x86_32.ad revision 1668:3e8fbc61cee8
1//
2// Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// X86 Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31
32register %{
33//----------Architecture Description Register Definitions----------------------
34// General Registers
35// "reg_def"  name ( register save type, C convention save type,
36//                   ideal register type, encoding );
37// Register Save Types:
38//
39// NS  = No-Save:       The register allocator assumes that these registers
40//                      can be used without saving upon entry to the method, &
41//                      that they do not need to be saved at call sites.
42//
43// SOC = Save-On-Call:  The register allocator assumes that these registers
44//                      can be used without saving upon entry to the method,
45//                      but that they must be saved at call sites.
46//
47// SOE = Save-On-Entry: The register allocator assumes that these registers
48//                      must be saved before using them upon entry to the
49//                      method, but they do not need to be saved at call
50//                      sites.
51//
52// AS  = Always-Save:   The register allocator assumes that these registers
53//                      must be saved before using them upon entry to the
54//                      method, & that they must be saved at call sites.
55//
56// Ideal Register Type is used to determine how to save & restore a
57// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59//
60// The encoding number is the actual bit-pattern placed into the opcodes.
61
62// General Registers
63// Previously set EBX, ESI, and EDI as save-on-entry for java code
64// Turn off SOE in java-code due to frequent use of uncommon-traps.
65// Now that allocator is better, turn on ESI and EDI as SOE registers.
66
67reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
68reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
69reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
70reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
71// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
72reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
73reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
74reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
75reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
76
77// Special Registers
78reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
79
80// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
81// allocator, and only shows up in the encodings.
82reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
83reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
84// Ok so here's the trick FPR1 is really st(0) except in the midst
85// of emission of assembly for a machnode. During the emission the fpu stack
86// is pushed making FPR1 == st(1) temporarily. However at any safepoint
87// the stack will not have this element so FPR1 == st(0) from the
88// oopMap viewpoint. This same weirdness with numbering causes
89// instruction encoding to have to play games with the register
90// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
91// where it does flt->flt moves to see an example
92//
93reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
94reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
95reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
96reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
97reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
98reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
99reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
100reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
101reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
102reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
103reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
104reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
105reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
106reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
107
108// XMM registers.  128-bit registers or 4 words each, labeled a-d.
109// Word a in each register holds a Float, words ab hold a Double.
110// We currently do not use the SIMD capabilities, so registers cd
111// are unused at the moment.
112reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
113reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
114reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
115reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
116reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
117reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
118reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
119reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
120reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
121reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
122reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
123reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
124reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
125reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
126reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
127reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
128
129// Specify priority of register selection within phases of register
130// allocation.  Highest priority is first.  A useful heuristic is to
131// give registers a low priority when they are required by machine
132// instructions, like EAX and EDX.  Registers which are used as
133// pairs must fall on an even boundary (witness the FPR#L's in this list).
134// For the Intel integer registers, the equivalent Long pairs are
135// EDX:EAX, EBX:ECX, and EDI:EBP.
136alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
137                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
138                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
139                    FPR6L, FPR6H, FPR7L, FPR7H );
140
141alloc_class chunk1( XMM0a, XMM0b,
142                    XMM1a, XMM1b,
143                    XMM2a, XMM2b,
144                    XMM3a, XMM3b,
145                    XMM4a, XMM4b,
146                    XMM5a, XMM5b,
147                    XMM6a, XMM6b,
148                    XMM7a, XMM7b, EFLAGS);
149
150
151//----------Architecture Description Register Classes--------------------------
152// Several register classes are automatically defined based upon information in
153// this architecture description.
154// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
155// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
156// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
157// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
158//
159// Class for all registers
160reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
161// Class for general registers
162reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
163// Class for general registers which may be used for implicit null checks on win95
164// Also safe for use by tailjump. We don't want to allocate in rbp,
165reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
166// Class of "X" registers
167reg_class x_reg(EBX, ECX, EDX, EAX);
168// Class of registers that can appear in an address with no offset.
169// EBP and ESP require an extra instruction byte for zero offset.
170// Used in fast-unlock
171reg_class p_reg(EDX, EDI, ESI, EBX);
172// Class for general registers not including ECX
173reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
174// Class for general registers not including EAX
175reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
176// Class for general registers not including EAX or EBX.
177reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
178// Class of EAX (for multiply and divide operations)
179reg_class eax_reg(EAX);
180// Class of EBX (for atomic add)
181reg_class ebx_reg(EBX);
182// Class of ECX (for shift and JCXZ operations and cmpLTMask)
183reg_class ecx_reg(ECX);
184// Class of EDX (for multiply and divide operations)
185reg_class edx_reg(EDX);
186// Class of EDI (for synchronization)
187reg_class edi_reg(EDI);
188// Class of ESI (for synchronization)
189reg_class esi_reg(ESI);
190// Singleton class for interpreter's stack pointer
191reg_class ebp_reg(EBP);
192// Singleton class for stack pointer
193reg_class sp_reg(ESP);
194// Singleton class for instruction pointer
195// reg_class ip_reg(EIP);
196// Singleton class for condition codes
197reg_class int_flags(EFLAGS);
198// Class of integer register pairs
199reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
200// Class of integer register pairs that aligns with calling convention
201reg_class eadx_reg( EAX,EDX );
202reg_class ebcx_reg( ECX,EBX );
203// Not AX or DX, used in divides
204reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
205
206// Floating point registers.  Notice FPR0 is not a choice.
207// FPR0 is not ever allocated; we use clever encodings to fake
208// a 2-address instructions out of Intels FP stack.
209reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
210
211// make a register class for SSE registers
212reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
213
214// make a double register class for SSE2 registers
215reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
216                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
217
218reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
219                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
220                   FPR7L,FPR7H );
221
222reg_class flt_reg0( FPR1L );
223reg_class dbl_reg0( FPR1L,FPR1H );
224reg_class dbl_reg1( FPR2L,FPR2H );
225reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
226                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
227
228// XMM6 and XMM7 could be used as temporary registers for long, float and
229// double values for SSE2.
230reg_class xdb_reg6( XMM6a,XMM6b );
231reg_class xdb_reg7( XMM7a,XMM7b );
232%}
233
234
235//----------SOURCE BLOCK-------------------------------------------------------
236// This is a block of C++ code which provides values, functions, and
237// definitions necessary in the rest of the architecture description
238source_hpp %{
239// Must be visible to the DFA in dfa_x86_32.cpp
240extern bool is_operand_hi32_zero(Node* n);
241%}
242
243source %{
244#define   RELOC_IMM32    Assembler::imm_operand
245#define   RELOC_DISP32   Assembler::disp32_operand
246
247#define __ _masm.
248
249// How to find the high register of a Long pair, given the low register
250#define   HIGH_FROM_LOW(x) ((x)+2)
251
252// These masks are used to provide 128-bit aligned bitmasks to the XMM
253// instructions, to allow sign-masking or sign-bit flipping.  They allow
254// fast versions of NegF/NegD and AbsF/AbsD.
255
256// Note: 'double' and 'long long' have 32-bits alignment on x86.
257static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
258  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
259  // of 128-bits operands for SSE instructions.
260  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
261  // Store the value to a 128-bits operand.
262  operand[0] = lo;
263  operand[1] = hi;
264  return operand;
265}
266
267// Buffer for 128-bits masks used by SSE instructions.
268static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
269
270// Static initialization during VM startup.
271static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
272static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
273static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
274static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
275
276// Offset hacking within calls.
277static int pre_call_FPU_size() {
278  if (Compile::current()->in_24_bit_fp_mode())
279    return 6; // fldcw
280  return 0;
281}
282
283static int preserve_SP_size() {
284  return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
285}
286
287// !!!!! Special hack to get all type of calls to specify the byte offset
288//       from the start of the call to the point where the return address
289//       will point.
290int MachCallStaticJavaNode::ret_addr_offset() {
291  int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
292  if (_method_handle_invoke)
293    offset += preserve_SP_size();
294  return offset;
295}
296
297int MachCallDynamicJavaNode::ret_addr_offset() {
298  return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
299}
300
301static int sizeof_FFree_Float_Stack_All = -1;
302
303int MachCallRuntimeNode::ret_addr_offset() {
304  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
305  return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
306}
307
308// Indicate if the safepoint node needs the polling page as an input.
309// Since x86 does have absolute addressing, it doesn't.
310bool SafePointNode::needs_polling_address_input() {
311  return false;
312}
313
314//
315// Compute padding required for nodes which need alignment
316//
317
318// The address of the call instruction needs to be 4-byte aligned to
319// ensure that it does not span a cache line so that it can be patched.
320int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
321  current_offset += pre_call_FPU_size();  // skip fldcw, if any
322  current_offset += 1;      // skip call opcode byte
323  return round_to(current_offset, alignment_required()) - current_offset;
324}
325
326// The address of the call instruction needs to be 4-byte aligned to
327// ensure that it does not span a cache line so that it can be patched.
328int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
329  current_offset += pre_call_FPU_size();  // skip fldcw, if any
330  current_offset += preserve_SP_size();   // skip mov rbp, rsp
331  current_offset += 1;      // skip call opcode byte
332  return round_to(current_offset, alignment_required()) - current_offset;
333}
334
335// The address of the call instruction needs to be 4-byte aligned to
336// ensure that it does not span a cache line so that it can be patched.
337int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
338  current_offset += pre_call_FPU_size();  // skip fldcw, if any
339  current_offset += 5;      // skip MOV instruction
340  current_offset += 1;      // skip call opcode byte
341  return round_to(current_offset, alignment_required()) - current_offset;
342}
343
344#ifndef PRODUCT
345void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
346  st->print("INT3");
347}
348#endif
349
350// EMIT_RM()
351void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
352  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
353  cbuf.insts()->emit_int8(c);
354}
355
356// EMIT_CC()
357void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
358  unsigned char c = (unsigned char)( f1 | f2 );
359  cbuf.insts()->emit_int8(c);
360}
361
362// EMIT_OPCODE()
363void emit_opcode(CodeBuffer &cbuf, int code) {
364  cbuf.insts()->emit_int8((unsigned char) code);
365}
366
367// EMIT_OPCODE() w/ relocation information
368void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
369  cbuf.relocate(cbuf.insts_mark() + offset, reloc);
370  emit_opcode(cbuf, code);
371}
372
373// EMIT_D8()
374void emit_d8(CodeBuffer &cbuf, int d8) {
375  cbuf.insts()->emit_int8((unsigned char) d8);
376}
377
378// EMIT_D16()
379void emit_d16(CodeBuffer &cbuf, int d16) {
380  cbuf.insts()->emit_int16(d16);
381}
382
383// EMIT_D32()
384void emit_d32(CodeBuffer &cbuf, int d32) {
385  cbuf.insts()->emit_int32(d32);
386}
387
388// emit 32 bit value and construct relocation entry from relocInfo::relocType
389void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
390        int format) {
391  cbuf.relocate(cbuf.insts_mark(), reloc, format);
392  cbuf.insts()->emit_int32(d32);
393}
394
395// emit 32 bit value and construct relocation entry from RelocationHolder
396void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
397        int format) {
398#ifdef ASSERT
399  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
400    assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
401  }
402#endif
403  cbuf.relocate(cbuf.insts_mark(), rspec, format);
404  cbuf.insts()->emit_int32(d32);
405}
406
407// Access stack slot for load or store
408void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
409  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
410  if( -128 <= disp && disp <= 127 ) {
411    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
412    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
413    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
414  } else {
415    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
416    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
417    emit_d32(cbuf, disp);     // Displacement  // R/M byte
418  }
419}
420
421   // eRegI ereg, memory mem) %{    // emit_reg_mem
422void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
423  // There is no index & no scale, use form without SIB byte
424  if ((index == 0x4) &&
425      (scale == 0) && (base != ESP_enc)) {
426    // If no displacement, mode is 0x0; unless base is [EBP]
427    if ( (displace == 0) && (base != EBP_enc) ) {
428      emit_rm(cbuf, 0x0, reg_encoding, base);
429    }
430    else {                    // If 8-bit displacement, mode 0x1
431      if ((displace >= -128) && (displace <= 127)
432          && !(displace_is_oop) ) {
433        emit_rm(cbuf, 0x1, reg_encoding, base);
434        emit_d8(cbuf, displace);
435      }
436      else {                  // If 32-bit displacement
437        if (base == -1) { // Special flag for absolute address
438          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
439          // (manual lies; no SIB needed here)
440          if ( displace_is_oop ) {
441            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
442          } else {
443            emit_d32      (cbuf, displace);
444          }
445        }
446        else {                // Normal base + offset
447          emit_rm(cbuf, 0x2, reg_encoding, base);
448          if ( displace_is_oop ) {
449            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
450          } else {
451            emit_d32      (cbuf, displace);
452          }
453        }
454      }
455    }
456  }
457  else {                      // Else, encode with the SIB byte
458    // If no displacement, mode is 0x0; unless base is [EBP]
459    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
460      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
461      emit_rm(cbuf, scale, index, base);
462    }
463    else {                    // If 8-bit displacement, mode 0x1
464      if ((displace >= -128) && (displace <= 127)
465          && !(displace_is_oop) ) {
466        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
467        emit_rm(cbuf, scale, index, base);
468        emit_d8(cbuf, displace);
469      }
470      else {                  // If 32-bit displacement
471        if (base == 0x04 ) {
472          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
473          emit_rm(cbuf, scale, index, 0x04);
474        } else {
475          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
476          emit_rm(cbuf, scale, index, base);
477        }
478        if ( displace_is_oop ) {
479          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
480        } else {
481          emit_d32      (cbuf, displace);
482        }
483      }
484    }
485  }
486}
487
488
489void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
490  if( dst_encoding == src_encoding ) {
491    // reg-reg copy, use an empty encoding
492  } else {
493    emit_opcode( cbuf, 0x8B );
494    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
495  }
496}
497
498void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
499  if( dst_encoding == src_encoding ) {
500    // reg-reg copy, use an empty encoding
501  } else {
502    MacroAssembler _masm(&cbuf);
503
504    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
505  }
506}
507
508
509//=============================================================================
510#ifndef PRODUCT
511void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
512  Compile* C = ra_->C;
513  if( C->in_24_bit_fp_mode() ) {
514    st->print("FLDCW  24 bit fpu control word");
515    st->print_cr(""); st->print("\t");
516  }
517
518  int framesize = C->frame_slots() << LogBytesPerInt;
519  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
520  // Remove two words for return addr and rbp,
521  framesize -= 2*wordSize;
522
523  // Calls to C2R adapters often do not accept exceptional returns.
524  // We require that their callers must bang for them.  But be careful, because
525  // some VM calls (such as call site linkage) can use several kilobytes of
526  // stack.  But the stack safety zone should account for that.
527  // See bugs 4446381, 4468289, 4497237.
528  if (C->need_stack_bang(framesize)) {
529    st->print_cr("# stack bang"); st->print("\t");
530  }
531  st->print_cr("PUSHL  EBP"); st->print("\t");
532
533  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
534    st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
535    st->print_cr(""); st->print("\t");
536    framesize -= wordSize;
537  }
538
539  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
540    if (framesize) {
541      st->print("SUB    ESP,%d\t# Create frame",framesize);
542    }
543  } else {
544    st->print("SUB    ESP,%d\t# Create frame",framesize);
545  }
546}
547#endif
548
549
550void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
551  Compile* C = ra_->C;
552
553  if (UseSSE >= 2 && VerifyFPU) {
554    MacroAssembler masm(&cbuf);
555    masm.verify_FPU(0, "FPU stack must be clean on entry");
556  }
557
558  // WARNING: Initial instruction MUST be 5 bytes or longer so that
559  // NativeJump::patch_verified_entry will be able to patch out the entry
560  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
561  // depth is ok at 5 bytes, the frame allocation can be either 3 or
562  // 6 bytes. So if we don't do the fldcw or the push then we must
563  // use the 6 byte frame allocation even if we have no frame. :-(
564  // If method sets FPU control word do it now
565  if( C->in_24_bit_fp_mode() ) {
566    MacroAssembler masm(&cbuf);
567    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
568  }
569
570  int framesize = C->frame_slots() << LogBytesPerInt;
571  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
572  // Remove two words for return addr and rbp,
573  framesize -= 2*wordSize;
574
575  // Calls to C2R adapters often do not accept exceptional returns.
576  // We require that their callers must bang for them.  But be careful, because
577  // some VM calls (such as call site linkage) can use several kilobytes of
578  // stack.  But the stack safety zone should account for that.
579  // See bugs 4446381, 4468289, 4497237.
580  if (C->need_stack_bang(framesize)) {
581    MacroAssembler masm(&cbuf);
582    masm.generate_stack_overflow_check(framesize);
583  }
584
585  // We always push rbp, so that on return to interpreter rbp, will be
586  // restored correctly and we can correct the stack.
587  emit_opcode(cbuf, 0x50 | EBP_enc);
588
589  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
590    emit_opcode(cbuf, 0x68); // push 0xbadb100d
591    emit_d32(cbuf, 0xbadb100d);
592    framesize -= wordSize;
593  }
594
595  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
596    if (framesize) {
597      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
598      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
599      emit_d8(cbuf, framesize);
600    }
601  } else {
602    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
603    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
604    emit_d32(cbuf, framesize);
605  }
606  C->set_frame_complete(cbuf.insts_size());
607
608#ifdef ASSERT
609  if (VerifyStackAtCalls) {
610    Label L;
611    MacroAssembler masm(&cbuf);
612    masm.push(rax);
613    masm.mov(rax, rsp);
614    masm.andptr(rax, StackAlignmentInBytes-1);
615    masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
616    masm.pop(rax);
617    masm.jcc(Assembler::equal, L);
618    masm.stop("Stack is not properly aligned!");
619    masm.bind(L);
620  }
621#endif
622
623}
624
625uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
626  return MachNode::size(ra_); // too many variables; just compute it the hard way
627}
628
629int MachPrologNode::reloc() const {
630  return 0; // a large enough number
631}
632
633//=============================================================================
634#ifndef PRODUCT
635void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
636  Compile *C = ra_->C;
637  int framesize = C->frame_slots() << LogBytesPerInt;
638  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
639  // Remove two words for return addr and rbp,
640  framesize -= 2*wordSize;
641
642  if( C->in_24_bit_fp_mode() ) {
643    st->print("FLDCW  standard control word");
644    st->cr(); st->print("\t");
645  }
646  if( framesize ) {
647    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
648    st->cr(); st->print("\t");
649  }
650  st->print_cr("POPL   EBP"); st->print("\t");
651  if( do_polling() && C->is_method_compilation() ) {
652    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
653    st->cr(); st->print("\t");
654  }
655}
656#endif
657
658void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
659  Compile *C = ra_->C;
660
661  // If method set FPU control word, restore to standard control word
662  if( C->in_24_bit_fp_mode() ) {
663    MacroAssembler masm(&cbuf);
664    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
665  }
666
667  int framesize = C->frame_slots() << LogBytesPerInt;
668  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
669  // Remove two words for return addr and rbp,
670  framesize -= 2*wordSize;
671
672  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
673
674  if( framesize >= 128 ) {
675    emit_opcode(cbuf, 0x81); // add  SP, #framesize
676    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
677    emit_d32(cbuf, framesize);
678  }
679  else if( framesize ) {
680    emit_opcode(cbuf, 0x83); // add  SP, #framesize
681    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
682    emit_d8(cbuf, framesize);
683  }
684
685  emit_opcode(cbuf, 0x58 | EBP_enc);
686
687  if( do_polling() && C->is_method_compilation() ) {
688    cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
689    emit_opcode(cbuf,0x85);
690    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
691    emit_d32(cbuf, (intptr_t)os::get_polling_page());
692  }
693}
694
695uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
696  Compile *C = ra_->C;
697  // If method set FPU control word, restore to standard control word
698  int size = C->in_24_bit_fp_mode() ? 6 : 0;
699  if( do_polling() && C->is_method_compilation() ) size += 6;
700
701  int framesize = C->frame_slots() << LogBytesPerInt;
702  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
703  // Remove two words for return addr and rbp,
704  framesize -= 2*wordSize;
705
706  size++; // popl rbp,
707
708  if( framesize >= 128 ) {
709    size += 6;
710  } else {
711    size += framesize ? 3 : 0;
712  }
713  return size;
714}
715
716int MachEpilogNode::reloc() const {
717  return 0; // a large enough number
718}
719
720const Pipeline * MachEpilogNode::pipeline() const {
721  return MachNode::pipeline_class();
722}
723
724int MachEpilogNode::safepoint_offset() const { return 0; }
725
726//=============================================================================
727
728enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
729static enum RC rc_class( OptoReg::Name reg ) {
730
731  if( !OptoReg::is_valid(reg)  ) return rc_bad;
732  if (OptoReg::is_stack(reg)) return rc_stack;
733
734  VMReg r = OptoReg::as_VMReg(reg);
735  if (r->is_Register()) return rc_int;
736  if (r->is_FloatRegister()) {
737    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
738    return rc_float;
739  }
740  assert(r->is_XMMRegister(), "must be");
741  return rc_xmm;
742}
743
744static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
745                        int opcode, const char *op_str, int size, outputStream* st ) {
746  if( cbuf ) {
747    emit_opcode  (*cbuf, opcode );
748    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
749#ifndef PRODUCT
750  } else if( !do_size ) {
751    if( size != 0 ) st->print("\n\t");
752    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
753      if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
754      else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
755    } else { // FLD, FST, PUSH, POP
756      st->print("%s [ESP + #%d]",op_str,offset);
757    }
758#endif
759  }
760  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
761  return size+3+offset_size;
762}
763
764// Helper for XMM registers.  Extra opcode bits, limited syntax.
765static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
766                         int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
767  if( cbuf ) {
768    if( reg_lo+1 == reg_hi ) { // double move?
769      if( is_load && !UseXmmLoadAndClearUpper )
770        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
771      else
772        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
773    } else {
774      emit_opcode(*cbuf, 0xF3 );
775    }
776    emit_opcode(*cbuf, 0x0F );
777    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
778      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
779    else
780      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
781    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
782#ifndef PRODUCT
783  } else if( !do_size ) {
784    if( size != 0 ) st->print("\n\t");
785    if( reg_lo+1 == reg_hi ) { // double move?
786      if( is_load ) st->print("%s %s,[ESP + #%d]",
787                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
788                               Matcher::regName[reg_lo], offset);
789      else          st->print("MOVSD  [ESP + #%d],%s",
790                               offset, Matcher::regName[reg_lo]);
791    } else {
792      if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
793                               Matcher::regName[reg_lo], offset);
794      else          st->print("MOVSS  [ESP + #%d],%s",
795                               offset, Matcher::regName[reg_lo]);
796    }
797#endif
798  }
799  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
800  return size+5+offset_size;
801}
802
803
804static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
805                            int src_hi, int dst_hi, int size, outputStream* st ) {
806  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
807    if( cbuf ) {
808      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
809        emit_opcode(*cbuf, 0x66 );
810      }
811      emit_opcode(*cbuf, 0x0F );
812      emit_opcode(*cbuf, 0x28 );
813      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
814#ifndef PRODUCT
815    } else if( !do_size ) {
816      if( size != 0 ) st->print("\n\t");
817      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
818        st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
819      } else {
820        st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
821      }
822#endif
823    }
824    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
825  } else {
826    if( cbuf ) {
827      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
828      emit_opcode(*cbuf, 0x0F );
829      emit_opcode(*cbuf, 0x10 );
830      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
831#ifndef PRODUCT
832    } else if( !do_size ) {
833      if( size != 0 ) st->print("\n\t");
834      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
835        st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
836      } else {
837        st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
838      }
839#endif
840    }
841    return size+4;
842  }
843}
844
845static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
846                            int src_hi, int dst_hi, int size, outputStream* st ) {
847  // 32-bit
848  if (cbuf) {
849    emit_opcode(*cbuf, 0x66);
850    emit_opcode(*cbuf, 0x0F);
851    emit_opcode(*cbuf, 0x6E);
852    emit_rm(*cbuf, 0x3, Matcher::_regEncode[dst_lo] & 7, Matcher::_regEncode[src_lo] & 7);
853#ifndef PRODUCT
854  } else if (!do_size) {
855    st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
856#endif
857  }
858  return 4;
859}
860
861
862static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
863                                 int src_hi, int dst_hi, int size, outputStream* st ) {
864  // 32-bit
865  if (cbuf) {
866    emit_opcode(*cbuf, 0x66);
867    emit_opcode(*cbuf, 0x0F);
868    emit_opcode(*cbuf, 0x7E);
869    emit_rm(*cbuf, 0x3, Matcher::_regEncode[src_lo] & 7, Matcher::_regEncode[dst_lo] & 7);
870#ifndef PRODUCT
871  } else if (!do_size) {
872    st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
873#endif
874  }
875  return 4;
876}
877
878static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
879  if( cbuf ) {
880    emit_opcode(*cbuf, 0x8B );
881    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
882#ifndef PRODUCT
883  } else if( !do_size ) {
884    if( size != 0 ) st->print("\n\t");
885    st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
886#endif
887  }
888  return size+2;
889}
890
891static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
892                                 int offset, int size, outputStream* st ) {
893  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
894    if( cbuf ) {
895      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
896      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
897#ifndef PRODUCT
898    } else if( !do_size ) {
899      if( size != 0 ) st->print("\n\t");
900      st->print("FLD    %s",Matcher::regName[src_lo]);
901#endif
902    }
903    size += 2;
904  }
905
906  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
907  const char *op_str;
908  int op;
909  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
910    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
911    op = 0xDD;
912  } else {                   // 32-bit store
913    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
914    op = 0xD9;
915    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
916  }
917
918  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
919}
920
921uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
922  // Get registers to move
923  OptoReg::Name src_second = ra_->get_reg_second(in(1));
924  OptoReg::Name src_first = ra_->get_reg_first(in(1));
925  OptoReg::Name dst_second = ra_->get_reg_second(this );
926  OptoReg::Name dst_first = ra_->get_reg_first(this );
927
928  enum RC src_second_rc = rc_class(src_second);
929  enum RC src_first_rc = rc_class(src_first);
930  enum RC dst_second_rc = rc_class(dst_second);
931  enum RC dst_first_rc = rc_class(dst_first);
932
933  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
934
935  // Generate spill code!
936  int size = 0;
937
938  if( src_first == dst_first && src_second == dst_second )
939    return size;            // Self copy, no move
940
941  // --------------------------------------
942  // Check for mem-mem move.  push/pop to move.
943  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
944    if( src_second == dst_first ) { // overlapping stack copy ranges
945      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
946      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
947      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
948      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
949    }
950    // move low bits
951    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
952    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
953    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
954      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
955      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
956    }
957    return size;
958  }
959
960  // --------------------------------------
961  // Check for integer reg-reg copy
962  if( src_first_rc == rc_int && dst_first_rc == rc_int )
963    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
964
965  // Check for integer store
966  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
967    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
968
969  // Check for integer load
970  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
971    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
972
973  // Check for integer reg-xmm reg copy
974  if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
975    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
976            "no 64 bit integer-float reg moves" );
977    return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
978  }
979  // --------------------------------------
980  // Check for float reg-reg copy
981  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
982    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
983            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
984    if( cbuf ) {
985
986      // Note the mucking with the register encode to compensate for the 0/1
987      // indexing issue mentioned in a comment in the reg_def sections
988      // for FPR registers many lines above here.
989
990      if( src_first != FPR1L_num ) {
991        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
992        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
993        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
994        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
995     } else {
996        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
997        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
998     }
999#ifndef PRODUCT
1000    } else if( !do_size ) {
1001      if( size != 0 ) st->print("\n\t");
1002      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1003      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1004#endif
1005    }
1006    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1007  }
1008
1009  // Check for float store
1010  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1011    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1012  }
1013
1014  // Check for float load
1015  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1016    int offset = ra_->reg2offset(src_first);
1017    const char *op_str;
1018    int op;
1019    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1020      op_str = "FLD_D";
1021      op = 0xDD;
1022    } else {                   // 32-bit load
1023      op_str = "FLD_S";
1024      op = 0xD9;
1025      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1026    }
1027    if( cbuf ) {
1028      emit_opcode  (*cbuf, op );
1029      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1030      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1031      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1032#ifndef PRODUCT
1033    } else if( !do_size ) {
1034      if( size != 0 ) st->print("\n\t");
1035      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1036#endif
1037    }
1038    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1039    return size + 3+offset_size+2;
1040  }
1041
1042  // Check for xmm reg-reg copy
1043  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1044    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1045            (src_first+1 == src_second && dst_first+1 == dst_second),
1046            "no non-adjacent float-moves" );
1047    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1048  }
1049
1050  // Check for xmm reg-integer reg copy
1051  if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1052    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1053            "no 64 bit float-integer reg moves" );
1054    return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1055  }
1056
1057  // Check for xmm store
1058  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1059    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1060  }
1061
1062  // Check for float xmm load
1063  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1064    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1065  }
1066
1067  // Copy from float reg to xmm reg
1068  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1069    // copy to the top of stack from floating point reg
1070    // and use LEA to preserve flags
1071    if( cbuf ) {
1072      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1073      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1074      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1075      emit_d8(*cbuf,0xF8);
1076#ifndef PRODUCT
1077    } else if( !do_size ) {
1078      if( size != 0 ) st->print("\n\t");
1079      st->print("LEA    ESP,[ESP-8]");
1080#endif
1081    }
1082    size += 4;
1083
1084    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1085
1086    // Copy from the temp memory to the xmm reg.
1087    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1088
1089    if( cbuf ) {
1090      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1091      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1092      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1093      emit_d8(*cbuf,0x08);
1094#ifndef PRODUCT
1095    } else if( !do_size ) {
1096      if( size != 0 ) st->print("\n\t");
1097      st->print("LEA    ESP,[ESP+8]");
1098#endif
1099    }
1100    size += 4;
1101    return size;
1102  }
1103
1104  assert( size > 0, "missed a case" );
1105
1106  // --------------------------------------------------------------------
1107  // Check for second bits still needing moving.
1108  if( src_second == dst_second )
1109    return size;               // Self copy; no move
1110  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1111
1112  // Check for second word int-int move
1113  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1114    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1115
1116  // Check for second word integer store
1117  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1118    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1119
1120  // Check for second word integer load
1121  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1122    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1123
1124
1125  Unimplemented();
1126}
1127
1128#ifndef PRODUCT
1129void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1130  implementation( NULL, ra_, false, st );
1131}
1132#endif
1133
1134void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1135  implementation( &cbuf, ra_, false, NULL );
1136}
1137
1138uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1139  return implementation( NULL, ra_, true, NULL );
1140}
1141
1142//=============================================================================
1143#ifndef PRODUCT
1144void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1145  st->print("NOP \t# %d bytes pad for loops and calls", _count);
1146}
1147#endif
1148
1149void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1150  MacroAssembler _masm(&cbuf);
1151  __ nop(_count);
1152}
1153
1154uint MachNopNode::size(PhaseRegAlloc *) const {
1155  return _count;
1156}
1157
1158
1159//=============================================================================
1160#ifndef PRODUCT
1161void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1162  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1163  int reg = ra_->get_reg_first(this);
1164  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1165}
1166#endif
1167
1168void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1169  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1170  int reg = ra_->get_encode(this);
1171  if( offset >= 128 ) {
1172    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1173    emit_rm(cbuf, 0x2, reg, 0x04);
1174    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1175    emit_d32(cbuf, offset);
1176  }
1177  else {
1178    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1179    emit_rm(cbuf, 0x1, reg, 0x04);
1180    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1181    emit_d8(cbuf, offset);
1182  }
1183}
1184
1185uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1186  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1187  if( offset >= 128 ) {
1188    return 7;
1189  }
1190  else {
1191    return 4;
1192  }
1193}
1194
1195//=============================================================================
1196
1197// emit call stub, compiled java to interpreter
1198void emit_java_to_interp(CodeBuffer &cbuf ) {
1199  // Stub is fixed up when the corresponding call is converted from calling
1200  // compiled code to calling interpreted code.
1201  // mov rbx,0
1202  // jmp -1
1203
1204  address mark = cbuf.insts_mark();  // get mark within main instrs section
1205
1206  // Note that the code buffer's insts_mark is always relative to insts.
1207  // That's why we must use the macroassembler to generate a stub.
1208  MacroAssembler _masm(&cbuf);
1209
1210  address base =
1211  __ start_a_stub(Compile::MAX_stubs_size);
1212  if (base == NULL)  return;  // CodeBuffer::expand failed
1213  // static stub relocation stores the instruction address of the call
1214  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1215  // static stub relocation also tags the methodOop in the code-stream.
1216  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1217  // This is recognized as unresolved by relocs/nativeInst/ic code
1218  __ jump(RuntimeAddress(__ pc()));
1219
1220  __ end_a_stub();
1221  // Update current stubs pointer and restore insts_end.
1222}
1223// size of call stub, compiled java to interpretor
1224uint size_java_to_interp() {
1225  return 10;  // movl; jmp
1226}
1227// relocation entries for call stub, compiled java to interpretor
1228uint reloc_java_to_interp() {
1229  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1230}
1231
1232//=============================================================================
1233#ifndef PRODUCT
1234void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1235  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1236  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1237  st->print_cr("\tNOP");
1238  st->print_cr("\tNOP");
1239  if( !OptoBreakpoint )
1240    st->print_cr("\tNOP");
1241}
1242#endif
1243
1244void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1245  MacroAssembler masm(&cbuf);
1246#ifdef ASSERT
1247  uint insts_size = cbuf.insts_size();
1248#endif
1249  masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1250  masm.jump_cc(Assembler::notEqual,
1251               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1252  /* WARNING these NOPs are critical so that verified entry point is properly
1253     aligned for patching by NativeJump::patch_verified_entry() */
1254  int nops_cnt = 2;
1255  if( !OptoBreakpoint ) // Leave space for int3
1256     nops_cnt += 1;
1257  masm.nop(nops_cnt);
1258
1259  assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1260}
1261
1262uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1263  return OptoBreakpoint ? 11 : 12;
1264}
1265
1266
1267//=============================================================================
1268uint size_exception_handler() {
1269  // NativeCall instruction size is the same as NativeJump.
1270  // exception handler starts out as jump and can be patched to
1271  // a call be deoptimization.  (4932387)
1272  // Note that this value is also credited (in output.cpp) to
1273  // the size of the code section.
1274  return NativeJump::instruction_size;
1275}
1276
1277// Emit exception handler code.  Stuff framesize into a register
1278// and call a VM stub routine.
1279int emit_exception_handler(CodeBuffer& cbuf) {
1280
1281  // Note that the code buffer's insts_mark is always relative to insts.
1282  // That's why we must use the macroassembler to generate a handler.
1283  MacroAssembler _masm(&cbuf);
1284  address base =
1285  __ start_a_stub(size_exception_handler());
1286  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1287  int offset = __ offset();
1288  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
1289  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1290  __ end_a_stub();
1291  return offset;
1292}
1293
1294uint size_deopt_handler() {
1295  // NativeCall instruction size is the same as NativeJump.
1296  // exception handler starts out as jump and can be patched to
1297  // a call be deoptimization.  (4932387)
1298  // Note that this value is also credited (in output.cpp) to
1299  // the size of the code section.
1300  return 5 + NativeJump::instruction_size; // pushl(); jmp;
1301}
1302
1303// Emit deopt handler code.
1304int emit_deopt_handler(CodeBuffer& cbuf) {
1305
1306  // Note that the code buffer's insts_mark is always relative to insts.
1307  // That's why we must use the macroassembler to generate a handler.
1308  MacroAssembler _masm(&cbuf);
1309  address base =
1310  __ start_a_stub(size_exception_handler());
1311  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1312  int offset = __ offset();
1313  InternalAddress here(__ pc());
1314  __ pushptr(here.addr());
1315
1316  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1317  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1318  __ end_a_stub();
1319  return offset;
1320}
1321
1322
1323static void emit_double_constant(CodeBuffer& cbuf, double x) {
1324  int mark = cbuf.insts()->mark_off();
1325  MacroAssembler _masm(&cbuf);
1326  address double_address = __ double_constant(x);
1327  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1328  emit_d32_reloc(cbuf,
1329                 (int)double_address,
1330                 internal_word_Relocation::spec(double_address),
1331                 RELOC_DISP32);
1332}
1333
1334static void emit_float_constant(CodeBuffer& cbuf, float x) {
1335  int mark = cbuf.insts()->mark_off();
1336  MacroAssembler _masm(&cbuf);
1337  address float_address = __ float_constant(x);
1338  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1339  emit_d32_reloc(cbuf,
1340                 (int)float_address,
1341                 internal_word_Relocation::spec(float_address),
1342                 RELOC_DISP32);
1343}
1344
1345
1346const bool Matcher::match_rule_supported(int opcode) {
1347  if (!has_match_rule(opcode))
1348    return false;
1349
1350  return true;  // Per default match rules are supported.
1351}
1352
1353int Matcher::regnum_to_fpu_offset(int regnum) {
1354  return regnum - 32; // The FP registers are in the second chunk
1355}
1356
1357bool is_positive_zero_float(jfloat f) {
1358  return jint_cast(f) == jint_cast(0.0F);
1359}
1360
1361bool is_positive_one_float(jfloat f) {
1362  return jint_cast(f) == jint_cast(1.0F);
1363}
1364
1365bool is_positive_zero_double(jdouble d) {
1366  return jlong_cast(d) == jlong_cast(0.0);
1367}
1368
1369bool is_positive_one_double(jdouble d) {
1370  return jlong_cast(d) == jlong_cast(1.0);
1371}
1372
1373// This is UltraSparc specific, true just means we have fast l2f conversion
1374const bool Matcher::convL2FSupported(void) {
1375  return true;
1376}
1377
1378// Vector width in bytes
1379const uint Matcher::vector_width_in_bytes(void) {
1380  return UseSSE >= 2 ? 8 : 0;
1381}
1382
1383// Vector ideal reg
1384const uint Matcher::vector_ideal_reg(void) {
1385  return Op_RegD;
1386}
1387
1388// Is this branch offset short enough that a short branch can be used?
1389//
1390// NOTE: If the platform does not provide any short branch variants, then
1391//       this method should return false for offset 0.
1392bool Matcher::is_short_branch_offset(int rule, int offset) {
1393  // the short version of jmpConUCF2 contains multiple branches,
1394  // making the reach slightly less
1395  if (rule == jmpConUCF2_rule)
1396    return (-126 <= offset && offset <= 125);
1397  return (-128 <= offset && offset <= 127);
1398}
1399
1400const bool Matcher::isSimpleConstant64(jlong value) {
1401  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1402  return false;
1403}
1404
1405// The ecx parameter to rep stos for the ClearArray node is in dwords.
1406const bool Matcher::init_array_count_is_in_bytes = false;
1407
1408// Threshold size for cleararray.
1409const int Matcher::init_array_short_size = 8 * BytesPerLong;
1410
1411// Should the Matcher clone shifts on addressing modes, expecting them to
1412// be subsumed into complex addressing expressions or compute them into
1413// registers?  True for Intel but false for most RISCs
1414const bool Matcher::clone_shift_expressions = true;
1415
1416bool Matcher::narrow_oop_use_complex_address() {
1417  ShouldNotCallThis();
1418  return true;
1419}
1420
1421
1422// Is it better to copy float constants, or load them directly from memory?
1423// Intel can load a float constant from a direct address, requiring no
1424// extra registers.  Most RISCs will have to materialize an address into a
1425// register first, so they would do better to copy the constant from stack.
1426const bool Matcher::rematerialize_float_constants = true;
1427
1428// If CPU can load and store mis-aligned doubles directly then no fixup is
1429// needed.  Else we split the double into 2 integer pieces and move it
1430// piece-by-piece.  Only happens when passing doubles into C code as the
1431// Java calling convention forces doubles to be aligned.
1432const bool Matcher::misaligned_doubles_ok = true;
1433
1434
1435void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1436  // Get the memory operand from the node
1437  uint numopnds = node->num_opnds();        // Virtual call for number of operands
1438  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1439  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1440  uint opcnt     = 1;                 // First operand
1441  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1442  while( idx >= skipped+num_edges ) {
1443    skipped += num_edges;
1444    opcnt++;                          // Bump operand count
1445    assert( opcnt < numopnds, "Accessing non-existent operand" );
1446    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1447  }
1448
1449  MachOper *memory = node->_opnds[opcnt];
1450  MachOper *new_memory = NULL;
1451  switch (memory->opcode()) {
1452  case DIRECT:
1453  case INDOFFSET32X:
1454    // No transformation necessary.
1455    return;
1456  case INDIRECT:
1457    new_memory = new (C) indirect_win95_safeOper( );
1458    break;
1459  case INDOFFSET8:
1460    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1461    break;
1462  case INDOFFSET32:
1463    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1464    break;
1465  case INDINDEXOFFSET:
1466    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1467    break;
1468  case INDINDEXSCALE:
1469    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1470    break;
1471  case INDINDEXSCALEOFFSET:
1472    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1473    break;
1474  case LOAD_LONG_INDIRECT:
1475  case LOAD_LONG_INDOFFSET32:
1476    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1477    return;
1478  default:
1479    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1480    return;
1481  }
1482  node->_opnds[opcnt] = new_memory;
1483}
1484
1485// Advertise here if the CPU requires explicit rounding operations
1486// to implement the UseStrictFP mode.
1487const bool Matcher::strict_fp_requires_explicit_rounding = true;
1488
1489// Are floats conerted to double when stored to stack during deoptimization?
1490// On x32 it is stored with convertion only when FPU is used for floats.
1491bool Matcher::float_in_double() { return (UseSSE == 0); }
1492
1493// Do ints take an entire long register or just half?
1494const bool Matcher::int_in_long = false;
1495
1496// Return whether or not this register is ever used as an argument.  This
1497// function is used on startup to build the trampoline stubs in generateOptoStub.
1498// Registers not mentioned will be killed by the VM call in the trampoline, and
1499// arguments in those registers not be available to the callee.
1500bool Matcher::can_be_java_arg( int reg ) {
1501  if(  reg == ECX_num   || reg == EDX_num   ) return true;
1502  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1503  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1504  return false;
1505}
1506
1507bool Matcher::is_spillable_arg( int reg ) {
1508  return can_be_java_arg(reg);
1509}
1510
1511// Register for DIVI projection of divmodI
1512RegMask Matcher::divI_proj_mask() {
1513  return EAX_REG_mask;
1514}
1515
1516// Register for MODI projection of divmodI
1517RegMask Matcher::modI_proj_mask() {
1518  return EDX_REG_mask;
1519}
1520
1521// Register for DIVL projection of divmodL
1522RegMask Matcher::divL_proj_mask() {
1523  ShouldNotReachHere();
1524  return RegMask();
1525}
1526
1527// Register for MODL projection of divmodL
1528RegMask Matcher::modL_proj_mask() {
1529  ShouldNotReachHere();
1530  return RegMask();
1531}
1532
1533const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1534  return EBP_REG_mask;
1535}
1536
1537// Returns true if the high 32 bits of the value is known to be zero.
1538bool is_operand_hi32_zero(Node* n) {
1539  int opc = n->Opcode();
1540  if (opc == Op_LoadUI2L) {
1541    return true;
1542  }
1543  if (opc == Op_AndL) {
1544    Node* o2 = n->in(2);
1545    if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1546      return true;
1547    }
1548  }
1549  return false;
1550}
1551
1552%}
1553
1554//----------ENCODING BLOCK-----------------------------------------------------
1555// This block specifies the encoding classes used by the compiler to output
1556// byte streams.  Encoding classes generate functions which are called by
1557// Machine Instruction Nodes in order to generate the bit encoding of the
1558// instruction.  Operands specify their base encoding interface with the
1559// interface keyword.  There are currently supported four interfaces,
1560// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1561// operand to generate a function which returns its register number when
1562// queried.   CONST_INTER causes an operand to generate a function which
1563// returns the value of the constant when queried.  MEMORY_INTER causes an
1564// operand to generate four functions which return the Base Register, the
1565// Index Register, the Scale Value, and the Offset Value of the operand when
1566// queried.  COND_INTER causes an operand to generate six functions which
1567// return the encoding code (ie - encoding bits for the instruction)
1568// associated with each basic boolean condition for a conditional instruction.
1569// Instructions specify two basic values for encoding.  They use the
1570// ins_encode keyword to specify their encoding class (which must be one of
1571// the class names specified in the encoding block), and they use the
1572// opcode keyword to specify, in order, their primary, secondary, and
1573// tertiary opcode.  Only the opcode sections which a particular instruction
1574// needs for encoding need to be specified.
1575encode %{
1576  // Build emit functions for each basic byte or larger field in the intel
1577  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1578  // code in the enc_class source block.  Emit functions will live in the
1579  // main source block for now.  In future, we can generalize this by
1580  // adding a syntax that specifies the sizes of fields in an order,
1581  // so that the adlc can build the emit functions automagically
1582
1583  // Emit primary opcode
1584  enc_class OpcP %{
1585    emit_opcode(cbuf, $primary);
1586  %}
1587
1588  // Emit secondary opcode
1589  enc_class OpcS %{
1590    emit_opcode(cbuf, $secondary);
1591  %}
1592
1593  // Emit opcode directly
1594  enc_class Opcode(immI d8) %{
1595    emit_opcode(cbuf, $d8$$constant);
1596  %}
1597
1598  enc_class SizePrefix %{
1599    emit_opcode(cbuf,0x66);
1600  %}
1601
1602  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1603    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1604  %}
1605
1606  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1607    emit_opcode(cbuf,$opcode$$constant);
1608    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1609  %}
1610
1611  enc_class mov_r32_imm0( eRegI dst ) %{
1612    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1613    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1614  %}
1615
1616  enc_class cdq_enc %{
1617    // Full implementation of Java idiv and irem; checks for
1618    // special case as described in JVM spec., p.243 & p.271.
1619    //
1620    //         normal case                           special case
1621    //
1622    // input : rax,: dividend                         min_int
1623    //         reg: divisor                          -1
1624    //
1625    // output: rax,: quotient  (= rax, idiv reg)       min_int
1626    //         rdx: remainder (= rax, irem reg)       0
1627    //
1628    //  Code sequnce:
1629    //
1630    //  81 F8 00 00 00 80    cmp         rax,80000000h
1631    //  0F 85 0B 00 00 00    jne         normal_case
1632    //  33 D2                xor         rdx,edx
1633    //  83 F9 FF             cmp         rcx,0FFh
1634    //  0F 84 03 00 00 00    je          done
1635    //                  normal_case:
1636    //  99                   cdq
1637    //  F7 F9                idiv        rax,ecx
1638    //                  done:
1639    //
1640    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1641    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1642    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1643    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1644    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1645    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1646    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1647    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1648    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1649    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1650    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1651    // normal_case:
1652    emit_opcode(cbuf,0x99);                                         // cdq
1653    // idiv (note: must be emitted by the user of this rule)
1654    // normal:
1655  %}
1656
1657  // Dense encoding for older common ops
1658  enc_class Opc_plus(immI opcode, eRegI reg) %{
1659    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1660  %}
1661
1662
1663  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1664  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1665    // Check for 8-bit immediate, and set sign extend bit in opcode
1666    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1667      emit_opcode(cbuf, $primary | 0x02);
1668    }
1669    else {                          // If 32-bit immediate
1670      emit_opcode(cbuf, $primary);
1671    }
1672  %}
1673
1674  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1675    // Emit primary opcode and set sign-extend bit
1676    // Check for 8-bit immediate, and set sign extend bit in opcode
1677    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1678      emit_opcode(cbuf, $primary | 0x02);    }
1679    else {                          // If 32-bit immediate
1680      emit_opcode(cbuf, $primary);
1681    }
1682    // Emit r/m byte with secondary opcode, after primary opcode.
1683    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1684  %}
1685
1686  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1687    // Check for 8-bit immediate, and set sign extend bit in opcode
1688    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1689      $$$emit8$imm$$constant;
1690    }
1691    else {                          // If 32-bit immediate
1692      // Output immediate
1693      $$$emit32$imm$$constant;
1694    }
1695  %}
1696
1697  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1698    // Emit primary opcode and set sign-extend bit
1699    // Check for 8-bit immediate, and set sign extend bit in opcode
1700    int con = (int)$imm$$constant; // Throw away top bits
1701    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1702    // Emit r/m byte with secondary opcode, after primary opcode.
1703    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1704    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1705    else                               emit_d32(cbuf,con);
1706  %}
1707
1708  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1709    // Emit primary opcode and set sign-extend bit
1710    // Check for 8-bit immediate, and set sign extend bit in opcode
1711    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1712    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1713    // Emit r/m byte with tertiary opcode, after primary opcode.
1714    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1715    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1716    else                               emit_d32(cbuf,con);
1717  %}
1718
1719  enc_class Lbl (label labl) %{ // JMP, CALL
1720    Label *l = $labl$$label;
1721    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
1722  %}
1723
1724  enc_class LblShort (label labl) %{ // JMP, CALL
1725    Label *l = $labl$$label;
1726    int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
1727    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1728    emit_d8(cbuf, disp);
1729  %}
1730
1731  enc_class OpcSReg (eRegI dst) %{    // BSWAP
1732    emit_cc(cbuf, $secondary, $dst$$reg );
1733  %}
1734
1735  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1736    int destlo = $dst$$reg;
1737    int desthi = HIGH_FROM_LOW(destlo);
1738    // bswap lo
1739    emit_opcode(cbuf, 0x0F);
1740    emit_cc(cbuf, 0xC8, destlo);
1741    // bswap hi
1742    emit_opcode(cbuf, 0x0F);
1743    emit_cc(cbuf, 0xC8, desthi);
1744    // xchg lo and hi
1745    emit_opcode(cbuf, 0x87);
1746    emit_rm(cbuf, 0x3, destlo, desthi);
1747  %}
1748
1749  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1750    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1751  %}
1752
1753  enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1754    Label *l = $labl$$label;
1755    $$$emit8$primary;
1756    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1757    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.insts_size()+4)) : 0);
1758  %}
1759
1760  enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1761    Label *l = $labl$$label;
1762    emit_cc(cbuf, $primary, $cop$$cmpcode);
1763    int disp = l ? (l->loc_pos() - (cbuf.insts_size()+1)) : 0;
1764    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1765    emit_d8(cbuf, disp);
1766  %}
1767
1768  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1769    $$$emit8$primary;
1770    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1771  %}
1772
1773  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1774    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1775    emit_d8(cbuf, op >> 8 );
1776    emit_d8(cbuf, op & 255);
1777  %}
1778
1779  // emulate a CMOV with a conditional branch around a MOV
1780  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1781    // Invert sense of branch from sense of CMOV
1782    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1783    emit_d8( cbuf, $brOffs$$constant );
1784  %}
1785
1786  enc_class enc_PartialSubtypeCheck( ) %{
1787    Register Redi = as_Register(EDI_enc); // result register
1788    Register Reax = as_Register(EAX_enc); // super class
1789    Register Recx = as_Register(ECX_enc); // killed
1790    Register Resi = as_Register(ESI_enc); // sub class
1791    Label miss;
1792
1793    MacroAssembler _masm(&cbuf);
1794    __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1795                                     NULL, &miss,
1796                                     /*set_cond_codes:*/ true);
1797    if ($primary) {
1798      __ xorptr(Redi, Redi);
1799    }
1800    __ bind(miss);
1801  %}
1802
1803  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1804    MacroAssembler masm(&cbuf);
1805    int start = masm.offset();
1806    if (UseSSE >= 2) {
1807      if (VerifyFPU) {
1808        masm.verify_FPU(0, "must be empty in SSE2+ mode");
1809      }
1810    } else {
1811      // External c_calling_convention expects the FPU stack to be 'clean'.
1812      // Compiled code leaves it dirty.  Do cleanup now.
1813      masm.empty_FPU_stack();
1814    }
1815    if (sizeof_FFree_Float_Stack_All == -1) {
1816      sizeof_FFree_Float_Stack_All = masm.offset() - start;
1817    } else {
1818      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1819    }
1820  %}
1821
1822  enc_class Verify_FPU_For_Leaf %{
1823    if( VerifyFPU ) {
1824      MacroAssembler masm(&cbuf);
1825      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1826    }
1827  %}
1828
1829  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1830    // This is the instruction starting address for relocation info.
1831    cbuf.set_insts_mark();
1832    $$$emit8$primary;
1833    // CALL directly to the runtime
1834    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1835                runtime_call_Relocation::spec(), RELOC_IMM32 );
1836
1837    if (UseSSE >= 2) {
1838      MacroAssembler _masm(&cbuf);
1839      BasicType rt = tf()->return_type();
1840
1841      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1842        // A C runtime call where the return value is unused.  In SSE2+
1843        // mode the result needs to be removed from the FPU stack.  It's
1844        // likely that this function call could be removed by the
1845        // optimizer if the C function is a pure function.
1846        __ ffree(0);
1847      } else if (rt == T_FLOAT) {
1848        __ lea(rsp, Address(rsp, -4));
1849        __ fstp_s(Address(rsp, 0));
1850        __ movflt(xmm0, Address(rsp, 0));
1851        __ lea(rsp, Address(rsp,  4));
1852      } else if (rt == T_DOUBLE) {
1853        __ lea(rsp, Address(rsp, -8));
1854        __ fstp_d(Address(rsp, 0));
1855        __ movdbl(xmm0, Address(rsp, 0));
1856        __ lea(rsp, Address(rsp,  8));
1857      }
1858    }
1859  %}
1860
1861
1862  enc_class pre_call_FPU %{
1863    // If method sets FPU control word restore it here
1864    debug_only(int off0 = cbuf.insts_size());
1865    if( Compile::current()->in_24_bit_fp_mode() ) {
1866      MacroAssembler masm(&cbuf);
1867      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1868    }
1869    debug_only(int off1 = cbuf.insts_size());
1870    assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1871  %}
1872
1873  enc_class post_call_FPU %{
1874    // If method sets FPU control word do it here also
1875    if( Compile::current()->in_24_bit_fp_mode() ) {
1876      MacroAssembler masm(&cbuf);
1877      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1878    }
1879  %}
1880
1881  enc_class preserve_SP %{
1882    debug_only(int off0 = cbuf.insts_size());
1883    MacroAssembler _masm(&cbuf);
1884    // RBP is preserved across all calls, even compiled calls.
1885    // Use it to preserve RSP in places where the callee might change the SP.
1886    __ movptr(rbp_mh_SP_save, rsp);
1887    debug_only(int off1 = cbuf.insts_size());
1888    assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
1889  %}
1890
1891  enc_class restore_SP %{
1892    MacroAssembler _masm(&cbuf);
1893    __ movptr(rsp, rbp_mh_SP_save);
1894  %}
1895
1896  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1897    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1898    // who we intended to call.
1899    cbuf.set_insts_mark();
1900    $$$emit8$primary;
1901    if ( !_method ) {
1902      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1903                     runtime_call_Relocation::spec(), RELOC_IMM32 );
1904    } else if(_optimized_virtual) {
1905      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1906                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1907    } else {
1908      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1909                     static_call_Relocation::spec(), RELOC_IMM32 );
1910    }
1911    if( _method ) {  // Emit stub for static call
1912      emit_java_to_interp(cbuf);
1913    }
1914  %}
1915
1916  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1917    // !!!!!
1918    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1919    // emit_call_dynamic_prologue( cbuf );
1920    cbuf.set_insts_mark();
1921    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1922    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1923    address  virtual_call_oop_addr = cbuf.insts_mark();
1924    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1925    // who we intended to call.
1926    cbuf.set_insts_mark();
1927    $$$emit8$primary;
1928    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1929                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1930  %}
1931
1932  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1933    int disp = in_bytes(methodOopDesc::from_compiled_offset());
1934    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1935
1936    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1937    cbuf.set_insts_mark();
1938    $$$emit8$primary;
1939    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1940    emit_d8(cbuf, disp);             // Displacement
1941
1942  %}
1943
1944  enc_class Xor_Reg (eRegI dst) %{
1945    emit_opcode(cbuf, 0x33);
1946    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1947  %}
1948
1949//   Following encoding is no longer used, but may be restored if calling
1950//   convention changes significantly.
1951//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1952//
1953//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1954//     // int ic_reg     = Matcher::inline_cache_reg();
1955//     // int ic_encode  = Matcher::_regEncode[ic_reg];
1956//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1957//     // int imo_encode = Matcher::_regEncode[imo_reg];
1958//
1959//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1960//     // // so we load it immediately before the call
1961//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1962//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1963//
1964//     // xor rbp,ebp
1965//     emit_opcode(cbuf, 0x33);
1966//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1967//
1968//     // CALL to interpreter.
1969//     cbuf.set_insts_mark();
1970//     $$$emit8$primary;
1971//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1972//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1973//   %}
1974
1975  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1976    $$$emit8$primary;
1977    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1978    $$$emit8$shift$$constant;
1979  %}
1980
1981  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1982    // Load immediate does not have a zero or sign extended version
1983    // for 8-bit immediates
1984    emit_opcode(cbuf, 0xB8 + $dst$$reg);
1985    $$$emit32$src$$constant;
1986  %}
1987
1988  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1989    // Load immediate does not have a zero or sign extended version
1990    // for 8-bit immediates
1991    emit_opcode(cbuf, $primary + $dst$$reg);
1992    $$$emit32$src$$constant;
1993  %}
1994
1995  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1996    // Load immediate does not have a zero or sign extended version
1997    // for 8-bit immediates
1998    int dst_enc = $dst$$reg;
1999    int src_con = $src$$constant & 0x0FFFFFFFFL;
2000    if (src_con == 0) {
2001      // xor dst, dst
2002      emit_opcode(cbuf, 0x33);
2003      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
2004    } else {
2005      emit_opcode(cbuf, $primary + dst_enc);
2006      emit_d32(cbuf, src_con);
2007    }
2008  %}
2009
2010  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
2011    // Load immediate does not have a zero or sign extended version
2012    // for 8-bit immediates
2013    int dst_enc = $dst$$reg + 2;
2014    int src_con = ((julong)($src$$constant)) >> 32;
2015    if (src_con == 0) {
2016      // xor dst, dst
2017      emit_opcode(cbuf, 0x33);
2018      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
2019    } else {
2020      emit_opcode(cbuf, $primary + dst_enc);
2021      emit_d32(cbuf, src_con);
2022    }
2023  %}
2024
2025
2026  enc_class LdImmD (immD src) %{    // Load Immediate
2027    if( is_positive_zero_double($src$$constant)) {
2028      // FLDZ
2029      emit_opcode(cbuf,0xD9);
2030      emit_opcode(cbuf,0xEE);
2031    } else if( is_positive_one_double($src$$constant)) {
2032      // FLD1
2033      emit_opcode(cbuf,0xD9);
2034      emit_opcode(cbuf,0xE8);
2035    } else {
2036      emit_opcode(cbuf,0xDD);
2037      emit_rm(cbuf, 0x0, 0x0, 0x5);
2038      emit_double_constant(cbuf, $src$$constant);
2039    }
2040  %}
2041
2042
2043  enc_class LdImmF (immF src) %{    // Load Immediate
2044    if( is_positive_zero_float($src$$constant)) {
2045      emit_opcode(cbuf,0xD9);
2046      emit_opcode(cbuf,0xEE);
2047    } else if( is_positive_one_float($src$$constant)) {
2048      emit_opcode(cbuf,0xD9);
2049      emit_opcode(cbuf,0xE8);
2050    } else {
2051      $$$emit8$primary;
2052      // Load immediate does not have a zero or sign extended version
2053      // for 8-bit immediates
2054      // First load to TOS, then move to dst
2055      emit_rm(cbuf, 0x0, 0x0, 0x5);
2056      emit_float_constant(cbuf, $src$$constant);
2057    }
2058  %}
2059
2060  enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
2061    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2062    emit_float_constant(cbuf, $con$$constant);
2063  %}
2064
2065  enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
2066    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2067    emit_double_constant(cbuf, $con$$constant);
2068  %}
2069
2070  enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
2071    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
2072    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2073    emit_opcode(cbuf, 0x0F);
2074    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2075    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2076    emit_double_constant(cbuf, $con$$constant);
2077  %}
2078
2079  enc_class Opc_MemImm_F(immF src) %{
2080    cbuf.set_insts_mark();
2081    $$$emit8$primary;
2082    emit_rm(cbuf, 0x0, $secondary, 0x5);
2083    emit_float_constant(cbuf, $src$$constant);
2084  %}
2085
2086
2087  enc_class MovI2X_reg(regX dst, eRegI src) %{
2088    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2089    emit_opcode(cbuf, 0x0F );
2090    emit_opcode(cbuf, 0x6E );
2091    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2092  %}
2093
2094  enc_class MovX2I_reg(eRegI dst, regX src) %{
2095    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2096    emit_opcode(cbuf, 0x0F );
2097    emit_opcode(cbuf, 0x7E );
2098    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2099  %}
2100
2101  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
2102    { // MOVD $dst,$src.lo
2103      emit_opcode(cbuf,0x66);
2104      emit_opcode(cbuf,0x0F);
2105      emit_opcode(cbuf,0x6E);
2106      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2107    }
2108    { // MOVD $tmp,$src.hi
2109      emit_opcode(cbuf,0x66);
2110      emit_opcode(cbuf,0x0F);
2111      emit_opcode(cbuf,0x6E);
2112      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2113    }
2114    { // PUNPCKLDQ $dst,$tmp
2115      emit_opcode(cbuf,0x66);
2116      emit_opcode(cbuf,0x0F);
2117      emit_opcode(cbuf,0x62);
2118      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2119     }
2120  %}
2121
2122  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2123    { // MOVD $dst.lo,$src
2124      emit_opcode(cbuf,0x66);
2125      emit_opcode(cbuf,0x0F);
2126      emit_opcode(cbuf,0x7E);
2127      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2128    }
2129    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2130      emit_opcode(cbuf,0xF2);
2131      emit_opcode(cbuf,0x0F);
2132      emit_opcode(cbuf,0x70);
2133      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2134      emit_d8(cbuf, 0x4E);
2135    }
2136    { // MOVD $dst.hi,$tmp
2137      emit_opcode(cbuf,0x66);
2138      emit_opcode(cbuf,0x0F);
2139      emit_opcode(cbuf,0x7E);
2140      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2141    }
2142  %}
2143
2144
2145  // Encode a reg-reg copy.  If it is useless, then empty encoding.
2146  enc_class enc_Copy( eRegI dst, eRegI src ) %{
2147    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2148  %}
2149
2150  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2151    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2152  %}
2153
2154  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2155  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2156    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2157  %}
2158
2159  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2160    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2161  %}
2162
2163  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2164    $$$emit8$primary;
2165    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2166  %}
2167
2168  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2169    $$$emit8$secondary;
2170    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2171  %}
2172
2173  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2174    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2175  %}
2176
2177  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2178    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2179  %}
2180
2181  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2182    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2183  %}
2184
2185  enc_class Con32 (immI src) %{    // Con32(storeImmI)
2186    // Output immediate
2187    $$$emit32$src$$constant;
2188  %}
2189
2190  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2191    // Output Float immediate bits
2192    jfloat jf = $src$$constant;
2193    int    jf_as_bits = jint_cast( jf );
2194    emit_d32(cbuf, jf_as_bits);
2195  %}
2196
2197  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2198    // Output Float immediate bits
2199    jfloat jf = $src$$constant;
2200    int    jf_as_bits = jint_cast( jf );
2201    emit_d32(cbuf, jf_as_bits);
2202  %}
2203
2204  enc_class Con16 (immI src) %{    // Con16(storeImmI)
2205    // Output immediate
2206    $$$emit16$src$$constant;
2207  %}
2208
2209  enc_class Con_d32(immI src) %{
2210    emit_d32(cbuf,$src$$constant);
2211  %}
2212
2213  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2214    // Output immediate memory reference
2215    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2216    emit_d32(cbuf, 0x00);
2217  %}
2218
2219  enc_class lock_prefix( ) %{
2220    if( os::is_MP() )
2221      emit_opcode(cbuf,0xF0);         // [Lock]
2222  %}
2223
2224  // Cmp-xchg long value.
2225  // Note: we need to swap rbx, and rcx before and after the
2226  //       cmpxchg8 instruction because the instruction uses
2227  //       rcx as the high order word of the new value to store but
2228  //       our register encoding uses rbx,.
2229  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2230
2231    // XCHG  rbx,ecx
2232    emit_opcode(cbuf,0x87);
2233    emit_opcode(cbuf,0xD9);
2234    // [Lock]
2235    if( os::is_MP() )
2236      emit_opcode(cbuf,0xF0);
2237    // CMPXCHG8 [Eptr]
2238    emit_opcode(cbuf,0x0F);
2239    emit_opcode(cbuf,0xC7);
2240    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2241    // XCHG  rbx,ecx
2242    emit_opcode(cbuf,0x87);
2243    emit_opcode(cbuf,0xD9);
2244  %}
2245
2246  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2247    // [Lock]
2248    if( os::is_MP() )
2249      emit_opcode(cbuf,0xF0);
2250
2251    // CMPXCHG [Eptr]
2252    emit_opcode(cbuf,0x0F);
2253    emit_opcode(cbuf,0xB1);
2254    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2255  %}
2256
2257  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2258    int res_encoding = $res$$reg;
2259
2260    // MOV  res,0
2261    emit_opcode( cbuf, 0xB8 + res_encoding);
2262    emit_d32( cbuf, 0 );
2263    // JNE,s  fail
2264    emit_opcode(cbuf,0x75);
2265    emit_d8(cbuf, 5 );
2266    // MOV  res,1
2267    emit_opcode( cbuf, 0xB8 + res_encoding);
2268    emit_d32( cbuf, 1 );
2269    // fail:
2270  %}
2271
2272  enc_class set_instruction_start( ) %{
2273    cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2274  %}
2275
2276  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2277    int reg_encoding = $ereg$$reg;
2278    int base  = $mem$$base;
2279    int index = $mem$$index;
2280    int scale = $mem$$scale;
2281    int displace = $mem$$disp;
2282    bool disp_is_oop = $mem->disp_is_oop();
2283    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2284  %}
2285
2286  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2287    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2288    int base  = $mem$$base;
2289    int index = $mem$$index;
2290    int scale = $mem$$scale;
2291    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2292    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2293    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2294  %}
2295
2296  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2297    int r1, r2;
2298    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2299    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2300    emit_opcode(cbuf,0x0F);
2301    emit_opcode(cbuf,$tertiary);
2302    emit_rm(cbuf, 0x3, r1, r2);
2303    emit_d8(cbuf,$cnt$$constant);
2304    emit_d8(cbuf,$primary);
2305    emit_rm(cbuf, 0x3, $secondary, r1);
2306    emit_d8(cbuf,$cnt$$constant);
2307  %}
2308
2309  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2310    emit_opcode( cbuf, 0x8B ); // Move
2311    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2312    emit_d8(cbuf,$primary);
2313    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2314    emit_d8(cbuf,$cnt$$constant-32);
2315    emit_d8(cbuf,$primary);
2316    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2317    emit_d8(cbuf,31);
2318  %}
2319
2320  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2321    int r1, r2;
2322    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2323    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2324
2325    emit_opcode( cbuf, 0x8B ); // Move r1,r2
2326    emit_rm(cbuf, 0x3, r1, r2);
2327    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2328      emit_opcode(cbuf,$primary);
2329      emit_rm(cbuf, 0x3, $secondary, r1);
2330      emit_d8(cbuf,$cnt$$constant-32);
2331    }
2332    emit_opcode(cbuf,0x33);  // XOR r2,r2
2333    emit_rm(cbuf, 0x3, r2, r2);
2334  %}
2335
2336  // Clone of RegMem but accepts an extra parameter to access each
2337  // half of a double in memory; it never needs relocation info.
2338  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2339    emit_opcode(cbuf,$opcode$$constant);
2340    int reg_encoding = $rm_reg$$reg;
2341    int base     = $mem$$base;
2342    int index    = $mem$$index;
2343    int scale    = $mem$$scale;
2344    int displace = $mem$$disp + $disp_for_half$$constant;
2345    bool disp_is_oop = false;
2346    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2347  %}
2348
2349  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2350  //
2351  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2352  // and it never needs relocation information.
2353  // Frequently used to move data between FPU's Stack Top and memory.
2354  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2355    int rm_byte_opcode = $rm_opcode$$constant;
2356    int base     = $mem$$base;
2357    int index    = $mem$$index;
2358    int scale    = $mem$$scale;
2359    int displace = $mem$$disp;
2360    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2361    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2362  %}
2363
2364  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2365    int rm_byte_opcode = $rm_opcode$$constant;
2366    int base     = $mem$$base;
2367    int index    = $mem$$index;
2368    int scale    = $mem$$scale;
2369    int displace = $mem$$disp;
2370    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2371    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2372  %}
2373
2374  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2375    int reg_encoding = $dst$$reg;
2376    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2377    int index        = 0x04;            // 0x04 indicates no index
2378    int scale        = 0x00;            // 0x00 indicates no scale
2379    int displace     = $src1$$constant; // 0x00 indicates no displacement
2380    bool disp_is_oop = false;
2381    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2382  %}
2383
2384  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2385    // Compare dst,src
2386    emit_opcode(cbuf,0x3B);
2387    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2388    // jmp dst < src around move
2389    emit_opcode(cbuf,0x7C);
2390    emit_d8(cbuf,2);
2391    // move dst,src
2392    emit_opcode(cbuf,0x8B);
2393    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2394  %}
2395
2396  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2397    // Compare dst,src
2398    emit_opcode(cbuf,0x3B);
2399    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2400    // jmp dst > src around move
2401    emit_opcode(cbuf,0x7F);
2402    emit_d8(cbuf,2);
2403    // move dst,src
2404    emit_opcode(cbuf,0x8B);
2405    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2406  %}
2407
2408  enc_class enc_FP_store(memory mem, regD src) %{
2409    // If src is FPR1, we can just FST to store it.
2410    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2411    int reg_encoding = 0x2; // Just store
2412    int base  = $mem$$base;
2413    int index = $mem$$index;
2414    int scale = $mem$$scale;
2415    int displace = $mem$$disp;
2416    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2417    if( $src$$reg != FPR1L_enc ) {
2418      reg_encoding = 0x3;  // Store & pop
2419      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2420      emit_d8( cbuf, 0xC0-1+$src$$reg );
2421    }
2422    cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2423    emit_opcode(cbuf,$primary);
2424    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2425  %}
2426
2427  enc_class neg_reg(eRegI dst) %{
2428    // NEG $dst
2429    emit_opcode(cbuf,0xF7);
2430    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2431  %}
2432
2433  enc_class setLT_reg(eCXRegI dst) %{
2434    // SETLT $dst
2435    emit_opcode(cbuf,0x0F);
2436    emit_opcode(cbuf,0x9C);
2437    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2438  %}
2439
2440  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2441    int tmpReg = $tmp$$reg;
2442
2443    // SUB $p,$q
2444    emit_opcode(cbuf,0x2B);
2445    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2446    // SBB $tmp,$tmp
2447    emit_opcode(cbuf,0x1B);
2448    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2449    // AND $tmp,$y
2450    emit_opcode(cbuf,0x23);
2451    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2452    // ADD $p,$tmp
2453    emit_opcode(cbuf,0x03);
2454    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2455  %}
2456
2457  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2458    int tmpReg = $tmp$$reg;
2459
2460    // SUB $p,$q
2461    emit_opcode(cbuf,0x2B);
2462    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2463    // SBB $tmp,$tmp
2464    emit_opcode(cbuf,0x1B);
2465    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2466    // AND $tmp,$y
2467    cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2468    emit_opcode(cbuf,0x23);
2469    int reg_encoding = tmpReg;
2470    int base  = $mem$$base;
2471    int index = $mem$$index;
2472    int scale = $mem$$scale;
2473    int displace = $mem$$disp;
2474    bool disp_is_oop = $mem->disp_is_oop();
2475    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2476    // ADD $p,$tmp
2477    emit_opcode(cbuf,0x03);
2478    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2479  %}
2480
2481  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2482    // TEST shift,32
2483    emit_opcode(cbuf,0xF7);
2484    emit_rm(cbuf, 0x3, 0, ECX_enc);
2485    emit_d32(cbuf,0x20);
2486    // JEQ,s small
2487    emit_opcode(cbuf, 0x74);
2488    emit_d8(cbuf, 0x04);
2489    // MOV    $dst.hi,$dst.lo
2490    emit_opcode( cbuf, 0x8B );
2491    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2492    // CLR    $dst.lo
2493    emit_opcode(cbuf, 0x33);
2494    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2495// small:
2496    // SHLD   $dst.hi,$dst.lo,$shift
2497    emit_opcode(cbuf,0x0F);
2498    emit_opcode(cbuf,0xA5);
2499    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2500    // SHL    $dst.lo,$shift"
2501    emit_opcode(cbuf,0xD3);
2502    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2503  %}
2504
2505  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2506    // TEST shift,32
2507    emit_opcode(cbuf,0xF7);
2508    emit_rm(cbuf, 0x3, 0, ECX_enc);
2509    emit_d32(cbuf,0x20);
2510    // JEQ,s small
2511    emit_opcode(cbuf, 0x74);
2512    emit_d8(cbuf, 0x04);
2513    // MOV    $dst.lo,$dst.hi
2514    emit_opcode( cbuf, 0x8B );
2515    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2516    // CLR    $dst.hi
2517    emit_opcode(cbuf, 0x33);
2518    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2519// small:
2520    // SHRD   $dst.lo,$dst.hi,$shift
2521    emit_opcode(cbuf,0x0F);
2522    emit_opcode(cbuf,0xAD);
2523    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2524    // SHR    $dst.hi,$shift"
2525    emit_opcode(cbuf,0xD3);
2526    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2527  %}
2528
2529  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2530    // TEST shift,32
2531    emit_opcode(cbuf,0xF7);
2532    emit_rm(cbuf, 0x3, 0, ECX_enc);
2533    emit_d32(cbuf,0x20);
2534    // JEQ,s small
2535    emit_opcode(cbuf, 0x74);
2536    emit_d8(cbuf, 0x05);
2537    // MOV    $dst.lo,$dst.hi
2538    emit_opcode( cbuf, 0x8B );
2539    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2540    // SAR    $dst.hi,31
2541    emit_opcode(cbuf, 0xC1);
2542    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2543    emit_d8(cbuf, 0x1F );
2544// small:
2545    // SHRD   $dst.lo,$dst.hi,$shift
2546    emit_opcode(cbuf,0x0F);
2547    emit_opcode(cbuf,0xAD);
2548    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2549    // SAR    $dst.hi,$shift"
2550    emit_opcode(cbuf,0xD3);
2551    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2552  %}
2553
2554
2555  // ----------------- Encodings for floating point unit -----------------
2556  // May leave result in FPU-TOS or FPU reg depending on opcodes
2557  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2558    $$$emit8$primary;
2559    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2560  %}
2561
2562  // Pop argument in FPR0 with FSTP ST(0)
2563  enc_class PopFPU() %{
2564    emit_opcode( cbuf, 0xDD );
2565    emit_d8( cbuf, 0xD8 );
2566  %}
2567
2568  // !!!!! equivalent to Pop_Reg_F
2569  enc_class Pop_Reg_D( regD dst ) %{
2570    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2571    emit_d8( cbuf, 0xD8+$dst$$reg );
2572  %}
2573
2574  enc_class Push_Reg_D( regD dst ) %{
2575    emit_opcode( cbuf, 0xD9 );
2576    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2577  %}
2578
2579  enc_class strictfp_bias1( regD dst ) %{
2580    emit_opcode( cbuf, 0xDB );           // FLD m80real
2581    emit_opcode( cbuf, 0x2D );
2582    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2583    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2584    emit_opcode( cbuf, 0xC8+$dst$$reg );
2585  %}
2586
2587  enc_class strictfp_bias2( regD dst ) %{
2588    emit_opcode( cbuf, 0xDB );           // FLD m80real
2589    emit_opcode( cbuf, 0x2D );
2590    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2591    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2592    emit_opcode( cbuf, 0xC8+$dst$$reg );
2593  %}
2594
2595  // Special case for moving an integer register to a stack slot.
2596  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2597    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2598  %}
2599
2600  // Special case for moving a register to a stack slot.
2601  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2602    // Opcode already emitted
2603    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2604    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2605    emit_d32(cbuf, $dst$$disp);   // Displacement
2606  %}
2607
2608  // Push the integer in stackSlot 'src' onto FP-stack
2609  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2610    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2611  %}
2612
2613  // Push the float in stackSlot 'src' onto FP-stack
2614  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2615    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2616  %}
2617
2618  // Push the double in stackSlot 'src' onto FP-stack
2619  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2620    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2621  %}
2622
2623  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2624  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2625    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2626  %}
2627
2628  // Same as Pop_Mem_F except for opcode
2629  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2630  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2631    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2632  %}
2633
2634  enc_class Pop_Reg_F( regF dst ) %{
2635    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2636    emit_d8( cbuf, 0xD8+$dst$$reg );
2637  %}
2638
2639  enc_class Push_Reg_F( regF dst ) %{
2640    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2641    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2642  %}
2643
2644  // Push FPU's float to a stack-slot, and pop FPU-stack
2645  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2646    int pop = 0x02;
2647    if ($src$$reg != FPR1L_enc) {
2648      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2649      emit_d8( cbuf, 0xC0-1+$src$$reg );
2650      pop = 0x03;
2651    }
2652    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2653  %}
2654
2655  // Push FPU's double to a stack-slot, and pop FPU-stack
2656  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2657    int pop = 0x02;
2658    if ($src$$reg != FPR1L_enc) {
2659      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2660      emit_d8( cbuf, 0xC0-1+$src$$reg );
2661      pop = 0x03;
2662    }
2663    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2664  %}
2665
2666  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2667  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2668    int pop = 0xD0 - 1; // -1 since we skip FLD
2669    if ($src$$reg != FPR1L_enc) {
2670      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2671      emit_d8( cbuf, 0xC0-1+$src$$reg );
2672      pop = 0xD8;
2673    }
2674    emit_opcode( cbuf, 0xDD );
2675    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2676  %}
2677
2678
2679  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2680    MacroAssembler masm(&cbuf);
2681    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2682    masm.fmul(   $src2$$reg+0);   // value at TOS
2683    masm.fadd(   $src$$reg+0);    // value at TOS
2684    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2685  %}
2686
2687
2688  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2689    // load dst in FPR0
2690    emit_opcode( cbuf, 0xD9 );
2691    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2692    if ($src$$reg != FPR1L_enc) {
2693      // fincstp
2694      emit_opcode (cbuf, 0xD9);
2695      emit_opcode (cbuf, 0xF7);
2696      // swap src with FPR1:
2697      // FXCH FPR1 with src
2698      emit_opcode(cbuf, 0xD9);
2699      emit_d8(cbuf, 0xC8-1+$src$$reg );
2700      // fdecstp
2701      emit_opcode (cbuf, 0xD9);
2702      emit_opcode (cbuf, 0xF6);
2703    }
2704  %}
2705
2706  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2707    // Allocate a word
2708    emit_opcode(cbuf,0x83);            // SUB ESP,8
2709    emit_opcode(cbuf,0xEC);
2710    emit_d8(cbuf,0x08);
2711
2712    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2713    emit_opcode  (cbuf, 0x0F );
2714    emit_opcode  (cbuf, 0x11 );
2715    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2716
2717    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2718    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2719
2720    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2721    emit_opcode  (cbuf, 0x0F );
2722    emit_opcode  (cbuf, 0x11 );
2723    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2724
2725    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2726    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2727
2728  %}
2729
2730  enc_class Push_ModX_encoding( regX src0, regX src1) %{
2731    // Allocate a word
2732    emit_opcode(cbuf,0x83);            // SUB ESP,4
2733    emit_opcode(cbuf,0xEC);
2734    emit_d8(cbuf,0x04);
2735
2736    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2737    emit_opcode  (cbuf, 0x0F );
2738    emit_opcode  (cbuf, 0x11 );
2739    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2740
2741    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2742    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2743
2744    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2745    emit_opcode  (cbuf, 0x0F );
2746    emit_opcode  (cbuf, 0x11 );
2747    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2748
2749    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2750    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2751
2752  %}
2753
2754  enc_class Push_ResultXD(regXD dst) %{
2755    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2756
2757    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2758    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2759    emit_opcode  (cbuf, 0x0F );
2760    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2761    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2762
2763    emit_opcode(cbuf,0x83);    // ADD ESP,8
2764    emit_opcode(cbuf,0xC4);
2765    emit_d8(cbuf,0x08);
2766  %}
2767
2768  enc_class Push_ResultX(regX dst, immI d8) %{
2769    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2770
2771    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2772    emit_opcode  (cbuf, 0x0F );
2773    emit_opcode  (cbuf, 0x10 );
2774    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2775
2776    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2777    emit_opcode(cbuf,0xC4);
2778    emit_d8(cbuf,$d8$$constant);
2779  %}
2780
2781  enc_class Push_SrcXD(regXD src) %{
2782    // Allocate a word
2783    emit_opcode(cbuf,0x83);            // SUB ESP,8
2784    emit_opcode(cbuf,0xEC);
2785    emit_d8(cbuf,0x08);
2786
2787    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2788    emit_opcode  (cbuf, 0x0F );
2789    emit_opcode  (cbuf, 0x11 );
2790    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2791
2792    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2793    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2794  %}
2795
2796  enc_class push_stack_temp_qword() %{
2797    emit_opcode(cbuf,0x83);     // SUB ESP,8
2798    emit_opcode(cbuf,0xEC);
2799    emit_d8    (cbuf,0x08);
2800  %}
2801
2802  enc_class pop_stack_temp_qword() %{
2803    emit_opcode(cbuf,0x83);     // ADD ESP,8
2804    emit_opcode(cbuf,0xC4);
2805    emit_d8    (cbuf,0x08);
2806  %}
2807
2808  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2809    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2810    emit_opcode  (cbuf, 0x0F );
2811    emit_opcode  (cbuf, 0x11 );
2812    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2813
2814    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2815    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2816  %}
2817
2818  // Compute X^Y using Intel's fast hardware instructions, if possible.
2819  // Otherwise return a NaN.
2820  enc_class pow_exp_core_encoding %{
2821    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2822    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2823    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2824    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2825    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2826    emit_opcode(cbuf,0x1C);
2827    emit_d8(cbuf,0x24);
2828    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2829    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2830    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2831    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2832    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2833    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2834    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2835    emit_d32(cbuf,0xFFFFF800);
2836    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2837    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2838    emit_d32(cbuf,1023);
2839    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2840    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2841    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2842    emit_rm(cbuf,0x3,0x4,EAX_enc);
2843    emit_d8(cbuf,20);
2844    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2845    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2846    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2847    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2848    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2849    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2850    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2851    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2852    emit_d32(cbuf,0);
2853    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2854    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2855  %}
2856
2857//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2858//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2859
2860  enc_class Push_Result_Mod_D( regD src) %{
2861    if ($src$$reg != FPR1L_enc) {
2862      // fincstp
2863      emit_opcode (cbuf, 0xD9);
2864      emit_opcode (cbuf, 0xF7);
2865      // FXCH FPR1 with src
2866      emit_opcode(cbuf, 0xD9);
2867      emit_d8(cbuf, 0xC8-1+$src$$reg );
2868      // fdecstp
2869      emit_opcode (cbuf, 0xD9);
2870      emit_opcode (cbuf, 0xF6);
2871    }
2872    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2873    // // FSTP   FPR$dst$$reg
2874    // emit_opcode( cbuf, 0xDD );
2875    // emit_d8( cbuf, 0xD8+$dst$$reg );
2876  %}
2877
2878  enc_class fnstsw_sahf_skip_parity() %{
2879    // fnstsw ax
2880    emit_opcode( cbuf, 0xDF );
2881    emit_opcode( cbuf, 0xE0 );
2882    // sahf
2883    emit_opcode( cbuf, 0x9E );
2884    // jnp  ::skip
2885    emit_opcode( cbuf, 0x7B );
2886    emit_opcode( cbuf, 0x05 );
2887  %}
2888
2889  enc_class emitModD() %{
2890    // fprem must be iterative
2891    // :: loop
2892    // fprem
2893    emit_opcode( cbuf, 0xD9 );
2894    emit_opcode( cbuf, 0xF8 );
2895    // wait
2896    emit_opcode( cbuf, 0x9b );
2897    // fnstsw ax
2898    emit_opcode( cbuf, 0xDF );
2899    emit_opcode( cbuf, 0xE0 );
2900    // sahf
2901    emit_opcode( cbuf, 0x9E );
2902    // jp  ::loop
2903    emit_opcode( cbuf, 0x0F );
2904    emit_opcode( cbuf, 0x8A );
2905    emit_opcode( cbuf, 0xF4 );
2906    emit_opcode( cbuf, 0xFF );
2907    emit_opcode( cbuf, 0xFF );
2908    emit_opcode( cbuf, 0xFF );
2909  %}
2910
2911  enc_class fpu_flags() %{
2912    // fnstsw_ax
2913    emit_opcode( cbuf, 0xDF);
2914    emit_opcode( cbuf, 0xE0);
2915    // test ax,0x0400
2916    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2917    emit_opcode( cbuf, 0xA9 );
2918    emit_d16   ( cbuf, 0x0400 );
2919    // // // This sequence works, but stalls for 12-16 cycles on PPro
2920    // // test rax,0x0400
2921    // emit_opcode( cbuf, 0xA9 );
2922    // emit_d32   ( cbuf, 0x00000400 );
2923    //
2924    // jz exit (no unordered comparison)
2925    emit_opcode( cbuf, 0x74 );
2926    emit_d8    ( cbuf, 0x02 );
2927    // mov ah,1 - treat as LT case (set carry flag)
2928    emit_opcode( cbuf, 0xB4 );
2929    emit_d8    ( cbuf, 0x01 );
2930    // sahf
2931    emit_opcode( cbuf, 0x9E);
2932  %}
2933
2934  enc_class cmpF_P6_fixup() %{
2935    // Fixup the integer flags in case comparison involved a NaN
2936    //
2937    // JNP exit (no unordered comparison, P-flag is set by NaN)
2938    emit_opcode( cbuf, 0x7B );
2939    emit_d8    ( cbuf, 0x03 );
2940    // MOV AH,1 - treat as LT case (set carry flag)
2941    emit_opcode( cbuf, 0xB4 );
2942    emit_d8    ( cbuf, 0x01 );
2943    // SAHF
2944    emit_opcode( cbuf, 0x9E);
2945    // NOP     // target for branch to avoid branch to branch
2946    emit_opcode( cbuf, 0x90);
2947  %}
2948
2949//     fnstsw_ax();
2950//     sahf();
2951//     movl(dst, nan_result);
2952//     jcc(Assembler::parity, exit);
2953//     movl(dst, less_result);
2954//     jcc(Assembler::below, exit);
2955//     movl(dst, equal_result);
2956//     jcc(Assembler::equal, exit);
2957//     movl(dst, greater_result);
2958
2959// less_result     =  1;
2960// greater_result  = -1;
2961// equal_result    = 0;
2962// nan_result      = -1;
2963
2964  enc_class CmpF_Result(eRegI dst) %{
2965    // fnstsw_ax();
2966    emit_opcode( cbuf, 0xDF);
2967    emit_opcode( cbuf, 0xE0);
2968    // sahf
2969    emit_opcode( cbuf, 0x9E);
2970    // movl(dst, nan_result);
2971    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2972    emit_d32( cbuf, -1 );
2973    // jcc(Assembler::parity, exit);
2974    emit_opcode( cbuf, 0x7A );
2975    emit_d8    ( cbuf, 0x13 );
2976    // movl(dst, less_result);
2977    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2978    emit_d32( cbuf, -1 );
2979    // jcc(Assembler::below, exit);
2980    emit_opcode( cbuf, 0x72 );
2981    emit_d8    ( cbuf, 0x0C );
2982    // movl(dst, equal_result);
2983    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2984    emit_d32( cbuf, 0 );
2985    // jcc(Assembler::equal, exit);
2986    emit_opcode( cbuf, 0x74 );
2987    emit_d8    ( cbuf, 0x05 );
2988    // movl(dst, greater_result);
2989    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2990    emit_d32( cbuf, 1 );
2991  %}
2992
2993
2994  // XMM version of CmpF_Result. Because the XMM compare
2995  // instructions set the EFLAGS directly. It becomes simpler than
2996  // the float version above.
2997  enc_class CmpX_Result(eRegI dst) %{
2998    MacroAssembler _masm(&cbuf);
2999    Label nan, inc, done;
3000
3001    __ jccb(Assembler::parity, nan);
3002    __ jccb(Assembler::equal,  done);
3003    __ jccb(Assembler::above,  inc);
3004    __ bind(nan);
3005    __ decrement(as_Register($dst$$reg)); // NO L qqq
3006    __ jmpb(done);
3007    __ bind(inc);
3008    __ increment(as_Register($dst$$reg)); // NO L qqq
3009    __ bind(done);
3010  %}
3011
3012  // Compare the longs and set flags
3013  // BROKEN!  Do Not use as-is
3014  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
3015    // CMP    $src1.hi,$src2.hi
3016    emit_opcode( cbuf, 0x3B );
3017    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3018    // JNE,s  done
3019    emit_opcode(cbuf,0x75);
3020    emit_d8(cbuf, 2 );
3021    // CMP    $src1.lo,$src2.lo
3022    emit_opcode( cbuf, 0x3B );
3023    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3024// done:
3025  %}
3026
3027  enc_class convert_int_long( regL dst, eRegI src ) %{
3028    // mov $dst.lo,$src
3029    int dst_encoding = $dst$$reg;
3030    int src_encoding = $src$$reg;
3031    encode_Copy( cbuf, dst_encoding  , src_encoding );
3032    // mov $dst.hi,$src
3033    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
3034    // sar $dst.hi,31
3035    emit_opcode( cbuf, 0xC1 );
3036    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
3037    emit_d8(cbuf, 0x1F );
3038  %}
3039
3040  enc_class convert_long_double( eRegL src ) %{
3041    // push $src.hi
3042    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3043    // push $src.lo
3044    emit_opcode(cbuf, 0x50+$src$$reg  );
3045    // fild 64-bits at [SP]
3046    emit_opcode(cbuf,0xdf);
3047    emit_d8(cbuf, 0x6C);
3048    emit_d8(cbuf, 0x24);
3049    emit_d8(cbuf, 0x00);
3050    // pop stack
3051    emit_opcode(cbuf, 0x83); // add  SP, #8
3052    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3053    emit_d8(cbuf, 0x8);
3054  %}
3055
3056  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
3057    // IMUL   EDX:EAX,$src1
3058    emit_opcode( cbuf, 0xF7 );
3059    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
3060    // SAR    EDX,$cnt-32
3061    int shift_count = ((int)$cnt$$constant) - 32;
3062    if (shift_count > 0) {
3063      emit_opcode(cbuf, 0xC1);
3064      emit_rm(cbuf, 0x3, 7, $dst$$reg );
3065      emit_d8(cbuf, shift_count);
3066    }
3067  %}
3068
3069  // this version doesn't have add sp, 8
3070  enc_class convert_long_double2( eRegL src ) %{
3071    // push $src.hi
3072    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3073    // push $src.lo
3074    emit_opcode(cbuf, 0x50+$src$$reg  );
3075    // fild 64-bits at [SP]
3076    emit_opcode(cbuf,0xdf);
3077    emit_d8(cbuf, 0x6C);
3078    emit_d8(cbuf, 0x24);
3079    emit_d8(cbuf, 0x00);
3080  %}
3081
3082  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
3083    // Basic idea: long = (long)int * (long)int
3084    // IMUL EDX:EAX, src
3085    emit_opcode( cbuf, 0xF7 );
3086    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
3087  %}
3088
3089  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
3090    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
3091    // MUL EDX:EAX, src
3092    emit_opcode( cbuf, 0xF7 );
3093    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
3094  %}
3095
3096  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
3097    // Basic idea: lo(result) = lo(x_lo * y_lo)
3098    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
3099    // MOV    $tmp,$src.lo
3100    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
3101    // IMUL   $tmp,EDX
3102    emit_opcode( cbuf, 0x0F );
3103    emit_opcode( cbuf, 0xAF );
3104    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3105    // MOV    EDX,$src.hi
3106    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3107    // IMUL   EDX,EAX
3108    emit_opcode( cbuf, 0x0F );
3109    emit_opcode( cbuf, 0xAF );
3110    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3111    // ADD    $tmp,EDX
3112    emit_opcode( cbuf, 0x03 );
3113    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3114    // MUL   EDX:EAX,$src.lo
3115    emit_opcode( cbuf, 0xF7 );
3116    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3117    // ADD    EDX,ESI
3118    emit_opcode( cbuf, 0x03 );
3119    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3120  %}
3121
3122  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3123    // Basic idea: lo(result) = lo(src * y_lo)
3124    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3125    // IMUL   $tmp,EDX,$src
3126    emit_opcode( cbuf, 0x6B );
3127    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3128    emit_d8( cbuf, (int)$src$$constant );
3129    // MOV    EDX,$src
3130    emit_opcode(cbuf, 0xB8 + EDX_enc);
3131    emit_d32( cbuf, (int)$src$$constant );
3132    // MUL   EDX:EAX,EDX
3133    emit_opcode( cbuf, 0xF7 );
3134    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3135    // ADD    EDX,ESI
3136    emit_opcode( cbuf, 0x03 );
3137    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3138  %}
3139
3140  enc_class long_div( eRegL src1, eRegL src2 ) %{
3141    // PUSH src1.hi
3142    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3143    // PUSH src1.lo
3144    emit_opcode(cbuf,               0x50+$src1$$reg  );
3145    // PUSH src2.hi
3146    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3147    // PUSH src2.lo
3148    emit_opcode(cbuf,               0x50+$src2$$reg  );
3149    // CALL directly to the runtime
3150    cbuf.set_insts_mark();
3151    emit_opcode(cbuf,0xE8);       // Call into runtime
3152    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3153    // Restore stack
3154    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3155    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3156    emit_d8(cbuf, 4*4);
3157  %}
3158
3159  enc_class long_mod( eRegL src1, eRegL src2 ) %{
3160    // PUSH src1.hi
3161    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3162    // PUSH src1.lo
3163    emit_opcode(cbuf,               0x50+$src1$$reg  );
3164    // PUSH src2.hi
3165    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3166    // PUSH src2.lo
3167    emit_opcode(cbuf,               0x50+$src2$$reg  );
3168    // CALL directly to the runtime
3169    cbuf.set_insts_mark();
3170    emit_opcode(cbuf,0xE8);       // Call into runtime
3171    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3172    // Restore stack
3173    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3174    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3175    emit_d8(cbuf, 4*4);
3176  %}
3177
3178  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3179    // MOV   $tmp,$src.lo
3180    emit_opcode(cbuf, 0x8B);
3181    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3182    // OR    $tmp,$src.hi
3183    emit_opcode(cbuf, 0x0B);
3184    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3185  %}
3186
3187  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3188    // CMP    $src1.lo,$src2.lo
3189    emit_opcode( cbuf, 0x3B );
3190    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3191    // JNE,s  skip
3192    emit_cc(cbuf, 0x70, 0x5);
3193    emit_d8(cbuf,2);
3194    // CMP    $src1.hi,$src2.hi
3195    emit_opcode( cbuf, 0x3B );
3196    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3197  %}
3198
3199  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3200    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3201    emit_opcode( cbuf, 0x3B );
3202    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3203    // MOV    $tmp,$src1.hi
3204    emit_opcode( cbuf, 0x8B );
3205    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3206    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3207    emit_opcode( cbuf, 0x1B );
3208    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3209  %}
3210
3211  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3212    // XOR    $tmp,$tmp
3213    emit_opcode(cbuf,0x33);  // XOR
3214    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3215    // CMP    $tmp,$src.lo
3216    emit_opcode( cbuf, 0x3B );
3217    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3218    // SBB    $tmp,$src.hi
3219    emit_opcode( cbuf, 0x1B );
3220    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3221  %}
3222
3223 // Sniff, sniff... smells like Gnu Superoptimizer
3224  enc_class neg_long( eRegL dst ) %{
3225    emit_opcode(cbuf,0xF7);    // NEG hi
3226    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3227    emit_opcode(cbuf,0xF7);    // NEG lo
3228    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3229    emit_opcode(cbuf,0x83);    // SBB hi,0
3230    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3231    emit_d8    (cbuf,0 );
3232  %}
3233
3234  enc_class movq_ld(regXD dst, memory mem) %{
3235    MacroAssembler _masm(&cbuf);
3236    __ movq($dst$$XMMRegister, $mem$$Address);
3237  %}
3238
3239  enc_class movq_st(memory mem, regXD src) %{
3240    MacroAssembler _masm(&cbuf);
3241    __ movq($mem$$Address, $src$$XMMRegister);
3242  %}
3243
3244  enc_class pshufd_8x8(regX dst, regX src) %{
3245    MacroAssembler _masm(&cbuf);
3246
3247    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3248    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3249    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3250  %}
3251
3252  enc_class pshufd_4x16(regX dst, regX src) %{
3253    MacroAssembler _masm(&cbuf);
3254
3255    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3256  %}
3257
3258  enc_class pshufd(regXD dst, regXD src, int mode) %{
3259    MacroAssembler _masm(&cbuf);
3260
3261    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3262  %}
3263
3264  enc_class pxor(regXD dst, regXD src) %{
3265    MacroAssembler _masm(&cbuf);
3266
3267    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3268  %}
3269
3270  enc_class mov_i2x(regXD dst, eRegI src) %{
3271    MacroAssembler _masm(&cbuf);
3272
3273    __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3274  %}
3275
3276
3277  // Because the transitions from emitted code to the runtime
3278  // monitorenter/exit helper stubs are so slow it's critical that
3279  // we inline both the stack-locking fast-path and the inflated fast path.
3280  //
3281  // See also: cmpFastLock and cmpFastUnlock.
3282  //
3283  // What follows is a specialized inline transliteration of the code
3284  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3285  // another option would be to emit TrySlowEnter and TrySlowExit methods
3286  // at startup-time.  These methods would accept arguments as
3287  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3288  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3289  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3290  // In practice, however, the # of lock sites is bounded and is usually small.
3291  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3292  // if the processor uses simple bimodal branch predictors keyed by EIP
3293  // Since the helper routines would be called from multiple synchronization
3294  // sites.
3295  //
3296  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3297  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3298  // to those specialized methods.  That'd give us a mostly platform-independent
3299  // implementation that the JITs could optimize and inline at their pleasure.
3300  // Done correctly, the only time we'd need to cross to native could would be
3301  // to park() or unpark() threads.  We'd also need a few more unsafe operators
3302  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3303  // (b) explicit barriers or fence operations.
3304  //
3305  // TODO:
3306  //
3307  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3308  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3309  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3310  //    the lock operators would typically be faster than reifying Self.
3311  //
3312  // *  Ideally I'd define the primitives as:
3313  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3314  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3315  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3316  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3317  //    Furthermore the register assignments are overconstrained, possibly resulting in
3318  //    sub-optimal code near the synchronization site.
3319  //
3320  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3321  //    Alternately, use a better sp-proximity test.
3322  //
3323  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3324  //    Either one is sufficient to uniquely identify a thread.
3325  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3326  //
3327  // *  Intrinsify notify() and notifyAll() for the common cases where the
3328  //    object is locked by the calling thread but the waitlist is empty.
3329  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3330  //
3331  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3332  //    But beware of excessive branch density on AMD Opterons.
3333  //
3334  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3335  //    or failure of the fast-path.  If the fast-path fails then we pass
3336  //    control to the slow-path, typically in C.  In Fast_Lock and
3337  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3338  //    will emit a conditional branch immediately after the node.
3339  //    So we have branches to branches and lots of ICC.ZF games.
3340  //    Instead, it might be better to have C2 pass a "FailureLabel"
3341  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3342  //    will drop through the node.  ICC.ZF is undefined at exit.
3343  //    In the case of failure, the node will branch directly to the
3344  //    FailureLabel
3345
3346
3347  // obj: object to lock
3348  // box: on-stack box address (displaced header location) - KILLED
3349  // rax,: tmp -- KILLED
3350  // scr: tmp -- KILLED
3351  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3352
3353    Register objReg = as_Register($obj$$reg);
3354    Register boxReg = as_Register($box$$reg);
3355    Register tmpReg = as_Register($tmp$$reg);
3356    Register scrReg = as_Register($scr$$reg);
3357
3358    // Ensure the register assignents are disjoint
3359    guarantee (objReg != boxReg, "") ;
3360    guarantee (objReg != tmpReg, "") ;
3361    guarantee (objReg != scrReg, "") ;
3362    guarantee (boxReg != tmpReg, "") ;
3363    guarantee (boxReg != scrReg, "") ;
3364    guarantee (tmpReg == as_Register(EAX_enc), "") ;
3365
3366    MacroAssembler masm(&cbuf);
3367
3368    if (_counters != NULL) {
3369      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3370    }
3371    if (EmitSync & 1) {
3372        // set box->dhw = unused_mark (3)
3373        // Force all sync thru slow-path: slow_enter() and slow_exit() 
3374        masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3375        masm.cmpptr (rsp, (int32_t)0) ;                        
3376    } else 
3377    if (EmitSync & 2) { 
3378        Label DONE_LABEL ;           
3379        if (UseBiasedLocking) {
3380           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3381           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3382        }
3383
3384        masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3385        masm.orptr (tmpReg, 0x1);
3386        masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3387        if (os::is_MP()) { masm.lock();  }
3388        masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3389        masm.jcc(Assembler::equal, DONE_LABEL);
3390        // Recursive locking
3391        masm.subptr(tmpReg, rsp);
3392        masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3393        masm.movptr(Address(boxReg, 0), tmpReg);
3394        masm.bind(DONE_LABEL) ; 
3395    } else {  
3396      // Possible cases that we'll encounter in fast_lock 
3397      // ------------------------------------------------
3398      // * Inflated
3399      //    -- unlocked
3400      //    -- Locked
3401      //       = by self
3402      //       = by other
3403      // * biased
3404      //    -- by Self
3405      //    -- by other
3406      // * neutral
3407      // * stack-locked
3408      //    -- by self
3409      //       = sp-proximity test hits
3410      //       = sp-proximity test generates false-negative
3411      //    -- by other
3412      //
3413
3414      Label IsInflated, DONE_LABEL, PopDone ;
3415
3416      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3417      // order to reduce the number of conditional branches in the most common cases.
3418      // Beware -- there's a subtle invariant that fetch of the markword
3419      // at [FETCH], below, will never observe a biased encoding (*101b).
3420      // If this invariant is not held we risk exclusion (safety) failure.
3421      if (UseBiasedLocking && !UseOptoBiasInlining) {
3422        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3423      }
3424
3425      masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3426      masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3427      masm.jccb  (Assembler::notZero, IsInflated) ;
3428
3429      // Attempt stack-locking ...
3430      masm.orptr (tmpReg, 0x1);
3431      masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3432      if (os::is_MP()) { masm.lock();  }
3433      masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3434      if (_counters != NULL) {
3435        masm.cond_inc32(Assembler::equal,
3436                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3437      }
3438      masm.jccb (Assembler::equal, DONE_LABEL);
3439
3440      // Recursive locking
3441      masm.subptr(tmpReg, rsp);
3442      masm.andptr(tmpReg, 0xFFFFF003 );
3443      masm.movptr(Address(boxReg, 0), tmpReg);
3444      if (_counters != NULL) {
3445        masm.cond_inc32(Assembler::equal,
3446                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3447      }
3448      masm.jmp  (DONE_LABEL) ;
3449
3450      masm.bind (IsInflated) ;
3451
3452      // The object is inflated.
3453      //
3454      // TODO-FIXME: eliminate the ugly use of manifest constants:
3455      //   Use markOopDesc::monitor_value instead of "2".
3456      //   use markOop::unused_mark() instead of "3".
3457      // The tmpReg value is an objectMonitor reference ORed with
3458      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3459      // objectmonitor pointer by masking off the "2" bit or we can just
3460      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3461      // field offsets with "-2" to compensate for and annul the low-order tag bit.
3462      //
3463      // I use the latter as it avoids AGI stalls.
3464      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3465      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3466      //
3467      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3468
3469      // boxReg refers to the on-stack BasicLock in the current frame.
3470      // We'd like to write:
3471      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3472      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3473      // additional latency as we have another ST in the store buffer that must drain.
3474
3475      if (EmitSync & 8192) { 
3476         masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3477         masm.get_thread (scrReg) ; 
3478         masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3479         masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3480         if (os::is_MP()) { masm.lock(); } 
3481         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3482      } else 
3483      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3484         masm.movptr(scrReg, boxReg) ; 
3485         masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3486
3487         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3488         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3489            // prefetchw [eax + Offset(_owner)-2]
3490            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3491         }
3492
3493         if ((EmitSync & 64) == 0) {
3494           // Optimistic form: consider XORL tmpReg,tmpReg
3495           masm.movptr(tmpReg, NULL_WORD) ; 
3496         } else { 
3497           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3498           // Test-And-CAS instead of CAS
3499           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3500           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3501           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3502         }
3503
3504         // Appears unlocked - try to swing _owner from null to non-null.
3505         // Ideally, I'd manifest "Self" with get_thread and then attempt
3506         // to CAS the register containing Self into m->Owner.
3507         // But we don't have enough registers, so instead we can either try to CAS
3508         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3509         // we later store "Self" into m->Owner.  Transiently storing a stack address
3510         // (rsp or the address of the box) into  m->owner is harmless.
3511         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3512         if (os::is_MP()) { masm.lock();  }
3513         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3514         masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3515         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3516         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3517         masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3518         masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3519                       
3520         // If the CAS fails we can either retry or pass control to the slow-path.  
3521         // We use the latter tactic.  
3522         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3523         // If the CAS was successful ...
3524         //   Self has acquired the lock
3525         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3526         // Intentional fall-through into DONE_LABEL ...
3527      } else {
3528         masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3529         masm.movptr(boxReg, tmpReg) ; 
3530
3531         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3532         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3533            // prefetchw [eax + Offset(_owner)-2]
3534            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3535         }
3536
3537         if ((EmitSync & 64) == 0) {
3538           // Optimistic form
3539           masm.xorptr  (tmpReg, tmpReg) ; 
3540         } else { 
3541           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3542           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3543           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3544           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3545         }
3546
3547         // Appears unlocked - try to swing _owner from null to non-null.
3548         // Use either "Self" (in scr) or rsp as thread identity in _owner.
3549         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3550         masm.get_thread (scrReg) ;
3551         if (os::is_MP()) { masm.lock(); }
3552         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3553
3554         // If the CAS fails we can either retry or pass control to the slow-path.
3555         // We use the latter tactic.
3556         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3557         // If the CAS was successful ...
3558         //   Self has acquired the lock
3559         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3560         // Intentional fall-through into DONE_LABEL ...
3561      }
3562
3563      // DONE_LABEL is a hot target - we'd really like to place it at the
3564      // start of cache line by padding with NOPs.
3565      // See the AMD and Intel software optimization manuals for the
3566      // most efficient "long" NOP encodings.
3567      // Unfortunately none of our alignment mechanisms suffice.
3568      masm.bind(DONE_LABEL);
3569
3570      // Avoid branch-to-branch on AMD processors
3571      // This appears to be superstition.
3572      if (EmitSync & 32) masm.nop() ;
3573
3574
3575      // At DONE_LABEL the icc ZFlag is set as follows ...
3576      // Fast_Unlock uses the same protocol.
3577      // ZFlag == 1 -> Success
3578      // ZFlag == 0 -> Failure - force control through the slow-path
3579    }
3580  %}
3581
3582  // obj: object to unlock
3583  // box: box address (displaced header location), killed.  Must be EAX.
3584  // rbx,: killed tmp; cannot be obj nor box.
3585  //
3586  // Some commentary on balanced locking:
3587  //
3588  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3589  // Methods that don't have provably balanced locking are forced to run in the
3590  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3591  // The interpreter provides two properties:
3592  // I1:  At return-time the interpreter automatically and quietly unlocks any
3593  //      objects acquired the current activation (frame).  Recall that the
3594  //      interpreter maintains an on-stack list of locks currently held by
3595  //      a frame.
3596  // I2:  If a method attempts to unlock an object that is not held by the
3597  //      the frame the interpreter throws IMSX.
3598  //
3599  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3600  // B() doesn't have provably balanced locking so it runs in the interpreter.
3601  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3602  // is still locked by A().
3603  //
3604  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3605  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3606  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3607  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3608
3609  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3610
3611    Register objReg = as_Register($obj$$reg);
3612    Register boxReg = as_Register($box$$reg);
3613    Register tmpReg = as_Register($tmp$$reg);
3614
3615    guarantee (objReg != boxReg, "") ;
3616    guarantee (objReg != tmpReg, "") ;
3617    guarantee (boxReg != tmpReg, "") ;
3618    guarantee (boxReg == as_Register(EAX_enc), "") ;
3619    MacroAssembler masm(&cbuf);
3620
3621    if (EmitSync & 4) {
3622      // Disable - inhibit all inlining.  Force control through the slow-path
3623      masm.cmpptr (rsp, 0) ; 
3624    } else 
3625    if (EmitSync & 8) {
3626      Label DONE_LABEL ;
3627      if (UseBiasedLocking) {
3628         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3629      }
3630      // classic stack-locking code ...
3631      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3632      masm.testptr(tmpReg, tmpReg) ;
3633      masm.jcc   (Assembler::zero, DONE_LABEL) ;
3634      if (os::is_MP()) { masm.lock(); }
3635      masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3636      masm.bind(DONE_LABEL);
3637    } else {
3638      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3639
3640      // Critically, the biased locking test must have precedence over
3641      // and appear before the (box->dhw == 0) recursive stack-lock test.
3642      if (UseBiasedLocking && !UseOptoBiasInlining) {
3643         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3644      }
3645      
3646      masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3647      masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3648      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3649
3650      masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3651      masm.jccb  (Assembler::zero, Stacked) ;
3652
3653      masm.bind  (Inflated) ;
3654      // It's inflated.
3655      // Despite our balanced locking property we still check that m->_owner == Self
3656      // as java routines or native JNI code called by this thread might
3657      // have released the lock.
3658      // Refer to the comments in synchronizer.cpp for how we might encode extra
3659      // state in _succ so we can avoid fetching EntryList|cxq.
3660      //
3661      // I'd like to add more cases in fast_lock() and fast_unlock() --
3662      // such as recursive enter and exit -- but we have to be wary of
3663      // I$ bloat, T$ effects and BP$ effects.
3664      //
3665      // If there's no contention try a 1-0 exit.  That is, exit without
3666      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3667      // we detect and recover from the race that the 1-0 exit admits.
3668      //
3669      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3670      // before it STs null into _owner, releasing the lock.  Updates
3671      // to data protected by the critical section must be visible before
3672      // we drop the lock (and thus before any other thread could acquire
3673      // the lock and observe the fields protected by the lock).
3674      // IA32's memory-model is SPO, so STs are ordered with respect to
3675      // each other and there's no need for an explicit barrier (fence).
3676      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3677
3678      masm.get_thread (boxReg) ;
3679      if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3680        // prefetchw [ebx + Offset(_owner)-2]
3681        masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3682      }
3683
3684      // Note that we could employ various encoding schemes to reduce
3685      // the number of loads below (currently 4) to just 2 or 3.
3686      // Refer to the comments in synchronizer.cpp.
3687      // In practice the chain of fetches doesn't seem to impact performance, however.
3688      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3689         // Attempt to reduce branch density - AMD's branch predictor.
3690         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3691         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3692         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3693         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3694         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3695         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3696         masm.jmpb  (DONE_LABEL) ; 
3697      } else { 
3698         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3699         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3700         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3701         masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3702         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3703         masm.jccb  (Assembler::notZero, CheckSucc) ; 
3704         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3705         masm.jmpb  (DONE_LABEL) ; 
3706      }
3707
3708      // The Following code fragment (EmitSync & 65536) improves the performance of
3709      // contended applications and contended synchronization microbenchmarks.
3710      // Unfortunately the emission of the code - even though not executed - causes regressions
3711      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3712      // with an equal number of never-executed NOPs results in the same regression.
3713      // We leave it off by default.
3714
3715      if ((EmitSync & 65536) != 0) {
3716         Label LSuccess, LGoSlowPath ;
3717
3718         masm.bind  (CheckSucc) ;
3719
3720         // Optional pre-test ... it's safe to elide this
3721         if ((EmitSync & 16) == 0) { 
3722            masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3723            masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3724         }
3725
3726         // We have a classic Dekker-style idiom:
3727         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3728         // There are a number of ways to implement the barrier:
3729         // (1) lock:andl &m->_owner, 0
3730         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3731         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3732         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3733         // (2) If supported, an explicit MFENCE is appealing.
3734         //     In older IA32 processors MFENCE is slower than lock:add or xchg
3735         //     particularly if the write-buffer is full as might be the case if
3736         //     if stores closely precede the fence or fence-equivalent instruction.
3737         //     In more modern implementations MFENCE appears faster, however.
3738         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3739         //     The $lines underlying the top-of-stack should be in M-state.
3740         //     The locked add instruction is serializing, of course.
3741         // (4) Use xchg, which is serializing
3742         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3743         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3744         //     The integer condition codes will tell us if succ was 0.
3745         //     Since _succ and _owner should reside in the same $line and
3746         //     we just stored into _owner, it's likely that the $line
3747         //     remains in M-state for the lock:orl.
3748         //
3749         // We currently use (3), although it's likely that switching to (2)
3750         // is correct for the future.
3751            
3752         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3753         if (os::is_MP()) { 
3754            if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3755              masm.mfence();
3756            } else { 
3757              masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3758            }
3759         }
3760         // Ratify _succ remains non-null
3761         masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3762         masm.jccb  (Assembler::notZero, LSuccess) ; 
3763
3764         masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3765         if (os::is_MP()) { masm.lock(); }
3766         masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3767         masm.jccb  (Assembler::notEqual, LSuccess) ;
3768         // Since we're low on registers we installed rsp as a placeholding in _owner.
3769         // Now install Self over rsp.  This is safe as we're transitioning from
3770         // non-null to non=null
3771         masm.get_thread (boxReg) ;
3772         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3773         // Intentional fall-through into LGoSlowPath ...
3774
3775         masm.bind  (LGoSlowPath) ; 
3776         masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3777         masm.jmpb  (DONE_LABEL) ; 
3778
3779         masm.bind  (LSuccess) ; 
3780         masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3781         masm.jmpb  (DONE_LABEL) ; 
3782      }
3783
3784      masm.bind (Stacked) ;
3785      // It's not inflated and it's not recursively stack-locked and it's not biased.
3786      // It must be stack-locked.
3787      // Try to reset the header to displaced header.
3788      // The "box" value on the stack is stable, so we can reload
3789      // and be assured we observe the same value as above.
3790      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3791      if (os::is_MP()) {   masm.lock();    }
3792      masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3793      // Intention fall-thru into DONE_LABEL
3794
3795
3796      // DONE_LABEL is a hot target - we'd really like to place it at the
3797      // start of cache line by padding with NOPs.
3798      // See the AMD and Intel software optimization manuals for the
3799      // most efficient "long" NOP encodings.
3800      // Unfortunately none of our alignment mechanisms suffice.
3801      if ((EmitSync & 65536) == 0) {
3802         masm.bind (CheckSucc) ;
3803      }
3804      masm.bind(DONE_LABEL);
3805
3806      // Avoid branch to branch on AMD processors
3807      if (EmitSync & 32768) { masm.nop() ; }
3808    }
3809  %}
3810
3811
3812  enc_class enc_pop_rdx() %{
3813    emit_opcode(cbuf,0x5A);
3814  %}
3815
3816  enc_class enc_rethrow() %{
3817    cbuf.set_insts_mark();
3818    emit_opcode(cbuf, 0xE9);        // jmp    entry
3819    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
3820                   runtime_call_Relocation::spec(), RELOC_IMM32 );
3821  %}
3822
3823
3824  // Convert a double to an int.  Java semantics require we do complex
3825  // manglelations in the corner cases.  So we set the rounding mode to
3826  // 'zero', store the darned double down as an int, and reset the
3827  // rounding mode to 'nearest'.  The hardware throws an exception which
3828  // patches up the correct value directly to the stack.
3829  enc_class D2I_encoding( regD src ) %{
3830    // Flip to round-to-zero mode.  We attempted to allow invalid-op
3831    // exceptions here, so that a NAN or other corner-case value will
3832    // thrown an exception (but normal values get converted at full speed).
3833    // However, I2C adapters and other float-stack manglers leave pending
3834    // invalid-op exceptions hanging.  We would have to clear them before
3835    // enabling them and that is more expensive than just testing for the
3836    // invalid value Intel stores down in the corner cases.
3837    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3838    emit_opcode(cbuf,0x2D);
3839    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3840    // Allocate a word
3841    emit_opcode(cbuf,0x83);            // SUB ESP,4
3842    emit_opcode(cbuf,0xEC);
3843    emit_d8(cbuf,0x04);
3844    // Encoding assumes a double has been pushed into FPR0.
3845    // Store down the double as an int, popping the FPU stack
3846    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3847    emit_opcode(cbuf,0x1C);
3848    emit_d8(cbuf,0x24);
3849    // Restore the rounding mode; mask the exception
3850    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3851    emit_opcode(cbuf,0x2D);
3852    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3853        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3854        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3855
3856    // Load the converted int; adjust CPU stack
3857    emit_opcode(cbuf,0x58);       // POP EAX
3858    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3859    emit_d32   (cbuf,0x80000000); //         0x80000000
3860    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3861    emit_d8    (cbuf,0x07);       // Size of slow_call
3862    // Push src onto stack slow-path
3863    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3864    emit_d8    (cbuf,0xC0-1+$src$$reg );
3865    // CALL directly to the runtime
3866    cbuf.set_insts_mark();
3867    emit_opcode(cbuf,0xE8);       // Call into runtime
3868    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3869    // Carry on here...
3870  %}
3871
3872  enc_class D2L_encoding( regD src ) %{
3873    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3874    emit_opcode(cbuf,0x2D);
3875    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3876    // Allocate a word
3877    emit_opcode(cbuf,0x83);            // SUB ESP,8
3878    emit_opcode(cbuf,0xEC);
3879    emit_d8(cbuf,0x08);
3880    // Encoding assumes a double has been pushed into FPR0.
3881    // Store down the double as a long, popping the FPU stack
3882    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3883    emit_opcode(cbuf,0x3C);
3884    emit_d8(cbuf,0x24);
3885    // Restore the rounding mode; mask the exception
3886    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3887    emit_opcode(cbuf,0x2D);
3888    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3889        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3890        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3891
3892    // Load the converted int; adjust CPU stack
3893    emit_opcode(cbuf,0x58);       // POP EAX
3894    emit_opcode(cbuf,0x5A);       // POP EDX
3895    emit_opcode(cbuf,0x81);       // CMP EDX,imm
3896    emit_d8    (cbuf,0xFA);       // rdx
3897    emit_d32   (cbuf,0x80000000); //         0x80000000
3898    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3899    emit_d8    (cbuf,0x07+4);     // Size of slow_call
3900    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3901    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3902    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3903    emit_d8    (cbuf,0x07);       // Size of slow_call
3904    // Push src onto stack slow-path
3905    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3906    emit_d8    (cbuf,0xC0-1+$src$$reg );
3907    // CALL directly to the runtime
3908    cbuf.set_insts_mark();
3909    emit_opcode(cbuf,0xE8);       // Call into runtime
3910    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3911    // Carry on here...
3912  %}
3913
3914  enc_class X2L_encoding( regX src ) %{
3915    // Allocate a word
3916    emit_opcode(cbuf,0x83);      // SUB ESP,8
3917    emit_opcode(cbuf,0xEC);
3918    emit_d8(cbuf,0x08);
3919
3920    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3921    emit_opcode  (cbuf, 0x0F );
3922    emit_opcode  (cbuf, 0x11 );
3923    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3924
3925    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3926    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3927
3928    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3929    emit_opcode(cbuf,0x2D);
3930    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3931
3932    // Encoding assumes a double has been pushed into FPR0.
3933    // Store down the double as a long, popping the FPU stack
3934    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3935    emit_opcode(cbuf,0x3C);
3936    emit_d8(cbuf,0x24);
3937
3938    // Restore the rounding mode; mask the exception
3939    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3940    emit_opcode(cbuf,0x2D);
3941    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3942      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3943      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3944
3945    // Load the converted int; adjust CPU stack
3946    emit_opcode(cbuf,0x58);      // POP EAX
3947
3948    emit_opcode(cbuf,0x5A);      // POP EDX
3949
3950    emit_opcode(cbuf,0x81);      // CMP EDX,imm
3951    emit_d8    (cbuf,0xFA);      // rdx
3952    emit_d32   (cbuf,0x80000000);//         0x80000000
3953
3954    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3955    emit_d8    (cbuf,0x13+4);    // Size of slow_call
3956
3957    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3958    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3959
3960    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3961    emit_d8    (cbuf,0x13);      // Size of slow_call
3962
3963    // Allocate a word
3964    emit_opcode(cbuf,0x83);      // SUB ESP,4
3965    emit_opcode(cbuf,0xEC);
3966    emit_d8(cbuf,0x04);
3967
3968    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3969    emit_opcode  (cbuf, 0x0F );
3970    emit_opcode  (cbuf, 0x11 );
3971    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3972
3973    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3974    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3975
3976    emit_opcode(cbuf,0x83);      // ADD ESP,4
3977    emit_opcode(cbuf,0xC4);
3978    emit_d8(cbuf,0x04);
3979
3980    // CALL directly to the runtime
3981    cbuf.set_insts_mark();
3982    emit_opcode(cbuf,0xE8);       // Call into runtime
3983    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3984    // Carry on here...
3985  %}
3986
3987  enc_class XD2L_encoding( regXD src ) %{
3988    // Allocate a word
3989    emit_opcode(cbuf,0x83);      // SUB ESP,8
3990    emit_opcode(cbuf,0xEC);
3991    emit_d8(cbuf,0x08);
3992
3993    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3994    emit_opcode  (cbuf, 0x0F );
3995    emit_opcode  (cbuf, 0x11 );
3996    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3997
3998    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3999    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4000
4001    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
4002    emit_opcode(cbuf,0x2D);
4003    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
4004
4005    // Encoding assumes a double has been pushed into FPR0.
4006    // Store down the double as a long, popping the FPU stack
4007    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
4008    emit_opcode(cbuf,0x3C);
4009    emit_d8(cbuf,0x24);
4010
4011    // Restore the rounding mode; mask the exception
4012    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
4013    emit_opcode(cbuf,0x2D);
4014    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
4015      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
4016      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
4017
4018    // Load the converted int; adjust CPU stack
4019    emit_opcode(cbuf,0x58);      // POP EAX
4020
4021    emit_opcode(cbuf,0x5A);      // POP EDX
4022
4023    emit_opcode(cbuf,0x81);      // CMP EDX,imm
4024    emit_d8    (cbuf,0xFA);      // rdx
4025    emit_d32   (cbuf,0x80000000); //         0x80000000
4026
4027    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4028    emit_d8    (cbuf,0x13+4);    // Size of slow_call
4029
4030    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
4031    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
4032
4033    emit_opcode(cbuf,0x75);      // JNE around_slow_call
4034    emit_d8    (cbuf,0x13);      // Size of slow_call
4035
4036    // Push src onto stack slow-path
4037    // Allocate a word
4038    emit_opcode(cbuf,0x83);      // SUB ESP,8
4039    emit_opcode(cbuf,0xEC);
4040    emit_d8(cbuf,0x08);
4041
4042    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4043    emit_opcode  (cbuf, 0x0F );
4044    emit_opcode  (cbuf, 0x11 );
4045    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4046
4047    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4048    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4049
4050    emit_opcode(cbuf,0x83);      // ADD ESP,8
4051    emit_opcode(cbuf,0xC4);
4052    emit_d8(cbuf,0x08);
4053
4054    // CALL directly to the runtime
4055    cbuf.set_insts_mark();
4056    emit_opcode(cbuf,0xE8);      // Call into runtime
4057    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4058    // Carry on here...
4059  %}
4060
4061  enc_class D2X_encoding( regX dst, regD src ) %{
4062    // Allocate a word
4063    emit_opcode(cbuf,0x83);            // SUB ESP,4
4064    emit_opcode(cbuf,0xEC);
4065    emit_d8(cbuf,0x04);
4066    int pop = 0x02;
4067    if ($src$$reg != FPR1L_enc) {
4068      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4069      emit_d8( cbuf, 0xC0-1+$src$$reg );
4070      pop = 0x03;
4071    }
4072    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4073
4074    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4075    emit_opcode  (cbuf, 0x0F );
4076    emit_opcode  (cbuf, 0x10 );
4077    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4078
4079    emit_opcode(cbuf,0x83);            // ADD ESP,4
4080    emit_opcode(cbuf,0xC4);
4081    emit_d8(cbuf,0x04);
4082    // Carry on here...
4083  %}
4084
4085  enc_class FX2I_encoding( regX src, eRegI dst ) %{
4086    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4087
4088    // Compare the result to see if we need to go to the slow path
4089    emit_opcode(cbuf,0x81);       // CMP dst,imm
4090    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4091    emit_d32   (cbuf,0x80000000); //         0x80000000
4092
4093    emit_opcode(cbuf,0x75);       // JNE around_slow_call
4094    emit_d8    (cbuf,0x13);       // Size of slow_call
4095    // Store xmm to a temp memory
4096    // location and push it onto stack.
4097
4098    emit_opcode(cbuf,0x83);  // SUB ESP,4
4099    emit_opcode(cbuf,0xEC);
4100    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4101
4102    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4103    emit_opcode  (cbuf, 0x0F );
4104    emit_opcode  (cbuf, 0x11 );
4105    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4106
4107    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4108    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4109
4110    emit_opcode(cbuf,0x83);    // ADD ESP,4
4111    emit_opcode(cbuf,0xC4);
4112    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4113
4114    // CALL directly to the runtime
4115    cbuf.set_insts_mark();
4116    emit_opcode(cbuf,0xE8);       // Call into runtime
4117    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4118
4119    // Carry on here...
4120  %}
4121
4122  enc_class X2D_encoding( regD dst, regX src ) %{
4123    // Allocate a word
4124    emit_opcode(cbuf,0x83);     // SUB ESP,4
4125    emit_opcode(cbuf,0xEC);
4126    emit_d8(cbuf,0x04);
4127
4128    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4129    emit_opcode  (cbuf, 0x0F );
4130    emit_opcode  (cbuf, 0x11 );
4131    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4132
4133    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4134    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4135
4136    emit_opcode(cbuf,0x83);     // ADD ESP,4
4137    emit_opcode(cbuf,0xC4);
4138    emit_d8(cbuf,0x04);
4139
4140    // Carry on here...
4141  %}
4142
4143  enc_class AbsXF_encoding(regX dst) %{
4144    address signmask_address=(address)float_signmask_pool;
4145    // andpd:\tANDPS  $dst,[signconst]
4146    emit_opcode(cbuf, 0x0F);
4147    emit_opcode(cbuf, 0x54);
4148    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4149    emit_d32(cbuf, (int)signmask_address);
4150  %}
4151
4152  enc_class AbsXD_encoding(regXD dst) %{
4153    address signmask_address=(address)double_signmask_pool;
4154    // andpd:\tANDPD  $dst,[signconst]
4155    emit_opcode(cbuf, 0x66);
4156    emit_opcode(cbuf, 0x0F);
4157    emit_opcode(cbuf, 0x54);
4158    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4159    emit_d32(cbuf, (int)signmask_address);
4160  %}
4161
4162  enc_class NegXF_encoding(regX dst) %{
4163    address signmask_address=(address)float_signflip_pool;
4164    // andpd:\tXORPS  $dst,[signconst]
4165    emit_opcode(cbuf, 0x0F);
4166    emit_opcode(cbuf, 0x57);
4167    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4168    emit_d32(cbuf, (int)signmask_address);
4169  %}
4170
4171  enc_class NegXD_encoding(regXD dst) %{
4172    address signmask_address=(address)double_signflip_pool;
4173    // andpd:\tXORPD  $dst,[signconst]
4174    emit_opcode(cbuf, 0x66);
4175    emit_opcode(cbuf, 0x0F);
4176    emit_opcode(cbuf, 0x57);
4177    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4178    emit_d32(cbuf, (int)signmask_address);
4179  %}
4180
4181  enc_class FMul_ST_reg( eRegF src1 ) %{
4182    // Operand was loaded from memory into fp ST (stack top)
4183    // FMUL   ST,$src  /* D8 C8+i */
4184    emit_opcode(cbuf, 0xD8);
4185    emit_opcode(cbuf, 0xC8 + $src1$$reg);
4186  %}
4187
4188  enc_class FAdd_ST_reg( eRegF src2 ) %{
4189    // FADDP  ST,src2  /* D8 C0+i */
4190    emit_opcode(cbuf, 0xD8);
4191    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4192    //could use FADDP  src2,fpST  /* DE C0+i */
4193  %}
4194
4195  enc_class FAddP_reg_ST( eRegF src2 ) %{
4196    // FADDP  src2,ST  /* DE C0+i */
4197    emit_opcode(cbuf, 0xDE);
4198    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4199  %}
4200
4201  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4202    // Operand has been loaded into fp ST (stack top)
4203      // FSUB   ST,$src1
4204      emit_opcode(cbuf, 0xD8);
4205      emit_opcode(cbuf, 0xE0 + $src1$$reg);
4206
4207      // FDIV
4208      emit_opcode(cbuf, 0xD8);
4209      emit_opcode(cbuf, 0xF0 + $src2$$reg);
4210  %}
4211
4212  enc_class MulFAddF (eRegF src1, eRegF src2) %{
4213    // Operand was loaded from memory into fp ST (stack top)
4214    // FADD   ST,$src  /* D8 C0+i */
4215    emit_opcode(cbuf, 0xD8);
4216    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4217
4218    // FMUL  ST,src2  /* D8 C*+i */
4219    emit_opcode(cbuf, 0xD8);
4220    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4221  %}
4222
4223
4224  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4225    // Operand was loaded from memory into fp ST (stack top)
4226    // FADD   ST,$src  /* D8 C0+i */
4227    emit_opcode(cbuf, 0xD8);
4228    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4229
4230    // FMULP  src2,ST  /* DE C8+i */
4231    emit_opcode(cbuf, 0xDE);
4232    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4233  %}
4234
4235  // Atomically load the volatile long
4236  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4237    emit_opcode(cbuf,0xDF);
4238    int rm_byte_opcode = 0x05;
4239    int base     = $mem$$base;
4240    int index    = $mem$$index;
4241    int scale    = $mem$$scale;
4242    int displace = $mem$$disp;
4243    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4244    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4245    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4246  %}
4247
4248  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4249    { // Atomic long load
4250      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4251      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4252      emit_opcode(cbuf,0x0F);
4253      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4254      int base     = $mem$$base;
4255      int index    = $mem$$index;
4256      int scale    = $mem$$scale;
4257      int displace = $mem$$disp;
4258      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4259      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4260    }
4261    { // MOVSD $dst,$tmp ! atomic long store
4262      emit_opcode(cbuf,0xF2);
4263      emit_opcode(cbuf,0x0F);
4264      emit_opcode(cbuf,0x11);
4265      int base     = $dst$$base;
4266      int index    = $dst$$index;
4267      int scale    = $dst$$scale;
4268      int displace = $dst$$disp;
4269      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4270      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4271    }
4272  %}
4273
4274  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4275    { // Atomic long load
4276      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4277      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4278      emit_opcode(cbuf,0x0F);
4279      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4280      int base     = $mem$$base;
4281      int index    = $mem$$index;
4282      int scale    = $mem$$scale;
4283      int displace = $mem$$disp;
4284      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4285      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4286    }
4287    { // MOVD $dst.lo,$tmp
4288      emit_opcode(cbuf,0x66);
4289      emit_opcode(cbuf,0x0F);
4290      emit_opcode(cbuf,0x7E);
4291      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4292    }
4293    { // PSRLQ $tmp,32
4294      emit_opcode(cbuf,0x66);
4295      emit_opcode(cbuf,0x0F);
4296      emit_opcode(cbuf,0x73);
4297      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4298      emit_d8(cbuf, 0x20);
4299    }
4300    { // MOVD $dst.hi,$tmp
4301      emit_opcode(cbuf,0x66);
4302      emit_opcode(cbuf,0x0F);
4303      emit_opcode(cbuf,0x7E);
4304      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4305    }
4306  %}
4307
4308  // Volatile Store Long.  Must be atomic, so move it into
4309  // the FP TOS and then do a 64-bit FIST.  Has to probe the
4310  // target address before the store (for null-ptr checks)
4311  // so the memory operand is used twice in the encoding.
4312  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4313    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4314    cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
4315    emit_opcode(cbuf,0xDF);
4316    int rm_byte_opcode = 0x07;
4317    int base     = $mem$$base;
4318    int index    = $mem$$index;
4319    int scale    = $mem$$scale;
4320    int displace = $mem$$disp;
4321    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4322    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4323  %}
4324
4325  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4326    { // Atomic long load
4327      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4328      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4329      emit_opcode(cbuf,0x0F);
4330      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4331      int base     = $src$$base;
4332      int index    = $src$$index;
4333      int scale    = $src$$scale;
4334      int displace = $src$$disp;
4335      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4336      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4337    }
4338    cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4339    { // MOVSD $mem,$tmp ! atomic long store
4340      emit_opcode(cbuf,0xF2);
4341      emit_opcode(cbuf,0x0F);
4342      emit_opcode(cbuf,0x11);
4343      int base     = $mem$$base;
4344      int index    = $mem$$index;
4345      int scale    = $mem$$scale;
4346      int displace = $mem$$disp;
4347      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4348      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4349    }
4350  %}
4351
4352  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4353    { // MOVD $tmp,$src.lo
4354      emit_opcode(cbuf,0x66);
4355      emit_opcode(cbuf,0x0F);
4356      emit_opcode(cbuf,0x6E);
4357      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4358    }
4359    { // MOVD $tmp2,$src.hi
4360      emit_opcode(cbuf,0x66);
4361      emit_opcode(cbuf,0x0F);
4362      emit_opcode(cbuf,0x6E);
4363      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4364    }
4365    { // PUNPCKLDQ $tmp,$tmp2
4366      emit_opcode(cbuf,0x66);
4367      emit_opcode(cbuf,0x0F);
4368      emit_opcode(cbuf,0x62);
4369      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4370    }
4371    cbuf.set_insts_mark();            // Mark start of MOVSD in case $mem has an oop
4372    { // MOVSD $mem,$tmp ! atomic long store
4373      emit_opcode(cbuf,0xF2);
4374      emit_opcode(cbuf,0x0F);
4375      emit_opcode(cbuf,0x11);
4376      int base     = $mem$$base;
4377      int index    = $mem$$index;
4378      int scale    = $mem$$scale;
4379      int displace = $mem$$disp;
4380      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4381      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4382    }
4383  %}
4384
4385  // Safepoint Poll.  This polls the safepoint page, and causes an
4386  // exception if it is not readable. Unfortunately, it kills the condition code
4387  // in the process
4388  // We current use TESTL [spp],EDI
4389  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4390
4391  enc_class Safepoint_Poll() %{
4392    cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
4393    emit_opcode(cbuf,0x85);
4394    emit_rm (cbuf, 0x0, 0x7, 0x5);
4395    emit_d32(cbuf, (intptr_t)os::get_polling_page());
4396  %}
4397%}
4398
4399
4400//----------FRAME--------------------------------------------------------------
4401// Definition of frame structure and management information.
4402//
4403//  S T A C K   L A Y O U T    Allocators stack-slot number
4404//                             |   (to get allocators register number
4405//  G  Owned by    |        |  v    add OptoReg::stack0())
4406//  r   CALLER     |        |
4407//  o     |        +--------+      pad to even-align allocators stack-slot
4408//  w     V        |  pad0  |        numbers; owned by CALLER
4409//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4410//  h     ^        |   in   |  5
4411//        |        |  args  |  4   Holes in incoming args owned by SELF
4412//  |     |        |        |  3
4413//  |     |        +--------+
4414//  V     |        | old out|      Empty on Intel, window on Sparc
4415//        |    old |preserve|      Must be even aligned.
4416//        |     SP-+--------+----> Matcher::_old_SP, even aligned
4417//        |        |   in   |  3   area for Intel ret address
4418//     Owned by    |preserve|      Empty on Sparc.
4419//       SELF      +--------+
4420//        |        |  pad2  |  2   pad to align old SP
4421//        |        +--------+  1
4422//        |        | locks  |  0
4423//        |        +--------+----> OptoReg::stack0(), even aligned
4424//        |        |  pad1  | 11   pad to align new SP
4425//        |        +--------+
4426//        |        |        | 10
4427//        |        | spills |  9   spills
4428//        V        |        |  8   (pad0 slot for callee)
4429//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4430//        ^        |  out   |  7
4431//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4432//     Owned by    +--------+
4433//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4434//        |    new |preserve|      Must be even-aligned.
4435//        |     SP-+--------+----> Matcher::_new_SP, even aligned
4436//        |        |        |
4437//
4438// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4439//         known from SELF's arguments and the Java calling convention.
4440//         Region 6-7 is determined per call site.
4441// Note 2: If the calling convention leaves holes in the incoming argument
4442//         area, those holes are owned by SELF.  Holes in the outgoing area
4443//         are owned by the CALLEE.  Holes should not be nessecary in the
4444//         incoming area, as the Java calling convention is completely under
4445//         the control of the AD file.  Doubles can be sorted and packed to
4446//         avoid holes.  Holes in the outgoing arguments may be nessecary for
4447//         varargs C calling conventions.
4448// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4449//         even aligned with pad0 as needed.
4450//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4451//         region 6-11 is even aligned; it may be padded out more so that
4452//         the region from SP to FP meets the minimum stack alignment.
4453
4454frame %{
4455  // What direction does stack grow in (assumed to be same for C & Java)
4456  stack_direction(TOWARDS_LOW);
4457
4458  // These three registers define part of the calling convention
4459  // between compiled code and the interpreter.
4460  inline_cache_reg(EAX);                // Inline Cache Register
4461  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4462
4463  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4464  cisc_spilling_operand_name(indOffset32);
4465
4466  // Number of stack slots consumed by locking an object
4467  sync_stack_slots(1);
4468
4469  // Compiled code's Frame Pointer
4470  frame_pointer(ESP);
4471  // Interpreter stores its frame pointer in a register which is
4472  // stored to the stack by I2CAdaptors.
4473  // I2CAdaptors convert from interpreted java to compiled java.
4474  interpreter_frame_pointer(EBP);
4475
4476  // Stack alignment requirement
4477  // Alignment size in bytes (128-bit -> 16 bytes)
4478  stack_alignment(StackAlignmentInBytes);
4479
4480  // Number of stack slots between incoming argument block and the start of
4481  // a new frame.  The PROLOG must add this many slots to the stack.  The
4482  // EPILOG must remove this many slots.  Intel needs one slot for
4483  // return address and one for rbp, (must save rbp)
4484  in_preserve_stack_slots(2+VerifyStackAtCalls);
4485
4486  // Number of outgoing stack slots killed above the out_preserve_stack_slots
4487  // for calls to C.  Supports the var-args backing area for register parms.
4488  varargs_C_out_slots_killed(0);
4489
4490  // The after-PROLOG location of the return address.  Location of
4491  // return address specifies a type (REG or STACK) and a number
4492  // representing the register number (i.e. - use a register name) or
4493  // stack slot.
4494  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4495  // Otherwise, it is above the locks and verification slot and alignment word
4496  return_addr(STACK - 1 +
4497              round_to(1+VerifyStackAtCalls+
4498              Compile::current()->fixed_slots(),
4499              (StackAlignmentInBytes/wordSize)));
4500
4501  // Body of function which returns an integer array locating
4502  // arguments either in registers or in stack slots.  Passed an array
4503  // of ideal registers called "sig" and a "length" count.  Stack-slot
4504  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4505  // arguments for a CALLEE.  Incoming stack arguments are
4506  // automatically biased by the preserve_stack_slots field above.
4507  calling_convention %{
4508    // No difference between ingoing/outgoing just pass false
4509    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4510  %}
4511
4512
4513  // Body of function which returns an integer array locating
4514  // arguments either in registers or in stack slots.  Passed an array
4515  // of ideal registers called "sig" and a "length" count.  Stack-slot
4516  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4517  // arguments for a CALLEE.  Incoming stack arguments are
4518  // automatically biased by the preserve_stack_slots field above.
4519  c_calling_convention %{
4520    // This is obviously always outgoing
4521    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4522  %}
4523
4524  // Location of C & interpreter return values
4525  c_return_value %{
4526    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4527    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4528    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4529
4530    // in SSE2+ mode we want to keep the FPU stack clean so pretend
4531    // that C functions return float and double results in XMM0.
4532    if( ideal_reg == Op_RegD && UseSSE>=2 )
4533      return OptoRegPair(XMM0b_num,XMM0a_num);
4534    if( ideal_reg == Op_RegF && UseSSE>=2 )
4535      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4536
4537    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4538  %}
4539
4540  // Location of return values
4541  return_value %{
4542    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4543    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4544    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4545    if( ideal_reg == Op_RegD && UseSSE>=2 )
4546      return OptoRegPair(XMM0b_num,XMM0a_num);
4547    if( ideal_reg == Op_RegF && UseSSE>=1 )
4548      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4549    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4550  %}
4551
4552%}
4553
4554//----------ATTRIBUTES---------------------------------------------------------
4555//----------Operand Attributes-------------------------------------------------
4556op_attrib op_cost(0);        // Required cost attribute
4557
4558//----------Instruction Attributes---------------------------------------------
4559ins_attrib ins_cost(100);       // Required cost attribute
4560ins_attrib ins_size(8);         // Required size attribute (in bits)
4561ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4562ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4563                                // non-matching short branch variant of some
4564                                                            // long branch?
4565ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4566                                // specifies the alignment that some part of the instruction (not
4567                                // necessarily the start) requires.  If > 1, a compute_padding()
4568                                // function must be provided for the instruction
4569
4570//----------OPERANDS-----------------------------------------------------------
4571// Operand definitions must precede instruction definitions for correct parsing
4572// in the ADLC because operands constitute user defined types which are used in
4573// instruction definitions.
4574
4575//----------Simple Operands----------------------------------------------------
4576// Immediate Operands
4577// Integer Immediate
4578operand immI() %{
4579  match(ConI);
4580
4581  op_cost(10);
4582  format %{ %}
4583  interface(CONST_INTER);
4584%}
4585
4586// Constant for test vs zero
4587operand immI0() %{
4588  predicate(n->get_int() == 0);
4589  match(ConI);
4590
4591  op_cost(0);
4592  format %{ %}
4593  interface(CONST_INTER);
4594%}
4595
4596// Constant for increment
4597operand immI1() %{
4598  predicate(n->get_int() == 1);
4599  match(ConI);
4600
4601  op_cost(0);
4602  format %{ %}
4603  interface(CONST_INTER);
4604%}
4605
4606// Constant for decrement
4607operand immI_M1() %{
4608  predicate(n->get_int() == -1);
4609  match(ConI);
4610
4611  op_cost(0);
4612  format %{ %}
4613  interface(CONST_INTER);
4614%}
4615
4616// Valid scale values for addressing modes
4617operand immI2() %{
4618  predicate(0 <= n->get_int() && (n->get_int() <= 3));
4619  match(ConI);
4620
4621  format %{ %}
4622  interface(CONST_INTER);
4623%}
4624
4625operand immI8() %{
4626  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4627  match(ConI);
4628
4629  op_cost(5);
4630  format %{ %}
4631  interface(CONST_INTER);
4632%}
4633
4634operand immI16() %{
4635  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4636  match(ConI);
4637
4638  op_cost(10);
4639  format %{ %}
4640  interface(CONST_INTER);
4641%}
4642
4643// Constant for long shifts
4644operand immI_32() %{
4645  predicate( n->get_int() == 32 );
4646  match(ConI);
4647
4648  op_cost(0);
4649  format %{ %}
4650  interface(CONST_INTER);
4651%}
4652
4653operand immI_1_31() %{
4654  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4655  match(ConI);
4656
4657  op_cost(0);
4658  format %{ %}
4659  interface(CONST_INTER);
4660%}
4661
4662operand immI_32_63() %{
4663  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4664  match(ConI);
4665  op_cost(0);
4666
4667  format %{ %}
4668  interface(CONST_INTER);
4669%}
4670
4671operand immI_1() %{
4672  predicate( n->get_int() == 1 );
4673  match(ConI);
4674
4675  op_cost(0);
4676  format %{ %}
4677  interface(CONST_INTER);
4678%}
4679
4680operand immI_2() %{
4681  predicate( n->get_int() == 2 );
4682  match(ConI);
4683
4684  op_cost(0);
4685  format %{ %}
4686  interface(CONST_INTER);
4687%}
4688
4689operand immI_3() %{
4690  predicate( n->get_int() == 3 );
4691  match(ConI);
4692
4693  op_cost(0);
4694  format %{ %}
4695  interface(CONST_INTER);
4696%}
4697
4698// Pointer Immediate
4699operand immP() %{
4700  match(ConP);
4701
4702  op_cost(10);
4703  format %{ %}
4704  interface(CONST_INTER);
4705%}
4706
4707// NULL Pointer Immediate
4708operand immP0() %{
4709  predicate( n->get_ptr() == 0 );
4710  match(ConP);
4711  op_cost(0);
4712
4713  format %{ %}
4714  interface(CONST_INTER);
4715%}
4716
4717// Long Immediate
4718operand immL() %{
4719  match(ConL);
4720
4721  op_cost(20);
4722  format %{ %}
4723  interface(CONST_INTER);
4724%}
4725
4726// Long Immediate zero
4727operand immL0() %{
4728  predicate( n->get_long() == 0L );
4729  match(ConL);
4730  op_cost(0);
4731
4732  format %{ %}
4733  interface(CONST_INTER);
4734%}
4735
4736// Long Immediate zero
4737operand immL_M1() %{
4738  predicate( n->get_long() == -1L );
4739  match(ConL);
4740  op_cost(0);
4741
4742  format %{ %}
4743  interface(CONST_INTER);
4744%}
4745
4746// Long immediate from 0 to 127.
4747// Used for a shorter form of long mul by 10.
4748operand immL_127() %{
4749  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4750  match(ConL);
4751  op_cost(0);
4752
4753  format %{ %}
4754  interface(CONST_INTER);
4755%}
4756
4757// Long Immediate: low 32-bit mask
4758operand immL_32bits() %{
4759  predicate(n->get_long() == 0xFFFFFFFFL);
4760  match(ConL);
4761  op_cost(0);
4762
4763  format %{ %}
4764  interface(CONST_INTER);
4765%}
4766
4767// Long Immediate: low 32-bit mask
4768operand immL32() %{
4769  predicate(n->get_long() == (int)(n->get_long()));
4770  match(ConL);
4771  op_cost(20);
4772
4773  format %{ %}
4774  interface(CONST_INTER);
4775%}
4776
4777//Double Immediate zero
4778operand immD0() %{
4779  // Do additional (and counter-intuitive) test against NaN to work around VC++
4780  // bug that generates code such that NaNs compare equal to 0.0
4781  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4782  match(ConD);
4783
4784  op_cost(5);
4785  format %{ %}
4786  interface(CONST_INTER);
4787%}
4788
4789// Double Immediate
4790operand immD1() %{
4791  predicate( UseSSE<=1 && n->getd() == 1.0 );
4792  match(ConD);
4793
4794  op_cost(5);
4795  format %{ %}
4796  interface(CONST_INTER);
4797%}
4798
4799// Double Immediate
4800operand immD() %{
4801  predicate(UseSSE<=1);
4802  match(ConD);
4803
4804  op_cost(5);
4805  format %{ %}
4806  interface(CONST_INTER);
4807%}
4808
4809operand immXD() %{
4810  predicate(UseSSE>=2);
4811  match(ConD);
4812
4813  op_cost(5);
4814  format %{ %}
4815  interface(CONST_INTER);
4816%}
4817
4818// Double Immediate zero
4819operand immXD0() %{
4820  // Do additional (and counter-intuitive) test against NaN to work around VC++
4821  // bug that generates code such that NaNs compare equal to 0.0 AND do not
4822  // compare equal to -0.0.
4823  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4824  match(ConD);
4825
4826  format %{ %}
4827  interface(CONST_INTER);
4828%}
4829
4830// Float Immediate zero
4831operand immF0() %{
4832  predicate( UseSSE == 0 && n->getf() == 0.0 );
4833  match(ConF);
4834
4835  op_cost(5);
4836  format %{ %}
4837  interface(CONST_INTER);
4838%}
4839
4840// Float Immediate
4841operand immF() %{
4842  predicate( UseSSE == 0 );
4843  match(ConF);
4844
4845  op_cost(5);
4846  format %{ %}
4847  interface(CONST_INTER);
4848%}
4849
4850// Float Immediate
4851operand immXF() %{
4852  predicate(UseSSE >= 1);
4853  match(ConF);
4854
4855  op_cost(5);
4856  format %{ %}
4857  interface(CONST_INTER);
4858%}
4859
4860// Float Immediate zero.  Zero and not -0.0
4861operand immXF0() %{
4862  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4863  match(ConF);
4864
4865  op_cost(5);
4866  format %{ %}
4867  interface(CONST_INTER);
4868%}
4869
4870// Immediates for special shifts (sign extend)
4871
4872// Constants for increment
4873operand immI_16() %{
4874  predicate( n->get_int() == 16 );
4875  match(ConI);
4876
4877  format %{ %}
4878  interface(CONST_INTER);
4879%}
4880
4881operand immI_24() %{
4882  predicate( n->get_int() == 24 );
4883  match(ConI);
4884
4885  format %{ %}
4886  interface(CONST_INTER);
4887%}
4888
4889// Constant for byte-wide masking
4890operand immI_255() %{
4891  predicate( n->get_int() == 255 );
4892  match(ConI);
4893
4894  format %{ %}
4895  interface(CONST_INTER);
4896%}
4897
4898// Constant for short-wide masking
4899operand immI_65535() %{
4900  predicate(n->get_int() == 65535);
4901  match(ConI);
4902
4903  format %{ %}
4904  interface(CONST_INTER);
4905%}
4906
4907// Register Operands
4908// Integer Register
4909operand eRegI() %{
4910  constraint(ALLOC_IN_RC(e_reg));
4911  match(RegI);
4912  match(xRegI);
4913  match(eAXRegI);
4914  match(eBXRegI);
4915  match(eCXRegI);
4916  match(eDXRegI);
4917  match(eDIRegI);
4918  match(eSIRegI);
4919
4920  format %{ %}
4921  interface(REG_INTER);
4922%}
4923
4924// Subset of Integer Register
4925operand xRegI(eRegI reg) %{
4926  constraint(ALLOC_IN_RC(x_reg));
4927  match(reg);
4928  match(eAXRegI);
4929  match(eBXRegI);
4930  match(eCXRegI);
4931  match(eDXRegI);
4932
4933  format %{ %}
4934  interface(REG_INTER);
4935%}
4936
4937// Special Registers
4938operand eAXRegI(xRegI reg) %{
4939  constraint(ALLOC_IN_RC(eax_reg));
4940  match(reg);
4941  match(eRegI);
4942
4943  format %{ "EAX" %}
4944  interface(REG_INTER);
4945%}
4946
4947// Special Registers
4948operand eBXRegI(xRegI reg) %{
4949  constraint(ALLOC_IN_RC(ebx_reg));
4950  match(reg);
4951  match(eRegI);
4952
4953  format %{ "EBX" %}
4954  interface(REG_INTER);
4955%}
4956
4957operand eCXRegI(xRegI reg) %{
4958  constraint(ALLOC_IN_RC(ecx_reg));
4959  match(reg);
4960  match(eRegI);
4961
4962  format %{ "ECX" %}
4963  interface(REG_INTER);
4964%}
4965
4966operand eDXRegI(xRegI reg) %{
4967  constraint(ALLOC_IN_RC(edx_reg));
4968  match(reg);
4969  match(eRegI);
4970
4971  format %{ "EDX" %}
4972  interface(REG_INTER);
4973%}
4974
4975operand eDIRegI(xRegI reg) %{
4976  constraint(ALLOC_IN_RC(edi_reg));
4977  match(reg);
4978  match(eRegI);
4979
4980  format %{ "EDI" %}
4981  interface(REG_INTER);
4982%}
4983
4984operand naxRegI() %{
4985  constraint(ALLOC_IN_RC(nax_reg));
4986  match(RegI);
4987  match(eCXRegI);
4988  match(eDXRegI);
4989  match(eSIRegI);
4990  match(eDIRegI);
4991
4992  format %{ %}
4993  interface(REG_INTER);
4994%}
4995
4996operand nadxRegI() %{
4997  constraint(ALLOC_IN_RC(nadx_reg));
4998  match(RegI);
4999  match(eBXRegI);
5000  match(eCXRegI);
5001  match(eSIRegI);
5002  match(eDIRegI);
5003
5004  format %{ %}
5005  interface(REG_INTER);
5006%}
5007
5008operand ncxRegI() %{
5009  constraint(ALLOC_IN_RC(ncx_reg));
5010  match(RegI);
5011  match(eAXRegI);
5012  match(eDXRegI);
5013  match(eSIRegI);
5014  match(eDIRegI);
5015
5016  format %{ %}
5017  interface(REG_INTER);
5018%}
5019
5020// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
5021// //
5022operand eSIRegI(xRegI reg) %{
5023   constraint(ALLOC_IN_RC(esi_reg));
5024   match(reg);
5025   match(eRegI);
5026
5027   format %{ "ESI" %}
5028   interface(REG_INTER);
5029%}
5030
5031// Pointer Register
5032operand anyRegP() %{
5033  constraint(ALLOC_IN_RC(any_reg));
5034  match(RegP);
5035  match(eAXRegP);
5036  match(eBXRegP);
5037  match(eCXRegP);
5038  match(eDIRegP);
5039  match(eRegP);
5040
5041  format %{ %}
5042  interface(REG_INTER);
5043%}
5044
5045operand eRegP() %{
5046  constraint(ALLOC_IN_RC(e_reg));
5047  match(RegP);
5048  match(eAXRegP);
5049  match(eBXRegP);
5050  match(eCXRegP);
5051  match(eDIRegP);
5052
5053  format %{ %}
5054  interface(REG_INTER);
5055%}
5056
5057// On windows95, EBP is not safe to use for implicit null tests.
5058operand eRegP_no_EBP() %{
5059  constraint(ALLOC_IN_RC(e_reg_no_rbp));
5060  match(RegP);
5061  match(eAXRegP);
5062  match(eBXRegP);
5063  match(eCXRegP);
5064  match(eDIRegP);
5065
5066  op_cost(100);
5067  format %{ %}
5068  interface(REG_INTER);
5069%}
5070
5071operand naxRegP() %{
5072  constraint(ALLOC_IN_RC(nax_reg));
5073  match(RegP);
5074  match(eBXRegP);
5075  match(eDXRegP);
5076  match(eCXRegP);
5077  match(eSIRegP);
5078  match(eDIRegP);
5079
5080  format %{ %}
5081  interface(REG_INTER);
5082%}
5083
5084operand nabxRegP() %{
5085  constraint(ALLOC_IN_RC(nabx_reg));
5086  match(RegP);
5087  match(eCXRegP);
5088  match(eDXRegP);
5089  match(eSIRegP);
5090  match(eDIRegP);
5091
5092  format %{ %}
5093  interface(REG_INTER);
5094%}
5095
5096operand pRegP() %{
5097  constraint(ALLOC_IN_RC(p_reg));
5098  match(RegP);
5099  match(eBXRegP);
5100  match(eDXRegP);
5101  match(eSIRegP);
5102  match(eDIRegP);
5103
5104  format %{ %}
5105  interface(REG_INTER);
5106%}
5107
5108// Special Registers
5109// Return a pointer value
5110operand eAXRegP(eRegP reg) %{
5111  constraint(ALLOC_IN_RC(eax_reg));
5112  match(reg);
5113  format %{ "EAX" %}
5114  interface(REG_INTER);
5115%}
5116
5117// Used in AtomicAdd
5118operand eBXRegP(eRegP reg) %{
5119  constraint(ALLOC_IN_RC(ebx_reg));
5120  match(reg);
5121  format %{ "EBX" %}
5122  interface(REG_INTER);
5123%}
5124
5125// Tail-call (interprocedural jump) to interpreter
5126operand eCXRegP(eRegP reg) %{
5127  constraint(ALLOC_IN_RC(ecx_reg));
5128  match(reg);
5129  format %{ "ECX" %}
5130  interface(REG_INTER);
5131%}
5132
5133operand eSIRegP(eRegP reg) %{
5134  constraint(ALLOC_IN_RC(esi_reg));
5135  match(reg);
5136  format %{ "ESI" %}
5137  interface(REG_INTER);
5138%}
5139
5140// Used in rep stosw
5141operand eDIRegP(eRegP reg) %{
5142  constraint(ALLOC_IN_RC(edi_reg));
5143  match(reg);
5144  format %{ "EDI" %}
5145  interface(REG_INTER);
5146%}
5147
5148operand eBPRegP() %{
5149  constraint(ALLOC_IN_RC(ebp_reg));
5150  match(RegP);
5151  format %{ "EBP" %}
5152  interface(REG_INTER);
5153%}
5154
5155operand eRegL() %{
5156  constraint(ALLOC_IN_RC(long_reg));
5157  match(RegL);
5158  match(eADXRegL);
5159
5160  format %{ %}
5161  interface(REG_INTER);
5162%}
5163
5164operand eADXRegL( eRegL reg ) %{
5165  constraint(ALLOC_IN_RC(eadx_reg));
5166  match(reg);
5167
5168  format %{ "EDX:EAX" %}
5169  interface(REG_INTER);
5170%}
5171
5172operand eBCXRegL( eRegL reg ) %{
5173  constraint(ALLOC_IN_RC(ebcx_reg));
5174  match(reg);
5175
5176  format %{ "EBX:ECX" %}
5177  interface(REG_INTER);
5178%}
5179
5180// Special case for integer high multiply
5181operand eADXRegL_low_only() %{
5182  constraint(ALLOC_IN_RC(eadx_reg));
5183  match(RegL);
5184
5185  format %{ "EAX" %}
5186  interface(REG_INTER);
5187%}
5188
5189// Flags register, used as output of compare instructions
5190operand eFlagsReg() %{
5191  constraint(ALLOC_IN_RC(int_flags));
5192  match(RegFlags);
5193
5194  format %{ "EFLAGS" %}
5195  interface(REG_INTER);
5196%}
5197
5198// Flags register, used as output of FLOATING POINT compare instructions
5199operand eFlagsRegU() %{
5200  constraint(ALLOC_IN_RC(int_flags));
5201  match(RegFlags);
5202
5203  format %{ "EFLAGS_U" %}
5204  interface(REG_INTER);
5205%}
5206
5207operand eFlagsRegUCF() %{
5208  constraint(ALLOC_IN_RC(int_flags));
5209  match(RegFlags);
5210  predicate(false);
5211
5212  format %{ "EFLAGS_U_CF" %}
5213  interface(REG_INTER);
5214%}
5215
5216// Condition Code Register used by long compare
5217operand flagsReg_long_LTGE() %{
5218  constraint(ALLOC_IN_RC(int_flags));
5219  match(RegFlags);
5220  format %{ "FLAGS_LTGE" %}
5221  interface(REG_INTER);
5222%}
5223operand flagsReg_long_EQNE() %{
5224  constraint(ALLOC_IN_RC(int_flags));
5225  match(RegFlags);
5226  format %{ "FLAGS_EQNE" %}
5227  interface(REG_INTER);
5228%}
5229operand flagsReg_long_LEGT() %{
5230  constraint(ALLOC_IN_RC(int_flags));
5231  match(RegFlags);
5232  format %{ "FLAGS_LEGT" %}
5233  interface(REG_INTER);
5234%}
5235
5236// Float register operands
5237operand regD() %{
5238  predicate( UseSSE < 2 );
5239  constraint(ALLOC_IN_RC(dbl_reg));
5240  match(RegD);
5241  match(regDPR1);
5242  match(regDPR2);
5243  format %{ %}
5244  interface(REG_INTER);
5245%}
5246
5247operand regDPR1(regD reg) %{
5248  predicate( UseSSE < 2 );
5249  constraint(ALLOC_IN_RC(dbl_reg0));
5250  match(reg);
5251  format %{ "FPR1" %}
5252  interface(REG_INTER);
5253%}
5254
5255operand regDPR2(regD reg) %{
5256  predicate( UseSSE < 2 );
5257  constraint(ALLOC_IN_RC(dbl_reg1));
5258  match(reg);
5259  format %{ "FPR2" %}
5260  interface(REG_INTER);
5261%}
5262
5263operand regnotDPR1(regD reg) %{
5264  predicate( UseSSE < 2 );
5265  constraint(ALLOC_IN_RC(dbl_notreg0));
5266  match(reg);
5267  format %{ %}
5268  interface(REG_INTER);
5269%}
5270
5271// XMM Double register operands
5272operand regXD() %{
5273  predicate( UseSSE>=2 );
5274  constraint(ALLOC_IN_RC(xdb_reg));
5275  match(RegD);
5276  match(regXD6);
5277  match(regXD7);
5278  format %{ %}
5279  interface(REG_INTER);
5280%}
5281
5282// XMM6 double register operands
5283operand regXD6(regXD reg) %{
5284  predicate( UseSSE>=2 );
5285  constraint(ALLOC_IN_RC(xdb_reg6));
5286  match(reg);
5287  format %{ "XMM6" %}
5288  interface(REG_INTER);
5289%}
5290
5291// XMM7 double register operands
5292operand regXD7(regXD reg) %{
5293  predicate( UseSSE>=2 );
5294  constraint(ALLOC_IN_RC(xdb_reg7));
5295  match(reg);
5296  format %{ "XMM7" %}
5297  interface(REG_INTER);
5298%}
5299
5300// Float register operands
5301operand regF() %{
5302  predicate( UseSSE < 2 );
5303  constraint(ALLOC_IN_RC(flt_reg));
5304  match(RegF);
5305  match(regFPR1);
5306  format %{ %}
5307  interface(REG_INTER);
5308%}
5309
5310// Float register operands
5311operand regFPR1(regF reg) %{
5312  predicate( UseSSE < 2 );
5313  constraint(ALLOC_IN_RC(flt_reg0));
5314  match(reg);
5315  format %{ "FPR1" %}
5316  interface(REG_INTER);
5317%}
5318
5319// XMM register operands
5320operand regX() %{
5321  predicate( UseSSE>=1 );
5322  constraint(ALLOC_IN_RC(xmm_reg));
5323  match(RegF);
5324  format %{ %}
5325  interface(REG_INTER);
5326%}
5327
5328
5329//----------Memory Operands----------------------------------------------------
5330// Direct Memory Operand
5331operand direct(immP addr) %{
5332  match(addr);
5333
5334  format %{ "[$addr]" %}
5335  interface(MEMORY_INTER) %{
5336    base(0xFFFFFFFF);
5337    index(0x4);
5338    scale(0x0);
5339    disp($addr);
5340  %}
5341%}
5342
5343// Indirect Memory Operand
5344operand indirect(eRegP reg) %{
5345  constraint(ALLOC_IN_RC(e_reg));
5346  match(reg);
5347
5348  format %{ "[$reg]" %}
5349  interface(MEMORY_INTER) %{
5350    base($reg);
5351    index(0x4);
5352    scale(0x0);
5353    disp(0x0);
5354  %}
5355%}
5356
5357// Indirect Memory Plus Short Offset Operand
5358operand indOffset8(eRegP reg, immI8 off) %{
5359  match(AddP reg off);
5360
5361  format %{ "[$reg + $off]" %}
5362  interface(MEMORY_INTER) %{
5363    base($reg);
5364    index(0x4);
5365    scale(0x0);
5366    disp($off);
5367  %}
5368%}
5369
5370// Indirect Memory Plus Long Offset Operand
5371operand indOffset32(eRegP reg, immI off) %{
5372  match(AddP reg off);
5373
5374  format %{ "[$reg + $off]" %}
5375  interface(MEMORY_INTER) %{
5376    base($reg);
5377    index(0x4);
5378    scale(0x0);
5379    disp($off);
5380  %}
5381%}
5382
5383// Indirect Memory Plus Long Offset Operand
5384operand indOffset32X(eRegI reg, immP off) %{
5385  match(AddP off reg);
5386
5387  format %{ "[$reg + $off]" %}
5388  interface(MEMORY_INTER) %{
5389    base($reg);
5390    index(0x4);
5391    scale(0x0);
5392    disp($off);
5393  %}
5394%}
5395
5396// Indirect Memory Plus Index Register Plus Offset Operand
5397operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5398  match(AddP (AddP reg ireg) off);
5399
5400  op_cost(10);
5401  format %{"[$reg + $off + $ireg]" %}
5402  interface(MEMORY_INTER) %{
5403    base($reg);
5404    index($ireg);
5405    scale(0x0);
5406    disp($off);
5407  %}
5408%}
5409
5410// Indirect Memory Plus Index Register Plus Offset Operand
5411operand indIndex(eRegP reg, eRegI ireg) %{
5412  match(AddP reg ireg);
5413
5414  op_cost(10);
5415  format %{"[$reg + $ireg]" %}
5416  interface(MEMORY_INTER) %{
5417    base($reg);
5418    index($ireg);
5419    scale(0x0);
5420    disp(0x0);
5421  %}
5422%}
5423
5424// // -------------------------------------------------------------------------
5425// // 486 architecture doesn't support "scale * index + offset" with out a base
5426// // -------------------------------------------------------------------------
5427// // Scaled Memory Operands
5428// // Indirect Memory Times Scale Plus Offset Operand
5429// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5430//   match(AddP off (LShiftI ireg scale));
5431//
5432//   op_cost(10);
5433//   format %{"[$off + $ireg << $scale]" %}
5434//   interface(MEMORY_INTER) %{
5435//     base(0x4);
5436//     index($ireg);
5437//     scale($scale);
5438//     disp($off);
5439//   %}
5440// %}
5441
5442// Indirect Memory Times Scale Plus Index Register
5443operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5444  match(AddP reg (LShiftI ireg scale));
5445
5446  op_cost(10);
5447  format %{"[$reg + $ireg << $scale]" %}
5448  interface(MEMORY_INTER) %{
5449    base($reg);
5450    index($ireg);
5451    scale($scale);
5452    disp(0x0);
5453  %}
5454%}
5455
5456// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5457operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5458  match(AddP (AddP reg (LShiftI ireg scale)) off);
5459
5460  op_cost(10);
5461  format %{"[$reg + $off + $ireg << $scale]" %}
5462  interface(MEMORY_INTER) %{
5463    base($reg);
5464    index($ireg);
5465    scale($scale);
5466    disp($off);
5467  %}
5468%}
5469
5470//----------Load Long Memory Operands------------------------------------------
5471// The load-long idiom will use it's address expression again after loading
5472// the first word of the long.  If the load-long destination overlaps with
5473// registers used in the addressing expression, the 2nd half will be loaded
5474// from a clobbered address.  Fix this by requiring that load-long use
5475// address registers that do not overlap with the load-long target.
5476
5477// load-long support
5478operand load_long_RegP() %{
5479  constraint(ALLOC_IN_RC(esi_reg));
5480  match(RegP);
5481  match(eSIRegP);
5482  op_cost(100);
5483  format %{  %}
5484  interface(REG_INTER);
5485%}
5486
5487// Indirect Memory Operand Long
5488operand load_long_indirect(load_long_RegP reg) %{
5489  constraint(ALLOC_IN_RC(esi_reg));
5490  match(reg);
5491
5492  format %{ "[$reg]" %}
5493  interface(MEMORY_INTER) %{
5494    base($reg);
5495    index(0x4);
5496    scale(0x0);
5497    disp(0x0);
5498  %}
5499%}
5500
5501// Indirect Memory Plus Long Offset Operand
5502operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5503  match(AddP reg off);
5504
5505  format %{ "[$reg + $off]" %}
5506  interface(MEMORY_INTER) %{
5507    base($reg);
5508    index(0x4);
5509    scale(0x0);
5510    disp($off);
5511  %}
5512%}
5513
5514opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5515
5516
5517//----------Special Memory Operands--------------------------------------------
5518// Stack Slot Operand - This operand is used for loading and storing temporary
5519//                      values on the stack where a match requires a value to
5520//                      flow through memory.
5521operand stackSlotP(sRegP reg) %{
5522  constraint(ALLOC_IN_RC(stack_slots));
5523  // No match rule because this operand is only generated in matching
5524  format %{ "[$reg]" %}
5525  interface(MEMORY_INTER) %{
5526    base(0x4);   // ESP
5527    index(0x4);  // No Index
5528    scale(0x0);  // No Scale
5529    disp($reg);  // Stack Offset
5530  %}
5531%}
5532
5533operand stackSlotI(sRegI reg) %{
5534  constraint(ALLOC_IN_RC(stack_slots));
5535  // No match rule because this operand is only generated in matching
5536  format %{ "[$reg]" %}
5537  interface(MEMORY_INTER) %{
5538    base(0x4);   // ESP
5539    index(0x4);  // No Index
5540    scale(0x0);  // No Scale
5541    disp($reg);  // Stack Offset
5542  %}
5543%}
5544
5545operand stackSlotF(sRegF reg) %{
5546  constraint(ALLOC_IN_RC(stack_slots));
5547  // No match rule because this operand is only generated in matching
5548  format %{ "[$reg]" %}
5549  interface(MEMORY_INTER) %{
5550    base(0x4);   // ESP
5551    index(0x4);  // No Index
5552    scale(0x0);  // No Scale
5553    disp($reg);  // Stack Offset
5554  %}
5555%}
5556
5557operand stackSlotD(sRegD reg) %{
5558  constraint(ALLOC_IN_RC(stack_slots));
5559  // No match rule because this operand is only generated in matching
5560  format %{ "[$reg]" %}
5561  interface(MEMORY_INTER) %{
5562    base(0x4);   // ESP
5563    index(0x4);  // No Index
5564    scale(0x0);  // No Scale
5565    disp($reg);  // Stack Offset
5566  %}
5567%}
5568
5569operand stackSlotL(sRegL reg) %{
5570  constraint(ALLOC_IN_RC(stack_slots));
5571  // No match rule because this operand is only generated in matching
5572  format %{ "[$reg]" %}
5573  interface(MEMORY_INTER) %{
5574    base(0x4);   // ESP
5575    index(0x4);  // No Index
5576    scale(0x0);  // No Scale
5577    disp($reg);  // Stack Offset
5578  %}
5579%}
5580
5581//----------Memory Operands - Win95 Implicit Null Variants----------------
5582// Indirect Memory Operand
5583operand indirect_win95_safe(eRegP_no_EBP reg)
5584%{
5585  constraint(ALLOC_IN_RC(e_reg));
5586  match(reg);
5587
5588  op_cost(100);
5589  format %{ "[$reg]" %}
5590  interface(MEMORY_INTER) %{
5591    base($reg);
5592    index(0x4);
5593    scale(0x0);
5594    disp(0x0);
5595  %}
5596%}
5597
5598// Indirect Memory Plus Short Offset Operand
5599operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5600%{
5601  match(AddP reg off);
5602
5603  op_cost(100);
5604  format %{ "[$reg + $off]" %}
5605  interface(MEMORY_INTER) %{
5606    base($reg);
5607    index(0x4);
5608    scale(0x0);
5609    disp($off);
5610  %}
5611%}
5612
5613// Indirect Memory Plus Long Offset Operand
5614operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5615%{
5616  match(AddP reg off);
5617
5618  op_cost(100);
5619  format %{ "[$reg + $off]" %}
5620  interface(MEMORY_INTER) %{
5621    base($reg);
5622    index(0x4);
5623    scale(0x0);
5624    disp($off);
5625  %}
5626%}
5627
5628// Indirect Memory Plus Index Register Plus Offset Operand
5629operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5630%{
5631  match(AddP (AddP reg ireg) off);
5632
5633  op_cost(100);
5634  format %{"[$reg + $off + $ireg]" %}
5635  interface(MEMORY_INTER) %{
5636    base($reg);
5637    index($ireg);
5638    scale(0x0);
5639    disp($off);
5640  %}
5641%}
5642
5643// Indirect Memory Times Scale Plus Index Register
5644operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5645%{
5646  match(AddP reg (LShiftI ireg scale));
5647
5648  op_cost(100);
5649  format %{"[$reg + $ireg << $scale]" %}
5650  interface(MEMORY_INTER) %{
5651    base($reg);
5652    index($ireg);
5653    scale($scale);
5654    disp(0x0);
5655  %}
5656%}
5657
5658// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5659operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5660%{
5661  match(AddP (AddP reg (LShiftI ireg scale)) off);
5662
5663  op_cost(100);
5664  format %{"[$reg + $off + $ireg << $scale]" %}
5665  interface(MEMORY_INTER) %{
5666    base($reg);
5667    index($ireg);
5668    scale($scale);
5669    disp($off);
5670  %}
5671%}
5672
5673//----------Conditional Branch Operands----------------------------------------
5674// Comparison Op  - This is the operation of the comparison, and is limited to
5675//                  the following set of codes:
5676//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5677//
5678// Other attributes of the comparison, such as unsignedness, are specified
5679// by the comparison instruction that sets a condition code flags register.
5680// That result is represented by a flags operand whose subtype is appropriate
5681// to the unsignedness (etc.) of the comparison.
5682//
5683// Later, the instruction which matches both the Comparison Op (a Bool) and
5684// the flags (produced by the Cmp) specifies the coding of the comparison op
5685// by matching a specific subtype of Bool operand below, such as cmpOpU.
5686
5687// Comparision Code
5688operand cmpOp() %{
5689  match(Bool);
5690
5691  format %{ "" %}
5692  interface(COND_INTER) %{
5693    equal(0x4, "e");
5694    not_equal(0x5, "ne");
5695    less(0xC, "l");
5696    greater_equal(0xD, "ge");
5697    less_equal(0xE, "le");
5698    greater(0xF, "g");
5699  %}
5700%}
5701
5702// Comparison Code, unsigned compare.  Used by FP also, with
5703// C2 (unordered) turned into GT or LT already.  The other bits
5704// C0 and C3 are turned into Carry & Zero flags.
5705operand cmpOpU() %{
5706  match(Bool);
5707
5708  format %{ "" %}
5709  interface(COND_INTER) %{
5710    equal(0x4, "e");
5711    not_equal(0x5, "ne");
5712    less(0x2, "b");
5713    greater_equal(0x3, "nb");
5714    less_equal(0x6, "be");
5715    greater(0x7, "nbe");
5716  %}
5717%}
5718
5719// Floating comparisons that don't require any fixup for the unordered case
5720operand cmpOpUCF() %{
5721  match(Bool);
5722  predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5723            n->as_Bool()->_test._test == BoolTest::ge ||
5724            n->as_Bool()->_test._test == BoolTest::le ||
5725            n->as_Bool()->_test._test == BoolTest::gt);
5726  format %{ "" %}
5727  interface(COND_INTER) %{
5728    equal(0x4, "e");
5729    not_equal(0x5, "ne");
5730    less(0x2, "b");
5731    greater_equal(0x3, "nb");
5732    less_equal(0x6, "be");
5733    greater(0x7, "nbe");
5734  %}
5735%}
5736
5737
5738// Floating comparisons that can be fixed up with extra conditional jumps
5739operand cmpOpUCF2() %{
5740  match(Bool);
5741  predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5742            n->as_Bool()->_test._test == BoolTest::eq);
5743  format %{ "" %}
5744  interface(COND_INTER) %{
5745    equal(0x4, "e");
5746    not_equal(0x5, "ne");
5747    less(0x2, "b");
5748    greater_equal(0x3, "nb");
5749    less_equal(0x6, "be");
5750    greater(0x7, "nbe");
5751  %}
5752%}
5753
5754// Comparison Code for FP conditional move
5755operand cmpOp_fcmov() %{
5756  match(Bool);
5757
5758  format %{ "" %}
5759  interface(COND_INTER) %{
5760    equal        (0x0C8);
5761    not_equal    (0x1C8);
5762    less         (0x0C0);
5763    greater_equal(0x1C0);
5764    less_equal   (0x0D0);
5765    greater      (0x1D0);
5766  %}
5767%}
5768
5769// Comparision Code used in long compares
5770operand cmpOp_commute() %{
5771  match(Bool);
5772
5773  format %{ "" %}
5774  interface(COND_INTER) %{
5775    equal(0x4, "e");
5776    not_equal(0x5, "ne");
5777    less(0xF, "g");
5778    greater_equal(0xE, "le");
5779    less_equal(0xD, "ge");
5780    greater(0xC, "l");
5781  %}
5782%}
5783
5784//----------OPERAND CLASSES----------------------------------------------------
5785// Operand Classes are groups of operands that are used as to simplify
5786// instruction definitions by not requiring the AD writer to specify separate
5787// instructions for every form of operand when the instruction accepts
5788// multiple operand types with the same basic encoding and format.  The classic
5789// case of this is memory operands.
5790
5791opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5792               indIndex, indIndexScale, indIndexScaleOffset);
5793
5794// Long memory operations are encoded in 2 instructions and a +4 offset.
5795// This means some kind of offset is always required and you cannot use
5796// an oop as the offset (done when working on static globals).
5797opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5798                    indIndex, indIndexScale, indIndexScaleOffset);
5799
5800
5801//----------PIPELINE-----------------------------------------------------------
5802// Rules which define the behavior of the target architectures pipeline.
5803pipeline %{
5804
5805//----------ATTRIBUTES---------------------------------------------------------
5806attributes %{
5807  variable_size_instructions;        // Fixed size instructions
5808  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5809  instruction_unit_size = 1;         // An instruction is 1 bytes long
5810  instruction_fetch_unit_size = 16;  // The processor fetches one line
5811  instruction_fetch_units = 1;       // of 16 bytes
5812
5813  // List of nop instructions
5814  nops( MachNop );
5815%}
5816
5817//----------RESOURCES----------------------------------------------------------
5818// Resources are the functional units available to the machine
5819
5820// Generic P2/P3 pipeline
5821// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5822// 3 instructions decoded per cycle.
5823// 2 load/store ops per cycle, 1 branch, 1 FPU,
5824// 2 ALU op, only ALU0 handles mul/div instructions.
5825resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5826           MS0, MS1, MEM = MS0 | MS1,
5827           BR, FPU,
5828           ALU0, ALU1, ALU = ALU0 | ALU1 );
5829
5830//----------PIPELINE DESCRIPTION-----------------------------------------------
5831// Pipeline Description specifies the stages in the machine's pipeline
5832
5833// Generic P2/P3 pipeline
5834pipe_desc(S0, S1, S2, S3, S4, S5);
5835
5836//----------PIPELINE CLASSES---------------------------------------------------
5837// Pipeline Classes describe the stages in which input and output are
5838// referenced by the hardware pipeline.
5839
5840// Naming convention: ialu or fpu
5841// Then: _reg
5842// Then: _reg if there is a 2nd register
5843// Then: _long if it's a pair of instructions implementing a long
5844// Then: _fat if it requires the big decoder
5845//   Or: _mem if it requires the big decoder and a memory unit.
5846
5847// Integer ALU reg operation
5848pipe_class ialu_reg(eRegI dst) %{
5849    single_instruction;
5850    dst    : S4(write);
5851    dst    : S3(read);
5852    DECODE : S0;        // any decoder
5853    ALU    : S3;        // any alu
5854%}
5855
5856// Long ALU reg operation
5857pipe_class ialu_reg_long(eRegL dst) %{
5858    instruction_count(2);
5859    dst    : S4(write);
5860    dst    : S3(read);
5861    DECODE : S0(2);     // any 2 decoders
5862    ALU    : S3(2);     // both alus
5863%}
5864
5865// Integer ALU reg operation using big decoder
5866pipe_class ialu_reg_fat(eRegI dst) %{
5867    single_instruction;
5868    dst    : S4(write);
5869    dst    : S3(read);
5870    D0     : S0;        // big decoder only
5871    ALU    : S3;        // any alu
5872%}
5873
5874// Long ALU reg operation using big decoder
5875pipe_class ialu_reg_long_fat(eRegL dst) %{
5876    instruction_count(2);
5877    dst    : S4(write);
5878    dst    : S3(read);
5879    D0     : S0(2);     // big decoder only; twice
5880    ALU    : S3(2);     // any 2 alus
5881%}
5882
5883// Integer ALU reg-reg operation
5884pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5885    single_instruction;
5886    dst    : S4(write);
5887    src    : S3(read);
5888    DECODE : S0;        // any decoder
5889    ALU    : S3;        // any alu
5890%}
5891
5892// Long ALU reg-reg operation
5893pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5894    instruction_count(2);
5895    dst    : S4(write);
5896    src    : S3(read);
5897    DECODE : S0(2);     // any 2 decoders
5898    ALU    : S3(2);     // both alus
5899%}
5900
5901// Integer ALU reg-reg operation
5902pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5903    single_instruction;
5904    dst    : S4(write);
5905    src    : S3(read);
5906    D0     : S0;        // big decoder only
5907    ALU    : S3;        // any alu
5908%}
5909
5910// Long ALU reg-reg operation
5911pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5912    instruction_count(2);
5913    dst    : S4(write);
5914    src    : S3(read);
5915    D0     : S0(2);     // big decoder only; twice
5916    ALU    : S3(2);     // both alus
5917%}
5918
5919// Integer ALU reg-mem operation
5920pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5921    single_instruction;
5922    dst    : S5(write);
5923    mem    : S3(read);
5924    D0     : S0;        // big decoder only
5925    ALU    : S4;        // any alu
5926    MEM    : S3;        // any mem
5927%}
5928
5929// Long ALU reg-mem operation
5930pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5931    instruction_count(2);
5932    dst    : S5(write);
5933    mem    : S3(read);
5934    D0     : S0(2);     // big decoder only; twice
5935    ALU    : S4(2);     // any 2 alus
5936    MEM    : S3(2);     // both mems
5937%}
5938
5939// Integer mem operation (prefetch)
5940pipe_class ialu_mem(memory mem)
5941%{
5942    single_instruction;
5943    mem    : S3(read);
5944    D0     : S0;        // big decoder only
5945    MEM    : S3;        // any mem
5946%}
5947
5948// Integer Store to Memory
5949pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5950    single_instruction;
5951    mem    : S3(read);
5952    src    : S5(read);
5953    D0     : S0;        // big decoder only
5954    ALU    : S4;        // any alu
5955    MEM    : S3;
5956%}
5957
5958// Long Store to Memory
5959pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5960    instruction_count(2);
5961    mem    : S3(read);
5962    src    : S5(read);
5963    D0     : S0(2);     // big decoder only; twice
5964    ALU    : S4(2);     // any 2 alus
5965    MEM    : S3(2);     // Both mems
5966%}
5967
5968// Integer Store to Memory
5969pipe_class ialu_mem_imm(memory mem) %{
5970    single_instruction;
5971    mem    : S3(read);
5972    D0     : S0;        // big decoder only
5973    ALU    : S4;        // any alu
5974    MEM    : S3;
5975%}
5976
5977// Integer ALU0 reg-reg operation
5978pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5979    single_instruction;
5980    dst    : S4(write);
5981    src    : S3(read);
5982    D0     : S0;        // Big decoder only
5983    ALU0   : S3;        // only alu0
5984%}
5985
5986// Integer ALU0 reg-mem operation
5987pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5988    single_instruction;
5989    dst    : S5(write);
5990    mem    : S3(read);
5991    D0     : S0;        // big decoder only
5992    ALU0   : S4;        // ALU0 only
5993    MEM    : S3;        // any mem
5994%}
5995
5996// Integer ALU reg-reg operation
5997pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5998    single_instruction;
5999    cr     : S4(write);
6000    src1   : S3(read);
6001    src2   : S3(read);
6002    DECODE : S0;        // any decoder
6003    ALU    : S3;        // any alu
6004%}
6005
6006// Integer ALU reg-imm operation
6007pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
6008    single_instruction;
6009    cr     : S4(write);
6010    src1   : S3(read);
6011    DECODE : S0;        // any decoder
6012    ALU    : S3;        // any alu
6013%}
6014
6015// Integer ALU reg-mem operation
6016pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
6017    single_instruction;
6018    cr     : S4(write);
6019    src1   : S3(read);
6020    src2   : S3(read);
6021    D0     : S0;        // big decoder only
6022    ALU    : S4;        // any alu
6023    MEM    : S3;
6024%}
6025
6026// Conditional move reg-reg
6027pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
6028    instruction_count(4);
6029    y      : S4(read);
6030    q      : S3(read);
6031    p      : S3(read);
6032    DECODE : S0(4);     // any decoder
6033%}
6034
6035// Conditional move reg-reg
6036pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
6037    single_instruction;
6038    dst    : S4(write);
6039    src    : S3(read);
6040    cr     : S3(read);
6041    DECODE : S0;        // any decoder
6042%}
6043
6044// Conditional move reg-mem
6045pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
6046    single_instruction;
6047    dst    : S4(write);
6048    src    : S3(read);
6049    cr     : S3(read);
6050    DECODE : S0;        // any decoder
6051    MEM    : S3;
6052%}
6053
6054// Conditional move reg-reg long
6055pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
6056    single_instruction;
6057    dst    : S4(write);
6058    src    : S3(read);
6059    cr     : S3(read);
6060    DECODE : S0(2);     // any 2 decoders
6061%}
6062
6063// Conditional move double reg-reg
6064pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
6065    single_instruction;
6066    dst    : S4(write);
6067    src    : S3(read);
6068    cr     : S3(read);
6069    DECODE : S0;        // any decoder
6070%}
6071
6072// Float reg-reg operation
6073pipe_class fpu_reg(regD dst) %{
6074    instruction_count(2);
6075    dst    : S3(read);
6076    DECODE : S0(2);     // any 2 decoders
6077    FPU    : S3;
6078%}
6079
6080// Float reg-reg operation
6081pipe_class fpu_reg_reg(regD dst, regD src) %{
6082    instruction_count(2);
6083    dst    : S4(write);
6084    src    : S3(read);
6085    DECODE : S0(2);     // any 2 decoders
6086    FPU    : S3;
6087%}
6088
6089// Float reg-reg operation
6090pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6091    instruction_count(3);
6092    dst    : S4(write);
6093    src1   : S3(read);
6094    src2   : S3(read);
6095    DECODE : S0(3);     // any 3 decoders
6096    FPU    : S3(2);
6097%}
6098
6099// Float reg-reg operation
6100pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6101    instruction_count(4);
6102    dst    : S4(write);
6103    src1   : S3(read);
6104    src2   : S3(read);
6105    src3   : S3(read);
6106    DECODE : S0(4);     // any 3 decoders
6107    FPU    : S3(2);
6108%}
6109
6110// Float reg-reg operation
6111pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6112    instruction_count(4);
6113    dst    : S4(write);
6114    src1   : S3(read);
6115    src2   : S3(read);
6116    src3   : S3(read);
6117    DECODE : S1(3);     // any 3 decoders
6118    D0     : S0;        // Big decoder only
6119    FPU    : S3(2);
6120    MEM    : S3;
6121%}
6122
6123// Float reg-mem operation
6124pipe_class fpu_reg_mem(regD dst, memory mem) %{
6125    instruction_count(2);
6126    dst    : S5(write);
6127    mem    : S3(read);
6128    D0     : S0;        // big decoder only
6129    DECODE : S1;        // any decoder for FPU POP
6130    FPU    : S4;
6131    MEM    : S3;        // any mem
6132%}
6133
6134// Float reg-mem operation
6135pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6136    instruction_count(3);
6137    dst    : S5(write);
6138    src1   : S3(read);
6139    mem    : S3(read);
6140    D0     : S0;        // big decoder only
6141    DECODE : S1(2);     // any decoder for FPU POP
6142    FPU    : S4;
6143    MEM    : S3;        // any mem
6144%}
6145
6146// Float mem-reg operation
6147pipe_class fpu_mem_reg(memory mem, regD src) %{
6148    instruction_count(2);
6149    src    : S5(read);
6150    mem    : S3(read);
6151    DECODE : S0;        // any decoder for FPU PUSH
6152    D0     : S1;        // big decoder only
6153    FPU    : S4;
6154    MEM    : S3;        // any mem
6155%}
6156
6157pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6158    instruction_count(3);
6159    src1   : S3(read);
6160    src2   : S3(read);
6161    mem    : S3(read);
6162    DECODE : S0(2);     // any decoder for FPU PUSH
6163    D0     : S1;        // big decoder only
6164    FPU    : S4;
6165    MEM    : S3;        // any mem
6166%}
6167
6168pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6169    instruction_count(3);
6170    src1   : S3(read);
6171    src2   : S3(read);
6172    mem    : S4(read);
6173    DECODE : S0;        // any decoder for FPU PUSH
6174    D0     : S0(2);     // big decoder only
6175    FPU    : S4;
6176    MEM    : S3(2);     // any mem
6177%}
6178
6179pipe_class fpu_mem_mem(memory dst, memory src1) %{
6180    instruction_count(2);
6181    src1   : S3(read);
6182    dst    : S4(read);
6183    D0     : S0(2);     // big decoder only
6184    MEM    : S3(2);     // any mem
6185%}
6186
6187pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6188    instruction_count(3);
6189    src1   : S3(read);
6190    src2   : S3(read);
6191    dst    : S4(read);
6192    D0     : S0(3);     // big decoder only
6193    FPU    : S4;
6194    MEM    : S3(3);     // any mem
6195%}
6196
6197pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6198    instruction_count(3);
6199    src1   : S4(read);
6200    mem    : S4(read);
6201    DECODE : S0;        // any decoder for FPU PUSH
6202    D0     : S0(2);     // big decoder only
6203    FPU    : S4;
6204    MEM    : S3(2);     // any mem
6205%}
6206
6207// Float load constant
6208pipe_class fpu_reg_con(regD dst) %{
6209    instruction_count(2);
6210    dst    : S5(write);
6211    D0     : S0;        // big decoder only for the load
6212    DECODE : S1;        // any decoder for FPU POP
6213    FPU    : S4;
6214    MEM    : S3;        // any mem
6215%}
6216
6217// Float load constant
6218pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6219    instruction_count(3);
6220    dst    : S5(write);
6221    src    : S3(read);
6222    D0     : S0;        // big decoder only for the load
6223    DECODE : S1(2);     // any decoder for FPU POP
6224    FPU    : S4;
6225    MEM    : S3;        // any mem
6226%}
6227
6228// UnConditional branch
6229pipe_class pipe_jmp( label labl ) %{
6230    single_instruction;
6231    BR   : S3;
6232%}
6233
6234// Conditional branch
6235pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6236    single_instruction;
6237    cr    : S1(read);
6238    BR    : S3;
6239%}
6240
6241// Allocation idiom
6242pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6243    instruction_count(1); force_serialization;
6244    fixed_latency(6);
6245    heap_ptr : S3(read);
6246    DECODE   : S0(3);
6247    D0       : S2;
6248    MEM      : S3;
6249    ALU      : S3(2);
6250    dst      : S5(write);
6251    BR       : S5;
6252%}
6253
6254// Generic big/slow expanded idiom
6255pipe_class pipe_slow(  ) %{
6256    instruction_count(10); multiple_bundles; force_serialization;
6257    fixed_latency(100);
6258    D0  : S0(2);
6259    MEM : S3(2);
6260%}
6261
6262// The real do-nothing guy
6263pipe_class empty( ) %{
6264    instruction_count(0);
6265%}
6266
6267// Define the class for the Nop node
6268define %{
6269   MachNop = empty;
6270%}
6271
6272%}
6273
6274//----------INSTRUCTIONS-------------------------------------------------------
6275//
6276// match      -- States which machine-independent subtree may be replaced
6277//               by this instruction.
6278// ins_cost   -- The estimated cost of this instruction is used by instruction
6279//               selection to identify a minimum cost tree of machine
6280//               instructions that matches a tree of machine-independent
6281//               instructions.
6282// format     -- A string providing the disassembly for this instruction.
6283//               The value of an instruction's operand may be inserted
6284//               by referring to it with a '$' prefix.
6285// opcode     -- Three instruction opcodes may be provided.  These are referred
6286//               to within an encode class as $primary, $secondary, and $tertiary
6287//               respectively.  The primary opcode is commonly used to
6288//               indicate the type of machine instruction, while secondary
6289//               and tertiary are often used for prefix options or addressing
6290//               modes.
6291// ins_encode -- A list of encode classes with parameters. The encode class
6292//               name must have been defined in an 'enc_class' specification
6293//               in the encode section of the architecture description.
6294
6295//----------BSWAP-Instruction--------------------------------------------------
6296instruct bytes_reverse_int(eRegI dst) %{
6297  match(Set dst (ReverseBytesI dst));
6298
6299  format %{ "BSWAP  $dst" %}
6300  opcode(0x0F, 0xC8);
6301  ins_encode( OpcP, OpcSReg(dst) );
6302  ins_pipe( ialu_reg );
6303%}
6304
6305instruct bytes_reverse_long(eRegL dst) %{
6306  match(Set dst (ReverseBytesL dst));
6307
6308  format %{ "BSWAP  $dst.lo\n\t"
6309            "BSWAP  $dst.hi\n\t"
6310            "XCHG   $dst.lo $dst.hi" %}
6311
6312  ins_cost(125);
6313  ins_encode( bswap_long_bytes(dst) );
6314  ins_pipe( ialu_reg_reg);
6315%}
6316
6317instruct bytes_reverse_unsigned_short(eRegI dst) %{
6318  match(Set dst (ReverseBytesUS dst));
6319
6320  format %{ "BSWAP  $dst\n\t" 
6321            "SHR    $dst,16\n\t" %}
6322  ins_encode %{
6323    __ bswapl($dst$$Register);
6324    __ shrl($dst$$Register, 16); 
6325  %}
6326  ins_pipe( ialu_reg );
6327%}
6328
6329instruct bytes_reverse_short(eRegI dst) %{
6330  match(Set dst (ReverseBytesS dst));
6331
6332  format %{ "BSWAP  $dst\n\t" 
6333            "SAR    $dst,16\n\t" %}
6334  ins_encode %{
6335    __ bswapl($dst$$Register);
6336    __ sarl($dst$$Register, 16); 
6337  %}
6338  ins_pipe( ialu_reg );
6339%}
6340
6341
6342//---------- Zeros Count Instructions ------------------------------------------
6343
6344instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6345  predicate(UseCountLeadingZerosInstruction);
6346  match(Set dst (CountLeadingZerosI src));
6347  effect(KILL cr);
6348
6349  format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6350  ins_encode %{
6351    __ lzcntl($dst$$Register, $src$$Register);
6352  %}
6353  ins_pipe(ialu_reg);
6354%}
6355
6356instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6357  predicate(!UseCountLeadingZerosInstruction);
6358  match(Set dst (CountLeadingZerosI src));
6359  effect(KILL cr);
6360
6361  format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6362            "JNZ    skip\n\t"
6363            "MOV    $dst, -1\n"
6364      "skip:\n\t"
6365            "NEG    $dst\n\t"
6366            "ADD    $dst, 31" %}
6367  ins_encode %{
6368    Register Rdst = $dst$$Register;
6369    Register Rsrc = $src$$Register;
6370    Label skip;
6371    __ bsrl(Rdst, Rsrc);
6372    __ jccb(Assembler::notZero, skip);
6373    __ movl(Rdst, -1);
6374    __ bind(skip);
6375    __ negl(Rdst);
6376    __ addl(Rdst, BitsPerInt - 1);
6377  %}
6378  ins_pipe(ialu_reg);
6379%}
6380
6381instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6382  predicate(UseCountLeadingZerosInstruction);
6383  match(Set dst (CountLeadingZerosL src));
6384  effect(TEMP dst, KILL cr);
6385
6386  format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6387            "JNC    done\n\t"
6388            "LZCNT  $dst, $src.lo\n\t"
6389            "ADD    $dst, 32\n"
6390      "done:" %}
6391  ins_encode %{
6392    Register Rdst = $dst$$Register;
6393    Register Rsrc = $src$$Register;
6394    Label done;
6395    __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6396    __ jccb(Assembler::carryClear, done);
6397    __ lzcntl(Rdst, Rsrc);
6398    __ addl(Rdst, BitsPerInt);
6399    __ bind(done);
6400  %}
6401  ins_pipe(ialu_reg);
6402%}
6403
6404instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6405  predicate(!UseCountLeadingZerosInstruction);
6406  match(Set dst (CountLeadingZerosL src));
6407  effect(TEMP dst, KILL cr);
6408
6409  format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6410            "JZ     msw_is_zero\n\t"
6411            "ADD    $dst, 32\n\t"
6412            "JMP    not_zero\n"
6413      "msw_is_zero:\n\t"
6414            "BSR    $dst, $src.lo\n\t"
6415            "JNZ    not_zero\n\t"
6416            "MOV    $dst, -1\n"
6417      "not_zero:\n\t"
6418            "NEG    $dst\n\t"
6419            "ADD    $dst, 63\n" %}
6420 ins_encode %{
6421    Register Rdst = $dst$$Register;
6422    Register Rsrc = $src$$Register;
6423    Label msw_is_zero;
6424    Label not_zero;
6425    __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6426    __ jccb(Assembler::zero, msw_is_zero);
6427    __ addl(Rdst, BitsPerInt);
6428    __ jmpb(not_zero);
6429    __ bind(msw_is_zero);
6430    __ bsrl(Rdst, Rsrc);
6431    __ jccb(Assembler::notZero, not_zero);
6432    __ movl(Rdst, -1);
6433    __ bind(not_zero);
6434    __ negl(Rdst);
6435    __ addl(Rdst, BitsPerLong - 1);
6436  %}
6437  ins_pipe(ialu_reg);
6438%}
6439
6440instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6441  match(Set dst (CountTrailingZerosI src));
6442  effect(KILL cr);
6443
6444  format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6445            "JNZ    done\n\t"
6446            "MOV    $dst, 32\n"
6447      "done:" %}
6448  ins_encode %{
6449    Register Rdst = $dst$$Register;
6450    Label done;
6451    __ bsfl(Rdst, $src$$Register);
6452    __ jccb(Assembler::notZero, done);
6453    __ movl(Rdst, BitsPerInt);
6454    __ bind(done);
6455  %}
6456  ins_pipe(ialu_reg);
6457%}
6458
6459instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6460  match(Set dst (CountTrailingZerosL src));
6461  effect(TEMP dst, KILL cr);
6462
6463  format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6464            "JNZ    done\n\t"
6465            "BSF    $dst, $src.hi\n\t"
6466            "JNZ    msw_not_zero\n\t"
6467            "MOV    $dst, 32\n"
6468      "msw_not_zero:\n\t"
6469            "ADD    $dst, 32\n"
6470      "done:" %}
6471  ins_encode %{
6472    Register Rdst = $dst$$Register;
6473    Register Rsrc = $src$$Register;
6474    Label msw_not_zero;
6475    Label done;
6476    __ bsfl(Rdst, Rsrc);
6477    __ jccb(Assembler::notZero, done);
6478    __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6479    __ jccb(Assembler::notZero, msw_not_zero);
6480    __ movl(Rdst, BitsPerInt);
6481    __ bind(msw_not_zero);
6482    __ addl(Rdst, BitsPerInt);
6483    __ bind(done);
6484  %}
6485  ins_pipe(ialu_reg);
6486%}
6487
6488
6489//---------- Population Count Instructions -------------------------------------
6490
6491instruct popCountI(eRegI dst, eRegI src) %{
6492  predicate(UsePopCountInstruction);
6493  match(Set dst (PopCountI src));
6494
6495  format %{ "POPCNT $dst, $src" %}
6496  ins_encode %{
6497    __ popcntl($dst$$Register, $src$$Register);
6498  %}
6499  ins_pipe(ialu_reg);
6500%}
6501
6502instruct popCountI_mem(eRegI dst, memory mem) %{
6503  predicate(UsePopCountInstruction);
6504  match(Set dst (PopCountI (LoadI mem)));
6505
6506  format %{ "POPCNT $dst, $mem" %}
6507  ins_encode %{
6508    __ popcntl($dst$$Register, $mem$$Address);
6509  %}
6510  ins_pipe(ialu_reg);
6511%}
6512
6513// Note: Long.bitCount(long) returns an int.
6514instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6515  predicate(UsePopCountInstruction);
6516  match(Set dst (PopCountL src));
6517  effect(KILL cr, TEMP tmp, TEMP dst);
6518
6519  format %{ "POPCNT $dst, $src.lo\n\t"
6520            "POPCNT $tmp, $src.hi\n\t"
6521            "ADD    $dst, $tmp" %}
6522  ins_encode %{
6523    __ popcntl($dst$$Register, $src$$Register);
6524    __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6525    __ addl($dst$$Register, $tmp$$Register);
6526  %}
6527  ins_pipe(ialu_reg);
6528%}
6529
6530// Note: Long.bitCount(long) returns an int.
6531instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6532  predicate(UsePopCountInstruction);
6533  match(Set dst (PopCountL (LoadL mem)));
6534  effect(KILL cr, TEMP tmp, TEMP dst);
6535
6536  format %{ "POPCNT $dst, $mem\n\t"
6537            "POPCNT $tmp, $mem+4\n\t"
6538            "ADD    $dst, $tmp" %}
6539  ins_encode %{
6540    //__ popcntl($dst$$Register, $mem$$Address$$first);
6541    //__ popcntl($tmp$$Register, $mem$$Address$$second);
6542    __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6543    __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6544    __ addl($dst$$Register, $tmp$$Register);
6545  %}
6546  ins_pipe(ialu_reg);
6547%}
6548
6549
6550//----------Load/Store/Move Instructions---------------------------------------
6551//----------Load Instructions--------------------------------------------------
6552// Load Byte (8bit signed)
6553instruct loadB(xRegI dst, memory mem) %{
6554  match(Set dst (LoadB mem));
6555
6556  ins_cost(125);
6557  format %{ "MOVSX8 $dst,$mem\t# byte" %}
6558
6559  ins_encode %{
6560    __ movsbl($dst$$Register, $mem$$Address);
6561  %}
6562
6563  ins_pipe(ialu_reg_mem);
6564%}
6565
6566// Load Byte (8bit signed) into Long Register
6567instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6568  match(Set dst (ConvI2L (LoadB mem)));
6569  effect(KILL cr);
6570
6571  ins_cost(375);
6572  format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6573            "MOV    $dst.hi,$dst.lo\n\t"
6574            "SAR    $dst.hi,7" %}
6575
6576  ins_encode %{
6577    __ movsbl($dst$$Register, $mem$$Address);
6578    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6579    __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6580  %}
6581
6582  ins_pipe(ialu_reg_mem);
6583%}
6584
6585// Load Unsigned Byte (8bit UNsigned)
6586instruct loadUB(xRegI dst, memory mem) %{
6587  match(Set dst (LoadUB mem));
6588
6589  ins_cost(125);
6590  format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6591
6592  ins_encode %{
6593    __ movzbl($dst$$Register, $mem$$Address);
6594  %}
6595
6596  ins_pipe(ialu_reg_mem);
6597%}
6598
6599// Load Unsigned Byte (8 bit UNsigned) into Long Register
6600instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6601  match(Set dst (ConvI2L (LoadUB mem)));
6602  effect(KILL cr);
6603
6604  ins_cost(250);
6605  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6606            "XOR    $dst.hi,$dst.hi" %}
6607
6608  ins_encode %{
6609    Register Rdst = $dst$$Register;
6610    __ movzbl(Rdst, $mem$$Address);
6611    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6612  %}
6613
6614  ins_pipe(ialu_reg_mem);
6615%}
6616
6617// Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6618instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6619  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6620  effect(KILL cr);
6621
6622  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6623            "XOR    $dst.hi,$dst.hi\n\t"
6624            "AND    $dst.lo,$mask" %}
6625  ins_encode %{
6626    Register Rdst = $dst$$Register;
6627    __ movzbl(Rdst, $mem$$Address);
6628    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6629    __ andl(Rdst, $mask$$constant);
6630  %}
6631  ins_pipe(ialu_reg_mem);
6632%}
6633
6634// Load Short (16bit signed)
6635instruct loadS(eRegI dst, memory mem) %{
6636  match(Set dst (LoadS mem));
6637
6638  ins_cost(125);
6639  format %{ "MOVSX  $dst,$mem\t# short" %}
6640
6641  ins_encode %{
6642    __ movswl($dst$$Register, $mem$$Address);
6643  %}
6644
6645  ins_pipe(ialu_reg_mem);
6646%}
6647
6648// Load Short (16 bit signed) to Byte (8 bit signed)
6649instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6650  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6651
6652  ins_cost(125);
6653  format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6654  ins_encode %{
6655    __ movsbl($dst$$Register, $mem$$Address);
6656  %}
6657  ins_pipe(ialu_reg_mem);
6658%}
6659
6660// Load Short (16bit signed) into Long Register
6661instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6662  match(Set dst (ConvI2L (LoadS mem)));
6663  effect(KILL cr);
6664
6665  ins_cost(375);
6666  format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6667            "MOV    $dst.hi,$dst.lo\n\t"
6668            "SAR    $dst.hi,15" %}
6669
6670  ins_encode %{
6671    __ movswl($dst$$Register, $mem$$Address);
6672    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6673    __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6674  %}
6675
6676  ins_pipe(ialu_reg_mem);
6677%}
6678
6679// Load Unsigned Short/Char (16bit unsigned)
6680instruct loadUS(eRegI dst, memory mem) %{
6681  match(Set dst (LoadUS mem));
6682
6683  ins_cost(125);
6684  format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6685
6686  ins_encode %{
6687    __ movzwl($dst$$Register, $mem$$Address);
6688  %}
6689
6690  ins_pipe(ialu_reg_mem);
6691%}
6692
6693// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6694instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6695  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6696
6697  ins_cost(125);
6698  format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6699  ins_encode %{
6700    __ movsbl($dst$$Register, $mem$$Address);
6701  %}
6702  ins_pipe(ialu_reg_mem);
6703%}
6704
6705// Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6706instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6707  match(Set dst (ConvI2L (LoadUS mem)));
6708  effect(KILL cr);
6709
6710  ins_cost(250);
6711  format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6712            "XOR    $dst.hi,$dst.hi" %}
6713
6714  ins_encode %{
6715    __ movzwl($dst$$Register, $mem$$Address);
6716    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6717  %}
6718
6719  ins_pipe(ialu_reg_mem);
6720%}
6721
6722// Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6723instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6724  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6725  effect(KILL cr);
6726
6727  format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6728            "XOR    $dst.hi,$dst.hi" %}
6729  ins_encode %{
6730    Register Rdst = $dst$$Register;
6731    __ movzbl(Rdst, $mem$$Address);
6732    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6733  %}
6734  ins_pipe(ialu_reg_mem);
6735%}
6736
6737// Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6738instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6739  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6740  effect(KILL cr);
6741
6742  format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6743            "XOR    $dst.hi,$dst.hi\n\t"
6744            "AND    $dst.lo,$mask" %}
6745  ins_encode %{
6746    Register Rdst = $dst$$Register;
6747    __ movzwl(Rdst, $mem$$Address);
6748    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6749    __ andl(Rdst, $mask$$constant);
6750  %}
6751  ins_pipe(ialu_reg_mem);
6752%}
6753
6754// Load Integer
6755instruct loadI(eRegI dst, memory mem) %{
6756  match(Set dst (LoadI mem));
6757
6758  ins_cost(125);
6759  format %{ "MOV    $dst,$mem\t# int" %}
6760
6761  ins_encode %{
6762    __ movl($dst$$Register, $mem$$Address);
6763  %}
6764
6765  ins_pipe(ialu_reg_mem);
6766%}
6767
6768// Load Integer (32 bit signed) to Byte (8 bit signed)
6769instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6770  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6771
6772  ins_cost(125);
6773  format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6774  ins_encode %{
6775    __ movsbl($dst$$Register, $mem$$Address);
6776  %}
6777  ins_pipe(ialu_reg_mem);
6778%}
6779
6780// Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6781instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6782  match(Set dst (AndI (LoadI mem) mask));
6783
6784  ins_cost(125);
6785  format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6786  ins_encode %{
6787    __ movzbl($dst$$Register, $mem$$Address);
6788  %}
6789  ins_pipe(ialu_reg_mem);
6790%}
6791
6792// Load Integer (32 bit signed) to Short (16 bit signed)
6793instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6794  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6795
6796  ins_cost(125);
6797  format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6798  ins_encode %{
6799    __ movswl($dst$$Register, $mem$$Address);
6800  %}
6801  ins_pipe(ialu_reg_mem);
6802%}
6803
6804// Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6805instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6806  match(Set dst (AndI (LoadI mem) mask));
6807
6808  ins_cost(125);
6809  format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6810  ins_encode %{
6811    __ movzwl($dst$$Register, $mem$$Address);
6812  %}
6813  ins_pipe(ialu_reg_mem);
6814%}
6815
6816// Load Integer into Long Register
6817instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6818  match(Set dst (ConvI2L (LoadI mem)));
6819  effect(KILL cr);
6820
6821  ins_cost(375);
6822  format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6823            "MOV    $dst.hi,$dst.lo\n\t"
6824            "SAR    $dst.hi,31" %}
6825
6826  ins_encode %{
6827    __ movl($dst$$Register, $mem$$Address);
6828    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6829    __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6830  %}
6831
6832  ins_pipe(ialu_reg_mem);
6833%}
6834
6835// Load Integer with mask 0xFF into Long Register
6836instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6837  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6838  effect(KILL cr);
6839
6840  format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6841            "XOR    $dst.hi,$dst.hi" %}
6842  ins_encode %{
6843    Register Rdst = $dst$$Register;
6844    __ movzbl(Rdst, $mem$$Address);
6845    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6846  %}
6847  ins_pipe(ialu_reg_mem);
6848%}
6849
6850// Load Integer with mask 0xFFFF into Long Register
6851instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6852  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6853  effect(KILL cr);
6854
6855  format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6856            "XOR    $dst.hi,$dst.hi" %}
6857  ins_encode %{
6858    Register Rdst = $dst$$Register;
6859    __ movzwl(Rdst, $mem$$Address);
6860    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6861  %}
6862  ins_pipe(ialu_reg_mem);
6863%}
6864
6865// Load Integer with 32-bit mask into Long Register
6866instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6867  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6868  effect(KILL cr);
6869
6870  format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6871            "XOR    $dst.hi,$dst.hi\n\t"
6872            "AND    $dst.lo,$mask" %}
6873  ins_encode %{
6874    Register Rdst = $dst$$Register;
6875    __ movl(Rdst, $mem$$Address);
6876    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6877    __ andl(Rdst, $mask$$constant);
6878  %}
6879  ins_pipe(ialu_reg_mem);
6880%}
6881
6882// Load Unsigned Integer into Long Register
6883instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6884  match(Set dst (LoadUI2L mem));
6885  effect(KILL cr);
6886
6887  ins_cost(250);
6888  format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6889            "XOR    $dst.hi,$dst.hi" %}
6890
6891  ins_encode %{
6892    __ movl($dst$$Register, $mem$$Address);
6893    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6894  %}
6895
6896  ins_pipe(ialu_reg_mem);
6897%}
6898
6899// Load Long.  Cannot clobber address while loading, so restrict address
6900// register to ESI
6901instruct loadL(eRegL dst, load_long_memory mem) %{
6902  predicate(!((LoadLNode*)n)->require_atomic_access());
6903  match(Set dst (LoadL mem));
6904
6905  ins_cost(250);
6906  format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6907            "MOV    $dst.hi,$mem+4" %}
6908
6909  ins_encode %{
6910    Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6911    Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6912    __ movl($dst$$Register, Amemlo);
6913    __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6914  %}
6915
6916  ins_pipe(ialu_reg_long_mem);
6917%}
6918
6919// Volatile Load Long.  Must be atomic, so do 64-bit FILD
6920// then store it down to the stack and reload on the int
6921// side.
6922instruct loadL_volatile(stackSlotL dst, memory mem) %{
6923  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6924  match(Set dst (LoadL mem));
6925
6926  ins_cost(200);
6927  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6928            "FISTp  $dst" %}
6929  ins_encode(enc_loadL_volatile(mem,dst));
6930  ins_pipe( fpu_reg_mem );
6931%}
6932
6933instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6934  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6935  match(Set dst (LoadL mem));
6936  effect(TEMP tmp);
6937  ins_cost(180);
6938  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6939            "MOVSD  $dst,$tmp" %}
6940  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6941  ins_pipe( pipe_slow );
6942%}
6943
6944instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6945  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6946  match(Set dst (LoadL mem));
6947  effect(TEMP tmp);
6948  ins_cost(160);
6949  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6950            "MOVD   $dst.lo,$tmp\n\t"
6951            "PSRLQ  $tmp,32\n\t"
6952            "MOVD   $dst.hi,$tmp" %}
6953  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6954  ins_pipe( pipe_slow );
6955%}
6956
6957// Load Range
6958instruct loadRange(eRegI dst, memory mem) %{
6959  match(Set dst (LoadRange mem));
6960
6961  ins_cost(125);
6962  format %{ "MOV    $dst,$mem" %}
6963  opcode(0x8B);
6964  ins_encode( OpcP, RegMem(dst,mem));
6965  ins_pipe( ialu_reg_mem );
6966%}
6967
6968
6969// Load Pointer
6970instruct loadP(eRegP dst, memory mem) %{
6971  match(Set dst (LoadP mem));
6972
6973  ins_cost(125);
6974  format %{ "MOV    $dst,$mem" %}
6975  opcode(0x8B);
6976  ins_encode( OpcP, RegMem(dst,mem));
6977  ins_pipe( ialu_reg_mem );
6978%}
6979
6980// Load Klass Pointer
6981instruct loadKlass(eRegP dst, memory mem) %{
6982  match(Set dst (LoadKlass mem));
6983
6984  ins_cost(125);
6985  format %{ "MOV    $dst,$mem" %}
6986  opcode(0x8B);
6987  ins_encode( OpcP, RegMem(dst,mem));
6988  ins_pipe( ialu_reg_mem );
6989%}
6990
6991// Load Double
6992instruct loadD(regD dst, memory mem) %{
6993  predicate(UseSSE<=1);
6994  match(Set dst (LoadD mem));
6995
6996  ins_cost(150);
6997  format %{ "FLD_D  ST,$mem\n\t"
6998            "FSTP   $dst" %}
6999  opcode(0xDD);               /* DD /0 */
7000  ins_encode( OpcP, RMopc_Mem(0x00,mem),
7001              Pop_Reg_D(dst) );
7002  ins_pipe( fpu_reg_mem );
7003%}
7004
7005// Load Double to XMM
7006instruct loadXD(regXD dst, memory mem) %{
7007  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
7008  match(Set dst (LoadD mem));
7009  ins_cost(145);
7010  format %{ "MOVSD  $dst,$mem" %}
7011  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
7012  ins_pipe( pipe_slow );
7013%}
7014
7015instruct loadXD_partial(regXD dst, memory mem) %{
7016  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
7017  match(Set dst (LoadD mem));
7018  ins_cost(145);
7019  format %{ "MOVLPD $dst,$mem" %}
7020  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
7021  ins_pipe( pipe_slow );
7022%}
7023
7024// Load to XMM register (single-precision floating point)
7025// MOVSS instruction
7026instruct loadX(regX dst, memory mem) %{
7027  predicate(UseSSE>=1);
7028  match(Set dst (LoadF mem));
7029  ins_cost(145);
7030  format %{ "MOVSS  $dst,$mem" %}
7031  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
7032  ins_pipe( pipe_slow );
7033%}
7034
7035// Load Float
7036instruct loadF(regF dst, memory mem) %{
7037  predicate(UseSSE==0);
7038  match(Set dst (LoadF mem));
7039
7040  ins_cost(150);
7041  format %{ "FLD_S  ST,$mem\n\t"
7042            "FSTP   $dst" %}
7043  opcode(0xD9);               /* D9 /0 */
7044  ins_encode( OpcP, RMopc_Mem(0x00,mem),
7045              Pop_Reg_F(dst) );
7046  ins_pipe( fpu_reg_mem );
7047%}
7048
7049// Load Aligned Packed Byte to XMM register
7050instruct loadA8B(regXD dst, memory mem) %{
7051  predicate(UseSSE>=1);
7052  match(Set dst (Load8B mem));
7053  ins_cost(125);
7054  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
7055  ins_encode( movq_ld(dst, mem));
7056  ins_pipe( pipe_slow );
7057%}
7058
7059// Load Aligned Packed Short to XMM register
7060instruct loadA4S(regXD dst, memory mem) %{
7061  predicate(UseSSE>=1);
7062  match(Set dst (Load4S mem));
7063  ins_cost(125);
7064  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
7065  ins_encode( movq_ld(dst, mem));
7066  ins_pipe( pipe_slow );
7067%}
7068
7069// Load Aligned Packed Char to XMM register
7070instruct loadA4C(regXD dst, memory mem) %{
7071  predicate(UseSSE>=1);
7072  match(Set dst (Load4C mem));
7073  ins_cost(125);
7074  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
7075  ins_encode( movq_ld(dst, mem));
7076  ins_pipe( pipe_slow );
7077%}
7078
7079// Load Aligned Packed Integer to XMM register
7080instruct load2IU(regXD dst, memory mem) %{
7081  predicate(UseSSE>=1);
7082  match(Set dst (Load2I mem));
7083  ins_cost(125);
7084  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
7085  ins_encode( movq_ld(dst, mem));
7086  ins_pipe( pipe_slow );
7087%}
7088
7089// Load Aligned Packed Single to XMM
7090instruct loadA2F(regXD dst, memory mem) %{
7091  predicate(UseSSE>=1);
7092  match(Set dst (Load2F mem));
7093  ins_cost(145);
7094  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
7095  ins_encode( movq_ld(dst, mem));
7096  ins_pipe( pipe_slow );
7097%}
7098
7099// Load Effective Address
7100instruct leaP8(eRegP dst, indOffset8 mem) %{
7101  match(Set dst mem);
7102
7103  ins_cost(110);
7104  format %{ "LEA    $dst,$mem" %}
7105  opcode(0x8D);
7106  ins_encode( OpcP, RegMem(dst,mem));
7107  ins_pipe( ialu_reg_reg_fat );
7108%}
7109
7110instruct leaP32(eRegP dst, indOffset32 mem) %{
7111  match(Set dst mem);
7112
7113  ins_cost(110);
7114  format %{ "LEA    $dst,$mem" %}
7115  opcode(0x8D);
7116  ins_encode( OpcP, RegMem(dst,mem));
7117  ins_pipe( ialu_reg_reg_fat );
7118%}
7119
7120instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
7121  match(Set dst mem);
7122
7123  ins_cost(110);
7124  format %{ "LEA    $dst,$mem" %}
7125  opcode(0x8D);
7126  ins_encode( OpcP, RegMem(dst,mem));
7127  ins_pipe( ialu_reg_reg_fat );
7128%}
7129
7130instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7131  match(Set dst mem);
7132
7133  ins_cost(110);
7134  format %{ "LEA    $dst,$mem" %}
7135  opcode(0x8D);
7136  ins_encode( OpcP, RegMem(dst,mem));
7137  ins_pipe( ialu_reg_reg_fat );
7138%}
7139
7140instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7141  match(Set dst mem);
7142
7143  ins_cost(110);
7144  format %{ "LEA    $dst,$mem" %}
7145  opcode(0x8D);
7146  ins_encode( OpcP, RegMem(dst,mem));
7147  ins_pipe( ialu_reg_reg_fat );
7148%}
7149
7150// Load Constant
7151instruct loadConI(eRegI dst, immI src) %{
7152  match(Set dst src);
7153
7154  format %{ "MOV    $dst,$src" %}
7155  ins_encode( LdImmI(dst, src) );
7156  ins_pipe( ialu_reg_fat );
7157%}
7158
7159// Load Constant zero
7160instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7161  match(Set dst src);
7162  effect(KILL cr);
7163
7164  ins_cost(50);
7165  format %{ "XOR    $dst,$dst" %}
7166  opcode(0x33);  /* + rd */
7167  ins_encode( OpcP, RegReg( dst, dst ) );
7168  ins_pipe( ialu_reg );
7169%}
7170
7171instruct loadConP(eRegP dst, immP src) %{
7172  match(Set dst src);
7173
7174  format %{ "MOV    $dst,$src" %}
7175  opcode(0xB8);  /* + rd */
7176  ins_encode( LdImmP(dst, src) );
7177  ins_pipe( ialu_reg_fat );
7178%}
7179
7180instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7181  match(Set dst src);
7182  effect(KILL cr);
7183  ins_cost(200);
7184  format %{ "MOV    $dst.lo,$src.lo\n\t"
7185            "MOV    $dst.hi,$src.hi" %}
7186  opcode(0xB8);
7187  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7188  ins_pipe( ialu_reg_long_fat );
7189%}
7190
7191instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7192  match(Set dst src);
7193  effect(KILL cr);
7194  ins_cost(150);
7195  format %{ "XOR    $dst.lo,$dst.lo\n\t"
7196            "XOR    $dst.hi,$dst.hi" %}
7197  opcode(0x33,0x33);
7198  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7199  ins_pipe( ialu_reg_long );
7200%}
7201
7202// The instruction usage is guarded by predicate in operand immF().
7203instruct loadConF(regF dst, immF src) %{
7204  match(Set dst src);
7205  ins_cost(125);
7206
7207  format %{ "FLD_S  ST,$src\n\t"
7208            "FSTP   $dst" %}
7209  opcode(0xD9, 0x00);       /* D9 /0 */
7210  ins_encode(LdImmF(src), Pop_Reg_F(dst) );
7211  ins_pipe( fpu_reg_con );
7212%}
7213
7214// The instruction usage is guarded by predicate in operand immXF().
7215instruct loadConX(regX dst, immXF con) %{
7216  match(Set dst con);
7217  ins_cost(125);
7218  format %{ "MOVSS  $dst,[$con]" %}
7219  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
7220  ins_pipe( pipe_slow );
7221%}
7222
7223// The instruction usage is guarded by predicate in operand immXF0().
7224instruct loadConX0(regX dst, immXF0 src) %{
7225  match(Set dst src);
7226  ins_cost(100);
7227  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7228  ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7229  ins_pipe( pipe_slow );
7230%}
7231
7232// The instruction usage is guarded by predicate in operand immD().
7233instruct loadConD(regD dst, immD src) %{
7234  match(Set dst src);
7235  ins_cost(125);
7236
7237  format %{ "FLD_D  ST,$src\n\t"
7238            "FSTP   $dst" %}
7239  ins_encode(LdImmD(src), Pop_Reg_D(dst) );
7240  ins_pipe( fpu_reg_con );
7241%}
7242
7243// The instruction usage is guarded by predicate in operand immXD().
7244instruct loadConXD(regXD dst, immXD con) %{
7245  match(Set dst con);
7246  ins_cost(125);
7247  format %{ "MOVSD  $dst,[$con]" %}
7248  ins_encode(load_conXD(dst, con));
7249  ins_pipe( pipe_slow );
7250%}
7251
7252// The instruction usage is guarded by predicate in operand immXD0().
7253instruct loadConXD0(regXD dst, immXD0 src) %{
7254  match(Set dst src);
7255  ins_cost(100);
7256  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7257  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7258  ins_pipe( pipe_slow );
7259%}
7260
7261// Load Stack Slot
7262instruct loadSSI(eRegI dst, stackSlotI src) %{
7263  match(Set dst src);
7264  ins_cost(125);
7265
7266  format %{ "MOV    $dst,$src" %}
7267  opcode(0x8B);
7268  ins_encode( OpcP, RegMem(dst,src));
7269  ins_pipe( ialu_reg_mem );
7270%}
7271
7272instruct loadSSL(eRegL dst, stackSlotL src) %{
7273  match(Set dst src);
7274
7275  ins_cost(200);
7276  format %{ "MOV    $dst,$src.lo\n\t"
7277            "MOV    $dst+4,$src.hi" %}
7278  opcode(0x8B, 0x8B);
7279  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7280  ins_pipe( ialu_mem_long_reg );
7281%}
7282
7283// Load Stack Slot
7284instruct loadSSP(eRegP dst, stackSlotP src) %{
7285  match(Set dst src);
7286  ins_cost(125);
7287
7288  format %{ "MOV    $dst,$src" %}
7289  opcode(0x8B);
7290  ins_encode( OpcP, RegMem(dst,src));
7291  ins_pipe( ialu_reg_mem );
7292%}
7293
7294// Load Stack Slot
7295instruct loadSSF(regF dst, stackSlotF src) %{
7296  match(Set dst src);
7297  ins_cost(125);
7298
7299  format %{ "FLD_S  $src\n\t"
7300            "FSTP   $dst" %}
7301  opcode(0xD9);               /* D9 /0, FLD m32real */
7302  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7303              Pop_Reg_F(dst) );
7304  ins_pipe( fpu_reg_mem );
7305%}
7306
7307// Load Stack Slot
7308instruct loadSSD(regD dst, stackSlotD src) %{
7309  match(Set dst src);
7310  ins_cost(125);
7311
7312  format %{ "FLD_D  $src\n\t"
7313            "FSTP   $dst" %}
7314  opcode(0xDD);               /* DD /0, FLD m64real */
7315  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7316              Pop_Reg_D(dst) );
7317  ins_pipe( fpu_reg_mem );
7318%}
7319
7320// Prefetch instructions.
7321// Must be safe to execute with invalid address (cannot fault).
7322
7323instruct prefetchr0( memory mem ) %{
7324  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7325  match(PrefetchRead mem);
7326  ins_cost(0);
7327  size(0);
7328  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7329  ins_encode();
7330  ins_pipe(empty);
7331%}
7332
7333instruct prefetchr( memory mem ) %{
7334  predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
7335  match(PrefetchRead mem);
7336  ins_cost(100);
7337
7338  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7339  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
7340  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7341  ins_pipe(ialu_mem);
7342%}
7343
7344instruct prefetchrNTA( memory mem ) %{
7345  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7346  match(PrefetchRead mem);
7347  ins_cost(100);
7348
7349  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7350  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7351  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7352  ins_pipe(ialu_mem);
7353%}
7354
7355instruct prefetchrT0( memory mem ) %{
7356  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7357  match(PrefetchRead mem);
7358  ins_cost(100);
7359
7360  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7361  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7362  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7363  ins_pipe(ialu_mem);
7364%}
7365
7366instruct prefetchrT2( memory mem ) %{
7367  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7368  match(PrefetchRead mem);
7369  ins_cost(100);
7370
7371  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7372  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7373  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7374  ins_pipe(ialu_mem);
7375%}
7376
7377instruct prefetchw0( memory mem ) %{
7378  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7379  match(PrefetchWrite mem);
7380  ins_cost(0);
7381  size(0);
7382  format %{ "Prefetch (non-SSE is empty encoding)" %}
7383  ins_encode();
7384  ins_pipe(empty);
7385%}
7386
7387instruct prefetchw( memory mem ) %{
7388  predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
7389  match( PrefetchWrite mem );
7390  ins_cost(100);
7391
7392  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7393  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
7394  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7395  ins_pipe(ialu_mem);
7396%}
7397
7398instruct prefetchwNTA( memory mem ) %{
7399  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7400  match(PrefetchWrite mem);
7401  ins_cost(100);
7402
7403  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7404  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7405  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7406  ins_pipe(ialu_mem);
7407%}
7408
7409instruct prefetchwT0( memory mem ) %{
7410  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7411  match(PrefetchWrite mem);
7412  ins_cost(100);
7413
7414  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
7415  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7416  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7417  ins_pipe(ialu_mem);
7418%}
7419
7420instruct prefetchwT2( memory mem ) %{
7421  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7422  match(PrefetchWrite mem);
7423  ins_cost(100);
7424
7425  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
7426  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7427  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7428  ins_pipe(ialu_mem);
7429%}
7430
7431//----------Store Instructions-------------------------------------------------
7432
7433// Store Byte
7434instruct storeB(memory mem, xRegI src) %{
7435  match(Set mem (StoreB mem src));
7436
7437  ins_cost(125);
7438  format %{ "MOV8   $mem,$src" %}
7439  opcode(0x88);
7440  ins_encode( OpcP, RegMem( src, mem ) );
7441  ins_pipe( ialu_mem_reg );
7442%}
7443
7444// Store Char/Short
7445instruct storeC(memory mem, eRegI src) %{
7446  match(Set mem (StoreC mem src));
7447
7448  ins_cost(125);
7449  format %{ "MOV16  $mem,$src" %}
7450  opcode(0x89, 0x66);
7451  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7452  ins_pipe( ialu_mem_reg );
7453%}
7454
7455// Store Integer
7456instruct storeI(memory mem, eRegI src) %{
7457  match(Set mem (StoreI mem src));
7458
7459  ins_cost(125);
7460  format %{ "MOV    $mem,$src" %}
7461  opcode(0x89);
7462  ins_encode( OpcP, RegMem( src, mem ) );
7463  ins_pipe( ialu_mem_reg );
7464%}
7465
7466// Store Long
7467instruct storeL(long_memory mem, eRegL src) %{
7468  predicate(!((StoreLNode*)n)->require_atomic_access());
7469  match(Set mem (StoreL mem src));
7470
7471  ins_cost(200);
7472  format %{ "MOV    $mem,$src.lo\n\t"
7473            "MOV    $mem+4,$src.hi" %}
7474  opcode(0x89, 0x89);
7475  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7476  ins_pipe( ialu_mem_long_reg );
7477%}
7478
7479// Store Long to Integer
7480instruct storeL2I(memory mem, eRegL src) %{
7481  match(Set mem (StoreI mem (ConvL2I src)));
7482
7483  format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7484  ins_encode %{
7485    __ movl($mem$$Address, $src$$Register);
7486  %}
7487  ins_pipe(ialu_mem_reg);
7488%}
7489
7490// Volatile Store Long.  Must be atomic, so move it into
7491// the FP TOS and then do a 64-bit FIST.  Has to probe the
7492// target address before the store (for null-ptr checks)
7493// so the memory operand is used twice in the encoding.
7494instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7495  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7496  match(Set mem (StoreL mem src));
7497  effect( KILL cr );
7498  ins_cost(400);
7499  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7500            "FILD   $src\n\t"
7501            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7502  opcode(0x3B);
7503  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7504  ins_pipe( fpu_reg_mem );
7505%}
7506
7507instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7508  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7509  match(Set mem (StoreL mem src));
7510  effect( TEMP tmp, KILL cr );
7511  ins_cost(380);
7512  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7513            "MOVSD  $tmp,$src\n\t"
7514            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7515  opcode(0x3B);
7516  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7517  ins_pipe( pipe_slow );
7518%}
7519
7520instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7521  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7522  match(Set mem (StoreL mem src));
7523  effect( TEMP tmp2 , TEMP tmp, KILL cr );
7524  ins_cost(360);
7525  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7526            "MOVD   $tmp,$src.lo\n\t"
7527            "MOVD   $tmp2,$src.hi\n\t"
7528            "PUNPCKLDQ $tmp,$tmp2\n\t"
7529            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7530  opcode(0x3B);
7531  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7532  ins_pipe( pipe_slow );
7533%}
7534
7535// Store Pointer; for storing unknown oops and raw pointers
7536instruct storeP(memory mem, anyRegP src) %{
7537  match(Set mem (StoreP mem src));
7538
7539  ins_cost(125);
7540  format %{ "MOV    $mem,$src" %}
7541  opcode(0x89);
7542  ins_encode( OpcP, RegMem( src, mem ) );
7543  ins_pipe( ialu_mem_reg );
7544%}
7545
7546// Store Integer Immediate
7547instruct storeImmI(memory mem, immI src) %{
7548  match(Set mem (StoreI mem src));
7549
7550  ins_cost(150);
7551  format %{ "MOV    $mem,$src" %}
7552  opcode(0xC7);               /* C7 /0 */
7553  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7554  ins_pipe( ialu_mem_imm );
7555%}
7556
7557// Store Short/Char Immediate
7558instruct storeImmI16(memory mem, immI16 src) %{
7559  predicate(UseStoreImmI16);
7560  match(Set mem (StoreC mem src));
7561
7562  ins_cost(150);
7563  format %{ "MOV16  $mem,$src" %}
7564  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7565  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7566  ins_pipe( ialu_mem_imm );
7567%}
7568
7569// Store Pointer Immediate; null pointers or constant oops that do not
7570// need card-mark barriers.
7571instruct storeImmP(memory mem, immP src) %{
7572  match(Set mem (StoreP mem src));
7573
7574  ins_cost(150);
7575  format %{ "MOV    $mem,$src" %}
7576  opcode(0xC7);               /* C7 /0 */
7577  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7578  ins_pipe( ialu_mem_imm );
7579%}
7580
7581// Store Byte Immediate
7582instruct storeImmB(memory mem, immI8 src) %{
7583  match(Set mem (StoreB mem src));
7584
7585  ins_cost(150);
7586  format %{ "MOV8   $mem,$src" %}
7587  opcode(0xC6);               /* C6 /0 */
7588  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7589  ins_pipe( ialu_mem_imm );
7590%}
7591
7592// Store Aligned Packed Byte XMM register to memory
7593instruct storeA8B(memory mem, regXD src) %{
7594  predicate(UseSSE>=1);
7595  match(Set mem (Store8B mem src));
7596  ins_cost(145);
7597  format %{ "MOVQ  $mem,$src\t! packed8B" %}
7598  ins_encode( movq_st(mem, src));
7599  ins_pipe( pipe_slow );
7600%}
7601
7602// Store Aligned Packed Char/Short XMM register to memory
7603instruct storeA4C(memory mem, regXD src) %{
7604  predicate(UseSSE>=1);
7605  match(Set mem (Store4C mem src));
7606  ins_cost(145);
7607  format %{ "MOVQ  $mem,$src\t! packed4C" %}
7608  ins_encode( movq_st(mem, src));
7609  ins_pipe( pipe_slow );
7610%}
7611
7612// Store Aligned Packed Integer XMM register to memory
7613instruct storeA2I(memory mem, regXD src) %{
7614  predicate(UseSSE>=1);
7615  match(Set mem (Store2I mem src));
7616  ins_cost(145);
7617  format %{ "MOVQ  $mem,$src\t! packed2I" %}
7618  ins_encode( movq_st(mem, src));
7619  ins_pipe( pipe_slow );
7620%}
7621
7622// Store CMS card-mark Immediate
7623instruct storeImmCM(memory mem, immI8 src) %{
7624  match(Set mem (StoreCM mem src));
7625
7626  ins_cost(150);
7627  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7628  opcode(0xC6);               /* C6 /0 */
7629  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7630  ins_pipe( ialu_mem_imm );
7631%}
7632
7633// Store Double
7634instruct storeD( memory mem, regDPR1 src) %{
7635  predicate(UseSSE<=1);
7636  match(Set mem (StoreD mem src));
7637
7638  ins_cost(100);
7639  format %{ "FST_D  $mem,$src" %}
7640  opcode(0xDD);       /* DD /2 */
7641  ins_encode( enc_FP_store(mem,src) );
7642  ins_pipe( fpu_mem_reg );
7643%}
7644
7645// Store double does rounding on x86
7646instruct storeD_rounded( memory mem, regDPR1 src) %{
7647  predicate(UseSSE<=1);
7648  match(Set mem (StoreD mem (RoundDouble src)));
7649
7650  ins_cost(100);
7651  format %{ "FST_D  $mem,$src\t# round" %}
7652  opcode(0xDD);       /* DD /2 */
7653  ins_encode( enc_FP_store(mem,src) );
7654  ins_pipe( fpu_mem_reg );
7655%}
7656
7657// Store XMM register to memory (double-precision floating points)
7658// MOVSD instruction
7659instruct storeXD(memory mem, regXD src) %{
7660  predicate(UseSSE>=2);
7661  match(Set mem (StoreD mem src));
7662  ins_cost(95);
7663  format %{ "MOVSD  $mem,$src" %}
7664  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7665  ins_pipe( pipe_slow );
7666%}
7667
7668// Store XMM register to memory (single-precision floating point)
7669// MOVSS instruction
7670instruct storeX(memory mem, regX src) %{
7671  predicate(UseSSE>=1);
7672  match(Set mem (StoreF mem src));
7673  ins_cost(95);
7674  format %{ "MOVSS  $mem,$src" %}
7675  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7676  ins_pipe( pipe_slow );
7677%}
7678
7679// Store Aligned Packed Single Float XMM register to memory
7680instruct storeA2F(memory mem, regXD src) %{
7681  predicate(UseSSE>=1);
7682  match(Set mem (Store2F mem src));
7683  ins_cost(145);
7684  format %{ "MOVQ  $mem,$src\t! packed2F" %}
7685  ins_encode( movq_st(mem, src));
7686  ins_pipe( pipe_slow );
7687%}
7688
7689// Store Float
7690instruct storeF( memory mem, regFPR1 src) %{
7691  predicate(UseSSE==0);
7692  match(Set mem (StoreF mem src));
7693
7694  ins_cost(100);
7695  format %{ "FST_S  $mem,$src" %}
7696  opcode(0xD9);       /* D9 /2 */
7697  ins_encode( enc_FP_store(mem,src) );
7698  ins_pipe( fpu_mem_reg );
7699%}
7700
7701// Store Float does rounding on x86
7702instruct storeF_rounded( memory mem, regFPR1 src) %{
7703  predicate(UseSSE==0);
7704  match(Set mem (StoreF mem (RoundFloat src)));
7705
7706  ins_cost(100);
7707  format %{ "FST_S  $mem,$src\t# round" %}
7708  opcode(0xD9);       /* D9 /2 */
7709  ins_encode( enc_FP_store(mem,src) );
7710  ins_pipe( fpu_mem_reg );
7711%}
7712
7713// Store Float does rounding on x86
7714instruct storeF_Drounded( memory mem, regDPR1 src) %{
7715  predicate(UseSSE<=1);
7716  match(Set mem (StoreF mem (ConvD2F src)));
7717
7718  ins_cost(100);
7719  format %{ "FST_S  $mem,$src\t# D-round" %}
7720  opcode(0xD9);       /* D9 /2 */
7721  ins_encode( enc_FP_store(mem,src) );
7722  ins_pipe( fpu_mem_reg );
7723%}
7724
7725// Store immediate Float value (it is faster than store from FPU register)
7726// The instruction usage is guarded by predicate in operand immF().
7727instruct storeF_imm( memory mem, immF src) %{
7728  match(Set mem (StoreF mem src));
7729
7730  ins_cost(50);
7731  format %{ "MOV    $mem,$src\t# store float" %}
7732  opcode(0xC7);               /* C7 /0 */
7733  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7734  ins_pipe( ialu_mem_imm );
7735%}
7736
7737// Store immediate Float value (it is faster than store from XMM register)
7738// The instruction usage is guarded by predicate in operand immXF().
7739instruct storeX_imm( memory mem, immXF src) %{
7740  match(Set mem (StoreF mem src));
7741
7742  ins_cost(50);
7743  format %{ "MOV    $mem,$src\t# store float" %}
7744  opcode(0xC7);               /* C7 /0 */
7745  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7746  ins_pipe( ialu_mem_imm );
7747%}
7748
7749// Store Integer to stack slot
7750instruct storeSSI(stackSlotI dst, eRegI src) %{
7751  match(Set dst src);
7752
7753  ins_cost(100);
7754  format %{ "MOV    $dst,$src" %}
7755  opcode(0x89);
7756  ins_encode( OpcPRegSS( dst, src ) );
7757  ins_pipe( ialu_mem_reg );
7758%}
7759
7760// Store Integer to stack slot
7761instruct storeSSP(stackSlotP dst, eRegP src) %{
7762  match(Set dst src);
7763
7764  ins_cost(100);
7765  format %{ "MOV    $dst,$src" %}
7766  opcode(0x89);
7767  ins_encode( OpcPRegSS( dst, src ) );
7768  ins_pipe( ialu_mem_reg );
7769%}
7770
7771// Store Long to stack slot
7772instruct storeSSL(stackSlotL dst, eRegL src) %{
7773  match(Set dst src);
7774
7775  ins_cost(200);
7776  format %{ "MOV    $dst,$src.lo\n\t"
7777            "MOV    $dst+4,$src.hi" %}
7778  opcode(0x89, 0x89);
7779  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7780  ins_pipe( ialu_mem_long_reg );
7781%}
7782
7783//----------MemBar Instructions-----------------------------------------------
7784// Memory barrier flavors
7785
7786instruct membar_acquire() %{
7787  match(MemBarAcquire);
7788  ins_cost(400);
7789
7790  size(0);
7791  format %{ "MEMBAR-acquire ! (empty encoding)" %}
7792  ins_encode();
7793  ins_pipe(empty);
7794%}
7795
7796instruct membar_acquire_lock() %{
7797  match(MemBarAcquire);
7798  predicate(Matcher::prior_fast_lock(n));
7799  ins_cost(0);
7800
7801  size(0);
7802  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7803  ins_encode( );
7804  ins_pipe(empty);
7805%}
7806
7807instruct membar_release() %{
7808  match(MemBarRelease);
7809  ins_cost(400);
7810
7811  size(0);
7812  format %{ "MEMBAR-release ! (empty encoding)" %}
7813  ins_encode( );
7814  ins_pipe(empty);
7815%}
7816
7817instruct membar_release_lock() %{
7818  match(MemBarRelease);
7819  predicate(Matcher::post_fast_unlock(n));
7820  ins_cost(0);
7821
7822  size(0);
7823  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7824  ins_encode( );
7825  ins_pipe(empty);
7826%}
7827
7828instruct membar_volatile(eFlagsReg cr) %{
7829  match(MemBarVolatile);
7830  effect(KILL cr);
7831  ins_cost(400);
7832
7833  format %{ 
7834    $$template
7835    if (os::is_MP()) {
7836      $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7837    } else {
7838      $$emit$$"MEMBAR-volatile ! (empty encoding)"
7839    }
7840  %}
7841  ins_encode %{
7842    __ membar(Assembler::StoreLoad);
7843  %}
7844  ins_pipe(pipe_slow);
7845%}
7846
7847instruct unnecessary_membar_volatile() %{
7848  match(MemBarVolatile);
7849  predicate(Matcher::post_store_load_barrier(n));
7850  ins_cost(0);
7851
7852  size(0);
7853  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7854  ins_encode( );
7855  ins_pipe(empty);
7856%}
7857
7858//----------Move Instructions--------------------------------------------------
7859instruct castX2P(eAXRegP dst, eAXRegI src) %{
7860  match(Set dst (CastX2P src));
7861  format %{ "# X2P  $dst, $src" %}
7862  ins_encode( /*empty encoding*/ );
7863  ins_cost(0);
7864  ins_pipe(empty);
7865%}
7866
7867instruct castP2X(eRegI dst, eRegP src ) %{
7868  match(Set dst (CastP2X src));
7869  ins_cost(50);
7870  format %{ "MOV    $dst, $src\t# CastP2X" %}
7871  ins_encode( enc_Copy( dst, src) );
7872  ins_pipe( ialu_reg_reg );
7873%}
7874
7875//----------Conditional Move---------------------------------------------------
7876// Conditional move
7877instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7878  predicate(VM_Version::supports_cmov() );
7879  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7880  ins_cost(200);
7881  format %{ "CMOV$cop $dst,$src" %}
7882  opcode(0x0F,0x40);
7883  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7884  ins_pipe( pipe_cmov_reg );
7885%}
7886
7887instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7888  predicate(VM_Version::supports_cmov() );
7889  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7890  ins_cost(200);
7891  format %{ "CMOV$cop $dst,$src" %}
7892  opcode(0x0F,0x40);
7893  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7894  ins_pipe( pipe_cmov_reg );
7895%}
7896
7897instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7898  predicate(VM_Version::supports_cmov() );
7899  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7900  ins_cost(200);
7901  expand %{
7902    cmovI_regU(cop, cr, dst, src);
7903  %}
7904%}
7905
7906// Conditional move
7907instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7908  predicate(VM_Version::supports_cmov() );
7909  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7910  ins_cost(250);
7911  format %{ "CMOV$cop $dst,$src" %}
7912  opcode(0x0F,0x40);
7913  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7914  ins_pipe( pipe_cmov_mem );
7915%}
7916
7917// Conditional move
7918instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7919  predicate(VM_Version::supports_cmov() );
7920  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7921  ins_cost(250);
7922  format %{ "CMOV$cop $dst,$src" %}
7923  opcode(0x0F,0x40);
7924  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7925  ins_pipe( pipe_cmov_mem );
7926%}
7927
7928instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7929  predicate(VM_Version::supports_cmov() );
7930  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7931  ins_cost(250);
7932  expand %{
7933    cmovI_memU(cop, cr, dst, src);
7934  %}
7935%}
7936
7937// Conditional move
7938instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7939  predicate(VM_Version::supports_cmov() );
7940  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7941  ins_cost(200);
7942  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7943  opcode(0x0F,0x40);
7944  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7945  ins_pipe( pipe_cmov_reg );
7946%}
7947
7948// Conditional move (non-P6 version)
7949// Note:  a CMoveP is generated for  stubs and native wrappers
7950//        regardless of whether we are on a P6, so we
7951//        emulate a cmov here
7952instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7953  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7954  ins_cost(300);
7955  format %{ "Jn$cop   skip\n\t"
7956          "MOV    $dst,$src\t# pointer\n"
7957      "skip:" %}
7958  opcode(0x8b);
7959  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7960  ins_pipe( pipe_cmov_reg );
7961%}
7962
7963// Conditional move
7964instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7965  predicate(VM_Version::supports_cmov() );
7966  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7967  ins_cost(200);
7968  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7969  opcode(0x0F,0x40);
7970  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7971  ins_pipe( pipe_cmov_reg );
7972%}
7973
7974instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7975  predicate(VM_Version::supports_cmov() );
7976  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7977  ins_cost(200);
7978  expand %{
7979    cmovP_regU(cop, cr, dst, src);
7980  %}
7981%}
7982
7983// DISABLED: Requires the ADLC to emit a bottom_type call that
7984// correctly meets the two pointer arguments; one is an incoming
7985// register but the other is a memory operand.  ALSO appears to
7986// be buggy with implicit null checks.
7987//
7988//// Conditional move
7989//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7990//  predicate(VM_Version::supports_cmov() );
7991//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7992//  ins_cost(250);
7993//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7994//  opcode(0x0F,0x40);
7995//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7996//  ins_pipe( pipe_cmov_mem );
7997//%}
7998//
7999//// Conditional move
8000//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
8001//  predicate(VM_Version::supports_cmov() );
8002//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
8003//  ins_cost(250);
8004//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
8005//  opcode(0x0F,0x40);
8006//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
8007//  ins_pipe( pipe_cmov_mem );
8008//%}
8009
8010// Conditional move
8011instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
8012  predicate(UseSSE<=1);
8013  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8014  ins_cost(200);
8015  format %{ "FCMOV$cop $dst,$src\t# double" %}
8016  opcode(0xDA);
8017  ins_encode( enc_cmov_d(cop,src) );
8018  ins_pipe( pipe_cmovD_reg );
8019%}
8020
8021// Conditional move
8022instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
8023  predicate(UseSSE==0);
8024  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8025  ins_cost(200);
8026  format %{ "FCMOV$cop $dst,$src\t# float" %}
8027  opcode(0xDA);
8028  ins_encode( enc_cmov_d(cop,src) );
8029  ins_pipe( pipe_cmovD_reg );
8030%}
8031
8032// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8033instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
8034  predicate(UseSSE<=1);
8035  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8036  ins_cost(200);
8037  format %{ "Jn$cop   skip\n\t"
8038            "MOV    $dst,$src\t# double\n"
8039      "skip:" %}
8040  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8041  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
8042  ins_pipe( pipe_cmovD_reg );
8043%}
8044
8045// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8046instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
8047  predicate(UseSSE==0);
8048  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8049  ins_cost(200);
8050  format %{ "Jn$cop    skip\n\t"
8051            "MOV    $dst,$src\t# float\n"
8052      "skip:" %}
8053  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8054  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
8055  ins_pipe( pipe_cmovD_reg );
8056%}
8057
8058// No CMOVE with SSE/SSE2
8059instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
8060  predicate (UseSSE>=1);
8061  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8062  ins_cost(200);
8063  format %{ "Jn$cop   skip\n\t"
8064            "MOVSS  $dst,$src\t# float\n"
8065      "skip:" %}
8066  ins_encode %{
8067    Label skip;
8068    // Invert sense of branch from sense of CMOV
8069    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8070    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8071    __ bind(skip);
8072  %}
8073  ins_pipe( pipe_slow );
8074%}
8075
8076// No CMOVE with SSE/SSE2
8077instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
8078  predicate (UseSSE>=2);
8079  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8080  ins_cost(200);
8081  format %{ "Jn$cop   skip\n\t"
8082            "MOVSD  $dst,$src\t# float\n"
8083      "skip:" %}
8084  ins_encode %{
8085    Label skip;
8086    // Invert sense of branch from sense of CMOV
8087    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8088    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8089    __ bind(skip);
8090  %}
8091  ins_pipe( pipe_slow );
8092%}
8093
8094// unsigned version
8095instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
8096  predicate (UseSSE>=1);
8097  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8098  ins_cost(200);
8099  format %{ "Jn$cop   skip\n\t"
8100            "MOVSS  $dst,$src\t# float\n"
8101      "skip:" %}
8102  ins_encode %{
8103    Label skip;
8104    // Invert sense of branch from sense of CMOV
8105    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8106    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8107    __ bind(skip);
8108  %}
8109  ins_pipe( pipe_slow );
8110%}
8111
8112instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
8113  predicate (UseSSE>=1);
8114  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8115  ins_cost(200);
8116  expand %{
8117    fcmovX_regU(cop, cr, dst, src);
8118  %}
8119%}
8120
8121// unsigned version
8122instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
8123  predicate (UseSSE>=2);
8124  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8125  ins_cost(200);
8126  format %{ "Jn$cop   skip\n\t"
8127            "MOVSD  $dst,$src\t# float\n"
8128      "skip:" %}
8129  ins_encode %{
8130    Label skip;
8131    // Invert sense of branch from sense of CMOV
8132    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8133    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8134    __ bind(skip);
8135  %}
8136  ins_pipe( pipe_slow );
8137%}
8138
8139instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8140  predicate (UseSSE>=2);
8141  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8142  ins_cost(200);
8143  expand %{
8144    fcmovXD_regU(cop, cr, dst, src);
8145  %}
8146%}
8147
8148instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8149  predicate(VM_Version::supports_cmov() );
8150  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8151  ins_cost(200);
8152  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8153            "CMOV$cop $dst.hi,$src.hi" %}
8154  opcode(0x0F,0x40);
8155  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8156  ins_pipe( pipe_cmov_reg_long );
8157%}
8158
8159instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8160  predicate(VM_Version::supports_cmov() );
8161  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8162  ins_cost(200);
8163  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8164            "CMOV$cop $dst.hi,$src.hi" %}
8165  opcode(0x0F,0x40);
8166  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8167  ins_pipe( pipe_cmov_reg_long );
8168%}
8169
8170instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8171  predicate(VM_Version::supports_cmov() );
8172  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8173  ins_cost(200);
8174  expand %{
8175    cmovL_regU(cop, cr, dst, src);
8176  %}
8177%}
8178
8179//----------Arithmetic Instructions--------------------------------------------
8180//----------Addition Instructions----------------------------------------------
8181// Integer Addition Instructions
8182instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8183  match(Set dst (AddI dst src));
8184  effect(KILL cr);
8185
8186  size(2);
8187  format %{ "ADD    $dst,$src" %}
8188  opcode(0x03);
8189  ins_encode( OpcP, RegReg( dst, src) );
8190  ins_pipe( ialu_reg_reg );
8191%}
8192
8193instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8194  match(Set dst (AddI dst src));
8195  effect(KILL cr);
8196
8197  format %{ "ADD    $dst,$src" %}
8198  opcode(0x81, 0x00); /* /0 id */
8199  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8200  ins_pipe( ialu_reg );
8201%}
8202
8203instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8204  predicate(UseIncDec);
8205  match(Set dst (AddI dst src));
8206  effect(KILL cr);
8207
8208  size(1);
8209  format %{ "INC    $dst" %}
8210  opcode(0x40); /*  */
8211  ins_encode( Opc_plus( primary, dst ) );
8212  ins_pipe( ialu_reg );
8213%}
8214
8215instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8216  match(Set dst (AddI src0 src1));
8217  ins_cost(110);
8218
8219  format %{ "LEA    $dst,[$src0 + $src1]" %}
8220  opcode(0x8D); /* 0x8D /r */
8221  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8222  ins_pipe( ialu_reg_reg );
8223%}
8224
8225instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8226  match(Set dst (AddP src0 src1));
8227  ins_cost(110);
8228
8229  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8230  opcode(0x8D); /* 0x8D /r */
8231  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8232  ins_pipe( ialu_reg_reg );
8233%}
8234
8235instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8236  predicate(UseIncDec);
8237  match(Set dst (AddI dst src));
8238  effect(KILL cr);
8239
8240  size(1);
8241  format %{ "DEC    $dst" %}
8242  opcode(0x48); /*  */
8243  ins_encode( Opc_plus( primary, dst ) );
8244  ins_pipe( ialu_reg );
8245%}
8246
8247instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8248  match(Set dst (AddP dst src));
8249  effect(KILL cr);
8250
8251  size(2);
8252  format %{ "ADD    $dst,$src" %}
8253  opcode(0x03);
8254  ins_encode( OpcP, RegReg( dst, src) );
8255  ins_pipe( ialu_reg_reg );
8256%}
8257
8258instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8259  match(Set dst (AddP dst src));
8260  effect(KILL cr);
8261
8262  format %{ "ADD    $dst,$src" %}
8263  opcode(0x81,0x00); /* Opcode 81 /0 id */
8264  // ins_encode( RegImm( dst, src) );
8265  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8266  ins_pipe( ialu_reg );
8267%}
8268
8269instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8270  match(Set dst (AddI dst (LoadI src)));
8271  effect(KILL cr);
8272
8273  ins_cost(125);
8274  format %{ "ADD    $dst,$src" %}
8275  opcode(0x03);
8276  ins_encode( OpcP, RegMem( dst, src) );
8277  ins_pipe( ialu_reg_mem );
8278%}
8279
8280instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8281  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8282  effect(KILL cr);
8283
8284  ins_cost(150);
8285  format %{ "ADD    $dst,$src" %}
8286  opcode(0x01);  /* Opcode 01 /r */
8287  ins_encode( OpcP, RegMem( src, dst ) );
8288  ins_pipe( ialu_mem_reg );
8289%}
8290
8291// Add Memory with Immediate
8292instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8293  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8294  effect(KILL cr);
8295
8296  ins_cost(125);
8297  format %{ "ADD    $dst,$src" %}
8298  opcode(0x81);               /* Opcode 81 /0 id */
8299  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8300  ins_pipe( ialu_mem_imm );
8301%}
8302
8303instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8304  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8305  effect(KILL cr);
8306
8307  ins_cost(125);
8308  format %{ "INC    $dst" %}
8309  opcode(0xFF);               /* Opcode FF /0 */
8310  ins_encode( OpcP, RMopc_Mem(0x00,dst));
8311  ins_pipe( ialu_mem_imm );
8312%}
8313
8314instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8315  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8316  effect(KILL cr);
8317
8318  ins_cost(125);
8319  format %{ "DEC    $dst" %}
8320  opcode(0xFF);               /* Opcode FF /1 */
8321  ins_encode( OpcP, RMopc_Mem(0x01,dst));
8322  ins_pipe( ialu_mem_imm );
8323%}
8324
8325
8326instruct checkCastPP( eRegP dst ) %{
8327  match(Set dst (CheckCastPP dst));
8328
8329  size(0);
8330  format %{ "#checkcastPP of $dst" %}
8331  ins_encode( /*empty encoding*/ );
8332  ins_pipe( empty );
8333%}
8334
8335instruct castPP( eRegP dst ) %{
8336  match(Set dst (CastPP dst));
8337  format %{ "#castPP of $dst" %}
8338  ins_encode( /*empty encoding*/ );
8339  ins_pipe( empty );
8340%}
8341
8342instruct castII( eRegI dst ) %{
8343  match(Set dst (CastII dst));
8344  format %{ "#castII of $dst" %}
8345  ins_encode( /*empty encoding*/ );
8346  ins_cost(0);
8347  ins_pipe( empty );
8348%}
8349
8350
8351// Load-locked - same as a regular pointer load when used with compare-swap
8352instruct loadPLocked(eRegP dst, memory mem) %{
8353  match(Set dst (LoadPLocked mem));
8354
8355  ins_cost(125);
8356  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8357  opcode(0x8B);
8358  ins_encode( OpcP, RegMem(dst,mem));
8359  ins_pipe( ialu_reg_mem );
8360%}
8361
8362// LoadLong-locked - same as a volatile long load when used with compare-swap
8363instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8364  predicate(UseSSE<=1);
8365  match(Set dst (LoadLLocked mem));
8366
8367  ins_cost(200);
8368  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8369            "FISTp  $dst" %}
8370  ins_encode(enc_loadL_volatile(mem,dst));
8371  ins_pipe( fpu_reg_mem );
8372%}
8373
8374instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8375  predicate(UseSSE>=2);
8376  match(Set dst (LoadLLocked mem));
8377  effect(TEMP tmp);
8378  ins_cost(180);
8379  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8380            "MOVSD  $dst,$tmp" %}
8381  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8382  ins_pipe( pipe_slow );
8383%}
8384
8385instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8386  predicate(UseSSE>=2);
8387  match(Set dst (LoadLLocked mem));
8388  effect(TEMP tmp);
8389  ins_cost(160);
8390  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8391            "MOVD   $dst.lo,$tmp\n\t"
8392            "PSRLQ  $tmp,32\n\t"
8393            "MOVD   $dst.hi,$tmp" %}
8394  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8395  ins_pipe( pipe_slow );
8396%}
8397
8398// Conditional-store of the updated heap-top.
8399// Used during allocation of the shared heap.
8400// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8401instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8402  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8403  // EAX is killed if there is contention, but then it's also unused.
8404  // In the common case of no contention, EAX holds the new oop address.
8405  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8406  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8407  ins_pipe( pipe_cmpxchg );
8408%}
8409
8410// Conditional-store of an int value.
8411// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8412instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8413  match(Set cr (StoreIConditional mem (Binary oldval newval)));
8414  effect(KILL oldval);
8415  format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8416  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8417  ins_pipe( pipe_cmpxchg );
8418%}
8419
8420// Conditional-store of a long value.
8421// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8422instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8423  match(Set cr (StoreLConditional mem (Binary oldval newval)));
8424  effect(KILL oldval);
8425  format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8426            "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8427            "XCHG   EBX,ECX"
8428  %}
8429  ins_encode %{
8430    // Note: we need to swap rbx, and rcx before and after the
8431    //       cmpxchg8 instruction because the instruction uses
8432    //       rcx as the high order word of the new value to store but
8433    //       our register encoding uses rbx.
8434    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8435    if( os::is_MP() )
8436      __ lock();
8437    __ cmpxchg8($mem$$Address);
8438    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8439  %}
8440  ins_pipe( pipe_cmpxchg );
8441%}
8442
8443// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8444
8445instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8446  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8447  effect(KILL cr, KILL oldval);
8448  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8449            "MOV    $res,0\n\t"
8450            "JNE,s  fail\n\t"
8451            "MOV    $res,1\n"
8452          "fail:" %}
8453  ins_encode( enc_cmpxchg8(mem_ptr),
8454              enc_flags_ne_to_boolean(res) );
8455  ins_pipe( pipe_cmpxchg );
8456%}
8457
8458instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8459  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8460  effect(KILL cr, KILL oldval);
8461  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8462            "MOV    $res,0\n\t"
8463            "JNE,s  fail\n\t"
8464            "MOV    $res,1\n"
8465          "fail:" %}
8466  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8467  ins_pipe( pipe_cmpxchg );
8468%}
8469
8470instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8471  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8472  effect(KILL cr, KILL oldval);
8473  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8474            "MOV    $res,0\n\t"
8475            "JNE,s  fail\n\t"
8476            "MOV    $res,1\n"
8477          "fail:" %}
8478  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8479  ins_pipe( pipe_cmpxchg );
8480%}
8481
8482//----------Subtraction Instructions-------------------------------------------
8483// Integer Subtraction Instructions
8484instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8485  match(Set dst (SubI dst src));
8486  effect(KILL cr);
8487
8488  size(2);
8489  format %{ "SUB    $dst,$src" %}
8490  opcode(0x2B);
8491  ins_encode( OpcP, RegReg( dst, src) );
8492  ins_pipe( ialu_reg_reg );
8493%}
8494
8495instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8496  match(Set dst (SubI dst src));
8497  effect(KILL cr);
8498
8499  format %{ "SUB    $dst,$src" %}
8500  opcode(0x81,0x05);  /* Opcode 81 /5 */
8501  // ins_encode( RegImm( dst, src) );
8502  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8503  ins_pipe( ialu_reg );
8504%}
8505
8506instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8507  match(Set dst (SubI dst (LoadI src)));
8508  effect(KILL cr);
8509
8510  ins_cost(125);
8511  format %{ "SUB    $dst,$src" %}
8512  opcode(0x2B);
8513  ins_encode( OpcP, RegMem( dst, src) );
8514  ins_pipe( ialu_reg_mem );
8515%}
8516
8517instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8518  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8519  effect(KILL cr);
8520
8521  ins_cost(150);
8522  format %{ "SUB    $dst,$src" %}
8523  opcode(0x29);  /* Opcode 29 /r */
8524  ins_encode( OpcP, RegMem( src, dst ) );
8525  ins_pipe( ialu_mem_reg );
8526%}
8527
8528// Subtract from a pointer
8529instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8530  match(Set dst (AddP dst (SubI zero src)));
8531  effect(KILL cr);
8532
8533  size(2);
8534  format %{ "SUB    $dst,$src" %}
8535  opcode(0x2B);
8536  ins_encode( OpcP, RegReg( dst, src) );
8537  ins_pipe( ialu_reg_reg );
8538%}
8539
8540instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8541  match(Set dst (SubI zero dst));
8542  effect(KILL cr);
8543
8544  size(2);
8545  format %{ "NEG    $dst" %}
8546  opcode(0xF7,0x03);  // Opcode F7 /3
8547  ins_encode( OpcP, RegOpc( dst ) );
8548  ins_pipe( ialu_reg );
8549%}
8550
8551
8552//----------Multiplication/Division Instructions-------------------------------
8553// Integer Multiplication Instructions
8554// Multiply Register
8555instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8556  match(Set dst (MulI dst src));
8557  effect(KILL cr);
8558
8559  size(3);
8560  ins_cost(300);
8561  format %{ "IMUL   $dst,$src" %}
8562  opcode(0xAF, 0x0F);
8563  ins_encode( OpcS, OpcP, RegReg( dst, src) );
8564  ins_pipe( ialu_reg_reg_alu0 );
8565%}
8566
8567// Multiply 32-bit Immediate
8568instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8569  match(Set dst (MulI src imm));
8570  effect(KILL cr);
8571
8572  ins_cost(300);
8573  format %{ "IMUL   $dst,$src,$imm" %}
8574  opcode(0x69);  /* 69 /r id */
8575  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8576  ins_pipe( ialu_reg_reg_alu0 );
8577%}
8578
8579instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8580  match(Set dst src);
8581  effect(KILL cr);
8582
8583  // Note that this is artificially increased to make it more expensive than loadConL
8584  ins_cost(250);
8585  format %{ "MOV    EAX,$src\t// low word only" %}
8586  opcode(0xB8);
8587  ins_encode( LdImmL_Lo(dst, src) );
8588  ins_pipe( ialu_reg_fat );
8589%}
8590
8591// Multiply by 32-bit Immediate, taking the shifted high order results
8592//  (special case for shift by 32)
8593instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8594  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8595  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8596             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8597             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8598  effect(USE src1, KILL cr);
8599
8600  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8601  ins_cost(0*100 + 1*400 - 150);
8602  format %{ "IMUL   EDX:EAX,$src1" %}
8603  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8604  ins_pipe( pipe_slow );
8605%}
8606
8607// Multiply by 32-bit Immediate, taking the shifted high order results
8608instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8609  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8610  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8611             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8612             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8613  effect(USE src1, KILL cr);
8614
8615  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8616  ins_cost(1*100 + 1*400 - 150);
8617  format %{ "IMUL   EDX:EAX,$src1\n\t"
8618            "SAR    EDX,$cnt-32" %}
8619  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8620  ins_pipe( pipe_slow );
8621%}
8622
8623// Multiply Memory 32-bit Immediate
8624instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8625  match(Set dst (MulI (LoadI src) imm));
8626  effect(KILL cr);
8627
8628  ins_cost(300);
8629  format %{ "IMUL   $dst,$src,$imm" %}
8630  opcode(0x69);  /* 69 /r id */
8631  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8632  ins_pipe( ialu_reg_mem_alu0 );
8633%}
8634
8635// Multiply Memory
8636instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8637  match(Set dst (MulI dst (LoadI src)));
8638  effect(KILL cr);
8639
8640  ins_cost(350);
8641  format %{ "IMUL   $dst,$src" %}
8642  opcode(0xAF, 0x0F);
8643  ins_encode( OpcS, OpcP, RegMem( dst, src) );
8644  ins_pipe( ialu_reg_mem_alu0 );
8645%}
8646
8647// Multiply Register Int to Long
8648instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8649  // Basic Idea: long = (long)int * (long)int
8650  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8651  effect(DEF dst, USE src, USE src1, KILL flags);
8652
8653  ins_cost(300);
8654  format %{ "IMUL   $dst,$src1" %}
8655
8656  ins_encode( long_int_multiply( dst, src1 ) );
8657  ins_pipe( ialu_reg_reg_alu0 );
8658%}
8659
8660instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8661  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8662  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8663  effect(KILL flags);
8664
8665  ins_cost(300);
8666  format %{ "MUL    $dst,$src1" %}
8667
8668  ins_encode( long_uint_multiply(dst, src1) );
8669  ins_pipe( ialu_reg_reg_alu0 );
8670%}
8671
8672// Multiply Register Long
8673instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8674  match(Set dst (MulL dst src));
8675  effect(KILL cr, TEMP tmp);
8676  ins_cost(4*100+3*400);
8677// Basic idea: lo(result) = lo(x_lo * y_lo)
8678//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8679  format %{ "MOV    $tmp,$src.lo\n\t"
8680            "IMUL   $tmp,EDX\n\t"
8681            "MOV    EDX,$src.hi\n\t"
8682            "IMUL   EDX,EAX\n\t"
8683            "ADD    $tmp,EDX\n\t"
8684            "MUL    EDX:EAX,$src.lo\n\t"
8685            "ADD    EDX,$tmp" %}
8686  ins_encode( long_multiply( dst, src, tmp ) );
8687  ins_pipe( pipe_slow );
8688%}
8689
8690// Multiply Register Long where the left operand's high 32 bits are zero
8691instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8692  predicate(is_operand_hi32_zero(n->in(1)));
8693  match(Set dst (MulL dst src));
8694  effect(KILL cr, TEMP tmp);
8695  ins_cost(2*100+2*400);
8696// Basic idea: lo(result) = lo(x_lo * y_lo)
8697//             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8698  format %{ "MOV    $tmp,$src.hi\n\t"
8699            "IMUL   $tmp,EAX\n\t"
8700            "MUL    EDX:EAX,$src.lo\n\t"
8701            "ADD    EDX,$tmp" %}
8702  ins_encode %{
8703    __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8704    __ imull($tmp$$Register, rax);
8705    __ mull($src$$Register);
8706    __ addl(rdx, $tmp$$Register);
8707  %}
8708  ins_pipe( pipe_slow );
8709%}
8710
8711// Multiply Register Long where the right operand's high 32 bits are zero
8712instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8713  predicate(is_operand_hi32_zero(n->in(2)));
8714  match(Set dst (MulL dst src));
8715  effect(KILL cr, TEMP tmp);
8716  ins_cost(2*100+2*400);
8717// Basic idea: lo(result) = lo(x_lo * y_lo)
8718//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8719  format %{ "MOV    $tmp,$src.lo\n\t"
8720            "IMUL   $tmp,EDX\n\t"
8721            "MUL    EDX:EAX,$src.lo\n\t"
8722            "ADD    EDX,$tmp" %}
8723  ins_encode %{
8724    __ movl($tmp$$Register, $src$$Register);
8725    __ imull($tmp$$Register, rdx);
8726    __ mull($src$$Register);
8727    __ addl(rdx, $tmp$$Register);
8728  %}
8729  ins_pipe( pipe_slow );
8730%}
8731
8732// Multiply Register Long where the left and the right operands' high 32 bits are zero
8733instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8734  predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8735  match(Set dst (MulL dst src));
8736  effect(KILL cr);
8737  ins_cost(1*400);
8738// Basic idea: lo(result) = lo(x_lo * y_lo)
8739//             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8740  format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8741  ins_encode %{
8742    __ mull($src$$Register);
8743  %}
8744  ins_pipe( pipe_slow );
8745%}
8746
8747// Multiply Register Long by small constant
8748instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8749  match(Set dst (MulL dst src));
8750  effect(KILL cr, TEMP tmp);
8751  ins_cost(2*100+2*400);
8752  size(12);
8753// Basic idea: lo(result) = lo(src * EAX)
8754//             hi(result) = hi(src * EAX) + lo(src * EDX)
8755  format %{ "IMUL   $tmp,EDX,$src\n\t"
8756            "MOV    EDX,$src\n\t"
8757            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8758            "ADD    EDX,$tmp" %}
8759  ins_encode( long_multiply_con( dst, src, tmp ) );
8760  ins_pipe( pipe_slow );
8761%}
8762
8763// Integer DIV with Register
8764instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8765  match(Set rax (DivI rax div));
8766  effect(KILL rdx, KILL cr);
8767  size(26);
8768  ins_cost(30*100+10*100);
8769  format %{ "CMP    EAX,0x80000000\n\t"
8770            "JNE,s  normal\n\t"
8771            "XOR    EDX,EDX\n\t"
8772            "CMP    ECX,-1\n\t"
8773            "JE,s   done\n"
8774    "normal: CDQ\n\t"
8775            "IDIV   $div\n\t"
8776    "done:"        %}
8777  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8778  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8779  ins_pipe( ialu_reg_reg_alu0 );
8780%}
8781
8782// Divide Register Long
8783instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8784  match(Set dst (DivL src1 src2));
8785  effect( KILL cr, KILL cx, KILL bx );
8786  ins_cost(10000);
8787  format %{ "PUSH   $src1.hi\n\t"
8788            "PUSH   $src1.lo\n\t"
8789            "PUSH   $src2.hi\n\t"
8790            "PUSH   $src2.lo\n\t"
8791            "CALL   SharedRuntime::ldiv\n\t"
8792            "ADD    ESP,16" %}
8793  ins_encode( long_div(src1,src2) );
8794  ins_pipe( pipe_slow );
8795%}
8796
8797// Integer DIVMOD with Register, both quotient and mod results
8798instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8799  match(DivModI rax div);
8800  effect(KILL cr);
8801  size(26);
8802  ins_cost(30*100+10*100);
8803  format %{ "CMP    EAX,0x80000000\n\t"
8804            "JNE,s  normal\n\t"
8805            "XOR    EDX,EDX\n\t"
8806            "CMP    ECX,-1\n\t"
8807            "JE,s   done\n"
8808    "normal: CDQ\n\t"
8809            "IDIV   $div\n\t"
8810    "done:"        %}
8811  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8812  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8813  ins_pipe( pipe_slow );
8814%}
8815
8816// Integer MOD with Register
8817instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8818  match(Set rdx (ModI rax div));
8819  effect(KILL rax, KILL cr);
8820
8821  size(26);
8822  ins_cost(300);
8823  format %{ "CDQ\n\t"
8824            "IDIV   $div" %}
8825  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8826  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8827  ins_pipe( ialu_reg_reg_alu0 );
8828%}
8829
8830// Remainder Register Long
8831instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8832  match(Set dst (ModL src1 src2));
8833  effect( KILL cr, KILL cx, KILL bx );
8834  ins_cost(10000);
8835  format %{ "PUSH   $src1.hi\n\t"
8836            "PUSH   $src1.lo\n\t"
8837            "PUSH   $src2.hi\n\t"
8838            "PUSH   $src2.lo\n\t"
8839            "CALL   SharedRuntime::lrem\n\t"
8840            "ADD    ESP,16" %}
8841  ins_encode( long_mod(src1,src2) );
8842  ins_pipe( pipe_slow );
8843%}
8844
8845// Integer Shift Instructions
8846// Shift Left by one
8847instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8848  match(Set dst (LShiftI dst shift));
8849  effect(KILL cr);
8850
8851  size(2);
8852  format %{ "SHL    $dst,$shift" %}
8853  opcode(0xD1, 0x4);  /* D1 /4 */
8854  ins_encode( OpcP, RegOpc( dst ) );
8855  ins_pipe( ialu_reg );
8856%}
8857
8858// Shift Left by 8-bit immediate
8859instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8860  match(Set dst (LShiftI dst shift));
8861  effect(KILL cr);
8862
8863  size(3);
8864  format %{ "SHL    $dst,$shift" %}
8865  opcode(0xC1, 0x4);  /* C1 /4 ib */
8866  ins_encode( RegOpcImm( dst, shift) );
8867  ins_pipe( ialu_reg );
8868%}
8869
8870// Shift Left by variable
8871instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8872  match(Set dst (LShiftI dst shift));
8873  effect(KILL cr);
8874
8875  size(2);
8876  format %{ "SHL    $dst,$shift" %}
8877  opcode(0xD3, 0x4);  /* D3 /4 */
8878  ins_encode( OpcP, RegOpc( dst ) );
8879  ins_pipe( ialu_reg_reg );
8880%}
8881
8882// Arithmetic shift right by one
8883instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8884  match(Set dst (RShiftI dst shift));
8885  effect(KILL cr);
8886
8887  size(2);
8888  format %{ "SAR    $dst,$shift" %}
8889  opcode(0xD1, 0x7);  /* D1 /7 */
8890  ins_encode( OpcP, RegOpc( dst ) );
8891  ins_pipe( ialu_reg );
8892%}
8893
8894// Arithmetic shift right by one
8895instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8896  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8897  effect(KILL cr);
8898  format %{ "SAR    $dst,$shift" %}
8899  opcode(0xD1, 0x7);  /* D1 /7 */
8900  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8901  ins_pipe( ialu_mem_imm );
8902%}
8903
8904// Arithmetic Shift Right by 8-bit immediate
8905instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8906  match(Set dst (RShiftI dst shift));
8907  effect(KILL cr);
8908
8909  size(3);
8910  format %{ "SAR    $dst,$shift" %}
8911  opcode(0xC1, 0x7);  /* C1 /7 ib */
8912  ins_encode( RegOpcImm( dst, shift ) );
8913  ins_pipe( ialu_mem_imm );
8914%}
8915
8916// Arithmetic Shift Right by 8-bit immediate
8917instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8918  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8919  effect(KILL cr);
8920
8921  format %{ "SAR    $dst,$shift" %}
8922  opcode(0xC1, 0x7);  /* C1 /7 ib */
8923  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8924  ins_pipe( ialu_mem_imm );
8925%}
8926
8927// Arithmetic Shift Right by variable
8928instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8929  match(Set dst (RShiftI dst shift));
8930  effect(KILL cr);
8931
8932  size(2);
8933  format %{ "SAR    $dst,$shift" %}
8934  opcode(0xD3, 0x7);  /* D3 /7 */
8935  ins_encode( OpcP, RegOpc( dst ) );
8936  ins_pipe( ialu_reg_reg );
8937%}
8938
8939// Logical shift right by one
8940instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8941  match(Set dst (URShiftI dst shift));
8942  effect(KILL cr);
8943
8944  size(2);
8945  format %{ "SHR    $dst,$shift" %}
8946  opcode(0xD1, 0x5);  /* D1 /5 */
8947  ins_encode( OpcP, RegOpc( dst ) );
8948  ins_pipe( ialu_reg );
8949%}
8950
8951// Logical Shift Right by 8-bit immediate
8952instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8953  match(Set dst (URShiftI dst shift));
8954  effect(KILL cr);
8955
8956  size(3);
8957  format %{ "SHR    $dst,$shift" %}
8958  opcode(0xC1, 0x5);  /* C1 /5 ib */
8959  ins_encode( RegOpcImm( dst, shift) );
8960  ins_pipe( ialu_reg );
8961%}
8962
8963
8964// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8965// This idiom is used by the compiler for the i2b bytecode.
8966instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
8967  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8968
8969  size(3);
8970  format %{ "MOVSX  $dst,$src :8" %}
8971  ins_encode %{
8972    __ movsbl($dst$$Register, $src$$Register);
8973  %}
8974  ins_pipe(ialu_reg_reg);
8975%}
8976
8977// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8978// This idiom is used by the compiler the i2s bytecode.
8979instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
8980  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8981
8982  size(3);
8983  format %{ "MOVSX  $dst,$src :16" %}
8984  ins_encode %{
8985    __ movswl($dst$$Register, $src$$Register);
8986  %}
8987  ins_pipe(ialu_reg_reg);
8988%}
8989
8990
8991// Logical Shift Right by variable
8992instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8993  match(Set dst (URShiftI dst shift));
8994  effect(KILL cr);
8995
8996  size(2);
8997  format %{ "SHR    $dst,$shift" %}
8998  opcode(0xD3, 0x5);  /* D3 /5 */
8999  ins_encode( OpcP, RegOpc( dst ) );
9000  ins_pipe( ialu_reg_reg );
9001%}
9002
9003
9004//----------Logical Instructions-----------------------------------------------
9005//----------Integer Logical Instructions---------------------------------------
9006// And Instructions
9007// And Register with Register
9008instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9009  match(Set dst (AndI dst src));
9010  effect(KILL cr);
9011
9012  size(2);
9013  format %{ "AND    $dst,$src" %}
9014  opcode(0x23);
9015  ins_encode( OpcP, RegReg( dst, src) );
9016  ins_pipe( ialu_reg_reg );
9017%}
9018
9019// And Register with Immediate
9020instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9021  match(Set dst (AndI dst src));
9022  effect(KILL cr);
9023
9024  format %{ "AND    $dst,$src" %}
9025  opcode(0x81,0x04);  /* Opcode 81 /4 */
9026  // ins_encode( RegImm( dst, src) );
9027  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9028  ins_pipe( ialu_reg );
9029%}
9030
9031// And Register with Memory
9032instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9033  match(Set dst (AndI dst (LoadI src)));
9034  effect(KILL cr);
9035
9036  ins_cost(125);
9037  format %{ "AND    $dst,$src" %}
9038  opcode(0x23);
9039  ins_encode( OpcP, RegMem( dst, src) );
9040  ins_pipe( ialu_reg_mem );
9041%}
9042
9043// And Memory with Register
9044instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9045  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9046  effect(KILL cr);
9047
9048  ins_cost(150);
9049  format %{ "AND    $dst,$src" %}
9050  opcode(0x21);  /* Opcode 21 /r */
9051  ins_encode( OpcP, RegMem( src, dst ) );
9052  ins_pipe( ialu_mem_reg );
9053%}
9054
9055// And Memory with Immediate
9056instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9057  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9058  effect(KILL cr);
9059
9060  ins_cost(125);
9061  format %{ "AND    $dst,$src" %}
9062  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
9063  // ins_encode( MemImm( dst, src) );
9064  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9065  ins_pipe( ialu_mem_imm );
9066%}
9067
9068// Or Instructions
9069// Or Register with Register
9070instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9071  match(Set dst (OrI dst src));
9072  effect(KILL cr);
9073
9074  size(2);
9075  format %{ "OR     $dst,$src" %}
9076  opcode(0x0B);
9077  ins_encode( OpcP, RegReg( dst, src) );
9078  ins_pipe( ialu_reg_reg );
9079%}
9080
9081instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
9082  match(Set dst (OrI dst (CastP2X src)));
9083  effect(KILL cr);
9084
9085  size(2);
9086  format %{ "OR     $dst,$src" %}
9087  opcode(0x0B);
9088  ins_encode( OpcP, RegReg( dst, src) );
9089  ins_pipe( ialu_reg_reg );
9090%}
9091
9092
9093// Or Register with Immediate
9094instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9095  match(Set dst (OrI dst src));
9096  effect(KILL cr);
9097
9098  format %{ "OR     $dst,$src" %}
9099  opcode(0x81,0x01);  /* Opcode 81 /1 id */
9100  // ins_encode( RegImm( dst, src) );
9101  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9102  ins_pipe( ialu_reg );
9103%}
9104
9105// Or Register with Memory
9106instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9107  match(Set dst (OrI dst (LoadI src)));
9108  effect(KILL cr);
9109
9110  ins_cost(125);
9111  format %{ "OR     $dst,$src" %}
9112  opcode(0x0B);
9113  ins_encode( OpcP, RegMem( dst, src) );
9114  ins_pipe( ialu_reg_mem );
9115%}
9116
9117// Or Memory with Register
9118instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9119  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9120  effect(KILL cr);
9121
9122  ins_cost(150);
9123  format %{ "OR     $dst,$src" %}
9124  opcode(0x09);  /* Opcode 09 /r */
9125  ins_encode( OpcP, RegMem( src, dst ) );
9126  ins_pipe( ialu_mem_reg );
9127%}
9128
9129// Or Memory with Immediate
9130instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9131  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9132  effect(KILL cr);
9133
9134  ins_cost(125);
9135  format %{ "OR     $dst,$src" %}
9136  opcode(0x81,0x1);  /* Opcode 81 /1 id */
9137  // ins_encode( MemImm( dst, src) );
9138  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9139  ins_pipe( ialu_mem_imm );
9140%}
9141
9142// ROL/ROR
9143// ROL expand
9144instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9145  effect(USE_DEF dst, USE shift, KILL cr);
9146
9147  format %{ "ROL    $dst, $shift" %}
9148  opcode(0xD1, 0x0); /* Opcode D1 /0 */
9149  ins_encode( OpcP, RegOpc( dst ));
9150  ins_pipe( ialu_reg );
9151%}
9152
9153instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9154  effect(USE_DEF dst, USE shift, KILL cr);
9155
9156  format %{ "ROL    $dst, $shift" %}
9157  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
9158  ins_encode( RegOpcImm(dst, shift) );
9159  ins_pipe(ialu_reg);
9160%}
9161
9162instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
9163  effect(USE_DEF dst, USE shift, KILL cr);
9164
9165  format %{ "ROL    $dst, $shift" %}
9166  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
9167  ins_encode(OpcP, RegOpc(dst));
9168  ins_pipe( ialu_reg_reg );
9169%}
9170// end of ROL expand
9171
9172// ROL 32bit by one once
9173instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
9174  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9175
9176  expand %{
9177    rolI_eReg_imm1(dst, lshift, cr);
9178  %}
9179%}
9180
9181// ROL 32bit var by imm8 once
9182instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
9183  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9184  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9185
9186  expand %{
9187    rolI_eReg_imm8(dst, lshift, cr);
9188  %}
9189%}
9190
9191// ROL 32bit var by var once
9192instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9193  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9194
9195  expand %{
9196    rolI_eReg_CL(dst, shift, cr);
9197  %}
9198%}
9199
9200// ROL 32bit var by var once
9201instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9202  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9203
9204  expand %{
9205    rolI_eReg_CL(dst, shift, cr);
9206  %}
9207%}
9208
9209// ROR expand
9210instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9211  effect(USE_DEF dst, USE shift, KILL cr);
9212
9213  format %{ "ROR    $dst, $shift" %}
9214  opcode(0xD1,0x1);  /* Opcode D1 /1 */
9215  ins_encode( OpcP, RegOpc( dst ) );
9216  ins_pipe( ialu_reg );
9217%}
9218
9219instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9220  effect (USE_DEF dst, USE shift, KILL cr);
9221
9222  format %{ "ROR    $dst, $shift" %}
9223  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9224  ins_encode( RegOpcImm(dst, shift) );
9225  ins_pipe( ialu_reg );
9226%}
9227
9228instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9229  effect(USE_DEF dst, USE shift, KILL cr);
9230
9231  format %{ "ROR    $dst, $shift" %}
9232  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9233  ins_encode(OpcP, RegOpc(dst));
9234  ins_pipe( ialu_reg_reg );
9235%}
9236// end of ROR expand
9237
9238// ROR right once
9239instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9240  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9241
9242  expand %{
9243    rorI_eReg_imm1(dst, rshift, cr);
9244  %}
9245%}
9246
9247// ROR 32bit by immI8 once
9248instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9249  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9250  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9251
9252  expand %{
9253    rorI_eReg_imm8(dst, rshift, cr);
9254  %}
9255%}
9256
9257// ROR 32bit var by var once
9258instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9259  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9260
9261  expand %{
9262    rorI_eReg_CL(dst, shift, cr);
9263  %}
9264%}
9265
9266// ROR 32bit var by var once
9267instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9268  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9269
9270  expand %{
9271    rorI_eReg_CL(dst, shift, cr);
9272  %}
9273%}
9274
9275// Xor Instructions
9276// Xor Register with Register
9277instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9278  match(Set dst (XorI dst src));
9279  effect(KILL cr);
9280
9281  size(2);
9282  format %{ "XOR    $dst,$src" %}
9283  opcode(0x33);
9284  ins_encode( OpcP, RegReg( dst, src) );
9285  ins_pipe( ialu_reg_reg );
9286%}
9287
9288// Xor Register with Immediate -1
9289instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9290  match(Set dst (XorI dst imm));  
9291
9292  size(2);
9293  format %{ "NOT    $dst" %}  
9294  ins_encode %{
9295     __ notl($dst$$Register);
9296  %}
9297  ins_pipe( ialu_reg );
9298%}
9299
9300// Xor Register with Immediate
9301instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9302  match(Set dst (XorI dst src));
9303  effect(KILL cr);
9304
9305  format %{ "XOR    $dst,$src" %}
9306  opcode(0x81,0x06);  /* Opcode 81 /6 id */
9307  // ins_encode( RegImm( dst, src) );
9308  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9309  ins_pipe( ialu_reg );
9310%}
9311
9312// Xor Register with Memory
9313instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9314  match(Set dst (XorI dst (LoadI src)));
9315  effect(KILL cr);
9316
9317  ins_cost(125);
9318  format %{ "XOR    $dst,$src" %}
9319  opcode(0x33);
9320  ins_encode( OpcP, RegMem(dst, src) );
9321  ins_pipe( ialu_reg_mem );
9322%}
9323
9324// Xor Memory with Register
9325instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9326  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9327  effect(KILL cr);
9328
9329  ins_cost(150);
9330  format %{ "XOR    $dst,$src" %}
9331  opcode(0x31);  /* Opcode 31 /r */
9332  ins_encode( OpcP, RegMem( src, dst ) );
9333  ins_pipe( ialu_mem_reg );
9334%}
9335
9336// Xor Memory with Immediate
9337instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9338  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9339  effect(KILL cr);
9340
9341  ins_cost(125);
9342  format %{ "XOR    $dst,$src" %}
9343  opcode(0x81,0x6);  /* Opcode 81 /6 id */
9344  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9345  ins_pipe( ialu_mem_imm );
9346%}
9347
9348//----------Convert Int to Boolean---------------------------------------------
9349
9350instruct movI_nocopy(eRegI dst, eRegI src) %{
9351  effect( DEF dst, USE src );
9352  format %{ "MOV    $dst,$src" %}
9353  ins_encode( enc_Copy( dst, src) );
9354  ins_pipe( ialu_reg_reg );
9355%}
9356
9357instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9358  effect( USE_DEF dst, USE src, KILL cr );
9359
9360  size(4);
9361  format %{ "NEG    $dst\n\t"
9362            "ADC    $dst,$src" %}
9363  ins_encode( neg_reg(dst),
9364              OpcRegReg(0x13,dst,src) );
9365  ins_pipe( ialu_reg_reg_long );
9366%}
9367
9368instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9369  match(Set dst (Conv2B src));
9370
9371  expand %{
9372    movI_nocopy(dst,src);
9373    ci2b(dst,src,cr);
9374  %}
9375%}
9376
9377instruct movP_nocopy(eRegI dst, eRegP src) %{
9378  effect( DEF dst, USE src );
9379  format %{ "MOV    $dst,$src" %}
9380  ins_encode( enc_Copy( dst, src) );
9381  ins_pipe( ialu_reg_reg );
9382%}
9383
9384instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9385  effect( USE_DEF dst, USE src, KILL cr );
9386  format %{ "NEG    $dst\n\t"
9387            "ADC    $dst,$src" %}
9388  ins_encode( neg_reg(dst),
9389              OpcRegReg(0x13,dst,src) );
9390  ins_pipe( ialu_reg_reg_long );
9391%}
9392
9393instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9394  match(Set dst (Conv2B src));
9395
9396  expand %{
9397    movP_nocopy(dst,src);
9398    cp2b(dst,src,cr);
9399  %}
9400%}
9401
9402instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9403  match(Set dst (CmpLTMask p q));
9404  effect( KILL cr );
9405  ins_cost(400);
9406
9407  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9408  format %{ "XOR    $dst,$dst\n\t"
9409            "CMP    $p,$q\n\t"
9410            "SETlt  $dst\n\t"
9411            "NEG    $dst" %}
9412  ins_encode( OpcRegReg(0x33,dst,dst),
9413              OpcRegReg(0x3B,p,q),
9414              setLT_reg(dst), neg_reg(dst) );
9415  ins_pipe( pipe_slow );
9416%}
9417
9418instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9419  match(Set dst (CmpLTMask dst zero));
9420  effect( DEF dst, KILL cr );
9421  ins_cost(100);
9422
9423  format %{ "SAR    $dst,31" %}
9424  opcode(0xC1, 0x7);  /* C1 /7 ib */
9425  ins_encode( RegOpcImm( dst, 0x1F ) );
9426  ins_pipe( ialu_reg );
9427%}
9428
9429
9430instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9431  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9432  effect( KILL tmp, KILL cr );
9433  ins_cost(400);
9434  // annoyingly, $tmp has no edges so you cant ask for it in
9435  // any format or encoding
9436  format %{ "SUB    $p,$q\n\t"
9437            "SBB    ECX,ECX\n\t"
9438            "AND    ECX,$y\n\t"
9439            "ADD    $p,ECX" %}
9440  ins_encode( enc_cmpLTP(p,q,y,tmp) );
9441  ins_pipe( pipe_cmplt );
9442%}
9443
9444/* If I enable this, I encourage spilling in the inner loop of compress.
9445instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9446  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9447  effect( USE_KILL tmp, KILL cr );
9448  ins_cost(400);
9449
9450  format %{ "SUB    $p,$q\n\t"
9451            "SBB    ECX,ECX\n\t"
9452            "AND    ECX,$y\n\t"
9453            "ADD    $p,ECX" %}
9454  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9455%}
9456*/
9457
9458//----------Long Instructions------------------------------------------------
9459// Add Long Register with Register
9460instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9461  match(Set dst (AddL dst src));
9462  effect(KILL cr);
9463  ins_cost(200);
9464  format %{ "ADD    $dst.lo,$src.lo\n\t"
9465            "ADC    $dst.hi,$src.hi" %}
9466  opcode(0x03, 0x13);
9467  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9468  ins_pipe( ialu_reg_reg_long );
9469%}
9470
9471// Add Long Register with Immediate
9472instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9473  match(Set dst (AddL dst src));
9474  effect(KILL cr);
9475  format %{ "ADD    $dst.lo,$src.lo\n\t"
9476            "ADC    $dst.hi,$src.hi" %}
9477  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9478  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9479  ins_pipe( ialu_reg_long );
9480%}
9481
9482// Add Long Register with Memory
9483instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9484  match(Set dst (AddL dst (LoadL mem)));
9485  effect(KILL cr);
9486  ins_cost(125);
9487  format %{ "ADD    $dst.lo,$mem\n\t"
9488            "ADC    $dst.hi,$mem+4" %}
9489  opcode(0x03, 0x13);
9490  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9491  ins_pipe( ialu_reg_long_mem );
9492%}
9493
9494// Subtract Long Register with Register.
9495instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9496  match(Set dst (SubL dst src));
9497  effect(KILL cr);
9498  ins_cost(200);
9499  format %{ "SUB    $dst.lo,$src.lo\n\t"
9500            "SBB    $dst.hi,$src.hi" %}
9501  opcode(0x2B, 0x1B);
9502  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9503  ins_pipe( ialu_reg_reg_long );
9504%}
9505
9506// Subtract Long Register with Immediate
9507instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9508  match(Set dst (SubL dst src));
9509  effect(KILL cr);
9510  format %{ "SUB    $dst.lo,$src.lo\n\t"
9511            "SBB    $dst.hi,$src.hi" %}
9512  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9513  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9514  ins_pipe( ialu_reg_long );
9515%}
9516
9517// Subtract Long Register with Memory
9518instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9519  match(Set dst (SubL dst (LoadL mem)));
9520  effect(KILL cr);
9521  ins_cost(125);
9522  format %{ "SUB    $dst.lo,$mem\n\t"
9523            "SBB    $dst.hi,$mem+4" %}
9524  opcode(0x2B, 0x1B);
9525  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9526  ins_pipe( ialu_reg_long_mem );
9527%}
9528
9529instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9530  match(Set dst (SubL zero dst));
9531  effect(KILL cr);
9532  ins_cost(300);
9533  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9534  ins_encode( neg_long(dst) );
9535  ins_pipe( ialu_reg_reg_long );
9536%}
9537
9538// And Long Register with Register
9539instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9540  match(Set dst (AndL dst src));
9541  effect(KILL cr);
9542  format %{ "AND    $dst.lo,$src.lo\n\t"
9543            "AND    $dst.hi,$src.hi" %}
9544  opcode(0x23,0x23);
9545  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9546  ins_pipe( ialu_reg_reg_long );
9547%}
9548
9549// And Long Register with Immediate
9550instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9551  match(Set dst (AndL dst src));
9552  effect(KILL cr);
9553  format %{ "AND    $dst.lo,$src.lo\n\t"
9554            "AND    $dst.hi,$src.hi" %}
9555  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9556  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9557  ins_pipe( ialu_reg_long );
9558%}
9559
9560// And Long Register with Memory
9561instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9562  match(Set dst (AndL dst (LoadL mem)));
9563  effect(KILL cr);
9564  ins_cost(125);
9565  format %{ "AND    $dst.lo,$mem\n\t"
9566            "AND    $dst.hi,$mem+4" %}
9567  opcode(0x23, 0x23);
9568  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9569  ins_pipe( ialu_reg_long_mem );
9570%}
9571
9572// Or Long Register with Register
9573instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9574  match(Set dst (OrL dst src));
9575  effect(KILL cr);
9576  format %{ "OR     $dst.lo,$src.lo\n\t"
9577            "OR     $dst.hi,$src.hi" %}
9578  opcode(0x0B,0x0B);
9579  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9580  ins_pipe( ialu_reg_reg_long );
9581%}
9582
9583// Or Long Register with Immediate
9584instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9585  match(Set dst (OrL dst src));
9586  effect(KILL cr);
9587  format %{ "OR     $dst.lo,$src.lo\n\t"
9588            "OR     $dst.hi,$src.hi" %}
9589  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9590  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9591  ins_pipe( ialu_reg_long );
9592%}
9593
9594// Or Long Register with Memory
9595instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9596  match(Set dst (OrL dst (LoadL mem)));
9597  effect(KILL cr);
9598  ins_cost(125);
9599  format %{ "OR     $dst.lo,$mem\n\t"
9600            "OR     $dst.hi,$mem+4" %}
9601  opcode(0x0B,0x0B);
9602  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9603  ins_pipe( ialu_reg_long_mem );
9604%}
9605
9606// Xor Long Register with Register
9607instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9608  match(Set dst (XorL dst src));
9609  effect(KILL cr);
9610  format %{ "XOR    $dst.lo,$src.lo\n\t"
9611            "XOR    $dst.hi,$src.hi" %}
9612  opcode(0x33,0x33);
9613  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9614  ins_pipe( ialu_reg_reg_long );
9615%}
9616
9617// Xor Long Register with Immediate -1
9618instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9619  match(Set dst (XorL dst imm));  
9620  format %{ "NOT    $dst.lo\n\t"
9621            "NOT    $dst.hi" %}
9622  ins_encode %{
9623     __ notl($dst$$Register);
9624     __ notl(HIGH_FROM_LOW($dst$$Register));
9625  %}
9626  ins_pipe( ialu_reg_long );
9627%}
9628
9629// Xor Long Register with Immediate
9630instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9631  match(Set dst (XorL dst src));
9632  effect(KILL cr);
9633  format %{ "XOR    $dst.lo,$src.lo\n\t"
9634            "XOR    $dst.hi,$src.hi" %}
9635  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9636  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9637  ins_pipe( ialu_reg_long );
9638%}
9639
9640// Xor Long Register with Memory
9641instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9642  match(Set dst (XorL dst (LoadL mem)));
9643  effect(KILL cr);
9644  ins_cost(125);
9645  format %{ "XOR    $dst.lo,$mem\n\t"
9646            "XOR    $dst.hi,$mem+4" %}
9647  opcode(0x33,0x33);
9648  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9649  ins_pipe( ialu_reg_long_mem );
9650%}
9651
9652// Shift Left Long by 1
9653instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9654  predicate(UseNewLongLShift);
9655  match(Set dst (LShiftL dst cnt));
9656  effect(KILL cr);
9657  ins_cost(100);
9658  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9659            "ADC    $dst.hi,$dst.hi" %}
9660  ins_encode %{
9661    __ addl($dst$$Register,$dst$$Register);
9662    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9663  %}
9664  ins_pipe( ialu_reg_long );
9665%}
9666
9667// Shift Left Long by 2
9668instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9669  predicate(UseNewLongLShift);
9670  match(Set dst (LShiftL dst cnt));
9671  effect(KILL cr);
9672  ins_cost(100);
9673  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9674            "ADC    $dst.hi,$dst.hi\n\t" 
9675            "ADD    $dst.lo,$dst.lo\n\t"
9676            "ADC    $dst.hi,$dst.hi" %}
9677  ins_encode %{
9678    __ addl($dst$$Register,$dst$$Register);
9679    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9680    __ addl($dst$$Register,$dst$$Register);
9681    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9682  %}
9683  ins_pipe( ialu_reg_long );
9684%}
9685
9686// Shift Left Long by 3
9687instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9688  predicate(UseNewLongLShift);
9689  match(Set dst (LShiftL dst cnt));
9690  effect(KILL cr);
9691  ins_cost(100);
9692  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9693            "ADC    $dst.hi,$dst.hi\n\t" 
9694            "ADD    $dst.lo,$dst.lo\n\t"
9695            "ADC    $dst.hi,$dst.hi\n\t" 
9696            "ADD    $dst.lo,$dst.lo\n\t"
9697            "ADC    $dst.hi,$dst.hi" %}
9698  ins_encode %{
9699    __ addl($dst$$Register,$dst$$Register);
9700    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9701    __ addl($dst$$Register,$dst$$Register);
9702    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9703    __ addl($dst$$Register,$dst$$Register);
9704    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9705  %}
9706  ins_pipe( ialu_reg_long );
9707%}
9708
9709// Shift Left Long by 1-31
9710instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9711  match(Set dst (LShiftL dst cnt));
9712  effect(KILL cr);
9713  ins_cost(200);
9714  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9715            "SHL    $dst.lo,$cnt" %}
9716  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9717  ins_encode( move_long_small_shift(dst,cnt) );
9718  ins_pipe( ialu_reg_long );
9719%}
9720
9721// Shift Left Long by 32-63
9722instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9723  match(Set dst (LShiftL dst cnt));
9724  effect(KILL cr);
9725  ins_cost(300);
9726  format %{ "MOV    $dst.hi,$dst.lo\n"
9727          "\tSHL    $dst.hi,$cnt-32\n"
9728          "\tXOR    $dst.lo,$dst.lo" %}
9729  opcode(0xC1, 0x4);  /* C1 /4 ib */
9730  ins_encode( move_long_big_shift_clr(dst,cnt) );
9731  ins_pipe( ialu_reg_long );
9732%}
9733
9734// Shift Left Long by variable
9735instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9736  match(Set dst (LShiftL dst shift));
9737  effect(KILL cr);
9738  ins_cost(500+200);
9739  size(17);
9740  format %{ "TEST   $shift,32\n\t"
9741            "JEQ,s  small\n\t"
9742            "MOV    $dst.hi,$dst.lo\n\t"
9743            "XOR    $dst.lo,$dst.lo\n"
9744    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9745            "SHL    $dst.lo,$shift" %}
9746  ins_encode( shift_left_long( dst, shift ) );
9747  ins_pipe( pipe_slow );
9748%}
9749
9750// Shift Right Long by 1-31
9751instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9752  match(Set dst (URShiftL dst cnt));
9753  effect(KILL cr);
9754  ins_cost(200);
9755  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9756            "SHR    $dst.hi,$cnt" %}
9757  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9758  ins_encode( move_long_small_shift(dst,cnt) );
9759  ins_pipe( ialu_reg_long );
9760%}
9761
9762// Shift Right Long by 32-63
9763instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9764  match(Set dst (URShiftL dst cnt));
9765  effect(KILL cr);
9766  ins_cost(300);
9767  format %{ "MOV    $dst.lo,$dst.hi\n"
9768          "\tSHR    $dst.lo,$cnt-32\n"
9769          "\tXOR    $dst.hi,$dst.hi" %}
9770  opcode(0xC1, 0x5);  /* C1 /5 ib */
9771  ins_encode( move_long_big_shift_clr(dst,cnt) );
9772  ins_pipe( ialu_reg_long );
9773%}
9774
9775// Shift Right Long by variable
9776instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9777  match(Set dst (URShiftL dst shift));
9778  effect(KILL cr);
9779  ins_cost(600);
9780  size(17);
9781  format %{ "TEST   $shift,32\n\t"
9782            "JEQ,s  small\n\t"
9783            "MOV    $dst.lo,$dst.hi\n\t"
9784            "XOR    $dst.hi,$dst.hi\n"
9785    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9786            "SHR    $dst.hi,$shift" %}
9787  ins_encode( shift_right_long( dst, shift ) );
9788  ins_pipe( pipe_slow );
9789%}
9790
9791// Shift Right Long by 1-31
9792instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9793  match(Set dst (RShiftL dst cnt));
9794  effect(KILL cr);
9795  ins_cost(200);
9796  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9797            "SAR    $dst.hi,$cnt" %}
9798  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9799  ins_encode( move_long_small_shift(dst,cnt) );
9800  ins_pipe( ialu_reg_long );
9801%}
9802
9803// Shift Right Long by 32-63
9804instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9805  match(Set dst (RShiftL dst cnt));
9806  effect(KILL cr);
9807  ins_cost(300);
9808  format %{ "MOV    $dst.lo,$dst.hi\n"
9809          "\tSAR    $dst.lo,$cnt-32\n"
9810          "\tSAR    $dst.hi,31" %}
9811  opcode(0xC1, 0x7);  /* C1 /7 ib */
9812  ins_encode( move_long_big_shift_sign(dst,cnt) );
9813  ins_pipe( ialu_reg_long );
9814%}
9815
9816// Shift Right arithmetic Long by variable
9817instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9818  match(Set dst (RShiftL dst shift));
9819  effect(KILL cr);
9820  ins_cost(600);
9821  size(18);
9822  format %{ "TEST   $shift,32\n\t"
9823            "JEQ,s  small\n\t"
9824            "MOV    $dst.lo,$dst.hi\n\t"
9825            "SAR    $dst.hi,31\n"
9826    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9827            "SAR    $dst.hi,$shift" %}
9828  ins_encode( shift_right_arith_long( dst, shift ) );
9829  ins_pipe( pipe_slow );
9830%}
9831
9832
9833//----------Double Instructions------------------------------------------------
9834// Double Math
9835
9836// Compare & branch
9837
9838// P6 version of float compare, sets condition codes in EFLAGS
9839instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9840  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9841  match(Set cr (CmpD src1 src2));
9842  effect(KILL rax);
9843  ins_cost(150);
9844  format %{ "FLD    $src1\n\t"
9845            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9846            "JNP    exit\n\t"
9847            "MOV    ah,1       // saw a NaN, set CF\n\t"
9848            "SAHF\n"
9849     "exit:\tNOP               // avoid branch to branch" %}
9850  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9851  ins_encode( Push_Reg_D(src1),
9852              OpcP, RegOpc(src2),
9853              cmpF_P6_fixup );
9854  ins_pipe( pipe_slow );
9855%}
9856
9857instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
9858  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9859  match(Set cr (CmpD src1 src2));
9860  ins_cost(150);
9861  format %{ "FLD    $src1\n\t"
9862            "FUCOMIP ST,$src2  // P6 instruction" %}
9863  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9864  ins_encode( Push_Reg_D(src1),
9865              OpcP, RegOpc(src2));
9866  ins_pipe( pipe_slow );
9867%}
9868
9869// Compare & branch
9870instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9871  predicate(UseSSE<=1);
9872  match(Set cr (CmpD src1 src2));
9873  effect(KILL rax);
9874  ins_cost(200);
9875  format %{ "FLD    $src1\n\t"
9876            "FCOMp  $src2\n\t"
9877            "FNSTSW AX\n\t"
9878            "TEST   AX,0x400\n\t"
9879            "JZ,s   flags\n\t"
9880            "MOV    AH,1\t# unordered treat as LT\n"
9881    "flags:\tSAHF" %}
9882  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9883  ins_encode( Push_Reg_D(src1),
9884              OpcP, RegOpc(src2),
9885              fpu_flags);
9886  ins_pipe( pipe_slow );
9887%}
9888
9889// Compare vs zero into -1,0,1
9890instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9891  predicate(UseSSE<=1);
9892  match(Set dst (CmpD3 src1 zero));
9893  effect(KILL cr, KILL rax);
9894  ins_cost(280);
9895  format %{ "FTSTD  $dst,$src1" %}
9896  opcode(0xE4, 0xD9);
9897  ins_encode( Push_Reg_D(src1),
9898              OpcS, OpcP, PopFPU,
9899              CmpF_Result(dst));
9900  ins_pipe( pipe_slow );
9901%}
9902
9903// Compare into -1,0,1
9904instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9905  predicate(UseSSE<=1);
9906  match(Set dst (CmpD3 src1 src2));
9907  effect(KILL cr, KILL rax);
9908  ins_cost(300);
9909  format %{ "FCMPD  $dst,$src1,$src2" %}
9910  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9911  ins_encode( Push_Reg_D(src1),
9912              OpcP, RegOpc(src2),
9913              CmpF_Result(dst));
9914  ins_pipe( pipe_slow );
9915%}
9916
9917// float compare and set condition codes in EFLAGS by XMM regs
9918instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9919  predicate(UseSSE>=2);
9920  match(Set cr (CmpD dst src));
9921  effect(KILL rax);
9922  ins_cost(125);
9923  format %{ "COMISD $dst,$src\n"
9924          "\tJNP    exit\n"
9925          "\tMOV    ah,1       // saw a NaN, set CF\n"
9926          "\tSAHF\n"
9927     "exit:\tNOP               // avoid branch to branch" %}
9928  opcode(0x66, 0x0F, 0x2F);
9929  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9930  ins_pipe( pipe_slow );
9931%}
9932
9933instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
9934  predicate(UseSSE>=2);
9935  match(Set cr (CmpD dst src));
9936  ins_cost(100);
9937  format %{ "COMISD $dst,$src" %}
9938  opcode(0x66, 0x0F, 0x2F);
9939  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
9940  ins_pipe( pipe_slow );
9941%}
9942
9943// float compare and set condition codes in EFLAGS by XMM regs
9944instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9945  predicate(UseSSE>=2);
9946  match(Set cr (CmpD dst (LoadD src)));
9947  effect(KILL rax);
9948  ins_cost(145);
9949  format %{ "COMISD $dst,$src\n"
9950          "\tJNP    exit\n"
9951          "\tMOV    ah,1       // saw a NaN, set CF\n"
9952          "\tSAHF\n"
9953     "exit:\tNOP               // avoid branch to branch" %}
9954  opcode(0x66, 0x0F, 0x2F);
9955  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9956  ins_pipe( pipe_slow );
9957%}
9958
9959instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
9960  predicate(UseSSE>=2);
9961  match(Set cr (CmpD dst (LoadD src)));
9962  ins_cost(100);
9963  format %{ "COMISD $dst,$src" %}
9964  opcode(0x66, 0x0F, 0x2F);
9965  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
9966  ins_pipe( pipe_slow );
9967%}
9968
9969// Compare into -1,0,1 in XMM
9970instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9971  predicate(UseSSE>=2);
9972  match(Set dst (CmpD3 src1 src2));
9973  effect(KILL cr);
9974  ins_cost(255);
9975  format %{ "XOR    $dst,$dst\n"
9976          "\tCOMISD $src1,$src2\n"
9977          "\tJP,s   nan\n"
9978          "\tJEQ,s  exit\n"
9979          "\tJA,s   inc\n"
9980      "nan:\tDEC    $dst\n"
9981          "\tJMP,s  exit\n"
9982      "inc:\tINC    $dst\n"
9983      "exit:"
9984                %}
9985  opcode(0x66, 0x0F, 0x2F);
9986  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9987             CmpX_Result(dst));
9988  ins_pipe( pipe_slow );
9989%}
9990
9991// Compare into -1,0,1 in XMM and memory
9992instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9993  predicate(UseSSE>=2);
9994  match(Set dst (CmpD3 src1 (LoadD mem)));
9995  effect(KILL cr);
9996  ins_cost(275);
9997  format %{ "COMISD $src1,$mem\n"
9998          "\tMOV    $dst,0\t\t# do not blow flags\n"
9999          "\tJP,s   nan\n"
10000          "\tJEQ,s  exit\n"
10001          "\tJA,s   inc\n"
10002      "nan:\tDEC    $dst\n"
10003          "\tJMP,s  exit\n"
10004      "inc:\tINC    $dst\n"
10005      "exit:"
10006                %}
10007  opcode(0x66, 0x0F, 0x2F);
10008  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
10009             LdImmI(dst,0x0), CmpX_Result(dst));
10010  ins_pipe( pipe_slow );
10011%}
10012
10013
10014instruct subD_reg(regD dst, regD src) %{
10015  predicate (UseSSE <=1);
10016  match(Set dst (SubD dst src));
10017
10018  format %{ "FLD    $src\n\t"
10019            "DSUBp  $dst,ST" %}
10020  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10021  ins_cost(150);
10022  ins_encode( Push_Reg_D(src),
10023              OpcP, RegOpc(dst) );
10024  ins_pipe( fpu_reg_reg );
10025%}
10026
10027instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10028  predicate (UseSSE <=1);
10029  match(Set dst (RoundDouble (SubD src1 src2)));
10030  ins_cost(250);
10031
10032  format %{ "FLD    $src2\n\t"
10033            "DSUB   ST,$src1\n\t"
10034            "FSTP_D $dst\t# D-round" %}
10035  opcode(0xD8, 0x5);
10036  ins_encode( Push_Reg_D(src2),
10037              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10038  ins_pipe( fpu_mem_reg_reg );
10039%}
10040
10041
10042instruct subD_reg_mem(regD dst, memory src) %{
10043  predicate (UseSSE <=1);
10044  match(Set dst (SubD dst (LoadD src)));
10045  ins_cost(150);
10046
10047  format %{ "FLD    $src\n\t"
10048            "DSUBp  $dst,ST" %}
10049  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10050  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10051              OpcP, RegOpc(dst) );
10052  ins_pipe( fpu_reg_mem );
10053%}
10054
10055instruct absD_reg(regDPR1 dst, regDPR1 src) %{
10056  predicate (UseSSE<=1);
10057  match(Set dst (AbsD src));
10058  ins_cost(100);
10059  format %{ "FABS" %}
10060  opcode(0xE1, 0xD9);
10061  ins_encode( OpcS, OpcP );
10062  ins_pipe( fpu_reg_reg );
10063%}
10064
10065instruct absXD_reg( regXD dst ) %{
10066  predicate(UseSSE>=2);
10067  match(Set dst (AbsD dst));
10068  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
10069  ins_encode( AbsXD_encoding(dst));
10070  ins_pipe( pipe_slow );
10071%}
10072
10073instruct negD_reg(regDPR1 dst, regDPR1 src) %{
10074  predicate(UseSSE<=1);
10075  match(Set dst (NegD src));
10076  ins_cost(100);
10077  format %{ "FCHS" %}
10078  opcode(0xE0, 0xD9);
10079  ins_encode( OpcS, OpcP );
10080  ins_pipe( fpu_reg_reg );
10081%}
10082
10083instruct negXD_reg( regXD dst ) %{
10084  predicate(UseSSE>=2);
10085  match(Set dst (NegD dst));
10086  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
10087  ins_encode %{
10088     __ xorpd($dst$$XMMRegister,
10089              ExternalAddress((address)double_signflip_pool));
10090  %}
10091  ins_pipe( pipe_slow );
10092%}
10093
10094instruct addD_reg(regD dst, regD src) %{
10095  predicate(UseSSE<=1);
10096  match(Set dst (AddD dst src));
10097  format %{ "FLD    $src\n\t"
10098            "DADD   $dst,ST" %}
10099  size(4);
10100  ins_cost(150);
10101  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10102  ins_encode( Push_Reg_D(src),
10103              OpcP, RegOpc(dst) );
10104  ins_pipe( fpu_reg_reg );
10105%}
10106
10107
10108instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10109  predicate(UseSSE<=1);
10110  match(Set dst (RoundDouble (AddD src1 src2)));
10111  ins_cost(250);
10112
10113  format %{ "FLD    $src2\n\t"
10114            "DADD   ST,$src1\n\t"
10115            "FSTP_D $dst\t# D-round" %}
10116  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10117  ins_encode( Push_Reg_D(src2),
10118              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10119  ins_pipe( fpu_mem_reg_reg );
10120%}
10121
10122
10123instruct addD_reg_mem(regD dst, memory src) %{
10124  predicate(UseSSE<=1);
10125  match(Set dst (AddD dst (LoadD src)));
10126  ins_cost(150);
10127
10128  format %{ "FLD    $src\n\t"
10129            "DADDp  $dst,ST" %}
10130  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10131  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10132              OpcP, RegOpc(dst) );
10133  ins_pipe( fpu_reg_mem );
10134%}
10135
10136// add-to-memory
10137instruct addD_mem_reg(memory dst, regD src) %{
10138  predicate(UseSSE<=1);
10139  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10140  ins_cost(150);
10141
10142  format %{ "FLD_D  $dst\n\t"
10143            "DADD   ST,$src\n\t"
10144            "FST_D  $dst" %}
10145  opcode(0xDD, 0x0);
10146  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10147              Opcode(0xD8), RegOpc(src),
10148              set_instruction_start,
10149              Opcode(0xDD), RMopc_Mem(0x03,dst) );
10150  ins_pipe( fpu_reg_mem );
10151%}
10152
10153instruct addD_reg_imm1(regD dst, immD1 src) %{
10154  predicate(UseSSE<=1);
10155  match(Set dst (AddD dst src));
10156  ins_cost(125);
10157  format %{ "FLD1\n\t"
10158            "DADDp  $dst,ST" %}
10159  opcode(0xDE, 0x00);
10160  ins_encode( LdImmD(src),
10161              OpcP, RegOpc(dst) );
10162  ins_pipe( fpu_reg );
10163%}
10164
10165instruct addD_reg_imm(regD dst, immD src) %{
10166  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10167  match(Set dst (AddD dst src));
10168  ins_cost(200);
10169  format %{ "FLD_D  [$src]\n\t"
10170            "DADDp  $dst,ST" %}
10171  opcode(0xDE, 0x00);       /* DE /0 */
10172  ins_encode( LdImmD(src),
10173              OpcP, RegOpc(dst));
10174  ins_pipe( fpu_reg_mem );
10175%}
10176
10177instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
10178  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10179  match(Set dst (RoundDouble (AddD src con)));
10180  ins_cost(200);
10181  format %{ "FLD_D  [$con]\n\t"
10182            "DADD   ST,$src\n\t"
10183            "FSTP_D $dst\t# D-round" %}
10184  opcode(0xD8, 0x00);       /* D8 /0 */
10185  ins_encode( LdImmD(con),
10186              OpcP, RegOpc(src), Pop_Mem_D(dst));
10187  ins_pipe( fpu_mem_reg_con );
10188%}
10189
10190// Add two double precision floating point values in xmm
10191instruct addXD_reg(regXD dst, regXD src) %{
10192  predicate(UseSSE>=2);
10193  match(Set dst (AddD dst src));
10194  format %{ "ADDSD  $dst,$src" %}
10195  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10196  ins_pipe( pipe_slow );
10197%}
10198
10199instruct addXD_imm(regXD dst, immXD con) %{
10200  predicate(UseSSE>=2);
10201  match(Set dst (AddD dst con));
10202  format %{ "ADDSD  $dst,[$con]" %}
10203  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
10204  ins_pipe( pipe_slow );
10205%}
10206
10207instruct addXD_mem(regXD dst, memory mem) %{
10208  predicate(UseSSE>=2);
10209  match(Set dst (AddD dst (LoadD mem)));
10210  format %{ "ADDSD  $dst,$mem" %}
10211  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10212  ins_pipe( pipe_slow );
10213%}
10214
10215// Sub two double precision floating point values in xmm
10216instruct subXD_reg(regXD dst, regXD src) %{
10217  predicate(UseSSE>=2);
10218  match(Set dst (SubD dst src));
10219  format %{ "SUBSD  $dst,$src" %}
10220  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10221  ins_pipe( pipe_slow );
10222%}
10223
10224instruct subXD_imm(regXD dst, immXD con) %{
10225  predicate(UseSSE>=2);
10226  match(Set dst (SubD dst con));
10227  format %{ "SUBSD  $dst,[$con]" %}
10228  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
10229  ins_pipe( pipe_slow );
10230%}
10231
10232instruct subXD_mem(regXD dst, memory mem) %{
10233  predicate(UseSSE>=2);
10234  match(Set dst (SubD dst (LoadD mem)));
10235  format %{ "SUBSD  $dst,$mem" %}
10236  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10237  ins_pipe( pipe_slow );
10238%}
10239
10240// Mul two double precision floating point values in xmm
10241instruct mulXD_reg(regXD dst, regXD src) %{
10242  predicate(UseSSE>=2);
10243  match(Set dst (MulD dst src));
10244  format %{ "MULSD  $dst,$src" %}
10245  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10246  ins_pipe( pipe_slow );
10247%}
10248
10249instruct mulXD_imm(regXD dst, immXD con) %{
10250  predicate(UseSSE>=2);
10251  match(Set dst (MulD dst con));
10252  format %{ "MULSD  $dst,[$con]" %}
10253  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
10254  ins_pipe( pipe_slow );
10255%}
10256
10257instruct mulXD_mem(regXD dst, memory mem) %{
10258  predicate(UseSSE>=2);
10259  match(Set dst (MulD dst (LoadD mem)));
10260  format %{ "MULSD  $dst,$mem" %}
10261  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10262  ins_pipe( pipe_slow );
10263%}
10264
10265// Div two double precision floating point values in xmm
10266instruct divXD_reg(regXD dst, regXD src) %{
10267  predicate(UseSSE>=2);
10268  match(Set dst (DivD dst src));
10269  format %{ "DIVSD  $dst,$src" %}
10270  opcode(0xF2, 0x0F, 0x5E);
10271  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10272  ins_pipe( pipe_slow );
10273%}
10274
10275instruct divXD_imm(regXD dst, immXD con) %{
10276  predicate(UseSSE>=2);
10277  match(Set dst (DivD dst con));
10278  format %{ "DIVSD  $dst,[$con]" %}
10279  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
10280  ins_pipe( pipe_slow );
10281%}
10282
10283instruct divXD_mem(regXD dst, memory mem) %{
10284  predicate(UseSSE>=2);
10285  match(Set dst (DivD dst (LoadD mem)));
10286  format %{ "DIVSD  $dst,$mem" %}
10287  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10288  ins_pipe( pipe_slow );
10289%}
10290
10291
10292instruct mulD_reg(regD dst, regD src) %{
10293  predicate(UseSSE<=1);
10294  match(Set dst (MulD dst src));
10295  format %{ "FLD    $src\n\t"
10296            "DMULp  $dst,ST" %}
10297  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10298  ins_cost(150);
10299  ins_encode( Push_Reg_D(src),
10300              OpcP, RegOpc(dst) );
10301  ins_pipe( fpu_reg_reg );
10302%}
10303
10304// Strict FP instruction biases argument before multiply then
10305// biases result to avoid double rounding of subnormals.
10306//
10307// scale arg1 by multiplying arg1 by 2^(-15360)
10308// load arg2
10309// multiply scaled arg1 by arg2
10310// rescale product by 2^(15360)
10311//
10312instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10313  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10314  match(Set dst (MulD dst src));
10315  ins_cost(1);   // Select this instruction for all strict FP double multiplies
10316
10317  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10318            "DMULp  $dst,ST\n\t"
10319            "FLD    $src\n\t"
10320            "DMULp  $dst,ST\n\t"
10321            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10322            "DMULp  $dst,ST\n\t" %}
10323  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10324  ins_encode( strictfp_bias1(dst),
10325              Push_Reg_D(src),
10326              OpcP, RegOpc(dst),
10327              strictfp_bias2(dst) );
10328  ins_pipe( fpu_reg_reg );
10329%}
10330
10331instruct mulD_reg_imm(regD dst, immD src) %{
10332  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10333  match(Set dst (MulD dst src));
10334  ins_cost(200);
10335  format %{ "FLD_D  [$src]\n\t"
10336            "DMULp  $dst,ST" %}
10337  opcode(0xDE, 0x1); /* DE /1 */
10338  ins_encode( LdImmD(src),
10339              OpcP, RegOpc(dst) );
10340  ins_pipe( fpu_reg_mem );
10341%}
10342
10343
10344instruct mulD_reg_mem(regD dst, memory src) %{
10345  predicate( UseSSE<=1 );
10346  match(Set dst (MulD dst (LoadD src)));
10347  ins_cost(200);
10348  format %{ "FLD_D  $src\n\t"
10349            "DMULp  $dst,ST" %}
10350  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10351  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10352              OpcP, RegOpc(dst) );
10353  ins_pipe( fpu_reg_mem );
10354%}
10355
10356//
10357// Cisc-alternate to reg-reg multiply
10358instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10359  predicate( UseSSE<=1 );
10360  match(Set dst (MulD src (LoadD mem)));
10361  ins_cost(250);
10362  format %{ "FLD_D  $mem\n\t"
10363            "DMUL   ST,$src\n\t"
10364            "FSTP_D $dst" %}
10365  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10366  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10367              OpcReg_F(src),
10368              Pop_Reg_D(dst) );
10369  ins_pipe( fpu_reg_reg_mem );
10370%}
10371
10372
10373// MACRO3 -- addD a mulD
10374// This instruction is a '2-address' instruction in that the result goes
10375// back to src2.  This eliminates a move from the macro; possibly the
10376// register allocator will have to add it back (and maybe not).
10377instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10378  predicate( UseSSE<=1 );
10379  match(Set src2 (AddD (MulD src0 src1) src2));
10380  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10381            "DMUL   ST,$src1\n\t"
10382            "DADDp  $src2,ST" %}
10383  ins_cost(250);
10384  opcode(0xDD); /* LoadD DD /0 */
10385  ins_encode( Push_Reg_F(src0),
10386              FMul_ST_reg(src1),
10387              FAddP_reg_ST(src2) );
10388  ins_pipe( fpu_reg_reg_reg );
10389%}
10390
10391
10392// MACRO3 -- subD a mulD
10393instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10394  predicate( UseSSE<=1 );
10395  match(Set src2 (SubD (MulD src0 src1) src2));
10396  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10397            "DMUL   ST,$src1\n\t"
10398            "DSUBRp $src2,ST" %}
10399  ins_cost(250);
10400  ins_encode( Push_Reg_F(src0),
10401              FMul_ST_reg(src1),
10402              Opcode(0xDE), Opc_plus(0xE0,src2));
10403  ins_pipe( fpu_reg_reg_reg );
10404%}
10405
10406
10407instruct divD_reg(regD dst, regD src) %{
10408  predicate( UseSSE<=1 );
10409  match(Set dst (DivD dst src));
10410
10411  format %{ "FLD    $src\n\t"
10412            "FDIVp  $dst,ST" %}
10413  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10414  ins_cost(150);
10415  ins_encode( Push_Reg_D(src),
10416              OpcP, RegOpc(dst) );
10417  ins_pipe( fpu_reg_reg );
10418%}
10419
10420// Strict FP instruction biases argument before division then
10421// biases result, to avoid double rounding of subnormals.
10422//
10423// scale dividend by multiplying dividend by 2^(-15360)
10424// load divisor
10425// divide scaled dividend by divisor
10426// rescale quotient by 2^(15360)
10427//
10428instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10429  predicate (UseSSE<=1);
10430  match(Set dst (DivD dst src));
10431  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10432  ins_cost(01);
10433
10434  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10435            "DMULp  $dst,ST\n\t"
10436            "FLD    $src\n\t"
10437            "FDIVp  $dst,ST\n\t"
10438            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10439            "DMULp  $dst,ST\n\t" %}
10440  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10441  ins_encode( strictfp_bias1(dst),
10442              Push_Reg_D(src),
10443              OpcP, RegOpc(dst),
10444              strictfp_bias2(dst) );
10445  ins_pipe( fpu_reg_reg );
10446%}
10447
10448instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10449  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10450  match(Set dst (RoundDouble (DivD src1 src2)));
10451
10452  format %{ "FLD    $src1\n\t"
10453            "FDIV   ST,$src2\n\t"
10454            "FSTP_D $dst\t# D-round" %}
10455  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10456  ins_encode( Push_Reg_D(src1),
10457              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10458  ins_pipe( fpu_mem_reg_reg );
10459%}
10460
10461
10462instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10463  predicate(UseSSE<=1);
10464  match(Set dst (ModD dst src));
10465  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10466
10467  format %{ "DMOD   $dst,$src" %}
10468  ins_cost(250);
10469  ins_encode(Push_Reg_Mod_D(dst, src),
10470              emitModD(),
10471              Push_Result_Mod_D(src),
10472              Pop_Reg_D(dst));
10473  ins_pipe( pipe_slow );
10474%}
10475
10476instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10477  predicate(UseSSE>=2);
10478  match(Set dst (ModD src0 src1));
10479  effect(KILL rax, KILL cr);
10480
10481  format %{ "SUB    ESP,8\t # DMOD\n"
10482          "\tMOVSD  [ESP+0],$src1\n"
10483          "\tFLD_D  [ESP+0]\n"
10484          "\tMOVSD  [ESP+0],$src0\n"
10485          "\tFLD_D  [ESP+0]\n"
10486     "loop:\tFPREM\n"
10487          "\tFWAIT\n"
10488          "\tFNSTSW AX\n"
10489          "\tSAHF\n"
10490          "\tJP     loop\n"
10491          "\tFSTP_D [ESP+0]\n"
10492          "\tMOVSD  $dst,[ESP+0]\n"
10493          "\tADD    ESP,8\n"
10494          "\tFSTP   ST0\t # Restore FPU Stack"
10495    %}
10496  ins_cost(250);
10497  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10498  ins_pipe( pipe_slow );
10499%}
10500
10501instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10502  predicate (UseSSE<=1);
10503  match(Set dst (SinD src));
10504  ins_cost(1800);
10505  format %{ "DSIN   $dst" %}
10506  opcode(0xD9, 0xFE);
10507  ins_encode( OpcP, OpcS );
10508  ins_pipe( pipe_slow );
10509%}
10510
10511instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10512  predicate (UseSSE>=2);
10513  match(Set dst (SinD dst));
10514  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10515  ins_cost(1800);
10516  format %{ "DSIN   $dst" %}
10517  opcode(0xD9, 0xFE);
10518  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10519  ins_pipe( pipe_slow );
10520%}
10521
10522instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10523  predicate (UseSSE<=1);
10524  match(Set dst (CosD src));
10525  ins_cost(1800);
10526  format %{ "DCOS   $dst" %}
10527  opcode(0xD9, 0xFF);
10528  ins_encode( OpcP, OpcS );
10529  ins_pipe( pipe_slow );
10530%}
10531
10532instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10533  predicate (UseSSE>=2);
10534  match(Set dst (CosD dst));
10535  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10536  ins_cost(1800);
10537  format %{ "DCOS   $dst" %}
10538  opcode(0xD9, 0xFF);
10539  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10540  ins_pipe( pipe_slow );
10541%}
10542
10543instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10544  predicate (UseSSE<=1);
10545  match(Set dst(TanD src));
10546  format %{ "DTAN   $dst" %}
10547  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10548              Opcode(0xDD), Opcode(0xD8));   // fstp st
10549  ins_pipe( pipe_slow );
10550%}
10551
10552instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10553  predicate (UseSSE>=2);
10554  match(Set dst(TanD dst));
10555  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10556  format %{ "DTAN   $dst" %}
10557  ins_encode( Push_SrcXD(dst),
10558              Opcode(0xD9), Opcode(0xF2),    // fptan
10559              Opcode(0xDD), Opcode(0xD8),   // fstp st
10560              Push_ResultXD(dst) );
10561  ins_pipe( pipe_slow );
10562%}
10563
10564instruct atanD_reg(regD dst, regD src) %{
10565  predicate (UseSSE<=1);
10566  match(Set dst(AtanD dst src));
10567  format %{ "DATA   $dst,$src" %}
10568  opcode(0xD9, 0xF3);
10569  ins_encode( Push_Reg_D(src),
10570              OpcP, OpcS, RegOpc(dst) );
10571  ins_pipe( pipe_slow );
10572%}
10573
10574instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10575  predicate (UseSSE>=2);
10576  match(Set dst(AtanD dst src));
10577  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10578  format %{ "DATA   $dst,$src" %}
10579  opcode(0xD9, 0xF3);
10580  ins_encode( Push_SrcXD(src),
10581              OpcP, OpcS, Push_ResultXD(dst) );
10582  ins_pipe( pipe_slow );
10583%}
10584
10585instruct sqrtD_reg(regD dst, regD src) %{
10586  predicate (UseSSE<=1);
10587  match(Set dst (SqrtD src));
10588  format %{ "DSQRT  $dst,$src" %}
10589  opcode(0xFA, 0xD9);
10590  ins_encode( Push_Reg_D(src),
10591              OpcS, OpcP, Pop_Reg_D(dst) );
10592  ins_pipe( pipe_slow );
10593%}
10594
10595instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10596  predicate (UseSSE<=1);
10597  match(Set Y (PowD X Y));  // Raise X to the Yth power
10598  effect(KILL rax, KILL rbx, KILL rcx);
10599  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10600            "FLD_D  $X\n\t"
10601            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10602
10603            "FDUP   \t\t\t# Q Q\n\t"
10604            "FRNDINT\t\t\t# int(Q) Q\n\t"
10605            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10606            "FISTP  dword [ESP]\n\t"
10607            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10608            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10609            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10610            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10611            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10612            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10613            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10614            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10615            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10616            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10617            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10618            "MOV    [ESP+0],0\n\t"
10619            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10620
10621            "ADD    ESP,8"
10622             %}
10623  ins_encode( push_stack_temp_qword,
10624              Push_Reg_D(X),
10625              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10626              pow_exp_core_encoding,
10627              pop_stack_temp_qword);
10628  ins_pipe( pipe_slow );
10629%}
10630
10631instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10632  predicate (UseSSE>=2);
10633  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10634  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10635  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10636            "MOVSD  [ESP],$src1\n\t"
10637            "FLD    FPR1,$src1\n\t"
10638            "MOVSD  [ESP],$src0\n\t"
10639            "FLD    FPR1,$src0\n\t"
10640            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10641
10642            "FDUP   \t\t\t# Q Q\n\t"
10643            "FRNDINT\t\t\t# int(Q) Q\n\t"
10644            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10645            "FISTP  dword [ESP]\n\t"
10646            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10647            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10648            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10649            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10650            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10651            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10652            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10653            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10654            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10655            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10656            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10657            "MOV    [ESP+0],0\n\t"
10658            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10659
10660            "FST_D  [ESP]\n\t"
10661            "MOVSD  $dst,[ESP]\n\t"
10662            "ADD    ESP,8"
10663             %}
10664  ins_encode( push_stack_temp_qword,
10665              push_xmm_to_fpr1(src1),
10666              push_xmm_to_fpr1(src0),
10667              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10668              pow_exp_core_encoding,
10669              Push_ResultXD(dst) );
10670  ins_pipe( pipe_slow );
10671%}
10672
10673
10674instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10675  predicate (UseSSE<=1);
10676  match(Set dpr1 (ExpD dpr1));
10677  effect(KILL rax, KILL rbx, KILL rcx);
10678  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10679            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10680            "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10681
10682            "FDUP   \t\t\t# Q Q\n\t"
10683            "FRNDINT\t\t\t# int(Q) Q\n\t"
10684            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10685            "FISTP  dword [ESP]\n\t"
10686            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10687            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10688            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10689            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10690            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10691            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10692            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10693            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10694            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10695            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10696            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10697            "MOV    [ESP+0],0\n\t"
10698            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10699
10700            "ADD    ESP,8"
10701             %}
10702  ins_encode( push_stack_temp_qword,
10703              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10704              Opcode(0xDE), Opcode(0xC9),   // fmulp
10705              pow_exp_core_encoding,
10706              pop_stack_temp_qword);
10707  ins_pipe( pipe_slow );
10708%}
10709
10710instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10711  predicate (UseSSE>=2);
10712  match(Set dst (ExpD src));
10713  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10714  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10715            "MOVSD  [ESP],$src\n\t"
10716            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10717            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10718
10719            "FDUP   \t\t\t# Q Q\n\t"
10720            "FRNDINT\t\t\t# int(Q) Q\n\t"
10721            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10722            "FISTP  dword [ESP]\n\t"
10723            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10724            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10725            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10726            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10727            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10728            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10729            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10730            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10731            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10732            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10733            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10734            "MOV    [ESP+0],0\n\t"
10735            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10736
10737            "FST_D  [ESP]\n\t"
10738            "MOVSD  $dst,[ESP]\n\t"
10739            "ADD    ESP,8"
10740             %}
10741  ins_encode( Push_SrcXD(src),
10742              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10743              Opcode(0xDE), Opcode(0xC9),   // fmulp
10744              pow_exp_core_encoding,
10745              Push_ResultXD(dst) );
10746  ins_pipe( pipe_slow );
10747%}
10748
10749
10750
10751instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10752  predicate (UseSSE<=1);
10753  // The source Double operand on FPU stack
10754  match(Set dst (Log10D src));
10755  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10756  // fxch         ; swap ST(0) with ST(1)
10757  // fyl2x        ; compute log_10(2) * log_2(x)
10758  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10759            "FXCH   \n\t"
10760            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10761         %}
10762  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10763              Opcode(0xD9), Opcode(0xC9),   // fxch
10764              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10765
10766  ins_pipe( pipe_slow );
10767%}
10768
10769instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10770  predicate (UseSSE>=2);
10771  effect(KILL cr);
10772  match(Set dst (Log10D src));
10773  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10774  // fyl2x        ; compute log_10(2) * log_2(x)
10775  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10776            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10777         %}
10778  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10779              Push_SrcXD(src),
10780              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10781              Push_ResultXD(dst));
10782
10783  ins_pipe( pipe_slow );
10784%}
10785
10786instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10787  predicate (UseSSE<=1);
10788  // The source Double operand on FPU stack
10789  match(Set dst (LogD src));
10790  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10791  // fxch         ; swap ST(0) with ST(1)
10792  // fyl2x        ; compute log_e(2) * log_2(x)
10793  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10794            "FXCH   \n\t"
10795            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10796         %}
10797  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10798              Opcode(0xD9), Opcode(0xC9),   // fxch
10799              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10800
10801  ins_pipe( pipe_slow );
10802%}
10803
10804instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10805  predicate (UseSSE>=2);
10806  effect(KILL cr);
10807  // The source and result Double operands in XMM registers
10808  match(Set dst (LogD src));
10809  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10810  // fyl2x        ; compute log_e(2) * log_2(x)
10811  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10812            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10813         %}
10814  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10815              Push_SrcXD(src),
10816              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10817              Push_ResultXD(dst));
10818  ins_pipe( pipe_slow );
10819%}
10820
10821//-------------Float Instructions-------------------------------
10822// Float Math
10823
10824// Code for float compare:
10825//     fcompp();
10826//     fwait(); fnstsw_ax();
10827//     sahf();
10828//     movl(dst, unordered_result);
10829//     jcc(Assembler::parity, exit);
10830//     movl(dst, less_result);
10831//     jcc(Assembler::below, exit);
10832//     movl(dst, equal_result);
10833//     jcc(Assembler::equal, exit);
10834//     movl(dst, greater_result);
10835//   exit:
10836
10837// P6 version of float compare, sets condition codes in EFLAGS
10838instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10839  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10840  match(Set cr (CmpF src1 src2));
10841  effect(KILL rax);
10842  ins_cost(150);
10843  format %{ "FLD    $src1\n\t"
10844            "FUCOMIP ST,$src2  // P6 instruction\n\t"
10845            "JNP    exit\n\t"
10846            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10847            "SAHF\n"
10848     "exit:\tNOP               // avoid branch to branch" %}
10849  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10850  ins_encode( Push_Reg_D(src1),
10851              OpcP, RegOpc(src2),
10852              cmpF_P6_fixup );
10853  ins_pipe( pipe_slow );
10854%}
10855
10856instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
10857  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10858  match(Set cr (CmpF src1 src2));
10859  ins_cost(100);
10860  format %{ "FLD    $src1\n\t"
10861            "FUCOMIP ST,$src2  // P6 instruction" %}
10862  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10863  ins_encode( Push_Reg_D(src1),
10864              OpcP, RegOpc(src2));
10865  ins_pipe( pipe_slow );
10866%}
10867
10868
10869// Compare & branch
10870instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10871  predicate(UseSSE == 0);
10872  match(Set cr (CmpF src1 src2));
10873  effect(KILL rax);
10874  ins_cost(200);
10875  format %{ "FLD    $src1\n\t"
10876            "FCOMp  $src2\n\t"
10877            "FNSTSW AX\n\t"
10878            "TEST   AX,0x400\n\t"
10879            "JZ,s   flags\n\t"
10880            "MOV    AH,1\t# unordered treat as LT\n"
10881    "flags:\tSAHF" %}
10882  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10883  ins_encode( Push_Reg_D(src1),
10884              OpcP, RegOpc(src2),
10885              fpu_flags);
10886  ins_pipe( pipe_slow );
10887%}
10888
10889// Compare vs zero into -1,0,1
10890instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10891  predicate(UseSSE == 0);
10892  match(Set dst (CmpF3 src1 zero));
10893  effect(KILL cr, KILL rax);
10894  ins_cost(280);
10895  format %{ "FTSTF  $dst,$src1" %}
10896  opcode(0xE4, 0xD9);
10897  ins_encode( Push_Reg_D(src1),
10898              OpcS, OpcP, PopFPU,
10899              CmpF_Result(dst));
10900  ins_pipe( pipe_slow );
10901%}
10902
10903// Compare into -1,0,1
10904instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10905  predicate(UseSSE == 0);
10906  match(Set dst (CmpF3 src1 src2));
10907  effect(KILL cr, KILL rax);
10908  ins_cost(300);
10909  format %{ "FCMPF  $dst,$src1,$src2" %}
10910  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10911  ins_encode( Push_Reg_D(src1),
10912              OpcP, RegOpc(src2),
10913              CmpF_Result(dst));
10914  ins_pipe( pipe_slow );
10915%}
10916
10917// float compare and set condition codes in EFLAGS by XMM regs
10918instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10919  predicate(UseSSE>=1);
10920  match(Set cr (CmpF dst src));
10921  effect(KILL rax);
10922  ins_cost(145);
10923  format %{ "COMISS $dst,$src\n"
10924          "\tJNP    exit\n"
10925          "\tMOV    ah,1       // saw a NaN, set CF\n"
10926          "\tSAHF\n"
10927     "exit:\tNOP               // avoid branch to branch" %}
10928  opcode(0x0F, 0x2F);
10929  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10930  ins_pipe( pipe_slow );
10931%}
10932
10933instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
10934  predicate(UseSSE>=1);
10935  match(Set cr (CmpF dst src));
10936  ins_cost(100);
10937  format %{ "COMISS $dst,$src" %}
10938  opcode(0x0F, 0x2F);
10939  ins_encode(OpcP, OpcS, RegReg(dst, src));
10940  ins_pipe( pipe_slow );
10941%}
10942
10943// float compare and set condition codes in EFLAGS by XMM regs
10944instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10945  predicate(UseSSE>=1);
10946  match(Set cr (CmpF dst (LoadF src)));
10947  effect(KILL rax);
10948  ins_cost(165);
10949  format %{ "COMISS $dst,$src\n"
10950          "\tJNP    exit\n"
10951          "\tMOV    ah,1       // saw a NaN, set CF\n"
10952          "\tSAHF\n"
10953     "exit:\tNOP               // avoid branch to branch" %}
10954  opcode(0x0F, 0x2F);
10955  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10956  ins_pipe( pipe_slow );
10957%}
10958
10959instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
10960  predicate(UseSSE>=1);
10961  match(Set cr (CmpF dst (LoadF src)));
10962  ins_cost(100);
10963  format %{ "COMISS $dst,$src" %}
10964  opcode(0x0F, 0x2F);
10965  ins_encode(OpcP, OpcS, RegMem(dst, src));
10966  ins_pipe( pipe_slow );
10967%}
10968
10969// Compare into -1,0,1 in XMM
10970instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10971  predicate(UseSSE>=1);
10972  match(Set dst (CmpF3 src1 src2));
10973  effect(KILL cr);
10974  ins_cost(255);
10975  format %{ "XOR    $dst,$dst\n"
10976          "\tCOMISS $src1,$src2\n"
10977          "\tJP,s   nan\n"
10978          "\tJEQ,s  exit\n"
10979          "\tJA,s   inc\n"
10980      "nan:\tDEC    $dst\n"
10981          "\tJMP,s  exit\n"
10982      "inc:\tINC    $dst\n"
10983      "exit:"
10984                %}
10985  opcode(0x0F, 0x2F);
10986  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10987  ins_pipe( pipe_slow );
10988%}
10989
10990// Compare into -1,0,1 in XMM and memory
10991instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10992  predicate(UseSSE>=1);
10993  match(Set dst (CmpF3 src1 (LoadF mem)));
10994  effect(KILL cr);
10995  ins_cost(275);
10996  format %{ "COMISS $src1,$mem\n"
10997          "\tMOV    $dst,0\t\t# do not blow flags\n"
10998          "\tJP,s   nan\n"
10999          "\tJEQ,s  exit\n"
11000          "\tJA,s   inc\n"
11001      "nan:\tDEC    $dst\n"
11002          "\tJMP,s  exit\n"
11003      "inc:\tINC    $dst\n"
11004      "exit:"
11005                %}
11006  opcode(0x0F, 0x2F);
11007  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
11008  ins_pipe( pipe_slow );
11009%}
11010
11011// Spill to obtain 24-bit precision
11012instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
11013  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11014  match(Set dst (SubF src1 src2));
11015
11016  format %{ "FSUB   $dst,$src1 - $src2" %}
11017  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
11018  ins_encode( Push_Reg_F(src1),
11019              OpcReg_F(src2),
11020              Pop_Mem_F(dst) );
11021  ins_pipe( fpu_mem_reg_reg );
11022%}
11023//
11024// This instruction does not round to 24-bits
11025instruct subF_reg(regF dst, regF src) %{
11026  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11027  match(Set dst (SubF dst src));
11028
11029  format %{ "FSUB   $dst,$src" %}
11030  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
11031  ins_encode( Push_Reg_F(src),
11032              OpcP, RegOpc(dst) );
11033  ins_pipe( fpu_reg_reg );
11034%}
11035
11036// Spill to obtain 24-bit precision
11037instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
11038  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11039  match(Set dst (AddF src1 src2));
11040
11041  format %{ "FADD   $dst,$src1,$src2" %}
11042  opcode(0xD8, 0x0); /* D8 C0+i */
11043  ins_encode( Push_Reg_F(src2),
11044              OpcReg_F(src1),
11045              Pop_Mem_F(dst) );
11046  ins_pipe( fpu_mem_reg_reg );
11047%}
11048//
11049// This instruction does not round to 24-bits
11050instruct addF_reg(regF dst, regF src) %{
11051  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11052  match(Set dst (AddF dst src));
11053
11054  format %{ "FLD    $src\n\t"
11055            "FADDp  $dst,ST" %}
11056  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
11057  ins_encode( Push_Reg_F(src),
11058              OpcP, RegOpc(dst) );
11059  ins_pipe( fpu_reg_reg );
11060%}
11061
11062// Add two single precision floating point values in xmm
11063instruct addX_reg(regX dst, regX src) %{
11064  predicate(UseSSE>=1);
11065  match(Set dst (AddF dst src));
11066  format %{ "ADDSS  $dst,$src" %}
11067  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
11068  ins_pipe( pipe_slow );
11069%}
11070
11071instruct addX_imm(regX dst, immXF con) %{
11072  predicate(UseSSE>=1);
11073  match(Set dst (AddF dst con));
11074  format %{ "ADDSS  $dst,[$con]" %}
11075  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
11076  ins_pipe( pipe_slow );
11077%}
11078
11079instruct addX_mem(regX dst, memory mem) %{
11080  predicate(UseSSE>=1);
11081  match(Set dst (AddF dst (LoadF mem)));
11082  format %{ "ADDSS  $dst,$mem" %}
11083  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
11084  ins_pipe( pipe_slow );
11085%}
11086
11087// Subtract two single precision floating point values in xmm
11088instruct subX_reg(regX dst, regX src) %{
11089  predicate(UseSSE>=1);
11090  match(Set dst (SubF dst src));
11091  format %{ "SUBSS  $dst,$src" %}
11092  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
11093  ins_pipe( pipe_slow );
11094%}
11095
11096instruct subX_imm(regX dst, immXF con) %{
11097  predicate(UseSSE>=1);
11098  match(Set dst (SubF dst con));
11099  format %{ "SUBSS  $dst,[$con]" %}
11100  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
11101  ins_pipe( pipe_slow );
11102%}
11103
11104instruct subX_mem(regX dst, memory mem) %{
11105  predicate(UseSSE>=1);
11106  match(Set dst (SubF dst (LoadF mem)));
11107  format %{ "SUBSS  $dst,$mem" %}
11108  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
11109  ins_pipe( pipe_slow );
11110%}
11111
11112// Multiply two single precision floating point values in xmm
11113instruct mulX_reg(regX dst, regX src) %{
11114  predicate(UseSSE>=1);
11115  match(Set dst (MulF dst src));
11116  format %{ "MULSS  $dst,$src" %}
11117  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
11118  ins_pipe( pipe_slow );
11119%}
11120
11121instruct mulX_imm(regX dst, immXF con) %{
11122  predicate(UseSSE>=1);
11123  match(Set dst (MulF dst con));
11124  format %{ "MULSS  $dst,[$con]" %}
11125  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
11126  ins_pipe( pipe_slow );
11127%}
11128
11129instruct mulX_mem(regX dst, memory mem) %{
11130  predicate(UseSSE>=1);
11131  match(Set dst (MulF dst (LoadF mem)));
11132  format %{ "MULSS  $dst,$mem" %}
11133  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
11134  ins_pipe( pipe_slow );
11135%}
11136
11137// Divide two single precision floating point values in xmm
11138instruct divX_reg(regX dst, regX src) %{
11139  predicate(UseSSE>=1);
11140  match(Set dst (DivF dst src));
11141  format %{ "DIVSS  $dst,$src" %}
11142  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
11143  ins_pipe( pipe_slow );
11144%}
11145
11146instruct divX_imm(regX dst, immXF con) %{
11147  predicate(UseSSE>=1);
11148  match(Set dst (DivF dst con));
11149  format %{ "DIVSS  $dst,[$con]" %}
11150  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
11151  ins_pipe( pipe_slow );
11152%}
11153
11154instruct divX_mem(regX dst, memory mem) %{
11155  predicate(UseSSE>=1);
11156  match(Set dst (DivF dst (LoadF mem)));
11157  format %{ "DIVSS  $dst,$mem" %}
11158  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
11159  ins_pipe( pipe_slow );
11160%}
11161
11162// Get the square root of a single precision floating point values in xmm
11163instruct sqrtX_reg(regX dst, regX src) %{
11164  predicate(UseSSE>=1);
11165  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
11166  format %{ "SQRTSS $dst,$src" %}
11167  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11168  ins_pipe( pipe_slow );
11169%}
11170
11171instruct sqrtX_mem(regX dst, memory mem) %{
11172  predicate(UseSSE>=1);
11173  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
11174  format %{ "SQRTSS $dst,$mem" %}
11175  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11176  ins_pipe( pipe_slow );
11177%}
11178
11179// Get the square root of a double precision floating point values in xmm
11180instruct sqrtXD_reg(regXD dst, regXD src) %{
11181  predicate(UseSSE>=2);
11182  match(Set dst (SqrtD src));
11183  format %{ "SQRTSD $dst,$src" %}
11184  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11185  ins_pipe( pipe_slow );
11186%}
11187
11188instruct sqrtXD_mem(regXD dst, memory mem) %{
11189  predicate(UseSSE>=2);
11190  match(Set dst (SqrtD (LoadD mem)));
11191  format %{ "SQRTSD $dst,$mem" %}
11192  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11193  ins_pipe( pipe_slow );
11194%}
11195
11196instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11197  predicate(UseSSE==0);
11198  match(Set dst (AbsF src));
11199  ins_cost(100);
11200  format %{ "FABS" %}
11201  opcode(0xE1, 0xD9);
11202  ins_encode( OpcS, OpcP );
11203  ins_pipe( fpu_reg_reg );
11204%}
11205
11206instruct absX_reg(regX dst ) %{
11207  predicate(UseSSE>=1);
11208  match(Set dst (AbsF dst));
11209  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11210  ins_encode( AbsXF_encoding(dst));
11211  ins_pipe( pipe_slow );
11212%}
11213
11214instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11215  predicate(UseSSE==0);
11216  match(Set dst (NegF src));
11217  ins_cost(100);
11218  format %{ "FCHS" %}
11219  opcode(0xE0, 0xD9);
11220  ins_encode( OpcS, OpcP );
11221  ins_pipe( fpu_reg_reg );
11222%}
11223
11224instruct negX_reg( regX dst ) %{
11225  predicate(UseSSE>=1);
11226  match(Set dst (NegF dst));
11227  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11228  ins_encode( NegXF_encoding(dst));
11229  ins_pipe( pipe_slow );
11230%}
11231
11232// Cisc-alternate to addF_reg
11233// Spill to obtain 24-bit precision
11234instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11235  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11236  match(Set dst (AddF src1 (LoadF src2)));
11237
11238  format %{ "FLD    $src2\n\t"
11239            "FADD   ST,$src1\n\t"
11240            "FSTP_S $dst" %}
11241  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11242  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11243              OpcReg_F(src1),
11244              Pop_Mem_F(dst) );
11245  ins_pipe( fpu_mem_reg_mem );
11246%}
11247//
11248// Cisc-alternate to addF_reg
11249// This instruction does not round to 24-bits
11250instruct addF_reg_mem(regF dst, memory src) %{
11251  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11252  match(Set dst (AddF dst (LoadF src)));
11253
11254  format %{ "FADD   $dst,$src" %}
11255  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11256  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11257              OpcP, RegOpc(dst) );
11258  ins_pipe( fpu_reg_mem );
11259%}
11260
11261// // Following two instructions for _222_mpegaudio
11262// Spill to obtain 24-bit precision
11263instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11264  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11265  match(Set dst (AddF src1 src2));
11266
11267  format %{ "FADD   $dst,$src1,$src2" %}
11268  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11269  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11270              OpcReg_F(src2),
11271              Pop_Mem_F(dst) );
11272  ins_pipe( fpu_mem_reg_mem );
11273%}
11274
11275// Cisc-spill variant
11276// Spill to obtain 24-bit precision
11277instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11278  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11279  match(Set dst (AddF src1 (LoadF src2)));
11280
11281  format %{ "FADD   $dst,$src1,$src2 cisc" %}
11282  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11283  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11284              set_instruction_start,
11285              OpcP, RMopc_Mem(secondary,src1),
11286              Pop_Mem_F(dst) );
11287  ins_pipe( fpu_mem_mem_mem );
11288%}
11289
11290// Spill to obtain 24-bit precision
11291instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11292  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11293  match(Set dst (AddF src1 src2));
11294
11295  format %{ "FADD   $dst,$src1,$src2" %}
11296  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11297  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11298              set_instruction_start,
11299              OpcP, RMopc_Mem(secondary,src1),
11300              Pop_Mem_F(dst) );
11301  ins_pipe( fpu_mem_mem_mem );
11302%}
11303
11304
11305// Spill to obtain 24-bit precision
11306instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11307  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11308  match(Set dst (AddF src1 src2));
11309  format %{ "FLD    $src1\n\t"
11310            "FADD   $src2\n\t"
11311            "FSTP_S $dst"  %}
11312  opcode(0xD8, 0x00);       /* D8 /0 */
11313  ins_encode( Push_Reg_F(src1),
11314              Opc_MemImm_F(src2),
11315              Pop_Mem_F(dst));
11316  ins_pipe( fpu_mem_reg_con );
11317%}
11318//
11319// This instruction does not round to 24-bits
11320instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
11321  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11322  match(Set dst (AddF src1 src2));
11323  format %{ "FLD    $src1\n\t"
11324            "FADD   $src2\n\t"
11325            "FSTP_S $dst"  %}
11326  opcode(0xD8, 0x00);       /* D8 /0 */
11327  ins_encode( Push_Reg_F(src1),
11328              Opc_MemImm_F(src2),
11329              Pop_Reg_F(dst));
11330  ins_pipe( fpu_reg_reg_con );
11331%}
11332
11333// Spill to obtain 24-bit precision
11334instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11335  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11336  match(Set dst (MulF src1 src2));
11337
11338  format %{ "FLD    $src1\n\t"
11339            "FMUL   $src2\n\t"
11340            "FSTP_S $dst"  %}
11341  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11342  ins_encode( Push_Reg_F(src1),
11343              OpcReg_F(src2),
11344              Pop_Mem_F(dst) );
11345  ins_pipe( fpu_mem_reg_reg );
11346%}
11347//
11348// This instruction does not round to 24-bits
11349instruct mulF_reg(regF dst, regF src1, regF src2) %{
11350  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11351  match(Set dst (MulF src1 src2));
11352
11353  format %{ "FLD    $src1\n\t"
11354            "FMUL   $src2\n\t"
11355            "FSTP_S $dst"  %}
11356  opcode(0xD8, 0x1); /* D8 C8+i */
11357  ins_encode( Push_Reg_F(src2),
11358              OpcReg_F(src1),
11359              Pop_Reg_F(dst) );
11360  ins_pipe( fpu_reg_reg_reg );
11361%}
11362
11363
11364// Spill to obtain 24-bit precision
11365// Cisc-alternate to reg-reg multiply
11366instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11367  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11368  match(Set dst (MulF src1 (LoadF src2)));
11369
11370  format %{ "FLD_S  $src2\n\t"
11371            "FMUL   $src1\n\t"
11372            "FSTP_S $dst"  %}
11373  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11374  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11375              OpcReg_F(src1),
11376              Pop_Mem_F(dst) );
11377  ins_pipe( fpu_mem_reg_mem );
11378%}
11379//
11380// This instruction does not round to 24-bits
11381// Cisc-alternate to reg-reg multiply
11382instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11383  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11384  match(Set dst (MulF src1 (LoadF src2)));
11385
11386  format %{ "FMUL   $dst,$src1,$src2" %}
11387  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11388  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11389              OpcReg_F(src1),
11390              Pop_Reg_F(dst) );
11391  ins_pipe( fpu_reg_reg_mem );
11392%}
11393
11394// Spill to obtain 24-bit precision
11395instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11396  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11397  match(Set dst (MulF src1 src2));
11398
11399  format %{ "FMUL   $dst,$src1,$src2" %}
11400  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11401  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11402              set_instruction_start,
11403              OpcP, RMopc_Mem(secondary,src1),
11404              Pop_Mem_F(dst) );
11405  ins_pipe( fpu_mem_mem_mem );
11406%}
11407
11408// Spill to obtain 24-bit precision
11409instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11410  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11411  match(Set dst (MulF src1 src2));
11412
11413  format %{ "FMULc $dst,$src1,$src2" %}
11414  opcode(0xD8, 0x1);  /* D8 /1*/
11415  ins_encode( Push_Reg_F(src1),
11416              Opc_MemImm_F(src2),
11417              Pop_Mem_F(dst));
11418  ins_pipe( fpu_mem_reg_con );
11419%}
11420//
11421// This instruction does not round to 24-bits
11422instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
11423  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11424  match(Set dst (MulF src1 src2));
11425
11426  format %{ "FMULc $dst. $src1, $src2" %}
11427  opcode(0xD8, 0x1);  /* D8 /1*/
11428  ins_encode( Push_Reg_F(src1),
11429              Opc_MemImm_F(src2),
11430              Pop_Reg_F(dst));
11431  ins_pipe( fpu_reg_reg_con );
11432%}
11433
11434
11435//
11436// MACRO1 -- subsume unshared load into mulF
11437// This instruction does not round to 24-bits
11438instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11439  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11440  match(Set dst (MulF (LoadF mem1) src));
11441
11442  format %{ "FLD    $mem1    ===MACRO1===\n\t"
11443            "FMUL   ST,$src\n\t"
11444            "FSTP   $dst" %}
11445  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11446  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11447              OpcReg_F(src),
11448              Pop_Reg_F(dst) );
11449  ins_pipe( fpu_reg_reg_mem );
11450%}
11451//
11452// MACRO2 -- addF a mulF which subsumed an unshared load
11453// This instruction does not round to 24-bits
11454instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11455  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11456  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11457  ins_cost(95);
11458
11459  format %{ "FLD    $mem1     ===MACRO2===\n\t"
11460            "FMUL   ST,$src1  subsume mulF left load\n\t"
11461            "FADD   ST,$src2\n\t"
11462            "FSTP   $dst" %}
11463  opcode(0xD9); /* LoadF D9 /0 */
11464  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11465              FMul_ST_reg(src1),
11466              FAdd_ST_reg(src2),
11467              Pop_Reg_F(dst) );
11468  ins_pipe( fpu_reg_mem_reg_reg );
11469%}
11470
11471// MACRO3 -- addF a mulF
11472// This instruction does not round to 24-bits.  It is a '2-address'
11473// instruction in that the result goes back to src2.  This eliminates
11474// a move from the macro; possibly the register allocator will have
11475// to add it back (and maybe not).
11476instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11477  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11478  match(Set src2 (AddF (MulF src0 src1) src2));
11479
11480  format %{ "FLD    $src0     ===MACRO3===\n\t"
11481            "FMUL   ST,$src1\n\t"
11482            "FADDP  $src2,ST" %}
11483  opcode(0xD9); /* LoadF D9 /0 */
11484  ins_encode( Push_Reg_F(src0),
11485              FMul_ST_reg(src1),
11486              FAddP_reg_ST(src2) );
11487  ins_pipe( fpu_reg_reg_reg );
11488%}
11489
11490// MACRO4 -- divF subF
11491// This instruction does not round to 24-bits
11492instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11493  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11494  match(Set dst (DivF (SubF src2 src1) src3));
11495
11496  format %{ "FLD    $src2   ===MACRO4===\n\t"
11497            "FSUB   ST,$src1\n\t"
11498            "FDIV   ST,$src3\n\t"
11499            "FSTP  $dst" %}
11500  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11501  ins_encode( Push_Reg_F(src2),
11502              subF_divF_encode(src1,src3),
11503              Pop_Reg_F(dst) );
11504  ins_pipe( fpu_reg_reg_reg_reg );
11505%}
11506
11507// Spill to obtain 24-bit precision
11508instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11509  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11510  match(Set dst (DivF src1 src2));
11511
11512  format %{ "FDIV   $dst,$src1,$src2" %}
11513  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11514  ins_encode( Push_Reg_F(src1),
11515              OpcReg_F(src2),
11516              Pop_Mem_F(dst) );
11517  ins_pipe( fpu_mem_reg_reg );
11518%}
11519//
11520// This instruction does not round to 24-bits
11521instruct divF_reg(regF dst, regF src) %{
11522  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11523  match(Set dst (DivF dst src));
11524
11525  format %{ "FDIV   $dst,$src" %}
11526  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11527  ins_encode( Push_Reg_F(src),
11528              OpcP, RegOpc(dst) );
11529  ins_pipe( fpu_reg_reg );
11530%}
11531
11532
11533// Spill to obtain 24-bit precision
11534instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11535  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11536  match(Set dst (ModF src1 src2));
11537  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11538
11539  format %{ "FMOD   $dst,$src1,$src2" %}
11540  ins_encode( Push_Reg_Mod_D(src1, src2),
11541              emitModD(),
11542              Push_Result_Mod_D(src2),
11543              Pop_Mem_F(dst));
11544  ins_pipe( pipe_slow );
11545%}
11546//
11547// This instruction does not round to 24-bits
11548instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11549  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11550  match(Set dst (ModF dst src));
11551  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11552
11553  format %{ "FMOD   $dst,$src" %}
11554  ins_encode(Push_Reg_Mod_D(dst, src),
11555              emitModD(),
11556              Push_Result_Mod_D(src),
11557              Pop_Reg_F(dst));
11558  ins_pipe( pipe_slow );
11559%}
11560
11561instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11562  predicate(UseSSE>=1);
11563  match(Set dst (ModF src0 src1));
11564  effect(KILL rax, KILL cr);
11565  format %{ "SUB    ESP,4\t # FMOD\n"
11566          "\tMOVSS  [ESP+0],$src1\n"
11567          "\tFLD_S  [ESP+0]\n"
11568          "\tMOVSS  [ESP+0],$src0\n"
11569          "\tFLD_S  [ESP+0]\n"
11570     "loop:\tFPREM\n"
11571          "\tFWAIT\n"
11572          "\tFNSTSW AX\n"
11573          "\tSAHF\n"
11574          "\tJP     loop\n"
11575          "\tFSTP_S [ESP+0]\n"
11576          "\tMOVSS  $dst,[ESP+0]\n"
11577          "\tADD    ESP,4\n"
11578          "\tFSTP   ST0\t # Restore FPU Stack"
11579    %}
11580  ins_cost(250);
11581  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11582  ins_pipe( pipe_slow );
11583%}
11584
11585
11586//----------Arithmetic Conversion Instructions---------------------------------
11587// The conversions operations are all Alpha sorted.  Please keep it that way!
11588
11589instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11590  predicate(UseSSE==0);
11591  match(Set dst (RoundFloat src));
11592  ins_cost(125);
11593  format %{ "FST_S  $dst,$src\t# F-round" %}
11594  ins_encode( Pop_Mem_Reg_F(dst, src) );
11595  ins_pipe( fpu_mem_reg );
11596%}
11597
11598instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11599  predicate(UseSSE<=1);
11600  match(Set dst (RoundDouble src));
11601  ins_cost(125);
11602  format %{ "FST_D  $dst,$src\t# D-round" %}
11603  ins_encode( Pop_Mem_Reg_D(dst, src) );
11604  ins_pipe( fpu_mem_reg );
11605%}
11606
11607// Force rounding to 24-bit precision and 6-bit exponent
11608instruct convD2F_reg(stackSlotF dst, regD src) %{
11609  predicate(UseSSE==0);
11610  match(Set dst (ConvD2F src));
11611  format %{ "FST_S  $dst,$src\t# F-round" %}
11612  expand %{
11613    roundFloat_mem_reg(dst,src);
11614  %}
11615%}
11616
11617// Force rounding to 24-bit precision and 6-bit exponent
11618instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11619  predicate(UseSSE==1);
11620  match(Set dst (ConvD2F src));
11621  effect( KILL cr );
11622  format %{ "SUB    ESP,4\n\t"
11623            "FST_S  [ESP],$src\t# F-round\n\t"
11624            "MOVSS  $dst,[ESP]\n\t"
11625            "ADD ESP,4" %}
11626  ins_encode( D2X_encoding(dst, src) );
11627  ins_pipe( pipe_slow );
11628%}
11629
11630// Force rounding double precision to single precision
11631instruct convXD2X_reg(regX dst, regXD src) %{
11632  predicate(UseSSE>=2);
11633  match(Set dst (ConvD2F src));
11634  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11635  opcode(0xF2, 0x0F, 0x5A);
11636  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11637  ins_pipe( pipe_slow );
11638%}
11639
11640instruct convF2D_reg_reg(regD dst, regF src) %{
11641  predicate(UseSSE==0);
11642  match(Set dst (ConvF2D src));
11643  format %{ "FST_S  $dst,$src\t# D-round" %}
11644  ins_encode( Pop_Reg_Reg_D(dst, src));
11645  ins_pipe( fpu_reg_reg );
11646%}
11647
11648instruct convF2D_reg(stackSlotD dst, regF src) %{
11649  predicate(UseSSE==1);
11650  match(Set dst (ConvF2D src));
11651  format %{ "FST_D  $dst,$src\t# D-round" %}
11652  expand %{
11653    roundDouble_mem_reg(dst,src);
11654  %}
11655%}
11656
11657instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11658  predicate(UseSSE==1);
11659  match(Set dst (ConvF2D src));
11660  effect( KILL cr );
11661  format %{ "SUB    ESP,4\n\t"
11662            "MOVSS  [ESP] $src\n\t"
11663            "FLD_S  [ESP]\n\t"
11664            "ADD    ESP,4\n\t"
11665            "FSTP   $dst\t# D-round" %}
11666  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11667  ins_pipe( pipe_slow );
11668%}
11669
11670instruct convX2XD_reg(regXD dst, regX src) %{
11671  predicate(UseSSE>=2);
11672  match(Set dst (ConvF2D src));
11673  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11674  opcode(0xF3, 0x0F, 0x5A);
11675  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11676  ins_pipe( pipe_slow );
11677%}
11678
11679// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11680instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11681  predicate(UseSSE<=1);
11682  match(Set dst (ConvD2I src));
11683  effect( KILL tmp, KILL cr );
11684  format %{ "FLD    $src\t# Convert double to int \n\t"
11685            "FLDCW  trunc mode\n\t"
11686            "SUB    ESP,4\n\t"
11687            "FISTp  [ESP + #0]\n\t"
11688            "FLDCW  std/24-bit mode\n\t"
11689            "POP    EAX\n\t"
11690            "CMP    EAX,0x80000000\n\t"
11691            "JNE,s  fast\n\t"
11692            "FLD_D  $src\n\t"
11693            "CALL   d2i_wrapper\n"
11694      "fast:" %}
11695  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11696  ins_pipe( pipe_slow );
11697%}
11698
11699// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11700instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11701  predicate(UseSSE>=2);
11702  match(Set dst (ConvD2I src));
11703  effect( KILL tmp, KILL cr );
11704  format %{ "CVTTSD2SI $dst, $src\n\t"
11705            "CMP    $dst,0x80000000\n\t"
11706            "JNE,s  fast\n\t"
11707            "SUB    ESP, 8\n\t"
11708            "MOVSD  [ESP], $src\n\t"
11709            "FLD_D  [ESP]\n\t"
11710            "ADD    ESP, 8\n\t"
11711            "CALL   d2i_wrapper\n"
11712      "fast:" %}
11713  opcode(0x1); // double-precision conversion
11714  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11715  ins_pipe( pipe_slow );
11716%}
11717
11718instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11719  predicate(UseSSE<=1);
11720  match(Set dst (ConvD2L src));
11721  effect( KILL cr );
11722  format %{ "FLD    $src\t# Convert double to long\n\t"
11723            "FLDCW  trunc mode\n\t"
11724            "SUB    ESP,8\n\t"
11725            "FISTp  [ESP + #0]\n\t"
11726            "FLDCW  std/24-bit mode\n\t"
11727            "POP    EAX\n\t"
11728            "POP    EDX\n\t"
11729            "CMP    EDX,0x80000000\n\t"
11730            "JNE,s  fast\n\t"
11731            "TEST   EAX,EAX\n\t"
11732            "JNE,s  fast\n\t"
11733            "FLD    $src\n\t"
11734            "CALL   d2l_wrapper\n"
11735      "fast:" %}
11736  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11737  ins_pipe( pipe_slow );
11738%}
11739
11740// XMM lacks a float/double->long conversion, so use the old FPU stack.
11741instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11742  predicate (UseSSE>=2);
11743  match(Set dst (ConvD2L src));
11744  effect( KILL cr );
11745  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11746            "MOVSD  [ESP],$src\n\t"
11747            "FLD_D  [ESP]\n\t"
11748            "FLDCW  trunc mode\n\t"
11749            "FISTp  [ESP + #0]\n\t"
11750            "FLDCW  std/24-bit mode\n\t"
11751            "POP    EAX\n\t"
11752            "POP    EDX\n\t"
11753            "CMP    EDX,0x80000000\n\t"
11754            "JNE,s  fast\n\t"
11755            "TEST   EAX,EAX\n\t"
11756            "JNE,s  fast\n\t"
11757            "SUB    ESP,8\n\t"
11758            "MOVSD  [ESP],$src\n\t"
11759            "FLD_D  [ESP]\n\t"
11760            "CALL   d2l_wrapper\n"
11761      "fast:" %}
11762  ins_encode( XD2L_encoding(src) );
11763  ins_pipe( pipe_slow );
11764%}
11765
11766// Convert a double to an int.  Java semantics require we do complex
11767// manglations in the corner cases.  So we set the rounding mode to
11768// 'zero', store the darned double down as an int, and reset the
11769// rounding mode to 'nearest'.  The hardware stores a flag value down
11770// if we would overflow or converted a NAN; we check for this and
11771// and go the slow path if needed.
11772instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11773  predicate(UseSSE==0);
11774  match(Set dst (ConvF2I src));
11775  effect( KILL tmp, KILL cr );
11776  format %{ "FLD    $src\t# Convert float to int \n\t"
11777            "FLDCW  trunc mode\n\t"
11778            "SUB    ESP,4\n\t"
11779            "FISTp  [ESP + #0]\n\t"
11780            "FLDCW  std/24-bit mode\n\t"
11781            "POP    EAX\n\t"
11782            "CMP    EAX,0x80000000\n\t"
11783            "JNE,s  fast\n\t"
11784            "FLD    $src\n\t"
11785            "CALL   d2i_wrapper\n"
11786      "fast:" %}
11787  // D2I_encoding works for F2I
11788  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11789  ins_pipe( pipe_slow );
11790%}
11791
11792// Convert a float in xmm to an int reg.
11793instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11794  predicate(UseSSE>=1);
11795  match(Set dst (ConvF2I src));
11796  effect( KILL tmp, KILL cr );
11797  format %{ "CVTTSS2SI $dst, $src\n\t"
11798            "CMP    $dst,0x80000000\n\t"
11799            "JNE,s  fast\n\t"
11800            "SUB    ESP, 4\n\t"
11801            "MOVSS  [ESP], $src\n\t"
11802            "FLD    [ESP]\n\t"
11803            "ADD    ESP, 4\n\t"
11804            "CALL   d2i_wrapper\n"
11805      "fast:" %}
11806  opcode(0x0); // single-precision conversion
11807  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11808  ins_pipe( pipe_slow );
11809%}
11810
11811instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11812  predicate(UseSSE==0);
11813  match(Set dst (ConvF2L src));
11814  effect( KILL cr );
11815  format %{ "FLD    $src\t# Convert float to long\n\t"
11816            "FLDCW  trunc mode\n\t"
11817            "SUB    ESP,8\n\t"
11818            "FISTp  [ESP + #0]\n\t"
11819            "FLDCW  std/24-bit mode\n\t"
11820            "POP    EAX\n\t"
11821            "POP    EDX\n\t"
11822            "CMP    EDX,0x80000000\n\t"
11823            "JNE,s  fast\n\t"
11824            "TEST   EAX,EAX\n\t"
11825            "JNE,s  fast\n\t"
11826            "FLD    $src\n\t"
11827            "CALL   d2l_wrapper\n"
11828      "fast:" %}
11829  // D2L_encoding works for F2L
11830  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11831  ins_pipe( pipe_slow );
11832%}
11833
11834// XMM lacks a float/double->long conversion, so use the old FPU stack.
11835instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11836  predicate (UseSSE>=1);
11837  match(Set dst (ConvF2L src));
11838  effect( KILL cr );
11839  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11840            "MOVSS  [ESP],$src\n\t"
11841            "FLD_S  [ESP]\n\t"
11842            "FLDCW  trunc mode\n\t"
11843            "FISTp  [ESP + #0]\n\t"
11844            "FLDCW  std/24-bit mode\n\t"
11845            "POP    EAX\n\t"
11846            "POP    EDX\n\t"
11847            "CMP    EDX,0x80000000\n\t"
11848            "JNE,s  fast\n\t"
11849            "TEST   EAX,EAX\n\t"
11850            "JNE,s  fast\n\t"
11851            "SUB    ESP,4\t# Convert float to long\n\t"
11852            "MOVSS  [ESP],$src\n\t"
11853            "FLD_S  [ESP]\n\t"
11854            "ADD    ESP,4\n\t"
11855            "CALL   d2l_wrapper\n"
11856      "fast:" %}
11857  ins_encode( X2L_encoding(src) );
11858  ins_pipe( pipe_slow );
11859%}
11860
11861instruct convI2D_reg(regD dst, stackSlotI src) %{
11862  predicate( UseSSE<=1 );
11863  match(Set dst (ConvI2D src));
11864  format %{ "FILD   $src\n\t"
11865            "FSTP   $dst" %}
11866  opcode(0xDB, 0x0);  /* DB /0 */
11867  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
11868  ins_pipe( fpu_reg_mem );
11869%}
11870
11871instruct convI2XD_reg(regXD dst, eRegI src) %{
11872  predicate( UseSSE>=2 && !UseXmmI2D );
11873  match(Set dst (ConvI2D src));
11874  format %{ "CVTSI2SD $dst,$src" %}
11875  opcode(0xF2, 0x0F, 0x2A);
11876  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11877  ins_pipe( pipe_slow );
11878%}
11879
11880instruct convI2XD_mem(regXD dst, memory mem) %{
11881  predicate( UseSSE>=2 );
11882  match(Set dst (ConvI2D (LoadI mem)));
11883  format %{ "CVTSI2SD $dst,$mem" %}
11884  opcode(0xF2, 0x0F, 0x2A);
11885  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
11886  ins_pipe( pipe_slow );
11887%}
11888
11889instruct convXI2XD_reg(regXD dst, eRegI src)
11890%{
11891  predicate( UseSSE>=2 && UseXmmI2D );
11892  match(Set dst (ConvI2D src));
11893
11894  format %{ "MOVD  $dst,$src\n\t"
11895            "CVTDQ2PD $dst,$dst\t# i2d" %}
11896  ins_encode %{
11897    __ movdl($dst$$XMMRegister, $src$$Register);
11898    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11899  %}
11900  ins_pipe(pipe_slow); // XXX
11901%}
11902
11903instruct convI2D_mem(regD dst, memory mem) %{
11904  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11905  match(Set dst (ConvI2D (LoadI mem)));
11906  format %{ "FILD   $mem\n\t"
11907            "FSTP   $dst" %}
11908  opcode(0xDB);      /* DB /0 */
11909  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11910              Pop_Reg_D(dst));
11911  ins_pipe( fpu_reg_mem );
11912%}
11913
11914// Convert a byte to a float; no rounding step needed.
11915instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11916  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11917  match(Set dst (ConvI2F src));
11918  format %{ "FILD   $src\n\t"
11919            "FSTP   $dst" %}
11920
11921  opcode(0xDB, 0x0);  /* DB /0 */
11922  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11923  ins_pipe( fpu_reg_mem );
11924%}
11925
11926// In 24-bit mode, force exponent rounding by storing back out
11927instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11928  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11929  match(Set dst (ConvI2F src));
11930  ins_cost(200);
11931  format %{ "FILD   $src\n\t"
11932            "FSTP_S $dst" %}
11933  opcode(0xDB, 0x0);  /* DB /0 */
11934  ins_encode( Push_Mem_I(src),
11935              Pop_Mem_F(dst));
11936  ins_pipe( fpu_mem_mem );
11937%}
11938
11939// In 24-bit mode, force exponent rounding by storing back out
11940instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11941  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11942  match(Set dst (ConvI2F (LoadI mem)));
11943  ins_cost(200);
11944  format %{ "FILD   $mem\n\t"
11945            "FSTP_S $dst" %}
11946  opcode(0xDB);  /* DB /0 */
11947  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11948              Pop_Mem_F(dst));
11949  ins_pipe( fpu_mem_mem );
11950%}
11951
11952// This instruction does not round to 24-bits
11953instruct convI2F_reg(regF dst, stackSlotI src) %{
11954  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11955  match(Set dst (ConvI2F src));
11956  format %{ "FILD   $src\n\t"
11957            "FSTP   $dst" %}
11958  opcode(0xDB, 0x0);  /* DB /0 */
11959  ins_encode( Push_Mem_I(src),
11960              Pop_Reg_F(dst));
11961  ins_pipe( fpu_reg_mem );
11962%}
11963
11964// This instruction does not round to 24-bits
11965instruct convI2F_mem(regF dst, memory mem) %{
11966  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11967  match(Set dst (ConvI2F (LoadI mem)));
11968  format %{ "FILD   $mem\n\t"
11969            "FSTP   $dst" %}
11970  opcode(0xDB);      /* DB /0 */
11971  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11972              Pop_Reg_F(dst));
11973  ins_pipe( fpu_reg_mem );
11974%}
11975
11976// Convert an int to a float in xmm; no rounding step needed.
11977instruct convI2X_reg(regX dst, eRegI src) %{
11978  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11979  match(Set dst (ConvI2F src));
11980  format %{ "CVTSI2SS $dst, $src" %}
11981
11982  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11983  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11984  ins_pipe( pipe_slow );
11985%}
11986
11987 instruct convXI2X_reg(regX dst, eRegI src)
11988%{
11989  predicate( UseSSE>=2 && UseXmmI2F );
11990  match(Set dst (ConvI2F src));
11991
11992  format %{ "MOVD  $dst,$src\n\t"
11993            "CVTDQ2PS $dst,$dst\t# i2f" %}
11994  ins_encode %{
11995    __ movdl($dst$$XMMRegister, $src$$Register);
11996    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11997  %}
11998  ins_pipe(pipe_slow); // XXX
11999%}
12000
12001instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
12002  match(Set dst (ConvI2L src));
12003  effect(KILL cr);
12004  ins_cost(375);
12005  format %{ "MOV    $dst.lo,$src\n\t"
12006            "MOV    $dst.hi,$src\n\t"
12007            "SAR    $dst.hi,31" %}
12008  ins_encode(convert_int_long(dst,src));
12009  ins_pipe( ialu_reg_reg_long );
12010%}
12011
12012// Zero-extend convert int to long
12013instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
12014  match(Set dst (AndL (ConvI2L src) mask) );
12015  effect( KILL flags );
12016  ins_cost(250);
12017  format %{ "MOV    $dst.lo,$src\n\t"
12018            "XOR    $dst.hi,$dst.hi" %}
12019  opcode(0x33); // XOR
12020  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12021  ins_pipe( ialu_reg_reg_long );
12022%}
12023
12024// Zero-extend long
12025instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
12026  match(Set dst (AndL src mask) );
12027  effect( KILL flags );
12028  ins_cost(250);
12029  format %{ "MOV    $dst.lo,$src.lo\n\t"
12030            "XOR    $dst.hi,$dst.hi\n\t" %}
12031  opcode(0x33); // XOR
12032  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
12033  ins_pipe( ialu_reg_reg_long );
12034%}
12035
12036instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
12037  predicate (UseSSE<=1);
12038  match(Set dst (ConvL2D src));
12039  effect( KILL cr );
12040  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12041            "PUSH   $src.lo\n\t"
12042            "FILD   ST,[ESP + #0]\n\t"
12043            "ADD    ESP,8\n\t"
12044            "FSTP_D $dst\t# D-round" %}
12045  opcode(0xDF, 0x5);  /* DF /5 */
12046  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
12047  ins_pipe( pipe_slow );
12048%}
12049
12050instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
12051  predicate (UseSSE>=2);
12052  match(Set dst (ConvL2D src));
12053  effect( KILL cr );
12054  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12055            "PUSH   $src.lo\n\t"
12056            "FILD_D [ESP]\n\t"
12057            "FSTP_D [ESP]\n\t"
12058            "MOVSD  $dst,[ESP]\n\t"
12059            "ADD    ESP,8" %}
12060  opcode(0xDF, 0x5);  /* DF /5 */
12061  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
12062  ins_pipe( pipe_slow );
12063%}
12064
12065instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
12066  predicate (UseSSE>=1);
12067  match(Set dst (ConvL2F src));
12068  effect( KILL cr );
12069  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12070            "PUSH   $src.lo\n\t"
12071            "FILD_D [ESP]\n\t"
12072            "FSTP_S [ESP]\n\t"
12073            "MOVSS  $dst,[ESP]\n\t"
12074            "ADD    ESP,8" %}
12075  opcode(0xDF, 0x5);  /* DF /5 */
12076  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
12077  ins_pipe( pipe_slow );
12078%}
12079
12080instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
12081  match(Set dst (ConvL2F src));
12082  effect( KILL cr );
12083  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12084            "PUSH   $src.lo\n\t"
12085            "FILD   ST,[ESP + #0]\n\t"
12086            "ADD    ESP,8\n\t"
12087            "FSTP_S $dst\t# F-round" %}
12088  opcode(0xDF, 0x5);  /* DF /5 */
12089  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
12090  ins_pipe( pipe_slow );
12091%}
12092
12093instruct convL2I_reg( eRegI dst, eRegL src ) %{
12094  match(Set dst (ConvL2I src));
12095  effect( DEF dst, USE src );
12096  format %{ "MOV    $dst,$src.lo" %}
12097  ins_encode(enc_CopyL_Lo(dst,src));
12098  ins_pipe( ialu_reg_reg );
12099%}
12100
12101
12102instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
12103  match(Set dst (MoveF2I src));
12104  effect( DEF dst, USE src );
12105  ins_cost(100);
12106  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
12107  opcode(0x8B);
12108  ins_encode( OpcP, RegMem(dst,src));
12109  ins_pipe( ialu_reg_mem );
12110%}
12111
12112instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
12113  predicate(UseSSE==0);
12114  match(Set dst (MoveF2I src));
12115  effect( DEF dst, USE src );
12116
12117  ins_cost(125);
12118  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
12119  ins_encode( Pop_Mem_Reg_F(dst, src) );
12120  ins_pipe( fpu_mem_reg );
12121%}
12122
12123instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
12124  predicate(UseSSE>=1);
12125  match(Set dst (MoveF2I src));
12126  effect( DEF dst, USE src );
12127
12128  ins_cost(95);
12129  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
12130  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
12131  ins_pipe( pipe_slow );
12132%}
12133
12134instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
12135  predicate(UseSSE>=2);
12136  match(Set dst (MoveF2I src));
12137  effect( DEF dst, USE src );
12138  ins_cost(85);
12139  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
12140  ins_encode( MovX2I_reg(dst, src));
12141  ins_pipe( pipe_slow );
12142%}
12143
12144instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
12145  match(Set dst (MoveI2F src));
12146  effect( DEF dst, USE src );
12147
12148  ins_cost(100);
12149  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
12150  opcode(0x89);
12151  ins_encode( OpcPRegSS( dst, src ) );
12152  ins_pipe( ialu_mem_reg );
12153%}
12154
12155
12156instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
12157  predicate(UseSSE==0);
12158  match(Set dst (MoveI2F src));
12159  effect(DEF dst, USE src);
12160
12161  ins_cost(125);
12162  format %{ "FLD_S  $src\n\t"
12163            "FSTP   $dst\t# MoveI2F_stack_reg" %}
12164  opcode(0xD9);               /* D9 /0, FLD m32real */
12165  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12166              Pop_Reg_F(dst) );
12167  ins_pipe( fpu_reg_mem );
12168%}
12169
12170instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
12171  predicate(UseSSE>=1);
12172  match(Set dst (MoveI2F src));
12173  effect( DEF dst, USE src );
12174
12175  ins_cost(95);
12176  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
12177  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12178  ins_pipe( pipe_slow );
12179%}
12180
12181instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
12182  predicate(UseSSE>=2);
12183  match(Set dst (MoveI2F src));
12184  effect( DEF dst, USE src );
12185
12186  ins_cost(85);
12187  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12188  ins_encode( MovI2X_reg(dst, src) );
12189  ins_pipe( pipe_slow );
12190%}
12191
12192instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12193  match(Set dst (MoveD2L src));
12194  effect(DEF dst, USE src);
12195
12196  ins_cost(250);
12197  format %{ "MOV    $dst.lo,$src\n\t"
12198            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12199  opcode(0x8B, 0x8B);
12200  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12201  ins_pipe( ialu_mem_long_reg );
12202%}
12203
12204instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12205  predicate(UseSSE<=1);
12206  match(Set dst (MoveD2L src));
12207  effect(DEF dst, USE src);
12208
12209  ins_cost(125);
12210  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12211  ins_encode( Pop_Mem_Reg_D(dst, src) );
12212  ins_pipe( fpu_mem_reg );
12213%}
12214
12215instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12216  predicate(UseSSE>=2);
12217  match(Set dst (MoveD2L src));
12218  effect(DEF dst, USE src);
12219  ins_cost(95);
12220
12221  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12222  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12223  ins_pipe( pipe_slow );
12224%}
12225
12226instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12227  predicate(UseSSE>=2);
12228  match(Set dst (MoveD2L src));
12229  effect(DEF dst, USE src, TEMP tmp);
12230  ins_cost(85);
12231  format %{ "MOVD   $dst.lo,$src\n\t"
12232            "PSHUFLW $tmp,$src,0x4E\n\t"
12233            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12234  ins_encode( MovXD2L_reg(dst, src, tmp) );
12235  ins_pipe( pipe_slow );
12236%}
12237
12238instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12239  match(Set dst (MoveL2D src));
12240  effect(DEF dst, USE src);
12241
12242  ins_cost(200);
12243  format %{ "MOV    $dst,$src.lo\n\t"
12244            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12245  opcode(0x89, 0x89);
12246  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12247  ins_pipe( ialu_mem_long_reg );
12248%}
12249
12250
12251instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12252  predicate(UseSSE<=1);
12253  match(Set dst (MoveL2D src));
12254  effect(DEF dst, USE src);
12255  ins_cost(125);
12256
12257  format %{ "FLD_D  $src\n\t"
12258            "FSTP   $dst\t# MoveL2D_stack_reg" %}
12259  opcode(0xDD);               /* DD /0, FLD m64real */
12260  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12261              Pop_Reg_D(dst) );
12262  ins_pipe( fpu_reg_mem );
12263%}
12264
12265
12266instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12267  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12268  match(Set dst (MoveL2D src));
12269  effect(DEF dst, USE src);
12270
12271  ins_cost(95);
12272  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12273  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12274  ins_pipe( pipe_slow );
12275%}
12276
12277instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12278  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12279  match(Set dst (MoveL2D src));
12280  effect(DEF dst, USE src);
12281
12282  ins_cost(95);
12283  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12284  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12285  ins_pipe( pipe_slow );
12286%}
12287
12288instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12289  predicate(UseSSE>=2);
12290  match(Set dst (MoveL2D src));
12291  effect(TEMP dst, USE src, TEMP tmp);
12292  ins_cost(85);
12293  format %{ "MOVD   $dst,$src.lo\n\t"
12294            "MOVD   $tmp,$src.hi\n\t"
12295            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12296  ins_encode( MovL2XD_reg(dst, src, tmp) );
12297  ins_pipe( pipe_slow );
12298%}
12299
12300// Replicate scalar to packed byte (1 byte) values in xmm
12301instruct Repl8B_reg(regXD dst, regXD src) %{
12302  predicate(UseSSE>=2);
12303  match(Set dst (Replicate8B src));
12304  format %{ "MOVDQA  $dst,$src\n\t"
12305            "PUNPCKLBW $dst,$dst\n\t"
12306            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12307  ins_encode( pshufd_8x8(dst, src));
12308  ins_pipe( pipe_slow );
12309%}
12310
12311// Replicate scalar to packed byte (1 byte) values in xmm
12312instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12313  predicate(UseSSE>=2);
12314  match(Set dst (Replicate8B src));
12315  format %{ "MOVD    $dst,$src\n\t"
12316            "PUNPCKLBW $dst,$dst\n\t"
12317            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12318  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12319  ins_pipe( pipe_slow );
12320%}
12321
12322// Replicate scalar zero to packed byte (1 byte) values in xmm
12323instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12324  predicate(UseSSE>=2);
12325  match(Set dst (Replicate8B zero));
12326  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12327  ins_encode( pxor(dst, dst));
12328  ins_pipe( fpu_reg_reg );
12329%}
12330
12331// Replicate scalar to packed shore (2 byte) values in xmm
12332instruct Repl4S_reg(regXD dst, regXD src) %{
12333  predicate(UseSSE>=2);
12334  match(Set dst (Replicate4S src));
12335  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12336  ins_encode( pshufd_4x16(dst, src));
12337  ins_pipe( fpu_reg_reg );
12338%}
12339
12340// Replicate scalar to packed shore (2 byte) values in xmm
12341instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12342  predicate(UseSSE>=2);
12343  match(Set dst (Replicate4S src));
12344  format %{ "MOVD    $dst,$src\n\t"
12345            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12346  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12347  ins_pipe( fpu_reg_reg );
12348%}
12349
12350// Replicate scalar zero to packed short (2 byte) values in xmm
12351instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12352  predicate(UseSSE>=2);
12353  match(Set dst (Replicate4S zero));
12354  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12355  ins_encode( pxor(dst, dst));
12356  ins_pipe( fpu_reg_reg );
12357%}
12358
12359// Replicate scalar to packed char (2 byte) values in xmm
12360instruct Repl4C_reg(regXD dst, regXD src) %{
12361  predicate(UseSSE>=2);
12362  match(Set dst (Replicate4C src));
12363  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12364  ins_encode( pshufd_4x16(dst, src));
12365  ins_pipe( fpu_reg_reg );
12366%}
12367
12368// Replicate scalar to packed char (2 byte) values in xmm
12369instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12370  predicate(UseSSE>=2);
12371  match(Set dst (Replicate4C src));
12372  format %{ "MOVD    $dst,$src\n\t"
12373            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12374  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12375  ins_pipe( fpu_reg_reg );
12376%}
12377
12378// Replicate scalar zero to packed char (2 byte) values in xmm
12379instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12380  predicate(UseSSE>=2);
12381  match(Set dst (Replicate4C zero));
12382  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12383  ins_encode( pxor(dst, dst));
12384  ins_pipe( fpu_reg_reg );
12385%}
12386
12387// Replicate scalar to packed integer (4 byte) values in xmm
12388instruct Repl2I_reg(regXD dst, regXD src) %{
12389  predicate(UseSSE>=2);
12390  match(Set dst (Replicate2I src));
12391  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12392  ins_encode( pshufd(dst, src, 0x00));
12393  ins_pipe( fpu_reg_reg );
12394%}
12395
12396// Replicate scalar to packed integer (4 byte) values in xmm
12397instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12398  predicate(UseSSE>=2);
12399  match(Set dst (Replicate2I src));
12400  format %{ "MOVD   $dst,$src\n\t"
12401            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12402  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12403  ins_pipe( fpu_reg_reg );
12404%}
12405
12406// Replicate scalar zero to packed integer (2 byte) values in xmm
12407instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12408  predicate(UseSSE>=2);
12409  match(Set dst (Replicate2I zero));
12410  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12411  ins_encode( pxor(dst, dst));
12412  ins_pipe( fpu_reg_reg );
12413%}
12414
12415// Replicate scalar to packed single precision floating point values in xmm
12416instruct Repl2F_reg(regXD dst, regXD src) %{
12417  predicate(UseSSE>=2);
12418  match(Set dst (Replicate2F src));
12419  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12420  ins_encode( pshufd(dst, src, 0xe0));
12421  ins_pipe( fpu_reg_reg );
12422%}
12423
12424// Replicate scalar to packed single precision floating point values in xmm
12425instruct Repl2F_regX(regXD dst, regX src) %{
12426  predicate(UseSSE>=2);
12427  match(Set dst (Replicate2F src));
12428  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12429  ins_encode( pshufd(dst, src, 0xe0));
12430  ins_pipe( fpu_reg_reg );
12431%}
12432
12433// Replicate scalar to packed single precision floating point values in xmm
12434instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12435  predicate(UseSSE>=2);
12436  match(Set dst (Replicate2F zero));
12437  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12438  ins_encode( pxor(dst, dst));
12439  ins_pipe( fpu_reg_reg );
12440%}
12441
12442// =======================================================================
12443// fast clearing of an array
12444instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12445  match(Set dummy (ClearArray cnt base));
12446  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12447  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12448            "XOR    EAX,EAX\n\t"
12449            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12450  opcode(0,0x4);
12451  ins_encode( Opcode(0xD1), RegOpc(ECX),
12452              OpcRegReg(0x33,EAX,EAX),
12453              Opcode(0xF3), Opcode(0xAB) );
12454  ins_pipe( pipe_slow );
12455%}
12456
12457instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
12458                        eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
12459  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12460  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12461
12462  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
12463  ins_encode %{
12464    __ string_compare($str1$$Register, $str2$$Register,
12465                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
12466                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12467  %}
12468  ins_pipe( pipe_slow );
12469%}
12470
12471// fast string equals
12472instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12473                       regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12474  match(Set result (StrEquals (Binary str1 str2) cnt));
12475  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12476
12477  format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12478  ins_encode %{
12479    __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12480                          $cnt$$Register, $result$$Register, $tmp3$$Register,
12481                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12482  %}
12483  ins_pipe( pipe_slow );
12484%}
12485
12486instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12487                        eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
12488  predicate(UseSSE42Intrinsics);
12489  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12490  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
12491
12492  format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
12493  ins_encode %{
12494    __ string_indexof($str1$$Register, $str2$$Register,
12495                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
12496                      $tmp1$$XMMRegister, $tmp2$$Register);
12497  %}
12498  ins_pipe( pipe_slow );
12499%}
12500
12501// fast array equals
12502instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12503                      regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12504%{
12505  match(Set result (AryEq ary1 ary2));
12506  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12507  //ins_cost(300);
12508
12509  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12510  ins_encode %{
12511    __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12512                          $tmp3$$Register, $result$$Register, $tmp4$$Register,
12513                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12514  %}
12515  ins_pipe( pipe_slow );
12516%}
12517
12518//----------Control Flow Instructions------------------------------------------
12519// Signed compare Instructions
12520instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12521  match(Set cr (CmpI op1 op2));
12522  effect( DEF cr, USE op1, USE op2 );
12523  format %{ "CMP    $op1,$op2" %}
12524  opcode(0x3B);  /* Opcode 3B /r */
12525  ins_encode( OpcP, RegReg( op1, op2) );
12526  ins_pipe( ialu_cr_reg_reg );
12527%}
12528
12529instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12530  match(Set cr (CmpI op1 op2));
12531  effect( DEF cr, USE op1 );
12532  format %{ "CMP    $op1,$op2" %}
12533  opcode(0x81,0x07);  /* Opcode 81 /7 */
12534  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12535  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12536  ins_pipe( ialu_cr_reg_imm );
12537%}
12538
12539// Cisc-spilled version of cmpI_eReg
12540instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12541  match(Set cr (CmpI op1 (LoadI op2)));
12542
12543  format %{ "CMP    $op1,$op2" %}
12544  ins_cost(500);
12545  opcode(0x3B);  /* Opcode 3B /r */
12546  ins_encode( OpcP, RegMem( op1, op2) );
12547  ins_pipe( ialu_cr_reg_mem );
12548%}
12549
12550instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12551  match(Set cr (CmpI src zero));
12552  effect( DEF cr, USE src );
12553
12554  format %{ "TEST   $src,$src" %}
12555  opcode(0x85);
12556  ins_encode( OpcP, RegReg( src, src ) );
12557  ins_pipe( ialu_cr_reg_imm );
12558%}
12559
12560instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12561  match(Set cr (CmpI (AndI src con) zero));
12562
12563  format %{ "TEST   $src,$con" %}
12564  opcode(0xF7,0x00);
12565  ins_encode( OpcP, RegOpc(src), Con32(con) );
12566  ins_pipe( ialu_cr_reg_imm );
12567%}
12568
12569instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12570  match(Set cr (CmpI (AndI src mem) zero));
12571
12572  format %{ "TEST   $src,$mem" %}
12573  opcode(0x85);
12574  ins_encode( OpcP, RegMem( src, mem ) );
12575  ins_pipe( ialu_cr_reg_mem );
12576%}
12577
12578// Unsigned compare Instructions; really, same as signed except they
12579// produce an eFlagsRegU instead of eFlagsReg.
12580instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12581  match(Set cr (CmpU op1 op2));
12582
12583  format %{ "CMPu   $op1,$op2" %}
12584  opcode(0x3B);  /* Opcode 3B /r */
12585  ins_encode( OpcP, RegReg( op1, op2) );
12586  ins_pipe( ialu_cr_reg_reg );
12587%}
12588
12589instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12590  match(Set cr (CmpU op1 op2));
12591
12592  format %{ "CMPu   $op1,$op2" %}
12593  opcode(0x81,0x07);  /* Opcode 81 /7 */
12594  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12595  ins_pipe( ialu_cr_reg_imm );
12596%}
12597
12598// // Cisc-spilled version of cmpU_eReg
12599instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12600  match(Set cr (CmpU op1 (LoadI op2)));
12601
12602  format %{ "CMPu   $op1,$op2" %}
12603  ins_cost(500);
12604  opcode(0x3B);  /* Opcode 3B /r */
12605  ins_encode( OpcP, RegMem( op1, op2) );
12606  ins_pipe( ialu_cr_reg_mem );
12607%}
12608
12609// // Cisc-spilled version of cmpU_eReg
12610//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12611//  match(Set cr (CmpU (LoadI op1) op2));
12612//
12613//  format %{ "CMPu   $op1,$op2" %}
12614//  ins_cost(500);
12615//  opcode(0x39);  /* Opcode 39 /r */
12616//  ins_encode( OpcP, RegMem( op1, op2) );
12617//%}
12618
12619instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12620  match(Set cr (CmpU src zero));
12621
12622  format %{ "TESTu  $src,$src" %}
12623  opcode(0x85);
12624  ins_encode( OpcP, RegReg( src, src ) );
12625  ins_pipe( ialu_cr_reg_imm );
12626%}
12627
12628// Unsigned pointer compare Instructions
12629instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12630  match(Set cr (CmpP op1 op2));
12631
12632  format %{ "CMPu   $op1,$op2" %}
12633  opcode(0x3B);  /* Opcode 3B /r */
12634  ins_encode( OpcP, RegReg( op1, op2) );
12635  ins_pipe( ialu_cr_reg_reg );
12636%}
12637
12638instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12639  match(Set cr (CmpP op1 op2));
12640
12641  format %{ "CMPu   $op1,$op2" %}
12642  opcode(0x81,0x07);  /* Opcode 81 /7 */
12643  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12644  ins_pipe( ialu_cr_reg_imm );
12645%}
12646
12647// // Cisc-spilled version of cmpP_eReg
12648instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12649  match(Set cr (CmpP op1 (LoadP op2)));
12650
12651  format %{ "CMPu   $op1,$op2" %}
12652  ins_cost(500);
12653  opcode(0x3B);  /* Opcode 3B /r */
12654  ins_encode( OpcP, RegMem( op1, op2) );
12655  ins_pipe( ialu_cr_reg_mem );
12656%}
12657
12658// // Cisc-spilled version of cmpP_eReg
12659//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12660//  match(Set cr (CmpP (LoadP op1) op2));
12661//
12662//  format %{ "CMPu   $op1,$op2" %}
12663//  ins_cost(500);
12664//  opcode(0x39);  /* Opcode 39 /r */
12665//  ins_encode( OpcP, RegMem( op1, op2) );
12666//%}
12667
12668// Compare raw pointer (used in out-of-heap check).
12669// Only works because non-oop pointers must be raw pointers
12670// and raw pointers have no anti-dependencies.
12671instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12672  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12673  match(Set cr (CmpP op1 (LoadP op2)));
12674
12675  format %{ "CMPu   $op1,$op2" %}
12676  opcode(0x3B);  /* Opcode 3B /r */
12677  ins_encode( OpcP, RegMem( op1, op2) );
12678  ins_pipe( ialu_cr_reg_mem );
12679%}
12680
12681//
12682// This will generate a signed flags result. This should be ok
12683// since any compare to a zero should be eq/neq.
12684instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12685  match(Set cr (CmpP src zero));
12686
12687  format %{ "TEST   $src,$src" %}
12688  opcode(0x85);
12689  ins_encode( OpcP, RegReg( src, src ) );
12690  ins_pipe( ialu_cr_reg_imm );
12691%}
12692
12693// Cisc-spilled version of testP_reg
12694// This will generate a signed flags result. This should be ok
12695// since any compare to a zero should be eq/neq.
12696instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12697  match(Set cr (CmpP (LoadP op) zero));
12698
12699  format %{ "TEST   $op,0xFFFFFFFF" %}
12700  ins_cost(500);
12701  opcode(0xF7);               /* Opcode F7 /0 */
12702  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12703  ins_pipe( ialu_cr_reg_imm );
12704%}
12705
12706// Yanked all unsigned pointer compare operations.
12707// Pointer compares are done with CmpP which is already unsigned.
12708
12709//----------Max and Min--------------------------------------------------------
12710// Min Instructions
12711////
12712//   *** Min and Max using the conditional move are slower than the
12713//   *** branch version on a Pentium III.
12714// // Conditional move for min
12715//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12716//  effect( USE_DEF op2, USE op1, USE cr );
12717//  format %{ "CMOVlt $op2,$op1\t! min" %}
12718//  opcode(0x4C,0x0F);
12719//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12720//  ins_pipe( pipe_cmov_reg );
12721//%}
12722//
12723//// Min Register with Register (P6 version)
12724//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12725//  predicate(VM_Version::supports_cmov() );
12726//  match(Set op2 (MinI op1 op2));
12727//  ins_cost(200);
12728//  expand %{
12729//    eFlagsReg cr;
12730//    compI_eReg(cr,op1,op2);
12731//    cmovI_reg_lt(op2,op1,cr);
12732//  %}
12733//%}
12734
12735// Min Register with Register (generic version)
12736instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12737  match(Set dst (MinI dst src));
12738  effect(KILL flags);
12739  ins_cost(300);
12740
12741  format %{ "MIN    $dst,$src" %}
12742  opcode(0xCC);
12743  ins_encode( min_enc(dst,src) );
12744  ins_pipe( pipe_slow );
12745%}
12746
12747// Max Register with Register
12748//   *** Min and Max using the conditional move are slower than the
12749//   *** branch version on a Pentium III.
12750// // Conditional move for max
12751//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12752//  effect( USE_DEF op2, USE op1, USE cr );
12753//  format %{ "CMOVgt $op2,$op1\t! max" %}
12754//  opcode(0x4F,0x0F);
12755//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12756//  ins_pipe( pipe_cmov_reg );
12757//%}
12758//
12759// // Max Register with Register (P6 version)
12760//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12761//  predicate(VM_Version::supports_cmov() );
12762//  match(Set op2 (MaxI op1 op2));
12763//  ins_cost(200);
12764//  expand %{
12765//    eFlagsReg cr;
12766//    compI_eReg(cr,op1,op2);
12767//    cmovI_reg_gt(op2,op1,cr);
12768//  %}
12769//%}
12770
12771// Max Register with Register (generic version)
12772instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12773  match(Set dst (MaxI dst src));
12774  effect(KILL flags);
12775  ins_cost(300);
12776
12777  format %{ "MAX    $dst,$src" %}
12778  opcode(0xCC);
12779  ins_encode( max_enc(dst,src) );
12780  ins_pipe( pipe_slow );
12781%}
12782
12783// ============================================================================
12784// Branch Instructions
12785// Jump Table
12786instruct jumpXtnd(eRegI switch_val) %{
12787  match(Jump switch_val);
12788  ins_cost(350);
12789
12790  format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
12791
12792  ins_encode %{
12793    address table_base  = __ address_table_constant(_index2label);
12794
12795    // Jump to Address(table_base + switch_reg)
12796    InternalAddress table(table_base);
12797    Address index(noreg, $switch_val$$Register, Address::times_1);
12798    __ jump(ArrayAddress(table, index));
12799  %}
12800  ins_pc_relative(1);
12801  ins_pipe(pipe_jmp);
12802%}
12803
12804// Jump Direct - Label defines a relative address from JMP+1
12805instruct jmpDir(label labl) %{
12806  match(Goto);
12807  effect(USE labl);
12808
12809  ins_cost(300);
12810  format %{ "JMP    $labl" %}
12811  size(5);
12812  opcode(0xE9);
12813  ins_encode( OpcP, Lbl( labl ) );
12814  ins_pipe( pipe_jmp );
12815  ins_pc_relative(1);
12816%}
12817
12818// Jump Direct Conditional - Label defines a relative address from Jcc+1
12819instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12820  match(If cop cr);
12821  effect(USE labl);
12822
12823  ins_cost(300);
12824  format %{ "J$cop    $labl" %}
12825  size(6);
12826  opcode(0x0F, 0x80);
12827  ins_encode( Jcc( cop, labl) );
12828  ins_pipe( pipe_jcc );
12829  ins_pc_relative(1);
12830%}
12831
12832// Jump Direct Conditional - Label defines a relative address from Jcc+1
12833instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12834  match(CountedLoopEnd cop cr);
12835  effect(USE labl);
12836
12837  ins_cost(300);
12838  format %{ "J$cop    $labl\t# Loop end" %}
12839  size(6);
12840  opcode(0x0F, 0x80);
12841  ins_encode( Jcc( cop, labl) );
12842  ins_pipe( pipe_jcc );
12843  ins_pc_relative(1);
12844%}
12845
12846// Jump Direct Conditional - Label defines a relative address from Jcc+1
12847instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12848  match(CountedLoopEnd cop cmp);
12849  effect(USE labl);
12850
12851  ins_cost(300);
12852  format %{ "J$cop,u  $labl\t# Loop end" %}
12853  size(6);
12854  opcode(0x0F, 0x80);
12855  ins_encode( Jcc( cop, labl) );
12856  ins_pipe( pipe_jcc );
12857  ins_pc_relative(1);
12858%}
12859
12860instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12861  match(CountedLoopEnd cop cmp);
12862  effect(USE labl);
12863
12864  ins_cost(200);
12865  format %{ "J$cop,u  $labl\t# Loop end" %}
12866  size(6);
12867  opcode(0x0F, 0x80);
12868  ins_encode( Jcc( cop, labl) );
12869  ins_pipe( pipe_jcc );
12870  ins_pc_relative(1);
12871%}
12872
12873// Jump Direct Conditional - using unsigned comparison
12874instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12875  match(If cop cmp);
12876  effect(USE labl);
12877
12878  ins_cost(300);
12879  format %{ "J$cop,u  $labl" %}
12880  size(6);
12881  opcode(0x0F, 0x80);
12882  ins_encode(Jcc(cop, labl));
12883  ins_pipe(pipe_jcc);
12884  ins_pc_relative(1);
12885%}
12886
12887instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12888  match(If cop cmp);
12889  effect(USE labl);
12890
12891  ins_cost(200);
12892  format %{ "J$cop,u  $labl" %}
12893  size(6);
12894  opcode(0x0F, 0x80);
12895  ins_encode(Jcc(cop, labl));
12896  ins_pipe(pipe_jcc);
12897  ins_pc_relative(1);
12898%}
12899
12900instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12901  match(If cop cmp);
12902  effect(USE labl);
12903
12904  ins_cost(200);
12905  format %{ $$template
12906    if ($cop$$cmpcode == Assembler::notEqual) {
12907      $$emit$$"JP,u   $labl\n\t"
12908      $$emit$$"J$cop,u   $labl"
12909    } else {
12910      $$emit$$"JP,u   done\n\t"
12911      $$emit$$"J$cop,u   $labl\n\t"
12912      $$emit$$"done:"
12913    }
12914  %}
12915  size(12);
12916  opcode(0x0F, 0x80);
12917  ins_encode %{
12918    Label* l = $labl$$label;
12919    $$$emit8$primary;
12920    emit_cc(cbuf, $secondary, Assembler::parity);
12921    int parity_disp = -1;
12922    bool ok = false;
12923    if ($cop$$cmpcode == Assembler::notEqual) {
12924       // the two jumps 6 bytes apart so the jump distances are too
12925       parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
12926    } else if ($cop$$cmpcode == Assembler::equal) {
12927       parity_disp = 6;
12928       ok = true;
12929    } else {
12930       ShouldNotReachHere();
12931    }
12932    emit_d32(cbuf, parity_disp);
12933    $$$emit8$primary;
12934    emit_cc(cbuf, $secondary, $cop$$cmpcode);
12935    int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 4)) : 0;
12936    emit_d32(cbuf, disp);
12937  %}
12938  ins_pipe(pipe_jcc);
12939  ins_pc_relative(1);
12940%}
12941
12942// ============================================================================
12943// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12944// array for an instance of the superklass.  Set a hidden internal cache on a
12945// hit (cache is checked with exposed code in gen_subtype_check()).  Return
12946// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12947instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12948  match(Set result (PartialSubtypeCheck sub super));
12949  effect( KILL rcx, KILL cr );
12950
12951  ins_cost(1100);  // slightly larger than the next version
12952  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12953            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12954            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12955            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12956            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12957            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12958            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12959     "miss:\t" %}
12960
12961  opcode(0x1); // Force a XOR of EDI
12962  ins_encode( enc_PartialSubtypeCheck() );
12963  ins_pipe( pipe_slow );
12964%}
12965
12966instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12967  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12968  effect( KILL rcx, KILL result );
12969
12970  ins_cost(1000);
12971  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12972            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12973            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12974            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12975            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12976            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12977     "miss:\t" %}
12978
12979  opcode(0x0);  // No need to XOR EDI
12980  ins_encode( enc_PartialSubtypeCheck() );
12981  ins_pipe( pipe_slow );
12982%}
12983
12984// ============================================================================
12985// Branch Instructions -- short offset versions
12986//
12987// These instructions are used to replace jumps of a long offset (the default
12988// match) with jumps of a shorter offset.  These instructions are all tagged
12989// with the ins_short_branch attribute, which causes the ADLC to suppress the
12990// match rules in general matching.  Instead, the ADLC generates a conversion
12991// method in the MachNode which can be used to do in-place replacement of the
12992// long variant with the shorter variant.  The compiler will determine if a
12993// branch can be taken by the is_short_branch_offset() predicate in the machine
12994// specific code section of the file.
12995
12996// Jump Direct - Label defines a relative address from JMP+1
12997instruct jmpDir_short(label labl) %{
12998  match(Goto);
12999  effect(USE labl);
13000
13001  ins_cost(300);
13002  format %{ "JMP,s  $labl" %}
13003  size(2);
13004  opcode(0xEB);
13005  ins_encode( OpcP, LblShort( labl ) );
13006  ins_pipe( pipe_jmp );
13007  ins_pc_relative(1);
13008  ins_short_branch(1);
13009%}
13010
13011// Jump Direct Conditional - Label defines a relative address from Jcc+1
13012instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
13013  match(If cop cr);
13014  effect(USE labl);
13015
13016  ins_cost(300);
13017  format %{ "J$cop,s  $labl" %}
13018  size(2);
13019  opcode(0x70);
13020  ins_encode( JccShort( cop, labl) );
13021  ins_pipe( pipe_jcc );
13022  ins_pc_relative(1);
13023  ins_short_branch(1);
13024%}
13025
13026// Jump Direct Conditional - Label defines a relative address from Jcc+1
13027instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
13028  match(CountedLoopEnd cop cr);
13029  effect(USE labl);
13030
13031  ins_cost(300);
13032  format %{ "J$cop,s  $labl\t# Loop end" %}
13033  size(2);
13034  opcode(0x70);
13035  ins_encode( JccShort( cop, labl) );
13036  ins_pipe( pipe_jcc );
13037  ins_pc_relative(1);
13038  ins_short_branch(1);
13039%}
13040
13041// Jump Direct Conditional - Label defines a relative address from Jcc+1
13042instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13043  match(CountedLoopEnd cop cmp);
13044  effect(USE labl);
13045
13046  ins_cost(300);
13047  format %{ "J$cop,us $labl\t# Loop end" %}
13048  size(2);
13049  opcode(0x70);
13050  ins_encode( JccShort( cop, labl) );
13051  ins_pipe( pipe_jcc );
13052  ins_pc_relative(1);
13053  ins_short_branch(1);
13054%}
13055
13056instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13057  match(CountedLoopEnd cop cmp);
13058  effect(USE labl);
13059
13060  ins_cost(300);
13061  format %{ "J$cop,us $labl\t# Loop end" %}
13062  size(2);
13063  opcode(0x70);
13064  ins_encode( JccShort( cop, labl) );
13065  ins_pipe( pipe_jcc );
13066  ins_pc_relative(1);
13067  ins_short_branch(1);
13068%}
13069
13070// Jump Direct Conditional - using unsigned comparison
13071instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13072  match(If cop cmp);
13073  effect(USE labl);
13074
13075  ins_cost(300);
13076  format %{ "J$cop,us $labl" %}
13077  size(2);
13078  opcode(0x70);
13079  ins_encode( JccShort( cop, labl) );
13080  ins_pipe( pipe_jcc );
13081  ins_pc_relative(1);
13082  ins_short_branch(1);
13083%}
13084
13085instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13086  match(If cop cmp);
13087  effect(USE labl);
13088
13089  ins_cost(300);
13090  format %{ "J$cop,us $labl" %}
13091  size(2);
13092  opcode(0x70);
13093  ins_encode( JccShort( cop, labl) );
13094  ins_pipe( pipe_jcc );
13095  ins_pc_relative(1);
13096  ins_short_branch(1);
13097%}
13098
13099instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13100  match(If cop cmp);
13101  effect(USE labl);
13102
13103  ins_cost(300);
13104  format %{ $$template
13105    if ($cop$$cmpcode == Assembler::notEqual) {
13106      $$emit$$"JP,u,s   $labl\n\t"
13107      $$emit$$"J$cop,u,s   $labl"
13108    } else {
13109      $$emit$$"JP,u,s   done\n\t"
13110      $$emit$$"J$cop,u,s  $labl\n\t"
13111      $$emit$$"done:"
13112    }
13113  %}
13114  size(4);
13115  opcode(0x70);
13116  ins_encode %{
13117    Label* l = $labl$$label;
13118    emit_cc(cbuf, $primary, Assembler::parity);
13119    int parity_disp = -1;
13120    if ($cop$$cmpcode == Assembler::notEqual) {
13121      parity_disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
13122    } else if ($cop$$cmpcode == Assembler::equal) {
13123      parity_disp = 2;
13124    } else {
13125      ShouldNotReachHere();
13126    }
13127    emit_d8(cbuf, parity_disp);
13128    emit_cc(cbuf, $primary, $cop$$cmpcode);
13129    int disp = l ? (l->loc_pos() - (cbuf.insts_size() + 1)) : 0;
13130    emit_d8(cbuf, disp);
13131    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
13132    assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
13133  %}
13134  ins_pipe(pipe_jcc);
13135  ins_pc_relative(1);
13136  ins_short_branch(1);
13137%}
13138
13139// ============================================================================
13140// Long Compare
13141//
13142// Currently we hold longs in 2 registers.  Comparing such values efficiently
13143// is tricky.  The flavor of compare used depends on whether we are testing
13144// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
13145// The GE test is the negated LT test.  The LE test can be had by commuting
13146// the operands (yielding a GE test) and then negating; negate again for the
13147// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
13148// NE test is negated from that.
13149
13150// Due to a shortcoming in the ADLC, it mixes up expressions like:
13151// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
13152// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
13153// are collapsed internally in the ADLC's dfa-gen code.  The match for
13154// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
13155// foo match ends up with the wrong leaf.  One fix is to not match both
13156// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
13157// both forms beat the trinary form of long-compare and both are very useful
13158// on Intel which has so few registers.
13159
13160// Manifest a CmpL result in an integer register.  Very painful.
13161// This is the test to avoid.
13162instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
13163  match(Set dst (CmpL3 src1 src2));
13164  effect( KILL flags );
13165  ins_cost(1000);
13166  format %{ "XOR    $dst,$dst\n\t"
13167            "CMP    $src1.hi,$src2.hi\n\t"
13168            "JLT,s  m_one\n\t"
13169            "JGT,s  p_one\n\t"
13170            "CMP    $src1.lo,$src2.lo\n\t"
13171            "JB,s   m_one\n\t"
13172            "JEQ,s  done\n"
13173    "p_one:\tINC    $dst\n\t"
13174            "JMP,s  done\n"
13175    "m_one:\tDEC    $dst\n"
13176     "done:" %}
13177  ins_encode %{
13178    Label p_one, m_one, done;
13179    __ xorptr($dst$$Register, $dst$$Register);
13180    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
13181    __ jccb(Assembler::less,    m_one);
13182    __ jccb(Assembler::greater, p_one);
13183    __ cmpl($src1$$Register, $src2$$Register);
13184    __ jccb(Assembler::below,   m_one);
13185    __ jccb(Assembler::equal,   done);
13186    __ bind(p_one);
13187    __ incrementl($dst$$Register);
13188    __ jmpb(done);
13189    __ bind(m_one);
13190    __ decrementl($dst$$Register);
13191    __ bind(done);
13192  %}
13193  ins_pipe( pipe_slow );
13194%}
13195
13196//======
13197// Manifest a CmpL result in the normal flags.  Only good for LT or GE
13198// compares.  Can be used for LE or GT compares by reversing arguments.
13199// NOT GOOD FOR EQ/NE tests.
13200instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13201  match( Set flags (CmpL src zero ));
13202  ins_cost(100);
13203  format %{ "TEST   $src.hi,$src.hi" %}
13204  opcode(0x85);
13205  ins_encode( OpcP, RegReg_Hi2( src, src ) );
13206  ins_pipe( ialu_cr_reg_reg );
13207%}
13208
13209// Manifest a CmpL result in the normal flags.  Only good for LT or GE
13210// compares.  Can be used for LE or GT compares by reversing arguments.
13211// NOT GOOD FOR EQ/NE tests.
13212instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13213  match( Set flags (CmpL src1 src2 ));
13214  effect( TEMP tmp );
13215  ins_cost(300);
13216  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13217            "MOV    $tmp,$src1.hi\n\t"
13218            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13219  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13220  ins_pipe( ialu_cr_reg_reg );
13221%}
13222
13223// Long compares reg < zero/req OR reg >= zero/req.
13224// Just a wrapper for a normal branch, plus the predicate test.
13225instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13226  match(If cmp flags);
13227  effect(USE labl);
13228  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13229  expand %{
13230    jmpCon(cmp,flags,labl);    // JLT or JGE...
13231  %}
13232%}
13233
13234// Compare 2 longs and CMOVE longs.
13235instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13236  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13237  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13238  ins_cost(400);
13239  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13240            "CMOV$cmp $dst.hi,$src.hi" %}
13241  opcode(0x0F,0x40);
13242  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13243  ins_pipe( pipe_cmov_reg_long );
13244%}
13245
13246instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13247  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13248  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13249  ins_cost(500);
13250  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13251            "CMOV$cmp $dst.hi,$src.hi" %}
13252  opcode(0x0F,0x40);
13253  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13254  ins_pipe( pipe_cmov_reg_long );
13255%}
13256
13257// Compare 2 longs and CMOVE ints.
13258instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13259  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13260  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13261  ins_cost(200);
13262  format %{ "CMOV$cmp $dst,$src" %}
13263  opcode(0x0F,0x40);
13264  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13265  ins_pipe( pipe_cmov_reg );
13266%}
13267
13268instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13269  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13270  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13271  ins_cost(250);
13272  format %{ "CMOV$cmp $dst,$src" %}
13273  opcode(0x0F,0x40);
13274  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13275  ins_pipe( pipe_cmov_mem );
13276%}
13277
13278// Compare 2 longs and CMOVE ints.
13279instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13280  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13281  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13282  ins_cost(200);
13283  format %{ "CMOV$cmp $dst,$src" %}
13284  opcode(0x0F,0x40);
13285  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13286  ins_pipe( pipe_cmov_reg );
13287%}
13288
13289// Compare 2 longs and CMOVE doubles
13290instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13291  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13292  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13293  ins_cost(200);
13294  expand %{
13295    fcmovD_regS(cmp,flags,dst,src);
13296  %}
13297%}
13298
13299// Compare 2 longs and CMOVE doubles
13300instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13301  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13302  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13303  ins_cost(200);
13304  expand %{
13305    fcmovXD_regS(cmp,flags,dst,src);
13306  %}
13307%}
13308
13309instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13310  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13311  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13312  ins_cost(200);
13313  expand %{
13314    fcmovF_regS(cmp,flags,dst,src);
13315  %}
13316%}
13317
13318instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13319  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13320  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13321  ins_cost(200);
13322  expand %{
13323    fcmovX_regS(cmp,flags,dst,src);
13324  %}
13325%}
13326
13327//======
13328// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13329instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13330  match( Set flags (CmpL src zero ));
13331  effect(TEMP tmp);
13332  ins_cost(200);
13333  format %{ "MOV    $tmp,$src.lo\n\t"
13334            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13335  ins_encode( long_cmp_flags0( src, tmp ) );
13336  ins_pipe( ialu_reg_reg_long );
13337%}
13338
13339// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13340instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13341  match( Set flags (CmpL src1 src2 ));
13342  ins_cost(200+300);
13343  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13344            "JNE,s  skip\n\t"
13345            "CMP    $src1.hi,$src2.hi\n\t"
13346     "skip:\t" %}
13347  ins_encode( long_cmp_flags1( src1, src2 ) );
13348  ins_pipe( ialu_cr_reg_reg );
13349%}
13350
13351// Long compare reg == zero/reg OR reg != zero/reg
13352// Just a wrapper for a normal branch, plus the predicate test.
13353instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13354  match(If cmp flags);
13355  effect(USE labl);
13356  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13357  expand %{
13358    jmpCon(cmp,flags,labl);    // JEQ or JNE...
13359  %}
13360%}
13361
13362// Compare 2 longs and CMOVE longs.
13363instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13364  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13365  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13366  ins_cost(400);
13367  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13368            "CMOV$cmp $dst.hi,$src.hi" %}
13369  opcode(0x0F,0x40);
13370  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13371  ins_pipe( pipe_cmov_reg_long );
13372%}
13373
13374instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13375  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13376  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13377  ins_cost(500);
13378  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13379            "CMOV$cmp $dst.hi,$src.hi" %}
13380  opcode(0x0F,0x40);
13381  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13382  ins_pipe( pipe_cmov_reg_long );
13383%}
13384
13385// Compare 2 longs and CMOVE ints.
13386instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13387  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13388  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13389  ins_cost(200);
13390  format %{ "CMOV$cmp $dst,$src" %}
13391  opcode(0x0F,0x40);
13392  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13393  ins_pipe( pipe_cmov_reg );
13394%}
13395
13396instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13397  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13398  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13399  ins_cost(250);
13400  format %{ "CMOV$cmp $dst,$src" %}
13401  opcode(0x0F,0x40);
13402  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13403  ins_pipe( pipe_cmov_mem );
13404%}
13405
13406// Compare 2 longs and CMOVE ints.
13407instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13408  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13409  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13410  ins_cost(200);
13411  format %{ "CMOV$cmp $dst,$src" %}
13412  opcode(0x0F,0x40);
13413  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13414  ins_pipe( pipe_cmov_reg );
13415%}
13416
13417// Compare 2 longs and CMOVE doubles
13418instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13419  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13420  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13421  ins_cost(200);
13422  expand %{
13423    fcmovD_regS(cmp,flags,dst,src);
13424  %}
13425%}
13426
13427// Compare 2 longs and CMOVE doubles
13428instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13429  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13430  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13431  ins_cost(200);
13432  expand %{
13433    fcmovXD_regS(cmp,flags,dst,src);
13434  %}
13435%}
13436
13437instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13438  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13439  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13440  ins_cost(200);
13441  expand %{
13442    fcmovF_regS(cmp,flags,dst,src);
13443  %}
13444%}
13445
13446instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13447  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13448  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13449  ins_cost(200);
13450  expand %{
13451    fcmovX_regS(cmp,flags,dst,src);
13452  %}
13453%}
13454
13455//======
13456// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13457// Same as cmpL_reg_flags_LEGT except must negate src
13458instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13459  match( Set flags (CmpL src zero ));
13460  effect( TEMP tmp );
13461  ins_cost(300);
13462  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13463            "CMP    $tmp,$src.lo\n\t"
13464            "SBB    $tmp,$src.hi\n\t" %}
13465  ins_encode( long_cmp_flags3(src, tmp) );
13466  ins_pipe( ialu_reg_reg_long );
13467%}
13468
13469// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13470// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13471// requires a commuted test to get the same result.
13472instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13473  match( Set flags (CmpL src1 src2 ));
13474  effect( TEMP tmp );
13475  ins_cost(300);
13476  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13477            "MOV    $tmp,$src2.hi\n\t"
13478            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13479  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13480  ins_pipe( ialu_cr_reg_reg );
13481%}
13482
13483// Long compares reg < zero/req OR reg >= zero/req.
13484// Just a wrapper for a normal branch, plus the predicate test
13485instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13486  match(If cmp flags);
13487  effect(USE labl);
13488  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13489  ins_cost(300);
13490  expand %{
13491    jmpCon(cmp,flags,labl);    // JGT or JLE...
13492  %}
13493%}
13494
13495// Compare 2 longs and CMOVE longs.
13496instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13497  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13498  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13499  ins_cost(400);
13500  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13501            "CMOV$cmp $dst.hi,$src.hi" %}
13502  opcode(0x0F,0x40);
13503  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13504  ins_pipe( pipe_cmov_reg_long );
13505%}
13506
13507instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13508  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13509  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13510  ins_cost(500);
13511  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13512            "CMOV$cmp $dst.hi,$src.hi+4" %}
13513  opcode(0x0F,0x40);
13514  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13515  ins_pipe( pipe_cmov_reg_long );
13516%}
13517
13518// Compare 2 longs and CMOVE ints.
13519instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13520  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13521  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13522  ins_cost(200);
13523  format %{ "CMOV$cmp $dst,$src" %}
13524  opcode(0x0F,0x40);
13525  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13526  ins_pipe( pipe_cmov_reg );
13527%}
13528
13529instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13530  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13531  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13532  ins_cost(250);
13533  format %{ "CMOV$cmp $dst,$src" %}
13534  opcode(0x0F,0x40);
13535  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13536  ins_pipe( pipe_cmov_mem );
13537%}
13538
13539// Compare 2 longs and CMOVE ptrs.
13540instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13541  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13542  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13543  ins_cost(200);
13544  format %{ "CMOV$cmp $dst,$src" %}
13545  opcode(0x0F,0x40);
13546  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13547  ins_pipe( pipe_cmov_reg );
13548%}
13549
13550// Compare 2 longs and CMOVE doubles
13551instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13552  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13553  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13554  ins_cost(200);
13555  expand %{
13556    fcmovD_regS(cmp,flags,dst,src);
13557  %}
13558%}
13559
13560// Compare 2 longs and CMOVE doubles
13561instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13562  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13563  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13564  ins_cost(200);
13565  expand %{
13566    fcmovXD_regS(cmp,flags,dst,src);
13567  %}
13568%}
13569
13570instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13571  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13572  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13573  ins_cost(200);
13574  expand %{
13575    fcmovF_regS(cmp,flags,dst,src);
13576  %}
13577%}
13578
13579
13580instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13581  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13582  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13583  ins_cost(200);
13584  expand %{
13585    fcmovX_regS(cmp,flags,dst,src);
13586  %}
13587%}
13588
13589
13590// ============================================================================
13591// Procedure Call/Return Instructions
13592// Call Java Static Instruction
13593// Note: If this code changes, the corresponding ret_addr_offset() and
13594//       compute_padding() functions will have to be adjusted.
13595instruct CallStaticJavaDirect(method meth) %{
13596  match(CallStaticJava);
13597  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13598  effect(USE meth);
13599
13600  ins_cost(300);
13601  format %{ "CALL,static " %}
13602  opcode(0xE8); /* E8 cd */
13603  ins_encode( pre_call_FPU,
13604              Java_Static_Call( meth ),
13605              call_epilog,
13606              post_call_FPU );
13607  ins_pipe( pipe_slow );
13608  ins_pc_relative(1);
13609  ins_alignment(4);
13610%}
13611
13612// Call Java Static Instruction (method handle version)
13613// Note: If this code changes, the corresponding ret_addr_offset() and
13614//       compute_padding() functions will have to be adjusted.
13615instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13616  match(CallStaticJava);
13617  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13618  effect(USE meth);
13619  // EBP is saved by all callees (for interpreter stack correction).
13620  // We use it here for a similar purpose, in {preserve,restore}_SP.
13621
13622  ins_cost(300);
13623  format %{ "CALL,static/MethodHandle " %}
13624  opcode(0xE8); /* E8 cd */
13625  ins_encode( pre_call_FPU,
13626              preserve_SP,
13627              Java_Static_Call( meth ),
13628              restore_SP,
13629              call_epilog,
13630              post_call_FPU );
13631  ins_pipe( pipe_slow );
13632  ins_pc_relative(1);
13633  ins_alignment(4);
13634%}
13635
13636// Call Java Dynamic Instruction
13637// Note: If this code changes, the corresponding ret_addr_offset() and
13638//       compute_padding() functions will have to be adjusted.
13639instruct CallDynamicJavaDirect(method meth) %{
13640  match(CallDynamicJava);
13641  effect(USE meth);
13642
13643  ins_cost(300);
13644  format %{ "MOV    EAX,(oop)-1\n\t"
13645            "CALL,dynamic" %}
13646  opcode(0xE8); /* E8 cd */
13647  ins_encode( pre_call_FPU,
13648              Java_Dynamic_Call( meth ),
13649              call_epilog,
13650              post_call_FPU );
13651  ins_pipe( pipe_slow );
13652  ins_pc_relative(1);
13653  ins_alignment(4);
13654%}
13655
13656// Call Runtime Instruction
13657instruct CallRuntimeDirect(method meth) %{
13658  match(CallRuntime );
13659  effect(USE meth);
13660
13661  ins_cost(300);
13662  format %{ "CALL,runtime " %}
13663  opcode(0xE8); /* E8 cd */
13664  // Use FFREEs to clear entries in float stack
13665  ins_encode( pre_call_FPU,
13666              FFree_Float_Stack_All,
13667              Java_To_Runtime( meth ),
13668              post_call_FPU );
13669  ins_pipe( pipe_slow );
13670  ins_pc_relative(1);
13671%}
13672
13673// Call runtime without safepoint
13674instruct CallLeafDirect(method meth) %{
13675  match(CallLeaf);
13676  effect(USE meth);
13677
13678  ins_cost(300);
13679  format %{ "CALL_LEAF,runtime " %}
13680  opcode(0xE8); /* E8 cd */
13681  ins_encode( pre_call_FPU,
13682              FFree_Float_Stack_All,
13683              Java_To_Runtime( meth ),
13684              Verify_FPU_For_Leaf, post_call_FPU );
13685  ins_pipe( pipe_slow );
13686  ins_pc_relative(1);
13687%}
13688
13689instruct CallLeafNoFPDirect(method meth) %{
13690  match(CallLeafNoFP);
13691  effect(USE meth);
13692
13693  ins_cost(300);
13694  format %{ "CALL_LEAF_NOFP,runtime " %}
13695  opcode(0xE8); /* E8 cd */
13696  ins_encode(Java_To_Runtime(meth));
13697  ins_pipe( pipe_slow );
13698  ins_pc_relative(1);
13699%}
13700
13701
13702// Return Instruction
13703// Remove the return address & jump to it.
13704instruct Ret() %{
13705  match(Return);
13706  format %{ "RET" %}
13707  opcode(0xC3);
13708  ins_encode(OpcP);
13709  ins_pipe( pipe_jmp );
13710%}
13711
13712// Tail Call; Jump from runtime stub to Java code.
13713// Also known as an 'interprocedural jump'.
13714// Target of jump will eventually return to caller.
13715// TailJump below removes the return address.
13716instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13717  match(TailCall jump_target method_oop );
13718  ins_cost(300);
13719  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13720  opcode(0xFF, 0x4);  /* Opcode FF /4 */
13721  ins_encode( OpcP, RegOpc(jump_target) );
13722  ins_pipe( pipe_jmp );
13723%}
13724
13725
13726// Tail Jump; remove the return address; jump to target.
13727// TailCall above leaves the return address around.
13728instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13729  match( TailJump jump_target ex_oop );
13730  ins_cost(300);
13731  format %{ "POP    EDX\t# pop return address into dummy\n\t"
13732            "JMP    $jump_target " %}
13733  opcode(0xFF, 0x4);  /* Opcode FF /4 */
13734  ins_encode( enc_pop_rdx,
13735              OpcP, RegOpc(jump_target) );
13736  ins_pipe( pipe_jmp );
13737%}
13738
13739// Create exception oop: created by stack-crawling runtime code.
13740// Created exception is now available to this handler, and is setup
13741// just prior to jumping to this handler.  No code emitted.
13742instruct CreateException( eAXRegP ex_oop )
13743%{
13744  match(Set ex_oop (CreateEx));
13745
13746  size(0);
13747  // use the following format syntax
13748  format %{ "# exception oop is in EAX; no code emitted" %}
13749  ins_encode();
13750  ins_pipe( empty );
13751%}
13752
13753
13754// Rethrow exception:
13755// The exception oop will come in the first argument position.
13756// Then JUMP (not call) to the rethrow stub code.
13757instruct RethrowException()
13758%{
13759  match(Rethrow);
13760
13761  // use the following format syntax
13762  format %{ "JMP    rethrow_stub" %}
13763  ins_encode(enc_rethrow);
13764  ins_pipe( pipe_jmp );
13765%}
13766
13767// inlined locking and unlocking
13768
13769
13770instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
13771  match( Set cr (FastLock object box) );
13772  effect( TEMP tmp, TEMP scr );
13773  ins_cost(300);
13774  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
13775  ins_encode( Fast_Lock(object,box,tmp,scr) );
13776  ins_pipe( pipe_slow );
13777  ins_pc_relative(1);
13778%}
13779
13780instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13781  match( Set cr (FastUnlock object box) );
13782  effect( TEMP tmp );
13783  ins_cost(300);
13784  format %{ "FASTUNLOCK $object, $box, $tmp" %}
13785  ins_encode( Fast_Unlock(object,box,tmp) );
13786  ins_pipe( pipe_slow );
13787  ins_pc_relative(1);
13788%}
13789
13790
13791
13792// ============================================================================
13793// Safepoint Instruction
13794instruct safePoint_poll(eFlagsReg cr) %{
13795  match(SafePoint);
13796  effect(KILL cr);
13797
13798  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13799  // On SPARC that might be acceptable as we can generate the address with
13800  // just a sethi, saving an or.  By polling at offset 0 we can end up
13801  // putting additional pressure on the index-0 in the D$.  Because of
13802  // alignment (just like the situation at hand) the lower indices tend
13803  // to see more traffic.  It'd be better to change the polling address
13804  // to offset 0 of the last $line in the polling page.
13805
13806  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13807  ins_cost(125);
13808  size(6) ;
13809  ins_encode( Safepoint_Poll() );
13810  ins_pipe( ialu_reg_mem );
13811%}
13812
13813//----------PEEPHOLE RULES-----------------------------------------------------
13814// These must follow all instruction definitions as they use the names
13815// defined in the instructions definitions.
13816//
13817// peepmatch ( root_instr_name [preceding_instruction]* );
13818//
13819// peepconstraint %{
13820// (instruction_number.operand_name relational_op instruction_number.operand_name
13821//  [, ...] );
13822// // instruction numbers are zero-based using left to right order in peepmatch
13823//
13824// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13825// // provide an instruction_number.operand_name for each operand that appears
13826// // in the replacement instruction's match rule
13827//
13828// ---------VM FLAGS---------------------------------------------------------
13829//
13830// All peephole optimizations can be turned off using -XX:-OptoPeephole
13831//
13832// Each peephole rule is given an identifying number starting with zero and
13833// increasing by one in the order seen by the parser.  An individual peephole
13834// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13835// on the command-line.
13836//
13837// ---------CURRENT LIMITATIONS----------------------------------------------
13838//
13839// Only match adjacent instructions in same basic block
13840// Only equality constraints
13841// Only constraints between operands, not (0.dest_reg == EAX_enc)
13842// Only one replacement instruction
13843//
13844// ---------EXAMPLE----------------------------------------------------------
13845//
13846// // pertinent parts of existing instructions in architecture description
13847// instruct movI(eRegI dst, eRegI src) %{
13848//   match(Set dst (CopyI src));
13849// %}
13850//
13851// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
13852//   match(Set dst (AddI dst src));
13853//   effect(KILL cr);
13854// %}
13855//
13856// // Change (inc mov) to lea
13857// peephole %{
13858//   // increment preceeded by register-register move
13859//   peepmatch ( incI_eReg movI );
13860//   // require that the destination register of the increment
13861//   // match the destination register of the move
13862//   peepconstraint ( 0.dst == 1.dst );
13863//   // construct a replacement instruction that sets
13864//   // the destination to ( move's source register + one )
13865//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13866// %}
13867//
13868// Implementation no longer uses movX instructions since
13869// machine-independent system no longer uses CopyX nodes.
13870//
13871// peephole %{
13872//   peepmatch ( incI_eReg movI );
13873//   peepconstraint ( 0.dst == 1.dst );
13874//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13875// %}
13876//
13877// peephole %{
13878//   peepmatch ( decI_eReg movI );
13879//   peepconstraint ( 0.dst == 1.dst );
13880//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13881// %}
13882//
13883// peephole %{
13884//   peepmatch ( addI_eReg_imm movI );
13885//   peepconstraint ( 0.dst == 1.dst );
13886//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13887// %}
13888//
13889// peephole %{
13890//   peepmatch ( addP_eReg_imm movP );
13891//   peepconstraint ( 0.dst == 1.dst );
13892//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13893// %}
13894
13895// // Change load of spilled value to only a spill
13896// instruct storeI(memory mem, eRegI src) %{
13897//   match(Set mem (StoreI mem src));
13898// %}
13899//
13900// instruct loadI(eRegI dst, memory mem) %{
13901//   match(Set dst (LoadI mem));
13902// %}
13903//
13904peephole %{
13905  peepmatch ( loadI storeI );
13906  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13907  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13908%}
13909
13910//----------SMARTSPILL RULES---------------------------------------------------
13911// These must follow all instruction definitions as they use the names
13912// defined in the instructions definitions.
13913