL cr);
8596
8597  size(2);
8598  format %{ "OR     $dst,$src" %}
8599  opcode(0x0B);
8600  ins_encode( OpcP, RegReg( dst, src) );
8601  ins_pipe( ialu_reg_reg );
8602%}
8603
8604instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8605  match(Set dst (OrI dst (CastP2X src)));
8606  effect(KILL cr);
8607
8608  size(2);
8609  format %{ "OR     $dst,$src" %}
8610  opcode(0x0B);
8611  ins_encode( OpcP, RegReg( dst, src) );
8612  ins_pipe( ialu_reg_reg );
8613%}
8614
8615
8616// Or Register with Immediate
8617instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8618  match(Set dst (OrI dst src));
8619  effect(KILL cr);
8620
8621  format %{ "OR     $dst,$src" %}
8622  opcode(0x81,0x01);  /* Opcode 81 /1 id */
8623  // ins_encode( RegImm( dst, src) );
8624  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8625  ins_pipe( ialu_reg );
8626%}
8627
8628// Or Register with Memory
8629instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8630  match(Set dst (OrI dst (LoadI src)));
8631  effect(KILL cr);
8632
8633  ins_cost(125);
8634  format %{ "OR     $dst,$src" %}
8635  opcode(0x0B);
8636  ins_encode( OpcP, RegMem( dst, src) );
8637  ins_pipe( ialu_reg_mem );
8638%}
8639
8640// Or Memory with Register
8641instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8642  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8643  effect(KILL cr);
8644
8645  ins_cost(150);
8646  format %{ "OR     $dst,$src" %}
8647  opcode(0x09);  /* Opcode 09 /r */
8648  ins_encode( OpcP, RegMem( src, dst ) );
8649  ins_pipe( ialu_mem_reg );
8650%}
8651
8652// Or Memory with Immediate
8653instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8654  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8655  effect(KILL cr);
8656
8657  ins_cost(125);
8658  format %{ "OR     $dst,$src" %}
8659  opcode(0x81,0x1);  /* Opcode 81 /1 id */
8660  // ins_encode( MemImm( dst, src) );
8661  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8662  ins_pipe( ialu_mem_imm );
8663%}
8664
8665// ROL/ROR
8666// ROL expand
8667instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8668  effect(USE_DEF dst, USE shift, KILL cr);
8669
8670  format %{ "ROL    $dst, $shift" %}
8671  opcode(0xD1, 0x0); /* Opcode D1 /0 */
8672  ins_encode( OpcP, RegOpc( dst ));
8673  ins_pipe( ialu_reg );
8674%}
8675
8676instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8677  effect(USE_DEF dst, USE shift, KILL cr);
8678
8679  format %{ "ROL    $dst, $shift" %}
8680  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8681  ins_encode( RegOpcImm(dst, shift) );
8682  ins_pipe(ialu_reg);
8683%}
8684
8685instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8686  effect(USE_DEF dst, USE shift, KILL cr);
8687
8688  format %{ "ROL    $dst, $shift" %}
8689  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8690  ins_encode(OpcP, RegOpc(dst));
8691  ins_pipe( ialu_reg_reg );
8692%}
8693// end of ROL expand
8694
8695// ROL 32bit by one once
8696instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8697  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8698
8699  expand %{
8700    rolI_eReg_imm1(dst, lshift, cr);
8701  %}
8702%}
8703
8704// ROL 32bit var by imm8 once
8705instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8706  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8707  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8708
8709  expand %{
8710    rolI_eReg_imm8(dst, lshift, cr);
8711  %}
8712%}
8713
8714// ROL 32bit var by var once
8715instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8716  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8717
8718  expand %{
8719    rolI_eReg_CL(dst, shift, cr);
8720  %}
8721%}
8722
8723// ROL 32bit var by var once
8724instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8725  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8726
8727  expand %{
8728    rolI_eReg_CL(dst, shift, cr);
8729  %}
8730%}
8731
8732// ROR expand
8733instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8734  effect(USE_DEF dst, USE shift, KILL cr);
8735
8736  format %{ "ROR    $dst, $shift" %}
8737  opcode(0xD1,0x1);  /* Opcode D1 /1 */
8738  ins_encode( OpcP, RegOpc( dst ) );
8739  ins_pipe( ialu_reg );
8740%}
8741
8742instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8743  effect (USE_DEF dst, USE shift, KILL cr);
8744
8745  format %{ "ROR    $dst, $shift" %}
8746  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8747  ins_encode( RegOpcImm(dst, shift) );
8748  ins_pipe( ialu_reg );
8749%}
8750
8751instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8752  effect(USE_DEF dst, USE shift, KILL cr);
8753
8754  format %{ "ROR    $dst, $shift" %}
8755  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8756  ins_encode(OpcP, RegOpc(dst));
8757  ins_pipe( ialu_reg_reg );
8758%}
8759// end of ROR expand
8760
8761// ROR right once
8762instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8763  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8764
8765  expand %{
8766    rorI_eReg_imm1(dst, rshift, cr);
8767  %}
8768%}
8769
8770// ROR 32bit by immI8 once
8771instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8772  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8773  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8774
8775  expand %{
8776    rorI_eReg_imm8(dst, rshift, cr);
8777  %}
8778%}
8779
8780// ROR 32bit var by var once
8781instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8782  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8783
8784  expand %{
8785    rorI_eReg_CL(dst, shift, cr);
8786  %}
8787%}
8788
8789// ROR 32bit var by var once
8790instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8791  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8792
8793  expand %{
8794    rorI_eReg_CL(dst, shift, cr);
8795  %}
8796%}
8797
8798// Xor Instructions
8799// Xor Register with Register
8800instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8801  match(Set dst (XorI dst src));
8802  effect(KILL cr);
8803
8804  size(2);
8805  format %{ "XOR    $dst,$src" %}
8806  opcode(0x33);
8807  ins_encode( OpcP, RegReg( dst, src) );
8808  ins_pipe( ialu_reg_reg );
8809%}
8810
8811// Xor Register with Immediate -1
8812instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8813  match(Set dst (XorI dst imm));  
8814
8815  size(2);
8816  format %{ "NOT    $dst" %}  
8817  ins_encode %{
8818     __ notl($dst$$Register);
8819  %}
8820  ins_pipe( ialu_reg );
8821%}
8822
8823// Xor Register with Immediate
8824instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8825  match(Set dst (XorI dst src));
8826  effect(KILL cr);
8827
8828  format %{ "XOR    $dst,$src" %}
8829  opcode(0x81,0x06);  /* Opcode 81 /6 id */
8830  // ins_encode( RegImm( dst, src) );
8831  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8832  ins_pipe( ialu_reg );
8833%}
8834
8835// Xor Register with Memory
8836instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8837  match(Set dst (XorI dst (LoadI src)));
8838  effect(KILL cr);
8839
8840  ins_cost(125);
8841  format %{ "XOR    $dst,$src" %}
8842  opcode(0x33);
8843  ins_encode( OpcP, RegMem(dst, src) );
8844  ins_pipe( ialu_reg_mem );
8845%}
8846
8847// Xor Memory with Register
8848instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8849  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8850  effect(KILL cr);
8851
8852  ins_cost(150);
8853  format %{ "XOR    $dst,$src" %}
8854  opcode(0x31);  /* Opcode 31 /r */
8855  ins_encode( OpcP, RegMem( src, dst ) );
8856  ins_pipe( ialu_mem_reg );
8857%}
8858
8859// Xor Memory with Immediate
8860instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8861  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8862  effect(KILL cr);
8863
8864  ins_cost(125);
8865  format %{ "XOR    $dst,$src" %}
8866  opcode(0x81,0x6);  /* Opcode 81 /6 id */
8867  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8868  ins_pipe( ialu_mem_imm );
8869%}
8870
8871//----------Convert Int to Boolean---------------------------------------------
8872
8873instruct movI_nocopy(rRegI dst, rRegI src) %{
8874  effect( DEF dst, USE src );
8875  format %{ "MOV    $dst,$src" %}
8876  ins_encode( enc_Copy( dst, src) );
8877  ins_pipe( ialu_reg_reg );
8878%}
8879
8880instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8881  effect( USE_DEF dst, USE src, KILL cr );
8882
8883  size(4);
8884  format %{ "NEG    $dst\n\t"
8885            "ADC    $dst,$src" %}
8886  ins_encode( neg_reg(dst),
8887              OpcRegReg(0x13,dst,src) );
8888  ins_pipe( ialu_reg_reg_long );
8889%}
8890
8891instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8892  match(Set dst (Conv2B src));
8893
8894  expand %{
8895    movI_nocopy(dst,src);
8896    ci2b(dst,src,cr);
8897  %}
8898%}
8899
8900instruct movP_nocopy(rRegI dst, eRegP src) %{
8901  effect( DEF dst, USE src );
8902  format %{ "MOV    $dst,$src" %}
8903  ins_encode( enc_Copy( dst, src) );
8904  ins_pipe( ialu_reg_reg );
8905%}
8906
8907instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8908  effect( USE_DEF dst, USE src, KILL cr );
8909  format %{ "NEG    $dst\n\t"
8910            "ADC    $dst,$src" %}
8911  ins_encode( neg_reg(dst),
8912              OpcRegReg(0x13,dst,src) );
8913  ins_pipe( ialu_reg_reg_long );
8914%}
8915
8916instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8917  match(Set dst (Conv2B src));
8918
8919  expand %{
8920    movP_nocopy(dst,src);
8921    cp2b(dst,src,cr);
8922  %}
8923%}
8924
8925instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8926  match(Set dst (CmpLTMask p q));
8927  effect( KILL cr );
8928  ins_cost(400);
8929
8930  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8931  format %{ "XOR    $dst,$dst\n\t"
8932            "CMP    $p,$q\n\t"
8933            "SETlt  $dst\n\t"
8934            "NEG    $dst" %}
8935  ins_encode( OpcRegReg(0x33,dst,dst),
8936              OpcRegReg(0x3B,p,q),
8937              setLT_reg(dst), neg_reg(dst) );
8938  ins_pipe( pipe_slow );
8939%}
8940
8941instruct cmpLTMask0( rRegI dst, immI0 zero, eFlagsReg cr ) %{
8942  match(Set dst (CmpLTMask dst zero));
8943  effect( DEF dst, KILL cr );
8944  ins_cost(100);
8945
8946  format %{ "SAR    $dst,31" %}
8947  opcode(0xC1, 0x7);  /* C1 /7 ib */
8948  ins_encode( RegOpcImm( dst, 0x1F ) );
8949  ins_pipe( ialu_reg );
8950%}
8951
8952
8953instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8954  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8955  effect( KILL tmp, KILL cr );
8956  ins_cost(400);
8957  // annoyingly, $tmp has no edges so you cant ask for it in
8958  // any format or encoding
8959  format %{ "SUB    $p,$q\n\t"
8960            "SBB    ECX,ECX\n\t"
8961            "AND    ECX,$y\n\t"
8962            "ADD    $p,ECX" %}
8963  ins_encode( enc_cmpLTP(p,q,y,tmp) );
8964  ins_pipe( pipe_cmplt );
8965%}
8966
8967/* If I enable this, I encourage spilling in the inner loop of compress.
8968instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8969  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8970  effect( USE_KILL tmp, KILL cr );
8971  ins_cost(400);
8972
8973  format %{ "SUB    $p,$q\n\t"
8974            "SBB    ECX,ECX\n\t"
8975            "AND    ECX,$y\n\t"
8976            "ADD    $p,ECX" %}
8977  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8978%}
8979*/
8980
8981//----------Long Instructions------------------------------------------------
8982// Add Long Register with Register
8983instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8984  match(Set dst (AddL dst src));
8985  effect(KILL cr);
8986  ins_cost(200);
8987  format %{ "ADD    $dst.lo,$src.lo\n\t"
8988            "ADC    $dst.hi,$src.hi" %}
8989  opcode(0x03, 0x13);
8990  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8991  ins_pipe( ialu_reg_reg_long );
8992%}
8993
8994// Add Long Register with Immediate
8995instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8996  match(Set dst (AddL dst src));
8997  effect(KILL cr);
8998  format %{ "ADD    $dst.lo,$src.lo\n\t"
8999            "ADC    $dst.hi,$src.hi" %}
9000  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9001  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9002  ins_pipe( ialu_reg_long );
9003%}
9004
9005// Add Long Register with Memory
9006instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9007  match(Set dst (AddL dst (LoadL mem)));
9008  effect(KILL cr);
9009  ins_cost(125);
9010  format %{ "ADD    $dst.lo,$mem\n\t"
9011            "ADC    $dst.hi,$mem+4" %}
9012  opcode(0x03, 0x13);
9013  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9014  ins_pipe( ialu_reg_long_mem );
9015%}
9016
9017// Subtract Long Register with Register.
9018instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9019  match(Set dst (SubL dst src));
9020  effect(KILL cr);
9021  ins_cost(200);
9022  format %{ "SUB    $dst.lo,$src.lo\n\t"
9023            "SBB    $dst.hi,$src.hi" %}
9024  opcode(0x2B, 0x1B);
9025  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9026  ins_pipe( ialu_reg_reg_long );
9027%}
9028
9029// Subtract Long Register with Immediate
9030instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9031  match(Set dst (SubL dst src));
9032  effect(KILL cr);
9033  format %{ "SUB    $dst.lo,$src.lo\n\t"
9034            "SBB    $dst.hi,$src.hi" %}
9035  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9036  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9037  ins_pipe( ialu_reg_long );
9038%}
9039
9040// Subtract Long Register with Memory
9041instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9042  match(Set dst (SubL dst (LoadL mem)));
9043  effect(KILL cr);
9044  ins_cost(125);
9045  format %{ "SUB    $dst.lo,$mem\n\t"
9046            "SBB    $dst.hi,$mem+4" %}
9047  opcode(0x2B, 0x1B);
9048  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9049  ins_pipe( ialu_reg_long_mem );
9050%}
9051
9052instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9053  match(Set dst (SubL zero dst));
9054  effect(KILL cr);
9055  ins_cost(300);
9056  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9057  ins_encode( neg_long(dst) );
9058  ins_pipe( ialu_reg_reg_long );
9059%}
9060
9061// And Long Register with Register
9062instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9063  match(Set dst (AndL dst src));
9064  effect(KILL cr);
9065  format %{ "AND    $dst.lo,$src.lo\n\t"
9066            "AND    $dst.hi,$src.hi" %}
9067  opcode(0x23,0x23);
9068  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9069  ins_pipe( ialu_reg_reg_long );
9070%}
9071
9072// And Long Register with Immediate
9073instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9074  match(Set dst (AndL dst src));
9075  effect(KILL cr);
9076  format %{ "AND    $dst.lo,$src.lo\n\t"
9077            "AND    $dst.hi,$src.hi" %}
9078  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9079  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9080  ins_pipe( ialu_reg_long );
9081%}
9082
9083// And Long Register with Memory
9084instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9085  match(Set dst (AndL dst (LoadL mem)));
9086  effect(KILL cr);
9087  ins_cost(125);
9088  format %{ "AND    $dst.lo,$mem\n\t"
9089            "AND    $dst.hi,$mem+4" %}
9090  opcode(0x23, 0x23);
9091  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9092  ins_pipe( ialu_reg_long_mem );
9093%}
9094
9095// Or Long Register with Register
9096instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9097  match(Set dst (OrL dst src));
9098  effect(KILL cr);
9099  format %{ "OR     $dst.lo,$src.lo\n\t"
9100            "OR     $dst.hi,$src.hi" %}
9101  opcode(0x0B,0x0B);
9102  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9103  ins_pipe( ialu_reg_reg_long );
9104%}
9105
9106// Or Long Register with Immediate
9107instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9108  match(Set dst (OrL dst src));
9109  effect(KILL cr);
9110  format %{ "OR     $dst.lo,$src.lo\n\t"
9111            "OR     $dst.hi,$src.hi" %}
9112  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9113  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9114  ins_pipe( ialu_reg_long );
9115%}
9116
9117// Or Long Register with Memory
9118instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9119  match(Set dst (OrL dst (LoadL mem)));
9120  effect(KILL cr);
9121  ins_cost(125);
9122  format %{ "OR     $dst.lo,$mem\n\t"
9123            "OR     $dst.hi,$mem+4" %}
9124  opcode(0x0B,0x0B);
9125  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9126  ins_pipe( ialu_reg_long_mem );
9127%}
9128
9129// Xor Long Register with Register
9130instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9131  match(Set dst (XorL dst src));
9132  effect(KILL cr);
9133  format %{ "XOR    $dst.lo,$src.lo\n\t"
9134            "XOR    $dst.hi,$src.hi" %}
9135  opcode(0x33,0x33);
9136  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9137  ins_pipe( ialu_reg_reg_long );
9138%}
9139
9140// Xor Long Register with Immediate -1
9141instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9142  match(Set dst (XorL dst imm));  
9143  format %{ "NOT    $dst.lo\n\t"
9144            "NOT    $dst.hi" %}
9145  ins_encode %{
9146     __ notl($dst$$Register);
9147     __ notl(HIGH_FROM_LOW($dst$$Register));
9148  %}
9149  ins_pipe( ialu_reg_long );
9150%}
9151
9152// Xor Long Register with Immediate
9153instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9154  match(Set dst (XorL dst src));
9155  effect(KILL cr);
9156  format %{ "XOR    $dst.lo,$src.lo\n\t"
9157            "XOR    $dst.hi,$src.hi" %}
9158  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9159  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9160  ins_pipe( ialu_reg_long );
9161%}
9162
9163// Xor Long Register with Memory
9164instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9165  match(Set dst (XorL dst (LoadL mem)));
9166  effect(KILL cr);
9167  ins_cost(125);
9168  format %{ "XOR    $dst.lo,$mem\n\t"
9169            "XOR    $dst.hi,$mem+4" %}
9170  opcode(0x33,0x33);
9171  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9172  ins_pipe( ialu_reg_long_mem );
9173%}
9174
9175// Shift Left Long by 1
9176instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9177  predicate(UseNewLongLShift);
9178  match(Set dst (LShiftL dst cnt));
9179  effect(KILL cr);
9180  ins_cost(100);
9181  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9182            "ADC    $dst.hi,$dst.hi" %}
9183  ins_encode %{
9184    __ addl($dst$$Register,$dst$$Register);
9185    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9186  %}
9187  ins_pipe( ialu_reg_long );
9188%}
9189
9190// Shift Left Long by 2
9191instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9192  predicate(UseNewLongLShift);
9193  match(Set dst (LShiftL dst cnt));
9194  effect(KILL cr);
9195  ins_cost(100);
9196  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9197            "ADC    $dst.hi,$dst.hi\n\t" 
9198            "ADD    $dst.lo,$dst.lo\n\t"
9199            "ADC    $dst.hi,$dst.hi" %}
9200  ins_encode %{
9201    __ addl($dst$$Register,$dst$$Register);
9202    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9203    __ addl($dst$$Register,$dst$$Register);
9204    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9205  %}
9206  ins_pipe( ialu_reg_long );
9207%}
9208
9209// Shift Left Long by 3
9210instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9211  predicate(UseNewLongLShift);
9212  match(Set dst (LShiftL dst cnt));
9213  effect(KILL cr);
9214  ins_cost(100);
9215  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9216            "ADC    $dst.hi,$dst.hi\n\t" 
9217            "ADD    $dst.lo,$dst.lo\n\t"
9218            "ADC    $dst.hi,$dst.hi\n\t" 
9219            "ADD    $dst.lo,$dst.lo\n\t"
9220            "ADC    $dst.hi,$dst.hi" %}
9221  ins_encode %{
9222    __ addl($dst$$Register,$dst$$Register);
9223    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9224    __ addl($dst$$Register,$dst$$Register);
9225    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9226    __ addl($dst$$Register,$dst$$Register);
9227    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9228  %}
9229  ins_pipe( ialu_reg_long );
9230%}
9231
9232// Shift Left Long by 1-31
9233instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9234  match(Set dst (LShiftL dst cnt));
9235  effect(KILL cr);
9236  ins_cost(200);
9237  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9238            "SHL    $dst.lo,$cnt" %}
9239  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9240  ins_encode( move_long_small_shift(dst,cnt) );
9241  ins_pipe( ialu_reg_long );
9242%}
9243
9244// Shift Left Long by 32-63
9245instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9246  match(Set dst (LShiftL dst cnt));
9247  effect(KILL cr);
9248  ins_cost(300);
9249  format %{ "MOV    $dst.hi,$dst.lo\n"
9250          "\tSHL    $dst.hi,$cnt-32\n"
9251          "\tXOR    $dst.lo,$dst.lo" %}
9252  opcode(0xC1, 0x4);  /* C1 /4 ib */
9253  ins_encode( move_long_big_shift_clr(dst,cnt) );
9254  ins_pipe( ialu_reg_long );
9255%}
9256
9257// Shift Left Long by variable
9258instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9259  match(Set dst (LShiftL dst shift));
9260  effect(KILL cr);
9261  ins_cost(500+200);
9262  size(17);
9263  format %{ "TEST   $shift,32\n\t"
9264            "JEQ,s  small\n\t"
9265            "MOV    $dst.hi,$dst.lo\n\t"
9266            "XOR    $dst.lo,$dst.lo\n"
9267    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9268            "SHL    $dst.lo,$shift" %}
9269  ins_encode( shift_left_long( dst, shift ) );
9270  ins_pipe( pipe_slow );
9271%}
9272
9273// Shift Right Long by 1-31
9274instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9275  match(Set dst (URShiftL dst cnt));
9276  effect(KILL cr);
9277  ins_cost(200);
9278  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9279            "SHR    $dst.hi,$cnt" %}
9280  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9281  ins_encode( move_long_small_shift(dst,cnt) );
9282  ins_pipe( ialu_reg_long );
9283%}
9284
9285// Shift Right Long by 32-63
9286instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9287  match(Set dst (URShiftL dst cnt));
9288  effect(KILL cr);
9289  ins_cost(300);
9290  format %{ "MOV    $dst.lo,$dst.hi\n"
9291          "\tSHR    $dst.lo,$cnt-32\n"
9292          "\tXOR    $dst.hi,$dst.hi" %}
9293  opcode(0xC1, 0x5);  /* C1 /5 ib */
9294  ins_encode( move_long_big_shift_clr(dst,cnt) );
9295  ins_pipe( ialu_reg_long );
9296%}
9297
9298// Shift Right Long by variable
9299instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9300  match(Set dst (URShiftL dst shift));
9301  effect(KILL cr);
9302  ins_cost(600);
9303  size(17);
9304  format %{ "TEST   $shift,32\n\t"
9305            "JEQ,s  small\n\t"
9306            "MOV    $dst.lo,$dst.hi\n\t"
9307            "XOR    $dst.hi,$dst.hi\n"
9308    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9309            "SHR    $dst.hi,$shift" %}
9310  ins_encode( shift_right_long( dst, shift ) );
9311  ins_pipe( pipe_slow );
9312%}
9313
9314// Shift Right Long by 1-31
9315instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9316  match(Set dst (RShiftL dst cnt));
9317  effect(KILL cr);
9318  ins_cost(200);
9319  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9320            "SAR    $dst.hi,$cnt" %}
9321  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9322  ins_encode( move_long_small_shift(dst,cnt) );
9323  ins_pipe( ialu_reg_long );
9324%}
9325
9326// Shift Right Long by 32-63
9327instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9328  match(Set dst (RShiftL dst cnt));
9329  effect(KILL cr);
9330  ins_cost(300);
9331  format %{ "MOV    $dst.lo,$dst.hi\n"
9332          "\tSAR    $dst.lo,$cnt-32\n"
9333          "\tSAR    $dst.hi,31" %}
9334  opcode(0xC1, 0x7);  /* C1 /7 ib */
9335  ins_encode( move_long_big_shift_sign(dst,cnt) );
9336  ins_pipe( ialu_reg_long );
9337%}
9338
9339// Shift Right arithmetic Long by variable
9340instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9341  match(Set dst (RShiftL dst shift));
9342  effect(KILL cr);
9343  ins_cost(600);
9344  size(18);
9345  format %{ "TEST   $shift,32\n\t"
9346            "JEQ,s  small\n\t"
9347            "MOV    $dst.lo,$dst.hi\n\t"
9348            "SAR    $dst.hi,31\n"
9349    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9350            "SAR    $dst.hi,$shift" %}
9351  ins_encode( shift_right_arith_long( dst, shift ) );
9352  ins_pipe( pipe_slow );
9353%}
9354
9355
9356//----------Double Instructions------------------------------------------------
9357// Double Math
9358
9359// Compare & branch
9360
9361// P6 version of float compare, sets condition codes in EFLAGS
9362instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9363  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9364  match(Set cr (CmpD src1 src2));
9365  effect(KILL rax);
9366  ins_cost(150);
9367  format %{ "FLD    $src1\n\t"
9368            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9369            "JNP    exit\n\t"
9370            "MOV    ah,1       // saw a NaN, set CF\n\t"
9371            "SAHF\n"
9372     "exit:\tNOP               // avoid branch to branch" %}
9373  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9374  ins_encode( Push_Reg_DPR(src1),
9375              OpcP, RegOpc(src2),
9376              cmpF_P6_fixup );
9377  ins_pipe( pipe_slow );
9378%}
9379
9380instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9381  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9382  match(Set cr (CmpD src1 src2));
9383  ins_cost(150);
9384  format %{ "FLD    $src1\n\t"
9385            "FUCOMIP ST,$src2  // P6 instruction" %}
9386  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9387  ins_encode( Push_Reg_DPR(src1),
9388              OpcP, RegOpc(src2));
9389  ins_pipe( pipe_slow );
9390%}
9391
9392// Compare & branch
9393instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9394  predicate(UseSSE<=1);
9395  match(Set cr (CmpD src1 src2));
9396  effect(KILL rax);
9397  ins_cost(200);
9398  format %{ "FLD    $src1\n\t"
9399            "FCOMp  $src2\n\t"
9400            "FNSTSW AX\n\t"
9401            "TEST   AX,0x400\n\t"
9402            "JZ,s   flags\n\t"
9403            "MOV    AH,1\t# unordered treat as LT\n"
9404    "flags:\tSAHF" %}
9405  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9406  ins_encode( Push_Reg_DPR(src1),
9407              OpcP, RegOpc(src2),
9408              fpu_flags);
9409  ins_pipe( pipe_slow );
9410%}
9411
9412// Compare vs zero into -1,0,1
9413instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9414  predicate(UseSSE<=1);
9415  match(Set dst (CmpD3 src1 zero));
9416  effect(KILL cr, KILL rax);
9417  ins_cost(280);
9418  format %{ "FTSTD  $dst,$src1" %}
9419  opcode(0xE4, 0xD9);
9420  ins_encode( Push_Reg_DPR(src1),
9421              OpcS, OpcP, PopFPU,
9422              CmpF_Result(dst));
9423  ins_pipe( pipe_slow );
9424%}
9425
9426// Compare into -1,0,1
9427instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9428  predicate(UseSSE<=1);
9429  match(Set dst (CmpD3 src1 src2));
9430  effect(KILL cr, KILL rax);
9431  ins_cost(300);
9432  format %{ "FCMPD  $dst,$src1,$src2" %}
9433  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9434  ins_encode( Push_Reg_DPR(src1),
9435              OpcP, RegOpc(src2),
9436              CmpF_Result(dst));
9437  ins_pipe( pipe_slow );
9438%}
9439
9440// float compare and set condition codes in EFLAGS by XMM regs
9441instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9442  predicate(UseSSE>=2);
9443  match(Set cr (CmpD src1 src2));
9444  ins_cost(145);
9445  format %{ "UCOMISD $src1,$src2\n\t"
9446            "JNP,s   exit\n\t"
9447            "PUSHF\t# saw NaN, set CF\n\t"
9448            "AND     [rsp], #0xffffff2b\n\t"
9449            "POPF\n"
9450    "exit:" %}
9451  ins_encode %{
9452    __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9453    emit_cmpfp_fixup(_masm);
9454  %}
9455  ins_pipe( pipe_slow );
9456%}
9457
9458instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9459  predicate(UseSSE>=2);
9460  match(Set cr (CmpD src1 src2));
9461  ins_cost(100);
9462  format %{ "UCOMISD $src1,$src2" %}
9463  ins_encode %{
9464    __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9465  %}
9466  ins_pipe( pipe_slow );
9467%}
9468
9469// float compare and set condition codes in EFLAGS by XMM regs
9470instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9471  predicate(UseSSE>=2);
9472  match(Set cr (CmpD src1 (LoadD src2)));
9473  ins_cost(145);
9474  format %{ "UCOMISD $src1,$src2\n\t"
9475            "JNP,s   exit\n\t"
9476            "PUSHF\t# saw NaN, set CF\n\t"
9477            "AND     [rsp], #0xffffff2b\n\t"
9478            "POPF\n"
9479    "exit:" %}
9480  ins_encode %{
9481    __ ucomisd($src1$$XMMRegister, $src2$$Address);
9482    emit_cmpfp_fixup(_masm);
9483  %}
9484  ins_pipe( pipe_slow );
9485%}
9486
9487instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9488  predicate(UseSSE>=2);
9489  match(Set cr (CmpD src1 (LoadD src2)));
9490  ins_cost(100);
9491  format %{ "UCOMISD $src1,$src2" %}
9492  ins_encode %{
9493    __ ucomisd($src1$$XMMRegister, $src2$$Address);
9494  %}
9495  ins_pipe( pipe_slow );
9496%}
9497
9498// Compare into -1,0,1 in XMM
9499instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9500  predicate(UseSSE>=2);
9501  match(Set dst (CmpD3 src1 src2));
9502  effect(KILL cr);
9503  ins_cost(255);
9504  format %{ "UCOMISD $src1, $src2\n\t"
9505            "MOV     $dst, #-1\n\t"
9506            "JP,s    done\n\t"
9507            "JB,s    done\n\t"
9508            "SETNE   $dst\n\t"
9509            "MOVZB   $dst, $dst\n"
9510    "done:" %}
9511  ins_encode %{
9512    __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9513    emit_cmpfp3(_masm, $dst$$Register);
9514  %}
9515  ins_pipe( pipe_slow );
9516%}
9517
9518// Compare into -1,0,1 in XMM and memory
9519instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9520  predicate(UseSSE>=2);
9521  match(Set dst (CmpD3 src1 (LoadD src2)));
9522  effect(KILL cr);
9523  ins_cost(275);
9524  format %{ "UCOMISD $src1, $src2\n\t"
9525            "MOV     $dst, #-1\n\t"
9526            "JP,s    done\n\t"
9527            "JB,s    done\n\t"
9528            "SETNE   $dst\n\t"
9529            "MOVZB   $dst, $dst\n"
9530    "done:" %}
9531  ins_encode %{
9532    __ ucomisd($src1$$XMMRegister, $src2$$Address);
9533    emit_cmpfp3(_masm, $dst$$Register);
9534  %}
9535  ins_pipe( pipe_slow );
9536%}
9537
9538
9539instruct subDPR_reg(regDPR dst, regDPR src) %{
9540  predicate (UseSSE <=1);
9541  match(Set dst (SubD dst src));
9542
9543  format %{ "FLD    $src\n\t"
9544            "DSUBp  $dst,ST" %}
9545  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9546  ins_cost(150);
9547  ins_encode( Push_Reg_DPR(src),
9548              OpcP, RegOpc(dst) );
9549  ins_pipe( fpu_reg_reg );
9550%}
9551
9552instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9553  predicate (UseSSE <=1);
9554  match(Set dst (RoundDouble (SubD src1 src2)));
9555  ins_cost(250);
9556
9557  format %{ "FLD    $src2\n\t"
9558            "DSUB   ST,$src1\n\t"
9559            "FSTP_D $dst\t# D-round" %}
9560  opcode(0xD8, 0x5);
9561  ins_encode( Push_Reg_DPR(src2),
9562              OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9563  ins_pipe( fpu_mem_reg_reg );
9564%}
9565
9566
9567instruct subDPR_reg_mem(regDPR dst, memory src) %{
9568  predicate (UseSSE <=1);
9569  match(Set dst (SubD dst (LoadD src)));
9570  ins_cost(150);
9571
9572  format %{ "FLD    $src\n\t"
9573            "DSUBp  $dst,ST" %}
9574  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9575  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9576              OpcP, RegOpc(dst) );
9577  ins_pipe( fpu_reg_mem );
9578%}
9579
9580instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9581  predicate (UseSSE<=1);
9582  match(Set dst (AbsD src));
9583  ins_cost(100);
9584  format %{ "FABS" %}
9585  opcode(0xE1, 0xD9);
9586  ins_encode( OpcS, OpcP );
9587  ins_pipe( fpu_reg_reg );
9588%}
9589
9590instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9591  predicate(UseSSE<=1);
9592  match(Set dst (NegD src));
9593  ins_cost(100);
9594  format %{ "FCHS" %}
9595  opcode(0xE0, 0xD9);
9596  ins_encode( OpcS, OpcP );
9597  ins_pipe( fpu_reg_reg );
9598%}
9599
9600instruct addDPR_reg(regDPR dst, regDPR src) %{
9601  predicate(UseSSE<=1);
9602  match(Set dst (AddD dst src));
9603  format %{ "FLD    $src\n\t"
9604            "DADD   $dst,ST" %}
9605  size(4);
9606  ins_cost(150);
9607  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9608  ins_encode( Push_Reg_DPR(src),
9609              OpcP, RegOpc(dst) );
9610  ins_pipe( fpu_reg_reg );
9611%}
9612
9613
9614instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9615  predicate(UseSSE<=1);
9616  match(Set dst (RoundDouble (AddD src1 src2)));
9617  ins_cost(250);
9618
9619  format %{ "FLD    $src2\n\t"
9620            "DADD   ST,$src1\n\t"
9621            "FSTP_D $dst\t# D-round" %}
9622  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9623  ins_encode( Push_Reg_DPR(src2),
9624              OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9625  ins_pipe( fpu_mem_reg_reg );
9626%}
9627
9628
9629instruct addDPR_reg_mem(regDPR dst, memory src) %{
9630  predicate(UseSSE<=1);
9631  match(Set dst (AddD dst (LoadD src)));
9632  ins_cost(150);
9633
9634  format %{ "FLD    $src\n\t"
9635            "DADDp  $dst,ST" %}
9636  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9637  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9638              OpcP, RegOpc(dst) );
9639  ins_pipe( fpu_reg_mem );
9640%}
9641
9642// add-to-memory
9643instruct addDPR_mem_reg(memory dst, regDPR src) %{
9644  predicate(UseSSE<=1);
9645  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9646  ins_cost(150);
9647
9648  format %{ "FLD_D  $dst\n\t"
9649            "DADD   ST,$src\n\t"
9650            "FST_D  $dst" %}
9651  opcode(0xDD, 0x0);
9652  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9653              Opcode(0xD8), RegOpc(src),
9654              set_instruction_start,
9655              Opcode(0xDD), RMopc_Mem(0x03,dst) );
9656  ins_pipe( fpu_reg_mem );
9657%}
9658
9659instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9660  predicate(UseSSE<=1);
9661  match(Set dst (AddD dst con));
9662  ins_cost(125);
9663  format %{ "FLD1\n\t"
9664            "DADDp  $dst,ST" %}
9665  ins_encode %{
9666    __ fld1();
9667    __ faddp($dst$$reg);
9668  %}
9669  ins_pipe(fpu_reg);
9670%}
9671
9672instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9673  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9674  match(Set dst (AddD dst con));
9675  ins_cost(200);
9676  format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9677            "DADDp  $dst,ST" %}
9678  ins_encode %{
9679    __ fld_d($constantaddress($con));
9680    __ faddp($dst$$reg);
9681  %}
9682  ins_pipe(fpu_reg_mem);
9683%}
9684
9685instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9686  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9687  match(Set dst (RoundDouble (AddD src con)));
9688  ins_cost(200);
9689  format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9690            "DADD   ST,$src\n\t"
9691            "FSTP_D $dst\t# D-round" %}
9692  ins_encode %{
9693    __ fld_d($constantaddress($con));
9694    __ fadd($src$$reg);
9695    __ fstp_d(Address(rsp, $dst$$disp));
9696  %}
9697  ins_pipe(fpu_mem_reg_con);
9698%}
9699
9700instruct mulDPR_reg(regDPR dst, regDPR src) %{
9701  predicate(UseSSE<=1);
9702  match(Set dst (MulD dst src));
9703  format %{ "FLD    $src\n\t"
9704            "DMULp  $dst,ST" %}
9705  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9706  ins_cost(150);
9707  ins_encode( Push_Reg_DPR(src),
9708              OpcP, RegOpc(dst) );
9709  ins_pipe( fpu_reg_reg );
9710%}
9711
9712// Strict FP instruction biases argument before multiply then
9713// biases result to avoid double rounding of subnormals.
9714//
9715// scale arg1 by multiplying arg1 by 2^(-15360)
9716// load arg2
9717// multiply scaled arg1 by arg2
9718// rescale product by 2^(15360)
9719//
9720instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9721  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9722  match(Set dst (MulD dst src));
9723  ins_cost(1);   // Select this instruction for all strict FP double multiplies
9724
9725  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9726            "DMULp  $dst,ST\n\t"
9727            "FLD    $src\n\t"
9728            "DMULp  $dst,ST\n\t"
9729            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9730            "DMULp  $dst,ST\n\t" %}
9731  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9732  ins_encode( strictfp_bias1(dst),
9733              Push_Reg_DPR(src),
9734              OpcP, RegOpc(dst),
9735              strictfp_bias2(dst) );
9736  ins_pipe( fpu_reg_reg );
9737%}
9738
9739instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9740  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9741  match(Set dst (MulD dst con));
9742  ins_cost(200);
9743  format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9744            "DMULp  $dst,ST" %}
9745  ins_encode %{
9746    __ fld_d($constantaddress($con));
9747    __ fmulp($dst$$reg);
9748  %}
9749  ins_pipe(fpu_reg_mem);
9750%}
9751
9752
9753instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9754  predicate( UseSSE<=1 );
9755  match(Set dst (MulD dst (LoadD src)));
9756  ins_cost(200);
9757  format %{ "FLD_D  $src\n\t"
9758            "DMULp  $dst,ST" %}
9759  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9760  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9761              OpcP, RegOpc(dst) );
9762  ins_pipe( fpu_reg_mem );
9763%}
9764
9765//
9766// Cisc-alternate to reg-reg multiply
9767instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9768  predicate( UseSSE<=1 );
9769  match(Set dst (MulD src (LoadD mem)));
9770  ins_cost(250);
9771  format %{ "FLD_D  $mem\n\t"
9772            "DMUL   ST,$src\n\t"
9773            "FSTP_D $dst" %}
9774  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9775  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9776              OpcReg_FPR(src),
9777              Pop_Reg_DPR(dst) );
9778  ins_pipe( fpu_reg_reg_mem );
9779%}
9780
9781
9782// MACRO3 -- addDPR a mulDPR
9783// This instruction is a '2-address' instruction in that the result goes
9784// back to src2.  This eliminates a move from the macro; possibly the
9785// register allocator will have to add it back (and maybe not).
9786instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9787  predicate( UseSSE<=1 );
9788  match(Set src2 (AddD (MulD src0 src1) src2));
9789  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9790            "DMUL   ST,$src1\n\t"
9791            "DADDp  $src2,ST" %}
9792  ins_cost(250);
9793  opcode(0xDD); /* LoadD DD /0 */
9794  ins_encode( Push_Reg_FPR(src0),
9795              FMul_ST_reg(src1),
9796              FAddP_reg_ST(src2) );
9797  ins_pipe( fpu_reg_reg_reg );
9798%}
9799
9800
9801// MACRO3 -- subDPR a mulDPR
9802instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9803  predicate( UseSSE<=1 );
9804  match(Set src2 (SubD (MulD src0 src1) src2));
9805  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9806            "DMUL   ST,$src1\n\t"
9807            "DSUBRp $src2,ST" %}
9808  ins_cost(250);
9809  ins_encode( Push_Reg_FPR(src0),
9810              FMul_ST_reg(src1),
9811              Opcode(0xDE), Opc_plus(0xE0,src2));
9812  ins_pipe( fpu_reg_reg_reg );
9813%}
9814
9815
9816instruct divDPR_reg(regDPR dst, regDPR src) %{
9817  predicate( UseSSE<=1 );
9818  match(Set dst (DivD dst src));
9819
9820  format %{ "FLD    $src\n\t"
9821            "FDIVp  $dst,ST" %}
9822  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9823  ins_cost(150);
9824  ins_encode( Push_Reg_DPR(src),
9825              OpcP, RegOpc(dst) );
9826  ins_pipe( fpu_reg_reg );
9827%}
9828
9829// Strict FP instruction biases argument before division then
9830// biases result, to avoid double rounding of subnormals.
9831//
9832// scale dividend by multiplying dividend by 2^(-15360)
9833// load divisor
9834// divide scaled dividend by divisor
9835// rescale quotient by 2^(15360)
9836//
9837instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9838  predicate (UseSSE<=1);
9839  match(Set dst (DivD dst src));
9840  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9841  ins_cost(01);
9842
9843  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9844            "DMULp  $dst,ST\n\t"
9845            "FLD    $src\n\t"
9846            "FDIVp  $dst,ST\n\t"
9847            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9848            "DMULp  $dst,ST\n\t" %}
9849  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9850  ins_encode( strictfp_bias1(dst),
9851              Push_Reg_DPR(src),
9852              OpcP, RegOpc(dst),
9853              strictfp_bias2(dst) );
9854  ins_pipe( fpu_reg_reg );
9855%}
9856
9857instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9858  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9859  match(Set dst (RoundDouble (DivD src1 src2)));
9860
9861  format %{ "FLD    $src1\n\t"
9862            "FDIV   ST,$src2\n\t"
9863            "FSTP_D $dst\t# D-round" %}
9864  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9865  ins_encode( Push_Reg_DPR(src1),
9866              OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9867  ins_pipe( fpu_mem_reg_reg );
9868%}
9869
9870
9871instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9872  predicate(UseSSE<=1);
9873  match(Set dst (ModD dst src));
9874  effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9875
9876  format %{ "DMOD   $dst,$src" %}
9877  ins_cost(250);
9878  ins_encode(Push_Reg_Mod_DPR(dst, src),
9879              emitModDPR(),
9880              Push_Result_Mod_DPR(src),
9881              Pop_Reg_DPR(dst));
9882  ins_pipe( pipe_slow );
9883%}
9884
9885instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9886  predicate(UseSSE>=2);
9887  match(Set dst (ModD src0 src1));
9888  effect(KILL rax, KILL cr);
9889
9890  format %{ "SUB    ESP,8\t # DMOD\n"
9891          "\tMOVSD  [ESP+0],$src1\n"
9892          "\tFLD_D  [ESP+0]\n"
9893          "\tMOVSD  [ESP+0],$src0\n"
9894          "\tFLD_D  [ESP+0]\n"
9895     "loop:\tFPREM\n"
9896          "\tFWAIT\n"
9897          "\tFNSTSW AX\n"
9898          "\tSAHF\n"
9899          "\tJP     loop\n"
9900          "\tFSTP_D [ESP+0]\n"
9901          "\tMOVSD  $dst,[ESP+0]\n"
9902          "\tADD    ESP,8\n"
9903          "\tFSTP   ST0\t # Restore FPU Stack"
9904    %}
9905  ins_cost(250);
9906  ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9907  ins_pipe( pipe_slow );
9908%}
9909
9910instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9911  predicate (UseSSE<=1);
9912  match(Set dst (SinD src));
9913  ins_cost(1800);
9914  format %{ "DSIN   $dst" %}
9915  opcode(0xD9, 0xFE);
9916  ins_encode( OpcP, OpcS );
9917  ins_pipe( pipe_slow );
9918%}
9919
9920instruct sinD_reg(regD dst, eFlagsReg cr) %{
9921  predicate (UseSSE>=2);
9922  match(Set dst (SinD dst));
9923  effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9924  ins_cost(1800);
9925  format %{ "DSIN   $dst" %}
9926  opcode(0xD9, 0xFE);
9927  ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9928  ins_pipe( pipe_slow );
9929%}
9930
9931instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9932  predicate (UseSSE<=1);
9933  match(Set dst (CosD src));
9934  ins_cost(1800);
9935  format %{ "DCOS   $dst" %}
9936  opcode(0xD9, 0xFF);
9937  ins_encode( OpcP, OpcS );
9938  ins_pipe( pipe_slow );
9939%}
9940
9941instruct cosD_reg(regD dst, eFlagsReg cr) %{
9942  predicate (UseSSE>=2);
9943  match(Set dst (CosD dst));
9944  effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9945  ins_cost(1800);
9946  format %{ "DCOS   $dst" %}
9947  opcode(0xD9, 0xFF);
9948  ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9949  ins_pipe( pipe_slow );
9950%}
9951
9952instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9953  predicate (UseSSE<=1);
9954  match(Set dst(TanD src));
9955  format %{ "DTAN   $dst" %}
9956  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9957              Opcode(0xDD), Opcode(0xD8));   // fstp st
9958  ins_pipe( pipe_slow );
9959%}
9960
9961instruct tanD_reg(regD dst, eFlagsReg cr) %{
9962  predicate (UseSSE>=2);
9963  match(Set dst(TanD dst));
9964  effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9965  format %{ "DTAN   $dst" %}
9966  ins_encode( Push_SrcD(dst),
9967              Opcode(0xD9), Opcode(0xF2),    // fptan
9968              Opcode(0xDD), Opcode(0xD8),   // fstp st
9969              Push_ResultD(dst) );
9970  ins_pipe( pipe_slow );
9971%}
9972
9973instruct atanDPR_reg(regDPR dst, regDPR src) %{
9974  predicate (UseSSE<=1);
9975  match(Set dst(AtanD dst src));
9976  format %{ "DATA   $dst,$src" %}
9977  opcode(0xD9, 0xF3);
9978  ins_encode( Push_Reg_DPR(src),
9979              OpcP, OpcS, RegOpc(dst) );
9980  ins_pipe( pipe_slow );
9981%}
9982
9983instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9984  predicate (UseSSE>=2);
9985  match(Set dst(AtanD dst src));
9986  effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9987  format %{ "DATA   $dst,$src" %}
9988  opcode(0xD9, 0xF3);
9989  ins_encode( Push_SrcD(src),
9990              OpcP, OpcS, Push_ResultD(dst) );
9991  ins_pipe( pipe_slow );
9992%}
9993
9994instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9995  predicate (UseSSE<=1);
9996  match(Set dst (SqrtD src));
9997  format %{ "DSQRT  $dst,$src" %}
9998  opcode(0xFA, 0xD9);
9999  ins_encode( Push_Reg_DPR(src),
10000              OpcS, OpcP, Pop_Reg_DPR(dst) );
10001  ins_pipe( pipe_slow );
10002%}
10003
10004instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10005  predicate (UseSSE<=1);
10006  match(Set Y (PowD X Y));  // Raise X to the Yth power
10007  effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10008  format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
10009  ins_encode %{
10010    __ subptr(rsp, 8);
10011    __ fld_s($X$$reg - 1);
10012    __ fast_pow();
10013    __ addptr(rsp, 8);
10014  %}
10015  ins_pipe( pipe_slow );
10016%}
10017
10018instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10019  predicate (UseSSE>=2);
10020  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10021  effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
10022  format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
10023  ins_encode %{
10024    __ subptr(rsp, 8);
10025    __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
10026    __ fld_d(Address(rsp, 0));
10027    __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
10028    __ fld_d(Address(rsp, 0));
10029    __ fast_pow();
10030    __ fstp_d(Address(rsp, 0));
10031    __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10032    __ addptr(rsp, 8);
10033  %}
10034  ins_pipe( pipe_slow );
10035%}
10036
10037
10038instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10039  predicate (UseSSE<=1);
10040  match(Set dpr1 (ExpD dpr1));
10041  effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10042  format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
10043  ins_encode %{
10044    __ fast_exp();
10045  %}
10046  ins_pipe( pipe_slow );
10047%}
10048
10049instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
10050  predicate (UseSSE>=2);
10051  match(Set dst (ExpD src));
10052  effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
10053  format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
10054  ins_encode %{
10055    __ subptr(rsp, 8);
10056    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10057    __ fld_d(Address(rsp, 0));
10058    __ fast_exp();
10059    __ fstp_d(Address(rsp, 0));
10060    __ movdbl($dst$$XMMRegister, Address(rsp, 0));
10061    __ addptr(rsp, 8);
10062  %}
10063  ins_pipe( pipe_slow );
10064%}
10065
10066instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
10067  predicate (UseSSE<=1);
10068  // The source Double operand on FPU stack
10069  match(Set dst (Log10D src));
10070  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10071  // fxch         ; swap ST(0) with ST(1)
10072  // fyl2x        ; compute log_10(2) * log_2(x)
10073  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10074            "FXCH   \n\t"
10075            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10076         %}
10077  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10078              Opcode(0xD9), Opcode(0xC9),   // fxch
10079              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10080
10081  ins_pipe( pipe_slow );
10082%}
10083
10084instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
10085  predicate (UseSSE>=2);
10086  effect(KILL cr);
10087  match(Set dst (Log10D src));
10088  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10089  // fyl2x        ; compute log_10(2) * log_2(x)
10090  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10091            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10092         %}
10093  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10094              Push_SrcD(src),
10095              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10096              Push_ResultD(dst));
10097
10098  ins_pipe( pipe_slow );
10099%}
10100
10101instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10102  predicate (UseSSE<=1);
10103  // The source Double operand on FPU stack
10104  match(Set dst (LogD src));
10105  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10106  // fxch         ; swap ST(0) with ST(1)
10107  // fyl2x        ; compute log_e(2) * log_2(x)
10108  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10109            "FXCH   \n\t"
10110            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10111         %}
10112  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10113              Opcode(0xD9), Opcode(0xC9),   // fxch
10114              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10115
10116  ins_pipe( pipe_slow );
10117%}
10118
10119instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10120  predicate (UseSSE>=2);
10121  effect(KILL cr);
10122  // The source and result Double operands in XMM registers
10123  match(Set dst (LogD src));
10124  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10125  // fyl2x        ; compute log_e(2) * log_2(x)
10126  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10127            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10128         %}
10129  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10130              Push_SrcD(src),
10131              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10132              Push_ResultD(dst));
10133  ins_pipe( pipe_slow );
10134%}
10135
10136//-------------Float Instructions-------------------------------
10137// Float Math
10138
10139// Code for float compare:
10140//     fcompp();
10141//     fwait(); fnstsw_ax();
10142//     sahf();
10143//     movl(dst, unordered_result);
10144//     jcc(Assembler::parity, exit);
10145//     movl(dst, less_result);
10146//     jcc(Assembler::below, exit);
10147//     movl(dst, equal_result);
10148//     jcc(Assembler::equal, exit);
10149//     movl(dst, greater_result);
10150//   exit:
10151
10152// P6 version of float compare, sets condition codes in EFLAGS
10153instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10154  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10155  match(Set cr (CmpF src1 src2));
10156  effect(KILL rax);
10157  ins_cost(150);
10158  format %{ "FLD    $src1\n\t"
10159            "FUCOMIP ST,$src2  // P6 instruction\n\t"
10160            "JNP    exit\n\t"
10161            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10162            "SAHF\n"
10163     "exit:\tNOP               // avoid branch to branch" %}
10164  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10165  ins_encode( Push_Reg_DPR(src1),
10166              OpcP, RegOpc(src2),
10167              cmpF_P6_fixup );
10168  ins_pipe( pipe_slow );
10169%}
10170
10171instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10172  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10173  match(Set cr (CmpF src1 src2));
10174  ins_cost(100);
10175  format %{ "FLD    $src1\n\t"
10176            "FUCOMIP ST,$src2  // P6 instruction" %}
10177  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10178  ins_encode( Push_Reg_DPR(src1),
10179              OpcP, RegOpc(src2));
10180  ins_pipe( pipe_slow );
10181%}
10182
10183
10184// Compare & branch
10185instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10186  predicate(UseSSE == 0);
10187  match(Set cr (CmpF src1 src2));
10188  effect(KILL rax);
10189  ins_cost(200);
10190  format %{ "FLD    $src1\n\t"
10191            "FCOMp  $src2\n\t"
10192            "FNSTSW AX\n\t"
10193            "TEST   AX,0x400\n\t"
10194            "JZ,s   flags\n\t"
10195            "MOV    AH,1\t# unordered treat as LT\n"
10196    "flags:\tSAHF" %}
10197  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10198  ins_encode( Push_Reg_DPR(src1),
10199              OpcP, RegOpc(src2),
10200              fpu_flags);
10201  ins_pipe( pipe_slow );
10202%}
10203
10204// Compare vs zero into -1,0,1
10205instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10206  predicate(UseSSE == 0);
10207  match(Set dst (CmpF3 src1 zero));
10208  effect(KILL cr, KILL rax);
10209  ins_cost(280);
10210  format %{ "FTSTF  $dst,$src1" %}
10211  opcode(0xE4, 0xD9);
10212  ins_encode( Push_Reg_DPR(src1),
10213              OpcS, OpcP, PopFPU,
10214              CmpF_Result(dst));
10215  ins_pipe( pipe_slow );
10216%}
10217
10218// Compare into -1,0,1
10219instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10220  predicate(UseSSE == 0);
10221  match(Set dst (CmpF3 src1 src2));
10222  effect(KILL cr, KILL rax);
10223  ins_cost(300);
10224  format %{ "FCMPF  $dst,$src1,$src2" %}
10225  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10226  ins_encode( Push_Reg_DPR(src1),
10227              OpcP, RegOpc(src2),
10228              CmpF_Result(dst));
10229  ins_pipe( pipe_slow );
10230%}
10231
10232// float compare and set condition codes in EFLAGS by XMM regs
10233instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10234  predicate(UseSSE>=1);
10235  match(Set cr (CmpF src1 src2));
10236  ins_cost(145);
10237  format %{ "UCOMISS $src1,$src2\n\t"
10238            "JNP,s   exit\n\t"
10239            "PUSHF\t# saw NaN, set CF\n\t"
10240            "AND     [rsp], #0xffffff2b\n\t"
10241            "POPF\n"
10242    "exit:" %}
10243  ins_encode %{
10244    __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10245    emit_cmpfp_fixup(_masm);
10246  %}
10247  ins_pipe( pipe_slow );
10248%}
10249
10250instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10251  predicate(UseSSE>=1);
10252  match(Set cr (CmpF src1 src2));
10253  ins_cost(100);
10254  format %{ "UCOMISS $src1,$src2" %}
10255  ins_encode %{
10256    __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10257  %}
10258  ins_pipe( pipe_slow );
10259%}
10260
10261// float compare and set condition codes in EFLAGS by XMM regs
10262instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10263  predicate(UseSSE>=1);
10264  match(Set cr (CmpF src1 (LoadF src2)));
10265  ins_cost(165);
10266  format %{ "UCOMISS $src1,$src2\n\t"
10267            "JNP,s   exit\n\t"
10268            "PUSHF\t# saw NaN, set CF\n\t"
10269            "AND     [rsp], #0xffffff2b\n\t"
10270            "POPF\n"
10271    "exit:" %}
10272  ins_encode %{
10273    __ ucomiss($src1$$XMMRegister, $src2$$Address);
10274    emit_cmpfp_fixup(_masm);
10275  %}
10276  ins_pipe( pipe_slow );
10277%}
10278
10279instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10280  predicate(UseSSE>=1);
10281  match(Set cr (CmpF src1 (LoadF src2)));
10282  ins_cost(100);
10283  format %{ "UCOMISS $src1,$src2" %}
10284  ins_encode %{
10285    __ ucomiss($src1$$XMMRegister, $src2$$Address);
10286  %}
10287  ins_pipe( pipe_slow );
10288%}
10289
10290// Compare into -1,0,1 in XMM
10291instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10292  predicate(UseSSE>=1);
10293  match(Set dst (CmpF3 src1 src2));
10294  effect(KILL cr);
10295  ins_cost(255);
10296  format %{ "UCOMISS $src1, $src2\n\t"
10297            "MOV     $dst, #-1\n\t"
10298            "JP,s    done\n\t"
10299            "JB,s    done\n\t"
10300            "SETNE   $dst\n\t"
10301            "MOVZB   $dst, $dst\n"
10302    "done:" %}
10303  ins_encode %{
10304    __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10305    emit_cmpfp3(_masm, $dst$$Register);
10306  %}
10307  ins_pipe( pipe_slow );
10308%}
10309
10310// Compare into -1,0,1 in XMM and memory
10311instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10312  predicate(UseSSE>=1);
10313  match(Set dst (CmpF3 src1 (LoadF src2)));
10314  effect(KILL cr);
10315  ins_cost(275);
10316  format %{ "UCOMISS $src1, $src2\n\t"
10317            "MOV     $dst, #-1\n\t"
10318            "JP,s    done\n\t"
10319            "JB,s    done\n\t"
10320            "SETNE   $dst\n\t"
10321            "MOVZB   $dst, $dst\n"
10322    "done:" %}
10323  ins_encode %{
10324    __ ucomiss($src1$$XMMRegister, $src2$$Address);
10325    emit_cmpfp3(_masm, $dst$$Register);
10326  %}
10327  ins_pipe( pipe_slow );
10328%}
10329
10330// Spill to obtain 24-bit precision
10331instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10332  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10333  match(Set dst (SubF src1 src2));
10334
10335  format %{ "FSUB   $dst,$src1 - $src2" %}
10336  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10337  ins_encode( Push_Reg_FPR(src1),
10338              OpcReg_FPR(src2),
10339              Pop_Mem_FPR(dst) );
10340  ins_pipe( fpu_mem_reg_reg );
10341%}
10342//
10343// This instruction does not round to 24-bits
10344instruct subFPR_reg(regFPR dst, regFPR src) %{
10345  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10346  match(Set dst (SubF dst src));
10347
10348  format %{ "FSUB   $dst,$src" %}
10349  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10350  ins_encode( Push_Reg_FPR(src),
10351              OpcP, RegOpc(dst) );
10352  ins_pipe( fpu_reg_reg );
10353%}
10354
10355// Spill to obtain 24-bit precision
10356instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10357  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10358  match(Set dst (AddF src1 src2));
10359
10360  format %{ "FADD   $dst,$src1,$src2" %}
10361  opcode(0xD8, 0x0); /* D8 C0+i */
10362  ins_encode( Push_Reg_FPR(src2),
10363              OpcReg_FPR(src1),
10364              Pop_Mem_FPR(dst) );
10365  ins_pipe( fpu_mem_reg_reg );
10366%}
10367//
10368// This instruction does not round to 24-bits
10369instruct addFPR_reg(regFPR dst, regFPR src) %{
10370  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10371  match(Set dst (AddF dst src));
10372
10373  format %{ "FLD    $src\n\t"
10374            "FADDp  $dst,ST" %}
10375  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10376  ins_encode( Push_Reg_FPR(src),
10377              OpcP, RegOpc(dst) );
10378  ins_pipe( fpu_reg_reg );
10379%}
10380
10381instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10382  predicate(UseSSE==0);
10383  match(Set dst (AbsF src));
10384  ins_cost(100);
10385  format %{ "FABS" %}
10386  opcode(0xE1, 0xD9);
10387  ins_encode( OpcS, OpcP );
10388  ins_pipe( fpu_reg_reg );
10389%}
10390
10391instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10392  predicate(UseSSE==0);
10393  match(Set dst (NegF src));
10394  ins_cost(100);
10395  format %{ "FCHS" %}
10396  opcode(0xE0, 0xD9);
10397  ins_encode( OpcS, OpcP );
10398  ins_pipe( fpu_reg_reg );
10399%}
10400
10401// Cisc-alternate to addFPR_reg
10402// Spill to obtain 24-bit precision
10403instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10404  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10405  match(Set dst (AddF src1 (LoadF src2)));
10406
10407  format %{ "FLD    $src2\n\t"
10408            "FADD   ST,$src1\n\t"
10409            "FSTP_S $dst" %}
10410  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10411  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10412              OpcReg_FPR(src1),
10413              Pop_Mem_FPR(dst) );
10414  ins_pipe( fpu_mem_reg_mem );
10415%}
10416//
10417// Cisc-alternate to addFPR_reg
10418// This instruction does not round to 24-bits
10419instruct addFPR_reg_mem(regFPR dst, memory src) %{
10420  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10421  match(Set dst (AddF dst (LoadF src)));
10422
10423  format %{ "FADD   $dst,$src" %}
10424  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10425  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10426              OpcP, RegOpc(dst) );
10427  ins_pipe( fpu_reg_mem );
10428%}
10429
10430// // Following two instructions for _222_mpegaudio
10431// Spill to obtain 24-bit precision
10432instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10433  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10434  match(Set dst (AddF src1 src2));
10435
10436  format %{ "FADD   $dst,$src1,$src2" %}
10437  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10438  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10439              OpcReg_FPR(src2),
10440              Pop_Mem_FPR(dst) );
10441  ins_pipe( fpu_mem_reg_mem );
10442%}
10443
10444// Cisc-spill variant
10445// Spill to obtain 24-bit precision
10446instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10447  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10448  match(Set dst (AddF src1 (LoadF src2)));
10449
10450  format %{ "FADD   $dst,$src1,$src2 cisc" %}
10451  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10452  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10453              set_instruction_start,
10454              OpcP, RMopc_Mem(secondary,src1),
10455              Pop_Mem_FPR(dst) );
10456  ins_pipe( fpu_mem_mem_mem );
10457%}
10458
10459// Spill to obtain 24-bit precision
10460instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10461  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10462  match(Set dst (AddF src1 src2));
10463
10464  format %{ "FADD   $dst,$src1,$src2" %}
10465  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10466  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10467              set_instruction_start,
10468              OpcP, RMopc_Mem(secondary,src1),
10469              Pop_Mem_FPR(dst) );
10470  ins_pipe( fpu_mem_mem_mem );
10471%}
10472
10473
10474// Spill to obtain 24-bit precision
10475instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10476  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10477  match(Set dst (AddF src con));
10478  format %{ "FLD    $src\n\t"
10479            "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10480            "FSTP_S $dst"  %}
10481  ins_encode %{
10482    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10483    __ fadd_s($constantaddress($con));
10484    __ fstp_s(Address(rsp, $dst$$disp));
10485  %}
10486  ins_pipe(fpu_mem_reg_con);
10487%}
10488//
10489// This instruction does not round to 24-bits
10490instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10491  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10492  match(Set dst (AddF src con));
10493  format %{ "FLD    $src\n\t"
10494            "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10495            "FSTP   $dst"  %}
10496  ins_encode %{
10497    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10498    __ fadd_s($constantaddress($con));
10499    __ fstp_d($dst$$reg);
10500  %}
10501  ins_pipe(fpu_reg_reg_con);
10502%}
10503
10504// Spill to obtain 24-bit precision
10505instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10506  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10507  match(Set dst (MulF src1 src2));
10508
10509  format %{ "FLD    $src1\n\t"
10510            "FMUL   $src2\n\t"
10511            "FSTP_S $dst"  %}
10512  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10513  ins_encode( Push_Reg_FPR(src1),
10514              OpcReg_FPR(src2),
10515              Pop_Mem_FPR(dst) );
10516  ins_pipe( fpu_mem_reg_reg );
10517%}
10518//
10519// This instruction does not round to 24-bits
10520instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10521  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10522  match(Set dst (MulF src1 src2));
10523
10524  format %{ "FLD    $src1\n\t"
10525            "FMUL   $src2\n\t"
10526            "FSTP_S $dst"  %}
10527  opcode(0xD8, 0x1); /* D8 C8+i */
10528  ins_encode( Push_Reg_FPR(src2),
10529              OpcReg_FPR(src1),
10530              Pop_Reg_FPR(dst) );
10531  ins_pipe( fpu_reg_reg_reg );
10532%}
10533
10534
10535// Spill to obtain 24-bit precision
10536// Cisc-alternate to reg-reg multiply
10537instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10538  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10539  match(Set dst (MulF src1 (LoadF src2)));
10540
10541  format %{ "FLD_S  $src2\n\t"
10542            "FMUL   $src1\n\t"
10543            "FSTP_S $dst"  %}
10544  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10545  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10546              OpcReg_FPR(src1),
10547              Pop_Mem_FPR(dst) );
10548  ins_pipe( fpu_mem_reg_mem );
10549%}
10550//
10551// This instruction does not round to 24-bits
10552// Cisc-alternate to reg-reg multiply
10553instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10554  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10555  match(Set dst (MulF src1 (LoadF src2)));
10556
10557  format %{ "FMUL   $dst,$src1,$src2" %}
10558  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10559  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10560              OpcReg_FPR(src1),
10561              Pop_Reg_FPR(dst) );
10562  ins_pipe( fpu_reg_reg_mem );
10563%}
10564
10565// Spill to obtain 24-bit precision
10566instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10567  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10568  match(Set dst (MulF src1 src2));
10569
10570  format %{ "FMUL   $dst,$src1,$src2" %}
10571  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10572  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10573              set_instruction_start,
10574              OpcP, RMopc_Mem(secondary,src1),
10575              Pop_Mem_FPR(dst) );
10576  ins_pipe( fpu_mem_mem_mem );
10577%}
10578
10579// Spill to obtain 24-bit precision
10580instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10581  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10582  match(Set dst (MulF src con));
10583
10584  format %{ "FLD    $src\n\t"
10585            "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10586            "FSTP_S $dst"  %}
10587  ins_encode %{
10588    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10589    __ fmul_s($constantaddress($con));
10590    __ fstp_s(Address(rsp, $dst$$disp));
10591  %}
10592  ins_pipe(fpu_mem_reg_con);
10593%}
10594//
10595// This instruction does not round to 24-bits
10596instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10597  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10598  match(Set dst (MulF src con));
10599
10600  format %{ "FLD    $src\n\t"
10601            "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10602            "FSTP   $dst"  %}
10603  ins_encode %{
10604    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10605    __ fmul_s($constantaddress($con));
10606    __ fstp_d($dst$$reg);
10607  %}
10608  ins_pipe(fpu_reg_reg_con);
10609%}
10610
10611
10612//
10613// MACRO1 -- subsume unshared load into mulFPR
10614// This instruction does not round to 24-bits
10615instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10616  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10617  match(Set dst (MulF (LoadF mem1) src));
10618
10619  format %{ "FLD    $mem1    ===MACRO1===\n\t"
10620            "FMUL   ST,$src\n\t"
10621            "FSTP   $dst" %}
10622  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10623  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10624              OpcReg_FPR(src),
10625              Pop_Reg_FPR(dst) );
10626  ins_pipe( fpu_reg_reg_mem );
10627%}
10628//
10629// MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10630// This instruction does not round to 24-bits
10631instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10632  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10633  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10634  ins_cost(95);
10635
10636  format %{ "FLD    $mem1     ===MACRO2===\n\t"
10637            "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10638            "FADD   ST,$src2\n\t"
10639            "FSTP   $dst" %}
10640  opcode(0xD9); /* LoadF D9 /0 */
10641  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10642              FMul_ST_reg(src1),
10643              FAdd_ST_reg(src2),
10644              Pop_Reg_FPR(dst) );
10645  ins_pipe( fpu_reg_mem_reg_reg );
10646%}
10647
10648// MACRO3 -- addFPR a mulFPR
10649// This instruction does not round to 24-bits.  It is a '2-address'
10650// instruction in that the result goes back to src2.  This eliminates
10651// a move from the macro; possibly the register allocator will have
10652// to add it back (and maybe not).
10653instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10654  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10655  match(Set src2 (AddF (MulF src0 src1) src2));
10656
10657  format %{ "FLD    $src0     ===MACRO3===\n\t"
10658            "FMUL   ST,$src1\n\t"
10659            "FADDP  $src2,ST" %}
10660  opcode(0xD9); /* LoadF D9 /0 */
10661  ins_encode( Push_Reg_FPR(src0),
10662              FMul_ST_reg(src1),
10663              FAddP_reg_ST(src2) );
10664  ins_pipe( fpu_reg_reg_reg );
10665%}
10666
10667// MACRO4 -- divFPR subFPR
10668// This instruction does not round to 24-bits
10669instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10670  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10671  match(Set dst (DivF (SubF src2 src1) src3));
10672
10673  format %{ "FLD    $src2   ===MACRO4===\n\t"
10674            "FSUB   ST,$src1\n\t"
10675            "FDIV   ST,$src3\n\t"
10676            "FSTP  $dst" %}
10677  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10678  ins_encode( Push_Reg_FPR(src2),
10679              subFPR_divFPR_encode(src1,src3),
10680              Pop_Reg_FPR(dst) );
10681  ins_pipe( fpu_reg_reg_reg_reg );
10682%}
10683
10684// Spill to obtain 24-bit precision
10685instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10686  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10687  match(Set dst (DivF src1 src2));
10688
10689  format %{ "FDIV   $dst,$src1,$src2" %}
10690  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10691  ins_encode( Push_Reg_FPR(src1),
10692              OpcReg_FPR(src2),
10693              Pop_Mem_FPR(dst) );
10694  ins_pipe( fpu_mem_reg_reg );
10695%}
10696//
10697// This instruction does not round to 24-bits
10698instruct divFPR_reg(regFPR dst, regFPR src) %{
10699  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10700  match(Set dst (DivF dst src));
10701
10702  format %{ "FDIV   $dst,$src" %}
10703  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10704  ins_encode( Push_Reg_FPR(src),
10705              OpcP, RegOpc(dst) );
10706  ins_pipe( fpu_reg_reg );
10707%}
10708
10709
10710// Spill to obtain 24-bit precision
10711instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10712  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10713  match(Set dst (ModF src1 src2));
10714  effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10715
10716  format %{ "FMOD   $dst,$src1,$src2" %}
10717  ins_encode( Push_Reg_Mod_DPR(src1, src2),
10718              emitModDPR(),
10719              Push_Result_Mod_DPR(src2),
10720              Pop_Mem_FPR(dst));
10721  ins_pipe( pipe_slow );
10722%}
10723//
10724// This instruction does not round to 24-bits
10725instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10726  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10727  match(Set dst (ModF dst src));
10728  effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10729
10730  format %{ "FMOD   $dst,$src" %}
10731  ins_encode(Push_Reg_Mod_DPR(dst, src),
10732              emitModDPR(),
10733              Push_Result_Mod_DPR(src),
10734              Pop_Reg_FPR(dst));
10735  ins_pipe( pipe_slow );
10736%}
10737
10738instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10739  predicate(UseSSE>=1);
10740  match(Set dst (ModF src0 src1));
10741  effect(KILL rax, KILL cr);
10742  format %{ "SUB    ESP,4\t # FMOD\n"
10743          "\tMOVSS  [ESP+0],$src1\n"
10744          "\tFLD_S  [ESP+0]\n"
10745          "\tMOVSS  [ESP+0],$src0\n"
10746          "\tFLD_S  [ESP+0]\n"
10747     "loop:\tFPREM\n"
10748          "\tFWAIT\n"
10749          "\tFNSTSW AX\n"
10750          "\tSAHF\n"
10751          "\tJP     loop\n"
10752          "\tFSTP_S [ESP+0]\n"
10753          "\tMOVSS  $dst,[ESP+0]\n"
10754          "\tADD    ESP,4\n"
10755          "\tFSTP   ST0\t # Restore FPU Stack"
10756    %}
10757  ins_cost(250);
10758  ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10759  ins_pipe( pipe_slow );
10760%}
10761
10762
10763//----------Arithmetic Conversion Instructions---------------------------------
10764// The conversions operations are all Alpha sorted.  Please keep it that way!
10765
10766instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10767  predicate(UseSSE==0);
10768  match(Set dst (RoundFloat src));
10769  ins_cost(125);
10770  format %{ "FST_S  $dst,$src\t# F-round" %}
10771  ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10772  ins_pipe( fpu_mem_reg );
10773%}
10774
10775instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10776  predicate(UseSSE<=1);
10777  match(Set dst (RoundDouble src));
10778  ins_cost(125);
10779  format %{ "FST_D  $dst,$src\t# D-round" %}
10780  ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10781  ins_pipe( fpu_mem_reg );
10782%}
10783
10784// Force rounding to 24-bit precision and 6-bit exponent
10785instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10786  predicate(UseSSE==0);
10787  match(Set dst (ConvD2F src));
10788  format %{ "FST_S  $dst,$src\t# F-round" %}
10789  expand %{
10790    roundFloat_mem_reg(dst,src);
10791  %}
10792%}
10793
10794// Force rounding to 24-bit precision and 6-bit exponent
10795instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10796  predicate(UseSSE==1);
10797  match(Set dst (ConvD2F src));
10798  effect( KILL cr );
10799  format %{ "SUB    ESP,4\n\t"
10800            "FST_S  [ESP],$src\t# F-round\n\t"
10801            "MOVSS  $dst,[ESP]\n\t"
10802            "ADD ESP,4" %}
10803  ins_encode %{
10804    __ subptr(rsp, 4);
10805    if ($src$$reg != FPR1L_enc) {
10806      __ fld_s($src$$reg-1);
10807      __ fstp_s(Address(rsp, 0));
10808    } else {
10809      __ fst_s(Address(rsp, 0));
10810    }
10811    __ movflt($dst$$XMMRegister, Address(rsp, 0));
10812    __ addptr(rsp, 4);
10813  %}
10814  ins_pipe( pipe_slow );
10815%}
10816
10817// Force rounding double precision to single precision
10818instruct convD2F_reg(regF dst, regD src) %{
10819  predicate(UseSSE>=2);
10820  match(Set dst (ConvD2F src));
10821  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10822  ins_encode %{
10823    __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10824  %}
10825  ins_pipe( pipe_slow );
10826%}
10827
10828instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10829  predicate(UseSSE==0);
10830  match(Set dst (ConvF2D src));
10831  format %{ "FST_S  $dst,$src\t# D-round" %}
10832  ins_encode( Pop_Reg_Reg_DPR(dst, src));
10833  ins_pipe( fpu_reg_reg );
10834%}
10835
10836instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10837  predicate(UseSSE==1);
10838  match(Set dst (ConvF2D src));
10839  format %{ "FST_D  $dst,$src\t# D-round" %}
10840  expand %{
10841    roundDouble_mem_reg(dst,src);
10842  %}
10843%}
10844
10845instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10846  predicate(UseSSE==1);
10847  match(Set dst (ConvF2D src));
10848  effect( KILL cr );
10849  format %{ "SUB    ESP,4\n\t"
10850            "MOVSS  [ESP] $src\n\t"
10851            "FLD_S  [ESP]\n\t"
10852            "ADD    ESP,4\n\t"
10853            "FSTP   $dst\t# D-round" %}
10854  ins_encode %{
10855    __ subptr(rsp, 4);
10856    __ movflt(Address(rsp, 0), $src$$XMMRegister);
10857    __ fld_s(Address(rsp, 0));
10858    __ addptr(rsp, 4);
10859    __ fstp_d($dst$$reg);
10860  %}
10861  ins_pipe( pipe_slow );
10862%}
10863
10864instruct convF2D_reg(regD dst, regF src) %{
10865  predicate(UseSSE>=2);
10866  match(Set dst (ConvF2D src));
10867  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10868  ins_encode %{
10869    __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10870  %}
10871  ins_pipe( pipe_slow );
10872%}
10873
10874// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10875instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10876  predicate(UseSSE<=1);
10877  match(Set dst (ConvD2I src));
10878  effect( KILL tmp, KILL cr );
10879  format %{ "FLD    $src\t# Convert double to int \n\t"
10880            "FLDCW  trunc mode\n\t"
10881            "SUB    ESP,4\n\t"
10882            "FISTp  [ESP + #0]\n\t"
10883            "FLDCW  std/24-bit mode\n\t"
10884            "POP    EAX\n\t"
10885            "CMP    EAX,0x80000000\n\t"
10886            "JNE,s  fast\n\t"
10887            "FLD_D  $src\n\t"
10888            "CALL   d2i_wrapper\n"
10889      "fast:" %}
10890  ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10891  ins_pipe( pipe_slow );
10892%}
10893
10894// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10895instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10896  predicate(UseSSE>=2);
10897  match(Set dst (ConvD2I src));
10898  effect( KILL tmp, KILL cr );
10899  format %{ "CVTTSD2SI $dst, $src\n\t"
10900            "CMP    $dst,0x80000000\n\t"
10901            "JNE,s  fast\n\t"
10902            "SUB    ESP, 8\n\t"
10903            "MOVSD  [ESP], $src\n\t"
10904            "FLD_D  [ESP]\n\t"
10905            "ADD    ESP, 8\n\t"
10906            "CALL   d2i_wrapper\n"
10907      "fast:" %}
10908  ins_encode %{
10909    Label fast;
10910    __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10911    __ cmpl($dst$$Register, 0x80000000);
10912    __ jccb(Assembler::notEqual, fast);
10913    __ subptr(rsp, 8);
10914    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10915    __ fld_d(Address(rsp, 0));
10916    __ addptr(rsp, 8);
10917    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10918    __ bind(fast);
10919  %}
10920  ins_pipe( pipe_slow );
10921%}
10922
10923instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10924  predicate(UseSSE<=1);
10925  match(Set dst (ConvD2L src));
10926  effect( KILL cr );
10927  format %{ "FLD    $src\t# Convert double to long\n\t"
10928            "FLDCW  trunc mode\n\t"
10929            "SUB    ESP,8\n\t"
10930            "FISTp  [ESP + #0]\n\t"
10931            "FLDCW  std/24-bit mode\n\t"
10932            "POP    EAX\n\t"
10933            "POP    EDX\n\t"
10934            "CMP    EDX,0x80000000\n\t"
10935            "JNE,s  fast\n\t"
10936            "TEST   EAX,EAX\n\t"
10937            "JNE,s  fast\n\t"
10938            "FLD    $src\n\t"
10939            "CALL   d2l_wrapper\n"
10940      "fast:" %}
10941  ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10942  ins_pipe( pipe_slow );
10943%}
10944
10945// XMM lacks a float/double->long conversion, so use the old FPU stack.
10946instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10947  predicate (UseSSE>=2);
10948  match(Set dst (ConvD2L src));
10949  effect( KILL cr );
10950  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10951            "MOVSD  [ESP],$src\n\t"
10952            "FLD_D  [ESP]\n\t"
10953            "FLDCW  trunc mode\n\t"
10954            "FISTp  [ESP + #0]\n\t"
10955            "FLDCW  std/24-bit mode\n\t"
10956            "POP    EAX\n\t"
10957            "POP    EDX\n\t"
10958            "CMP    EDX,0x80000000\n\t"
10959            "JNE,s  fast\n\t"
10960            "TEST   EAX,EAX\n\t"
10961            "JNE,s  fast\n\t"
10962            "SUB    ESP,8\n\t"
10963            "MOVSD  [ESP],$src\n\t"
10964            "FLD_D  [ESP]\n\t"
10965            "ADD    ESP,8\n\t"
10966            "CALL   d2l_wrapper\n"
10967      "fast:" %}
10968  ins_encode %{
10969    Label fast;
10970    __ subptr(rsp, 8);
10971    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10972    __ fld_d(Address(rsp, 0));
10973    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10974    __ fistp_d(Address(rsp, 0));
10975    // Restore the rounding mode, mask the exception
10976    if (Compile::current()->in_24_bit_fp_mode()) {
10977      __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10978    } else {
10979      __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10980    }
10981    // Load the converted long, adjust CPU stack
10982    __ pop(rax);
10983    __ pop(rdx);
10984    __ cmpl(rdx, 0x80000000);
10985    __ jccb(Assembler::notEqual, fast);
10986    __ testl(rax, rax);
10987    __ jccb(Assembler::notEqual, fast);
10988    __ subptr(rsp, 8);
10989    __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10990    __ fld_d(Address(rsp, 0));
10991    __ addptr(rsp, 8);
10992    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10993    __ bind(fast);
10994  %}
10995  ins_pipe( pipe_slow );
10996%}
10997
10998// Convert a double to an int.  Java semantics require we do complex
10999// manglations in the corner cases.  So we set the rounding mode to
11000// 'zero', store the darned double down as an int, and reset the
11001// rounding mode to 'nearest'.  The hardware stores a flag value down
11002// if we would overflow or converted a NAN; we check for this and
11003// and go the slow path if needed.
11004instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
11005  predicate(UseSSE==0);
11006  match(Set dst (ConvF2I src));
11007  effect( KILL tmp, KILL cr );
11008  format %{ "FLD    $src\t# Convert float to int \n\t"
11009            "FLDCW  trunc mode\n\t"
11010            "SUB    ESP,4\n\t"
11011            "FISTp  [ESP + #0]\n\t"
11012            "FLDCW  std/24-bit mode\n\t"
11013            "POP    EAX\n\t"
11014            "CMP    EAX,0x80000000\n\t"
11015            "JNE,s  fast\n\t"
11016            "FLD    $src\n\t"
11017            "CALL   d2i_wrapper\n"
11018      "fast:" %}
11019  // DPR2I_encoding works for FPR2I
11020  ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
11021  ins_pipe( pipe_slow );
11022%}
11023
11024// Convert a float in xmm to an int reg.
11025instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11026  predicate(UseSSE>=1);
11027  match(Set dst (ConvF2I src));
11028  effect( KILL tmp, KILL cr );
11029  format %{ "CVTTSS2SI $dst, $src\n\t"
11030            "CMP    $dst,0x80000000\n\t"
11031            "JNE,s  fast\n\t"
11032            "SUB    ESP, 4\n\t"
11033            "MOVSS  [ESP], $src\n\t"
11034            "FLD    [ESP]\n\t"
11035            "ADD    ESP, 4\n\t"
11036            "CALL   d2i_wrapper\n"
11037      "fast:" %}
11038  ins_encode %{
11039    Label fast;
11040    __ cvttss2sil($dst$$Register, $src$$XMMRegister);
11041    __ cmpl($dst$$Register, 0x80000000);
11042    __ jccb(Assembler::notEqual, fast);
11043    __ subptr(rsp, 4);
11044    __ movflt(Address(rsp, 0), $src$$XMMRegister);
11045    __ fld_s(Address(rsp, 0));
11046    __ addptr(rsp, 4);
11047    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
11048    __ bind(fast);
11049  %}
11050  ins_pipe( pipe_slow );
11051%}
11052
11053instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
11054  predicate(UseSSE==0);
11055  match(Set dst (ConvF2L src));
11056  effect( KILL cr );
11057  format %{ "FLD    $src\t# Convert float to long\n\t"
11058            "FLDCW  trunc mode\n\t"
11059            "SUB    ESP,8\n\t"
11060            "FISTp  [ESP + #0]\n\t"
11061            "FLDCW  std/24-bit mode\n\t"
11062            "POP    EAX\n\t"
11063            "POP    EDX\n\t"
11064            "CMP    EDX,0x80000000\n\t"
11065            "JNE,s  fast\n\t"
11066            "TEST   EAX,EAX\n\t"
11067            "JNE,s  fast\n\t"
11068            "FLD    $src\n\t"
11069            "CALL   d2l_wrapper\n"
11070      "fast:" %}
11071  // DPR2L_encoding works for FPR2L
11072  ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
11073  ins_pipe( pipe_slow );
11074%}
11075
11076// XMM lacks a float/double->long conversion, so use the old FPU stack.
11077instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11078  predicate (UseSSE>=1);
11079  match(Set dst (ConvF2L src));
11080  effect( KILL cr );
11081  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11082            "MOVSS  [ESP],$src\n\t"
11083            "FLD_S  [ESP]\n\t"
11084            "FLDCW  trunc mode\n\t"
11085            "FISTp  [ESP + #0]\n\t"
11086            "FLDCW  std/24-bit mode\n\t"
11087            "POP    EAX\n\t"
11088            "POP    EDX\n\t"
11089            "CMP    EDX,0x80000000\n\t"
11090            "JNE,s  fast\n\t"
11091            "TEST   EAX,EAX\n\t"
11092            "JNE,s  fast\n\t"
11093            "SUB    ESP,4\t# Convert float to long\n\t"
11094            "MOVSS  [ESP],$src\n\t"
11095            "FLD_S  [ESP]\n\t"
11096            "ADD    ESP,4\n\t"
11097            "CALL   d2l_wrapper\n"
11098      "fast:" %}
11099  ins_encode %{
11100    Label fast;
11101    __ subptr(rsp, 8);
11102    __ movflt(Address(rsp, 0), $src$$XMMRegister);
11103    __ fld_s(Address(rsp, 0));
11104    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11105    __ fistp_d(Address(rsp, 0));
11106    // Restore the rounding mode, mask the exception
11107    if (Compile::current()->in_24_bit_fp_mode()) {
11108      __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11109    } else {
11110      __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11111    }
11112    // Load the converted long, adjust CPU stack
11113    __ pop(rax);
11114    __ pop(rdx);
11115    __ cmpl(rdx, 0x80000000);
11116    __ jccb(Assembler::notEqual, fast);
11117    __ testl(rax, rax);
11118    __ jccb(Assembler::notEqual, fast);
11119    __ subptr(rsp, 4);
11120    __ movflt(Address(rsp, 0), $src$$XMMRegister);
11121    __ fld_s(Address(rsp, 0));
11122    __ addptr(rsp, 4);
11123    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11124    __ bind(fast);
11125  %}
11126  ins_pipe( pipe_slow );
11127%}
11128
11129instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11130  predicate( UseSSE<=1 );
11131  match(Set dst (ConvI2D src));
11132  format %{ "FILD   $src\n\t"
11133            "FSTP   $dst" %}
11134  opcode(0xDB, 0x0);  /* DB /0 */
11135  ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11136  ins_pipe( fpu_reg_mem );
11137%}
11138
11139instruct convI2D_reg(regD dst, rRegI src) %{
11140  predicate( UseSSE>=2 && !UseXmmI2D );
11141  match(Set dst (ConvI2D src));
11142  format %{ "CVTSI2SD $dst,$src" %}
11143  ins_encode %{
11144    __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11145  %}
11146  ins_pipe( pipe_slow );
11147%}
11148
11149instruct convI2D_mem(regD dst, memory mem) %{
11150  predicate( UseSSE>=2 );
11151  match(Set dst (ConvI2D (LoadI mem)));
11152  format %{ "CVTSI2SD $dst,$mem" %}
11153  ins_encode %{
11154    __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11155  %}
11156  ins_pipe( pipe_slow );
11157%}
11158
11159instruct convXI2D_reg(regD dst, rRegI src)
11160%{
11161  predicate( UseSSE>=2 && UseXmmI2D );
11162  match(Set dst (ConvI2D src));
11163
11164  format %{ "MOVD  $dst,$src\n\t"
11165            "CVTDQ2PD $dst,$dst\t# i2d" %}
11166  ins_encode %{
11167    __ movdl($dst$$XMMRegister, $src$$Register);
11168    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11169  %}
11170  ins_pipe(pipe_slow); // XXX
11171%}
11172
11173instruct convI2DPR_mem(regDPR dst, memory mem) %{
11174  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11175  match(Set dst (ConvI2D (LoadI mem)));
11176  format %{ "FILD   $mem\n\t"
11177            "FSTP   $dst" %}
11178  opcode(0xDB);      /* DB /0 */
11179  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11180              Pop_Reg_DPR(dst));
11181  ins_pipe( fpu_reg_mem );
11182%}
11183
11184// Convert a byte to a float; no rounding step needed.
11185instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11186  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11187  match(Set dst (ConvI2F src));
11188  format %{ "FILD   $src\n\t"
11189            "FSTP   $dst" %}
11190
11191  opcode(0xDB, 0x0);  /* DB /0 */
11192  ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11193  ins_pipe( fpu_reg_mem );
11194%}
11195
11196// In 24-bit mode, force exponent rounding by storing back out
11197instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11198  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11199  match(Set dst (ConvI2F src));
11200  ins_cost(200);
11201  format %{ "FILD   $src\n\t"
11202            "FSTP_S $dst" %}
11203  opcode(0xDB, 0x0);  /* DB /0 */
11204  ins_encode( Push_Mem_I(src),
11205              Pop_Mem_FPR(dst));
11206  ins_pipe( fpu_mem_mem );
11207%}
11208
11209// In 24-bit mode, force exponent rounding by storing back out
11210instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11211  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11212  match(Set dst (ConvI2F (LoadI mem)));
11213  ins_cost(200);
11214  format %{ "FILD   $mem\n\t"
11215            "FSTP_S $dst" %}
11216  opcode(0xDB);  /* DB /0 */
11217  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11218              Pop_Mem_FPR(dst));
11219  ins_pipe( fpu_mem_mem );
11220%}
11221
11222// This instruction does not round to 24-bits
11223instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11224  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11225  match(Set dst (ConvI2F src));
11226  format %{ "FILD   $src\n\t"
11227            "FSTP   $dst" %}
11228  opcode(0xDB, 0x0);  /* DB /0 */
11229  ins_encode( Push_Mem_I(src),
11230              Pop_Reg_FPR(dst));
11231  ins_pipe( fpu_reg_mem );
11232%}
11233
11234// This instruction does not round to 24-bits
11235instruct convI2FPR_mem(regFPR dst, memory mem) %{
11236  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11237  match(Set dst (ConvI2F (LoadI mem)));
11238  format %{ "FILD   $mem\n\t"
11239            "FSTP   $dst" %}
11240  opcode(0xDB);      /* DB /0 */
11241  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11242              Pop_Reg_FPR(dst));
11243  ins_pipe( fpu_reg_mem );
11244%}
11245
11246// Convert an int to a float in xmm; no rounding step needed.
11247instruct convI2F_reg(regF dst, rRegI src) %{
11248  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11249  match(Set dst (ConvI2F src));
11250  format %{ "CVTSI2SS $dst, $src" %}
11251  ins_encode %{
11252    __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11253  %}
11254  ins_pipe( pipe_slow );
11255%}
11256
11257 instruct convXI2F_reg(regF dst, rRegI src)
11258%{
11259  predicate( UseSSE>=2 && UseXmmI2F );
11260  match(Set dst (ConvI2F src));
11261
11262  format %{ "MOVD  $dst,$src\n\t"
11263            "CVTDQ2PS $dst,$dst\t# i2f" %}
11264  ins_encode %{
11265    __ movdl($dst$$XMMRegister, $src$$Register);
11266    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11267  %}
11268  ins_pipe(pipe_slow); // XXX
11269%}
11270
11271instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11272  match(Set dst (ConvI2L src));
11273  effect(KILL cr);
11274  ins_cost(375);
11275  format %{ "MOV    $dst.lo,$src\n\t"
11276            "MOV    $dst.hi,$src\n\t"
11277            "SAR    $dst.hi,31" %}
11278  ins_encode(convert_int_long(dst,src));
11279  ins_pipe( ialu_reg_reg_long );
11280%}
11281
11282// Zero-extend convert int to long
11283instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11284  match(Set dst (AndL (ConvI2L src) mask) );
11285  effect( KILL flags );
11286  ins_cost(250);
11287  format %{ "MOV    $dst.lo,$src\n\t"
11288            "XOR    $dst.hi,$dst.hi" %}
11289  opcode(0x33); // XOR
11290  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11291  ins_pipe( ialu_reg_reg_long );
11292%}
11293
11294// Zero-extend long
11295instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11296  match(Set dst (AndL src mask) );
11297  effect( KILL flags );
11298  ins_cost(250);
11299  format %{ "MOV    $dst.lo,$src.lo\n\t"
11300            "XOR    $dst.hi,$dst.hi\n\t" %}
11301  opcode(0x33); // XOR
11302  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11303  ins_pipe( ialu_reg_reg_long );
11304%}
11305
11306instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11307  predicate (UseSSE<=1);
11308  match(Set dst (ConvL2D src));
11309  effect( KILL cr );
11310  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11311            "PUSH   $src.lo\n\t"
11312            "FILD   ST,[ESP + #0]\n\t"
11313            "ADD    ESP,8\n\t"
11314            "FSTP_D $dst\t# D-round" %}
11315  opcode(0xDF, 0x5);  /* DF /5 */
11316  ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11317  ins_pipe( pipe_slow );
11318%}
11319
11320instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11321  predicate (UseSSE>=2);
11322  match(Set dst (ConvL2D src));
11323  effect( KILL cr );
11324  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11325            "PUSH   $src.lo\n\t"
11326            "FILD_D [ESP]\n\t"
11327            "FSTP_D [ESP]\n\t"
11328            "MOVSD  $dst,[ESP]\n\t"
11329            "ADD    ESP,8" %}
11330  opcode(0xDF, 0x5);  /* DF /5 */
11331  ins_encode(convert_long_double2(src), Push_ResultD(dst));
11332  ins_pipe( pipe_slow );
11333%}
11334
11335instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11336  predicate (UseSSE>=1);
11337  match(Set dst (ConvL2F src));
11338  effect( KILL cr );
11339  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11340            "PUSH   $src.lo\n\t"
11341            "FILD_D [ESP]\n\t"
11342            "FSTP_S [ESP]\n\t"
11343            "MOVSS  $dst,[ESP]\n\t"
11344            "ADD    ESP,8" %}
11345  opcode(0xDF, 0x5);  /* DF /5 */
11346  ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11347  ins_pipe( pipe_slow );
11348%}
11349
11350instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11351  match(Set dst (ConvL2F src));
11352  effect( KILL cr );
11353  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11354            "PUSH   $src.lo\n\t"
11355            "FILD   ST,[ESP + #0]\n\t"
11356            "ADD    ESP,8\n\t"
11357            "FSTP_S $dst\t# F-round" %}
11358  opcode(0xDF, 0x5);  /* DF /5 */
11359  ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11360  ins_pipe( pipe_slow );
11361%}
11362
11363instruct convL2I_reg( rRegI dst, eRegL src ) %{
11364  match(Set dst (ConvL2I src));
11365  effect( DEF dst, USE src );
11366  format %{ "MOV    $dst,$src.lo" %}
11367  ins_encode(enc_CopyL_Lo(dst,src));
11368  ins_pipe( ialu_reg_reg );
11369%}
11370
11371
11372instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11373  match(Set dst (MoveF2I src));
11374  effect( DEF dst, USE src );
11375  ins_cost(100);
11376  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11377  ins_encode %{
11378    __ movl($dst$$Register, Address(rsp, $src$$disp));
11379  %}
11380  ins_pipe( ialu_reg_mem );
11381%}
11382
11383instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11384  predicate(UseSSE==0);
11385  match(Set dst (MoveF2I src));
11386  effect( DEF dst, USE src );
11387
11388  ins_cost(125);
11389  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11390  ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11391  ins_pipe( fpu_mem_reg );
11392%}
11393
11394instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11395  predicate(UseSSE>=1);
11396  match(Set dst (MoveF2I src));
11397  effect( DEF dst, USE src );
11398
11399  ins_cost(95);
11400  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11401  ins_encode %{
11402    __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11403  %}
11404  ins_pipe( pipe_slow );
11405%}
11406
11407instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11408  predicate(UseSSE>=2);
11409  match(Set dst (MoveF2I src));
11410  effect( DEF dst, USE src );
11411  ins_cost(85);
11412  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11413  ins_encode %{
11414    __ movdl($dst$$Register, $src$$XMMRegister);
11415  %}
11416  ins_pipe( pipe_slow );
11417%}
11418
11419instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11420  match(Set dst (MoveI2F src));
11421  effect( DEF dst, USE src );
11422
11423  ins_cost(100);
11424  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11425  ins_encode %{
11426    __ movl(Address(rsp, $dst$$disp), $src$$Register);
11427  %}
11428  ins_pipe( ialu_mem_reg );
11429%}
11430
11431
11432instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11433  predicate(UseSSE==0);
11434  match(Set dst (MoveI2F src));
11435  effect(DEF dst, USE src);
11436
11437  ins_cost(125);
11438  format %{ "FLD_S  $src\n\t"
11439            "FSTP   $dst\t# MoveI2F_stack_reg" %}
11440  opcode(0xD9);               /* D9 /0, FLD m32real */
11441  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11442              Pop_Reg_FPR(dst) );
11443  ins_pipe( fpu_reg_mem );
11444%}
11445
11446instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11447  predicate(UseSSE>=1);
11448  match(Set dst (MoveI2F src));
11449  effect( DEF dst, USE src );
11450
11451  ins_cost(95);
11452  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11453  ins_encode %{
11454    __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11455  %}
11456  ins_pipe( pipe_slow );
11457%}
11458
11459instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11460  predicate(UseSSE>=2);
11461  match(Set dst (MoveI2F src));
11462  effect( DEF dst, USE src );
11463
11464  ins_cost(85);
11465  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11466  ins_encode %{
11467    __ movdl($dst$$XMMRegister, $src$$Register);
11468  %}
11469  ins_pipe( pipe_slow );
11470%}
11471
11472instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11473  match(Set dst (MoveD2L src));
11474  effect(DEF dst, USE src);
11475
11476  ins_cost(250);
11477  format %{ "MOV    $dst.lo,$src\n\t"
11478            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11479  opcode(0x8B, 0x8B);
11480  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11481  ins_pipe( ialu_mem_long_reg );
11482%}
11483
11484instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11485  predicate(UseSSE<=1);
11486  match(Set dst (MoveD2L src));
11487  effect(DEF dst, USE src);
11488
11489  ins_cost(125);
11490  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11491  ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11492  ins_pipe( fpu_mem_reg );
11493%}
11494
11495instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11496  predicate(UseSSE>=2);
11497  match(Set dst (MoveD2L src));
11498  effect(DEF dst, USE src);
11499  ins_cost(95);
11500  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11501  ins_encode %{
11502    __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11503  %}
11504  ins_pipe( pipe_slow );
11505%}
11506
11507instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11508  predicate(UseSSE>=2);
11509  match(Set dst (MoveD2L src));
11510  effect(DEF dst, USE src, TEMP tmp);
11511  ins_cost(85);
11512  format %{ "MOVD   $dst.lo,$src\n\t"
11513            "PSHUFLW $tmp,$src,0x4E\n\t"
11514            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11515  ins_encode %{
11516    __ movdl($dst$$Register, $src$$XMMRegister);
11517    __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11518    __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11519  %}
11520  ins_pipe( pipe_slow );
11521%}
11522
11523instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11524  match(Set dst (MoveL2D src));
11525  effect(DEF dst, USE src);
11526
11527  ins_cost(200);
11528  format %{ "MOV    $dst,$src.lo\n\t"
11529            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11530  opcode(0x89, 0x89);
11531  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11532  ins_pipe( ialu_mem_long_reg );
11533%}
11534
11535
11536instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11537  predicate(UseSSE<=1);
11538  match(Set dst (MoveL2D src));
11539  effect(DEF dst, USE src);
11540  ins_cost(125);
11541
11542  format %{ "FLD_D  $src\n\t"
11543            "FSTP   $dst\t# MoveL2D_stack_reg" %}
11544  opcode(0xDD);               /* DD /0, FLD m64real */
11545  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11546              Pop_Reg_DPR(dst) );
11547  ins_pipe( fpu_reg_mem );
11548%}
11549
11550
11551instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11552  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11553  match(Set dst (MoveL2D src));
11554  effect(DEF dst, USE src);
11555
11556  ins_cost(95);
11557  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11558  ins_encode %{
11559    __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11560  %}
11561  ins_pipe( pipe_slow );
11562%}
11563
11564instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11565  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11566  match(Set dst (MoveL2D src));
11567  effect(DEF dst, USE src);
11568
11569  ins_cost(95);
11570  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11571  ins_encode %{
11572    __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11573  %}
11574  ins_pipe( pipe_slow );
11575%}
11576
11577instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11578  predicate(UseSSE>=2);
11579  match(Set dst (MoveL2D src));
11580  effect(TEMP dst, USE src, TEMP tmp);
11581  ins_cost(85);
11582  format %{ "MOVD   $dst,$src.lo\n\t"
11583            "MOVD   $tmp,$src.hi\n\t"
11584            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11585  ins_encode %{
11586    __ movdl($dst$$XMMRegister, $src$$Register);
11587    __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11588    __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11589  %}
11590  ins_pipe( pipe_slow );
11591%}
11592
11593
11594// =======================================================================
11595// fast clearing of an array
11596instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11597  predicate(!UseFastStosb);
11598  match(Set dummy (ClearArray cnt base));
11599  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11600  format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11601            "SHL    ECX,1\t# Convert doublewords to words\n\t"
11602            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11603  ins_encode %{ 
11604    __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11605  %}
11606  ins_pipe( pipe_slow );
11607%}
11608
11609instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11610  predicate(UseFastStosb);
11611  match(Set dummy (ClearArray cnt base));
11612  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11613  format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11614            "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11615            "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11616  ins_encode %{ 
11617    __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11618  %}
11619  ins_pipe( pipe_slow );
11620%}
11621
11622instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11623                        eAXRegI result, regD tmp1, eFlagsReg cr) %{
11624  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11625  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11626
11627  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11628  ins_encode %{
11629    __ string_compare($str1$$Register, $str2$$Register,
11630                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
11631                      $tmp1$$XMMRegister);
11632  %}
11633  ins_pipe( pipe_slow );
11634%}
11635
11636// fast string equals
11637instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11638                       regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11639  match(Set result (StrEquals (Binary str1 str2) cnt));
11640  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11641
11642  format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11643  ins_encode %{
11644    __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11645                          $cnt$$Register, $result$$Register, $tmp3$$Register,
11646                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11647  %}
11648  ins_pipe( pipe_slow );
11649%}
11650
11651// fast search of substring with known size.
11652instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11653                            eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11654  predicate(UseSSE42Intrinsics);
11655  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11656  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11657
11658  format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11659  ins_encode %{
11660    int icnt2 = (int)$int_cnt2$$constant;
11661    if (icnt2 >= 8) {
11662      // IndexOf for constant substrings with size >= 8 elements
11663      // which don't need to be loaded through stack.
11664      __ string_indexofC8($str1$$Register, $str2$$Register,
11665                          $cnt1$$Register, $cnt2$$Register,
11666                          icnt2, $result$$Register,
11667                          $vec$$XMMRegister, $tmp$$Register);
11668    } else {
11669      // Small strings are loaded through stack if they cross page boundary.
11670      __ string_indexof($str1$$Register, $str2$$Register,
11671                        $cnt1$$Register, $cnt2$$Register,
11672                        icnt2, $result$$Register,
11673                        $vec$$XMMRegister, $tmp$$Register);
11674    }
11675  %}
11676  ins_pipe( pipe_slow );
11677%}
11678
11679instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11680                        eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11681  predicate(UseSSE42Intrinsics);
11682  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11683  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11684
11685  format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11686  ins_encode %{
11687    __ string_indexof($str1$$Register, $str2$$Register,
11688                      $cnt1$$Register, $cnt2$$Register,
11689                      (-1), $result$$Register,
11690                      $vec$$XMMRegister, $tmp$$Register);
11691  %}
11692  ins_pipe( pipe_slow );
11693%}
11694
11695// fast array equals
11696instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11697                      regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11698%{
11699  match(Set result (AryEq ary1 ary2));
11700  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11701  //ins_cost(300);
11702
11703  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11704  ins_encode %{
11705    __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11706                          $tmp3$$Register, $result$$Register, $tmp4$$Register,
11707                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11708  %}
11709  ins_pipe( pipe_slow );
11710%}
11711
11712// encode char[] to byte[] in ISO_8859_1
11713instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11714                          regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11715                          eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11716  match(Set result (EncodeISOArray src (Binary dst len)));
11717  effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11718
11719  format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11720  ins_encode %{
11721    __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11722                        $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11723                        $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11724  %}
11725  ins_pipe( pipe_slow );
11726%}
11727
11728
11729//----------Control Flow Instructions------------------------------------------
11730// Signed compare Instructions
11731instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11732  match(Set cr (CmpI op1 op2));
11733  effect( DEF cr, USE op1, USE op2 );
11734  format %{ "CMP    $op1,$op2" %}
11735  opcode(0x3B);  /* Opcode 3B /r */
11736  ins_encode( OpcP, RegReg( op1, op2) );
11737  ins_pipe( ialu_cr_reg_reg );
11738%}
11739
11740instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11741  match(Set cr (CmpI op1 op2));
11742  effect( DEF cr, USE op1 );
11743  format %{ "CMP    $op1,$op2" %}
11744  opcode(0x81,0x07);  /* Opcode 81 /7 */
11745  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11746  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11747  ins_pipe( ialu_cr_reg_imm );
11748%}
11749
11750// Cisc-spilled version of cmpI_eReg
11751instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11752  match(Set cr (CmpI op1 (LoadI op2)));
11753
11754  format %{ "CMP    $op1,$op2" %}
11755  ins_cost(500);
11756  opcode(0x3B);  /* Opcode 3B /r */
11757  ins_encode( OpcP, RegMem( op1, op2) );
11758  ins_pipe( ialu_cr_reg_mem );
11759%}
11760
11761instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11762  match(Set cr (CmpI src zero));
11763  effect( DEF cr, USE src );
11764
11765  format %{ "TEST   $src,$src" %}
11766  opcode(0x85);
11767  ins_encode( OpcP, RegReg( src, src ) );
11768  ins_pipe( ialu_cr_reg_imm );
11769%}
11770
11771instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11772  match(Set cr (CmpI (AndI src con) zero));
11773
11774  format %{ "TEST   $src,$con" %}
11775  opcode(0xF7,0x00);
11776  ins_encode( OpcP, RegOpc(src), Con32(con) );
11777  ins_pipe( ialu_cr_reg_imm );
11778%}
11779
11780instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11781  match(Set cr (CmpI (AndI src mem) zero));
11782
11783  format %{ "TEST   $src,$mem" %}
11784  opcode(0x85);
11785  ins_encode( OpcP, RegMem( src, mem ) );
11786  ins_pipe( ialu_cr_reg_mem );
11787%}
11788
11789// Unsigned compare Instructions; really, same as signed except they
11790// produce an eFlagsRegU instead of eFlagsReg.
11791instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11792  match(Set cr (CmpU op1 op2));
11793
11794  format %{ "CMPu   $op1,$op2" %}
11795  opcode(0x3B);  /* Opcode 3B /r */
11796  ins_encode( OpcP, RegReg( op1, op2) );
11797  ins_pipe( ialu_cr_reg_reg );
11798%}
11799
11800instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11801  match(Set cr (CmpU op1 op2));
11802
11803  format %{ "CMPu   $op1,$op2" %}
11804  opcode(0x81,0x07);  /* Opcode 81 /7 */
11805  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11806  ins_pipe( ialu_cr_reg_imm );
11807%}
11808
11809// // Cisc-spilled version of cmpU_eReg
11810instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11811  match(Set cr (CmpU op1 (LoadI op2)));
11812
11813  format %{ "CMPu   $op1,$op2" %}
11814  ins_cost(500);
11815  opcode(0x3B);  /* Opcode 3B /r */
11816  ins_encode( OpcP, RegMem( op1, op2) );
11817  ins_pipe( ialu_cr_reg_mem );
11818%}
11819
11820// // Cisc-spilled version of cmpU_eReg
11821//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11822//  match(Set cr (CmpU (LoadI op1) op2));
11823//
11824//  format %{ "CMPu   $op1,$op2" %}
11825//  ins_cost(500);
11826//  opcode(0x39);  /* Opcode 39 /r */
11827//  ins_encode( OpcP, RegMem( op1, op2) );
11828//%}
11829
11830instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11831  match(Set cr (CmpU src zero));
11832
11833  format %{ "TESTu  $src,$src" %}
11834  opcode(0x85);
11835  ins_encode( OpcP, RegReg( src, src ) );
11836  ins_pipe( ialu_cr_reg_imm );
11837%}
11838
11839// Unsigned pointer compare Instructions
11840instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11841  match(Set cr (CmpP op1 op2));
11842
11843  format %{ "CMPu   $op1,$op2" %}
11844  opcode(0x3B);  /* Opcode 3B /r */
11845  ins_encode( OpcP, RegReg( op1, op2) );
11846  ins_pipe( ialu_cr_reg_reg );
11847%}
11848
11849instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11850  match(Set cr (CmpP op1 op2));
11851
11852  format %{ "CMPu   $op1,$op2" %}
11853  opcode(0x81,0x07);  /* Opcode 81 /7 */
11854  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11855  ins_pipe( ialu_cr_reg_imm );
11856%}
11857
11858// // Cisc-spilled version of cmpP_eReg
11859instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11860  match(Set cr (CmpP op1 (LoadP op2)));
11861
11862  format %{ "CMPu   $op1,$op2" %}
11863  ins_cost(500);
11864  opcode(0x3B);  /* Opcode 3B /r */
11865  ins_encode( OpcP, RegMem( op1, op2) );
11866  ins_pipe( ialu_cr_reg_mem );
11867%}
11868
11869// // Cisc-spilled version of cmpP_eReg
11870//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11871//  match(Set cr (CmpP (LoadP op1) op2));
11872//
11873//  format %{ "CMPu   $op1,$op2" %}
11874//  ins_cost(500);
11875//  opcode(0x39);  /* Opcode 39 /r */
11876//  ins_encode( OpcP, RegMem( op1, op2) );
11877//%}
11878
11879// Compare raw pointer (used in out-of-heap check).
11880// Only works because non-oop pointers must be raw pointers
11881// and raw pointers have no anti-dependencies.
11882instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11883  predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11884  match(Set cr (CmpP op1 (LoadP op2)));
11885
11886  format %{ "CMPu   $op1,$op2" %}
11887  opcode(0x3B);  /* Opcode 3B /r */
11888  ins_encode( OpcP, RegMem( op1, op2) );
11889  ins_pipe( ialu_cr_reg_mem );
11890%}
11891
11892//
11893// This will generate a signed flags result. This should be ok
11894// since any compare to a zero should be eq/neq.
11895instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11896  match(Set cr (CmpP src zero));
11897
11898  format %{ "TEST   $src,$src" %}
11899  opcode(0x85);
11900  ins_encode( OpcP, RegReg( src, src ) );
11901  ins_pipe( ialu_cr_reg_imm );
11902%}
11903
11904// Cisc-spilled version of testP_reg
11905// This will generate a signed flags result. This should be ok
11906// since any compare to a zero should be eq/neq.
11907instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11908  match(Set cr (CmpP (LoadP op) zero));
11909
11910  format %{ "TEST   $op,0xFFFFFFFF" %}
11911  ins_cost(500);
11912  opcode(0xF7);               /* Opcode F7 /0 */
11913  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11914  ins_pipe( ialu_cr_reg_imm );
11915%}
11916
11917// Yanked all unsigned pointer compare operations.
11918// Pointer compares are done with CmpP which is already unsigned.
11919
11920//----------Max and Min--------------------------------------------------------
11921// Min Instructions
11922////
11923//   *** Min and Max using the conditional move are slower than the
11924//   *** branch version on a Pentium III.
11925// // Conditional move for min
11926//instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11927//  effect( USE_DEF op2, USE op1, USE cr );
11928//  format %{ "CMOVlt $op2,$op1\t! min" %}
11929//  opcode(0x4C,0x0F);
11930//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11931//  ins_pipe( pipe_cmov_reg );
11932//%}
11933//
11934//// Min Register with Register (P6 version)
11935//instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11936//  predicate(VM_Version::supports_cmov() );
11937//  match(Set op2 (MinI op1 op2));
11938//  ins_cost(200);
11939//  expand %{
11940//    eFlagsReg cr;
11941//    compI_eReg(cr,op1,op2);
11942//    cmovI_reg_lt(op2,op1,cr);
11943//  %}
11944//%}
11945
11946// Min Register with Register (generic version)
11947instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11948  match(Set dst (MinI dst src));
11949  effect(KILL flags);
11950  ins_cost(300);
11951
11952  format %{ "MIN    $dst,$src" %}
11953  opcode(0xCC);
11954  ins_encode( min_enc(dst,src) );
11955  ins_pipe( pipe_slow );
11956%}
11957
11958// Max Register with Register
11959//   *** Min and Max using the conditional move are slower than the
11960//   *** branch version on a Pentium III.
11961// // Conditional move for max
11962//instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11963//  effect( USE_DEF op2, USE op1, USE cr );
11964//  format %{ "CMOVgt $op2,$op1\t! max" %}
11965//  opcode(0x4F,0x0F);
11966//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11967//  ins_pipe( pipe_cmov_reg );
11968//%}
11969//
11970// // Max Register with Register (P6 version)
11971//instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11972//  predicate(VM_Version::supports_cmov() );
11973//  match(Set op2 (MaxI op1 op2));
11974//  ins_cost(200);
11975//  expand %{
11976//    eFlagsReg cr;
11977//    compI_eReg(cr,op1,op2);
11978//    cmovI_reg_gt(op2,op1,cr);
11979//  %}
11980//%}
11981
11982// Max Register with Register (generic version)
11983instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11984  match(Set dst (MaxI dst src));
11985  effect(KILL flags);
11986  ins_cost(300);
11987
11988  format %{ "MAX    $dst,$src" %}
11989  opcode(0xCC);
11990  ins_encode( max_enc(dst,src) );
11991  ins_pipe( pipe_slow );
11992%}
11993
11994// ============================================================================
11995// Counted Loop limit node which represents exact final iterator value.
11996// Note: the resulting value should fit into integer range since
11997// counted loops have limit check on overflow.
11998instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11999  match(Set limit (LoopLimit (Binary init limit) stride));
12000  effect(TEMP limit_hi, TEMP tmp, KILL flags);
12001  ins_cost(300);
12002
12003  format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
12004  ins_encode %{
12005    int strd = (int)$stride$$constant;
12006    assert(strd != 1 && strd != -1, "sanity");
12007    int m1 = (strd > 0) ? 1 : -1;
12008    // Convert limit to long (EAX:EDX)
12009    __ cdql();
12010    // Convert init to long (init:tmp)
12011    __ movl($tmp$$Register, $init$$Register);
12012    __ sarl($tmp$$Register, 31);
12013    // $limit - $init
12014    __ subl($limit$$Register, $init$$Register);
12015    __ sbbl($limit_hi$$Register, $tmp$$Register);
12016    // + ($stride - 1)
12017    if (strd > 0) {
12018      __ addl($limit$$Register, (strd - 1));
12019      __ adcl($limit_hi$$Register, 0);
12020      __ movl($tmp$$Register, strd);
12021    } else {
12022      __ addl($limit$$Register, (strd + 1));
12023      __ adcl($limit_hi$$Register, -1);
12024      __ lneg($limit_hi$$Register, $limit$$Register);
12025      __ movl($tmp$$Register, -strd);
12026    }
12027    // signed devision: (EAX:EDX) / pos_stride
12028    __ idivl($tmp$$Register);
12029    if (strd < 0) {
12030      // restore sign
12031      __ negl($tmp$$Register);
12032    }
12033    // (EAX) * stride
12034    __ mull($tmp$$Register);
12035    // + init (ignore upper bits)
12036    __ addl($limit$$Register, $init$$Register);
12037  %}
12038  ins_pipe( pipe_slow );
12039%}
12040
12041// ============================================================================
12042// Branch Instructions
12043// Jump Table
12044instruct jumpXtnd(rRegI switch_val) %{
12045  match(Jump switch_val);
12046  ins_cost(350);
12047  format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
12048  ins_encode %{
12049    // Jump to Address(table_base + switch_reg)
12050    Address index(noreg, $switch_val$$Register, Address::times_1);
12051    __ jump(ArrayAddress($constantaddress, index));
12052  %}
12053  ins_pipe(pipe_jmp);
12054%}
12055
12056// Jump Direct - Label defines a relative address from JMP+1
12057instruct jmpDir(label labl) %{
12058  match(Goto);
12059  effect(USE labl);
12060
12061  ins_cost(300);
12062  format %{ "JMP    $labl" %}
12063  size(5);
12064  ins_encode %{
12065    Label* L = $labl$$label;
12066    __ jmp(*L, false); // Always long jump
12067  %}
12068  ins_pipe( pipe_jmp );
12069%}
12070
12071// Jump Direct Conditional - Label defines a relative address from Jcc+1
12072instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12073  match(If cop cr);
12074  effect(USE labl);
12075
12076  ins_cost(300);
12077  format %{ "J$cop    $labl" %}
12078  size(6);
12079  ins_encode %{
12080    Label* L = $labl$$label;
12081    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12082  %}
12083  ins_pipe( pipe_jcc );
12084%}
12085
12086// Jump Direct Conditional - Label defines a relative address from Jcc+1
12087instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12088  match(CountedLoopEnd cop cr);
12089  effect(USE labl);
12090
12091  ins_cost(300);
12092  format %{ "J$cop    $labl\t# Loop end" %}
12093  size(6);
12094  ins_encode %{
12095    Label* L = $labl$$label;
12096    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12097  %}
12098  ins_pipe( pipe_jcc );
12099%}
12100
12101// Jump Direct Conditional - Label defines a relative address from Jcc+1
12102instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12103  match(CountedLoopEnd cop cmp);
12104  effect(USE labl);
12105
12106  ins_cost(300);
12107  format %{ "J$cop,u  $labl\t# Loop end" %}
12108  size(6);
12109  ins_encode %{
12110    Label* L = $labl$$label;
12111    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12112  %}
12113  ins_pipe( pipe_jcc );
12114%}
12115
12116instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12117  match(CountedLoopEnd cop cmp);
12118  effect(USE labl);
12119
12120  ins_cost(200);
12121  format %{ "J$cop,u  $labl\t# Loop end" %}
12122  size(6);
12123  ins_encode %{
12124    Label* L = $labl$$label;
12125    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12126  %}
12127  ins_pipe( pipe_jcc );
12128%}
12129
12130// Jump Direct Conditional - using unsigned comparison
12131instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12132  match(If cop cmp);
12133  effect(USE labl);
12134
12135  ins_cost(300);
12136  format %{ "J$cop,u  $labl" %}
12137  size(6);
12138  ins_encode %{
12139    Label* L = $labl$$label;
12140    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12141  %}
12142  ins_pipe(pipe_jcc);
12143%}
12144
12145instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12146  match(If cop cmp);
12147  effect(USE labl);
12148
12149  ins_cost(200);
12150  format %{ "J$cop,u  $labl" %}
12151  size(6);
12152  ins_encode %{
12153    Label* L = $labl$$label;
12154    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12155  %}
12156  ins_pipe(pipe_jcc);
12157%}
12158
12159instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12160  match(If cop cmp);
12161  effect(USE labl);
12162
12163  ins_cost(200);
12164  format %{ $$template
12165    if ($cop$$cmpcode == Assembler::notEqual) {
12166      $$emit$$"JP,u   $labl\n\t"
12167      $$emit$$"J$cop,u   $labl"
12168    } else {
12169      $$emit$$"JP,u   done\n\t"
12170      $$emit$$"J$cop,u   $labl\n\t"
12171      $$emit$$"done:"
12172    }
12173  %}
12174  ins_encode %{
12175    Label* l = $labl$$label;
12176    if ($cop$$cmpcode == Assembler::notEqual) {
12177      __ jcc(Assembler::parity, *l, false);
12178      __ jcc(Assembler::notEqual, *l, false);
12179    } else if ($cop$$cmpcode == Assembler::equal) {
12180      Label done;
12181      __ jccb(Assembler::parity, done);
12182      __ jcc(Assembler::equal, *l, false);
12183      __ bind(done);
12184    } else {
12185       ShouldNotReachHere();
12186    }
12187  %}
12188  ins_pipe(pipe_jcc);
12189%}
12190
12191// ============================================================================
12192// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12193// array for an instance of the superklass.  Set a hidden internal cache on a
12194// hit (cache is checked with exposed code in gen_subtype_check()).  Return
12195// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12196instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12197  match(Set result (PartialSubtypeCheck sub super));
12198  effect( KILL rcx, KILL cr );
12199
12200  ins_cost(1100);  // slightly larger than the next version
12201  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12202            "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12203            "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12204            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12205            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12206            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12207            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12208     "miss:\t" %}
12209
12210  opcode(0x1); // Force a XOR of EDI
12211  ins_encode( enc_PartialSubtypeCheck() );
12212  ins_pipe( pipe_slow );
12213%}
12214
12215instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12216  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12217  effect( KILL rcx, KILL result );
12218
12219  ins_cost(1000);
12220  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12221            "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12222            "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12223            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12224            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12225            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12226     "miss:\t" %}
12227
12228  opcode(0x0);  // No need to XOR EDI
12229  ins_encode( enc_PartialSubtypeCheck() );
12230  ins_pipe( pipe_slow );
12231%}
12232
12233// ============================================================================
12234// Branch Instructions -- short offset versions
12235//
12236// These instructions are used to replace jumps of a long offset (the default
12237// match) with jumps of a shorter offset.  These instructions are all tagged
12238// with the ins_short_branch attribute, which causes the ADLC to suppress the
12239// match rules in general matching.  Instead, the ADLC generates a conversion
12240// method in the MachNode which can be used to do in-place replacement of the
12241// long variant with the shorter variant.  The compiler will determine if a
12242// branch can be taken by the is_short_branch_offset() predicate in the machine
12243// specific code section of the file.
12244
12245// Jump Direct - Label defines a relative address from JMP+1
12246instruct jmpDir_short(label labl) %{
12247  match(Goto);
12248  effect(USE labl);
12249
12250  ins_cost(300);
12251  format %{ "JMP,s  $labl" %}
12252  size(2);
12253  ins_encode %{
12254    Label* L = $labl$$label;
12255    __ jmpb(*L);
12256  %}
12257  ins_pipe( pipe_jmp );
12258  ins_short_branch(1);
12259%}
12260
12261// Jump Direct Conditional - Label defines a relative address from Jcc+1
12262instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12263  match(If cop cr);
12264  effect(USE labl);
12265
12266  ins_cost(300);
12267  format %{ "J$cop,s  $labl" %}
12268  size(2);
12269  ins_encode %{
12270    Label* L = $labl$$label;
12271    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12272  %}
12273  ins_pipe( pipe_jcc );
12274  ins_short_branch(1);
12275%}
12276
12277// Jump Direct Conditional - Label defines a relative address from Jcc+1
12278instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12279  match(CountedLoopEnd cop cr);
12280  effect(USE labl);
12281
12282  ins_cost(300);
12283  format %{ "J$cop,s  $labl\t# Loop end" %}
12284  size(2);
12285  ins_encode %{
12286    Label* L = $labl$$label;
12287    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12288  %}
12289  ins_pipe( pipe_jcc );
12290  ins_short_branch(1);
12291%}
12292
12293// Jump Direct Conditional - Label defines a relative address from Jcc+1
12294instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12295  match(CountedLoopEnd cop cmp);
12296  effect(USE labl);
12297
12298  ins_cost(300);
12299  format %{ "J$cop,us $labl\t# Loop end" %}
12300  size(2);
12301  ins_encode %{
12302    Label* L = $labl$$label;
12303    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12304  %}
12305  ins_pipe( pipe_jcc );
12306  ins_short_branch(1);
12307%}
12308
12309instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12310  match(CountedLoopEnd cop cmp);
12311  effect(USE labl);
12312
12313  ins_cost(300);
12314  format %{ "J$cop,us $labl\t# Loop end" %}
12315  size(2);
12316  ins_encode %{
12317    Label* L = $labl$$label;
12318    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12319  %}
12320  ins_pipe( pipe_jcc );
12321  ins_short_branch(1);
12322%}
12323
12324// Jump Direct Conditional - using unsigned comparison
12325instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12326  match(If cop cmp);
12327  effect(USE labl);
12328
12329  ins_cost(300);
12330  format %{ "J$cop,us $labl" %}
12331  size(2);
12332  ins_encode %{
12333    Label* L = $labl$$label;
12334    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12335  %}
12336  ins_pipe( pipe_jcc );
12337  ins_short_branch(1);
12338%}
12339
12340instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12341  match(If cop cmp);
12342  effect(USE labl);
12343
12344  ins_cost(300);
12345  format %{ "J$cop,us $labl" %}
12346  size(2);
12347  ins_encode %{
12348    Label* L = $labl$$label;
12349    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12350  %}
12351  ins_pipe( pipe_jcc );
12352  ins_short_branch(1);
12353%}
12354
12355instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12356  match(If cop cmp);
12357  effect(USE labl);
12358
12359  ins_cost(300);
12360  format %{ $$template
12361    if ($cop$$cmpcode == Assembler::notEqual) {
12362      $$emit$$"JP,u,s   $labl\n\t"
12363      $$emit$$"J$cop,u,s   $labl"
12364    } else {
12365      $$emit$$"JP,u,s   done\n\t"
12366      $$emit$$"J$cop,u,s  $labl\n\t"
12367      $$emit$$"done:"
12368    }
12369  %}
12370  size(4);
12371  ins_encode %{
12372    Label* l = $labl$$label;
12373    if ($cop$$cmpcode == Assembler::notEqual) {
12374      __ jccb(Assembler::parity, *l);
12375      __ jccb(Assembler::notEqual, *l);
12376    } else if ($cop$$cmpcode == Assembler::equal) {
12377      Label done;
12378      __ jccb(Assembler::parity, done);
12379      __ jccb(Assembler::equal, *l);
12380      __ bind(done);
12381    } else {
12382       ShouldNotReachHere();
12383    }
12384  %}
12385  ins_pipe(pipe_jcc);
12386  ins_short_branch(1);
12387%}
12388
12389// ============================================================================
12390// Long Compare
12391//
12392// Currently we hold longs in 2 registers.  Comparing such values efficiently
12393// is tricky.  The flavor of compare used depends on whether we are testing
12394// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12395// The GE test is the negated LT test.  The LE test can be had by commuting
12396// the operands (yielding a GE test) and then negating; negate again for the
12397// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12398// NE test is negated from that.
12399
12400// Due to a shortcoming in the ADLC, it mixes up expressions like:
12401// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12402// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12403// are collapsed internally in the ADLC's dfa-gen code.  The match for
12404// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12405// foo match ends up with the wrong leaf.  One fix is to not match both
12406// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12407// both forms beat the trinary form of long-compare and both are very useful
12408// on Intel which has so few registers.
12409
12410// Manifest a CmpL result in an integer register.  Very painful.
12411// This is the test to avoid.
12412instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12413  match(Set dst (CmpL3 src1 src2));
12414  effect( KILL flags );
12415  ins_cost(1000);
12416  format %{ "XOR    $dst,$dst\n\t"
12417            "CMP    $src1.hi,$src2.hi\n\t"
12418            "JLT,s  m_one\n\t"
12419            "JGT,s  p_one\n\t"
12420            "CMP    $src1.lo,$src2.lo\n\t"
12421            "JB,s   m_one\n\t"
12422            "JEQ,s  done\n"
12423    "p_one:\tINC    $dst\n\t"
12424            "JMP,s  done\n"
12425    "m_one:\tDEC    $dst\n"
12426     "done:" %}
12427  ins_encode %{
12428    Label p_one, m_one, done;
12429    __ xorptr($dst$$Register, $dst$$Register);
12430    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12431    __ jccb(Assembler::less,    m_one);
12432    __ jccb(Assembler::greater, p_one);
12433    __ cmpl($src1$$Register, $src2$$Register);
12434    __ jccb(Assembler::below,   m_one);
12435    __ jccb(Assembler::equal,   done);
12436    __ bind(p_one);
12437    __ incrementl($dst$$Register);
12438    __ jmpb(done);
12439    __ bind(m_one);
12440    __ decrementl($dst$$Register);
12441    __ bind(done);
12442  %}
12443  ins_pipe( pipe_slow );
12444%}
12445
12446//======
12447// Manifest a CmpL result in the normal flags.  Only good for LT or GE
12448// compares.  Can be used for LE or GT compares by reversing arguments.
12449// NOT GOOD FOR EQ/NE tests.
12450instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12451  match( Set flags (CmpL src zero ));
12452  ins_cost(100);
12453  format %{ "TEST   $src.hi,$src.hi" %}
12454  opcode(0x85);
12455  ins_encode( OpcP, RegReg_Hi2( src, src ) );
12456  ins_pipe( ialu_cr_reg_reg );
12457%}
12458
12459// Manifest a CmpL result in the normal flags.  Only good for LT or GE
12460// compares.  Can be used for LE or GT compares by reversing arguments.
12461// NOT GOOD FOR EQ/NE tests.
12462instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12463  match( Set flags (CmpL src1 src2 ));
12464  effect( TEMP tmp );
12465  ins_cost(300);
12466  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12467            "MOV    $tmp,$src1.hi\n\t"
12468            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12469  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12470  ins_pipe( ialu_cr_reg_reg );
12471%}
12472
12473// Long compares reg < zero/req OR reg >= zero/req.
12474// Just a wrapper for a normal branch, plus the predicate test.
12475instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12476  match(If cmp flags);
12477  effect(USE labl);
12478  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12479  expand %{
12480    jmpCon(cmp,flags,labl);    // JLT or JGE...
12481  %}
12482%}
12483
12484// Compare 2 longs and CMOVE longs.
12485instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12486  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12487  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12488  ins_cost(400);
12489  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12490            "CMOV$cmp $dst.hi,$src.hi" %}
12491  opcode(0x0F,0x40);
12492  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12493  ins_pipe( pipe_cmov_reg_long );
12494%}
12495
12496instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12497  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12498  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12499  ins_cost(500);
12500  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12501            "CMOV$cmp $dst.hi,$src.hi" %}
12502  opcode(0x0F,0x40);
12503  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12504  ins_pipe( pipe_cmov_reg_long );
12505%}
12506
12507// Compare 2 longs and CMOVE ints.
12508instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12509  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12510  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12511  ins_cost(200);
12512  format %{ "CMOV$cmp $dst,$src" %}
12513  opcode(0x0F,0x40);
12514  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12515  ins_pipe( pipe_cmov_reg );
12516%}
12517
12518instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12519  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12520  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12521  ins_cost(250);
12522  format %{ "CMOV$cmp $dst,$src" %}
12523  opcode(0x0F,0x40);
12524  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12525  ins_pipe( pipe_cmov_mem );
12526%}
12527
12528// Compare 2 longs and CMOVE ints.
12529instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12530  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12531  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12532  ins_cost(200);
12533  format %{ "CMOV$cmp $dst,$src" %}
12534  opcode(0x0F,0x40);
12535  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12536  ins_pipe( pipe_cmov_reg );
12537%}
12538
12539// Compare 2 longs and CMOVE doubles
12540instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12541  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12542  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12543  ins_cost(200);
12544  expand %{
12545    fcmovDPR_regS(cmp,flags,dst,src);
12546  %}
12547%}
12548
12549// Compare 2 longs and CMOVE doubles
12550instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12551  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12552  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12553  ins_cost(200);
12554  expand %{
12555    fcmovD_regS(cmp,flags,dst,src);
12556  %}
12557%}
12558
12559instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12560  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12561  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12562  ins_cost(200);
12563  expand %{
12564    fcmovFPR_regS(cmp,flags,dst,src);
12565  %}
12566%}
12567
12568instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12569  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12570  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12571  ins_cost(200);
12572  expand %{
12573    fcmovF_regS(cmp,flags,dst,src);
12574  %}
12575%}
12576
12577//======
12578// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12579instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12580  match( Set flags (CmpL src zero ));
12581  effect(TEMP tmp);
12582  ins_cost(200);
12583  format %{ "MOV    $tmp,$src.lo\n\t"
12584            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12585  ins_encode( long_cmp_flags0( src, tmp ) );
12586  ins_pipe( ialu_reg_reg_long );
12587%}
12588
12589// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12590instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12591  match( Set flags (CmpL src1 src2 ));
12592  ins_cost(200+300);
12593  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12594            "JNE,s  skip\n\t"
12595            "CMP    $src1.hi,$src2.hi\n\t"
12596     "skip:\t" %}
12597  ins_encode( long_cmp_flags1( src1, src2 ) );
12598  ins_pipe( ialu_cr_reg_reg );
12599%}
12600
12601// Long compare reg == zero/reg OR reg != zero/reg
12602// Just a wrapper for a normal branch, plus the predicate test.
12603instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12604  match(If cmp flags);
12605  effect(USE labl);
12606  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12607  expand %{
12608    jmpCon(cmp,flags,labl);    // JEQ or JNE...
12609  %}
12610%}
12611
12612// Compare 2 longs and CMOVE longs.
12613instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12614  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12615  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12616  ins_cost(400);
12617  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12618            "CMOV$cmp $dst.hi,$src.hi" %}
12619  opcode(0x0F,0x40);
12620  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12621  ins_pipe( pipe_cmov_reg_long );
12622%}
12623
12624instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12625  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12626  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12627  ins_cost(500);
12628  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12629            "CMOV$cmp $dst.hi,$src.hi" %}
12630  opcode(0x0F,0x40);
12631  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12632  ins_pipe( pipe_cmov_reg_long );
12633%}
12634
12635// Compare 2 longs and CMOVE ints.
12636instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12637  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12638  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12639  ins_cost(200);
12640  format %{ "CMOV$cmp $dst,$src" %}
12641  opcode(0x0F,0x40);
12642  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12643  ins_pipe( pipe_cmov_reg );
12644%}
12645
12646instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12647  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12648  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12649  ins_cost(250);
12650  format %{ "CMOV$cmp $dst,$src" %}
12651  opcode(0x0F,0x40);
12652  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12653  ins_pipe( pipe_cmov_mem );
12654%}
12655
12656// Compare 2 longs and CMOVE ints.
12657instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12658  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12659  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12660  ins_cost(200);
12661  format %{ "CMOV$cmp $dst,$src" %}
12662  opcode(0x0F,0x40);
12663  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12664  ins_pipe( pipe_cmov_reg );
12665%}
12666
12667// Compare 2 longs and CMOVE doubles
12668instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12669  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12670  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12671  ins_cost(200);
12672  expand %{
12673    fcmovDPR_regS(cmp,flags,dst,src);
12674  %}
12675%}
12676
12677// Compare 2 longs and CMOVE doubles
12678instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12679  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12680  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12681  ins_cost(200);
12682  expand %{
12683    fcmovD_regS(cmp,flags,dst,src);
12684  %}
12685%}
12686
12687instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12688  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12689  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12690  ins_cost(200);
12691  expand %{
12692    fcmovFPR_regS(cmp,flags,dst,src);
12693  %}
12694%}
12695
12696instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12697  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12698  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12699  ins_cost(200);
12700  expand %{
12701    fcmovF_regS(cmp,flags,dst,src);
12702  %}
12703%}
12704
12705//======
12706// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12707// Same as cmpL_reg_flags_LEGT except must negate src
12708instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12709  match( Set flags (CmpL src zero ));
12710  effect( TEMP tmp );
12711  ins_cost(300);
12712  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12713            "CMP    $tmp,$src.lo\n\t"
12714            "SBB    $tmp,$src.hi\n\t" %}
12715  ins_encode( long_cmp_flags3(src, tmp) );
12716  ins_pipe( ialu_reg_reg_long );
12717%}
12718
12719// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12720// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12721// requires a commuted test to get the same result.
12722instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12723  match( Set flags (CmpL src1 src2 ));
12724  effect( TEMP tmp );
12725  ins_cost(300);
12726  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12727            "MOV    $tmp,$src2.hi\n\t"
12728            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12729  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12730  ins_pipe( ialu_cr_reg_reg );
12731%}
12732
12733// Long compares reg < zero/req OR reg >= zero/req.
12734// Just a wrapper for a normal branch, plus the predicate test
12735instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12736  match(If cmp flags);
12737  effect(USE labl);
12738  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12739  ins_cost(300);
12740  expand %{
12741    jmpCon(cmp,flags,labl);    // JGT or JLE...
12742  %}
12743%}
12744
12745// Compare 2 longs and CMOVE longs.
12746instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12747  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12748  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12749  ins_cost(400);
12750  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12751            "CMOV$cmp $dst.hi,$src.hi" %}
12752  opcode(0x0F,0x40);
12753  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12754  ins_pipe( pipe_cmov_reg_long );
12755%}
12756
12757instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12758  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12759  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12760  ins_cost(500);
12761  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12762            "CMOV$cmp $dst.hi,$src.hi+4" %}
12763  opcode(0x0F,0x40);
12764  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12765  ins_pipe( pipe_cmov_reg_long );
12766%}
12767
12768// Compare 2 longs and CMOVE ints.
12769instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12770  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12771  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12772  ins_cost(200);
12773  format %{ "CMOV$cmp $dst,$src" %}
12774  opcode(0x0F,0x40);
12775  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12776  ins_pipe( pipe_cmov_reg );
12777%}
12778
12779instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12780  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12781  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12782  ins_cost(250);
12783  format %{ "CMOV$cmp $dst,$src" %}
12784  opcode(0x0F,0x40);
12785  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12786  ins_pipe( pipe_cmov_mem );
12787%}
12788
12789// Compare 2 longs and CMOVE ptrs.
12790instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12791  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12792  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12793  ins_cost(200);
12794  format %{ "CMOV$cmp $dst,$src" %}
12795  opcode(0x0F,0x40);
12796  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12797  ins_pipe( pipe_cmov_reg );
12798%}
12799
12800// Compare 2 longs and CMOVE doubles
12801instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12802  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12803  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12804  ins_cost(200);
12805  expand %{
12806    fcmovDPR_regS(cmp,flags,dst,src);
12807  %}
12808%}
12809
12810// Compare 2 longs and CMOVE doubles
12811instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12812  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12813  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12814  ins_cost(200);
12815  expand %{
12816    fcmovD_regS(cmp,flags,dst,src);
12817  %}
12818%}
12819
12820instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12821  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12822  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12823  ins_cost(200);
12824  expand %{
12825    fcmovFPR_regS(cmp,flags,dst,src);
12826  %}
12827%}
12828
12829
12830instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12831  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12832  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12833  ins_cost(200);
12834  expand %{
12835    fcmovF_regS(cmp,flags,dst,src);
12836  %}
12837%}
12838
12839
12840// ============================================================================
12841// Procedure Call/Return Instructions
12842// Call Java Static Instruction
12843// Note: If this code changes, the corresponding ret_addr_offset() and
12844//       compute_padding() functions will have to be adjusted.
12845instruct CallStaticJavaDirect(method meth) %{
12846  match(CallStaticJava);
12847  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
12848  effect(USE meth);
12849
12850  ins_cost(300);
12851  format %{ "CALL,static " %}
12852  opcode(0xE8); /* E8 cd */
12853  ins_encode( pre_call_resets,
12854              Java_Static_Call( meth ),
12855              call_epilog,
12856              post_call_FPU );
12857  ins_pipe( pipe_slow );
12858  ins_alignment(4);
12859%}
12860
12861// Call Java Static Instruction (method handle version)
12862// Note: If this code changes, the corresponding ret_addr_offset() and
12863//       compute_padding() functions will have to be adjusted.
12864instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
12865  match(CallStaticJava);
12866  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
12867  effect(USE meth);
12868  // EBP is saved by all callees (for interpreter stack correction).
12869  // We use it here for a similar purpose, in {preserve,restore}_SP.
12870
12871  ins_cost(300);
12872  format %{ "CALL,static/MethodHandle " %}
12873  opcode(0xE8); /* E8 cd */
12874  ins_encode( pre_call_resets,
12875              preserve_SP,
12876              Java_Static_Call( meth ),
12877              restore_SP,
12878              call_epilog,
12879              post_call_FPU );
12880  ins_pipe( pipe_slow );
12881  ins_alignment(4);
12882%}
12883
12884// Call Java Dynamic Instruction
12885// Note: If this code changes, the corresponding ret_addr_offset() and
12886//       compute_padding() functions will have to be adjusted.
12887instruct CallDynamicJavaDirect(method meth) %{
12888  match(CallDynamicJava);
12889  effect(USE meth);
12890
12891  ins_cost(300);
12892  format %{ "MOV    EAX,(oop)-1\n\t"
12893            "CALL,dynamic" %}
12894  opcode(0xE8); /* E8 cd */
12895  ins_encode( pre_call_resets,
12896              Java_Dynamic_Call( meth ),
12897              call_epilog,
12898              post_call_FPU );
12899  ins_pipe( pipe_slow );
12900  ins_alignment(4);
12901%}
12902
12903// Call Runtime Instruction
12904instruct CallRuntimeDirect(method meth) %{
12905  match(CallRuntime );
12906  effect(USE meth);
12907
12908  ins_cost(300);
12909  format %{ "CALL,runtime " %}
12910  opcode(0xE8); /* E8 cd */
12911  // Use FFREEs to clear entries in float stack
12912  ins_encode( pre_call_resets,
12913              FFree_Float_Stack_All,
12914              Java_To_Runtime( meth ),
12915              post_call_FPU );
12916  ins_pipe( pipe_slow );
12917%}
12918
12919// Call runtime without safepoint
12920instruct CallLeafDirect(method meth) %{
12921  match(CallLeaf);
12922  effect(USE meth);
12923
12924  ins_cost(300);
12925  format %{ "CALL_LEAF,runtime " %}
12926  opcode(0xE8); /* E8 cd */
12927  ins_encode( pre_call_resets,
12928              FFree_Float_Stack_All,
12929              Java_To_Runtime( meth ),
12930              Verify_FPU_For_Leaf, post_call_FPU );
12931  ins_pipe( pipe_slow );
12932%}
12933
12934instruct CallLeafNoFPDirect(method meth) %{
12935  match(CallLeafNoFP);
12936  effect(USE meth);
12937
12938  ins_cost(300);
12939  format %{ "CALL_LEAF_NOFP,runtime " %}
12940  opcode(0xE8); /* E8 cd */
12941  ins_encode(Java_To_Runtime(meth));
12942  ins_pipe( pipe_slow );
12943%}
12944
12945
12946// Return Instruction
12947// Remove the return address & jump to it.
12948instruct Ret() %{
12949  match(Return);
12950  format %{ "RET" %}
12951  opcode(0xC3);
12952  ins_encode(OpcP);
12953  ins_pipe( pipe_jmp );
12954%}
12955
12956// Tail Call; Jump from runtime stub to Java code.
12957// Also known as an 'interprocedural jump'.
12958// Target of jump will eventually return to caller.
12959// TailJump below removes the return address.
12960instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12961  match(TailCall jump_target method_oop );
12962  ins_cost(300);
12963  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12964  opcode(0xFF, 0x4);  /* Opcode FF /4 */
12965  ins_encode( OpcP, RegOpc(jump_target) );
12966  ins_pipe( pipe_jmp );
12967%}
12968
12969
12970// Tail Jump; remove the return address; jump to target.
12971// TailCall above leaves the return address around.
12972instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12973  match( TailJump jump_target ex_oop );
12974  ins_cost(300);
12975  format %{ "POP    EDX\t# pop return address into dummy\n\t"
12976            "JMP    $jump_target " %}
12977  opcode(0xFF, 0x4);  /* Opcode FF /4 */
12978  ins_encode( enc_pop_rdx,
12979              OpcP, RegOpc(jump_target) );
12980  ins_pipe( pipe_jmp );
12981%}
12982
12983// Create exception oop: created by stack-crawling runtime code.
12984// Created exception is now available to this handler, and is setup
12985// just prior to jumping to this handler.  No code emitted.
12986instruct CreateException( eAXRegP ex_oop )
12987%{
12988  match(Set ex_oop (CreateEx));
12989
12990  size(0);
12991  // use the following format syntax
12992  format %{ "# exception oop is in EAX; no code emitted" %}
12993  ins_encode();
12994  ins_pipe( empty );
12995%}
12996
12997
12998// Rethrow exception:
12999// The exception oop will come in the first argument position.
13000// Then JUMP (not call) to the rethrow stub code.
13001instruct RethrowException()
13002%{
13003  match(Rethrow);
13004
13005  // use the following format syntax
13006  format %{ "JMP    rethrow_stub" %}
13007  ins_encode(enc_rethrow);
13008  ins_pipe( pipe_jmp );
13009%}
13010
13011// inlined locking and unlocking
13012
13013
13014instruct cmpFastLock( eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
13015  match( Set cr (FastLock object box) );
13016  effect( TEMP tmp, TEMP scr, USE_KILL box );
13017  ins_cost(300);
13018  format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
13019  ins_encode( Fast_Lock(object,box,tmp,scr) );
13020  ins_pipe( pipe_slow );
13021%}
13022
13023instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13024  match( Set cr (FastUnlock object box) );
13025  effect( TEMP tmp, USE_KILL box );
13026  ins_cost(300);
13027  format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
13028  ins_encode( Fast_Unlock(object,box,tmp) );
13029  ins_pipe( pipe_slow );
13030%}
13031
13032
13033
13034// ============================================================================
13035// Safepoint Instruction
13036instruct safePoint_poll(eFlagsReg cr) %{
13037  match(SafePoint);
13038  effect(KILL cr);
13039
13040  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13041  // On SPARC that might be acceptable as we can generate the address with
13042  // just a sethi, saving an or.  By polling at offset 0 we can end up
13043  // putting additional pressure on the index-0 in the D$.  Because of
13044  // alignment (just like the situation at hand) the lower indices tend
13045  // to see more traffic.  It'd be better to change the polling address
13046  // to offset 0 of the last $line in the polling page.
13047
13048  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13049  ins_cost(125);
13050  size(6) ;
13051  ins_encode( Safepoint_Poll() );
13052  ins_pipe( ialu_reg_mem );
13053%}
13054
13055
13056// ============================================================================
13057// This name is KNOWN by the ADLC and cannot be changed.
13058// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
13059// for this guy.
13060instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
13061  match(Set dst (ThreadLocal));
13062  effect(DEF dst, KILL cr);
13063
13064  format %{ "MOV    $dst, Thread::current()" %}
13065  ins_encode %{
13066    Register dstReg = as_Register($dst$$reg);
13067    __ get_thread(dstReg);
13068  %}
13069  ins_pipe( ialu_reg_fat );
13070%}
13071
13072
13073
13074//----------PEEPHOLE RULES-----------------------------------------------------
13075// These must follow all instruction definitions as they use the names
13076// defined in the instructions definitions.
13077//
13078// peepmatch ( root_instr_name [preceding_instruction]* );
13079//
13080// peepconstraint %{
13081// (instruction_number.operand_name relational_op instruction_number.operand_name
13082//  [, ...] );
13083// // instruction numbers are zero-based using left to right order in peepmatch
13084//
13085// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13086// // provide an instruction_number.operand_name for each operand that appears
13087// // in the replacement instruction's match rule
13088//
13089// ---------VM FLAGS---------------------------------------------------------
13090//
13091// All peephole optimizations can be turned off using -XX:-OptoPeephole
13092//
13093// Each peephole rule is given an identifying number starting with zero and
13094// increasing by one in the order seen by the parser.  An individual peephole
13095// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13096// on the command-line.
13097//
13098// ---------CURRENT LIMITATIONS----------------------------------------------
13099//
13100// Only match adjacent instructions in same basic block
13101// Only equality constraints
13102// Only constraints between operands, not (0.dest_reg == EAX_enc)
13103// Only one replacement instruction
13104//
13105// ---------EXAMPLE----------------------------------------------------------
13106//
13107// // pertinent parts of existing instructions in architecture description
13108// instruct movI(rRegI dst, rRegI src) %{
13109//   match(Set dst (CopyI src));
13110// %}
13111//
13112// instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13113//   match(Set dst (AddI dst src));
13114//   effect(KILL cr);
13115// %}
13116//
13117// // Change (inc mov) to lea
13118// peephole %{
13119//   // increment preceeded by register-register move
13120//   peepmatch ( incI_eReg movI );
13121//   // require that the destination register of the increment
13122//   // match the destination register of the move
13123//   peepconstraint ( 0.dst == 1.dst );
13124//   // construct a replacement instruction that sets
13125//   // the destination to ( move's source register + one )
13126//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13127// %}
13128//
13129// Implementation no longer uses movX instructions since
13130// machine-independent system no longer uses CopyX nodes.
13131//
13132// peephole %{
13133//   peepmatch ( incI_eReg movI );
13134//   peepconstraint ( 0.dst == 1.dst );
13135//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13136// %}
13137//
13138// peephole %{
13139//   peepmatch ( decI_eReg movI );
13140//   peepconstraint ( 0.dst == 1.dst );
13141//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13142// %}
13143//
13144// peephole %{
13145//   peepmatch ( addI_eReg_imm movI );
13146//   peepconstraint ( 0.dst == 1.dst );
13147//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13148// %}
13149//
13150// peephole %{
13151//   peepmatch ( addP_eReg_imm movP );
13152//   peepconstraint ( 0.dst == 1.dst );
13153//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13154// %}
13155
13156// // Change load of spilled value to only a spill
13157// instruct storeI(memory mem, rRegI src) %{
13158//   match(Set mem (StoreI mem src));
13159// %}
13160//
13161// instruct loadI(rRegI dst, memory mem) %{
13162//   match(Set dst (LoadI mem));
13163// %}
13164//
13165peephole %{
13166  peepmatch ( loadI storeI );
13167  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13168  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13169%}
13170
13171//----------SMARTSPILL RULES---------------------------------------------------
13172// These must follow all instruction definitions as they use the names
13173// defined in the instructions definitions.
13174