x86_32.ad revision 2614:95134e034042
1//
2// Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// X86 Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31
32register %{
33//----------Architecture Description Register Definitions----------------------
34// General Registers
35// "reg_def"  name ( register save type, C convention save type,
36//                   ideal register type, encoding );
37// Register Save Types:
38//
39// NS  = No-Save:       The register allocator assumes that these registers
40//                      can be used without saving upon entry to the method, &
41//                      that they do not need to be saved at call sites.
42//
43// SOC = Save-On-Call:  The register allocator assumes that these registers
44//                      can be used without saving upon entry to the method,
45//                      but that they must be saved at call sites.
46//
47// SOE = Save-On-Entry: The register allocator assumes that these registers
48//                      must be saved before using them upon entry to the
49//                      method, but they do not need to be saved at call
50//                      sites.
51//
52// AS  = Always-Save:   The register allocator assumes that these registers
53//                      must be saved before using them upon entry to the
54//                      method, & that they must be saved at call sites.
55//
56// Ideal Register Type is used to determine how to save & restore a
57// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59//
60// The encoding number is the actual bit-pattern placed into the opcodes.
61
62// General Registers
63// Previously set EBX, ESI, and EDI as save-on-entry for java code
64// Turn off SOE in java-code due to frequent use of uncommon-traps.
65// Now that allocator is better, turn on ESI and EDI as SOE registers.
66
67reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
68reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
69reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
70reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
71// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
72reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
73reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
74reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
75reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
76
77// Special Registers
78reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
79
80// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
81// allocator, and only shows up in the encodings.
82reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
83reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
84// Ok so here's the trick FPR1 is really st(0) except in the midst
85// of emission of assembly for a machnode. During the emission the fpu stack
86// is pushed making FPR1 == st(1) temporarily. However at any safepoint
87// the stack will not have this element so FPR1 == st(0) from the
88// oopMap viewpoint. This same weirdness with numbering causes
89// instruction encoding to have to play games with the register
90// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
91// where it does flt->flt moves to see an example
92//
93reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
94reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
95reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
96reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
97reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
98reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
99reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
100reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
101reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
102reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
103reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
104reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
105reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
106reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
107
108// XMM registers.  128-bit registers or 4 words each, labeled a-d.
109// Word a in each register holds a Float, words ab hold a Double.
110// We currently do not use the SIMD capabilities, so registers cd
111// are unused at the moment.
112reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
113reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
114reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
115reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
116reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
117reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
118reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
119reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
120reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
121reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
122reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
123reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
124reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
125reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
126reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
127reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
128
129// Specify priority of register selection within phases of register
130// allocation.  Highest priority is first.  A useful heuristic is to
131// give registers a low priority when they are required by machine
132// instructions, like EAX and EDX.  Registers which are used as
133// pairs must fall on an even boundary (witness the FPR#L's in this list).
134// For the Intel integer registers, the equivalent Long pairs are
135// EDX:EAX, EBX:ECX, and EDI:EBP.
136alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
137                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
138                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
139                    FPR6L, FPR6H, FPR7L, FPR7H );
140
141alloc_class chunk1( XMM0a, XMM0b,
142                    XMM1a, XMM1b,
143                    XMM2a, XMM2b,
144                    XMM3a, XMM3b,
145                    XMM4a, XMM4b,
146                    XMM5a, XMM5b,
147                    XMM6a, XMM6b,
148                    XMM7a, XMM7b, EFLAGS);
149
150
151//----------Architecture Description Register Classes--------------------------
152// Several register classes are automatically defined based upon information in
153// this architecture description.
154// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
155// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
156// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
157// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
158//
159// Class for all registers
160reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
161// Class for general registers
162reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
163// Class for general registers which may be used for implicit null checks on win95
164// Also safe for use by tailjump. We don't want to allocate in rbp,
165reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
166// Class of "X" registers
167reg_class x_reg(EBX, ECX, EDX, EAX);
168// Class of registers that can appear in an address with no offset.
169// EBP and ESP require an extra instruction byte for zero offset.
170// Used in fast-unlock
171reg_class p_reg(EDX, EDI, ESI, EBX);
172// Class for general registers not including ECX
173reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
174// Class for general registers not including EAX
175reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
176// Class for general registers not including EAX or EBX.
177reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
178// Class of EAX (for multiply and divide operations)
179reg_class eax_reg(EAX);
180// Class of EBX (for atomic add)
181reg_class ebx_reg(EBX);
182// Class of ECX (for shift and JCXZ operations and cmpLTMask)
183reg_class ecx_reg(ECX);
184// Class of EDX (for multiply and divide operations)
185reg_class edx_reg(EDX);
186// Class of EDI (for synchronization)
187reg_class edi_reg(EDI);
188// Class of ESI (for synchronization)
189reg_class esi_reg(ESI);
190// Singleton class for interpreter's stack pointer
191reg_class ebp_reg(EBP);
192// Singleton class for stack pointer
193reg_class sp_reg(ESP);
194// Singleton class for instruction pointer
195// reg_class ip_reg(EIP);
196// Singleton class for condition codes
197reg_class int_flags(EFLAGS);
198// Class of integer register pairs
199reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
200// Class of integer register pairs that aligns with calling convention
201reg_class eadx_reg( EAX,EDX );
202reg_class ebcx_reg( ECX,EBX );
203// Not AX or DX, used in divides
204reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
205
206// Floating point registers.  Notice FPR0 is not a choice.
207// FPR0 is not ever allocated; we use clever encodings to fake
208// a 2-address instructions out of Intels FP stack.
209reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
210
211// make a register class for SSE registers
212reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
213
214// make a double register class for SSE2 registers
215reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
216                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
217
218reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
219                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
220                   FPR7L,FPR7H );
221
222reg_class flt_reg0( FPR1L );
223reg_class dbl_reg0( FPR1L,FPR1H );
224reg_class dbl_reg1( FPR2L,FPR2H );
225reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
226                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
227
228// XMM6 and XMM7 could be used as temporary registers for long, float and
229// double values for SSE2.
230reg_class xdb_reg6( XMM6a,XMM6b );
231reg_class xdb_reg7( XMM7a,XMM7b );
232%}
233
234
235//----------SOURCE BLOCK-------------------------------------------------------
236// This is a block of C++ code which provides values, functions, and
237// definitions necessary in the rest of the architecture description
238source_hpp %{
239// Must be visible to the DFA in dfa_x86_32.cpp
240extern bool is_operand_hi32_zero(Node* n);
241%}
242
243source %{
244#define   RELOC_IMM32    Assembler::imm_operand
245#define   RELOC_DISP32   Assembler::disp32_operand
246
247#define __ _masm.
248
249// How to find the high register of a Long pair, given the low register
250#define   HIGH_FROM_LOW(x) ((x)+2)
251
252// These masks are used to provide 128-bit aligned bitmasks to the XMM
253// instructions, to allow sign-masking or sign-bit flipping.  They allow
254// fast versions of NegF/NegD and AbsF/AbsD.
255
256// Note: 'double' and 'long long' have 32-bits alignment on x86.
257static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
258  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
259  // of 128-bits operands for SSE instructions.
260  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
261  // Store the value to a 128-bits operand.
262  operand[0] = lo;
263  operand[1] = hi;
264  return operand;
265}
266
267// Buffer for 128-bits masks used by SSE instructions.
268static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
269
270// Static initialization during VM startup.
271static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
272static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
273static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
274static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
275
276// Offset hacking within calls.
277static int pre_call_FPU_size() {
278  if (Compile::current()->in_24_bit_fp_mode())
279    return 6; // fldcw
280  return 0;
281}
282
283static int preserve_SP_size() {
284  return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
285}
286
287// !!!!! Special hack to get all type of calls to specify the byte offset
288//       from the start of the call to the point where the return address
289//       will point.
290int MachCallStaticJavaNode::ret_addr_offset() {
291  int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
292  if (_method_handle_invoke)
293    offset += preserve_SP_size();
294  return offset;
295}
296
297int MachCallDynamicJavaNode::ret_addr_offset() {
298  return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
299}
300
301static int sizeof_FFree_Float_Stack_All = -1;
302
303int MachCallRuntimeNode::ret_addr_offset() {
304  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
305  return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
306}
307
308// Indicate if the safepoint node needs the polling page as an input.
309// Since x86 does have absolute addressing, it doesn't.
310bool SafePointNode::needs_polling_address_input() {
311  return false;
312}
313
314//
315// Compute padding required for nodes which need alignment
316//
317
318// The address of the call instruction needs to be 4-byte aligned to
319// ensure that it does not span a cache line so that it can be patched.
320int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
321  current_offset += pre_call_FPU_size();  // skip fldcw, if any
322  current_offset += 1;      // skip call opcode byte
323  return round_to(current_offset, alignment_required()) - current_offset;
324}
325
326// The address of the call instruction needs to be 4-byte aligned to
327// ensure that it does not span a cache line so that it can be patched.
328int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
329  current_offset += pre_call_FPU_size();  // skip fldcw, if any
330  current_offset += preserve_SP_size();   // skip mov rbp, rsp
331  current_offset += 1;      // skip call opcode byte
332  return round_to(current_offset, alignment_required()) - current_offset;
333}
334
335// The address of the call instruction needs to be 4-byte aligned to
336// ensure that it does not span a cache line so that it can be patched.
337int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
338  current_offset += pre_call_FPU_size();  // skip fldcw, if any
339  current_offset += 5;      // skip MOV instruction
340  current_offset += 1;      // skip call opcode byte
341  return round_to(current_offset, alignment_required()) - current_offset;
342}
343
344#ifndef PRODUCT
345void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
346  st->print("INT3");
347}
348#endif
349
350// EMIT_RM()
351void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
352  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
353  cbuf.insts()->emit_int8(c);
354}
355
356// EMIT_CC()
357void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
358  unsigned char c = (unsigned char)( f1 | f2 );
359  cbuf.insts()->emit_int8(c);
360}
361
362// EMIT_OPCODE()
363void emit_opcode(CodeBuffer &cbuf, int code) {
364  cbuf.insts()->emit_int8((unsigned char) code);
365}
366
367// EMIT_OPCODE() w/ relocation information
368void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
369  cbuf.relocate(cbuf.insts_mark() + offset, reloc);
370  emit_opcode(cbuf, code);
371}
372
373// EMIT_D8()
374void emit_d8(CodeBuffer &cbuf, int d8) {
375  cbuf.insts()->emit_int8((unsigned char) d8);
376}
377
378// EMIT_D16()
379void emit_d16(CodeBuffer &cbuf, int d16) {
380  cbuf.insts()->emit_int16(d16);
381}
382
383// EMIT_D32()
384void emit_d32(CodeBuffer &cbuf, int d32) {
385  cbuf.insts()->emit_int32(d32);
386}
387
388// emit 32 bit value and construct relocation entry from relocInfo::relocType
389void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
390        int format) {
391  cbuf.relocate(cbuf.insts_mark(), reloc, format);
392  cbuf.insts()->emit_int32(d32);
393}
394
395// emit 32 bit value and construct relocation entry from RelocationHolder
396void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
397        int format) {
398#ifdef ASSERT
399  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
400    assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
401  }
402#endif
403  cbuf.relocate(cbuf.insts_mark(), rspec, format);
404  cbuf.insts()->emit_int32(d32);
405}
406
407// Access stack slot for load or store
408void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
409  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
410  if( -128 <= disp && disp <= 127 ) {
411    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
412    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
413    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
414  } else {
415    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
416    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
417    emit_d32(cbuf, disp);     // Displacement  // R/M byte
418  }
419}
420
421   // eRegI ereg, memory mem) %{    // emit_reg_mem
422void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
423  // There is no index & no scale, use form without SIB byte
424  if ((index == 0x4) &&
425      (scale == 0) && (base != ESP_enc)) {
426    // If no displacement, mode is 0x0; unless base is [EBP]
427    if ( (displace == 0) && (base != EBP_enc) ) {
428      emit_rm(cbuf, 0x0, reg_encoding, base);
429    }
430    else {                    // If 8-bit displacement, mode 0x1
431      if ((displace >= -128) && (displace <= 127)
432          && !(displace_is_oop) ) {
433        emit_rm(cbuf, 0x1, reg_encoding, base);
434        emit_d8(cbuf, displace);
435      }
436      else {                  // If 32-bit displacement
437        if (base == -1) { // Special flag for absolute address
438          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
439          // (manual lies; no SIB needed here)
440          if ( displace_is_oop ) {
441            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
442          } else {
443            emit_d32      (cbuf, displace);
444          }
445        }
446        else {                // Normal base + offset
447          emit_rm(cbuf, 0x2, reg_encoding, base);
448          if ( displace_is_oop ) {
449            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
450          } else {
451            emit_d32      (cbuf, displace);
452          }
453        }
454      }
455    }
456  }
457  else {                      // Else, encode with the SIB byte
458    // If no displacement, mode is 0x0; unless base is [EBP]
459    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
460      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
461      emit_rm(cbuf, scale, index, base);
462    }
463    else {                    // If 8-bit displacement, mode 0x1
464      if ((displace >= -128) && (displace <= 127)
465          && !(displace_is_oop) ) {
466        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
467        emit_rm(cbuf, scale, index, base);
468        emit_d8(cbuf, displace);
469      }
470      else {                  // If 32-bit displacement
471        if (base == 0x04 ) {
472          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
473          emit_rm(cbuf, scale, index, 0x04);
474        } else {
475          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
476          emit_rm(cbuf, scale, index, base);
477        }
478        if ( displace_is_oop ) {
479          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
480        } else {
481          emit_d32      (cbuf, displace);
482        }
483      }
484    }
485  }
486}
487
488
489void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
490  if( dst_encoding == src_encoding ) {
491    // reg-reg copy, use an empty encoding
492  } else {
493    emit_opcode( cbuf, 0x8B );
494    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
495  }
496}
497
498void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
499  if( dst_encoding == src_encoding ) {
500    // reg-reg copy, use an empty encoding
501  } else {
502    MacroAssembler _masm(&cbuf);
503
504    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
505  }
506}
507
508
509//=============================================================================
510const bool Matcher::constant_table_absolute_addressing = true;
511const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
512
513void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
514  // Empty encoding
515}
516
517uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
518  return 0;
519}
520
521#ifndef PRODUCT
522void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
523  st->print("# MachConstantBaseNode (empty encoding)");
524}
525#endif
526
527
528//=============================================================================
529#ifndef PRODUCT
530void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
531  Compile* C = ra_->C;
532  if( C->in_24_bit_fp_mode() ) {
533    st->print("FLDCW  24 bit fpu control word");
534    st->print_cr(""); st->print("\t");
535  }
536
537  int framesize = C->frame_slots() << LogBytesPerInt;
538  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
539  // Remove two words for return addr and rbp,
540  framesize -= 2*wordSize;
541
542  // Calls to C2R adapters often do not accept exceptional returns.
543  // We require that their callers must bang for them.  But be careful, because
544  // some VM calls (such as call site linkage) can use several kilobytes of
545  // stack.  But the stack safety zone should account for that.
546  // See bugs 4446381, 4468289, 4497237.
547  if (C->need_stack_bang(framesize)) {
548    st->print_cr("# stack bang"); st->print("\t");
549  }
550  st->print_cr("PUSHL  EBP"); st->print("\t");
551
552  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
553    st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
554    st->print_cr(""); st->print("\t");
555    framesize -= wordSize;
556  }
557
558  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
559    if (framesize) {
560      st->print("SUB    ESP,%d\t# Create frame",framesize);
561    }
562  } else {
563    st->print("SUB    ESP,%d\t# Create frame",framesize);
564  }
565}
566#endif
567
568
569void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
570  Compile* C = ra_->C;
571
572  if (UseSSE >= 2 && VerifyFPU) {
573    MacroAssembler masm(&cbuf);
574    masm.verify_FPU(0, "FPU stack must be clean on entry");
575  }
576
577  // WARNING: Initial instruction MUST be 5 bytes or longer so that
578  // NativeJump::patch_verified_entry will be able to patch out the entry
579  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
580  // depth is ok at 5 bytes, the frame allocation can be either 3 or
581  // 6 bytes. So if we don't do the fldcw or the push then we must
582  // use the 6 byte frame allocation even if we have no frame. :-(
583  // If method sets FPU control word do it now
584  if( C->in_24_bit_fp_mode() ) {
585    MacroAssembler masm(&cbuf);
586    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
587  }
588
589  int framesize = C->frame_slots() << LogBytesPerInt;
590  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
591  // Remove two words for return addr and rbp,
592  framesize -= 2*wordSize;
593
594  // Calls to C2R adapters often do not accept exceptional returns.
595  // We require that their callers must bang for them.  But be careful, because
596  // some VM calls (such as call site linkage) can use several kilobytes of
597  // stack.  But the stack safety zone should account for that.
598  // See bugs 4446381, 4468289, 4497237.
599  if (C->need_stack_bang(framesize)) {
600    MacroAssembler masm(&cbuf);
601    masm.generate_stack_overflow_check(framesize);
602  }
603
604  // We always push rbp, so that on return to interpreter rbp, will be
605  // restored correctly and we can correct the stack.
606  emit_opcode(cbuf, 0x50 | EBP_enc);
607
608  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
609    emit_opcode(cbuf, 0x68); // push 0xbadb100d
610    emit_d32(cbuf, 0xbadb100d);
611    framesize -= wordSize;
612  }
613
614  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
615    if (framesize) {
616      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
617      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
618      emit_d8(cbuf, framesize);
619    }
620  } else {
621    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
622    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
623    emit_d32(cbuf, framesize);
624  }
625  C->set_frame_complete(cbuf.insts_size());
626
627#ifdef ASSERT
628  if (VerifyStackAtCalls) {
629    Label L;
630    MacroAssembler masm(&cbuf);
631    masm.push(rax);
632    masm.mov(rax, rsp);
633    masm.andptr(rax, StackAlignmentInBytes-1);
634    masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
635    masm.pop(rax);
636    masm.jcc(Assembler::equal, L);
637    masm.stop("Stack is not properly aligned!");
638    masm.bind(L);
639  }
640#endif
641
642}
643
644uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
645  return MachNode::size(ra_); // too many variables; just compute it the hard way
646}
647
648int MachPrologNode::reloc() const {
649  return 0; // a large enough number
650}
651
652//=============================================================================
653#ifndef PRODUCT
654void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
655  Compile *C = ra_->C;
656  int framesize = C->frame_slots() << LogBytesPerInt;
657  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
658  // Remove two words for return addr and rbp,
659  framesize -= 2*wordSize;
660
661  if( C->in_24_bit_fp_mode() ) {
662    st->print("FLDCW  standard control word");
663    st->cr(); st->print("\t");
664  }
665  if( framesize ) {
666    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
667    st->cr(); st->print("\t");
668  }
669  st->print_cr("POPL   EBP"); st->print("\t");
670  if( do_polling() && C->is_method_compilation() ) {
671    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
672    st->cr(); st->print("\t");
673  }
674}
675#endif
676
677void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
678  Compile *C = ra_->C;
679
680  // If method set FPU control word, restore to standard control word
681  if( C->in_24_bit_fp_mode() ) {
682    MacroAssembler masm(&cbuf);
683    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
684  }
685
686  int framesize = C->frame_slots() << LogBytesPerInt;
687  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
688  // Remove two words for return addr and rbp,
689  framesize -= 2*wordSize;
690
691  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
692
693  if( framesize >= 128 ) {
694    emit_opcode(cbuf, 0x81); // add  SP, #framesize
695    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
696    emit_d32(cbuf, framesize);
697  }
698  else if( framesize ) {
699    emit_opcode(cbuf, 0x83); // add  SP, #framesize
700    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
701    emit_d8(cbuf, framesize);
702  }
703
704  emit_opcode(cbuf, 0x58 | EBP_enc);
705
706  if( do_polling() && C->is_method_compilation() ) {
707    cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
708    emit_opcode(cbuf,0x85);
709    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
710    emit_d32(cbuf, (intptr_t)os::get_polling_page());
711  }
712}
713
714uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
715  Compile *C = ra_->C;
716  // If method set FPU control word, restore to standard control word
717  int size = C->in_24_bit_fp_mode() ? 6 : 0;
718  if( do_polling() && C->is_method_compilation() ) size += 6;
719
720  int framesize = C->frame_slots() << LogBytesPerInt;
721  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
722  // Remove two words for return addr and rbp,
723  framesize -= 2*wordSize;
724
725  size++; // popl rbp,
726
727  if( framesize >= 128 ) {
728    size += 6;
729  } else {
730    size += framesize ? 3 : 0;
731  }
732  return size;
733}
734
735int MachEpilogNode::reloc() const {
736  return 0; // a large enough number
737}
738
739const Pipeline * MachEpilogNode::pipeline() const {
740  return MachNode::pipeline_class();
741}
742
743int MachEpilogNode::safepoint_offset() const { return 0; }
744
745//=============================================================================
746
747enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
748static enum RC rc_class( OptoReg::Name reg ) {
749
750  if( !OptoReg::is_valid(reg)  ) return rc_bad;
751  if (OptoReg::is_stack(reg)) return rc_stack;
752
753  VMReg r = OptoReg::as_VMReg(reg);
754  if (r->is_Register()) return rc_int;
755  if (r->is_FloatRegister()) {
756    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
757    return rc_float;
758  }
759  assert(r->is_XMMRegister(), "must be");
760  return rc_xmm;
761}
762
763static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
764                        int opcode, const char *op_str, int size, outputStream* st ) {
765  if( cbuf ) {
766    emit_opcode  (*cbuf, opcode );
767    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
768#ifndef PRODUCT
769  } else if( !do_size ) {
770    if( size != 0 ) st->print("\n\t");
771    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
772      if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
773      else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
774    } else { // FLD, FST, PUSH, POP
775      st->print("%s [ESP + #%d]",op_str,offset);
776    }
777#endif
778  }
779  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
780  return size+3+offset_size;
781}
782
783// Helper for XMM registers.  Extra opcode bits, limited syntax.
784static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
785                         int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
786  if( cbuf ) {
787    if( reg_lo+1 == reg_hi ) { // double move?
788      if( is_load && !UseXmmLoadAndClearUpper )
789        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
790      else
791        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
792    } else {
793      emit_opcode(*cbuf, 0xF3 );
794    }
795    emit_opcode(*cbuf, 0x0F );
796    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
797      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
798    else
799      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
800    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
801#ifndef PRODUCT
802  } else if( !do_size ) {
803    if( size != 0 ) st->print("\n\t");
804    if( reg_lo+1 == reg_hi ) { // double move?
805      if( is_load ) st->print("%s %s,[ESP + #%d]",
806                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
807                               Matcher::regName[reg_lo], offset);
808      else          st->print("MOVSD  [ESP + #%d],%s",
809                               offset, Matcher::regName[reg_lo]);
810    } else {
811      if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
812                               Matcher::regName[reg_lo], offset);
813      else          st->print("MOVSS  [ESP + #%d],%s",
814                               offset, Matcher::regName[reg_lo]);
815    }
816#endif
817  }
818  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
819  return size+5+offset_size;
820}
821
822
823static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
824                            int src_hi, int dst_hi, int size, outputStream* st ) {
825  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
826    if( cbuf ) {
827      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
828        emit_opcode(*cbuf, 0x66 );
829      }
830      emit_opcode(*cbuf, 0x0F );
831      emit_opcode(*cbuf, 0x28 );
832      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
833#ifndef PRODUCT
834    } else if( !do_size ) {
835      if( size != 0 ) st->print("\n\t");
836      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
837        st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
838      } else {
839        st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
840      }
841#endif
842    }
843    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
844  } else {
845    if( cbuf ) {
846      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
847      emit_opcode(*cbuf, 0x0F );
848      emit_opcode(*cbuf, 0x10 );
849      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
850#ifndef PRODUCT
851    } else if( !do_size ) {
852      if( size != 0 ) st->print("\n\t");
853      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
854        st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
855      } else {
856        st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
857      }
858#endif
859    }
860    return size+4;
861  }
862}
863
864static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
865                            int src_hi, int dst_hi, int size, outputStream* st ) {
866  // 32-bit
867  if (cbuf) {
868    emit_opcode(*cbuf, 0x66);
869    emit_opcode(*cbuf, 0x0F);
870    emit_opcode(*cbuf, 0x6E);
871    emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
872#ifndef PRODUCT
873  } else if (!do_size) {
874    st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
875#endif
876  }
877  return 4;
878}
879
880
881static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
882                                 int src_hi, int dst_hi, int size, outputStream* st ) {
883  // 32-bit
884  if (cbuf) {
885    emit_opcode(*cbuf, 0x66);
886    emit_opcode(*cbuf, 0x0F);
887    emit_opcode(*cbuf, 0x7E);
888    emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
889#ifndef PRODUCT
890  } else if (!do_size) {
891    st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
892#endif
893  }
894  return 4;
895}
896
897static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
898  if( cbuf ) {
899    emit_opcode(*cbuf, 0x8B );
900    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
901#ifndef PRODUCT
902  } else if( !do_size ) {
903    if( size != 0 ) st->print("\n\t");
904    st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
905#endif
906  }
907  return size+2;
908}
909
910static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
911                                 int offset, int size, outputStream* st ) {
912  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
913    if( cbuf ) {
914      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
915      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
916#ifndef PRODUCT
917    } else if( !do_size ) {
918      if( size != 0 ) st->print("\n\t");
919      st->print("FLD    %s",Matcher::regName[src_lo]);
920#endif
921    }
922    size += 2;
923  }
924
925  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
926  const char *op_str;
927  int op;
928  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
929    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
930    op = 0xDD;
931  } else {                   // 32-bit store
932    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
933    op = 0xD9;
934    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
935  }
936
937  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
938}
939
940uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
941  // Get registers to move
942  OptoReg::Name src_second = ra_->get_reg_second(in(1));
943  OptoReg::Name src_first = ra_->get_reg_first(in(1));
944  OptoReg::Name dst_second = ra_->get_reg_second(this );
945  OptoReg::Name dst_first = ra_->get_reg_first(this );
946
947  enum RC src_second_rc = rc_class(src_second);
948  enum RC src_first_rc = rc_class(src_first);
949  enum RC dst_second_rc = rc_class(dst_second);
950  enum RC dst_first_rc = rc_class(dst_first);
951
952  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
953
954  // Generate spill code!
955  int size = 0;
956
957  if( src_first == dst_first && src_second == dst_second )
958    return size;            // Self copy, no move
959
960  // --------------------------------------
961  // Check for mem-mem move.  push/pop to move.
962  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
963    if( src_second == dst_first ) { // overlapping stack copy ranges
964      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
965      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
966      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
967      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
968    }
969    // move low bits
970    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
971    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
972    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
973      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
974      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
975    }
976    return size;
977  }
978
979  // --------------------------------------
980  // Check for integer reg-reg copy
981  if( src_first_rc == rc_int && dst_first_rc == rc_int )
982    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
983
984  // Check for integer store
985  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
986    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
987
988  // Check for integer load
989  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
990    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
991
992  // Check for integer reg-xmm reg copy
993  if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
994    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
995            "no 64 bit integer-float reg moves" );
996    return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
997  }
998  // --------------------------------------
999  // Check for float reg-reg copy
1000  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1001    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1002            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1003    if( cbuf ) {
1004
1005      // Note the mucking with the register encode to compensate for the 0/1
1006      // indexing issue mentioned in a comment in the reg_def sections
1007      // for FPR registers many lines above here.
1008
1009      if( src_first != FPR1L_num ) {
1010        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1011        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1012        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1013        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1014     } else {
1015        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1016        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1017     }
1018#ifndef PRODUCT
1019    } else if( !do_size ) {
1020      if( size != 0 ) st->print("\n\t");
1021      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1022      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1023#endif
1024    }
1025    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1026  }
1027
1028  // Check for float store
1029  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1030    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1031  }
1032
1033  // Check for float load
1034  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1035    int offset = ra_->reg2offset(src_first);
1036    const char *op_str;
1037    int op;
1038    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1039      op_str = "FLD_D";
1040      op = 0xDD;
1041    } else {                   // 32-bit load
1042      op_str = "FLD_S";
1043      op = 0xD9;
1044      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1045    }
1046    if( cbuf ) {
1047      emit_opcode  (*cbuf, op );
1048      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1049      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1050      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1051#ifndef PRODUCT
1052    } else if( !do_size ) {
1053      if( size != 0 ) st->print("\n\t");
1054      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1055#endif
1056    }
1057    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1058    return size + 3+offset_size+2;
1059  }
1060
1061  // Check for xmm reg-reg copy
1062  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1063    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1064            (src_first+1 == src_second && dst_first+1 == dst_second),
1065            "no non-adjacent float-moves" );
1066    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1067  }
1068
1069  // Check for xmm reg-integer reg copy
1070  if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1071    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1072            "no 64 bit float-integer reg moves" );
1073    return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1074  }
1075
1076  // Check for xmm store
1077  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1078    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1079  }
1080
1081  // Check for float xmm load
1082  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1083    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1084  }
1085
1086  // Copy from float reg to xmm reg
1087  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1088    // copy to the top of stack from floating point reg
1089    // and use LEA to preserve flags
1090    if( cbuf ) {
1091      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1092      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1093      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1094      emit_d8(*cbuf,0xF8);
1095#ifndef PRODUCT
1096    } else if( !do_size ) {
1097      if( size != 0 ) st->print("\n\t");
1098      st->print("LEA    ESP,[ESP-8]");
1099#endif
1100    }
1101    size += 4;
1102
1103    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1104
1105    // Copy from the temp memory to the xmm reg.
1106    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1107
1108    if( cbuf ) {
1109      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1110      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1111      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1112      emit_d8(*cbuf,0x08);
1113#ifndef PRODUCT
1114    } else if( !do_size ) {
1115      if( size != 0 ) st->print("\n\t");
1116      st->print("LEA    ESP,[ESP+8]");
1117#endif
1118    }
1119    size += 4;
1120    return size;
1121  }
1122
1123  assert( size > 0, "missed a case" );
1124
1125  // --------------------------------------------------------------------
1126  // Check for second bits still needing moving.
1127  if( src_second == dst_second )
1128    return size;               // Self copy; no move
1129  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1130
1131  // Check for second word int-int move
1132  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1133    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1134
1135  // Check for second word integer store
1136  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1137    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1138
1139  // Check for second word integer load
1140  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1141    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1142
1143
1144  Unimplemented();
1145}
1146
1147#ifndef PRODUCT
1148void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1149  implementation( NULL, ra_, false, st );
1150}
1151#endif
1152
1153void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1154  implementation( &cbuf, ra_, false, NULL );
1155}
1156
1157uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1158  return implementation( NULL, ra_, true, NULL );
1159}
1160
1161//=============================================================================
1162#ifndef PRODUCT
1163void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1164  st->print("NOP \t# %d bytes pad for loops and calls", _count);
1165}
1166#endif
1167
1168void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1169  MacroAssembler _masm(&cbuf);
1170  __ nop(_count);
1171}
1172
1173uint MachNopNode::size(PhaseRegAlloc *) const {
1174  return _count;
1175}
1176
1177
1178//=============================================================================
1179#ifndef PRODUCT
1180void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1181  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1182  int reg = ra_->get_reg_first(this);
1183  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1184}
1185#endif
1186
1187void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1188  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1189  int reg = ra_->get_encode(this);
1190  if( offset >= 128 ) {
1191    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1192    emit_rm(cbuf, 0x2, reg, 0x04);
1193    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1194    emit_d32(cbuf, offset);
1195  }
1196  else {
1197    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1198    emit_rm(cbuf, 0x1, reg, 0x04);
1199    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1200    emit_d8(cbuf, offset);
1201  }
1202}
1203
1204uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1205  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1206  if( offset >= 128 ) {
1207    return 7;
1208  }
1209  else {
1210    return 4;
1211  }
1212}
1213
1214//=============================================================================
1215
1216// emit call stub, compiled java to interpreter
1217void emit_java_to_interp(CodeBuffer &cbuf ) {
1218  // Stub is fixed up when the corresponding call is converted from calling
1219  // compiled code to calling interpreted code.
1220  // mov rbx,0
1221  // jmp -1
1222
1223  address mark = cbuf.insts_mark();  // get mark within main instrs section
1224
1225  // Note that the code buffer's insts_mark is always relative to insts.
1226  // That's why we must use the macroassembler to generate a stub.
1227  MacroAssembler _masm(&cbuf);
1228
1229  address base =
1230  __ start_a_stub(Compile::MAX_stubs_size);
1231  if (base == NULL)  return;  // CodeBuffer::expand failed
1232  // static stub relocation stores the instruction address of the call
1233  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1234  // static stub relocation also tags the methodOop in the code-stream.
1235  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1236  // This is recognized as unresolved by relocs/nativeInst/ic code
1237  __ jump(RuntimeAddress(__ pc()));
1238
1239  __ end_a_stub();
1240  // Update current stubs pointer and restore insts_end.
1241}
1242// size of call stub, compiled java to interpretor
1243uint size_java_to_interp() {
1244  return 10;  // movl; jmp
1245}
1246// relocation entries for call stub, compiled java to interpretor
1247uint reloc_java_to_interp() {
1248  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1249}
1250
1251//=============================================================================
1252#ifndef PRODUCT
1253void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1254  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1255  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1256  st->print_cr("\tNOP");
1257  st->print_cr("\tNOP");
1258  if( !OptoBreakpoint )
1259    st->print_cr("\tNOP");
1260}
1261#endif
1262
1263void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1264  MacroAssembler masm(&cbuf);
1265#ifdef ASSERT
1266  uint insts_size = cbuf.insts_size();
1267#endif
1268  masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1269  masm.jump_cc(Assembler::notEqual,
1270               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1271  /* WARNING these NOPs are critical so that verified entry point is properly
1272     aligned for patching by NativeJump::patch_verified_entry() */
1273  int nops_cnt = 2;
1274  if( !OptoBreakpoint ) // Leave space for int3
1275     nops_cnt += 1;
1276  masm.nop(nops_cnt);
1277
1278  assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1279}
1280
1281uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1282  return OptoBreakpoint ? 11 : 12;
1283}
1284
1285
1286//=============================================================================
1287uint size_exception_handler() {
1288  // NativeCall instruction size is the same as NativeJump.
1289  // exception handler starts out as jump and can be patched to
1290  // a call be deoptimization.  (4932387)
1291  // Note that this value is also credited (in output.cpp) to
1292  // the size of the code section.
1293  return NativeJump::instruction_size;
1294}
1295
1296// Emit exception handler code.  Stuff framesize into a register
1297// and call a VM stub routine.
1298int emit_exception_handler(CodeBuffer& cbuf) {
1299
1300  // Note that the code buffer's insts_mark is always relative to insts.
1301  // That's why we must use the macroassembler to generate a handler.
1302  MacroAssembler _masm(&cbuf);
1303  address base =
1304  __ start_a_stub(size_exception_handler());
1305  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1306  int offset = __ offset();
1307  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1308  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1309  __ end_a_stub();
1310  return offset;
1311}
1312
1313uint size_deopt_handler() {
1314  // NativeCall instruction size is the same as NativeJump.
1315  // exception handler starts out as jump and can be patched to
1316  // a call be deoptimization.  (4932387)
1317  // Note that this value is also credited (in output.cpp) to
1318  // the size of the code section.
1319  return 5 + NativeJump::instruction_size; // pushl(); jmp;
1320}
1321
1322// Emit deopt handler code.
1323int emit_deopt_handler(CodeBuffer& cbuf) {
1324
1325  // Note that the code buffer's insts_mark is always relative to insts.
1326  // That's why we must use the macroassembler to generate a handler.
1327  MacroAssembler _masm(&cbuf);
1328  address base =
1329  __ start_a_stub(size_exception_handler());
1330  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1331  int offset = __ offset();
1332  InternalAddress here(__ pc());
1333  __ pushptr(here.addr());
1334
1335  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1336  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1337  __ end_a_stub();
1338  return offset;
1339}
1340
1341
1342const bool Matcher::match_rule_supported(int opcode) {
1343  if (!has_match_rule(opcode))
1344    return false;
1345
1346  return true;  // Per default match rules are supported.
1347}
1348
1349int Matcher::regnum_to_fpu_offset(int regnum) {
1350  return regnum - 32; // The FP registers are in the second chunk
1351}
1352
1353// This is UltraSparc specific, true just means we have fast l2f conversion
1354const bool Matcher::convL2FSupported(void) {
1355  return true;
1356}
1357
1358// Vector width in bytes
1359const uint Matcher::vector_width_in_bytes(void) {
1360  return UseSSE >= 2 ? 8 : 0;
1361}
1362
1363// Vector ideal reg
1364const uint Matcher::vector_ideal_reg(void) {
1365  return Op_RegD;
1366}
1367
1368// Is this branch offset short enough that a short branch can be used?
1369//
1370// NOTE: If the platform does not provide any short branch variants, then
1371//       this method should return false for offset 0.
1372bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1373  // The passed offset is relative to address of the branch.
1374  // On 86 a branch displacement is calculated relative to address
1375  // of a next instruction.
1376  offset -= br_size;
1377
1378  // the short version of jmpConUCF2 contains multiple branches,
1379  // making the reach slightly less
1380  if (rule == jmpConUCF2_rule)
1381    return (-126 <= offset && offset <= 125);
1382  return (-128 <= offset && offset <= 127);
1383}
1384
1385const bool Matcher::isSimpleConstant64(jlong value) {
1386  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1387  return false;
1388}
1389
1390// The ecx parameter to rep stos for the ClearArray node is in dwords.
1391const bool Matcher::init_array_count_is_in_bytes = false;
1392
1393// Threshold size for cleararray.
1394const int Matcher::init_array_short_size = 8 * BytesPerLong;
1395
1396// Should the Matcher clone shifts on addressing modes, expecting them to
1397// be subsumed into complex addressing expressions or compute them into
1398// registers?  True for Intel but false for most RISCs
1399const bool Matcher::clone_shift_expressions = true;
1400
1401// Do we need to mask the count passed to shift instructions or does
1402// the cpu only look at the lower 5/6 bits anyway?
1403const bool Matcher::need_masked_shift_count = false;
1404
1405bool Matcher::narrow_oop_use_complex_address() {
1406  ShouldNotCallThis();
1407  return true;
1408}
1409
1410
1411// Is it better to copy float constants, or load them directly from memory?
1412// Intel can load a float constant from a direct address, requiring no
1413// extra registers.  Most RISCs will have to materialize an address into a
1414// register first, so they would do better to copy the constant from stack.
1415const bool Matcher::rematerialize_float_constants = true;
1416
1417// If CPU can load and store mis-aligned doubles directly then no fixup is
1418// needed.  Else we split the double into 2 integer pieces and move it
1419// piece-by-piece.  Only happens when passing doubles into C code as the
1420// Java calling convention forces doubles to be aligned.
1421const bool Matcher::misaligned_doubles_ok = true;
1422
1423
1424void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1425  // Get the memory operand from the node
1426  uint numopnds = node->num_opnds();        // Virtual call for number of operands
1427  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1428  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1429  uint opcnt     = 1;                 // First operand
1430  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1431  while( idx >= skipped+num_edges ) {
1432    skipped += num_edges;
1433    opcnt++;                          // Bump operand count
1434    assert( opcnt < numopnds, "Accessing non-existent operand" );
1435    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1436  }
1437
1438  MachOper *memory = node->_opnds[opcnt];
1439  MachOper *new_memory = NULL;
1440  switch (memory->opcode()) {
1441  case DIRECT:
1442  case INDOFFSET32X:
1443    // No transformation necessary.
1444    return;
1445  case INDIRECT:
1446    new_memory = new (C) indirect_win95_safeOper( );
1447    break;
1448  case INDOFFSET8:
1449    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1450    break;
1451  case INDOFFSET32:
1452    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1453    break;
1454  case INDINDEXOFFSET:
1455    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1456    break;
1457  case INDINDEXSCALE:
1458    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1459    break;
1460  case INDINDEXSCALEOFFSET:
1461    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1462    break;
1463  case LOAD_LONG_INDIRECT:
1464  case LOAD_LONG_INDOFFSET32:
1465    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1466    return;
1467  default:
1468    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1469    return;
1470  }
1471  node->_opnds[opcnt] = new_memory;
1472}
1473
1474// Advertise here if the CPU requires explicit rounding operations
1475// to implement the UseStrictFP mode.
1476const bool Matcher::strict_fp_requires_explicit_rounding = true;
1477
1478// Are floats conerted to double when stored to stack during deoptimization?
1479// On x32 it is stored with convertion only when FPU is used for floats.
1480bool Matcher::float_in_double() { return (UseSSE == 0); }
1481
1482// Do ints take an entire long register or just half?
1483const bool Matcher::int_in_long = false;
1484
1485// Return whether or not this register is ever used as an argument.  This
1486// function is used on startup to build the trampoline stubs in generateOptoStub.
1487// Registers not mentioned will be killed by the VM call in the trampoline, and
1488// arguments in those registers not be available to the callee.
1489bool Matcher::can_be_java_arg( int reg ) {
1490  if(  reg == ECX_num   || reg == EDX_num   ) return true;
1491  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1492  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1493  return false;
1494}
1495
1496bool Matcher::is_spillable_arg( int reg ) {
1497  return can_be_java_arg(reg);
1498}
1499
1500bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1501  // Use hardware integer DIV instruction when
1502  // it is faster than a code which use multiply.
1503  // Only when constant divisor fits into 32 bit
1504  // (min_jint is excluded to get only correct
1505  // positive 32 bit values from negative).
1506  return VM_Version::has_fast_idiv() &&
1507         (divisor == (int)divisor && divisor != min_jint);
1508}
1509
1510// Register for DIVI projection of divmodI
1511RegMask Matcher::divI_proj_mask() {
1512  return EAX_REG_mask;
1513}
1514
1515// Register for MODI projection of divmodI
1516RegMask Matcher::modI_proj_mask() {
1517  return EDX_REG_mask;
1518}
1519
1520// Register for DIVL projection of divmodL
1521RegMask Matcher::divL_proj_mask() {
1522  ShouldNotReachHere();
1523  return RegMask();
1524}
1525
1526// Register for MODL projection of divmodL
1527RegMask Matcher::modL_proj_mask() {
1528  ShouldNotReachHere();
1529  return RegMask();
1530}
1531
1532const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1533  return EBP_REG_mask;
1534}
1535
1536// Returns true if the high 32 bits of the value is known to be zero.
1537bool is_operand_hi32_zero(Node* n) {
1538  int opc = n->Opcode();
1539  if (opc == Op_LoadUI2L) {
1540    return true;
1541  }
1542  if (opc == Op_AndL) {
1543    Node* o2 = n->in(2);
1544    if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1545      return true;
1546    }
1547  }
1548  if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1549    return true;
1550  }
1551  return false;
1552}
1553
1554%}
1555
1556//----------ENCODING BLOCK-----------------------------------------------------
1557// This block specifies the encoding classes used by the compiler to output
1558// byte streams.  Encoding classes generate functions which are called by
1559// Machine Instruction Nodes in order to generate the bit encoding of the
1560// instruction.  Operands specify their base encoding interface with the
1561// interface keyword.  There are currently supported four interfaces,
1562// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1563// operand to generate a function which returns its register number when
1564// queried.   CONST_INTER causes an operand to generate a function which
1565// returns the value of the constant when queried.  MEMORY_INTER causes an
1566// operand to generate four functions which return the Base Register, the
1567// Index Register, the Scale Value, and the Offset Value of the operand when
1568// queried.  COND_INTER causes an operand to generate six functions which
1569// return the encoding code (ie - encoding bits for the instruction)
1570// associated with each basic boolean condition for a conditional instruction.
1571// Instructions specify two basic values for encoding.  They use the
1572// ins_encode keyword to specify their encoding class (which must be one of
1573// the class names specified in the encoding block), and they use the
1574// opcode keyword to specify, in order, their primary, secondary, and
1575// tertiary opcode.  Only the opcode sections which a particular instruction
1576// needs for encoding need to be specified.
1577encode %{
1578  // Build emit functions for each basic byte or larger field in the intel
1579  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1580  // code in the enc_class source block.  Emit functions will live in the
1581  // main source block for now.  In future, we can generalize this by
1582  // adding a syntax that specifies the sizes of fields in an order,
1583  // so that the adlc can build the emit functions automagically
1584
1585  // Emit primary opcode
1586  enc_class OpcP %{
1587    emit_opcode(cbuf, $primary);
1588  %}
1589
1590  // Emit secondary opcode
1591  enc_class OpcS %{
1592    emit_opcode(cbuf, $secondary);
1593  %}
1594
1595  // Emit opcode directly
1596  enc_class Opcode(immI d8) %{
1597    emit_opcode(cbuf, $d8$$constant);
1598  %}
1599
1600  enc_class SizePrefix %{
1601    emit_opcode(cbuf,0x66);
1602  %}
1603
1604  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1605    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1606  %}
1607
1608  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1609    emit_opcode(cbuf,$opcode$$constant);
1610    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1611  %}
1612
1613  enc_class mov_r32_imm0( eRegI dst ) %{
1614    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1615    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1616  %}
1617
1618  enc_class cdq_enc %{
1619    // Full implementation of Java idiv and irem; checks for
1620    // special case as described in JVM spec., p.243 & p.271.
1621    //
1622    //         normal case                           special case
1623    //
1624    // input : rax,: dividend                         min_int
1625    //         reg: divisor                          -1
1626    //
1627    // output: rax,: quotient  (= rax, idiv reg)       min_int
1628    //         rdx: remainder (= rax, irem reg)       0
1629    //
1630    //  Code sequnce:
1631    //
1632    //  81 F8 00 00 00 80    cmp         rax,80000000h
1633    //  0F 85 0B 00 00 00    jne         normal_case
1634    //  33 D2                xor         rdx,edx
1635    //  83 F9 FF             cmp         rcx,0FFh
1636    //  0F 84 03 00 00 00    je          done
1637    //                  normal_case:
1638    //  99                   cdq
1639    //  F7 F9                idiv        rax,ecx
1640    //                  done:
1641    //
1642    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1643    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1644    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1645    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1646    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1647    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1648    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1649    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1650    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1651    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1652    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1653    // normal_case:
1654    emit_opcode(cbuf,0x99);                                         // cdq
1655    // idiv (note: must be emitted by the user of this rule)
1656    // normal:
1657  %}
1658
1659  // Dense encoding for older common ops
1660  enc_class Opc_plus(immI opcode, eRegI reg) %{
1661    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1662  %}
1663
1664
1665  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1666  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1667    // Check for 8-bit immediate, and set sign extend bit in opcode
1668    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1669      emit_opcode(cbuf, $primary | 0x02);
1670    }
1671    else {                          // If 32-bit immediate
1672      emit_opcode(cbuf, $primary);
1673    }
1674  %}
1675
1676  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1677    // Emit primary opcode and set sign-extend bit
1678    // Check for 8-bit immediate, and set sign extend bit in opcode
1679    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1680      emit_opcode(cbuf, $primary | 0x02);    }
1681    else {                          // If 32-bit immediate
1682      emit_opcode(cbuf, $primary);
1683    }
1684    // Emit r/m byte with secondary opcode, after primary opcode.
1685    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1686  %}
1687
1688  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1689    // Check for 8-bit immediate, and set sign extend bit in opcode
1690    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1691      $$$emit8$imm$$constant;
1692    }
1693    else {                          // If 32-bit immediate
1694      // Output immediate
1695      $$$emit32$imm$$constant;
1696    }
1697  %}
1698
1699  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1700    // Emit primary opcode and set sign-extend bit
1701    // Check for 8-bit immediate, and set sign extend bit in opcode
1702    int con = (int)$imm$$constant; // Throw away top bits
1703    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1704    // Emit r/m byte with secondary opcode, after primary opcode.
1705    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1706    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1707    else                               emit_d32(cbuf,con);
1708  %}
1709
1710  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1711    // Emit primary opcode and set sign-extend bit
1712    // Check for 8-bit immediate, and set sign extend bit in opcode
1713    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1714    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1715    // Emit r/m byte with tertiary opcode, after primary opcode.
1716    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1717    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1718    else                               emit_d32(cbuf,con);
1719  %}
1720
1721  enc_class OpcSReg (eRegI dst) %{    // BSWAP
1722    emit_cc(cbuf, $secondary, $dst$$reg );
1723  %}
1724
1725  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1726    int destlo = $dst$$reg;
1727    int desthi = HIGH_FROM_LOW(destlo);
1728    // bswap lo
1729    emit_opcode(cbuf, 0x0F);
1730    emit_cc(cbuf, 0xC8, destlo);
1731    // bswap hi
1732    emit_opcode(cbuf, 0x0F);
1733    emit_cc(cbuf, 0xC8, desthi);
1734    // xchg lo and hi
1735    emit_opcode(cbuf, 0x87);
1736    emit_rm(cbuf, 0x3, destlo, desthi);
1737  %}
1738
1739  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1740    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1741  %}
1742
1743  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1744    $$$emit8$primary;
1745    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1746  %}
1747
1748  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1749    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1750    emit_d8(cbuf, op >> 8 );
1751    emit_d8(cbuf, op & 255);
1752  %}
1753
1754  // emulate a CMOV with a conditional branch around a MOV
1755  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1756    // Invert sense of branch from sense of CMOV
1757    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1758    emit_d8( cbuf, $brOffs$$constant );
1759  %}
1760
1761  enc_class enc_PartialSubtypeCheck( ) %{
1762    Register Redi = as_Register(EDI_enc); // result register
1763    Register Reax = as_Register(EAX_enc); // super class
1764    Register Recx = as_Register(ECX_enc); // killed
1765    Register Resi = as_Register(ESI_enc); // sub class
1766    Label miss;
1767
1768    MacroAssembler _masm(&cbuf);
1769    __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1770                                     NULL, &miss,
1771                                     /*set_cond_codes:*/ true);
1772    if ($primary) {
1773      __ xorptr(Redi, Redi);
1774    }
1775    __ bind(miss);
1776  %}
1777
1778  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1779    MacroAssembler masm(&cbuf);
1780    int start = masm.offset();
1781    if (UseSSE >= 2) {
1782      if (VerifyFPU) {
1783        masm.verify_FPU(0, "must be empty in SSE2+ mode");
1784      }
1785    } else {
1786      // External c_calling_convention expects the FPU stack to be 'clean'.
1787      // Compiled code leaves it dirty.  Do cleanup now.
1788      masm.empty_FPU_stack();
1789    }
1790    if (sizeof_FFree_Float_Stack_All == -1) {
1791      sizeof_FFree_Float_Stack_All = masm.offset() - start;
1792    } else {
1793      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1794    }
1795  %}
1796
1797  enc_class Verify_FPU_For_Leaf %{
1798    if( VerifyFPU ) {
1799      MacroAssembler masm(&cbuf);
1800      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1801    }
1802  %}
1803
1804  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1805    // This is the instruction starting address for relocation info.
1806    cbuf.set_insts_mark();
1807    $$$emit8$primary;
1808    // CALL directly to the runtime
1809    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1810                runtime_call_Relocation::spec(), RELOC_IMM32 );
1811
1812    if (UseSSE >= 2) {
1813      MacroAssembler _masm(&cbuf);
1814      BasicType rt = tf()->return_type();
1815
1816      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1817        // A C runtime call where the return value is unused.  In SSE2+
1818        // mode the result needs to be removed from the FPU stack.  It's
1819        // likely that this function call could be removed by the
1820        // optimizer if the C function is a pure function.
1821        __ ffree(0);
1822      } else if (rt == T_FLOAT) {
1823        __ lea(rsp, Address(rsp, -4));
1824        __ fstp_s(Address(rsp, 0));
1825        __ movflt(xmm0, Address(rsp, 0));
1826        __ lea(rsp, Address(rsp,  4));
1827      } else if (rt == T_DOUBLE) {
1828        __ lea(rsp, Address(rsp, -8));
1829        __ fstp_d(Address(rsp, 0));
1830        __ movdbl(xmm0, Address(rsp, 0));
1831        __ lea(rsp, Address(rsp,  8));
1832      }
1833    }
1834  %}
1835
1836
1837  enc_class pre_call_FPU %{
1838    // If method sets FPU control word restore it here
1839    debug_only(int off0 = cbuf.insts_size());
1840    if( Compile::current()->in_24_bit_fp_mode() ) {
1841      MacroAssembler masm(&cbuf);
1842      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1843    }
1844    debug_only(int off1 = cbuf.insts_size());
1845    assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1846  %}
1847
1848  enc_class post_call_FPU %{
1849    // If method sets FPU control word do it here also
1850    if( Compile::current()->in_24_bit_fp_mode() ) {
1851      MacroAssembler masm(&cbuf);
1852      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1853    }
1854  %}
1855
1856  enc_class preserve_SP %{
1857    debug_only(int off0 = cbuf.insts_size());
1858    MacroAssembler _masm(&cbuf);
1859    // RBP is preserved across all calls, even compiled calls.
1860    // Use it to preserve RSP in places where the callee might change the SP.
1861    __ movptr(rbp_mh_SP_save, rsp);
1862    debug_only(int off1 = cbuf.insts_size());
1863    assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
1864  %}
1865
1866  enc_class restore_SP %{
1867    MacroAssembler _masm(&cbuf);
1868    __ movptr(rsp, rbp_mh_SP_save);
1869  %}
1870
1871  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1872    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1873    // who we intended to call.
1874    cbuf.set_insts_mark();
1875    $$$emit8$primary;
1876    if ( !_method ) {
1877      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1878                     runtime_call_Relocation::spec(), RELOC_IMM32 );
1879    } else if(_optimized_virtual) {
1880      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1881                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1882    } else {
1883      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1884                     static_call_Relocation::spec(), RELOC_IMM32 );
1885    }
1886    if( _method ) {  // Emit stub for static call
1887      emit_java_to_interp(cbuf);
1888    }
1889  %}
1890
1891  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1892    // !!!!!
1893    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1894    // emit_call_dynamic_prologue( cbuf );
1895    cbuf.set_insts_mark();
1896    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1897    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1898    address  virtual_call_oop_addr = cbuf.insts_mark();
1899    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1900    // who we intended to call.
1901    cbuf.set_insts_mark();
1902    $$$emit8$primary;
1903    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1904                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1905  %}
1906
1907  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1908    int disp = in_bytes(methodOopDesc::from_compiled_offset());
1909    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1910
1911    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1912    cbuf.set_insts_mark();
1913    $$$emit8$primary;
1914    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1915    emit_d8(cbuf, disp);             // Displacement
1916
1917  %}
1918
1919  enc_class Xor_Reg (eRegI dst) %{
1920    emit_opcode(cbuf, 0x33);
1921    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1922  %}
1923
1924//   Following encoding is no longer used, but may be restored if calling
1925//   convention changes significantly.
1926//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1927//
1928//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1929//     // int ic_reg     = Matcher::inline_cache_reg();
1930//     // int ic_encode  = Matcher::_regEncode[ic_reg];
1931//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1932//     // int imo_encode = Matcher::_regEncode[imo_reg];
1933//
1934//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1935//     // // so we load it immediately before the call
1936//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1937//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1938//
1939//     // xor rbp,ebp
1940//     emit_opcode(cbuf, 0x33);
1941//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1942//
1943//     // CALL to interpreter.
1944//     cbuf.set_insts_mark();
1945//     $$$emit8$primary;
1946//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1947//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1948//   %}
1949
1950  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1951    $$$emit8$primary;
1952    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1953    $$$emit8$shift$$constant;
1954  %}
1955
1956  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1957    // Load immediate does not have a zero or sign extended version
1958    // for 8-bit immediates
1959    emit_opcode(cbuf, 0xB8 + $dst$$reg);
1960    $$$emit32$src$$constant;
1961  %}
1962
1963  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1964    // Load immediate does not have a zero or sign extended version
1965    // for 8-bit immediates
1966    emit_opcode(cbuf, $primary + $dst$$reg);
1967    $$$emit32$src$$constant;
1968  %}
1969
1970  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1971    // Load immediate does not have a zero or sign extended version
1972    // for 8-bit immediates
1973    int dst_enc = $dst$$reg;
1974    int src_con = $src$$constant & 0x0FFFFFFFFL;
1975    if (src_con == 0) {
1976      // xor dst, dst
1977      emit_opcode(cbuf, 0x33);
1978      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1979    } else {
1980      emit_opcode(cbuf, $primary + dst_enc);
1981      emit_d32(cbuf, src_con);
1982    }
1983  %}
1984
1985  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1986    // Load immediate does not have a zero or sign extended version
1987    // for 8-bit immediates
1988    int dst_enc = $dst$$reg + 2;
1989    int src_con = ((julong)($src$$constant)) >> 32;
1990    if (src_con == 0) {
1991      // xor dst, dst
1992      emit_opcode(cbuf, 0x33);
1993      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1994    } else {
1995      emit_opcode(cbuf, $primary + dst_enc);
1996      emit_d32(cbuf, src_con);
1997    }
1998  %}
1999
2000
2001  enc_class MovI2X_reg(regX dst, eRegI src) %{
2002    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2003    emit_opcode(cbuf, 0x0F );
2004    emit_opcode(cbuf, 0x6E );
2005    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2006  %}
2007
2008  enc_class MovX2I_reg(eRegI dst, regX src) %{
2009    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2010    emit_opcode(cbuf, 0x0F );
2011    emit_opcode(cbuf, 0x7E );
2012    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2013  %}
2014
2015  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
2016    { // MOVD $dst,$src.lo
2017      emit_opcode(cbuf,0x66);
2018      emit_opcode(cbuf,0x0F);
2019      emit_opcode(cbuf,0x6E);
2020      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2021    }
2022    { // MOVD $tmp,$src.hi
2023      emit_opcode(cbuf,0x66);
2024      emit_opcode(cbuf,0x0F);
2025      emit_opcode(cbuf,0x6E);
2026      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2027    }
2028    { // PUNPCKLDQ $dst,$tmp
2029      emit_opcode(cbuf,0x66);
2030      emit_opcode(cbuf,0x0F);
2031      emit_opcode(cbuf,0x62);
2032      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2033     }
2034  %}
2035
2036  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2037    { // MOVD $dst.lo,$src
2038      emit_opcode(cbuf,0x66);
2039      emit_opcode(cbuf,0x0F);
2040      emit_opcode(cbuf,0x7E);
2041      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2042    }
2043    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2044      emit_opcode(cbuf,0xF2);
2045      emit_opcode(cbuf,0x0F);
2046      emit_opcode(cbuf,0x70);
2047      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2048      emit_d8(cbuf, 0x4E);
2049    }
2050    { // MOVD $dst.hi,$tmp
2051      emit_opcode(cbuf,0x66);
2052      emit_opcode(cbuf,0x0F);
2053      emit_opcode(cbuf,0x7E);
2054      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2055    }
2056  %}
2057
2058
2059  // Encode a reg-reg copy.  If it is useless, then empty encoding.
2060  enc_class enc_Copy( eRegI dst, eRegI src ) %{
2061    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2062  %}
2063
2064  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2065    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2066  %}
2067
2068  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2069  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2070    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2071  %}
2072
2073  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2074    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2075  %}
2076
2077  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2078    $$$emit8$primary;
2079    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2080  %}
2081
2082  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2083    $$$emit8$secondary;
2084    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2085  %}
2086
2087  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2088    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2089  %}
2090
2091  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2092    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2093  %}
2094
2095  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2096    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2097  %}
2098
2099  enc_class Con32 (immI src) %{    // Con32(storeImmI)
2100    // Output immediate
2101    $$$emit32$src$$constant;
2102  %}
2103
2104  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2105    // Output Float immediate bits
2106    jfloat jf = $src$$constant;
2107    int    jf_as_bits = jint_cast( jf );
2108    emit_d32(cbuf, jf_as_bits);
2109  %}
2110
2111  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2112    // Output Float immediate bits
2113    jfloat jf = $src$$constant;
2114    int    jf_as_bits = jint_cast( jf );
2115    emit_d32(cbuf, jf_as_bits);
2116  %}
2117
2118  enc_class Con16 (immI src) %{    // Con16(storeImmI)
2119    // Output immediate
2120    $$$emit16$src$$constant;
2121  %}
2122
2123  enc_class Con_d32(immI src) %{
2124    emit_d32(cbuf,$src$$constant);
2125  %}
2126
2127  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2128    // Output immediate memory reference
2129    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2130    emit_d32(cbuf, 0x00);
2131  %}
2132
2133  enc_class lock_prefix( ) %{
2134    if( os::is_MP() )
2135      emit_opcode(cbuf,0xF0);         // [Lock]
2136  %}
2137
2138  // Cmp-xchg long value.
2139  // Note: we need to swap rbx, and rcx before and after the
2140  //       cmpxchg8 instruction because the instruction uses
2141  //       rcx as the high order word of the new value to store but
2142  //       our register encoding uses rbx,.
2143  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2144
2145    // XCHG  rbx,ecx
2146    emit_opcode(cbuf,0x87);
2147    emit_opcode(cbuf,0xD9);
2148    // [Lock]
2149    if( os::is_MP() )
2150      emit_opcode(cbuf,0xF0);
2151    // CMPXCHG8 [Eptr]
2152    emit_opcode(cbuf,0x0F);
2153    emit_opcode(cbuf,0xC7);
2154    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2155    // XCHG  rbx,ecx
2156    emit_opcode(cbuf,0x87);
2157    emit_opcode(cbuf,0xD9);
2158  %}
2159
2160  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2161    // [Lock]
2162    if( os::is_MP() )
2163      emit_opcode(cbuf,0xF0);
2164
2165    // CMPXCHG [Eptr]
2166    emit_opcode(cbuf,0x0F);
2167    emit_opcode(cbuf,0xB1);
2168    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2169  %}
2170
2171  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2172    int res_encoding = $res$$reg;
2173
2174    // MOV  res,0
2175    emit_opcode( cbuf, 0xB8 + res_encoding);
2176    emit_d32( cbuf, 0 );
2177    // JNE,s  fail
2178    emit_opcode(cbuf,0x75);
2179    emit_d8(cbuf, 5 );
2180    // MOV  res,1
2181    emit_opcode( cbuf, 0xB8 + res_encoding);
2182    emit_d32( cbuf, 1 );
2183    // fail:
2184  %}
2185
2186  enc_class set_instruction_start( ) %{
2187    cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2188  %}
2189
2190  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2191    int reg_encoding = $ereg$$reg;
2192    int base  = $mem$$base;
2193    int index = $mem$$index;
2194    int scale = $mem$$scale;
2195    int displace = $mem$$disp;
2196    bool disp_is_oop = $mem->disp_is_oop();
2197    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2198  %}
2199
2200  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2201    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2202    int base  = $mem$$base;
2203    int index = $mem$$index;
2204    int scale = $mem$$scale;
2205    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2206    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2207    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2208  %}
2209
2210  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2211    int r1, r2;
2212    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2213    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2214    emit_opcode(cbuf,0x0F);
2215    emit_opcode(cbuf,$tertiary);
2216    emit_rm(cbuf, 0x3, r1, r2);
2217    emit_d8(cbuf,$cnt$$constant);
2218    emit_d8(cbuf,$primary);
2219    emit_rm(cbuf, 0x3, $secondary, r1);
2220    emit_d8(cbuf,$cnt$$constant);
2221  %}
2222
2223  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2224    emit_opcode( cbuf, 0x8B ); // Move
2225    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2226    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2227      emit_d8(cbuf,$primary);
2228      emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2229      emit_d8(cbuf,$cnt$$constant-32);
2230    }
2231    emit_d8(cbuf,$primary);
2232    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2233    emit_d8(cbuf,31);
2234  %}
2235
2236  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2237    int r1, r2;
2238    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2239    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2240
2241    emit_opcode( cbuf, 0x8B ); // Move r1,r2
2242    emit_rm(cbuf, 0x3, r1, r2);
2243    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2244      emit_opcode(cbuf,$primary);
2245      emit_rm(cbuf, 0x3, $secondary, r1);
2246      emit_d8(cbuf,$cnt$$constant-32);
2247    }
2248    emit_opcode(cbuf,0x33);  // XOR r2,r2
2249    emit_rm(cbuf, 0x3, r2, r2);
2250  %}
2251
2252  // Clone of RegMem but accepts an extra parameter to access each
2253  // half of a double in memory; it never needs relocation info.
2254  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2255    emit_opcode(cbuf,$opcode$$constant);
2256    int reg_encoding = $rm_reg$$reg;
2257    int base     = $mem$$base;
2258    int index    = $mem$$index;
2259    int scale    = $mem$$scale;
2260    int displace = $mem$$disp + $disp_for_half$$constant;
2261    bool disp_is_oop = false;
2262    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2263  %}
2264
2265  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2266  //
2267  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2268  // and it never needs relocation information.
2269  // Frequently used to move data between FPU's Stack Top and memory.
2270  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2271    int rm_byte_opcode = $rm_opcode$$constant;
2272    int base     = $mem$$base;
2273    int index    = $mem$$index;
2274    int scale    = $mem$$scale;
2275    int displace = $mem$$disp;
2276    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2277    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2278  %}
2279
2280  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2281    int rm_byte_opcode = $rm_opcode$$constant;
2282    int base     = $mem$$base;
2283    int index    = $mem$$index;
2284    int scale    = $mem$$scale;
2285    int displace = $mem$$disp;
2286    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2287    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2288  %}
2289
2290  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2291    int reg_encoding = $dst$$reg;
2292    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2293    int index        = 0x04;            // 0x04 indicates no index
2294    int scale        = 0x00;            // 0x00 indicates no scale
2295    int displace     = $src1$$constant; // 0x00 indicates no displacement
2296    bool disp_is_oop = false;
2297    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2298  %}
2299
2300  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2301    // Compare dst,src
2302    emit_opcode(cbuf,0x3B);
2303    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2304    // jmp dst < src around move
2305    emit_opcode(cbuf,0x7C);
2306    emit_d8(cbuf,2);
2307    // move dst,src
2308    emit_opcode(cbuf,0x8B);
2309    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2310  %}
2311
2312  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2313    // Compare dst,src
2314    emit_opcode(cbuf,0x3B);
2315    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2316    // jmp dst > src around move
2317    emit_opcode(cbuf,0x7F);
2318    emit_d8(cbuf,2);
2319    // move dst,src
2320    emit_opcode(cbuf,0x8B);
2321    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2322  %}
2323
2324  enc_class enc_FP_store(memory mem, regD src) %{
2325    // If src is FPR1, we can just FST to store it.
2326    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2327    int reg_encoding = 0x2; // Just store
2328    int base  = $mem$$base;
2329    int index = $mem$$index;
2330    int scale = $mem$$scale;
2331    int displace = $mem$$disp;
2332    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2333    if( $src$$reg != FPR1L_enc ) {
2334      reg_encoding = 0x3;  // Store & pop
2335      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2336      emit_d8( cbuf, 0xC0-1+$src$$reg );
2337    }
2338    cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2339    emit_opcode(cbuf,$primary);
2340    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2341  %}
2342
2343  enc_class neg_reg(eRegI dst) %{
2344    // NEG $dst
2345    emit_opcode(cbuf,0xF7);
2346    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2347  %}
2348
2349  enc_class setLT_reg(eCXRegI dst) %{
2350    // SETLT $dst
2351    emit_opcode(cbuf,0x0F);
2352    emit_opcode(cbuf,0x9C);
2353    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2354  %}
2355
2356  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2357    int tmpReg = $tmp$$reg;
2358
2359    // SUB $p,$q
2360    emit_opcode(cbuf,0x2B);
2361    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2362    // SBB $tmp,$tmp
2363    emit_opcode(cbuf,0x1B);
2364    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2365    // AND $tmp,$y
2366    emit_opcode(cbuf,0x23);
2367    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2368    // ADD $p,$tmp
2369    emit_opcode(cbuf,0x03);
2370    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2371  %}
2372
2373  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2374    int tmpReg = $tmp$$reg;
2375
2376    // SUB $p,$q
2377    emit_opcode(cbuf,0x2B);
2378    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2379    // SBB $tmp,$tmp
2380    emit_opcode(cbuf,0x1B);
2381    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2382    // AND $tmp,$y
2383    cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2384    emit_opcode(cbuf,0x23);
2385    int reg_encoding = tmpReg;
2386    int base  = $mem$$base;
2387    int index = $mem$$index;
2388    int scale = $mem$$scale;
2389    int displace = $mem$$disp;
2390    bool disp_is_oop = $mem->disp_is_oop();
2391    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2392    // ADD $p,$tmp
2393    emit_opcode(cbuf,0x03);
2394    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2395  %}
2396
2397  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2398    // TEST shift,32
2399    emit_opcode(cbuf,0xF7);
2400    emit_rm(cbuf, 0x3, 0, ECX_enc);
2401    emit_d32(cbuf,0x20);
2402    // JEQ,s small
2403    emit_opcode(cbuf, 0x74);
2404    emit_d8(cbuf, 0x04);
2405    // MOV    $dst.hi,$dst.lo
2406    emit_opcode( cbuf, 0x8B );
2407    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2408    // CLR    $dst.lo
2409    emit_opcode(cbuf, 0x33);
2410    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2411// small:
2412    // SHLD   $dst.hi,$dst.lo,$shift
2413    emit_opcode(cbuf,0x0F);
2414    emit_opcode(cbuf,0xA5);
2415    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2416    // SHL    $dst.lo,$shift"
2417    emit_opcode(cbuf,0xD3);
2418    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2419  %}
2420
2421  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2422    // TEST shift,32
2423    emit_opcode(cbuf,0xF7);
2424    emit_rm(cbuf, 0x3, 0, ECX_enc);
2425    emit_d32(cbuf,0x20);
2426    // JEQ,s small
2427    emit_opcode(cbuf, 0x74);
2428    emit_d8(cbuf, 0x04);
2429    // MOV    $dst.lo,$dst.hi
2430    emit_opcode( cbuf, 0x8B );
2431    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2432    // CLR    $dst.hi
2433    emit_opcode(cbuf, 0x33);
2434    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2435// small:
2436    // SHRD   $dst.lo,$dst.hi,$shift
2437    emit_opcode(cbuf,0x0F);
2438    emit_opcode(cbuf,0xAD);
2439    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2440    // SHR    $dst.hi,$shift"
2441    emit_opcode(cbuf,0xD3);
2442    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2443  %}
2444
2445  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2446    // TEST shift,32
2447    emit_opcode(cbuf,0xF7);
2448    emit_rm(cbuf, 0x3, 0, ECX_enc);
2449    emit_d32(cbuf,0x20);
2450    // JEQ,s small
2451    emit_opcode(cbuf, 0x74);
2452    emit_d8(cbuf, 0x05);
2453    // MOV    $dst.lo,$dst.hi
2454    emit_opcode( cbuf, 0x8B );
2455    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2456    // SAR    $dst.hi,31
2457    emit_opcode(cbuf, 0xC1);
2458    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2459    emit_d8(cbuf, 0x1F );
2460// small:
2461    // SHRD   $dst.lo,$dst.hi,$shift
2462    emit_opcode(cbuf,0x0F);
2463    emit_opcode(cbuf,0xAD);
2464    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2465    // SAR    $dst.hi,$shift"
2466    emit_opcode(cbuf,0xD3);
2467    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2468  %}
2469
2470
2471  // ----------------- Encodings for floating point unit -----------------
2472  // May leave result in FPU-TOS or FPU reg depending on opcodes
2473  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2474    $$$emit8$primary;
2475    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2476  %}
2477
2478  // Pop argument in FPR0 with FSTP ST(0)
2479  enc_class PopFPU() %{
2480    emit_opcode( cbuf, 0xDD );
2481    emit_d8( cbuf, 0xD8 );
2482  %}
2483
2484  // !!!!! equivalent to Pop_Reg_F
2485  enc_class Pop_Reg_D( regD dst ) %{
2486    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2487    emit_d8( cbuf, 0xD8+$dst$$reg );
2488  %}
2489
2490  enc_class Push_Reg_D( regD dst ) %{
2491    emit_opcode( cbuf, 0xD9 );
2492    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2493  %}
2494
2495  enc_class strictfp_bias1( regD dst ) %{
2496    emit_opcode( cbuf, 0xDB );           // FLD m80real
2497    emit_opcode( cbuf, 0x2D );
2498    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2499    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2500    emit_opcode( cbuf, 0xC8+$dst$$reg );
2501  %}
2502
2503  enc_class strictfp_bias2( regD dst ) %{
2504    emit_opcode( cbuf, 0xDB );           // FLD m80real
2505    emit_opcode( cbuf, 0x2D );
2506    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2507    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2508    emit_opcode( cbuf, 0xC8+$dst$$reg );
2509  %}
2510
2511  // Special case for moving an integer register to a stack slot.
2512  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2513    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2514  %}
2515
2516  // Special case for moving a register to a stack slot.
2517  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2518    // Opcode already emitted
2519    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2520    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2521    emit_d32(cbuf, $dst$$disp);   // Displacement
2522  %}
2523
2524  // Push the integer in stackSlot 'src' onto FP-stack
2525  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2526    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2527  %}
2528
2529  // Push the float in stackSlot 'src' onto FP-stack
2530  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2531    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2532  %}
2533
2534  // Push the double in stackSlot 'src' onto FP-stack
2535  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2536    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2537  %}
2538
2539  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2540  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2541    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2542  %}
2543
2544  // Same as Pop_Mem_F except for opcode
2545  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2546  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2547    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2548  %}
2549
2550  enc_class Pop_Reg_F( regF dst ) %{
2551    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2552    emit_d8( cbuf, 0xD8+$dst$$reg );
2553  %}
2554
2555  enc_class Push_Reg_F( regF dst ) %{
2556    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2557    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2558  %}
2559
2560  // Push FPU's float to a stack-slot, and pop FPU-stack
2561  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2562    int pop = 0x02;
2563    if ($src$$reg != FPR1L_enc) {
2564      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2565      emit_d8( cbuf, 0xC0-1+$src$$reg );
2566      pop = 0x03;
2567    }
2568    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2569  %}
2570
2571  // Push FPU's double to a stack-slot, and pop FPU-stack
2572  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2573    int pop = 0x02;
2574    if ($src$$reg != FPR1L_enc) {
2575      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2576      emit_d8( cbuf, 0xC0-1+$src$$reg );
2577      pop = 0x03;
2578    }
2579    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2580  %}
2581
2582  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2583  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2584    int pop = 0xD0 - 1; // -1 since we skip FLD
2585    if ($src$$reg != FPR1L_enc) {
2586      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2587      emit_d8( cbuf, 0xC0-1+$src$$reg );
2588      pop = 0xD8;
2589    }
2590    emit_opcode( cbuf, 0xDD );
2591    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2592  %}
2593
2594
2595  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2596    MacroAssembler masm(&cbuf);
2597    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2598    masm.fmul(   $src2$$reg+0);   // value at TOS
2599    masm.fadd(   $src$$reg+0);    // value at TOS
2600    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2601  %}
2602
2603
2604  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2605    // load dst in FPR0
2606    emit_opcode( cbuf, 0xD9 );
2607    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2608    if ($src$$reg != FPR1L_enc) {
2609      // fincstp
2610      emit_opcode (cbuf, 0xD9);
2611      emit_opcode (cbuf, 0xF7);
2612      // swap src with FPR1:
2613      // FXCH FPR1 with src
2614      emit_opcode(cbuf, 0xD9);
2615      emit_d8(cbuf, 0xC8-1+$src$$reg );
2616      // fdecstp
2617      emit_opcode (cbuf, 0xD9);
2618      emit_opcode (cbuf, 0xF6);
2619    }
2620  %}
2621
2622  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2623    // Allocate a word
2624    emit_opcode(cbuf,0x83);            // SUB ESP,8
2625    emit_opcode(cbuf,0xEC);
2626    emit_d8(cbuf,0x08);
2627
2628    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2629    emit_opcode  (cbuf, 0x0F );
2630    emit_opcode  (cbuf, 0x11 );
2631    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2632
2633    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2634    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2635
2636    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2637    emit_opcode  (cbuf, 0x0F );
2638    emit_opcode  (cbuf, 0x11 );
2639    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2640
2641    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2642    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2643
2644  %}
2645
2646  enc_class Push_ModX_encoding( regX src0, regX src1) %{
2647    // Allocate a word
2648    emit_opcode(cbuf,0x83);            // SUB ESP,4
2649    emit_opcode(cbuf,0xEC);
2650    emit_d8(cbuf,0x04);
2651
2652    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2653    emit_opcode  (cbuf, 0x0F );
2654    emit_opcode  (cbuf, 0x11 );
2655    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2656
2657    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2658    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2659
2660    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2661    emit_opcode  (cbuf, 0x0F );
2662    emit_opcode  (cbuf, 0x11 );
2663    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2664
2665    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2666    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2667
2668  %}
2669
2670  enc_class Push_ResultXD(regXD dst) %{
2671    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2672
2673    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2674    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2675    emit_opcode  (cbuf, 0x0F );
2676    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2677    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2678
2679    emit_opcode(cbuf,0x83);    // ADD ESP,8
2680    emit_opcode(cbuf,0xC4);
2681    emit_d8(cbuf,0x08);
2682  %}
2683
2684  enc_class Push_ResultX(regX dst, immI d8) %{
2685    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2686
2687    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2688    emit_opcode  (cbuf, 0x0F );
2689    emit_opcode  (cbuf, 0x10 );
2690    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2691
2692    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2693    emit_opcode(cbuf,0xC4);
2694    emit_d8(cbuf,$d8$$constant);
2695  %}
2696
2697  enc_class Push_SrcXD(regXD src) %{
2698    // Allocate a word
2699    emit_opcode(cbuf,0x83);            // SUB ESP,8
2700    emit_opcode(cbuf,0xEC);
2701    emit_d8(cbuf,0x08);
2702
2703    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2704    emit_opcode  (cbuf, 0x0F );
2705    emit_opcode  (cbuf, 0x11 );
2706    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2707
2708    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2709    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2710  %}
2711
2712  enc_class push_stack_temp_qword() %{
2713    emit_opcode(cbuf,0x83);     // SUB ESP,8
2714    emit_opcode(cbuf,0xEC);
2715    emit_d8    (cbuf,0x08);
2716  %}
2717
2718  enc_class pop_stack_temp_qword() %{
2719    emit_opcode(cbuf,0x83);     // ADD ESP,8
2720    emit_opcode(cbuf,0xC4);
2721    emit_d8    (cbuf,0x08);
2722  %}
2723
2724  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2725    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2726    emit_opcode  (cbuf, 0x0F );
2727    emit_opcode  (cbuf, 0x11 );
2728    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2729
2730    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2731    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2732  %}
2733
2734  // Compute X^Y using Intel's fast hardware instructions, if possible.
2735  // Otherwise return a NaN.
2736  enc_class pow_exp_core_encoding %{
2737    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2738    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2739    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2740    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2741    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2742    emit_opcode(cbuf,0x1C);
2743    emit_d8(cbuf,0x24);
2744    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2745    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2746    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2747    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2748    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2749    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2750    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2751    emit_d32(cbuf,0xFFFFF800);
2752    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2753    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2754    emit_d32(cbuf,1023);
2755    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2756    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2757    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2758    emit_rm(cbuf,0x3,0x4,EAX_enc);
2759    emit_d8(cbuf,20);
2760    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2761    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2762    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2763    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2764    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2765    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2766    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2767    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2768    emit_d32(cbuf,0);
2769    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2770    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2771  %}
2772
2773//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2774//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2775
2776  enc_class Push_Result_Mod_D( regD src) %{
2777    if ($src$$reg != FPR1L_enc) {
2778      // fincstp
2779      emit_opcode (cbuf, 0xD9);
2780      emit_opcode (cbuf, 0xF7);
2781      // FXCH FPR1 with src
2782      emit_opcode(cbuf, 0xD9);
2783      emit_d8(cbuf, 0xC8-1+$src$$reg );
2784      // fdecstp
2785      emit_opcode (cbuf, 0xD9);
2786      emit_opcode (cbuf, 0xF6);
2787    }
2788    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2789    // // FSTP   FPR$dst$$reg
2790    // emit_opcode( cbuf, 0xDD );
2791    // emit_d8( cbuf, 0xD8+$dst$$reg );
2792  %}
2793
2794  enc_class fnstsw_sahf_skip_parity() %{
2795    // fnstsw ax
2796    emit_opcode( cbuf, 0xDF );
2797    emit_opcode( cbuf, 0xE0 );
2798    // sahf
2799    emit_opcode( cbuf, 0x9E );
2800    // jnp  ::skip
2801    emit_opcode( cbuf, 0x7B );
2802    emit_opcode( cbuf, 0x05 );
2803  %}
2804
2805  enc_class emitModD() %{
2806    // fprem must be iterative
2807    // :: loop
2808    // fprem
2809    emit_opcode( cbuf, 0xD9 );
2810    emit_opcode( cbuf, 0xF8 );
2811    // wait
2812    emit_opcode( cbuf, 0x9b );
2813    // fnstsw ax
2814    emit_opcode( cbuf, 0xDF );
2815    emit_opcode( cbuf, 0xE0 );
2816    // sahf
2817    emit_opcode( cbuf, 0x9E );
2818    // jp  ::loop
2819    emit_opcode( cbuf, 0x0F );
2820    emit_opcode( cbuf, 0x8A );
2821    emit_opcode( cbuf, 0xF4 );
2822    emit_opcode( cbuf, 0xFF );
2823    emit_opcode( cbuf, 0xFF );
2824    emit_opcode( cbuf, 0xFF );
2825  %}
2826
2827  enc_class fpu_flags() %{
2828    // fnstsw_ax
2829    emit_opcode( cbuf, 0xDF);
2830    emit_opcode( cbuf, 0xE0);
2831    // test ax,0x0400
2832    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2833    emit_opcode( cbuf, 0xA9 );
2834    emit_d16   ( cbuf, 0x0400 );
2835    // // // This sequence works, but stalls for 12-16 cycles on PPro
2836    // // test rax,0x0400
2837    // emit_opcode( cbuf, 0xA9 );
2838    // emit_d32   ( cbuf, 0x00000400 );
2839    //
2840    // jz exit (no unordered comparison)
2841    emit_opcode( cbuf, 0x74 );
2842    emit_d8    ( cbuf, 0x02 );
2843    // mov ah,1 - treat as LT case (set carry flag)
2844    emit_opcode( cbuf, 0xB4 );
2845    emit_d8    ( cbuf, 0x01 );
2846    // sahf
2847    emit_opcode( cbuf, 0x9E);
2848  %}
2849
2850  enc_class cmpF_P6_fixup() %{
2851    // Fixup the integer flags in case comparison involved a NaN
2852    //
2853    // JNP exit (no unordered comparison, P-flag is set by NaN)
2854    emit_opcode( cbuf, 0x7B );
2855    emit_d8    ( cbuf, 0x03 );
2856    // MOV AH,1 - treat as LT case (set carry flag)
2857    emit_opcode( cbuf, 0xB4 );
2858    emit_d8    ( cbuf, 0x01 );
2859    // SAHF
2860    emit_opcode( cbuf, 0x9E);
2861    // NOP     // target for branch to avoid branch to branch
2862    emit_opcode( cbuf, 0x90);
2863  %}
2864
2865//     fnstsw_ax();
2866//     sahf();
2867//     movl(dst, nan_result);
2868//     jcc(Assembler::parity, exit);
2869//     movl(dst, less_result);
2870//     jcc(Assembler::below, exit);
2871//     movl(dst, equal_result);
2872//     jcc(Assembler::equal, exit);
2873//     movl(dst, greater_result);
2874
2875// less_result     =  1;
2876// greater_result  = -1;
2877// equal_result    = 0;
2878// nan_result      = -1;
2879
2880  enc_class CmpF_Result(eRegI dst) %{
2881    // fnstsw_ax();
2882    emit_opcode( cbuf, 0xDF);
2883    emit_opcode( cbuf, 0xE0);
2884    // sahf
2885    emit_opcode( cbuf, 0x9E);
2886    // movl(dst, nan_result);
2887    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2888    emit_d32( cbuf, -1 );
2889    // jcc(Assembler::parity, exit);
2890    emit_opcode( cbuf, 0x7A );
2891    emit_d8    ( cbuf, 0x13 );
2892    // movl(dst, less_result);
2893    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2894    emit_d32( cbuf, -1 );
2895    // jcc(Assembler::below, exit);
2896    emit_opcode( cbuf, 0x72 );
2897    emit_d8    ( cbuf, 0x0C );
2898    // movl(dst, equal_result);
2899    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2900    emit_d32( cbuf, 0 );
2901    // jcc(Assembler::equal, exit);
2902    emit_opcode( cbuf, 0x74 );
2903    emit_d8    ( cbuf, 0x05 );
2904    // movl(dst, greater_result);
2905    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2906    emit_d32( cbuf, 1 );
2907  %}
2908
2909
2910  // XMM version of CmpF_Result. Because the XMM compare
2911  // instructions set the EFLAGS directly. It becomes simpler than
2912  // the float version above.
2913  enc_class CmpX_Result(eRegI dst) %{
2914    MacroAssembler _masm(&cbuf);
2915    Label nan, inc, done;
2916
2917    __ jccb(Assembler::parity, nan);
2918    __ jccb(Assembler::equal,  done);
2919    __ jccb(Assembler::above,  inc);
2920    __ bind(nan);
2921    __ decrement(as_Register($dst$$reg)); // NO L qqq
2922    __ jmpb(done);
2923    __ bind(inc);
2924    __ increment(as_Register($dst$$reg)); // NO L qqq
2925    __ bind(done);
2926  %}
2927
2928  // Compare the longs and set flags
2929  // BROKEN!  Do Not use as-is
2930  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2931    // CMP    $src1.hi,$src2.hi
2932    emit_opcode( cbuf, 0x3B );
2933    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2934    // JNE,s  done
2935    emit_opcode(cbuf,0x75);
2936    emit_d8(cbuf, 2 );
2937    // CMP    $src1.lo,$src2.lo
2938    emit_opcode( cbuf, 0x3B );
2939    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2940// done:
2941  %}
2942
2943  enc_class convert_int_long( regL dst, eRegI src ) %{
2944    // mov $dst.lo,$src
2945    int dst_encoding = $dst$$reg;
2946    int src_encoding = $src$$reg;
2947    encode_Copy( cbuf, dst_encoding  , src_encoding );
2948    // mov $dst.hi,$src
2949    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2950    // sar $dst.hi,31
2951    emit_opcode( cbuf, 0xC1 );
2952    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2953    emit_d8(cbuf, 0x1F );
2954  %}
2955
2956  enc_class convert_long_double( eRegL src ) %{
2957    // push $src.hi
2958    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2959    // push $src.lo
2960    emit_opcode(cbuf, 0x50+$src$$reg  );
2961    // fild 64-bits at [SP]
2962    emit_opcode(cbuf,0xdf);
2963    emit_d8(cbuf, 0x6C);
2964    emit_d8(cbuf, 0x24);
2965    emit_d8(cbuf, 0x00);
2966    // pop stack
2967    emit_opcode(cbuf, 0x83); // add  SP, #8
2968    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2969    emit_d8(cbuf, 0x8);
2970  %}
2971
2972  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2973    // IMUL   EDX:EAX,$src1
2974    emit_opcode( cbuf, 0xF7 );
2975    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2976    // SAR    EDX,$cnt-32
2977    int shift_count = ((int)$cnt$$constant) - 32;
2978    if (shift_count > 0) {
2979      emit_opcode(cbuf, 0xC1);
2980      emit_rm(cbuf, 0x3, 7, $dst$$reg );
2981      emit_d8(cbuf, shift_count);
2982    }
2983  %}
2984
2985  // this version doesn't have add sp, 8
2986  enc_class convert_long_double2( eRegL src ) %{
2987    // push $src.hi
2988    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2989    // push $src.lo
2990    emit_opcode(cbuf, 0x50+$src$$reg  );
2991    // fild 64-bits at [SP]
2992    emit_opcode(cbuf,0xdf);
2993    emit_d8(cbuf, 0x6C);
2994    emit_d8(cbuf, 0x24);
2995    emit_d8(cbuf, 0x00);
2996  %}
2997
2998  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2999    // Basic idea: long = (long)int * (long)int
3000    // IMUL EDX:EAX, src
3001    emit_opcode( cbuf, 0xF7 );
3002    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
3003  %}
3004
3005  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
3006    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
3007    // MUL EDX:EAX, src
3008    emit_opcode( cbuf, 0xF7 );
3009    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
3010  %}
3011
3012  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
3013    // Basic idea: lo(result) = lo(x_lo * y_lo)
3014    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
3015    // MOV    $tmp,$src.lo
3016    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
3017    // IMUL   $tmp,EDX
3018    emit_opcode( cbuf, 0x0F );
3019    emit_opcode( cbuf, 0xAF );
3020    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3021    // MOV    EDX,$src.hi
3022    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3023    // IMUL   EDX,EAX
3024    emit_opcode( cbuf, 0x0F );
3025    emit_opcode( cbuf, 0xAF );
3026    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3027    // ADD    $tmp,EDX
3028    emit_opcode( cbuf, 0x03 );
3029    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3030    // MUL   EDX:EAX,$src.lo
3031    emit_opcode( cbuf, 0xF7 );
3032    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3033    // ADD    EDX,ESI
3034    emit_opcode( cbuf, 0x03 );
3035    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3036  %}
3037
3038  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3039    // Basic idea: lo(result) = lo(src * y_lo)
3040    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3041    // IMUL   $tmp,EDX,$src
3042    emit_opcode( cbuf, 0x6B );
3043    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3044    emit_d8( cbuf, (int)$src$$constant );
3045    // MOV    EDX,$src
3046    emit_opcode(cbuf, 0xB8 + EDX_enc);
3047    emit_d32( cbuf, (int)$src$$constant );
3048    // MUL   EDX:EAX,EDX
3049    emit_opcode( cbuf, 0xF7 );
3050    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3051    // ADD    EDX,ESI
3052    emit_opcode( cbuf, 0x03 );
3053    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3054  %}
3055
3056  enc_class long_div( eRegL src1, eRegL src2 ) %{
3057    // PUSH src1.hi
3058    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3059    // PUSH src1.lo
3060    emit_opcode(cbuf,               0x50+$src1$$reg  );
3061    // PUSH src2.hi
3062    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3063    // PUSH src2.lo
3064    emit_opcode(cbuf,               0x50+$src2$$reg  );
3065    // CALL directly to the runtime
3066    cbuf.set_insts_mark();
3067    emit_opcode(cbuf,0xE8);       // Call into runtime
3068    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3069    // Restore stack
3070    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3071    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3072    emit_d8(cbuf, 4*4);
3073  %}
3074
3075  enc_class long_mod( eRegL src1, eRegL src2 ) %{
3076    // PUSH src1.hi
3077    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3078    // PUSH src1.lo
3079    emit_opcode(cbuf,               0x50+$src1$$reg  );
3080    // PUSH src2.hi
3081    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3082    // PUSH src2.lo
3083    emit_opcode(cbuf,               0x50+$src2$$reg  );
3084    // CALL directly to the runtime
3085    cbuf.set_insts_mark();
3086    emit_opcode(cbuf,0xE8);       // Call into runtime
3087    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3088    // Restore stack
3089    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3090    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3091    emit_d8(cbuf, 4*4);
3092  %}
3093
3094  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3095    // MOV   $tmp,$src.lo
3096    emit_opcode(cbuf, 0x8B);
3097    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3098    // OR    $tmp,$src.hi
3099    emit_opcode(cbuf, 0x0B);
3100    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3101  %}
3102
3103  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3104    // CMP    $src1.lo,$src2.lo
3105    emit_opcode( cbuf, 0x3B );
3106    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3107    // JNE,s  skip
3108    emit_cc(cbuf, 0x70, 0x5);
3109    emit_d8(cbuf,2);
3110    // CMP    $src1.hi,$src2.hi
3111    emit_opcode( cbuf, 0x3B );
3112    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3113  %}
3114
3115  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3116    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3117    emit_opcode( cbuf, 0x3B );
3118    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3119    // MOV    $tmp,$src1.hi
3120    emit_opcode( cbuf, 0x8B );
3121    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3122    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3123    emit_opcode( cbuf, 0x1B );
3124    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3125  %}
3126
3127  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3128    // XOR    $tmp,$tmp
3129    emit_opcode(cbuf,0x33);  // XOR
3130    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3131    // CMP    $tmp,$src.lo
3132    emit_opcode( cbuf, 0x3B );
3133    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3134    // SBB    $tmp,$src.hi
3135    emit_opcode( cbuf, 0x1B );
3136    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3137  %}
3138
3139 // Sniff, sniff... smells like Gnu Superoptimizer
3140  enc_class neg_long( eRegL dst ) %{
3141    emit_opcode(cbuf,0xF7);    // NEG hi
3142    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3143    emit_opcode(cbuf,0xF7);    // NEG lo
3144    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3145    emit_opcode(cbuf,0x83);    // SBB hi,0
3146    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3147    emit_d8    (cbuf,0 );
3148  %}
3149
3150  enc_class movq_ld(regXD dst, memory mem) %{
3151    MacroAssembler _masm(&cbuf);
3152    __ movq($dst$$XMMRegister, $mem$$Address);
3153  %}
3154
3155  enc_class movq_st(memory mem, regXD src) %{
3156    MacroAssembler _masm(&cbuf);
3157    __ movq($mem$$Address, $src$$XMMRegister);
3158  %}
3159
3160  enc_class pshufd_8x8(regX dst, regX src) %{
3161    MacroAssembler _masm(&cbuf);
3162
3163    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3164    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3165    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3166  %}
3167
3168  enc_class pshufd_4x16(regX dst, regX src) %{
3169    MacroAssembler _masm(&cbuf);
3170
3171    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3172  %}
3173
3174  enc_class pshufd(regXD dst, regXD src, int mode) %{
3175    MacroAssembler _masm(&cbuf);
3176
3177    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3178  %}
3179
3180  enc_class pxor(regXD dst, regXD src) %{
3181    MacroAssembler _masm(&cbuf);
3182
3183    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3184  %}
3185
3186  enc_class mov_i2x(regXD dst, eRegI src) %{
3187    MacroAssembler _masm(&cbuf);
3188
3189    __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3190  %}
3191
3192
3193  // Because the transitions from emitted code to the runtime
3194  // monitorenter/exit helper stubs are so slow it's critical that
3195  // we inline both the stack-locking fast-path and the inflated fast path.
3196  //
3197  // See also: cmpFastLock and cmpFastUnlock.
3198  //
3199  // What follows is a specialized inline transliteration of the code
3200  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3201  // another option would be to emit TrySlowEnter and TrySlowExit methods
3202  // at startup-time.  These methods would accept arguments as
3203  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3204  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3205  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3206  // In practice, however, the # of lock sites is bounded and is usually small.
3207  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3208  // if the processor uses simple bimodal branch predictors keyed by EIP
3209  // Since the helper routines would be called from multiple synchronization
3210  // sites.
3211  //
3212  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3213  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3214  // to those specialized methods.  That'd give us a mostly platform-independent
3215  // implementation that the JITs could optimize and inline at their pleasure.
3216  // Done correctly, the only time we'd need to cross to native could would be
3217  // to park() or unpark() threads.  We'd also need a few more unsafe operators
3218  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3219  // (b) explicit barriers or fence operations.
3220  //
3221  // TODO:
3222  //
3223  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3224  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3225  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3226  //    the lock operators would typically be faster than reifying Self.
3227  //
3228  // *  Ideally I'd define the primitives as:
3229  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3230  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3231  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3232  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3233  //    Furthermore the register assignments are overconstrained, possibly resulting in
3234  //    sub-optimal code near the synchronization site.
3235  //
3236  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3237  //    Alternately, use a better sp-proximity test.
3238  //
3239  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3240  //    Either one is sufficient to uniquely identify a thread.
3241  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3242  //
3243  // *  Intrinsify notify() and notifyAll() for the common cases where the
3244  //    object is locked by the calling thread but the waitlist is empty.
3245  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3246  //
3247  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3248  //    But beware of excessive branch density on AMD Opterons.
3249  //
3250  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3251  //    or failure of the fast-path.  If the fast-path fails then we pass
3252  //    control to the slow-path, typically in C.  In Fast_Lock and
3253  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3254  //    will emit a conditional branch immediately after the node.
3255  //    So we have branches to branches and lots of ICC.ZF games.
3256  //    Instead, it might be better to have C2 pass a "FailureLabel"
3257  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3258  //    will drop through the node.  ICC.ZF is undefined at exit.
3259  //    In the case of failure, the node will branch directly to the
3260  //    FailureLabel
3261
3262
3263  // obj: object to lock
3264  // box: on-stack box address (displaced header location) - KILLED
3265  // rax,: tmp -- KILLED
3266  // scr: tmp -- KILLED
3267  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3268
3269    Register objReg = as_Register($obj$$reg);
3270    Register boxReg = as_Register($box$$reg);
3271    Register tmpReg = as_Register($tmp$$reg);
3272    Register scrReg = as_Register($scr$$reg);
3273
3274    // Ensure the register assignents are disjoint
3275    guarantee (objReg != boxReg, "") ;
3276    guarantee (objReg != tmpReg, "") ;
3277    guarantee (objReg != scrReg, "") ;
3278    guarantee (boxReg != tmpReg, "") ;
3279    guarantee (boxReg != scrReg, "") ;
3280    guarantee (tmpReg == as_Register(EAX_enc), "") ;
3281
3282    MacroAssembler masm(&cbuf);
3283
3284    if (_counters != NULL) {
3285      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3286    }
3287    if (EmitSync & 1) {
3288        // set box->dhw = unused_mark (3)
3289        // Force all sync thru slow-path: slow_enter() and slow_exit() 
3290        masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3291        masm.cmpptr (rsp, (int32_t)0) ;                        
3292    } else 
3293    if (EmitSync & 2) { 
3294        Label DONE_LABEL ;           
3295        if (UseBiasedLocking) {
3296           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3297           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3298        }
3299
3300        masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3301        masm.orptr (tmpReg, 0x1);
3302        masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3303        if (os::is_MP()) { masm.lock();  }
3304        masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3305        masm.jcc(Assembler::equal, DONE_LABEL);
3306        // Recursive locking
3307        masm.subptr(tmpReg, rsp);
3308        masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3309        masm.movptr(Address(boxReg, 0), tmpReg);
3310        masm.bind(DONE_LABEL) ; 
3311    } else {  
3312      // Possible cases that we'll encounter in fast_lock 
3313      // ------------------------------------------------
3314      // * Inflated
3315      //    -- unlocked
3316      //    -- Locked
3317      //       = by self
3318      //       = by other
3319      // * biased
3320      //    -- by Self
3321      //    -- by other
3322      // * neutral
3323      // * stack-locked
3324      //    -- by self
3325      //       = sp-proximity test hits
3326      //       = sp-proximity test generates false-negative
3327      //    -- by other
3328      //
3329
3330      Label IsInflated, DONE_LABEL, PopDone ;
3331
3332      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3333      // order to reduce the number of conditional branches in the most common cases.
3334      // Beware -- there's a subtle invariant that fetch of the markword
3335      // at [FETCH], below, will never observe a biased encoding (*101b).
3336      // If this invariant is not held we risk exclusion (safety) failure.
3337      if (UseBiasedLocking && !UseOptoBiasInlining) {
3338        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3339      }
3340
3341      masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3342      masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3343      masm.jccb  (Assembler::notZero, IsInflated) ;
3344
3345      // Attempt stack-locking ...
3346      masm.orptr (tmpReg, 0x1);
3347      masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3348      if (os::is_MP()) { masm.lock();  }
3349      masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3350      if (_counters != NULL) {
3351        masm.cond_inc32(Assembler::equal,
3352                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3353      }
3354      masm.jccb (Assembler::equal, DONE_LABEL);
3355
3356      // Recursive locking
3357      masm.subptr(tmpReg, rsp);
3358      masm.andptr(tmpReg, 0xFFFFF003 );
3359      masm.movptr(Address(boxReg, 0), tmpReg);
3360      if (_counters != NULL) {
3361        masm.cond_inc32(Assembler::equal,
3362                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3363      }
3364      masm.jmp  (DONE_LABEL) ;
3365
3366      masm.bind (IsInflated) ;
3367
3368      // The object is inflated.
3369      //
3370      // TODO-FIXME: eliminate the ugly use of manifest constants:
3371      //   Use markOopDesc::monitor_value instead of "2".
3372      //   use markOop::unused_mark() instead of "3".
3373      // The tmpReg value is an objectMonitor reference ORed with
3374      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3375      // objectmonitor pointer by masking off the "2" bit or we can just
3376      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3377      // field offsets with "-2" to compensate for and annul the low-order tag bit.
3378      //
3379      // I use the latter as it avoids AGI stalls.
3380      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3381      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3382      //
3383      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3384
3385      // boxReg refers to the on-stack BasicLock in the current frame.
3386      // We'd like to write:
3387      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3388      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3389      // additional latency as we have another ST in the store buffer that must drain.
3390
3391      if (EmitSync & 8192) { 
3392         masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3393         masm.get_thread (scrReg) ; 
3394         masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3395         masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3396         if (os::is_MP()) { masm.lock(); } 
3397         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3398      } else 
3399      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3400         masm.movptr(scrReg, boxReg) ; 
3401         masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3402
3403         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3404         if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3405            // prefetchw [eax + Offset(_owner)-2]
3406            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3407         }
3408
3409         if ((EmitSync & 64) == 0) {
3410           // Optimistic form: consider XORL tmpReg,tmpReg
3411           masm.movptr(tmpReg, NULL_WORD) ; 
3412         } else { 
3413           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3414           // Test-And-CAS instead of CAS
3415           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3416           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3417           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3418         }
3419
3420         // Appears unlocked - try to swing _owner from null to non-null.
3421         // Ideally, I'd manifest "Self" with get_thread and then attempt
3422         // to CAS the register containing Self into m->Owner.
3423         // But we don't have enough registers, so instead we can either try to CAS
3424         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3425         // we later store "Self" into m->Owner.  Transiently storing a stack address
3426         // (rsp or the address of the box) into  m->owner is harmless.
3427         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3428         if (os::is_MP()) { masm.lock();  }
3429         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3430         masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3431         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3432         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3433         masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3434         masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3435                       
3436         // If the CAS fails we can either retry or pass control to the slow-path.  
3437         // We use the latter tactic.  
3438         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3439         // If the CAS was successful ...
3440         //   Self has acquired the lock
3441         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3442         // Intentional fall-through into DONE_LABEL ...
3443      } else {
3444         masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3445         masm.movptr(boxReg, tmpReg) ; 
3446
3447         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3448         if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3449            // prefetchw [eax + Offset(_owner)-2]
3450            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3451         }
3452
3453         if ((EmitSync & 64) == 0) {
3454           // Optimistic form
3455           masm.xorptr  (tmpReg, tmpReg) ; 
3456         } else { 
3457           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3458           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3459           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3460           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3461         }
3462
3463         // Appears unlocked - try to swing _owner from null to non-null.
3464         // Use either "Self" (in scr) or rsp as thread identity in _owner.
3465         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3466         masm.get_thread (scrReg) ;
3467         if (os::is_MP()) { masm.lock(); }
3468         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3469
3470         // If the CAS fails we can either retry or pass control to the slow-path.
3471         // We use the latter tactic.
3472         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3473         // If the CAS was successful ...
3474         //   Self has acquired the lock
3475         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3476         // Intentional fall-through into DONE_LABEL ...
3477      }
3478
3479      // DONE_LABEL is a hot target - we'd really like to place it at the
3480      // start of cache line by padding with NOPs.
3481      // See the AMD and Intel software optimization manuals for the
3482      // most efficient "long" NOP encodings.
3483      // Unfortunately none of our alignment mechanisms suffice.
3484      masm.bind(DONE_LABEL);
3485
3486      // Avoid branch-to-branch on AMD processors
3487      // This appears to be superstition.
3488      if (EmitSync & 32) masm.nop() ;
3489
3490
3491      // At DONE_LABEL the icc ZFlag is set as follows ...
3492      // Fast_Unlock uses the same protocol.
3493      // ZFlag == 1 -> Success
3494      // ZFlag == 0 -> Failure - force control through the slow-path
3495    }
3496  %}
3497
3498  // obj: object to unlock
3499  // box: box address (displaced header location), killed.  Must be EAX.
3500  // rbx,: killed tmp; cannot be obj nor box.
3501  //
3502  // Some commentary on balanced locking:
3503  //
3504  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3505  // Methods that don't have provably balanced locking are forced to run in the
3506  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3507  // The interpreter provides two properties:
3508  // I1:  At return-time the interpreter automatically and quietly unlocks any
3509  //      objects acquired the current activation (frame).  Recall that the
3510  //      interpreter maintains an on-stack list of locks currently held by
3511  //      a frame.
3512  // I2:  If a method attempts to unlock an object that is not held by the
3513  //      the frame the interpreter throws IMSX.
3514  //
3515  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3516  // B() doesn't have provably balanced locking so it runs in the interpreter.
3517  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3518  // is still locked by A().
3519  //
3520  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3521  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3522  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3523  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3524
3525  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3526
3527    Register objReg = as_Register($obj$$reg);
3528    Register boxReg = as_Register($box$$reg);
3529    Register tmpReg = as_Register($tmp$$reg);
3530
3531    guarantee (objReg != boxReg, "") ;
3532    guarantee (objReg != tmpReg, "") ;
3533    guarantee (boxReg != tmpReg, "") ;
3534    guarantee (boxReg == as_Register(EAX_enc), "") ;
3535    MacroAssembler masm(&cbuf);
3536
3537    if (EmitSync & 4) {
3538      // Disable - inhibit all inlining.  Force control through the slow-path
3539      masm.cmpptr (rsp, 0) ; 
3540    } else 
3541    if (EmitSync & 8) {
3542      Label DONE_LABEL ;
3543      if (UseBiasedLocking) {
3544         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3545      }
3546      // classic stack-locking code ...
3547      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3548      masm.testptr(tmpReg, tmpReg) ;
3549      masm.jcc   (Assembler::zero, DONE_LABEL) ;
3550      if (os::is_MP()) { masm.lock(); }
3551      masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3552      masm.bind(DONE_LABEL);
3553    } else {
3554      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3555
3556      // Critically, the biased locking test must have precedence over
3557      // and appear before the (box->dhw == 0) recursive stack-lock test.
3558      if (UseBiasedLocking && !UseOptoBiasInlining) {
3559         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3560      }
3561      
3562      masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3563      masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3564      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3565
3566      masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3567      masm.jccb  (Assembler::zero, Stacked) ;
3568
3569      masm.bind  (Inflated) ;
3570      // It's inflated.
3571      // Despite our balanced locking property we still check that m->_owner == Self
3572      // as java routines or native JNI code called by this thread might
3573      // have released the lock.
3574      // Refer to the comments in synchronizer.cpp for how we might encode extra
3575      // state in _succ so we can avoid fetching EntryList|cxq.
3576      //
3577      // I'd like to add more cases in fast_lock() and fast_unlock() --
3578      // such as recursive enter and exit -- but we have to be wary of
3579      // I$ bloat, T$ effects and BP$ effects.
3580      //
3581      // If there's no contention try a 1-0 exit.  That is, exit without
3582      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3583      // we detect and recover from the race that the 1-0 exit admits.
3584      //
3585      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3586      // before it STs null into _owner, releasing the lock.  Updates
3587      // to data protected by the critical section must be visible before
3588      // we drop the lock (and thus before any other thread could acquire
3589      // the lock and observe the fields protected by the lock).
3590      // IA32's memory-model is SPO, so STs are ordered with respect to
3591      // each other and there's no need for an explicit barrier (fence).
3592      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3593
3594      masm.get_thread (boxReg) ;
3595      if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
3596        // prefetchw [ebx + Offset(_owner)-2]
3597        masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3598      }
3599
3600      // Note that we could employ various encoding schemes to reduce
3601      // the number of loads below (currently 4) to just 2 or 3.
3602      // Refer to the comments in synchronizer.cpp.
3603      // In practice the chain of fetches doesn't seem to impact performance, however.
3604      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3605         // Attempt to reduce branch density - AMD's branch predictor.
3606         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3607         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3608         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3609         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3610         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3611         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3612         masm.jmpb  (DONE_LABEL) ; 
3613      } else { 
3614         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3615         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3616         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3617         masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3618         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3619         masm.jccb  (Assembler::notZero, CheckSucc) ; 
3620         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3621         masm.jmpb  (DONE_LABEL) ; 
3622      }
3623
3624      // The Following code fragment (EmitSync & 65536) improves the performance of
3625      // contended applications and contended synchronization microbenchmarks.
3626      // Unfortunately the emission of the code - even though not executed - causes regressions
3627      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3628      // with an equal number of never-executed NOPs results in the same regression.
3629      // We leave it off by default.
3630
3631      if ((EmitSync & 65536) != 0) {
3632         Label LSuccess, LGoSlowPath ;
3633
3634         masm.bind  (CheckSucc) ;
3635
3636         // Optional pre-test ... it's safe to elide this
3637         if ((EmitSync & 16) == 0) { 
3638            masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3639            masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3640         }
3641
3642         // We have a classic Dekker-style idiom:
3643         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3644         // There are a number of ways to implement the barrier:
3645         // (1) lock:andl &m->_owner, 0
3646         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3647         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3648         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3649         // (2) If supported, an explicit MFENCE is appealing.
3650         //     In older IA32 processors MFENCE is slower than lock:add or xchg
3651         //     particularly if the write-buffer is full as might be the case if
3652         //     if stores closely precede the fence or fence-equivalent instruction.
3653         //     In more modern implementations MFENCE appears faster, however.
3654         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3655         //     The $lines underlying the top-of-stack should be in M-state.
3656         //     The locked add instruction is serializing, of course.
3657         // (4) Use xchg, which is serializing
3658         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3659         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3660         //     The integer condition codes will tell us if succ was 0.
3661         //     Since _succ and _owner should reside in the same $line and
3662         //     we just stored into _owner, it's likely that the $line
3663         //     remains in M-state for the lock:orl.
3664         //
3665         // We currently use (3), although it's likely that switching to (2)
3666         // is correct for the future.
3667            
3668         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3669         if (os::is_MP()) { 
3670            if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3671              masm.mfence();
3672            } else { 
3673              masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3674            }
3675         }
3676         // Ratify _succ remains non-null
3677         masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3678         masm.jccb  (Assembler::notZero, LSuccess) ; 
3679
3680         masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3681         if (os::is_MP()) { masm.lock(); }
3682         masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3683         masm.jccb  (Assembler::notEqual, LSuccess) ;
3684         // Since we're low on registers we installed rsp as a placeholding in _owner.
3685         // Now install Self over rsp.  This is safe as we're transitioning from
3686         // non-null to non=null
3687         masm.get_thread (boxReg) ;
3688         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3689         // Intentional fall-through into LGoSlowPath ...
3690
3691         masm.bind  (LGoSlowPath) ; 
3692         masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3693         masm.jmpb  (DONE_LABEL) ; 
3694
3695         masm.bind  (LSuccess) ; 
3696         masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3697         masm.jmpb  (DONE_LABEL) ; 
3698      }
3699
3700      masm.bind (Stacked) ;
3701      // It's not inflated and it's not recursively stack-locked and it's not biased.
3702      // It must be stack-locked.
3703      // Try to reset the header to displaced header.
3704      // The "box" value on the stack is stable, so we can reload
3705      // and be assured we observe the same value as above.
3706      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3707      if (os::is_MP()) {   masm.lock();    }
3708      masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3709      // Intention fall-thru into DONE_LABEL
3710
3711
3712      // DONE_LABEL is a hot target - we'd really like to place it at the
3713      // start of cache line by padding with NOPs.
3714      // See the AMD and Intel software optimization manuals for the
3715      // most efficient "long" NOP encodings.
3716      // Unfortunately none of our alignment mechanisms suffice.
3717      if ((EmitSync & 65536) == 0) {
3718         masm.bind (CheckSucc) ;
3719      }
3720      masm.bind(DONE_LABEL);
3721
3722      // Avoid branch to branch on AMD processors
3723      if (EmitSync & 32768) { masm.nop() ; }
3724    }
3725  %}
3726
3727
3728  enc_class enc_pop_rdx() %{
3729    emit_opcode(cbuf,0x5A);
3730  %}
3731
3732  enc_class enc_rethrow() %{
3733    cbuf.set_insts_mark();
3734    emit_opcode(cbuf, 0xE9);        // jmp    entry
3735    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3736                   runtime_call_Relocation::spec(), RELOC_IMM32 );
3737  %}
3738
3739
3740  // Convert a double to an int.  Java semantics require we do complex
3741  // manglelations in the corner cases.  So we set the rounding mode to
3742  // 'zero', store the darned double down as an int, and reset the
3743  // rounding mode to 'nearest'.  The hardware throws an exception which
3744  // patches up the correct value directly to the stack.
3745  enc_class D2I_encoding( regD src ) %{
3746    // Flip to round-to-zero mode.  We attempted to allow invalid-op
3747    // exceptions here, so that a NAN or other corner-case value will
3748    // thrown an exception (but normal values get converted at full speed).
3749    // However, I2C adapters and other float-stack manglers leave pending
3750    // invalid-op exceptions hanging.  We would have to clear them before
3751    // enabling them and that is more expensive than just testing for the
3752    // invalid value Intel stores down in the corner cases.
3753    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3754    emit_opcode(cbuf,0x2D);
3755    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3756    // Allocate a word
3757    emit_opcode(cbuf,0x83);            // SUB ESP,4
3758    emit_opcode(cbuf,0xEC);
3759    emit_d8(cbuf,0x04);
3760    // Encoding assumes a double has been pushed into FPR0.
3761    // Store down the double as an int, popping the FPU stack
3762    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3763    emit_opcode(cbuf,0x1C);
3764    emit_d8(cbuf,0x24);
3765    // Restore the rounding mode; mask the exception
3766    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3767    emit_opcode(cbuf,0x2D);
3768    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3769        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3770        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3771
3772    // Load the converted int; adjust CPU stack
3773    emit_opcode(cbuf,0x58);       // POP EAX
3774    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3775    emit_d32   (cbuf,0x80000000); //         0x80000000
3776    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3777    emit_d8    (cbuf,0x07);       // Size of slow_call
3778    // Push src onto stack slow-path
3779    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3780    emit_d8    (cbuf,0xC0-1+$src$$reg );
3781    // CALL directly to the runtime
3782    cbuf.set_insts_mark();
3783    emit_opcode(cbuf,0xE8);       // Call into runtime
3784    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3785    // Carry on here...
3786  %}
3787
3788  enc_class D2L_encoding( regD src ) %{
3789    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3790    emit_opcode(cbuf,0x2D);
3791    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3792    // Allocate a word
3793    emit_opcode(cbuf,0x83);            // SUB ESP,8
3794    emit_opcode(cbuf,0xEC);
3795    emit_d8(cbuf,0x08);
3796    // Encoding assumes a double has been pushed into FPR0.
3797    // Store down the double as a long, popping the FPU stack
3798    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3799    emit_opcode(cbuf,0x3C);
3800    emit_d8(cbuf,0x24);
3801    // Restore the rounding mode; mask the exception
3802    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3803    emit_opcode(cbuf,0x2D);
3804    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3805        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3806        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3807
3808    // Load the converted int; adjust CPU stack
3809    emit_opcode(cbuf,0x58);       // POP EAX
3810    emit_opcode(cbuf,0x5A);       // POP EDX
3811    emit_opcode(cbuf,0x81);       // CMP EDX,imm
3812    emit_d8    (cbuf,0xFA);       // rdx
3813    emit_d32   (cbuf,0x80000000); //         0x80000000
3814    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3815    emit_d8    (cbuf,0x07+4);     // Size of slow_call
3816    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3817    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3818    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3819    emit_d8    (cbuf,0x07);       // Size of slow_call
3820    // Push src onto stack slow-path
3821    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3822    emit_d8    (cbuf,0xC0-1+$src$$reg );
3823    // CALL directly to the runtime
3824    cbuf.set_insts_mark();
3825    emit_opcode(cbuf,0xE8);       // Call into runtime
3826    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3827    // Carry on here...
3828  %}
3829
3830  enc_class X2L_encoding( regX src ) %{
3831    // Allocate a word
3832    emit_opcode(cbuf,0x83);      // SUB ESP,8
3833    emit_opcode(cbuf,0xEC);
3834    emit_d8(cbuf,0x08);
3835
3836    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3837    emit_opcode  (cbuf, 0x0F );
3838    emit_opcode  (cbuf, 0x11 );
3839    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3840
3841    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3842    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3843
3844    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3845    emit_opcode(cbuf,0x2D);
3846    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3847
3848    // Encoding assumes a double has been pushed into FPR0.
3849    // Store down the double as a long, popping the FPU stack
3850    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3851    emit_opcode(cbuf,0x3C);
3852    emit_d8(cbuf,0x24);
3853
3854    // Restore the rounding mode; mask the exception
3855    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3856    emit_opcode(cbuf,0x2D);
3857    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3858      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3859      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3860
3861    // Load the converted int; adjust CPU stack
3862    emit_opcode(cbuf,0x58);      // POP EAX
3863
3864    emit_opcode(cbuf,0x5A);      // POP EDX
3865
3866    emit_opcode(cbuf,0x81);      // CMP EDX,imm
3867    emit_d8    (cbuf,0xFA);      // rdx
3868    emit_d32   (cbuf,0x80000000);//         0x80000000
3869
3870    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3871    emit_d8    (cbuf,0x13+4);    // Size of slow_call
3872
3873    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3874    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3875
3876    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3877    emit_d8    (cbuf,0x13);      // Size of slow_call
3878
3879    // Allocate a word
3880    emit_opcode(cbuf,0x83);      // SUB ESP,4
3881    emit_opcode(cbuf,0xEC);
3882    emit_d8(cbuf,0x04);
3883
3884    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3885    emit_opcode  (cbuf, 0x0F );
3886    emit_opcode  (cbuf, 0x11 );
3887    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3888
3889    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3890    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3891
3892    emit_opcode(cbuf,0x83);      // ADD ESP,4
3893    emit_opcode(cbuf,0xC4);
3894    emit_d8(cbuf,0x04);
3895
3896    // CALL directly to the runtime
3897    cbuf.set_insts_mark();
3898    emit_opcode(cbuf,0xE8);       // Call into runtime
3899    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3900    // Carry on here...
3901  %}
3902
3903  enc_class XD2L_encoding( regXD src ) %{
3904    // Allocate a word
3905    emit_opcode(cbuf,0x83);      // SUB ESP,8
3906    emit_opcode(cbuf,0xEC);
3907    emit_d8(cbuf,0x08);
3908
3909    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3910    emit_opcode  (cbuf, 0x0F );
3911    emit_opcode  (cbuf, 0x11 );
3912    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3913
3914    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3915    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3916
3917    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3918    emit_opcode(cbuf,0x2D);
3919    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3920
3921    // Encoding assumes a double has been pushed into FPR0.
3922    // Store down the double as a long, popping the FPU stack
3923    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3924    emit_opcode(cbuf,0x3C);
3925    emit_d8(cbuf,0x24);
3926
3927    // Restore the rounding mode; mask the exception
3928    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3929    emit_opcode(cbuf,0x2D);
3930    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3931      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3932      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3933
3934    // Load the converted int; adjust CPU stack
3935    emit_opcode(cbuf,0x58);      // POP EAX
3936
3937    emit_opcode(cbuf,0x5A);      // POP EDX
3938
3939    emit_opcode(cbuf,0x81);      // CMP EDX,imm
3940    emit_d8    (cbuf,0xFA);      // rdx
3941    emit_d32   (cbuf,0x80000000); //         0x80000000
3942
3943    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3944    emit_d8    (cbuf,0x13+4);    // Size of slow_call
3945
3946    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3947    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3948
3949    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3950    emit_d8    (cbuf,0x13);      // Size of slow_call
3951
3952    // Push src onto stack slow-path
3953    // Allocate a word
3954    emit_opcode(cbuf,0x83);      // SUB ESP,8
3955    emit_opcode(cbuf,0xEC);
3956    emit_d8(cbuf,0x08);
3957
3958    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3959    emit_opcode  (cbuf, 0x0F );
3960    emit_opcode  (cbuf, 0x11 );
3961    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3962
3963    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3964    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3965
3966    emit_opcode(cbuf,0x83);      // ADD ESP,8
3967    emit_opcode(cbuf,0xC4);
3968    emit_d8(cbuf,0x08);
3969
3970    // CALL directly to the runtime
3971    cbuf.set_insts_mark();
3972    emit_opcode(cbuf,0xE8);      // Call into runtime
3973    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3974    // Carry on here...
3975  %}
3976
3977  enc_class D2X_encoding( regX dst, regD src ) %{
3978    // Allocate a word
3979    emit_opcode(cbuf,0x83);            // SUB ESP,4
3980    emit_opcode(cbuf,0xEC);
3981    emit_d8(cbuf,0x04);
3982    int pop = 0x02;
3983    if ($src$$reg != FPR1L_enc) {
3984      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
3985      emit_d8( cbuf, 0xC0-1+$src$$reg );
3986      pop = 0x03;
3987    }
3988    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
3989
3990    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
3991    emit_opcode  (cbuf, 0x0F );
3992    emit_opcode  (cbuf, 0x10 );
3993    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
3994
3995    emit_opcode(cbuf,0x83);            // ADD ESP,4
3996    emit_opcode(cbuf,0xC4);
3997    emit_d8(cbuf,0x04);
3998    // Carry on here...
3999  %}
4000
4001  enc_class FX2I_encoding( regX src, eRegI dst ) %{
4002    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4003
4004    // Compare the result to see if we need to go to the slow path
4005    emit_opcode(cbuf,0x81);       // CMP dst,imm
4006    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4007    emit_d32   (cbuf,0x80000000); //         0x80000000
4008
4009    emit_opcode(cbuf,0x75);       // JNE around_slow_call
4010    emit_d8    (cbuf,0x13);       // Size of slow_call
4011    // Store xmm to a temp memory
4012    // location and push it onto stack.
4013
4014    emit_opcode(cbuf,0x83);  // SUB ESP,4
4015    emit_opcode(cbuf,0xEC);
4016    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4017
4018    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4019    emit_opcode  (cbuf, 0x0F );
4020    emit_opcode  (cbuf, 0x11 );
4021    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4022
4023    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4024    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4025
4026    emit_opcode(cbuf,0x83);    // ADD ESP,4
4027    emit_opcode(cbuf,0xC4);
4028    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4029
4030    // CALL directly to the runtime
4031    cbuf.set_insts_mark();
4032    emit_opcode(cbuf,0xE8);       // Call into runtime
4033    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4034
4035    // Carry on here...
4036  %}
4037
4038  enc_class X2D_encoding( regD dst, regX src ) %{
4039    // Allocate a word
4040    emit_opcode(cbuf,0x83);     // SUB ESP,4
4041    emit_opcode(cbuf,0xEC);
4042    emit_d8(cbuf,0x04);
4043
4044    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4045    emit_opcode  (cbuf, 0x0F );
4046    emit_opcode  (cbuf, 0x11 );
4047    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4048
4049    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4050    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4051
4052    emit_opcode(cbuf,0x83);     // ADD ESP,4
4053    emit_opcode(cbuf,0xC4);
4054    emit_d8(cbuf,0x04);
4055
4056    // Carry on here...
4057  %}
4058
4059  enc_class AbsXF_encoding(regX dst) %{
4060    address signmask_address=(address)float_signmask_pool;
4061    // andpd:\tANDPS  $dst,[signconst]
4062    emit_opcode(cbuf, 0x0F);
4063    emit_opcode(cbuf, 0x54);
4064    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4065    emit_d32(cbuf, (int)signmask_address);
4066  %}
4067
4068  enc_class AbsXD_encoding(regXD dst) %{
4069    address signmask_address=(address)double_signmask_pool;
4070    // andpd:\tANDPD  $dst,[signconst]
4071    emit_opcode(cbuf, 0x66);
4072    emit_opcode(cbuf, 0x0F);
4073    emit_opcode(cbuf, 0x54);
4074    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4075    emit_d32(cbuf, (int)signmask_address);
4076  %}
4077
4078  enc_class NegXF_encoding(regX dst) %{
4079    address signmask_address=(address)float_signflip_pool;
4080    // andpd:\tXORPS  $dst,[signconst]
4081    emit_opcode(cbuf, 0x0F);
4082    emit_opcode(cbuf, 0x57);
4083    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4084    emit_d32(cbuf, (int)signmask_address);
4085  %}
4086
4087  enc_class NegXD_encoding(regXD dst) %{
4088    address signmask_address=(address)double_signflip_pool;
4089    // andpd:\tXORPD  $dst,[signconst]
4090    emit_opcode(cbuf, 0x66);
4091    emit_opcode(cbuf, 0x0F);
4092    emit_opcode(cbuf, 0x57);
4093    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4094    emit_d32(cbuf, (int)signmask_address);
4095  %}
4096
4097  enc_class FMul_ST_reg( eRegF src1 ) %{
4098    // Operand was loaded from memory into fp ST (stack top)
4099    // FMUL   ST,$src  /* D8 C8+i */
4100    emit_opcode(cbuf, 0xD8);
4101    emit_opcode(cbuf, 0xC8 + $src1$$reg);
4102  %}
4103
4104  enc_class FAdd_ST_reg( eRegF src2 ) %{
4105    // FADDP  ST,src2  /* D8 C0+i */
4106    emit_opcode(cbuf, 0xD8);
4107    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4108    //could use FADDP  src2,fpST  /* DE C0+i */
4109  %}
4110
4111  enc_class FAddP_reg_ST( eRegF src2 ) %{
4112    // FADDP  src2,ST  /* DE C0+i */
4113    emit_opcode(cbuf, 0xDE);
4114    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4115  %}
4116
4117  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4118    // Operand has been loaded into fp ST (stack top)
4119      // FSUB   ST,$src1
4120      emit_opcode(cbuf, 0xD8);
4121      emit_opcode(cbuf, 0xE0 + $src1$$reg);
4122
4123      // FDIV
4124      emit_opcode(cbuf, 0xD8);
4125      emit_opcode(cbuf, 0xF0 + $src2$$reg);
4126  %}
4127
4128  enc_class MulFAddF (eRegF src1, eRegF src2) %{
4129    // Operand was loaded from memory into fp ST (stack top)
4130    // FADD   ST,$src  /* D8 C0+i */
4131    emit_opcode(cbuf, 0xD8);
4132    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4133
4134    // FMUL  ST,src2  /* D8 C*+i */
4135    emit_opcode(cbuf, 0xD8);
4136    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4137  %}
4138
4139
4140  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4141    // Operand was loaded from memory into fp ST (stack top)
4142    // FADD   ST,$src  /* D8 C0+i */
4143    emit_opcode(cbuf, 0xD8);
4144    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4145
4146    // FMULP  src2,ST  /* DE C8+i */
4147    emit_opcode(cbuf, 0xDE);
4148    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4149  %}
4150
4151  // Atomically load the volatile long
4152  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4153    emit_opcode(cbuf,0xDF);
4154    int rm_byte_opcode = 0x05;
4155    int base     = $mem$$base;
4156    int index    = $mem$$index;
4157    int scale    = $mem$$scale;
4158    int displace = $mem$$disp;
4159    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4160    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4161    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4162  %}
4163
4164  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4165    { // Atomic long load
4166      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4167      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4168      emit_opcode(cbuf,0x0F);
4169      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4170      int base     = $mem$$base;
4171      int index    = $mem$$index;
4172      int scale    = $mem$$scale;
4173      int displace = $mem$$disp;
4174      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4175      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4176    }
4177    { // MOVSD $dst,$tmp ! atomic long store
4178      emit_opcode(cbuf,0xF2);
4179      emit_opcode(cbuf,0x0F);
4180      emit_opcode(cbuf,0x11);
4181      int base     = $dst$$base;
4182      int index    = $dst$$index;
4183      int scale    = $dst$$scale;
4184      int displace = $dst$$disp;
4185      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4186      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4187    }
4188  %}
4189
4190  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4191    { // Atomic long load
4192      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4193      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4194      emit_opcode(cbuf,0x0F);
4195      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4196      int base     = $mem$$base;
4197      int index    = $mem$$index;
4198      int scale    = $mem$$scale;
4199      int displace = $mem$$disp;
4200      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4201      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4202    }
4203    { // MOVD $dst.lo,$tmp
4204      emit_opcode(cbuf,0x66);
4205      emit_opcode(cbuf,0x0F);
4206      emit_opcode(cbuf,0x7E);
4207      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4208    }
4209    { // PSRLQ $tmp,32
4210      emit_opcode(cbuf,0x66);
4211      emit_opcode(cbuf,0x0F);
4212      emit_opcode(cbuf,0x73);
4213      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4214      emit_d8(cbuf, 0x20);
4215    }
4216    { // MOVD $dst.hi,$tmp
4217      emit_opcode(cbuf,0x66);
4218      emit_opcode(cbuf,0x0F);
4219      emit_opcode(cbuf,0x7E);
4220      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4221    }
4222  %}
4223
4224  // Volatile Store Long.  Must be atomic, so move it into
4225  // the FP TOS and then do a 64-bit FIST.  Has to probe the
4226  // target address before the store (for null-ptr checks)
4227  // so the memory operand is used twice in the encoding.
4228  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4229    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4230    cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
4231    emit_opcode(cbuf,0xDF);
4232    int rm_byte_opcode = 0x07;
4233    int base     = $mem$$base;
4234    int index    = $mem$$index;
4235    int scale    = $mem$$scale;
4236    int displace = $mem$$disp;
4237    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4238    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4239  %}
4240
4241  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4242    { // Atomic long load
4243      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4244      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4245      emit_opcode(cbuf,0x0F);
4246      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4247      int base     = $src$$base;
4248      int index    = $src$$index;
4249      int scale    = $src$$scale;
4250      int displace = $src$$disp;
4251      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4252      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4253    }
4254    cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4255    { // MOVSD $mem,$tmp ! atomic long store
4256      emit_opcode(cbuf,0xF2);
4257      emit_opcode(cbuf,0x0F);
4258      emit_opcode(cbuf,0x11);
4259      int base     = $mem$$base;
4260      int index    = $mem$$index;
4261      int scale    = $mem$$scale;
4262      int displace = $mem$$disp;
4263      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4264      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4265    }
4266  %}
4267
4268  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4269    { // MOVD $tmp,$src.lo
4270      emit_opcode(cbuf,0x66);
4271      emit_opcode(cbuf,0x0F);
4272      emit_opcode(cbuf,0x6E);
4273      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4274    }
4275    { // MOVD $tmp2,$src.hi
4276      emit_opcode(cbuf,0x66);
4277      emit_opcode(cbuf,0x0F);
4278      emit_opcode(cbuf,0x6E);
4279      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4280    }
4281    { // PUNPCKLDQ $tmp,$tmp2
4282      emit_opcode(cbuf,0x66);
4283      emit_opcode(cbuf,0x0F);
4284      emit_opcode(cbuf,0x62);
4285      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4286    }
4287    cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4288    { // MOVSD $mem,$tmp ! atomic long store
4289      emit_opcode(cbuf,0xF2);
4290      emit_opcode(cbuf,0x0F);
4291      emit_opcode(cbuf,0x11);
4292      int base     = $mem$$base;
4293      int index    = $mem$$index;
4294      int scale    = $mem$$scale;
4295      int displace = $mem$$disp;
4296      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4297      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4298    }
4299  %}
4300
4301  // Safepoint Poll.  This polls the safepoint page, and causes an
4302  // exception if it is not readable. Unfortunately, it kills the condition code
4303  // in the process
4304  // We current use TESTL [spp],EDI
4305  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4306
4307  enc_class Safepoint_Poll() %{
4308    cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
4309    emit_opcode(cbuf,0x85);
4310    emit_rm (cbuf, 0x0, 0x7, 0x5);
4311    emit_d32(cbuf, (intptr_t)os::get_polling_page());
4312  %}
4313%}
4314
4315
4316//----------FRAME--------------------------------------------------------------
4317// Definition of frame structure and management information.
4318//
4319//  S T A C K   L A Y O U T    Allocators stack-slot number
4320//                             |   (to get allocators register number
4321//  G  Owned by    |        |  v    add OptoReg::stack0())
4322//  r   CALLER     |        |
4323//  o     |        +--------+      pad to even-align allocators stack-slot
4324//  w     V        |  pad0  |        numbers; owned by CALLER
4325//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4326//  h     ^        |   in   |  5
4327//        |        |  args  |  4   Holes in incoming args owned by SELF
4328//  |     |        |        |  3
4329//  |     |        +--------+
4330//  V     |        | old out|      Empty on Intel, window on Sparc
4331//        |    old |preserve|      Must be even aligned.
4332//        |     SP-+--------+----> Matcher::_old_SP, even aligned
4333//        |        |   in   |  3   area for Intel ret address
4334//     Owned by    |preserve|      Empty on Sparc.
4335//       SELF      +--------+
4336//        |        |  pad2  |  2   pad to align old SP
4337//        |        +--------+  1
4338//        |        | locks  |  0
4339//        |        +--------+----> OptoReg::stack0(), even aligned
4340//        |        |  pad1  | 11   pad to align new SP
4341//        |        +--------+
4342//        |        |        | 10
4343//        |        | spills |  9   spills
4344//        V        |        |  8   (pad0 slot for callee)
4345//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4346//        ^        |  out   |  7
4347//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4348//     Owned by    +--------+
4349//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4350//        |    new |preserve|      Must be even-aligned.
4351//        |     SP-+--------+----> Matcher::_new_SP, even aligned
4352//        |        |        |
4353//
4354// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4355//         known from SELF's arguments and the Java calling convention.
4356//         Region 6-7 is determined per call site.
4357// Note 2: If the calling convention leaves holes in the incoming argument
4358//         area, those holes are owned by SELF.  Holes in the outgoing area
4359//         are owned by the CALLEE.  Holes should not be nessecary in the
4360//         incoming area, as the Java calling convention is completely under
4361//         the control of the AD file.  Doubles can be sorted and packed to
4362//         avoid holes.  Holes in the outgoing arguments may be nessecary for
4363//         varargs C calling conventions.
4364// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4365//         even aligned with pad0 as needed.
4366//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4367//         region 6-11 is even aligned; it may be padded out more so that
4368//         the region from SP to FP meets the minimum stack alignment.
4369
4370frame %{
4371  // What direction does stack grow in (assumed to be same for C & Java)
4372  stack_direction(TOWARDS_LOW);
4373
4374  // These three registers define part of the calling convention
4375  // between compiled code and the interpreter.
4376  inline_cache_reg(EAX);                // Inline Cache Register
4377  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4378
4379  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4380  cisc_spilling_operand_name(indOffset32);
4381
4382  // Number of stack slots consumed by locking an object
4383  sync_stack_slots(1);
4384
4385  // Compiled code's Frame Pointer
4386  frame_pointer(ESP);
4387  // Interpreter stores its frame pointer in a register which is
4388  // stored to the stack by I2CAdaptors.
4389  // I2CAdaptors convert from interpreted java to compiled java.
4390  interpreter_frame_pointer(EBP);
4391
4392  // Stack alignment requirement
4393  // Alignment size in bytes (128-bit -> 16 bytes)
4394  stack_alignment(StackAlignmentInBytes);
4395
4396  // Number of stack slots between incoming argument block and the start of
4397  // a new frame.  The PROLOG must add this many slots to the stack.  The
4398  // EPILOG must remove this many slots.  Intel needs one slot for
4399  // return address and one for rbp, (must save rbp)
4400  in_preserve_stack_slots(2+VerifyStackAtCalls);
4401
4402  // Number of outgoing stack slots killed above the out_preserve_stack_slots
4403  // for calls to C.  Supports the var-args backing area for register parms.
4404  varargs_C_out_slots_killed(0);
4405
4406  // The after-PROLOG location of the return address.  Location of
4407  // return address specifies a type (REG or STACK) and a number
4408  // representing the register number (i.e. - use a register name) or
4409  // stack slot.
4410  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4411  // Otherwise, it is above the locks and verification slot and alignment word
4412  return_addr(STACK - 1 +
4413              round_to(1+VerifyStackAtCalls+
4414              Compile::current()->fixed_slots(),
4415              (StackAlignmentInBytes/wordSize)));
4416
4417  // Body of function which returns an integer array locating
4418  // arguments either in registers or in stack slots.  Passed an array
4419  // of ideal registers called "sig" and a "length" count.  Stack-slot
4420  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4421  // arguments for a CALLEE.  Incoming stack arguments are
4422  // automatically biased by the preserve_stack_slots field above.
4423  calling_convention %{
4424    // No difference between ingoing/outgoing just pass false
4425    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4426  %}
4427
4428
4429  // Body of function which returns an integer array locating
4430  // arguments either in registers or in stack slots.  Passed an array
4431  // of ideal registers called "sig" and a "length" count.  Stack-slot
4432  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4433  // arguments for a CALLEE.  Incoming stack arguments are
4434  // automatically biased by the preserve_stack_slots field above.
4435  c_calling_convention %{
4436    // This is obviously always outgoing
4437    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4438  %}
4439
4440  // Location of C & interpreter return values
4441  c_return_value %{
4442    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4443    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4444    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4445
4446    // in SSE2+ mode we want to keep the FPU stack clean so pretend
4447    // that C functions return float and double results in XMM0.
4448    if( ideal_reg == Op_RegD && UseSSE>=2 )
4449      return OptoRegPair(XMM0b_num,XMM0a_num);
4450    if( ideal_reg == Op_RegF && UseSSE>=2 )
4451      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4452
4453    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4454  %}
4455
4456  // Location of return values
4457  return_value %{
4458    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4459    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4460    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4461    if( ideal_reg == Op_RegD && UseSSE>=2 )
4462      return OptoRegPair(XMM0b_num,XMM0a_num);
4463    if( ideal_reg == Op_RegF && UseSSE>=1 )
4464      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4465    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4466  %}
4467
4468%}
4469
4470//----------ATTRIBUTES---------------------------------------------------------
4471//----------Operand Attributes-------------------------------------------------
4472op_attrib op_cost(0);        // Required cost attribute
4473
4474//----------Instruction Attributes---------------------------------------------
4475ins_attrib ins_cost(100);       // Required cost attribute
4476ins_attrib ins_size(8);         // Required size attribute (in bits)
4477ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4478                                // non-matching short branch variant of some
4479                                                            // long branch?
4480ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4481                                // specifies the alignment that some part of the instruction (not
4482                                // necessarily the start) requires.  If > 1, a compute_padding()
4483                                // function must be provided for the instruction
4484
4485//----------OPERANDS-----------------------------------------------------------
4486// Operand definitions must precede instruction definitions for correct parsing
4487// in the ADLC because operands constitute user defined types which are used in
4488// instruction definitions.
4489
4490//----------Simple Operands----------------------------------------------------
4491// Immediate Operands
4492// Integer Immediate
4493operand immI() %{
4494  match(ConI);
4495
4496  op_cost(10);
4497  format %{ %}
4498  interface(CONST_INTER);
4499%}
4500
4501// Constant for test vs zero
4502operand immI0() %{
4503  predicate(n->get_int() == 0);
4504  match(ConI);
4505
4506  op_cost(0);
4507  format %{ %}
4508  interface(CONST_INTER);
4509%}
4510
4511// Constant for increment
4512operand immI1() %{
4513  predicate(n->get_int() == 1);
4514  match(ConI);
4515
4516  op_cost(0);
4517  format %{ %}
4518  interface(CONST_INTER);
4519%}
4520
4521// Constant for decrement
4522operand immI_M1() %{
4523  predicate(n->get_int() == -1);
4524  match(ConI);
4525
4526  op_cost(0);
4527  format %{ %}
4528  interface(CONST_INTER);
4529%}
4530
4531// Valid scale values for addressing modes
4532operand immI2() %{
4533  predicate(0 <= n->get_int() && (n->get_int() <= 3));
4534  match(ConI);
4535
4536  format %{ %}
4537  interface(CONST_INTER);
4538%}
4539
4540operand immI8() %{
4541  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4542  match(ConI);
4543
4544  op_cost(5);
4545  format %{ %}
4546  interface(CONST_INTER);
4547%}
4548
4549operand immI16() %{
4550  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4551  match(ConI);
4552
4553  op_cost(10);
4554  format %{ %}
4555  interface(CONST_INTER);
4556%}
4557
4558// Constant for long shifts
4559operand immI_32() %{
4560  predicate( n->get_int() == 32 );
4561  match(ConI);
4562
4563  op_cost(0);
4564  format %{ %}
4565  interface(CONST_INTER);
4566%}
4567
4568operand immI_1_31() %{
4569  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4570  match(ConI);
4571
4572  op_cost(0);
4573  format %{ %}
4574  interface(CONST_INTER);
4575%}
4576
4577operand immI_32_63() %{
4578  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4579  match(ConI);
4580  op_cost(0);
4581
4582  format %{ %}
4583  interface(CONST_INTER);
4584%}
4585
4586operand immI_1() %{
4587  predicate( n->get_int() == 1 );
4588  match(ConI);
4589
4590  op_cost(0);
4591  format %{ %}
4592  interface(CONST_INTER);
4593%}
4594
4595operand immI_2() %{
4596  predicate( n->get_int() == 2 );
4597  match(ConI);
4598
4599  op_cost(0);
4600  format %{ %}
4601  interface(CONST_INTER);
4602%}
4603
4604operand immI_3() %{
4605  predicate( n->get_int() == 3 );
4606  match(ConI);
4607
4608  op_cost(0);
4609  format %{ %}
4610  interface(CONST_INTER);
4611%}
4612
4613// Pointer Immediate
4614operand immP() %{
4615  match(ConP);
4616
4617  op_cost(10);
4618  format %{ %}
4619  interface(CONST_INTER);
4620%}
4621
4622// NULL Pointer Immediate
4623operand immP0() %{
4624  predicate( n->get_ptr() == 0 );
4625  match(ConP);
4626  op_cost(0);
4627
4628  format %{ %}
4629  interface(CONST_INTER);
4630%}
4631
4632// Long Immediate
4633operand immL() %{
4634  match(ConL);
4635
4636  op_cost(20);
4637  format %{ %}
4638  interface(CONST_INTER);
4639%}
4640
4641// Long Immediate zero
4642operand immL0() %{
4643  predicate( n->get_long() == 0L );
4644  match(ConL);
4645  op_cost(0);
4646
4647  format %{ %}
4648  interface(CONST_INTER);
4649%}
4650
4651// Long Immediate zero
4652operand immL_M1() %{
4653  predicate( n->get_long() == -1L );
4654  match(ConL);
4655  op_cost(0);
4656
4657  format %{ %}
4658  interface(CONST_INTER);
4659%}
4660
4661// Long immediate from 0 to 127.
4662// Used for a shorter form of long mul by 10.
4663operand immL_127() %{
4664  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4665  match(ConL);
4666  op_cost(0);
4667
4668  format %{ %}
4669  interface(CONST_INTER);
4670%}
4671
4672// Long Immediate: low 32-bit mask
4673operand immL_32bits() %{
4674  predicate(n->get_long() == 0xFFFFFFFFL);
4675  match(ConL);
4676  op_cost(0);
4677
4678  format %{ %}
4679  interface(CONST_INTER);
4680%}
4681
4682// Long Immediate: low 32-bit mask
4683operand immL32() %{
4684  predicate(n->get_long() == (int)(n->get_long()));
4685  match(ConL);
4686  op_cost(20);
4687
4688  format %{ %}
4689  interface(CONST_INTER);
4690%}
4691
4692//Double Immediate zero
4693operand immD0() %{
4694  // Do additional (and counter-intuitive) test against NaN to work around VC++
4695  // bug that generates code such that NaNs compare equal to 0.0
4696  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4697  match(ConD);
4698
4699  op_cost(5);
4700  format %{ %}
4701  interface(CONST_INTER);
4702%}
4703
4704// Double Immediate one
4705operand immD1() %{
4706  predicate( UseSSE<=1 && n->getd() == 1.0 );
4707  match(ConD);
4708
4709  op_cost(5);
4710  format %{ %}
4711  interface(CONST_INTER);
4712%}
4713
4714// Double Immediate
4715operand immD() %{
4716  predicate(UseSSE<=1);
4717  match(ConD);
4718
4719  op_cost(5);
4720  format %{ %}
4721  interface(CONST_INTER);
4722%}
4723
4724operand immXD() %{
4725  predicate(UseSSE>=2);
4726  match(ConD);
4727
4728  op_cost(5);
4729  format %{ %}
4730  interface(CONST_INTER);
4731%}
4732
4733// Double Immediate zero
4734operand immXD0() %{
4735  // Do additional (and counter-intuitive) test against NaN to work around VC++
4736  // bug that generates code such that NaNs compare equal to 0.0 AND do not
4737  // compare equal to -0.0.
4738  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4739  match(ConD);
4740
4741  format %{ %}
4742  interface(CONST_INTER);
4743%}
4744
4745// Float Immediate zero
4746operand immF0() %{
4747  predicate(UseSSE == 0 && n->getf() == 0.0F);
4748  match(ConF);
4749
4750  op_cost(5);
4751  format %{ %}
4752  interface(CONST_INTER);
4753%}
4754
4755// Float Immediate one
4756operand immF1() %{
4757  predicate(UseSSE == 0 && n->getf() == 1.0F);
4758  match(ConF);
4759
4760  op_cost(5);
4761  format %{ %}
4762  interface(CONST_INTER);
4763%}
4764
4765// Float Immediate
4766operand immF() %{
4767  predicate( UseSSE == 0 );
4768  match(ConF);
4769
4770  op_cost(5);
4771  format %{ %}
4772  interface(CONST_INTER);
4773%}
4774
4775// Float Immediate
4776operand immXF() %{
4777  predicate(UseSSE >= 1);
4778  match(ConF);
4779
4780  op_cost(5);
4781  format %{ %}
4782  interface(CONST_INTER);
4783%}
4784
4785// Float Immediate zero.  Zero and not -0.0
4786operand immXF0() %{
4787  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4788  match(ConF);
4789
4790  op_cost(5);
4791  format %{ %}
4792  interface(CONST_INTER);
4793%}
4794
4795// Immediates for special shifts (sign extend)
4796
4797// Constants for increment
4798operand immI_16() %{
4799  predicate( n->get_int() == 16 );
4800  match(ConI);
4801
4802  format %{ %}
4803  interface(CONST_INTER);
4804%}
4805
4806operand immI_24() %{
4807  predicate( n->get_int() == 24 );
4808  match(ConI);
4809
4810  format %{ %}
4811  interface(CONST_INTER);
4812%}
4813
4814// Constant for byte-wide masking
4815operand immI_255() %{
4816  predicate( n->get_int() == 255 );
4817  match(ConI);
4818
4819  format %{ %}
4820  interface(CONST_INTER);
4821%}
4822
4823// Constant for short-wide masking
4824operand immI_65535() %{
4825  predicate(n->get_int() == 65535);
4826  match(ConI);
4827
4828  format %{ %}
4829  interface(CONST_INTER);
4830%}
4831
4832// Register Operands
4833// Integer Register
4834operand eRegI() %{
4835  constraint(ALLOC_IN_RC(e_reg));
4836  match(RegI);
4837  match(xRegI);
4838  match(eAXRegI);
4839  match(eBXRegI);
4840  match(eCXRegI);
4841  match(eDXRegI);
4842  match(eDIRegI);
4843  match(eSIRegI);
4844
4845  format %{ %}
4846  interface(REG_INTER);
4847%}
4848
4849// Subset of Integer Register
4850operand xRegI(eRegI reg) %{
4851  constraint(ALLOC_IN_RC(x_reg));
4852  match(reg);
4853  match(eAXRegI);
4854  match(eBXRegI);
4855  match(eCXRegI);
4856  match(eDXRegI);
4857
4858  format %{ %}
4859  interface(REG_INTER);
4860%}
4861
4862// Special Registers
4863operand eAXRegI(xRegI reg) %{
4864  constraint(ALLOC_IN_RC(eax_reg));
4865  match(reg);
4866  match(eRegI);
4867
4868  format %{ "EAX" %}
4869  interface(REG_INTER);
4870%}
4871
4872// Special Registers
4873operand eBXRegI(xRegI reg) %{
4874  constraint(ALLOC_IN_RC(ebx_reg));
4875  match(reg);
4876  match(eRegI);
4877
4878  format %{ "EBX" %}
4879  interface(REG_INTER);
4880%}
4881
4882operand eCXRegI(xRegI reg) %{
4883  constraint(ALLOC_IN_RC(ecx_reg));
4884  match(reg);
4885  match(eRegI);
4886
4887  format %{ "ECX" %}
4888  interface(REG_INTER);
4889%}
4890
4891operand eDXRegI(xRegI reg) %{
4892  constraint(ALLOC_IN_RC(edx_reg));
4893  match(reg);
4894  match(eRegI);
4895
4896  format %{ "EDX" %}
4897  interface(REG_INTER);
4898%}
4899
4900operand eDIRegI(xRegI reg) %{
4901  constraint(ALLOC_IN_RC(edi_reg));
4902  match(reg);
4903  match(eRegI);
4904
4905  format %{ "EDI" %}
4906  interface(REG_INTER);
4907%}
4908
4909operand naxRegI() %{
4910  constraint(ALLOC_IN_RC(nax_reg));
4911  match(RegI);
4912  match(eCXRegI);
4913  match(eDXRegI);
4914  match(eSIRegI);
4915  match(eDIRegI);
4916
4917  format %{ %}
4918  interface(REG_INTER);
4919%}
4920
4921operand nadxRegI() %{
4922  constraint(ALLOC_IN_RC(nadx_reg));
4923  match(RegI);
4924  match(eBXRegI);
4925  match(eCXRegI);
4926  match(eSIRegI);
4927  match(eDIRegI);
4928
4929  format %{ %}
4930  interface(REG_INTER);
4931%}
4932
4933operand ncxRegI() %{
4934  constraint(ALLOC_IN_RC(ncx_reg));
4935  match(RegI);
4936  match(eAXRegI);
4937  match(eDXRegI);
4938  match(eSIRegI);
4939  match(eDIRegI);
4940
4941  format %{ %}
4942  interface(REG_INTER);
4943%}
4944
4945// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4946// //
4947operand eSIRegI(xRegI reg) %{
4948   constraint(ALLOC_IN_RC(esi_reg));
4949   match(reg);
4950   match(eRegI);
4951
4952   format %{ "ESI" %}
4953   interface(REG_INTER);
4954%}
4955
4956// Pointer Register
4957operand anyRegP() %{
4958  constraint(ALLOC_IN_RC(any_reg));
4959  match(RegP);
4960  match(eAXRegP);
4961  match(eBXRegP);
4962  match(eCXRegP);
4963  match(eDIRegP);
4964  match(eRegP);
4965
4966  format %{ %}
4967  interface(REG_INTER);
4968%}
4969
4970operand eRegP() %{
4971  constraint(ALLOC_IN_RC(e_reg));
4972  match(RegP);
4973  match(eAXRegP);
4974  match(eBXRegP);
4975  match(eCXRegP);
4976  match(eDIRegP);
4977
4978  format %{ %}
4979  interface(REG_INTER);
4980%}
4981
4982// On windows95, EBP is not safe to use for implicit null tests.
4983operand eRegP_no_EBP() %{
4984  constraint(ALLOC_IN_RC(e_reg_no_rbp));
4985  match(RegP);
4986  match(eAXRegP);
4987  match(eBXRegP);
4988  match(eCXRegP);
4989  match(eDIRegP);
4990
4991  op_cost(100);
4992  format %{ %}
4993  interface(REG_INTER);
4994%}
4995
4996operand naxRegP() %{
4997  constraint(ALLOC_IN_RC(nax_reg));
4998  match(RegP);
4999  match(eBXRegP);
5000  match(eDXRegP);
5001  match(eCXRegP);
5002  match(eSIRegP);
5003  match(eDIRegP);
5004
5005  format %{ %}
5006  interface(REG_INTER);
5007%}
5008
5009operand nabxRegP() %{
5010  constraint(ALLOC_IN_RC(nabx_reg));
5011  match(RegP);
5012  match(eCXRegP);
5013  match(eDXRegP);
5014  match(eSIRegP);
5015  match(eDIRegP);
5016
5017  format %{ %}
5018  interface(REG_INTER);
5019%}
5020
5021operand pRegP() %{
5022  constraint(ALLOC_IN_RC(p_reg));
5023  match(RegP);
5024  match(eBXRegP);
5025  match(eDXRegP);
5026  match(eSIRegP);
5027  match(eDIRegP);
5028
5029  format %{ %}
5030  interface(REG_INTER);
5031%}
5032
5033// Special Registers
5034// Return a pointer value
5035operand eAXRegP(eRegP reg) %{
5036  constraint(ALLOC_IN_RC(eax_reg));
5037  match(reg);
5038  format %{ "EAX" %}
5039  interface(REG_INTER);
5040%}
5041
5042// Used in AtomicAdd
5043operand eBXRegP(eRegP reg) %{
5044  constraint(ALLOC_IN_RC(ebx_reg));
5045  match(reg);
5046  format %{ "EBX" %}
5047  interface(REG_INTER);
5048%}
5049
5050// Tail-call (interprocedural jump) to interpreter
5051operand eCXRegP(eRegP reg) %{
5052  constraint(ALLOC_IN_RC(ecx_reg));
5053  match(reg);
5054  format %{ "ECX" %}
5055  interface(REG_INTER);
5056%}
5057
5058operand eSIRegP(eRegP reg) %{
5059  constraint(ALLOC_IN_RC(esi_reg));
5060  match(reg);
5061  format %{ "ESI" %}
5062  interface(REG_INTER);
5063%}
5064
5065// Used in rep stosw
5066operand eDIRegP(eRegP reg) %{
5067  constraint(ALLOC_IN_RC(edi_reg));
5068  match(reg);
5069  format %{ "EDI" %}
5070  interface(REG_INTER);
5071%}
5072
5073operand eBPRegP() %{
5074  constraint(ALLOC_IN_RC(ebp_reg));
5075  match(RegP);
5076  format %{ "EBP" %}
5077  interface(REG_INTER);
5078%}
5079
5080operand eRegL() %{
5081  constraint(ALLOC_IN_RC(long_reg));
5082  match(RegL);
5083  match(eADXRegL);
5084
5085  format %{ %}
5086  interface(REG_INTER);
5087%}
5088
5089operand eADXRegL( eRegL reg ) %{
5090  constraint(ALLOC_IN_RC(eadx_reg));
5091  match(reg);
5092
5093  format %{ "EDX:EAX" %}
5094  interface(REG_INTER);
5095%}
5096
5097operand eBCXRegL( eRegL reg ) %{
5098  constraint(ALLOC_IN_RC(ebcx_reg));
5099  match(reg);
5100
5101  format %{ "EBX:ECX" %}
5102  interface(REG_INTER);
5103%}
5104
5105// Special case for integer high multiply
5106operand eADXRegL_low_only() %{
5107  constraint(ALLOC_IN_RC(eadx_reg));
5108  match(RegL);
5109
5110  format %{ "EAX" %}
5111  interface(REG_INTER);
5112%}
5113
5114// Flags register, used as output of compare instructions
5115operand eFlagsReg() %{
5116  constraint(ALLOC_IN_RC(int_flags));
5117  match(RegFlags);
5118
5119  format %{ "EFLAGS" %}
5120  interface(REG_INTER);
5121%}
5122
5123// Flags register, used as output of FLOATING POINT compare instructions
5124operand eFlagsRegU() %{
5125  constraint(ALLOC_IN_RC(int_flags));
5126  match(RegFlags);
5127
5128  format %{ "EFLAGS_U" %}
5129  interface(REG_INTER);
5130%}
5131
5132operand eFlagsRegUCF() %{
5133  constraint(ALLOC_IN_RC(int_flags));
5134  match(RegFlags);
5135  predicate(false);
5136
5137  format %{ "EFLAGS_U_CF" %}
5138  interface(REG_INTER);
5139%}
5140
5141// Condition Code Register used by long compare
5142operand flagsReg_long_LTGE() %{
5143  constraint(ALLOC_IN_RC(int_flags));
5144  match(RegFlags);
5145  format %{ "FLAGS_LTGE" %}
5146  interface(REG_INTER);
5147%}
5148operand flagsReg_long_EQNE() %{
5149  constraint(ALLOC_IN_RC(int_flags));
5150  match(RegFlags);
5151  format %{ "FLAGS_EQNE" %}
5152  interface(REG_INTER);
5153%}
5154operand flagsReg_long_LEGT() %{
5155  constraint(ALLOC_IN_RC(int_flags));
5156  match(RegFlags);
5157  format %{ "FLAGS_LEGT" %}
5158  interface(REG_INTER);
5159%}
5160
5161// Float register operands
5162operand regD() %{
5163  predicate( UseSSE < 2 );
5164  constraint(ALLOC_IN_RC(dbl_reg));
5165  match(RegD);
5166  match(regDPR1);
5167  match(regDPR2);
5168  format %{ %}
5169  interface(REG_INTER);
5170%}
5171
5172operand regDPR1(regD reg) %{
5173  predicate( UseSSE < 2 );
5174  constraint(ALLOC_IN_RC(dbl_reg0));
5175  match(reg);
5176  format %{ "FPR1" %}
5177  interface(REG_INTER);
5178%}
5179
5180operand regDPR2(regD reg) %{
5181  predicate( UseSSE < 2 );
5182  constraint(ALLOC_IN_RC(dbl_reg1));
5183  match(reg);
5184  format %{ "FPR2" %}
5185  interface(REG_INTER);
5186%}
5187
5188operand regnotDPR1(regD reg) %{
5189  predicate( UseSSE < 2 );
5190  constraint(ALLOC_IN_RC(dbl_notreg0));
5191  match(reg);
5192  format %{ %}
5193  interface(REG_INTER);
5194%}
5195
5196// XMM Double register operands
5197operand regXD() %{
5198  predicate( UseSSE>=2 );
5199  constraint(ALLOC_IN_RC(xdb_reg));
5200  match(RegD);
5201  match(regXD6);
5202  match(regXD7);
5203  format %{ %}
5204  interface(REG_INTER);
5205%}
5206
5207// XMM6 double register operands
5208operand regXD6(regXD reg) %{
5209  predicate( UseSSE>=2 );
5210  constraint(ALLOC_IN_RC(xdb_reg6));
5211  match(reg);
5212  format %{ "XMM6" %}
5213  interface(REG_INTER);
5214%}
5215
5216// XMM7 double register operands
5217operand regXD7(regXD reg) %{
5218  predicate( UseSSE>=2 );
5219  constraint(ALLOC_IN_RC(xdb_reg7));
5220  match(reg);
5221  format %{ "XMM7" %}
5222  interface(REG_INTER);
5223%}
5224
5225// Float register operands
5226operand regF() %{
5227  predicate( UseSSE < 2 );
5228  constraint(ALLOC_IN_RC(flt_reg));
5229  match(RegF);
5230  match(regFPR1);
5231  format %{ %}
5232  interface(REG_INTER);
5233%}
5234
5235// Float register operands
5236operand regFPR1(regF reg) %{
5237  predicate( UseSSE < 2 );
5238  constraint(ALLOC_IN_RC(flt_reg0));
5239  match(reg);
5240  format %{ "FPR1" %}
5241  interface(REG_INTER);
5242%}
5243
5244// XMM register operands
5245operand regX() %{
5246  predicate( UseSSE>=1 );
5247  constraint(ALLOC_IN_RC(xmm_reg));
5248  match(RegF);
5249  format %{ %}
5250  interface(REG_INTER);
5251%}
5252
5253
5254//----------Memory Operands----------------------------------------------------
5255// Direct Memory Operand
5256operand direct(immP addr) %{
5257  match(addr);
5258
5259  format %{ "[$addr]" %}
5260  interface(MEMORY_INTER) %{
5261    base(0xFFFFFFFF);
5262    index(0x4);
5263    scale(0x0);
5264    disp($addr);
5265  %}
5266%}
5267
5268// Indirect Memory Operand
5269operand indirect(eRegP reg) %{
5270  constraint(ALLOC_IN_RC(e_reg));
5271  match(reg);
5272
5273  format %{ "[$reg]" %}
5274  interface(MEMORY_INTER) %{
5275    base($reg);
5276    index(0x4);
5277    scale(0x0);
5278    disp(0x0);
5279  %}
5280%}
5281
5282// Indirect Memory Plus Short Offset Operand
5283operand indOffset8(eRegP reg, immI8 off) %{
5284  match(AddP reg off);
5285
5286  format %{ "[$reg + $off]" %}
5287  interface(MEMORY_INTER) %{
5288    base($reg);
5289    index(0x4);
5290    scale(0x0);
5291    disp($off);
5292  %}
5293%}
5294
5295// Indirect Memory Plus Long Offset Operand
5296operand indOffset32(eRegP reg, immI off) %{
5297  match(AddP reg off);
5298
5299  format %{ "[$reg + $off]" %}
5300  interface(MEMORY_INTER) %{
5301    base($reg);
5302    index(0x4);
5303    scale(0x0);
5304    disp($off);
5305  %}
5306%}
5307
5308// Indirect Memory Plus Long Offset Operand
5309operand indOffset32X(eRegI reg, immP off) %{
5310  match(AddP off reg);
5311
5312  format %{ "[$reg + $off]" %}
5313  interface(MEMORY_INTER) %{
5314    base($reg);
5315    index(0x4);
5316    scale(0x0);
5317    disp($off);
5318  %}
5319%}
5320
5321// Indirect Memory Plus Index Register Plus Offset Operand
5322operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5323  match(AddP (AddP reg ireg) off);
5324
5325  op_cost(10);
5326  format %{"[$reg + $off + $ireg]" %}
5327  interface(MEMORY_INTER) %{
5328    base($reg);
5329    index($ireg);
5330    scale(0x0);
5331    disp($off);
5332  %}
5333%}
5334
5335// Indirect Memory Plus Index Register Plus Offset Operand
5336operand indIndex(eRegP reg, eRegI ireg) %{
5337  match(AddP reg ireg);
5338
5339  op_cost(10);
5340  format %{"[$reg + $ireg]" %}
5341  interface(MEMORY_INTER) %{
5342    base($reg);
5343    index($ireg);
5344    scale(0x0);
5345    disp(0x0);
5346  %}
5347%}
5348
5349// // -------------------------------------------------------------------------
5350// // 486 architecture doesn't support "scale * index + offset" with out a base
5351// // -------------------------------------------------------------------------
5352// // Scaled Memory Operands
5353// // Indirect Memory Times Scale Plus Offset Operand
5354// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5355//   match(AddP off (LShiftI ireg scale));
5356//
5357//   op_cost(10);
5358//   format %{"[$off + $ireg << $scale]" %}
5359//   interface(MEMORY_INTER) %{
5360//     base(0x4);
5361//     index($ireg);
5362//     scale($scale);
5363//     disp($off);
5364//   %}
5365// %}
5366
5367// Indirect Memory Times Scale Plus Index Register
5368operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5369  match(AddP reg (LShiftI ireg scale));
5370
5371  op_cost(10);
5372  format %{"[$reg + $ireg << $scale]" %}
5373  interface(MEMORY_INTER) %{
5374    base($reg);
5375    index($ireg);
5376    scale($scale);
5377    disp(0x0);
5378  %}
5379%}
5380
5381// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5382operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5383  match(AddP (AddP reg (LShiftI ireg scale)) off);
5384
5385  op_cost(10);
5386  format %{"[$reg + $off + $ireg << $scale]" %}
5387  interface(MEMORY_INTER) %{
5388    base($reg);
5389    index($ireg);
5390    scale($scale);
5391    disp($off);
5392  %}
5393%}
5394
5395//----------Load Long Memory Operands------------------------------------------
5396// The load-long idiom will use it's address expression again after loading
5397// the first word of the long.  If the load-long destination overlaps with
5398// registers used in the addressing expression, the 2nd half will be loaded
5399// from a clobbered address.  Fix this by requiring that load-long use
5400// address registers that do not overlap with the load-long target.
5401
5402// load-long support
5403operand load_long_RegP() %{
5404  constraint(ALLOC_IN_RC(esi_reg));
5405  match(RegP);
5406  match(eSIRegP);
5407  op_cost(100);
5408  format %{  %}
5409  interface(REG_INTER);
5410%}
5411
5412// Indirect Memory Operand Long
5413operand load_long_indirect(load_long_RegP reg) %{
5414  constraint(ALLOC_IN_RC(esi_reg));
5415  match(reg);
5416
5417  format %{ "[$reg]" %}
5418  interface(MEMORY_INTER) %{
5419    base($reg);
5420    index(0x4);
5421    scale(0x0);
5422    disp(0x0);
5423  %}
5424%}
5425
5426// Indirect Memory Plus Long Offset Operand
5427operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5428  match(AddP reg off);
5429
5430  format %{ "[$reg + $off]" %}
5431  interface(MEMORY_INTER) %{
5432    base($reg);
5433    index(0x4);
5434    scale(0x0);
5435    disp($off);
5436  %}
5437%}
5438
5439opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5440
5441
5442//----------Special Memory Operands--------------------------------------------
5443// Stack Slot Operand - This operand is used for loading and storing temporary
5444//                      values on the stack where a match requires a value to
5445//                      flow through memory.
5446operand stackSlotP(sRegP reg) %{
5447  constraint(ALLOC_IN_RC(stack_slots));
5448  // No match rule because this operand is only generated in matching
5449  format %{ "[$reg]" %}
5450  interface(MEMORY_INTER) %{
5451    base(0x4);   // ESP
5452    index(0x4);  // No Index
5453    scale(0x0);  // No Scale
5454    disp($reg);  // Stack Offset
5455  %}
5456%}
5457
5458operand stackSlotI(sRegI reg) %{
5459  constraint(ALLOC_IN_RC(stack_slots));
5460  // No match rule because this operand is only generated in matching
5461  format %{ "[$reg]" %}
5462  interface(MEMORY_INTER) %{
5463    base(0x4);   // ESP
5464    index(0x4);  // No Index
5465    scale(0x0);  // No Scale
5466    disp($reg);  // Stack Offset
5467  %}
5468%}
5469
5470operand stackSlotF(sRegF reg) %{
5471  constraint(ALLOC_IN_RC(stack_slots));
5472  // No match rule because this operand is only generated in matching
5473  format %{ "[$reg]" %}
5474  interface(MEMORY_INTER) %{
5475    base(0x4);   // ESP
5476    index(0x4);  // No Index
5477    scale(0x0);  // No Scale
5478    disp($reg);  // Stack Offset
5479  %}
5480%}
5481
5482operand stackSlotD(sRegD reg) %{
5483  constraint(ALLOC_IN_RC(stack_slots));
5484  // No match rule because this operand is only generated in matching
5485  format %{ "[$reg]" %}
5486  interface(MEMORY_INTER) %{
5487    base(0x4);   // ESP
5488    index(0x4);  // No Index
5489    scale(0x0);  // No Scale
5490    disp($reg);  // Stack Offset
5491  %}
5492%}
5493
5494operand stackSlotL(sRegL reg) %{
5495  constraint(ALLOC_IN_RC(stack_slots));
5496  // No match rule because this operand is only generated in matching
5497  format %{ "[$reg]" %}
5498  interface(MEMORY_INTER) %{
5499    base(0x4);   // ESP
5500    index(0x4);  // No Index
5501    scale(0x0);  // No Scale
5502    disp($reg);  // Stack Offset
5503  %}
5504%}
5505
5506//----------Memory Operands - Win95 Implicit Null Variants----------------
5507// Indirect Memory Operand
5508operand indirect_win95_safe(eRegP_no_EBP reg)
5509%{
5510  constraint(ALLOC_IN_RC(e_reg));
5511  match(reg);
5512
5513  op_cost(100);
5514  format %{ "[$reg]" %}
5515  interface(MEMORY_INTER) %{
5516    base($reg);
5517    index(0x4);
5518    scale(0x0);
5519    disp(0x0);
5520  %}
5521%}
5522
5523// Indirect Memory Plus Short Offset Operand
5524operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5525%{
5526  match(AddP reg off);
5527
5528  op_cost(100);
5529  format %{ "[$reg + $off]" %}
5530  interface(MEMORY_INTER) %{
5531    base($reg);
5532    index(0x4);
5533    scale(0x0);
5534    disp($off);
5535  %}
5536%}
5537
5538// Indirect Memory Plus Long Offset Operand
5539operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5540%{
5541  match(AddP reg off);
5542
5543  op_cost(100);
5544  format %{ "[$reg + $off]" %}
5545  interface(MEMORY_INTER) %{
5546    base($reg);
5547    index(0x4);
5548    scale(0x0);
5549    disp($off);
5550  %}
5551%}
5552
5553// Indirect Memory Plus Index Register Plus Offset Operand
5554operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5555%{
5556  match(AddP (AddP reg ireg) off);
5557
5558  op_cost(100);
5559  format %{"[$reg + $off + $ireg]" %}
5560  interface(MEMORY_INTER) %{
5561    base($reg);
5562    index($ireg);
5563    scale(0x0);
5564    disp($off);
5565  %}
5566%}
5567
5568// Indirect Memory Times Scale Plus Index Register
5569operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5570%{
5571  match(AddP reg (LShiftI ireg scale));
5572
5573  op_cost(100);
5574  format %{"[$reg + $ireg << $scale]" %}
5575  interface(MEMORY_INTER) %{
5576    base($reg);
5577    index($ireg);
5578    scale($scale);
5579    disp(0x0);
5580  %}
5581%}
5582
5583// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5584operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5585%{
5586  match(AddP (AddP reg (LShiftI ireg scale)) off);
5587
5588  op_cost(100);
5589  format %{"[$reg + $off + $ireg << $scale]" %}
5590  interface(MEMORY_INTER) %{
5591    base($reg);
5592    index($ireg);
5593    scale($scale);
5594    disp($off);
5595  %}
5596%}
5597
5598//----------Conditional Branch Operands----------------------------------------
5599// Comparison Op  - This is the operation of the comparison, and is limited to
5600//                  the following set of codes:
5601//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5602//
5603// Other attributes of the comparison, such as unsignedness, are specified
5604// by the comparison instruction that sets a condition code flags register.
5605// That result is represented by a flags operand whose subtype is appropriate
5606// to the unsignedness (etc.) of the comparison.
5607//
5608// Later, the instruction which matches both the Comparison Op (a Bool) and
5609// the flags (produced by the Cmp) specifies the coding of the comparison op
5610// by matching a specific subtype of Bool operand below, such as cmpOpU.
5611
5612// Comparision Code
5613operand cmpOp() %{
5614  match(Bool);
5615
5616  format %{ "" %}
5617  interface(COND_INTER) %{
5618    equal(0x4, "e");
5619    not_equal(0x5, "ne");
5620    less(0xC, "l");
5621    greater_equal(0xD, "ge");
5622    less_equal(0xE, "le");
5623    greater(0xF, "g");
5624  %}
5625%}
5626
5627// Comparison Code, unsigned compare.  Used by FP also, with
5628// C2 (unordered) turned into GT or LT already.  The other bits
5629// C0 and C3 are turned into Carry & Zero flags.
5630operand cmpOpU() %{
5631  match(Bool);
5632
5633  format %{ "" %}
5634  interface(COND_INTER) %{
5635    equal(0x4, "e");
5636    not_equal(0x5, "ne");
5637    less(0x2, "b");
5638    greater_equal(0x3, "nb");
5639    less_equal(0x6, "be");
5640    greater(0x7, "nbe");
5641  %}
5642%}
5643
5644// Floating comparisons that don't require any fixup for the unordered case
5645operand cmpOpUCF() %{
5646  match(Bool);
5647  predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5648            n->as_Bool()->_test._test == BoolTest::ge ||
5649            n->as_Bool()->_test._test == BoolTest::le ||
5650            n->as_Bool()->_test._test == BoolTest::gt);
5651  format %{ "" %}
5652  interface(COND_INTER) %{
5653    equal(0x4, "e");
5654    not_equal(0x5, "ne");
5655    less(0x2, "b");
5656    greater_equal(0x3, "nb");
5657    less_equal(0x6, "be");
5658    greater(0x7, "nbe");
5659  %}
5660%}
5661
5662
5663// Floating comparisons that can be fixed up with extra conditional jumps
5664operand cmpOpUCF2() %{
5665  match(Bool);
5666  predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5667            n->as_Bool()->_test._test == BoolTest::eq);
5668  format %{ "" %}
5669  interface(COND_INTER) %{
5670    equal(0x4, "e");
5671    not_equal(0x5, "ne");
5672    less(0x2, "b");
5673    greater_equal(0x3, "nb");
5674    less_equal(0x6, "be");
5675    greater(0x7, "nbe");
5676  %}
5677%}
5678
5679// Comparison Code for FP conditional move
5680operand cmpOp_fcmov() %{
5681  match(Bool);
5682
5683  format %{ "" %}
5684  interface(COND_INTER) %{
5685    equal        (0x0C8);
5686    not_equal    (0x1C8);
5687    less         (0x0C0);
5688    greater_equal(0x1C0);
5689    less_equal   (0x0D0);
5690    greater      (0x1D0);
5691  %}
5692%}
5693
5694// Comparision Code used in long compares
5695operand cmpOp_commute() %{
5696  match(Bool);
5697
5698  format %{ "" %}
5699  interface(COND_INTER) %{
5700    equal(0x4, "e");
5701    not_equal(0x5, "ne");
5702    less(0xF, "g");
5703    greater_equal(0xE, "le");
5704    less_equal(0xD, "ge");
5705    greater(0xC, "l");
5706  %}
5707%}
5708
5709//----------OPERAND CLASSES----------------------------------------------------
5710// Operand Classes are groups of operands that are used as to simplify
5711// instruction definitions by not requiring the AD writer to specify separate
5712// instructions for every form of operand when the instruction accepts
5713// multiple operand types with the same basic encoding and format.  The classic
5714// case of this is memory operands.
5715
5716opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5717               indIndex, indIndexScale, indIndexScaleOffset);
5718
5719// Long memory operations are encoded in 2 instructions and a +4 offset.
5720// This means some kind of offset is always required and you cannot use
5721// an oop as the offset (done when working on static globals).
5722opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5723                    indIndex, indIndexScale, indIndexScaleOffset);
5724
5725
5726//----------PIPELINE-----------------------------------------------------------
5727// Rules which define the behavior of the target architectures pipeline.
5728pipeline %{
5729
5730//----------ATTRIBUTES---------------------------------------------------------
5731attributes %{
5732  variable_size_instructions;        // Fixed size instructions
5733  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5734  instruction_unit_size = 1;         // An instruction is 1 bytes long
5735  instruction_fetch_unit_size = 16;  // The processor fetches one line
5736  instruction_fetch_units = 1;       // of 16 bytes
5737
5738  // List of nop instructions
5739  nops( MachNop );
5740%}
5741
5742//----------RESOURCES----------------------------------------------------------
5743// Resources are the functional units available to the machine
5744
5745// Generic P2/P3 pipeline
5746// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5747// 3 instructions decoded per cycle.
5748// 2 load/store ops per cycle, 1 branch, 1 FPU,
5749// 2 ALU op, only ALU0 handles mul/div instructions.
5750resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5751           MS0, MS1, MEM = MS0 | MS1,
5752           BR, FPU,
5753           ALU0, ALU1, ALU = ALU0 | ALU1 );
5754
5755//----------PIPELINE DESCRIPTION-----------------------------------------------
5756// Pipeline Description specifies the stages in the machine's pipeline
5757
5758// Generic P2/P3 pipeline
5759pipe_desc(S0, S1, S2, S3, S4, S5);
5760
5761//----------PIPELINE CLASSES---------------------------------------------------
5762// Pipeline Classes describe the stages in which input and output are
5763// referenced by the hardware pipeline.
5764
5765// Naming convention: ialu or fpu
5766// Then: _reg
5767// Then: _reg if there is a 2nd register
5768// Then: _long if it's a pair of instructions implementing a long
5769// Then: _fat if it requires the big decoder
5770//   Or: _mem if it requires the big decoder and a memory unit.
5771
5772// Integer ALU reg operation
5773pipe_class ialu_reg(eRegI dst) %{
5774    single_instruction;
5775    dst    : S4(write);
5776    dst    : S3(read);
5777    DECODE : S0;        // any decoder
5778    ALU    : S3;        // any alu
5779%}
5780
5781// Long ALU reg operation
5782pipe_class ialu_reg_long(eRegL dst) %{
5783    instruction_count(2);
5784    dst    : S4(write);
5785    dst    : S3(read);
5786    DECODE : S0(2);     // any 2 decoders
5787    ALU    : S3(2);     // both alus
5788%}
5789
5790// Integer ALU reg operation using big decoder
5791pipe_class ialu_reg_fat(eRegI dst) %{
5792    single_instruction;
5793    dst    : S4(write);
5794    dst    : S3(read);
5795    D0     : S0;        // big decoder only
5796    ALU    : S3;        // any alu
5797%}
5798
5799// Long ALU reg operation using big decoder
5800pipe_class ialu_reg_long_fat(eRegL dst) %{
5801    instruction_count(2);
5802    dst    : S4(write);
5803    dst    : S3(read);
5804    D0     : S0(2);     // big decoder only; twice
5805    ALU    : S3(2);     // any 2 alus
5806%}
5807
5808// Integer ALU reg-reg operation
5809pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5810    single_instruction;
5811    dst    : S4(write);
5812    src    : S3(read);
5813    DECODE : S0;        // any decoder
5814    ALU    : S3;        // any alu
5815%}
5816
5817// Long ALU reg-reg operation
5818pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5819    instruction_count(2);
5820    dst    : S4(write);
5821    src    : S3(read);
5822    DECODE : S0(2);     // any 2 decoders
5823    ALU    : S3(2);     // both alus
5824%}
5825
5826// Integer ALU reg-reg operation
5827pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5828    single_instruction;
5829    dst    : S4(write);
5830    src    : S3(read);
5831    D0     : S0;        // big decoder only
5832    ALU    : S3;        // any alu
5833%}
5834
5835// Long ALU reg-reg operation
5836pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5837    instruction_count(2);
5838    dst    : S4(write);
5839    src    : S3(read);
5840    D0     : S0(2);     // big decoder only; twice
5841    ALU    : S3(2);     // both alus
5842%}
5843
5844// Integer ALU reg-mem operation
5845pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5846    single_instruction;
5847    dst    : S5(write);
5848    mem    : S3(read);
5849    D0     : S0;        // big decoder only
5850    ALU    : S4;        // any alu
5851    MEM    : S3;        // any mem
5852%}
5853
5854// Long ALU reg-mem operation
5855pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5856    instruction_count(2);
5857    dst    : S5(write);
5858    mem    : S3(read);
5859    D0     : S0(2);     // big decoder only; twice
5860    ALU    : S4(2);     // any 2 alus
5861    MEM    : S3(2);     // both mems
5862%}
5863
5864// Integer mem operation (prefetch)
5865pipe_class ialu_mem(memory mem)
5866%{
5867    single_instruction;
5868    mem    : S3(read);
5869    D0     : S0;        // big decoder only
5870    MEM    : S3;        // any mem
5871%}
5872
5873// Integer Store to Memory
5874pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5875    single_instruction;
5876    mem    : S3(read);
5877    src    : S5(read);
5878    D0     : S0;        // big decoder only
5879    ALU    : S4;        // any alu
5880    MEM    : S3;
5881%}
5882
5883// Long Store to Memory
5884pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5885    instruction_count(2);
5886    mem    : S3(read);
5887    src    : S5(read);
5888    D0     : S0(2);     // big decoder only; twice
5889    ALU    : S4(2);     // any 2 alus
5890    MEM    : S3(2);     // Both mems
5891%}
5892
5893// Integer Store to Memory
5894pipe_class ialu_mem_imm(memory mem) %{
5895    single_instruction;
5896    mem    : S3(read);
5897    D0     : S0;        // big decoder only
5898    ALU    : S4;        // any alu
5899    MEM    : S3;
5900%}
5901
5902// Integer ALU0 reg-reg operation
5903pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5904    single_instruction;
5905    dst    : S4(write);
5906    src    : S3(read);
5907    D0     : S0;        // Big decoder only
5908    ALU0   : S3;        // only alu0
5909%}
5910
5911// Integer ALU0 reg-mem operation
5912pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5913    single_instruction;
5914    dst    : S5(write);
5915    mem    : S3(read);
5916    D0     : S0;        // big decoder only
5917    ALU0   : S4;        // ALU0 only
5918    MEM    : S3;        // any mem
5919%}
5920
5921// Integer ALU reg-reg operation
5922pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5923    single_instruction;
5924    cr     : S4(write);
5925    src1   : S3(read);
5926    src2   : S3(read);
5927    DECODE : S0;        // any decoder
5928    ALU    : S3;        // any alu
5929%}
5930
5931// Integer ALU reg-imm operation
5932pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5933    single_instruction;
5934    cr     : S4(write);
5935    src1   : S3(read);
5936    DECODE : S0;        // any decoder
5937    ALU    : S3;        // any alu
5938%}
5939
5940// Integer ALU reg-mem operation
5941pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5942    single_instruction;
5943    cr     : S4(write);
5944    src1   : S3(read);
5945    src2   : S3(read);
5946    D0     : S0;        // big decoder only
5947    ALU    : S4;        // any alu
5948    MEM    : S3;
5949%}
5950
5951// Conditional move reg-reg
5952pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5953    instruction_count(4);
5954    y      : S4(read);
5955    q      : S3(read);
5956    p      : S3(read);
5957    DECODE : S0(4);     // any decoder
5958%}
5959
5960// Conditional move reg-reg
5961pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
5962    single_instruction;
5963    dst    : S4(write);
5964    src    : S3(read);
5965    cr     : S3(read);
5966    DECODE : S0;        // any decoder
5967%}
5968
5969// Conditional move reg-mem
5970pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
5971    single_instruction;
5972    dst    : S4(write);
5973    src    : S3(read);
5974    cr     : S3(read);
5975    DECODE : S0;        // any decoder
5976    MEM    : S3;
5977%}
5978
5979// Conditional move reg-reg long
5980pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
5981    single_instruction;
5982    dst    : S4(write);
5983    src    : S3(read);
5984    cr     : S3(read);
5985    DECODE : S0(2);     // any 2 decoders
5986%}
5987
5988// Conditional move double reg-reg
5989pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
5990    single_instruction;
5991    dst    : S4(write);
5992    src    : S3(read);
5993    cr     : S3(read);
5994    DECODE : S0;        // any decoder
5995%}
5996
5997// Float reg-reg operation
5998pipe_class fpu_reg(regD dst) %{
5999    instruction_count(2);
6000    dst    : S3(read);
6001    DECODE : S0(2);     // any 2 decoders
6002    FPU    : S3;
6003%}
6004
6005// Float reg-reg operation
6006pipe_class fpu_reg_reg(regD dst, regD src) %{
6007    instruction_count(2);
6008    dst    : S4(write);
6009    src    : S3(read);
6010    DECODE : S0(2);     // any 2 decoders
6011    FPU    : S3;
6012%}
6013
6014// Float reg-reg operation
6015pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6016    instruction_count(3);
6017    dst    : S4(write);
6018    src1   : S3(read);
6019    src2   : S3(read);
6020    DECODE : S0(3);     // any 3 decoders
6021    FPU    : S3(2);
6022%}
6023
6024// Float reg-reg operation
6025pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6026    instruction_count(4);
6027    dst    : S4(write);
6028    src1   : S3(read);
6029    src2   : S3(read);
6030    src3   : S3(read);
6031    DECODE : S0(4);     // any 3 decoders
6032    FPU    : S3(2);
6033%}
6034
6035// Float reg-reg operation
6036pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6037    instruction_count(4);
6038    dst    : S4(write);
6039    src1   : S3(read);
6040    src2   : S3(read);
6041    src3   : S3(read);
6042    DECODE : S1(3);     // any 3 decoders
6043    D0     : S0;        // Big decoder only
6044    FPU    : S3(2);
6045    MEM    : S3;
6046%}
6047
6048// Float reg-mem operation
6049pipe_class fpu_reg_mem(regD dst, memory mem) %{
6050    instruction_count(2);
6051    dst    : S5(write);
6052    mem    : S3(read);
6053    D0     : S0;        // big decoder only
6054    DECODE : S1;        // any decoder for FPU POP
6055    FPU    : S4;
6056    MEM    : S3;        // any mem
6057%}
6058
6059// Float reg-mem operation
6060pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6061    instruction_count(3);
6062    dst    : S5(write);
6063    src1   : S3(read);
6064    mem    : S3(read);
6065    D0     : S0;        // big decoder only
6066    DECODE : S1(2);     // any decoder for FPU POP
6067    FPU    : S4;
6068    MEM    : S3;        // any mem
6069%}
6070
6071// Float mem-reg operation
6072pipe_class fpu_mem_reg(memory mem, regD src) %{
6073    instruction_count(2);
6074    src    : S5(read);
6075    mem    : S3(read);
6076    DECODE : S0;        // any decoder for FPU PUSH
6077    D0     : S1;        // big decoder only
6078    FPU    : S4;
6079    MEM    : S3;        // any mem
6080%}
6081
6082pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6083    instruction_count(3);
6084    src1   : S3(read);
6085    src2   : S3(read);
6086    mem    : S3(read);
6087    DECODE : S0(2);     // any decoder for FPU PUSH
6088    D0     : S1;        // big decoder only
6089    FPU    : S4;
6090    MEM    : S3;        // any mem
6091%}
6092
6093pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6094    instruction_count(3);
6095    src1   : S3(read);
6096    src2   : S3(read);
6097    mem    : S4(read);
6098    DECODE : S0;        // any decoder for FPU PUSH
6099    D0     : S0(2);     // big decoder only
6100    FPU    : S4;
6101    MEM    : S3(2);     // any mem
6102%}
6103
6104pipe_class fpu_mem_mem(memory dst, memory src1) %{
6105    instruction_count(2);
6106    src1   : S3(read);
6107    dst    : S4(read);
6108    D0     : S0(2);     // big decoder only
6109    MEM    : S3(2);     // any mem
6110%}
6111
6112pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6113    instruction_count(3);
6114    src1   : S3(read);
6115    src2   : S3(read);
6116    dst    : S4(read);
6117    D0     : S0(3);     // big decoder only
6118    FPU    : S4;
6119    MEM    : S3(3);     // any mem
6120%}
6121
6122pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6123    instruction_count(3);
6124    src1   : S4(read);
6125    mem    : S4(read);
6126    DECODE : S0;        // any decoder for FPU PUSH
6127    D0     : S0(2);     // big decoder only
6128    FPU    : S4;
6129    MEM    : S3(2);     // any mem
6130%}
6131
6132// Float load constant
6133pipe_class fpu_reg_con(regD dst) %{
6134    instruction_count(2);
6135    dst    : S5(write);
6136    D0     : S0;        // big decoder only for the load
6137    DECODE : S1;        // any decoder for FPU POP
6138    FPU    : S4;
6139    MEM    : S3;        // any mem
6140%}
6141
6142// Float load constant
6143pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6144    instruction_count(3);
6145    dst    : S5(write);
6146    src    : S3(read);
6147    D0     : S0;        // big decoder only for the load
6148    DECODE : S1(2);     // any decoder for FPU POP
6149    FPU    : S4;
6150    MEM    : S3;        // any mem
6151%}
6152
6153// UnConditional branch
6154pipe_class pipe_jmp( label labl ) %{
6155    single_instruction;
6156    BR   : S3;
6157%}
6158
6159// Conditional branch
6160pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6161    single_instruction;
6162    cr    : S1(read);
6163    BR    : S3;
6164%}
6165
6166// Allocation idiom
6167pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6168    instruction_count(1); force_serialization;
6169    fixed_latency(6);
6170    heap_ptr : S3(read);
6171    DECODE   : S0(3);
6172    D0       : S2;
6173    MEM      : S3;
6174    ALU      : S3(2);
6175    dst      : S5(write);
6176    BR       : S5;
6177%}
6178
6179// Generic big/slow expanded idiom
6180pipe_class pipe_slow(  ) %{
6181    instruction_count(10); multiple_bundles; force_serialization;
6182    fixed_latency(100);
6183    D0  : S0(2);
6184    MEM : S3(2);
6185%}
6186
6187// The real do-nothing guy
6188pipe_class empty( ) %{
6189    instruction_count(0);
6190%}
6191
6192// Define the class for the Nop node
6193define %{
6194   MachNop = empty;
6195%}
6196
6197%}
6198
6199//----------INSTRUCTIONS-------------------------------------------------------
6200//
6201// match      -- States which machine-independent subtree may be replaced
6202//               by this instruction.
6203// ins_cost   -- The estimated cost of this instruction is used by instruction
6204//               selection to identify a minimum cost tree of machine
6205//               instructions that matches a tree of machine-independent
6206//               instructions.
6207// format     -- A string providing the disassembly for this instruction.
6208//               The value of an instruction's operand may be inserted
6209//               by referring to it with a '$' prefix.
6210// opcode     -- Three instruction opcodes may be provided.  These are referred
6211//               to within an encode class as $primary, $secondary, and $tertiary
6212//               respectively.  The primary opcode is commonly used to
6213//               indicate the type of machine instruction, while secondary
6214//               and tertiary are often used for prefix options or addressing
6215//               modes.
6216// ins_encode -- A list of encode classes with parameters. The encode class
6217//               name must have been defined in an 'enc_class' specification
6218//               in the encode section of the architecture description.
6219
6220//----------BSWAP-Instruction--------------------------------------------------
6221instruct bytes_reverse_int(eRegI dst) %{
6222  match(Set dst (ReverseBytesI dst));
6223
6224  format %{ "BSWAP  $dst" %}
6225  opcode(0x0F, 0xC8);
6226  ins_encode( OpcP, OpcSReg(dst) );
6227  ins_pipe( ialu_reg );
6228%}
6229
6230instruct bytes_reverse_long(eRegL dst) %{
6231  match(Set dst (ReverseBytesL dst));
6232
6233  format %{ "BSWAP  $dst.lo\n\t"
6234            "BSWAP  $dst.hi\n\t"
6235            "XCHG   $dst.lo $dst.hi" %}
6236
6237  ins_cost(125);
6238  ins_encode( bswap_long_bytes(dst) );
6239  ins_pipe( ialu_reg_reg);
6240%}
6241
6242instruct bytes_reverse_unsigned_short(eRegI dst) %{
6243  match(Set dst (ReverseBytesUS dst));
6244
6245  format %{ "BSWAP  $dst\n\t" 
6246            "SHR    $dst,16\n\t" %}
6247  ins_encode %{
6248    __ bswapl($dst$$Register);
6249    __ shrl($dst$$Register, 16); 
6250  %}
6251  ins_pipe( ialu_reg );
6252%}
6253
6254instruct bytes_reverse_short(eRegI dst) %{
6255  match(Set dst (ReverseBytesS dst));
6256
6257  format %{ "BSWAP  $dst\n\t" 
6258            "SAR    $dst,16\n\t" %}
6259  ins_encode %{
6260    __ bswapl($dst$$Register);
6261    __ sarl($dst$$Register, 16); 
6262  %}
6263  ins_pipe( ialu_reg );
6264%}
6265
6266
6267//---------- Zeros Count Instructions ------------------------------------------
6268
6269instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6270  predicate(UseCountLeadingZerosInstruction);
6271  match(Set dst (CountLeadingZerosI src));
6272  effect(KILL cr);
6273
6274  format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6275  ins_encode %{
6276    __ lzcntl($dst$$Register, $src$$Register);
6277  %}
6278  ins_pipe(ialu_reg);
6279%}
6280
6281instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6282  predicate(!UseCountLeadingZerosInstruction);
6283  match(Set dst (CountLeadingZerosI src));
6284  effect(KILL cr);
6285
6286  format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6287            "JNZ    skip\n\t"
6288            "MOV    $dst, -1\n"
6289      "skip:\n\t"
6290            "NEG    $dst\n\t"
6291            "ADD    $dst, 31" %}
6292  ins_encode %{
6293    Register Rdst = $dst$$Register;
6294    Register Rsrc = $src$$Register;
6295    Label skip;
6296    __ bsrl(Rdst, Rsrc);
6297    __ jccb(Assembler::notZero, skip);
6298    __ movl(Rdst, -1);
6299    __ bind(skip);
6300    __ negl(Rdst);
6301    __ addl(Rdst, BitsPerInt - 1);
6302  %}
6303  ins_pipe(ialu_reg);
6304%}
6305
6306instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6307  predicate(UseCountLeadingZerosInstruction);
6308  match(Set dst (CountLeadingZerosL src));
6309  effect(TEMP dst, KILL cr);
6310
6311  format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6312            "JNC    done\n\t"
6313            "LZCNT  $dst, $src.lo\n\t"
6314            "ADD    $dst, 32\n"
6315      "done:" %}
6316  ins_encode %{
6317    Register Rdst = $dst$$Register;
6318    Register Rsrc = $src$$Register;
6319    Label done;
6320    __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6321    __ jccb(Assembler::carryClear, done);
6322    __ lzcntl(Rdst, Rsrc);
6323    __ addl(Rdst, BitsPerInt);
6324    __ bind(done);
6325  %}
6326  ins_pipe(ialu_reg);
6327%}
6328
6329instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6330  predicate(!UseCountLeadingZerosInstruction);
6331  match(Set dst (CountLeadingZerosL src));
6332  effect(TEMP dst, KILL cr);
6333
6334  format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6335            "JZ     msw_is_zero\n\t"
6336            "ADD    $dst, 32\n\t"
6337            "JMP    not_zero\n"
6338      "msw_is_zero:\n\t"
6339            "BSR    $dst, $src.lo\n\t"
6340            "JNZ    not_zero\n\t"
6341            "MOV    $dst, -1\n"
6342      "not_zero:\n\t"
6343            "NEG    $dst\n\t"
6344            "ADD    $dst, 63\n" %}
6345 ins_encode %{
6346    Register Rdst = $dst$$Register;
6347    Register Rsrc = $src$$Register;
6348    Label msw_is_zero;
6349    Label not_zero;
6350    __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6351    __ jccb(Assembler::zero, msw_is_zero);
6352    __ addl(Rdst, BitsPerInt);
6353    __ jmpb(not_zero);
6354    __ bind(msw_is_zero);
6355    __ bsrl(Rdst, Rsrc);
6356    __ jccb(Assembler::notZero, not_zero);
6357    __ movl(Rdst, -1);
6358    __ bind(not_zero);
6359    __ negl(Rdst);
6360    __ addl(Rdst, BitsPerLong - 1);
6361  %}
6362  ins_pipe(ialu_reg);
6363%}
6364
6365instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6366  match(Set dst (CountTrailingZerosI src));
6367  effect(KILL cr);
6368
6369  format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6370            "JNZ    done\n\t"
6371            "MOV    $dst, 32\n"
6372      "done:" %}
6373  ins_encode %{
6374    Register Rdst = $dst$$Register;
6375    Label done;
6376    __ bsfl(Rdst, $src$$Register);
6377    __ jccb(Assembler::notZero, done);
6378    __ movl(Rdst, BitsPerInt);
6379    __ bind(done);
6380  %}
6381  ins_pipe(ialu_reg);
6382%}
6383
6384instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6385  match(Set dst (CountTrailingZerosL src));
6386  effect(TEMP dst, KILL cr);
6387
6388  format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6389            "JNZ    done\n\t"
6390            "BSF    $dst, $src.hi\n\t"
6391            "JNZ    msw_not_zero\n\t"
6392            "MOV    $dst, 32\n"
6393      "msw_not_zero:\n\t"
6394            "ADD    $dst, 32\n"
6395      "done:" %}
6396  ins_encode %{
6397    Register Rdst = $dst$$Register;
6398    Register Rsrc = $src$$Register;
6399    Label msw_not_zero;
6400    Label done;
6401    __ bsfl(Rdst, Rsrc);
6402    __ jccb(Assembler::notZero, done);
6403    __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6404    __ jccb(Assembler::notZero, msw_not_zero);
6405    __ movl(Rdst, BitsPerInt);
6406    __ bind(msw_not_zero);
6407    __ addl(Rdst, BitsPerInt);
6408    __ bind(done);
6409  %}
6410  ins_pipe(ialu_reg);
6411%}
6412
6413
6414//---------- Population Count Instructions -------------------------------------
6415
6416instruct popCountI(eRegI dst, eRegI src) %{
6417  predicate(UsePopCountInstruction);
6418  match(Set dst (PopCountI src));
6419
6420  format %{ "POPCNT $dst, $src" %}
6421  ins_encode %{
6422    __ popcntl($dst$$Register, $src$$Register);
6423  %}
6424  ins_pipe(ialu_reg);
6425%}
6426
6427instruct popCountI_mem(eRegI dst, memory mem) %{
6428  predicate(UsePopCountInstruction);
6429  match(Set dst (PopCountI (LoadI mem)));
6430
6431  format %{ "POPCNT $dst, $mem" %}
6432  ins_encode %{
6433    __ popcntl($dst$$Register, $mem$$Address);
6434  %}
6435  ins_pipe(ialu_reg);
6436%}
6437
6438// Note: Long.bitCount(long) returns an int.
6439instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6440  predicate(UsePopCountInstruction);
6441  match(Set dst (PopCountL src));
6442  effect(KILL cr, TEMP tmp, TEMP dst);
6443
6444  format %{ "POPCNT $dst, $src.lo\n\t"
6445            "POPCNT $tmp, $src.hi\n\t"
6446            "ADD    $dst, $tmp" %}
6447  ins_encode %{
6448    __ popcntl($dst$$Register, $src$$Register);
6449    __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6450    __ addl($dst$$Register, $tmp$$Register);
6451  %}
6452  ins_pipe(ialu_reg);
6453%}
6454
6455// Note: Long.bitCount(long) returns an int.
6456instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6457  predicate(UsePopCountInstruction);
6458  match(Set dst (PopCountL (LoadL mem)));
6459  effect(KILL cr, TEMP tmp, TEMP dst);
6460
6461  format %{ "POPCNT $dst, $mem\n\t"
6462            "POPCNT $tmp, $mem+4\n\t"
6463            "ADD    $dst, $tmp" %}
6464  ins_encode %{
6465    //__ popcntl($dst$$Register, $mem$$Address$$first);
6466    //__ popcntl($tmp$$Register, $mem$$Address$$second);
6467    __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6468    __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6469    __ addl($dst$$Register, $tmp$$Register);
6470  %}
6471  ins_pipe(ialu_reg);
6472%}
6473
6474
6475//----------Load/Store/Move Instructions---------------------------------------
6476//----------Load Instructions--------------------------------------------------
6477// Load Byte (8bit signed)
6478instruct loadB(xRegI dst, memory mem) %{
6479  match(Set dst (LoadB mem));
6480
6481  ins_cost(125);
6482  format %{ "MOVSX8 $dst,$mem\t# byte" %}
6483
6484  ins_encode %{
6485    __ movsbl($dst$$Register, $mem$$Address);
6486  %}
6487
6488  ins_pipe(ialu_reg_mem);
6489%}
6490
6491// Load Byte (8bit signed) into Long Register
6492instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6493  match(Set dst (ConvI2L (LoadB mem)));
6494  effect(KILL cr);
6495
6496  ins_cost(375);
6497  format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6498            "MOV    $dst.hi,$dst.lo\n\t"
6499            "SAR    $dst.hi,7" %}
6500
6501  ins_encode %{
6502    __ movsbl($dst$$Register, $mem$$Address);
6503    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6504    __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6505  %}
6506
6507  ins_pipe(ialu_reg_mem);
6508%}
6509
6510// Load Unsigned Byte (8bit UNsigned)
6511instruct loadUB(xRegI dst, memory mem) %{
6512  match(Set dst (LoadUB mem));
6513
6514  ins_cost(125);
6515  format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6516
6517  ins_encode %{
6518    __ movzbl($dst$$Register, $mem$$Address);
6519  %}
6520
6521  ins_pipe(ialu_reg_mem);
6522%}
6523
6524// Load Unsigned Byte (8 bit UNsigned) into Long Register
6525instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6526  match(Set dst (ConvI2L (LoadUB mem)));
6527  effect(KILL cr);
6528
6529  ins_cost(250);
6530  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6531            "XOR    $dst.hi,$dst.hi" %}
6532
6533  ins_encode %{
6534    Register Rdst = $dst$$Register;
6535    __ movzbl(Rdst, $mem$$Address);
6536    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6537  %}
6538
6539  ins_pipe(ialu_reg_mem);
6540%}
6541
6542// Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6543instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6544  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6545  effect(KILL cr);
6546
6547  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6548            "XOR    $dst.hi,$dst.hi\n\t"
6549            "AND    $dst.lo,$mask" %}
6550  ins_encode %{
6551    Register Rdst = $dst$$Register;
6552    __ movzbl(Rdst, $mem$$Address);
6553    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6554    __ andl(Rdst, $mask$$constant);
6555  %}
6556  ins_pipe(ialu_reg_mem);
6557%}
6558
6559// Load Short (16bit signed)
6560instruct loadS(eRegI dst, memory mem) %{
6561  match(Set dst (LoadS mem));
6562
6563  ins_cost(125);
6564  format %{ "MOVSX  $dst,$mem\t# short" %}
6565
6566  ins_encode %{
6567    __ movswl($dst$$Register, $mem$$Address);
6568  %}
6569
6570  ins_pipe(ialu_reg_mem);
6571%}
6572
6573// Load Short (16 bit signed) to Byte (8 bit signed)
6574instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6575  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6576
6577  ins_cost(125);
6578  format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6579  ins_encode %{
6580    __ movsbl($dst$$Register, $mem$$Address);
6581  %}
6582  ins_pipe(ialu_reg_mem);
6583%}
6584
6585// Load Short (16bit signed) into Long Register
6586instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6587  match(Set dst (ConvI2L (LoadS mem)));
6588  effect(KILL cr);
6589
6590  ins_cost(375);
6591  format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6592            "MOV    $dst.hi,$dst.lo\n\t"
6593            "SAR    $dst.hi,15" %}
6594
6595  ins_encode %{
6596    __ movswl($dst$$Register, $mem$$Address);
6597    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6598    __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6599  %}
6600
6601  ins_pipe(ialu_reg_mem);
6602%}
6603
6604// Load Unsigned Short/Char (16bit unsigned)
6605instruct loadUS(eRegI dst, memory mem) %{
6606  match(Set dst (LoadUS mem));
6607
6608  ins_cost(125);
6609  format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6610
6611  ins_encode %{
6612    __ movzwl($dst$$Register, $mem$$Address);
6613  %}
6614
6615  ins_pipe(ialu_reg_mem);
6616%}
6617
6618// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6619instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6620  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6621
6622  ins_cost(125);
6623  format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6624  ins_encode %{
6625    __ movsbl($dst$$Register, $mem$$Address);
6626  %}
6627  ins_pipe(ialu_reg_mem);
6628%}
6629
6630// Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6631instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6632  match(Set dst (ConvI2L (LoadUS mem)));
6633  effect(KILL cr);
6634
6635  ins_cost(250);
6636  format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6637            "XOR    $dst.hi,$dst.hi" %}
6638
6639  ins_encode %{
6640    __ movzwl($dst$$Register, $mem$$Address);
6641    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6642  %}
6643
6644  ins_pipe(ialu_reg_mem);
6645%}
6646
6647// Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6648instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6649  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6650  effect(KILL cr);
6651
6652  format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6653            "XOR    $dst.hi,$dst.hi" %}
6654  ins_encode %{
6655    Register Rdst = $dst$$Register;
6656    __ movzbl(Rdst, $mem$$Address);
6657    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6658  %}
6659  ins_pipe(ialu_reg_mem);
6660%}
6661
6662// Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6663instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6664  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6665  effect(KILL cr);
6666
6667  format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6668            "XOR    $dst.hi,$dst.hi\n\t"
6669            "AND    $dst.lo,$mask" %}
6670  ins_encode %{
6671    Register Rdst = $dst$$Register;
6672    __ movzwl(Rdst, $mem$$Address);
6673    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6674    __ andl(Rdst, $mask$$constant);
6675  %}
6676  ins_pipe(ialu_reg_mem);
6677%}
6678
6679// Load Integer
6680instruct loadI(eRegI dst, memory mem) %{
6681  match(Set dst (LoadI mem));
6682
6683  ins_cost(125);
6684  format %{ "MOV    $dst,$mem\t# int" %}
6685
6686  ins_encode %{
6687    __ movl($dst$$Register, $mem$$Address);
6688  %}
6689
6690  ins_pipe(ialu_reg_mem);
6691%}
6692
6693// Load Integer (32 bit signed) to Byte (8 bit signed)
6694instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6695  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6696
6697  ins_cost(125);
6698  format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6699  ins_encode %{
6700    __ movsbl($dst$$Register, $mem$$Address);
6701  %}
6702  ins_pipe(ialu_reg_mem);
6703%}
6704
6705// Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6706instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6707  match(Set dst (AndI (LoadI mem) mask));
6708
6709  ins_cost(125);
6710  format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6711  ins_encode %{
6712    __ movzbl($dst$$Register, $mem$$Address);
6713  %}
6714  ins_pipe(ialu_reg_mem);
6715%}
6716
6717// Load Integer (32 bit signed) to Short (16 bit signed)
6718instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6719  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6720
6721  ins_cost(125);
6722  format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6723  ins_encode %{
6724    __ movswl($dst$$Register, $mem$$Address);
6725  %}
6726  ins_pipe(ialu_reg_mem);
6727%}
6728
6729// Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6730instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6731  match(Set dst (AndI (LoadI mem) mask));
6732
6733  ins_cost(125);
6734  format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6735  ins_encode %{
6736    __ movzwl($dst$$Register, $mem$$Address);
6737  %}
6738  ins_pipe(ialu_reg_mem);
6739%}
6740
6741// Load Integer into Long Register
6742instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6743  match(Set dst (ConvI2L (LoadI mem)));
6744  effect(KILL cr);
6745
6746  ins_cost(375);
6747  format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6748            "MOV    $dst.hi,$dst.lo\n\t"
6749            "SAR    $dst.hi,31" %}
6750
6751  ins_encode %{
6752    __ movl($dst$$Register, $mem$$Address);
6753    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6754    __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6755  %}
6756
6757  ins_pipe(ialu_reg_mem);
6758%}
6759
6760// Load Integer with mask 0xFF into Long Register
6761instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6762  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6763  effect(KILL cr);
6764
6765  format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6766            "XOR    $dst.hi,$dst.hi" %}
6767  ins_encode %{
6768    Register Rdst = $dst$$Register;
6769    __ movzbl(Rdst, $mem$$Address);
6770    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6771  %}
6772  ins_pipe(ialu_reg_mem);
6773%}
6774
6775// Load Integer with mask 0xFFFF into Long Register
6776instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6777  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6778  effect(KILL cr);
6779
6780  format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6781            "XOR    $dst.hi,$dst.hi" %}
6782  ins_encode %{
6783    Register Rdst = $dst$$Register;
6784    __ movzwl(Rdst, $mem$$Address);
6785    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6786  %}
6787  ins_pipe(ialu_reg_mem);
6788%}
6789
6790// Load Integer with 32-bit mask into Long Register
6791instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6792  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6793  effect(KILL cr);
6794
6795  format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6796            "XOR    $dst.hi,$dst.hi\n\t"
6797            "AND    $dst.lo,$mask" %}
6798  ins_encode %{
6799    Register Rdst = $dst$$Register;
6800    __ movl(Rdst, $mem$$Address);
6801    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6802    __ andl(Rdst, $mask$$constant);
6803  %}
6804  ins_pipe(ialu_reg_mem);
6805%}
6806
6807// Load Unsigned Integer into Long Register
6808instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6809  match(Set dst (LoadUI2L mem));
6810  effect(KILL cr);
6811
6812  ins_cost(250);
6813  format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6814            "XOR    $dst.hi,$dst.hi" %}
6815
6816  ins_encode %{
6817    __ movl($dst$$Register, $mem$$Address);
6818    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6819  %}
6820
6821  ins_pipe(ialu_reg_mem);
6822%}
6823
6824// Load Long.  Cannot clobber address while loading, so restrict address
6825// register to ESI
6826instruct loadL(eRegL dst, load_long_memory mem) %{
6827  predicate(!((LoadLNode*)n)->require_atomic_access());
6828  match(Set dst (LoadL mem));
6829
6830  ins_cost(250);
6831  format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6832            "MOV    $dst.hi,$mem+4" %}
6833
6834  ins_encode %{
6835    Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6836    Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6837    __ movl($dst$$Register, Amemlo);
6838    __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6839  %}
6840
6841  ins_pipe(ialu_reg_long_mem);
6842%}
6843
6844// Volatile Load Long.  Must be atomic, so do 64-bit FILD
6845// then store it down to the stack and reload on the int
6846// side.
6847instruct loadL_volatile(stackSlotL dst, memory mem) %{
6848  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6849  match(Set dst (LoadL mem));
6850
6851  ins_cost(200);
6852  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6853            "FISTp  $dst" %}
6854  ins_encode(enc_loadL_volatile(mem,dst));
6855  ins_pipe( fpu_reg_mem );
6856%}
6857
6858instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6859  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6860  match(Set dst (LoadL mem));
6861  effect(TEMP tmp);
6862  ins_cost(180);
6863  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6864            "MOVSD  $dst,$tmp" %}
6865  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6866  ins_pipe( pipe_slow );
6867%}
6868
6869instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6870  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6871  match(Set dst (LoadL mem));
6872  effect(TEMP tmp);
6873  ins_cost(160);
6874  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6875            "MOVD   $dst.lo,$tmp\n\t"
6876            "PSRLQ  $tmp,32\n\t"
6877            "MOVD   $dst.hi,$tmp" %}
6878  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6879  ins_pipe( pipe_slow );
6880%}
6881
6882// Load Range
6883instruct loadRange(eRegI dst, memory mem) %{
6884  match(Set dst (LoadRange mem));
6885
6886  ins_cost(125);
6887  format %{ "MOV    $dst,$mem" %}
6888  opcode(0x8B);
6889  ins_encode( OpcP, RegMem(dst,mem));
6890  ins_pipe( ialu_reg_mem );
6891%}
6892
6893
6894// Load Pointer
6895instruct loadP(eRegP dst, memory mem) %{
6896  match(Set dst (LoadP mem));
6897
6898  ins_cost(125);
6899  format %{ "MOV    $dst,$mem" %}
6900  opcode(0x8B);
6901  ins_encode( OpcP, RegMem(dst,mem));
6902  ins_pipe( ialu_reg_mem );
6903%}
6904
6905// Load Klass Pointer
6906instruct loadKlass(eRegP dst, memory mem) %{
6907  match(Set dst (LoadKlass mem));
6908
6909  ins_cost(125);
6910  format %{ "MOV    $dst,$mem" %}
6911  opcode(0x8B);
6912  ins_encode( OpcP, RegMem(dst,mem));
6913  ins_pipe( ialu_reg_mem );
6914%}
6915
6916// Load Double
6917instruct loadD(regD dst, memory mem) %{
6918  predicate(UseSSE<=1);
6919  match(Set dst (LoadD mem));
6920
6921  ins_cost(150);
6922  format %{ "FLD_D  ST,$mem\n\t"
6923            "FSTP   $dst" %}
6924  opcode(0xDD);               /* DD /0 */
6925  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6926              Pop_Reg_D(dst) );
6927  ins_pipe( fpu_reg_mem );
6928%}
6929
6930// Load Double to XMM
6931instruct loadXD(regXD dst, memory mem) %{
6932  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6933  match(Set dst (LoadD mem));
6934  ins_cost(145);
6935  format %{ "MOVSD  $dst,$mem" %}
6936  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6937  ins_pipe( pipe_slow );
6938%}
6939
6940instruct loadXD_partial(regXD dst, memory mem) %{
6941  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6942  match(Set dst (LoadD mem));
6943  ins_cost(145);
6944  format %{ "MOVLPD $dst,$mem" %}
6945  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6946  ins_pipe( pipe_slow );
6947%}
6948
6949// Load to XMM register (single-precision floating point)
6950// MOVSS instruction
6951instruct loadX(regX dst, memory mem) %{
6952  predicate(UseSSE>=1);
6953  match(Set dst (LoadF mem));
6954  ins_cost(145);
6955  format %{ "MOVSS  $dst,$mem" %}
6956  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6957  ins_pipe( pipe_slow );
6958%}
6959
6960// Load Float
6961instruct loadF(regF dst, memory mem) %{
6962  predicate(UseSSE==0);
6963  match(Set dst (LoadF mem));
6964
6965  ins_cost(150);
6966  format %{ "FLD_S  ST,$mem\n\t"
6967            "FSTP   $dst" %}
6968  opcode(0xD9);               /* D9 /0 */
6969  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6970              Pop_Reg_F(dst) );
6971  ins_pipe( fpu_reg_mem );
6972%}
6973
6974// Load Aligned Packed Byte to XMM register
6975instruct loadA8B(regXD dst, memory mem) %{
6976  predicate(UseSSE>=1);
6977  match(Set dst (Load8B mem));
6978  ins_cost(125);
6979  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
6980  ins_encode( movq_ld(dst, mem));
6981  ins_pipe( pipe_slow );
6982%}
6983
6984// Load Aligned Packed Short to XMM register
6985instruct loadA4S(regXD dst, memory mem) %{
6986  predicate(UseSSE>=1);
6987  match(Set dst (Load4S mem));
6988  ins_cost(125);
6989  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
6990  ins_encode( movq_ld(dst, mem));
6991  ins_pipe( pipe_slow );
6992%}
6993
6994// Load Aligned Packed Char to XMM register
6995instruct loadA4C(regXD dst, memory mem) %{
6996  predicate(UseSSE>=1);
6997  match(Set dst (Load4C mem));
6998  ins_cost(125);
6999  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
7000  ins_encode( movq_ld(dst, mem));
7001  ins_pipe( pipe_slow );
7002%}
7003
7004// Load Aligned Packed Integer to XMM register
7005instruct load2IU(regXD dst, memory mem) %{
7006  predicate(UseSSE>=1);
7007  match(Set dst (Load2I mem));
7008  ins_cost(125);
7009  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
7010  ins_encode( movq_ld(dst, mem));
7011  ins_pipe( pipe_slow );
7012%}
7013
7014// Load Aligned Packed Single to XMM
7015instruct loadA2F(regXD dst, memory mem) %{
7016  predicate(UseSSE>=1);
7017  match(Set dst (Load2F mem));
7018  ins_cost(145);
7019  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
7020  ins_encode( movq_ld(dst, mem));
7021  ins_pipe( pipe_slow );
7022%}
7023
7024// Load Effective Address
7025instruct leaP8(eRegP dst, indOffset8 mem) %{
7026  match(Set dst mem);
7027
7028  ins_cost(110);
7029  format %{ "LEA    $dst,$mem" %}
7030  opcode(0x8D);
7031  ins_encode( OpcP, RegMem(dst,mem));
7032  ins_pipe( ialu_reg_reg_fat );
7033%}
7034
7035instruct leaP32(eRegP dst, indOffset32 mem) %{
7036  match(Set dst mem);
7037
7038  ins_cost(110);
7039  format %{ "LEA    $dst,$mem" %}
7040  opcode(0x8D);
7041  ins_encode( OpcP, RegMem(dst,mem));
7042  ins_pipe( ialu_reg_reg_fat );
7043%}
7044
7045instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
7046  match(Set dst mem);
7047
7048  ins_cost(110);
7049  format %{ "LEA    $dst,$mem" %}
7050  opcode(0x8D);
7051  ins_encode( OpcP, RegMem(dst,mem));
7052  ins_pipe( ialu_reg_reg_fat );
7053%}
7054
7055instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7056  match(Set dst mem);
7057
7058  ins_cost(110);
7059  format %{ "LEA    $dst,$mem" %}
7060  opcode(0x8D);
7061  ins_encode( OpcP, RegMem(dst,mem));
7062  ins_pipe( ialu_reg_reg_fat );
7063%}
7064
7065instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7066  match(Set dst mem);
7067
7068  ins_cost(110);
7069  format %{ "LEA    $dst,$mem" %}
7070  opcode(0x8D);
7071  ins_encode( OpcP, RegMem(dst,mem));
7072  ins_pipe( ialu_reg_reg_fat );
7073%}
7074
7075// Load Constant
7076instruct loadConI(eRegI dst, immI src) %{
7077  match(Set dst src);
7078
7079  format %{ "MOV    $dst,$src" %}
7080  ins_encode( LdImmI(dst, src) );
7081  ins_pipe( ialu_reg_fat );
7082%}
7083
7084// Load Constant zero
7085instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7086  match(Set dst src);
7087  effect(KILL cr);
7088
7089  ins_cost(50);
7090  format %{ "XOR    $dst,$dst" %}
7091  opcode(0x33);  /* + rd */
7092  ins_encode( OpcP, RegReg( dst, dst ) );
7093  ins_pipe( ialu_reg );
7094%}
7095
7096instruct loadConP(eRegP dst, immP src) %{
7097  match(Set dst src);
7098
7099  format %{ "MOV    $dst,$src" %}
7100  opcode(0xB8);  /* + rd */
7101  ins_encode( LdImmP(dst, src) );
7102  ins_pipe( ialu_reg_fat );
7103%}
7104
7105instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7106  match(Set dst src);
7107  effect(KILL cr);
7108  ins_cost(200);
7109  format %{ "MOV    $dst.lo,$src.lo\n\t"
7110            "MOV    $dst.hi,$src.hi" %}
7111  opcode(0xB8);
7112  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7113  ins_pipe( ialu_reg_long_fat );
7114%}
7115
7116instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7117  match(Set dst src);
7118  effect(KILL cr);
7119  ins_cost(150);
7120  format %{ "XOR    $dst.lo,$dst.lo\n\t"
7121            "XOR    $dst.hi,$dst.hi" %}
7122  opcode(0x33,0x33);
7123  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7124  ins_pipe( ialu_reg_long );
7125%}
7126
7127// The instruction usage is guarded by predicate in operand immF().
7128instruct loadConF(regF dst, immF con) %{
7129  match(Set dst con);
7130  ins_cost(125);
7131  format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
7132            "FSTP   $dst" %}
7133  ins_encode %{
7134    __ fld_s($constantaddress($con));
7135    __ fstp_d($dst$$reg);
7136  %}
7137  ins_pipe(fpu_reg_con);
7138%}
7139
7140// The instruction usage is guarded by predicate in operand immF0().
7141instruct loadConF0(regF dst, immF0 con) %{
7142  match(Set dst con);
7143  ins_cost(125);
7144  format %{ "FLDZ   ST\n\t"
7145            "FSTP   $dst" %}
7146  ins_encode %{
7147    __ fldz();
7148    __ fstp_d($dst$$reg);
7149  %}
7150  ins_pipe(fpu_reg_con);
7151%}
7152
7153// The instruction usage is guarded by predicate in operand immF1().
7154instruct loadConF1(regF dst, immF1 con) %{
7155  match(Set dst con);
7156  ins_cost(125);
7157  format %{ "FLD1   ST\n\t"
7158            "FSTP   $dst" %}
7159  ins_encode %{
7160    __ fld1();
7161    __ fstp_d($dst$$reg);
7162  %}
7163  ins_pipe(fpu_reg_con);
7164%}
7165
7166// The instruction usage is guarded by predicate in operand immXF().
7167instruct loadConX(regX dst, immXF con) %{
7168  match(Set dst con);
7169  ins_cost(125);
7170  format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
7171  ins_encode %{
7172    __ movflt($dst$$XMMRegister, $constantaddress($con));
7173  %}
7174  ins_pipe(pipe_slow);
7175%}
7176
7177// The instruction usage is guarded by predicate in operand immXF0().
7178instruct loadConX0(regX dst, immXF0 src) %{
7179  match(Set dst src);
7180  ins_cost(100);
7181  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7182  ins_encode %{
7183    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
7184  %}
7185  ins_pipe(pipe_slow);
7186%}
7187
7188// The instruction usage is guarded by predicate in operand immD().
7189instruct loadConD(regD dst, immD con) %{
7190  match(Set dst con);
7191  ins_cost(125);
7192
7193  format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
7194            "FSTP   $dst" %}
7195  ins_encode %{
7196    __ fld_d($constantaddress($con));
7197    __ fstp_d($dst$$reg);
7198  %}
7199  ins_pipe(fpu_reg_con);
7200%}
7201
7202// The instruction usage is guarded by predicate in operand immD0().
7203instruct loadConD0(regD dst, immD0 con) %{
7204  match(Set dst con);
7205  ins_cost(125);
7206
7207  format %{ "FLDZ   ST\n\t"
7208            "FSTP   $dst" %}
7209  ins_encode %{
7210    __ fldz();
7211    __ fstp_d($dst$$reg);
7212  %}
7213  ins_pipe(fpu_reg_con);
7214%}
7215
7216// The instruction usage is guarded by predicate in operand immD1().
7217instruct loadConD1(regD dst, immD1 con) %{
7218  match(Set dst con);
7219  ins_cost(125);
7220
7221  format %{ "FLD1   ST\n\t"
7222            "FSTP   $dst" %}
7223  ins_encode %{
7224    __ fld1();
7225    __ fstp_d($dst$$reg);
7226  %}
7227  ins_pipe(fpu_reg_con);
7228%}
7229
7230// The instruction usage is guarded by predicate in operand immXD().
7231instruct loadConXD(regXD dst, immXD con) %{
7232  match(Set dst con);
7233  ins_cost(125);
7234  format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
7235  ins_encode %{
7236    __ movdbl($dst$$XMMRegister, $constantaddress($con));
7237  %}
7238  ins_pipe(pipe_slow);
7239%}
7240
7241// The instruction usage is guarded by predicate in operand immXD0().
7242instruct loadConXD0(regXD dst, immXD0 src) %{
7243  match(Set dst src);
7244  ins_cost(100);
7245  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7246  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7247  ins_pipe( pipe_slow );
7248%}
7249
7250// Load Stack Slot
7251instruct loadSSI(eRegI dst, stackSlotI src) %{
7252  match(Set dst src);
7253  ins_cost(125);
7254
7255  format %{ "MOV    $dst,$src" %}
7256  opcode(0x8B);
7257  ins_encode( OpcP, RegMem(dst,src));
7258  ins_pipe( ialu_reg_mem );
7259%}
7260
7261instruct loadSSL(eRegL dst, stackSlotL src) %{
7262  match(Set dst src);
7263
7264  ins_cost(200);
7265  format %{ "MOV    $dst,$src.lo\n\t"
7266            "MOV    $dst+4,$src.hi" %}
7267  opcode(0x8B, 0x8B);
7268  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7269  ins_pipe( ialu_mem_long_reg );
7270%}
7271
7272// Load Stack Slot
7273instruct loadSSP(eRegP dst, stackSlotP src) %{
7274  match(Set dst src);
7275  ins_cost(125);
7276
7277  format %{ "MOV    $dst,$src" %}
7278  opcode(0x8B);
7279  ins_encode( OpcP, RegMem(dst,src));
7280  ins_pipe( ialu_reg_mem );
7281%}
7282
7283// Load Stack Slot
7284instruct loadSSF(regF dst, stackSlotF src) %{
7285  match(Set dst src);
7286  ins_cost(125);
7287
7288  format %{ "FLD_S  $src\n\t"
7289            "FSTP   $dst" %}
7290  opcode(0xD9);               /* D9 /0, FLD m32real */
7291  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7292              Pop_Reg_F(dst) );
7293  ins_pipe( fpu_reg_mem );
7294%}
7295
7296// Load Stack Slot
7297instruct loadSSD(regD dst, stackSlotD src) %{
7298  match(Set dst src);
7299  ins_cost(125);
7300
7301  format %{ "FLD_D  $src\n\t"
7302            "FSTP   $dst" %}
7303  opcode(0xDD);               /* DD /0, FLD m64real */
7304  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7305              Pop_Reg_D(dst) );
7306  ins_pipe( fpu_reg_mem );
7307%}
7308
7309// Prefetch instructions.
7310// Must be safe to execute with invalid address (cannot fault).
7311
7312instruct prefetchr0( memory mem ) %{
7313  predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
7314  match(PrefetchRead mem);
7315  ins_cost(0);
7316  size(0);
7317  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7318  ins_encode();
7319  ins_pipe(empty);
7320%}
7321
7322instruct prefetchr( memory mem ) %{
7323  predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
7324  match(PrefetchRead mem);
7325  ins_cost(100);
7326
7327  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7328  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
7329  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7330  ins_pipe(ialu_mem);
7331%}
7332
7333instruct prefetchrNTA( memory mem ) %{
7334  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7335  match(PrefetchRead mem);
7336  ins_cost(100);
7337
7338  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7339  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7340  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7341  ins_pipe(ialu_mem);
7342%}
7343
7344instruct prefetchrT0( memory mem ) %{
7345  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7346  match(PrefetchRead mem);
7347  ins_cost(100);
7348
7349  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7350  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7351  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7352  ins_pipe(ialu_mem);
7353%}
7354
7355instruct prefetchrT2( memory mem ) %{
7356  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7357  match(PrefetchRead mem);
7358  ins_cost(100);
7359
7360  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7361  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7362  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7363  ins_pipe(ialu_mem);
7364%}
7365
7366instruct prefetchw0( memory mem ) %{
7367  predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
7368  match(PrefetchWrite mem);
7369  ins_cost(0);
7370  size(0);
7371  format %{ "Prefetch (non-SSE is empty encoding)" %}
7372  ins_encode();
7373  ins_pipe(empty);
7374%}
7375
7376instruct prefetchw( memory mem ) %{
7377  predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || AllocatePrefetchInstr==3);
7378  match( PrefetchWrite mem );
7379  ins_cost(100);
7380
7381  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7382  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
7383  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7384  ins_pipe(ialu_mem);
7385%}
7386
7387instruct prefetchwNTA( memory mem ) %{
7388  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7389  match(PrefetchWrite mem);
7390  ins_cost(100);
7391
7392  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7393  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7394  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7395  ins_pipe(ialu_mem);
7396%}
7397
7398instruct prefetchwT0( memory mem ) %{
7399  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7400  match(PrefetchWrite mem);
7401  ins_cost(100);
7402
7403  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
7404  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7405  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7406  ins_pipe(ialu_mem);
7407%}
7408
7409instruct prefetchwT2( memory mem ) %{
7410  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7411  match(PrefetchWrite mem);
7412  ins_cost(100);
7413
7414  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
7415  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7416  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7417  ins_pipe(ialu_mem);
7418%}
7419
7420//----------Store Instructions-------------------------------------------------
7421
7422// Store Byte
7423instruct storeB(memory mem, xRegI src) %{
7424  match(Set mem (StoreB mem src));
7425
7426  ins_cost(125);
7427  format %{ "MOV8   $mem,$src" %}
7428  opcode(0x88);
7429  ins_encode( OpcP, RegMem( src, mem ) );
7430  ins_pipe( ialu_mem_reg );
7431%}
7432
7433// Store Char/Short
7434instruct storeC(memory mem, eRegI src) %{
7435  match(Set mem (StoreC mem src));
7436
7437  ins_cost(125);
7438  format %{ "MOV16  $mem,$src" %}
7439  opcode(0x89, 0x66);
7440  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7441  ins_pipe( ialu_mem_reg );
7442%}
7443
7444// Store Integer
7445instruct storeI(memory mem, eRegI src) %{
7446  match(Set mem (StoreI mem src));
7447
7448  ins_cost(125);
7449  format %{ "MOV    $mem,$src" %}
7450  opcode(0x89);
7451  ins_encode( OpcP, RegMem( src, mem ) );
7452  ins_pipe( ialu_mem_reg );
7453%}
7454
7455// Store Long
7456instruct storeL(long_memory mem, eRegL src) %{
7457  predicate(!((StoreLNode*)n)->require_atomic_access());
7458  match(Set mem (StoreL mem src));
7459
7460  ins_cost(200);
7461  format %{ "MOV    $mem,$src.lo\n\t"
7462            "MOV    $mem+4,$src.hi" %}
7463  opcode(0x89, 0x89);
7464  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7465  ins_pipe( ialu_mem_long_reg );
7466%}
7467
7468// Store Long to Integer
7469instruct storeL2I(memory mem, eRegL src) %{
7470  match(Set mem (StoreI mem (ConvL2I src)));
7471
7472  format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7473  ins_encode %{
7474    __ movl($mem$$Address, $src$$Register);
7475  %}
7476  ins_pipe(ialu_mem_reg);
7477%}
7478
7479// Volatile Store Long.  Must be atomic, so move it into
7480// the FP TOS and then do a 64-bit FIST.  Has to probe the
7481// target address before the store (for null-ptr checks)
7482// so the memory operand is used twice in the encoding.
7483instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7484  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7485  match(Set mem (StoreL mem src));
7486  effect( KILL cr );
7487  ins_cost(400);
7488  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7489            "FILD   $src\n\t"
7490            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7491  opcode(0x3B);
7492  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7493  ins_pipe( fpu_reg_mem );
7494%}
7495
7496instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7497  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7498  match(Set mem (StoreL mem src));
7499  effect( TEMP tmp, KILL cr );
7500  ins_cost(380);
7501  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7502            "MOVSD  $tmp,$src\n\t"
7503            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7504  opcode(0x3B);
7505  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7506  ins_pipe( pipe_slow );
7507%}
7508
7509instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7510  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7511  match(Set mem (StoreL mem src));
7512  effect( TEMP tmp2 , TEMP tmp, KILL cr );
7513  ins_cost(360);
7514  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7515            "MOVD   $tmp,$src.lo\n\t"
7516            "MOVD   $tmp2,$src.hi\n\t"
7517            "PUNPCKLDQ $tmp,$tmp2\n\t"
7518            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7519  opcode(0x3B);
7520  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7521  ins_pipe( pipe_slow );
7522%}
7523
7524// Store Pointer; for storing unknown oops and raw pointers
7525instruct storeP(memory mem, anyRegP src) %{
7526  match(Set mem (StoreP mem src));
7527
7528  ins_cost(125);
7529  format %{ "MOV    $mem,$src" %}
7530  opcode(0x89);
7531  ins_encode( OpcP, RegMem( src, mem ) );
7532  ins_pipe( ialu_mem_reg );
7533%}
7534
7535// Store Integer Immediate
7536instruct storeImmI(memory mem, immI src) %{
7537  match(Set mem (StoreI mem src));
7538
7539  ins_cost(150);
7540  format %{ "MOV    $mem,$src" %}
7541  opcode(0xC7);               /* C7 /0 */
7542  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7543  ins_pipe( ialu_mem_imm );
7544%}
7545
7546// Store Short/Char Immediate
7547instruct storeImmI16(memory mem, immI16 src) %{
7548  predicate(UseStoreImmI16);
7549  match(Set mem (StoreC mem src));
7550
7551  ins_cost(150);
7552  format %{ "MOV16  $mem,$src" %}
7553  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7554  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7555  ins_pipe( ialu_mem_imm );
7556%}
7557
7558// Store Pointer Immediate; null pointers or constant oops that do not
7559// need card-mark barriers.
7560instruct storeImmP(memory mem, immP src) %{
7561  match(Set mem (StoreP mem src));
7562
7563  ins_cost(150);
7564  format %{ "MOV    $mem,$src" %}
7565  opcode(0xC7);               /* C7 /0 */
7566  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7567  ins_pipe( ialu_mem_imm );
7568%}
7569
7570// Store Byte Immediate
7571instruct storeImmB(memory mem, immI8 src) %{
7572  match(Set mem (StoreB mem src));
7573
7574  ins_cost(150);
7575  format %{ "MOV8   $mem,$src" %}
7576  opcode(0xC6);               /* C6 /0 */
7577  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7578  ins_pipe( ialu_mem_imm );
7579%}
7580
7581// Store Aligned Packed Byte XMM register to memory
7582instruct storeA8B(memory mem, regXD src) %{
7583  predicate(UseSSE>=1);
7584  match(Set mem (Store8B mem src));
7585  ins_cost(145);
7586  format %{ "MOVQ  $mem,$src\t! packed8B" %}
7587  ins_encode( movq_st(mem, src));
7588  ins_pipe( pipe_slow );
7589%}
7590
7591// Store Aligned Packed Char/Short XMM register to memory
7592instruct storeA4C(memory mem, regXD src) %{
7593  predicate(UseSSE>=1);
7594  match(Set mem (Store4C mem src));
7595  ins_cost(145);
7596  format %{ "MOVQ  $mem,$src\t! packed4C" %}
7597  ins_encode( movq_st(mem, src));
7598  ins_pipe( pipe_slow );
7599%}
7600
7601// Store Aligned Packed Integer XMM register to memory
7602instruct storeA2I(memory mem, regXD src) %{
7603  predicate(UseSSE>=1);
7604  match(Set mem (Store2I mem src));
7605  ins_cost(145);
7606  format %{ "MOVQ  $mem,$src\t! packed2I" %}
7607  ins_encode( movq_st(mem, src));
7608  ins_pipe( pipe_slow );
7609%}
7610
7611// Store CMS card-mark Immediate
7612instruct storeImmCM(memory mem, immI8 src) %{
7613  match(Set mem (StoreCM mem src));
7614
7615  ins_cost(150);
7616  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7617  opcode(0xC6);               /* C6 /0 */
7618  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7619  ins_pipe( ialu_mem_imm );
7620%}
7621
7622// Store Double
7623instruct storeD( memory mem, regDPR1 src) %{
7624  predicate(UseSSE<=1);
7625  match(Set mem (StoreD mem src));
7626
7627  ins_cost(100);
7628  format %{ "FST_D  $mem,$src" %}
7629  opcode(0xDD);       /* DD /2 */
7630  ins_encode( enc_FP_store(mem,src) );
7631  ins_pipe( fpu_mem_reg );
7632%}
7633
7634// Store double does rounding on x86
7635instruct storeD_rounded( memory mem, regDPR1 src) %{
7636  predicate(UseSSE<=1);
7637  match(Set mem (StoreD mem (RoundDouble src)));
7638
7639  ins_cost(100);
7640  format %{ "FST_D  $mem,$src\t# round" %}
7641  opcode(0xDD);       /* DD /2 */
7642  ins_encode( enc_FP_store(mem,src) );
7643  ins_pipe( fpu_mem_reg );
7644%}
7645
7646// Store XMM register to memory (double-precision floating points)
7647// MOVSD instruction
7648instruct storeXD(memory mem, regXD src) %{
7649  predicate(UseSSE>=2);
7650  match(Set mem (StoreD mem src));
7651  ins_cost(95);
7652  format %{ "MOVSD  $mem,$src" %}
7653  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7654  ins_pipe( pipe_slow );
7655%}
7656
7657// Store XMM register to memory (single-precision floating point)
7658// MOVSS instruction
7659instruct storeX(memory mem, regX src) %{
7660  predicate(UseSSE>=1);
7661  match(Set mem (StoreF mem src));
7662  ins_cost(95);
7663  format %{ "MOVSS  $mem,$src" %}
7664  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7665  ins_pipe( pipe_slow );
7666%}
7667
7668// Store Aligned Packed Single Float XMM register to memory
7669instruct storeA2F(memory mem, regXD src) %{
7670  predicate(UseSSE>=1);
7671  match(Set mem (Store2F mem src));
7672  ins_cost(145);
7673  format %{ "MOVQ  $mem,$src\t! packed2F" %}
7674  ins_encode( movq_st(mem, src));
7675  ins_pipe( pipe_slow );
7676%}
7677
7678// Store Float
7679instruct storeF( memory mem, regFPR1 src) %{
7680  predicate(UseSSE==0);
7681  match(Set mem (StoreF mem src));
7682
7683  ins_cost(100);
7684  format %{ "FST_S  $mem,$src" %}
7685  opcode(0xD9);       /* D9 /2 */
7686  ins_encode( enc_FP_store(mem,src) );
7687  ins_pipe( fpu_mem_reg );
7688%}
7689
7690// Store Float does rounding on x86
7691instruct storeF_rounded( memory mem, regFPR1 src) %{
7692  predicate(UseSSE==0);
7693  match(Set mem (StoreF mem (RoundFloat src)));
7694
7695  ins_cost(100);
7696  format %{ "FST_S  $mem,$src\t# round" %}
7697  opcode(0xD9);       /* D9 /2 */
7698  ins_encode( enc_FP_store(mem,src) );
7699  ins_pipe( fpu_mem_reg );
7700%}
7701
7702// Store Float does rounding on x86
7703instruct storeF_Drounded( memory mem, regDPR1 src) %{
7704  predicate(UseSSE<=1);
7705  match(Set mem (StoreF mem (ConvD2F src)));
7706
7707  ins_cost(100);
7708  format %{ "FST_S  $mem,$src\t# D-round" %}
7709  opcode(0xD9);       /* D9 /2 */
7710  ins_encode( enc_FP_store(mem,src) );
7711  ins_pipe( fpu_mem_reg );
7712%}
7713
7714// Store immediate Float value (it is faster than store from FPU register)
7715// The instruction usage is guarded by predicate in operand immF().
7716instruct storeF_imm( memory mem, immF src) %{
7717  match(Set mem (StoreF mem src));
7718
7719  ins_cost(50);
7720  format %{ "MOV    $mem,$src\t# store float" %}
7721  opcode(0xC7);               /* C7 /0 */
7722  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7723  ins_pipe( ialu_mem_imm );
7724%}
7725
7726// Store immediate Float value (it is faster than store from XMM register)
7727// The instruction usage is guarded by predicate in operand immXF().
7728instruct storeX_imm( memory mem, immXF src) %{
7729  match(Set mem (StoreF mem src));
7730
7731  ins_cost(50);
7732  format %{ "MOV    $mem,$src\t# store float" %}
7733  opcode(0xC7);               /* C7 /0 */
7734  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7735  ins_pipe( ialu_mem_imm );
7736%}
7737
7738// Store Integer to stack slot
7739instruct storeSSI(stackSlotI dst, eRegI src) %{
7740  match(Set dst src);
7741
7742  ins_cost(100);
7743  format %{ "MOV    $dst,$src" %}
7744  opcode(0x89);
7745  ins_encode( OpcPRegSS( dst, src ) );
7746  ins_pipe( ialu_mem_reg );
7747%}
7748
7749// Store Integer to stack slot
7750instruct storeSSP(stackSlotP dst, eRegP src) %{
7751  match(Set dst src);
7752
7753  ins_cost(100);
7754  format %{ "MOV    $dst,$src" %}
7755  opcode(0x89);
7756  ins_encode( OpcPRegSS( dst, src ) );
7757  ins_pipe( ialu_mem_reg );
7758%}
7759
7760// Store Long to stack slot
7761instruct storeSSL(stackSlotL dst, eRegL src) %{
7762  match(Set dst src);
7763
7764  ins_cost(200);
7765  format %{ "MOV    $dst,$src.lo\n\t"
7766            "MOV    $dst+4,$src.hi" %}
7767  opcode(0x89, 0x89);
7768  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7769  ins_pipe( ialu_mem_long_reg );
7770%}
7771
7772//----------MemBar Instructions-----------------------------------------------
7773// Memory barrier flavors
7774
7775instruct membar_acquire() %{
7776  match(MemBarAcquire);
7777  ins_cost(400);
7778
7779  size(0);
7780  format %{ "MEMBAR-acquire ! (empty encoding)" %}
7781  ins_encode();
7782  ins_pipe(empty);
7783%}
7784
7785instruct membar_acquire_lock() %{
7786  match(MemBarAcquireLock);
7787  ins_cost(0);
7788
7789  size(0);
7790  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7791  ins_encode( );
7792  ins_pipe(empty);
7793%}
7794
7795instruct membar_release() %{
7796  match(MemBarRelease);
7797  ins_cost(400);
7798
7799  size(0);
7800  format %{ "MEMBAR-release ! (empty encoding)" %}
7801  ins_encode( );
7802  ins_pipe(empty);
7803%}
7804
7805instruct membar_release_lock() %{
7806  match(MemBarReleaseLock);
7807  ins_cost(0);
7808
7809  size(0);
7810  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7811  ins_encode( );
7812  ins_pipe(empty);
7813%}
7814
7815instruct membar_volatile(eFlagsReg cr) %{
7816  match(MemBarVolatile);
7817  effect(KILL cr);
7818  ins_cost(400);
7819
7820  format %{ 
7821    $$template
7822    if (os::is_MP()) {
7823      $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7824    } else {
7825      $$emit$$"MEMBAR-volatile ! (empty encoding)"
7826    }
7827  %}
7828  ins_encode %{
7829    __ membar(Assembler::StoreLoad);
7830  %}
7831  ins_pipe(pipe_slow);
7832%}
7833
7834instruct unnecessary_membar_volatile() %{
7835  match(MemBarVolatile);
7836  predicate(Matcher::post_store_load_barrier(n));
7837  ins_cost(0);
7838
7839  size(0);
7840  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7841  ins_encode( );
7842  ins_pipe(empty);
7843%}
7844
7845//----------Move Instructions--------------------------------------------------
7846instruct castX2P(eAXRegP dst, eAXRegI src) %{
7847  match(Set dst (CastX2P src));
7848  format %{ "# X2P  $dst, $src" %}
7849  ins_encode( /*empty encoding*/ );
7850  ins_cost(0);
7851  ins_pipe(empty);
7852%}
7853
7854instruct castP2X(eRegI dst, eRegP src ) %{
7855  match(Set dst (CastP2X src));
7856  ins_cost(50);
7857  format %{ "MOV    $dst, $src\t# CastP2X" %}
7858  ins_encode( enc_Copy( dst, src) );
7859  ins_pipe( ialu_reg_reg );
7860%}
7861
7862//----------Conditional Move---------------------------------------------------
7863// Conditional move
7864instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7865  predicate(VM_Version::supports_cmov() );
7866  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7867  ins_cost(200);
7868  format %{ "CMOV$cop $dst,$src" %}
7869  opcode(0x0F,0x40);
7870  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7871  ins_pipe( pipe_cmov_reg );
7872%}
7873
7874instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7875  predicate(VM_Version::supports_cmov() );
7876  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7877  ins_cost(200);
7878  format %{ "CMOV$cop $dst,$src" %}
7879  opcode(0x0F,0x40);
7880  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7881  ins_pipe( pipe_cmov_reg );
7882%}
7883
7884instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7885  predicate(VM_Version::supports_cmov() );
7886  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7887  ins_cost(200);
7888  expand %{
7889    cmovI_regU(cop, cr, dst, src);
7890  %}
7891%}
7892
7893// Conditional move
7894instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7895  predicate(VM_Version::supports_cmov() );
7896  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7897  ins_cost(250);
7898  format %{ "CMOV$cop $dst,$src" %}
7899  opcode(0x0F,0x40);
7900  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7901  ins_pipe( pipe_cmov_mem );
7902%}
7903
7904// Conditional move
7905instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7906  predicate(VM_Version::supports_cmov() );
7907  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7908  ins_cost(250);
7909  format %{ "CMOV$cop $dst,$src" %}
7910  opcode(0x0F,0x40);
7911  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7912  ins_pipe( pipe_cmov_mem );
7913%}
7914
7915instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7916  predicate(VM_Version::supports_cmov() );
7917  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7918  ins_cost(250);
7919  expand %{
7920    cmovI_memU(cop, cr, dst, src);
7921  %}
7922%}
7923
7924// Conditional move
7925instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7926  predicate(VM_Version::supports_cmov() );
7927  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7928  ins_cost(200);
7929  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7930  opcode(0x0F,0x40);
7931  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7932  ins_pipe( pipe_cmov_reg );
7933%}
7934
7935// Conditional move (non-P6 version)
7936// Note:  a CMoveP is generated for  stubs and native wrappers
7937//        regardless of whether we are on a P6, so we
7938//        emulate a cmov here
7939instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7940  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7941  ins_cost(300);
7942  format %{ "Jn$cop   skip\n\t"
7943          "MOV    $dst,$src\t# pointer\n"
7944      "skip:" %}
7945  opcode(0x8b);
7946  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7947  ins_pipe( pipe_cmov_reg );
7948%}
7949
7950// Conditional move
7951instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7952  predicate(VM_Version::supports_cmov() );
7953  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7954  ins_cost(200);
7955  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7956  opcode(0x0F,0x40);
7957  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7958  ins_pipe( pipe_cmov_reg );
7959%}
7960
7961instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7962  predicate(VM_Version::supports_cmov() );
7963  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7964  ins_cost(200);
7965  expand %{
7966    cmovP_regU(cop, cr, dst, src);
7967  %}
7968%}
7969
7970// DISABLED: Requires the ADLC to emit a bottom_type call that
7971// correctly meets the two pointer arguments; one is an incoming
7972// register but the other is a memory operand.  ALSO appears to
7973// be buggy with implicit null checks.
7974//
7975//// Conditional move
7976//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7977//  predicate(VM_Version::supports_cmov() );
7978//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7979//  ins_cost(250);
7980//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7981//  opcode(0x0F,0x40);
7982//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7983//  ins_pipe( pipe_cmov_mem );
7984//%}
7985//
7986//// Conditional move
7987//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7988//  predicate(VM_Version::supports_cmov() );
7989//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7990//  ins_cost(250);
7991//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7992//  opcode(0x0F,0x40);
7993//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7994//  ins_pipe( pipe_cmov_mem );
7995//%}
7996
7997// Conditional move
7998instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7999  predicate(UseSSE<=1);
8000  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8001  ins_cost(200);
8002  format %{ "FCMOV$cop $dst,$src\t# double" %}
8003  opcode(0xDA);
8004  ins_encode( enc_cmov_d(cop,src) );
8005  ins_pipe( pipe_cmovD_reg );
8006%}
8007
8008// Conditional move
8009instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
8010  predicate(UseSSE==0);
8011  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8012  ins_cost(200);
8013  format %{ "FCMOV$cop $dst,$src\t# float" %}
8014  opcode(0xDA);
8015  ins_encode( enc_cmov_d(cop,src) );
8016  ins_pipe( pipe_cmovD_reg );
8017%}
8018
8019// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8020instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
8021  predicate(UseSSE<=1);
8022  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8023  ins_cost(200);
8024  format %{ "Jn$cop   skip\n\t"
8025            "MOV    $dst,$src\t# double\n"
8026      "skip:" %}
8027  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8028  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
8029  ins_pipe( pipe_cmovD_reg );
8030%}
8031
8032// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8033instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
8034  predicate(UseSSE==0);
8035  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8036  ins_cost(200);
8037  format %{ "Jn$cop    skip\n\t"
8038            "MOV    $dst,$src\t# float\n"
8039      "skip:" %}
8040  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8041  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
8042  ins_pipe( pipe_cmovD_reg );
8043%}
8044
8045// No CMOVE with SSE/SSE2
8046instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
8047  predicate (UseSSE>=1);
8048  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8049  ins_cost(200);
8050  format %{ "Jn$cop   skip\n\t"
8051            "MOVSS  $dst,$src\t# float\n"
8052      "skip:" %}
8053  ins_encode %{
8054    Label skip;
8055    // Invert sense of branch from sense of CMOV
8056    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8057    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8058    __ bind(skip);
8059  %}
8060  ins_pipe( pipe_slow );
8061%}
8062
8063// No CMOVE with SSE/SSE2
8064instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
8065  predicate (UseSSE>=2);
8066  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8067  ins_cost(200);
8068  format %{ "Jn$cop   skip\n\t"
8069            "MOVSD  $dst,$src\t# float\n"
8070      "skip:" %}
8071  ins_encode %{
8072    Label skip;
8073    // Invert sense of branch from sense of CMOV
8074    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8075    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8076    __ bind(skip);
8077  %}
8078  ins_pipe( pipe_slow );
8079%}
8080
8081// unsigned version
8082instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
8083  predicate (UseSSE>=1);
8084  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8085  ins_cost(200);
8086  format %{ "Jn$cop   skip\n\t"
8087            "MOVSS  $dst,$src\t# float\n"
8088      "skip:" %}
8089  ins_encode %{
8090    Label skip;
8091    // Invert sense of branch from sense of CMOV
8092    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8093    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8094    __ bind(skip);
8095  %}
8096  ins_pipe( pipe_slow );
8097%}
8098
8099instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
8100  predicate (UseSSE>=1);
8101  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8102  ins_cost(200);
8103  expand %{
8104    fcmovX_regU(cop, cr, dst, src);
8105  %}
8106%}
8107
8108// unsigned version
8109instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
8110  predicate (UseSSE>=2);
8111  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8112  ins_cost(200);
8113  format %{ "Jn$cop   skip\n\t"
8114            "MOVSD  $dst,$src\t# float\n"
8115      "skip:" %}
8116  ins_encode %{
8117    Label skip;
8118    // Invert sense of branch from sense of CMOV
8119    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8120    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8121    __ bind(skip);
8122  %}
8123  ins_pipe( pipe_slow );
8124%}
8125
8126instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8127  predicate (UseSSE>=2);
8128  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8129  ins_cost(200);
8130  expand %{
8131    fcmovXD_regU(cop, cr, dst, src);
8132  %}
8133%}
8134
8135instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8136  predicate(VM_Version::supports_cmov() );
8137  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8138  ins_cost(200);
8139  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8140            "CMOV$cop $dst.hi,$src.hi" %}
8141  opcode(0x0F,0x40);
8142  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8143  ins_pipe( pipe_cmov_reg_long );
8144%}
8145
8146instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8147  predicate(VM_Version::supports_cmov() );
8148  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8149  ins_cost(200);
8150  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8151            "CMOV$cop $dst.hi,$src.hi" %}
8152  opcode(0x0F,0x40);
8153  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8154  ins_pipe( pipe_cmov_reg_long );
8155%}
8156
8157instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8158  predicate(VM_Version::supports_cmov() );
8159  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8160  ins_cost(200);
8161  expand %{
8162    cmovL_regU(cop, cr, dst, src);
8163  %}
8164%}
8165
8166//----------Arithmetic Instructions--------------------------------------------
8167//----------Addition Instructions----------------------------------------------
8168// Integer Addition Instructions
8169instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8170  match(Set dst (AddI dst src));
8171  effect(KILL cr);
8172
8173  size(2);
8174  format %{ "ADD    $dst,$src" %}
8175  opcode(0x03);
8176  ins_encode( OpcP, RegReg( dst, src) );
8177  ins_pipe( ialu_reg_reg );
8178%}
8179
8180instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8181  match(Set dst (AddI dst src));
8182  effect(KILL cr);
8183
8184  format %{ "ADD    $dst,$src" %}
8185  opcode(0x81, 0x00); /* /0 id */
8186  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8187  ins_pipe( ialu_reg );
8188%}
8189
8190instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8191  predicate(UseIncDec);
8192  match(Set dst (AddI dst src));
8193  effect(KILL cr);
8194
8195  size(1);
8196  format %{ "INC    $dst" %}
8197  opcode(0x40); /*  */
8198  ins_encode( Opc_plus( primary, dst ) );
8199  ins_pipe( ialu_reg );
8200%}
8201
8202instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8203  match(Set dst (AddI src0 src1));
8204  ins_cost(110);
8205
8206  format %{ "LEA    $dst,[$src0 + $src1]" %}
8207  opcode(0x8D); /* 0x8D /r */
8208  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8209  ins_pipe( ialu_reg_reg );
8210%}
8211
8212instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8213  match(Set dst (AddP src0 src1));
8214  ins_cost(110);
8215
8216  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8217  opcode(0x8D); /* 0x8D /r */
8218  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8219  ins_pipe( ialu_reg_reg );
8220%}
8221
8222instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8223  predicate(UseIncDec);
8224  match(Set dst (AddI dst src));
8225  effect(KILL cr);
8226
8227  size(1);
8228  format %{ "DEC    $dst" %}
8229  opcode(0x48); /*  */
8230  ins_encode( Opc_plus( primary, dst ) );
8231  ins_pipe( ialu_reg );
8232%}
8233
8234instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8235  match(Set dst (AddP dst src));
8236  effect(KILL cr);
8237
8238  size(2);
8239  format %{ "ADD    $dst,$src" %}
8240  opcode(0x03);
8241  ins_encode( OpcP, RegReg( dst, src) );
8242  ins_pipe( ialu_reg_reg );
8243%}
8244
8245instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8246  match(Set dst (AddP dst src));
8247  effect(KILL cr);
8248
8249  format %{ "ADD    $dst,$src" %}
8250  opcode(0x81,0x00); /* Opcode 81 /0 id */
8251  // ins_encode( RegImm( dst, src) );
8252  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8253  ins_pipe( ialu_reg );
8254%}
8255
8256instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8257  match(Set dst (AddI dst (LoadI src)));
8258  effect(KILL cr);
8259
8260  ins_cost(125);
8261  format %{ "ADD    $dst,$src" %}
8262  opcode(0x03);
8263  ins_encode( OpcP, RegMem( dst, src) );
8264  ins_pipe( ialu_reg_mem );
8265%}
8266
8267instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8268  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8269  effect(KILL cr);
8270
8271  ins_cost(150);
8272  format %{ "ADD    $dst,$src" %}
8273  opcode(0x01);  /* Opcode 01 /r */
8274  ins_encode( OpcP, RegMem( src, dst ) );
8275  ins_pipe( ialu_mem_reg );
8276%}
8277
8278// Add Memory with Immediate
8279instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8280  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8281  effect(KILL cr);
8282
8283  ins_cost(125);
8284  format %{ "ADD    $dst,$src" %}
8285  opcode(0x81);               /* Opcode 81 /0 id */
8286  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8287  ins_pipe( ialu_mem_imm );
8288%}
8289
8290instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8291  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8292  effect(KILL cr);
8293
8294  ins_cost(125);
8295  format %{ "INC    $dst" %}
8296  opcode(0xFF);               /* Opcode FF /0 */
8297  ins_encode( OpcP, RMopc_Mem(0x00,dst));
8298  ins_pipe( ialu_mem_imm );
8299%}
8300
8301instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8302  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8303  effect(KILL cr);
8304
8305  ins_cost(125);
8306  format %{ "DEC    $dst" %}
8307  opcode(0xFF);               /* Opcode FF /1 */
8308  ins_encode( OpcP, RMopc_Mem(0x01,dst));
8309  ins_pipe( ialu_mem_imm );
8310%}
8311
8312
8313instruct checkCastPP( eRegP dst ) %{
8314  match(Set dst (CheckCastPP dst));
8315
8316  size(0);
8317  format %{ "#checkcastPP of $dst" %}
8318  ins_encode( /*empty encoding*/ );
8319  ins_pipe( empty );
8320%}
8321
8322instruct castPP( eRegP dst ) %{
8323  match(Set dst (CastPP dst));
8324  format %{ "#castPP of $dst" %}
8325  ins_encode( /*empty encoding*/ );
8326  ins_pipe( empty );
8327%}
8328
8329instruct castII( eRegI dst ) %{
8330  match(Set dst (CastII dst));
8331  format %{ "#castII of $dst" %}
8332  ins_encode( /*empty encoding*/ );
8333  ins_cost(0);
8334  ins_pipe( empty );
8335%}
8336
8337
8338// Load-locked - same as a regular pointer load when used with compare-swap
8339instruct loadPLocked(eRegP dst, memory mem) %{
8340  match(Set dst (LoadPLocked mem));
8341
8342  ins_cost(125);
8343  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8344  opcode(0x8B);
8345  ins_encode( OpcP, RegMem(dst,mem));
8346  ins_pipe( ialu_reg_mem );
8347%}
8348
8349// LoadLong-locked - same as a volatile long load when used with compare-swap
8350instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8351  predicate(UseSSE<=1);
8352  match(Set dst (LoadLLocked mem));
8353
8354  ins_cost(200);
8355  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8356            "FISTp  $dst" %}
8357  ins_encode(enc_loadL_volatile(mem,dst));
8358  ins_pipe( fpu_reg_mem );
8359%}
8360
8361instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8362  predicate(UseSSE>=2);
8363  match(Set dst (LoadLLocked mem));
8364  effect(TEMP tmp);
8365  ins_cost(180);
8366  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8367            "MOVSD  $dst,$tmp" %}
8368  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8369  ins_pipe( pipe_slow );
8370%}
8371
8372instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8373  predicate(UseSSE>=2);
8374  match(Set dst (LoadLLocked mem));
8375  effect(TEMP tmp);
8376  ins_cost(160);
8377  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8378            "MOVD   $dst.lo,$tmp\n\t"
8379            "PSRLQ  $tmp,32\n\t"
8380            "MOVD   $dst.hi,$tmp" %}
8381  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8382  ins_pipe( pipe_slow );
8383%}
8384
8385// Conditional-store of the updated heap-top.
8386// Used during allocation of the shared heap.
8387// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8388instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8389  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8390  // EAX is killed if there is contention, but then it's also unused.
8391  // In the common case of no contention, EAX holds the new oop address.
8392  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8393  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8394  ins_pipe( pipe_cmpxchg );
8395%}
8396
8397// Conditional-store of an int value.
8398// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8399instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8400  match(Set cr (StoreIConditional mem (Binary oldval newval)));
8401  effect(KILL oldval);
8402  format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8403  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8404  ins_pipe( pipe_cmpxchg );
8405%}
8406
8407// Conditional-store of a long value.
8408// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8409instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8410  match(Set cr (StoreLConditional mem (Binary oldval newval)));
8411  effect(KILL oldval);
8412  format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8413            "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8414            "XCHG   EBX,ECX"
8415  %}
8416  ins_encode %{
8417    // Note: we need to swap rbx, and rcx before and after the
8418    //       cmpxchg8 instruction because the instruction uses
8419    //       rcx as the high order word of the new value to store but
8420    //       our register encoding uses rbx.
8421    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8422    if( os::is_MP() )
8423      __ lock();
8424    __ cmpxchg8($mem$$Address);
8425    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8426  %}
8427  ins_pipe( pipe_cmpxchg );
8428%}
8429
8430// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8431
8432instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8433  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8434  effect(KILL cr, KILL oldval);
8435  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8436            "MOV    $res,0\n\t"
8437            "JNE,s  fail\n\t"
8438            "MOV    $res,1\n"
8439          "fail:" %}
8440  ins_encode( enc_cmpxchg8(mem_ptr),
8441              enc_flags_ne_to_boolean(res) );
8442  ins_pipe( pipe_cmpxchg );
8443%}
8444
8445instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8446  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8447  effect(KILL cr, KILL oldval);
8448  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8449            "MOV    $res,0\n\t"
8450            "JNE,s  fail\n\t"
8451            "MOV    $res,1\n"
8452          "fail:" %}
8453  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8454  ins_pipe( pipe_cmpxchg );
8455%}
8456
8457instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8458  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8459  effect(KILL cr, KILL oldval);
8460  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8461            "MOV    $res,0\n\t"
8462            "JNE,s  fail\n\t"
8463            "MOV    $res,1\n"
8464          "fail:" %}
8465  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8466  ins_pipe( pipe_cmpxchg );
8467%}
8468
8469//----------Subtraction Instructions-------------------------------------------
8470// Integer Subtraction Instructions
8471instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8472  match(Set dst (SubI dst src));
8473  effect(KILL cr);
8474
8475  size(2);
8476  format %{ "SUB    $dst,$src" %}
8477  opcode(0x2B);
8478  ins_encode( OpcP, RegReg( dst, src) );
8479  ins_pipe( ialu_reg_reg );
8480%}
8481
8482instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8483  match(Set dst (SubI dst src));
8484  effect(KILL cr);
8485
8486  format %{ "SUB    $dst,$src" %}
8487  opcode(0x81,0x05);  /* Opcode 81 /5 */
8488  // ins_encode( RegImm( dst, src) );
8489  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8490  ins_pipe( ialu_reg );
8491%}
8492
8493instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8494  match(Set dst (SubI dst (LoadI src)));
8495  effect(KILL cr);
8496
8497  ins_cost(125);
8498  format %{ "SUB    $dst,$src" %}
8499  opcode(0x2B);
8500  ins_encode( OpcP, RegMem( dst, src) );
8501  ins_pipe( ialu_reg_mem );
8502%}
8503
8504instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8505  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8506  effect(KILL cr);
8507
8508  ins_cost(150);
8509  format %{ "SUB    $dst,$src" %}
8510  opcode(0x29);  /* Opcode 29 /r */
8511  ins_encode( OpcP, RegMem( src, dst ) );
8512  ins_pipe( ialu_mem_reg );
8513%}
8514
8515// Subtract from a pointer
8516instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8517  match(Set dst (AddP dst (SubI zero src)));
8518  effect(KILL cr);
8519
8520  size(2);
8521  format %{ "SUB    $dst,$src" %}
8522  opcode(0x2B);
8523  ins_encode( OpcP, RegReg( dst, src) );
8524  ins_pipe( ialu_reg_reg );
8525%}
8526
8527instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8528  match(Set dst (SubI zero dst));
8529  effect(KILL cr);
8530
8531  size(2);
8532  format %{ "NEG    $dst" %}
8533  opcode(0xF7,0x03);  // Opcode F7 /3
8534  ins_encode( OpcP, RegOpc( dst ) );
8535  ins_pipe( ialu_reg );
8536%}
8537
8538
8539//----------Multiplication/Division Instructions-------------------------------
8540// Integer Multiplication Instructions
8541// Multiply Register
8542instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8543  match(Set dst (MulI dst src));
8544  effect(KILL cr);
8545
8546  size(3);
8547  ins_cost(300);
8548  format %{ "IMUL   $dst,$src" %}
8549  opcode(0xAF, 0x0F);
8550  ins_encode( OpcS, OpcP, RegReg( dst, src) );
8551  ins_pipe( ialu_reg_reg_alu0 );
8552%}
8553
8554// Multiply 32-bit Immediate
8555instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8556  match(Set dst (MulI src imm));
8557  effect(KILL cr);
8558
8559  ins_cost(300);
8560  format %{ "IMUL   $dst,$src,$imm" %}
8561  opcode(0x69);  /* 69 /r id */
8562  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8563  ins_pipe( ialu_reg_reg_alu0 );
8564%}
8565
8566instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8567  match(Set dst src);
8568  effect(KILL cr);
8569
8570  // Note that this is artificially increased to make it more expensive than loadConL
8571  ins_cost(250);
8572  format %{ "MOV    EAX,$src\t// low word only" %}
8573  opcode(0xB8);
8574  ins_encode( LdImmL_Lo(dst, src) );
8575  ins_pipe( ialu_reg_fat );
8576%}
8577
8578// Multiply by 32-bit Immediate, taking the shifted high order results
8579//  (special case for shift by 32)
8580instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8581  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8582  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8583             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8584             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8585  effect(USE src1, KILL cr);
8586
8587  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8588  ins_cost(0*100 + 1*400 - 150);
8589  format %{ "IMUL   EDX:EAX,$src1" %}
8590  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8591  ins_pipe( pipe_slow );
8592%}
8593
8594// Multiply by 32-bit Immediate, taking the shifted high order results
8595instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8596  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8597  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8598             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8599             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8600  effect(USE src1, KILL cr);
8601
8602  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8603  ins_cost(1*100 + 1*400 - 150);
8604  format %{ "IMUL   EDX:EAX,$src1\n\t"
8605            "SAR    EDX,$cnt-32" %}
8606  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8607  ins_pipe( pipe_slow );
8608%}
8609
8610// Multiply Memory 32-bit Immediate
8611instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8612  match(Set dst (MulI (LoadI src) imm));
8613  effect(KILL cr);
8614
8615  ins_cost(300);
8616  format %{ "IMUL   $dst,$src,$imm" %}
8617  opcode(0x69);  /* 69 /r id */
8618  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8619  ins_pipe( ialu_reg_mem_alu0 );
8620%}
8621
8622// Multiply Memory
8623instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8624  match(Set dst (MulI dst (LoadI src)));
8625  effect(KILL cr);
8626
8627  ins_cost(350);
8628  format %{ "IMUL   $dst,$src" %}
8629  opcode(0xAF, 0x0F);
8630  ins_encode( OpcS, OpcP, RegMem( dst, src) );
8631  ins_pipe( ialu_reg_mem_alu0 );
8632%}
8633
8634// Multiply Register Int to Long
8635instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8636  // Basic Idea: long = (long)int * (long)int
8637  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8638  effect(DEF dst, USE src, USE src1, KILL flags);
8639
8640  ins_cost(300);
8641  format %{ "IMUL   $dst,$src1" %}
8642
8643  ins_encode( long_int_multiply( dst, src1 ) );
8644  ins_pipe( ialu_reg_reg_alu0 );
8645%}
8646
8647instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8648  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8649  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8650  effect(KILL flags);
8651
8652  ins_cost(300);
8653  format %{ "MUL    $dst,$src1" %}
8654
8655  ins_encode( long_uint_multiply(dst, src1) );
8656  ins_pipe( ialu_reg_reg_alu0 );
8657%}
8658
8659// Multiply Register Long
8660instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8661  match(Set dst (MulL dst src));
8662  effect(KILL cr, TEMP tmp);
8663  ins_cost(4*100+3*400);
8664// Basic idea: lo(result) = lo(x_lo * y_lo)
8665//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8666  format %{ "MOV    $tmp,$src.lo\n\t"
8667            "IMUL   $tmp,EDX\n\t"
8668            "MOV    EDX,$src.hi\n\t"
8669            "IMUL   EDX,EAX\n\t"
8670            "ADD    $tmp,EDX\n\t"
8671            "MUL    EDX:EAX,$src.lo\n\t"
8672            "ADD    EDX,$tmp" %}
8673  ins_encode( long_multiply( dst, src, tmp ) );
8674  ins_pipe( pipe_slow );
8675%}
8676
8677// Multiply Register Long where the left operand's high 32 bits are zero
8678instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8679  predicate(is_operand_hi32_zero(n->in(1)));
8680  match(Set dst (MulL dst src));
8681  effect(KILL cr, TEMP tmp);
8682  ins_cost(2*100+2*400);
8683// Basic idea: lo(result) = lo(x_lo * y_lo)
8684//             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8685  format %{ "MOV    $tmp,$src.hi\n\t"
8686            "IMUL   $tmp,EAX\n\t"
8687            "MUL    EDX:EAX,$src.lo\n\t"
8688            "ADD    EDX,$tmp" %}
8689  ins_encode %{
8690    __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8691    __ imull($tmp$$Register, rax);
8692    __ mull($src$$Register);
8693    __ addl(rdx, $tmp$$Register);
8694  %}
8695  ins_pipe( pipe_slow );
8696%}
8697
8698// Multiply Register Long where the right operand's high 32 bits are zero
8699instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8700  predicate(is_operand_hi32_zero(n->in(2)));
8701  match(Set dst (MulL dst src));
8702  effect(KILL cr, TEMP tmp);
8703  ins_cost(2*100+2*400);
8704// Basic idea: lo(result) = lo(x_lo * y_lo)
8705//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8706  format %{ "MOV    $tmp,$src.lo\n\t"
8707            "IMUL   $tmp,EDX\n\t"
8708            "MUL    EDX:EAX,$src.lo\n\t"
8709            "ADD    EDX,$tmp" %}
8710  ins_encode %{
8711    __ movl($tmp$$Register, $src$$Register);
8712    __ imull($tmp$$Register, rdx);
8713    __ mull($src$$Register);
8714    __ addl(rdx, $tmp$$Register);
8715  %}
8716  ins_pipe( pipe_slow );
8717%}
8718
8719// Multiply Register Long where the left and the right operands' high 32 bits are zero
8720instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8721  predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8722  match(Set dst (MulL dst src));
8723  effect(KILL cr);
8724  ins_cost(1*400);
8725// Basic idea: lo(result) = lo(x_lo * y_lo)
8726//             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8727  format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8728  ins_encode %{
8729    __ mull($src$$Register);
8730  %}
8731  ins_pipe( pipe_slow );
8732%}
8733
8734// Multiply Register Long by small constant
8735instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8736  match(Set dst (MulL dst src));
8737  effect(KILL cr, TEMP tmp);
8738  ins_cost(2*100+2*400);
8739  size(12);
8740// Basic idea: lo(result) = lo(src * EAX)
8741//             hi(result) = hi(src * EAX) + lo(src * EDX)
8742  format %{ "IMUL   $tmp,EDX,$src\n\t"
8743            "MOV    EDX,$src\n\t"
8744            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8745            "ADD    EDX,$tmp" %}
8746  ins_encode( long_multiply_con( dst, src, tmp ) );
8747  ins_pipe( pipe_slow );
8748%}
8749
8750// Integer DIV with Register
8751instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8752  match(Set rax (DivI rax div));
8753  effect(KILL rdx, KILL cr);
8754  size(26);
8755  ins_cost(30*100+10*100);
8756  format %{ "CMP    EAX,0x80000000\n\t"
8757            "JNE,s  normal\n\t"
8758            "XOR    EDX,EDX\n\t"
8759            "CMP    ECX,-1\n\t"
8760            "JE,s   done\n"
8761    "normal: CDQ\n\t"
8762            "IDIV   $div\n\t"
8763    "done:"        %}
8764  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8765  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8766  ins_pipe( ialu_reg_reg_alu0 );
8767%}
8768
8769// Divide Register Long
8770instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8771  match(Set dst (DivL src1 src2));
8772  effect( KILL cr, KILL cx, KILL bx );
8773  ins_cost(10000);
8774  format %{ "PUSH   $src1.hi\n\t"
8775            "PUSH   $src1.lo\n\t"
8776            "PUSH   $src2.hi\n\t"
8777            "PUSH   $src2.lo\n\t"
8778            "CALL   SharedRuntime::ldiv\n\t"
8779            "ADD    ESP,16" %}
8780  ins_encode( long_div(src1,src2) );
8781  ins_pipe( pipe_slow );
8782%}
8783
8784// Integer DIVMOD with Register, both quotient and mod results
8785instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8786  match(DivModI rax div);
8787  effect(KILL cr);
8788  size(26);
8789  ins_cost(30*100+10*100);
8790  format %{ "CMP    EAX,0x80000000\n\t"
8791            "JNE,s  normal\n\t"
8792            "XOR    EDX,EDX\n\t"
8793            "CMP    ECX,-1\n\t"
8794            "JE,s   done\n"
8795    "normal: CDQ\n\t"
8796            "IDIV   $div\n\t"
8797    "done:"        %}
8798  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8799  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8800  ins_pipe( pipe_slow );
8801%}
8802
8803// Integer MOD with Register
8804instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8805  match(Set rdx (ModI rax div));
8806  effect(KILL rax, KILL cr);
8807
8808  size(26);
8809  ins_cost(300);
8810  format %{ "CDQ\n\t"
8811            "IDIV   $div" %}
8812  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8813  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8814  ins_pipe( ialu_reg_reg_alu0 );
8815%}
8816
8817// Remainder Register Long
8818instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8819  match(Set dst (ModL src1 src2));
8820  effect( KILL cr, KILL cx, KILL bx );
8821  ins_cost(10000);
8822  format %{ "PUSH   $src1.hi\n\t"
8823            "PUSH   $src1.lo\n\t"
8824            "PUSH   $src2.hi\n\t"
8825            "PUSH   $src2.lo\n\t"
8826            "CALL   SharedRuntime::lrem\n\t"
8827            "ADD    ESP,16" %}
8828  ins_encode( long_mod(src1,src2) );
8829  ins_pipe( pipe_slow );
8830%}
8831
8832// Divide Register Long (no special case since divisor != -1)
8833instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
8834  match(Set dst (DivL dst imm));
8835  effect( TEMP tmp, TEMP tmp2, KILL cr );
8836  ins_cost(1000);
8837  format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
8838            "XOR    $tmp2,$tmp2\n\t"
8839            "CMP    $tmp,EDX\n\t"
8840            "JA,s   fast\n\t"
8841            "MOV    $tmp2,EAX\n\t"
8842            "MOV    EAX,EDX\n\t"
8843            "MOV    EDX,0\n\t"
8844            "JLE,s  pos\n\t"
8845            "LNEG   EAX : $tmp2\n\t"
8846            "DIV    $tmp # unsigned division\n\t"
8847            "XCHG   EAX,$tmp2\n\t"
8848            "DIV    $tmp\n\t"
8849            "LNEG   $tmp2 : EAX\n\t"
8850            "JMP,s  done\n"
8851    "pos:\n\t"
8852            "DIV    $tmp\n\t"
8853            "XCHG   EAX,$tmp2\n"
8854    "fast:\n\t"
8855            "DIV    $tmp\n"
8856    "done:\n\t"
8857            "MOV    EDX,$tmp2\n\t"
8858            "NEG    EDX:EAX # if $imm < 0" %}
8859  ins_encode %{
8860    int con = (int)$imm$$constant;
8861    assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8862    int pcon = (con > 0) ? con : -con;
8863    Label Lfast, Lpos, Ldone;
8864
8865    __ movl($tmp$$Register, pcon);
8866    __ xorl($tmp2$$Register,$tmp2$$Register);
8867    __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8868    __ jccb(Assembler::above, Lfast); // result fits into 32 bit
8869
8870    __ movl($tmp2$$Register, $dst$$Register); // save
8871    __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8872    __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8873    __ jccb(Assembler::lessEqual, Lpos); // result is positive
8874
8875    // Negative dividend.
8876    // convert value to positive to use unsigned division
8877    __ lneg($dst$$Register, $tmp2$$Register);
8878    __ divl($tmp$$Register);
8879    __ xchgl($dst$$Register, $tmp2$$Register);
8880    __ divl($tmp$$Register);
8881    // revert result back to negative
8882    __ lneg($tmp2$$Register, $dst$$Register);
8883    __ jmpb(Ldone);
8884
8885    __ bind(Lpos);
8886    __ divl($tmp$$Register); // Use unsigned division
8887    __ xchgl($dst$$Register, $tmp2$$Register);
8888    // Fallthrow for final divide, tmp2 has 32 bit hi result
8889
8890    __ bind(Lfast);
8891    // fast path: src is positive
8892    __ divl($tmp$$Register); // Use unsigned division
8893
8894    __ bind(Ldone);
8895    __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
8896    if (con < 0) {
8897      __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
8898    }
8899  %}
8900  ins_pipe( pipe_slow );
8901%}
8902
8903// Remainder Register Long (remainder fit into 32 bits)
8904instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, eRegI tmp, eRegI tmp2, eFlagsReg cr ) %{
8905  match(Set dst (ModL dst imm));
8906  effect( TEMP tmp, TEMP tmp2, KILL cr );
8907  ins_cost(1000);
8908  format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
8909            "CMP    $tmp,EDX\n\t"
8910            "JA,s   fast\n\t"
8911            "MOV    $tmp2,EAX\n\t"
8912            "MOV    EAX,EDX\n\t"
8913            "MOV    EDX,0\n\t"
8914            "JLE,s  pos\n\t"
8915            "LNEG   EAX : $tmp2\n\t"
8916            "DIV    $tmp # unsigned division\n\t"
8917            "MOV    EAX,$tmp2\n\t"
8918            "DIV    $tmp\n\t"
8919            "NEG    EDX\n\t"
8920            "JMP,s  done\n"
8921    "pos:\n\t"
8922            "DIV    $tmp\n\t"
8923            "MOV    EAX,$tmp2\n"
8924    "fast:\n\t"
8925            "DIV    $tmp\n"
8926    "done:\n\t"
8927            "MOV    EAX,EDX\n\t"
8928            "SAR    EDX,31\n\t" %}
8929  ins_encode %{
8930    int con = (int)$imm$$constant;
8931    assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
8932    int pcon = (con > 0) ? con : -con;
8933    Label  Lfast, Lpos, Ldone;
8934
8935    __ movl($tmp$$Register, pcon);
8936    __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
8937    __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
8938
8939    __ movl($tmp2$$Register, $dst$$Register); // save
8940    __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8941    __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
8942    __ jccb(Assembler::lessEqual, Lpos); // result is positive
8943
8944    // Negative dividend.
8945    // convert value to positive to use unsigned division
8946    __ lneg($dst$$Register, $tmp2$$Register);
8947    __ divl($tmp$$Register);
8948    __ movl($dst$$Register, $tmp2$$Register);
8949    __ divl($tmp$$Register);
8950    // revert remainder back to negative
8951    __ negl(HIGH_FROM_LOW($dst$$Register));
8952    __ jmpb(Ldone);
8953
8954    __ bind(Lpos);
8955    __ divl($tmp$$Register);
8956    __ movl($dst$$Register, $tmp2$$Register);
8957
8958    __ bind(Lfast);
8959    // fast path: src is positive
8960    __ divl($tmp$$Register);
8961
8962    __ bind(Ldone);
8963    __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
8964    __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
8965
8966  %}
8967  ins_pipe( pipe_slow );
8968%}
8969
8970// Integer Shift Instructions
8971// Shift Left by one
8972instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8973  match(Set dst (LShiftI dst shift));
8974  effect(KILL cr);
8975
8976  size(2);
8977  format %{ "SHL    $dst,$shift" %}
8978  opcode(0xD1, 0x4);  /* D1 /4 */
8979  ins_encode( OpcP, RegOpc( dst ) );
8980  ins_pipe( ialu_reg );
8981%}
8982
8983// Shift Left by 8-bit immediate
8984instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8985  match(Set dst (LShiftI dst shift));
8986  effect(KILL cr);
8987
8988  size(3);
8989  format %{ "SHL    $dst,$shift" %}
8990  opcode(0xC1, 0x4);  /* C1 /4 ib */
8991  ins_encode( RegOpcImm( dst, shift) );
8992  ins_pipe( ialu_reg );
8993%}
8994
8995// Shift Left by variable
8996instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8997  match(Set dst (LShiftI dst shift));
8998  effect(KILL cr);
8999
9000  size(2);
9001  format %{ "SHL    $dst,$shift" %}
9002  opcode(0xD3, 0x4);  /* D3 /4 */
9003  ins_encode( OpcP, RegOpc( dst ) );
9004  ins_pipe( ialu_reg_reg );
9005%}
9006
9007// Arithmetic shift right by one
9008instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9009  match(Set dst (RShiftI dst shift));
9010  effect(KILL cr);
9011
9012  size(2);
9013  format %{ "SAR    $dst,$shift" %}
9014  opcode(0xD1, 0x7);  /* D1 /7 */
9015  ins_encode( OpcP, RegOpc( dst ) );
9016  ins_pipe( ialu_reg );
9017%}
9018
9019// Arithmetic shift right by one
9020instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
9021  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
9022  effect(KILL cr);
9023  format %{ "SAR    $dst,$shift" %}
9024  opcode(0xD1, 0x7);  /* D1 /7 */
9025  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
9026  ins_pipe( ialu_mem_imm );
9027%}
9028
9029// Arithmetic Shift Right by 8-bit immediate
9030instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9031  match(Set dst (RShiftI dst shift));
9032  effect(KILL cr);
9033
9034  size(3);
9035  format %{ "SAR    $dst,$shift" %}
9036  opcode(0xC1, 0x7);  /* C1 /7 ib */
9037  ins_encode( RegOpcImm( dst, shift ) );
9038  ins_pipe( ialu_mem_imm );
9039%}
9040
9041// Arithmetic Shift Right by 8-bit immediate
9042instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
9043  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
9044  effect(KILL cr);
9045
9046  format %{ "SAR    $dst,$shift" %}
9047  opcode(0xC1, 0x7);  /* C1 /7 ib */
9048  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
9049  ins_pipe( ialu_mem_imm );
9050%}
9051
9052// Arithmetic Shift Right by variable
9053instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9054  match(Set dst (RShiftI dst shift));
9055  effect(KILL cr);
9056
9057  size(2);
9058  format %{ "SAR    $dst,$shift" %}
9059  opcode(0xD3, 0x7);  /* D3 /7 */
9060  ins_encode( OpcP, RegOpc( dst ) );
9061  ins_pipe( ialu_reg_reg );
9062%}
9063
9064// Logical shift right by one
9065instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9066  match(Set dst (URShiftI dst shift));
9067  effect(KILL cr);
9068
9069  size(2);
9070  format %{ "SHR    $dst,$shift" %}
9071  opcode(0xD1, 0x5);  /* D1 /5 */
9072  ins_encode( OpcP, RegOpc( dst ) );
9073  ins_pipe( ialu_reg );
9074%}
9075
9076// Logical Shift Right by 8-bit immediate
9077instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
9078  match(Set dst (URShiftI dst shift));
9079  effect(KILL cr);
9080
9081  size(3);
9082  format %{ "SHR    $dst,$shift" %}
9083  opcode(0xC1, 0x5);  /* C1 /5 ib */
9084  ins_encode( RegOpcImm( dst, shift) );
9085  ins_pipe( ialu_reg );
9086%}
9087
9088
9089// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
9090// This idiom is used by the compiler for the i2b bytecode.
9091instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
9092  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
9093
9094  size(3);
9095  format %{ "MOVSX  $dst,$src :8" %}
9096  ins_encode %{
9097    __ movsbl($dst$$Register, $src$$Register);
9098  %}
9099  ins_pipe(ialu_reg_reg);
9100%}
9101
9102// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
9103// This idiom is used by the compiler the i2s bytecode.
9104instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
9105  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
9106
9107  size(3);
9108  format %{ "MOVSX  $dst,$src :16" %}
9109  ins_encode %{
9110    __ movswl($dst$$Register, $src$$Register);
9111  %}
9112  ins_pipe(ialu_reg_reg);
9113%}
9114
9115
9116// Logical Shift Right by variable
9117instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
9118  match(Set dst (URShiftI dst shift));
9119  effect(KILL cr);
9120
9121  size(2);
9122  format %{ "SHR    $dst,$shift" %}
9123  opcode(0xD3, 0x5);  /* D3 /5 */
9124  ins_encode( OpcP, RegOpc( dst ) );
9125  ins_pipe( ialu_reg_reg );
9126%}
9127
9128
9129//----------Logical Instructions-----------------------------------------------
9130//----------Integer Logical Instructions---------------------------------------
9131// And Instructions
9132// And Register with Register
9133instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9134  match(Set dst (AndI dst src));
9135  effect(KILL cr);
9136
9137  size(2);
9138  format %{ "AND    $dst,$src" %}
9139  opcode(0x23);
9140  ins_encode( OpcP, RegReg( dst, src) );
9141  ins_pipe( ialu_reg_reg );
9142%}
9143
9144// And Register with Immediate
9145instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9146  match(Set dst (AndI dst src));
9147  effect(KILL cr);
9148
9149  format %{ "AND    $dst,$src" %}
9150  opcode(0x81,0x04);  /* Opcode 81 /4 */
9151  // ins_encode( RegImm( dst, src) );
9152  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9153  ins_pipe( ialu_reg );
9154%}
9155
9156// And Register with Memory
9157instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9158  match(Set dst (AndI dst (LoadI src)));
9159  effect(KILL cr);
9160
9161  ins_cost(125);
9162  format %{ "AND    $dst,$src" %}
9163  opcode(0x23);
9164  ins_encode( OpcP, RegMem( dst, src) );
9165  ins_pipe( ialu_reg_mem );
9166%}
9167
9168// And Memory with Register
9169instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9170  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9171  effect(KILL cr);
9172
9173  ins_cost(150);
9174  format %{ "AND    $dst,$src" %}
9175  opcode(0x21);  /* Opcode 21 /r */
9176  ins_encode( OpcP, RegMem( src, dst ) );
9177  ins_pipe( ialu_mem_reg );
9178%}
9179
9180// And Memory with Immediate
9181instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9182  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9183  effect(KILL cr);
9184
9185  ins_cost(125);
9186  format %{ "AND    $dst,$src" %}
9187  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
9188  // ins_encode( MemImm( dst, src) );
9189  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9190  ins_pipe( ialu_mem_imm );
9191%}
9192
9193// Or Instructions
9194// Or Register with Register
9195instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9196  match(Set dst (OrI dst src));
9197  effect(KILL cr);
9198
9199  size(2);
9200  format %{ "OR     $dst,$src" %}
9201  opcode(0x0B);
9202  ins_encode( OpcP, RegReg( dst, src) );
9203  ins_pipe( ialu_reg_reg );
9204%}
9205
9206instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
9207  match(Set dst (OrI dst (CastP2X src)));
9208  effect(KILL cr);
9209
9210  size(2);
9211  format %{ "OR     $dst,$src" %}
9212  opcode(0x0B);
9213  ins_encode( OpcP, RegReg( dst, src) );
9214  ins_pipe( ialu_reg_reg );
9215%}
9216
9217
9218// Or Register with Immediate
9219instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9220  match(Set dst (OrI dst src));
9221  effect(KILL cr);
9222
9223  format %{ "OR     $dst,$src" %}
9224  opcode(0x81,0x01);  /* Opcode 81 /1 id */
9225  // ins_encode( RegImm( dst, src) );
9226  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9227  ins_pipe( ialu_reg );
9228%}
9229
9230// Or Register with Memory
9231instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9232  match(Set dst (OrI dst (LoadI src)));
9233  effect(KILL cr);
9234
9235  ins_cost(125);
9236  format %{ "OR     $dst,$src" %}
9237  opcode(0x0B);
9238  ins_encode( OpcP, RegMem( dst, src) );
9239  ins_pipe( ialu_reg_mem );
9240%}
9241
9242// Or Memory with Register
9243instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9244  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9245  effect(KILL cr);
9246
9247  ins_cost(150);
9248  format %{ "OR     $dst,$src" %}
9249  opcode(0x09);  /* Opcode 09 /r */
9250  ins_encode( OpcP, RegMem( src, dst ) );
9251  ins_pipe( ialu_mem_reg );
9252%}
9253
9254// Or Memory with Immediate
9255instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9256  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9257  effect(KILL cr);
9258
9259  ins_cost(125);
9260  format %{ "OR     $dst,$src" %}
9261  opcode(0x81,0x1);  /* Opcode 81 /1 id */
9262  // ins_encode( MemImm( dst, src) );
9263  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9264  ins_pipe( ialu_mem_imm );
9265%}
9266
9267// ROL/ROR
9268// ROL expand
9269instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9270  effect(USE_DEF dst, USE shift, KILL cr);
9271
9272  format %{ "ROL    $dst, $shift" %}
9273  opcode(0xD1, 0x0); /* Opcode D1 /0 */
9274  ins_encode( OpcP, RegOpc( dst ));
9275  ins_pipe( ialu_reg );
9276%}
9277
9278instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9279  effect(USE_DEF dst, USE shift, KILL cr);
9280
9281  format %{ "ROL    $dst, $shift" %}
9282  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
9283  ins_encode( RegOpcImm(dst, shift) );
9284  ins_pipe(ialu_reg);
9285%}
9286
9287instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
9288  effect(USE_DEF dst, USE shift, KILL cr);
9289
9290  format %{ "ROL    $dst, $shift" %}
9291  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
9292  ins_encode(OpcP, RegOpc(dst));
9293  ins_pipe( ialu_reg_reg );
9294%}
9295// end of ROL expand
9296
9297// ROL 32bit by one once
9298instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
9299  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9300
9301  expand %{
9302    rolI_eReg_imm1(dst, lshift, cr);
9303  %}
9304%}
9305
9306// ROL 32bit var by imm8 once
9307instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
9308  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9309  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9310
9311  expand %{
9312    rolI_eReg_imm8(dst, lshift, cr);
9313  %}
9314%}
9315
9316// ROL 32bit var by var once
9317instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9318  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9319
9320  expand %{
9321    rolI_eReg_CL(dst, shift, cr);
9322  %}
9323%}
9324
9325// ROL 32bit var by var once
9326instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9327  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9328
9329  expand %{
9330    rolI_eReg_CL(dst, shift, cr);
9331  %}
9332%}
9333
9334// ROR expand
9335instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9336  effect(USE_DEF dst, USE shift, KILL cr);
9337
9338  format %{ "ROR    $dst, $shift" %}
9339  opcode(0xD1,0x1);  /* Opcode D1 /1 */
9340  ins_encode( OpcP, RegOpc( dst ) );
9341  ins_pipe( ialu_reg );
9342%}
9343
9344instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9345  effect (USE_DEF dst, USE shift, KILL cr);
9346
9347  format %{ "ROR    $dst, $shift" %}
9348  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9349  ins_encode( RegOpcImm(dst, shift) );
9350  ins_pipe( ialu_reg );
9351%}
9352
9353instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9354  effect(USE_DEF dst, USE shift, KILL cr);
9355
9356  format %{ "ROR    $dst, $shift" %}
9357  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9358  ins_encode(OpcP, RegOpc(dst));
9359  ins_pipe( ialu_reg_reg );
9360%}
9361// end of ROR expand
9362
9363// ROR right once
9364instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9365  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9366
9367  expand %{
9368    rorI_eReg_imm1(dst, rshift, cr);
9369  %}
9370%}
9371
9372// ROR 32bit by immI8 once
9373instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9374  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9375  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9376
9377  expand %{
9378    rorI_eReg_imm8(dst, rshift, cr);
9379  %}
9380%}
9381
9382// ROR 32bit var by var once
9383instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9384  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9385
9386  expand %{
9387    rorI_eReg_CL(dst, shift, cr);
9388  %}
9389%}
9390
9391// ROR 32bit var by var once
9392instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9393  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9394
9395  expand %{
9396    rorI_eReg_CL(dst, shift, cr);
9397  %}
9398%}
9399
9400// Xor Instructions
9401// Xor Register with Register
9402instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9403  match(Set dst (XorI dst src));
9404  effect(KILL cr);
9405
9406  size(2);
9407  format %{ "XOR    $dst,$src" %}
9408  opcode(0x33);
9409  ins_encode( OpcP, RegReg( dst, src) );
9410  ins_pipe( ialu_reg_reg );
9411%}
9412
9413// Xor Register with Immediate -1
9414instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9415  match(Set dst (XorI dst imm));  
9416
9417  size(2);
9418  format %{ "NOT    $dst" %}  
9419  ins_encode %{
9420     __ notl($dst$$Register);
9421  %}
9422  ins_pipe( ialu_reg );
9423%}
9424
9425// Xor Register with Immediate
9426instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9427  match(Set dst (XorI dst src));
9428  effect(KILL cr);
9429
9430  format %{ "XOR    $dst,$src" %}
9431  opcode(0x81,0x06);  /* Opcode 81 /6 id */
9432  // ins_encode( RegImm( dst, src) );
9433  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9434  ins_pipe( ialu_reg );
9435%}
9436
9437// Xor Register with Memory
9438instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9439  match(Set dst (XorI dst (LoadI src)));
9440  effect(KILL cr);
9441
9442  ins_cost(125);
9443  format %{ "XOR    $dst,$src" %}
9444  opcode(0x33);
9445  ins_encode( OpcP, RegMem(dst, src) );
9446  ins_pipe( ialu_reg_mem );
9447%}
9448
9449// Xor Memory with Register
9450instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9451  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9452  effect(KILL cr);
9453
9454  ins_cost(150);
9455  format %{ "XOR    $dst,$src" %}
9456  opcode(0x31);  /* Opcode 31 /r */
9457  ins_encode( OpcP, RegMem( src, dst ) );
9458  ins_pipe( ialu_mem_reg );
9459%}
9460
9461// Xor Memory with Immediate
9462instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9463  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9464  effect(KILL cr);
9465
9466  ins_cost(125);
9467  format %{ "XOR    $dst,$src" %}
9468  opcode(0x81,0x6);  /* Opcode 81 /6 id */
9469  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9470  ins_pipe( ialu_mem_imm );
9471%}
9472
9473//----------Convert Int to Boolean---------------------------------------------
9474
9475instruct movI_nocopy(eRegI dst, eRegI src) %{
9476  effect( DEF dst, USE src );
9477  format %{ "MOV    $dst,$src" %}
9478  ins_encode( enc_Copy( dst, src) );
9479  ins_pipe( ialu_reg_reg );
9480%}
9481
9482instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9483  effect( USE_DEF dst, USE src, KILL cr );
9484
9485  size(4);
9486  format %{ "NEG    $dst\n\t"
9487            "ADC    $dst,$src" %}
9488  ins_encode( neg_reg(dst),
9489              OpcRegReg(0x13,dst,src) );
9490  ins_pipe( ialu_reg_reg_long );
9491%}
9492
9493instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9494  match(Set dst (Conv2B src));
9495
9496  expand %{
9497    movI_nocopy(dst,src);
9498    ci2b(dst,src,cr);
9499  %}
9500%}
9501
9502instruct movP_nocopy(eRegI dst, eRegP src) %{
9503  effect( DEF dst, USE src );
9504  format %{ "MOV    $dst,$src" %}
9505  ins_encode( enc_Copy( dst, src) );
9506  ins_pipe( ialu_reg_reg );
9507%}
9508
9509instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9510  effect( USE_DEF dst, USE src, KILL cr );
9511  format %{ "NEG    $dst\n\t"
9512            "ADC    $dst,$src" %}
9513  ins_encode( neg_reg(dst),
9514              OpcRegReg(0x13,dst,src) );
9515  ins_pipe( ialu_reg_reg_long );
9516%}
9517
9518instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9519  match(Set dst (Conv2B src));
9520
9521  expand %{
9522    movP_nocopy(dst,src);
9523    cp2b(dst,src,cr);
9524  %}
9525%}
9526
9527instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9528  match(Set dst (CmpLTMask p q));
9529  effect( KILL cr );
9530  ins_cost(400);
9531
9532  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9533  format %{ "XOR    $dst,$dst\n\t"
9534            "CMP    $p,$q\n\t"
9535            "SETlt  $dst\n\t"
9536            "NEG    $dst" %}
9537  ins_encode( OpcRegReg(0x33,dst,dst),
9538              OpcRegReg(0x3B,p,q),
9539              setLT_reg(dst), neg_reg(dst) );
9540  ins_pipe( pipe_slow );
9541%}
9542
9543instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9544  match(Set dst (CmpLTMask dst zero));
9545  effect( DEF dst, KILL cr );
9546  ins_cost(100);
9547
9548  format %{ "SAR    $dst,31" %}
9549  opcode(0xC1, 0x7);  /* C1 /7 ib */
9550  ins_encode( RegOpcImm( dst, 0x1F ) );
9551  ins_pipe( ialu_reg );
9552%}
9553
9554
9555instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9556  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9557  effect( KILL tmp, KILL cr );
9558  ins_cost(400);
9559  // annoyingly, $tmp has no edges so you cant ask for it in
9560  // any format or encoding
9561  format %{ "SUB    $p,$q\n\t"
9562            "SBB    ECX,ECX\n\t"
9563            "AND    ECX,$y\n\t"
9564            "ADD    $p,ECX" %}
9565  ins_encode( enc_cmpLTP(p,q,y,tmp) );
9566  ins_pipe( pipe_cmplt );
9567%}
9568
9569/* If I enable this, I encourage spilling in the inner loop of compress.
9570instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9571  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9572  effect( USE_KILL tmp, KILL cr );
9573  ins_cost(400);
9574
9575  format %{ "SUB    $p,$q\n\t"
9576            "SBB    ECX,ECX\n\t"
9577            "AND    ECX,$y\n\t"
9578            "ADD    $p,ECX" %}
9579  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9580%}
9581*/
9582
9583//----------Long Instructions------------------------------------------------
9584// Add Long Register with Register
9585instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9586  match(Set dst (AddL dst src));
9587  effect(KILL cr);
9588  ins_cost(200);
9589  format %{ "ADD    $dst.lo,$src.lo\n\t"
9590            "ADC    $dst.hi,$src.hi" %}
9591  opcode(0x03, 0x13);
9592  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9593  ins_pipe( ialu_reg_reg_long );
9594%}
9595
9596// Add Long Register with Immediate
9597instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9598  match(Set dst (AddL dst src));
9599  effect(KILL cr);
9600  format %{ "ADD    $dst.lo,$src.lo\n\t"
9601            "ADC    $dst.hi,$src.hi" %}
9602  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9603  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9604  ins_pipe( ialu_reg_long );
9605%}
9606
9607// Add Long Register with Memory
9608instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9609  match(Set dst (AddL dst (LoadL mem)));
9610  effect(KILL cr);
9611  ins_cost(125);
9612  format %{ "ADD    $dst.lo,$mem\n\t"
9613            "ADC    $dst.hi,$mem+4" %}
9614  opcode(0x03, 0x13);
9615  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9616  ins_pipe( ialu_reg_long_mem );
9617%}
9618
9619// Subtract Long Register with Register.
9620instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9621  match(Set dst (SubL dst src));
9622  effect(KILL cr);
9623  ins_cost(200);
9624  format %{ "SUB    $dst.lo,$src.lo\n\t"
9625            "SBB    $dst.hi,$src.hi" %}
9626  opcode(0x2B, 0x1B);
9627  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9628  ins_pipe( ialu_reg_reg_long );
9629%}
9630
9631// Subtract Long Register with Immediate
9632instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9633  match(Set dst (SubL dst src));
9634  effect(KILL cr);
9635  format %{ "SUB    $dst.lo,$src.lo\n\t"
9636            "SBB    $dst.hi,$src.hi" %}
9637  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9638  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9639  ins_pipe( ialu_reg_long );
9640%}
9641
9642// Subtract Long Register with Memory
9643instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9644  match(Set dst (SubL dst (LoadL mem)));
9645  effect(KILL cr);
9646  ins_cost(125);
9647  format %{ "SUB    $dst.lo,$mem\n\t"
9648            "SBB    $dst.hi,$mem+4" %}
9649  opcode(0x2B, 0x1B);
9650  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9651  ins_pipe( ialu_reg_long_mem );
9652%}
9653
9654instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9655  match(Set dst (SubL zero dst));
9656  effect(KILL cr);
9657  ins_cost(300);
9658  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9659  ins_encode( neg_long(dst) );
9660  ins_pipe( ialu_reg_reg_long );
9661%}
9662
9663// And Long Register with Register
9664instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9665  match(Set dst (AndL dst src));
9666  effect(KILL cr);
9667  format %{ "AND    $dst.lo,$src.lo\n\t"
9668            "AND    $dst.hi,$src.hi" %}
9669  opcode(0x23,0x23);
9670  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9671  ins_pipe( ialu_reg_reg_long );
9672%}
9673
9674// And Long Register with Immediate
9675instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9676  match(Set dst (AndL dst src));
9677  effect(KILL cr);
9678  format %{ "AND    $dst.lo,$src.lo\n\t"
9679            "AND    $dst.hi,$src.hi" %}
9680  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9681  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9682  ins_pipe( ialu_reg_long );
9683%}
9684
9685// And Long Register with Memory
9686instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9687  match(Set dst (AndL dst (LoadL mem)));
9688  effect(KILL cr);
9689  ins_cost(125);
9690  format %{ "AND    $dst.lo,$mem\n\t"
9691            "AND    $dst.hi,$mem+4" %}
9692  opcode(0x23, 0x23);
9693  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9694  ins_pipe( ialu_reg_long_mem );
9695%}
9696
9697// Or Long Register with Register
9698instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9699  match(Set dst (OrL dst src));
9700  effect(KILL cr);
9701  format %{ "OR     $dst.lo,$src.lo\n\t"
9702            "OR     $dst.hi,$src.hi" %}
9703  opcode(0x0B,0x0B);
9704  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9705  ins_pipe( ialu_reg_reg_long );
9706%}
9707
9708// Or Long Register with Immediate
9709instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9710  match(Set dst (OrL dst src));
9711  effect(KILL cr);
9712  format %{ "OR     $dst.lo,$src.lo\n\t"
9713            "OR     $dst.hi,$src.hi" %}
9714  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9715  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9716  ins_pipe( ialu_reg_long );
9717%}
9718
9719// Or Long Register with Memory
9720instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9721  match(Set dst (OrL dst (LoadL mem)));
9722  effect(KILL cr);
9723  ins_cost(125);
9724  format %{ "OR     $dst.lo,$mem\n\t"
9725            "OR     $dst.hi,$mem+4" %}
9726  opcode(0x0B,0x0B);
9727  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9728  ins_pipe( ialu_reg_long_mem );
9729%}
9730
9731// Xor Long Register with Register
9732instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9733  match(Set dst (XorL dst src));
9734  effect(KILL cr);
9735  format %{ "XOR    $dst.lo,$src.lo\n\t"
9736            "XOR    $dst.hi,$src.hi" %}
9737  opcode(0x33,0x33);
9738  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9739  ins_pipe( ialu_reg_reg_long );
9740%}
9741
9742// Xor Long Register with Immediate -1
9743instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9744  match(Set dst (XorL dst imm));  
9745  format %{ "NOT    $dst.lo\n\t"
9746            "NOT    $dst.hi" %}
9747  ins_encode %{
9748     __ notl($dst$$Register);
9749     __ notl(HIGH_FROM_LOW($dst$$Register));
9750  %}
9751  ins_pipe( ialu_reg_long );
9752%}
9753
9754// Xor Long Register with Immediate
9755instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9756  match(Set dst (XorL dst src));
9757  effect(KILL cr);
9758  format %{ "XOR    $dst.lo,$src.lo\n\t"
9759            "XOR    $dst.hi,$src.hi" %}
9760  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9761  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9762  ins_pipe( ialu_reg_long );
9763%}
9764
9765// Xor Long Register with Memory
9766instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9767  match(Set dst (XorL dst (LoadL mem)));
9768  effect(KILL cr);
9769  ins_cost(125);
9770  format %{ "XOR    $dst.lo,$mem\n\t"
9771            "XOR    $dst.hi,$mem+4" %}
9772  opcode(0x33,0x33);
9773  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9774  ins_pipe( ialu_reg_long_mem );
9775%}
9776
9777// Shift Left Long by 1
9778instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9779  predicate(UseNewLongLShift);
9780  match(Set dst (LShiftL dst cnt));
9781  effect(KILL cr);
9782  ins_cost(100);
9783  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9784            "ADC    $dst.hi,$dst.hi" %}
9785  ins_encode %{
9786    __ addl($dst$$Register,$dst$$Register);
9787    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9788  %}
9789  ins_pipe( ialu_reg_long );
9790%}
9791
9792// Shift Left Long by 2
9793instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9794  predicate(UseNewLongLShift);
9795  match(Set dst (LShiftL dst cnt));
9796  effect(KILL cr);
9797  ins_cost(100);
9798  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9799            "ADC    $dst.hi,$dst.hi\n\t" 
9800            "ADD    $dst.lo,$dst.lo\n\t"
9801            "ADC    $dst.hi,$dst.hi" %}
9802  ins_encode %{
9803    __ addl($dst$$Register,$dst$$Register);
9804    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9805    __ addl($dst$$Register,$dst$$Register);
9806    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9807  %}
9808  ins_pipe( ialu_reg_long );
9809%}
9810
9811// Shift Left Long by 3
9812instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9813  predicate(UseNewLongLShift);
9814  match(Set dst (LShiftL dst cnt));
9815  effect(KILL cr);
9816  ins_cost(100);
9817  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9818            "ADC    $dst.hi,$dst.hi\n\t" 
9819            "ADD    $dst.lo,$dst.lo\n\t"
9820            "ADC    $dst.hi,$dst.hi\n\t" 
9821            "ADD    $dst.lo,$dst.lo\n\t"
9822            "ADC    $dst.hi,$dst.hi" %}
9823  ins_encode %{
9824    __ addl($dst$$Register,$dst$$Register);
9825    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9826    __ addl($dst$$Register,$dst$$Register);
9827    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9828    __ addl($dst$$Register,$dst$$Register);
9829    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9830  %}
9831  ins_pipe( ialu_reg_long );
9832%}
9833
9834// Shift Left Long by 1-31
9835instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9836  match(Set dst (LShiftL dst cnt));
9837  effect(KILL cr);
9838  ins_cost(200);
9839  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9840            "SHL    $dst.lo,$cnt" %}
9841  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9842  ins_encode( move_long_small_shift(dst,cnt) );
9843  ins_pipe( ialu_reg_long );
9844%}
9845
9846// Shift Left Long by 32-63
9847instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9848  match(Set dst (LShiftL dst cnt));
9849  effect(KILL cr);
9850  ins_cost(300);
9851  format %{ "MOV    $dst.hi,$dst.lo\n"
9852          "\tSHL    $dst.hi,$cnt-32\n"
9853          "\tXOR    $dst.lo,$dst.lo" %}
9854  opcode(0xC1, 0x4);  /* C1 /4 ib */
9855  ins_encode( move_long_big_shift_clr(dst,cnt) );
9856  ins_pipe( ialu_reg_long );
9857%}
9858
9859// Shift Left Long by variable
9860instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9861  match(Set dst (LShiftL dst shift));
9862  effect(KILL cr);
9863  ins_cost(500+200);
9864  size(17);
9865  format %{ "TEST   $shift,32\n\t"
9866            "JEQ,s  small\n\t"
9867            "MOV    $dst.hi,$dst.lo\n\t"
9868            "XOR    $dst.lo,$dst.lo\n"
9869    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9870            "SHL    $dst.lo,$shift" %}
9871  ins_encode( shift_left_long( dst, shift ) );
9872  ins_pipe( pipe_slow );
9873%}
9874
9875// Shift Right Long by 1-31
9876instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9877  match(Set dst (URShiftL dst cnt));
9878  effect(KILL cr);
9879  ins_cost(200);
9880  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9881            "SHR    $dst.hi,$cnt" %}
9882  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9883  ins_encode( move_long_small_shift(dst,cnt) );
9884  ins_pipe( ialu_reg_long );
9885%}
9886
9887// Shift Right Long by 32-63
9888instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9889  match(Set dst (URShiftL dst cnt));
9890  effect(KILL cr);
9891  ins_cost(300);
9892  format %{ "MOV    $dst.lo,$dst.hi\n"
9893          "\tSHR    $dst.lo,$cnt-32\n"
9894          "\tXOR    $dst.hi,$dst.hi" %}
9895  opcode(0xC1, 0x5);  /* C1 /5 ib */
9896  ins_encode( move_long_big_shift_clr(dst,cnt) );
9897  ins_pipe( ialu_reg_long );
9898%}
9899
9900// Shift Right Long by variable
9901instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9902  match(Set dst (URShiftL dst shift));
9903  effect(KILL cr);
9904  ins_cost(600);
9905  size(17);
9906  format %{ "TEST   $shift,32\n\t"
9907            "JEQ,s  small\n\t"
9908            "MOV    $dst.lo,$dst.hi\n\t"
9909            "XOR    $dst.hi,$dst.hi\n"
9910    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9911            "SHR    $dst.hi,$shift" %}
9912  ins_encode( shift_right_long( dst, shift ) );
9913  ins_pipe( pipe_slow );
9914%}
9915
9916// Shift Right Long by 1-31
9917instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9918  match(Set dst (RShiftL dst cnt));
9919  effect(KILL cr);
9920  ins_cost(200);
9921  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9922            "SAR    $dst.hi,$cnt" %}
9923  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9924  ins_encode( move_long_small_shift(dst,cnt) );
9925  ins_pipe( ialu_reg_long );
9926%}
9927
9928// Shift Right Long by 32-63
9929instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9930  match(Set dst (RShiftL dst cnt));
9931  effect(KILL cr);
9932  ins_cost(300);
9933  format %{ "MOV    $dst.lo,$dst.hi\n"
9934          "\tSAR    $dst.lo,$cnt-32\n"
9935          "\tSAR    $dst.hi,31" %}
9936  opcode(0xC1, 0x7);  /* C1 /7 ib */
9937  ins_encode( move_long_big_shift_sign(dst,cnt) );
9938  ins_pipe( ialu_reg_long );
9939%}
9940
9941// Shift Right arithmetic Long by variable
9942instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9943  match(Set dst (RShiftL dst shift));
9944  effect(KILL cr);
9945  ins_cost(600);
9946  size(18);
9947  format %{ "TEST   $shift,32\n\t"
9948            "JEQ,s  small\n\t"
9949            "MOV    $dst.lo,$dst.hi\n\t"
9950            "SAR    $dst.hi,31\n"
9951    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9952            "SAR    $dst.hi,$shift" %}
9953  ins_encode( shift_right_arith_long( dst, shift ) );
9954  ins_pipe( pipe_slow );
9955%}
9956
9957
9958//----------Double Instructions------------------------------------------------
9959// Double Math
9960
9961// Compare & branch
9962
9963// P6 version of float compare, sets condition codes in EFLAGS
9964instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9965  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9966  match(Set cr (CmpD src1 src2));
9967  effect(KILL rax);
9968  ins_cost(150);
9969  format %{ "FLD    $src1\n\t"
9970            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9971            "JNP    exit\n\t"
9972            "MOV    ah,1       // saw a NaN, set CF\n\t"
9973            "SAHF\n"
9974     "exit:\tNOP               // avoid branch to branch" %}
9975  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9976  ins_encode( Push_Reg_D(src1),
9977              OpcP, RegOpc(src2),
9978              cmpF_P6_fixup );
9979  ins_pipe( pipe_slow );
9980%}
9981
9982instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
9983  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9984  match(Set cr (CmpD src1 src2));
9985  ins_cost(150);
9986  format %{ "FLD    $src1\n\t"
9987            "FUCOMIP ST,$src2  // P6 instruction" %}
9988  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9989  ins_encode( Push_Reg_D(src1),
9990              OpcP, RegOpc(src2));
9991  ins_pipe( pipe_slow );
9992%}
9993
9994// Compare & branch
9995instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9996  predicate(UseSSE<=1);
9997  match(Set cr (CmpD src1 src2));
9998  effect(KILL rax);
9999  ins_cost(200);
10000  format %{ "FLD    $src1\n\t"
10001            "FCOMp  $src2\n\t"
10002            "FNSTSW AX\n\t"
10003            "TEST   AX,0x400\n\t"
10004            "JZ,s   flags\n\t"
10005            "MOV    AH,1\t# unordered treat as LT\n"
10006    "flags:\tSAHF" %}
10007  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10008  ins_encode( Push_Reg_D(src1),
10009              OpcP, RegOpc(src2),
10010              fpu_flags);
10011  ins_pipe( pipe_slow );
10012%}
10013
10014// Compare vs zero into -1,0,1
10015instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
10016  predicate(UseSSE<=1);
10017  match(Set dst (CmpD3 src1 zero));
10018  effect(KILL cr, KILL rax);
10019  ins_cost(280);
10020  format %{ "FTSTD  $dst,$src1" %}
10021  opcode(0xE4, 0xD9);
10022  ins_encode( Push_Reg_D(src1),
10023              OpcS, OpcP, PopFPU,
10024              CmpF_Result(dst));
10025  ins_pipe( pipe_slow );
10026%}
10027
10028// Compare into -1,0,1
10029instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
10030  predicate(UseSSE<=1);
10031  match(Set dst (CmpD3 src1 src2));
10032  effect(KILL cr, KILL rax);
10033  ins_cost(300);
10034  format %{ "FCMPD  $dst,$src1,$src2" %}
10035  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10036  ins_encode( Push_Reg_D(src1),
10037              OpcP, RegOpc(src2),
10038              CmpF_Result(dst));
10039  ins_pipe( pipe_slow );
10040%}
10041
10042// float compare and set condition codes in EFLAGS by XMM regs
10043instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
10044  predicate(UseSSE>=2);
10045  match(Set cr (CmpD dst src));
10046  effect(KILL rax);
10047  ins_cost(125);
10048  format %{ "COMISD $dst,$src\n"
10049          "\tJNP    exit\n"
10050          "\tMOV    ah,1       // saw a NaN, set CF\n"
10051          "\tSAHF\n"
10052     "exit:\tNOP               // avoid branch to branch" %}
10053  opcode(0x66, 0x0F, 0x2F);
10054  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
10055  ins_pipe( pipe_slow );
10056%}
10057
10058instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
10059  predicate(UseSSE>=2);
10060  match(Set cr (CmpD dst src));
10061  ins_cost(100);
10062  format %{ "COMISD $dst,$src" %}
10063  opcode(0x66, 0x0F, 0x2F);
10064  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
10065  ins_pipe( pipe_slow );
10066%}
10067
10068// float compare and set condition codes in EFLAGS by XMM regs
10069instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
10070  predicate(UseSSE>=2);
10071  match(Set cr (CmpD dst (LoadD src)));
10072  effect(KILL rax);
10073  ins_cost(145);
10074  format %{ "COMISD $dst,$src\n"
10075          "\tJNP    exit\n"
10076          "\tMOV    ah,1       // saw a NaN, set CF\n"
10077          "\tSAHF\n"
10078     "exit:\tNOP               // avoid branch to branch" %}
10079  opcode(0x66, 0x0F, 0x2F);
10080  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
10081  ins_pipe( pipe_slow );
10082%}
10083
10084instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
10085  predicate(UseSSE>=2);
10086  match(Set cr (CmpD dst (LoadD src)));
10087  ins_cost(100);
10088  format %{ "COMISD $dst,$src" %}
10089  opcode(0x66, 0x0F, 0x2F);
10090  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
10091  ins_pipe( pipe_slow );
10092%}
10093
10094// Compare into -1,0,1 in XMM
10095instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
10096  predicate(UseSSE>=2);
10097  match(Set dst (CmpD3 src1 src2));
10098  effect(KILL cr);
10099  ins_cost(255);
10100  format %{ "XOR    $dst,$dst\n"
10101          "\tCOMISD $src1,$src2\n"
10102          "\tJP,s   nan\n"
10103          "\tJEQ,s  exit\n"
10104          "\tJA,s   inc\n"
10105      "nan:\tDEC    $dst\n"
10106          "\tJMP,s  exit\n"
10107      "inc:\tINC    $dst\n"
10108      "exit:"
10109                %}
10110  opcode(0x66, 0x0F, 0x2F);
10111  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
10112             CmpX_Result(dst));
10113  ins_pipe( pipe_slow );
10114%}
10115
10116// Compare into -1,0,1 in XMM and memory
10117instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
10118  predicate(UseSSE>=2);
10119  match(Set dst (CmpD3 src1 (LoadD mem)));
10120  effect(KILL cr);
10121  ins_cost(275);
10122  format %{ "COMISD $src1,$mem\n"
10123          "\tMOV    $dst,0\t\t# do not blow flags\n"
10124          "\tJP,s   nan\n"
10125          "\tJEQ,s  exit\n"
10126          "\tJA,s   inc\n"
10127      "nan:\tDEC    $dst\n"
10128          "\tJMP,s  exit\n"
10129      "inc:\tINC    $dst\n"
10130      "exit:"
10131                %}
10132  opcode(0x66, 0x0F, 0x2F);
10133  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
10134             LdImmI(dst,0x0), CmpX_Result(dst));
10135  ins_pipe( pipe_slow );
10136%}
10137
10138
10139instruct subD_reg(regD dst, regD src) %{
10140  predicate (UseSSE <=1);
10141  match(Set dst (SubD dst src));
10142
10143  format %{ "FLD    $src\n\t"
10144            "DSUBp  $dst,ST" %}
10145  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10146  ins_cost(150);
10147  ins_encode( Push_Reg_D(src),
10148              OpcP, RegOpc(dst) );
10149  ins_pipe( fpu_reg_reg );
10150%}
10151
10152instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10153  predicate (UseSSE <=1);
10154  match(Set dst (RoundDouble (SubD src1 src2)));
10155  ins_cost(250);
10156
10157  format %{ "FLD    $src2\n\t"
10158            "DSUB   ST,$src1\n\t"
10159            "FSTP_D $dst\t# D-round" %}
10160  opcode(0xD8, 0x5);
10161  ins_encode( Push_Reg_D(src2),
10162              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10163  ins_pipe( fpu_mem_reg_reg );
10164%}
10165
10166
10167instruct subD_reg_mem(regD dst, memory src) %{
10168  predicate (UseSSE <=1);
10169  match(Set dst (SubD dst (LoadD src)));
10170  ins_cost(150);
10171
10172  format %{ "FLD    $src\n\t"
10173            "DSUBp  $dst,ST" %}
10174  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10175  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10176              OpcP, RegOpc(dst) );
10177  ins_pipe( fpu_reg_mem );
10178%}
10179
10180instruct absD_reg(regDPR1 dst, regDPR1 src) %{
10181  predicate (UseSSE<=1);
10182  match(Set dst (AbsD src));
10183  ins_cost(100);
10184  format %{ "FABS" %}
10185  opcode(0xE1, 0xD9);
10186  ins_encode( OpcS, OpcP );
10187  ins_pipe( fpu_reg_reg );
10188%}
10189
10190instruct absXD_reg( regXD dst ) %{
10191  predicate(UseSSE>=2);
10192  match(Set dst (AbsD dst));
10193  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
10194  ins_encode( AbsXD_encoding(dst));
10195  ins_pipe( pipe_slow );
10196%}
10197
10198instruct negD_reg(regDPR1 dst, regDPR1 src) %{
10199  predicate(UseSSE<=1);
10200  match(Set dst (NegD src));
10201  ins_cost(100);
10202  format %{ "FCHS" %}
10203  opcode(0xE0, 0xD9);
10204  ins_encode( OpcS, OpcP );
10205  ins_pipe( fpu_reg_reg );
10206%}
10207
10208instruct negXD_reg( regXD dst ) %{
10209  predicate(UseSSE>=2);
10210  match(Set dst (NegD dst));
10211  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
10212  ins_encode %{
10213     __ xorpd($dst$$XMMRegister,
10214              ExternalAddress((address)double_signflip_pool));
10215  %}
10216  ins_pipe( pipe_slow );
10217%}
10218
10219instruct addD_reg(regD dst, regD src) %{
10220  predicate(UseSSE<=1);
10221  match(Set dst (AddD dst src));
10222  format %{ "FLD    $src\n\t"
10223            "DADD   $dst,ST" %}
10224  size(4);
10225  ins_cost(150);
10226  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10227  ins_encode( Push_Reg_D(src),
10228              OpcP, RegOpc(dst) );
10229  ins_pipe( fpu_reg_reg );
10230%}
10231
10232
10233instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10234  predicate(UseSSE<=1);
10235  match(Set dst (RoundDouble (AddD src1 src2)));
10236  ins_cost(250);
10237
10238  format %{ "FLD    $src2\n\t"
10239            "DADD   ST,$src1\n\t"
10240            "FSTP_D $dst\t# D-round" %}
10241  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10242  ins_encode( Push_Reg_D(src2),
10243              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10244  ins_pipe( fpu_mem_reg_reg );
10245%}
10246
10247
10248instruct addD_reg_mem(regD dst, memory src) %{
10249  predicate(UseSSE<=1);
10250  match(Set dst (AddD dst (LoadD src)));
10251  ins_cost(150);
10252
10253  format %{ "FLD    $src\n\t"
10254            "DADDp  $dst,ST" %}
10255  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10256  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10257              OpcP, RegOpc(dst) );
10258  ins_pipe( fpu_reg_mem );
10259%}
10260
10261// add-to-memory
10262instruct addD_mem_reg(memory dst, regD src) %{
10263  predicate(UseSSE<=1);
10264  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10265  ins_cost(150);
10266
10267  format %{ "FLD_D  $dst\n\t"
10268            "DADD   ST,$src\n\t"
10269            "FST_D  $dst" %}
10270  opcode(0xDD, 0x0);
10271  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10272              Opcode(0xD8), RegOpc(src),
10273              set_instruction_start,
10274              Opcode(0xDD), RMopc_Mem(0x03,dst) );
10275  ins_pipe( fpu_reg_mem );
10276%}
10277
10278instruct addD_reg_imm1(regD dst, immD1 con) %{
10279  predicate(UseSSE<=1);
10280  match(Set dst (AddD dst con));
10281  ins_cost(125);
10282  format %{ "FLD1\n\t"
10283            "DADDp  $dst,ST" %}
10284  ins_encode %{
10285    __ fld1();
10286    __ faddp($dst$$reg);
10287  %}
10288  ins_pipe(fpu_reg);
10289%}
10290
10291instruct addD_reg_imm(regD dst, immD con) %{
10292  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10293  match(Set dst (AddD dst con));
10294  ins_cost(200);
10295  format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10296            "DADDp  $dst,ST" %}
10297  ins_encode %{
10298    __ fld_d($constantaddress($con));
10299    __ faddp($dst$$reg);
10300  %}
10301  ins_pipe(fpu_reg_mem);
10302%}
10303
10304instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
10305  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10306  match(Set dst (RoundDouble (AddD src con)));
10307  ins_cost(200);
10308  format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10309            "DADD   ST,$src\n\t"
10310            "FSTP_D $dst\t# D-round" %}
10311  ins_encode %{
10312    __ fld_d($constantaddress($con));
10313    __ fadd($src$$reg);
10314    __ fstp_d(Address(rsp, $dst$$disp));
10315  %}
10316  ins_pipe(fpu_mem_reg_con);
10317%}
10318
10319// Add two double precision floating point values in xmm
10320instruct addXD_reg(regXD dst, regXD src) %{
10321  predicate(UseSSE>=2);
10322  match(Set dst (AddD dst src));
10323  format %{ "ADDSD  $dst,$src" %}
10324  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10325  ins_pipe( pipe_slow );
10326%}
10327
10328instruct addXD_imm(regXD dst, immXD con) %{
10329  predicate(UseSSE>=2);
10330  match(Set dst (AddD dst con));
10331  format %{ "ADDSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10332  ins_encode %{
10333    __ addsd($dst$$XMMRegister, $constantaddress($con));
10334  %}
10335  ins_pipe(pipe_slow);
10336%}
10337
10338instruct addXD_mem(regXD dst, memory mem) %{
10339  predicate(UseSSE>=2);
10340  match(Set dst (AddD dst (LoadD mem)));
10341  format %{ "ADDSD  $dst,$mem" %}
10342  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10343  ins_pipe( pipe_slow );
10344%}
10345
10346// Sub two double precision floating point values in xmm
10347instruct subXD_reg(regXD dst, regXD src) %{
10348  predicate(UseSSE>=2);
10349  match(Set dst (SubD dst src));
10350  format %{ "SUBSD  $dst,$src" %}
10351  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10352  ins_pipe( pipe_slow );
10353%}
10354
10355instruct subXD_imm(regXD dst, immXD con) %{
10356  predicate(UseSSE>=2);
10357  match(Set dst (SubD dst con));
10358  format %{ "SUBSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10359  ins_encode %{
10360    __ subsd($dst$$XMMRegister, $constantaddress($con));
10361  %}
10362  ins_pipe(pipe_slow);
10363%}
10364
10365instruct subXD_mem(regXD dst, memory mem) %{
10366  predicate(UseSSE>=2);
10367  match(Set dst (SubD dst (LoadD mem)));
10368  format %{ "SUBSD  $dst,$mem" %}
10369  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10370  ins_pipe( pipe_slow );
10371%}
10372
10373// Mul two double precision floating point values in xmm
10374instruct mulXD_reg(regXD dst, regXD src) %{
10375  predicate(UseSSE>=2);
10376  match(Set dst (MulD dst src));
10377  format %{ "MULSD  $dst,$src" %}
10378  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10379  ins_pipe( pipe_slow );
10380%}
10381
10382instruct mulXD_imm(regXD dst, immXD con) %{
10383  predicate(UseSSE>=2);
10384  match(Set dst (MulD dst con));
10385  format %{ "MULSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10386  ins_encode %{
10387    __ mulsd($dst$$XMMRegister, $constantaddress($con));
10388  %}
10389  ins_pipe(pipe_slow);
10390%}
10391
10392instruct mulXD_mem(regXD dst, memory mem) %{
10393  predicate(UseSSE>=2);
10394  match(Set dst (MulD dst (LoadD mem)));
10395  format %{ "MULSD  $dst,$mem" %}
10396  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10397  ins_pipe( pipe_slow );
10398%}
10399
10400// Div two double precision floating point values in xmm
10401instruct divXD_reg(regXD dst, regXD src) %{
10402  predicate(UseSSE>=2);
10403  match(Set dst (DivD dst src));
10404  format %{ "DIVSD  $dst,$src" %}
10405  opcode(0xF2, 0x0F, 0x5E);
10406  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10407  ins_pipe( pipe_slow );
10408%}
10409
10410instruct divXD_imm(regXD dst, immXD con) %{
10411  predicate(UseSSE>=2);
10412  match(Set dst (DivD dst con));
10413  format %{ "DIVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
10414  ins_encode %{
10415    __ divsd($dst$$XMMRegister, $constantaddress($con));
10416  %}
10417  ins_pipe(pipe_slow);
10418%}
10419
10420instruct divXD_mem(regXD dst, memory mem) %{
10421  predicate(UseSSE>=2);
10422  match(Set dst (DivD dst (LoadD mem)));
10423  format %{ "DIVSD  $dst,$mem" %}
10424  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10425  ins_pipe( pipe_slow );
10426%}
10427
10428
10429instruct mulD_reg(regD dst, regD src) %{
10430  predicate(UseSSE<=1);
10431  match(Set dst (MulD dst src));
10432  format %{ "FLD    $src\n\t"
10433            "DMULp  $dst,ST" %}
10434  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10435  ins_cost(150);
10436  ins_encode( Push_Reg_D(src),
10437              OpcP, RegOpc(dst) );
10438  ins_pipe( fpu_reg_reg );
10439%}
10440
10441// Strict FP instruction biases argument before multiply then
10442// biases result to avoid double rounding of subnormals.
10443//
10444// scale arg1 by multiplying arg1 by 2^(-15360)
10445// load arg2
10446// multiply scaled arg1 by arg2
10447// rescale product by 2^(15360)
10448//
10449instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10450  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10451  match(Set dst (MulD dst src));
10452  ins_cost(1);   // Select this instruction for all strict FP double multiplies
10453
10454  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10455            "DMULp  $dst,ST\n\t"
10456            "FLD    $src\n\t"
10457            "DMULp  $dst,ST\n\t"
10458            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10459            "DMULp  $dst,ST\n\t" %}
10460  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10461  ins_encode( strictfp_bias1(dst),
10462              Push_Reg_D(src),
10463              OpcP, RegOpc(dst),
10464              strictfp_bias2(dst) );
10465  ins_pipe( fpu_reg_reg );
10466%}
10467
10468instruct mulD_reg_imm(regD dst, immD con) %{
10469  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10470  match(Set dst (MulD dst con));
10471  ins_cost(200);
10472  format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
10473            "DMULp  $dst,ST" %}
10474  ins_encode %{
10475    __ fld_d($constantaddress($con));
10476    __ fmulp($dst$$reg);
10477  %}
10478  ins_pipe(fpu_reg_mem);
10479%}
10480
10481
10482instruct mulD_reg_mem(regD dst, memory src) %{
10483  predicate( UseSSE<=1 );
10484  match(Set dst (MulD dst (LoadD src)));
10485  ins_cost(200);
10486  format %{ "FLD_D  $src\n\t"
10487            "DMULp  $dst,ST" %}
10488  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10489  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10490              OpcP, RegOpc(dst) );
10491  ins_pipe( fpu_reg_mem );
10492%}
10493
10494//
10495// Cisc-alternate to reg-reg multiply
10496instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10497  predicate( UseSSE<=1 );
10498  match(Set dst (MulD src (LoadD mem)));
10499  ins_cost(250);
10500  format %{ "FLD_D  $mem\n\t"
10501            "DMUL   ST,$src\n\t"
10502            "FSTP_D $dst" %}
10503  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10504  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10505              OpcReg_F(src),
10506              Pop_Reg_D(dst) );
10507  ins_pipe( fpu_reg_reg_mem );
10508%}
10509
10510
10511// MACRO3 -- addD a mulD
10512// This instruction is a '2-address' instruction in that the result goes
10513// back to src2.  This eliminates a move from the macro; possibly the
10514// register allocator will have to add it back (and maybe not).
10515instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10516  predicate( UseSSE<=1 );
10517  match(Set src2 (AddD (MulD src0 src1) src2));
10518  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10519            "DMUL   ST,$src1\n\t"
10520            "DADDp  $src2,ST" %}
10521  ins_cost(250);
10522  opcode(0xDD); /* LoadD DD /0 */
10523  ins_encode( Push_Reg_F(src0),
10524              FMul_ST_reg(src1),
10525              FAddP_reg_ST(src2) );
10526  ins_pipe( fpu_reg_reg_reg );
10527%}
10528
10529
10530// MACRO3 -- subD a mulD
10531instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10532  predicate( UseSSE<=1 );
10533  match(Set src2 (SubD (MulD src0 src1) src2));
10534  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10535            "DMUL   ST,$src1\n\t"
10536            "DSUBRp $src2,ST" %}
10537  ins_cost(250);
10538  ins_encode( Push_Reg_F(src0),
10539              FMul_ST_reg(src1),
10540              Opcode(0xDE), Opc_plus(0xE0,src2));
10541  ins_pipe( fpu_reg_reg_reg );
10542%}
10543
10544
10545instruct divD_reg(regD dst, regD src) %{
10546  predicate( UseSSE<=1 );
10547  match(Set dst (DivD dst src));
10548
10549  format %{ "FLD    $src\n\t"
10550            "FDIVp  $dst,ST" %}
10551  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10552  ins_cost(150);
10553  ins_encode( Push_Reg_D(src),
10554              OpcP, RegOpc(dst) );
10555  ins_pipe( fpu_reg_reg );
10556%}
10557
10558// Strict FP instruction biases argument before division then
10559// biases result, to avoid double rounding of subnormals.
10560//
10561// scale dividend by multiplying dividend by 2^(-15360)
10562// load divisor
10563// divide scaled dividend by divisor
10564// rescale quotient by 2^(15360)
10565//
10566instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10567  predicate (UseSSE<=1);
10568  match(Set dst (DivD dst src));
10569  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10570  ins_cost(01);
10571
10572  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10573            "DMULp  $dst,ST\n\t"
10574            "FLD    $src\n\t"
10575            "FDIVp  $dst,ST\n\t"
10576            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10577            "DMULp  $dst,ST\n\t" %}
10578  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10579  ins_encode( strictfp_bias1(dst),
10580              Push_Reg_D(src),
10581              OpcP, RegOpc(dst),
10582              strictfp_bias2(dst) );
10583  ins_pipe( fpu_reg_reg );
10584%}
10585
10586instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10587  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10588  match(Set dst (RoundDouble (DivD src1 src2)));
10589
10590  format %{ "FLD    $src1\n\t"
10591            "FDIV   ST,$src2\n\t"
10592            "FSTP_D $dst\t# D-round" %}
10593  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10594  ins_encode( Push_Reg_D(src1),
10595              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10596  ins_pipe( fpu_mem_reg_reg );
10597%}
10598
10599
10600instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10601  predicate(UseSSE<=1);
10602  match(Set dst (ModD dst src));
10603  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10604
10605  format %{ "DMOD   $dst,$src" %}
10606  ins_cost(250);
10607  ins_encode(Push_Reg_Mod_D(dst, src),
10608              emitModD(),
10609              Push_Result_Mod_D(src),
10610              Pop_Reg_D(dst));
10611  ins_pipe( pipe_slow );
10612%}
10613
10614instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10615  predicate(UseSSE>=2);
10616  match(Set dst (ModD src0 src1));
10617  effect(KILL rax, KILL cr);
10618
10619  format %{ "SUB    ESP,8\t # DMOD\n"
10620          "\tMOVSD  [ESP+0],$src1\n"
10621          "\tFLD_D  [ESP+0]\n"
10622          "\tMOVSD  [ESP+0],$src0\n"
10623          "\tFLD_D  [ESP+0]\n"
10624     "loop:\tFPREM\n"
10625          "\tFWAIT\n"
10626          "\tFNSTSW AX\n"
10627          "\tSAHF\n"
10628          "\tJP     loop\n"
10629          "\tFSTP_D [ESP+0]\n"
10630          "\tMOVSD  $dst,[ESP+0]\n"
10631          "\tADD    ESP,8\n"
10632          "\tFSTP   ST0\t # Restore FPU Stack"
10633    %}
10634  ins_cost(250);
10635  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10636  ins_pipe( pipe_slow );
10637%}
10638
10639instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10640  predicate (UseSSE<=1);
10641  match(Set dst (SinD src));
10642  ins_cost(1800);
10643  format %{ "DSIN   $dst" %}
10644  opcode(0xD9, 0xFE);
10645  ins_encode( OpcP, OpcS );
10646  ins_pipe( pipe_slow );
10647%}
10648
10649instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10650  predicate (UseSSE>=2);
10651  match(Set dst (SinD dst));
10652  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10653  ins_cost(1800);
10654  format %{ "DSIN   $dst" %}
10655  opcode(0xD9, 0xFE);
10656  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10657  ins_pipe( pipe_slow );
10658%}
10659
10660instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10661  predicate (UseSSE<=1);
10662  match(Set dst (CosD src));
10663  ins_cost(1800);
10664  format %{ "DCOS   $dst" %}
10665  opcode(0xD9, 0xFF);
10666  ins_encode( OpcP, OpcS );
10667  ins_pipe( pipe_slow );
10668%}
10669
10670instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10671  predicate (UseSSE>=2);
10672  match(Set dst (CosD dst));
10673  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10674  ins_cost(1800);
10675  format %{ "DCOS   $dst" %}
10676  opcode(0xD9, 0xFF);
10677  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10678  ins_pipe( pipe_slow );
10679%}
10680
10681instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10682  predicate (UseSSE<=1);
10683  match(Set dst(TanD src));
10684  format %{ "DTAN   $dst" %}
10685  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10686              Opcode(0xDD), Opcode(0xD8));   // fstp st
10687  ins_pipe( pipe_slow );
10688%}
10689
10690instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10691  predicate (UseSSE>=2);
10692  match(Set dst(TanD dst));
10693  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10694  format %{ "DTAN   $dst" %}
10695  ins_encode( Push_SrcXD(dst),
10696              Opcode(0xD9), Opcode(0xF2),    // fptan
10697              Opcode(0xDD), Opcode(0xD8),   // fstp st
10698              Push_ResultXD(dst) );
10699  ins_pipe( pipe_slow );
10700%}
10701
10702instruct atanD_reg(regD dst, regD src) %{
10703  predicate (UseSSE<=1);
10704  match(Set dst(AtanD dst src));
10705  format %{ "DATA   $dst,$src" %}
10706  opcode(0xD9, 0xF3);
10707  ins_encode( Push_Reg_D(src),
10708              OpcP, OpcS, RegOpc(dst) );
10709  ins_pipe( pipe_slow );
10710%}
10711
10712instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10713  predicate (UseSSE>=2);
10714  match(Set dst(AtanD dst src));
10715  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10716  format %{ "DATA   $dst,$src" %}
10717  opcode(0xD9, 0xF3);
10718  ins_encode( Push_SrcXD(src),
10719              OpcP, OpcS, Push_ResultXD(dst) );
10720  ins_pipe( pipe_slow );
10721%}
10722
10723instruct sqrtD_reg(regD dst, regD src) %{
10724  predicate (UseSSE<=1);
10725  match(Set dst (SqrtD src));
10726  format %{ "DSQRT  $dst,$src" %}
10727  opcode(0xFA, 0xD9);
10728  ins_encode( Push_Reg_D(src),
10729              OpcS, OpcP, Pop_Reg_D(dst) );
10730  ins_pipe( pipe_slow );
10731%}
10732
10733instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10734  predicate (UseSSE<=1);
10735  match(Set Y (PowD X Y));  // Raise X to the Yth power
10736  effect(KILL rax, KILL rbx, KILL rcx);
10737  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10738            "FLD_D  $X\n\t"
10739            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10740
10741            "FDUP   \t\t\t# Q Q\n\t"
10742            "FRNDINT\t\t\t# int(Q) Q\n\t"
10743            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10744            "FISTP  dword [ESP]\n\t"
10745            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10746            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10747            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10748            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10749            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10750            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10751            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10752            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10753            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10754            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10755            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10756            "MOV    [ESP+0],0\n\t"
10757            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10758
10759            "ADD    ESP,8"
10760             %}
10761  ins_encode( push_stack_temp_qword,
10762              Push_Reg_D(X),
10763              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10764              pow_exp_core_encoding,
10765              pop_stack_temp_qword);
10766  ins_pipe( pipe_slow );
10767%}
10768
10769instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10770  predicate (UseSSE>=2);
10771  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10772  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10773  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10774            "MOVSD  [ESP],$src1\n\t"
10775            "FLD    FPR1,$src1\n\t"
10776            "MOVSD  [ESP],$src0\n\t"
10777            "FLD    FPR1,$src0\n\t"
10778            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10779
10780            "FDUP   \t\t\t# Q Q\n\t"
10781            "FRNDINT\t\t\t# int(Q) Q\n\t"
10782            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10783            "FISTP  dword [ESP]\n\t"
10784            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10785            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10786            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10787            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10788            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10789            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10790            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10791            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10792            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10793            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10794            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10795            "MOV    [ESP+0],0\n\t"
10796            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10797
10798            "FST_D  [ESP]\n\t"
10799            "MOVSD  $dst,[ESP]\n\t"
10800            "ADD    ESP,8"
10801             %}
10802  ins_encode( push_stack_temp_qword,
10803              push_xmm_to_fpr1(src1),
10804              push_xmm_to_fpr1(src0),
10805              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10806              pow_exp_core_encoding,
10807              Push_ResultXD(dst) );
10808  ins_pipe( pipe_slow );
10809%}
10810
10811
10812instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10813  predicate (UseSSE<=1);
10814  match(Set dpr1 (ExpD dpr1));
10815  effect(KILL rax, KILL rbx, KILL rcx);
10816  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10817            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10818            "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10819
10820            "FDUP   \t\t\t# Q Q\n\t"
10821            "FRNDINT\t\t\t# int(Q) Q\n\t"
10822            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10823            "FISTP  dword [ESP]\n\t"
10824            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10825            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10826            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10827            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10828            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10829            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10830            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10831            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10832            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10833            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10834            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10835            "MOV    [ESP+0],0\n\t"
10836            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10837
10838            "ADD    ESP,8"
10839             %}
10840  ins_encode( push_stack_temp_qword,
10841              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10842              Opcode(0xDE), Opcode(0xC9),   // fmulp
10843              pow_exp_core_encoding,
10844              pop_stack_temp_qword);
10845  ins_pipe( pipe_slow );
10846%}
10847
10848instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10849  predicate (UseSSE>=2);
10850  match(Set dst (ExpD src));
10851  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10852  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10853            "MOVSD  [ESP],$src\n\t"
10854            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10855            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10856
10857            "FDUP   \t\t\t# Q Q\n\t"
10858            "FRNDINT\t\t\t# int(Q) Q\n\t"
10859            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10860            "FISTP  dword [ESP]\n\t"
10861            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10862            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10863            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10864            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10865            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10866            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10867            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10868            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10869            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10870            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10871            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10872            "MOV    [ESP+0],0\n\t"
10873            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10874
10875            "FST_D  [ESP]\n\t"
10876            "MOVSD  $dst,[ESP]\n\t"
10877            "ADD    ESP,8"
10878             %}
10879  ins_encode( Push_SrcXD(src),
10880              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10881              Opcode(0xDE), Opcode(0xC9),   // fmulp
10882              pow_exp_core_encoding,
10883              Push_ResultXD(dst) );
10884  ins_pipe( pipe_slow );
10885%}
10886
10887
10888
10889instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10890  predicate (UseSSE<=1);
10891  // The source Double operand on FPU stack
10892  match(Set dst (Log10D src));
10893  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10894  // fxch         ; swap ST(0) with ST(1)
10895  // fyl2x        ; compute log_10(2) * log_2(x)
10896  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10897            "FXCH   \n\t"
10898            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10899         %}
10900  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10901              Opcode(0xD9), Opcode(0xC9),   // fxch
10902              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10903
10904  ins_pipe( pipe_slow );
10905%}
10906
10907instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10908  predicate (UseSSE>=2);
10909  effect(KILL cr);
10910  match(Set dst (Log10D src));
10911  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10912  // fyl2x        ; compute log_10(2) * log_2(x)
10913  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10914            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10915         %}
10916  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10917              Push_SrcXD(src),
10918              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10919              Push_ResultXD(dst));
10920
10921  ins_pipe( pipe_slow );
10922%}
10923
10924instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10925  predicate (UseSSE<=1);
10926  // The source Double operand on FPU stack
10927  match(Set dst (LogD src));
10928  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10929  // fxch         ; swap ST(0) with ST(1)
10930  // fyl2x        ; compute log_e(2) * log_2(x)
10931  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10932            "FXCH   \n\t"
10933            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10934         %}
10935  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10936              Opcode(0xD9), Opcode(0xC9),   // fxch
10937              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10938
10939  ins_pipe( pipe_slow );
10940%}
10941
10942instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10943  predicate (UseSSE>=2);
10944  effect(KILL cr);
10945  // The source and result Double operands in XMM registers
10946  match(Set dst (LogD src));
10947  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10948  // fyl2x        ; compute log_e(2) * log_2(x)
10949  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10950            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10951         %}
10952  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10953              Push_SrcXD(src),
10954              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10955              Push_ResultXD(dst));
10956  ins_pipe( pipe_slow );
10957%}
10958
10959//-------------Float Instructions-------------------------------
10960// Float Math
10961
10962// Code for float compare:
10963//     fcompp();
10964//     fwait(); fnstsw_ax();
10965//     sahf();
10966//     movl(dst, unordered_result);
10967//     jcc(Assembler::parity, exit);
10968//     movl(dst, less_result);
10969//     jcc(Assembler::below, exit);
10970//     movl(dst, equal_result);
10971//     jcc(Assembler::equal, exit);
10972//     movl(dst, greater_result);
10973//   exit:
10974
10975// P6 version of float compare, sets condition codes in EFLAGS
10976instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10977  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10978  match(Set cr (CmpF src1 src2));
10979  effect(KILL rax);
10980  ins_cost(150);
10981  format %{ "FLD    $src1\n\t"
10982            "FUCOMIP ST,$src2  // P6 instruction\n\t"
10983            "JNP    exit\n\t"
10984            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10985            "SAHF\n"
10986     "exit:\tNOP               // avoid branch to branch" %}
10987  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10988  ins_encode( Push_Reg_D(src1),
10989              OpcP, RegOpc(src2),
10990              cmpF_P6_fixup );
10991  ins_pipe( pipe_slow );
10992%}
10993
10994instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
10995  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10996  match(Set cr (CmpF src1 src2));
10997  ins_cost(100);
10998  format %{ "FLD    $src1\n\t"
10999            "FUCOMIP ST,$src2  // P6 instruction" %}
11000  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
11001  ins_encode( Push_Reg_D(src1),
11002              OpcP, RegOpc(src2));
11003  ins_pipe( pipe_slow );
11004%}
11005
11006
11007// Compare & branch
11008instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
11009  predicate(UseSSE == 0);
11010  match(Set cr (CmpF src1 src2));
11011  effect(KILL rax);
11012  ins_cost(200);
11013  format %{ "FLD    $src1\n\t"
11014            "FCOMp  $src2\n\t"
11015            "FNSTSW AX\n\t"
11016            "TEST   AX,0x400\n\t"
11017            "JZ,s   flags\n\t"
11018            "MOV    AH,1\t# unordered treat as LT\n"
11019    "flags:\tSAHF" %}
11020  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
11021  ins_encode( Push_Reg_D(src1),
11022              OpcP, RegOpc(src2),
11023              fpu_flags);
11024  ins_pipe( pipe_slow );
11025%}
11026
11027// Compare vs zero into -1,0,1
11028instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
11029  predicate(UseSSE == 0);
11030  match(Set dst (CmpF3 src1 zero));
11031  effect(KILL cr, KILL rax);
11032  ins_cost(280);
11033  format %{ "FTSTF  $dst,$src1" %}
11034  opcode(0xE4, 0xD9);
11035  ins_encode( Push_Reg_D(src1),
11036              OpcS, OpcP, PopFPU,
11037              CmpF_Result(dst));
11038  ins_pipe( pipe_slow );
11039%}
11040
11041// Compare into -1,0,1
11042instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11043  predicate(UseSSE == 0);
11044  match(Set dst (CmpF3 src1 src2));
11045  effect(KILL cr, KILL rax);
11046  ins_cost(300);
11047  format %{ "FCMPF  $dst,$src1,$src2" %}
11048  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
11049  ins_encode( Push_Reg_D(src1),
11050              OpcP, RegOpc(src2),
11051              CmpF_Result(dst));
11052  ins_pipe( pipe_slow );
11053%}
11054
11055// float compare and set condition codes in EFLAGS by XMM regs
11056instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
11057  predicate(UseSSE>=1);
11058  match(Set cr (CmpF dst src));
11059  effect(KILL rax);
11060  ins_cost(145);
11061  format %{ "COMISS $dst,$src\n"
11062          "\tJNP    exit\n"
11063          "\tMOV    ah,1       // saw a NaN, set CF\n"
11064          "\tSAHF\n"
11065     "exit:\tNOP               // avoid branch to branch" %}
11066  opcode(0x0F, 0x2F);
11067  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
11068  ins_pipe( pipe_slow );
11069%}
11070
11071instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
11072  predicate(UseSSE>=1);
11073  match(Set cr (CmpF dst src));
11074  ins_cost(100);
11075  format %{ "COMISS $dst,$src" %}
11076  opcode(0x0F, 0x2F);
11077  ins_encode(OpcP, OpcS, RegReg(dst, src));
11078  ins_pipe( pipe_slow );
11079%}
11080
11081// float compare and set condition codes in EFLAGS by XMM regs
11082instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
11083  predicate(UseSSE>=1);
11084  match(Set cr (CmpF dst (LoadF src)));
11085  effect(KILL rax);
11086  ins_cost(165);
11087  format %{ "COMISS $dst,$src\n"
11088          "\tJNP    exit\n"
11089          "\tMOV    ah,1       // saw a NaN, set CF\n"
11090          "\tSAHF\n"
11091     "exit:\tNOP               // avoid branch to branch" %}
11092  opcode(0x0F, 0x2F);
11093  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
11094  ins_pipe( pipe_slow );
11095%}
11096
11097instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
11098  predicate(UseSSE>=1);
11099  match(Set cr (CmpF dst (LoadF src)));
11100  ins_cost(100);
11101  format %{ "COMISS $dst,$src" %}
11102  opcode(0x0F, 0x2F);
11103  ins_encode(OpcP, OpcS, RegMem(dst, src));
11104  ins_pipe( pipe_slow );
11105%}
11106
11107// Compare into -1,0,1 in XMM
11108instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
11109  predicate(UseSSE>=1);
11110  match(Set dst (CmpF3 src1 src2));
11111  effect(KILL cr);
11112  ins_cost(255);
11113  format %{ "XOR    $dst,$dst\n"
11114          "\tCOMISS $src1,$src2\n"
11115          "\tJP,s   nan\n"
11116          "\tJEQ,s  exit\n"
11117          "\tJA,s   inc\n"
11118      "nan:\tDEC    $dst\n"
11119          "\tJMP,s  exit\n"
11120      "inc:\tINC    $dst\n"
11121      "exit:"
11122                %}
11123  opcode(0x0F, 0x2F);
11124  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
11125  ins_pipe( pipe_slow );
11126%}
11127
11128// Compare into -1,0,1 in XMM and memory
11129instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
11130  predicate(UseSSE>=1);
11131  match(Set dst (CmpF3 src1 (LoadF mem)));
11132  effect(KILL cr);
11133  ins_cost(275);
11134  format %{ "COMISS $src1,$mem\n"
11135          "\tMOV    $dst,0\t\t# do not blow flags\n"
11136          "\tJP,s   nan\n"
11137          "\tJEQ,s  exit\n"
11138          "\tJA,s   inc\n"
11139      "nan:\tDEC    $dst\n"
11140          "\tJMP,s  exit\n"
11141      "inc:\tINC    $dst\n"
11142      "exit:"
11143                %}
11144  opcode(0x0F, 0x2F);
11145  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
11146  ins_pipe( pipe_slow );
11147%}
11148
11149// Spill to obtain 24-bit precision
11150instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
11151  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11152  match(Set dst (SubF src1 src2));
11153
11154  format %{ "FSUB   $dst,$src1 - $src2" %}
11155  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
11156  ins_encode( Push_Reg_F(src1),
11157              OpcReg_F(src2),
11158              Pop_Mem_F(dst) );
11159  ins_pipe( fpu_mem_reg_reg );
11160%}
11161//
11162// This instruction does not round to 24-bits
11163instruct subF_reg(regF dst, regF src) %{
11164  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11165  match(Set dst (SubF dst src));
11166
11167  format %{ "FSUB   $dst,$src" %}
11168  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
11169  ins_encode( Push_Reg_F(src),
11170              OpcP, RegOpc(dst) );
11171  ins_pipe( fpu_reg_reg );
11172%}
11173
11174// Spill to obtain 24-bit precision
11175instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
11176  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11177  match(Set dst (AddF src1 src2));
11178
11179  format %{ "FADD   $dst,$src1,$src2" %}
11180  opcode(0xD8, 0x0); /* D8 C0+i */
11181  ins_encode( Push_Reg_F(src2),
11182              OpcReg_F(src1),
11183              Pop_Mem_F(dst) );
11184  ins_pipe( fpu_mem_reg_reg );
11185%}
11186//
11187// This instruction does not round to 24-bits
11188instruct addF_reg(regF dst, regF src) %{
11189  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11190  match(Set dst (AddF dst src));
11191
11192  format %{ "FLD    $src\n\t"
11193            "FADDp  $dst,ST" %}
11194  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
11195  ins_encode( Push_Reg_F(src),
11196              OpcP, RegOpc(dst) );
11197  ins_pipe( fpu_reg_reg );
11198%}
11199
11200// Add two single precision floating point values in xmm
11201instruct addX_reg(regX dst, regX src) %{
11202  predicate(UseSSE>=1);
11203  match(Set dst (AddF dst src));
11204  format %{ "ADDSS  $dst,$src" %}
11205  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
11206  ins_pipe( pipe_slow );
11207%}
11208
11209instruct addX_imm(regX dst, immXF con) %{
11210  predicate(UseSSE>=1);
11211  match(Set dst (AddF dst con));
11212  format %{ "ADDSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11213  ins_encode %{
11214    __ addss($dst$$XMMRegister, $constantaddress($con));
11215  %}
11216  ins_pipe(pipe_slow);
11217%}
11218
11219instruct addX_mem(regX dst, memory mem) %{
11220  predicate(UseSSE>=1);
11221  match(Set dst (AddF dst (LoadF mem)));
11222  format %{ "ADDSS  $dst,$mem" %}
11223  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
11224  ins_pipe( pipe_slow );
11225%}
11226
11227// Subtract two single precision floating point values in xmm
11228instruct subX_reg(regX dst, regX src) %{
11229  predicate(UseSSE>=1);
11230  match(Set dst (SubF dst src));
11231  format %{ "SUBSS  $dst,$src" %}
11232  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
11233  ins_pipe( pipe_slow );
11234%}
11235
11236instruct subX_imm(regX dst, immXF con) %{
11237  predicate(UseSSE>=1);
11238  match(Set dst (SubF dst con));
11239  format %{ "SUBSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11240  ins_encode %{
11241    __ subss($dst$$XMMRegister, $constantaddress($con));
11242  %}
11243  ins_pipe(pipe_slow);
11244%}
11245
11246instruct subX_mem(regX dst, memory mem) %{
11247  predicate(UseSSE>=1);
11248  match(Set dst (SubF dst (LoadF mem)));
11249  format %{ "SUBSS  $dst,$mem" %}
11250  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
11251  ins_pipe( pipe_slow );
11252%}
11253
11254// Multiply two single precision floating point values in xmm
11255instruct mulX_reg(regX dst, regX src) %{
11256  predicate(UseSSE>=1);
11257  match(Set dst (MulF dst src));
11258  format %{ "MULSS  $dst,$src" %}
11259  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
11260  ins_pipe( pipe_slow );
11261%}
11262
11263instruct mulX_imm(regX dst, immXF con) %{
11264  predicate(UseSSE>=1);
11265  match(Set dst (MulF dst con));
11266  format %{ "MULSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11267  ins_encode %{
11268    __ mulss($dst$$XMMRegister, $constantaddress($con));
11269  %}
11270  ins_pipe(pipe_slow);
11271%}
11272
11273instruct mulX_mem(regX dst, memory mem) %{
11274  predicate(UseSSE>=1);
11275  match(Set dst (MulF dst (LoadF mem)));
11276  format %{ "MULSS  $dst,$mem" %}
11277  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
11278  ins_pipe( pipe_slow );
11279%}
11280
11281// Divide two single precision floating point values in xmm
11282instruct divX_reg(regX dst, regX src) %{
11283  predicate(UseSSE>=1);
11284  match(Set dst (DivF dst src));
11285  format %{ "DIVSS  $dst,$src" %}
11286  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
11287  ins_pipe( pipe_slow );
11288%}
11289
11290instruct divX_imm(regX dst, immXF con) %{
11291  predicate(UseSSE>=1);
11292  match(Set dst (DivF dst con));
11293  format %{ "DIVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
11294  ins_encode %{
11295    __ divss($dst$$XMMRegister, $constantaddress($con));
11296  %}
11297  ins_pipe(pipe_slow);
11298%}
11299
11300instruct divX_mem(regX dst, memory mem) %{
11301  predicate(UseSSE>=1);
11302  match(Set dst (DivF dst (LoadF mem)));
11303  format %{ "DIVSS  $dst,$mem" %}
11304  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
11305  ins_pipe( pipe_slow );
11306%}
11307
11308// Get the square root of a single precision floating point values in xmm
11309instruct sqrtX_reg(regX dst, regX src) %{
11310  predicate(UseSSE>=1);
11311  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
11312  format %{ "SQRTSS $dst,$src" %}
11313  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11314  ins_pipe( pipe_slow );
11315%}
11316
11317instruct sqrtX_mem(regX dst, memory mem) %{
11318  predicate(UseSSE>=1);
11319  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
11320  format %{ "SQRTSS $dst,$mem" %}
11321  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11322  ins_pipe( pipe_slow );
11323%}
11324
11325// Get the square root of a double precision floating point values in xmm
11326instruct sqrtXD_reg(regXD dst, regXD src) %{
11327  predicate(UseSSE>=2);
11328  match(Set dst (SqrtD src));
11329  format %{ "SQRTSD $dst,$src" %}
11330  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11331  ins_pipe( pipe_slow );
11332%}
11333
11334instruct sqrtXD_mem(regXD dst, memory mem) %{
11335  predicate(UseSSE>=2);
11336  match(Set dst (SqrtD (LoadD mem)));
11337  format %{ "SQRTSD $dst,$mem" %}
11338  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11339  ins_pipe( pipe_slow );
11340%}
11341
11342instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11343  predicate(UseSSE==0);
11344  match(Set dst (AbsF src));
11345  ins_cost(100);
11346  format %{ "FABS" %}
11347  opcode(0xE1, 0xD9);
11348  ins_encode( OpcS, OpcP );
11349  ins_pipe( fpu_reg_reg );
11350%}
11351
11352instruct absX_reg(regX dst ) %{
11353  predicate(UseSSE>=1);
11354  match(Set dst (AbsF dst));
11355  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11356  ins_encode( AbsXF_encoding(dst));
11357  ins_pipe( pipe_slow );
11358%}
11359
11360instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11361  predicate(UseSSE==0);
11362  match(Set dst (NegF src));
11363  ins_cost(100);
11364  format %{ "FCHS" %}
11365  opcode(0xE0, 0xD9);
11366  ins_encode( OpcS, OpcP );
11367  ins_pipe( fpu_reg_reg );
11368%}
11369
11370instruct negX_reg( regX dst ) %{
11371  predicate(UseSSE>=1);
11372  match(Set dst (NegF dst));
11373  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11374  ins_encode( NegXF_encoding(dst));
11375  ins_pipe( pipe_slow );
11376%}
11377
11378// Cisc-alternate to addF_reg
11379// Spill to obtain 24-bit precision
11380instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11381  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11382  match(Set dst (AddF src1 (LoadF src2)));
11383
11384  format %{ "FLD    $src2\n\t"
11385            "FADD   ST,$src1\n\t"
11386            "FSTP_S $dst" %}
11387  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11388  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11389              OpcReg_F(src1),
11390              Pop_Mem_F(dst) );
11391  ins_pipe( fpu_mem_reg_mem );
11392%}
11393//
11394// Cisc-alternate to addF_reg
11395// This instruction does not round to 24-bits
11396instruct addF_reg_mem(regF dst, memory src) %{
11397  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11398  match(Set dst (AddF dst (LoadF src)));
11399
11400  format %{ "FADD   $dst,$src" %}
11401  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11402  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11403              OpcP, RegOpc(dst) );
11404  ins_pipe( fpu_reg_mem );
11405%}
11406
11407// // Following two instructions for _222_mpegaudio
11408// Spill to obtain 24-bit precision
11409instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11410  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11411  match(Set dst (AddF src1 src2));
11412
11413  format %{ "FADD   $dst,$src1,$src2" %}
11414  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11415  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11416              OpcReg_F(src2),
11417              Pop_Mem_F(dst) );
11418  ins_pipe( fpu_mem_reg_mem );
11419%}
11420
11421// Cisc-spill variant
11422// Spill to obtain 24-bit precision
11423instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11424  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11425  match(Set dst (AddF src1 (LoadF src2)));
11426
11427  format %{ "FADD   $dst,$src1,$src2 cisc" %}
11428  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11429  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11430              set_instruction_start,
11431              OpcP, RMopc_Mem(secondary,src1),
11432              Pop_Mem_F(dst) );
11433  ins_pipe( fpu_mem_mem_mem );
11434%}
11435
11436// Spill to obtain 24-bit precision
11437instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11438  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11439  match(Set dst (AddF src1 src2));
11440
11441  format %{ "FADD   $dst,$src1,$src2" %}
11442  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11443  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11444              set_instruction_start,
11445              OpcP, RMopc_Mem(secondary,src1),
11446              Pop_Mem_F(dst) );
11447  ins_pipe( fpu_mem_mem_mem );
11448%}
11449
11450
11451// Spill to obtain 24-bit precision
11452instruct addF24_reg_imm(stackSlotF dst, regF src, immF con) %{
11453  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11454  match(Set dst (AddF src con));
11455  format %{ "FLD    $src\n\t"
11456            "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11457            "FSTP_S $dst"  %}
11458  ins_encode %{
11459    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11460    __ fadd_s($constantaddress($con));
11461    __ fstp_s(Address(rsp, $dst$$disp));
11462  %}
11463  ins_pipe(fpu_mem_reg_con);
11464%}
11465//
11466// This instruction does not round to 24-bits
11467instruct addF_reg_imm(regF dst, regF src, immF con) %{
11468  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11469  match(Set dst (AddF src con));
11470  format %{ "FLD    $src\n\t"
11471            "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11472            "FSTP   $dst"  %}
11473  ins_encode %{
11474    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11475    __ fadd_s($constantaddress($con));
11476    __ fstp_d($dst$$reg);
11477  %}
11478  ins_pipe(fpu_reg_reg_con);
11479%}
11480
11481// Spill to obtain 24-bit precision
11482instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11483  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11484  match(Set dst (MulF src1 src2));
11485
11486  format %{ "FLD    $src1\n\t"
11487            "FMUL   $src2\n\t"
11488            "FSTP_S $dst"  %}
11489  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11490  ins_encode( Push_Reg_F(src1),
11491              OpcReg_F(src2),
11492              Pop_Mem_F(dst) );
11493  ins_pipe( fpu_mem_reg_reg );
11494%}
11495//
11496// This instruction does not round to 24-bits
11497instruct mulF_reg(regF dst, regF src1, regF src2) %{
11498  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11499  match(Set dst (MulF src1 src2));
11500
11501  format %{ "FLD    $src1\n\t"
11502            "FMUL   $src2\n\t"
11503            "FSTP_S $dst"  %}
11504  opcode(0xD8, 0x1); /* D8 C8+i */
11505  ins_encode( Push_Reg_F(src2),
11506              OpcReg_F(src1),
11507              Pop_Reg_F(dst) );
11508  ins_pipe( fpu_reg_reg_reg );
11509%}
11510
11511
11512// Spill to obtain 24-bit precision
11513// Cisc-alternate to reg-reg multiply
11514instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11515  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11516  match(Set dst (MulF src1 (LoadF src2)));
11517
11518  format %{ "FLD_S  $src2\n\t"
11519            "FMUL   $src1\n\t"
11520            "FSTP_S $dst"  %}
11521  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11522  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11523              OpcReg_F(src1),
11524              Pop_Mem_F(dst) );
11525  ins_pipe( fpu_mem_reg_mem );
11526%}
11527//
11528// This instruction does not round to 24-bits
11529// Cisc-alternate to reg-reg multiply
11530instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11531  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11532  match(Set dst (MulF src1 (LoadF src2)));
11533
11534  format %{ "FMUL   $dst,$src1,$src2" %}
11535  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11536  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11537              OpcReg_F(src1),
11538              Pop_Reg_F(dst) );
11539  ins_pipe( fpu_reg_reg_mem );
11540%}
11541
11542// Spill to obtain 24-bit precision
11543instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11544  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11545  match(Set dst (MulF src1 src2));
11546
11547  format %{ "FMUL   $dst,$src1,$src2" %}
11548  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11549  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11550              set_instruction_start,
11551              OpcP, RMopc_Mem(secondary,src1),
11552              Pop_Mem_F(dst) );
11553  ins_pipe( fpu_mem_mem_mem );
11554%}
11555
11556// Spill to obtain 24-bit precision
11557instruct mulF24_reg_imm(stackSlotF dst, regF src, immF con) %{
11558  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11559  match(Set dst (MulF src con));
11560
11561  format %{ "FLD    $src\n\t"
11562            "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11563            "FSTP_S $dst"  %}
11564  ins_encode %{
11565    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11566    __ fmul_s($constantaddress($con));
11567    __ fstp_s(Address(rsp, $dst$$disp));
11568  %}
11569  ins_pipe(fpu_mem_reg_con);
11570%}
11571//
11572// This instruction does not round to 24-bits
11573instruct mulF_reg_imm(regF dst, regF src, immF con) %{
11574  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11575  match(Set dst (MulF src con));
11576
11577  format %{ "FLD    $src\n\t"
11578            "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
11579            "FSTP   $dst"  %}
11580  ins_encode %{
11581    __ fld_s($src$$reg - 1);  // FLD ST(i-1)
11582    __ fmul_s($constantaddress($con));
11583    __ fstp_d($dst$$reg);
11584  %}
11585  ins_pipe(fpu_reg_reg_con);
11586%}
11587
11588
11589//
11590// MACRO1 -- subsume unshared load into mulF
11591// This instruction does not round to 24-bits
11592instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11593  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11594  match(Set dst (MulF (LoadF mem1) src));
11595
11596  format %{ "FLD    $mem1    ===MACRO1===\n\t"
11597            "FMUL   ST,$src\n\t"
11598            "FSTP   $dst" %}
11599  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11600  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11601              OpcReg_F(src),
11602              Pop_Reg_F(dst) );
11603  ins_pipe( fpu_reg_reg_mem );
11604%}
11605//
11606// MACRO2 -- addF a mulF which subsumed an unshared load
11607// This instruction does not round to 24-bits
11608instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11609  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11610  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11611  ins_cost(95);
11612
11613  format %{ "FLD    $mem1     ===MACRO2===\n\t"
11614            "FMUL   ST,$src1  subsume mulF left load\n\t"
11615            "FADD   ST,$src2\n\t"
11616            "FSTP   $dst" %}
11617  opcode(0xD9); /* LoadF D9 /0 */
11618  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11619              FMul_ST_reg(src1),
11620              FAdd_ST_reg(src2),
11621              Pop_Reg_F(dst) );
11622  ins_pipe( fpu_reg_mem_reg_reg );
11623%}
11624
11625// MACRO3 -- addF a mulF
11626// This instruction does not round to 24-bits.  It is a '2-address'
11627// instruction in that the result goes back to src2.  This eliminates
11628// a move from the macro; possibly the register allocator will have
11629// to add it back (and maybe not).
11630instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11631  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11632  match(Set src2 (AddF (MulF src0 src1) src2));
11633
11634  format %{ "FLD    $src0     ===MACRO3===\n\t"
11635            "FMUL   ST,$src1\n\t"
11636            "FADDP  $src2,ST" %}
11637  opcode(0xD9); /* LoadF D9 /0 */
11638  ins_encode( Push_Reg_F(src0),
11639              FMul_ST_reg(src1),
11640              FAddP_reg_ST(src2) );
11641  ins_pipe( fpu_reg_reg_reg );
11642%}
11643
11644// MACRO4 -- divF subF
11645// This instruction does not round to 24-bits
11646instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11647  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11648  match(Set dst (DivF (SubF src2 src1) src3));
11649
11650  format %{ "FLD    $src2   ===MACRO4===\n\t"
11651            "FSUB   ST,$src1\n\t"
11652            "FDIV   ST,$src3\n\t"
11653            "FSTP  $dst" %}
11654  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11655  ins_encode( Push_Reg_F(src2),
11656              subF_divF_encode(src1,src3),
11657              Pop_Reg_F(dst) );
11658  ins_pipe( fpu_reg_reg_reg_reg );
11659%}
11660
11661// Spill to obtain 24-bit precision
11662instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11663  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11664  match(Set dst (DivF src1 src2));
11665
11666  format %{ "FDIV   $dst,$src1,$src2" %}
11667  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11668  ins_encode( Push_Reg_F(src1),
11669              OpcReg_F(src2),
11670              Pop_Mem_F(dst) );
11671  ins_pipe( fpu_mem_reg_reg );
11672%}
11673//
11674// This instruction does not round to 24-bits
11675instruct divF_reg(regF dst, regF src) %{
11676  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11677  match(Set dst (DivF dst src));
11678
11679  format %{ "FDIV   $dst,$src" %}
11680  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11681  ins_encode( Push_Reg_F(src),
11682              OpcP, RegOpc(dst) );
11683  ins_pipe( fpu_reg_reg );
11684%}
11685
11686
11687// Spill to obtain 24-bit precision
11688instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11689  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11690  match(Set dst (ModF src1 src2));
11691  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11692
11693  format %{ "FMOD   $dst,$src1,$src2" %}
11694  ins_encode( Push_Reg_Mod_D(src1, src2),
11695              emitModD(),
11696              Push_Result_Mod_D(src2),
11697              Pop_Mem_F(dst));
11698  ins_pipe( pipe_slow );
11699%}
11700//
11701// This instruction does not round to 24-bits
11702instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11703  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11704  match(Set dst (ModF dst src));
11705  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11706
11707  format %{ "FMOD   $dst,$src" %}
11708  ins_encode(Push_Reg_Mod_D(dst, src),
11709              emitModD(),
11710              Push_Result_Mod_D(src),
11711              Pop_Reg_F(dst));
11712  ins_pipe( pipe_slow );
11713%}
11714
11715instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11716  predicate(UseSSE>=1);
11717  match(Set dst (ModF src0 src1));
11718  effect(KILL rax, KILL cr);
11719  format %{ "SUB    ESP,4\t # FMOD\n"
11720          "\tMOVSS  [ESP+0],$src1\n"
11721          "\tFLD_S  [ESP+0]\n"
11722          "\tMOVSS  [ESP+0],$src0\n"
11723          "\tFLD_S  [ESP+0]\n"
11724     "loop:\tFPREM\n"
11725          "\tFWAIT\n"
11726          "\tFNSTSW AX\n"
11727          "\tSAHF\n"
11728          "\tJP     loop\n"
11729          "\tFSTP_S [ESP+0]\n"
11730          "\tMOVSS  $dst,[ESP+0]\n"
11731          "\tADD    ESP,4\n"
11732          "\tFSTP   ST0\t # Restore FPU Stack"
11733    %}
11734  ins_cost(250);
11735  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11736  ins_pipe( pipe_slow );
11737%}
11738
11739
11740//----------Arithmetic Conversion Instructions---------------------------------
11741// The conversions operations are all Alpha sorted.  Please keep it that way!
11742
11743instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11744  predicate(UseSSE==0);
11745  match(Set dst (RoundFloat src));
11746  ins_cost(125);
11747  format %{ "FST_S  $dst,$src\t# F-round" %}
11748  ins_encode( Pop_Mem_Reg_F(dst, src) );
11749  ins_pipe( fpu_mem_reg );
11750%}
11751
11752instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11753  predicate(UseSSE<=1);
11754  match(Set dst (RoundDouble src));
11755  ins_cost(125);
11756  format %{ "FST_D  $dst,$src\t# D-round" %}
11757  ins_encode( Pop_Mem_Reg_D(dst, src) );
11758  ins_pipe( fpu_mem_reg );
11759%}
11760
11761// Force rounding to 24-bit precision and 6-bit exponent
11762instruct convD2F_reg(stackSlotF dst, regD src) %{
11763  predicate(UseSSE==0);
11764  match(Set dst (ConvD2F src));
11765  format %{ "FST_S  $dst,$src\t# F-round" %}
11766  expand %{
11767    roundFloat_mem_reg(dst,src);
11768  %}
11769%}
11770
11771// Force rounding to 24-bit precision and 6-bit exponent
11772instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11773  predicate(UseSSE==1);
11774  match(Set dst (ConvD2F src));
11775  effect( KILL cr );
11776  format %{ "SUB    ESP,4\n\t"
11777            "FST_S  [ESP],$src\t# F-round\n\t"
11778            "MOVSS  $dst,[ESP]\n\t"
11779            "ADD ESP,4" %}
11780  ins_encode( D2X_encoding(dst, src) );
11781  ins_pipe( pipe_slow );
11782%}
11783
11784// Force rounding double precision to single precision
11785instruct convXD2X_reg(regX dst, regXD src) %{
11786  predicate(UseSSE>=2);
11787  match(Set dst (ConvD2F src));
11788  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11789  opcode(0xF2, 0x0F, 0x5A);
11790  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11791  ins_pipe( pipe_slow );
11792%}
11793
11794instruct convF2D_reg_reg(regD dst, regF src) %{
11795  predicate(UseSSE==0);
11796  match(Set dst (ConvF2D src));
11797  format %{ "FST_S  $dst,$src\t# D-round" %}
11798  ins_encode( Pop_Reg_Reg_D(dst, src));
11799  ins_pipe( fpu_reg_reg );
11800%}
11801
11802instruct convF2D_reg(stackSlotD dst, regF src) %{
11803  predicate(UseSSE==1);
11804  match(Set dst (ConvF2D src));
11805  format %{ "FST_D  $dst,$src\t# D-round" %}
11806  expand %{
11807    roundDouble_mem_reg(dst,src);
11808  %}
11809%}
11810
11811instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11812  predicate(UseSSE==1);
11813  match(Set dst (ConvF2D src));
11814  effect( KILL cr );
11815  format %{ "SUB    ESP,4\n\t"
11816            "MOVSS  [ESP] $src\n\t"
11817            "FLD_S  [ESP]\n\t"
11818            "ADD    ESP,4\n\t"
11819            "FSTP   $dst\t# D-round" %}
11820  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11821  ins_pipe( pipe_slow );
11822%}
11823
11824instruct convX2XD_reg(regXD dst, regX src) %{
11825  predicate(UseSSE>=2);
11826  match(Set dst (ConvF2D src));
11827  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11828  opcode(0xF3, 0x0F, 0x5A);
11829  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11830  ins_pipe( pipe_slow );
11831%}
11832
11833// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11834instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11835  predicate(UseSSE<=1);
11836  match(Set dst (ConvD2I src));
11837  effect( KILL tmp, KILL cr );
11838  format %{ "FLD    $src\t# Convert double to int \n\t"
11839            "FLDCW  trunc mode\n\t"
11840            "SUB    ESP,4\n\t"
11841            "FISTp  [ESP + #0]\n\t"
11842            "FLDCW  std/24-bit mode\n\t"
11843            "POP    EAX\n\t"
11844            "CMP    EAX,0x80000000\n\t"
11845            "JNE,s  fast\n\t"
11846            "FLD_D  $src\n\t"
11847            "CALL   d2i_wrapper\n"
11848      "fast:" %}
11849  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11850  ins_pipe( pipe_slow );
11851%}
11852
11853// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11854instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11855  predicate(UseSSE>=2);
11856  match(Set dst (ConvD2I src));
11857  effect( KILL tmp, KILL cr );
11858  format %{ "CVTTSD2SI $dst, $src\n\t"
11859            "CMP    $dst,0x80000000\n\t"
11860            "JNE,s  fast\n\t"
11861            "SUB    ESP, 8\n\t"
11862            "MOVSD  [ESP], $src\n\t"
11863            "FLD_D  [ESP]\n\t"
11864            "ADD    ESP, 8\n\t"
11865            "CALL   d2i_wrapper\n"
11866      "fast:" %}
11867  opcode(0x1); // double-precision conversion
11868  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11869  ins_pipe( pipe_slow );
11870%}
11871
11872instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11873  predicate(UseSSE<=1);
11874  match(Set dst (ConvD2L src));
11875  effect( KILL cr );
11876  format %{ "FLD    $src\t# Convert double to long\n\t"
11877            "FLDCW  trunc mode\n\t"
11878            "SUB    ESP,8\n\t"
11879            "FISTp  [ESP + #0]\n\t"
11880            "FLDCW  std/24-bit mode\n\t"
11881            "POP    EAX\n\t"
11882            "POP    EDX\n\t"
11883            "CMP    EDX,0x80000000\n\t"
11884            "JNE,s  fast\n\t"
11885            "TEST   EAX,EAX\n\t"
11886            "JNE,s  fast\n\t"
11887            "FLD    $src\n\t"
11888            "CALL   d2l_wrapper\n"
11889      "fast:" %}
11890  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11891  ins_pipe( pipe_slow );
11892%}
11893
11894// XMM lacks a float/double->long conversion, so use the old FPU stack.
11895instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11896  predicate (UseSSE>=2);
11897  match(Set dst (ConvD2L src));
11898  effect( KILL cr );
11899  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11900            "MOVSD  [ESP],$src\n\t"
11901            "FLD_D  [ESP]\n\t"
11902            "FLDCW  trunc mode\n\t"
11903            "FISTp  [ESP + #0]\n\t"
11904            "FLDCW  std/24-bit mode\n\t"
11905            "POP    EAX\n\t"
11906            "POP    EDX\n\t"
11907            "CMP    EDX,0x80000000\n\t"
11908            "JNE,s  fast\n\t"
11909            "TEST   EAX,EAX\n\t"
11910            "JNE,s  fast\n\t"
11911            "SUB    ESP,8\n\t"
11912            "MOVSD  [ESP],$src\n\t"
11913            "FLD_D  [ESP]\n\t"
11914            "CALL   d2l_wrapper\n"
11915      "fast:" %}
11916  ins_encode( XD2L_encoding(src) );
11917  ins_pipe( pipe_slow );
11918%}
11919
11920// Convert a double to an int.  Java semantics require we do complex
11921// manglations in the corner cases.  So we set the rounding mode to
11922// 'zero', store the darned double down as an int, and reset the
11923// rounding mode to 'nearest'.  The hardware stores a flag value down
11924// if we would overflow or converted a NAN; we check for this and
11925// and go the slow path if needed.
11926instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11927  predicate(UseSSE==0);
11928  match(Set dst (ConvF2I src));
11929  effect( KILL tmp, KILL cr );
11930  format %{ "FLD    $src\t# Convert float to int \n\t"
11931            "FLDCW  trunc mode\n\t"
11932            "SUB    ESP,4\n\t"
11933            "FISTp  [ESP + #0]\n\t"
11934            "FLDCW  std/24-bit mode\n\t"
11935            "POP    EAX\n\t"
11936            "CMP    EAX,0x80000000\n\t"
11937            "JNE,s  fast\n\t"
11938            "FLD    $src\n\t"
11939            "CALL   d2i_wrapper\n"
11940      "fast:" %}
11941  // D2I_encoding works for F2I
11942  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11943  ins_pipe( pipe_slow );
11944%}
11945
11946// Convert a float in xmm to an int reg.
11947instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11948  predicate(UseSSE>=1);
11949  match(Set dst (ConvF2I src));
11950  effect( KILL tmp, KILL cr );
11951  format %{ "CVTTSS2SI $dst, $src\n\t"
11952            "CMP    $dst,0x80000000\n\t"
11953            "JNE,s  fast\n\t"
11954            "SUB    ESP, 4\n\t"
11955            "MOVSS  [ESP], $src\n\t"
11956            "FLD    [ESP]\n\t"
11957            "ADD    ESP, 4\n\t"
11958            "CALL   d2i_wrapper\n"
11959      "fast:" %}
11960  opcode(0x0); // single-precision conversion
11961  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11962  ins_pipe( pipe_slow );
11963%}
11964
11965instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11966  predicate(UseSSE==0);
11967  match(Set dst (ConvF2L src));
11968  effect( KILL cr );
11969  format %{ "FLD    $src\t# Convert float to long\n\t"
11970            "FLDCW  trunc mode\n\t"
11971            "SUB    ESP,8\n\t"
11972            "FISTp  [ESP + #0]\n\t"
11973            "FLDCW  std/24-bit mode\n\t"
11974            "POP    EAX\n\t"
11975            "POP    EDX\n\t"
11976            "CMP    EDX,0x80000000\n\t"
11977            "JNE,s  fast\n\t"
11978            "TEST   EAX,EAX\n\t"
11979            "JNE,s  fast\n\t"
11980            "FLD    $src\n\t"
11981            "CALL   d2l_wrapper\n"
11982      "fast:" %}
11983  // D2L_encoding works for F2L
11984  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11985  ins_pipe( pipe_slow );
11986%}
11987
11988// XMM lacks a float/double->long conversion, so use the old FPU stack.
11989instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11990  predicate (UseSSE>=1);
11991  match(Set dst (ConvF2L src));
11992  effect( KILL cr );
11993  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11994            "MOVSS  [ESP],$src\n\t"
11995            "FLD_S  [ESP]\n\t"
11996            "FLDCW  trunc mode\n\t"
11997            "FISTp  [ESP + #0]\n\t"
11998            "FLDCW  std/24-bit mode\n\t"
11999            "POP    EAX\n\t"
12000            "POP    EDX\n\t"
12001            "CMP    EDX,0x80000000\n\t"
12002            "JNE,s  fast\n\t"
12003            "TEST   EAX,EAX\n\t"
12004            "JNE,s  fast\n\t"
12005            "SUB    ESP,4\t# Convert float to long\n\t"
12006            "MOVSS  [ESP],$src\n\t"
12007            "FLD_S  [ESP]\n\t"
12008            "ADD    ESP,4\n\t"
12009            "CALL   d2l_wrapper\n"
12010      "fast:" %}
12011  ins_encode( X2L_encoding(src) );
12012  ins_pipe( pipe_slow );
12013%}
12014
12015instruct convI2D_reg(regD dst, stackSlotI src) %{
12016  predicate( UseSSE<=1 );
12017  match(Set dst (ConvI2D src));
12018  format %{ "FILD   $src\n\t"
12019            "FSTP   $dst" %}
12020  opcode(0xDB, 0x0);  /* DB /0 */
12021  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
12022  ins_pipe( fpu_reg_mem );
12023%}
12024
12025instruct convI2XD_reg(regXD dst, eRegI src) %{
12026  predicate( UseSSE>=2 && !UseXmmI2D );
12027  match(Set dst (ConvI2D src));
12028  format %{ "CVTSI2SD $dst,$src" %}
12029  opcode(0xF2, 0x0F, 0x2A);
12030  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
12031  ins_pipe( pipe_slow );
12032%}
12033
12034instruct convI2XD_mem(regXD dst, memory mem) %{
12035  predicate( UseSSE>=2 );
12036  match(Set dst (ConvI2D (LoadI mem)));
12037  format %{ "CVTSI2SD $dst,$mem" %}
12038  opcode(0xF2, 0x0F, 0x2A);
12039  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
12040  ins_pipe( pipe_slow );
12041%}
12042
12043instruct convXI2XD_reg(regXD dst, eRegI src)
12044%{
12045  predicate( UseSSE>=2 && UseXmmI2D );
12046  match(Set dst (ConvI2D src));
12047
12048  format %{ "MOVD  $dst,$src\n\t"
12049            "CVTDQ2PD $dst,$dst\t# i2d" %}
12050  ins_encode %{
12051    __ movdl($dst$$XMMRegister, $src$$Register);
12052    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
12053  %}
12054  ins_pipe(pipe_slow); // XXX
12055%}
12056
12057instruct convI2D_mem(regD dst, memory mem) %{
12058  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
12059  match(Set dst (ConvI2D (LoadI mem)));
12060  format %{ "FILD   $mem\n\t"
12061            "FSTP   $dst" %}
12062  opcode(0xDB);      /* DB /0 */
12063  ins_encode( OpcP, RMopc_Mem(0x00,mem),
12064              Pop_Reg_D(dst));
12065  ins_pipe( fpu_reg_mem );
12066%}
12067
12068// Convert a byte to a float; no rounding step needed.
12069instruct conv24I2F_reg(regF dst, stackSlotI src) %{
12070  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
12071  match(Set dst (ConvI2F src));
12072  format %{ "FILD   $src\n\t"
12073            "FSTP   $dst" %}
12074
12075  opcode(0xDB, 0x0);  /* DB /0 */
12076  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
12077  ins_pipe( fpu_reg_mem );
12078%}
12079
12080// In 24-bit mode, force exponent rounding by storing back out
12081instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
12082  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
12083  match(Set dst (ConvI2F src));
12084  ins_cost(200);
12085  format %{ "FILD   $src\n\t"
12086            "FSTP_S $dst" %}
12087  opcode(0xDB, 0x0);  /* DB /0 */
12088  ins_encode( Push_Mem_I(src),
12089              Pop_Mem_F(dst));
12090  ins_pipe( fpu_mem_mem );
12091%}
12092
12093// In 24-bit mode, force exponent rounding by storing back out
12094instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
12095  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
12096  match(Set dst (ConvI2F (LoadI mem)));
12097  ins_cost(200);
12098  format %{ "FILD   $mem\n\t"
12099            "FSTP_S $dst" %}
12100  opcode(0xDB);  /* DB /0 */
12101  ins_encode( OpcP, RMopc_Mem(0x00,mem),
12102              Pop_Mem_F(dst));
12103  ins_pipe( fpu_mem_mem );
12104%}
12105
12106// This instruction does not round to 24-bits
12107instruct convI2F_reg(regF dst, stackSlotI src) %{
12108  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
12109  match(Set dst (ConvI2F src));
12110  format %{ "FILD   $src\n\t"
12111            "FSTP   $dst" %}
12112  opcode(0xDB, 0x0);  /* DB /0 */
12113  ins_encode( Push_Mem_I(src),
12114              Pop_Reg_F(dst));
12115  ins_pipe( fpu_reg_mem );
12116%}
12117
12118// This instruction does not round to 24-bits
12119instruct convI2F_mem(regF dst, memory mem) %{
12120  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
12121  match(Set dst (ConvI2F (LoadI mem)));
12122  format %{ "FILD   $mem\n\t"
12123            "FSTP   $dst" %}
12124  opcode(0xDB);      /* DB /0 */
12125  ins_encode( OpcP, RMopc_Mem(0x00,mem),
12126              Pop_Reg_F(dst));
12127  ins_pipe( fpu_reg_mem );
12128%}
12129
12130// Convert an int to a float in xmm; no rounding step needed.
12131instruct convI2X_reg(regX dst, eRegI src) %{
12132  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
12133  match(Set dst (ConvI2F src));
12134  format %{ "CVTSI2SS $dst, $src" %}
12135
12136  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
12137  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
12138  ins_pipe( pipe_slow );
12139%}
12140
12141 instruct convXI2X_reg(regX dst, eRegI src)
12142%{
12143  predicate( UseSSE>=2 && UseXmmI2F );
12144  match(Set dst (ConvI2F src));
12145
12146  format %{ "MOVD  $dst,$src\n\t"
12147            "CVTDQ2PS $dst,$dst\t# i2f" %}
12148  ins_encode %{
12149    __ movdl($dst$$XMMRegister, $src$$Register);
12150    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
12151  %}
12152  ins_pipe(pipe_slow); // XXX
12153%}
12154
12155instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
12156  match(Set dst (ConvI2L src));
12157  effect(KILL cr);
12158  ins_cost(375);
12159  format %{ "MOV    $dst.lo,$src\n\t"
12160            "MOV    $dst.hi,$src\n\t"
12161            "SAR    $dst.hi,31" %}
12162  ins_encode(convert_int_long(dst,src));
12163  ins_pipe( ialu_reg_reg_long );
12164%}
12165
12166// Zero-extend convert int to long
12167instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
12168  match(Set dst (AndL (ConvI2L src) mask) );
12169  effect( KILL flags );
12170  ins_cost(250);
12171  format %{ "MOV    $dst.lo,$src\n\t"
12172            "XOR    $dst.hi,$dst.hi" %}
12173  opcode(0x33); // XOR
12174  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12175  ins_pipe( ialu_reg_reg_long );
12176%}
12177
12178// Zero-extend long
12179instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
12180  match(Set dst (AndL src mask) );
12181  effect( KILL flags );
12182  ins_cost(250);
12183  format %{ "MOV    $dst.lo,$src.lo\n\t"
12184            "XOR    $dst.hi,$dst.hi\n\t" %}
12185  opcode(0x33); // XOR
12186  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12187  ins_pipe( ialu_reg_reg_long );
12188%}
12189
12190instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
12191  predicate (UseSSE<=1);
12192  match(Set dst (ConvL2D src));
12193  effect( KILL cr );
12194  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12195            "PUSH   $src.lo\n\t"
12196            "FILD   ST,[ESP + #0]\n\t"
12197            "ADD    ESP,8\n\t"
12198            "FSTP_D $dst\t# D-round" %}
12199  opcode(0xDF, 0x5);  /* DF /5 */
12200  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
12201  ins_pipe( pipe_slow );
12202%}
12203
12204instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
12205  predicate (UseSSE>=2);
12206  match(Set dst (ConvL2D src));
12207  effect( KILL cr );
12208  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12209            "PUSH   $src.lo\n\t"
12210            "FILD_D [ESP]\n\t"
12211            "FSTP_D [ESP]\n\t"
12212            "MOVSD  $dst,[ESP]\n\t"
12213            "ADD    ESP,8" %}
12214  opcode(0xDF, 0x5);  /* DF /5 */
12215  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
12216  ins_pipe( pipe_slow );
12217%}
12218
12219instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
12220  predicate (UseSSE>=1);
12221  match(Set dst (ConvL2F src));
12222  effect( KILL cr );
12223  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12224            "PUSH   $src.lo\n\t"
12225            "FILD_D [ESP]\n\t"
12226            "FSTP_S [ESP]\n\t"
12227            "MOVSS  $dst,[ESP]\n\t"
12228            "ADD    ESP,8" %}
12229  opcode(0xDF, 0x5);  /* DF /5 */
12230  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
12231  ins_pipe( pipe_slow );
12232%}
12233
12234instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
12235  match(Set dst (ConvL2F src));
12236  effect( KILL cr );
12237  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12238            "PUSH   $src.lo\n\t"
12239            "FILD   ST,[ESP + #0]\n\t"
12240            "ADD    ESP,8\n\t"
12241            "FSTP_S $dst\t# F-round" %}
12242  opcode(0xDF, 0x5);  /* DF /5 */
12243  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
12244  ins_pipe( pipe_slow );
12245%}
12246
12247instruct convL2I_reg( eRegI dst, eRegL src ) %{
12248  match(Set dst (ConvL2I src));
12249  effect( DEF dst, USE src );
12250  format %{ "MOV    $dst,$src.lo" %}
12251  ins_encode(enc_CopyL_Lo(dst,src));
12252  ins_pipe( ialu_reg_reg );
12253%}
12254
12255
12256instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
12257  match(Set dst (MoveF2I src));
12258  effect( DEF dst, USE src );
12259  ins_cost(100);
12260  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
12261  opcode(0x8B);
12262  ins_encode( OpcP, RegMem(dst,src));
12263  ins_pipe( ialu_reg_mem );
12264%}
12265
12266instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
12267  predicate(UseSSE==0);
12268  match(Set dst (MoveF2I src));
12269  effect( DEF dst, USE src );
12270
12271  ins_cost(125);
12272  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
12273  ins_encode( Pop_Mem_Reg_F(dst, src) );
12274  ins_pipe( fpu_mem_reg );
12275%}
12276
12277instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
12278  predicate(UseSSE>=1);
12279  match(Set dst (MoveF2I src));
12280  effect( DEF dst, USE src );
12281
12282  ins_cost(95);
12283  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
12284  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
12285  ins_pipe( pipe_slow );
12286%}
12287
12288instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
12289  predicate(UseSSE>=2);
12290  match(Set dst (MoveF2I src));
12291  effect( DEF dst, USE src );
12292  ins_cost(85);
12293  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
12294  ins_encode( MovX2I_reg(dst, src));
12295  ins_pipe( pipe_slow );
12296%}
12297
12298instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
12299  match(Set dst (MoveI2F src));
12300  effect( DEF dst, USE src );
12301
12302  ins_cost(100);
12303  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
12304  opcode(0x89);
12305  ins_encode( OpcPRegSS( dst, src ) );
12306  ins_pipe( ialu_mem_reg );
12307%}
12308
12309
12310instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
12311  predicate(UseSSE==0);
12312  match(Set dst (MoveI2F src));
12313  effect(DEF dst, USE src);
12314
12315  ins_cost(125);
12316  format %{ "FLD_S  $src\n\t"
12317            "FSTP   $dst\t# MoveI2F_stack_reg" %}
12318  opcode(0xD9);               /* D9 /0, FLD m32real */
12319  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12320              Pop_Reg_F(dst) );
12321  ins_pipe( fpu_reg_mem );
12322%}
12323
12324instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
12325  predicate(UseSSE>=1);
12326  match(Set dst (MoveI2F src));
12327  effect( DEF dst, USE src );
12328
12329  ins_cost(95);
12330  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
12331  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12332  ins_pipe( pipe_slow );
12333%}
12334
12335instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
12336  predicate(UseSSE>=2);
12337  match(Set dst (MoveI2F src));
12338  effect( DEF dst, USE src );
12339
12340  ins_cost(85);
12341  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12342  ins_encode( MovI2X_reg(dst, src) );
12343  ins_pipe( pipe_slow );
12344%}
12345
12346instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12347  match(Set dst (MoveD2L src));
12348  effect(DEF dst, USE src);
12349
12350  ins_cost(250);
12351  format %{ "MOV    $dst.lo,$src\n\t"
12352            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12353  opcode(0x8B, 0x8B);
12354  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12355  ins_pipe( ialu_mem_long_reg );
12356%}
12357
12358instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12359  predicate(UseSSE<=1);
12360  match(Set dst (MoveD2L src));
12361  effect(DEF dst, USE src);
12362
12363  ins_cost(125);
12364  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12365  ins_encode( Pop_Mem_Reg_D(dst, src) );
12366  ins_pipe( fpu_mem_reg );
12367%}
12368
12369instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12370  predicate(UseSSE>=2);
12371  match(Set dst (MoveD2L src));
12372  effect(DEF dst, USE src);
12373  ins_cost(95);
12374
12375  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12376  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12377  ins_pipe( pipe_slow );
12378%}
12379
12380instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12381  predicate(UseSSE>=2);
12382  match(Set dst (MoveD2L src));
12383  effect(DEF dst, USE src, TEMP tmp);
12384  ins_cost(85);
12385  format %{ "MOVD   $dst.lo,$src\n\t"
12386            "PSHUFLW $tmp,$src,0x4E\n\t"
12387            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12388  ins_encode( MovXD2L_reg(dst, src, tmp) );
12389  ins_pipe( pipe_slow );
12390%}
12391
12392instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12393  match(Set dst (MoveL2D src));
12394  effect(DEF dst, USE src);
12395
12396  ins_cost(200);
12397  format %{ "MOV    $dst,$src.lo\n\t"
12398            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12399  opcode(0x89, 0x89);
12400  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12401  ins_pipe( ialu_mem_long_reg );
12402%}
12403
12404
12405instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12406  predicate(UseSSE<=1);
12407  match(Set dst (MoveL2D src));
12408  effect(DEF dst, USE src);
12409  ins_cost(125);
12410
12411  format %{ "FLD_D  $src\n\t"
12412            "FSTP   $dst\t# MoveL2D_stack_reg" %}
12413  opcode(0xDD);               /* DD /0, FLD m64real */
12414  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12415              Pop_Reg_D(dst) );
12416  ins_pipe( fpu_reg_mem );
12417%}
12418
12419
12420instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12421  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12422  match(Set dst (MoveL2D src));
12423  effect(DEF dst, USE src);
12424
12425  ins_cost(95);
12426  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12427  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12428  ins_pipe( pipe_slow );
12429%}
12430
12431instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12432  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12433  match(Set dst (MoveL2D src));
12434  effect(DEF dst, USE src);
12435
12436  ins_cost(95);
12437  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12438  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12439  ins_pipe( pipe_slow );
12440%}
12441
12442instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12443  predicate(UseSSE>=2);
12444  match(Set dst (MoveL2D src));
12445  effect(TEMP dst, USE src, TEMP tmp);
12446  ins_cost(85);
12447  format %{ "MOVD   $dst,$src.lo\n\t"
12448            "MOVD   $tmp,$src.hi\n\t"
12449            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12450  ins_encode( MovL2XD_reg(dst, src, tmp) );
12451  ins_pipe( pipe_slow );
12452%}
12453
12454// Replicate scalar to packed byte (1 byte) values in xmm
12455instruct Repl8B_reg(regXD dst, regXD src) %{
12456  predicate(UseSSE>=2);
12457  match(Set dst (Replicate8B src));
12458  format %{ "MOVDQA  $dst,$src\n\t"
12459            "PUNPCKLBW $dst,$dst\n\t"
12460            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12461  ins_encode( pshufd_8x8(dst, src));
12462  ins_pipe( pipe_slow );
12463%}
12464
12465// Replicate scalar to packed byte (1 byte) values in xmm
12466instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12467  predicate(UseSSE>=2);
12468  match(Set dst (Replicate8B src));
12469  format %{ "MOVD    $dst,$src\n\t"
12470            "PUNPCKLBW $dst,$dst\n\t"
12471            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12472  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12473  ins_pipe( pipe_slow );
12474%}
12475
12476// Replicate scalar zero to packed byte (1 byte) values in xmm
12477instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12478  predicate(UseSSE>=2);
12479  match(Set dst (Replicate8B zero));
12480  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12481  ins_encode( pxor(dst, dst));
12482  ins_pipe( fpu_reg_reg );
12483%}
12484
12485// Replicate scalar to packed shore (2 byte) values in xmm
12486instruct Repl4S_reg(regXD dst, regXD src) %{
12487  predicate(UseSSE>=2);
12488  match(Set dst (Replicate4S src));
12489  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12490  ins_encode( pshufd_4x16(dst, src));
12491  ins_pipe( fpu_reg_reg );
12492%}
12493
12494// Replicate scalar to packed shore (2 byte) values in xmm
12495instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12496  predicate(UseSSE>=2);
12497  match(Set dst (Replicate4S src));
12498  format %{ "MOVD    $dst,$src\n\t"
12499            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12500  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12501  ins_pipe( fpu_reg_reg );
12502%}
12503
12504// Replicate scalar zero to packed short (2 byte) values in xmm
12505instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12506  predicate(UseSSE>=2);
12507  match(Set dst (Replicate4S zero));
12508  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12509  ins_encode( pxor(dst, dst));
12510  ins_pipe( fpu_reg_reg );
12511%}
12512
12513// Replicate scalar to packed char (2 byte) values in xmm
12514instruct Repl4C_reg(regXD dst, regXD src) %{
12515  predicate(UseSSE>=2);
12516  match(Set dst (Replicate4C src));
12517  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12518  ins_encode( pshufd_4x16(dst, src));
12519  ins_pipe( fpu_reg_reg );
12520%}
12521
12522// Replicate scalar to packed char (2 byte) values in xmm
12523instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12524  predicate(UseSSE>=2);
12525  match(Set dst (Replicate4C src));
12526  format %{ "MOVD    $dst,$src\n\t"
12527            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12528  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12529  ins_pipe( fpu_reg_reg );
12530%}
12531
12532// Replicate scalar zero to packed char (2 byte) values in xmm
12533instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12534  predicate(UseSSE>=2);
12535  match(Set dst (Replicate4C zero));
12536  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12537  ins_encode( pxor(dst, dst));
12538  ins_pipe( fpu_reg_reg );
12539%}
12540
12541// Replicate scalar to packed integer (4 byte) values in xmm
12542instruct Repl2I_reg(regXD dst, regXD src) %{
12543  predicate(UseSSE>=2);
12544  match(Set dst (Replicate2I src));
12545  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12546  ins_encode( pshufd(dst, src, 0x00));
12547  ins_pipe( fpu_reg_reg );
12548%}
12549
12550// Replicate scalar to packed integer (4 byte) values in xmm
12551instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12552  predicate(UseSSE>=2);
12553  match(Set dst (Replicate2I src));
12554  format %{ "MOVD   $dst,$src\n\t"
12555            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12556  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12557  ins_pipe( fpu_reg_reg );
12558%}
12559
12560// Replicate scalar zero to packed integer (2 byte) values in xmm
12561instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12562  predicate(UseSSE>=2);
12563  match(Set dst (Replicate2I zero));
12564  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12565  ins_encode( pxor(dst, dst));
12566  ins_pipe( fpu_reg_reg );
12567%}
12568
12569// Replicate scalar to packed single precision floating point values in xmm
12570instruct Repl2F_reg(regXD dst, regXD src) %{
12571  predicate(UseSSE>=2);
12572  match(Set dst (Replicate2F src));
12573  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12574  ins_encode( pshufd(dst, src, 0xe0));
12575  ins_pipe( fpu_reg_reg );
12576%}
12577
12578// Replicate scalar to packed single precision floating point values in xmm
12579instruct Repl2F_regX(regXD dst, regX src) %{
12580  predicate(UseSSE>=2);
12581  match(Set dst (Replicate2F src));
12582  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12583  ins_encode( pshufd(dst, src, 0xe0));
12584  ins_pipe( fpu_reg_reg );
12585%}
12586
12587// Replicate scalar to packed single precision floating point values in xmm
12588instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12589  predicate(UseSSE>=2);
12590  match(Set dst (Replicate2F zero));
12591  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12592  ins_encode( pxor(dst, dst));
12593  ins_pipe( fpu_reg_reg );
12594%}
12595
12596// =======================================================================
12597// fast clearing of an array
12598instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12599  match(Set dummy (ClearArray cnt base));
12600  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12601  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12602            "XOR    EAX,EAX\n\t"
12603            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12604  opcode(0,0x4);
12605  ins_encode( Opcode(0xD1), RegOpc(ECX),
12606              OpcRegReg(0x33,EAX,EAX),
12607              Opcode(0xF3), Opcode(0xAB) );
12608  ins_pipe( pipe_slow );
12609%}
12610
12611instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
12612                        eAXRegI result, regXD tmp1, eFlagsReg cr) %{
12613  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12614  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12615
12616  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
12617  ins_encode %{
12618    __ string_compare($str1$$Register, $str2$$Register,
12619                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
12620                      $tmp1$$XMMRegister);
12621  %}
12622  ins_pipe( pipe_slow );
12623%}
12624
12625// fast string equals
12626instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12627                       regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12628  match(Set result (StrEquals (Binary str1 str2) cnt));
12629  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12630
12631  format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12632  ins_encode %{
12633    __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12634                          $cnt$$Register, $result$$Register, $tmp3$$Register,
12635                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12636  %}
12637  ins_pipe( pipe_slow );
12638%}
12639
12640// fast search of substring with known size.
12641instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
12642                            eBXRegI result, regXD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
12643  predicate(UseSSE42Intrinsics);
12644  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
12645  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
12646
12647  format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
12648  ins_encode %{
12649    int icnt2 = (int)$int_cnt2$$constant;
12650    if (icnt2 >= 8) {
12651      // IndexOf for constant substrings with size >= 8 elements
12652      // which don't need to be loaded through stack.
12653      __ string_indexofC8($str1$$Register, $str2$$Register,
12654                          $cnt1$$Register, $cnt2$$Register,
12655                          icnt2, $result$$Register,
12656                          $vec$$XMMRegister, $tmp$$Register);
12657    } else {
12658      // Small strings are loaded through stack if they cross page boundary.
12659      __ string_indexof($str1$$Register, $str2$$Register,
12660                        $cnt1$$Register, $cnt2$$Register,
12661                        icnt2, $result$$Register,
12662                        $vec$$XMMRegister, $tmp$$Register);
12663    }
12664  %}
12665  ins_pipe( pipe_slow );
12666%}
12667
12668instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12669                        eBXRegI result, regXD vec, eCXRegI tmp, eFlagsReg cr) %{
12670  predicate(UseSSE42Intrinsics);
12671  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12672  effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
12673
12674  format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
12675  ins_encode %{
12676    __ string_indexof($str1$$Register, $str2$$Register,
12677                      $cnt1$$Register, $cnt2$$Register,
12678                      (-1), $result$$Register,
12679                      $vec$$XMMRegister, $tmp$$Register);
12680  %}
12681  ins_pipe( pipe_slow );
12682%}
12683
12684// fast array equals
12685instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12686                      regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12687%{
12688  match(Set result (AryEq ary1 ary2));
12689  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12690  //ins_cost(300);
12691
12692  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12693  ins_encode %{
12694    __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12695                          $tmp3$$Register, $result$$Register, $tmp4$$Register,
12696                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12697  %}
12698  ins_pipe( pipe_slow );
12699%}
12700
12701//----------Control Flow Instructions------------------------------------------
12702// Signed compare Instructions
12703instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12704  match(Set cr (CmpI op1 op2));
12705  effect( DEF cr, USE op1, USE op2 );
12706  format %{ "CMP    $op1,$op2" %}
12707  opcode(0x3B);  /* Opcode 3B /r */
12708  ins_encode( OpcP, RegReg( op1, op2) );
12709  ins_pipe( ialu_cr_reg_reg );
12710%}
12711
12712instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12713  match(Set cr (CmpI op1 op2));
12714  effect( DEF cr, USE op1 );
12715  format %{ "CMP    $op1,$op2" %}
12716  opcode(0x81,0x07);  /* Opcode 81 /7 */
12717  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12718  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12719  ins_pipe( ialu_cr_reg_imm );
12720%}
12721
12722// Cisc-spilled version of cmpI_eReg
12723instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12724  match(Set cr (CmpI op1 (LoadI op2)));
12725
12726  format %{ "CMP    $op1,$op2" %}
12727  ins_cost(500);
12728  opcode(0x3B);  /* Opcode 3B /r */
12729  ins_encode( OpcP, RegMem( op1, op2) );
12730  ins_pipe( ialu_cr_reg_mem );
12731%}
12732
12733instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12734  match(Set cr (CmpI src zero));
12735  effect( DEF cr, USE src );
12736
12737  format %{ "TEST   $src,$src" %}
12738  opcode(0x85);
12739  ins_encode( OpcP, RegReg( src, src ) );
12740  ins_pipe( ialu_cr_reg_imm );
12741%}
12742
12743instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12744  match(Set cr (CmpI (AndI src con) zero));
12745
12746  format %{ "TEST   $src,$con" %}
12747  opcode(0xF7,0x00);
12748  ins_encode( OpcP, RegOpc(src), Con32(con) );
12749  ins_pipe( ialu_cr_reg_imm );
12750%}
12751
12752instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12753  match(Set cr (CmpI (AndI src mem) zero));
12754
12755  format %{ "TEST   $src,$mem" %}
12756  opcode(0x85);
12757  ins_encode( OpcP, RegMem( src, mem ) );
12758  ins_pipe( ialu_cr_reg_mem );
12759%}
12760
12761// Unsigned compare Instructions; really, same as signed except they
12762// produce an eFlagsRegU instead of eFlagsReg.
12763instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12764  match(Set cr (CmpU op1 op2));
12765
12766  format %{ "CMPu   $op1,$op2" %}
12767  opcode(0x3B);  /* Opcode 3B /r */
12768  ins_encode( OpcP, RegReg( op1, op2) );
12769  ins_pipe( ialu_cr_reg_reg );
12770%}
12771
12772instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12773  match(Set cr (CmpU op1 op2));
12774
12775  format %{ "CMPu   $op1,$op2" %}
12776  opcode(0x81,0x07);  /* Opcode 81 /7 */
12777  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12778  ins_pipe( ialu_cr_reg_imm );
12779%}
12780
12781// // Cisc-spilled version of cmpU_eReg
12782instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12783  match(Set cr (CmpU op1 (LoadI op2)));
12784
12785  format %{ "CMPu   $op1,$op2" %}
12786  ins_cost(500);
12787  opcode(0x3B);  /* Opcode 3B /r */
12788  ins_encode( OpcP, RegMem( op1, op2) );
12789  ins_pipe( ialu_cr_reg_mem );
12790%}
12791
12792// // Cisc-spilled version of cmpU_eReg
12793//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12794//  match(Set cr (CmpU (LoadI op1) op2));
12795//
12796//  format %{ "CMPu   $op1,$op2" %}
12797//  ins_cost(500);
12798//  opcode(0x39);  /* Opcode 39 /r */
12799//  ins_encode( OpcP, RegMem( op1, op2) );
12800//%}
12801
12802instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12803  match(Set cr (CmpU src zero));
12804
12805  format %{ "TESTu  $src,$src" %}
12806  opcode(0x85);
12807  ins_encode( OpcP, RegReg( src, src ) );
12808  ins_pipe( ialu_cr_reg_imm );
12809%}
12810
12811// Unsigned pointer compare Instructions
12812instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12813  match(Set cr (CmpP op1 op2));
12814
12815  format %{ "CMPu   $op1,$op2" %}
12816  opcode(0x3B);  /* Opcode 3B /r */
12817  ins_encode( OpcP, RegReg( op1, op2) );
12818  ins_pipe( ialu_cr_reg_reg );
12819%}
12820
12821instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12822  match(Set cr (CmpP op1 op2));
12823
12824  format %{ "CMPu   $op1,$op2" %}
12825  opcode(0x81,0x07);  /* Opcode 81 /7 */
12826  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12827  ins_pipe( ialu_cr_reg_imm );
12828%}
12829
12830// // Cisc-spilled version of cmpP_eReg
12831instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12832  match(Set cr (CmpP op1 (LoadP op2)));
12833
12834  format %{ "CMPu   $op1,$op2" %}
12835  ins_cost(500);
12836  opcode(0x3B);  /* Opcode 3B /r */
12837  ins_encode( OpcP, RegMem( op1, op2) );
12838  ins_pipe( ialu_cr_reg_mem );
12839%}
12840
12841// // Cisc-spilled version of cmpP_eReg
12842//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12843//  match(Set cr (CmpP (LoadP op1) op2));
12844//
12845//  format %{ "CMPu   $op1,$op2" %}
12846//  ins_cost(500);
12847//  opcode(0x39);  /* Opcode 39 /r */
12848//  ins_encode( OpcP, RegMem( op1, op2) );
12849//%}
12850
12851// Compare raw pointer (used in out-of-heap check).
12852// Only works because non-oop pointers must be raw pointers
12853// and raw pointers have no anti-dependencies.
12854instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12855  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12856  match(Set cr (CmpP op1 (LoadP op2)));
12857
12858  format %{ "CMPu   $op1,$op2" %}
12859  opcode(0x3B);  /* Opcode 3B /r */
12860  ins_encode( OpcP, RegMem( op1, op2) );
12861  ins_pipe( ialu_cr_reg_mem );
12862%}
12863
12864//
12865// This will generate a signed flags result. This should be ok
12866// since any compare to a zero should be eq/neq.
12867instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12868  match(Set cr (CmpP src zero));
12869
12870  format %{ "TEST   $src,$src" %}
12871  opcode(0x85);
12872  ins_encode( OpcP, RegReg( src, src ) );
12873  ins_pipe( ialu_cr_reg_imm );
12874%}
12875
12876// Cisc-spilled version of testP_reg
12877// This will generate a signed flags result. This should be ok
12878// since any compare to a zero should be eq/neq.
12879instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12880  match(Set cr (CmpP (LoadP op) zero));
12881
12882  format %{ "TEST   $op,0xFFFFFFFF" %}
12883  ins_cost(500);
12884  opcode(0xF7);               /* Opcode F7 /0 */
12885  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12886  ins_pipe( ialu_cr_reg_imm );
12887%}
12888
12889// Yanked all unsigned pointer compare operations.
12890// Pointer compares are done with CmpP which is already unsigned.
12891
12892//----------Max and Min--------------------------------------------------------
12893// Min Instructions
12894////
12895//   *** Min and Max using the conditional move are slower than the
12896//   *** branch version on a Pentium III.
12897// // Conditional move for min
12898//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12899//  effect( USE_DEF op2, USE op1, USE cr );
12900//  format %{ "CMOVlt $op2,$op1\t! min" %}
12901//  opcode(0x4C,0x0F);
12902//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12903//  ins_pipe( pipe_cmov_reg );
12904//%}
12905//
12906//// Min Register with Register (P6 version)
12907//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12908//  predicate(VM_Version::supports_cmov() );
12909//  match(Set op2 (MinI op1 op2));
12910//  ins_cost(200);
12911//  expand %{
12912//    eFlagsReg cr;
12913//    compI_eReg(cr,op1,op2);
12914//    cmovI_reg_lt(op2,op1,cr);
12915//  %}
12916//%}
12917
12918// Min Register with Register (generic version)
12919instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12920  match(Set dst (MinI dst src));
12921  effect(KILL flags);
12922  ins_cost(300);
12923
12924  format %{ "MIN    $dst,$src" %}
12925  opcode(0xCC);
12926  ins_encode( min_enc(dst,src) );
12927  ins_pipe( pipe_slow );
12928%}
12929
12930// Max Register with Register
12931//   *** Min and Max using the conditional move are slower than the
12932//   *** branch version on a Pentium III.
12933// // Conditional move for max
12934//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12935//  effect( USE_DEF op2, USE op1, USE cr );
12936//  format %{ "CMOVgt $op2,$op1\t! max" %}
12937//  opcode(0x4F,0x0F);
12938//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12939//  ins_pipe( pipe_cmov_reg );
12940//%}
12941//
12942// // Max Register with Register (P6 version)
12943//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12944//  predicate(VM_Version::supports_cmov() );
12945//  match(Set op2 (MaxI op1 op2));
12946//  ins_cost(200);
12947//  expand %{
12948//    eFlagsReg cr;
12949//    compI_eReg(cr,op1,op2);
12950//    cmovI_reg_gt(op2,op1,cr);
12951//  %}
12952//%}
12953
12954// Max Register with Register (generic version)
12955instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12956  match(Set dst (MaxI dst src));
12957  effect(KILL flags);
12958  ins_cost(300);
12959
12960  format %{ "MAX    $dst,$src" %}
12961  opcode(0xCC);
12962  ins_encode( max_enc(dst,src) );
12963  ins_pipe( pipe_slow );
12964%}
12965
12966// ============================================================================
12967// Counted Loop limit node which represents exact final iterator value.
12968// Note: the resulting value should fit into integer range since
12969// counted loops have limit check on overflow.
12970instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
12971  match(Set limit (LoopLimit (Binary init limit) stride));
12972  effect(TEMP limit_hi, TEMP tmp, KILL flags);
12973  ins_cost(300);
12974
12975  format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
12976  ins_encode %{
12977    int strd = (int)$stride$$constant;
12978    assert(strd != 1 && strd != -1, "sanity");
12979    int m1 = (strd > 0) ? 1 : -1;
12980    // Convert limit to long (EAX:EDX)
12981    __ cdql();
12982    // Convert init to long (init:tmp)
12983    __ movl($tmp$$Register, $init$$Register);
12984    __ sarl($tmp$$Register, 31);
12985    // $limit - $init
12986    __ subl($limit$$Register, $init$$Register);
12987    __ sbbl($limit_hi$$Register, $tmp$$Register);
12988    // + ($stride - 1)
12989    if (strd > 0) {
12990      __ addl($limit$$Register, (strd - 1));
12991      __ adcl($limit_hi$$Register, 0);
12992      __ movl($tmp$$Register, strd);
12993    } else {
12994      __ addl($limit$$Register, (strd + 1));
12995      __ adcl($limit_hi$$Register, -1);
12996      __ lneg($limit_hi$$Register, $limit$$Register);
12997      __ movl($tmp$$Register, -strd);
12998    }
12999    // signed devision: (EAX:EDX) / pos_stride
13000    __ idivl($tmp$$Register);
13001    if (strd < 0) {
13002      // restore sign
13003      __ negl($tmp$$Register);
13004    }
13005    // (EAX) * stride
13006    __ mull($tmp$$Register);
13007    // + init (ignore upper bits)
13008    __ addl($limit$$Register, $init$$Register);
13009  %}
13010  ins_pipe( pipe_slow );
13011%}
13012
13013// ============================================================================
13014// Branch Instructions
13015// Jump Table
13016instruct jumpXtnd(eRegI switch_val) %{
13017  match(Jump switch_val);
13018  ins_cost(350);
13019  format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
13020  ins_encode %{
13021    // Jump to Address(table_base + switch_reg)
13022    Address index(noreg, $switch_val$$Register, Address::times_1);
13023    __ jump(ArrayAddress($constantaddress, index));
13024  %}
13025  ins_pipe(pipe_jmp);
13026%}
13027
13028// Jump Direct - Label defines a relative address from JMP+1
13029instruct jmpDir(label labl) %{
13030  match(Goto);
13031  effect(USE labl);
13032
13033  ins_cost(300);
13034  format %{ "JMP    $labl" %}
13035  size(5);
13036  ins_encode %{
13037    Label* L = $labl$$label;
13038    __ jmp(*L, false); // Always long jump
13039  %}
13040  ins_pipe( pipe_jmp );
13041%}
13042
13043// Jump Direct Conditional - Label defines a relative address from Jcc+1
13044instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
13045  match(If cop cr);
13046  effect(USE labl);
13047
13048  ins_cost(300);
13049  format %{ "J$cop    $labl" %}
13050  size(6);
13051  ins_encode %{
13052    Label* L = $labl$$label;
13053    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13054  %}
13055  ins_pipe( pipe_jcc );
13056%}
13057
13058// Jump Direct Conditional - Label defines a relative address from Jcc+1
13059instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
13060  match(CountedLoopEnd cop cr);
13061  effect(USE labl);
13062
13063  ins_cost(300);
13064  format %{ "J$cop    $labl\t# Loop end" %}
13065  size(6);
13066  ins_encode %{
13067    Label* L = $labl$$label;
13068    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13069  %}
13070  ins_pipe( pipe_jcc );
13071%}
13072
13073// Jump Direct Conditional - Label defines a relative address from Jcc+1
13074instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13075  match(CountedLoopEnd cop cmp);
13076  effect(USE labl);
13077
13078  ins_cost(300);
13079  format %{ "J$cop,u  $labl\t# Loop end" %}
13080  size(6);
13081  ins_encode %{
13082    Label* L = $labl$$label;
13083    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13084  %}
13085  ins_pipe( pipe_jcc );
13086%}
13087
13088instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13089  match(CountedLoopEnd cop cmp);
13090  effect(USE labl);
13091
13092  ins_cost(200);
13093  format %{ "J$cop,u  $labl\t# Loop end" %}
13094  size(6);
13095  ins_encode %{
13096    Label* L = $labl$$label;
13097    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13098  %}
13099  ins_pipe( pipe_jcc );
13100%}
13101
13102// Jump Direct Conditional - using unsigned comparison
13103instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13104  match(If cop cmp);
13105  effect(USE labl);
13106
13107  ins_cost(300);
13108  format %{ "J$cop,u  $labl" %}
13109  size(6);
13110  ins_encode %{
13111    Label* L = $labl$$label;
13112    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13113  %}
13114  ins_pipe(pipe_jcc);
13115%}
13116
13117instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13118  match(If cop cmp);
13119  effect(USE labl);
13120
13121  ins_cost(200);
13122  format %{ "J$cop,u  $labl" %}
13123  size(6);
13124  ins_encode %{
13125    Label* L = $labl$$label;
13126    __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
13127  %}
13128  ins_pipe(pipe_jcc);
13129%}
13130
13131instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13132  match(If cop cmp);
13133  effect(USE labl);
13134
13135  ins_cost(200);
13136  format %{ $$template
13137    if ($cop$$cmpcode == Assembler::notEqual) {
13138      $$emit$$"JP,u   $labl\n\t"
13139      $$emit$$"J$cop,u   $labl"
13140    } else {
13141      $$emit$$"JP,u   done\n\t"
13142      $$emit$$"J$cop,u   $labl\n\t"
13143      $$emit$$"done:"
13144    }
13145  %}
13146  ins_encode %{
13147    Label* l = $labl$$label;
13148    if ($cop$$cmpcode == Assembler::notEqual) {
13149      __ jcc(Assembler::parity, *l, false);
13150      __ jcc(Assembler::notEqual, *l, false);
13151    } else if ($cop$$cmpcode == Assembler::equal) {
13152      Label done;
13153      __ jccb(Assembler::parity, done);
13154      __ jcc(Assembler::equal, *l, false);
13155      __ bind(done);
13156    } else {
13157       ShouldNotReachHere();
13158    }
13159  %}
13160  ins_pipe(pipe_jcc);
13161%}
13162
13163// ============================================================================
13164// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
13165// array for an instance of the superklass.  Set a hidden internal cache on a
13166// hit (cache is checked with exposed code in gen_subtype_check()).  Return
13167// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
13168instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
13169  match(Set result (PartialSubtypeCheck sub super));
13170  effect( KILL rcx, KILL cr );
13171
13172  ins_cost(1100);  // slightly larger than the next version
13173  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
13174            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
13175            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
13176            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
13177            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
13178            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
13179            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
13180     "miss:\t" %}
13181
13182  opcode(0x1); // Force a XOR of EDI
13183  ins_encode( enc_PartialSubtypeCheck() );
13184  ins_pipe( pipe_slow );
13185%}
13186
13187instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
13188  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
13189  effect( KILL rcx, KILL result );
13190
13191  ins_cost(1000);
13192  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
13193            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
13194            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
13195            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
13196            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
13197            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
13198     "miss:\t" %}
13199
13200  opcode(0x0);  // No need to XOR EDI
13201  ins_encode( enc_PartialSubtypeCheck() );
13202  ins_pipe( pipe_slow );
13203%}
13204
13205// ============================================================================
13206// Branch Instructions -- short offset versions
13207//
13208// These instructions are used to replace jumps of a long offset (the default
13209// match) with jumps of a shorter offset.  These instructions are all tagged
13210// with the ins_short_branch attribute, which causes the ADLC to suppress the
13211// match rules in general matching.  Instead, the ADLC generates a conversion
13212// method in the MachNode which can be used to do in-place replacement of the
13213// long variant with the shorter variant.  The compiler will determine if a
13214// branch can be taken by the is_short_branch_offset() predicate in the machine
13215// specific code section of the file.
13216
13217// Jump Direct - Label defines a relative address from JMP+1
13218instruct jmpDir_short(label labl) %{
13219  match(Goto);
13220  effect(USE labl);
13221
13222  ins_cost(300);
13223  format %{ "JMP,s  $labl" %}
13224  size(2);
13225  ins_encode %{
13226    Label* L = $labl$$label;
13227    __ jmpb(*L);
13228  %}
13229  ins_pipe( pipe_jmp );
13230  ins_short_branch(1);
13231%}
13232
13233// Jump Direct Conditional - Label defines a relative address from Jcc+1
13234instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
13235  match(If cop cr);
13236  effect(USE labl);
13237
13238  ins_cost(300);
13239  format %{ "J$cop,s  $labl" %}
13240  size(2);
13241  ins_encode %{
13242    Label* L = $labl$$label;
13243    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13244  %}
13245  ins_pipe( pipe_jcc );
13246  ins_short_branch(1);
13247%}
13248
13249// Jump Direct Conditional - Label defines a relative address from Jcc+1
13250instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
13251  match(CountedLoopEnd cop cr);
13252  effect(USE labl);
13253
13254  ins_cost(300);
13255  format %{ "J$cop,s  $labl\t# Loop end" %}
13256  size(2);
13257  ins_encode %{
13258    Label* L = $labl$$label;
13259    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13260  %}
13261  ins_pipe( pipe_jcc );
13262  ins_short_branch(1);
13263%}
13264
13265// Jump Direct Conditional - Label defines a relative address from Jcc+1
13266instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13267  match(CountedLoopEnd cop cmp);
13268  effect(USE labl);
13269
13270  ins_cost(300);
13271  format %{ "J$cop,us $labl\t# Loop end" %}
13272  size(2);
13273  ins_encode %{
13274    Label* L = $labl$$label;
13275    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13276  %}
13277  ins_pipe( pipe_jcc );
13278  ins_short_branch(1);
13279%}
13280
13281instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13282  match(CountedLoopEnd cop cmp);
13283  effect(USE labl);
13284
13285  ins_cost(300);
13286  format %{ "J$cop,us $labl\t# Loop end" %}
13287  size(2);
13288  ins_encode %{
13289    Label* L = $labl$$label;
13290    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13291  %}
13292  ins_pipe( pipe_jcc );
13293  ins_short_branch(1);
13294%}
13295
13296// Jump Direct Conditional - using unsigned comparison
13297instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13298  match(If cop cmp);
13299  effect(USE labl);
13300
13301  ins_cost(300);
13302  format %{ "J$cop,us $labl" %}
13303  size(2);
13304  ins_encode %{
13305    Label* L = $labl$$label;
13306    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13307  %}
13308  ins_pipe( pipe_jcc );
13309  ins_short_branch(1);
13310%}
13311
13312instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13313  match(If cop cmp);
13314  effect(USE labl);
13315
13316  ins_cost(300);
13317  format %{ "J$cop,us $labl" %}
13318  size(2);
13319  ins_encode %{
13320    Label* L = $labl$$label;
13321    __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
13322  %}
13323  ins_pipe( pipe_jcc );
13324  ins_short_branch(1);
13325%}
13326
13327instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13328  match(If cop cmp);
13329  effect(USE labl);
13330
13331  ins_cost(300);
13332  format %{ $$template
13333    if ($cop$$cmpcode == Assembler::notEqual) {
13334      $$emit$$"JP,u,s   $labl\n\t"
13335      $$emit$$"J$cop,u,s   $labl"
13336    } else {
13337      $$emit$$"JP,u,s   done\n\t"
13338      $$emit$$"J$cop,u,s  $labl\n\t"
13339      $$emit$$"done:"
13340    }
13341  %}
13342  size(4);
13343  ins_encode %{
13344    Label* l = $labl$$label;
13345    if ($cop$$cmpcode == Assembler::notEqual) {
13346      __ jccb(Assembler::parity, *l);
13347      __ jccb(Assembler::notEqual, *l);
13348    } else if ($cop$$cmpcode == Assembler::equal) {
13349      Label done;
13350      __ jccb(Assembler::parity, done);
13351      __ jccb(Assembler::equal, *l);
13352      __ bind(done);
13353    } else {
13354       ShouldNotReachHere();
13355    }
13356  %}
13357  ins_pipe(pipe_jcc);
13358  ins_short_branch(1);
13359%}
13360
13361// ============================================================================
13362// Long Compare
13363//
13364// Currently we hold longs in 2 registers.  Comparing such values efficiently
13365// is tricky.  The flavor of compare used depends on whether we are testing
13366// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
13367// The GE test is the negated LT test.  The LE test can be had by commuting
13368// the operands (yielding a GE test) and then negating; negate again for the
13369// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
13370// NE test is negated from that.
13371
13372// Due to a shortcoming in the ADLC, it mixes up expressions like:
13373// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
13374// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
13375// are collapsed internally in the ADLC's dfa-gen code.  The match for
13376// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
13377// foo match ends up with the wrong leaf.  One fix is to not match both
13378// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
13379// both forms beat the trinary form of long-compare and both are very useful
13380// on Intel which has so few registers.
13381
13382// Manifest a CmpL result in an integer register.  Very painful.
13383// This is the test to avoid.
13384instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
13385  match(Set dst (CmpL3 src1 src2));
13386  effect( KILL flags );
13387  ins_cost(1000);
13388  format %{ "XOR    $dst,$dst\n\t"
13389            "CMP    $src1.hi,$src2.hi\n\t"
13390            "JLT,s  m_one\n\t"
13391            "JGT,s  p_one\n\t"
13392            "CMP    $src1.lo,$src2.lo\n\t"
13393            "JB,s   m_one\n\t"
13394            "JEQ,s  done\n"
13395    "p_one:\tINC    $dst\n\t"
13396            "JMP,s  done\n"
13397    "m_one:\tDEC    $dst\n"
13398     "done:" %}
13399  ins_encode %{
13400    Label p_one, m_one, done;
13401    __ xorptr($dst$$Register, $dst$$Register);
13402    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
13403    __ jccb(Assembler::less,    m_one);
13404    __ jccb(Assembler::greater, p_one);
13405    __ cmpl($src1$$Register, $src2$$Register);
13406    __ jccb(Assembler::below,   m_one);
13407    __ jccb(Assembler::equal,   done);
13408    __ bind(p_one);
13409    __ incrementl($dst$$Register);
13410    __ jmpb(done);
13411    __ bind(m_one);
13412    __ decrementl($dst$$Register);
13413    __ bind(done);
13414  %}
13415  ins_pipe( pipe_slow );
13416%}
13417
13418//======
13419// Manifest a CmpL result in the normal flags.  Only good for LT or GE
13420// compares.  Can be used for LE or GT compares by reversing arguments.
13421// NOT GOOD FOR EQ/NE tests.
13422instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13423  match( Set flags (CmpL src zero ));
13424  ins_cost(100);
13425  format %{ "TEST   $src.hi,$src.hi" %}
13426  opcode(0x85);
13427  ins_encode( OpcP, RegReg_Hi2( src, src ) );
13428  ins_pipe( ialu_cr_reg_reg );
13429%}
13430
13431// Manifest a CmpL result in the normal flags.  Only good for LT or GE
13432// compares.  Can be used for LE or GT compares by reversing arguments.
13433// NOT GOOD FOR EQ/NE tests.
13434instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13435  match( Set flags (CmpL src1 src2 ));
13436  effect( TEMP tmp );
13437  ins_cost(300);
13438  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13439            "MOV    $tmp,$src1.hi\n\t"
13440            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13441  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13442  ins_pipe( ialu_cr_reg_reg );
13443%}
13444
13445// Long compares reg < zero/req OR reg >= zero/req.
13446// Just a wrapper for a normal branch, plus the predicate test.
13447instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13448  match(If cmp flags);
13449  effect(USE labl);
13450  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13451  expand %{
13452    jmpCon(cmp,flags,labl);    // JLT or JGE...
13453  %}
13454%}
13455
13456// Compare 2 longs and CMOVE longs.
13457instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13458  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13459  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13460  ins_cost(400);
13461  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13462            "CMOV$cmp $dst.hi,$src.hi" %}
13463  opcode(0x0F,0x40);
13464  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13465  ins_pipe( pipe_cmov_reg_long );
13466%}
13467
13468instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13469  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13470  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13471  ins_cost(500);
13472  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13473            "CMOV$cmp $dst.hi,$src.hi" %}
13474  opcode(0x0F,0x40);
13475  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13476  ins_pipe( pipe_cmov_reg_long );
13477%}
13478
13479// Compare 2 longs and CMOVE ints.
13480instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13481  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13482  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13483  ins_cost(200);
13484  format %{ "CMOV$cmp $dst,$src" %}
13485  opcode(0x0F,0x40);
13486  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13487  ins_pipe( pipe_cmov_reg );
13488%}
13489
13490instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13491  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13492  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13493  ins_cost(250);
13494  format %{ "CMOV$cmp $dst,$src" %}
13495  opcode(0x0F,0x40);
13496  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13497  ins_pipe( pipe_cmov_mem );
13498%}
13499
13500// Compare 2 longs and CMOVE ints.
13501instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13502  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13503  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13504  ins_cost(200);
13505  format %{ "CMOV$cmp $dst,$src" %}
13506  opcode(0x0F,0x40);
13507  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13508  ins_pipe( pipe_cmov_reg );
13509%}
13510
13511// Compare 2 longs and CMOVE doubles
13512instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13513  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13514  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13515  ins_cost(200);
13516  expand %{
13517    fcmovD_regS(cmp,flags,dst,src);
13518  %}
13519%}
13520
13521// Compare 2 longs and CMOVE doubles
13522instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13523  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13524  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13525  ins_cost(200);
13526  expand %{
13527    fcmovXD_regS(cmp,flags,dst,src);
13528  %}
13529%}
13530
13531instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13532  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13533  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13534  ins_cost(200);
13535  expand %{
13536    fcmovF_regS(cmp,flags,dst,src);
13537  %}
13538%}
13539
13540instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13541  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13542  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13543  ins_cost(200);
13544  expand %{
13545    fcmovX_regS(cmp,flags,dst,src);
13546  %}
13547%}
13548
13549//======
13550// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13551instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13552  match( Set flags (CmpL src zero ));
13553  effect(TEMP tmp);
13554  ins_cost(200);
13555  format %{ "MOV    $tmp,$src.lo\n\t"
13556            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13557  ins_encode( long_cmp_flags0( src, tmp ) );
13558  ins_pipe( ialu_reg_reg_long );
13559%}
13560
13561// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13562instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13563  match( Set flags (CmpL src1 src2 ));
13564  ins_cost(200+300);
13565  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13566            "JNE,s  skip\n\t"
13567            "CMP    $src1.hi,$src2.hi\n\t"
13568     "skip:\t" %}
13569  ins_encode( long_cmp_flags1( src1, src2 ) );
13570  ins_pipe( ialu_cr_reg_reg );
13571%}
13572
13573// Long compare reg == zero/reg OR reg != zero/reg
13574// Just a wrapper for a normal branch, plus the predicate test.
13575instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13576  match(If cmp flags);
13577  effect(USE labl);
13578  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13579  expand %{
13580    jmpCon(cmp,flags,labl);    // JEQ or JNE...
13581  %}
13582%}
13583
13584// Compare 2 longs and CMOVE longs.
13585instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13586  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13587  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13588  ins_cost(400);
13589  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13590            "CMOV$cmp $dst.hi,$src.hi" %}
13591  opcode(0x0F,0x40);
13592  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13593  ins_pipe( pipe_cmov_reg_long );
13594%}
13595
13596instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13597  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13598  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13599  ins_cost(500);
13600  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13601            "CMOV$cmp $dst.hi,$src.hi" %}
13602  opcode(0x0F,0x40);
13603  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13604  ins_pipe( pipe_cmov_reg_long );
13605%}
13606
13607// Compare 2 longs and CMOVE ints.
13608instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13609  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13610  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13611  ins_cost(200);
13612  format %{ "CMOV$cmp $dst,$src" %}
13613  opcode(0x0F,0x40);
13614  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13615  ins_pipe( pipe_cmov_reg );
13616%}
13617
13618instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13619  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13620  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13621  ins_cost(250);
13622  format %{ "CMOV$cmp $dst,$src" %}
13623  opcode(0x0F,0x40);
13624  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13625  ins_pipe( pipe_cmov_mem );
13626%}
13627
13628// Compare 2 longs and CMOVE ints.
13629instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13630  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13631  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13632  ins_cost(200);
13633  format %{ "CMOV$cmp $dst,$src" %}
13634  opcode(0x0F,0x40);
13635  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13636  ins_pipe( pipe_cmov_reg );
13637%}
13638
13639// Compare 2 longs and CMOVE doubles
13640instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13641  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13642  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13643  ins_cost(200);
13644  expand %{
13645    fcmovD_regS(cmp,flags,dst,src);
13646  %}
13647%}
13648
13649// Compare 2 longs and CMOVE doubles
13650instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13651  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13652  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13653  ins_cost(200);
13654  expand %{
13655    fcmovXD_regS(cmp,flags,dst,src);
13656  %}
13657%}
13658
13659instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13660  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13661  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13662  ins_cost(200);
13663  expand %{
13664    fcmovF_regS(cmp,flags,dst,src);
13665  %}
13666%}
13667
13668instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13669  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13670  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13671  ins_cost(200);
13672  expand %{
13673    fcmovX_regS(cmp,flags,dst,src);
13674  %}
13675%}
13676
13677//======
13678// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13679// Same as cmpL_reg_flags_LEGT except must negate src
13680instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13681  match( Set flags (CmpL src zero ));
13682  effect( TEMP tmp );
13683  ins_cost(300);
13684  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13685            "CMP    $tmp,$src.lo\n\t"
13686            "SBB    $tmp,$src.hi\n\t" %}
13687  ins_encode( long_cmp_flags3(src, tmp) );
13688  ins_pipe( ialu_reg_reg_long );
13689%}
13690
13691// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13692// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13693// requires a commuted test to get the same result.
13694instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13695  match( Set flags (CmpL src1 src2 ));
13696  effect( TEMP tmp );
13697  ins_cost(300);
13698  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13699            "MOV    $tmp,$src2.hi\n\t"
13700            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13701  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13702  ins_pipe( ialu_cr_reg_reg );
13703%}
13704
13705// Long compares reg < zero/req OR reg >= zero/req.
13706// Just a wrapper for a normal branch, plus the predicate test
13707instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13708  match(If cmp flags);
13709  effect(USE labl);
13710  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13711  ins_cost(300);
13712  expand %{
13713    jmpCon(cmp,flags,labl);    // JGT or JLE...
13714  %}
13715%}
13716
13717// Compare 2 longs and CMOVE longs.
13718instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13719  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13720  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13721  ins_cost(400);
13722  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13723            "CMOV$cmp $dst.hi,$src.hi" %}
13724  opcode(0x0F,0x40);
13725  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13726  ins_pipe( pipe_cmov_reg_long );
13727%}
13728
13729instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13730  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13731  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13732  ins_cost(500);
13733  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13734            "CMOV$cmp $dst.hi,$src.hi+4" %}
13735  opcode(0x0F,0x40);
13736  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13737  ins_pipe( pipe_cmov_reg_long );
13738%}
13739
13740// Compare 2 longs and CMOVE ints.
13741instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13742  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13743  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13744  ins_cost(200);
13745  format %{ "CMOV$cmp $dst,$src" %}
13746  opcode(0x0F,0x40);
13747  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13748  ins_pipe( pipe_cmov_reg );
13749%}
13750
13751instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13752  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13753  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13754  ins_cost(250);
13755  format %{ "CMOV$cmp $dst,$src" %}
13756  opcode(0x0F,0x40);
13757  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13758  ins_pipe( pipe_cmov_mem );
13759%}
13760
13761// Compare 2 longs and CMOVE ptrs.
13762instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13763  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13764  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13765  ins_cost(200);
13766  format %{ "CMOV$cmp $dst,$src" %}
13767  opcode(0x0F,0x40);
13768  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13769  ins_pipe( pipe_cmov_reg );
13770%}
13771
13772// Compare 2 longs and CMOVE doubles
13773instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13774  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13775  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13776  ins_cost(200);
13777  expand %{
13778    fcmovD_regS(cmp,flags,dst,src);
13779  %}
13780%}
13781
13782// Compare 2 longs and CMOVE doubles
13783instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13784  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13785  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13786  ins_cost(200);
13787  expand %{
13788    fcmovXD_regS(cmp,flags,dst,src);
13789  %}
13790%}
13791
13792instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13793  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13794  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13795  ins_cost(200);
13796  expand %{
13797    fcmovF_regS(cmp,flags,dst,src);
13798  %}
13799%}
13800
13801
13802instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13803  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13804  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13805  ins_cost(200);
13806  expand %{
13807    fcmovX_regS(cmp,flags,dst,src);
13808  %}
13809%}
13810
13811
13812// ============================================================================
13813// Procedure Call/Return Instructions
13814// Call Java Static Instruction
13815// Note: If this code changes, the corresponding ret_addr_offset() and
13816//       compute_padding() functions will have to be adjusted.
13817instruct CallStaticJavaDirect(method meth) %{
13818  match(CallStaticJava);
13819  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13820  effect(USE meth);
13821
13822  ins_cost(300);
13823  format %{ "CALL,static " %}
13824  opcode(0xE8); /* E8 cd */
13825  ins_encode( pre_call_FPU,
13826              Java_Static_Call( meth ),
13827              call_epilog,
13828              post_call_FPU );
13829  ins_pipe( pipe_slow );
13830  ins_alignment(4);
13831%}
13832
13833// Call Java Static Instruction (method handle version)
13834// Note: If this code changes, the corresponding ret_addr_offset() and
13835//       compute_padding() functions will have to be adjusted.
13836instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13837  match(CallStaticJava);
13838  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13839  effect(USE meth);
13840  // EBP is saved by all callees (for interpreter stack correction).
13841  // We use it here for a similar purpose, in {preserve,restore}_SP.
13842
13843  ins_cost(300);
13844  format %{ "CALL,static/MethodHandle " %}
13845  opcode(0xE8); /* E8 cd */
13846  ins_encode( pre_call_FPU,
13847              preserve_SP,
13848              Java_Static_Call( meth ),
13849              restore_SP,
13850              call_epilog,
13851              post_call_FPU );
13852  ins_pipe( pipe_slow );
13853  ins_alignment(4);
13854%}
13855
13856// Call Java Dynamic Instruction
13857// Note: If this code changes, the corresponding ret_addr_offset() and
13858//       compute_padding() functions will have to be adjusted.
13859instruct CallDynamicJavaDirect(method meth) %{
13860  match(CallDynamicJava);
13861  effect(USE meth);
13862
13863  ins_cost(300);
13864  format %{ "MOV    EAX,(oop)-1\n\t"
13865            "CALL,dynamic" %}
13866  opcode(0xE8); /* E8 cd */
13867  ins_encode( pre_call_FPU,
13868              Java_Dynamic_Call( meth ),
13869              call_epilog,
13870              post_call_FPU );
13871  ins_pipe( pipe_slow );
13872  ins_alignment(4);
13873%}
13874
13875// Call Runtime Instruction
13876instruct CallRuntimeDirect(method meth) %{
13877  match(CallRuntime );
13878  effect(USE meth);
13879
13880  ins_cost(300);
13881  format %{ "CALL,runtime " %}
13882  opcode(0xE8); /* E8 cd */
13883  // Use FFREEs to clear entries in float stack
13884  ins_encode( pre_call_FPU,
13885              FFree_Float_Stack_All,
13886              Java_To_Runtime( meth ),
13887              post_call_FPU );
13888  ins_pipe( pipe_slow );
13889%}
13890
13891// Call runtime without safepoint
13892instruct CallLeafDirect(method meth) %{
13893  match(CallLeaf);
13894  effect(USE meth);
13895
13896  ins_cost(300);
13897  format %{ "CALL_LEAF,runtime " %}
13898  opcode(0xE8); /* E8 cd */
13899  ins_encode( pre_call_FPU,
13900              FFree_Float_Stack_All,
13901              Java_To_Runtime( meth ),
13902              Verify_FPU_For_Leaf, post_call_FPU );
13903  ins_pipe( pipe_slow );
13904%}
13905
13906instruct CallLeafNoFPDirect(method meth) %{
13907  match(CallLeafNoFP);
13908  effect(USE meth);
13909
13910  ins_cost(300);
13911  format %{ "CALL_LEAF_NOFP,runtime " %}
13912  opcode(0xE8); /* E8 cd */
13913  ins_encode(Java_To_Runtime(meth));
13914  ins_pipe( pipe_slow );
13915%}
13916
13917
13918// Return Instruction
13919// Remove the return address & jump to it.
13920instruct Ret() %{
13921  match(Return);
13922  format %{ "RET" %}
13923  opcode(0xC3);
13924  ins_encode(OpcP);
13925  ins_pipe( pipe_jmp );
13926%}
13927
13928// Tail Call; Jump from runtime stub to Java code.
13929// Also known as an 'interprocedural jump'.
13930// Target of jump will eventually return to caller.
13931// TailJump below removes the return address.
13932instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13933  match(TailCall jump_target method_oop );
13934  ins_cost(300);
13935  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13936  opcode(0xFF, 0x4);  /* Opcode FF /4 */
13937  ins_encode( OpcP, RegOpc(jump_target) );
13938  ins_pipe( pipe_jmp );
13939%}
13940
13941
13942// Tail Jump; remove the return address; jump to target.
13943// TailCall above leaves the return address around.
13944instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13945  match( TailJump jump_target ex_oop );
13946  ins_cost(300);
13947  format %{ "POP    EDX\t# pop return address into dummy\n\t"
13948            "JMP    $jump_target " %}
13949  opcode(0xFF, 0x4);  /* Opcode FF /4 */
13950  ins_encode( enc_pop_rdx,
13951              OpcP, RegOpc(jump_target) );
13952  ins_pipe( pipe_jmp );
13953%}
13954
13955// Create exception oop: created by stack-crawling runtime code.
13956// Created exception is now available to this handler, and is setup
13957// just prior to jumping to this handler.  No code emitted.
13958instruct CreateException( eAXRegP ex_oop )
13959%{
13960  match(Set ex_oop (CreateEx));
13961
13962  size(0);
13963  // use the following format syntax
13964  format %{ "# exception oop is in EAX; no code emitted" %}
13965  ins_encode();
13966  ins_pipe( empty );
13967%}
13968
13969
13970// Rethrow exception:
13971// The exception oop will come in the first argument position.
13972// Then JUMP (not call) to the rethrow stub code.
13973instruct RethrowException()
13974%{
13975  match(Rethrow);
13976
13977  // use the following format syntax
13978  format %{ "JMP    rethrow_stub" %}
13979  ins_encode(enc_rethrow);
13980  ins_pipe( pipe_jmp );
13981%}
13982
13983// inlined locking and unlocking
13984
13985
13986instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
13987  match( Set cr (FastLock object box) );
13988  effect( TEMP tmp, TEMP scr );
13989  ins_cost(300);
13990  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
13991  ins_encode( Fast_Lock(object,box,tmp,scr) );
13992  ins_pipe( pipe_slow );
13993%}
13994
13995instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13996  match( Set cr (FastUnlock object box) );
13997  effect( TEMP tmp );
13998  ins_cost(300);
13999  format %{ "FASTUNLOCK $object, $box, $tmp" %}
14000  ins_encode( Fast_Unlock(object,box,tmp) );
14001  ins_pipe( pipe_slow );
14002%}
14003
14004
14005
14006// ============================================================================
14007// Safepoint Instruction
14008instruct safePoint_poll(eFlagsReg cr) %{
14009  match(SafePoint);
14010  effect(KILL cr);
14011
14012  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
14013  // On SPARC that might be acceptable as we can generate the address with
14014  // just a sethi, saving an or.  By polling at offset 0 we can end up
14015  // putting additional pressure on the index-0 in the D$.  Because of
14016  // alignment (just like the situation at hand) the lower indices tend
14017  // to see more traffic.  It'd be better to change the polling address
14018  // to offset 0 of the last $line in the polling page.
14019
14020  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
14021  ins_cost(125);
14022  size(6) ;
14023  ins_encode( Safepoint_Poll() );
14024  ins_pipe( ialu_reg_mem );
14025%}
14026
14027//----------PEEPHOLE RULES-----------------------------------------------------
14028// These must follow all instruction definitions as they use the names
14029// defined in the instructions definitions.
14030//
14031// peepmatch ( root_instr_name [preceding_instruction]* );
14032//
14033// peepconstraint %{
14034// (instruction_number.operand_name relational_op instruction_number.operand_name
14035//  [, ...] );
14036// // instruction numbers are zero-based using left to right order in peepmatch
14037//
14038// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
14039// // provide an instruction_number.operand_name for each operand that appears
14040// // in the replacement instruction's match rule
14041//
14042// ---------VM FLAGS---------------------------------------------------------
14043//
14044// All peephole optimizations can be turned off using -XX:-OptoPeephole
14045//
14046// Each peephole rule is given an identifying number starting with zero and
14047// increasing by one in the order seen by the parser.  An individual peephole
14048// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
14049// on the command-line.
14050//
14051// ---------CURRENT LIMITATIONS----------------------------------------------
14052//
14053// Only match adjacent instructions in same basic block
14054// Only equality constraints
14055// Only constraints between operands, not (0.dest_reg == EAX_enc)
14056// Only one replacement instruction
14057//
14058// ---------EXAMPLE----------------------------------------------------------
14059//
14060// // pertinent parts of existing instructions in architecture description
14061// instruct movI(eRegI dst, eRegI src) %{
14062//   match(Set dst (CopyI src));
14063// %}
14064//
14065// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
14066//   match(Set dst (AddI dst src));
14067//   effect(KILL cr);
14068// %}
14069//
14070// // Change (inc mov) to lea
14071// peephole %{
14072//   // increment preceeded by register-register move
14073//   peepmatch ( incI_eReg movI );
14074//   // require that the destination register of the increment
14075//   // match the destination register of the move
14076//   peepconstraint ( 0.dst == 1.dst );
14077//   // construct a replacement instruction that sets
14078//   // the destination to ( move's source register + one )
14079//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14080// %}
14081//
14082// Implementation no longer uses movX instructions since
14083// machine-independent system no longer uses CopyX nodes.
14084//
14085// peephole %{
14086//   peepmatch ( incI_eReg movI );
14087//   peepconstraint ( 0.dst == 1.dst );
14088//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14089// %}
14090//
14091// peephole %{
14092//   peepmatch ( decI_eReg movI );
14093//   peepconstraint ( 0.dst == 1.dst );
14094//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14095// %}
14096//
14097// peephole %{
14098//   peepmatch ( addI_eReg_imm movI );
14099//   peepconstraint ( 0.dst == 1.dst );
14100//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
14101// %}
14102//
14103// peephole %{
14104//   peepmatch ( addP_eReg_imm movP );
14105//   peepconstraint ( 0.dst == 1.dst );
14106//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
14107// %}
14108
14109// // Change load of spilled value to only a spill
14110// instruct storeI(memory mem, eRegI src) %{
14111//   match(Set mem (StoreI mem src));
14112// %}
14113//
14114// instruct loadI(eRegI dst, memory mem) %{
14115//   match(Set dst (LoadI mem));
14116// %}
14117//
14118peephole %{
14119  peepmatch ( loadI storeI );
14120  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
14121  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
14122%}
14123
14124//----------SMARTSPILL RULES---------------------------------------------------
14125// These must follow all instruction definitions as they use the names
14126// defined in the instructions definitions.
14127