x86_32.ad revision 304:dc7f315e41f7
1//
2// Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20// CA 95054 USA or visit www.sun.com if you need additional information or
21// have any questions.
22//
23//
24
25// X86 Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31
32register %{
33//----------Architecture Description Register Definitions----------------------
34// General Registers
35// "reg_def"  name ( register save type, C convention save type,
36//                   ideal register type, encoding );
37// Register Save Types:
38//
39// NS  = No-Save:       The register allocator assumes that these registers
40//                      can be used without saving upon entry to the method, &
41//                      that they do not need to be saved at call sites.
42//
43// SOC = Save-On-Call:  The register allocator assumes that these registers
44//                      can be used without saving upon entry to the method,
45//                      but that they must be saved at call sites.
46//
47// SOE = Save-On-Entry: The register allocator assumes that these registers
48//                      must be saved before using them upon entry to the
49//                      method, but they do not need to be saved at call
50//                      sites.
51//
52// AS  = Always-Save:   The register allocator assumes that these registers
53//                      must be saved before using them upon entry to the
54//                      method, & that they must be saved at call sites.
55//
56// Ideal Register Type is used to determine how to save & restore a
57// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59//
60// The encoding number is the actual bit-pattern placed into the opcodes.
61
62// General Registers
63// Previously set EBX, ESI, and EDI as save-on-entry for java code
64// Turn off SOE in java-code due to frequent use of uncommon-traps.
65// Now that allocator is better, turn on ESI and EDI as SOE registers.
66
67reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
68reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
69reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
70reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
71// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
72reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
73reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
74reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
75reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
76
77// Special Registers
78reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
79
80// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
81// allocator, and only shows up in the encodings.
82reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
83reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
84// Ok so here's the trick FPR1 is really st(0) except in the midst
85// of emission of assembly for a machnode. During the emission the fpu stack
86// is pushed making FPR1 == st(1) temporarily. However at any safepoint
87// the stack will not have this element so FPR1 == st(0) from the
88// oopMap viewpoint. This same weirdness with numbering causes
89// instruction encoding to have to play games with the register
90// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
91// where it does flt->flt moves to see an example
92//
93reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
94reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
95reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
96reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
97reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
98reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
99reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
100reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
101reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
102reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
103reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
104reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
105reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
106reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
107
108// XMM registers.  128-bit registers or 4 words each, labeled a-d.
109// Word a in each register holds a Float, words ab hold a Double.
110// We currently do not use the SIMD capabilities, so registers cd
111// are unused at the moment.
112reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
113reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
114reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
115reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
116reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
117reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
118reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
119reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
120reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
121reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
122reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
123reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
124reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
125reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
126reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
127reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
128
129// Specify priority of register selection within phases of register
130// allocation.  Highest priority is first.  A useful heuristic is to
131// give registers a low priority when they are required by machine
132// instructions, like EAX and EDX.  Registers which are used as
133// pairs must fall on an even boundry (witness the FPR#L's in this list).
134// For the Intel integer registers, the equivalent Long pairs are
135// EDX:EAX, EBX:ECX, and EDI:EBP.
136alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
137                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
138                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
139                    FPR6L, FPR6H, FPR7L, FPR7H );
140
141alloc_class chunk1( XMM0a, XMM0b,
142                    XMM1a, XMM1b,
143                    XMM2a, XMM2b,
144                    XMM3a, XMM3b,
145                    XMM4a, XMM4b,
146                    XMM5a, XMM5b,
147                    XMM6a, XMM6b,
148                    XMM7a, XMM7b, EFLAGS);
149
150
151//----------Architecture Description Register Classes--------------------------
152// Several register classes are automatically defined based upon information in
153// this architecture description.
154// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
155// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
156// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
157// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
158//
159// Class for all registers
160reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
161// Class for general registers
162reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
163// Class for general registers which may be used for implicit null checks on win95
164// Also safe for use by tailjump. We don't want to allocate in rbp,
165reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
166// Class of "X" registers
167reg_class x_reg(EBX, ECX, EDX, EAX);
168// Class of registers that can appear in an address with no offset.
169// EBP and ESP require an extra instruction byte for zero offset.
170// Used in fast-unlock
171reg_class p_reg(EDX, EDI, ESI, EBX);
172// Class for general registers not including ECX
173reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
174// Class for general registers not including EAX
175reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
176// Class for general registers not including EAX or EBX.
177reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
178// Class of EAX (for multiply and divide operations)
179reg_class eax_reg(EAX);
180// Class of EBX (for atomic add)
181reg_class ebx_reg(EBX);
182// Class of ECX (for shift and JCXZ operations and cmpLTMask)
183reg_class ecx_reg(ECX);
184// Class of EDX (for multiply and divide operations)
185reg_class edx_reg(EDX);
186// Class of EDI (for synchronization)
187reg_class edi_reg(EDI);
188// Class of ESI (for synchronization)
189reg_class esi_reg(ESI);
190// Singleton class for interpreter's stack pointer
191reg_class ebp_reg(EBP);
192// Singleton class for stack pointer
193reg_class sp_reg(ESP);
194// Singleton class for instruction pointer
195// reg_class ip_reg(EIP);
196// Singleton class for condition codes
197reg_class int_flags(EFLAGS);
198// Class of integer register pairs
199reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
200// Class of integer register pairs that aligns with calling convention
201reg_class eadx_reg( EAX,EDX );
202reg_class ebcx_reg( ECX,EBX );
203// Not AX or DX, used in divides
204reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
205
206// Floating point registers.  Notice FPR0 is not a choice.
207// FPR0 is not ever allocated; we use clever encodings to fake
208// a 2-address instructions out of Intels FP stack.
209reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
210
211// make a register class for SSE registers
212reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
213
214// make a double register class for SSE2 registers
215reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
216                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
217
218reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
219                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
220                   FPR7L,FPR7H );
221
222reg_class flt_reg0( FPR1L );
223reg_class dbl_reg0( FPR1L,FPR1H );
224reg_class dbl_reg1( FPR2L,FPR2H );
225reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
226                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
227
228// XMM6 and XMM7 could be used as temporary registers for long, float and
229// double values for SSE2.
230reg_class xdb_reg6( XMM6a,XMM6b );
231reg_class xdb_reg7( XMM7a,XMM7b );
232%}
233
234
235//----------SOURCE BLOCK-------------------------------------------------------
236// This is a block of C++ code which provides values, functions, and
237// definitions necessary in the rest of the architecture description
238source %{
239#define   RELOC_IMM32    Assembler::imm_operand
240#define   RELOC_DISP32   Assembler::disp32_operand
241
242#define __ _masm.
243
244// How to find the high register of a Long pair, given the low register
245#define   HIGH_FROM_LOW(x) ((x)+2)
246
247// These masks are used to provide 128-bit aligned bitmasks to the XMM
248// instructions, to allow sign-masking or sign-bit flipping.  They allow
249// fast versions of NegF/NegD and AbsF/AbsD.
250
251// Note: 'double' and 'long long' have 32-bits alignment on x86.
252static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
253  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
254  // of 128-bits operands for SSE instructions.
255  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
256  // Store the value to a 128-bits operand.
257  operand[0] = lo;
258  operand[1] = hi;
259  return operand;
260}
261
262// Buffer for 128-bits masks used by SSE instructions.
263static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
264
265// Static initialization during VM startup.
266static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
267static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
268static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
269static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
270
271// !!!!! Special hack to get all type of calls to specify the byte offset
272//       from the start of the call to the point where the return address
273//       will point.
274int MachCallStaticJavaNode::ret_addr_offset() {
275  return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
276}
277
278int MachCallDynamicJavaNode::ret_addr_offset() {
279  return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
280}
281
282static int sizeof_FFree_Float_Stack_All = -1;
283
284int MachCallRuntimeNode::ret_addr_offset() {
285  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
286  return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
287}
288
289// Indicate if the safepoint node needs the polling page as an input.
290// Since x86 does have absolute addressing, it doesn't.
291bool SafePointNode::needs_polling_address_input() {
292  return false;
293}
294
295//
296// Compute padding required for nodes which need alignment
297//
298
299// The address of the call instruction needs to be 4-byte aligned to
300// ensure that it does not span a cache line so that it can be patched.
301int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
302  if (Compile::current()->in_24_bit_fp_mode())
303    current_offset += 6;    // skip fldcw in pre_call_FPU, if any
304  current_offset += 1;      // skip call opcode byte
305  return round_to(current_offset, alignment_required()) - current_offset;
306}
307
308// The address of the call instruction needs to be 4-byte aligned to
309// ensure that it does not span a cache line so that it can be patched.
310int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
311  if (Compile::current()->in_24_bit_fp_mode())
312    current_offset += 6;    // skip fldcw in pre_call_FPU, if any
313  current_offset += 5;      // skip MOV instruction
314  current_offset += 1;      // skip call opcode byte
315  return round_to(current_offset, alignment_required()) - current_offset;
316}
317
318#ifndef PRODUCT
319void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
320  st->print("INT3");
321}
322#endif
323
324// EMIT_RM()
325void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
326  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
327  *(cbuf.code_end()) = c;
328  cbuf.set_code_end(cbuf.code_end() + 1);
329}
330
331// EMIT_CC()
332void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
333  unsigned char c = (unsigned char)( f1 | f2 );
334  *(cbuf.code_end()) = c;
335  cbuf.set_code_end(cbuf.code_end() + 1);
336}
337
338// EMIT_OPCODE()
339void emit_opcode(CodeBuffer &cbuf, int code) {
340  *(cbuf.code_end()) = (unsigned char)code;
341  cbuf.set_code_end(cbuf.code_end() + 1);
342}
343
344// EMIT_OPCODE() w/ relocation information
345void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
346  cbuf.relocate(cbuf.inst_mark() + offset, reloc);
347  emit_opcode(cbuf, code);
348}
349
350// EMIT_D8()
351void emit_d8(CodeBuffer &cbuf, int d8) {
352  *(cbuf.code_end()) = (unsigned char)d8;
353  cbuf.set_code_end(cbuf.code_end() + 1);
354}
355
356// EMIT_D16()
357void emit_d16(CodeBuffer &cbuf, int d16) {
358  *((short *)(cbuf.code_end())) = d16;
359  cbuf.set_code_end(cbuf.code_end() + 2);
360}
361
362// EMIT_D32()
363void emit_d32(CodeBuffer &cbuf, int d32) {
364  *((int *)(cbuf.code_end())) = d32;
365  cbuf.set_code_end(cbuf.code_end() + 4);
366}
367
368// emit 32 bit value and construct relocation entry from relocInfo::relocType
369void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
370        int format) {
371  cbuf.relocate(cbuf.inst_mark(), reloc, format);
372
373  *((int *)(cbuf.code_end())) = d32;
374  cbuf.set_code_end(cbuf.code_end() + 4);
375}
376
377// emit 32 bit value and construct relocation entry from RelocationHolder
378void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
379        int format) {
380#ifdef ASSERT
381  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
382    assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
383  }
384#endif
385  cbuf.relocate(cbuf.inst_mark(), rspec, format);
386
387  *((int *)(cbuf.code_end())) = d32;
388  cbuf.set_code_end(cbuf.code_end() + 4);
389}
390
391// Access stack slot for load or store
392void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
393  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
394  if( -128 <= disp && disp <= 127 ) {
395    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
396    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
397    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
398  } else {
399    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
400    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
401    emit_d32(cbuf, disp);     // Displacement  // R/M byte
402  }
403}
404
405   // eRegI ereg, memory mem) %{    // emit_reg_mem
406void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
407  // There is no index & no scale, use form without SIB byte
408  if ((index == 0x4) &&
409      (scale == 0) && (base != ESP_enc)) {
410    // If no displacement, mode is 0x0; unless base is [EBP]
411    if ( (displace == 0) && (base != EBP_enc) ) {
412      emit_rm(cbuf, 0x0, reg_encoding, base);
413    }
414    else {                    // If 8-bit displacement, mode 0x1
415      if ((displace >= -128) && (displace <= 127)
416          && !(displace_is_oop) ) {
417        emit_rm(cbuf, 0x1, reg_encoding, base);
418        emit_d8(cbuf, displace);
419      }
420      else {                  // If 32-bit displacement
421        if (base == -1) { // Special flag for absolute address
422          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
423          // (manual lies; no SIB needed here)
424          if ( displace_is_oop ) {
425            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
426          } else {
427            emit_d32      (cbuf, displace);
428          }
429        }
430        else {                // Normal base + offset
431          emit_rm(cbuf, 0x2, reg_encoding, base);
432          if ( displace_is_oop ) {
433            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
434          } else {
435            emit_d32      (cbuf, displace);
436          }
437        }
438      }
439    }
440  }
441  else {                      // Else, encode with the SIB byte
442    // If no displacement, mode is 0x0; unless base is [EBP]
443    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
444      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
445      emit_rm(cbuf, scale, index, base);
446    }
447    else {                    // If 8-bit displacement, mode 0x1
448      if ((displace >= -128) && (displace <= 127)
449          && !(displace_is_oop) ) {
450        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
451        emit_rm(cbuf, scale, index, base);
452        emit_d8(cbuf, displace);
453      }
454      else {                  // If 32-bit displacement
455        if (base == 0x04 ) {
456          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
457          emit_rm(cbuf, scale, index, 0x04);
458        } else {
459          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
460          emit_rm(cbuf, scale, index, base);
461        }
462        if ( displace_is_oop ) {
463          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
464        } else {
465          emit_d32      (cbuf, displace);
466        }
467      }
468    }
469  }
470}
471
472
473void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
474  if( dst_encoding == src_encoding ) {
475    // reg-reg copy, use an empty encoding
476  } else {
477    emit_opcode( cbuf, 0x8B );
478    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
479  }
480}
481
482void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
483  if( dst_encoding == src_encoding ) {
484    // reg-reg copy, use an empty encoding
485  } else {
486    MacroAssembler _masm(&cbuf);
487
488    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
489  }
490}
491
492
493//=============================================================================
494#ifndef PRODUCT
495void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
496  Compile* C = ra_->C;
497  if( C->in_24_bit_fp_mode() ) {
498    tty->print("FLDCW  24 bit fpu control word");
499    tty->print_cr(""); tty->print("\t");
500  }
501
502  int framesize = C->frame_slots() << LogBytesPerInt;
503  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
504  // Remove two words for return addr and rbp,
505  framesize -= 2*wordSize;
506
507  // Calls to C2R adapters often do not accept exceptional returns.
508  // We require that their callers must bang for them.  But be careful, because
509  // some VM calls (such as call site linkage) can use several kilobytes of
510  // stack.  But the stack safety zone should account for that.
511  // See bugs 4446381, 4468289, 4497237.
512  if (C->need_stack_bang(framesize)) {
513    tty->print_cr("# stack bang"); tty->print("\t");
514  }
515  tty->print_cr("PUSHL  EBP"); tty->print("\t");
516
517  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
518    tty->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
519    tty->print_cr(""); tty->print("\t");
520    framesize -= wordSize;
521  }
522
523  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
524    if (framesize) {
525      tty->print("SUB    ESP,%d\t# Create frame",framesize);
526    }
527  } else {
528    tty->print("SUB    ESP,%d\t# Create frame",framesize);
529  }
530}
531#endif
532
533
534void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
535  Compile* C = ra_->C;
536
537  if (UseSSE >= 2 && VerifyFPU) {
538    MacroAssembler masm(&cbuf);
539    masm.verify_FPU(0, "FPU stack must be clean on entry");
540  }
541
542  // WARNING: Initial instruction MUST be 5 bytes or longer so that
543  // NativeJump::patch_verified_entry will be able to patch out the entry
544  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
545  // depth is ok at 5 bytes, the frame allocation can be either 3 or
546  // 6 bytes. So if we don't do the fldcw or the push then we must
547  // use the 6 byte frame allocation even if we have no frame. :-(
548  // If method sets FPU control word do it now
549  if( C->in_24_bit_fp_mode() ) {
550    MacroAssembler masm(&cbuf);
551    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
552  }
553
554  int framesize = C->frame_slots() << LogBytesPerInt;
555  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
556  // Remove two words for return addr and rbp,
557  framesize -= 2*wordSize;
558
559  // Calls to C2R adapters often do not accept exceptional returns.
560  // We require that their callers must bang for them.  But be careful, because
561  // some VM calls (such as call site linkage) can use several kilobytes of
562  // stack.  But the stack safety zone should account for that.
563  // See bugs 4446381, 4468289, 4497237.
564  if (C->need_stack_bang(framesize)) {
565    MacroAssembler masm(&cbuf);
566    masm.generate_stack_overflow_check(framesize);
567  }
568
569  // We always push rbp, so that on return to interpreter rbp, will be
570  // restored correctly and we can correct the stack.
571  emit_opcode(cbuf, 0x50 | EBP_enc);
572
573  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
574    emit_opcode(cbuf, 0x68); // push 0xbadb100d
575    emit_d32(cbuf, 0xbadb100d);
576    framesize -= wordSize;
577  }
578
579  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
580    if (framesize) {
581      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
582      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
583      emit_d8(cbuf, framesize);
584    }
585  } else {
586    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
587    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
588    emit_d32(cbuf, framesize);
589  }
590  C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
591
592#ifdef ASSERT
593  if (VerifyStackAtCalls) {
594    Label L;
595    MacroAssembler masm(&cbuf);
596    masm.push(rax);
597    masm.mov(rax, rsp);
598    masm.andptr(rax, StackAlignmentInBytes-1);
599    masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
600    masm.pop(rax);
601    masm.jcc(Assembler::equal, L);
602    masm.stop("Stack is not properly aligned!");
603    masm.bind(L);
604  }
605#endif
606
607}
608
609uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
610  return MachNode::size(ra_); // too many variables; just compute it the hard way
611}
612
613int MachPrologNode::reloc() const {
614  return 0; // a large enough number
615}
616
617//=============================================================================
618#ifndef PRODUCT
619void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
620  Compile *C = ra_->C;
621  int framesize = C->frame_slots() << LogBytesPerInt;
622  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
623  // Remove two words for return addr and rbp,
624  framesize -= 2*wordSize;
625
626  if( C->in_24_bit_fp_mode() ) {
627    st->print("FLDCW  standard control word");
628    st->cr(); st->print("\t");
629  }
630  if( framesize ) {
631    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
632    st->cr(); st->print("\t");
633  }
634  st->print_cr("POPL   EBP"); st->print("\t");
635  if( do_polling() && C->is_method_compilation() ) {
636    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
637    st->cr(); st->print("\t");
638  }
639}
640#endif
641
642void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
643  Compile *C = ra_->C;
644
645  // If method set FPU control word, restore to standard control word
646  if( C->in_24_bit_fp_mode() ) {
647    MacroAssembler masm(&cbuf);
648    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
649  }
650
651  int framesize = C->frame_slots() << LogBytesPerInt;
652  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
653  // Remove two words for return addr and rbp,
654  framesize -= 2*wordSize;
655
656  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
657
658  if( framesize >= 128 ) {
659    emit_opcode(cbuf, 0x81); // add  SP, #framesize
660    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
661    emit_d32(cbuf, framesize);
662  }
663  else if( framesize ) {
664    emit_opcode(cbuf, 0x83); // add  SP, #framesize
665    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
666    emit_d8(cbuf, framesize);
667  }
668
669  emit_opcode(cbuf, 0x58 | EBP_enc);
670
671  if( do_polling() && C->is_method_compilation() ) {
672    cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
673    emit_opcode(cbuf,0x85);
674    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
675    emit_d32(cbuf, (intptr_t)os::get_polling_page());
676  }
677}
678
679uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
680  Compile *C = ra_->C;
681  // If method set FPU control word, restore to standard control word
682  int size = C->in_24_bit_fp_mode() ? 6 : 0;
683  if( do_polling() && C->is_method_compilation() ) size += 6;
684
685  int framesize = C->frame_slots() << LogBytesPerInt;
686  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
687  // Remove two words for return addr and rbp,
688  framesize -= 2*wordSize;
689
690  size++; // popl rbp,
691
692  if( framesize >= 128 ) {
693    size += 6;
694  } else {
695    size += framesize ? 3 : 0;
696  }
697  return size;
698}
699
700int MachEpilogNode::reloc() const {
701  return 0; // a large enough number
702}
703
704const Pipeline * MachEpilogNode::pipeline() const {
705  return MachNode::pipeline_class();
706}
707
708int MachEpilogNode::safepoint_offset() const { return 0; }
709
710//=============================================================================
711
712enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
713static enum RC rc_class( OptoReg::Name reg ) {
714
715  if( !OptoReg::is_valid(reg)  ) return rc_bad;
716  if (OptoReg::is_stack(reg)) return rc_stack;
717
718  VMReg r = OptoReg::as_VMReg(reg);
719  if (r->is_Register()) return rc_int;
720  if (r->is_FloatRegister()) {
721    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
722    return rc_float;
723  }
724  assert(r->is_XMMRegister(), "must be");
725  return rc_xmm;
726}
727
728static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size ) {
729  if( cbuf ) {
730    emit_opcode  (*cbuf, opcode );
731    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
732#ifndef PRODUCT
733  } else if( !do_size ) {
734    if( size != 0 ) tty->print("\n\t");
735    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
736      if( is_load ) tty->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
737      else          tty->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
738    } else { // FLD, FST, PUSH, POP
739      tty->print("%s [ESP + #%d]",op_str,offset);
740    }
741#endif
742  }
743  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
744  return size+3+offset_size;
745}
746
747// Helper for XMM registers.  Extra opcode bits, limited syntax.
748static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
749                         int offset, int reg_lo, int reg_hi, int size ) {
750  if( cbuf ) {
751    if( reg_lo+1 == reg_hi ) { // double move?
752      if( is_load && !UseXmmLoadAndClearUpper )
753        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
754      else
755        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
756    } else {
757      emit_opcode(*cbuf, 0xF3 );
758    }
759    emit_opcode(*cbuf, 0x0F );
760    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
761      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
762    else
763      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
764    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
765#ifndef PRODUCT
766  } else if( !do_size ) {
767    if( size != 0 ) tty->print("\n\t");
768    if( reg_lo+1 == reg_hi ) { // double move?
769      if( is_load ) tty->print("%s %s,[ESP + #%d]",
770                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
771                               Matcher::regName[reg_lo], offset);
772      else          tty->print("MOVSD  [ESP + #%d],%s",
773                               offset, Matcher::regName[reg_lo]);
774    } else {
775      if( is_load ) tty->print("MOVSS  %s,[ESP + #%d]",
776                               Matcher::regName[reg_lo], offset);
777      else          tty->print("MOVSS  [ESP + #%d],%s",
778                               offset, Matcher::regName[reg_lo]);
779    }
780#endif
781  }
782  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
783  return size+5+offset_size;
784}
785
786
787static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
788                            int src_hi, int dst_hi, int size ) {
789  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
790    if( cbuf ) {
791      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
792        emit_opcode(*cbuf, 0x66 );
793      }
794      emit_opcode(*cbuf, 0x0F );
795      emit_opcode(*cbuf, 0x28 );
796      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
797#ifndef PRODUCT
798    } else if( !do_size ) {
799      if( size != 0 ) tty->print("\n\t");
800      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
801        tty->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
802      } else {
803        tty->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
804      }
805#endif
806    }
807    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
808  } else {
809    if( cbuf ) {
810      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
811      emit_opcode(*cbuf, 0x0F );
812      emit_opcode(*cbuf, 0x10 );
813      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
814#ifndef PRODUCT
815    } else if( !do_size ) {
816      if( size != 0 ) tty->print("\n\t");
817      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
818        tty->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
819      } else {
820        tty->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
821      }
822#endif
823    }
824    return size+4;
825  }
826}
827
828static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size ) {
829  if( cbuf ) {
830    emit_opcode(*cbuf, 0x8B );
831    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
832#ifndef PRODUCT
833  } else if( !do_size ) {
834    if( size != 0 ) tty->print("\n\t");
835    tty->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
836#endif
837  }
838  return size+2;
839}
840
841static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi, int offset, int size ) {
842  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
843    if( cbuf ) {
844      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
845      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
846#ifndef PRODUCT
847    } else if( !do_size ) {
848      if( size != 0 ) tty->print("\n\t");
849      tty->print("FLD    %s",Matcher::regName[src_lo]);
850#endif
851    }
852    size += 2;
853  }
854
855  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
856  const char *op_str;
857  int op;
858  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
859    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
860    op = 0xDD;
861  } else {                   // 32-bit store
862    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
863    op = 0xD9;
864    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
865  }
866
867  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size);
868}
869
870uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
871  // Get registers to move
872  OptoReg::Name src_second = ra_->get_reg_second(in(1));
873  OptoReg::Name src_first = ra_->get_reg_first(in(1));
874  OptoReg::Name dst_second = ra_->get_reg_second(this );
875  OptoReg::Name dst_first = ra_->get_reg_first(this );
876
877  enum RC src_second_rc = rc_class(src_second);
878  enum RC src_first_rc = rc_class(src_first);
879  enum RC dst_second_rc = rc_class(dst_second);
880  enum RC dst_first_rc = rc_class(dst_first);
881
882  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
883
884  // Generate spill code!
885  int size = 0;
886
887  if( src_first == dst_first && src_second == dst_second )
888    return size;            // Self copy, no move
889
890  // --------------------------------------
891  // Check for mem-mem move.  push/pop to move.
892  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
893    if( src_second == dst_first ) { // overlapping stack copy ranges
894      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
895      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size);
896      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size);
897      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
898    }
899    // move low bits
900    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size);
901    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size);
902    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
903      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size);
904      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size);
905    }
906    return size;
907  }
908
909  // --------------------------------------
910  // Check for integer reg-reg copy
911  if( src_first_rc == rc_int && dst_first_rc == rc_int )
912    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size);
913
914  // Check for integer store
915  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
916    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size);
917
918  // Check for integer load
919  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
920    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size);
921
922  // --------------------------------------
923  // Check for float reg-reg copy
924  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
925    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
926            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
927    if( cbuf ) {
928
929      // Note the mucking with the register encode to compensate for the 0/1
930      // indexing issue mentioned in a comment in the reg_def sections
931      // for FPR registers many lines above here.
932
933      if( src_first != FPR1L_num ) {
934        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
935        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
936        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
937        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
938     } else {
939        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
940        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
941     }
942#ifndef PRODUCT
943    } else if( !do_size ) {
944      if( size != 0 ) st->print("\n\t");
945      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
946      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
947#endif
948    }
949    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
950  }
951
952  // Check for float store
953  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
954    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size);
955  }
956
957  // Check for float load
958  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
959    int offset = ra_->reg2offset(src_first);
960    const char *op_str;
961    int op;
962    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
963      op_str = "FLD_D";
964      op = 0xDD;
965    } else {                   // 32-bit load
966      op_str = "FLD_S";
967      op = 0xD9;
968      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
969    }
970    if( cbuf ) {
971      emit_opcode  (*cbuf, op );
972      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
973      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
974      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
975#ifndef PRODUCT
976    } else if( !do_size ) {
977      if( size != 0 ) st->print("\n\t");
978      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
979#endif
980    }
981    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
982    return size + 3+offset_size+2;
983  }
984
985  // Check for xmm reg-reg copy
986  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
987    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
988            (src_first+1 == src_second && dst_first+1 == dst_second),
989            "no non-adjacent float-moves" );
990    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size);
991  }
992
993  // Check for xmm store
994  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
995    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size);
996  }
997
998  // Check for float xmm load
999  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1000    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size);
1001  }
1002
1003  // Copy from float reg to xmm reg
1004  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1005    // copy to the top of stack from floating point reg
1006    // and use LEA to preserve flags
1007    if( cbuf ) {
1008      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1009      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1010      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1011      emit_d8(*cbuf,0xF8);
1012#ifndef PRODUCT
1013    } else if( !do_size ) {
1014      if( size != 0 ) st->print("\n\t");
1015      st->print("LEA    ESP,[ESP-8]");
1016#endif
1017    }
1018    size += 4;
1019
1020    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size);
1021
1022    // Copy from the temp memory to the xmm reg.
1023    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size);
1024
1025    if( cbuf ) {
1026      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1027      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1028      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1029      emit_d8(*cbuf,0x08);
1030#ifndef PRODUCT
1031    } else if( !do_size ) {
1032      if( size != 0 ) st->print("\n\t");
1033      st->print("LEA    ESP,[ESP+8]");
1034#endif
1035    }
1036    size += 4;
1037    return size;
1038  }
1039
1040  assert( size > 0, "missed a case" );
1041
1042  // --------------------------------------------------------------------
1043  // Check for second bits still needing moving.
1044  if( src_second == dst_second )
1045    return size;               // Self copy; no move
1046  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1047
1048  // Check for second word int-int move
1049  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1050    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size);
1051
1052  // Check for second word integer store
1053  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1054    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size);
1055
1056  // Check for second word integer load
1057  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1058    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size);
1059
1060
1061  Unimplemented();
1062}
1063
1064#ifndef PRODUCT
1065void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1066  implementation( NULL, ra_, false, st );
1067}
1068#endif
1069
1070void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1071  implementation( &cbuf, ra_, false, NULL );
1072}
1073
1074uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1075  return implementation( NULL, ra_, true, NULL );
1076}
1077
1078//=============================================================================
1079#ifndef PRODUCT
1080void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1081  st->print("NOP \t# %d bytes pad for loops and calls", _count);
1082}
1083#endif
1084
1085void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1086  MacroAssembler _masm(&cbuf);
1087  __ nop(_count);
1088}
1089
1090uint MachNopNode::size(PhaseRegAlloc *) const {
1091  return _count;
1092}
1093
1094
1095//=============================================================================
1096#ifndef PRODUCT
1097void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1098  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1099  int reg = ra_->get_reg_first(this);
1100  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1101}
1102#endif
1103
1104void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1105  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1106  int reg = ra_->get_encode(this);
1107  if( offset >= 128 ) {
1108    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1109    emit_rm(cbuf, 0x2, reg, 0x04);
1110    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1111    emit_d32(cbuf, offset);
1112  }
1113  else {
1114    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1115    emit_rm(cbuf, 0x1, reg, 0x04);
1116    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1117    emit_d8(cbuf, offset);
1118  }
1119}
1120
1121uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1122  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1123  if( offset >= 128 ) {
1124    return 7;
1125  }
1126  else {
1127    return 4;
1128  }
1129}
1130
1131//=============================================================================
1132
1133// emit call stub, compiled java to interpreter
1134void emit_java_to_interp(CodeBuffer &cbuf ) {
1135  // Stub is fixed up when the corresponding call is converted from calling
1136  // compiled code to calling interpreted code.
1137  // mov rbx,0
1138  // jmp -1
1139
1140  address mark = cbuf.inst_mark();  // get mark within main instrs section
1141
1142  // Note that the code buffer's inst_mark is always relative to insts.
1143  // That's why we must use the macroassembler to generate a stub.
1144  MacroAssembler _masm(&cbuf);
1145
1146  address base =
1147  __ start_a_stub(Compile::MAX_stubs_size);
1148  if (base == NULL)  return;  // CodeBuffer::expand failed
1149  // static stub relocation stores the instruction address of the call
1150  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1151  // static stub relocation also tags the methodOop in the code-stream.
1152  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1153  // This is recognized as unresolved by relocs/nativeInst/ic code
1154  __ jump(RuntimeAddress(__ pc()));
1155
1156  __ end_a_stub();
1157  // Update current stubs pointer and restore code_end.
1158}
1159// size of call stub, compiled java to interpretor
1160uint size_java_to_interp() {
1161  return 10;  // movl; jmp
1162}
1163// relocation entries for call stub, compiled java to interpretor
1164uint reloc_java_to_interp() {
1165  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1166}
1167
1168//=============================================================================
1169#ifndef PRODUCT
1170void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1171  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1172  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1173  st->print_cr("\tNOP");
1174  st->print_cr("\tNOP");
1175  if( !OptoBreakpoint )
1176    st->print_cr("\tNOP");
1177}
1178#endif
1179
1180void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1181  MacroAssembler masm(&cbuf);
1182#ifdef ASSERT
1183  uint code_size = cbuf.code_size();
1184#endif
1185  masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1186  masm.jump_cc(Assembler::notEqual,
1187               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1188  /* WARNING these NOPs are critical so that verified entry point is properly
1189     aligned for patching by NativeJump::patch_verified_entry() */
1190  int nops_cnt = 2;
1191  if( !OptoBreakpoint ) // Leave space for int3
1192     nops_cnt += 1;
1193  masm.nop(nops_cnt);
1194
1195  assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
1196}
1197
1198uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1199  return OptoBreakpoint ? 11 : 12;
1200}
1201
1202
1203//=============================================================================
1204uint size_exception_handler() {
1205  // NativeCall instruction size is the same as NativeJump.
1206  // exception handler starts out as jump and can be patched to
1207  // a call be deoptimization.  (4932387)
1208  // Note that this value is also credited (in output.cpp) to
1209  // the size of the code section.
1210  return NativeJump::instruction_size;
1211}
1212
1213// Emit exception handler code.  Stuff framesize into a register
1214// and call a VM stub routine.
1215int emit_exception_handler(CodeBuffer& cbuf) {
1216
1217  // Note that the code buffer's inst_mark is always relative to insts.
1218  // That's why we must use the macroassembler to generate a handler.
1219  MacroAssembler _masm(&cbuf);
1220  address base =
1221  __ start_a_stub(size_exception_handler());
1222  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1223  int offset = __ offset();
1224  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1225  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1226  __ end_a_stub();
1227  return offset;
1228}
1229
1230uint size_deopt_handler() {
1231  // NativeCall instruction size is the same as NativeJump.
1232  // exception handler starts out as jump and can be patched to
1233  // a call be deoptimization.  (4932387)
1234  // Note that this value is also credited (in output.cpp) to
1235  // the size of the code section.
1236  return 5 + NativeJump::instruction_size; // pushl(); jmp;
1237}
1238
1239// Emit deopt handler code.
1240int emit_deopt_handler(CodeBuffer& cbuf) {
1241
1242  // Note that the code buffer's inst_mark is always relative to insts.
1243  // That's why we must use the macroassembler to generate a handler.
1244  MacroAssembler _masm(&cbuf);
1245  address base =
1246  __ start_a_stub(size_exception_handler());
1247  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1248  int offset = __ offset();
1249  InternalAddress here(__ pc());
1250  __ pushptr(here.addr());
1251
1252  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1253  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1254  __ end_a_stub();
1255  return offset;
1256}
1257
1258
1259static void emit_double_constant(CodeBuffer& cbuf, double x) {
1260  int mark = cbuf.insts()->mark_off();
1261  MacroAssembler _masm(&cbuf);
1262  address double_address = __ double_constant(x);
1263  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1264  emit_d32_reloc(cbuf,
1265                 (int)double_address,
1266                 internal_word_Relocation::spec(double_address),
1267                 RELOC_DISP32);
1268}
1269
1270static void emit_float_constant(CodeBuffer& cbuf, float x) {
1271  int mark = cbuf.insts()->mark_off();
1272  MacroAssembler _masm(&cbuf);
1273  address float_address = __ float_constant(x);
1274  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1275  emit_d32_reloc(cbuf,
1276                 (int)float_address,
1277                 internal_word_Relocation::spec(float_address),
1278                 RELOC_DISP32);
1279}
1280
1281
1282int Matcher::regnum_to_fpu_offset(int regnum) {
1283  return regnum - 32; // The FP registers are in the second chunk
1284}
1285
1286bool is_positive_zero_float(jfloat f) {
1287  return jint_cast(f) == jint_cast(0.0F);
1288}
1289
1290bool is_positive_one_float(jfloat f) {
1291  return jint_cast(f) == jint_cast(1.0F);
1292}
1293
1294bool is_positive_zero_double(jdouble d) {
1295  return jlong_cast(d) == jlong_cast(0.0);
1296}
1297
1298bool is_positive_one_double(jdouble d) {
1299  return jlong_cast(d) == jlong_cast(1.0);
1300}
1301
1302// This is UltraSparc specific, true just means we have fast l2f conversion
1303const bool Matcher::convL2FSupported(void) {
1304  return true;
1305}
1306
1307// Vector width in bytes
1308const uint Matcher::vector_width_in_bytes(void) {
1309  return UseSSE >= 2 ? 8 : 0;
1310}
1311
1312// Vector ideal reg
1313const uint Matcher::vector_ideal_reg(void) {
1314  return Op_RegD;
1315}
1316
1317// Is this branch offset short enough that a short branch can be used?
1318//
1319// NOTE: If the platform does not provide any short branch variants, then
1320//       this method should return false for offset 0.
1321bool Matcher::is_short_branch_offset(int offset) {
1322  return (-128 <= offset && offset <= 127);
1323}
1324
1325const bool Matcher::isSimpleConstant64(jlong value) {
1326  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1327  return false;
1328}
1329
1330// The ecx parameter to rep stos for the ClearArray node is in dwords.
1331const bool Matcher::init_array_count_is_in_bytes = false;
1332
1333// Threshold size for cleararray.
1334const int Matcher::init_array_short_size = 8 * BytesPerLong;
1335
1336// Should the Matcher clone shifts on addressing modes, expecting them to
1337// be subsumed into complex addressing expressions or compute them into
1338// registers?  True for Intel but false for most RISCs
1339const bool Matcher::clone_shift_expressions = true;
1340
1341// Is it better to copy float constants, or load them directly from memory?
1342// Intel can load a float constant from a direct address, requiring no
1343// extra registers.  Most RISCs will have to materialize an address into a
1344// register first, so they would do better to copy the constant from stack.
1345const bool Matcher::rematerialize_float_constants = true;
1346
1347// If CPU can load and store mis-aligned doubles directly then no fixup is
1348// needed.  Else we split the double into 2 integer pieces and move it
1349// piece-by-piece.  Only happens when passing doubles into C code as the
1350// Java calling convention forces doubles to be aligned.
1351const bool Matcher::misaligned_doubles_ok = true;
1352
1353
1354void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1355  // Get the memory operand from the node
1356  uint numopnds = node->num_opnds();        // Virtual call for number of operands
1357  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1358  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1359  uint opcnt     = 1;                 // First operand
1360  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1361  while( idx >= skipped+num_edges ) {
1362    skipped += num_edges;
1363    opcnt++;                          // Bump operand count
1364    assert( opcnt < numopnds, "Accessing non-existent operand" );
1365    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1366  }
1367
1368  MachOper *memory = node->_opnds[opcnt];
1369  MachOper *new_memory = NULL;
1370  switch (memory->opcode()) {
1371  case DIRECT:
1372  case INDOFFSET32X:
1373    // No transformation necessary.
1374    return;
1375  case INDIRECT:
1376    new_memory = new (C) indirect_win95_safeOper( );
1377    break;
1378  case INDOFFSET8:
1379    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1380    break;
1381  case INDOFFSET32:
1382    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1383    break;
1384  case INDINDEXOFFSET:
1385    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1386    break;
1387  case INDINDEXSCALE:
1388    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1389    break;
1390  case INDINDEXSCALEOFFSET:
1391    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1392    break;
1393  case LOAD_LONG_INDIRECT:
1394  case LOAD_LONG_INDOFFSET32:
1395    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1396    return;
1397  default:
1398    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1399    return;
1400  }
1401  node->_opnds[opcnt] = new_memory;
1402}
1403
1404// Advertise here if the CPU requires explicit rounding operations
1405// to implement the UseStrictFP mode.
1406const bool Matcher::strict_fp_requires_explicit_rounding = true;
1407
1408// Do floats take an entire double register or just half?
1409const bool Matcher::float_in_double = true;
1410// Do ints take an entire long register or just half?
1411const bool Matcher::int_in_long = false;
1412
1413// Return whether or not this register is ever used as an argument.  This
1414// function is used on startup to build the trampoline stubs in generateOptoStub.
1415// Registers not mentioned will be killed by the VM call in the trampoline, and
1416// arguments in those registers not be available to the callee.
1417bool Matcher::can_be_java_arg( int reg ) {
1418  if(  reg == ECX_num   || reg == EDX_num   ) return true;
1419  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1420  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1421  return false;
1422}
1423
1424bool Matcher::is_spillable_arg( int reg ) {
1425  return can_be_java_arg(reg);
1426}
1427
1428// Register for DIVI projection of divmodI
1429RegMask Matcher::divI_proj_mask() {
1430  return EAX_REG_mask;
1431}
1432
1433// Register for MODI projection of divmodI
1434RegMask Matcher::modI_proj_mask() {
1435  return EDX_REG_mask;
1436}
1437
1438// Register for DIVL projection of divmodL
1439RegMask Matcher::divL_proj_mask() {
1440  ShouldNotReachHere();
1441  return RegMask();
1442}
1443
1444// Register for MODL projection of divmodL
1445RegMask Matcher::modL_proj_mask() {
1446  ShouldNotReachHere();
1447  return RegMask();
1448}
1449
1450%}
1451
1452//----------ENCODING BLOCK-----------------------------------------------------
1453// This block specifies the encoding classes used by the compiler to output
1454// byte streams.  Encoding classes generate functions which are called by
1455// Machine Instruction Nodes in order to generate the bit encoding of the
1456// instruction.  Operands specify their base encoding interface with the
1457// interface keyword.  There are currently supported four interfaces,
1458// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1459// operand to generate a function which returns its register number when
1460// queried.   CONST_INTER causes an operand to generate a function which
1461// returns the value of the constant when queried.  MEMORY_INTER causes an
1462// operand to generate four functions which return the Base Register, the
1463// Index Register, the Scale Value, and the Offset Value of the operand when
1464// queried.  COND_INTER causes an operand to generate six functions which
1465// return the encoding code (ie - encoding bits for the instruction)
1466// associated with each basic boolean condition for a conditional instruction.
1467// Instructions specify two basic values for encoding.  They use the
1468// ins_encode keyword to specify their encoding class (which must be one of
1469// the class names specified in the encoding block), and they use the
1470// opcode keyword to specify, in order, their primary, secondary, and
1471// tertiary opcode.  Only the opcode sections which a particular instruction
1472// needs for encoding need to be specified.
1473encode %{
1474  // Build emit functions for each basic byte or larger field in the intel
1475  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1476  // code in the enc_class source block.  Emit functions will live in the
1477  // main source block for now.  In future, we can generalize this by
1478  // adding a syntax that specifies the sizes of fields in an order,
1479  // so that the adlc can build the emit functions automagically
1480  enc_class OpcP %{             // Emit opcode
1481    emit_opcode(cbuf,$primary);
1482  %}
1483
1484  enc_class OpcS %{             // Emit opcode
1485    emit_opcode(cbuf,$secondary);
1486  %}
1487
1488  enc_class Opcode(immI d8 ) %{ // Emit opcode
1489    emit_opcode(cbuf,$d8$$constant);
1490  %}
1491
1492  enc_class SizePrefix %{
1493    emit_opcode(cbuf,0x66);
1494  %}
1495
1496  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1497    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1498  %}
1499
1500  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1501    emit_opcode(cbuf,$opcode$$constant);
1502    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1503  %}
1504
1505  enc_class mov_r32_imm0( eRegI dst ) %{
1506    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1507    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1508  %}
1509
1510  enc_class cdq_enc %{
1511    // Full implementation of Java idiv and irem; checks for
1512    // special case as described in JVM spec., p.243 & p.271.
1513    //
1514    //         normal case                           special case
1515    //
1516    // input : rax,: dividend                         min_int
1517    //         reg: divisor                          -1
1518    //
1519    // output: rax,: quotient  (= rax, idiv reg)       min_int
1520    //         rdx: remainder (= rax, irem reg)       0
1521    //
1522    //  Code sequnce:
1523    //
1524    //  81 F8 00 00 00 80    cmp         rax,80000000h
1525    //  0F 85 0B 00 00 00    jne         normal_case
1526    //  33 D2                xor         rdx,edx
1527    //  83 F9 FF             cmp         rcx,0FFh
1528    //  0F 84 03 00 00 00    je          done
1529    //                  normal_case:
1530    //  99                   cdq
1531    //  F7 F9                idiv        rax,ecx
1532    //                  done:
1533    //
1534    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1535    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1536    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1537    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1538    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1539    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1540    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1541    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1542    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1543    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1544    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1545    // normal_case:
1546    emit_opcode(cbuf,0x99);                                         // cdq
1547    // idiv (note: must be emitted by the user of this rule)
1548    // normal:
1549  %}
1550
1551  // Dense encoding for older common ops
1552  enc_class Opc_plus(immI opcode, eRegI reg) %{
1553    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1554  %}
1555
1556
1557  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1558  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1559    // Check for 8-bit immediate, and set sign extend bit in opcode
1560    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1561      emit_opcode(cbuf, $primary | 0x02);
1562    }
1563    else {                          // If 32-bit immediate
1564      emit_opcode(cbuf, $primary);
1565    }
1566  %}
1567
1568  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1569    // Emit primary opcode and set sign-extend bit
1570    // Check for 8-bit immediate, and set sign extend bit in opcode
1571    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1572      emit_opcode(cbuf, $primary | 0x02);    }
1573    else {                          // If 32-bit immediate
1574      emit_opcode(cbuf, $primary);
1575    }
1576    // Emit r/m byte with secondary opcode, after primary opcode.
1577    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1578  %}
1579
1580  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1581    // Check for 8-bit immediate, and set sign extend bit in opcode
1582    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1583      $$$emit8$imm$$constant;
1584    }
1585    else {                          // If 32-bit immediate
1586      // Output immediate
1587      $$$emit32$imm$$constant;
1588    }
1589  %}
1590
1591  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1592    // Emit primary opcode and set sign-extend bit
1593    // Check for 8-bit immediate, and set sign extend bit in opcode
1594    int con = (int)$imm$$constant; // Throw away top bits
1595    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1596    // Emit r/m byte with secondary opcode, after primary opcode.
1597    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1598    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1599    else                               emit_d32(cbuf,con);
1600  %}
1601
1602  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1603    // Emit primary opcode and set sign-extend bit
1604    // Check for 8-bit immediate, and set sign extend bit in opcode
1605    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1606    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1607    // Emit r/m byte with tertiary opcode, after primary opcode.
1608    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1609    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1610    else                               emit_d32(cbuf,con);
1611  %}
1612
1613  enc_class Lbl (label labl) %{ // JMP, CALL
1614    Label *l = $labl$$label;
1615    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1616  %}
1617
1618  enc_class LblShort (label labl) %{ // JMP, CALL
1619    Label *l = $labl$$label;
1620    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1621    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1622    emit_d8(cbuf, disp);
1623  %}
1624
1625  enc_class OpcSReg (eRegI dst) %{    // BSWAP
1626    emit_cc(cbuf, $secondary, $dst$$reg );
1627  %}
1628
1629  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1630    int destlo = $dst$$reg;
1631    int desthi = HIGH_FROM_LOW(destlo);
1632    // bswap lo
1633    emit_opcode(cbuf, 0x0F);
1634    emit_cc(cbuf, 0xC8, destlo);
1635    // bswap hi
1636    emit_opcode(cbuf, 0x0F);
1637    emit_cc(cbuf, 0xC8, desthi);
1638    // xchg lo and hi
1639    emit_opcode(cbuf, 0x87);
1640    emit_rm(cbuf, 0x3, destlo, desthi);
1641  %}
1642
1643  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1644    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1645  %}
1646
1647  enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1648    Label *l = $labl$$label;
1649    $$$emit8$primary;
1650    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1651    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1652  %}
1653
1654  enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1655    Label *l = $labl$$label;
1656    emit_cc(cbuf, $primary, $cop$$cmpcode);
1657    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1658    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1659    emit_d8(cbuf, disp);
1660  %}
1661
1662  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1663    $$$emit8$primary;
1664    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1665  %}
1666
1667  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1668    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1669    emit_d8(cbuf, op >> 8 );
1670    emit_d8(cbuf, op & 255);
1671  %}
1672
1673  // emulate a CMOV with a conditional branch around a MOV
1674  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1675    // Invert sense of branch from sense of CMOV
1676    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1677    emit_d8( cbuf, $brOffs$$constant );
1678  %}
1679
1680  enc_class enc_PartialSubtypeCheck( ) %{
1681    Register Redi = as_Register(EDI_enc); // result register
1682    Register Reax = as_Register(EAX_enc); // super class
1683    Register Recx = as_Register(ECX_enc); // killed
1684    Register Resi = as_Register(ESI_enc); // sub class
1685    Label hit, miss;
1686
1687    MacroAssembler _masm(&cbuf);
1688    // Compare super with sub directly, since super is not in its own SSA.
1689    // The compiler used to emit this test, but we fold it in here,
1690    // to allow platform-specific tweaking on sparc.
1691    __ cmpptr(Reax, Resi);
1692    __ jcc(Assembler::equal, hit);
1693#ifndef PRODUCT
1694    __ incrementl(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1695#endif //PRODUCT
1696    __ movptr(Redi,Address(Resi,sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()));
1697    __ movl(Recx,Address(Redi,arrayOopDesc::length_offset_in_bytes()));
1698    __ addptr(Redi,arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1699    __ repne_scan();
1700    __ jcc(Assembler::notEqual, miss);
1701    __ movptr(Address(Resi,sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()),Reax);
1702    __ bind(hit);
1703    if( $primary )
1704      __ xorptr(Redi,Redi);
1705    __ bind(miss);
1706  %}
1707
1708  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1709    MacroAssembler masm(&cbuf);
1710    int start = masm.offset();
1711    if (UseSSE >= 2) {
1712      if (VerifyFPU) {
1713        masm.verify_FPU(0, "must be empty in SSE2+ mode");
1714      }
1715    } else {
1716      // External c_calling_convention expects the FPU stack to be 'clean'.
1717      // Compiled code leaves it dirty.  Do cleanup now.
1718      masm.empty_FPU_stack();
1719    }
1720    if (sizeof_FFree_Float_Stack_All == -1) {
1721      sizeof_FFree_Float_Stack_All = masm.offset() - start;
1722    } else {
1723      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1724    }
1725  %}
1726
1727  enc_class Verify_FPU_For_Leaf %{
1728    if( VerifyFPU ) {
1729      MacroAssembler masm(&cbuf);
1730      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1731    }
1732  %}
1733
1734  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1735    // This is the instruction starting address for relocation info.
1736    cbuf.set_inst_mark();
1737    $$$emit8$primary;
1738    // CALL directly to the runtime
1739    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1740                runtime_call_Relocation::spec(), RELOC_IMM32 );
1741
1742    if (UseSSE >= 2) {
1743      MacroAssembler _masm(&cbuf);
1744      BasicType rt = tf()->return_type();
1745
1746      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1747        // A C runtime call where the return value is unused.  In SSE2+
1748        // mode the result needs to be removed from the FPU stack.  It's
1749        // likely that this function call could be removed by the
1750        // optimizer if the C function is a pure function.
1751        __ ffree(0);
1752      } else if (rt == T_FLOAT) {
1753        __ lea(rsp, Address(rsp, -4));
1754        __ fstp_s(Address(rsp, 0));
1755        __ movflt(xmm0, Address(rsp, 0));
1756        __ lea(rsp, Address(rsp,  4));
1757      } else if (rt == T_DOUBLE) {
1758        __ lea(rsp, Address(rsp, -8));
1759        __ fstp_d(Address(rsp, 0));
1760        __ movdbl(xmm0, Address(rsp, 0));
1761        __ lea(rsp, Address(rsp,  8));
1762      }
1763    }
1764  %}
1765
1766
1767  enc_class pre_call_FPU %{
1768    // If method sets FPU control word restore it here
1769    if( Compile::current()->in_24_bit_fp_mode() ) {
1770      MacroAssembler masm(&cbuf);
1771      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1772    }
1773  %}
1774
1775  enc_class post_call_FPU %{
1776    // If method sets FPU control word do it here also
1777    if( Compile::current()->in_24_bit_fp_mode() ) {
1778      MacroAssembler masm(&cbuf);
1779      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1780    }
1781  %}
1782
1783  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1784    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1785    // who we intended to call.
1786    cbuf.set_inst_mark();
1787    $$$emit8$primary;
1788    if ( !_method ) {
1789      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1790                     runtime_call_Relocation::spec(), RELOC_IMM32 );
1791    } else if(_optimized_virtual) {
1792      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1793                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1794    } else {
1795      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1796                     static_call_Relocation::spec(), RELOC_IMM32 );
1797    }
1798    if( _method ) {  // Emit stub for static call
1799      emit_java_to_interp(cbuf);
1800    }
1801  %}
1802
1803  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1804    // !!!!!
1805    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1806    // emit_call_dynamic_prologue( cbuf );
1807    cbuf.set_inst_mark();
1808    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1809    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1810    address  virtual_call_oop_addr = cbuf.inst_mark();
1811    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1812    // who we intended to call.
1813    cbuf.set_inst_mark();
1814    $$$emit8$primary;
1815    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1816                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1817  %}
1818
1819  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1820    int disp = in_bytes(methodOopDesc::from_compiled_offset());
1821    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1822
1823    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1824    cbuf.set_inst_mark();
1825    $$$emit8$primary;
1826    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1827    emit_d8(cbuf, disp);             // Displacement
1828
1829  %}
1830
1831  enc_class Xor_Reg (eRegI dst) %{
1832    emit_opcode(cbuf, 0x33);
1833    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1834  %}
1835
1836//   Following encoding is no longer used, but may be restored if calling
1837//   convention changes significantly.
1838//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1839//
1840//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1841//     // int ic_reg     = Matcher::inline_cache_reg();
1842//     // int ic_encode  = Matcher::_regEncode[ic_reg];
1843//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1844//     // int imo_encode = Matcher::_regEncode[imo_reg];
1845//
1846//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1847//     // // so we load it immediately before the call
1848//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1849//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1850//
1851//     // xor rbp,ebp
1852//     emit_opcode(cbuf, 0x33);
1853//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1854//
1855//     // CALL to interpreter.
1856//     cbuf.set_inst_mark();
1857//     $$$emit8$primary;
1858//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
1859//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1860//   %}
1861
1862  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1863    $$$emit8$primary;
1864    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1865    $$$emit8$shift$$constant;
1866  %}
1867
1868  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1869    // Load immediate does not have a zero or sign extended version
1870    // for 8-bit immediates
1871    emit_opcode(cbuf, 0xB8 + $dst$$reg);
1872    $$$emit32$src$$constant;
1873  %}
1874
1875  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1876    // Load immediate does not have a zero or sign extended version
1877    // for 8-bit immediates
1878    emit_opcode(cbuf, $primary + $dst$$reg);
1879    $$$emit32$src$$constant;
1880  %}
1881
1882  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1883    // Load immediate does not have a zero or sign extended version
1884    // for 8-bit immediates
1885    int dst_enc = $dst$$reg;
1886    int src_con = $src$$constant & 0x0FFFFFFFFL;
1887    if (src_con == 0) {
1888      // xor dst, dst
1889      emit_opcode(cbuf, 0x33);
1890      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1891    } else {
1892      emit_opcode(cbuf, $primary + dst_enc);
1893      emit_d32(cbuf, src_con);
1894    }
1895  %}
1896
1897  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1898    // Load immediate does not have a zero or sign extended version
1899    // for 8-bit immediates
1900    int dst_enc = $dst$$reg + 2;
1901    int src_con = ((julong)($src$$constant)) >> 32;
1902    if (src_con == 0) {
1903      // xor dst, dst
1904      emit_opcode(cbuf, 0x33);
1905      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1906    } else {
1907      emit_opcode(cbuf, $primary + dst_enc);
1908      emit_d32(cbuf, src_con);
1909    }
1910  %}
1911
1912
1913  enc_class LdImmD (immD src) %{    // Load Immediate
1914    if( is_positive_zero_double($src$$constant)) {
1915      // FLDZ
1916      emit_opcode(cbuf,0xD9);
1917      emit_opcode(cbuf,0xEE);
1918    } else if( is_positive_one_double($src$$constant)) {
1919      // FLD1
1920      emit_opcode(cbuf,0xD9);
1921      emit_opcode(cbuf,0xE8);
1922    } else {
1923      emit_opcode(cbuf,0xDD);
1924      emit_rm(cbuf, 0x0, 0x0, 0x5);
1925      emit_double_constant(cbuf, $src$$constant);
1926    }
1927  %}
1928
1929
1930  enc_class LdImmF (immF src) %{    // Load Immediate
1931    if( is_positive_zero_float($src$$constant)) {
1932      emit_opcode(cbuf,0xD9);
1933      emit_opcode(cbuf,0xEE);
1934    } else if( is_positive_one_float($src$$constant)) {
1935      emit_opcode(cbuf,0xD9);
1936      emit_opcode(cbuf,0xE8);
1937    } else {
1938      $$$emit8$primary;
1939      // Load immediate does not have a zero or sign extended version
1940      // for 8-bit immediates
1941      // First load to TOS, then move to dst
1942      emit_rm(cbuf, 0x0, 0x0, 0x5);
1943      emit_float_constant(cbuf, $src$$constant);
1944    }
1945  %}
1946
1947  enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
1948    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1949    emit_float_constant(cbuf, $con$$constant);
1950  %}
1951
1952  enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
1953    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1954    emit_double_constant(cbuf, $con$$constant);
1955  %}
1956
1957  enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
1958    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
1959    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
1960    emit_opcode(cbuf, 0x0F);
1961    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
1962    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1963    emit_double_constant(cbuf, $con$$constant);
1964  %}
1965
1966  enc_class Opc_MemImm_F(immF src) %{
1967    cbuf.set_inst_mark();
1968    $$$emit8$primary;
1969    emit_rm(cbuf, 0x0, $secondary, 0x5);
1970    emit_float_constant(cbuf, $src$$constant);
1971  %}
1972
1973
1974  enc_class MovI2X_reg(regX dst, eRegI src) %{
1975    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1976    emit_opcode(cbuf, 0x0F );
1977    emit_opcode(cbuf, 0x6E );
1978    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1979  %}
1980
1981  enc_class MovX2I_reg(eRegI dst, regX src) %{
1982    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1983    emit_opcode(cbuf, 0x0F );
1984    emit_opcode(cbuf, 0x7E );
1985    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
1986  %}
1987
1988  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
1989    { // MOVD $dst,$src.lo
1990      emit_opcode(cbuf,0x66);
1991      emit_opcode(cbuf,0x0F);
1992      emit_opcode(cbuf,0x6E);
1993      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1994    }
1995    { // MOVD $tmp,$src.hi
1996      emit_opcode(cbuf,0x66);
1997      emit_opcode(cbuf,0x0F);
1998      emit_opcode(cbuf,0x6E);
1999      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2000    }
2001    { // PUNPCKLDQ $dst,$tmp
2002      emit_opcode(cbuf,0x66);
2003      emit_opcode(cbuf,0x0F);
2004      emit_opcode(cbuf,0x62);
2005      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2006     }
2007  %}
2008
2009  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2010    { // MOVD $dst.lo,$src
2011      emit_opcode(cbuf,0x66);
2012      emit_opcode(cbuf,0x0F);
2013      emit_opcode(cbuf,0x7E);
2014      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2015    }
2016    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2017      emit_opcode(cbuf,0xF2);
2018      emit_opcode(cbuf,0x0F);
2019      emit_opcode(cbuf,0x70);
2020      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2021      emit_d8(cbuf, 0x4E);
2022    }
2023    { // MOVD $dst.hi,$tmp
2024      emit_opcode(cbuf,0x66);
2025      emit_opcode(cbuf,0x0F);
2026      emit_opcode(cbuf,0x7E);
2027      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2028    }
2029  %}
2030
2031
2032  // Encode a reg-reg copy.  If it is useless, then empty encoding.
2033  enc_class enc_Copy( eRegI dst, eRegI src ) %{
2034    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2035  %}
2036
2037  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2038    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2039  %}
2040
2041  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2042  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2043    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2044  %}
2045
2046  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2047    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2048  %}
2049
2050  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2051    $$$emit8$primary;
2052    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2053  %}
2054
2055  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2056    $$$emit8$secondary;
2057    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2058  %}
2059
2060  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2061    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2062  %}
2063
2064  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2065    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2066  %}
2067
2068  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2069    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2070  %}
2071
2072  enc_class Con32 (immI src) %{    // Con32(storeImmI)
2073    // Output immediate
2074    $$$emit32$src$$constant;
2075  %}
2076
2077  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2078    // Output Float immediate bits
2079    jfloat jf = $src$$constant;
2080    int    jf_as_bits = jint_cast( jf );
2081    emit_d32(cbuf, jf_as_bits);
2082  %}
2083
2084  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2085    // Output Float immediate bits
2086    jfloat jf = $src$$constant;
2087    int    jf_as_bits = jint_cast( jf );
2088    emit_d32(cbuf, jf_as_bits);
2089  %}
2090
2091  enc_class Con16 (immI src) %{    // Con16(storeImmI)
2092    // Output immediate
2093    $$$emit16$src$$constant;
2094  %}
2095
2096  enc_class Con_d32(immI src) %{
2097    emit_d32(cbuf,$src$$constant);
2098  %}
2099
2100  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2101    // Output immediate memory reference
2102    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2103    emit_d32(cbuf, 0x00);
2104  %}
2105
2106  enc_class lock_prefix( ) %{
2107    if( os::is_MP() )
2108      emit_opcode(cbuf,0xF0);         // [Lock]
2109  %}
2110
2111  // Cmp-xchg long value.
2112  // Note: we need to swap rbx, and rcx before and after the
2113  //       cmpxchg8 instruction because the instruction uses
2114  //       rcx as the high order word of the new value to store but
2115  //       our register encoding uses rbx,.
2116  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2117
2118    // XCHG  rbx,ecx
2119    emit_opcode(cbuf,0x87);
2120    emit_opcode(cbuf,0xD9);
2121    // [Lock]
2122    if( os::is_MP() )
2123      emit_opcode(cbuf,0xF0);
2124    // CMPXCHG8 [Eptr]
2125    emit_opcode(cbuf,0x0F);
2126    emit_opcode(cbuf,0xC7);
2127    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2128    // XCHG  rbx,ecx
2129    emit_opcode(cbuf,0x87);
2130    emit_opcode(cbuf,0xD9);
2131  %}
2132
2133  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2134    // [Lock]
2135    if( os::is_MP() )
2136      emit_opcode(cbuf,0xF0);
2137
2138    // CMPXCHG [Eptr]
2139    emit_opcode(cbuf,0x0F);
2140    emit_opcode(cbuf,0xB1);
2141    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2142  %}
2143
2144  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2145    int res_encoding = $res$$reg;
2146
2147    // MOV  res,0
2148    emit_opcode( cbuf, 0xB8 + res_encoding);
2149    emit_d32( cbuf, 0 );
2150    // JNE,s  fail
2151    emit_opcode(cbuf,0x75);
2152    emit_d8(cbuf, 5 );
2153    // MOV  res,1
2154    emit_opcode( cbuf, 0xB8 + res_encoding);
2155    emit_d32( cbuf, 1 );
2156    // fail:
2157  %}
2158
2159  enc_class set_instruction_start( ) %{
2160    cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
2161  %}
2162
2163  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2164    int reg_encoding = $ereg$$reg;
2165    int base  = $mem$$base;
2166    int index = $mem$$index;
2167    int scale = $mem$$scale;
2168    int displace = $mem$$disp;
2169    bool disp_is_oop = $mem->disp_is_oop();
2170    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2171  %}
2172
2173  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2174    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2175    int base  = $mem$$base;
2176    int index = $mem$$index;
2177    int scale = $mem$$scale;
2178    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2179    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2180    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2181  %}
2182
2183  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2184    int r1, r2;
2185    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2186    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2187    emit_opcode(cbuf,0x0F);
2188    emit_opcode(cbuf,$tertiary);
2189    emit_rm(cbuf, 0x3, r1, r2);
2190    emit_d8(cbuf,$cnt$$constant);
2191    emit_d8(cbuf,$primary);
2192    emit_rm(cbuf, 0x3, $secondary, r1);
2193    emit_d8(cbuf,$cnt$$constant);
2194  %}
2195
2196  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2197    emit_opcode( cbuf, 0x8B ); // Move
2198    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2199    emit_d8(cbuf,$primary);
2200    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2201    emit_d8(cbuf,$cnt$$constant-32);
2202    emit_d8(cbuf,$primary);
2203    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2204    emit_d8(cbuf,31);
2205  %}
2206
2207  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2208    int r1, r2;
2209    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2210    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2211
2212    emit_opcode( cbuf, 0x8B ); // Move r1,r2
2213    emit_rm(cbuf, 0x3, r1, r2);
2214    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2215      emit_opcode(cbuf,$primary);
2216      emit_rm(cbuf, 0x3, $secondary, r1);
2217      emit_d8(cbuf,$cnt$$constant-32);
2218    }
2219    emit_opcode(cbuf,0x33);  // XOR r2,r2
2220    emit_rm(cbuf, 0x3, r2, r2);
2221  %}
2222
2223  // Clone of RegMem but accepts an extra parameter to access each
2224  // half of a double in memory; it never needs relocation info.
2225  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2226    emit_opcode(cbuf,$opcode$$constant);
2227    int reg_encoding = $rm_reg$$reg;
2228    int base     = $mem$$base;
2229    int index    = $mem$$index;
2230    int scale    = $mem$$scale;
2231    int displace = $mem$$disp + $disp_for_half$$constant;
2232    bool disp_is_oop = false;
2233    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2234  %}
2235
2236  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2237  //
2238  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2239  // and it never needs relocation information.
2240  // Frequently used to move data between FPU's Stack Top and memory.
2241  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2242    int rm_byte_opcode = $rm_opcode$$constant;
2243    int base     = $mem$$base;
2244    int index    = $mem$$index;
2245    int scale    = $mem$$scale;
2246    int displace = $mem$$disp;
2247    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2248    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2249  %}
2250
2251  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2252    int rm_byte_opcode = $rm_opcode$$constant;
2253    int base     = $mem$$base;
2254    int index    = $mem$$index;
2255    int scale    = $mem$$scale;
2256    int displace = $mem$$disp;
2257    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2258    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2259  %}
2260
2261  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2262    int reg_encoding = $dst$$reg;
2263    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2264    int index        = 0x04;            // 0x04 indicates no index
2265    int scale        = 0x00;            // 0x00 indicates no scale
2266    int displace     = $src1$$constant; // 0x00 indicates no displacement
2267    bool disp_is_oop = false;
2268    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2269  %}
2270
2271  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2272    // Compare dst,src
2273    emit_opcode(cbuf,0x3B);
2274    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2275    // jmp dst < src around move
2276    emit_opcode(cbuf,0x7C);
2277    emit_d8(cbuf,2);
2278    // move dst,src
2279    emit_opcode(cbuf,0x8B);
2280    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2281  %}
2282
2283  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2284    // Compare dst,src
2285    emit_opcode(cbuf,0x3B);
2286    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2287    // jmp dst > src around move
2288    emit_opcode(cbuf,0x7F);
2289    emit_d8(cbuf,2);
2290    // move dst,src
2291    emit_opcode(cbuf,0x8B);
2292    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2293  %}
2294
2295  enc_class enc_FP_store(memory mem, regD src) %{
2296    // If src is FPR1, we can just FST to store it.
2297    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2298    int reg_encoding = 0x2; // Just store
2299    int base  = $mem$$base;
2300    int index = $mem$$index;
2301    int scale = $mem$$scale;
2302    int displace = $mem$$disp;
2303    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2304    if( $src$$reg != FPR1L_enc ) {
2305      reg_encoding = 0x3;  // Store & pop
2306      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2307      emit_d8( cbuf, 0xC0-1+$src$$reg );
2308    }
2309    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2310    emit_opcode(cbuf,$primary);
2311    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2312  %}
2313
2314  enc_class neg_reg(eRegI dst) %{
2315    // NEG $dst
2316    emit_opcode(cbuf,0xF7);
2317    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2318  %}
2319
2320  enc_class setLT_reg(eCXRegI dst) %{
2321    // SETLT $dst
2322    emit_opcode(cbuf,0x0F);
2323    emit_opcode(cbuf,0x9C);
2324    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2325  %}
2326
2327  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2328    int tmpReg = $tmp$$reg;
2329
2330    // SUB $p,$q
2331    emit_opcode(cbuf,0x2B);
2332    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2333    // SBB $tmp,$tmp
2334    emit_opcode(cbuf,0x1B);
2335    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2336    // AND $tmp,$y
2337    emit_opcode(cbuf,0x23);
2338    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2339    // ADD $p,$tmp
2340    emit_opcode(cbuf,0x03);
2341    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2342  %}
2343
2344  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2345    int tmpReg = $tmp$$reg;
2346
2347    // SUB $p,$q
2348    emit_opcode(cbuf,0x2B);
2349    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2350    // SBB $tmp,$tmp
2351    emit_opcode(cbuf,0x1B);
2352    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2353    // AND $tmp,$y
2354    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2355    emit_opcode(cbuf,0x23);
2356    int reg_encoding = tmpReg;
2357    int base  = $mem$$base;
2358    int index = $mem$$index;
2359    int scale = $mem$$scale;
2360    int displace = $mem$$disp;
2361    bool disp_is_oop = $mem->disp_is_oop();
2362    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2363    // ADD $p,$tmp
2364    emit_opcode(cbuf,0x03);
2365    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2366  %}
2367
2368  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2369    // TEST shift,32
2370    emit_opcode(cbuf,0xF7);
2371    emit_rm(cbuf, 0x3, 0, ECX_enc);
2372    emit_d32(cbuf,0x20);
2373    // JEQ,s small
2374    emit_opcode(cbuf, 0x74);
2375    emit_d8(cbuf, 0x04);
2376    // MOV    $dst.hi,$dst.lo
2377    emit_opcode( cbuf, 0x8B );
2378    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2379    // CLR    $dst.lo
2380    emit_opcode(cbuf, 0x33);
2381    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2382// small:
2383    // SHLD   $dst.hi,$dst.lo,$shift
2384    emit_opcode(cbuf,0x0F);
2385    emit_opcode(cbuf,0xA5);
2386    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2387    // SHL    $dst.lo,$shift"
2388    emit_opcode(cbuf,0xD3);
2389    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2390  %}
2391
2392  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2393    // TEST shift,32
2394    emit_opcode(cbuf,0xF7);
2395    emit_rm(cbuf, 0x3, 0, ECX_enc);
2396    emit_d32(cbuf,0x20);
2397    // JEQ,s small
2398    emit_opcode(cbuf, 0x74);
2399    emit_d8(cbuf, 0x04);
2400    // MOV    $dst.lo,$dst.hi
2401    emit_opcode( cbuf, 0x8B );
2402    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2403    // CLR    $dst.hi
2404    emit_opcode(cbuf, 0x33);
2405    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2406// small:
2407    // SHRD   $dst.lo,$dst.hi,$shift
2408    emit_opcode(cbuf,0x0F);
2409    emit_opcode(cbuf,0xAD);
2410    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2411    // SHR    $dst.hi,$shift"
2412    emit_opcode(cbuf,0xD3);
2413    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2414  %}
2415
2416  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2417    // TEST shift,32
2418    emit_opcode(cbuf,0xF7);
2419    emit_rm(cbuf, 0x3, 0, ECX_enc);
2420    emit_d32(cbuf,0x20);
2421    // JEQ,s small
2422    emit_opcode(cbuf, 0x74);
2423    emit_d8(cbuf, 0x05);
2424    // MOV    $dst.lo,$dst.hi
2425    emit_opcode( cbuf, 0x8B );
2426    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2427    // SAR    $dst.hi,31
2428    emit_opcode(cbuf, 0xC1);
2429    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2430    emit_d8(cbuf, 0x1F );
2431// small:
2432    // SHRD   $dst.lo,$dst.hi,$shift
2433    emit_opcode(cbuf,0x0F);
2434    emit_opcode(cbuf,0xAD);
2435    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2436    // SAR    $dst.hi,$shift"
2437    emit_opcode(cbuf,0xD3);
2438    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2439  %}
2440
2441
2442  // ----------------- Encodings for floating point unit -----------------
2443  // May leave result in FPU-TOS or FPU reg depending on opcodes
2444  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2445    $$$emit8$primary;
2446    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2447  %}
2448
2449  // Pop argument in FPR0 with FSTP ST(0)
2450  enc_class PopFPU() %{
2451    emit_opcode( cbuf, 0xDD );
2452    emit_d8( cbuf, 0xD8 );
2453  %}
2454
2455  // !!!!! equivalent to Pop_Reg_F
2456  enc_class Pop_Reg_D( regD dst ) %{
2457    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2458    emit_d8( cbuf, 0xD8+$dst$$reg );
2459  %}
2460
2461  enc_class Push_Reg_D( regD dst ) %{
2462    emit_opcode( cbuf, 0xD9 );
2463    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2464  %}
2465
2466  enc_class strictfp_bias1( regD dst ) %{
2467    emit_opcode( cbuf, 0xDB );           // FLD m80real
2468    emit_opcode( cbuf, 0x2D );
2469    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2470    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2471    emit_opcode( cbuf, 0xC8+$dst$$reg );
2472  %}
2473
2474  enc_class strictfp_bias2( regD dst ) %{
2475    emit_opcode( cbuf, 0xDB );           // FLD m80real
2476    emit_opcode( cbuf, 0x2D );
2477    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2478    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2479    emit_opcode( cbuf, 0xC8+$dst$$reg );
2480  %}
2481
2482  // Special case for moving an integer register to a stack slot.
2483  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2484    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2485  %}
2486
2487  // Special case for moving a register to a stack slot.
2488  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2489    // Opcode already emitted
2490    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2491    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2492    emit_d32(cbuf, $dst$$disp);   // Displacement
2493  %}
2494
2495  // Push the integer in stackSlot 'src' onto FP-stack
2496  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2497    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2498  %}
2499
2500  // Push the float in stackSlot 'src' onto FP-stack
2501  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2502    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2503  %}
2504
2505  // Push the double in stackSlot 'src' onto FP-stack
2506  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2507    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2508  %}
2509
2510  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2511  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2512    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2513  %}
2514
2515  // Same as Pop_Mem_F except for opcode
2516  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2517  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2518    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2519  %}
2520
2521  enc_class Pop_Reg_F( regF dst ) %{
2522    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2523    emit_d8( cbuf, 0xD8+$dst$$reg );
2524  %}
2525
2526  enc_class Push_Reg_F( regF dst ) %{
2527    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2528    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2529  %}
2530
2531  // Push FPU's float to a stack-slot, and pop FPU-stack
2532  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2533    int pop = 0x02;
2534    if ($src$$reg != FPR1L_enc) {
2535      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2536      emit_d8( cbuf, 0xC0-1+$src$$reg );
2537      pop = 0x03;
2538    }
2539    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2540  %}
2541
2542  // Push FPU's double to a stack-slot, and pop FPU-stack
2543  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2544    int pop = 0x02;
2545    if ($src$$reg != FPR1L_enc) {
2546      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2547      emit_d8( cbuf, 0xC0-1+$src$$reg );
2548      pop = 0x03;
2549    }
2550    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2551  %}
2552
2553  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2554  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2555    int pop = 0xD0 - 1; // -1 since we skip FLD
2556    if ($src$$reg != FPR1L_enc) {
2557      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2558      emit_d8( cbuf, 0xC0-1+$src$$reg );
2559      pop = 0xD8;
2560    }
2561    emit_opcode( cbuf, 0xDD );
2562    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2563  %}
2564
2565
2566  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2567    MacroAssembler masm(&cbuf);
2568    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2569    masm.fmul(   $src2$$reg+0);   // value at TOS
2570    masm.fadd(   $src$$reg+0);    // value at TOS
2571    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2572  %}
2573
2574
2575  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2576    // load dst in FPR0
2577    emit_opcode( cbuf, 0xD9 );
2578    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2579    if ($src$$reg != FPR1L_enc) {
2580      // fincstp
2581      emit_opcode (cbuf, 0xD9);
2582      emit_opcode (cbuf, 0xF7);
2583      // swap src with FPR1:
2584      // FXCH FPR1 with src
2585      emit_opcode(cbuf, 0xD9);
2586      emit_d8(cbuf, 0xC8-1+$src$$reg );
2587      // fdecstp
2588      emit_opcode (cbuf, 0xD9);
2589      emit_opcode (cbuf, 0xF6);
2590    }
2591  %}
2592
2593  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2594    // Allocate a word
2595    emit_opcode(cbuf,0x83);            // SUB ESP,8
2596    emit_opcode(cbuf,0xEC);
2597    emit_d8(cbuf,0x08);
2598
2599    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2600    emit_opcode  (cbuf, 0x0F );
2601    emit_opcode  (cbuf, 0x11 );
2602    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2603
2604    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2605    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2606
2607    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2608    emit_opcode  (cbuf, 0x0F );
2609    emit_opcode  (cbuf, 0x11 );
2610    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2611
2612    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2613    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2614
2615  %}
2616
2617  enc_class Push_ModX_encoding( regX src0, regX src1) %{
2618    // Allocate a word
2619    emit_opcode(cbuf,0x83);            // SUB ESP,4
2620    emit_opcode(cbuf,0xEC);
2621    emit_d8(cbuf,0x04);
2622
2623    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2624    emit_opcode  (cbuf, 0x0F );
2625    emit_opcode  (cbuf, 0x11 );
2626    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2627
2628    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2629    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2630
2631    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2632    emit_opcode  (cbuf, 0x0F );
2633    emit_opcode  (cbuf, 0x11 );
2634    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2635
2636    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2637    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2638
2639  %}
2640
2641  enc_class Push_ResultXD(regXD dst) %{
2642    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2643
2644    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2645    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2646    emit_opcode  (cbuf, 0x0F );
2647    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2648    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2649
2650    emit_opcode(cbuf,0x83);    // ADD ESP,8
2651    emit_opcode(cbuf,0xC4);
2652    emit_d8(cbuf,0x08);
2653  %}
2654
2655  enc_class Push_ResultX(regX dst, immI d8) %{
2656    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2657
2658    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2659    emit_opcode  (cbuf, 0x0F );
2660    emit_opcode  (cbuf, 0x10 );
2661    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2662
2663    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2664    emit_opcode(cbuf,0xC4);
2665    emit_d8(cbuf,$d8$$constant);
2666  %}
2667
2668  enc_class Push_SrcXD(regXD src) %{
2669    // Allocate a word
2670    emit_opcode(cbuf,0x83);            // SUB ESP,8
2671    emit_opcode(cbuf,0xEC);
2672    emit_d8(cbuf,0x08);
2673
2674    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2675    emit_opcode  (cbuf, 0x0F );
2676    emit_opcode  (cbuf, 0x11 );
2677    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2678
2679    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2680    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2681  %}
2682
2683  enc_class push_stack_temp_qword() %{
2684    emit_opcode(cbuf,0x83);     // SUB ESP,8
2685    emit_opcode(cbuf,0xEC);
2686    emit_d8    (cbuf,0x08);
2687  %}
2688
2689  enc_class pop_stack_temp_qword() %{
2690    emit_opcode(cbuf,0x83);     // ADD ESP,8
2691    emit_opcode(cbuf,0xC4);
2692    emit_d8    (cbuf,0x08);
2693  %}
2694
2695  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2696    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2697    emit_opcode  (cbuf, 0x0F );
2698    emit_opcode  (cbuf, 0x11 );
2699    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2700
2701    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2702    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2703  %}
2704
2705  // Compute X^Y using Intel's fast hardware instructions, if possible.
2706  // Otherwise return a NaN.
2707  enc_class pow_exp_core_encoding %{
2708    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2709    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2710    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2711    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2712    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2713    emit_opcode(cbuf,0x1C);
2714    emit_d8(cbuf,0x24);
2715    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2716    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2717    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2718    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2719    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2720    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2721    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2722    emit_d32(cbuf,0xFFFFF800);
2723    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2724    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2725    emit_d32(cbuf,1023);
2726    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2727    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2728    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2729    emit_rm(cbuf,0x3,0x4,EAX_enc);
2730    emit_d8(cbuf,20);
2731    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2732    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2733    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2734    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2735    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2736    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2737    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2738    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2739    emit_d32(cbuf,0);
2740    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2741    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2742  %}
2743
2744//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2745//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2746
2747  enc_class Push_Result_Mod_D( regD src) %{
2748    if ($src$$reg != FPR1L_enc) {
2749      // fincstp
2750      emit_opcode (cbuf, 0xD9);
2751      emit_opcode (cbuf, 0xF7);
2752      // FXCH FPR1 with src
2753      emit_opcode(cbuf, 0xD9);
2754      emit_d8(cbuf, 0xC8-1+$src$$reg );
2755      // fdecstp
2756      emit_opcode (cbuf, 0xD9);
2757      emit_opcode (cbuf, 0xF6);
2758    }
2759    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2760    // // FSTP   FPR$dst$$reg
2761    // emit_opcode( cbuf, 0xDD );
2762    // emit_d8( cbuf, 0xD8+$dst$$reg );
2763  %}
2764
2765  enc_class fnstsw_sahf_skip_parity() %{
2766    // fnstsw ax
2767    emit_opcode( cbuf, 0xDF );
2768    emit_opcode( cbuf, 0xE0 );
2769    // sahf
2770    emit_opcode( cbuf, 0x9E );
2771    // jnp  ::skip
2772    emit_opcode( cbuf, 0x7B );
2773    emit_opcode( cbuf, 0x05 );
2774  %}
2775
2776  enc_class emitModD() %{
2777    // fprem must be iterative
2778    // :: loop
2779    // fprem
2780    emit_opcode( cbuf, 0xD9 );
2781    emit_opcode( cbuf, 0xF8 );
2782    // wait
2783    emit_opcode( cbuf, 0x9b );
2784    // fnstsw ax
2785    emit_opcode( cbuf, 0xDF );
2786    emit_opcode( cbuf, 0xE0 );
2787    // sahf
2788    emit_opcode( cbuf, 0x9E );
2789    // jp  ::loop
2790    emit_opcode( cbuf, 0x0F );
2791    emit_opcode( cbuf, 0x8A );
2792    emit_opcode( cbuf, 0xF4 );
2793    emit_opcode( cbuf, 0xFF );
2794    emit_opcode( cbuf, 0xFF );
2795    emit_opcode( cbuf, 0xFF );
2796  %}
2797
2798  enc_class fpu_flags() %{
2799    // fnstsw_ax
2800    emit_opcode( cbuf, 0xDF);
2801    emit_opcode( cbuf, 0xE0);
2802    // test ax,0x0400
2803    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2804    emit_opcode( cbuf, 0xA9 );
2805    emit_d16   ( cbuf, 0x0400 );
2806    // // // This sequence works, but stalls for 12-16 cycles on PPro
2807    // // test rax,0x0400
2808    // emit_opcode( cbuf, 0xA9 );
2809    // emit_d32   ( cbuf, 0x00000400 );
2810    //
2811    // jz exit (no unordered comparison)
2812    emit_opcode( cbuf, 0x74 );
2813    emit_d8    ( cbuf, 0x02 );
2814    // mov ah,1 - treat as LT case (set carry flag)
2815    emit_opcode( cbuf, 0xB4 );
2816    emit_d8    ( cbuf, 0x01 );
2817    // sahf
2818    emit_opcode( cbuf, 0x9E);
2819  %}
2820
2821  enc_class cmpF_P6_fixup() %{
2822    // Fixup the integer flags in case comparison involved a NaN
2823    //
2824    // JNP exit (no unordered comparison, P-flag is set by NaN)
2825    emit_opcode( cbuf, 0x7B );
2826    emit_d8    ( cbuf, 0x03 );
2827    // MOV AH,1 - treat as LT case (set carry flag)
2828    emit_opcode( cbuf, 0xB4 );
2829    emit_d8    ( cbuf, 0x01 );
2830    // SAHF
2831    emit_opcode( cbuf, 0x9E);
2832    // NOP     // target for branch to avoid branch to branch
2833    emit_opcode( cbuf, 0x90);
2834  %}
2835
2836//     fnstsw_ax();
2837//     sahf();
2838//     movl(dst, nan_result);
2839//     jcc(Assembler::parity, exit);
2840//     movl(dst, less_result);
2841//     jcc(Assembler::below, exit);
2842//     movl(dst, equal_result);
2843//     jcc(Assembler::equal, exit);
2844//     movl(dst, greater_result);
2845
2846// less_result     =  1;
2847// greater_result  = -1;
2848// equal_result    = 0;
2849// nan_result      = -1;
2850
2851  enc_class CmpF_Result(eRegI dst) %{
2852    // fnstsw_ax();
2853    emit_opcode( cbuf, 0xDF);
2854    emit_opcode( cbuf, 0xE0);
2855    // sahf
2856    emit_opcode( cbuf, 0x9E);
2857    // movl(dst, nan_result);
2858    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2859    emit_d32( cbuf, -1 );
2860    // jcc(Assembler::parity, exit);
2861    emit_opcode( cbuf, 0x7A );
2862    emit_d8    ( cbuf, 0x13 );
2863    // movl(dst, less_result);
2864    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2865    emit_d32( cbuf, -1 );
2866    // jcc(Assembler::below, exit);
2867    emit_opcode( cbuf, 0x72 );
2868    emit_d8    ( cbuf, 0x0C );
2869    // movl(dst, equal_result);
2870    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2871    emit_d32( cbuf, 0 );
2872    // jcc(Assembler::equal, exit);
2873    emit_opcode( cbuf, 0x74 );
2874    emit_d8    ( cbuf, 0x05 );
2875    // movl(dst, greater_result);
2876    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2877    emit_d32( cbuf, 1 );
2878  %}
2879
2880
2881  // XMM version of CmpF_Result. Because the XMM compare
2882  // instructions set the EFLAGS directly. It becomes simpler than
2883  // the float version above.
2884  enc_class CmpX_Result(eRegI dst) %{
2885    MacroAssembler _masm(&cbuf);
2886    Label nan, inc, done;
2887
2888    __ jccb(Assembler::parity, nan);
2889    __ jccb(Assembler::equal,  done);
2890    __ jccb(Assembler::above,  inc);
2891    __ bind(nan);
2892    __ decrement(as_Register($dst$$reg)); // NO L qqq
2893    __ jmpb(done);
2894    __ bind(inc);
2895    __ increment(as_Register($dst$$reg)); // NO L qqq
2896    __ bind(done);
2897  %}
2898
2899  // Compare the longs and set flags
2900  // BROKEN!  Do Not use as-is
2901  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2902    // CMP    $src1.hi,$src2.hi
2903    emit_opcode( cbuf, 0x3B );
2904    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2905    // JNE,s  done
2906    emit_opcode(cbuf,0x75);
2907    emit_d8(cbuf, 2 );
2908    // CMP    $src1.lo,$src2.lo
2909    emit_opcode( cbuf, 0x3B );
2910    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2911// done:
2912  %}
2913
2914  enc_class convert_int_long( regL dst, eRegI src ) %{
2915    // mov $dst.lo,$src
2916    int dst_encoding = $dst$$reg;
2917    int src_encoding = $src$$reg;
2918    encode_Copy( cbuf, dst_encoding  , src_encoding );
2919    // mov $dst.hi,$src
2920    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2921    // sar $dst.hi,31
2922    emit_opcode( cbuf, 0xC1 );
2923    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2924    emit_d8(cbuf, 0x1F );
2925  %}
2926
2927  enc_class convert_long_double( eRegL src ) %{
2928    // push $src.hi
2929    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2930    // push $src.lo
2931    emit_opcode(cbuf, 0x50+$src$$reg  );
2932    // fild 64-bits at [SP]
2933    emit_opcode(cbuf,0xdf);
2934    emit_d8(cbuf, 0x6C);
2935    emit_d8(cbuf, 0x24);
2936    emit_d8(cbuf, 0x00);
2937    // pop stack
2938    emit_opcode(cbuf, 0x83); // add  SP, #8
2939    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2940    emit_d8(cbuf, 0x8);
2941  %}
2942
2943  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2944    // IMUL   EDX:EAX,$src1
2945    emit_opcode( cbuf, 0xF7 );
2946    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2947    // SAR    EDX,$cnt-32
2948    int shift_count = ((int)$cnt$$constant) - 32;
2949    if (shift_count > 0) {
2950      emit_opcode(cbuf, 0xC1);
2951      emit_rm(cbuf, 0x3, 7, $dst$$reg );
2952      emit_d8(cbuf, shift_count);
2953    }
2954  %}
2955
2956  // this version doesn't have add sp, 8
2957  enc_class convert_long_double2( eRegL src ) %{
2958    // push $src.hi
2959    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2960    // push $src.lo
2961    emit_opcode(cbuf, 0x50+$src$$reg  );
2962    // fild 64-bits at [SP]
2963    emit_opcode(cbuf,0xdf);
2964    emit_d8(cbuf, 0x6C);
2965    emit_d8(cbuf, 0x24);
2966    emit_d8(cbuf, 0x00);
2967  %}
2968
2969  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2970    // Basic idea: long = (long)int * (long)int
2971    // IMUL EDX:EAX, src
2972    emit_opcode( cbuf, 0xF7 );
2973    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2974  %}
2975
2976  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2977    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2978    // MUL EDX:EAX, src
2979    emit_opcode( cbuf, 0xF7 );
2980    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2981  %}
2982
2983  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
2984    // Basic idea: lo(result) = lo(x_lo * y_lo)
2985    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2986    // MOV    $tmp,$src.lo
2987    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2988    // IMUL   $tmp,EDX
2989    emit_opcode( cbuf, 0x0F );
2990    emit_opcode( cbuf, 0xAF );
2991    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2992    // MOV    EDX,$src.hi
2993    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2994    // IMUL   EDX,EAX
2995    emit_opcode( cbuf, 0x0F );
2996    emit_opcode( cbuf, 0xAF );
2997    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2998    // ADD    $tmp,EDX
2999    emit_opcode( cbuf, 0x03 );
3000    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3001    // MUL   EDX:EAX,$src.lo
3002    emit_opcode( cbuf, 0xF7 );
3003    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3004    // ADD    EDX,ESI
3005    emit_opcode( cbuf, 0x03 );
3006    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3007  %}
3008
3009  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3010    // Basic idea: lo(result) = lo(src * y_lo)
3011    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3012    // IMUL   $tmp,EDX,$src
3013    emit_opcode( cbuf, 0x6B );
3014    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3015    emit_d8( cbuf, (int)$src$$constant );
3016    // MOV    EDX,$src
3017    emit_opcode(cbuf, 0xB8 + EDX_enc);
3018    emit_d32( cbuf, (int)$src$$constant );
3019    // MUL   EDX:EAX,EDX
3020    emit_opcode( cbuf, 0xF7 );
3021    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3022    // ADD    EDX,ESI
3023    emit_opcode( cbuf, 0x03 );
3024    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3025  %}
3026
3027  enc_class long_div( eRegL src1, eRegL src2 ) %{
3028    // PUSH src1.hi
3029    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3030    // PUSH src1.lo
3031    emit_opcode(cbuf,               0x50+$src1$$reg  );
3032    // PUSH src2.hi
3033    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3034    // PUSH src2.lo
3035    emit_opcode(cbuf,               0x50+$src2$$reg  );
3036    // CALL directly to the runtime
3037    cbuf.set_inst_mark();
3038    emit_opcode(cbuf,0xE8);       // Call into runtime
3039    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3040    // Restore stack
3041    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3042    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3043    emit_d8(cbuf, 4*4);
3044  %}
3045
3046  enc_class long_mod( eRegL src1, eRegL src2 ) %{
3047    // PUSH src1.hi
3048    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3049    // PUSH src1.lo
3050    emit_opcode(cbuf,               0x50+$src1$$reg  );
3051    // PUSH src2.hi
3052    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3053    // PUSH src2.lo
3054    emit_opcode(cbuf,               0x50+$src2$$reg  );
3055    // CALL directly to the runtime
3056    cbuf.set_inst_mark();
3057    emit_opcode(cbuf,0xE8);       // Call into runtime
3058    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3059    // Restore stack
3060    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3061    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3062    emit_d8(cbuf, 4*4);
3063  %}
3064
3065  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3066    // MOV   $tmp,$src.lo
3067    emit_opcode(cbuf, 0x8B);
3068    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3069    // OR    $tmp,$src.hi
3070    emit_opcode(cbuf, 0x0B);
3071    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3072  %}
3073
3074  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3075    // CMP    $src1.lo,$src2.lo
3076    emit_opcode( cbuf, 0x3B );
3077    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3078    // JNE,s  skip
3079    emit_cc(cbuf, 0x70, 0x5);
3080    emit_d8(cbuf,2);
3081    // CMP    $src1.hi,$src2.hi
3082    emit_opcode( cbuf, 0x3B );
3083    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3084  %}
3085
3086  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3087    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3088    emit_opcode( cbuf, 0x3B );
3089    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3090    // MOV    $tmp,$src1.hi
3091    emit_opcode( cbuf, 0x8B );
3092    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3093    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3094    emit_opcode( cbuf, 0x1B );
3095    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3096  %}
3097
3098  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3099    // XOR    $tmp,$tmp
3100    emit_opcode(cbuf,0x33);  // XOR
3101    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3102    // CMP    $tmp,$src.lo
3103    emit_opcode( cbuf, 0x3B );
3104    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3105    // SBB    $tmp,$src.hi
3106    emit_opcode( cbuf, 0x1B );
3107    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3108  %}
3109
3110 // Sniff, sniff... smells like Gnu Superoptimizer
3111  enc_class neg_long( eRegL dst ) %{
3112    emit_opcode(cbuf,0xF7);    // NEG hi
3113    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3114    emit_opcode(cbuf,0xF7);    // NEG lo
3115    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3116    emit_opcode(cbuf,0x83);    // SBB hi,0
3117    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3118    emit_d8    (cbuf,0 );
3119  %}
3120
3121  enc_class movq_ld(regXD dst, memory mem) %{
3122    MacroAssembler _masm(&cbuf);
3123    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3124    __ movq(as_XMMRegister($dst$$reg), madr);
3125  %}
3126
3127  enc_class movq_st(memory mem, regXD src) %{
3128    MacroAssembler _masm(&cbuf);
3129    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3130    __ movq(madr, as_XMMRegister($src$$reg));
3131  %}
3132
3133  enc_class pshufd_8x8(regX dst, regX src) %{
3134    MacroAssembler _masm(&cbuf);
3135
3136    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3137    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3138    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3139  %}
3140
3141  enc_class pshufd_4x16(regX dst, regX src) %{
3142    MacroAssembler _masm(&cbuf);
3143
3144    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3145  %}
3146
3147  enc_class pshufd(regXD dst, regXD src, int mode) %{
3148    MacroAssembler _masm(&cbuf);
3149
3150    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3151  %}
3152
3153  enc_class pxor(regXD dst, regXD src) %{
3154    MacroAssembler _masm(&cbuf);
3155
3156    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3157  %}
3158
3159  enc_class mov_i2x(regXD dst, eRegI src) %{
3160    MacroAssembler _masm(&cbuf);
3161
3162    __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3163  %}
3164
3165
3166  // Because the transitions from emitted code to the runtime
3167  // monitorenter/exit helper stubs are so slow it's critical that
3168  // we inline both the stack-locking fast-path and the inflated fast path.
3169  //
3170  // See also: cmpFastLock and cmpFastUnlock.
3171  //
3172  // What follows is a specialized inline transliteration of the code
3173  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3174  // another option would be to emit TrySlowEnter and TrySlowExit methods
3175  // at startup-time.  These methods would accept arguments as
3176  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3177  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3178  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3179  // In practice, however, the # of lock sites is bounded and is usually small.
3180  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3181  // if the processor uses simple bimodal branch predictors keyed by EIP
3182  // Since the helper routines would be called from multiple synchronization
3183  // sites.
3184  //
3185  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3186  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3187  // to those specialized methods.  That'd give us a mostly platform-independent
3188  // implementation that the JITs could optimize and inline at their pleasure.
3189  // Done correctly, the only time we'd need to cross to native could would be
3190  // to park() or unpark() threads.  We'd also need a few more unsafe operators
3191  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3192  // (b) explicit barriers or fence operations.
3193  //
3194  // TODO:
3195  //
3196  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3197  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3198  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3199  //    the lock operators would typically be faster than reifying Self.
3200  //
3201  // *  Ideally I'd define the primitives as:
3202  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3203  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3204  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3205  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3206  //    Furthermore the register assignments are overconstrained, possibly resulting in
3207  //    sub-optimal code near the synchronization site.
3208  //
3209  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3210  //    Alternately, use a better sp-proximity test.
3211  //
3212  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3213  //    Either one is sufficient to uniquely identify a thread.
3214  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3215  //
3216  // *  Intrinsify notify() and notifyAll() for the common cases where the
3217  //    object is locked by the calling thread but the waitlist is empty.
3218  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3219  //
3220  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3221  //    But beware of excessive branch density on AMD Opterons.
3222  //
3223  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3224  //    or failure of the fast-path.  If the fast-path fails then we pass
3225  //    control to the slow-path, typically in C.  In Fast_Lock and
3226  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3227  //    will emit a conditional branch immediately after the node.
3228  //    So we have branches to branches and lots of ICC.ZF games.
3229  //    Instead, it might be better to have C2 pass a "FailureLabel"
3230  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3231  //    will drop through the node.  ICC.ZF is undefined at exit.
3232  //    In the case of failure, the node will branch directly to the
3233  //    FailureLabel
3234
3235
3236  // obj: object to lock
3237  // box: on-stack box address (displaced header location) - KILLED
3238  // rax,: tmp -- KILLED
3239  // scr: tmp -- KILLED
3240  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3241
3242    Register objReg = as_Register($obj$$reg);
3243    Register boxReg = as_Register($box$$reg);
3244    Register tmpReg = as_Register($tmp$$reg);
3245    Register scrReg = as_Register($scr$$reg);
3246
3247    // Ensure the register assignents are disjoint
3248    guarantee (objReg != boxReg, "") ;
3249    guarantee (objReg != tmpReg, "") ;
3250    guarantee (objReg != scrReg, "") ;
3251    guarantee (boxReg != tmpReg, "") ;
3252    guarantee (boxReg != scrReg, "") ;
3253    guarantee (tmpReg == as_Register(EAX_enc), "") ;
3254
3255    MacroAssembler masm(&cbuf);
3256
3257    if (_counters != NULL) {
3258      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3259    }
3260    if (EmitSync & 1) {
3261        // set box->dhw = unused_mark (3)
3262        // Force all sync thru slow-path: slow_enter() and slow_exit() 
3263        masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3264        masm.cmpptr (rsp, (int32_t)0) ;                        
3265    } else 
3266    if (EmitSync & 2) { 
3267        Label DONE_LABEL ;           
3268        if (UseBiasedLocking) {
3269           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3270           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3271        }
3272
3273        masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3274        masm.orptr (tmpReg, 0x1);
3275        masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3276        if (os::is_MP()) { masm.lock();  }
3277        masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3278        masm.jcc(Assembler::equal, DONE_LABEL);
3279        // Recursive locking
3280        masm.subptr(tmpReg, rsp);
3281        masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3282        masm.movptr(Address(boxReg, 0), tmpReg);
3283        masm.bind(DONE_LABEL) ; 
3284    } else {  
3285      // Possible cases that we'll encounter in fast_lock 
3286      // ------------------------------------------------
3287      // * Inflated
3288      //    -- unlocked
3289      //    -- Locked
3290      //       = by self
3291      //       = by other
3292      // * biased
3293      //    -- by Self
3294      //    -- by other
3295      // * neutral
3296      // * stack-locked
3297      //    -- by self
3298      //       = sp-proximity test hits
3299      //       = sp-proximity test generates false-negative
3300      //    -- by other
3301      //
3302
3303      Label IsInflated, DONE_LABEL, PopDone ;
3304
3305      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3306      // order to reduce the number of conditional branches in the most common cases.
3307      // Beware -- there's a subtle invariant that fetch of the markword
3308      // at [FETCH], below, will never observe a biased encoding (*101b).
3309      // If this invariant is not held we risk exclusion (safety) failure.
3310      if (UseBiasedLocking) {
3311        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3312      }
3313
3314      masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3315      masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3316      masm.jccb  (Assembler::notZero, IsInflated) ;
3317
3318      // Attempt stack-locking ...
3319      masm.orptr (tmpReg, 0x1);
3320      masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3321      if (os::is_MP()) { masm.lock();  }
3322      masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3323      if (_counters != NULL) {
3324        masm.cond_inc32(Assembler::equal,
3325                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3326      }
3327      masm.jccb (Assembler::equal, DONE_LABEL);
3328
3329      // Recursive locking
3330      masm.subptr(tmpReg, rsp);
3331      masm.andptr(tmpReg, 0xFFFFF003 );
3332      masm.movptr(Address(boxReg, 0), tmpReg);
3333      if (_counters != NULL) {
3334        masm.cond_inc32(Assembler::equal,
3335                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3336      }
3337      masm.jmp  (DONE_LABEL) ;
3338
3339      masm.bind (IsInflated) ;
3340
3341      // The object is inflated.
3342      //
3343      // TODO-FIXME: eliminate the ugly use of manifest constants:
3344      //   Use markOopDesc::monitor_value instead of "2".
3345      //   use markOop::unused_mark() instead of "3".
3346      // The tmpReg value is an objectMonitor reference ORed with
3347      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3348      // objectmonitor pointer by masking off the "2" bit or we can just
3349      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3350      // field offsets with "-2" to compensate for and annul the low-order tag bit.
3351      //
3352      // I use the latter as it avoids AGI stalls.
3353      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3354      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3355      //
3356      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3357
3358      // boxReg refers to the on-stack BasicLock in the current frame.
3359      // We'd like to write:
3360      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3361      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3362      // additional latency as we have another ST in the store buffer that must drain.
3363
3364      if (EmitSync & 8192) { 
3365         masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3366         masm.get_thread (scrReg) ; 
3367         masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3368         masm.movptr(tmpReg, 0);                         // consider: xor vs mov
3369         if (os::is_MP()) { masm.lock(); } 
3370         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3371      } else 
3372      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3373         masm.movptr(scrReg, boxReg) ; 
3374         masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3375
3376         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3377         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3378            // prefetchw [eax + Offset(_owner)-2]
3379            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3380         }
3381
3382         if ((EmitSync & 64) == 0) {
3383           // Optimistic form: consider XORL tmpReg,tmpReg
3384           masm.movptr(tmpReg, 0 ) ; 
3385         } else { 
3386           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3387           // Test-And-CAS instead of CAS
3388           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3389           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3390           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3391         }
3392
3393         // Appears unlocked - try to swing _owner from null to non-null.
3394         // Ideally, I'd manifest "Self" with get_thread and then attempt
3395         // to CAS the register containing Self into m->Owner.
3396         // But we don't have enough registers, so instead we can either try to CAS
3397         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3398         // we later store "Self" into m->Owner.  Transiently storing a stack address
3399         // (rsp or the address of the box) into  m->owner is harmless.
3400         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3401         if (os::is_MP()) { masm.lock();  }
3402         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3403         masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3404         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3405         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3406         masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3407         masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3408                       
3409         // If the CAS fails we can either retry or pass control to the slow-path.  
3410         // We use the latter tactic.  
3411         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3412         // If the CAS was successful ...
3413         //   Self has acquired the lock
3414         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3415         // Intentional fall-through into DONE_LABEL ...
3416      } else {
3417         masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3418         masm.movptr(boxReg, tmpReg) ; 
3419
3420         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3421         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3422            // prefetchw [eax + Offset(_owner)-2]
3423            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3424         }
3425
3426         if ((EmitSync & 64) == 0) {
3427           // Optimistic form
3428           masm.xorptr  (tmpReg, tmpReg) ; 
3429         } else { 
3430           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3431           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3432           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3433           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3434         }
3435
3436         // Appears unlocked - try to swing _owner from null to non-null.
3437         // Use either "Self" (in scr) or rsp as thread identity in _owner.
3438         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3439         masm.get_thread (scrReg) ;
3440         if (os::is_MP()) { masm.lock(); }
3441         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3442
3443         // If the CAS fails we can either retry or pass control to the slow-path.
3444         // We use the latter tactic.
3445         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3446         // If the CAS was successful ...
3447         //   Self has acquired the lock
3448         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3449         // Intentional fall-through into DONE_LABEL ...
3450      }
3451
3452      // DONE_LABEL is a hot target - we'd really like to place it at the
3453      // start of cache line by padding with NOPs.
3454      // See the AMD and Intel software optimization manuals for the
3455      // most efficient "long" NOP encodings.
3456      // Unfortunately none of our alignment mechanisms suffice.
3457      masm.bind(DONE_LABEL);
3458
3459      // Avoid branch-to-branch on AMD processors
3460      // This appears to be superstition.
3461      if (EmitSync & 32) masm.nop() ;
3462
3463
3464      // At DONE_LABEL the icc ZFlag is set as follows ...
3465      // Fast_Unlock uses the same protocol.
3466      // ZFlag == 1 -> Success
3467      // ZFlag == 0 -> Failure - force control through the slow-path
3468    }
3469  %}
3470
3471  // obj: object to unlock
3472  // box: box address (displaced header location), killed.  Must be EAX.
3473  // rbx,: killed tmp; cannot be obj nor box.
3474  //
3475  // Some commentary on balanced locking:
3476  //
3477  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3478  // Methods that don't have provably balanced locking are forced to run in the
3479  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3480  // The interpreter provides two properties:
3481  // I1:  At return-time the interpreter automatically and quietly unlocks any
3482  //      objects acquired the current activation (frame).  Recall that the
3483  //      interpreter maintains an on-stack list of locks currently held by
3484  //      a frame.
3485  // I2:  If a method attempts to unlock an object that is not held by the
3486  //      the frame the interpreter throws IMSX.
3487  //
3488  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3489  // B() doesn't have provably balanced locking so it runs in the interpreter.
3490  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3491  // is still locked by A().
3492  //
3493  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3494  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3495  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3496  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3497
3498  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3499
3500    Register objReg = as_Register($obj$$reg);
3501    Register boxReg = as_Register($box$$reg);
3502    Register tmpReg = as_Register($tmp$$reg);
3503
3504    guarantee (objReg != boxReg, "") ;
3505    guarantee (objReg != tmpReg, "") ;
3506    guarantee (boxReg != tmpReg, "") ;
3507    guarantee (boxReg == as_Register(EAX_enc), "") ;
3508    MacroAssembler masm(&cbuf);
3509
3510    if (EmitSync & 4) {
3511      // Disable - inhibit all inlining.  Force control through the slow-path
3512      masm.cmpptr (rsp, 0) ; 
3513    } else 
3514    if (EmitSync & 8) {
3515      Label DONE_LABEL ;
3516      if (UseBiasedLocking) {
3517         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3518      }
3519      // classic stack-locking code ...
3520      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3521      masm.testptr(tmpReg, tmpReg) ;
3522      masm.jcc   (Assembler::zero, DONE_LABEL) ;
3523      if (os::is_MP()) { masm.lock(); }
3524      masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3525      masm.bind(DONE_LABEL);
3526    } else {
3527      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3528
3529      // Critically, the biased locking test must have precedence over
3530      // and appear before the (box->dhw == 0) recursive stack-lock test.
3531      if (UseBiasedLocking) {
3532         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3533      }
3534      
3535      masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3536      masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3537      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3538
3539      masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3540      masm.jccb  (Assembler::zero, Stacked) ;
3541
3542      masm.bind  (Inflated) ;
3543      // It's inflated.
3544      // Despite our balanced locking property we still check that m->_owner == Self
3545      // as java routines or native JNI code called by this thread might
3546      // have released the lock.
3547      // Refer to the comments in synchronizer.cpp for how we might encode extra
3548      // state in _succ so we can avoid fetching EntryList|cxq.
3549      //
3550      // I'd like to add more cases in fast_lock() and fast_unlock() --
3551      // such as recursive enter and exit -- but we have to be wary of
3552      // I$ bloat, T$ effects and BP$ effects.
3553      //
3554      // If there's no contention try a 1-0 exit.  That is, exit without
3555      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3556      // we detect and recover from the race that the 1-0 exit admits.
3557      //
3558      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3559      // before it STs null into _owner, releasing the lock.  Updates
3560      // to data protected by the critical section must be visible before
3561      // we drop the lock (and thus before any other thread could acquire
3562      // the lock and observe the fields protected by the lock).
3563      // IA32's memory-model is SPO, so STs are ordered with respect to
3564      // each other and there's no need for an explicit barrier (fence).
3565      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3566
3567      masm.get_thread (boxReg) ;
3568      if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3569        // prefetchw [ebx + Offset(_owner)-2]
3570        masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3571      }
3572
3573      // Note that we could employ various encoding schemes to reduce
3574      // the number of loads below (currently 4) to just 2 or 3.
3575      // Refer to the comments in synchronizer.cpp.
3576      // In practice the chain of fetches doesn't seem to impact performance, however.
3577      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3578         // Attempt to reduce branch density - AMD's branch predictor.
3579         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3580         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3581         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3582         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3583         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3584         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; 
3585         masm.jmpb  (DONE_LABEL) ; 
3586      } else { 
3587         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3588         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3589         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3590         masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3591         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3592         masm.jccb  (Assembler::notZero, CheckSucc) ; 
3593         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; 
3594         masm.jmpb  (DONE_LABEL) ; 
3595      }
3596
3597      // The Following code fragment (EmitSync & 65536) improves the performance of
3598      // contended applications and contended synchronization microbenchmarks.
3599      // Unfortunately the emission of the code - even though not executed - causes regressions
3600      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3601      // with an equal number of never-executed NOPs results in the same regression.
3602      // We leave it off by default.
3603
3604      if ((EmitSync & 65536) != 0) {
3605         Label LSuccess, LGoSlowPath ;
3606
3607         masm.bind  (CheckSucc) ;
3608
3609         // Optional pre-test ... it's safe to elide this
3610         if ((EmitSync & 16) == 0) { 
3611            masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3612            masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3613         }
3614
3615         // We have a classic Dekker-style idiom:
3616         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3617         // There are a number of ways to implement the barrier:
3618         // (1) lock:andl &m->_owner, 0
3619         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3620         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3621         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3622         // (2) If supported, an explicit MFENCE is appealing.
3623         //     In older IA32 processors MFENCE is slower than lock:add or xchg
3624         //     particularly if the write-buffer is full as might be the case if
3625         //     if stores closely precede the fence or fence-equivalent instruction.
3626         //     In more modern implementations MFENCE appears faster, however.
3627         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3628         //     The $lines underlying the top-of-stack should be in M-state.
3629         //     The locked add instruction is serializing, of course.
3630         // (4) Use xchg, which is serializing
3631         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3632         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3633         //     The integer condition codes will tell us if succ was 0.
3634         //     Since _succ and _owner should reside in the same $line and
3635         //     we just stored into _owner, it's likely that the $line
3636         //     remains in M-state for the lock:orl.
3637         //
3638         // We currently use (3), although it's likely that switching to (2)
3639         // is correct for the future.
3640            
3641         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; 
3642         if (os::is_MP()) { 
3643            if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3644              masm.mfence();
3645            } else { 
3646              masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3647            }
3648         }
3649         // Ratify _succ remains non-null
3650         masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3651         masm.jccb  (Assembler::notZero, LSuccess) ; 
3652
3653         masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3654         if (os::is_MP()) { masm.lock(); }
3655         masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3656         masm.jccb  (Assembler::notEqual, LSuccess) ;
3657         // Since we're low on registers we installed rsp as a placeholding in _owner.
3658         // Now install Self over rsp.  This is safe as we're transitioning from
3659         // non-null to non=null
3660         masm.get_thread (boxReg) ;
3661         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3662         // Intentional fall-through into LGoSlowPath ...
3663
3664         masm.bind  (LGoSlowPath) ; 
3665         masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3666         masm.jmpb  (DONE_LABEL) ; 
3667
3668         masm.bind  (LSuccess) ; 
3669         masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3670         masm.jmpb  (DONE_LABEL) ; 
3671      }
3672
3673      masm.bind (Stacked) ;
3674      // It's not inflated and it's not recursively stack-locked and it's not biased.
3675      // It must be stack-locked.
3676      // Try to reset the header to displaced header.
3677      // The "box" value on the stack is stable, so we can reload
3678      // and be assured we observe the same value as above.
3679      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3680      if (os::is_MP()) {   masm.lock();    }
3681      masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3682      // Intention fall-thru into DONE_LABEL
3683
3684
3685      // DONE_LABEL is a hot target - we'd really like to place it at the
3686      // start of cache line by padding with NOPs.
3687      // See the AMD and Intel software optimization manuals for the
3688      // most efficient "long" NOP encodings.
3689      // Unfortunately none of our alignment mechanisms suffice.
3690      if ((EmitSync & 65536) == 0) {
3691         masm.bind (CheckSucc) ;
3692      }
3693      masm.bind(DONE_LABEL);
3694
3695      // Avoid branch to branch on AMD processors
3696      if (EmitSync & 32768) { masm.nop() ; }
3697    }
3698  %}
3699
3700  enc_class enc_String_Compare() %{
3701    Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
3702          POP_LABEL, DONE_LABEL, CONT_LABEL,
3703          WHILE_HEAD_LABEL;
3704    MacroAssembler masm(&cbuf);
3705
3706    // Get the first character position in both strings
3707    //         [8] char array, [12] offset, [16] count
3708    int value_offset  = java_lang_String::value_offset_in_bytes();
3709    int offset_offset = java_lang_String::offset_offset_in_bytes();
3710    int count_offset  = java_lang_String::count_offset_in_bytes();
3711    int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3712
3713    masm.movptr(rax, Address(rsi, value_offset));
3714    masm.movl(rcx, Address(rsi, offset_offset));
3715    masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
3716    masm.movptr(rbx, Address(rdi, value_offset));
3717    masm.movl(rcx, Address(rdi, offset_offset));
3718    masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
3719
3720    // Compute the minimum of the string lengths(rsi) and the
3721    // difference of the string lengths (stack)
3722
3723
3724    if (VM_Version::supports_cmov()) {
3725      masm.movl(rdi, Address(rdi, count_offset));
3726      masm.movl(rsi, Address(rsi, count_offset));
3727      masm.movl(rcx, rdi);
3728      masm.subl(rdi, rsi);
3729      masm.push(rdi);
3730      masm.cmovl(Assembler::lessEqual, rsi, rcx);
3731    } else {
3732      masm.movl(rdi, Address(rdi, count_offset));
3733      masm.movl(rcx, Address(rsi, count_offset));
3734      masm.movl(rsi, rdi);
3735      masm.subl(rdi, rcx);
3736      masm.push(rdi);
3737      masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
3738      masm.movl(rsi, rcx);
3739      // rsi holds min, rcx is unused
3740    }
3741
3742    // Is the minimum length zero?
3743    masm.bind(ECX_GOOD_LABEL);
3744    masm.testl(rsi, rsi);
3745    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3746
3747    // Load first characters
3748    masm.load_unsigned_word(rcx, Address(rbx, 0));
3749    masm.load_unsigned_word(rdi, Address(rax, 0));
3750
3751    // Compare first characters
3752    masm.subl(rcx, rdi);
3753    masm.jcc(Assembler::notZero,  POP_LABEL);
3754    masm.decrementl(rsi);
3755    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3756
3757    {
3758      // Check after comparing first character to see if strings are equivalent
3759      Label LSkip2;
3760      // Check if the strings start at same location
3761      masm.cmpptr(rbx,rax);
3762      masm.jcc(Assembler::notEqual, LSkip2);
3763
3764      // Check if the length difference is zero (from stack)
3765      masm.cmpl(Address(rsp, 0), 0x0);
3766      masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
3767
3768      // Strings might not be equivalent
3769      masm.bind(LSkip2);
3770    }
3771
3772    // Shift rax, and rbx, to the end of the arrays, negate min
3773    masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
3774    masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
3775    masm.negl(rsi);
3776
3777    // Compare the rest of the characters
3778    masm.bind(WHILE_HEAD_LABEL);
3779    masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
3780    masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
3781    masm.subl(rcx, rdi);
3782    masm.jcc(Assembler::notZero, POP_LABEL);
3783    masm.incrementl(rsi);
3784    masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
3785
3786    // Strings are equal up to min length.  Return the length difference.
3787    masm.bind(LENGTH_DIFF_LABEL);
3788    masm.pop(rcx);
3789    masm.jmp(DONE_LABEL);
3790
3791    // Discard the stored length difference
3792    masm.bind(POP_LABEL);
3793    masm.addptr(rsp, 4);
3794       
3795    // That's it
3796    masm.bind(DONE_LABEL);
3797  %}
3798
3799  enc_class enc_Array_Equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result) %{
3800    Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
3801    MacroAssembler masm(&cbuf);
3802
3803    Register ary1Reg   = as_Register($ary1$$reg);
3804    Register ary2Reg   = as_Register($ary2$$reg);
3805    Register tmp1Reg   = as_Register($tmp1$$reg);
3806    Register tmp2Reg   = as_Register($tmp2$$reg);
3807    Register resultReg = as_Register($result$$reg);
3808
3809    int length_offset  = arrayOopDesc::length_offset_in_bytes();
3810    int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3811
3812    // Check the input args
3813    masm.cmpl(ary1Reg, ary2Reg);
3814    masm.jcc(Assembler::equal, TRUE_LABEL);
3815    masm.testl(ary1Reg, ary1Reg);
3816    masm.jcc(Assembler::zero, FALSE_LABEL);
3817    masm.testl(ary2Reg, ary2Reg);
3818    masm.jcc(Assembler::zero, FALSE_LABEL);
3819
3820    // Check the lengths
3821    masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
3822    masm.movl(resultReg, Address(ary2Reg, length_offset));
3823    masm.cmpl(tmp2Reg, resultReg);
3824    masm.jcc(Assembler::notEqual, FALSE_LABEL);
3825    masm.testl(resultReg, resultReg);
3826    masm.jcc(Assembler::zero, TRUE_LABEL);
3827
3828    // Get the number of 4 byte vectors to compare
3829    masm.shrl(resultReg, 1);
3830
3831    // Check for odd-length arrays
3832    masm.andl(tmp2Reg, 1);
3833    masm.testl(tmp2Reg, tmp2Reg);
3834    masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
3835
3836    // Compare 2-byte "tail" at end of arrays
3837    masm.load_unsigned_word(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
3838    masm.load_unsigned_word(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
3839    masm.cmpl(tmp1Reg, tmp2Reg);
3840    masm.jcc(Assembler::notEqual, FALSE_LABEL);
3841    masm.testl(resultReg, resultReg);
3842    masm.jcc(Assembler::zero, TRUE_LABEL);
3843
3844    // Setup compare loop
3845    masm.bind(COMPARE_LOOP_HDR);
3846    // Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
3847    masm.leal(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
3848    masm.leal(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
3849    masm.negl(resultReg);
3850
3851    // 4-byte-wide compare loop
3852    masm.bind(COMPARE_LOOP);
3853    masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
3854    masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
3855    masm.cmpl(ary1Reg, ary2Reg);
3856    masm.jcc(Assembler::notEqual, FALSE_LABEL);
3857    masm.increment(resultReg);
3858    masm.jcc(Assembler::notZero, COMPARE_LOOP);
3859
3860    masm.bind(TRUE_LABEL);
3861    masm.movl(resultReg, 1);   // return true
3862    masm.jmp(DONE_LABEL);
3863
3864    masm.bind(FALSE_LABEL);
3865    masm.xorl(resultReg, resultReg); // return false
3866
3867    // That's it
3868    masm.bind(DONE_LABEL);
3869  %}
3870
3871  enc_class enc_pop_rdx() %{
3872    emit_opcode(cbuf,0x5A);
3873  %}
3874
3875  enc_class enc_rethrow() %{
3876    cbuf.set_inst_mark();
3877    emit_opcode(cbuf, 0xE9);        // jmp    entry
3878    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
3879                   runtime_call_Relocation::spec(), RELOC_IMM32 );
3880  %}
3881
3882
3883  // Convert a double to an int.  Java semantics require we do complex
3884  // manglelations in the corner cases.  So we set the rounding mode to
3885  // 'zero', store the darned double down as an int, and reset the
3886  // rounding mode to 'nearest'.  The hardware throws an exception which
3887  // patches up the correct value directly to the stack.
3888  enc_class D2I_encoding( regD src ) %{
3889    // Flip to round-to-zero mode.  We attempted to allow invalid-op
3890    // exceptions here, so that a NAN or other corner-case value will
3891    // thrown an exception (but normal values get converted at full speed).
3892    // However, I2C adapters and other float-stack manglers leave pending
3893    // invalid-op exceptions hanging.  We would have to clear them before
3894    // enabling them and that is more expensive than just testing for the
3895    // invalid value Intel stores down in the corner cases.
3896    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3897    emit_opcode(cbuf,0x2D);
3898    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3899    // Allocate a word
3900    emit_opcode(cbuf,0x83);            // SUB ESP,4
3901    emit_opcode(cbuf,0xEC);
3902    emit_d8(cbuf,0x04);
3903    // Encoding assumes a double has been pushed into FPR0.
3904    // Store down the double as an int, popping the FPU stack
3905    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3906    emit_opcode(cbuf,0x1C);
3907    emit_d8(cbuf,0x24);
3908    // Restore the rounding mode; mask the exception
3909    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3910    emit_opcode(cbuf,0x2D);
3911    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3912        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3913        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3914
3915    // Load the converted int; adjust CPU stack
3916    emit_opcode(cbuf,0x58);       // POP EAX
3917    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3918    emit_d32   (cbuf,0x80000000); //         0x80000000
3919    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3920    emit_d8    (cbuf,0x07);       // Size of slow_call
3921    // Push src onto stack slow-path
3922    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3923    emit_d8    (cbuf,0xC0-1+$src$$reg );
3924    // CALL directly to the runtime
3925    cbuf.set_inst_mark();
3926    emit_opcode(cbuf,0xE8);       // Call into runtime
3927    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3928    // Carry on here...
3929  %}
3930
3931  enc_class D2L_encoding( regD src ) %{
3932    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3933    emit_opcode(cbuf,0x2D);
3934    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3935    // Allocate a word
3936    emit_opcode(cbuf,0x83);            // SUB ESP,8
3937    emit_opcode(cbuf,0xEC);
3938    emit_d8(cbuf,0x08);
3939    // Encoding assumes a double has been pushed into FPR0.
3940    // Store down the double as a long, popping the FPU stack
3941    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3942    emit_opcode(cbuf,0x3C);
3943    emit_d8(cbuf,0x24);
3944    // Restore the rounding mode; mask the exception
3945    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3946    emit_opcode(cbuf,0x2D);
3947    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3948        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3949        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3950
3951    // Load the converted int; adjust CPU stack
3952    emit_opcode(cbuf,0x58);       // POP EAX
3953    emit_opcode(cbuf,0x5A);       // POP EDX
3954    emit_opcode(cbuf,0x81);       // CMP EDX,imm
3955    emit_d8    (cbuf,0xFA);       // rdx
3956    emit_d32   (cbuf,0x80000000); //         0x80000000
3957    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3958    emit_d8    (cbuf,0x07+4);     // Size of slow_call
3959    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3960    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3961    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3962    emit_d8    (cbuf,0x07);       // Size of slow_call
3963    // Push src onto stack slow-path
3964    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3965    emit_d8    (cbuf,0xC0-1+$src$$reg );
3966    // CALL directly to the runtime
3967    cbuf.set_inst_mark();
3968    emit_opcode(cbuf,0xE8);       // Call into runtime
3969    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3970    // Carry on here...
3971  %}
3972
3973  enc_class X2L_encoding( regX src ) %{
3974    // Allocate a word
3975    emit_opcode(cbuf,0x83);      // SUB ESP,8
3976    emit_opcode(cbuf,0xEC);
3977    emit_d8(cbuf,0x08);
3978
3979    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3980    emit_opcode  (cbuf, 0x0F );
3981    emit_opcode  (cbuf, 0x11 );
3982    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3983
3984    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3985    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3986
3987    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3988    emit_opcode(cbuf,0x2D);
3989    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3990
3991    // Encoding assumes a double has been pushed into FPR0.
3992    // Store down the double as a long, popping the FPU stack
3993    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3994    emit_opcode(cbuf,0x3C);
3995    emit_d8(cbuf,0x24);
3996
3997    // Restore the rounding mode; mask the exception
3998    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3999    emit_opcode(cbuf,0x2D);
4000    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
4001      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
4002      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
4003
4004    // Load the converted int; adjust CPU stack
4005    emit_opcode(cbuf,0x58);      // POP EAX
4006
4007    emit_opcode(cbuf,0x5A);      // POP EDX
4008
4009    emit_opcode(cbuf,0x81);      // CMP EDX,imm
4010    emit_d8    (cbuf,0xFA);      // rdx
4011    emit_d32   (cbuf,0x80000000);//         0x80000000
4012
4013    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4014    emit_d8    (cbuf,0x13+4);    // Size of slow_call
4015
4016    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
4017    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
4018
4019    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4020    emit_d8    (cbuf,0x13);      // Size of slow_call
4021
4022    // Allocate a word
4023    emit_opcode(cbuf,0x83);      // SUB ESP,4
4024    emit_opcode(cbuf,0xEC);
4025    emit_d8(cbuf,0x04);
4026
4027    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
4028    emit_opcode  (cbuf, 0x0F );
4029    emit_opcode  (cbuf, 0x11 );
4030    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4031
4032    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
4033    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4034
4035    emit_opcode(cbuf,0x83);      // ADD ESP,4
4036    emit_opcode(cbuf,0xC4);
4037    emit_d8(cbuf,0x04);
4038
4039    // CALL directly to the runtime
4040    cbuf.set_inst_mark();
4041    emit_opcode(cbuf,0xE8);       // Call into runtime
4042    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4043    // Carry on here...
4044  %}
4045
4046  enc_class XD2L_encoding( regXD src ) %{
4047    // Allocate a word
4048    emit_opcode(cbuf,0x83);      // SUB ESP,8
4049    emit_opcode(cbuf,0xEC);
4050    emit_d8(cbuf,0x08);
4051
4052    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4053    emit_opcode  (cbuf, 0x0F );
4054    emit_opcode  (cbuf, 0x11 );
4055    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4056
4057    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4058    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4059
4060    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
4061    emit_opcode(cbuf,0x2D);
4062    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
4063
4064    // Encoding assumes a double has been pushed into FPR0.
4065    // Store down the double as a long, popping the FPU stack
4066    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
4067    emit_opcode(cbuf,0x3C);
4068    emit_d8(cbuf,0x24);
4069
4070    // Restore the rounding mode; mask the exception
4071    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
4072    emit_opcode(cbuf,0x2D);
4073    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
4074      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
4075      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
4076
4077    // Load the converted int; adjust CPU stack
4078    emit_opcode(cbuf,0x58);      // POP EAX
4079
4080    emit_opcode(cbuf,0x5A);      // POP EDX
4081
4082    emit_opcode(cbuf,0x81);      // CMP EDX,imm
4083    emit_d8    (cbuf,0xFA);      // rdx
4084    emit_d32   (cbuf,0x80000000); //         0x80000000
4085
4086    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4087    emit_d8    (cbuf,0x13+4);    // Size of slow_call
4088
4089    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
4090    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
4091
4092    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4093    emit_d8    (cbuf,0x13);      // Size of slow_call
4094
4095    // Push src onto stack slow-path
4096    // Allocate a word
4097    emit_opcode(cbuf,0x83);      // SUB ESP,8
4098    emit_opcode(cbuf,0xEC);
4099    emit_d8(cbuf,0x08);
4100
4101    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4102    emit_opcode  (cbuf, 0x0F );
4103    emit_opcode  (cbuf, 0x11 );
4104    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4105
4106    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4107    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4108
4109    emit_opcode(cbuf,0x83);      // ADD ESP,8
4110    emit_opcode(cbuf,0xC4);
4111    emit_d8(cbuf,0x08);
4112
4113    // CALL directly to the runtime
4114    cbuf.set_inst_mark();
4115    emit_opcode(cbuf,0xE8);      // Call into runtime
4116    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4117    // Carry on here...
4118  %}
4119
4120  enc_class D2X_encoding( regX dst, regD src ) %{
4121    // Allocate a word
4122    emit_opcode(cbuf,0x83);            // SUB ESP,4
4123    emit_opcode(cbuf,0xEC);
4124    emit_d8(cbuf,0x04);
4125    int pop = 0x02;
4126    if ($src$$reg != FPR1L_enc) {
4127      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4128      emit_d8( cbuf, 0xC0-1+$src$$reg );
4129      pop = 0x03;
4130    }
4131    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4132
4133    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4134    emit_opcode  (cbuf, 0x0F );
4135    emit_opcode  (cbuf, 0x10 );
4136    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4137
4138    emit_opcode(cbuf,0x83);            // ADD ESP,4
4139    emit_opcode(cbuf,0xC4);
4140    emit_d8(cbuf,0x04);
4141    // Carry on here...
4142  %}
4143
4144  enc_class FX2I_encoding( regX src, eRegI dst ) %{
4145    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4146
4147    // Compare the result to see if we need to go to the slow path
4148    emit_opcode(cbuf,0x81);       // CMP dst,imm
4149    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4150    emit_d32   (cbuf,0x80000000); //         0x80000000
4151
4152    emit_opcode(cbuf,0x75);       // JNE around_slow_call
4153    emit_d8    (cbuf,0x13);       // Size of slow_call
4154    // Store xmm to a temp memory
4155    // location and push it onto stack.
4156
4157    emit_opcode(cbuf,0x83);  // SUB ESP,4
4158    emit_opcode(cbuf,0xEC);
4159    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4160
4161    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4162    emit_opcode  (cbuf, 0x0F );
4163    emit_opcode  (cbuf, 0x11 );
4164    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4165
4166    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4167    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4168
4169    emit_opcode(cbuf,0x83);    // ADD ESP,4
4170    emit_opcode(cbuf,0xC4);
4171    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4172
4173    // CALL directly to the runtime
4174    cbuf.set_inst_mark();
4175    emit_opcode(cbuf,0xE8);       // Call into runtime
4176    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4177
4178    // Carry on here...
4179  %}
4180
4181  enc_class X2D_encoding( regD dst, regX src ) %{
4182    // Allocate a word
4183    emit_opcode(cbuf,0x83);     // SUB ESP,4
4184    emit_opcode(cbuf,0xEC);
4185    emit_d8(cbuf,0x04);
4186
4187    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4188    emit_opcode  (cbuf, 0x0F );
4189    emit_opcode  (cbuf, 0x11 );
4190    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4191
4192    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4193    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4194
4195    emit_opcode(cbuf,0x83);     // ADD ESP,4
4196    emit_opcode(cbuf,0xC4);
4197    emit_d8(cbuf,0x04);
4198
4199    // Carry on here...
4200  %}
4201
4202  enc_class AbsXF_encoding(regX dst) %{
4203    address signmask_address=(address)float_signmask_pool;
4204    // andpd:\tANDPS  $dst,[signconst]
4205    emit_opcode(cbuf, 0x0F);
4206    emit_opcode(cbuf, 0x54);
4207    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4208    emit_d32(cbuf, (int)signmask_address);
4209  %}
4210
4211  enc_class AbsXD_encoding(regXD dst) %{
4212    address signmask_address=(address)double_signmask_pool;
4213    // andpd:\tANDPD  $dst,[signconst]
4214    emit_opcode(cbuf, 0x66);
4215    emit_opcode(cbuf, 0x0F);
4216    emit_opcode(cbuf, 0x54);
4217    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4218    emit_d32(cbuf, (int)signmask_address);
4219  %}
4220
4221  enc_class NegXF_encoding(regX dst) %{
4222    address signmask_address=(address)float_signflip_pool;
4223    // andpd:\tXORPS  $dst,[signconst]
4224    emit_opcode(cbuf, 0x0F);
4225    emit_opcode(cbuf, 0x57);
4226    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4227    emit_d32(cbuf, (int)signmask_address);
4228  %}
4229
4230  enc_class NegXD_encoding(regXD dst) %{
4231    address signmask_address=(address)double_signflip_pool;
4232    // andpd:\tXORPD  $dst,[signconst]
4233    emit_opcode(cbuf, 0x66);
4234    emit_opcode(cbuf, 0x0F);
4235    emit_opcode(cbuf, 0x57);
4236    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4237    emit_d32(cbuf, (int)signmask_address);
4238  %}
4239
4240  enc_class FMul_ST_reg( eRegF src1 ) %{
4241    // Operand was loaded from memory into fp ST (stack top)
4242    // FMUL   ST,$src  /* D8 C8+i */
4243    emit_opcode(cbuf, 0xD8);
4244    emit_opcode(cbuf, 0xC8 + $src1$$reg);
4245  %}
4246
4247  enc_class FAdd_ST_reg( eRegF src2 ) %{
4248    // FADDP  ST,src2  /* D8 C0+i */
4249    emit_opcode(cbuf, 0xD8);
4250    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4251    //could use FADDP  src2,fpST  /* DE C0+i */
4252  %}
4253
4254  enc_class FAddP_reg_ST( eRegF src2 ) %{
4255    // FADDP  src2,ST  /* DE C0+i */
4256    emit_opcode(cbuf, 0xDE);
4257    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4258  %}
4259
4260  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4261    // Operand has been loaded into fp ST (stack top)
4262      // FSUB   ST,$src1
4263      emit_opcode(cbuf, 0xD8);
4264      emit_opcode(cbuf, 0xE0 + $src1$$reg);
4265
4266      // FDIV
4267      emit_opcode(cbuf, 0xD8);
4268      emit_opcode(cbuf, 0xF0 + $src2$$reg);
4269  %}
4270
4271  enc_class MulFAddF (eRegF src1, eRegF src2) %{
4272    // Operand was loaded from memory into fp ST (stack top)
4273    // FADD   ST,$src  /* D8 C0+i */
4274    emit_opcode(cbuf, 0xD8);
4275    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4276
4277    // FMUL  ST,src2  /* D8 C*+i */
4278    emit_opcode(cbuf, 0xD8);
4279    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4280  %}
4281
4282
4283  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4284    // Operand was loaded from memory into fp ST (stack top)
4285    // FADD   ST,$src  /* D8 C0+i */
4286    emit_opcode(cbuf, 0xD8);
4287    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4288
4289    // FMULP  src2,ST  /* DE C8+i */
4290    emit_opcode(cbuf, 0xDE);
4291    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4292  %}
4293
4294  enc_class enc_membar_acquire %{
4295    // Doug Lea believes this is not needed with current Sparcs and TSO.
4296    // MacroAssembler masm(&cbuf);
4297    // masm.membar();
4298  %}
4299
4300  enc_class enc_membar_release %{
4301    // Doug Lea believes this is not needed with current Sparcs and TSO.
4302    // MacroAssembler masm(&cbuf);
4303    // masm.membar();
4304  %}
4305
4306  enc_class enc_membar_volatile %{
4307    MacroAssembler masm(&cbuf);
4308    masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
4309                                            Assembler::StoreStore));
4310  %}
4311
4312  // Atomically load the volatile long
4313  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4314    emit_opcode(cbuf,0xDF);
4315    int rm_byte_opcode = 0x05;
4316    int base     = $mem$$base;
4317    int index    = $mem$$index;
4318    int scale    = $mem$$scale;
4319    int displace = $mem$$disp;
4320    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4321    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4322    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4323  %}
4324
4325  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4326    { // Atomic long load
4327      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4328      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4329      emit_opcode(cbuf,0x0F);
4330      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4331      int base     = $mem$$base;
4332      int index    = $mem$$index;
4333      int scale    = $mem$$scale;
4334      int displace = $mem$$disp;
4335      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4336      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4337    }
4338    { // MOVSD $dst,$tmp ! atomic long store
4339      emit_opcode(cbuf,0xF2);
4340      emit_opcode(cbuf,0x0F);
4341      emit_opcode(cbuf,0x11);
4342      int base     = $dst$$base;
4343      int index    = $dst$$index;
4344      int scale    = $dst$$scale;
4345      int displace = $dst$$disp;
4346      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4347      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4348    }
4349  %}
4350
4351  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4352    { // Atomic long load
4353      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4354      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4355      emit_opcode(cbuf,0x0F);
4356      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4357      int base     = $mem$$base;
4358      int index    = $mem$$index;
4359      int scale    = $mem$$scale;
4360      int displace = $mem$$disp;
4361      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4362      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4363    }
4364    { // MOVD $dst.lo,$tmp
4365      emit_opcode(cbuf,0x66);
4366      emit_opcode(cbuf,0x0F);
4367      emit_opcode(cbuf,0x7E);
4368      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4369    }
4370    { // PSRLQ $tmp,32
4371      emit_opcode(cbuf,0x66);
4372      emit_opcode(cbuf,0x0F);
4373      emit_opcode(cbuf,0x73);
4374      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4375      emit_d8(cbuf, 0x20);
4376    }
4377    { // MOVD $dst.hi,$tmp
4378      emit_opcode(cbuf,0x66);
4379      emit_opcode(cbuf,0x0F);
4380      emit_opcode(cbuf,0x7E);
4381      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4382    }
4383  %}
4384
4385  // Volatile Store Long.  Must be atomic, so move it into
4386  // the FP TOS and then do a 64-bit FIST.  Has to probe the
4387  // target address before the store (for null-ptr checks)
4388  // so the memory operand is used twice in the encoding.
4389  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4390    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4391    cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
4392    emit_opcode(cbuf,0xDF);
4393    int rm_byte_opcode = 0x07;
4394    int base     = $mem$$base;
4395    int index    = $mem$$index;
4396    int scale    = $mem$$scale;
4397    int displace = $mem$$disp;
4398    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4399    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4400  %}
4401
4402  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4403    { // Atomic long load
4404      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4405      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4406      emit_opcode(cbuf,0x0F);
4407      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4408      int base     = $src$$base;
4409      int index    = $src$$index;
4410      int scale    = $src$$scale;
4411      int displace = $src$$disp;
4412      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4413      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4414    }
4415    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4416    { // MOVSD $mem,$tmp ! atomic long store
4417      emit_opcode(cbuf,0xF2);
4418      emit_opcode(cbuf,0x0F);
4419      emit_opcode(cbuf,0x11);
4420      int base     = $mem$$base;
4421      int index    = $mem$$index;
4422      int scale    = $mem$$scale;
4423      int displace = $mem$$disp;
4424      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4425      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4426    }
4427  %}
4428
4429  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4430    { // MOVD $tmp,$src.lo
4431      emit_opcode(cbuf,0x66);
4432      emit_opcode(cbuf,0x0F);
4433      emit_opcode(cbuf,0x6E);
4434      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4435    }
4436    { // MOVD $tmp2,$src.hi
4437      emit_opcode(cbuf,0x66);
4438      emit_opcode(cbuf,0x0F);
4439      emit_opcode(cbuf,0x6E);
4440      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4441    }
4442    { // PUNPCKLDQ $tmp,$tmp2
4443      emit_opcode(cbuf,0x66);
4444      emit_opcode(cbuf,0x0F);
4445      emit_opcode(cbuf,0x62);
4446      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4447    }
4448    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4449    { // MOVSD $mem,$tmp ! atomic long store
4450      emit_opcode(cbuf,0xF2);
4451      emit_opcode(cbuf,0x0F);
4452      emit_opcode(cbuf,0x11);
4453      int base     = $mem$$base;
4454      int index    = $mem$$index;
4455      int scale    = $mem$$scale;
4456      int displace = $mem$$disp;
4457      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4458      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4459    }
4460  %}
4461
4462  // Safepoint Poll.  This polls the safepoint page, and causes an
4463  // exception if it is not readable. Unfortunately, it kills the condition code
4464  // in the process
4465  // We current use TESTL [spp],EDI
4466  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4467
4468  enc_class Safepoint_Poll() %{
4469    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
4470    emit_opcode(cbuf,0x85);
4471    emit_rm (cbuf, 0x0, 0x7, 0x5);
4472    emit_d32(cbuf, (intptr_t)os::get_polling_page());
4473  %}
4474%}
4475
4476
4477//----------FRAME--------------------------------------------------------------
4478// Definition of frame structure and management information.
4479//
4480//  S T A C K   L A Y O U T    Allocators stack-slot number
4481//                             |   (to get allocators register number
4482//  G  Owned by    |        |  v    add OptoReg::stack0())
4483//  r   CALLER     |        |
4484//  o     |        +--------+      pad to even-align allocators stack-slot
4485//  w     V        |  pad0  |        numbers; owned by CALLER
4486//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4487//  h     ^        |   in   |  5
4488//        |        |  args  |  4   Holes in incoming args owned by SELF
4489//  |     |        |        |  3
4490//  |     |        +--------+
4491//  V     |        | old out|      Empty on Intel, window on Sparc
4492//        |    old |preserve|      Must be even aligned.
4493//        |     SP-+--------+----> Matcher::_old_SP, even aligned
4494//        |        |   in   |  3   area for Intel ret address
4495//     Owned by    |preserve|      Empty on Sparc.
4496//       SELF      +--------+
4497//        |        |  pad2  |  2   pad to align old SP
4498//        |        +--------+  1
4499//        |        | locks  |  0
4500//        |        +--------+----> OptoReg::stack0(), even aligned
4501//        |        |  pad1  | 11   pad to align new SP
4502//        |        +--------+
4503//        |        |        | 10
4504//        |        | spills |  9   spills
4505//        V        |        |  8   (pad0 slot for callee)
4506//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4507//        ^        |  out   |  7
4508//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4509//     Owned by    +--------+
4510//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4511//        |    new |preserve|      Must be even-aligned.
4512//        |     SP-+--------+----> Matcher::_new_SP, even aligned
4513//        |        |        |
4514//
4515// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4516//         known from SELF's arguments and the Java calling convention.
4517//         Region 6-7 is determined per call site.
4518// Note 2: If the calling convention leaves holes in the incoming argument
4519//         area, those holes are owned by SELF.  Holes in the outgoing area
4520//         are owned by the CALLEE.  Holes should not be nessecary in the
4521//         incoming area, as the Java calling convention is completely under
4522//         the control of the AD file.  Doubles can be sorted and packed to
4523//         avoid holes.  Holes in the outgoing arguments may be nessecary for
4524//         varargs C calling conventions.
4525// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4526//         even aligned with pad0 as needed.
4527//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4528//         region 6-11 is even aligned; it may be padded out more so that
4529//         the region from SP to FP meets the minimum stack alignment.
4530
4531frame %{
4532  // What direction does stack grow in (assumed to be same for C & Java)
4533  stack_direction(TOWARDS_LOW);
4534
4535  // These three registers define part of the calling convention
4536  // between compiled code and the interpreter.
4537  inline_cache_reg(EAX);                // Inline Cache Register
4538  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4539
4540  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4541  cisc_spilling_operand_name(indOffset32);
4542
4543  // Number of stack slots consumed by locking an object
4544  sync_stack_slots(1);
4545
4546  // Compiled code's Frame Pointer
4547  frame_pointer(ESP);
4548  // Interpreter stores its frame pointer in a register which is
4549  // stored to the stack by I2CAdaptors.
4550  // I2CAdaptors convert from interpreted java to compiled java.
4551  interpreter_frame_pointer(EBP);
4552
4553  // Stack alignment requirement
4554  // Alignment size in bytes (128-bit -> 16 bytes)
4555  stack_alignment(StackAlignmentInBytes);
4556
4557  // Number of stack slots between incoming argument block and the start of
4558  // a new frame.  The PROLOG must add this many slots to the stack.  The
4559  // EPILOG must remove this many slots.  Intel needs one slot for
4560  // return address and one for rbp, (must save rbp)
4561  in_preserve_stack_slots(2+VerifyStackAtCalls);
4562
4563  // Number of outgoing stack slots killed above the out_preserve_stack_slots
4564  // for calls to C.  Supports the var-args backing area for register parms.
4565  varargs_C_out_slots_killed(0);
4566
4567  // The after-PROLOG location of the return address.  Location of
4568  // return address specifies a type (REG or STACK) and a number
4569  // representing the register number (i.e. - use a register name) or
4570  // stack slot.
4571  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4572  // Otherwise, it is above the locks and verification slot and alignment word
4573  return_addr(STACK - 1 +
4574              round_to(1+VerifyStackAtCalls+
4575              Compile::current()->fixed_slots(),
4576              (StackAlignmentInBytes/wordSize)));
4577
4578  // Body of function which returns an integer array locating
4579  // arguments either in registers or in stack slots.  Passed an array
4580  // of ideal registers called "sig" and a "length" count.  Stack-slot
4581  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4582  // arguments for a CALLEE.  Incoming stack arguments are
4583  // automatically biased by the preserve_stack_slots field above.
4584  calling_convention %{
4585    // No difference between ingoing/outgoing just pass false
4586    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4587  %}
4588
4589
4590  // Body of function which returns an integer array locating
4591  // arguments either in registers or in stack slots.  Passed an array
4592  // of ideal registers called "sig" and a "length" count.  Stack-slot
4593  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4594  // arguments for a CALLEE.  Incoming stack arguments are
4595  // automatically biased by the preserve_stack_slots field above.
4596  c_calling_convention %{
4597    // This is obviously always outgoing
4598    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4599  %}
4600
4601  // Location of C & interpreter return values
4602  c_return_value %{
4603    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4604    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4605    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4606
4607    // in SSE2+ mode we want to keep the FPU stack clean so pretend
4608    // that C functions return float and double results in XMM0.
4609    if( ideal_reg == Op_RegD && UseSSE>=2 )
4610      return OptoRegPair(XMM0b_num,XMM0a_num);
4611    if( ideal_reg == Op_RegF && UseSSE>=2 )
4612      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4613
4614    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4615  %}
4616
4617  // Location of return values
4618  return_value %{
4619    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4620    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4621    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4622    if( ideal_reg == Op_RegD && UseSSE>=2 )
4623      return OptoRegPair(XMM0b_num,XMM0a_num);
4624    if( ideal_reg == Op_RegF && UseSSE>=1 )
4625      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4626    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4627  %}
4628
4629%}
4630
4631//----------ATTRIBUTES---------------------------------------------------------
4632//----------Operand Attributes-------------------------------------------------
4633op_attrib op_cost(0);        // Required cost attribute
4634
4635//----------Instruction Attributes---------------------------------------------
4636ins_attrib ins_cost(100);       // Required cost attribute
4637ins_attrib ins_size(8);         // Required size attribute (in bits)
4638ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4639ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4640                                // non-matching short branch variant of some
4641                                                            // long branch?
4642ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4643                                // specifies the alignment that some part of the instruction (not
4644                                // necessarily the start) requires.  If > 1, a compute_padding()
4645                                // function must be provided for the instruction
4646
4647//----------OPERANDS-----------------------------------------------------------
4648// Operand definitions must precede instruction definitions for correct parsing
4649// in the ADLC because operands constitute user defined types which are used in
4650// instruction definitions.
4651
4652//----------Simple Operands----------------------------------------------------
4653// Immediate Operands
4654// Integer Immediate
4655operand immI() %{
4656  match(ConI);
4657
4658  op_cost(10);
4659  format %{ %}
4660  interface(CONST_INTER);
4661%}
4662
4663// Constant for test vs zero
4664operand immI0() %{
4665  predicate(n->get_int() == 0);
4666  match(ConI);
4667
4668  op_cost(0);
4669  format %{ %}
4670  interface(CONST_INTER);
4671%}
4672
4673// Constant for increment
4674operand immI1() %{
4675  predicate(n->get_int() == 1);
4676  match(ConI);
4677
4678  op_cost(0);
4679  format %{ %}
4680  interface(CONST_INTER);
4681%}
4682
4683// Constant for decrement
4684operand immI_M1() %{
4685  predicate(n->get_int() == -1);
4686  match(ConI);
4687
4688  op_cost(0);
4689  format %{ %}
4690  interface(CONST_INTER);
4691%}
4692
4693// Valid scale values for addressing modes
4694operand immI2() %{
4695  predicate(0 <= n->get_int() && (n->get_int() <= 3));
4696  match(ConI);
4697
4698  format %{ %}
4699  interface(CONST_INTER);
4700%}
4701
4702operand immI8() %{
4703  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4704  match(ConI);
4705
4706  op_cost(5);
4707  format %{ %}
4708  interface(CONST_INTER);
4709%}
4710
4711operand immI16() %{
4712  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4713  match(ConI);
4714
4715  op_cost(10);
4716  format %{ %}
4717  interface(CONST_INTER);
4718%}
4719
4720// Constant for long shifts
4721operand immI_32() %{
4722  predicate( n->get_int() == 32 );
4723  match(ConI);
4724
4725  op_cost(0);
4726  format %{ %}
4727  interface(CONST_INTER);
4728%}
4729
4730operand immI_1_31() %{
4731  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4732  match(ConI);
4733
4734  op_cost(0);
4735  format %{ %}
4736  interface(CONST_INTER);
4737%}
4738
4739operand immI_32_63() %{
4740  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4741  match(ConI);
4742  op_cost(0);
4743
4744  format %{ %}
4745  interface(CONST_INTER);
4746%}
4747
4748operand immI_1() %{
4749  predicate( n->get_int() == 1 );
4750  match(ConI);
4751
4752  op_cost(0);
4753  format %{ %}
4754  interface(CONST_INTER);
4755%}
4756
4757operand immI_2() %{
4758  predicate( n->get_int() == 2 );
4759  match(ConI);
4760
4761  op_cost(0);
4762  format %{ %}
4763  interface(CONST_INTER);
4764%}
4765
4766operand immI_3() %{
4767  predicate( n->get_int() == 3 );
4768  match(ConI);
4769
4770  op_cost(0);
4771  format %{ %}
4772  interface(CONST_INTER);
4773%}
4774
4775// Pointer Immediate
4776operand immP() %{
4777  match(ConP);
4778
4779  op_cost(10);
4780  format %{ %}
4781  interface(CONST_INTER);
4782%}
4783
4784// NULL Pointer Immediate
4785operand immP0() %{
4786  predicate( n->get_ptr() == 0 );
4787  match(ConP);
4788  op_cost(0);
4789
4790  format %{ %}
4791  interface(CONST_INTER);
4792%}
4793
4794// Long Immediate
4795operand immL() %{
4796  match(ConL);
4797
4798  op_cost(20);
4799  format %{ %}
4800  interface(CONST_INTER);
4801%}
4802
4803// Long Immediate zero
4804operand immL0() %{
4805  predicate( n->get_long() == 0L );
4806  match(ConL);
4807  op_cost(0);
4808
4809  format %{ %}
4810  interface(CONST_INTER);
4811%}
4812
4813// Long immediate from 0 to 127.
4814// Used for a shorter form of long mul by 10.
4815operand immL_127() %{
4816  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4817  match(ConL);
4818  op_cost(0);
4819
4820  format %{ %}
4821  interface(CONST_INTER);
4822%}
4823
4824// Long Immediate: low 32-bit mask
4825operand immL_32bits() %{
4826  predicate(n->get_long() == 0xFFFFFFFFL);
4827  match(ConL);
4828  op_cost(0);
4829
4830  format %{ %}
4831  interface(CONST_INTER);
4832%}
4833
4834// Long Immediate: low 32-bit mask
4835operand immL32() %{
4836  predicate(n->get_long() == (int)(n->get_long()));
4837  match(ConL);
4838  op_cost(20);
4839
4840  format %{ %}
4841  interface(CONST_INTER);
4842%}
4843
4844//Double Immediate zero
4845operand immD0() %{
4846  // Do additional (and counter-intuitive) test against NaN to work around VC++
4847  // bug that generates code such that NaNs compare equal to 0.0
4848  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4849  match(ConD);
4850
4851  op_cost(5);
4852  format %{ %}
4853  interface(CONST_INTER);
4854%}
4855
4856// Double Immediate
4857operand immD1() %{
4858  predicate( UseSSE<=1 && n->getd() == 1.0 );
4859  match(ConD);
4860
4861  op_cost(5);
4862  format %{ %}
4863  interface(CONST_INTER);
4864%}
4865
4866// Double Immediate
4867operand immD() %{
4868  predicate(UseSSE<=1);
4869  match(ConD);
4870
4871  op_cost(5);
4872  format %{ %}
4873  interface(CONST_INTER);
4874%}
4875
4876operand immXD() %{
4877  predicate(UseSSE>=2);
4878  match(ConD);
4879
4880  op_cost(5);
4881  format %{ %}
4882  interface(CONST_INTER);
4883%}
4884
4885// Double Immediate zero
4886operand immXD0() %{
4887  // Do additional (and counter-intuitive) test against NaN to work around VC++
4888  // bug that generates code such that NaNs compare equal to 0.0 AND do not
4889  // compare equal to -0.0.
4890  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4891  match(ConD);
4892
4893  format %{ %}
4894  interface(CONST_INTER);
4895%}
4896
4897// Float Immediate zero
4898operand immF0() %{
4899  predicate( UseSSE == 0 && n->getf() == 0.0 );
4900  match(ConF);
4901
4902  op_cost(5);
4903  format %{ %}
4904  interface(CONST_INTER);
4905%}
4906
4907// Float Immediate
4908operand immF() %{
4909  predicate( UseSSE == 0 );
4910  match(ConF);
4911
4912  op_cost(5);
4913  format %{ %}
4914  interface(CONST_INTER);
4915%}
4916
4917// Float Immediate
4918operand immXF() %{
4919  predicate(UseSSE >= 1);
4920  match(ConF);
4921
4922  op_cost(5);
4923  format %{ %}
4924  interface(CONST_INTER);
4925%}
4926
4927// Float Immediate zero.  Zero and not -0.0
4928operand immXF0() %{
4929  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4930  match(ConF);
4931
4932  op_cost(5);
4933  format %{ %}
4934  interface(CONST_INTER);
4935%}
4936
4937// Immediates for special shifts (sign extend)
4938
4939// Constants for increment
4940operand immI_16() %{
4941  predicate( n->get_int() == 16 );
4942  match(ConI);
4943
4944  format %{ %}
4945  interface(CONST_INTER);
4946%}
4947
4948operand immI_24() %{
4949  predicate( n->get_int() == 24 );
4950  match(ConI);
4951
4952  format %{ %}
4953  interface(CONST_INTER);
4954%}
4955
4956// Constant for byte-wide masking
4957operand immI_255() %{
4958  predicate( n->get_int() == 255 );
4959  match(ConI);
4960
4961  format %{ %}
4962  interface(CONST_INTER);
4963%}
4964
4965// Register Operands
4966// Integer Register
4967operand eRegI() %{
4968  constraint(ALLOC_IN_RC(e_reg));
4969  match(RegI);
4970  match(xRegI);
4971  match(eAXRegI);
4972  match(eBXRegI);
4973  match(eCXRegI);
4974  match(eDXRegI);
4975  match(eDIRegI);
4976  match(eSIRegI);
4977
4978  format %{ %}
4979  interface(REG_INTER);
4980%}
4981
4982// Subset of Integer Register
4983operand xRegI(eRegI reg) %{
4984  constraint(ALLOC_IN_RC(x_reg));
4985  match(reg);
4986  match(eAXRegI);
4987  match(eBXRegI);
4988  match(eCXRegI);
4989  match(eDXRegI);
4990
4991  format %{ %}
4992  interface(REG_INTER);
4993%}
4994
4995// Special Registers
4996operand eAXRegI(xRegI reg) %{
4997  constraint(ALLOC_IN_RC(eax_reg));
4998  match(reg);
4999  match(eRegI);
5000
5001  format %{ "EAX" %}
5002  interface(REG_INTER);
5003%}
5004
5005// Special Registers
5006operand eBXRegI(xRegI reg) %{
5007  constraint(ALLOC_IN_RC(ebx_reg));
5008  match(reg);
5009  match(eRegI);
5010
5011  format %{ "EBX" %}
5012  interface(REG_INTER);
5013%}
5014
5015operand eCXRegI(xRegI reg) %{
5016  constraint(ALLOC_IN_RC(ecx_reg));
5017  match(reg);
5018  match(eRegI);
5019
5020  format %{ "ECX" %}
5021  interface(REG_INTER);
5022%}
5023
5024operand eDXRegI(xRegI reg) %{
5025  constraint(ALLOC_IN_RC(edx_reg));
5026  match(reg);
5027  match(eRegI);
5028
5029  format %{ "EDX" %}
5030  interface(REG_INTER);
5031%}
5032
5033operand eDIRegI(xRegI reg) %{
5034  constraint(ALLOC_IN_RC(edi_reg));
5035  match(reg);
5036  match(eRegI);
5037
5038  format %{ "EDI" %}
5039  interface(REG_INTER);
5040%}
5041
5042operand naxRegI() %{
5043  constraint(ALLOC_IN_RC(nax_reg));
5044  match(RegI);
5045  match(eCXRegI);
5046  match(eDXRegI);
5047  match(eSIRegI);
5048  match(eDIRegI);
5049
5050  format %{ %}
5051  interface(REG_INTER);
5052%}
5053
5054operand nadxRegI() %{
5055  constraint(ALLOC_IN_RC(nadx_reg));
5056  match(RegI);
5057  match(eBXRegI);
5058  match(eCXRegI);
5059  match(eSIRegI);
5060  match(eDIRegI);
5061
5062  format %{ %}
5063  interface(REG_INTER);
5064%}
5065
5066operand ncxRegI() %{
5067  constraint(ALLOC_IN_RC(ncx_reg));
5068  match(RegI);
5069  match(eAXRegI);
5070  match(eDXRegI);
5071  match(eSIRegI);
5072  match(eDIRegI);
5073
5074  format %{ %}
5075  interface(REG_INTER);
5076%}
5077
5078// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
5079// //
5080operand eSIRegI(xRegI reg) %{
5081   constraint(ALLOC_IN_RC(esi_reg));
5082   match(reg);
5083   match(eRegI);
5084
5085   format %{ "ESI" %}
5086   interface(REG_INTER);
5087%}
5088
5089// Pointer Register
5090operand anyRegP() %{
5091  constraint(ALLOC_IN_RC(any_reg));
5092  match(RegP);
5093  match(eAXRegP);
5094  match(eBXRegP);
5095  match(eCXRegP);
5096  match(eDIRegP);
5097  match(eRegP);
5098
5099  format %{ %}
5100  interface(REG_INTER);
5101%}
5102
5103operand eRegP() %{
5104  constraint(ALLOC_IN_RC(e_reg));
5105  match(RegP);
5106  match(eAXRegP);
5107  match(eBXRegP);
5108  match(eCXRegP);
5109  match(eDIRegP);
5110
5111  format %{ %}
5112  interface(REG_INTER);
5113%}
5114
5115// On windows95, EBP is not safe to use for implicit null tests.
5116operand eRegP_no_EBP() %{
5117  constraint(ALLOC_IN_RC(e_reg_no_rbp));
5118  match(RegP);
5119  match(eAXRegP);
5120  match(eBXRegP);
5121  match(eCXRegP);
5122  match(eDIRegP);
5123
5124  op_cost(100);
5125  format %{ %}
5126  interface(REG_INTER);
5127%}
5128
5129operand naxRegP() %{
5130  constraint(ALLOC_IN_RC(nax_reg));
5131  match(RegP);
5132  match(eBXRegP);
5133  match(eDXRegP);
5134  match(eCXRegP);
5135  match(eSIRegP);
5136  match(eDIRegP);
5137
5138  format %{ %}
5139  interface(REG_INTER);
5140%}
5141
5142operand nabxRegP() %{
5143  constraint(ALLOC_IN_RC(nabx_reg));
5144  match(RegP);
5145  match(eCXRegP);
5146  match(eDXRegP);
5147  match(eSIRegP);
5148  match(eDIRegP);
5149
5150  format %{ %}
5151  interface(REG_INTER);
5152%}
5153
5154operand pRegP() %{
5155  constraint(ALLOC_IN_RC(p_reg));
5156  match(RegP);
5157  match(eBXRegP);
5158  match(eDXRegP);
5159  match(eSIRegP);
5160  match(eDIRegP);
5161
5162  format %{ %}
5163  interface(REG_INTER);
5164%}
5165
5166// Special Registers
5167// Return a pointer value
5168operand eAXRegP(eRegP reg) %{
5169  constraint(ALLOC_IN_RC(eax_reg));
5170  match(reg);
5171  format %{ "EAX" %}
5172  interface(REG_INTER);
5173%}
5174
5175// Used in AtomicAdd
5176operand eBXRegP(eRegP reg) %{
5177  constraint(ALLOC_IN_RC(ebx_reg));
5178  match(reg);
5179  format %{ "EBX" %}
5180  interface(REG_INTER);
5181%}
5182
5183// Tail-call (interprocedural jump) to interpreter
5184operand eCXRegP(eRegP reg) %{
5185  constraint(ALLOC_IN_RC(ecx_reg));
5186  match(reg);
5187  format %{ "ECX" %}
5188  interface(REG_INTER);
5189%}
5190
5191operand eSIRegP(eRegP reg) %{
5192  constraint(ALLOC_IN_RC(esi_reg));
5193  match(reg);
5194  format %{ "ESI" %}
5195  interface(REG_INTER);
5196%}
5197
5198// Used in rep stosw
5199operand eDIRegP(eRegP reg) %{
5200  constraint(ALLOC_IN_RC(edi_reg));
5201  match(reg);
5202  format %{ "EDI" %}
5203  interface(REG_INTER);
5204%}
5205
5206operand eBPRegP() %{
5207  constraint(ALLOC_IN_RC(ebp_reg));
5208  match(RegP);
5209  format %{ "EBP" %}
5210  interface(REG_INTER);
5211%}
5212
5213operand eRegL() %{
5214  constraint(ALLOC_IN_RC(long_reg));
5215  match(RegL);
5216  match(eADXRegL);
5217
5218  format %{ %}
5219  interface(REG_INTER);
5220%}
5221
5222operand eADXRegL( eRegL reg ) %{
5223  constraint(ALLOC_IN_RC(eadx_reg));
5224  match(reg);
5225
5226  format %{ "EDX:EAX" %}
5227  interface(REG_INTER);
5228%}
5229
5230operand eBCXRegL( eRegL reg ) %{
5231  constraint(ALLOC_IN_RC(ebcx_reg));
5232  match(reg);
5233
5234  format %{ "EBX:ECX" %}
5235  interface(REG_INTER);
5236%}
5237
5238// Special case for integer high multiply
5239operand eADXRegL_low_only() %{
5240  constraint(ALLOC_IN_RC(eadx_reg));
5241  match(RegL);
5242
5243  format %{ "EAX" %}
5244  interface(REG_INTER);
5245%}
5246
5247// Flags register, used as output of compare instructions
5248operand eFlagsReg() %{
5249  constraint(ALLOC_IN_RC(int_flags));
5250  match(RegFlags);
5251
5252  format %{ "EFLAGS" %}
5253  interface(REG_INTER);
5254%}
5255
5256// Flags register, used as output of FLOATING POINT compare instructions
5257operand eFlagsRegU() %{
5258  constraint(ALLOC_IN_RC(int_flags));
5259  match(RegFlags);
5260
5261  format %{ "EFLAGS_U" %}
5262  interface(REG_INTER);
5263%}
5264
5265// Condition Code Register used by long compare
5266operand flagsReg_long_LTGE() %{
5267  constraint(ALLOC_IN_RC(int_flags));
5268  match(RegFlags);
5269  format %{ "FLAGS_LTGE" %}
5270  interface(REG_INTER);
5271%}
5272operand flagsReg_long_EQNE() %{
5273  constraint(ALLOC_IN_RC(int_flags));
5274  match(RegFlags);
5275  format %{ "FLAGS_EQNE" %}
5276  interface(REG_INTER);
5277%}
5278operand flagsReg_long_LEGT() %{
5279  constraint(ALLOC_IN_RC(int_flags));
5280  match(RegFlags);
5281  format %{ "FLAGS_LEGT" %}
5282  interface(REG_INTER);
5283%}
5284
5285// Float register operands
5286operand regD() %{
5287  predicate( UseSSE < 2 );
5288  constraint(ALLOC_IN_RC(dbl_reg));
5289  match(RegD);
5290  match(regDPR1);
5291  match(regDPR2);
5292  format %{ %}
5293  interface(REG_INTER);
5294%}
5295
5296operand regDPR1(regD reg) %{
5297  predicate( UseSSE < 2 );
5298  constraint(ALLOC_IN_RC(dbl_reg0));
5299  match(reg);
5300  format %{ "FPR1" %}
5301  interface(REG_INTER);
5302%}
5303
5304operand regDPR2(regD reg) %{
5305  predicate( UseSSE < 2 );
5306  constraint(ALLOC_IN_RC(dbl_reg1));
5307  match(reg);
5308  format %{ "FPR2" %}
5309  interface(REG_INTER);
5310%}
5311
5312operand regnotDPR1(regD reg) %{
5313  predicate( UseSSE < 2 );
5314  constraint(ALLOC_IN_RC(dbl_notreg0));
5315  match(reg);
5316  format %{ %}
5317  interface(REG_INTER);
5318%}
5319
5320// XMM Double register operands
5321operand regXD() %{
5322  predicate( UseSSE>=2 );
5323  constraint(ALLOC_IN_RC(xdb_reg));
5324  match(RegD);
5325  match(regXD6);
5326  match(regXD7);
5327  format %{ %}
5328  interface(REG_INTER);
5329%}
5330
5331// XMM6 double register operands
5332operand regXD6(regXD reg) %{
5333  predicate( UseSSE>=2 );
5334  constraint(ALLOC_IN_RC(xdb_reg6));
5335  match(reg);
5336  format %{ "XMM6" %}
5337  interface(REG_INTER);
5338%}
5339
5340// XMM7 double register operands
5341operand regXD7(regXD reg) %{
5342  predicate( UseSSE>=2 );
5343  constraint(ALLOC_IN_RC(xdb_reg7));
5344  match(reg);
5345  format %{ "XMM7" %}
5346  interface(REG_INTER);
5347%}
5348
5349// Float register operands
5350operand regF() %{
5351  predicate( UseSSE < 2 );
5352  constraint(ALLOC_IN_RC(flt_reg));
5353  match(RegF);
5354  match(regFPR1);
5355  format %{ %}
5356  interface(REG_INTER);
5357%}
5358
5359// Float register operands
5360operand regFPR1(regF reg) %{
5361  predicate( UseSSE < 2 );
5362  constraint(ALLOC_IN_RC(flt_reg0));
5363  match(reg);
5364  format %{ "FPR1" %}
5365  interface(REG_INTER);
5366%}
5367
5368// XMM register operands
5369operand regX() %{
5370  predicate( UseSSE>=1 );
5371  constraint(ALLOC_IN_RC(xmm_reg));
5372  match(RegF);
5373  format %{ %}
5374  interface(REG_INTER);
5375%}
5376
5377
5378//----------Memory Operands----------------------------------------------------
5379// Direct Memory Operand
5380operand direct(immP addr) %{
5381  match(addr);
5382
5383  format %{ "[$addr]" %}
5384  interface(MEMORY_INTER) %{
5385    base(0xFFFFFFFF);
5386    index(0x4);
5387    scale(0x0);
5388    disp($addr);
5389  %}
5390%}
5391
5392// Indirect Memory Operand
5393operand indirect(eRegP reg) %{
5394  constraint(ALLOC_IN_RC(e_reg));
5395  match(reg);
5396
5397  format %{ "[$reg]" %}
5398  interface(MEMORY_INTER) %{
5399    base($reg);
5400    index(0x4);
5401    scale(0x0);
5402    disp(0x0);
5403  %}
5404%}
5405
5406// Indirect Memory Plus Short Offset Operand
5407operand indOffset8(eRegP reg, immI8 off) %{
5408  match(AddP reg off);
5409
5410  format %{ "[$reg + $off]" %}
5411  interface(MEMORY_INTER) %{
5412    base($reg);
5413    index(0x4);
5414    scale(0x0);
5415    disp($off);
5416  %}
5417%}
5418
5419// Indirect Memory Plus Long Offset Operand
5420operand indOffset32(eRegP reg, immI off) %{
5421  match(AddP reg off);
5422
5423  format %{ "[$reg + $off]" %}
5424  interface(MEMORY_INTER) %{
5425    base($reg);
5426    index(0x4);
5427    scale(0x0);
5428    disp($off);
5429  %}
5430%}
5431
5432// Indirect Memory Plus Long Offset Operand
5433operand indOffset32X(eRegI reg, immP off) %{
5434  match(AddP off reg);
5435
5436  format %{ "[$reg + $off]" %}
5437  interface(MEMORY_INTER) %{
5438    base($reg);
5439    index(0x4);
5440    scale(0x0);
5441    disp($off);
5442  %}
5443%}
5444
5445// Indirect Memory Plus Index Register Plus Offset Operand
5446operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5447  match(AddP (AddP reg ireg) off);
5448
5449  op_cost(10);
5450  format %{"[$reg + $off + $ireg]" %}
5451  interface(MEMORY_INTER) %{
5452    base($reg);
5453    index($ireg);
5454    scale(0x0);
5455    disp($off);
5456  %}
5457%}
5458
5459// Indirect Memory Plus Index Register Plus Offset Operand
5460operand indIndex(eRegP reg, eRegI ireg) %{
5461  match(AddP reg ireg);
5462
5463  op_cost(10);
5464  format %{"[$reg + $ireg]" %}
5465  interface(MEMORY_INTER) %{
5466    base($reg);
5467    index($ireg);
5468    scale(0x0);
5469    disp(0x0);
5470  %}
5471%}
5472
5473// // -------------------------------------------------------------------------
5474// // 486 architecture doesn't support "scale * index + offset" with out a base
5475// // -------------------------------------------------------------------------
5476// // Scaled Memory Operands
5477// // Indirect Memory Times Scale Plus Offset Operand
5478// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5479//   match(AddP off (LShiftI ireg scale));
5480//
5481//   op_cost(10);
5482//   format %{"[$off + $ireg << $scale]" %}
5483//   interface(MEMORY_INTER) %{
5484//     base(0x4);
5485//     index($ireg);
5486//     scale($scale);
5487//     disp($off);
5488//   %}
5489// %}
5490
5491// Indirect Memory Times Scale Plus Index Register
5492operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5493  match(AddP reg (LShiftI ireg scale));
5494
5495  op_cost(10);
5496  format %{"[$reg + $ireg << $scale]" %}
5497  interface(MEMORY_INTER) %{
5498    base($reg);
5499    index($ireg);
5500    scale($scale);
5501    disp(0x0);
5502  %}
5503%}
5504
5505// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5506operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5507  match(AddP (AddP reg (LShiftI ireg scale)) off);
5508
5509  op_cost(10);
5510  format %{"[$reg + $off + $ireg << $scale]" %}
5511  interface(MEMORY_INTER) %{
5512    base($reg);
5513    index($ireg);
5514    scale($scale);
5515    disp($off);
5516  %}
5517%}
5518
5519//----------Load Long Memory Operands------------------------------------------
5520// The load-long idiom will use it's address expression again after loading
5521// the first word of the long.  If the load-long destination overlaps with
5522// registers used in the addressing expression, the 2nd half will be loaded
5523// from a clobbered address.  Fix this by requiring that load-long use
5524// address registers that do not overlap with the load-long target.
5525
5526// load-long support
5527operand load_long_RegP() %{
5528  constraint(ALLOC_IN_RC(esi_reg));
5529  match(RegP);
5530  match(eSIRegP);
5531  op_cost(100);
5532  format %{  %}
5533  interface(REG_INTER);
5534%}
5535
5536// Indirect Memory Operand Long
5537operand load_long_indirect(load_long_RegP reg) %{
5538  constraint(ALLOC_IN_RC(esi_reg));
5539  match(reg);
5540
5541  format %{ "[$reg]" %}
5542  interface(MEMORY_INTER) %{
5543    base($reg);
5544    index(0x4);
5545    scale(0x0);
5546    disp(0x0);
5547  %}
5548%}
5549
5550// Indirect Memory Plus Long Offset Operand
5551operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5552  match(AddP reg off);
5553
5554  format %{ "[$reg + $off]" %}
5555  interface(MEMORY_INTER) %{
5556    base($reg);
5557    index(0x4);
5558    scale(0x0);
5559    disp($off);
5560  %}
5561%}
5562
5563opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5564
5565
5566//----------Special Memory Operands--------------------------------------------
5567// Stack Slot Operand - This operand is used for loading and storing temporary
5568//                      values on the stack where a match requires a value to
5569//                      flow through memory.
5570operand stackSlotP(sRegP reg) %{
5571  constraint(ALLOC_IN_RC(stack_slots));
5572  // No match rule because this operand is only generated in matching
5573  format %{ "[$reg]" %}
5574  interface(MEMORY_INTER) %{
5575    base(0x4);   // ESP
5576    index(0x4);  // No Index
5577    scale(0x0);  // No Scale
5578    disp($reg);  // Stack Offset
5579  %}
5580%}
5581
5582operand stackSlotI(sRegI reg) %{
5583  constraint(ALLOC_IN_RC(stack_slots));
5584  // No match rule because this operand is only generated in matching
5585  format %{ "[$reg]" %}
5586  interface(MEMORY_INTER) %{
5587    base(0x4);   // ESP
5588    index(0x4);  // No Index
5589    scale(0x0);  // No Scale
5590    disp($reg);  // Stack Offset
5591  %}
5592%}
5593
5594operand stackSlotF(sRegF reg) %{
5595  constraint(ALLOC_IN_RC(stack_slots));
5596  // No match rule because this operand is only generated in matching
5597  format %{ "[$reg]" %}
5598  interface(MEMORY_INTER) %{
5599    base(0x4);   // ESP
5600    index(0x4);  // No Index
5601    scale(0x0);  // No Scale
5602    disp($reg);  // Stack Offset
5603  %}
5604%}
5605
5606operand stackSlotD(sRegD reg) %{
5607  constraint(ALLOC_IN_RC(stack_slots));
5608  // No match rule because this operand is only generated in matching
5609  format %{ "[$reg]" %}
5610  interface(MEMORY_INTER) %{
5611    base(0x4);   // ESP
5612    index(0x4);  // No Index
5613    scale(0x0);  // No Scale
5614    disp($reg);  // Stack Offset
5615  %}
5616%}
5617
5618operand stackSlotL(sRegL reg) %{
5619  constraint(ALLOC_IN_RC(stack_slots));
5620  // No match rule because this operand is only generated in matching
5621  format %{ "[$reg]" %}
5622  interface(MEMORY_INTER) %{
5623    base(0x4);   // ESP
5624    index(0x4);  // No Index
5625    scale(0x0);  // No Scale
5626    disp($reg);  // Stack Offset
5627  %}
5628%}
5629
5630//----------Memory Operands - Win95 Implicit Null Variants----------------
5631// Indirect Memory Operand
5632operand indirect_win95_safe(eRegP_no_EBP reg)
5633%{
5634  constraint(ALLOC_IN_RC(e_reg));
5635  match(reg);
5636
5637  op_cost(100);
5638  format %{ "[$reg]" %}
5639  interface(MEMORY_INTER) %{
5640    base($reg);
5641    index(0x4);
5642    scale(0x0);
5643    disp(0x0);
5644  %}
5645%}
5646
5647// Indirect Memory Plus Short Offset Operand
5648operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5649%{
5650  match(AddP reg off);
5651
5652  op_cost(100);
5653  format %{ "[$reg + $off]" %}
5654  interface(MEMORY_INTER) %{
5655    base($reg);
5656    index(0x4);
5657    scale(0x0);
5658    disp($off);
5659  %}
5660%}
5661
5662// Indirect Memory Plus Long Offset Operand
5663operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5664%{
5665  match(AddP reg off);
5666
5667  op_cost(100);
5668  format %{ "[$reg + $off]" %}
5669  interface(MEMORY_INTER) %{
5670    base($reg);
5671    index(0x4);
5672    scale(0x0);
5673    disp($off);
5674  %}
5675%}
5676
5677// Indirect Memory Plus Index Register Plus Offset Operand
5678operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5679%{
5680  match(AddP (AddP reg ireg) off);
5681
5682  op_cost(100);
5683  format %{"[$reg + $off + $ireg]" %}
5684  interface(MEMORY_INTER) %{
5685    base($reg);
5686    index($ireg);
5687    scale(0x0);
5688    disp($off);
5689  %}
5690%}
5691
5692// Indirect Memory Times Scale Plus Index Register
5693operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5694%{
5695  match(AddP reg (LShiftI ireg scale));
5696
5697  op_cost(100);
5698  format %{"[$reg + $ireg << $scale]" %}
5699  interface(MEMORY_INTER) %{
5700    base($reg);
5701    index($ireg);
5702    scale($scale);
5703    disp(0x0);
5704  %}
5705%}
5706
5707// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5708operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5709%{
5710  match(AddP (AddP reg (LShiftI ireg scale)) off);
5711
5712  op_cost(100);
5713  format %{"[$reg + $off + $ireg << $scale]" %}
5714  interface(MEMORY_INTER) %{
5715    base($reg);
5716    index($ireg);
5717    scale($scale);
5718    disp($off);
5719  %}
5720%}
5721
5722//----------Conditional Branch Operands----------------------------------------
5723// Comparison Op  - This is the operation of the comparison, and is limited to
5724//                  the following set of codes:
5725//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5726//
5727// Other attributes of the comparison, such as unsignedness, are specified
5728// by the comparison instruction that sets a condition code flags register.
5729// That result is represented by a flags operand whose subtype is appropriate
5730// to the unsignedness (etc.) of the comparison.
5731//
5732// Later, the instruction which matches both the Comparison Op (a Bool) and
5733// the flags (produced by the Cmp) specifies the coding of the comparison op
5734// by matching a specific subtype of Bool operand below, such as cmpOpU.
5735
5736// Comparision Code
5737operand cmpOp() %{
5738  match(Bool);
5739
5740  format %{ "" %}
5741  interface(COND_INTER) %{
5742    equal(0x4);
5743    not_equal(0x5);
5744    less(0xC);
5745    greater_equal(0xD);
5746    less_equal(0xE);
5747    greater(0xF);
5748  %}
5749%}
5750
5751// Comparison Code, unsigned compare.  Used by FP also, with
5752// C2 (unordered) turned into GT or LT already.  The other bits
5753// C0 and C3 are turned into Carry & Zero flags.
5754operand cmpOpU() %{
5755  match(Bool);
5756
5757  format %{ "" %}
5758  interface(COND_INTER) %{
5759    equal(0x4);
5760    not_equal(0x5);
5761    less(0x2);
5762    greater_equal(0x3);
5763    less_equal(0x6);
5764    greater(0x7);
5765  %}
5766%}
5767
5768// Comparison Code for FP conditional move
5769operand cmpOp_fcmov() %{
5770  match(Bool);
5771
5772  format %{ "" %}
5773  interface(COND_INTER) %{
5774    equal        (0x0C8);
5775    not_equal    (0x1C8);
5776    less         (0x0C0);
5777    greater_equal(0x1C0);
5778    less_equal   (0x0D0);
5779    greater      (0x1D0);
5780  %}
5781%}
5782
5783// Comparision Code used in long compares
5784operand cmpOp_commute() %{
5785  match(Bool);
5786
5787  format %{ "" %}
5788  interface(COND_INTER) %{
5789    equal(0x4);
5790    not_equal(0x5);
5791    less(0xF);
5792    greater_equal(0xE);
5793    less_equal(0xD);
5794    greater(0xC);
5795  %}
5796%}
5797
5798//----------OPERAND CLASSES----------------------------------------------------
5799// Operand Classes are groups of operands that are used as to simplify
5800// instruction definitions by not requiring the AD writer to specify seperate
5801// instructions for every form of operand when the instruction accepts
5802// multiple operand types with the same basic encoding and format.  The classic
5803// case of this is memory operands.
5804
5805opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5806               indIndex, indIndexScale, indIndexScaleOffset);
5807
5808// Long memory operations are encoded in 2 instructions and a +4 offset.
5809// This means some kind of offset is always required and you cannot use
5810// an oop as the offset (done when working on static globals).
5811opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5812                    indIndex, indIndexScale, indIndexScaleOffset);
5813
5814
5815//----------PIPELINE-----------------------------------------------------------
5816// Rules which define the behavior of the target architectures pipeline.
5817pipeline %{
5818
5819//----------ATTRIBUTES---------------------------------------------------------
5820attributes %{
5821  variable_size_instructions;        // Fixed size instructions
5822  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5823  instruction_unit_size = 1;         // An instruction is 1 bytes long
5824  instruction_fetch_unit_size = 16;  // The processor fetches one line
5825  instruction_fetch_units = 1;       // of 16 bytes
5826
5827  // List of nop instructions
5828  nops( MachNop );
5829%}
5830
5831//----------RESOURCES----------------------------------------------------------
5832// Resources are the functional units available to the machine
5833
5834// Generic P2/P3 pipeline
5835// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5836// 3 instructions decoded per cycle.
5837// 2 load/store ops per cycle, 1 branch, 1 FPU,
5838// 2 ALU op, only ALU0 handles mul/div instructions.
5839resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5840           MS0, MS1, MEM = MS0 | MS1,
5841           BR, FPU,
5842           ALU0, ALU1, ALU = ALU0 | ALU1 );
5843
5844//----------PIPELINE DESCRIPTION-----------------------------------------------
5845// Pipeline Description specifies the stages in the machine's pipeline
5846
5847// Generic P2/P3 pipeline
5848pipe_desc(S0, S1, S2, S3, S4, S5);
5849
5850//----------PIPELINE CLASSES---------------------------------------------------
5851// Pipeline Classes describe the stages in which input and output are
5852// referenced by the hardware pipeline.
5853
5854// Naming convention: ialu or fpu
5855// Then: _reg
5856// Then: _reg if there is a 2nd register
5857// Then: _long if it's a pair of instructions implementing a long
5858// Then: _fat if it requires the big decoder
5859//   Or: _mem if it requires the big decoder and a memory unit.
5860
5861// Integer ALU reg operation
5862pipe_class ialu_reg(eRegI dst) %{
5863    single_instruction;
5864    dst    : S4(write);
5865    dst    : S3(read);
5866    DECODE : S0;        // any decoder
5867    ALU    : S3;        // any alu
5868%}
5869
5870// Long ALU reg operation
5871pipe_class ialu_reg_long(eRegL dst) %{
5872    instruction_count(2);
5873    dst    : S4(write);
5874    dst    : S3(read);
5875    DECODE : S0(2);     // any 2 decoders
5876    ALU    : S3(2);     // both alus
5877%}
5878
5879// Integer ALU reg operation using big decoder
5880pipe_class ialu_reg_fat(eRegI dst) %{
5881    single_instruction;
5882    dst    : S4(write);
5883    dst    : S3(read);
5884    D0     : S0;        // big decoder only
5885    ALU    : S3;        // any alu
5886%}
5887
5888// Long ALU reg operation using big decoder
5889pipe_class ialu_reg_long_fat(eRegL dst) %{
5890    instruction_count(2);
5891    dst    : S4(write);
5892    dst    : S3(read);
5893    D0     : S0(2);     // big decoder only; twice
5894    ALU    : S3(2);     // any 2 alus
5895%}
5896
5897// Integer ALU reg-reg operation
5898pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5899    single_instruction;
5900    dst    : S4(write);
5901    src    : S3(read);
5902    DECODE : S0;        // any decoder
5903    ALU    : S3;        // any alu
5904%}
5905
5906// Long ALU reg-reg operation
5907pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5908    instruction_count(2);
5909    dst    : S4(write);
5910    src    : S3(read);
5911    DECODE : S0(2);     // any 2 decoders
5912    ALU    : S3(2);     // both alus
5913%}
5914
5915// Integer ALU reg-reg operation
5916pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5917    single_instruction;
5918    dst    : S4(write);
5919    src    : S3(read);
5920    D0     : S0;        // big decoder only
5921    ALU    : S3;        // any alu
5922%}
5923
5924// Long ALU reg-reg operation
5925pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5926    instruction_count(2);
5927    dst    : S4(write);
5928    src    : S3(read);
5929    D0     : S0(2);     // big decoder only; twice
5930    ALU    : S3(2);     // both alus
5931%}
5932
5933// Integer ALU reg-mem operation
5934pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5935    single_instruction;
5936    dst    : S5(write);
5937    mem    : S3(read);
5938    D0     : S0;        // big decoder only
5939    ALU    : S4;        // any alu
5940    MEM    : S3;        // any mem
5941%}
5942
5943// Long ALU reg-mem operation
5944pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5945    instruction_count(2);
5946    dst    : S5(write);
5947    mem    : S3(read);
5948    D0     : S0(2);     // big decoder only; twice
5949    ALU    : S4(2);     // any 2 alus
5950    MEM    : S3(2);     // both mems
5951%}
5952
5953// Integer mem operation (prefetch)
5954pipe_class ialu_mem(memory mem)
5955%{
5956    single_instruction;
5957    mem    : S3(read);
5958    D0     : S0;        // big decoder only
5959    MEM    : S3;        // any mem
5960%}
5961
5962// Integer Store to Memory
5963pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5964    single_instruction;
5965    mem    : S3(read);
5966    src    : S5(read);
5967    D0     : S0;        // big decoder only
5968    ALU    : S4;        // any alu
5969    MEM    : S3;
5970%}
5971
5972// Long Store to Memory
5973pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5974    instruction_count(2);
5975    mem    : S3(read);
5976    src    : S5(read);
5977    D0     : S0(2);     // big decoder only; twice
5978    ALU    : S4(2);     // any 2 alus
5979    MEM    : S3(2);     // Both mems
5980%}
5981
5982// Integer Store to Memory
5983pipe_class ialu_mem_imm(memory mem) %{
5984    single_instruction;
5985    mem    : S3(read);
5986    D0     : S0;        // big decoder only
5987    ALU    : S4;        // any alu
5988    MEM    : S3;
5989%}
5990
5991// Integer ALU0 reg-reg operation
5992pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5993    single_instruction;
5994    dst    : S4(write);
5995    src    : S3(read);
5996    D0     : S0;        // Big decoder only
5997    ALU0   : S3;        // only alu0
5998%}
5999
6000// Integer ALU0 reg-mem operation
6001pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
6002    single_instruction;
6003    dst    : S5(write);
6004    mem    : S3(read);
6005    D0     : S0;        // big decoder only
6006    ALU0   : S4;        // ALU0 only
6007    MEM    : S3;        // any mem
6008%}
6009
6010// Integer ALU reg-reg operation
6011pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
6012    single_instruction;
6013    cr     : S4(write);
6014    src1   : S3(read);
6015    src2   : S3(read);
6016    DECODE : S0;        // any decoder
6017    ALU    : S3;        // any alu
6018%}
6019
6020// Integer ALU reg-imm operation
6021pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
6022    single_instruction;
6023    cr     : S4(write);
6024    src1   : S3(read);
6025    DECODE : S0;        // any decoder
6026    ALU    : S3;        // any alu
6027%}
6028
6029// Integer ALU reg-mem operation
6030pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
6031    single_instruction;
6032    cr     : S4(write);
6033    src1   : S3(read);
6034    src2   : S3(read);
6035    D0     : S0;        // big decoder only
6036    ALU    : S4;        // any alu
6037    MEM    : S3;
6038%}
6039
6040// Conditional move reg-reg
6041pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
6042    instruction_count(4);
6043    y      : S4(read);
6044    q      : S3(read);
6045    p      : S3(read);
6046    DECODE : S0(4);     // any decoder
6047%}
6048
6049// Conditional move reg-reg
6050pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
6051    single_instruction;
6052    dst    : S4(write);
6053    src    : S3(read);
6054    cr     : S3(read);
6055    DECODE : S0;        // any decoder
6056%}
6057
6058// Conditional move reg-mem
6059pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
6060    single_instruction;
6061    dst    : S4(write);
6062    src    : S3(read);
6063    cr     : S3(read);
6064    DECODE : S0;        // any decoder
6065    MEM    : S3;
6066%}
6067
6068// Conditional move reg-reg long
6069pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
6070    single_instruction;
6071    dst    : S4(write);
6072    src    : S3(read);
6073    cr     : S3(read);
6074    DECODE : S0(2);     // any 2 decoders
6075%}
6076
6077// Conditional move double reg-reg
6078pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
6079    single_instruction;
6080    dst    : S4(write);
6081    src    : S3(read);
6082    cr     : S3(read);
6083    DECODE : S0;        // any decoder
6084%}
6085
6086// Float reg-reg operation
6087pipe_class fpu_reg(regD dst) %{
6088    instruction_count(2);
6089    dst    : S3(read);
6090    DECODE : S0(2);     // any 2 decoders
6091    FPU    : S3;
6092%}
6093
6094// Float reg-reg operation
6095pipe_class fpu_reg_reg(regD dst, regD src) %{
6096    instruction_count(2);
6097    dst    : S4(write);
6098    src    : S3(read);
6099    DECODE : S0(2);     // any 2 decoders
6100    FPU    : S3;
6101%}
6102
6103// Float reg-reg operation
6104pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6105    instruction_count(3);
6106    dst    : S4(write);
6107    src1   : S3(read);
6108    src2   : S3(read);
6109    DECODE : S0(3);     // any 3 decoders
6110    FPU    : S3(2);
6111%}
6112
6113// Float reg-reg operation
6114pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6115    instruction_count(4);
6116    dst    : S4(write);
6117    src1   : S3(read);
6118    src2   : S3(read);
6119    src3   : S3(read);
6120    DECODE : S0(4);     // any 3 decoders
6121    FPU    : S3(2);
6122%}
6123
6124// Float reg-reg operation
6125pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6126    instruction_count(4);
6127    dst    : S4(write);
6128    src1   : S3(read);
6129    src2   : S3(read);
6130    src3   : S3(read);
6131    DECODE : S1(3);     // any 3 decoders
6132    D0     : S0;        // Big decoder only
6133    FPU    : S3(2);
6134    MEM    : S3;
6135%}
6136
6137// Float reg-mem operation
6138pipe_class fpu_reg_mem(regD dst, memory mem) %{
6139    instruction_count(2);
6140    dst    : S5(write);
6141    mem    : S3(read);
6142    D0     : S0;        // big decoder only
6143    DECODE : S1;        // any decoder for FPU POP
6144    FPU    : S4;
6145    MEM    : S3;        // any mem
6146%}
6147
6148// Float reg-mem operation
6149pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6150    instruction_count(3);
6151    dst    : S5(write);
6152    src1   : S3(read);
6153    mem    : S3(read);
6154    D0     : S0;        // big decoder only
6155    DECODE : S1(2);     // any decoder for FPU POP
6156    FPU    : S4;
6157    MEM    : S3;        // any mem
6158%}
6159
6160// Float mem-reg operation
6161pipe_class fpu_mem_reg(memory mem, regD src) %{
6162    instruction_count(2);
6163    src    : S5(read);
6164    mem    : S3(read);
6165    DECODE : S0;        // any decoder for FPU PUSH
6166    D0     : S1;        // big decoder only
6167    FPU    : S4;
6168    MEM    : S3;        // any mem
6169%}
6170
6171pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6172    instruction_count(3);
6173    src1   : S3(read);
6174    src2   : S3(read);
6175    mem    : S3(read);
6176    DECODE : S0(2);     // any decoder for FPU PUSH
6177    D0     : S1;        // big decoder only
6178    FPU    : S4;
6179    MEM    : S3;        // any mem
6180%}
6181
6182pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6183    instruction_count(3);
6184    src1   : S3(read);
6185    src2   : S3(read);
6186    mem    : S4(read);
6187    DECODE : S0;        // any decoder for FPU PUSH
6188    D0     : S0(2);     // big decoder only
6189    FPU    : S4;
6190    MEM    : S3(2);     // any mem
6191%}
6192
6193pipe_class fpu_mem_mem(memory dst, memory src1) %{
6194    instruction_count(2);
6195    src1   : S3(read);
6196    dst    : S4(read);
6197    D0     : S0(2);     // big decoder only
6198    MEM    : S3(2);     // any mem
6199%}
6200
6201pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6202    instruction_count(3);
6203    src1   : S3(read);
6204    src2   : S3(read);
6205    dst    : S4(read);
6206    D0     : S0(3);     // big decoder only
6207    FPU    : S4;
6208    MEM    : S3(3);     // any mem
6209%}
6210
6211pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6212    instruction_count(3);
6213    src1   : S4(read);
6214    mem    : S4(read);
6215    DECODE : S0;        // any decoder for FPU PUSH
6216    D0     : S0(2);     // big decoder only
6217    FPU    : S4;
6218    MEM    : S3(2);     // any mem
6219%}
6220
6221// Float load constant
6222pipe_class fpu_reg_con(regD dst) %{
6223    instruction_count(2);
6224    dst    : S5(write);
6225    D0     : S0;        // big decoder only for the load
6226    DECODE : S1;        // any decoder for FPU POP
6227    FPU    : S4;
6228    MEM    : S3;        // any mem
6229%}
6230
6231// Float load constant
6232pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6233    instruction_count(3);
6234    dst    : S5(write);
6235    src    : S3(read);
6236    D0     : S0;        // big decoder only for the load
6237    DECODE : S1(2);     // any decoder for FPU POP
6238    FPU    : S4;
6239    MEM    : S3;        // any mem
6240%}
6241
6242// UnConditional branch
6243pipe_class pipe_jmp( label labl ) %{
6244    single_instruction;
6245    BR   : S3;
6246%}
6247
6248// Conditional branch
6249pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6250    single_instruction;
6251    cr    : S1(read);
6252    BR    : S3;
6253%}
6254
6255// Allocation idiom
6256pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6257    instruction_count(1); force_serialization;
6258    fixed_latency(6);
6259    heap_ptr : S3(read);
6260    DECODE   : S0(3);
6261    D0       : S2;
6262    MEM      : S3;
6263    ALU      : S3(2);
6264    dst      : S5(write);
6265    BR       : S5;
6266%}
6267
6268// Generic big/slow expanded idiom
6269pipe_class pipe_slow(  ) %{
6270    instruction_count(10); multiple_bundles; force_serialization;
6271    fixed_latency(100);
6272    D0  : S0(2);
6273    MEM : S3(2);
6274%}
6275
6276// The real do-nothing guy
6277pipe_class empty( ) %{
6278    instruction_count(0);
6279%}
6280
6281// Define the class for the Nop node
6282define %{
6283   MachNop = empty;
6284%}
6285
6286%}
6287
6288//----------INSTRUCTIONS-------------------------------------------------------
6289//
6290// match      -- States which machine-independent subtree may be replaced
6291//               by this instruction.
6292// ins_cost   -- The estimated cost of this instruction is used by instruction
6293//               selection to identify a minimum cost tree of machine
6294//               instructions that matches a tree of machine-independent
6295//               instructions.
6296// format     -- A string providing the disassembly for this instruction.
6297//               The value of an instruction's operand may be inserted
6298//               by referring to it with a '$' prefix.
6299// opcode     -- Three instruction opcodes may be provided.  These are referred
6300//               to within an encode class as $primary, $secondary, and $tertiary
6301//               respectively.  The primary opcode is commonly used to
6302//               indicate the type of machine instruction, while secondary
6303//               and tertiary are often used for prefix options or addressing
6304//               modes.
6305// ins_encode -- A list of encode classes with parameters. The encode class
6306//               name must have been defined in an 'enc_class' specification
6307//               in the encode section of the architecture description.
6308
6309//----------BSWAP-Instruction--------------------------------------------------
6310instruct bytes_reverse_int(eRegI dst) %{
6311  match(Set dst (ReverseBytesI dst));
6312
6313  format %{ "BSWAP  $dst" %}
6314  opcode(0x0F, 0xC8);
6315  ins_encode( OpcP, OpcSReg(dst) );
6316  ins_pipe( ialu_reg );
6317%}
6318
6319instruct bytes_reverse_long(eRegL dst) %{
6320  match(Set dst (ReverseBytesL dst));
6321
6322  format %{ "BSWAP  $dst.lo\n\t"
6323            "BSWAP  $dst.hi\n\t"
6324            "XCHG   $dst.lo $dst.hi" %}
6325
6326  ins_cost(125);
6327  ins_encode( bswap_long_bytes(dst) );
6328  ins_pipe( ialu_reg_reg);
6329%}
6330
6331
6332//----------Load/Store/Move Instructions---------------------------------------
6333//----------Load Instructions--------------------------------------------------
6334// Load Byte (8bit signed)
6335instruct loadB(xRegI dst, memory mem) %{
6336  match(Set dst (LoadB mem));
6337
6338  ins_cost(125);
6339  format %{ "MOVSX8 $dst,$mem" %}
6340  opcode(0xBE, 0x0F);
6341  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6342  ins_pipe( ialu_reg_mem );
6343%}
6344
6345// Load Byte (8bit UNsigned)
6346instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{
6347  match(Set dst (AndI (LoadB mem) bytemask));
6348
6349  ins_cost(125);
6350  format %{ "MOVZX8 $dst,$mem" %}
6351  opcode(0xB6, 0x0F);
6352  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6353  ins_pipe( ialu_reg_mem );
6354%}
6355
6356// Load Char (16bit unsigned)
6357instruct loadC(eRegI dst, memory mem) %{
6358  match(Set dst (LoadC mem));
6359
6360  ins_cost(125);
6361  format %{ "MOVZX  $dst,$mem" %}
6362  opcode(0xB7, 0x0F);
6363  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6364  ins_pipe( ialu_reg_mem );
6365%}
6366
6367// Load Integer
6368instruct loadI(eRegI dst, memory mem) %{
6369  match(Set dst (LoadI mem));
6370
6371  ins_cost(125);
6372  format %{ "MOV    $dst,$mem" %}
6373  opcode(0x8B);
6374  ins_encode( OpcP, RegMem(dst,mem));
6375  ins_pipe( ialu_reg_mem );
6376%}
6377
6378// Load Long.  Cannot clobber address while loading, so restrict address
6379// register to ESI
6380instruct loadL(eRegL dst, load_long_memory mem) %{
6381  predicate(!((LoadLNode*)n)->require_atomic_access());
6382  match(Set dst (LoadL mem));
6383
6384  ins_cost(250);
6385  format %{ "MOV    $dst.lo,$mem\n\t"
6386            "MOV    $dst.hi,$mem+4" %}
6387  opcode(0x8B, 0x8B);
6388  ins_encode( OpcP, RegMem(dst,mem), OpcS, RegMem_Hi(dst,mem));
6389  ins_pipe( ialu_reg_long_mem );
6390%}
6391
6392// Volatile Load Long.  Must be atomic, so do 64-bit FILD
6393// then store it down to the stack and reload on the int
6394// side.
6395instruct loadL_volatile(stackSlotL dst, memory mem) %{
6396  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6397  match(Set dst (LoadL mem));
6398
6399  ins_cost(200);
6400  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6401            "FISTp  $dst" %}
6402  ins_encode(enc_loadL_volatile(mem,dst));
6403  ins_pipe( fpu_reg_mem );
6404%}
6405
6406instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6407  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6408  match(Set dst (LoadL mem));
6409  effect(TEMP tmp);
6410  ins_cost(180);
6411  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6412            "MOVSD  $dst,$tmp" %}
6413  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6414  ins_pipe( pipe_slow );
6415%}
6416
6417instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6418  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6419  match(Set dst (LoadL mem));
6420  effect(TEMP tmp);
6421  ins_cost(160);
6422  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6423            "MOVD   $dst.lo,$tmp\n\t"
6424            "PSRLQ  $tmp,32\n\t"
6425            "MOVD   $dst.hi,$tmp" %}
6426  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6427  ins_pipe( pipe_slow );
6428%}
6429
6430// Load Range
6431instruct loadRange(eRegI dst, memory mem) %{
6432  match(Set dst (LoadRange mem));
6433
6434  ins_cost(125);
6435  format %{ "MOV    $dst,$mem" %}
6436  opcode(0x8B);
6437  ins_encode( OpcP, RegMem(dst,mem));
6438  ins_pipe( ialu_reg_mem );
6439%}
6440
6441
6442// Load Pointer
6443instruct loadP(eRegP dst, memory mem) %{
6444  match(Set dst (LoadP mem));
6445
6446  ins_cost(125);
6447  format %{ "MOV    $dst,$mem" %}
6448  opcode(0x8B);
6449  ins_encode( OpcP, RegMem(dst,mem));
6450  ins_pipe( ialu_reg_mem );
6451%}
6452
6453// Load Klass Pointer
6454instruct loadKlass(eRegP dst, memory mem) %{
6455  match(Set dst (LoadKlass mem));
6456
6457  ins_cost(125);
6458  format %{ "MOV    $dst,$mem" %}
6459  opcode(0x8B);
6460  ins_encode( OpcP, RegMem(dst,mem));
6461  ins_pipe( ialu_reg_mem );
6462%}
6463
6464// Load Short (16bit signed)
6465instruct loadS(eRegI dst, memory mem) %{
6466  match(Set dst (LoadS mem));
6467
6468  ins_cost(125);
6469  format %{ "MOVSX  $dst,$mem" %}
6470  opcode(0xBF, 0x0F);
6471  ins_encode( OpcS, OpcP, RegMem(dst,mem));
6472  ins_pipe( ialu_reg_mem );
6473%}
6474
6475// Load Double
6476instruct loadD(regD dst, memory mem) %{
6477  predicate(UseSSE<=1);
6478  match(Set dst (LoadD mem));
6479
6480  ins_cost(150);
6481  format %{ "FLD_D  ST,$mem\n\t"
6482            "FSTP   $dst" %}
6483  opcode(0xDD);               /* DD /0 */
6484  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6485              Pop_Reg_D(dst) );
6486  ins_pipe( fpu_reg_mem );
6487%}
6488
6489// Load Double to XMM
6490instruct loadXD(regXD dst, memory mem) %{
6491  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6492  match(Set dst (LoadD mem));
6493  ins_cost(145);
6494  format %{ "MOVSD  $dst,$mem" %}
6495  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6496  ins_pipe( pipe_slow );
6497%}
6498
6499instruct loadXD_partial(regXD dst, memory mem) %{
6500  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6501  match(Set dst (LoadD mem));
6502  ins_cost(145);
6503  format %{ "MOVLPD $dst,$mem" %}
6504  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6505  ins_pipe( pipe_slow );
6506%}
6507
6508// Load to XMM register (single-precision floating point)
6509// MOVSS instruction
6510instruct loadX(regX dst, memory mem) %{
6511  predicate(UseSSE>=1);
6512  match(Set dst (LoadF mem));
6513  ins_cost(145);
6514  format %{ "MOVSS  $dst,$mem" %}
6515  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6516  ins_pipe( pipe_slow );
6517%}
6518
6519// Load Float
6520instruct loadF(regF dst, memory mem) %{
6521  predicate(UseSSE==0);
6522  match(Set dst (LoadF mem));
6523
6524  ins_cost(150);
6525  format %{ "FLD_S  ST,$mem\n\t"
6526            "FSTP   $dst" %}
6527  opcode(0xD9);               /* D9 /0 */
6528  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6529              Pop_Reg_F(dst) );
6530  ins_pipe( fpu_reg_mem );
6531%}
6532
6533// Load Aligned Packed Byte to XMM register
6534instruct loadA8B(regXD dst, memory mem) %{
6535  predicate(UseSSE>=1);
6536  match(Set dst (Load8B mem));
6537  ins_cost(125);
6538  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
6539  ins_encode( movq_ld(dst, mem));
6540  ins_pipe( pipe_slow );
6541%}
6542
6543// Load Aligned Packed Short to XMM register
6544instruct loadA4S(regXD dst, memory mem) %{
6545  predicate(UseSSE>=1);
6546  match(Set dst (Load4S mem));
6547  ins_cost(125);
6548  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
6549  ins_encode( movq_ld(dst, mem));
6550  ins_pipe( pipe_slow );
6551%}
6552
6553// Load Aligned Packed Char to XMM register
6554instruct loadA4C(regXD dst, memory mem) %{
6555  predicate(UseSSE>=1);
6556  match(Set dst (Load4C mem));
6557  ins_cost(125);
6558  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
6559  ins_encode( movq_ld(dst, mem));
6560  ins_pipe( pipe_slow );
6561%}
6562
6563// Load Aligned Packed Integer to XMM register
6564instruct load2IU(regXD dst, memory mem) %{
6565  predicate(UseSSE>=1);
6566  match(Set dst (Load2I mem));
6567  ins_cost(125);
6568  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
6569  ins_encode( movq_ld(dst, mem));
6570  ins_pipe( pipe_slow );
6571%}
6572
6573// Load Aligned Packed Single to XMM
6574instruct loadA2F(regXD dst, memory mem) %{
6575  predicate(UseSSE>=1);
6576  match(Set dst (Load2F mem));
6577  ins_cost(145);
6578  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
6579  ins_encode( movq_ld(dst, mem));
6580  ins_pipe( pipe_slow );
6581%}
6582
6583// Load Effective Address
6584instruct leaP8(eRegP dst, indOffset8 mem) %{
6585  match(Set dst mem);
6586
6587  ins_cost(110);
6588  format %{ "LEA    $dst,$mem" %}
6589  opcode(0x8D);
6590  ins_encode( OpcP, RegMem(dst,mem));
6591  ins_pipe( ialu_reg_reg_fat );
6592%}
6593
6594instruct leaP32(eRegP dst, indOffset32 mem) %{
6595  match(Set dst mem);
6596
6597  ins_cost(110);
6598  format %{ "LEA    $dst,$mem" %}
6599  opcode(0x8D);
6600  ins_encode( OpcP, RegMem(dst,mem));
6601  ins_pipe( ialu_reg_reg_fat );
6602%}
6603
6604instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6605  match(Set dst mem);
6606
6607  ins_cost(110);
6608  format %{ "LEA    $dst,$mem" %}
6609  opcode(0x8D);
6610  ins_encode( OpcP, RegMem(dst,mem));
6611  ins_pipe( ialu_reg_reg_fat );
6612%}
6613
6614instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6615  match(Set dst mem);
6616
6617  ins_cost(110);
6618  format %{ "LEA    $dst,$mem" %}
6619  opcode(0x8D);
6620  ins_encode( OpcP, RegMem(dst,mem));
6621  ins_pipe( ialu_reg_reg_fat );
6622%}
6623
6624instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6625  match(Set dst mem);
6626
6627  ins_cost(110);
6628  format %{ "LEA    $dst,$mem" %}
6629  opcode(0x8D);
6630  ins_encode( OpcP, RegMem(dst,mem));
6631  ins_pipe( ialu_reg_reg_fat );
6632%}
6633
6634// Load Constant
6635instruct loadConI(eRegI dst, immI src) %{
6636  match(Set dst src);
6637
6638  format %{ "MOV    $dst,$src" %}
6639  ins_encode( LdImmI(dst, src) );
6640  ins_pipe( ialu_reg_fat );
6641%}
6642
6643// Load Constant zero
6644instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
6645  match(Set dst src);
6646  effect(KILL cr);
6647
6648  ins_cost(50);
6649  format %{ "XOR    $dst,$dst" %}
6650  opcode(0x33);  /* + rd */
6651  ins_encode( OpcP, RegReg( dst, dst ) );
6652  ins_pipe( ialu_reg );
6653%}
6654
6655instruct loadConP(eRegP dst, immP src) %{
6656  match(Set dst src);
6657
6658  format %{ "MOV    $dst,$src" %}
6659  opcode(0xB8);  /* + rd */
6660  ins_encode( LdImmP(dst, src) );
6661  ins_pipe( ialu_reg_fat );
6662%}
6663
6664instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6665  match(Set dst src);
6666  effect(KILL cr);
6667  ins_cost(200);
6668  format %{ "MOV    $dst.lo,$src.lo\n\t"
6669            "MOV    $dst.hi,$src.hi" %}
6670  opcode(0xB8);
6671  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6672  ins_pipe( ialu_reg_long_fat );
6673%}
6674
6675instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6676  match(Set dst src);
6677  effect(KILL cr);
6678  ins_cost(150);
6679  format %{ "XOR    $dst.lo,$dst.lo\n\t"
6680            "XOR    $dst.hi,$dst.hi" %}
6681  opcode(0x33,0x33);
6682  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6683  ins_pipe( ialu_reg_long );
6684%}
6685
6686// The instruction usage is guarded by predicate in operand immF().
6687instruct loadConF(regF dst, immF src) %{
6688  match(Set dst src);
6689  ins_cost(125);
6690
6691  format %{ "FLD_S  ST,$src\n\t"
6692            "FSTP   $dst" %}
6693  opcode(0xD9, 0x00);       /* D9 /0 */
6694  ins_encode(LdImmF(src), Pop_Reg_F(dst) );
6695  ins_pipe( fpu_reg_con );
6696%}
6697
6698// The instruction usage is guarded by predicate in operand immXF().
6699instruct loadConX(regX dst, immXF con) %{
6700  match(Set dst con);
6701  ins_cost(125);
6702  format %{ "MOVSS  $dst,[$con]" %}
6703  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
6704  ins_pipe( pipe_slow );
6705%}
6706
6707// The instruction usage is guarded by predicate in operand immXF0().
6708instruct loadConX0(regX dst, immXF0 src) %{
6709  match(Set dst src);
6710  ins_cost(100);
6711  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6712  ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
6713  ins_pipe( pipe_slow );
6714%}
6715
6716// The instruction usage is guarded by predicate in operand immD().
6717instruct loadConD(regD dst, immD src) %{
6718  match(Set dst src);
6719  ins_cost(125);
6720
6721  format %{ "FLD_D  ST,$src\n\t"
6722            "FSTP   $dst" %}
6723  ins_encode(LdImmD(src), Pop_Reg_D(dst) );
6724  ins_pipe( fpu_reg_con );
6725%}
6726
6727// The instruction usage is guarded by predicate in operand immXD().
6728instruct loadConXD(regXD dst, immXD con) %{
6729  match(Set dst con);
6730  ins_cost(125);
6731  format %{ "MOVSD  $dst,[$con]" %}
6732  ins_encode(load_conXD(dst, con));
6733  ins_pipe( pipe_slow );
6734%}
6735
6736// The instruction usage is guarded by predicate in operand immXD0().
6737instruct loadConXD0(regXD dst, immXD0 src) %{
6738  match(Set dst src);
6739  ins_cost(100);
6740  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6741  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
6742  ins_pipe( pipe_slow );
6743%}
6744
6745// Load Stack Slot
6746instruct loadSSI(eRegI dst, stackSlotI src) %{
6747  match(Set dst src);
6748  ins_cost(125);
6749
6750  format %{ "MOV    $dst,$src" %}
6751  opcode(0x8B);
6752  ins_encode( OpcP, RegMem(dst,src));
6753  ins_pipe( ialu_reg_mem );
6754%}
6755
6756instruct loadSSL(eRegL dst, stackSlotL src) %{
6757  match(Set dst src);
6758
6759  ins_cost(200);
6760  format %{ "MOV    $dst,$src.lo\n\t"
6761            "MOV    $dst+4,$src.hi" %}
6762  opcode(0x8B, 0x8B);
6763  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6764  ins_pipe( ialu_mem_long_reg );
6765%}
6766
6767// Load Stack Slot
6768instruct loadSSP(eRegP dst, stackSlotP src) %{
6769  match(Set dst src);
6770  ins_cost(125);
6771
6772  format %{ "MOV    $dst,$src" %}
6773  opcode(0x8B);
6774  ins_encode( OpcP, RegMem(dst,src));
6775  ins_pipe( ialu_reg_mem );
6776%}
6777
6778// Load Stack Slot
6779instruct loadSSF(regF dst, stackSlotF src) %{
6780  match(Set dst src);
6781  ins_cost(125);
6782
6783  format %{ "FLD_S  $src\n\t"
6784            "FSTP   $dst" %}
6785  opcode(0xD9);               /* D9 /0, FLD m32real */
6786  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6787              Pop_Reg_F(dst) );
6788  ins_pipe( fpu_reg_mem );
6789%}
6790
6791// Load Stack Slot
6792instruct loadSSD(regD dst, stackSlotD src) %{
6793  match(Set dst src);
6794  ins_cost(125);
6795
6796  format %{ "FLD_D  $src\n\t"
6797            "FSTP   $dst" %}
6798  opcode(0xDD);               /* DD /0, FLD m64real */
6799  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6800              Pop_Reg_D(dst) );
6801  ins_pipe( fpu_reg_mem );
6802%}
6803
6804// Prefetch instructions.
6805// Must be safe to execute with invalid address (cannot fault).
6806
6807instruct prefetchr0( memory mem ) %{
6808  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
6809  match(PrefetchRead mem);
6810  ins_cost(0);
6811  size(0);
6812  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6813  ins_encode();
6814  ins_pipe(empty);
6815%}
6816
6817instruct prefetchr( memory mem ) %{
6818  predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
6819  match(PrefetchRead mem);
6820  ins_cost(100);
6821
6822  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6823  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
6824  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6825  ins_pipe(ialu_mem);
6826%}
6827
6828instruct prefetchrNTA( memory mem ) %{
6829  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6830  match(PrefetchRead mem);
6831  ins_cost(100);
6832
6833  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6834  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
6835  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6836  ins_pipe(ialu_mem);
6837%}
6838
6839instruct prefetchrT0( memory mem ) %{
6840  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6841  match(PrefetchRead mem);
6842  ins_cost(100);
6843
6844  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6845  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
6846  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6847  ins_pipe(ialu_mem);
6848%}
6849
6850instruct prefetchrT2( memory mem ) %{
6851  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6852  match(PrefetchRead mem);
6853  ins_cost(100);
6854
6855  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6856  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
6857  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
6858  ins_pipe(ialu_mem);
6859%}
6860
6861instruct prefetchw0( memory mem ) %{
6862  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
6863  match(PrefetchWrite mem);
6864  ins_cost(0);
6865  size(0);
6866  format %{ "Prefetch (non-SSE is empty encoding)" %}
6867  ins_encode();
6868  ins_pipe(empty);
6869%}
6870
6871instruct prefetchw( memory mem ) %{
6872  predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
6873  match( PrefetchWrite mem );
6874  ins_cost(100);
6875
6876  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6877  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
6878  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6879  ins_pipe(ialu_mem);
6880%}
6881
6882instruct prefetchwNTA( memory mem ) %{
6883  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6884  match(PrefetchWrite mem);
6885  ins_cost(100);
6886
6887  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6888  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
6889  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6890  ins_pipe(ialu_mem);
6891%}
6892
6893instruct prefetchwT0( memory mem ) %{
6894  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6895  match(PrefetchWrite mem);
6896  ins_cost(100);
6897
6898  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
6899  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
6900  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6901  ins_pipe(ialu_mem);
6902%}
6903
6904instruct prefetchwT2( memory mem ) %{
6905  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6906  match(PrefetchWrite mem);
6907  ins_cost(100);
6908
6909  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
6910  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
6911  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
6912  ins_pipe(ialu_mem);
6913%}
6914
6915//----------Store Instructions-------------------------------------------------
6916
6917// Store Byte
6918instruct storeB(memory mem, xRegI src) %{
6919  match(Set mem (StoreB mem src));
6920
6921  ins_cost(125);
6922  format %{ "MOV8   $mem,$src" %}
6923  opcode(0x88);
6924  ins_encode( OpcP, RegMem( src, mem ) );
6925  ins_pipe( ialu_mem_reg );
6926%}
6927
6928// Store Char/Short
6929instruct storeC(memory mem, eRegI src) %{
6930  match(Set mem (StoreC mem src));
6931
6932  ins_cost(125);
6933  format %{ "MOV16  $mem,$src" %}
6934  opcode(0x89, 0x66);
6935  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6936  ins_pipe( ialu_mem_reg );
6937%}
6938
6939// Store Integer
6940instruct storeI(memory mem, eRegI src) %{
6941  match(Set mem (StoreI mem src));
6942
6943  ins_cost(125);
6944  format %{ "MOV    $mem,$src" %}
6945  opcode(0x89);
6946  ins_encode( OpcP, RegMem( src, mem ) );
6947  ins_pipe( ialu_mem_reg );
6948%}
6949
6950// Store Long
6951instruct storeL(long_memory mem, eRegL src) %{
6952  predicate(!((StoreLNode*)n)->require_atomic_access());
6953  match(Set mem (StoreL mem src));
6954
6955  ins_cost(200);
6956  format %{ "MOV    $mem,$src.lo\n\t"
6957            "MOV    $mem+4,$src.hi" %}
6958  opcode(0x89, 0x89);
6959  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6960  ins_pipe( ialu_mem_long_reg );
6961%}
6962
6963// Volatile Store Long.  Must be atomic, so move it into
6964// the FP TOS and then do a 64-bit FIST.  Has to probe the
6965// target address before the store (for null-ptr checks)
6966// so the memory operand is used twice in the encoding.
6967instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6968  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6969  match(Set mem (StoreL mem src));
6970  effect( KILL cr );
6971  ins_cost(400);
6972  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6973            "FILD   $src\n\t"
6974            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6975  opcode(0x3B);
6976  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6977  ins_pipe( fpu_reg_mem );
6978%}
6979
6980instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
6981  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6982  match(Set mem (StoreL mem src));
6983  effect( TEMP tmp, KILL cr );
6984  ins_cost(380);
6985  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6986            "MOVSD  $tmp,$src\n\t"
6987            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6988  opcode(0x3B);
6989  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
6990  ins_pipe( pipe_slow );
6991%}
6992
6993instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
6994  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6995  match(Set mem (StoreL mem src));
6996  effect( TEMP tmp2 , TEMP tmp, KILL cr );
6997  ins_cost(360);
6998  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6999            "MOVD   $tmp,$src.lo\n\t"
7000            "MOVD   $tmp2,$src.hi\n\t"
7001            "PUNPCKLDQ $tmp,$tmp2\n\t"
7002            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7003  opcode(0x3B);
7004  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7005  ins_pipe( pipe_slow );
7006%}
7007
7008// Store Pointer; for storing unknown oops and raw pointers
7009instruct storeP(memory mem, anyRegP src) %{
7010  match(Set mem (StoreP mem src));
7011
7012  ins_cost(125);
7013  format %{ "MOV    $mem,$src" %}
7014  opcode(0x89);
7015  ins_encode( OpcP, RegMem( src, mem ) );
7016  ins_pipe( ialu_mem_reg );
7017%}
7018
7019// Store Integer Immediate
7020instruct storeImmI(memory mem, immI src) %{
7021  match(Set mem (StoreI mem src));
7022
7023  ins_cost(150);
7024  format %{ "MOV    $mem,$src" %}
7025  opcode(0xC7);               /* C7 /0 */
7026  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7027  ins_pipe( ialu_mem_imm );
7028%}
7029
7030// Store Short/Char Immediate
7031instruct storeImmI16(memory mem, immI16 src) %{
7032  predicate(UseStoreImmI16);
7033  match(Set mem (StoreC mem src));
7034
7035  ins_cost(150);
7036  format %{ "MOV16  $mem,$src" %}
7037  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7038  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7039  ins_pipe( ialu_mem_imm );
7040%}
7041
7042// Store Pointer Immediate; null pointers or constant oops that do not
7043// need card-mark barriers.
7044instruct storeImmP(memory mem, immP src) %{
7045  match(Set mem (StoreP mem src));
7046
7047  ins_cost(150);
7048  format %{ "MOV    $mem,$src" %}
7049  opcode(0xC7);               /* C7 /0 */
7050  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7051  ins_pipe( ialu_mem_imm );
7052%}
7053
7054// Store Byte Immediate
7055instruct storeImmB(memory mem, immI8 src) %{
7056  match(Set mem (StoreB mem src));
7057
7058  ins_cost(150);
7059  format %{ "MOV8   $mem,$src" %}
7060  opcode(0xC6);               /* C6 /0 */
7061  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7062  ins_pipe( ialu_mem_imm );
7063%}
7064
7065// Store Aligned Packed Byte XMM register to memory
7066instruct storeA8B(memory mem, regXD src) %{
7067  predicate(UseSSE>=1);
7068  match(Set mem (Store8B mem src));
7069  ins_cost(145);
7070  format %{ "MOVQ  $mem,$src\t! packed8B" %}
7071  ins_encode( movq_st(mem, src));
7072  ins_pipe( pipe_slow );
7073%}
7074
7075// Store Aligned Packed Char/Short XMM register to memory
7076instruct storeA4C(memory mem, regXD src) %{
7077  predicate(UseSSE>=1);
7078  match(Set mem (Store4C mem src));
7079  ins_cost(145);
7080  format %{ "MOVQ  $mem,$src\t! packed4C" %}
7081  ins_encode( movq_st(mem, src));
7082  ins_pipe( pipe_slow );
7083%}
7084
7085// Store Aligned Packed Integer XMM register to memory
7086instruct storeA2I(memory mem, regXD src) %{
7087  predicate(UseSSE>=1);
7088  match(Set mem (Store2I mem src));
7089  ins_cost(145);
7090  format %{ "MOVQ  $mem,$src\t! packed2I" %}
7091  ins_encode( movq_st(mem, src));
7092  ins_pipe( pipe_slow );
7093%}
7094
7095// Store CMS card-mark Immediate
7096instruct storeImmCM(memory mem, immI8 src) %{
7097  match(Set mem (StoreCM mem src));
7098
7099  ins_cost(150);
7100  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7101  opcode(0xC6);               /* C6 /0 */
7102  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7103  ins_pipe( ialu_mem_imm );
7104%}
7105
7106// Store Double
7107instruct storeD( memory mem, regDPR1 src) %{
7108  predicate(UseSSE<=1);
7109  match(Set mem (StoreD mem src));
7110
7111  ins_cost(100);
7112  format %{ "FST_D  $mem,$src" %}
7113  opcode(0xDD);       /* DD /2 */
7114  ins_encode( enc_FP_store(mem,src) );
7115  ins_pipe( fpu_mem_reg );
7116%}
7117
7118// Store double does rounding on x86
7119instruct storeD_rounded( memory mem, regDPR1 src) %{
7120  predicate(UseSSE<=1);
7121  match(Set mem (StoreD mem (RoundDouble src)));
7122
7123  ins_cost(100);
7124  format %{ "FST_D  $mem,$src\t# round" %}
7125  opcode(0xDD);       /* DD /2 */
7126  ins_encode( enc_FP_store(mem,src) );
7127  ins_pipe( fpu_mem_reg );
7128%}
7129
7130// Store XMM register to memory (double-precision floating points)
7131// MOVSD instruction
7132instruct storeXD(memory mem, regXD src) %{
7133  predicate(UseSSE>=2);
7134  match(Set mem (StoreD mem src));
7135  ins_cost(95);
7136  format %{ "MOVSD  $mem,$src" %}
7137  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7138  ins_pipe( pipe_slow );
7139%}
7140
7141// Store XMM register to memory (single-precision floating point)
7142// MOVSS instruction
7143instruct storeX(memory mem, regX src) %{
7144  predicate(UseSSE>=1);
7145  match(Set mem (StoreF mem src));
7146  ins_cost(95);
7147  format %{ "MOVSS  $mem,$src" %}
7148  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7149  ins_pipe( pipe_slow );
7150%}
7151
7152// Store Aligned Packed Single Float XMM register to memory
7153instruct storeA2F(memory mem, regXD src) %{
7154  predicate(UseSSE>=1);
7155  match(Set mem (Store2F mem src));
7156  ins_cost(145);
7157  format %{ "MOVQ  $mem,$src\t! packed2F" %}
7158  ins_encode( movq_st(mem, src));
7159  ins_pipe( pipe_slow );
7160%}
7161
7162// Store Float
7163instruct storeF( memory mem, regFPR1 src) %{
7164  predicate(UseSSE==0);
7165  match(Set mem (StoreF mem src));
7166
7167  ins_cost(100);
7168  format %{ "FST_S  $mem,$src" %}
7169  opcode(0xD9);       /* D9 /2 */
7170  ins_encode( enc_FP_store(mem,src) );
7171  ins_pipe( fpu_mem_reg );
7172%}
7173
7174// Store Float does rounding on x86
7175instruct storeF_rounded( memory mem, regFPR1 src) %{
7176  predicate(UseSSE==0);
7177  match(Set mem (StoreF mem (RoundFloat src)));
7178
7179  ins_cost(100);
7180  format %{ "FST_S  $mem,$src\t# round" %}
7181  opcode(0xD9);       /* D9 /2 */
7182  ins_encode( enc_FP_store(mem,src) );
7183  ins_pipe( fpu_mem_reg );
7184%}
7185
7186// Store Float does rounding on x86
7187instruct storeF_Drounded( memory mem, regDPR1 src) %{
7188  predicate(UseSSE<=1);
7189  match(Set mem (StoreF mem (ConvD2F src)));
7190
7191  ins_cost(100);
7192  format %{ "FST_S  $mem,$src\t# D-round" %}
7193  opcode(0xD9);       /* D9 /2 */
7194  ins_encode( enc_FP_store(mem,src) );
7195  ins_pipe( fpu_mem_reg );
7196%}
7197
7198// Store immediate Float value (it is faster than store from FPU register)
7199// The instruction usage is guarded by predicate in operand immF().
7200instruct storeF_imm( memory mem, immF src) %{
7201  match(Set mem (StoreF mem src));
7202
7203  ins_cost(50);
7204  format %{ "MOV    $mem,$src\t# store float" %}
7205  opcode(0xC7);               /* C7 /0 */
7206  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7207  ins_pipe( ialu_mem_imm );
7208%}
7209
7210// Store immediate Float value (it is faster than store from XMM register)
7211// The instruction usage is guarded by predicate in operand immXF().
7212instruct storeX_imm( memory mem, immXF src) %{
7213  match(Set mem (StoreF mem src));
7214
7215  ins_cost(50);
7216  format %{ "MOV    $mem,$src\t# store float" %}
7217  opcode(0xC7);               /* C7 /0 */
7218  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7219  ins_pipe( ialu_mem_imm );
7220%}
7221
7222// Store Integer to stack slot
7223instruct storeSSI(stackSlotI dst, eRegI src) %{
7224  match(Set dst src);
7225
7226  ins_cost(100);
7227  format %{ "MOV    $dst,$src" %}
7228  opcode(0x89);
7229  ins_encode( OpcPRegSS( dst, src ) );
7230  ins_pipe( ialu_mem_reg );
7231%}
7232
7233// Store Integer to stack slot
7234instruct storeSSP(stackSlotP dst, eRegP src) %{
7235  match(Set dst src);
7236
7237  ins_cost(100);
7238  format %{ "MOV    $dst,$src" %}
7239  opcode(0x89);
7240  ins_encode( OpcPRegSS( dst, src ) );
7241  ins_pipe( ialu_mem_reg );
7242%}
7243
7244// Store Long to stack slot
7245instruct storeSSL(stackSlotL dst, eRegL src) %{
7246  match(Set dst src);
7247
7248  ins_cost(200);
7249  format %{ "MOV    $dst,$src.lo\n\t"
7250            "MOV    $dst+4,$src.hi" %}
7251  opcode(0x89, 0x89);
7252  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7253  ins_pipe( ialu_mem_long_reg );
7254%}
7255
7256//----------MemBar Instructions-----------------------------------------------
7257// Memory barrier flavors
7258
7259instruct membar_acquire() %{
7260  match(MemBarAcquire);
7261  ins_cost(400);
7262
7263  size(0);
7264  format %{ "MEMBAR-acquire" %}
7265  ins_encode( enc_membar_acquire );
7266  ins_pipe(pipe_slow);
7267%}
7268
7269instruct membar_acquire_lock() %{
7270  match(MemBarAcquire);
7271  predicate(Matcher::prior_fast_lock(n));
7272  ins_cost(0);
7273
7274  size(0);
7275  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7276  ins_encode( );
7277  ins_pipe(empty);
7278%}
7279
7280instruct membar_release() %{
7281  match(MemBarRelease);
7282  ins_cost(400);
7283
7284  size(0);
7285  format %{ "MEMBAR-release" %}
7286  ins_encode( enc_membar_release );
7287  ins_pipe(pipe_slow);
7288%}
7289
7290instruct membar_release_lock() %{
7291  match(MemBarRelease);
7292  predicate(Matcher::post_fast_unlock(n));
7293  ins_cost(0);
7294
7295  size(0);
7296  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7297  ins_encode( );
7298  ins_pipe(empty);
7299%}
7300
7301instruct membar_volatile() %{
7302  match(MemBarVolatile);
7303  ins_cost(400);
7304
7305  format %{ "MEMBAR-volatile" %}
7306  ins_encode( enc_membar_volatile );
7307  ins_pipe(pipe_slow);
7308%}
7309
7310instruct unnecessary_membar_volatile() %{
7311  match(MemBarVolatile);
7312  predicate(Matcher::post_store_load_barrier(n));
7313  ins_cost(0);
7314
7315  size(0);
7316  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7317  ins_encode( );
7318  ins_pipe(empty);
7319%}
7320
7321//----------Move Instructions--------------------------------------------------
7322instruct castX2P(eAXRegP dst, eAXRegI src) %{
7323  match(Set dst (CastX2P src));
7324  format %{ "# X2P  $dst, $src" %}
7325  ins_encode( /*empty encoding*/ );
7326  ins_cost(0);
7327  ins_pipe(empty);
7328%}
7329
7330instruct castP2X(eRegI dst, eRegP src ) %{
7331  match(Set dst (CastP2X src));
7332  ins_cost(50);
7333  format %{ "MOV    $dst, $src\t# CastP2X" %}
7334  ins_encode( enc_Copy( dst, src) );
7335  ins_pipe( ialu_reg_reg );
7336%}
7337
7338//----------Conditional Move---------------------------------------------------
7339// Conditional move
7340instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7341  predicate(VM_Version::supports_cmov() );
7342  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7343  ins_cost(200);
7344  format %{ "CMOV$cop $dst,$src" %}
7345  opcode(0x0F,0x40);
7346  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7347  ins_pipe( pipe_cmov_reg );
7348%}
7349
7350instruct cmovI_regU( eRegI dst, eRegI src, eFlagsRegU cr, cmpOpU cop ) %{
7351  predicate(VM_Version::supports_cmov() );
7352  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7353  ins_cost(200);
7354  format %{ "CMOV$cop $dst,$src" %}
7355  opcode(0x0F,0x40);
7356  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7357  ins_pipe( pipe_cmov_reg );
7358%}
7359
7360// Conditional move
7361instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7362  predicate(VM_Version::supports_cmov() );
7363  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7364  ins_cost(250);
7365  format %{ "CMOV$cop $dst,$src" %}
7366  opcode(0x0F,0x40);
7367  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7368  ins_pipe( pipe_cmov_mem );
7369%}
7370
7371// Conditional move
7372instruct cmovI_memu(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7373  predicate(VM_Version::supports_cmov() );
7374  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7375  ins_cost(250);
7376  format %{ "CMOV$cop $dst,$src" %}
7377  opcode(0x0F,0x40);
7378  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7379  ins_pipe( pipe_cmov_mem );
7380%}
7381
7382// Conditional move
7383instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7384  predicate(VM_Version::supports_cmov() );
7385  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7386  ins_cost(200);
7387  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7388  opcode(0x0F,0x40);
7389  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7390  ins_pipe( pipe_cmov_reg );
7391%}
7392
7393// Conditional move (non-P6 version)
7394// Note:  a CMoveP is generated for  stubs and native wrappers
7395//        regardless of whether we are on a P6, so we
7396//        emulate a cmov here
7397instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7398  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7399  ins_cost(300);
7400  format %{ "Jn$cop   skip\n\t"
7401          "MOV    $dst,$src\t# pointer\n"
7402      "skip:" %}
7403  opcode(0x8b);
7404  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7405  ins_pipe( pipe_cmov_reg );
7406%}
7407
7408// Conditional move
7409instruct cmovP_regU(eRegP dst, eRegP src, eFlagsRegU cr, cmpOpU cop ) %{
7410  predicate(VM_Version::supports_cmov() );
7411  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7412  ins_cost(200);
7413  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7414  opcode(0x0F,0x40);
7415  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7416  ins_pipe( pipe_cmov_reg );
7417%}
7418
7419// DISABLED: Requires the ADLC to emit a bottom_type call that
7420// correctly meets the two pointer arguments; one is an incoming
7421// register but the other is a memory operand.  ALSO appears to
7422// be buggy with implicit null checks.
7423//
7424//// Conditional move
7425//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7426//  predicate(VM_Version::supports_cmov() );
7427//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7428//  ins_cost(250);
7429//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7430//  opcode(0x0F,0x40);
7431//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7432//  ins_pipe( pipe_cmov_mem );
7433//%}
7434//
7435//// Conditional move
7436//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7437//  predicate(VM_Version::supports_cmov() );
7438//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7439//  ins_cost(250);
7440//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7441//  opcode(0x0F,0x40);
7442//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7443//  ins_pipe( pipe_cmov_mem );
7444//%}
7445
7446// Conditional move
7447instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7448  predicate(UseSSE<=1);
7449  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7450  ins_cost(200);
7451  format %{ "FCMOV$cop $dst,$src\t# double" %}
7452  opcode(0xDA);
7453  ins_encode( enc_cmov_d(cop,src) );
7454  ins_pipe( pipe_cmovD_reg );
7455%}
7456
7457// Conditional move
7458instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
7459  predicate(UseSSE==0);
7460  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7461  ins_cost(200);
7462  format %{ "FCMOV$cop $dst,$src\t# float" %}
7463  opcode(0xDA);
7464  ins_encode( enc_cmov_d(cop,src) );
7465  ins_pipe( pipe_cmovD_reg );
7466%}
7467
7468// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7469instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7470  predicate(UseSSE<=1);
7471  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7472  ins_cost(200);
7473  format %{ "Jn$cop   skip\n\t"
7474            "MOV    $dst,$src\t# double\n"
7475      "skip:" %}
7476  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7477  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
7478  ins_pipe( pipe_cmovD_reg );
7479%}
7480
7481// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7482instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7483  predicate(UseSSE==0);
7484  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7485  ins_cost(200);
7486  format %{ "Jn$cop    skip\n\t"
7487            "MOV    $dst,$src\t# float\n"
7488      "skip:" %}
7489  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7490  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
7491  ins_pipe( pipe_cmovD_reg );
7492%}
7493
7494// No CMOVE with SSE/SSE2
7495instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
7496  predicate (UseSSE>=1);
7497  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7498  ins_cost(200);
7499  format %{ "Jn$cop   skip\n\t"
7500            "MOVSS  $dst,$src\t# float\n"
7501      "skip:" %}
7502  ins_encode %{
7503    Label skip;
7504    // Invert sense of branch from sense of CMOV
7505    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7506    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7507    __ bind(skip);
7508  %}
7509  ins_pipe( pipe_slow );
7510%}
7511
7512// No CMOVE with SSE/SSE2
7513instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
7514  predicate (UseSSE>=2);
7515  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7516  ins_cost(200);
7517  format %{ "Jn$cop   skip\n\t"
7518            "MOVSD  $dst,$src\t# float\n"
7519      "skip:" %}
7520  ins_encode %{
7521    Label skip;
7522    // Invert sense of branch from sense of CMOV
7523    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7524    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7525    __ bind(skip);
7526  %}
7527  ins_pipe( pipe_slow );
7528%}
7529
7530// unsigned version
7531instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
7532  predicate (UseSSE>=1);
7533  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7534  ins_cost(200);
7535  format %{ "Jn$cop   skip\n\t"
7536            "MOVSS  $dst,$src\t# float\n"
7537      "skip:" %}
7538  ins_encode %{
7539    Label skip;
7540    // Invert sense of branch from sense of CMOV
7541    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7542    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7543    __ bind(skip);
7544  %}
7545  ins_pipe( pipe_slow );
7546%}
7547
7548// unsigned version
7549instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
7550  predicate (UseSSE>=2);
7551  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7552  ins_cost(200);
7553  format %{ "Jn$cop   skip\n\t"
7554            "MOVSD  $dst,$src\t# float\n"
7555      "skip:" %}
7556  ins_encode %{
7557    Label skip;
7558    // Invert sense of branch from sense of CMOV
7559    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7560    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7561    __ bind(skip);
7562  %}
7563  ins_pipe( pipe_slow );
7564%}
7565
7566instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7567  predicate(VM_Version::supports_cmov() );
7568  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7569  ins_cost(200);
7570  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7571            "CMOV$cop $dst.hi,$src.hi" %}
7572  opcode(0x0F,0x40);
7573  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7574  ins_pipe( pipe_cmov_reg_long );
7575%}
7576
7577instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7578  predicate(VM_Version::supports_cmov() );
7579  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7580  ins_cost(200);
7581  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7582            "CMOV$cop $dst.hi,$src.hi" %}
7583  opcode(0x0F,0x40);
7584  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7585  ins_pipe( pipe_cmov_reg_long );
7586%}
7587
7588//----------Arithmetic Instructions--------------------------------------------
7589//----------Addition Instructions----------------------------------------------
7590// Integer Addition Instructions
7591instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7592  match(Set dst (AddI dst src));
7593  effect(KILL cr);
7594
7595  size(2);
7596  format %{ "ADD    $dst,$src" %}
7597  opcode(0x03);
7598  ins_encode( OpcP, RegReg( dst, src) );
7599  ins_pipe( ialu_reg_reg );
7600%}
7601
7602instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
7603  match(Set dst (AddI dst src));
7604  effect(KILL cr);
7605
7606  format %{ "ADD    $dst,$src" %}
7607  opcode(0x81, 0x00); /* /0 id */
7608  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7609  ins_pipe( ialu_reg );
7610%}
7611
7612instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
7613  predicate(UseIncDec);
7614  match(Set dst (AddI dst src));
7615  effect(KILL cr);
7616
7617  size(1);
7618  format %{ "INC    $dst" %}
7619  opcode(0x40); /*  */
7620  ins_encode( Opc_plus( primary, dst ) );
7621  ins_pipe( ialu_reg );
7622%}
7623
7624instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
7625  match(Set dst (AddI src0 src1));
7626  ins_cost(110);
7627
7628  format %{ "LEA    $dst,[$src0 + $src1]" %}
7629  opcode(0x8D); /* 0x8D /r */
7630  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7631  ins_pipe( ialu_reg_reg );
7632%}
7633
7634instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7635  match(Set dst (AddP src0 src1));
7636  ins_cost(110);
7637
7638  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7639  opcode(0x8D); /* 0x8D /r */
7640  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7641  ins_pipe( ialu_reg_reg );
7642%}
7643
7644instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
7645  predicate(UseIncDec);
7646  match(Set dst (AddI dst src));
7647  effect(KILL cr);
7648
7649  size(1);
7650  format %{ "DEC    $dst" %}
7651  opcode(0x48); /*  */
7652  ins_encode( Opc_plus( primary, dst ) );
7653  ins_pipe( ialu_reg );
7654%}
7655
7656instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
7657  match(Set dst (AddP dst src));
7658  effect(KILL cr);
7659
7660  size(2);
7661  format %{ "ADD    $dst,$src" %}
7662  opcode(0x03);
7663  ins_encode( OpcP, RegReg( dst, src) );
7664  ins_pipe( ialu_reg_reg );
7665%}
7666
7667instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7668  match(Set dst (AddP dst src));
7669  effect(KILL cr);
7670
7671  format %{ "ADD    $dst,$src" %}
7672  opcode(0x81,0x00); /* Opcode 81 /0 id */
7673  // ins_encode( RegImm( dst, src) );
7674  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7675  ins_pipe( ialu_reg );
7676%}
7677
7678instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
7679  match(Set dst (AddI dst (LoadI src)));
7680  effect(KILL cr);
7681
7682  ins_cost(125);
7683  format %{ "ADD    $dst,$src" %}
7684  opcode(0x03);
7685  ins_encode( OpcP, RegMem( dst, src) );
7686  ins_pipe( ialu_reg_mem );
7687%}
7688
7689instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
7690  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7691  effect(KILL cr);
7692
7693  ins_cost(150);
7694  format %{ "ADD    $dst,$src" %}
7695  opcode(0x01);  /* Opcode 01 /r */
7696  ins_encode( OpcP, RegMem( src, dst ) );
7697  ins_pipe( ialu_mem_reg );
7698%}
7699
7700// Add Memory with Immediate
7701instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7702  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7703  effect(KILL cr);
7704
7705  ins_cost(125);
7706  format %{ "ADD    $dst,$src" %}
7707  opcode(0x81);               /* Opcode 81 /0 id */
7708  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7709  ins_pipe( ialu_mem_imm );
7710%}
7711
7712instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7713  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7714  effect(KILL cr);
7715
7716  ins_cost(125);
7717  format %{ "INC    $dst" %}
7718  opcode(0xFF);               /* Opcode FF /0 */
7719  ins_encode( OpcP, RMopc_Mem(0x00,dst));
7720  ins_pipe( ialu_mem_imm );
7721%}
7722
7723instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7724  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7725  effect(KILL cr);
7726
7727  ins_cost(125);
7728  format %{ "DEC    $dst" %}
7729  opcode(0xFF);               /* Opcode FF /1 */
7730  ins_encode( OpcP, RMopc_Mem(0x01,dst));
7731  ins_pipe( ialu_mem_imm );
7732%}
7733
7734
7735instruct checkCastPP( eRegP dst ) %{
7736  match(Set dst (CheckCastPP dst));
7737
7738  size(0);
7739  format %{ "#checkcastPP of $dst" %}
7740  ins_encode( /*empty encoding*/ );
7741  ins_pipe( empty );
7742%}
7743
7744instruct castPP( eRegP dst ) %{
7745  match(Set dst (CastPP dst));
7746  format %{ "#castPP of $dst" %}
7747  ins_encode( /*empty encoding*/ );
7748  ins_pipe( empty );
7749%}
7750
7751instruct castII( eRegI dst ) %{
7752  match(Set dst (CastII dst));
7753  format %{ "#castII of $dst" %}
7754  ins_encode( /*empty encoding*/ );
7755  ins_cost(0);
7756  ins_pipe( empty );
7757%}
7758
7759
7760// Load-locked - same as a regular pointer load when used with compare-swap
7761instruct loadPLocked(eRegP dst, memory mem) %{
7762  match(Set dst (LoadPLocked mem));
7763
7764  ins_cost(125);
7765  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7766  opcode(0x8B);
7767  ins_encode( OpcP, RegMem(dst,mem));
7768  ins_pipe( ialu_reg_mem );
7769%}
7770
7771// LoadLong-locked - same as a volatile long load when used with compare-swap
7772instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
7773  predicate(UseSSE<=1);
7774  match(Set dst (LoadLLocked mem));
7775
7776  ins_cost(200);
7777  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
7778            "FISTp  $dst" %}
7779  ins_encode(enc_loadL_volatile(mem,dst));
7780  ins_pipe( fpu_reg_mem );
7781%}
7782
7783instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
7784  predicate(UseSSE>=2);
7785  match(Set dst (LoadLLocked mem));
7786  effect(TEMP tmp);
7787  ins_cost(180);
7788  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
7789            "MOVSD  $dst,$tmp" %}
7790  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
7791  ins_pipe( pipe_slow );
7792%}
7793
7794instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
7795  predicate(UseSSE>=2);
7796  match(Set dst (LoadLLocked mem));
7797  effect(TEMP tmp);
7798  ins_cost(160);
7799  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
7800            "MOVD   $dst.lo,$tmp\n\t"
7801            "PSRLQ  $tmp,32\n\t"
7802            "MOVD   $dst.hi,$tmp" %}
7803  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
7804  ins_pipe( pipe_slow );
7805%}
7806
7807// Conditional-store of the updated heap-top.
7808// Used during allocation of the shared heap.
7809// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7810instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7811  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7812  // EAX is killed if there is contention, but then it's also unused.
7813  // In the common case of no contention, EAX holds the new oop address.
7814  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7815  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7816  ins_pipe( pipe_cmpxchg );
7817%}
7818
7819// Conditional-store of a long value
7820// Returns a boolean value (0/1) on success.  Implemented with a CMPXCHG8 on Intel.
7821// mem_ptr can actually be in either ESI or EDI
7822instruct storeLConditional( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7823  match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
7824  effect(KILL cr);
7825  // EDX:EAX is killed if there is contention, but then it's also unused.
7826  // In the common case of no contention, EDX:EAX holds the new oop address.
7827  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7828            "MOV    $res,0\n\t"
7829            "JNE,s  fail\n\t"
7830            "MOV    $res,1\n"
7831          "fail:" %}
7832  ins_encode( enc_cmpxchg8(mem_ptr),
7833              enc_flags_ne_to_boolean(res) );
7834  ins_pipe( pipe_cmpxchg );
7835%}
7836
7837// Conditional-store of a long value
7838// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG8 on Intel.
7839// mem_ptr can actually be in either ESI or EDI
7840instruct storeLConditional_flags( eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr, immI0 zero ) %{
7841  match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
7842  // EDX:EAX is killed if there is contention, but then it's also unused.
7843  // In the common case of no contention, EDX:EAX holds the new oop address.
7844  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
7845  ins_encode( enc_cmpxchg8(mem_ptr) );
7846  ins_pipe( pipe_cmpxchg );
7847%}
7848
7849// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7850
7851instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7852  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7853  effect(KILL cr, KILL oldval);
7854  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7855            "MOV    $res,0\n\t"
7856            "JNE,s  fail\n\t"
7857            "MOV    $res,1\n"
7858          "fail:" %}
7859  ins_encode( enc_cmpxchg8(mem_ptr),
7860              enc_flags_ne_to_boolean(res) );
7861  ins_pipe( pipe_cmpxchg );
7862%}
7863
7864instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7865  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7866  effect(KILL cr, KILL oldval);
7867  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7868            "MOV    $res,0\n\t"
7869            "JNE,s  fail\n\t"
7870            "MOV    $res,1\n"
7871          "fail:" %}
7872  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7873  ins_pipe( pipe_cmpxchg );
7874%}
7875
7876instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7877  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7878  effect(KILL cr, KILL oldval);
7879  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7880            "MOV    $res,0\n\t"
7881            "JNE,s  fail\n\t"
7882            "MOV    $res,1\n"
7883          "fail:" %}
7884  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7885  ins_pipe( pipe_cmpxchg );
7886%}
7887
7888//----------Subtraction Instructions-------------------------------------------
7889// Integer Subtraction Instructions
7890instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7891  match(Set dst (SubI dst src));
7892  effect(KILL cr);
7893
7894  size(2);
7895  format %{ "SUB    $dst,$src" %}
7896  opcode(0x2B);
7897  ins_encode( OpcP, RegReg( dst, src) );
7898  ins_pipe( ialu_reg_reg );
7899%}
7900
7901instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
7902  match(Set dst (SubI dst src));
7903  effect(KILL cr);
7904
7905  format %{ "SUB    $dst,$src" %}
7906  opcode(0x81,0x05);  /* Opcode 81 /5 */
7907  // ins_encode( RegImm( dst, src) );
7908  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7909  ins_pipe( ialu_reg );
7910%}
7911
7912instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
7913  match(Set dst (SubI dst (LoadI src)));
7914  effect(KILL cr);
7915
7916  ins_cost(125);
7917  format %{ "SUB    $dst,$src" %}
7918  opcode(0x2B);
7919  ins_encode( OpcP, RegMem( dst, src) );
7920  ins_pipe( ialu_reg_mem );
7921%}
7922
7923instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
7924  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7925  effect(KILL cr);
7926
7927  ins_cost(150);
7928  format %{ "SUB    $dst,$src" %}
7929  opcode(0x29);  /* Opcode 29 /r */
7930  ins_encode( OpcP, RegMem( src, dst ) );
7931  ins_pipe( ialu_mem_reg );
7932%}
7933
7934// Subtract from a pointer
7935instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
7936  match(Set dst (AddP dst (SubI zero src)));
7937  effect(KILL cr);
7938
7939  size(2);
7940  format %{ "SUB    $dst,$src" %}
7941  opcode(0x2B);
7942  ins_encode( OpcP, RegReg( dst, src) );
7943  ins_pipe( ialu_reg_reg );
7944%}
7945
7946instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
7947  match(Set dst (SubI zero dst));
7948  effect(KILL cr);
7949
7950  size(2);
7951  format %{ "NEG    $dst" %}
7952  opcode(0xF7,0x03);  // Opcode F7 /3
7953  ins_encode( OpcP, RegOpc( dst ) );
7954  ins_pipe( ialu_reg );
7955%}
7956
7957
7958//----------Multiplication/Division Instructions-------------------------------
7959// Integer Multiplication Instructions
7960// Multiply Register
7961instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7962  match(Set dst (MulI dst src));
7963  effect(KILL cr);
7964
7965  size(3);
7966  ins_cost(300);
7967  format %{ "IMUL   $dst,$src" %}
7968  opcode(0xAF, 0x0F);
7969  ins_encode( OpcS, OpcP, RegReg( dst, src) );
7970  ins_pipe( ialu_reg_reg_alu0 );
7971%}
7972
7973// Multiply 32-bit Immediate
7974instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
7975  match(Set dst (MulI src imm));
7976  effect(KILL cr);
7977
7978  ins_cost(300);
7979  format %{ "IMUL   $dst,$src,$imm" %}
7980  opcode(0x69);  /* 69 /r id */
7981  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7982  ins_pipe( ialu_reg_reg_alu0 );
7983%}
7984
7985instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7986  match(Set dst src);
7987  effect(KILL cr);
7988
7989  // Note that this is artificially increased to make it more expensive than loadConL
7990  ins_cost(250);
7991  format %{ "MOV    EAX,$src\t// low word only" %}
7992  opcode(0xB8);
7993  ins_encode( LdImmL_Lo(dst, src) );
7994  ins_pipe( ialu_reg_fat );
7995%}
7996
7997// Multiply by 32-bit Immediate, taking the shifted high order results
7998//  (special case for shift by 32)
7999instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8000  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8001  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8002             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8003             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8004  effect(USE src1, KILL cr);
8005
8006  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8007  ins_cost(0*100 + 1*400 - 150);
8008  format %{ "IMUL   EDX:EAX,$src1" %}
8009  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8010  ins_pipe( pipe_slow );
8011%}
8012
8013// Multiply by 32-bit Immediate, taking the shifted high order results
8014instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8015  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8016  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8017             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8018             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8019  effect(USE src1, KILL cr);
8020
8021  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8022  ins_cost(1*100 + 1*400 - 150);
8023  format %{ "IMUL   EDX:EAX,$src1\n\t"
8024            "SAR    EDX,$cnt-32" %}
8025  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8026  ins_pipe( pipe_slow );
8027%}
8028
8029// Multiply Memory 32-bit Immediate
8030instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8031  match(Set dst (MulI (LoadI src) imm));
8032  effect(KILL cr);
8033
8034  ins_cost(300);
8035  format %{ "IMUL   $dst,$src,$imm" %}
8036  opcode(0x69);  /* 69 /r id */
8037  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8038  ins_pipe( ialu_reg_mem_alu0 );
8039%}
8040
8041// Multiply Memory
8042instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8043  match(Set dst (MulI dst (LoadI src)));
8044  effect(KILL cr);
8045
8046  ins_cost(350);
8047  format %{ "IMUL   $dst,$src" %}
8048  opcode(0xAF, 0x0F);
8049  ins_encode( OpcS, OpcP, RegMem( dst, src) );
8050  ins_pipe( ialu_reg_mem_alu0 );
8051%}
8052
8053// Multiply Register Int to Long
8054instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8055  // Basic Idea: long = (long)int * (long)int
8056  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8057  effect(DEF dst, USE src, USE src1, KILL flags);
8058
8059  ins_cost(300);
8060  format %{ "IMUL   $dst,$src1" %}
8061
8062  ins_encode( long_int_multiply( dst, src1 ) );
8063  ins_pipe( ialu_reg_reg_alu0 );
8064%}
8065
8066instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8067  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8068  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8069  effect(KILL flags);
8070
8071  ins_cost(300);
8072  format %{ "MUL    $dst,$src1" %}
8073
8074  ins_encode( long_uint_multiply(dst, src1) );
8075  ins_pipe( ialu_reg_reg_alu0 );
8076%}
8077
8078// Multiply Register Long
8079instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8080  match(Set dst (MulL dst src));
8081  effect(KILL cr, TEMP tmp);
8082  ins_cost(4*100+3*400);
8083// Basic idea: lo(result) = lo(x_lo * y_lo)
8084//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8085  format %{ "MOV    $tmp,$src.lo\n\t"
8086            "IMUL   $tmp,EDX\n\t"
8087            "MOV    EDX,$src.hi\n\t"
8088            "IMUL   EDX,EAX\n\t"
8089            "ADD    $tmp,EDX\n\t"
8090            "MUL    EDX:EAX,$src.lo\n\t"
8091            "ADD    EDX,$tmp" %}
8092  ins_encode( long_multiply( dst, src, tmp ) );
8093  ins_pipe( pipe_slow );
8094%}
8095
8096// Multiply Register Long by small constant
8097instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8098  match(Set dst (MulL dst src));
8099  effect(KILL cr, TEMP tmp);
8100  ins_cost(2*100+2*400);
8101  size(12);
8102// Basic idea: lo(result) = lo(src * EAX)
8103//             hi(result) = hi(src * EAX) + lo(src * EDX)
8104  format %{ "IMUL   $tmp,EDX,$src\n\t"
8105            "MOV    EDX,$src\n\t"
8106            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8107            "ADD    EDX,$tmp" %}
8108  ins_encode( long_multiply_con( dst, src, tmp ) );
8109  ins_pipe( pipe_slow );
8110%}
8111
8112// Integer DIV with Register
8113instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8114  match(Set rax (DivI rax div));
8115  effect(KILL rdx, KILL cr);
8116  size(26);
8117  ins_cost(30*100+10*100);
8118  format %{ "CMP    EAX,0x80000000\n\t"
8119            "JNE,s  normal\n\t"
8120            "XOR    EDX,EDX\n\t"
8121            "CMP    ECX,-1\n\t"
8122            "JE,s   done\n"
8123    "normal: CDQ\n\t"
8124            "IDIV   $div\n\t"
8125    "done:"        %}
8126  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8127  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8128  ins_pipe( ialu_reg_reg_alu0 );
8129%}
8130
8131// Divide Register Long
8132instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8133  match(Set dst (DivL src1 src2));
8134  effect( KILL cr, KILL cx, KILL bx );
8135  ins_cost(10000);
8136  format %{ "PUSH   $src1.hi\n\t"
8137            "PUSH   $src1.lo\n\t"
8138            "PUSH   $src2.hi\n\t"
8139            "PUSH   $src2.lo\n\t"
8140            "CALL   SharedRuntime::ldiv\n\t"
8141            "ADD    ESP,16" %}
8142  ins_encode( long_div(src1,src2) );
8143  ins_pipe( pipe_slow );
8144%}
8145
8146// Integer DIVMOD with Register, both quotient and mod results
8147instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8148  match(DivModI rax div);
8149  effect(KILL cr);
8150  size(26);
8151  ins_cost(30*100+10*100);
8152  format %{ "CMP    EAX,0x80000000\n\t"
8153            "JNE,s  normal\n\t"
8154            "XOR    EDX,EDX\n\t"
8155            "CMP    ECX,-1\n\t"
8156            "JE,s   done\n"
8157    "normal: CDQ\n\t"
8158            "IDIV   $div\n\t"
8159    "done:"        %}
8160  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8161  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8162  ins_pipe( pipe_slow );
8163%}
8164
8165// Integer MOD with Register
8166instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8167  match(Set rdx (ModI rax div));
8168  effect(KILL rax, KILL cr);
8169
8170  size(26);
8171  ins_cost(300);
8172  format %{ "CDQ\n\t"
8173            "IDIV   $div" %}
8174  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8175  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8176  ins_pipe( ialu_reg_reg_alu0 );
8177%}
8178
8179// Remainder Register Long
8180instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8181  match(Set dst (ModL src1 src2));
8182  effect( KILL cr, KILL cx, KILL bx );
8183  ins_cost(10000);
8184  format %{ "PUSH   $src1.hi\n\t"
8185            "PUSH   $src1.lo\n\t"
8186            "PUSH   $src2.hi\n\t"
8187            "PUSH   $src2.lo\n\t"
8188            "CALL   SharedRuntime::lrem\n\t"
8189            "ADD    ESP,16" %}
8190  ins_encode( long_mod(src1,src2) );
8191  ins_pipe( pipe_slow );
8192%}
8193
8194// Integer Shift Instructions
8195// Shift Left by one
8196instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8197  match(Set dst (LShiftI dst shift));
8198  effect(KILL cr);
8199
8200  size(2);
8201  format %{ "SHL    $dst,$shift" %}
8202  opcode(0xD1, 0x4);  /* D1 /4 */
8203  ins_encode( OpcP, RegOpc( dst ) );
8204  ins_pipe( ialu_reg );
8205%}
8206
8207// Shift Left by 8-bit immediate
8208instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8209  match(Set dst (LShiftI dst shift));
8210  effect(KILL cr);
8211
8212  size(3);
8213  format %{ "SHL    $dst,$shift" %}
8214  opcode(0xC1, 0x4);  /* C1 /4 ib */
8215  ins_encode( RegOpcImm( dst, shift) );
8216  ins_pipe( ialu_reg );
8217%}
8218
8219// Shift Left by variable
8220instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8221  match(Set dst (LShiftI dst shift));
8222  effect(KILL cr);
8223
8224  size(2);
8225  format %{ "SHL    $dst,$shift" %}
8226  opcode(0xD3, 0x4);  /* D3 /4 */
8227  ins_encode( OpcP, RegOpc( dst ) );
8228  ins_pipe( ialu_reg_reg );
8229%}
8230
8231// Arithmetic shift right by one
8232instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8233  match(Set dst (RShiftI dst shift));
8234  effect(KILL cr);
8235
8236  size(2);
8237  format %{ "SAR    $dst,$shift" %}
8238  opcode(0xD1, 0x7);  /* D1 /7 */
8239  ins_encode( OpcP, RegOpc( dst ) );
8240  ins_pipe( ialu_reg );
8241%}
8242
8243// Arithmetic shift right by one
8244instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8245  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8246  effect(KILL cr);
8247  format %{ "SAR    $dst,$shift" %}
8248  opcode(0xD1, 0x7);  /* D1 /7 */
8249  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8250  ins_pipe( ialu_mem_imm );
8251%}
8252
8253// Arithmetic Shift Right by 8-bit immediate
8254instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8255  match(Set dst (RShiftI dst shift));
8256  effect(KILL cr);
8257
8258  size(3);
8259  format %{ "SAR    $dst,$shift" %}
8260  opcode(0xC1, 0x7);  /* C1 /7 ib */
8261  ins_encode( RegOpcImm( dst, shift ) );
8262  ins_pipe( ialu_mem_imm );
8263%}
8264
8265// Arithmetic Shift Right by 8-bit immediate
8266instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8267  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8268  effect(KILL cr);
8269
8270  format %{ "SAR    $dst,$shift" %}
8271  opcode(0xC1, 0x7);  /* C1 /7 ib */
8272  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8273  ins_pipe( ialu_mem_imm );
8274%}
8275
8276// Arithmetic Shift Right by variable
8277instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8278  match(Set dst (RShiftI dst shift));
8279  effect(KILL cr);
8280
8281  size(2);
8282  format %{ "SAR    $dst,$shift" %}
8283  opcode(0xD3, 0x7);  /* D3 /7 */
8284  ins_encode( OpcP, RegOpc( dst ) );
8285  ins_pipe( ialu_reg_reg );
8286%}
8287
8288// Logical shift right by one
8289instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8290  match(Set dst (URShiftI dst shift));
8291  effect(KILL cr);
8292
8293  size(2);
8294  format %{ "SHR    $dst,$shift" %}
8295  opcode(0xD1, 0x5);  /* D1 /5 */
8296  ins_encode( OpcP, RegOpc( dst ) );
8297  ins_pipe( ialu_reg );
8298%}
8299
8300// Logical Shift Right by 8-bit immediate
8301instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8302  match(Set dst (URShiftI dst shift));
8303  effect(KILL cr);
8304
8305  size(3);
8306  format %{ "SHR    $dst,$shift" %}
8307  opcode(0xC1, 0x5);  /* C1 /5 ib */
8308  ins_encode( RegOpcImm( dst, shift) );
8309  ins_pipe( ialu_reg );
8310%}
8311
8312// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8313// This idiom is used by the compiler for the i2b bytecode.
8314instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
8315  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8316  effect(KILL cr);
8317
8318  size(3);
8319  format %{ "MOVSX  $dst,$src :8" %}
8320  opcode(0xBE, 0x0F);
8321  ins_encode( OpcS, OpcP, RegReg( dst, src));
8322  ins_pipe( ialu_reg_reg );
8323%}
8324
8325// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8326// This idiom is used by the compiler the i2s bytecode.
8327instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
8328  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8329  effect(KILL cr);
8330
8331  size(3);
8332  format %{ "MOVSX  $dst,$src :16" %}
8333  opcode(0xBF, 0x0F);
8334  ins_encode( OpcS, OpcP, RegReg( dst, src));
8335  ins_pipe( ialu_reg_reg );
8336%}
8337
8338
8339// Logical Shift Right by variable
8340instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8341  match(Set dst (URShiftI dst shift));
8342  effect(KILL cr);
8343
8344  size(2);
8345  format %{ "SHR    $dst,$shift" %}
8346  opcode(0xD3, 0x5);  /* D3 /5 */
8347  ins_encode( OpcP, RegOpc( dst ) );
8348  ins_pipe( ialu_reg_reg );
8349%}
8350
8351
8352//----------Logical Instructions-----------------------------------------------
8353//----------Integer Logical Instructions---------------------------------------
8354// And Instructions
8355// And Register with Register
8356instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8357  match(Set dst (AndI dst src));
8358  effect(KILL cr);
8359
8360  size(2);
8361  format %{ "AND    $dst,$src" %}
8362  opcode(0x23);
8363  ins_encode( OpcP, RegReg( dst, src) );
8364  ins_pipe( ialu_reg_reg );
8365%}
8366
8367// And Register with Immediate
8368instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8369  match(Set dst (AndI dst src));
8370  effect(KILL cr);
8371
8372  format %{ "AND    $dst,$src" %}
8373  opcode(0x81,0x04);  /* Opcode 81 /4 */
8374  // ins_encode( RegImm( dst, src) );
8375  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8376  ins_pipe( ialu_reg );
8377%}
8378
8379// And Register with Memory
8380instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8381  match(Set dst (AndI dst (LoadI src)));
8382  effect(KILL cr);
8383
8384  ins_cost(125);
8385  format %{ "AND    $dst,$src" %}
8386  opcode(0x23);
8387  ins_encode( OpcP, RegMem( dst, src) );
8388  ins_pipe( ialu_reg_mem );
8389%}
8390
8391// And Memory with Register
8392instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8393  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8394  effect(KILL cr);
8395
8396  ins_cost(150);
8397  format %{ "AND    $dst,$src" %}
8398  opcode(0x21);  /* Opcode 21 /r */
8399  ins_encode( OpcP, RegMem( src, dst ) );
8400  ins_pipe( ialu_mem_reg );
8401%}
8402
8403// And Memory with Immediate
8404instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8405  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8406  effect(KILL cr);
8407
8408  ins_cost(125);
8409  format %{ "AND    $dst,$src" %}
8410  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8411  // ins_encode( MemImm( dst, src) );
8412  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8413  ins_pipe( ialu_mem_imm );
8414%}
8415
8416// Or Instructions
8417// Or Register with Register
8418instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8419  match(Set dst (OrI dst src));
8420  effect(KILL cr);
8421
8422  size(2);
8423  format %{ "OR     $dst,$src" %}
8424  opcode(0x0B);
8425  ins_encode( OpcP, RegReg( dst, src) );
8426  ins_pipe( ialu_reg_reg );
8427%}
8428
8429// Or Register with Immediate
8430instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8431  match(Set dst (OrI dst src));
8432  effect(KILL cr);
8433
8434  format %{ "OR     $dst,$src" %}
8435  opcode(0x81,0x01);  /* Opcode 81 /1 id */
8436  // ins_encode( RegImm( dst, src) );
8437  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8438  ins_pipe( ialu_reg );
8439%}
8440
8441// Or Register with Memory
8442instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8443  match(Set dst (OrI dst (LoadI src)));
8444  effect(KILL cr);
8445
8446  ins_cost(125);
8447  format %{ "OR     $dst,$src" %}
8448  opcode(0x0B);
8449  ins_encode( OpcP, RegMem( dst, src) );
8450  ins_pipe( ialu_reg_mem );
8451%}
8452
8453// Or Memory with Register
8454instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8455  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8456  effect(KILL cr);
8457
8458  ins_cost(150);
8459  format %{ "OR     $dst,$src" %}
8460  opcode(0x09);  /* Opcode 09 /r */
8461  ins_encode( OpcP, RegMem( src, dst ) );
8462  ins_pipe( ialu_mem_reg );
8463%}
8464
8465// Or Memory with Immediate
8466instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8467  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8468  effect(KILL cr);
8469
8470  ins_cost(125);
8471  format %{ "OR     $dst,$src" %}
8472  opcode(0x81,0x1);  /* Opcode 81 /1 id */
8473  // ins_encode( MemImm( dst, src) );
8474  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8475  ins_pipe( ialu_mem_imm );
8476%}
8477
8478// ROL/ROR
8479// ROL expand
8480instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8481  effect(USE_DEF dst, USE shift, KILL cr);
8482
8483  format %{ "ROL    $dst, $shift" %}
8484  opcode(0xD1, 0x0); /* Opcode D1 /0 */
8485  ins_encode( OpcP, RegOpc( dst ));
8486  ins_pipe( ialu_reg );
8487%}
8488
8489instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8490  effect(USE_DEF dst, USE shift, KILL cr);
8491
8492  format %{ "ROL    $dst, $shift" %}
8493  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8494  ins_encode( RegOpcImm(dst, shift) );
8495  ins_pipe(ialu_reg);
8496%}
8497
8498instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8499  effect(USE_DEF dst, USE shift, KILL cr);
8500
8501  format %{ "ROL    $dst, $shift" %}
8502  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8503  ins_encode(OpcP, RegOpc(dst));
8504  ins_pipe( ialu_reg_reg );
8505%}
8506// end of ROL expand
8507
8508// ROL 32bit by one once
8509instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8510  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8511
8512  expand %{
8513    rolI_eReg_imm1(dst, lshift, cr);
8514  %}
8515%}
8516
8517// ROL 32bit var by imm8 once
8518instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8519  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8520  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8521
8522  expand %{
8523    rolI_eReg_imm8(dst, lshift, cr);
8524  %}
8525%}
8526
8527// ROL 32bit var by var once
8528instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8529  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8530
8531  expand %{
8532    rolI_eReg_CL(dst, shift, cr);
8533  %}
8534%}
8535
8536// ROL 32bit var by var once
8537instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8538  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8539
8540  expand %{
8541    rolI_eReg_CL(dst, shift, cr);
8542  %}
8543%}
8544
8545// ROR expand
8546instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8547  effect(USE_DEF dst, USE shift, KILL cr);
8548
8549  format %{ "ROR    $dst, $shift" %}
8550  opcode(0xD1,0x1);  /* Opcode D1 /1 */
8551  ins_encode( OpcP, RegOpc( dst ) );
8552  ins_pipe( ialu_reg );
8553%}
8554
8555instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8556  effect (USE_DEF dst, USE shift, KILL cr);
8557
8558  format %{ "ROR    $dst, $shift" %}
8559  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8560  ins_encode( RegOpcImm(dst, shift) );
8561  ins_pipe( ialu_reg );
8562%}
8563
8564instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8565  effect(USE_DEF dst, USE shift, KILL cr);
8566
8567  format %{ "ROR    $dst, $shift" %}
8568  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8569  ins_encode(OpcP, RegOpc(dst));
8570  ins_pipe( ialu_reg_reg );
8571%}
8572// end of ROR expand
8573
8574// ROR right once
8575instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8576  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8577
8578  expand %{
8579    rorI_eReg_imm1(dst, rshift, cr);
8580  %}
8581%}
8582
8583// ROR 32bit by immI8 once
8584instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8585  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8586  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8587
8588  expand %{
8589    rorI_eReg_imm8(dst, rshift, cr);
8590  %}
8591%}
8592
8593// ROR 32bit var by var once
8594instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8595  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8596
8597  expand %{
8598    rorI_eReg_CL(dst, shift, cr);
8599  %}
8600%}
8601
8602// ROR 32bit var by var once
8603instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8604  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8605
8606  expand %{
8607    rorI_eReg_CL(dst, shift, cr);
8608  %}
8609%}
8610
8611// Xor Instructions
8612// Xor Register with Register
8613instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8614  match(Set dst (XorI dst src));
8615  effect(KILL cr);
8616
8617  size(2);
8618  format %{ "XOR    $dst,$src" %}
8619  opcode(0x33);
8620  ins_encode( OpcP, RegReg( dst, src) );
8621  ins_pipe( ialu_reg_reg );
8622%}
8623
8624// Xor Register with Immediate
8625instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8626  match(Set dst (XorI dst src));
8627  effect(KILL cr);
8628
8629  format %{ "XOR    $dst,$src" %}
8630  opcode(0x81,0x06);  /* Opcode 81 /6 id */
8631  // ins_encode( RegImm( dst, src) );
8632  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8633  ins_pipe( ialu_reg );
8634%}
8635
8636// Xor Register with Memory
8637instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8638  match(Set dst (XorI dst (LoadI src)));
8639  effect(KILL cr);
8640
8641  ins_cost(125);
8642  format %{ "XOR    $dst,$src" %}
8643  opcode(0x33);
8644  ins_encode( OpcP, RegMem(dst, src) );
8645  ins_pipe( ialu_reg_mem );
8646%}
8647
8648// Xor Memory with Register
8649instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8650  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8651  effect(KILL cr);
8652
8653  ins_cost(150);
8654  format %{ "XOR    $dst,$src" %}
8655  opcode(0x31);  /* Opcode 31 /r */
8656  ins_encode( OpcP, RegMem( src, dst ) );
8657  ins_pipe( ialu_mem_reg );
8658%}
8659
8660// Xor Memory with Immediate
8661instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8662  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8663  effect(KILL cr);
8664
8665  ins_cost(125);
8666  format %{ "XOR    $dst,$src" %}
8667  opcode(0x81,0x6);  /* Opcode 81 /6 id */
8668  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8669  ins_pipe( ialu_mem_imm );
8670%}
8671
8672//----------Convert Int to Boolean---------------------------------------------
8673
8674instruct movI_nocopy(eRegI dst, eRegI src) %{
8675  effect( DEF dst, USE src );
8676  format %{ "MOV    $dst,$src" %}
8677  ins_encode( enc_Copy( dst, src) );
8678  ins_pipe( ialu_reg_reg );
8679%}
8680
8681instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
8682  effect( USE_DEF dst, USE src, KILL cr );
8683
8684  size(4);
8685  format %{ "NEG    $dst\n\t"
8686            "ADC    $dst,$src" %}
8687  ins_encode( neg_reg(dst),
8688              OpcRegReg(0x13,dst,src) );
8689  ins_pipe( ialu_reg_reg_long );
8690%}
8691
8692instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
8693  match(Set dst (Conv2B src));
8694
8695  expand %{
8696    movI_nocopy(dst,src);
8697    ci2b(dst,src,cr);
8698  %}
8699%}
8700
8701instruct movP_nocopy(eRegI dst, eRegP src) %{
8702  effect( DEF dst, USE src );
8703  format %{ "MOV    $dst,$src" %}
8704  ins_encode( enc_Copy( dst, src) );
8705  ins_pipe( ialu_reg_reg );
8706%}
8707
8708instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
8709  effect( USE_DEF dst, USE src, KILL cr );
8710  format %{ "NEG    $dst\n\t"
8711            "ADC    $dst,$src" %}
8712  ins_encode( neg_reg(dst),
8713              OpcRegReg(0x13,dst,src) );
8714  ins_pipe( ialu_reg_reg_long );
8715%}
8716
8717instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
8718  match(Set dst (Conv2B src));
8719
8720  expand %{
8721    movP_nocopy(dst,src);
8722    cp2b(dst,src,cr);
8723  %}
8724%}
8725
8726instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8727  match(Set dst (CmpLTMask p q));
8728  effect( KILL cr );
8729  ins_cost(400);
8730
8731  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8732  format %{ "XOR    $dst,$dst\n\t"
8733            "CMP    $p,$q\n\t"
8734            "SETlt  $dst\n\t"
8735            "NEG    $dst" %}
8736  ins_encode( OpcRegReg(0x33,dst,dst),
8737              OpcRegReg(0x3B,p,q),
8738              setLT_reg(dst), neg_reg(dst) );
8739  ins_pipe( pipe_slow );
8740%}
8741
8742instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
8743  match(Set dst (CmpLTMask dst zero));
8744  effect( DEF dst, KILL cr );
8745  ins_cost(100);
8746
8747  format %{ "SAR    $dst,31" %}
8748  opcode(0xC1, 0x7);  /* C1 /7 ib */
8749  ins_encode( RegOpcImm( dst, 0x1F ) );
8750  ins_pipe( ialu_reg );
8751%}
8752
8753
8754instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8755  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8756  effect( KILL tmp, KILL cr );
8757  ins_cost(400);
8758  // annoyingly, $tmp has no edges so you cant ask for it in
8759  // any format or encoding
8760  format %{ "SUB    $p,$q\n\t"
8761            "SBB    ECX,ECX\n\t"
8762            "AND    ECX,$y\n\t"
8763            "ADD    $p,ECX" %}
8764  ins_encode( enc_cmpLTP(p,q,y,tmp) );
8765  ins_pipe( pipe_cmplt );
8766%}
8767
8768/* If I enable this, I encourage spilling in the inner loop of compress.
8769instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8770  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8771  effect( USE_KILL tmp, KILL cr );
8772  ins_cost(400);
8773
8774  format %{ "SUB    $p,$q\n\t"
8775            "SBB    ECX,ECX\n\t"
8776            "AND    ECX,$y\n\t"
8777            "ADD    $p,ECX" %}
8778  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8779%}
8780*/
8781
8782//----------Long Instructions------------------------------------------------
8783// Add Long Register with Register
8784instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8785  match(Set dst (AddL dst src));
8786  effect(KILL cr);
8787  ins_cost(200);
8788  format %{ "ADD    $dst.lo,$src.lo\n\t"
8789            "ADC    $dst.hi,$src.hi" %}
8790  opcode(0x03, 0x13);
8791  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8792  ins_pipe( ialu_reg_reg_long );
8793%}
8794
8795// Add Long Register with Immediate
8796instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8797  match(Set dst (AddL dst src));
8798  effect(KILL cr);
8799  format %{ "ADD    $dst.lo,$src.lo\n\t"
8800            "ADC    $dst.hi,$src.hi" %}
8801  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8802  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8803  ins_pipe( ialu_reg_long );
8804%}
8805
8806// Add Long Register with Memory
8807instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8808  match(Set dst (AddL dst (LoadL mem)));
8809  effect(KILL cr);
8810  ins_cost(125);
8811  format %{ "ADD    $dst.lo,$mem\n\t"
8812            "ADC    $dst.hi,$mem+4" %}
8813  opcode(0x03, 0x13);
8814  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8815  ins_pipe( ialu_reg_long_mem );
8816%}
8817
8818// Subtract Long Register with Register.
8819instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8820  match(Set dst (SubL dst src));
8821  effect(KILL cr);
8822  ins_cost(200);
8823  format %{ "SUB    $dst.lo,$src.lo\n\t"
8824            "SBB    $dst.hi,$src.hi" %}
8825  opcode(0x2B, 0x1B);
8826  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8827  ins_pipe( ialu_reg_reg_long );
8828%}
8829
8830// Subtract Long Register with Immediate
8831instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8832  match(Set dst (SubL dst src));
8833  effect(KILL cr);
8834  format %{ "SUB    $dst.lo,$src.lo\n\t"
8835            "SBB    $dst.hi,$src.hi" %}
8836  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8837  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8838  ins_pipe( ialu_reg_long );
8839%}
8840
8841// Subtract Long Register with Memory
8842instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8843  match(Set dst (SubL dst (LoadL mem)));
8844  effect(KILL cr);
8845  ins_cost(125);
8846  format %{ "SUB    $dst.lo,$mem\n\t"
8847            "SBB    $dst.hi,$mem+4" %}
8848  opcode(0x2B, 0x1B);
8849  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8850  ins_pipe( ialu_reg_long_mem );
8851%}
8852
8853instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8854  match(Set dst (SubL zero dst));
8855  effect(KILL cr);
8856  ins_cost(300);
8857  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
8858  ins_encode( neg_long(dst) );
8859  ins_pipe( ialu_reg_reg_long );
8860%}
8861
8862// And Long Register with Register
8863instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8864  match(Set dst (AndL dst src));
8865  effect(KILL cr);
8866  format %{ "AND    $dst.lo,$src.lo\n\t"
8867            "AND    $dst.hi,$src.hi" %}
8868  opcode(0x23,0x23);
8869  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8870  ins_pipe( ialu_reg_reg_long );
8871%}
8872
8873// And Long Register with Immediate
8874instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8875  match(Set dst (AndL dst src));
8876  effect(KILL cr);
8877  format %{ "AND    $dst.lo,$src.lo\n\t"
8878            "AND    $dst.hi,$src.hi" %}
8879  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
8880  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8881  ins_pipe( ialu_reg_long );
8882%}
8883
8884// And Long Register with Memory
8885instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8886  match(Set dst (AndL dst (LoadL mem)));
8887  effect(KILL cr);
8888  ins_cost(125);
8889  format %{ "AND    $dst.lo,$mem\n\t"
8890            "AND    $dst.hi,$mem+4" %}
8891  opcode(0x23, 0x23);
8892  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8893  ins_pipe( ialu_reg_long_mem );
8894%}
8895
8896// Or Long Register with Register
8897instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8898  match(Set dst (OrL dst src));
8899  effect(KILL cr);
8900  format %{ "OR     $dst.lo,$src.lo\n\t"
8901            "OR     $dst.hi,$src.hi" %}
8902  opcode(0x0B,0x0B);
8903  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8904  ins_pipe( ialu_reg_reg_long );
8905%}
8906
8907// Or Long Register with Immediate
8908instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8909  match(Set dst (OrL dst src));
8910  effect(KILL cr);
8911  format %{ "OR     $dst.lo,$src.lo\n\t"
8912            "OR     $dst.hi,$src.hi" %}
8913  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
8914  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8915  ins_pipe( ialu_reg_long );
8916%}
8917
8918// Or Long Register with Memory
8919instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8920  match(Set dst (OrL dst (LoadL mem)));
8921  effect(KILL cr);
8922  ins_cost(125);
8923  format %{ "OR     $dst.lo,$mem\n\t"
8924            "OR     $dst.hi,$mem+4" %}
8925  opcode(0x0B,0x0B);
8926  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8927  ins_pipe( ialu_reg_long_mem );
8928%}
8929
8930// Xor Long Register with Register
8931instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8932  match(Set dst (XorL dst src));
8933  effect(KILL cr);
8934  format %{ "XOR    $dst.lo,$src.lo\n\t"
8935            "XOR    $dst.hi,$src.hi" %}
8936  opcode(0x33,0x33);
8937  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8938  ins_pipe( ialu_reg_reg_long );
8939%}
8940
8941// Xor Long Register with Immediate
8942instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8943  match(Set dst (XorL dst src));
8944  effect(KILL cr);
8945  format %{ "XOR    $dst.lo,$src.lo\n\t"
8946            "XOR    $dst.hi,$src.hi" %}
8947  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
8948  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8949  ins_pipe( ialu_reg_long );
8950%}
8951
8952// Xor Long Register with Memory
8953instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8954  match(Set dst (XorL dst (LoadL mem)));
8955  effect(KILL cr);
8956  ins_cost(125);
8957  format %{ "XOR    $dst.lo,$mem\n\t"
8958            "XOR    $dst.hi,$mem+4" %}
8959  opcode(0x33,0x33);
8960  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8961  ins_pipe( ialu_reg_long_mem );
8962%}
8963
8964// Shift Left Long by 1
8965instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
8966  predicate(UseNewLongLShift);
8967  match(Set dst (LShiftL dst cnt));
8968  effect(KILL cr);
8969  ins_cost(100);
8970  format %{ "ADD    $dst.lo,$dst.lo\n\t"
8971            "ADC    $dst.hi,$dst.hi" %}
8972  ins_encode %{
8973    __ addl($dst$$Register,$dst$$Register);
8974    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8975  %}
8976  ins_pipe( ialu_reg_long );
8977%}
8978
8979// Shift Left Long by 2
8980instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
8981  predicate(UseNewLongLShift);
8982  match(Set dst (LShiftL dst cnt));
8983  effect(KILL cr);
8984  ins_cost(100);
8985  format %{ "ADD    $dst.lo,$dst.lo\n\t"
8986            "ADC    $dst.hi,$dst.hi\n\t" 
8987            "ADD    $dst.lo,$dst.lo\n\t"
8988            "ADC    $dst.hi,$dst.hi" %}
8989  ins_encode %{
8990    __ addl($dst$$Register,$dst$$Register);
8991    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8992    __ addl($dst$$Register,$dst$$Register);
8993    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
8994  %}
8995  ins_pipe( ialu_reg_long );
8996%}
8997
8998// Shift Left Long by 3
8999instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9000  predicate(UseNewLongLShift);
9001  match(Set dst (LShiftL dst cnt));
9002  effect(KILL cr);
9003  ins_cost(100);
9004  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9005            "ADC    $dst.hi,$dst.hi\n\t" 
9006            "ADD    $dst.lo,$dst.lo\n\t"
9007            "ADC    $dst.hi,$dst.hi\n\t" 
9008            "ADD    $dst.lo,$dst.lo\n\t"
9009            "ADC    $dst.hi,$dst.hi" %}
9010  ins_encode %{
9011    __ addl($dst$$Register,$dst$$Register);
9012    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9013    __ addl($dst$$Register,$dst$$Register);
9014    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9015    __ addl($dst$$Register,$dst$$Register);
9016    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9017  %}
9018  ins_pipe( ialu_reg_long );
9019%}
9020
9021// Shift Left Long by 1-31
9022instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9023  match(Set dst (LShiftL dst cnt));
9024  effect(KILL cr);
9025  ins_cost(200);
9026  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9027            "SHL    $dst.lo,$cnt" %}
9028  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9029  ins_encode( move_long_small_shift(dst,cnt) );
9030  ins_pipe( ialu_reg_long );
9031%}
9032
9033// Shift Left Long by 32-63
9034instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9035  match(Set dst (LShiftL dst cnt));
9036  effect(KILL cr);
9037  ins_cost(300);
9038  format %{ "MOV    $dst.hi,$dst.lo\n"
9039          "\tSHL    $dst.hi,$cnt-32\n"
9040          "\tXOR    $dst.lo,$dst.lo" %}
9041  opcode(0xC1, 0x4);  /* C1 /4 ib */
9042  ins_encode( move_long_big_shift_clr(dst,cnt) );
9043  ins_pipe( ialu_reg_long );
9044%}
9045
9046// Shift Left Long by variable
9047instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9048  match(Set dst (LShiftL dst shift));
9049  effect(KILL cr);
9050  ins_cost(500+200);
9051  size(17);
9052  format %{ "TEST   $shift,32\n\t"
9053            "JEQ,s  small\n\t"
9054            "MOV    $dst.hi,$dst.lo\n\t"
9055            "XOR    $dst.lo,$dst.lo\n"
9056    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9057            "SHL    $dst.lo,$shift" %}
9058  ins_encode( shift_left_long( dst, shift ) );
9059  ins_pipe( pipe_slow );
9060%}
9061
9062// Shift Right Long by 1-31
9063instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9064  match(Set dst (URShiftL dst cnt));
9065  effect(KILL cr);
9066  ins_cost(200);
9067  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9068            "SHR    $dst.hi,$cnt" %}
9069  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9070  ins_encode( move_long_small_shift(dst,cnt) );
9071  ins_pipe( ialu_reg_long );
9072%}
9073
9074// Shift Right Long by 32-63
9075instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9076  match(Set dst (URShiftL dst cnt));
9077  effect(KILL cr);
9078  ins_cost(300);
9079  format %{ "MOV    $dst.lo,$dst.hi\n"
9080          "\tSHR    $dst.lo,$cnt-32\n"
9081          "\tXOR    $dst.hi,$dst.hi" %}
9082  opcode(0xC1, 0x5);  /* C1 /5 ib */
9083  ins_encode( move_long_big_shift_clr(dst,cnt) );
9084  ins_pipe( ialu_reg_long );
9085%}
9086
9087// Shift Right Long by variable
9088instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9089  match(Set dst (URShiftL dst shift));
9090  effect(KILL cr);
9091  ins_cost(600);
9092  size(17);
9093  format %{ "TEST   $shift,32\n\t"
9094            "JEQ,s  small\n\t"
9095            "MOV    $dst.lo,$dst.hi\n\t"
9096            "XOR    $dst.hi,$dst.hi\n"
9097    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9098            "SHR    $dst.hi,$shift" %}
9099  ins_encode( shift_right_long( dst, shift ) );
9100  ins_pipe( pipe_slow );
9101%}
9102
9103// Shift Right Long by 1-31
9104instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9105  match(Set dst (RShiftL dst cnt));
9106  effect(KILL cr);
9107  ins_cost(200);
9108  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9109            "SAR    $dst.hi,$cnt" %}
9110  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9111  ins_encode( move_long_small_shift(dst,cnt) );
9112  ins_pipe( ialu_reg_long );
9113%}
9114
9115// Shift Right Long by 32-63
9116instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9117  match(Set dst (RShiftL dst cnt));
9118  effect(KILL cr);
9119  ins_cost(300);
9120  format %{ "MOV    $dst.lo,$dst.hi\n"
9121          "\tSAR    $dst.lo,$cnt-32\n"
9122          "\tSAR    $dst.hi,31" %}
9123  opcode(0xC1, 0x7);  /* C1 /7 ib */
9124  ins_encode( move_long_big_shift_sign(dst,cnt) );
9125  ins_pipe( ialu_reg_long );
9126%}
9127
9128// Shift Right arithmetic Long by variable
9129instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9130  match(Set dst (RShiftL dst shift));
9131  effect(KILL cr);
9132  ins_cost(600);
9133  size(18);
9134  format %{ "TEST   $shift,32\n\t"
9135            "JEQ,s  small\n\t"
9136            "MOV    $dst.lo,$dst.hi\n\t"
9137            "SAR    $dst.hi,31\n"
9138    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9139            "SAR    $dst.hi,$shift" %}
9140  ins_encode( shift_right_arith_long( dst, shift ) );
9141  ins_pipe( pipe_slow );
9142%}
9143
9144
9145//----------Double Instructions------------------------------------------------
9146// Double Math
9147
9148// Compare & branch
9149
9150// P6 version of float compare, sets condition codes in EFLAGS
9151instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9152  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9153  match(Set cr (CmpD src1 src2));
9154  effect(KILL rax);
9155  ins_cost(150);
9156  format %{ "FLD    $src1\n\t"
9157            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9158            "JNP    exit\n\t"
9159            "MOV    ah,1       // saw a NaN, set CF\n\t"
9160            "SAHF\n"
9161     "exit:\tNOP               // avoid branch to branch" %}
9162  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9163  ins_encode( Push_Reg_D(src1),
9164              OpcP, RegOpc(src2),
9165              cmpF_P6_fixup );
9166  ins_pipe( pipe_slow );
9167%}
9168
9169// Compare & branch
9170instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9171  predicate(UseSSE<=1);
9172  match(Set cr (CmpD src1 src2));
9173  effect(KILL rax);
9174  ins_cost(200);
9175  format %{ "FLD    $src1\n\t"
9176            "FCOMp  $src2\n\t"
9177            "FNSTSW AX\n\t"
9178            "TEST   AX,0x400\n\t"
9179            "JZ,s   flags\n\t"
9180            "MOV    AH,1\t# unordered treat as LT\n"
9181    "flags:\tSAHF" %}
9182  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9183  ins_encode( Push_Reg_D(src1),
9184              OpcP, RegOpc(src2),
9185              fpu_flags);
9186  ins_pipe( pipe_slow );
9187%}
9188
9189// Compare vs zero into -1,0,1
9190instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9191  predicate(UseSSE<=1);
9192  match(Set dst (CmpD3 src1 zero));
9193  effect(KILL cr, KILL rax);
9194  ins_cost(280);
9195  format %{ "FTSTD  $dst,$src1" %}
9196  opcode(0xE4, 0xD9);
9197  ins_encode( Push_Reg_D(src1),
9198              OpcS, OpcP, PopFPU,
9199              CmpF_Result(dst));
9200  ins_pipe( pipe_slow );
9201%}
9202
9203// Compare into -1,0,1
9204instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9205  predicate(UseSSE<=1);
9206  match(Set dst (CmpD3 src1 src2));
9207  effect(KILL cr, KILL rax);
9208  ins_cost(300);
9209  format %{ "FCMPD  $dst,$src1,$src2" %}
9210  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9211  ins_encode( Push_Reg_D(src1),
9212              OpcP, RegOpc(src2),
9213              CmpF_Result(dst));
9214  ins_pipe( pipe_slow );
9215%}
9216
9217// float compare and set condition codes in EFLAGS by XMM regs
9218instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9219  predicate(UseSSE>=2);
9220  match(Set cr (CmpD dst src));
9221  effect(KILL rax);
9222  ins_cost(125);
9223  format %{ "COMISD $dst,$src\n"
9224          "\tJNP    exit\n"
9225          "\tMOV    ah,1       // saw a NaN, set CF\n"
9226          "\tSAHF\n"
9227     "exit:\tNOP               // avoid branch to branch" %}
9228  opcode(0x66, 0x0F, 0x2F);
9229  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9230  ins_pipe( pipe_slow );
9231%}
9232
9233// float compare and set condition codes in EFLAGS by XMM regs
9234instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9235  predicate(UseSSE>=2);
9236  match(Set cr (CmpD dst (LoadD src)));
9237  effect(KILL rax);
9238  ins_cost(145);
9239  format %{ "COMISD $dst,$src\n"
9240          "\tJNP    exit\n"
9241          "\tMOV    ah,1       // saw a NaN, set CF\n"
9242          "\tSAHF\n"
9243     "exit:\tNOP               // avoid branch to branch" %}
9244  opcode(0x66, 0x0F, 0x2F);
9245  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9246  ins_pipe( pipe_slow );
9247%}
9248
9249// Compare into -1,0,1 in XMM
9250instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9251  predicate(UseSSE>=2);
9252  match(Set dst (CmpD3 src1 src2));
9253  effect(KILL cr);
9254  ins_cost(255);
9255  format %{ "XOR    $dst,$dst\n"
9256          "\tCOMISD $src1,$src2\n"
9257          "\tJP,s   nan\n"
9258          "\tJEQ,s  exit\n"
9259          "\tJA,s   inc\n"
9260      "nan:\tDEC    $dst\n"
9261          "\tJMP,s  exit\n"
9262      "inc:\tINC    $dst\n"
9263      "exit:"
9264                %}
9265  opcode(0x66, 0x0F, 0x2F);
9266  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9267             CmpX_Result(dst));
9268  ins_pipe( pipe_slow );
9269%}
9270
9271// Compare into -1,0,1 in XMM and memory
9272instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9273  predicate(UseSSE>=2);
9274  match(Set dst (CmpD3 src1 (LoadD mem)));
9275  effect(KILL cr);
9276  ins_cost(275);
9277  format %{ "COMISD $src1,$mem\n"
9278          "\tMOV    $dst,0\t\t# do not blow flags\n"
9279          "\tJP,s   nan\n"
9280          "\tJEQ,s  exit\n"
9281          "\tJA,s   inc\n"
9282      "nan:\tDEC    $dst\n"
9283          "\tJMP,s  exit\n"
9284      "inc:\tINC    $dst\n"
9285      "exit:"
9286                %}
9287  opcode(0x66, 0x0F, 0x2F);
9288  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
9289             LdImmI(dst,0x0), CmpX_Result(dst));
9290  ins_pipe( pipe_slow );
9291%}
9292
9293
9294instruct subD_reg(regD dst, regD src) %{
9295  predicate (UseSSE <=1);
9296  match(Set dst (SubD dst src));
9297
9298  format %{ "FLD    $src\n\t"
9299            "DSUBp  $dst,ST" %}
9300  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9301  ins_cost(150);
9302  ins_encode( Push_Reg_D(src),
9303              OpcP, RegOpc(dst) );
9304  ins_pipe( fpu_reg_reg );
9305%}
9306
9307instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9308  predicate (UseSSE <=1);
9309  match(Set dst (RoundDouble (SubD src1 src2)));
9310  ins_cost(250);
9311
9312  format %{ "FLD    $src2\n\t"
9313            "DSUB   ST,$src1\n\t"
9314            "FSTP_D $dst\t# D-round" %}
9315  opcode(0xD8, 0x5);
9316  ins_encode( Push_Reg_D(src2),
9317              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9318  ins_pipe( fpu_mem_reg_reg );
9319%}
9320
9321
9322instruct subD_reg_mem(regD dst, memory src) %{
9323  predicate (UseSSE <=1);
9324  match(Set dst (SubD dst (LoadD src)));
9325  ins_cost(150);
9326
9327  format %{ "FLD    $src\n\t"
9328            "DSUBp  $dst,ST" %}
9329  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9330  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9331              OpcP, RegOpc(dst) );
9332  ins_pipe( fpu_reg_mem );
9333%}
9334
9335instruct absD_reg(regDPR1 dst, regDPR1 src) %{
9336  predicate (UseSSE<=1);
9337  match(Set dst (AbsD src));
9338  ins_cost(100);
9339  format %{ "FABS" %}
9340  opcode(0xE1, 0xD9);
9341  ins_encode( OpcS, OpcP );
9342  ins_pipe( fpu_reg_reg );
9343%}
9344
9345instruct absXD_reg( regXD dst ) %{
9346  predicate(UseSSE>=2);
9347  match(Set dst (AbsD dst));
9348  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
9349  ins_encode( AbsXD_encoding(dst));
9350  ins_pipe( pipe_slow );
9351%}
9352
9353instruct negD_reg(regDPR1 dst, regDPR1 src) %{
9354  predicate(UseSSE<=1);
9355  match(Set dst (NegD src));
9356  ins_cost(100);
9357  format %{ "FCHS" %}
9358  opcode(0xE0, 0xD9);
9359  ins_encode( OpcS, OpcP );
9360  ins_pipe( fpu_reg_reg );
9361%}
9362
9363instruct negXD_reg( regXD dst ) %{
9364  predicate(UseSSE>=2);
9365  match(Set dst (NegD dst));
9366  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
9367  ins_encode %{
9368     __ xorpd($dst$$XMMRegister,
9369              ExternalAddress((address)double_signflip_pool));
9370  %}
9371  ins_pipe( pipe_slow );
9372%}
9373
9374instruct addD_reg(regD dst, regD src) %{
9375  predicate(UseSSE<=1);
9376  match(Set dst (AddD dst src));
9377  format %{ "FLD    $src\n\t"
9378            "DADD   $dst,ST" %}
9379  size(4);
9380  ins_cost(150);
9381  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9382  ins_encode( Push_Reg_D(src),
9383              OpcP, RegOpc(dst) );
9384  ins_pipe( fpu_reg_reg );
9385%}
9386
9387
9388instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9389  predicate(UseSSE<=1);
9390  match(Set dst (RoundDouble (AddD src1 src2)));
9391  ins_cost(250);
9392
9393  format %{ "FLD    $src2\n\t"
9394            "DADD   ST,$src1\n\t"
9395            "FSTP_D $dst\t# D-round" %}
9396  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9397  ins_encode( Push_Reg_D(src2),
9398              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9399  ins_pipe( fpu_mem_reg_reg );
9400%}
9401
9402
9403instruct addD_reg_mem(regD dst, memory src) %{
9404  predicate(UseSSE<=1);
9405  match(Set dst (AddD dst (LoadD src)));
9406  ins_cost(150);
9407
9408  format %{ "FLD    $src\n\t"
9409            "DADDp  $dst,ST" %}
9410  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9411  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9412              OpcP, RegOpc(dst) );
9413  ins_pipe( fpu_reg_mem );
9414%}
9415
9416// add-to-memory
9417instruct addD_mem_reg(memory dst, regD src) %{
9418  predicate(UseSSE<=1);
9419  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9420  ins_cost(150);
9421
9422  format %{ "FLD_D  $dst\n\t"
9423            "DADD   ST,$src\n\t"
9424            "FST_D  $dst" %}
9425  opcode(0xDD, 0x0);
9426  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9427              Opcode(0xD8), RegOpc(src),
9428              set_instruction_start,
9429              Opcode(0xDD), RMopc_Mem(0x03,dst) );
9430  ins_pipe( fpu_reg_mem );
9431%}
9432
9433instruct addD_reg_imm1(regD dst, immD1 src) %{
9434  predicate(UseSSE<=1);
9435  match(Set dst (AddD dst src));
9436  ins_cost(125);
9437  format %{ "FLD1\n\t"
9438            "DADDp  $dst,ST" %}
9439  opcode(0xDE, 0x00);
9440  ins_encode( LdImmD(src),
9441              OpcP, RegOpc(dst) );
9442  ins_pipe( fpu_reg );
9443%}
9444
9445instruct addD_reg_imm(regD dst, immD src) %{
9446  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9447  match(Set dst (AddD dst src));
9448  ins_cost(200);
9449  format %{ "FLD_D  [$src]\n\t"
9450            "DADDp  $dst,ST" %}
9451  opcode(0xDE, 0x00);       /* DE /0 */
9452  ins_encode( LdImmD(src),
9453              OpcP, RegOpc(dst));
9454  ins_pipe( fpu_reg_mem );
9455%}
9456
9457instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
9458  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9459  match(Set dst (RoundDouble (AddD src con)));
9460  ins_cost(200);
9461  format %{ "FLD_D  [$con]\n\t"
9462            "DADD   ST,$src\n\t"
9463            "FSTP_D $dst\t# D-round" %}
9464  opcode(0xD8, 0x00);       /* D8 /0 */
9465  ins_encode( LdImmD(con),
9466              OpcP, RegOpc(src), Pop_Mem_D(dst));
9467  ins_pipe( fpu_mem_reg_con );
9468%}
9469
9470// Add two double precision floating point values in xmm
9471instruct addXD_reg(regXD dst, regXD src) %{
9472  predicate(UseSSE>=2);
9473  match(Set dst (AddD dst src));
9474  format %{ "ADDSD  $dst,$src" %}
9475  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
9476  ins_pipe( pipe_slow );
9477%}
9478
9479instruct addXD_imm(regXD dst, immXD con) %{
9480  predicate(UseSSE>=2);
9481  match(Set dst (AddD dst con));
9482  format %{ "ADDSD  $dst,[$con]" %}
9483  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
9484  ins_pipe( pipe_slow );
9485%}
9486
9487instruct addXD_mem(regXD dst, memory mem) %{
9488  predicate(UseSSE>=2);
9489  match(Set dst (AddD dst (LoadD mem)));
9490  format %{ "ADDSD  $dst,$mem" %}
9491  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
9492  ins_pipe( pipe_slow );
9493%}
9494
9495// Sub two double precision floating point values in xmm
9496instruct subXD_reg(regXD dst, regXD src) %{
9497  predicate(UseSSE>=2);
9498  match(Set dst (SubD dst src));
9499  format %{ "SUBSD  $dst,$src" %}
9500  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
9501  ins_pipe( pipe_slow );
9502%}
9503
9504instruct subXD_imm(regXD dst, immXD con) %{
9505  predicate(UseSSE>=2);
9506  match(Set dst (SubD dst con));
9507  format %{ "SUBSD  $dst,[$con]" %}
9508  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
9509  ins_pipe( pipe_slow );
9510%}
9511
9512instruct subXD_mem(regXD dst, memory mem) %{
9513  predicate(UseSSE>=2);
9514  match(Set dst (SubD dst (LoadD mem)));
9515  format %{ "SUBSD  $dst,$mem" %}
9516  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
9517  ins_pipe( pipe_slow );
9518%}
9519
9520// Mul two double precision floating point values in xmm
9521instruct mulXD_reg(regXD dst, regXD src) %{
9522  predicate(UseSSE>=2);
9523  match(Set dst (MulD dst src));
9524  format %{ "MULSD  $dst,$src" %}
9525  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
9526  ins_pipe( pipe_slow );
9527%}
9528
9529instruct mulXD_imm(regXD dst, immXD con) %{
9530  predicate(UseSSE>=2);
9531  match(Set dst (MulD dst con));
9532  format %{ "MULSD  $dst,[$con]" %}
9533  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
9534  ins_pipe( pipe_slow );
9535%}
9536
9537instruct mulXD_mem(regXD dst, memory mem) %{
9538  predicate(UseSSE>=2);
9539  match(Set dst (MulD dst (LoadD mem)));
9540  format %{ "MULSD  $dst,$mem" %}
9541  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
9542  ins_pipe( pipe_slow );
9543%}
9544
9545// Div two double precision floating point values in xmm
9546instruct divXD_reg(regXD dst, regXD src) %{
9547  predicate(UseSSE>=2);
9548  match(Set dst (DivD dst src));
9549  format %{ "DIVSD  $dst,$src" %}
9550  opcode(0xF2, 0x0F, 0x5E);
9551  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
9552  ins_pipe( pipe_slow );
9553%}
9554
9555instruct divXD_imm(regXD dst, immXD con) %{
9556  predicate(UseSSE>=2);
9557  match(Set dst (DivD dst con));
9558  format %{ "DIVSD  $dst,[$con]" %}
9559  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
9560  ins_pipe( pipe_slow );
9561%}
9562
9563instruct divXD_mem(regXD dst, memory mem) %{
9564  predicate(UseSSE>=2);
9565  match(Set dst (DivD dst (LoadD mem)));
9566  format %{ "DIVSD  $dst,$mem" %}
9567  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
9568  ins_pipe( pipe_slow );
9569%}
9570
9571
9572instruct mulD_reg(regD dst, regD src) %{
9573  predicate(UseSSE<=1);
9574  match(Set dst (MulD dst src));
9575  format %{ "FLD    $src\n\t"
9576            "DMULp  $dst,ST" %}
9577  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9578  ins_cost(150);
9579  ins_encode( Push_Reg_D(src),
9580              OpcP, RegOpc(dst) );
9581  ins_pipe( fpu_reg_reg );
9582%}
9583
9584// Strict FP instruction biases argument before multiply then
9585// biases result to avoid double rounding of subnormals.
9586//
9587// scale arg1 by multiplying arg1 by 2^(-15360)
9588// load arg2
9589// multiply scaled arg1 by arg2
9590// rescale product by 2^(15360)
9591//
9592instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
9593  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9594  match(Set dst (MulD dst src));
9595  ins_cost(1);   // Select this instruction for all strict FP double multiplies
9596
9597  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9598            "DMULp  $dst,ST\n\t"
9599            "FLD    $src\n\t"
9600            "DMULp  $dst,ST\n\t"
9601            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9602            "DMULp  $dst,ST\n\t" %}
9603  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9604  ins_encode( strictfp_bias1(dst),
9605              Push_Reg_D(src),
9606              OpcP, RegOpc(dst),
9607              strictfp_bias2(dst) );
9608  ins_pipe( fpu_reg_reg );
9609%}
9610
9611instruct mulD_reg_imm(regD dst, immD src) %{
9612  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9613  match(Set dst (MulD dst src));
9614  ins_cost(200);
9615  format %{ "FLD_D  [$src]\n\t"
9616            "DMULp  $dst,ST" %}
9617  opcode(0xDE, 0x1); /* DE /1 */
9618  ins_encode( LdImmD(src),
9619              OpcP, RegOpc(dst) );
9620  ins_pipe( fpu_reg_mem );
9621%}
9622
9623
9624instruct mulD_reg_mem(regD dst, memory src) %{
9625  predicate( UseSSE<=1 );
9626  match(Set dst (MulD dst (LoadD src)));
9627  ins_cost(200);
9628  format %{ "FLD_D  $src\n\t"
9629            "DMULp  $dst,ST" %}
9630  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9631  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9632              OpcP, RegOpc(dst) );
9633  ins_pipe( fpu_reg_mem );
9634%}
9635
9636//
9637// Cisc-alternate to reg-reg multiply
9638instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
9639  predicate( UseSSE<=1 );
9640  match(Set dst (MulD src (LoadD mem)));
9641  ins_cost(250);
9642  format %{ "FLD_D  $mem\n\t"
9643            "DMUL   ST,$src\n\t"
9644            "FSTP_D $dst" %}
9645  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9646  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9647              OpcReg_F(src),
9648              Pop_Reg_D(dst) );
9649  ins_pipe( fpu_reg_reg_mem );
9650%}
9651
9652
9653// MACRO3 -- addD a mulD
9654// This instruction is a '2-address' instruction in that the result goes
9655// back to src2.  This eliminates a move from the macro; possibly the
9656// register allocator will have to add it back (and maybe not).
9657instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
9658  predicate( UseSSE<=1 );
9659  match(Set src2 (AddD (MulD src0 src1) src2));
9660  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9661            "DMUL   ST,$src1\n\t"
9662            "DADDp  $src2,ST" %}
9663  ins_cost(250);
9664  opcode(0xDD); /* LoadD DD /0 */
9665  ins_encode( Push_Reg_F(src0),
9666              FMul_ST_reg(src1),
9667              FAddP_reg_ST(src2) );
9668  ins_pipe( fpu_reg_reg_reg );
9669%}
9670
9671
9672// MACRO3 -- subD a mulD
9673instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
9674  predicate( UseSSE<=1 );
9675  match(Set src2 (SubD (MulD src0 src1) src2));
9676  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9677            "DMUL   ST,$src1\n\t"
9678            "DSUBRp $src2,ST" %}
9679  ins_cost(250);
9680  ins_encode( Push_Reg_F(src0),
9681              FMul_ST_reg(src1),
9682              Opcode(0xDE), Opc_plus(0xE0,src2));
9683  ins_pipe( fpu_reg_reg_reg );
9684%}
9685
9686
9687instruct divD_reg(regD dst, regD src) %{
9688  predicate( UseSSE<=1 );
9689  match(Set dst (DivD dst src));
9690
9691  format %{ "FLD    $src\n\t"
9692            "FDIVp  $dst,ST" %}
9693  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9694  ins_cost(150);
9695  ins_encode( Push_Reg_D(src),
9696              OpcP, RegOpc(dst) );
9697  ins_pipe( fpu_reg_reg );
9698%}
9699
9700// Strict FP instruction biases argument before division then
9701// biases result, to avoid double rounding of subnormals.
9702//
9703// scale dividend by multiplying dividend by 2^(-15360)
9704// load divisor
9705// divide scaled dividend by divisor
9706// rescale quotient by 2^(15360)
9707//
9708instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
9709  predicate (UseSSE<=1);
9710  match(Set dst (DivD dst src));
9711  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9712  ins_cost(01);
9713
9714  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9715            "DMULp  $dst,ST\n\t"
9716            "FLD    $src\n\t"
9717            "FDIVp  $dst,ST\n\t"
9718            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9719            "DMULp  $dst,ST\n\t" %}
9720  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9721  ins_encode( strictfp_bias1(dst),
9722              Push_Reg_D(src),
9723              OpcP, RegOpc(dst),
9724              strictfp_bias2(dst) );
9725  ins_pipe( fpu_reg_reg );
9726%}
9727
9728instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9729  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9730  match(Set dst (RoundDouble (DivD src1 src2)));
9731
9732  format %{ "FLD    $src1\n\t"
9733            "FDIV   ST,$src2\n\t"
9734            "FSTP_D $dst\t# D-round" %}
9735  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9736  ins_encode( Push_Reg_D(src1),
9737              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
9738  ins_pipe( fpu_mem_reg_reg );
9739%}
9740
9741
9742instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
9743  predicate(UseSSE<=1);
9744  match(Set dst (ModD dst src));
9745  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
9746
9747  format %{ "DMOD   $dst,$src" %}
9748  ins_cost(250);
9749  ins_encode(Push_Reg_Mod_D(dst, src),
9750              emitModD(),
9751              Push_Result_Mod_D(src),
9752              Pop_Reg_D(dst));
9753  ins_pipe( pipe_slow );
9754%}
9755
9756instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
9757  predicate(UseSSE>=2);
9758  match(Set dst (ModD src0 src1));
9759  effect(KILL rax, KILL cr);
9760
9761  format %{ "SUB    ESP,8\t # DMOD\n"
9762          "\tMOVSD  [ESP+0],$src1\n"
9763          "\tFLD_D  [ESP+0]\n"
9764          "\tMOVSD  [ESP+0],$src0\n"
9765          "\tFLD_D  [ESP+0]\n"
9766     "loop:\tFPREM\n"
9767          "\tFWAIT\n"
9768          "\tFNSTSW AX\n"
9769          "\tSAHF\n"
9770          "\tJP     loop\n"
9771          "\tFSTP_D [ESP+0]\n"
9772          "\tMOVSD  $dst,[ESP+0]\n"
9773          "\tADD    ESP,8\n"
9774          "\tFSTP   ST0\t # Restore FPU Stack"
9775    %}
9776  ins_cost(250);
9777  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
9778  ins_pipe( pipe_slow );
9779%}
9780
9781instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
9782  predicate (UseSSE<=1);
9783  match(Set dst (SinD src));
9784  ins_cost(1800);
9785  format %{ "DSIN   $dst" %}
9786  opcode(0xD9, 0xFE);
9787  ins_encode( OpcP, OpcS );
9788  ins_pipe( pipe_slow );
9789%}
9790
9791instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
9792  predicate (UseSSE>=2);
9793  match(Set dst (SinD dst));
9794  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9795  ins_cost(1800);
9796  format %{ "DSIN   $dst" %}
9797  opcode(0xD9, 0xFE);
9798  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9799  ins_pipe( pipe_slow );
9800%}
9801
9802instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
9803  predicate (UseSSE<=1);
9804  match(Set dst (CosD src));
9805  ins_cost(1800);
9806  format %{ "DCOS   $dst" %}
9807  opcode(0xD9, 0xFF);
9808  ins_encode( OpcP, OpcS );
9809  ins_pipe( pipe_slow );
9810%}
9811
9812instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
9813  predicate (UseSSE>=2);
9814  match(Set dst (CosD dst));
9815  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9816  ins_cost(1800);
9817  format %{ "DCOS   $dst" %}
9818  opcode(0xD9, 0xFF);
9819  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9820  ins_pipe( pipe_slow );
9821%}
9822
9823instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
9824  predicate (UseSSE<=1);
9825  match(Set dst(TanD src));
9826  format %{ "DTAN   $dst" %}
9827  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9828              Opcode(0xDD), Opcode(0xD8));   // fstp st
9829  ins_pipe( pipe_slow );
9830%}
9831
9832instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
9833  predicate (UseSSE>=2);
9834  match(Set dst(TanD dst));
9835  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9836  format %{ "DTAN   $dst" %}
9837  ins_encode( Push_SrcXD(dst),
9838              Opcode(0xD9), Opcode(0xF2),    // fptan
9839              Opcode(0xDD), Opcode(0xD8),   // fstp st
9840              Push_ResultXD(dst) );
9841  ins_pipe( pipe_slow );
9842%}
9843
9844instruct atanD_reg(regD dst, regD src) %{
9845  predicate (UseSSE<=1);
9846  match(Set dst(AtanD dst src));
9847  format %{ "DATA   $dst,$src" %}
9848  opcode(0xD9, 0xF3);
9849  ins_encode( Push_Reg_D(src),
9850              OpcP, OpcS, RegOpc(dst) );
9851  ins_pipe( pipe_slow );
9852%}
9853
9854instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
9855  predicate (UseSSE>=2);
9856  match(Set dst(AtanD dst src));
9857  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9858  format %{ "DATA   $dst,$src" %}
9859  opcode(0xD9, 0xF3);
9860  ins_encode( Push_SrcXD(src),
9861              OpcP, OpcS, Push_ResultXD(dst) );
9862  ins_pipe( pipe_slow );
9863%}
9864
9865instruct sqrtD_reg(regD dst, regD src) %{
9866  predicate (UseSSE<=1);
9867  match(Set dst (SqrtD src));
9868  format %{ "DSQRT  $dst,$src" %}
9869  opcode(0xFA, 0xD9);
9870  ins_encode( Push_Reg_D(src),
9871              OpcS, OpcP, Pop_Reg_D(dst) );
9872  ins_pipe( pipe_slow );
9873%}
9874
9875instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
9876  predicate (UseSSE<=1);
9877  match(Set Y (PowD X Y));  // Raise X to the Yth power
9878  effect(KILL rax, KILL rbx, KILL rcx);
9879  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
9880            "FLD_D  $X\n\t"
9881            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
9882
9883            "FDUP   \t\t\t# Q Q\n\t"
9884            "FRNDINT\t\t\t# int(Q) Q\n\t"
9885            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9886            "FISTP  dword [ESP]\n\t"
9887            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9888            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9889            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9890            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9891            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9892            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9893            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9894            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9895            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9896            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9897            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9898            "MOV    [ESP+0],0\n\t"
9899            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9900
9901            "ADD    ESP,8"
9902             %}
9903  ins_encode( push_stack_temp_qword,
9904              Push_Reg_D(X),
9905              Opcode(0xD9), Opcode(0xF1),   // fyl2x
9906              pow_exp_core_encoding,
9907              pop_stack_temp_qword);
9908  ins_pipe( pipe_slow );
9909%}
9910
9911instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
9912  predicate (UseSSE>=2);
9913  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9914  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
9915  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
9916            "MOVSD  [ESP],$src1\n\t"
9917            "FLD    FPR1,$src1\n\t"
9918            "MOVSD  [ESP],$src0\n\t"
9919            "FLD    FPR1,$src0\n\t"
9920            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
9921
9922            "FDUP   \t\t\t# Q Q\n\t"
9923            "FRNDINT\t\t\t# int(Q) Q\n\t"
9924            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9925            "FISTP  dword [ESP]\n\t"
9926            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9927            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9928            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9929            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9930            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9931            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9932            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9933            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9934            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9935            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9936            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9937            "MOV    [ESP+0],0\n\t"
9938            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9939
9940            "FST_D  [ESP]\n\t"
9941            "MOVSD  $dst,[ESP]\n\t"
9942            "ADD    ESP,8"
9943             %}
9944  ins_encode( push_stack_temp_qword,
9945              push_xmm_to_fpr1(src1),
9946              push_xmm_to_fpr1(src0),
9947              Opcode(0xD9), Opcode(0xF1),   // fyl2x
9948              pow_exp_core_encoding,
9949              Push_ResultXD(dst) );
9950  ins_pipe( pipe_slow );
9951%}
9952
9953
9954instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
9955  predicate (UseSSE<=1);
9956  match(Set dpr1 (ExpD dpr1));
9957  effect(KILL rax, KILL rbx, KILL rcx);
9958  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
9959            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
9960            "FMULP  \t\t\t# Q=X*log2(e)\n\t"
9961
9962            "FDUP   \t\t\t# Q Q\n\t"
9963            "FRNDINT\t\t\t# int(Q) Q\n\t"
9964            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
9965            "FISTP  dword [ESP]\n\t"
9966            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
9967            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
9968            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
9969            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
9970            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
9971            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
9972            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
9973            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
9974            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
9975            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
9976            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
9977            "MOV    [ESP+0],0\n\t"
9978            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
9979
9980            "ADD    ESP,8"
9981             %}
9982  ins_encode( push_stack_temp_qword,
9983              Opcode(0xD9), Opcode(0xEA),   // fldl2e
9984              Opcode(0xDE), Opcode(0xC9),   // fmulp
9985              pow_exp_core_encoding,
9986              pop_stack_temp_qword);
9987  ins_pipe( pipe_slow );
9988%}
9989
9990instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
9991  predicate (UseSSE>=2);
9992  match(Set dst (ExpD src));
9993  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
9994  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
9995            "MOVSD  [ESP],$src\n\t"
9996            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
9997            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
9998
9999            "FDUP   \t\t\t# Q Q\n\t"
10000            "FRNDINT\t\t\t# int(Q) Q\n\t"
10001            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10002            "FISTP  dword [ESP]\n\t"
10003            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10004            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10005            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10006            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10007            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10008            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10009            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10010            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10011            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10012            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10013            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10014            "MOV    [ESP+0],0\n\t"
10015            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10016
10017            "FST_D  [ESP]\n\t"
10018            "MOVSD  $dst,[ESP]\n\t"
10019            "ADD    ESP,8"
10020             %}
10021  ins_encode( Push_SrcXD(src),
10022              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10023              Opcode(0xDE), Opcode(0xC9),   // fmulp
10024              pow_exp_core_encoding,
10025              Push_ResultXD(dst) );
10026  ins_pipe( pipe_slow );
10027%}
10028
10029
10030
10031instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10032  predicate (UseSSE<=1);
10033  // The source Double operand on FPU stack
10034  match(Set dst (Log10D src));
10035  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10036  // fxch         ; swap ST(0) with ST(1)
10037  // fyl2x        ; compute log_10(2) * log_2(x)
10038  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10039            "FXCH   \n\t"
10040            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10041         %}
10042  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10043              Opcode(0xD9), Opcode(0xC9),   // fxch
10044              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10045
10046  ins_pipe( pipe_slow );
10047%}
10048
10049instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10050  predicate (UseSSE>=2);
10051  effect(KILL cr);
10052  match(Set dst (Log10D src));
10053  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10054  // fyl2x        ; compute log_10(2) * log_2(x)
10055  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10056            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10057         %}
10058  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10059              Push_SrcXD(src),
10060              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10061              Push_ResultXD(dst));
10062
10063  ins_pipe( pipe_slow );
10064%}
10065
10066instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10067  predicate (UseSSE<=1);
10068  // The source Double operand on FPU stack
10069  match(Set dst (LogD src));
10070  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10071  // fxch         ; swap ST(0) with ST(1)
10072  // fyl2x        ; compute log_e(2) * log_2(x)
10073  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10074            "FXCH   \n\t"
10075            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10076         %}
10077  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10078              Opcode(0xD9), Opcode(0xC9),   // fxch
10079              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10080
10081  ins_pipe( pipe_slow );
10082%}
10083
10084instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10085  predicate (UseSSE>=2);
10086  effect(KILL cr);
10087  // The source and result Double operands in XMM registers
10088  match(Set dst (LogD src));
10089  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10090  // fyl2x        ; compute log_e(2) * log_2(x)
10091  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10092            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10093         %}
10094  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10095              Push_SrcXD(src),
10096              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10097              Push_ResultXD(dst));
10098  ins_pipe( pipe_slow );
10099%}
10100
10101//-------------Float Instructions-------------------------------
10102// Float Math
10103
10104// Code for float compare:
10105//     fcompp();
10106//     fwait(); fnstsw_ax();
10107//     sahf();
10108//     movl(dst, unordered_result);
10109//     jcc(Assembler::parity, exit);
10110//     movl(dst, less_result);
10111//     jcc(Assembler::below, exit);
10112//     movl(dst, equal_result);
10113//     jcc(Assembler::equal, exit);
10114//     movl(dst, greater_result);
10115//   exit:
10116
10117// P6 version of float compare, sets condition codes in EFLAGS
10118instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10119  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10120  match(Set cr (CmpF src1 src2));
10121  effect(KILL rax);
10122  ins_cost(150);
10123  format %{ "FLD    $src1\n\t"
10124            "FUCOMIP ST,$src2  // P6 instruction\n\t"
10125            "JNP    exit\n\t"
10126            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10127            "SAHF\n"
10128     "exit:\tNOP               // avoid branch to branch" %}
10129  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10130  ins_encode( Push_Reg_D(src1),
10131              OpcP, RegOpc(src2),
10132              cmpF_P6_fixup );
10133  ins_pipe( pipe_slow );
10134%}
10135
10136
10137// Compare & branch
10138instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10139  predicate(UseSSE == 0);
10140  match(Set cr (CmpF src1 src2));
10141  effect(KILL rax);
10142  ins_cost(200);
10143  format %{ "FLD    $src1\n\t"
10144            "FCOMp  $src2\n\t"
10145            "FNSTSW AX\n\t"
10146            "TEST   AX,0x400\n\t"
10147            "JZ,s   flags\n\t"
10148            "MOV    AH,1\t# unordered treat as LT\n"
10149    "flags:\tSAHF" %}
10150  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10151  ins_encode( Push_Reg_D(src1),
10152              OpcP, RegOpc(src2),
10153              fpu_flags);
10154  ins_pipe( pipe_slow );
10155%}
10156
10157// Compare vs zero into -1,0,1
10158instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10159  predicate(UseSSE == 0);
10160  match(Set dst (CmpF3 src1 zero));
10161  effect(KILL cr, KILL rax);
10162  ins_cost(280);
10163  format %{ "FTSTF  $dst,$src1" %}
10164  opcode(0xE4, 0xD9);
10165  ins_encode( Push_Reg_D(src1),
10166              OpcS, OpcP, PopFPU,
10167              CmpF_Result(dst));
10168  ins_pipe( pipe_slow );
10169%}
10170
10171// Compare into -1,0,1
10172instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10173  predicate(UseSSE == 0);
10174  match(Set dst (CmpF3 src1 src2));
10175  effect(KILL cr, KILL rax);
10176  ins_cost(300);
10177  format %{ "FCMPF  $dst,$src1,$src2" %}
10178  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10179  ins_encode( Push_Reg_D(src1),
10180              OpcP, RegOpc(src2),
10181              CmpF_Result(dst));
10182  ins_pipe( pipe_slow );
10183%}
10184
10185// float compare and set condition codes in EFLAGS by XMM regs
10186instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10187  predicate(UseSSE>=1);
10188  match(Set cr (CmpF dst src));
10189  effect(KILL rax);
10190  ins_cost(145);
10191  format %{ "COMISS $dst,$src\n"
10192          "\tJNP    exit\n"
10193          "\tMOV    ah,1       // saw a NaN, set CF\n"
10194          "\tSAHF\n"
10195     "exit:\tNOP               // avoid branch to branch" %}
10196  opcode(0x0F, 0x2F);
10197  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10198  ins_pipe( pipe_slow );
10199%}
10200
10201// float compare and set condition codes in EFLAGS by XMM regs
10202instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10203  predicate(UseSSE>=1);
10204  match(Set cr (CmpF dst (LoadF src)));
10205  effect(KILL rax);
10206  ins_cost(165);
10207  format %{ "COMISS $dst,$src\n"
10208          "\tJNP    exit\n"
10209          "\tMOV    ah,1       // saw a NaN, set CF\n"
10210          "\tSAHF\n"
10211     "exit:\tNOP               // avoid branch to branch" %}
10212  opcode(0x0F, 0x2F);
10213  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10214  ins_pipe( pipe_slow );
10215%}
10216
10217// Compare into -1,0,1 in XMM
10218instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10219  predicate(UseSSE>=1);
10220  match(Set dst (CmpF3 src1 src2));
10221  effect(KILL cr);
10222  ins_cost(255);
10223  format %{ "XOR    $dst,$dst\n"
10224          "\tCOMISS $src1,$src2\n"
10225          "\tJP,s   nan\n"
10226          "\tJEQ,s  exit\n"
10227          "\tJA,s   inc\n"
10228      "nan:\tDEC    $dst\n"
10229          "\tJMP,s  exit\n"
10230      "inc:\tINC    $dst\n"
10231      "exit:"
10232                %}
10233  opcode(0x0F, 0x2F);
10234  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10235  ins_pipe( pipe_slow );
10236%}
10237
10238// Compare into -1,0,1 in XMM and memory
10239instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10240  predicate(UseSSE>=1);
10241  match(Set dst (CmpF3 src1 (LoadF mem)));
10242  effect(KILL cr);
10243  ins_cost(275);
10244  format %{ "COMISS $src1,$mem\n"
10245          "\tMOV    $dst,0\t\t# do not blow flags\n"
10246          "\tJP,s   nan\n"
10247          "\tJEQ,s  exit\n"
10248          "\tJA,s   inc\n"
10249      "nan:\tDEC    $dst\n"
10250          "\tJMP,s  exit\n"
10251      "inc:\tINC    $dst\n"
10252      "exit:"
10253                %}
10254  opcode(0x0F, 0x2F);
10255  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
10256  ins_pipe( pipe_slow );
10257%}
10258
10259// Spill to obtain 24-bit precision
10260instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
10261  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10262  match(Set dst (SubF src1 src2));
10263
10264  format %{ "FSUB   $dst,$src1 - $src2" %}
10265  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10266  ins_encode( Push_Reg_F(src1),
10267              OpcReg_F(src2),
10268              Pop_Mem_F(dst) );
10269  ins_pipe( fpu_mem_reg_reg );
10270%}
10271//
10272// This instruction does not round to 24-bits
10273instruct subF_reg(regF dst, regF src) %{
10274  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10275  match(Set dst (SubF dst src));
10276
10277  format %{ "FSUB   $dst,$src" %}
10278  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10279  ins_encode( Push_Reg_F(src),
10280              OpcP, RegOpc(dst) );
10281  ins_pipe( fpu_reg_reg );
10282%}
10283
10284// Spill to obtain 24-bit precision
10285instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
10286  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10287  match(Set dst (AddF src1 src2));
10288
10289  format %{ "FADD   $dst,$src1,$src2" %}
10290  opcode(0xD8, 0x0); /* D8 C0+i */
10291  ins_encode( Push_Reg_F(src2),
10292              OpcReg_F(src1),
10293              Pop_Mem_F(dst) );
10294  ins_pipe( fpu_mem_reg_reg );
10295%}
10296//
10297// This instruction does not round to 24-bits
10298instruct addF_reg(regF dst, regF src) %{
10299  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10300  match(Set dst (AddF dst src));
10301
10302  format %{ "FLD    $src\n\t"
10303            "FADDp  $dst,ST" %}
10304  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10305  ins_encode( Push_Reg_F(src),
10306              OpcP, RegOpc(dst) );
10307  ins_pipe( fpu_reg_reg );
10308%}
10309
10310// Add two single precision floating point values in xmm
10311instruct addX_reg(regX dst, regX src) %{
10312  predicate(UseSSE>=1);
10313  match(Set dst (AddF dst src));
10314  format %{ "ADDSS  $dst,$src" %}
10315  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10316  ins_pipe( pipe_slow );
10317%}
10318
10319instruct addX_imm(regX dst, immXF con) %{
10320  predicate(UseSSE>=1);
10321  match(Set dst (AddF dst con));
10322  format %{ "ADDSS  $dst,[$con]" %}
10323  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
10324  ins_pipe( pipe_slow );
10325%}
10326
10327instruct addX_mem(regX dst, memory mem) %{
10328  predicate(UseSSE>=1);
10329  match(Set dst (AddF dst (LoadF mem)));
10330  format %{ "ADDSS  $dst,$mem" %}
10331  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
10332  ins_pipe( pipe_slow );
10333%}
10334
10335// Subtract two single precision floating point values in xmm
10336instruct subX_reg(regX dst, regX src) %{
10337  predicate(UseSSE>=1);
10338  match(Set dst (SubF dst src));
10339  format %{ "SUBSS  $dst,$src" %}
10340  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10341  ins_pipe( pipe_slow );
10342%}
10343
10344instruct subX_imm(regX dst, immXF con) %{
10345  predicate(UseSSE>=1);
10346  match(Set dst (SubF dst con));
10347  format %{ "SUBSS  $dst,[$con]" %}
10348  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
10349  ins_pipe( pipe_slow );
10350%}
10351
10352instruct subX_mem(regX dst, memory mem) %{
10353  predicate(UseSSE>=1);
10354  match(Set dst (SubF dst (LoadF mem)));
10355  format %{ "SUBSS  $dst,$mem" %}
10356  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10357  ins_pipe( pipe_slow );
10358%}
10359
10360// Multiply two single precision floating point values in xmm
10361instruct mulX_reg(regX dst, regX src) %{
10362  predicate(UseSSE>=1);
10363  match(Set dst (MulF dst src));
10364  format %{ "MULSS  $dst,$src" %}
10365  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10366  ins_pipe( pipe_slow );
10367%}
10368
10369instruct mulX_imm(regX dst, immXF con) %{
10370  predicate(UseSSE>=1);
10371  match(Set dst (MulF dst con));
10372  format %{ "MULSS  $dst,[$con]" %}
10373  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
10374  ins_pipe( pipe_slow );
10375%}
10376
10377instruct mulX_mem(regX dst, memory mem) %{
10378  predicate(UseSSE>=1);
10379  match(Set dst (MulF dst (LoadF mem)));
10380  format %{ "MULSS  $dst,$mem" %}
10381  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10382  ins_pipe( pipe_slow );
10383%}
10384
10385// Divide two single precision floating point values in xmm
10386instruct divX_reg(regX dst, regX src) %{
10387  predicate(UseSSE>=1);
10388  match(Set dst (DivF dst src));
10389  format %{ "DIVSS  $dst,$src" %}
10390  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10391  ins_pipe( pipe_slow );
10392%}
10393
10394instruct divX_imm(regX dst, immXF con) %{
10395  predicate(UseSSE>=1);
10396  match(Set dst (DivF dst con));
10397  format %{ "DIVSS  $dst,[$con]" %}
10398  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
10399  ins_pipe( pipe_slow );
10400%}
10401
10402instruct divX_mem(regX dst, memory mem) %{
10403  predicate(UseSSE>=1);
10404  match(Set dst (DivF dst (LoadF mem)));
10405  format %{ "DIVSS  $dst,$mem" %}
10406  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10407  ins_pipe( pipe_slow );
10408%}
10409
10410// Get the square root of a single precision floating point values in xmm
10411instruct sqrtX_reg(regX dst, regX src) %{
10412  predicate(UseSSE>=1);
10413  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
10414  format %{ "SQRTSS $dst,$src" %}
10415  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10416  ins_pipe( pipe_slow );
10417%}
10418
10419instruct sqrtX_mem(regX dst, memory mem) %{
10420  predicate(UseSSE>=1);
10421  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
10422  format %{ "SQRTSS $dst,$mem" %}
10423  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10424  ins_pipe( pipe_slow );
10425%}
10426
10427// Get the square root of a double precision floating point values in xmm
10428instruct sqrtXD_reg(regXD dst, regXD src) %{
10429  predicate(UseSSE>=2);
10430  match(Set dst (SqrtD src));
10431  format %{ "SQRTSD $dst,$src" %}
10432  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10433  ins_pipe( pipe_slow );
10434%}
10435
10436instruct sqrtXD_mem(regXD dst, memory mem) %{
10437  predicate(UseSSE>=2);
10438  match(Set dst (SqrtD (LoadD mem)));
10439  format %{ "SQRTSD $dst,$mem" %}
10440  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10441  ins_pipe( pipe_slow );
10442%}
10443
10444instruct absF_reg(regFPR1 dst, regFPR1 src) %{
10445  predicate(UseSSE==0);
10446  match(Set dst (AbsF src));
10447  ins_cost(100);
10448  format %{ "FABS" %}
10449  opcode(0xE1, 0xD9);
10450  ins_encode( OpcS, OpcP );
10451  ins_pipe( fpu_reg_reg );
10452%}
10453
10454instruct absX_reg(regX dst ) %{
10455  predicate(UseSSE>=1);
10456  match(Set dst (AbsF dst));
10457  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
10458  ins_encode( AbsXF_encoding(dst));
10459  ins_pipe( pipe_slow );
10460%}
10461
10462instruct negF_reg(regFPR1 dst, regFPR1 src) %{
10463  predicate(UseSSE==0);
10464  match(Set dst (NegF src));
10465  ins_cost(100);
10466  format %{ "FCHS" %}
10467  opcode(0xE0, 0xD9);
10468  ins_encode( OpcS, OpcP );
10469  ins_pipe( fpu_reg_reg );
10470%}
10471
10472instruct negX_reg( regX dst ) %{
10473  predicate(UseSSE>=1);
10474  match(Set dst (NegF dst));
10475  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
10476  ins_encode( NegXF_encoding(dst));
10477  ins_pipe( pipe_slow );
10478%}
10479
10480// Cisc-alternate to addF_reg
10481// Spill to obtain 24-bit precision
10482instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
10483  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10484  match(Set dst (AddF src1 (LoadF src2)));
10485
10486  format %{ "FLD    $src2\n\t"
10487            "FADD   ST,$src1\n\t"
10488            "FSTP_S $dst" %}
10489  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10490  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10491              OpcReg_F(src1),
10492              Pop_Mem_F(dst) );
10493  ins_pipe( fpu_mem_reg_mem );
10494%}
10495//
10496// Cisc-alternate to addF_reg
10497// This instruction does not round to 24-bits
10498instruct addF_reg_mem(regF dst, memory src) %{
10499  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10500  match(Set dst (AddF dst (LoadF src)));
10501
10502  format %{ "FADD   $dst,$src" %}
10503  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10504  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10505              OpcP, RegOpc(dst) );
10506  ins_pipe( fpu_reg_mem );
10507%}
10508
10509// // Following two instructions for _222_mpegaudio
10510// Spill to obtain 24-bit precision
10511instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
10512  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10513  match(Set dst (AddF src1 src2));
10514
10515  format %{ "FADD   $dst,$src1,$src2" %}
10516  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10517  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10518              OpcReg_F(src2),
10519              Pop_Mem_F(dst) );
10520  ins_pipe( fpu_mem_reg_mem );
10521%}
10522
10523// Cisc-spill variant
10524// Spill to obtain 24-bit precision
10525instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10526  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10527  match(Set dst (AddF src1 (LoadF src2)));
10528
10529  format %{ "FADD   $dst,$src1,$src2 cisc" %}
10530  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10531  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10532              set_instruction_start,
10533              OpcP, RMopc_Mem(secondary,src1),
10534              Pop_Mem_F(dst) );
10535  ins_pipe( fpu_mem_mem_mem );
10536%}
10537
10538// Spill to obtain 24-bit precision
10539instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10540  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10541  match(Set dst (AddF src1 src2));
10542
10543  format %{ "FADD   $dst,$src1,$src2" %}
10544  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10545  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10546              set_instruction_start,
10547              OpcP, RMopc_Mem(secondary,src1),
10548              Pop_Mem_F(dst) );
10549  ins_pipe( fpu_mem_mem_mem );
10550%}
10551
10552
10553// Spill to obtain 24-bit precision
10554instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
10555  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10556  match(Set dst (AddF src1 src2));
10557  format %{ "FLD    $src1\n\t"
10558            "FADD   $src2\n\t"
10559            "FSTP_S $dst"  %}
10560  opcode(0xD8, 0x00);       /* D8 /0 */
10561  ins_encode( Push_Reg_F(src1),
10562              Opc_MemImm_F(src2),
10563              Pop_Mem_F(dst));
10564  ins_pipe( fpu_mem_reg_con );
10565%}
10566//
10567// This instruction does not round to 24-bits
10568instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
10569  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10570  match(Set dst (AddF src1 src2));
10571  format %{ "FLD    $src1\n\t"
10572            "FADD   $src2\n\t"
10573            "FSTP_S $dst"  %}
10574  opcode(0xD8, 0x00);       /* D8 /0 */
10575  ins_encode( Push_Reg_F(src1),
10576              Opc_MemImm_F(src2),
10577              Pop_Reg_F(dst));
10578  ins_pipe( fpu_reg_reg_con );
10579%}
10580
10581// Spill to obtain 24-bit precision
10582instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
10583  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10584  match(Set dst (MulF src1 src2));
10585
10586  format %{ "FLD    $src1\n\t"
10587            "FMUL   $src2\n\t"
10588            "FSTP_S $dst"  %}
10589  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10590  ins_encode( Push_Reg_F(src1),
10591              OpcReg_F(src2),
10592              Pop_Mem_F(dst) );
10593  ins_pipe( fpu_mem_reg_reg );
10594%}
10595//
10596// This instruction does not round to 24-bits
10597instruct mulF_reg(regF dst, regF src1, regF src2) %{
10598  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10599  match(Set dst (MulF src1 src2));
10600
10601  format %{ "FLD    $src1\n\t"
10602            "FMUL   $src2\n\t"
10603            "FSTP_S $dst"  %}
10604  opcode(0xD8, 0x1); /* D8 C8+i */
10605  ins_encode( Push_Reg_F(src2),
10606              OpcReg_F(src1),
10607              Pop_Reg_F(dst) );
10608  ins_pipe( fpu_reg_reg_reg );
10609%}
10610
10611
10612// Spill to obtain 24-bit precision
10613// Cisc-alternate to reg-reg multiply
10614instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
10615  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10616  match(Set dst (MulF src1 (LoadF src2)));
10617
10618  format %{ "FLD_S  $src2\n\t"
10619            "FMUL   $src1\n\t"
10620            "FSTP_S $dst"  %}
10621  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10622  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10623              OpcReg_F(src1),
10624              Pop_Mem_F(dst) );
10625  ins_pipe( fpu_mem_reg_mem );
10626%}
10627//
10628// This instruction does not round to 24-bits
10629// Cisc-alternate to reg-reg multiply
10630instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
10631  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10632  match(Set dst (MulF src1 (LoadF src2)));
10633
10634  format %{ "FMUL   $dst,$src1,$src2" %}
10635  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10636  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10637              OpcReg_F(src1),
10638              Pop_Reg_F(dst) );
10639  ins_pipe( fpu_reg_reg_mem );
10640%}
10641
10642// Spill to obtain 24-bit precision
10643instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10644  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10645  match(Set dst (MulF src1 src2));
10646
10647  format %{ "FMUL   $dst,$src1,$src2" %}
10648  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10649  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10650              set_instruction_start,
10651              OpcP, RMopc_Mem(secondary,src1),
10652              Pop_Mem_F(dst) );
10653  ins_pipe( fpu_mem_mem_mem );
10654%}
10655
10656// Spill to obtain 24-bit precision
10657instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
10658  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10659  match(Set dst (MulF src1 src2));
10660
10661  format %{ "FMULc $dst,$src1,$src2" %}
10662  opcode(0xD8, 0x1);  /* D8 /1*/
10663  ins_encode( Push_Reg_F(src1),
10664              Opc_MemImm_F(src2),
10665              Pop_Mem_F(dst));
10666  ins_pipe( fpu_mem_reg_con );
10667%}
10668//
10669// This instruction does not round to 24-bits
10670instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
10671  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10672  match(Set dst (MulF src1 src2));
10673
10674  format %{ "FMULc $dst. $src1, $src2" %}
10675  opcode(0xD8, 0x1);  /* D8 /1*/
10676  ins_encode( Push_Reg_F(src1),
10677              Opc_MemImm_F(src2),
10678              Pop_Reg_F(dst));
10679  ins_pipe( fpu_reg_reg_con );
10680%}
10681
10682
10683//
10684// MACRO1 -- subsume unshared load into mulF
10685// This instruction does not round to 24-bits
10686instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
10687  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10688  match(Set dst (MulF (LoadF mem1) src));
10689
10690  format %{ "FLD    $mem1    ===MACRO1===\n\t"
10691            "FMUL   ST,$src\n\t"
10692            "FSTP   $dst" %}
10693  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10694  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10695              OpcReg_F(src),
10696              Pop_Reg_F(dst) );
10697  ins_pipe( fpu_reg_reg_mem );
10698%}
10699//
10700// MACRO2 -- addF a mulF which subsumed an unshared load
10701// This instruction does not round to 24-bits
10702instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
10703  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10704  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10705  ins_cost(95);
10706
10707  format %{ "FLD    $mem1     ===MACRO2===\n\t"
10708            "FMUL   ST,$src1  subsume mulF left load\n\t"
10709            "FADD   ST,$src2\n\t"
10710            "FSTP   $dst" %}
10711  opcode(0xD9); /* LoadF D9 /0 */
10712  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10713              FMul_ST_reg(src1),
10714              FAdd_ST_reg(src2),
10715              Pop_Reg_F(dst) );
10716  ins_pipe( fpu_reg_mem_reg_reg );
10717%}
10718
10719// MACRO3 -- addF a mulF
10720// This instruction does not round to 24-bits.  It is a '2-address'
10721// instruction in that the result goes back to src2.  This eliminates
10722// a move from the macro; possibly the register allocator will have
10723// to add it back (and maybe not).
10724instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
10725  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10726  match(Set src2 (AddF (MulF src0 src1) src2));
10727
10728  format %{ "FLD    $src0     ===MACRO3===\n\t"
10729            "FMUL   ST,$src1\n\t"
10730            "FADDP  $src2,ST" %}
10731  opcode(0xD9); /* LoadF D9 /0 */
10732  ins_encode( Push_Reg_F(src0),
10733              FMul_ST_reg(src1),
10734              FAddP_reg_ST(src2) );
10735  ins_pipe( fpu_reg_reg_reg );
10736%}
10737
10738// MACRO4 -- divF subF
10739// This instruction does not round to 24-bits
10740instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
10741  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10742  match(Set dst (DivF (SubF src2 src1) src3));
10743
10744  format %{ "FLD    $src2   ===MACRO4===\n\t"
10745            "FSUB   ST,$src1\n\t"
10746            "FDIV   ST,$src3\n\t"
10747            "FSTP  $dst" %}
10748  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10749  ins_encode( Push_Reg_F(src2),
10750              subF_divF_encode(src1,src3),
10751              Pop_Reg_F(dst) );
10752  ins_pipe( fpu_reg_reg_reg_reg );
10753%}
10754
10755// Spill to obtain 24-bit precision
10756instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
10757  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10758  match(Set dst (DivF src1 src2));
10759
10760  format %{ "FDIV   $dst,$src1,$src2" %}
10761  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10762  ins_encode( Push_Reg_F(src1),
10763              OpcReg_F(src2),
10764              Pop_Mem_F(dst) );
10765  ins_pipe( fpu_mem_reg_reg );
10766%}
10767//
10768// This instruction does not round to 24-bits
10769instruct divF_reg(regF dst, regF src) %{
10770  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10771  match(Set dst (DivF dst src));
10772
10773  format %{ "FDIV   $dst,$src" %}
10774  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10775  ins_encode( Push_Reg_F(src),
10776              OpcP, RegOpc(dst) );
10777  ins_pipe( fpu_reg_reg );
10778%}
10779
10780
10781// Spill to obtain 24-bit precision
10782instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10783  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10784  match(Set dst (ModF src1 src2));
10785  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10786
10787  format %{ "FMOD   $dst,$src1,$src2" %}
10788  ins_encode( Push_Reg_Mod_D(src1, src2),
10789              emitModD(),
10790              Push_Result_Mod_D(src2),
10791              Pop_Mem_F(dst));
10792  ins_pipe( pipe_slow );
10793%}
10794//
10795// This instruction does not round to 24-bits
10796instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
10797  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10798  match(Set dst (ModF dst src));
10799  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10800
10801  format %{ "FMOD   $dst,$src" %}
10802  ins_encode(Push_Reg_Mod_D(dst, src),
10803              emitModD(),
10804              Push_Result_Mod_D(src),
10805              Pop_Reg_F(dst));
10806  ins_pipe( pipe_slow );
10807%}
10808
10809instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
10810  predicate(UseSSE>=1);
10811  match(Set dst (ModF src0 src1));
10812  effect(KILL rax, KILL cr);
10813  format %{ "SUB    ESP,4\t # FMOD\n"
10814          "\tMOVSS  [ESP+0],$src1\n"
10815          "\tFLD_S  [ESP+0]\n"
10816          "\tMOVSS  [ESP+0],$src0\n"
10817          "\tFLD_S  [ESP+0]\n"
10818     "loop:\tFPREM\n"
10819          "\tFWAIT\n"
10820          "\tFNSTSW AX\n"
10821          "\tSAHF\n"
10822          "\tJP     loop\n"
10823          "\tFSTP_S [ESP+0]\n"
10824          "\tMOVSS  $dst,[ESP+0]\n"
10825          "\tADD    ESP,4\n"
10826          "\tFSTP   ST0\t # Restore FPU Stack"
10827    %}
10828  ins_cost(250);
10829  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
10830  ins_pipe( pipe_slow );
10831%}
10832
10833
10834//----------Arithmetic Conversion Instructions---------------------------------
10835// The conversions operations are all Alpha sorted.  Please keep it that way!
10836
10837instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
10838  predicate(UseSSE==0);
10839  match(Set dst (RoundFloat src));
10840  ins_cost(125);
10841  format %{ "FST_S  $dst,$src\t# F-round" %}
10842  ins_encode( Pop_Mem_Reg_F(dst, src) );
10843  ins_pipe( fpu_mem_reg );
10844%}
10845
10846instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
10847  predicate(UseSSE<=1);
10848  match(Set dst (RoundDouble src));
10849  ins_cost(125);
10850  format %{ "FST_D  $dst,$src\t# D-round" %}
10851  ins_encode( Pop_Mem_Reg_D(dst, src) );
10852  ins_pipe( fpu_mem_reg );
10853%}
10854
10855// Force rounding to 24-bit precision and 6-bit exponent
10856instruct convD2F_reg(stackSlotF dst, regD src) %{
10857  predicate(UseSSE==0);
10858  match(Set dst (ConvD2F src));
10859  format %{ "FST_S  $dst,$src\t# F-round" %}
10860  expand %{
10861    roundFloat_mem_reg(dst,src);
10862  %}
10863%}
10864
10865// Force rounding to 24-bit precision and 6-bit exponent
10866instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
10867  predicate(UseSSE==1);
10868  match(Set dst (ConvD2F src));
10869  effect( KILL cr );
10870  format %{ "SUB    ESP,4\n\t"
10871            "FST_S  [ESP],$src\t# F-round\n\t"
10872            "MOVSS  $dst,[ESP]\n\t"
10873            "ADD ESP,4" %}
10874  ins_encode( D2X_encoding(dst, src) );
10875  ins_pipe( pipe_slow );
10876%}
10877
10878// Force rounding double precision to single precision
10879instruct convXD2X_reg(regX dst, regXD src) %{
10880  predicate(UseSSE>=2);
10881  match(Set dst (ConvD2F src));
10882  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10883  opcode(0xF2, 0x0F, 0x5A);
10884  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10885  ins_pipe( pipe_slow );
10886%}
10887
10888instruct convF2D_reg_reg(regD dst, regF src) %{
10889  predicate(UseSSE==0);
10890  match(Set dst (ConvF2D src));
10891  format %{ "FST_S  $dst,$src\t# D-round" %}
10892  ins_encode( Pop_Reg_Reg_D(dst, src));
10893  ins_pipe( fpu_reg_reg );
10894%}
10895
10896instruct convF2D_reg(stackSlotD dst, regF src) %{
10897  predicate(UseSSE==1);
10898  match(Set dst (ConvF2D src));
10899  format %{ "FST_D  $dst,$src\t# D-round" %}
10900  expand %{
10901    roundDouble_mem_reg(dst,src);
10902  %}
10903%}
10904
10905instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
10906  predicate(UseSSE==1);
10907  match(Set dst (ConvF2D src));
10908  effect( KILL cr );
10909  format %{ "SUB    ESP,4\n\t"
10910            "MOVSS  [ESP] $src\n\t"
10911            "FLD_S  [ESP]\n\t"
10912            "ADD    ESP,4\n\t"
10913            "FSTP   $dst\t# D-round" %}
10914  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
10915  ins_pipe( pipe_slow );
10916%}
10917
10918instruct convX2XD_reg(regXD dst, regX src) %{
10919  predicate(UseSSE>=2);
10920  match(Set dst (ConvF2D src));
10921  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10922  opcode(0xF3, 0x0F, 0x5A);
10923  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10924  ins_pipe( pipe_slow );
10925%}
10926
10927// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10928instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10929  predicate(UseSSE<=1);
10930  match(Set dst (ConvD2I src));
10931  effect( KILL tmp, KILL cr );
10932  format %{ "FLD    $src\t# Convert double to int \n\t"
10933            "FLDCW  trunc mode\n\t"
10934            "SUB    ESP,4\n\t"
10935            "FISTp  [ESP + #0]\n\t"
10936            "FLDCW  std/24-bit mode\n\t"
10937            "POP    EAX\n\t"
10938            "CMP    EAX,0x80000000\n\t"
10939            "JNE,s  fast\n\t"
10940            "FLD_D  $src\n\t"
10941            "CALL   d2i_wrapper\n"
10942      "fast:" %}
10943  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
10944  ins_pipe( pipe_slow );
10945%}
10946
10947// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10948instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
10949  predicate(UseSSE>=2);
10950  match(Set dst (ConvD2I src));
10951  effect( KILL tmp, KILL cr );
10952  format %{ "CVTTSD2SI $dst, $src\n\t"
10953            "CMP    $dst,0x80000000\n\t"
10954            "JNE,s  fast\n\t"
10955            "SUB    ESP, 8\n\t"
10956            "MOVSD  [ESP], $src\n\t"
10957            "FLD_D  [ESP]\n\t"
10958            "ADD    ESP, 8\n\t"
10959            "CALL   d2i_wrapper\n"
10960      "fast:" %}
10961  opcode(0x1); // double-precision conversion
10962  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
10963  ins_pipe( pipe_slow );
10964%}
10965
10966instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10967  predicate(UseSSE<=1);
10968  match(Set dst (ConvD2L src));
10969  effect( KILL cr );
10970  format %{ "FLD    $src\t# Convert double to long\n\t"
10971            "FLDCW  trunc mode\n\t"
10972            "SUB    ESP,8\n\t"
10973            "FISTp  [ESP + #0]\n\t"
10974            "FLDCW  std/24-bit mode\n\t"
10975            "POP    EAX\n\t"
10976            "POP    EDX\n\t"
10977            "CMP    EDX,0x80000000\n\t"
10978            "JNE,s  fast\n\t"
10979            "TEST   EAX,EAX\n\t"
10980            "JNE,s  fast\n\t"
10981            "FLD    $src\n\t"
10982            "CALL   d2l_wrapper\n"
10983      "fast:" %}
10984  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
10985  ins_pipe( pipe_slow );
10986%}
10987
10988// XMM lacks a float/double->long conversion, so use the old FPU stack.
10989instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
10990  predicate (UseSSE>=2);
10991  match(Set dst (ConvD2L src));
10992  effect( KILL cr );
10993  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10994            "MOVSD  [ESP],$src\n\t"
10995            "FLD_D  [ESP]\n\t"
10996            "FLDCW  trunc mode\n\t"
10997            "FISTp  [ESP + #0]\n\t"
10998            "FLDCW  std/24-bit mode\n\t"
10999            "POP    EAX\n\t"
11000            "POP    EDX\n\t"
11001            "CMP    EDX,0x80000000\n\t"
11002            "JNE,s  fast\n\t"
11003            "TEST   EAX,EAX\n\t"
11004            "JNE,s  fast\n\t"
11005            "SUB    ESP,8\n\t"
11006            "MOVSD  [ESP],$src\n\t"
11007            "FLD_D  [ESP]\n\t"
11008            "CALL   d2l_wrapper\n"
11009      "fast:" %}
11010  ins_encode( XD2L_encoding(src) );
11011  ins_pipe( pipe_slow );
11012%}
11013
11014// Convert a double to an int.  Java semantics require we do complex
11015// manglations in the corner cases.  So we set the rounding mode to
11016// 'zero', store the darned double down as an int, and reset the
11017// rounding mode to 'nearest'.  The hardware stores a flag value down
11018// if we would overflow or converted a NAN; we check for this and
11019// and go the slow path if needed.
11020instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11021  predicate(UseSSE==0);
11022  match(Set dst (ConvF2I src));
11023  effect( KILL tmp, KILL cr );
11024  format %{ "FLD    $src\t# Convert float to int \n\t"
11025            "FLDCW  trunc mode\n\t"
11026            "SUB    ESP,4\n\t"
11027            "FISTp  [ESP + #0]\n\t"
11028            "FLDCW  std/24-bit mode\n\t"
11029            "POP    EAX\n\t"
11030            "CMP    EAX,0x80000000\n\t"
11031            "JNE,s  fast\n\t"
11032            "FLD    $src\n\t"
11033            "CALL   d2i_wrapper\n"
11034      "fast:" %}
11035  // D2I_encoding works for F2I
11036  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11037  ins_pipe( pipe_slow );
11038%}
11039
11040// Convert a float in xmm to an int reg.
11041instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11042  predicate(UseSSE>=1);
11043  match(Set dst (ConvF2I src));
11044  effect( KILL tmp, KILL cr );
11045  format %{ "CVTTSS2SI $dst, $src\n\t"
11046            "CMP    $dst,0x80000000\n\t"
11047            "JNE,s  fast\n\t"
11048            "SUB    ESP, 4\n\t"
11049            "MOVSS  [ESP], $src\n\t"
11050            "FLD    [ESP]\n\t"
11051            "ADD    ESP, 4\n\t"
11052            "CALL   d2i_wrapper\n"
11053      "fast:" %}
11054  opcode(0x0); // single-precision conversion
11055  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11056  ins_pipe( pipe_slow );
11057%}
11058
11059instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11060  predicate(UseSSE==0);
11061  match(Set dst (ConvF2L src));
11062  effect( KILL cr );
11063  format %{ "FLD    $src\t# Convert float to long\n\t"
11064            "FLDCW  trunc mode\n\t"
11065            "SUB    ESP,8\n\t"
11066            "FISTp  [ESP + #0]\n\t"
11067            "FLDCW  std/24-bit mode\n\t"
11068            "POP    EAX\n\t"
11069            "POP    EDX\n\t"
11070            "CMP    EDX,0x80000000\n\t"
11071            "JNE,s  fast\n\t"
11072            "TEST   EAX,EAX\n\t"
11073            "JNE,s  fast\n\t"
11074            "FLD    $src\n\t"
11075            "CALL   d2l_wrapper\n"
11076      "fast:" %}
11077  // D2L_encoding works for F2L
11078  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11079  ins_pipe( pipe_slow );
11080%}
11081
11082// XMM lacks a float/double->long conversion, so use the old FPU stack.
11083instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11084  predicate (UseSSE>=1);
11085  match(Set dst (ConvF2L src));
11086  effect( KILL cr );
11087  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11088            "MOVSS  [ESP],$src\n\t"
11089            "FLD_S  [ESP]\n\t"
11090            "FLDCW  trunc mode\n\t"
11091            "FISTp  [ESP + #0]\n\t"
11092            "FLDCW  std/24-bit mode\n\t"
11093            "POP    EAX\n\t"
11094            "POP    EDX\n\t"
11095            "CMP    EDX,0x80000000\n\t"
11096            "JNE,s  fast\n\t"
11097            "TEST   EAX,EAX\n\t"
11098            "JNE,s  fast\n\t"
11099            "SUB    ESP,4\t# Convert float to long\n\t"
11100            "MOVSS  [ESP],$src\n\t"
11101            "FLD_S  [ESP]\n\t"
11102            "ADD    ESP,4\n\t"
11103            "CALL   d2l_wrapper\n"
11104      "fast:" %}
11105  ins_encode( X2L_encoding(src) );
11106  ins_pipe( pipe_slow );
11107%}
11108
11109instruct convI2D_reg(regD dst, stackSlotI src) %{
11110  predicate( UseSSE<=1 );
11111  match(Set dst (ConvI2D src));
11112  format %{ "FILD   $src\n\t"
11113            "FSTP   $dst" %}
11114  opcode(0xDB, 0x0);  /* DB /0 */
11115  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
11116  ins_pipe( fpu_reg_mem );
11117%}
11118
11119instruct convI2XD_reg(regXD dst, eRegI src) %{
11120  predicate( UseSSE>=2 && !UseXmmI2D );
11121  match(Set dst (ConvI2D src));
11122  format %{ "CVTSI2SD $dst,$src" %}
11123  opcode(0xF2, 0x0F, 0x2A);
11124  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11125  ins_pipe( pipe_slow );
11126%}
11127
11128instruct convI2XD_mem(regXD dst, memory mem) %{
11129  predicate( UseSSE>=2 );
11130  match(Set dst (ConvI2D (LoadI mem)));
11131  format %{ "CVTSI2SD $dst,$mem" %}
11132  opcode(0xF2, 0x0F, 0x2A);
11133  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
11134  ins_pipe( pipe_slow );
11135%}
11136
11137instruct convXI2XD_reg(regXD dst, eRegI src)
11138%{
11139  predicate( UseSSE>=2 && UseXmmI2D );
11140  match(Set dst (ConvI2D src));
11141
11142  format %{ "MOVD  $dst,$src\n\t"
11143            "CVTDQ2PD $dst,$dst\t# i2d" %}
11144  ins_encode %{
11145    __ movdl($dst$$XMMRegister, $src$$Register);
11146    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11147  %}
11148  ins_pipe(pipe_slow); // XXX
11149%}
11150
11151instruct convI2D_mem(regD dst, memory mem) %{
11152  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11153  match(Set dst (ConvI2D (LoadI mem)));
11154  format %{ "FILD   $mem\n\t"
11155            "FSTP   $dst" %}
11156  opcode(0xDB);      /* DB /0 */
11157  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11158              Pop_Reg_D(dst));
11159  ins_pipe( fpu_reg_mem );
11160%}
11161
11162// Convert a byte to a float; no rounding step needed.
11163instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11164  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11165  match(Set dst (ConvI2F src));
11166  format %{ "FILD   $src\n\t"
11167            "FSTP   $dst" %}
11168
11169  opcode(0xDB, 0x0);  /* DB /0 */
11170  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11171  ins_pipe( fpu_reg_mem );
11172%}
11173
11174// In 24-bit mode, force exponent rounding by storing back out
11175instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11176  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11177  match(Set dst (ConvI2F src));
11178  ins_cost(200);
11179  format %{ "FILD   $src\n\t"
11180            "FSTP_S $dst" %}
11181  opcode(0xDB, 0x0);  /* DB /0 */
11182  ins_encode( Push_Mem_I(src),
11183              Pop_Mem_F(dst));
11184  ins_pipe( fpu_mem_mem );
11185%}
11186
11187// In 24-bit mode, force exponent rounding by storing back out
11188instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11189  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11190  match(Set dst (ConvI2F (LoadI mem)));
11191  ins_cost(200);
11192  format %{ "FILD   $mem\n\t"
11193            "FSTP_S $dst" %}
11194  opcode(0xDB);  /* DB /0 */
11195  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11196              Pop_Mem_F(dst));
11197  ins_pipe( fpu_mem_mem );
11198%}
11199
11200// This instruction does not round to 24-bits
11201instruct convI2F_reg(regF dst, stackSlotI src) %{
11202  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11203  match(Set dst (ConvI2F src));
11204  format %{ "FILD   $src\n\t"
11205            "FSTP   $dst" %}
11206  opcode(0xDB, 0x0);  /* DB /0 */
11207  ins_encode( Push_Mem_I(src),
11208              Pop_Reg_F(dst));
11209  ins_pipe( fpu_reg_mem );
11210%}
11211
11212// This instruction does not round to 24-bits
11213instruct convI2F_mem(regF dst, memory mem) %{
11214  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11215  match(Set dst (ConvI2F (LoadI mem)));
11216  format %{ "FILD   $mem\n\t"
11217            "FSTP   $dst" %}
11218  opcode(0xDB);      /* DB /0 */
11219  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11220              Pop_Reg_F(dst));
11221  ins_pipe( fpu_reg_mem );
11222%}
11223
11224// Convert an int to a float in xmm; no rounding step needed.
11225instruct convI2X_reg(regX dst, eRegI src) %{
11226  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11227  match(Set dst (ConvI2F src));
11228  format %{ "CVTSI2SS $dst, $src" %}
11229
11230  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11231  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11232  ins_pipe( pipe_slow );
11233%}
11234
11235 instruct convXI2X_reg(regX dst, eRegI src)
11236%{
11237  predicate( UseSSE>=2 && UseXmmI2F );
11238  match(Set dst (ConvI2F src));
11239
11240  format %{ "MOVD  $dst,$src\n\t"
11241            "CVTDQ2PS $dst,$dst\t# i2f" %}
11242  ins_encode %{
11243    __ movdl($dst$$XMMRegister, $src$$Register);
11244    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11245  %}
11246  ins_pipe(pipe_slow); // XXX
11247%}
11248
11249instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
11250  match(Set dst (ConvI2L src));
11251  effect(KILL cr);
11252  format %{ "MOV    $dst.lo,$src\n\t"
11253            "MOV    $dst.hi,$src\n\t"
11254            "SAR    $dst.hi,31" %}
11255  ins_encode(convert_int_long(dst,src));
11256  ins_pipe( ialu_reg_reg_long );
11257%}
11258
11259// Zero-extend convert int to long
11260instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
11261  match(Set dst (AndL (ConvI2L src) mask) );
11262  effect( KILL flags );
11263  format %{ "MOV    $dst.lo,$src\n\t"
11264            "XOR    $dst.hi,$dst.hi" %}
11265  opcode(0x33); // XOR
11266  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11267  ins_pipe( ialu_reg_reg_long );
11268%}
11269
11270// Zero-extend long
11271instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11272  match(Set dst (AndL src mask) );
11273  effect( KILL flags );
11274  format %{ "MOV    $dst.lo,$src.lo\n\t"
11275            "XOR    $dst.hi,$dst.hi\n\t" %}
11276  opcode(0x33); // XOR
11277  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11278  ins_pipe( ialu_reg_reg_long );
11279%}
11280
11281instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11282  predicate (UseSSE<=1);
11283  match(Set dst (ConvL2D src));
11284  effect( KILL cr );
11285  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11286            "PUSH   $src.lo\n\t"
11287            "FILD   ST,[ESP + #0]\n\t"
11288            "ADD    ESP,8\n\t"
11289            "FSTP_D $dst\t# D-round" %}
11290  opcode(0xDF, 0x5);  /* DF /5 */
11291  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
11292  ins_pipe( pipe_slow );
11293%}
11294
11295instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
11296  predicate (UseSSE>=2);
11297  match(Set dst (ConvL2D src));
11298  effect( KILL cr );
11299  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11300            "PUSH   $src.lo\n\t"
11301            "FILD_D [ESP]\n\t"
11302            "FSTP_D [ESP]\n\t"
11303            "MOVSD  $dst,[ESP]\n\t"
11304            "ADD    ESP,8" %}
11305  opcode(0xDF, 0x5);  /* DF /5 */
11306  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
11307  ins_pipe( pipe_slow );
11308%}
11309
11310instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
11311  predicate (UseSSE>=1);
11312  match(Set dst (ConvL2F src));
11313  effect( KILL cr );
11314  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11315            "PUSH   $src.lo\n\t"
11316            "FILD_D [ESP]\n\t"
11317            "FSTP_S [ESP]\n\t"
11318            "MOVSS  $dst,[ESP]\n\t"
11319            "ADD    ESP,8" %}
11320  opcode(0xDF, 0x5);  /* DF /5 */
11321  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
11322  ins_pipe( pipe_slow );
11323%}
11324
11325instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11326  match(Set dst (ConvL2F src));
11327  effect( KILL cr );
11328  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11329            "PUSH   $src.lo\n\t"
11330            "FILD   ST,[ESP + #0]\n\t"
11331            "ADD    ESP,8\n\t"
11332            "FSTP_S $dst\t# F-round" %}
11333  opcode(0xDF, 0x5);  /* DF /5 */
11334  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
11335  ins_pipe( pipe_slow );
11336%}
11337
11338instruct convL2I_reg( eRegI dst, eRegL src ) %{
11339  match(Set dst (ConvL2I src));
11340  effect( DEF dst, USE src );
11341  format %{ "MOV    $dst,$src.lo" %}
11342  ins_encode(enc_CopyL_Lo(dst,src));
11343  ins_pipe( ialu_reg_reg );
11344%}
11345
11346
11347instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
11348  match(Set dst (MoveF2I src));
11349  effect( DEF dst, USE src );
11350  ins_cost(100);
11351  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11352  opcode(0x8B);
11353  ins_encode( OpcP, RegMem(dst,src));
11354  ins_pipe( ialu_reg_mem );
11355%}
11356
11357instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
11358  predicate(UseSSE==0);
11359  match(Set dst (MoveF2I src));
11360  effect( DEF dst, USE src );
11361
11362  ins_cost(125);
11363  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11364  ins_encode( Pop_Mem_Reg_F(dst, src) );
11365  ins_pipe( fpu_mem_reg );
11366%}
11367
11368instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
11369  predicate(UseSSE>=1);
11370  match(Set dst (MoveF2I src));
11371  effect( DEF dst, USE src );
11372
11373  ins_cost(95);
11374  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11375  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
11376  ins_pipe( pipe_slow );
11377%}
11378
11379instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
11380  predicate(UseSSE>=2);
11381  match(Set dst (MoveF2I src));
11382  effect( DEF dst, USE src );
11383  ins_cost(85);
11384  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11385  ins_encode( MovX2I_reg(dst, src));
11386  ins_pipe( pipe_slow );
11387%}
11388
11389instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
11390  match(Set dst (MoveI2F src));
11391  effect( DEF dst, USE src );
11392
11393  ins_cost(100);
11394  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11395  opcode(0x89);
11396  ins_encode( OpcPRegSS( dst, src ) );
11397  ins_pipe( ialu_mem_reg );
11398%}
11399
11400
11401instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
11402  predicate(UseSSE==0);
11403  match(Set dst (MoveI2F src));
11404  effect(DEF dst, USE src);
11405
11406  ins_cost(125);
11407  format %{ "FLD_S  $src\n\t"
11408            "FSTP   $dst\t# MoveI2F_stack_reg" %}
11409  opcode(0xD9);               /* D9 /0, FLD m32real */
11410  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11411              Pop_Reg_F(dst) );
11412  ins_pipe( fpu_reg_mem );
11413%}
11414
11415instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
11416  predicate(UseSSE>=1);
11417  match(Set dst (MoveI2F src));
11418  effect( DEF dst, USE src );
11419
11420  ins_cost(95);
11421  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11422  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11423  ins_pipe( pipe_slow );
11424%}
11425
11426instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
11427  predicate(UseSSE>=2);
11428  match(Set dst (MoveI2F src));
11429  effect( DEF dst, USE src );
11430
11431  ins_cost(85);
11432  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11433  ins_encode( MovI2X_reg(dst, src) );
11434  ins_pipe( pipe_slow );
11435%}
11436
11437instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11438  match(Set dst (MoveD2L src));
11439  effect(DEF dst, USE src);
11440
11441  ins_cost(250);
11442  format %{ "MOV    $dst.lo,$src\n\t"
11443            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11444  opcode(0x8B, 0x8B);
11445  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11446  ins_pipe( ialu_mem_long_reg );
11447%}
11448
11449instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
11450  predicate(UseSSE<=1);
11451  match(Set dst (MoveD2L src));
11452  effect(DEF dst, USE src);
11453
11454  ins_cost(125);
11455  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11456  ins_encode( Pop_Mem_Reg_D(dst, src) );
11457  ins_pipe( fpu_mem_reg );
11458%}
11459
11460instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
11461  predicate(UseSSE>=2);
11462  match(Set dst (MoveD2L src));
11463  effect(DEF dst, USE src);
11464  ins_cost(95);
11465
11466  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11467  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
11468  ins_pipe( pipe_slow );
11469%}
11470
11471instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
11472  predicate(UseSSE>=2);
11473  match(Set dst (MoveD2L src));
11474  effect(DEF dst, USE src, TEMP tmp);
11475  ins_cost(85);
11476  format %{ "MOVD   $dst.lo,$src\n\t"
11477            "PSHUFLW $tmp,$src,0x4E\n\t"
11478            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11479  ins_encode( MovXD2L_reg(dst, src, tmp) );
11480  ins_pipe( pipe_slow );
11481%}
11482
11483instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11484  match(Set dst (MoveL2D src));
11485  effect(DEF dst, USE src);
11486
11487  ins_cost(200);
11488  format %{ "MOV    $dst,$src.lo\n\t"
11489            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11490  opcode(0x89, 0x89);
11491  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11492  ins_pipe( ialu_mem_long_reg );
11493%}
11494
11495
11496instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
11497  predicate(UseSSE<=1);
11498  match(Set dst (MoveL2D src));
11499  effect(DEF dst, USE src);
11500  ins_cost(125);
11501
11502  format %{ "FLD_D  $src\n\t"
11503            "FSTP   $dst\t# MoveL2D_stack_reg" %}
11504  opcode(0xDD);               /* DD /0, FLD m64real */
11505  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11506              Pop_Reg_D(dst) );
11507  ins_pipe( fpu_reg_mem );
11508%}
11509
11510
11511instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
11512  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11513  match(Set dst (MoveL2D src));
11514  effect(DEF dst, USE src);
11515
11516  ins_cost(95);
11517  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11518  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11519  ins_pipe( pipe_slow );
11520%}
11521
11522instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
11523  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11524  match(Set dst (MoveL2D src));
11525  effect(DEF dst, USE src);
11526
11527  ins_cost(95);
11528  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11529  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
11530  ins_pipe( pipe_slow );
11531%}
11532
11533instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
11534  predicate(UseSSE>=2);
11535  match(Set dst (MoveL2D src));
11536  effect(TEMP dst, USE src, TEMP tmp);
11537  ins_cost(85);
11538  format %{ "MOVD   $dst,$src.lo\n\t"
11539            "MOVD   $tmp,$src.hi\n\t"
11540            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11541  ins_encode( MovL2XD_reg(dst, src, tmp) );
11542  ins_pipe( pipe_slow );
11543%}
11544
11545// Replicate scalar to packed byte (1 byte) values in xmm
11546instruct Repl8B_reg(regXD dst, regXD src) %{
11547  predicate(UseSSE>=2);
11548  match(Set dst (Replicate8B src));
11549  format %{ "MOVDQA  $dst,$src\n\t"
11550            "PUNPCKLBW $dst,$dst\n\t"
11551            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
11552  ins_encode( pshufd_8x8(dst, src));
11553  ins_pipe( pipe_slow );
11554%}
11555
11556// Replicate scalar to packed byte (1 byte) values in xmm
11557instruct Repl8B_eRegI(regXD dst, eRegI src) %{
11558  predicate(UseSSE>=2);
11559  match(Set dst (Replicate8B src));
11560  format %{ "MOVD    $dst,$src\n\t"
11561            "PUNPCKLBW $dst,$dst\n\t"
11562            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
11563  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
11564  ins_pipe( pipe_slow );
11565%}
11566
11567// Replicate scalar zero to packed byte (1 byte) values in xmm
11568instruct Repl8B_immI0(regXD dst, immI0 zero) %{
11569  predicate(UseSSE>=2);
11570  match(Set dst (Replicate8B zero));
11571  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
11572  ins_encode( pxor(dst, dst));
11573  ins_pipe( fpu_reg_reg );
11574%}
11575
11576// Replicate scalar to packed shore (2 byte) values in xmm
11577instruct Repl4S_reg(regXD dst, regXD src) %{
11578  predicate(UseSSE>=2);
11579  match(Set dst (Replicate4S src));
11580  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
11581  ins_encode( pshufd_4x16(dst, src));
11582  ins_pipe( fpu_reg_reg );
11583%}
11584
11585// Replicate scalar to packed shore (2 byte) values in xmm
11586instruct Repl4S_eRegI(regXD dst, eRegI src) %{
11587  predicate(UseSSE>=2);
11588  match(Set dst (Replicate4S src));
11589  format %{ "MOVD    $dst,$src\n\t"
11590            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
11591  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
11592  ins_pipe( fpu_reg_reg );
11593%}
11594
11595// Replicate scalar zero to packed short (2 byte) values in xmm
11596instruct Repl4S_immI0(regXD dst, immI0 zero) %{
11597  predicate(UseSSE>=2);
11598  match(Set dst (Replicate4S zero));
11599  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
11600  ins_encode( pxor(dst, dst));
11601  ins_pipe( fpu_reg_reg );
11602%}
11603
11604// Replicate scalar to packed char (2 byte) values in xmm
11605instruct Repl4C_reg(regXD dst, regXD src) %{
11606  predicate(UseSSE>=2);
11607  match(Set dst (Replicate4C src));
11608  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
11609  ins_encode( pshufd_4x16(dst, src));
11610  ins_pipe( fpu_reg_reg );
11611%}
11612
11613// Replicate scalar to packed char (2 byte) values in xmm
11614instruct Repl4C_eRegI(regXD dst, eRegI src) %{
11615  predicate(UseSSE>=2);
11616  match(Set dst (Replicate4C src));
11617  format %{ "MOVD    $dst,$src\n\t"
11618            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
11619  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
11620  ins_pipe( fpu_reg_reg );
11621%}
11622
11623// Replicate scalar zero to packed char (2 byte) values in xmm
11624instruct Repl4C_immI0(regXD dst, immI0 zero) %{
11625  predicate(UseSSE>=2);
11626  match(Set dst (Replicate4C zero));
11627  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
11628  ins_encode( pxor(dst, dst));
11629  ins_pipe( fpu_reg_reg );
11630%}
11631
11632// Replicate scalar to packed integer (4 byte) values in xmm
11633instruct Repl2I_reg(regXD dst, regXD src) %{
11634  predicate(UseSSE>=2);
11635  match(Set dst (Replicate2I src));
11636  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
11637  ins_encode( pshufd(dst, src, 0x00));
11638  ins_pipe( fpu_reg_reg );
11639%}
11640
11641// Replicate scalar to packed integer (4 byte) values in xmm
11642instruct Repl2I_eRegI(regXD dst, eRegI src) %{
11643  predicate(UseSSE>=2);
11644  match(Set dst (Replicate2I src));
11645  format %{ "MOVD   $dst,$src\n\t"
11646            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
11647  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
11648  ins_pipe( fpu_reg_reg );
11649%}
11650
11651// Replicate scalar zero to packed integer (2 byte) values in xmm
11652instruct Repl2I_immI0(regXD dst, immI0 zero) %{
11653  predicate(UseSSE>=2);
11654  match(Set dst (Replicate2I zero));
11655  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
11656  ins_encode( pxor(dst, dst));
11657  ins_pipe( fpu_reg_reg );
11658%}
11659
11660// Replicate scalar to packed single precision floating point values in xmm
11661instruct Repl2F_reg(regXD dst, regXD src) %{
11662  predicate(UseSSE>=2);
11663  match(Set dst (Replicate2F src));
11664  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
11665  ins_encode( pshufd(dst, src, 0xe0));
11666  ins_pipe( fpu_reg_reg );
11667%}
11668
11669// Replicate scalar to packed single precision floating point values in xmm
11670instruct Repl2F_regX(regXD dst, regX src) %{
11671  predicate(UseSSE>=2);
11672  match(Set dst (Replicate2F src));
11673  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
11674  ins_encode( pshufd(dst, src, 0xe0));
11675  ins_pipe( fpu_reg_reg );
11676%}
11677
11678// Replicate scalar to packed single precision floating point values in xmm
11679instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
11680  predicate(UseSSE>=2);
11681  match(Set dst (Replicate2F zero));
11682  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
11683  ins_encode( pxor(dst, dst));
11684  ins_pipe( fpu_reg_reg );
11685%}
11686
11687
11688
11689// =======================================================================
11690// fast clearing of an array
11691
11692instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11693  match(Set dummy (ClearArray cnt base));
11694  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11695  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
11696            "XOR    EAX,EAX\n\t"
11697            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11698  opcode(0,0x4);
11699  ins_encode( Opcode(0xD1), RegOpc(ECX),
11700              OpcRegReg(0x33,EAX,EAX),
11701              Opcode(0xF3), Opcode(0xAB) );
11702  ins_pipe( pipe_slow );
11703%}
11704
11705instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
11706  match(Set result (StrComp str1 str2));
11707  effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
11708  //ins_cost(300);
11709
11710  format %{ "String Compare $str1,$str2 -> $result    // KILL EAX, EBX" %}
11711  ins_encode( enc_String_Compare() );
11712  ins_pipe( pipe_slow );
11713%}
11714
11715// fast array equals
11716instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
11717  match(Set result (AryEq ary1 ary2));
11718  effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
11719  //ins_cost(300);
11720
11721  format %{ "Array Equals $ary1,$ary2 -> $result    // KILL EAX, EBX" %}
11722  ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
11723  ins_pipe( pipe_slow );
11724%}
11725
11726//----------Control Flow Instructions------------------------------------------
11727// Signed compare Instructions
11728instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
11729  match(Set cr (CmpI op1 op2));
11730  effect( DEF cr, USE op1, USE op2 );
11731  format %{ "CMP    $op1,$op2" %}
11732  opcode(0x3B);  /* Opcode 3B /r */
11733  ins_encode( OpcP, RegReg( op1, op2) );
11734  ins_pipe( ialu_cr_reg_reg );
11735%}
11736
11737instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
11738  match(Set cr (CmpI op1 op2));
11739  effect( DEF cr, USE op1 );
11740  format %{ "CMP    $op1,$op2" %}
11741  opcode(0x81,0x07);  /* Opcode 81 /7 */
11742  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11743  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11744  ins_pipe( ialu_cr_reg_imm );
11745%}
11746
11747// Cisc-spilled version of cmpI_eReg
11748instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
11749  match(Set cr (CmpI op1 (LoadI op2)));
11750
11751  format %{ "CMP    $op1,$op2" %}
11752  ins_cost(500);
11753  opcode(0x3B);  /* Opcode 3B /r */
11754  ins_encode( OpcP, RegMem( op1, op2) );
11755  ins_pipe( ialu_cr_reg_mem );
11756%}
11757
11758instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
11759  match(Set cr (CmpI src zero));
11760  effect( DEF cr, USE src );
11761
11762  format %{ "TEST   $src,$src" %}
11763  opcode(0x85);
11764  ins_encode( OpcP, RegReg( src, src ) );
11765  ins_pipe( ialu_cr_reg_imm );
11766%}
11767
11768instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
11769  match(Set cr (CmpI (AndI src con) zero));
11770
11771  format %{ "TEST   $src,$con" %}
11772  opcode(0xF7,0x00);
11773  ins_encode( OpcP, RegOpc(src), Con32(con) );
11774  ins_pipe( ialu_cr_reg_imm );
11775%}
11776
11777instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
11778  match(Set cr (CmpI (AndI src mem) zero));
11779
11780  format %{ "TEST   $src,$mem" %}
11781  opcode(0x85);
11782  ins_encode( OpcP, RegMem( src, mem ) );
11783  ins_pipe( ialu_cr_reg_mem );
11784%}
11785
11786// Unsigned compare Instructions; really, same as signed except they
11787// produce an eFlagsRegU instead of eFlagsReg.
11788instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
11789  match(Set cr (CmpU op1 op2));
11790
11791  format %{ "CMPu   $op1,$op2" %}
11792  opcode(0x3B);  /* Opcode 3B /r */
11793  ins_encode( OpcP, RegReg( op1, op2) );
11794  ins_pipe( ialu_cr_reg_reg );
11795%}
11796
11797instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
11798  match(Set cr (CmpU op1 op2));
11799
11800  format %{ "CMPu   $op1,$op2" %}
11801  opcode(0x81,0x07);  /* Opcode 81 /7 */
11802  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11803  ins_pipe( ialu_cr_reg_imm );
11804%}
11805
11806// // Cisc-spilled version of cmpU_eReg
11807instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
11808  match(Set cr (CmpU op1 (LoadI op2)));
11809
11810  format %{ "CMPu   $op1,$op2" %}
11811  ins_cost(500);
11812  opcode(0x3B);  /* Opcode 3B /r */
11813  ins_encode( OpcP, RegMem( op1, op2) );
11814  ins_pipe( ialu_cr_reg_mem );
11815%}
11816
11817// // Cisc-spilled version of cmpU_eReg
11818//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
11819//  match(Set cr (CmpU (LoadI op1) op2));
11820//
11821//  format %{ "CMPu   $op1,$op2" %}
11822//  ins_cost(500);
11823//  opcode(0x39);  /* Opcode 39 /r */
11824//  ins_encode( OpcP, RegMem( op1, op2) );
11825//%}
11826
11827instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
11828  match(Set cr (CmpU src zero));
11829
11830  format %{ "TESTu  $src,$src" %}
11831  opcode(0x85);
11832  ins_encode( OpcP, RegReg( src, src ) );
11833  ins_pipe( ialu_cr_reg_imm );
11834%}
11835
11836// Unsigned pointer compare Instructions
11837instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11838  match(Set cr (CmpP op1 op2));
11839
11840  format %{ "CMPu   $op1,$op2" %}
11841  opcode(0x3B);  /* Opcode 3B /r */
11842  ins_encode( OpcP, RegReg( op1, op2) );
11843  ins_pipe( ialu_cr_reg_reg );
11844%}
11845
11846instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11847  match(Set cr (CmpP op1 op2));
11848
11849  format %{ "CMPu   $op1,$op2" %}
11850  opcode(0x81,0x07);  /* Opcode 81 /7 */
11851  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11852  ins_pipe( ialu_cr_reg_imm );
11853%}
11854
11855// // Cisc-spilled version of cmpP_eReg
11856instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11857  match(Set cr (CmpP op1 (LoadP op2)));
11858
11859  format %{ "CMPu   $op1,$op2" %}
11860  ins_cost(500);
11861  opcode(0x3B);  /* Opcode 3B /r */
11862  ins_encode( OpcP, RegMem( op1, op2) );
11863  ins_pipe( ialu_cr_reg_mem );
11864%}
11865
11866// // Cisc-spilled version of cmpP_eReg
11867//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11868//  match(Set cr (CmpP (LoadP op1) op2));
11869//
11870//  format %{ "CMPu   $op1,$op2" %}
11871//  ins_cost(500);
11872//  opcode(0x39);  /* Opcode 39 /r */
11873//  ins_encode( OpcP, RegMem( op1, op2) );
11874//%}
11875
11876// Compare raw pointer (used in out-of-heap check).
11877// Only works because non-oop pointers must be raw pointers
11878// and raw pointers have no anti-dependencies.
11879instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11880  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
11881  match(Set cr (CmpP op1 (LoadP op2)));
11882
11883  format %{ "CMPu   $op1,$op2" %}
11884  opcode(0x3B);  /* Opcode 3B /r */
11885  ins_encode( OpcP, RegMem( op1, op2) );
11886  ins_pipe( ialu_cr_reg_mem );
11887%}
11888
11889//
11890// This will generate a signed flags result. This should be ok
11891// since any compare to a zero should be eq/neq.
11892instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11893  match(Set cr (CmpP src zero));
11894
11895  format %{ "TEST   $src,$src" %}
11896  opcode(0x85);
11897  ins_encode( OpcP, RegReg( src, src ) );
11898  ins_pipe( ialu_cr_reg_imm );
11899%}
11900
11901// Cisc-spilled version of testP_reg
11902// This will generate a signed flags result. This should be ok
11903// since any compare to a zero should be eq/neq.
11904instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11905  match(Set cr (CmpP (LoadP op) zero));
11906
11907  format %{ "TEST   $op,0xFFFFFFFF" %}
11908  ins_cost(500);
11909  opcode(0xF7);               /* Opcode F7 /0 */
11910  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11911  ins_pipe( ialu_cr_reg_imm );
11912%}
11913
11914// Yanked all unsigned pointer compare operations.
11915// Pointer compares are done with CmpP which is already unsigned.
11916
11917//----------Max and Min--------------------------------------------------------
11918// Min Instructions
11919////
11920//   *** Min and Max using the conditional move are slower than the
11921//   *** branch version on a Pentium III.
11922// // Conditional move for min
11923//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
11924//  effect( USE_DEF op2, USE op1, USE cr );
11925//  format %{ "CMOVlt $op2,$op1\t! min" %}
11926//  opcode(0x4C,0x0F);
11927//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11928//  ins_pipe( pipe_cmov_reg );
11929//%}
11930//
11931//// Min Register with Register (P6 version)
11932//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
11933//  predicate(VM_Version::supports_cmov() );
11934//  match(Set op2 (MinI op1 op2));
11935//  ins_cost(200);
11936//  expand %{
11937//    eFlagsReg cr;
11938//    compI_eReg(cr,op1,op2);
11939//    cmovI_reg_lt(op2,op1,cr);
11940//  %}
11941//%}
11942
11943// Min Register with Register (generic version)
11944instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
11945  match(Set dst (MinI dst src));
11946  effect(KILL flags);
11947  ins_cost(300);
11948
11949  format %{ "MIN    $dst,$src" %}
11950  opcode(0xCC);
11951  ins_encode( min_enc(dst,src) );
11952  ins_pipe( pipe_slow );
11953%}
11954
11955// Max Register with Register
11956//   *** Min and Max using the conditional move are slower than the
11957//   *** branch version on a Pentium III.
11958// // Conditional move for max
11959//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
11960//  effect( USE_DEF op2, USE op1, USE cr );
11961//  format %{ "CMOVgt $op2,$op1\t! max" %}
11962//  opcode(0x4F,0x0F);
11963//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11964//  ins_pipe( pipe_cmov_reg );
11965//%}
11966//
11967// // Max Register with Register (P6 version)
11968//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
11969//  predicate(VM_Version::supports_cmov() );
11970//  match(Set op2 (MaxI op1 op2));
11971//  ins_cost(200);
11972//  expand %{
11973//    eFlagsReg cr;
11974//    compI_eReg(cr,op1,op2);
11975//    cmovI_reg_gt(op2,op1,cr);
11976//  %}
11977//%}
11978
11979// Max Register with Register (generic version)
11980instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
11981  match(Set dst (MaxI dst src));
11982  effect(KILL flags);
11983  ins_cost(300);
11984
11985  format %{ "MAX    $dst,$src" %}
11986  opcode(0xCC);
11987  ins_encode( max_enc(dst,src) );
11988  ins_pipe( pipe_slow );
11989%}
11990
11991// ============================================================================
11992// Branch Instructions
11993// Jump Table
11994instruct jumpXtnd(eRegI switch_val) %{
11995  match(Jump switch_val);
11996  ins_cost(350);
11997
11998  format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
11999
12000  ins_encode %{
12001    address table_base  = __ address_table_constant(_index2label);
12002
12003    // Jump to Address(table_base + switch_reg)
12004    InternalAddress table(table_base);
12005    Address index(noreg, $switch_val$$Register, Address::times_1);
12006    __ jump(ArrayAddress(table, index));
12007  %}
12008  ins_pc_relative(1);
12009  ins_pipe(pipe_jmp);
12010%}
12011
12012// Jump Direct - Label defines a relative address from JMP+1
12013instruct jmpDir(label labl) %{
12014  match(Goto);
12015  effect(USE labl);
12016
12017  ins_cost(300);
12018  format %{ "JMP    $labl" %}
12019  size(5);
12020  opcode(0xE9);
12021  ins_encode( OpcP, Lbl( labl ) );
12022  ins_pipe( pipe_jmp );
12023  ins_pc_relative(1);
12024%}
12025
12026// Jump Direct Conditional - Label defines a relative address from Jcc+1
12027instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12028  match(If cop cr);
12029  effect(USE labl);
12030
12031  ins_cost(300);
12032  format %{ "J$cop    $labl" %}
12033  size(6);
12034  opcode(0x0F, 0x80);
12035  ins_encode( Jcc( cop, labl) );
12036  ins_pipe( pipe_jcc );
12037  ins_pc_relative(1);
12038%}
12039
12040// Jump Direct Conditional - Label defines a relative address from Jcc+1
12041instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12042  match(CountedLoopEnd cop cr);
12043  effect(USE labl);
12044
12045  ins_cost(300);
12046  format %{ "J$cop    $labl\t# Loop end" %}
12047  size(6);
12048  opcode(0x0F, 0x80);
12049  ins_encode( Jcc( cop, labl) );
12050  ins_pipe( pipe_jcc );
12051  ins_pc_relative(1);
12052%}
12053
12054// Jump Direct Conditional - Label defines a relative address from Jcc+1
12055instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12056  match(CountedLoopEnd cop cmp);
12057  effect(USE labl);
12058
12059  ins_cost(300);
12060  format %{ "J$cop,u  $labl\t# Loop end" %}
12061  size(6);
12062  opcode(0x0F, 0x80);
12063  ins_encode( Jcc( cop, labl) );
12064  ins_pipe( pipe_jcc );
12065  ins_pc_relative(1);
12066%}
12067
12068// Jump Direct Conditional - using unsigned comparison
12069instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12070  match(If cop cmp);
12071  effect(USE labl);
12072
12073  ins_cost(300);
12074  format %{ "J$cop,u  $labl" %}
12075  size(6);
12076  opcode(0x0F, 0x80);
12077  ins_encode( Jcc( cop, labl) );
12078  ins_pipe( pipe_jcc );
12079  ins_pc_relative(1);
12080%}
12081
12082// ============================================================================
12083// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12084// array for an instance of the superklass.  Set a hidden internal cache on a
12085// hit (cache is checked with exposed code in gen_subtype_check()).  Return
12086// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12087instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12088  match(Set result (PartialSubtypeCheck sub super));
12089  effect( KILL rcx, KILL cr );
12090
12091  ins_cost(1100);  // slightly larger than the next version
12092  format %{ "CMPL   EAX,ESI\n\t"
12093            "JEQ,s  hit\n\t"
12094            "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12095            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12096            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12097            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12098            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12099            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12100     "hit:\n\t"
12101            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12102     "miss:\t" %}
12103
12104  opcode(0x1); // Force a XOR of EDI
12105  ins_encode( enc_PartialSubtypeCheck() );
12106  ins_pipe( pipe_slow );
12107%}
12108
12109instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12110  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12111  effect( KILL rcx, KILL result );
12112
12113  ins_cost(1000);
12114  format %{ "CMPL   EAX,ESI\n\t"
12115            "JEQ,s  miss\t# Actually a hit; we are done.\n\t"
12116            "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12117            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12118            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12119            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12120            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12121            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12122     "miss:\t" %}
12123
12124  opcode(0x0);  // No need to XOR EDI
12125  ins_encode( enc_PartialSubtypeCheck() );
12126  ins_pipe( pipe_slow );
12127%}
12128
12129// ============================================================================
12130// Branch Instructions -- short offset versions
12131//
12132// These instructions are used to replace jumps of a long offset (the default
12133// match) with jumps of a shorter offset.  These instructions are all tagged
12134// with the ins_short_branch attribute, which causes the ADLC to suppress the
12135// match rules in general matching.  Instead, the ADLC generates a conversion
12136// method in the MachNode which can be used to do in-place replacement of the
12137// long variant with the shorter variant.  The compiler will determine if a
12138// branch can be taken by the is_short_branch_offset() predicate in the machine
12139// specific code section of the file.
12140
12141// Jump Direct - Label defines a relative address from JMP+1
12142instruct jmpDir_short(label labl) %{
12143  match(Goto);
12144  effect(USE labl);
12145
12146  ins_cost(300);
12147  format %{ "JMP,s  $labl" %}
12148  size(2);
12149  opcode(0xEB);
12150  ins_encode( OpcP, LblShort( labl ) );
12151  ins_pipe( pipe_jmp );
12152  ins_pc_relative(1);
12153  ins_short_branch(1);
12154%}
12155
12156// Jump Direct Conditional - Label defines a relative address from Jcc+1
12157instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12158  match(If cop cr);
12159  effect(USE labl);
12160
12161  ins_cost(300);
12162  format %{ "J$cop,s  $labl" %}
12163  size(2);
12164  opcode(0x70);
12165  ins_encode( JccShort( cop, labl) );
12166  ins_pipe( pipe_jcc );
12167  ins_pc_relative(1);
12168  ins_short_branch(1);
12169%}
12170
12171// Jump Direct Conditional - Label defines a relative address from Jcc+1
12172instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12173  match(CountedLoopEnd cop cr);
12174  effect(USE labl);
12175
12176  ins_cost(300);
12177  format %{ "J$cop,s  $labl" %}
12178  size(2);
12179  opcode(0x70);
12180  ins_encode( JccShort( cop, labl) );
12181  ins_pipe( pipe_jcc );
12182  ins_pc_relative(1);
12183  ins_short_branch(1);
12184%}
12185
12186// Jump Direct Conditional - Label defines a relative address from Jcc+1
12187instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12188  match(CountedLoopEnd cop cmp);
12189  effect(USE labl);
12190
12191  ins_cost(300);
12192  format %{ "J$cop,us $labl" %}
12193  size(2);
12194  opcode(0x70);
12195  ins_encode( JccShort( cop, labl) );
12196  ins_pipe( pipe_jcc );
12197  ins_pc_relative(1);
12198  ins_short_branch(1);
12199%}
12200
12201// Jump Direct Conditional - using unsigned comparison
12202instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12203  match(If cop cmp);
12204  effect(USE labl);
12205
12206  ins_cost(300);
12207  format %{ "J$cop,us $labl" %}
12208  size(2);
12209  opcode(0x70);
12210  ins_encode( JccShort( cop, labl) );
12211  ins_pipe( pipe_jcc );
12212  ins_pc_relative(1);
12213  ins_short_branch(1);
12214%}
12215
12216// ============================================================================
12217// Long Compare
12218//
12219// Currently we hold longs in 2 registers.  Comparing such values efficiently
12220// is tricky.  The flavor of compare used depends on whether we are testing
12221// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12222// The GE test is the negated LT test.  The LE test can be had by commuting
12223// the operands (yielding a GE test) and then negating; negate again for the
12224// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12225// NE test is negated from that.
12226
12227// Due to a shortcoming in the ADLC, it mixes up expressions like:
12228// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12229// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12230// are collapsed internally in the ADLC's dfa-gen code.  The match for
12231// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12232// foo match ends up with the wrong leaf.  One fix is to not match both
12233// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12234// both forms beat the trinary form of long-compare and both are very useful
12235// on Intel which has so few registers.
12236
12237// Manifest a CmpL result in an integer register.  Very painful.
12238// This is the test to avoid.
12239instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12240  match(Set dst (CmpL3 src1 src2));
12241  effect( KILL flags );
12242  ins_cost(1000);
12243  format %{ "XOR    $dst,$dst\n\t"
12244            "CMP    $src1.hi,$src2.hi\n\t"
12245            "JLT,s  m_one\n\t"
12246            "JGT,s  p_one\n\t"
12247            "CMP    $src1.lo,$src2.lo\n\t"
12248            "JB,s   m_one\n\t"
12249            "JEQ,s  done\n"
12250    "p_one:\tINC    $dst\n\t"
12251            "JMP,s  done\n"
12252    "m_one:\tDEC    $dst\n"
12253     "done:" %}
12254  ins_encode %{
12255    Label p_one, m_one, done;
12256    __ xorptr($dst$$Register, $dst$$Register);
12257    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12258    __ jccb(Assembler::less,    m_one);
12259    __ jccb(Assembler::greater, p_one);
12260    __ cmpl($src1$$Register, $src2$$Register);
12261    __ jccb(Assembler::below,   m_one);
12262    __ jccb(Assembler::equal,   done);
12263    __ bind(p_one);
12264    __ incrementl($dst$$Register);
12265    __ jmpb(done);
12266    __ bind(m_one);
12267    __ decrementl($dst$$Register);
12268    __ bind(done);
12269  %}
12270  ins_pipe( pipe_slow );
12271%}
12272
12273//======
12274// Manifest a CmpL result in the normal flags.  Only good for LT or GE
12275// compares.  Can be used for LE or GT compares by reversing arguments.
12276// NOT GOOD FOR EQ/NE tests.
12277instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12278  match( Set flags (CmpL src zero ));
12279  ins_cost(100);
12280  format %{ "TEST   $src.hi,$src.hi" %}
12281  opcode(0x85);
12282  ins_encode( OpcP, RegReg_Hi2( src, src ) );
12283  ins_pipe( ialu_cr_reg_reg );
12284%}
12285
12286// Manifest a CmpL result in the normal flags.  Only good for LT or GE
12287// compares.  Can be used for LE or GT compares by reversing arguments.
12288// NOT GOOD FOR EQ/NE tests.
12289instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
12290  match( Set flags (CmpL src1 src2 ));
12291  effect( TEMP tmp );
12292  ins_cost(300);
12293  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12294            "MOV    $tmp,$src1.hi\n\t"
12295            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12296  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12297  ins_pipe( ialu_cr_reg_reg );
12298%}
12299
12300// Long compares reg < zero/req OR reg >= zero/req.
12301// Just a wrapper for a normal branch, plus the predicate test.
12302instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12303  match(If cmp flags);
12304  effect(USE labl);
12305  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12306  expand %{
12307    jmpCon(cmp,flags,labl);    // JLT or JGE...
12308  %}
12309%}
12310
12311// Compare 2 longs and CMOVE longs.
12312instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12313  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12314  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12315  ins_cost(400);
12316  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12317            "CMOV$cmp $dst.hi,$src.hi" %}
12318  opcode(0x0F,0x40);
12319  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12320  ins_pipe( pipe_cmov_reg_long );
12321%}
12322
12323instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12324  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12325  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12326  ins_cost(500);
12327  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12328            "CMOV$cmp $dst.hi,$src.hi" %}
12329  opcode(0x0F,0x40);
12330  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12331  ins_pipe( pipe_cmov_reg_long );
12332%}
12333
12334// Compare 2 longs and CMOVE ints.
12335instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
12336  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12337  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12338  ins_cost(200);
12339  format %{ "CMOV$cmp $dst,$src" %}
12340  opcode(0x0F,0x40);
12341  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12342  ins_pipe( pipe_cmov_reg );
12343%}
12344
12345instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
12346  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12347  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12348  ins_cost(250);
12349  format %{ "CMOV$cmp $dst,$src" %}
12350  opcode(0x0F,0x40);
12351  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12352  ins_pipe( pipe_cmov_mem );
12353%}
12354
12355// Compare 2 longs and CMOVE ints.
12356instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12357  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12358  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12359  ins_cost(200);
12360  format %{ "CMOV$cmp $dst,$src" %}
12361  opcode(0x0F,0x40);
12362  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12363  ins_pipe( pipe_cmov_reg );
12364%}
12365
12366// Compare 2 longs and CMOVE doubles
12367instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12368  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12369  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12370  ins_cost(200);
12371  expand %{
12372    fcmovD_regS(cmp,flags,dst,src);
12373  %}
12374%}
12375
12376// Compare 2 longs and CMOVE doubles
12377instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
12378  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12379  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12380  ins_cost(200);
12381  expand %{
12382    fcmovXD_regS(cmp,flags,dst,src);
12383  %}
12384%}
12385
12386instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12387  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12388  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12389  ins_cost(200);
12390  expand %{
12391    fcmovF_regS(cmp,flags,dst,src);
12392  %}
12393%}
12394
12395instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
12396  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12397  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12398  ins_cost(200);
12399  expand %{
12400    fcmovX_regS(cmp,flags,dst,src);
12401  %}
12402%}
12403
12404//======
12405// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12406instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
12407  match( Set flags (CmpL src zero ));
12408  effect(TEMP tmp);
12409  ins_cost(200);
12410  format %{ "MOV    $tmp,$src.lo\n\t"
12411            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12412  ins_encode( long_cmp_flags0( src, tmp ) );
12413  ins_pipe( ialu_reg_reg_long );
12414%}
12415
12416// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12417instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12418  match( Set flags (CmpL src1 src2 ));
12419  ins_cost(200+300);
12420  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12421            "JNE,s  skip\n\t"
12422            "CMP    $src1.hi,$src2.hi\n\t"
12423     "skip:\t" %}
12424  ins_encode( long_cmp_flags1( src1, src2 ) );
12425  ins_pipe( ialu_cr_reg_reg );
12426%}
12427
12428// Long compare reg == zero/reg OR reg != zero/reg
12429// Just a wrapper for a normal branch, plus the predicate test.
12430instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12431  match(If cmp flags);
12432  effect(USE labl);
12433  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12434  expand %{
12435    jmpCon(cmp,flags,labl);    // JEQ or JNE...
12436  %}
12437%}
12438
12439// Compare 2 longs and CMOVE longs.
12440instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12441  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12442  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12443  ins_cost(400);
12444  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12445            "CMOV$cmp $dst.hi,$src.hi" %}
12446  opcode(0x0F,0x40);
12447  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12448  ins_pipe( pipe_cmov_reg_long );
12449%}
12450
12451instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12452  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12453  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12454  ins_cost(500);
12455  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12456            "CMOV$cmp $dst.hi,$src.hi" %}
12457  opcode(0x0F,0x40);
12458  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12459  ins_pipe( pipe_cmov_reg_long );
12460%}
12461
12462// Compare 2 longs and CMOVE ints.
12463instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
12464  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12465  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12466  ins_cost(200);
12467  format %{ "CMOV$cmp $dst,$src" %}
12468  opcode(0x0F,0x40);
12469  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12470  ins_pipe( pipe_cmov_reg );
12471%}
12472
12473instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
12474  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12475  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12476  ins_cost(250);
12477  format %{ "CMOV$cmp $dst,$src" %}
12478  opcode(0x0F,0x40);
12479  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12480  ins_pipe( pipe_cmov_mem );
12481%}
12482
12483// Compare 2 longs and CMOVE ints.
12484instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12485  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12486  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12487  ins_cost(200);
12488  format %{ "CMOV$cmp $dst,$src" %}
12489  opcode(0x0F,0x40);
12490  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12491  ins_pipe( pipe_cmov_reg );
12492%}
12493
12494// Compare 2 longs and CMOVE doubles
12495instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12496  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12497  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12498  ins_cost(200);
12499  expand %{
12500    fcmovD_regS(cmp,flags,dst,src);
12501  %}
12502%}
12503
12504// Compare 2 longs and CMOVE doubles
12505instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
12506  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12507  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12508  ins_cost(200);
12509  expand %{
12510    fcmovXD_regS(cmp,flags,dst,src);
12511  %}
12512%}
12513
12514instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12515  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12516  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12517  ins_cost(200);
12518  expand %{
12519    fcmovF_regS(cmp,flags,dst,src);
12520  %}
12521%}
12522
12523instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
12524  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12525  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12526  ins_cost(200);
12527  expand %{
12528    fcmovX_regS(cmp,flags,dst,src);
12529  %}
12530%}
12531
12532//======
12533// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12534// Same as cmpL_reg_flags_LEGT except must negate src
12535instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
12536  match( Set flags (CmpL src zero ));
12537  effect( TEMP tmp );
12538  ins_cost(300);
12539  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12540            "CMP    $tmp,$src.lo\n\t"
12541            "SBB    $tmp,$src.hi\n\t" %}
12542  ins_encode( long_cmp_flags3(src, tmp) );
12543  ins_pipe( ialu_reg_reg_long );
12544%}
12545
12546// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12547// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12548// requires a commuted test to get the same result.
12549instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
12550  match( Set flags (CmpL src1 src2 ));
12551  effect( TEMP tmp );
12552  ins_cost(300);
12553  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12554            "MOV    $tmp,$src2.hi\n\t"
12555            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12556  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12557  ins_pipe( ialu_cr_reg_reg );
12558%}
12559
12560// Long compares reg < zero/req OR reg >= zero/req.
12561// Just a wrapper for a normal branch, plus the predicate test
12562instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12563  match(If cmp flags);
12564  effect(USE labl);
12565  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12566  ins_cost(300);
12567  expand %{
12568    jmpCon(cmp,flags,labl);    // JGT or JLE...
12569  %}
12570%}
12571
12572// Compare 2 longs and CMOVE longs.
12573instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12574  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12575  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12576  ins_cost(400);
12577  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12578            "CMOV$cmp $dst.hi,$src.hi" %}
12579  opcode(0x0F,0x40);
12580  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12581  ins_pipe( pipe_cmov_reg_long );
12582%}
12583
12584instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12585  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12586  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12587  ins_cost(500);
12588  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12589            "CMOV$cmp $dst.hi,$src.hi+4" %}
12590  opcode(0x0F,0x40);
12591  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12592  ins_pipe( pipe_cmov_reg_long );
12593%}
12594
12595// Compare 2 longs and CMOVE ints.
12596instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
12597  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12598  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12599  ins_cost(200);
12600  format %{ "CMOV$cmp $dst,$src" %}
12601  opcode(0x0F,0x40);
12602  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12603  ins_pipe( pipe_cmov_reg );
12604%}
12605
12606instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
12607  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12608  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12609  ins_cost(250);
12610  format %{ "CMOV$cmp $dst,$src" %}
12611  opcode(0x0F,0x40);
12612  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12613  ins_pipe( pipe_cmov_mem );
12614%}
12615
12616// Compare 2 longs and CMOVE ptrs.
12617instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12618  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12619  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12620  ins_cost(200);
12621  format %{ "CMOV$cmp $dst,$src" %}
12622  opcode(0x0F,0x40);
12623  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12624  ins_pipe( pipe_cmov_reg );
12625%}
12626
12627// Compare 2 longs and CMOVE doubles
12628instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12629  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12630  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12631  ins_cost(200);
12632  expand %{
12633    fcmovD_regS(cmp,flags,dst,src);
12634  %}
12635%}
12636
12637// Compare 2 longs and CMOVE doubles
12638instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
12639  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12640  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12641  ins_cost(200);
12642  expand %{
12643    fcmovXD_regS(cmp,flags,dst,src);
12644  %}
12645%}
12646
12647instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12648  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12649  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12650  ins_cost(200);
12651  expand %{
12652    fcmovF_regS(cmp,flags,dst,src);
12653  %}
12654%}
12655
12656
12657instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
12658  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12659  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12660  ins_cost(200);
12661  expand %{
12662    fcmovX_regS(cmp,flags,dst,src);
12663  %}
12664%}
12665
12666
12667// ============================================================================
12668// Procedure Call/Return Instructions
12669// Call Java Static Instruction
12670// Note: If this code changes, the corresponding ret_addr_offset() and
12671//       compute_padding() functions will have to be adjusted.
12672instruct CallStaticJavaDirect(method meth) %{
12673  match(CallStaticJava);
12674  effect(USE meth);
12675
12676  ins_cost(300);
12677  format %{ "CALL,static " %}
12678  opcode(0xE8); /* E8 cd */
12679  ins_encode( pre_call_FPU,
12680              Java_Static_Call( meth ),
12681              call_epilog,
12682              post_call_FPU );
12683  ins_pipe( pipe_slow );
12684  ins_pc_relative(1);
12685  ins_alignment(4);
12686%}
12687
12688// Call Java Dynamic Instruction
12689// Note: If this code changes, the corresponding ret_addr_offset() and
12690//       compute_padding() functions will have to be adjusted.
12691instruct CallDynamicJavaDirect(method meth) %{
12692  match(CallDynamicJava);
12693  effect(USE meth);
12694
12695  ins_cost(300);
12696  format %{ "MOV    EAX,(oop)-1\n\t"
12697            "CALL,dynamic" %}
12698  opcode(0xE8); /* E8 cd */
12699  ins_encode( pre_call_FPU,
12700              Java_Dynamic_Call( meth ),
12701              call_epilog,
12702              post_call_FPU );
12703  ins_pipe( pipe_slow );
12704  ins_pc_relative(1);
12705  ins_alignment(4);
12706%}
12707
12708// Call Runtime Instruction
12709instruct CallRuntimeDirect(method meth) %{
12710  match(CallRuntime );
12711  effect(USE meth);
12712
12713  ins_cost(300);
12714  format %{ "CALL,runtime " %}
12715  opcode(0xE8); /* E8 cd */
12716  // Use FFREEs to clear entries in float stack
12717  ins_encode( pre_call_FPU,
12718              FFree_Float_Stack_All,
12719              Java_To_Runtime( meth ),
12720              post_call_FPU );
12721  ins_pipe( pipe_slow );
12722  ins_pc_relative(1);
12723%}
12724
12725// Call runtime without safepoint
12726instruct CallLeafDirect(method meth) %{
12727  match(CallLeaf);
12728  effect(USE meth);
12729
12730  ins_cost(300);
12731  format %{ "CALL_LEAF,runtime " %}
12732  opcode(0xE8); /* E8 cd */
12733  ins_encode( pre_call_FPU,
12734              FFree_Float_Stack_All,
12735              Java_To_Runtime( meth ),
12736              Verify_FPU_For_Leaf, post_call_FPU );
12737  ins_pipe( pipe_slow );
12738  ins_pc_relative(1);
12739%}
12740
12741instruct CallLeafNoFPDirect(method meth) %{
12742  match(CallLeafNoFP);
12743  effect(USE meth);
12744
12745  ins_cost(300);
12746  format %{ "CALL_LEAF_NOFP,runtime " %}
12747  opcode(0xE8); /* E8 cd */
12748  ins_encode(Java_To_Runtime(meth));
12749  ins_pipe( pipe_slow );
12750  ins_pc_relative(1);
12751%}
12752
12753
12754// Return Instruction
12755// Remove the return address & jump to it.
12756instruct Ret() %{
12757  match(Return);
12758  format %{ "RET" %}
12759  opcode(0xC3);
12760  ins_encode(OpcP);
12761  ins_pipe( pipe_jmp );
12762%}
12763
12764// Tail Call; Jump from runtime stub to Java code.
12765// Also known as an 'interprocedural jump'.
12766// Target of jump will eventually return to caller.
12767// TailJump below removes the return address.
12768instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12769  match(TailCall jump_target method_oop );
12770  ins_cost(300);
12771  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12772  opcode(0xFF, 0x4);  /* Opcode FF /4 */
12773  ins_encode( OpcP, RegOpc(jump_target) );
12774  ins_pipe( pipe_jmp );
12775%}
12776
12777
12778// Tail Jump; remove the return address; jump to target.
12779// TailCall above leaves the return address around.
12780instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12781  match( TailJump jump_target ex_oop );
12782  ins_cost(300);
12783  format %{ "POP    EDX\t# pop return address into dummy\n\t"
12784            "JMP    $jump_target " %}
12785  opcode(0xFF, 0x4);  /* Opcode FF /4 */
12786  ins_encode( enc_pop_rdx,
12787              OpcP, RegOpc(jump_target) );
12788  ins_pipe( pipe_jmp );
12789%}
12790
12791// Create exception oop: created by stack-crawling runtime code.
12792// Created exception is now available to this handler, and is setup
12793// just prior to jumping to this handler.  No code emitted.
12794instruct CreateException( eAXRegP ex_oop )
12795%{
12796  match(Set ex_oop (CreateEx));
12797
12798  size(0);
12799  // use the following format syntax
12800  format %{ "# exception oop is in EAX; no code emitted" %}
12801  ins_encode();
12802  ins_pipe( empty );
12803%}
12804
12805
12806// Rethrow exception:
12807// The exception oop will come in the first argument position.
12808// Then JUMP (not call) to the rethrow stub code.
12809instruct RethrowException()
12810%{
12811  match(Rethrow);
12812
12813  // use the following format syntax
12814  format %{ "JMP    rethrow_stub" %}
12815  ins_encode(enc_rethrow);
12816  ins_pipe( pipe_jmp );
12817%}
12818
12819// inlined locking and unlocking
12820
12821
12822instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
12823  match( Set cr (FastLock object box) );
12824  effect( TEMP tmp, TEMP scr );
12825  ins_cost(300);
12826  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
12827  ins_encode( Fast_Lock(object,box,tmp,scr) );
12828  ins_pipe( pipe_slow );
12829  ins_pc_relative(1);
12830%}
12831
12832instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12833  match( Set cr (FastUnlock object box) );
12834  effect( TEMP tmp );
12835  ins_cost(300);
12836  format %{ "FASTUNLOCK $object, $box, $tmp" %}
12837  ins_encode( Fast_Unlock(object,box,tmp) );
12838  ins_pipe( pipe_slow );
12839  ins_pc_relative(1);
12840%}
12841
12842
12843
12844// ============================================================================
12845// Safepoint Instruction
12846instruct safePoint_poll(eFlagsReg cr) %{
12847  match(SafePoint);
12848  effect(KILL cr);
12849
12850  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12851  // On SPARC that might be acceptable as we can generate the address with
12852  // just a sethi, saving an or.  By polling at offset 0 we can end up
12853  // putting additional pressure on the index-0 in the D$.  Because of
12854  // alignment (just like the situation at hand) the lower indices tend
12855  // to see more traffic.  It'd be better to change the polling address
12856  // to offset 0 of the last $line in the polling page.
12857
12858  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
12859  ins_cost(125);
12860  size(6) ;
12861  ins_encode( Safepoint_Poll() );
12862  ins_pipe( ialu_reg_mem );
12863%}
12864
12865//----------PEEPHOLE RULES-----------------------------------------------------
12866// These must follow all instruction definitions as they use the names
12867// defined in the instructions definitions.
12868//
12869// peepmatch ( root_instr_name [preceeding_instruction]* );
12870//
12871// peepconstraint %{
12872// (instruction_number.operand_name relational_op instruction_number.operand_name
12873//  [, ...] );
12874// // instruction numbers are zero-based using left to right order in peepmatch
12875//
12876// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12877// // provide an instruction_number.operand_name for each operand that appears
12878// // in the replacement instruction's match rule
12879//
12880// ---------VM FLAGS---------------------------------------------------------
12881//
12882// All peephole optimizations can be turned off using -XX:-OptoPeephole
12883//
12884// Each peephole rule is given an identifying number starting with zero and
12885// increasing by one in the order seen by the parser.  An individual peephole
12886// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12887// on the command-line.
12888//
12889// ---------CURRENT LIMITATIONS----------------------------------------------
12890//
12891// Only match adjacent instructions in same basic block
12892// Only equality constraints
12893// Only constraints between operands, not (0.dest_reg == EAX_enc)
12894// Only one replacement instruction
12895//
12896// ---------EXAMPLE----------------------------------------------------------
12897//
12898// // pertinent parts of existing instructions in architecture description
12899// instruct movI(eRegI dst, eRegI src) %{
12900//   match(Set dst (CopyI src));
12901// %}
12902//
12903// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
12904//   match(Set dst (AddI dst src));
12905//   effect(KILL cr);
12906// %}
12907//
12908// // Change (inc mov) to lea
12909// peephole %{
12910//   // increment preceeded by register-register move
12911//   peepmatch ( incI_eReg movI );
12912//   // require that the destination register of the increment
12913//   // match the destination register of the move
12914//   peepconstraint ( 0.dst == 1.dst );
12915//   // construct a replacement instruction that sets
12916//   // the destination to ( move's source register + one )
12917//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12918// %}
12919//
12920// Implementation no longer uses movX instructions since
12921// machine-independent system no longer uses CopyX nodes.
12922//
12923// peephole %{
12924//   peepmatch ( incI_eReg movI );
12925//   peepconstraint ( 0.dst == 1.dst );
12926//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12927// %}
12928//
12929// peephole %{
12930//   peepmatch ( decI_eReg movI );
12931//   peepconstraint ( 0.dst == 1.dst );
12932//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12933// %}
12934//
12935// peephole %{
12936//   peepmatch ( addI_eReg_imm movI );
12937//   peepconstraint ( 0.dst == 1.dst );
12938//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
12939// %}
12940//
12941// peephole %{
12942//   peepmatch ( addP_eReg_imm movP );
12943//   peepconstraint ( 0.dst == 1.dst );
12944//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
12945// %}
12946
12947// // Change load of spilled value to only a spill
12948// instruct storeI(memory mem, eRegI src) %{
12949//   match(Set mem (StoreI mem src));
12950// %}
12951//
12952// instruct loadI(eRegI dst, memory mem) %{
12953//   match(Set dst (LoadI mem));
12954// %}
12955//
12956peephole %{
12957  peepmatch ( loadI storeI );
12958  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
12959  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
12960%}
12961
12962//----------SMARTSPILL RULES---------------------------------------------------
12963// These must follow all instruction definitions as they use the names
12964// defined in the instructions definitions.
12965