x86_32.ad revision 1499:e9ff18c4ace7
1//
2// Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23//
24
25// X86 Architecture Description File
26
27//----------REGISTER DEFINITION BLOCK------------------------------------------
28// This information is used by the matcher and the register allocator to
29// describe individual registers and classes of registers within the target
30// archtecture.
31
32register %{
33//----------Architecture Description Register Definitions----------------------
34// General Registers
35// "reg_def"  name ( register save type, C convention save type,
36//                   ideal register type, encoding );
37// Register Save Types:
38//
39// NS  = No-Save:       The register allocator assumes that these registers
40//                      can be used without saving upon entry to the method, &
41//                      that they do not need to be saved at call sites.
42//
43// SOC = Save-On-Call:  The register allocator assumes that these registers
44//                      can be used without saving upon entry to the method,
45//                      but that they must be saved at call sites.
46//
47// SOE = Save-On-Entry: The register allocator assumes that these registers
48//                      must be saved before using them upon entry to the
49//                      method, but they do not need to be saved at call
50//                      sites.
51//
52// AS  = Always-Save:   The register allocator assumes that these registers
53//                      must be saved before using them upon entry to the
54//                      method, & that they must be saved at call sites.
55//
56// Ideal Register Type is used to determine how to save & restore a
57// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
58// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
59//
60// The encoding number is the actual bit-pattern placed into the opcodes.
61
62// General Registers
63// Previously set EBX, ESI, and EDI as save-on-entry for java code
64// Turn off SOE in java-code due to frequent use of uncommon-traps.
65// Now that allocator is better, turn on ESI and EDI as SOE registers.
66
67reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
68reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
69reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
70reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
71// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
72reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
73reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
74reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
75reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
76
77// Special Registers
78reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
79
80// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
81// allocator, and only shows up in the encodings.
82reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
83reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
84// Ok so here's the trick FPR1 is really st(0) except in the midst
85// of emission of assembly for a machnode. During the emission the fpu stack
86// is pushed making FPR1 == st(1) temporarily. However at any safepoint
87// the stack will not have this element so FPR1 == st(0) from the
88// oopMap viewpoint. This same weirdness with numbering causes
89// instruction encoding to have to play games with the register
90// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
91// where it does flt->flt moves to see an example
92//
93reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
94reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
95reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
96reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
97reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
98reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
99reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
100reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
101reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
102reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
103reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
104reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
105reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
106reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
107
108// XMM registers.  128-bit registers or 4 words each, labeled a-d.
109// Word a in each register holds a Float, words ab hold a Double.
110// We currently do not use the SIMD capabilities, so registers cd
111// are unused at the moment.
112reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
113reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
114reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
115reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
116reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
117reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
118reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
119reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
120reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
121reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
122reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
123reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
124reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
125reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
126reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
127reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
128
129// Specify priority of register selection within phases of register
130// allocation.  Highest priority is first.  A useful heuristic is to
131// give registers a low priority when they are required by machine
132// instructions, like EAX and EDX.  Registers which are used as
133// pairs must fall on an even boundary (witness the FPR#L's in this list).
134// For the Intel integer registers, the equivalent Long pairs are
135// EDX:EAX, EBX:ECX, and EDI:EBP.
136alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
137                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
138                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
139                    FPR6L, FPR6H, FPR7L, FPR7H );
140
141alloc_class chunk1( XMM0a, XMM0b,
142                    XMM1a, XMM1b,
143                    XMM2a, XMM2b,
144                    XMM3a, XMM3b,
145                    XMM4a, XMM4b,
146                    XMM5a, XMM5b,
147                    XMM6a, XMM6b,
148                    XMM7a, XMM7b, EFLAGS);
149
150
151//----------Architecture Description Register Classes--------------------------
152// Several register classes are automatically defined based upon information in
153// this architecture description.
154// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
155// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
156// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
157// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
158//
159// Class for all registers
160reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
161// Class for general registers
162reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
163// Class for general registers which may be used for implicit null checks on win95
164// Also safe for use by tailjump. We don't want to allocate in rbp,
165reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
166// Class of "X" registers
167reg_class x_reg(EBX, ECX, EDX, EAX);
168// Class of registers that can appear in an address with no offset.
169// EBP and ESP require an extra instruction byte for zero offset.
170// Used in fast-unlock
171reg_class p_reg(EDX, EDI, ESI, EBX);
172// Class for general registers not including ECX
173reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
174// Class for general registers not including EAX
175reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
176// Class for general registers not including EAX or EBX.
177reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
178// Class of EAX (for multiply and divide operations)
179reg_class eax_reg(EAX);
180// Class of EBX (for atomic add)
181reg_class ebx_reg(EBX);
182// Class of ECX (for shift and JCXZ operations and cmpLTMask)
183reg_class ecx_reg(ECX);
184// Class of EDX (for multiply and divide operations)
185reg_class edx_reg(EDX);
186// Class of EDI (for synchronization)
187reg_class edi_reg(EDI);
188// Class of ESI (for synchronization)
189reg_class esi_reg(ESI);
190// Singleton class for interpreter's stack pointer
191reg_class ebp_reg(EBP);
192// Singleton class for stack pointer
193reg_class sp_reg(ESP);
194// Singleton class for instruction pointer
195// reg_class ip_reg(EIP);
196// Singleton class for condition codes
197reg_class int_flags(EFLAGS);
198// Class of integer register pairs
199reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
200// Class of integer register pairs that aligns with calling convention
201reg_class eadx_reg( EAX,EDX );
202reg_class ebcx_reg( ECX,EBX );
203// Not AX or DX, used in divides
204reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
205
206// Floating point registers.  Notice FPR0 is not a choice.
207// FPR0 is not ever allocated; we use clever encodings to fake
208// a 2-address instructions out of Intels FP stack.
209reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
210
211// make a register class for SSE registers
212reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
213
214// make a double register class for SSE2 registers
215reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
216                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
217
218reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
219                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
220                   FPR7L,FPR7H );
221
222reg_class flt_reg0( FPR1L );
223reg_class dbl_reg0( FPR1L,FPR1H );
224reg_class dbl_reg1( FPR2L,FPR2H );
225reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
226                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
227
228// XMM6 and XMM7 could be used as temporary registers for long, float and
229// double values for SSE2.
230reg_class xdb_reg6( XMM6a,XMM6b );
231reg_class xdb_reg7( XMM7a,XMM7b );
232%}
233
234
235//----------SOURCE BLOCK-------------------------------------------------------
236// This is a block of C++ code which provides values, functions, and
237// definitions necessary in the rest of the architecture description
238source_hpp %{
239// Must be visible to the DFA in dfa_x86_32.cpp
240extern bool is_operand_hi32_zero(Node* n);
241%}
242
243source %{
244#define   RELOC_IMM32    Assembler::imm_operand
245#define   RELOC_DISP32   Assembler::disp32_operand
246
247#define __ _masm.
248
249// How to find the high register of a Long pair, given the low register
250#define   HIGH_FROM_LOW(x) ((x)+2)
251
252// These masks are used to provide 128-bit aligned bitmasks to the XMM
253// instructions, to allow sign-masking or sign-bit flipping.  They allow
254// fast versions of NegF/NegD and AbsF/AbsD.
255
256// Note: 'double' and 'long long' have 32-bits alignment on x86.
257static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
258  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
259  // of 128-bits operands for SSE instructions.
260  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
261  // Store the value to a 128-bits operand.
262  operand[0] = lo;
263  operand[1] = hi;
264  return operand;
265}
266
267// Buffer for 128-bits masks used by SSE instructions.
268static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
269
270// Static initialization during VM startup.
271static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
272static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
273static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
274static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
275
276// Offset hacking within calls.
277static int pre_call_FPU_size() {
278  if (Compile::current()->in_24_bit_fp_mode())
279    return 6; // fldcw
280  return 0;
281}
282
283static int preserve_SP_size() {
284  return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
285}
286
287// !!!!! Special hack to get all type of calls to specify the byte offset
288//       from the start of the call to the point where the return address
289//       will point.
290int MachCallStaticJavaNode::ret_addr_offset() {
291  int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
292  if (_method_handle_invoke)
293    offset += preserve_SP_size();
294  return offset;
295}
296
297int MachCallDynamicJavaNode::ret_addr_offset() {
298  return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
299}
300
301static int sizeof_FFree_Float_Stack_All = -1;
302
303int MachCallRuntimeNode::ret_addr_offset() {
304  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
305  return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
306}
307
308// Indicate if the safepoint node needs the polling page as an input.
309// Since x86 does have absolute addressing, it doesn't.
310bool SafePointNode::needs_polling_address_input() {
311  return false;
312}
313
314//
315// Compute padding required for nodes which need alignment
316//
317
318// The address of the call instruction needs to be 4-byte aligned to
319// ensure that it does not span a cache line so that it can be patched.
320int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
321  current_offset += pre_call_FPU_size();  // skip fldcw, if any
322  current_offset += 1;      // skip call opcode byte
323  return round_to(current_offset, alignment_required()) - current_offset;
324}
325
326// The address of the call instruction needs to be 4-byte aligned to
327// ensure that it does not span a cache line so that it can be patched.
328int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
329  current_offset += pre_call_FPU_size();  // skip fldcw, if any
330  current_offset += preserve_SP_size();   // skip mov rbp, rsp
331  current_offset += 1;      // skip call opcode byte
332  return round_to(current_offset, alignment_required()) - current_offset;
333}
334
335// The address of the call instruction needs to be 4-byte aligned to
336// ensure that it does not span a cache line so that it can be patched.
337int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
338  current_offset += pre_call_FPU_size();  // skip fldcw, if any
339  current_offset += 5;      // skip MOV instruction
340  current_offset += 1;      // skip call opcode byte
341  return round_to(current_offset, alignment_required()) - current_offset;
342}
343
344#ifndef PRODUCT
345void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
346  st->print("INT3");
347}
348#endif
349
350// EMIT_RM()
351void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
352  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
353  *(cbuf.code_end()) = c;
354  cbuf.set_code_end(cbuf.code_end() + 1);
355}
356
357// EMIT_CC()
358void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
359  unsigned char c = (unsigned char)( f1 | f2 );
360  *(cbuf.code_end()) = c;
361  cbuf.set_code_end(cbuf.code_end() + 1);
362}
363
364// EMIT_OPCODE()
365void emit_opcode(CodeBuffer &cbuf, int code) {
366  *(cbuf.code_end()) = (unsigned char)code;
367  cbuf.set_code_end(cbuf.code_end() + 1);
368}
369
370// EMIT_OPCODE() w/ relocation information
371void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
372  cbuf.relocate(cbuf.inst_mark() + offset, reloc);
373  emit_opcode(cbuf, code);
374}
375
376// EMIT_D8()
377void emit_d8(CodeBuffer &cbuf, int d8) {
378  *(cbuf.code_end()) = (unsigned char)d8;
379  cbuf.set_code_end(cbuf.code_end() + 1);
380}
381
382// EMIT_D16()
383void emit_d16(CodeBuffer &cbuf, int d16) {
384  *((short *)(cbuf.code_end())) = d16;
385  cbuf.set_code_end(cbuf.code_end() + 2);
386}
387
388// EMIT_D32()
389void emit_d32(CodeBuffer &cbuf, int d32) {
390  *((int *)(cbuf.code_end())) = d32;
391  cbuf.set_code_end(cbuf.code_end() + 4);
392}
393
394// emit 32 bit value and construct relocation entry from relocInfo::relocType
395void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
396        int format) {
397  cbuf.relocate(cbuf.inst_mark(), reloc, format);
398
399  *((int *)(cbuf.code_end())) = d32;
400  cbuf.set_code_end(cbuf.code_end() + 4);
401}
402
403// emit 32 bit value and construct relocation entry from RelocationHolder
404void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
405        int format) {
406#ifdef ASSERT
407  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
408    assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
409  }
410#endif
411  cbuf.relocate(cbuf.inst_mark(), rspec, format);
412
413  *((int *)(cbuf.code_end())) = d32;
414  cbuf.set_code_end(cbuf.code_end() + 4);
415}
416
417// Access stack slot for load or store
418void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
419  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
420  if( -128 <= disp && disp <= 127 ) {
421    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
422    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
423    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
424  } else {
425    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
426    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
427    emit_d32(cbuf, disp);     // Displacement  // R/M byte
428  }
429}
430
431   // eRegI ereg, memory mem) %{    // emit_reg_mem
432void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
433  // There is no index & no scale, use form without SIB byte
434  if ((index == 0x4) &&
435      (scale == 0) && (base != ESP_enc)) {
436    // If no displacement, mode is 0x0; unless base is [EBP]
437    if ( (displace == 0) && (base != EBP_enc) ) {
438      emit_rm(cbuf, 0x0, reg_encoding, base);
439    }
440    else {                    // If 8-bit displacement, mode 0x1
441      if ((displace >= -128) && (displace <= 127)
442          && !(displace_is_oop) ) {
443        emit_rm(cbuf, 0x1, reg_encoding, base);
444        emit_d8(cbuf, displace);
445      }
446      else {                  // If 32-bit displacement
447        if (base == -1) { // Special flag for absolute address
448          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
449          // (manual lies; no SIB needed here)
450          if ( displace_is_oop ) {
451            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
452          } else {
453            emit_d32      (cbuf, displace);
454          }
455        }
456        else {                // Normal base + offset
457          emit_rm(cbuf, 0x2, reg_encoding, base);
458          if ( displace_is_oop ) {
459            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
460          } else {
461            emit_d32      (cbuf, displace);
462          }
463        }
464      }
465    }
466  }
467  else {                      // Else, encode with the SIB byte
468    // If no displacement, mode is 0x0; unless base is [EBP]
469    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
470      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
471      emit_rm(cbuf, scale, index, base);
472    }
473    else {                    // If 8-bit displacement, mode 0x1
474      if ((displace >= -128) && (displace <= 127)
475          && !(displace_is_oop) ) {
476        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
477        emit_rm(cbuf, scale, index, base);
478        emit_d8(cbuf, displace);
479      }
480      else {                  // If 32-bit displacement
481        if (base == 0x04 ) {
482          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
483          emit_rm(cbuf, scale, index, 0x04);
484        } else {
485          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
486          emit_rm(cbuf, scale, index, base);
487        }
488        if ( displace_is_oop ) {
489          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
490        } else {
491          emit_d32      (cbuf, displace);
492        }
493      }
494    }
495  }
496}
497
498
499void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
500  if( dst_encoding == src_encoding ) {
501    // reg-reg copy, use an empty encoding
502  } else {
503    emit_opcode( cbuf, 0x8B );
504    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
505  }
506}
507
508void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
509  if( dst_encoding == src_encoding ) {
510    // reg-reg copy, use an empty encoding
511  } else {
512    MacroAssembler _masm(&cbuf);
513
514    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
515  }
516}
517
518
519//=============================================================================
520#ifndef PRODUCT
521void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
522  Compile* C = ra_->C;
523  if( C->in_24_bit_fp_mode() ) {
524    st->print("FLDCW  24 bit fpu control word");
525    st->print_cr(""); st->print("\t");
526  }
527
528  int framesize = C->frame_slots() << LogBytesPerInt;
529  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
530  // Remove two words for return addr and rbp,
531  framesize -= 2*wordSize;
532
533  // Calls to C2R adapters often do not accept exceptional returns.
534  // We require that their callers must bang for them.  But be careful, because
535  // some VM calls (such as call site linkage) can use several kilobytes of
536  // stack.  But the stack safety zone should account for that.
537  // See bugs 4446381, 4468289, 4497237.
538  if (C->need_stack_bang(framesize)) {
539    st->print_cr("# stack bang"); st->print("\t");
540  }
541  st->print_cr("PUSHL  EBP"); st->print("\t");
542
543  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
544    st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
545    st->print_cr(""); st->print("\t");
546    framesize -= wordSize;
547  }
548
549  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
550    if (framesize) {
551      st->print("SUB    ESP,%d\t# Create frame",framesize);
552    }
553  } else {
554    st->print("SUB    ESP,%d\t# Create frame",framesize);
555  }
556}
557#endif
558
559
560void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
561  Compile* C = ra_->C;
562
563  if (UseSSE >= 2 && VerifyFPU) {
564    MacroAssembler masm(&cbuf);
565    masm.verify_FPU(0, "FPU stack must be clean on entry");
566  }
567
568  // WARNING: Initial instruction MUST be 5 bytes or longer so that
569  // NativeJump::patch_verified_entry will be able to patch out the entry
570  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
571  // depth is ok at 5 bytes, the frame allocation can be either 3 or
572  // 6 bytes. So if we don't do the fldcw or the push then we must
573  // use the 6 byte frame allocation even if we have no frame. :-(
574  // If method sets FPU control word do it now
575  if( C->in_24_bit_fp_mode() ) {
576    MacroAssembler masm(&cbuf);
577    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
578  }
579
580  int framesize = C->frame_slots() << LogBytesPerInt;
581  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
582  // Remove two words for return addr and rbp,
583  framesize -= 2*wordSize;
584
585  // Calls to C2R adapters often do not accept exceptional returns.
586  // We require that their callers must bang for them.  But be careful, because
587  // some VM calls (such as call site linkage) can use several kilobytes of
588  // stack.  But the stack safety zone should account for that.
589  // See bugs 4446381, 4468289, 4497237.
590  if (C->need_stack_bang(framesize)) {
591    MacroAssembler masm(&cbuf);
592    masm.generate_stack_overflow_check(framesize);
593  }
594
595  // We always push rbp, so that on return to interpreter rbp, will be
596  // restored correctly and we can correct the stack.
597  emit_opcode(cbuf, 0x50 | EBP_enc);
598
599  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
600    emit_opcode(cbuf, 0x68); // push 0xbadb100d
601    emit_d32(cbuf, 0xbadb100d);
602    framesize -= wordSize;
603  }
604
605  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
606    if (framesize) {
607      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
608      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
609      emit_d8(cbuf, framesize);
610    }
611  } else {
612    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
613    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
614    emit_d32(cbuf, framesize);
615  }
616  C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
617
618#ifdef ASSERT
619  if (VerifyStackAtCalls) {
620    Label L;
621    MacroAssembler masm(&cbuf);
622    masm.push(rax);
623    masm.mov(rax, rsp);
624    masm.andptr(rax, StackAlignmentInBytes-1);
625    masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
626    masm.pop(rax);
627    masm.jcc(Assembler::equal, L);
628    masm.stop("Stack is not properly aligned!");
629    masm.bind(L);
630  }
631#endif
632
633}
634
635uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
636  return MachNode::size(ra_); // too many variables; just compute it the hard way
637}
638
639int MachPrologNode::reloc() const {
640  return 0; // a large enough number
641}
642
643//=============================================================================
644#ifndef PRODUCT
645void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
646  Compile *C = ra_->C;
647  int framesize = C->frame_slots() << LogBytesPerInt;
648  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
649  // Remove two words for return addr and rbp,
650  framesize -= 2*wordSize;
651
652  if( C->in_24_bit_fp_mode() ) {
653    st->print("FLDCW  standard control word");
654    st->cr(); st->print("\t");
655  }
656  if( framesize ) {
657    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
658    st->cr(); st->print("\t");
659  }
660  st->print_cr("POPL   EBP"); st->print("\t");
661  if( do_polling() && C->is_method_compilation() ) {
662    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
663    st->cr(); st->print("\t");
664  }
665}
666#endif
667
668void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
669  Compile *C = ra_->C;
670
671  // If method set FPU control word, restore to standard control word
672  if( C->in_24_bit_fp_mode() ) {
673    MacroAssembler masm(&cbuf);
674    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
675  }
676
677  int framesize = C->frame_slots() << LogBytesPerInt;
678  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
679  // Remove two words for return addr and rbp,
680  framesize -= 2*wordSize;
681
682  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
683
684  if( framesize >= 128 ) {
685    emit_opcode(cbuf, 0x81); // add  SP, #framesize
686    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
687    emit_d32(cbuf, framesize);
688  }
689  else if( framesize ) {
690    emit_opcode(cbuf, 0x83); // add  SP, #framesize
691    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
692    emit_d8(cbuf, framesize);
693  }
694
695  emit_opcode(cbuf, 0x58 | EBP_enc);
696
697  if( do_polling() && C->is_method_compilation() ) {
698    cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
699    emit_opcode(cbuf,0x85);
700    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
701    emit_d32(cbuf, (intptr_t)os::get_polling_page());
702  }
703}
704
705uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
706  Compile *C = ra_->C;
707  // If method set FPU control word, restore to standard control word
708  int size = C->in_24_bit_fp_mode() ? 6 : 0;
709  if( do_polling() && C->is_method_compilation() ) size += 6;
710
711  int framesize = C->frame_slots() << LogBytesPerInt;
712  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
713  // Remove two words for return addr and rbp,
714  framesize -= 2*wordSize;
715
716  size++; // popl rbp,
717
718  if( framesize >= 128 ) {
719    size += 6;
720  } else {
721    size += framesize ? 3 : 0;
722  }
723  return size;
724}
725
726int MachEpilogNode::reloc() const {
727  return 0; // a large enough number
728}
729
730const Pipeline * MachEpilogNode::pipeline() const {
731  return MachNode::pipeline_class();
732}
733
734int MachEpilogNode::safepoint_offset() const { return 0; }
735
736//=============================================================================
737
738enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
739static enum RC rc_class( OptoReg::Name reg ) {
740
741  if( !OptoReg::is_valid(reg)  ) return rc_bad;
742  if (OptoReg::is_stack(reg)) return rc_stack;
743
744  VMReg r = OptoReg::as_VMReg(reg);
745  if (r->is_Register()) return rc_int;
746  if (r->is_FloatRegister()) {
747    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
748    return rc_float;
749  }
750  assert(r->is_XMMRegister(), "must be");
751  return rc_xmm;
752}
753
754static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
755                        int opcode, const char *op_str, int size, outputStream* st ) {
756  if( cbuf ) {
757    emit_opcode  (*cbuf, opcode );
758    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
759#ifndef PRODUCT
760  } else if( !do_size ) {
761    if( size != 0 ) st->print("\n\t");
762    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
763      if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
764      else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
765    } else { // FLD, FST, PUSH, POP
766      st->print("%s [ESP + #%d]",op_str,offset);
767    }
768#endif
769  }
770  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
771  return size+3+offset_size;
772}
773
774// Helper for XMM registers.  Extra opcode bits, limited syntax.
775static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
776                         int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
777  if( cbuf ) {
778    if( reg_lo+1 == reg_hi ) { // double move?
779      if( is_load && !UseXmmLoadAndClearUpper )
780        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
781      else
782        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
783    } else {
784      emit_opcode(*cbuf, 0xF3 );
785    }
786    emit_opcode(*cbuf, 0x0F );
787    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
788      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
789    else
790      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
791    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
792#ifndef PRODUCT
793  } else if( !do_size ) {
794    if( size != 0 ) st->print("\n\t");
795    if( reg_lo+1 == reg_hi ) { // double move?
796      if( is_load ) st->print("%s %s,[ESP + #%d]",
797                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
798                               Matcher::regName[reg_lo], offset);
799      else          st->print("MOVSD  [ESP + #%d],%s",
800                               offset, Matcher::regName[reg_lo]);
801    } else {
802      if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
803                               Matcher::regName[reg_lo], offset);
804      else          st->print("MOVSS  [ESP + #%d],%s",
805                               offset, Matcher::regName[reg_lo]);
806    }
807#endif
808  }
809  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
810  return size+5+offset_size;
811}
812
813
814static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
815                            int src_hi, int dst_hi, int size, outputStream* st ) {
816  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
817    if( cbuf ) {
818      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
819        emit_opcode(*cbuf, 0x66 );
820      }
821      emit_opcode(*cbuf, 0x0F );
822      emit_opcode(*cbuf, 0x28 );
823      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
824#ifndef PRODUCT
825    } else if( !do_size ) {
826      if( size != 0 ) st->print("\n\t");
827      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
828        st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
829      } else {
830        st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
831      }
832#endif
833    }
834    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
835  } else {
836    if( cbuf ) {
837      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
838      emit_opcode(*cbuf, 0x0F );
839      emit_opcode(*cbuf, 0x10 );
840      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
841#ifndef PRODUCT
842    } else if( !do_size ) {
843      if( size != 0 ) st->print("\n\t");
844      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
845        st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
846      } else {
847        st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
848      }
849#endif
850    }
851    return size+4;
852  }
853}
854
855static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
856  if( cbuf ) {
857    emit_opcode(*cbuf, 0x8B );
858    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
859#ifndef PRODUCT
860  } else if( !do_size ) {
861    if( size != 0 ) st->print("\n\t");
862    st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
863#endif
864  }
865  return size+2;
866}
867
868static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
869                                 int offset, int size, outputStream* st ) {
870  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
871    if( cbuf ) {
872      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
873      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
874#ifndef PRODUCT
875    } else if( !do_size ) {
876      if( size != 0 ) st->print("\n\t");
877      st->print("FLD    %s",Matcher::regName[src_lo]);
878#endif
879    }
880    size += 2;
881  }
882
883  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
884  const char *op_str;
885  int op;
886  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
887    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
888    op = 0xDD;
889  } else {                   // 32-bit store
890    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
891    op = 0xD9;
892    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
893  }
894
895  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
896}
897
898uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
899  // Get registers to move
900  OptoReg::Name src_second = ra_->get_reg_second(in(1));
901  OptoReg::Name src_first = ra_->get_reg_first(in(1));
902  OptoReg::Name dst_second = ra_->get_reg_second(this );
903  OptoReg::Name dst_first = ra_->get_reg_first(this );
904
905  enum RC src_second_rc = rc_class(src_second);
906  enum RC src_first_rc = rc_class(src_first);
907  enum RC dst_second_rc = rc_class(dst_second);
908  enum RC dst_first_rc = rc_class(dst_first);
909
910  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
911
912  // Generate spill code!
913  int size = 0;
914
915  if( src_first == dst_first && src_second == dst_second )
916    return size;            // Self copy, no move
917
918  // --------------------------------------
919  // Check for mem-mem move.  push/pop to move.
920  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
921    if( src_second == dst_first ) { // overlapping stack copy ranges
922      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
923      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
924      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
925      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
926    }
927    // move low bits
928    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
929    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
930    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
931      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
932      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
933    }
934    return size;
935  }
936
937  // --------------------------------------
938  // Check for integer reg-reg copy
939  if( src_first_rc == rc_int && dst_first_rc == rc_int )
940    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
941
942  // Check for integer store
943  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
944    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
945
946  // Check for integer load
947  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
948    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
949
950  // --------------------------------------
951  // Check for float reg-reg copy
952  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
953    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
954            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
955    if( cbuf ) {
956
957      // Note the mucking with the register encode to compensate for the 0/1
958      // indexing issue mentioned in a comment in the reg_def sections
959      // for FPR registers many lines above here.
960
961      if( src_first != FPR1L_num ) {
962        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
963        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
964        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
965        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
966     } else {
967        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
968        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
969     }
970#ifndef PRODUCT
971    } else if( !do_size ) {
972      if( size != 0 ) st->print("\n\t");
973      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
974      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
975#endif
976    }
977    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
978  }
979
980  // Check for float store
981  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
982    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
983  }
984
985  // Check for float load
986  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
987    int offset = ra_->reg2offset(src_first);
988    const char *op_str;
989    int op;
990    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
991      op_str = "FLD_D";
992      op = 0xDD;
993    } else {                   // 32-bit load
994      op_str = "FLD_S";
995      op = 0xD9;
996      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
997    }
998    if( cbuf ) {
999      emit_opcode  (*cbuf, op );
1000      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1001      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1002      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1003#ifndef PRODUCT
1004    } else if( !do_size ) {
1005      if( size != 0 ) st->print("\n\t");
1006      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1007#endif
1008    }
1009    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1010    return size + 3+offset_size+2;
1011  }
1012
1013  // Check for xmm reg-reg copy
1014  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1015    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1016            (src_first+1 == src_second && dst_first+1 == dst_second),
1017            "no non-adjacent float-moves" );
1018    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1019  }
1020
1021  // Check for xmm store
1022  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1023    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1024  }
1025
1026  // Check for float xmm load
1027  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1028    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1029  }
1030
1031  // Copy from float reg to xmm reg
1032  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1033    // copy to the top of stack from floating point reg
1034    // and use LEA to preserve flags
1035    if( cbuf ) {
1036      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1037      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1038      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1039      emit_d8(*cbuf,0xF8);
1040#ifndef PRODUCT
1041    } else if( !do_size ) {
1042      if( size != 0 ) st->print("\n\t");
1043      st->print("LEA    ESP,[ESP-8]");
1044#endif
1045    }
1046    size += 4;
1047
1048    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1049
1050    // Copy from the temp memory to the xmm reg.
1051    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1052
1053    if( cbuf ) {
1054      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1055      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1056      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1057      emit_d8(*cbuf,0x08);
1058#ifndef PRODUCT
1059    } else if( !do_size ) {
1060      if( size != 0 ) st->print("\n\t");
1061      st->print("LEA    ESP,[ESP+8]");
1062#endif
1063    }
1064    size += 4;
1065    return size;
1066  }
1067
1068  assert( size > 0, "missed a case" );
1069
1070  // --------------------------------------------------------------------
1071  // Check for second bits still needing moving.
1072  if( src_second == dst_second )
1073    return size;               // Self copy; no move
1074  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1075
1076  // Check for second word int-int move
1077  if( src_second_rc == rc_int && dst_second_rc == rc_int )
1078    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1079
1080  // Check for second word integer store
1081  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1082    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1083
1084  // Check for second word integer load
1085  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1086    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1087
1088
1089  Unimplemented();
1090}
1091
1092#ifndef PRODUCT
1093void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1094  implementation( NULL, ra_, false, st );
1095}
1096#endif
1097
1098void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1099  implementation( &cbuf, ra_, false, NULL );
1100}
1101
1102uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1103  return implementation( NULL, ra_, true, NULL );
1104}
1105
1106//=============================================================================
1107#ifndef PRODUCT
1108void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1109  st->print("NOP \t# %d bytes pad for loops and calls", _count);
1110}
1111#endif
1112
1113void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1114  MacroAssembler _masm(&cbuf);
1115  __ nop(_count);
1116}
1117
1118uint MachNopNode::size(PhaseRegAlloc *) const {
1119  return _count;
1120}
1121
1122
1123//=============================================================================
1124#ifndef PRODUCT
1125void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1126  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1127  int reg = ra_->get_reg_first(this);
1128  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1129}
1130#endif
1131
1132void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1133  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1134  int reg = ra_->get_encode(this);
1135  if( offset >= 128 ) {
1136    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1137    emit_rm(cbuf, 0x2, reg, 0x04);
1138    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1139    emit_d32(cbuf, offset);
1140  }
1141  else {
1142    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1143    emit_rm(cbuf, 0x1, reg, 0x04);
1144    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1145    emit_d8(cbuf, offset);
1146  }
1147}
1148
1149uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1150  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1151  if( offset >= 128 ) {
1152    return 7;
1153  }
1154  else {
1155    return 4;
1156  }
1157}
1158
1159//=============================================================================
1160
1161// emit call stub, compiled java to interpreter
1162void emit_java_to_interp(CodeBuffer &cbuf ) {
1163  // Stub is fixed up when the corresponding call is converted from calling
1164  // compiled code to calling interpreted code.
1165  // mov rbx,0
1166  // jmp -1
1167
1168  address mark = cbuf.inst_mark();  // get mark within main instrs section
1169
1170  // Note that the code buffer's inst_mark is always relative to insts.
1171  // That's why we must use the macroassembler to generate a stub.
1172  MacroAssembler _masm(&cbuf);
1173
1174  address base =
1175  __ start_a_stub(Compile::MAX_stubs_size);
1176  if (base == NULL)  return;  // CodeBuffer::expand failed
1177  // static stub relocation stores the instruction address of the call
1178  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1179  // static stub relocation also tags the methodOop in the code-stream.
1180  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1181  // This is recognized as unresolved by relocs/nativeInst/ic code
1182  __ jump(RuntimeAddress(__ pc()));
1183
1184  __ end_a_stub();
1185  // Update current stubs pointer and restore code_end.
1186}
1187// size of call stub, compiled java to interpretor
1188uint size_java_to_interp() {
1189  return 10;  // movl; jmp
1190}
1191// relocation entries for call stub, compiled java to interpretor
1192uint reloc_java_to_interp() {
1193  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1194}
1195
1196//=============================================================================
1197#ifndef PRODUCT
1198void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1199  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1200  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1201  st->print_cr("\tNOP");
1202  st->print_cr("\tNOP");
1203  if( !OptoBreakpoint )
1204    st->print_cr("\tNOP");
1205}
1206#endif
1207
1208void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1209  MacroAssembler masm(&cbuf);
1210#ifdef ASSERT
1211  uint code_size = cbuf.code_size();
1212#endif
1213  masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1214  masm.jump_cc(Assembler::notEqual,
1215               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1216  /* WARNING these NOPs are critical so that verified entry point is properly
1217     aligned for patching by NativeJump::patch_verified_entry() */
1218  int nops_cnt = 2;
1219  if( !OptoBreakpoint ) // Leave space for int3
1220     nops_cnt += 1;
1221  masm.nop(nops_cnt);
1222
1223  assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
1224}
1225
1226uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1227  return OptoBreakpoint ? 11 : 12;
1228}
1229
1230
1231//=============================================================================
1232uint size_exception_handler() {
1233  // NativeCall instruction size is the same as NativeJump.
1234  // exception handler starts out as jump and can be patched to
1235  // a call be deoptimization.  (4932387)
1236  // Note that this value is also credited (in output.cpp) to
1237  // the size of the code section.
1238  return NativeJump::instruction_size;
1239}
1240
1241// Emit exception handler code.  Stuff framesize into a register
1242// and call a VM stub routine.
1243int emit_exception_handler(CodeBuffer& cbuf) {
1244
1245  // Note that the code buffer's inst_mark is always relative to insts.
1246  // That's why we must use the macroassembler to generate a handler.
1247  MacroAssembler _masm(&cbuf);
1248  address base =
1249  __ start_a_stub(size_exception_handler());
1250  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1251  int offset = __ offset();
1252  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1253  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1254  __ end_a_stub();
1255  return offset;
1256}
1257
1258uint size_deopt_handler() {
1259  // NativeCall instruction size is the same as NativeJump.
1260  // exception handler starts out as jump and can be patched to
1261  // a call be deoptimization.  (4932387)
1262  // Note that this value is also credited (in output.cpp) to
1263  // the size of the code section.
1264  return 5 + NativeJump::instruction_size; // pushl(); jmp;
1265}
1266
1267// Emit deopt handler code.
1268int emit_deopt_handler(CodeBuffer& cbuf) {
1269
1270  // Note that the code buffer's inst_mark is always relative to insts.
1271  // That's why we must use the macroassembler to generate a handler.
1272  MacroAssembler _masm(&cbuf);
1273  address base =
1274  __ start_a_stub(size_exception_handler());
1275  if (base == NULL)  return 0;  // CodeBuffer::expand failed
1276  int offset = __ offset();
1277  InternalAddress here(__ pc());
1278  __ pushptr(here.addr());
1279
1280  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1281  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1282  __ end_a_stub();
1283  return offset;
1284}
1285
1286
1287static void emit_double_constant(CodeBuffer& cbuf, double x) {
1288  int mark = cbuf.insts()->mark_off();
1289  MacroAssembler _masm(&cbuf);
1290  address double_address = __ double_constant(x);
1291  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1292  emit_d32_reloc(cbuf,
1293                 (int)double_address,
1294                 internal_word_Relocation::spec(double_address),
1295                 RELOC_DISP32);
1296}
1297
1298static void emit_float_constant(CodeBuffer& cbuf, float x) {
1299  int mark = cbuf.insts()->mark_off();
1300  MacroAssembler _masm(&cbuf);
1301  address float_address = __ float_constant(x);
1302  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1303  emit_d32_reloc(cbuf,
1304                 (int)float_address,
1305                 internal_word_Relocation::spec(float_address),
1306                 RELOC_DISP32);
1307}
1308
1309
1310const bool Matcher::match_rule_supported(int opcode) {
1311  if (!has_match_rule(opcode))
1312    return false;
1313
1314  return true;  // Per default match rules are supported.
1315}
1316
1317int Matcher::regnum_to_fpu_offset(int regnum) {
1318  return regnum - 32; // The FP registers are in the second chunk
1319}
1320
1321bool is_positive_zero_float(jfloat f) {
1322  return jint_cast(f) == jint_cast(0.0F);
1323}
1324
1325bool is_positive_one_float(jfloat f) {
1326  return jint_cast(f) == jint_cast(1.0F);
1327}
1328
1329bool is_positive_zero_double(jdouble d) {
1330  return jlong_cast(d) == jlong_cast(0.0);
1331}
1332
1333bool is_positive_one_double(jdouble d) {
1334  return jlong_cast(d) == jlong_cast(1.0);
1335}
1336
1337// This is UltraSparc specific, true just means we have fast l2f conversion
1338const bool Matcher::convL2FSupported(void) {
1339  return true;
1340}
1341
1342// Vector width in bytes
1343const uint Matcher::vector_width_in_bytes(void) {
1344  return UseSSE >= 2 ? 8 : 0;
1345}
1346
1347// Vector ideal reg
1348const uint Matcher::vector_ideal_reg(void) {
1349  return Op_RegD;
1350}
1351
1352// Is this branch offset short enough that a short branch can be used?
1353//
1354// NOTE: If the platform does not provide any short branch variants, then
1355//       this method should return false for offset 0.
1356bool Matcher::is_short_branch_offset(int rule, int offset) {
1357  // the short version of jmpConUCF2 contains multiple branches,
1358  // making the reach slightly less
1359  if (rule == jmpConUCF2_rule)
1360    return (-126 <= offset && offset <= 125);
1361  return (-128 <= offset && offset <= 127);
1362}
1363
1364const bool Matcher::isSimpleConstant64(jlong value) {
1365  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1366  return false;
1367}
1368
1369// The ecx parameter to rep stos for the ClearArray node is in dwords.
1370const bool Matcher::init_array_count_is_in_bytes = false;
1371
1372// Threshold size for cleararray.
1373const int Matcher::init_array_short_size = 8 * BytesPerLong;
1374
1375// Should the Matcher clone shifts on addressing modes, expecting them to
1376// be subsumed into complex addressing expressions or compute them into
1377// registers?  True for Intel but false for most RISCs
1378const bool Matcher::clone_shift_expressions = true;
1379
1380bool Matcher::narrow_oop_use_complex_address() {
1381  ShouldNotCallThis();
1382  return true;
1383}
1384
1385
1386// Is it better to copy float constants, or load them directly from memory?
1387// Intel can load a float constant from a direct address, requiring no
1388// extra registers.  Most RISCs will have to materialize an address into a
1389// register first, so they would do better to copy the constant from stack.
1390const bool Matcher::rematerialize_float_constants = true;
1391
1392// If CPU can load and store mis-aligned doubles directly then no fixup is
1393// needed.  Else we split the double into 2 integer pieces and move it
1394// piece-by-piece.  Only happens when passing doubles into C code as the
1395// Java calling convention forces doubles to be aligned.
1396const bool Matcher::misaligned_doubles_ok = true;
1397
1398
1399void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1400  // Get the memory operand from the node
1401  uint numopnds = node->num_opnds();        // Virtual call for number of operands
1402  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1403  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1404  uint opcnt     = 1;                 // First operand
1405  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1406  while( idx >= skipped+num_edges ) {
1407    skipped += num_edges;
1408    opcnt++;                          // Bump operand count
1409    assert( opcnt < numopnds, "Accessing non-existent operand" );
1410    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1411  }
1412
1413  MachOper *memory = node->_opnds[opcnt];
1414  MachOper *new_memory = NULL;
1415  switch (memory->opcode()) {
1416  case DIRECT:
1417  case INDOFFSET32X:
1418    // No transformation necessary.
1419    return;
1420  case INDIRECT:
1421    new_memory = new (C) indirect_win95_safeOper( );
1422    break;
1423  case INDOFFSET8:
1424    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1425    break;
1426  case INDOFFSET32:
1427    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1428    break;
1429  case INDINDEXOFFSET:
1430    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1431    break;
1432  case INDINDEXSCALE:
1433    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1434    break;
1435  case INDINDEXSCALEOFFSET:
1436    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1437    break;
1438  case LOAD_LONG_INDIRECT:
1439  case LOAD_LONG_INDOFFSET32:
1440    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1441    return;
1442  default:
1443    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1444    return;
1445  }
1446  node->_opnds[opcnt] = new_memory;
1447}
1448
1449// Advertise here if the CPU requires explicit rounding operations
1450// to implement the UseStrictFP mode.
1451const bool Matcher::strict_fp_requires_explicit_rounding = true;
1452
1453// Are floats conerted to double when stored to stack during deoptimization?
1454// On x32 it is stored with convertion only when FPU is used for floats.
1455bool Matcher::float_in_double() { return (UseSSE == 0); }
1456
1457// Do ints take an entire long register or just half?
1458const bool Matcher::int_in_long = false;
1459
1460// Return whether or not this register is ever used as an argument.  This
1461// function is used on startup to build the trampoline stubs in generateOptoStub.
1462// Registers not mentioned will be killed by the VM call in the trampoline, and
1463// arguments in those registers not be available to the callee.
1464bool Matcher::can_be_java_arg( int reg ) {
1465  if(  reg == ECX_num   || reg == EDX_num   ) return true;
1466  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1467  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1468  return false;
1469}
1470
1471bool Matcher::is_spillable_arg( int reg ) {
1472  return can_be_java_arg(reg);
1473}
1474
1475// Register for DIVI projection of divmodI
1476RegMask Matcher::divI_proj_mask() {
1477  return EAX_REG_mask;
1478}
1479
1480// Register for MODI projection of divmodI
1481RegMask Matcher::modI_proj_mask() {
1482  return EDX_REG_mask;
1483}
1484
1485// Register for DIVL projection of divmodL
1486RegMask Matcher::divL_proj_mask() {
1487  ShouldNotReachHere();
1488  return RegMask();
1489}
1490
1491// Register for MODL projection of divmodL
1492RegMask Matcher::modL_proj_mask() {
1493  ShouldNotReachHere();
1494  return RegMask();
1495}
1496
1497const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1498  return EBP_REG_mask;
1499}
1500
1501// Returns true if the high 32 bits of the value is known to be zero.
1502bool is_operand_hi32_zero(Node* n) {
1503  int opc = n->Opcode();
1504  if (opc == Op_LoadUI2L) {
1505    return true;
1506  }
1507  if (opc == Op_AndL) {
1508    Node* o2 = n->in(2);
1509    if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1510      return true;
1511    }
1512  }
1513  return false;
1514}
1515
1516%}
1517
1518//----------ENCODING BLOCK-----------------------------------------------------
1519// This block specifies the encoding classes used by the compiler to output
1520// byte streams.  Encoding classes generate functions which are called by
1521// Machine Instruction Nodes in order to generate the bit encoding of the
1522// instruction.  Operands specify their base encoding interface with the
1523// interface keyword.  There are currently supported four interfaces,
1524// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1525// operand to generate a function which returns its register number when
1526// queried.   CONST_INTER causes an operand to generate a function which
1527// returns the value of the constant when queried.  MEMORY_INTER causes an
1528// operand to generate four functions which return the Base Register, the
1529// Index Register, the Scale Value, and the Offset Value of the operand when
1530// queried.  COND_INTER causes an operand to generate six functions which
1531// return the encoding code (ie - encoding bits for the instruction)
1532// associated with each basic boolean condition for a conditional instruction.
1533// Instructions specify two basic values for encoding.  They use the
1534// ins_encode keyword to specify their encoding class (which must be one of
1535// the class names specified in the encoding block), and they use the
1536// opcode keyword to specify, in order, their primary, secondary, and
1537// tertiary opcode.  Only the opcode sections which a particular instruction
1538// needs for encoding need to be specified.
1539encode %{
1540  // Build emit functions for each basic byte or larger field in the intel
1541  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1542  // code in the enc_class source block.  Emit functions will live in the
1543  // main source block for now.  In future, we can generalize this by
1544  // adding a syntax that specifies the sizes of fields in an order,
1545  // so that the adlc can build the emit functions automagically
1546
1547  // Emit primary opcode
1548  enc_class OpcP %{
1549    emit_opcode(cbuf, $primary);
1550  %}
1551
1552  // Emit secondary opcode
1553  enc_class OpcS %{
1554    emit_opcode(cbuf, $secondary);
1555  %}
1556
1557  // Emit opcode directly
1558  enc_class Opcode(immI d8) %{
1559    emit_opcode(cbuf, $d8$$constant);
1560  %}
1561
1562  enc_class SizePrefix %{
1563    emit_opcode(cbuf,0x66);
1564  %}
1565
1566  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1567    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1568  %}
1569
1570  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1571    emit_opcode(cbuf,$opcode$$constant);
1572    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1573  %}
1574
1575  enc_class mov_r32_imm0( eRegI dst ) %{
1576    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1577    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1578  %}
1579
1580  enc_class cdq_enc %{
1581    // Full implementation of Java idiv and irem; checks for
1582    // special case as described in JVM spec., p.243 & p.271.
1583    //
1584    //         normal case                           special case
1585    //
1586    // input : rax,: dividend                         min_int
1587    //         reg: divisor                          -1
1588    //
1589    // output: rax,: quotient  (= rax, idiv reg)       min_int
1590    //         rdx: remainder (= rax, irem reg)       0
1591    //
1592    //  Code sequnce:
1593    //
1594    //  81 F8 00 00 00 80    cmp         rax,80000000h
1595    //  0F 85 0B 00 00 00    jne         normal_case
1596    //  33 D2                xor         rdx,edx
1597    //  83 F9 FF             cmp         rcx,0FFh
1598    //  0F 84 03 00 00 00    je          done
1599    //                  normal_case:
1600    //  99                   cdq
1601    //  F7 F9                idiv        rax,ecx
1602    //                  done:
1603    //
1604    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1605    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1606    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1607    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1608    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1609    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1610    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1611    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1612    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1613    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1614    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1615    // normal_case:
1616    emit_opcode(cbuf,0x99);                                         // cdq
1617    // idiv (note: must be emitted by the user of this rule)
1618    // normal:
1619  %}
1620
1621  // Dense encoding for older common ops
1622  enc_class Opc_plus(immI opcode, eRegI reg) %{
1623    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1624  %}
1625
1626
1627  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1628  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1629    // Check for 8-bit immediate, and set sign extend bit in opcode
1630    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1631      emit_opcode(cbuf, $primary | 0x02);
1632    }
1633    else {                          // If 32-bit immediate
1634      emit_opcode(cbuf, $primary);
1635    }
1636  %}
1637
1638  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1639    // Emit primary opcode and set sign-extend bit
1640    // Check for 8-bit immediate, and set sign extend bit in opcode
1641    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1642      emit_opcode(cbuf, $primary | 0x02);    }
1643    else {                          // If 32-bit immediate
1644      emit_opcode(cbuf, $primary);
1645    }
1646    // Emit r/m byte with secondary opcode, after primary opcode.
1647    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1648  %}
1649
1650  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1651    // Check for 8-bit immediate, and set sign extend bit in opcode
1652    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1653      $$$emit8$imm$$constant;
1654    }
1655    else {                          // If 32-bit immediate
1656      // Output immediate
1657      $$$emit32$imm$$constant;
1658    }
1659  %}
1660
1661  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1662    // Emit primary opcode and set sign-extend bit
1663    // Check for 8-bit immediate, and set sign extend bit in opcode
1664    int con = (int)$imm$$constant; // Throw away top bits
1665    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1666    // Emit r/m byte with secondary opcode, after primary opcode.
1667    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1668    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1669    else                               emit_d32(cbuf,con);
1670  %}
1671
1672  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1673    // Emit primary opcode and set sign-extend bit
1674    // Check for 8-bit immediate, and set sign extend bit in opcode
1675    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1676    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1677    // Emit r/m byte with tertiary opcode, after primary opcode.
1678    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1679    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1680    else                               emit_d32(cbuf,con);
1681  %}
1682
1683  enc_class Lbl (label labl) %{ // JMP, CALL
1684    Label *l = $labl$$label;
1685    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1686  %}
1687
1688  enc_class LblShort (label labl) %{ // JMP, CALL
1689    Label *l = $labl$$label;
1690    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1691    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1692    emit_d8(cbuf, disp);
1693  %}
1694
1695  enc_class OpcSReg (eRegI dst) %{    // BSWAP
1696    emit_cc(cbuf, $secondary, $dst$$reg );
1697  %}
1698
1699  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1700    int destlo = $dst$$reg;
1701    int desthi = HIGH_FROM_LOW(destlo);
1702    // bswap lo
1703    emit_opcode(cbuf, 0x0F);
1704    emit_cc(cbuf, 0xC8, destlo);
1705    // bswap hi
1706    emit_opcode(cbuf, 0x0F);
1707    emit_cc(cbuf, 0xC8, desthi);
1708    // xchg lo and hi
1709    emit_opcode(cbuf, 0x87);
1710    emit_rm(cbuf, 0x3, destlo, desthi);
1711  %}
1712
1713  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1714    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1715  %}
1716
1717  enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1718    Label *l = $labl$$label;
1719    $$$emit8$primary;
1720    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1721    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1722  %}
1723
1724  enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1725    Label *l = $labl$$label;
1726    emit_cc(cbuf, $primary, $cop$$cmpcode);
1727    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1728    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1729    emit_d8(cbuf, disp);
1730  %}
1731
1732  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1733    $$$emit8$primary;
1734    emit_cc(cbuf, $secondary, $cop$$cmpcode);
1735  %}
1736
1737  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1738    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1739    emit_d8(cbuf, op >> 8 );
1740    emit_d8(cbuf, op & 255);
1741  %}
1742
1743  // emulate a CMOV with a conditional branch around a MOV
1744  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1745    // Invert sense of branch from sense of CMOV
1746    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1747    emit_d8( cbuf, $brOffs$$constant );
1748  %}
1749
1750  enc_class enc_PartialSubtypeCheck( ) %{
1751    Register Redi = as_Register(EDI_enc); // result register
1752    Register Reax = as_Register(EAX_enc); // super class
1753    Register Recx = as_Register(ECX_enc); // killed
1754    Register Resi = as_Register(ESI_enc); // sub class
1755    Label miss;
1756
1757    MacroAssembler _masm(&cbuf);
1758    __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1759                                     NULL, &miss,
1760                                     /*set_cond_codes:*/ true);
1761    if ($primary) {
1762      __ xorptr(Redi, Redi);
1763    }
1764    __ bind(miss);
1765  %}
1766
1767  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1768    MacroAssembler masm(&cbuf);
1769    int start = masm.offset();
1770    if (UseSSE >= 2) {
1771      if (VerifyFPU) {
1772        masm.verify_FPU(0, "must be empty in SSE2+ mode");
1773      }
1774    } else {
1775      // External c_calling_convention expects the FPU stack to be 'clean'.
1776      // Compiled code leaves it dirty.  Do cleanup now.
1777      masm.empty_FPU_stack();
1778    }
1779    if (sizeof_FFree_Float_Stack_All == -1) {
1780      sizeof_FFree_Float_Stack_All = masm.offset() - start;
1781    } else {
1782      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1783    }
1784  %}
1785
1786  enc_class Verify_FPU_For_Leaf %{
1787    if( VerifyFPU ) {
1788      MacroAssembler masm(&cbuf);
1789      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1790    }
1791  %}
1792
1793  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1794    // This is the instruction starting address for relocation info.
1795    cbuf.set_inst_mark();
1796    $$$emit8$primary;
1797    // CALL directly to the runtime
1798    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1799                runtime_call_Relocation::spec(), RELOC_IMM32 );
1800
1801    if (UseSSE >= 2) {
1802      MacroAssembler _masm(&cbuf);
1803      BasicType rt = tf()->return_type();
1804
1805      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1806        // A C runtime call where the return value is unused.  In SSE2+
1807        // mode the result needs to be removed from the FPU stack.  It's
1808        // likely that this function call could be removed by the
1809        // optimizer if the C function is a pure function.
1810        __ ffree(0);
1811      } else if (rt == T_FLOAT) {
1812        __ lea(rsp, Address(rsp, -4));
1813        __ fstp_s(Address(rsp, 0));
1814        __ movflt(xmm0, Address(rsp, 0));
1815        __ lea(rsp, Address(rsp,  4));
1816      } else if (rt == T_DOUBLE) {
1817        __ lea(rsp, Address(rsp, -8));
1818        __ fstp_d(Address(rsp, 0));
1819        __ movdbl(xmm0, Address(rsp, 0));
1820        __ lea(rsp, Address(rsp,  8));
1821      }
1822    }
1823  %}
1824
1825
1826  enc_class pre_call_FPU %{
1827    // If method sets FPU control word restore it here
1828    debug_only(int off0 = cbuf.code_size());
1829    if( Compile::current()->in_24_bit_fp_mode() ) {
1830      MacroAssembler masm(&cbuf);
1831      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1832    }
1833    debug_only(int off1 = cbuf.code_size());
1834    assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1835  %}
1836
1837  enc_class post_call_FPU %{
1838    // If method sets FPU control word do it here also
1839    if( Compile::current()->in_24_bit_fp_mode() ) {
1840      MacroAssembler masm(&cbuf);
1841      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1842    }
1843  %}
1844
1845  enc_class preserve_SP %{
1846    debug_only(int off0 = cbuf.code_size());
1847    MacroAssembler _masm(&cbuf);
1848    // RBP is preserved across all calls, even compiled calls.
1849    // Use it to preserve RSP in places where the callee might change the SP.
1850    __ movptr(rbp_mh_SP_save, rsp);
1851    debug_only(int off1 = cbuf.code_size());
1852    assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
1853  %}
1854
1855  enc_class restore_SP %{
1856    MacroAssembler _masm(&cbuf);
1857    __ movptr(rsp, rbp_mh_SP_save);
1858  %}
1859
1860  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1861    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1862    // who we intended to call.
1863    cbuf.set_inst_mark();
1864    $$$emit8$primary;
1865    if ( !_method ) {
1866      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1867                     runtime_call_Relocation::spec(), RELOC_IMM32 );
1868    } else if(_optimized_virtual) {
1869      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1870                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1871    } else {
1872      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1873                     static_call_Relocation::spec(), RELOC_IMM32 );
1874    }
1875    if( _method ) {  // Emit stub for static call
1876      emit_java_to_interp(cbuf);
1877    }
1878  %}
1879
1880  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1881    // !!!!!
1882    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1883    // emit_call_dynamic_prologue( cbuf );
1884    cbuf.set_inst_mark();
1885    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1886    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1887    address  virtual_call_oop_addr = cbuf.inst_mark();
1888    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1889    // who we intended to call.
1890    cbuf.set_inst_mark();
1891    $$$emit8$primary;
1892    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1893                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1894  %}
1895
1896  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1897    int disp = in_bytes(methodOopDesc::from_compiled_offset());
1898    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1899
1900    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1901    cbuf.set_inst_mark();
1902    $$$emit8$primary;
1903    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1904    emit_d8(cbuf, disp);             // Displacement
1905
1906  %}
1907
1908  enc_class Xor_Reg (eRegI dst) %{
1909    emit_opcode(cbuf, 0x33);
1910    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1911  %}
1912
1913//   Following encoding is no longer used, but may be restored if calling
1914//   convention changes significantly.
1915//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1916//
1917//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1918//     // int ic_reg     = Matcher::inline_cache_reg();
1919//     // int ic_encode  = Matcher::_regEncode[ic_reg];
1920//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1921//     // int imo_encode = Matcher::_regEncode[imo_reg];
1922//
1923//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1924//     // // so we load it immediately before the call
1925//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1926//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1927//
1928//     // xor rbp,ebp
1929//     emit_opcode(cbuf, 0x33);
1930//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1931//
1932//     // CALL to interpreter.
1933//     cbuf.set_inst_mark();
1934//     $$$emit8$primary;
1935//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
1936//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1937//   %}
1938
1939  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1940    $$$emit8$primary;
1941    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1942    $$$emit8$shift$$constant;
1943  %}
1944
1945  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1946    // Load immediate does not have a zero or sign extended version
1947    // for 8-bit immediates
1948    emit_opcode(cbuf, 0xB8 + $dst$$reg);
1949    $$$emit32$src$$constant;
1950  %}
1951
1952  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1953    // Load immediate does not have a zero or sign extended version
1954    // for 8-bit immediates
1955    emit_opcode(cbuf, $primary + $dst$$reg);
1956    $$$emit32$src$$constant;
1957  %}
1958
1959  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1960    // Load immediate does not have a zero or sign extended version
1961    // for 8-bit immediates
1962    int dst_enc = $dst$$reg;
1963    int src_con = $src$$constant & 0x0FFFFFFFFL;
1964    if (src_con == 0) {
1965      // xor dst, dst
1966      emit_opcode(cbuf, 0x33);
1967      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1968    } else {
1969      emit_opcode(cbuf, $primary + dst_enc);
1970      emit_d32(cbuf, src_con);
1971    }
1972  %}
1973
1974  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1975    // Load immediate does not have a zero or sign extended version
1976    // for 8-bit immediates
1977    int dst_enc = $dst$$reg + 2;
1978    int src_con = ((julong)($src$$constant)) >> 32;
1979    if (src_con == 0) {
1980      // xor dst, dst
1981      emit_opcode(cbuf, 0x33);
1982      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1983    } else {
1984      emit_opcode(cbuf, $primary + dst_enc);
1985      emit_d32(cbuf, src_con);
1986    }
1987  %}
1988
1989
1990  enc_class LdImmD (immD src) %{    // Load Immediate
1991    if( is_positive_zero_double($src$$constant)) {
1992      // FLDZ
1993      emit_opcode(cbuf,0xD9);
1994      emit_opcode(cbuf,0xEE);
1995    } else if( is_positive_one_double($src$$constant)) {
1996      // FLD1
1997      emit_opcode(cbuf,0xD9);
1998      emit_opcode(cbuf,0xE8);
1999    } else {
2000      emit_opcode(cbuf,0xDD);
2001      emit_rm(cbuf, 0x0, 0x0, 0x5);
2002      emit_double_constant(cbuf, $src$$constant);
2003    }
2004  %}
2005
2006
2007  enc_class LdImmF (immF src) %{    // Load Immediate
2008    if( is_positive_zero_float($src$$constant)) {
2009      emit_opcode(cbuf,0xD9);
2010      emit_opcode(cbuf,0xEE);
2011    } else if( is_positive_one_float($src$$constant)) {
2012      emit_opcode(cbuf,0xD9);
2013      emit_opcode(cbuf,0xE8);
2014    } else {
2015      $$$emit8$primary;
2016      // Load immediate does not have a zero or sign extended version
2017      // for 8-bit immediates
2018      // First load to TOS, then move to dst
2019      emit_rm(cbuf, 0x0, 0x0, 0x5);
2020      emit_float_constant(cbuf, $src$$constant);
2021    }
2022  %}
2023
2024  enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
2025    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2026    emit_float_constant(cbuf, $con$$constant);
2027  %}
2028
2029  enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
2030    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2031    emit_double_constant(cbuf, $con$$constant);
2032  %}
2033
2034  enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
2035    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
2036    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2037    emit_opcode(cbuf, 0x0F);
2038    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2039    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2040    emit_double_constant(cbuf, $con$$constant);
2041  %}
2042
2043  enc_class Opc_MemImm_F(immF src) %{
2044    cbuf.set_inst_mark();
2045    $$$emit8$primary;
2046    emit_rm(cbuf, 0x0, $secondary, 0x5);
2047    emit_float_constant(cbuf, $src$$constant);
2048  %}
2049
2050
2051  enc_class MovI2X_reg(regX dst, eRegI src) %{
2052    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2053    emit_opcode(cbuf, 0x0F );
2054    emit_opcode(cbuf, 0x6E );
2055    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2056  %}
2057
2058  enc_class MovX2I_reg(eRegI dst, regX src) %{
2059    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2060    emit_opcode(cbuf, 0x0F );
2061    emit_opcode(cbuf, 0x7E );
2062    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2063  %}
2064
2065  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
2066    { // MOVD $dst,$src.lo
2067      emit_opcode(cbuf,0x66);
2068      emit_opcode(cbuf,0x0F);
2069      emit_opcode(cbuf,0x6E);
2070      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2071    }
2072    { // MOVD $tmp,$src.hi
2073      emit_opcode(cbuf,0x66);
2074      emit_opcode(cbuf,0x0F);
2075      emit_opcode(cbuf,0x6E);
2076      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2077    }
2078    { // PUNPCKLDQ $dst,$tmp
2079      emit_opcode(cbuf,0x66);
2080      emit_opcode(cbuf,0x0F);
2081      emit_opcode(cbuf,0x62);
2082      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2083     }
2084  %}
2085
2086  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2087    { // MOVD $dst.lo,$src
2088      emit_opcode(cbuf,0x66);
2089      emit_opcode(cbuf,0x0F);
2090      emit_opcode(cbuf,0x7E);
2091      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2092    }
2093    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2094      emit_opcode(cbuf,0xF2);
2095      emit_opcode(cbuf,0x0F);
2096      emit_opcode(cbuf,0x70);
2097      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2098      emit_d8(cbuf, 0x4E);
2099    }
2100    { // MOVD $dst.hi,$tmp
2101      emit_opcode(cbuf,0x66);
2102      emit_opcode(cbuf,0x0F);
2103      emit_opcode(cbuf,0x7E);
2104      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2105    }
2106  %}
2107
2108
2109  // Encode a reg-reg copy.  If it is useless, then empty encoding.
2110  enc_class enc_Copy( eRegI dst, eRegI src ) %{
2111    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2112  %}
2113
2114  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2115    encode_Copy( cbuf, $dst$$reg, $src$$reg );
2116  %}
2117
2118  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2119  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2120    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2121  %}
2122
2123  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2124    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2125  %}
2126
2127  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2128    $$$emit8$primary;
2129    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2130  %}
2131
2132  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2133    $$$emit8$secondary;
2134    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2135  %}
2136
2137  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2138    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2139  %}
2140
2141  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2142    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2143  %}
2144
2145  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2146    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2147  %}
2148
2149  enc_class Con32 (immI src) %{    // Con32(storeImmI)
2150    // Output immediate
2151    $$$emit32$src$$constant;
2152  %}
2153
2154  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2155    // Output Float immediate bits
2156    jfloat jf = $src$$constant;
2157    int    jf_as_bits = jint_cast( jf );
2158    emit_d32(cbuf, jf_as_bits);
2159  %}
2160
2161  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2162    // Output Float immediate bits
2163    jfloat jf = $src$$constant;
2164    int    jf_as_bits = jint_cast( jf );
2165    emit_d32(cbuf, jf_as_bits);
2166  %}
2167
2168  enc_class Con16 (immI src) %{    // Con16(storeImmI)
2169    // Output immediate
2170    $$$emit16$src$$constant;
2171  %}
2172
2173  enc_class Con_d32(immI src) %{
2174    emit_d32(cbuf,$src$$constant);
2175  %}
2176
2177  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2178    // Output immediate memory reference
2179    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2180    emit_d32(cbuf, 0x00);
2181  %}
2182
2183  enc_class lock_prefix( ) %{
2184    if( os::is_MP() )
2185      emit_opcode(cbuf,0xF0);         // [Lock]
2186  %}
2187
2188  // Cmp-xchg long value.
2189  // Note: we need to swap rbx, and rcx before and after the
2190  //       cmpxchg8 instruction because the instruction uses
2191  //       rcx as the high order word of the new value to store but
2192  //       our register encoding uses rbx,.
2193  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2194
2195    // XCHG  rbx,ecx
2196    emit_opcode(cbuf,0x87);
2197    emit_opcode(cbuf,0xD9);
2198    // [Lock]
2199    if( os::is_MP() )
2200      emit_opcode(cbuf,0xF0);
2201    // CMPXCHG8 [Eptr]
2202    emit_opcode(cbuf,0x0F);
2203    emit_opcode(cbuf,0xC7);
2204    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2205    // XCHG  rbx,ecx
2206    emit_opcode(cbuf,0x87);
2207    emit_opcode(cbuf,0xD9);
2208  %}
2209
2210  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2211    // [Lock]
2212    if( os::is_MP() )
2213      emit_opcode(cbuf,0xF0);
2214
2215    // CMPXCHG [Eptr]
2216    emit_opcode(cbuf,0x0F);
2217    emit_opcode(cbuf,0xB1);
2218    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2219  %}
2220
2221  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2222    int res_encoding = $res$$reg;
2223
2224    // MOV  res,0
2225    emit_opcode( cbuf, 0xB8 + res_encoding);
2226    emit_d32( cbuf, 0 );
2227    // JNE,s  fail
2228    emit_opcode(cbuf,0x75);
2229    emit_d8(cbuf, 5 );
2230    // MOV  res,1
2231    emit_opcode( cbuf, 0xB8 + res_encoding);
2232    emit_d32( cbuf, 1 );
2233    // fail:
2234  %}
2235
2236  enc_class set_instruction_start( ) %{
2237    cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
2238  %}
2239
2240  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2241    int reg_encoding = $ereg$$reg;
2242    int base  = $mem$$base;
2243    int index = $mem$$index;
2244    int scale = $mem$$scale;
2245    int displace = $mem$$disp;
2246    bool disp_is_oop = $mem->disp_is_oop();
2247    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2248  %}
2249
2250  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2251    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2252    int base  = $mem$$base;
2253    int index = $mem$$index;
2254    int scale = $mem$$scale;
2255    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2256    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2257    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2258  %}
2259
2260  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2261    int r1, r2;
2262    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2263    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2264    emit_opcode(cbuf,0x0F);
2265    emit_opcode(cbuf,$tertiary);
2266    emit_rm(cbuf, 0x3, r1, r2);
2267    emit_d8(cbuf,$cnt$$constant);
2268    emit_d8(cbuf,$primary);
2269    emit_rm(cbuf, 0x3, $secondary, r1);
2270    emit_d8(cbuf,$cnt$$constant);
2271  %}
2272
2273  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2274    emit_opcode( cbuf, 0x8B ); // Move
2275    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2276    emit_d8(cbuf,$primary);
2277    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2278    emit_d8(cbuf,$cnt$$constant-32);
2279    emit_d8(cbuf,$primary);
2280    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2281    emit_d8(cbuf,31);
2282  %}
2283
2284  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2285    int r1, r2;
2286    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2287    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2288
2289    emit_opcode( cbuf, 0x8B ); // Move r1,r2
2290    emit_rm(cbuf, 0x3, r1, r2);
2291    if( $cnt$$constant > 32 ) { // Shift, if not by zero
2292      emit_opcode(cbuf,$primary);
2293      emit_rm(cbuf, 0x3, $secondary, r1);
2294      emit_d8(cbuf,$cnt$$constant-32);
2295    }
2296    emit_opcode(cbuf,0x33);  // XOR r2,r2
2297    emit_rm(cbuf, 0x3, r2, r2);
2298  %}
2299
2300  // Clone of RegMem but accepts an extra parameter to access each
2301  // half of a double in memory; it never needs relocation info.
2302  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2303    emit_opcode(cbuf,$opcode$$constant);
2304    int reg_encoding = $rm_reg$$reg;
2305    int base     = $mem$$base;
2306    int index    = $mem$$index;
2307    int scale    = $mem$$scale;
2308    int displace = $mem$$disp + $disp_for_half$$constant;
2309    bool disp_is_oop = false;
2310    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2311  %}
2312
2313  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2314  //
2315  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2316  // and it never needs relocation information.
2317  // Frequently used to move data between FPU's Stack Top and memory.
2318  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2319    int rm_byte_opcode = $rm_opcode$$constant;
2320    int base     = $mem$$base;
2321    int index    = $mem$$index;
2322    int scale    = $mem$$scale;
2323    int displace = $mem$$disp;
2324    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2325    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2326  %}
2327
2328  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2329    int rm_byte_opcode = $rm_opcode$$constant;
2330    int base     = $mem$$base;
2331    int index    = $mem$$index;
2332    int scale    = $mem$$scale;
2333    int displace = $mem$$disp;
2334    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2335    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2336  %}
2337
2338  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2339    int reg_encoding = $dst$$reg;
2340    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2341    int index        = 0x04;            // 0x04 indicates no index
2342    int scale        = 0x00;            // 0x00 indicates no scale
2343    int displace     = $src1$$constant; // 0x00 indicates no displacement
2344    bool disp_is_oop = false;
2345    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2346  %}
2347
2348  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2349    // Compare dst,src
2350    emit_opcode(cbuf,0x3B);
2351    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2352    // jmp dst < src around move
2353    emit_opcode(cbuf,0x7C);
2354    emit_d8(cbuf,2);
2355    // move dst,src
2356    emit_opcode(cbuf,0x8B);
2357    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2358  %}
2359
2360  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2361    // Compare dst,src
2362    emit_opcode(cbuf,0x3B);
2363    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2364    // jmp dst > src around move
2365    emit_opcode(cbuf,0x7F);
2366    emit_d8(cbuf,2);
2367    // move dst,src
2368    emit_opcode(cbuf,0x8B);
2369    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2370  %}
2371
2372  enc_class enc_FP_store(memory mem, regD src) %{
2373    // If src is FPR1, we can just FST to store it.
2374    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2375    int reg_encoding = 0x2; // Just store
2376    int base  = $mem$$base;
2377    int index = $mem$$index;
2378    int scale = $mem$$scale;
2379    int displace = $mem$$disp;
2380    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2381    if( $src$$reg != FPR1L_enc ) {
2382      reg_encoding = 0x3;  // Store & pop
2383      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2384      emit_d8( cbuf, 0xC0-1+$src$$reg );
2385    }
2386    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2387    emit_opcode(cbuf,$primary);
2388    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2389  %}
2390
2391  enc_class neg_reg(eRegI dst) %{
2392    // NEG $dst
2393    emit_opcode(cbuf,0xF7);
2394    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2395  %}
2396
2397  enc_class setLT_reg(eCXRegI dst) %{
2398    // SETLT $dst
2399    emit_opcode(cbuf,0x0F);
2400    emit_opcode(cbuf,0x9C);
2401    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2402  %}
2403
2404  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2405    int tmpReg = $tmp$$reg;
2406
2407    // SUB $p,$q
2408    emit_opcode(cbuf,0x2B);
2409    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2410    // SBB $tmp,$tmp
2411    emit_opcode(cbuf,0x1B);
2412    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2413    // AND $tmp,$y
2414    emit_opcode(cbuf,0x23);
2415    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2416    // ADD $p,$tmp
2417    emit_opcode(cbuf,0x03);
2418    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2419  %}
2420
2421  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2422    int tmpReg = $tmp$$reg;
2423
2424    // SUB $p,$q
2425    emit_opcode(cbuf,0x2B);
2426    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2427    // SBB $tmp,$tmp
2428    emit_opcode(cbuf,0x1B);
2429    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2430    // AND $tmp,$y
2431    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2432    emit_opcode(cbuf,0x23);
2433    int reg_encoding = tmpReg;
2434    int base  = $mem$$base;
2435    int index = $mem$$index;
2436    int scale = $mem$$scale;
2437    int displace = $mem$$disp;
2438    bool disp_is_oop = $mem->disp_is_oop();
2439    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2440    // ADD $p,$tmp
2441    emit_opcode(cbuf,0x03);
2442    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2443  %}
2444
2445  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2446    // TEST shift,32
2447    emit_opcode(cbuf,0xF7);
2448    emit_rm(cbuf, 0x3, 0, ECX_enc);
2449    emit_d32(cbuf,0x20);
2450    // JEQ,s small
2451    emit_opcode(cbuf, 0x74);
2452    emit_d8(cbuf, 0x04);
2453    // MOV    $dst.hi,$dst.lo
2454    emit_opcode( cbuf, 0x8B );
2455    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2456    // CLR    $dst.lo
2457    emit_opcode(cbuf, 0x33);
2458    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2459// small:
2460    // SHLD   $dst.hi,$dst.lo,$shift
2461    emit_opcode(cbuf,0x0F);
2462    emit_opcode(cbuf,0xA5);
2463    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2464    // SHL    $dst.lo,$shift"
2465    emit_opcode(cbuf,0xD3);
2466    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2467  %}
2468
2469  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2470    // TEST shift,32
2471    emit_opcode(cbuf,0xF7);
2472    emit_rm(cbuf, 0x3, 0, ECX_enc);
2473    emit_d32(cbuf,0x20);
2474    // JEQ,s small
2475    emit_opcode(cbuf, 0x74);
2476    emit_d8(cbuf, 0x04);
2477    // MOV    $dst.lo,$dst.hi
2478    emit_opcode( cbuf, 0x8B );
2479    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2480    // CLR    $dst.hi
2481    emit_opcode(cbuf, 0x33);
2482    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2483// small:
2484    // SHRD   $dst.lo,$dst.hi,$shift
2485    emit_opcode(cbuf,0x0F);
2486    emit_opcode(cbuf,0xAD);
2487    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2488    // SHR    $dst.hi,$shift"
2489    emit_opcode(cbuf,0xD3);
2490    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2491  %}
2492
2493  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2494    // TEST shift,32
2495    emit_opcode(cbuf,0xF7);
2496    emit_rm(cbuf, 0x3, 0, ECX_enc);
2497    emit_d32(cbuf,0x20);
2498    // JEQ,s small
2499    emit_opcode(cbuf, 0x74);
2500    emit_d8(cbuf, 0x05);
2501    // MOV    $dst.lo,$dst.hi
2502    emit_opcode( cbuf, 0x8B );
2503    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2504    // SAR    $dst.hi,31
2505    emit_opcode(cbuf, 0xC1);
2506    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2507    emit_d8(cbuf, 0x1F );
2508// small:
2509    // SHRD   $dst.lo,$dst.hi,$shift
2510    emit_opcode(cbuf,0x0F);
2511    emit_opcode(cbuf,0xAD);
2512    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2513    // SAR    $dst.hi,$shift"
2514    emit_opcode(cbuf,0xD3);
2515    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2516  %}
2517
2518
2519  // ----------------- Encodings for floating point unit -----------------
2520  // May leave result in FPU-TOS or FPU reg depending on opcodes
2521  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2522    $$$emit8$primary;
2523    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2524  %}
2525
2526  // Pop argument in FPR0 with FSTP ST(0)
2527  enc_class PopFPU() %{
2528    emit_opcode( cbuf, 0xDD );
2529    emit_d8( cbuf, 0xD8 );
2530  %}
2531
2532  // !!!!! equivalent to Pop_Reg_F
2533  enc_class Pop_Reg_D( regD dst ) %{
2534    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2535    emit_d8( cbuf, 0xD8+$dst$$reg );
2536  %}
2537
2538  enc_class Push_Reg_D( regD dst ) %{
2539    emit_opcode( cbuf, 0xD9 );
2540    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2541  %}
2542
2543  enc_class strictfp_bias1( regD dst ) %{
2544    emit_opcode( cbuf, 0xDB );           // FLD m80real
2545    emit_opcode( cbuf, 0x2D );
2546    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2547    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2548    emit_opcode( cbuf, 0xC8+$dst$$reg );
2549  %}
2550
2551  enc_class strictfp_bias2( regD dst ) %{
2552    emit_opcode( cbuf, 0xDB );           // FLD m80real
2553    emit_opcode( cbuf, 0x2D );
2554    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2555    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2556    emit_opcode( cbuf, 0xC8+$dst$$reg );
2557  %}
2558
2559  // Special case for moving an integer register to a stack slot.
2560  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2561    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2562  %}
2563
2564  // Special case for moving a register to a stack slot.
2565  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2566    // Opcode already emitted
2567    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2568    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2569    emit_d32(cbuf, $dst$$disp);   // Displacement
2570  %}
2571
2572  // Push the integer in stackSlot 'src' onto FP-stack
2573  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2574    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2575  %}
2576
2577  // Push the float in stackSlot 'src' onto FP-stack
2578  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2579    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2580  %}
2581
2582  // Push the double in stackSlot 'src' onto FP-stack
2583  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2584    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2585  %}
2586
2587  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2588  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2589    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2590  %}
2591
2592  // Same as Pop_Mem_F except for opcode
2593  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2594  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2595    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2596  %}
2597
2598  enc_class Pop_Reg_F( regF dst ) %{
2599    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2600    emit_d8( cbuf, 0xD8+$dst$$reg );
2601  %}
2602
2603  enc_class Push_Reg_F( regF dst ) %{
2604    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2605    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2606  %}
2607
2608  // Push FPU's float to a stack-slot, and pop FPU-stack
2609  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2610    int pop = 0x02;
2611    if ($src$$reg != FPR1L_enc) {
2612      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2613      emit_d8( cbuf, 0xC0-1+$src$$reg );
2614      pop = 0x03;
2615    }
2616    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2617  %}
2618
2619  // Push FPU's double to a stack-slot, and pop FPU-stack
2620  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2621    int pop = 0x02;
2622    if ($src$$reg != FPR1L_enc) {
2623      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2624      emit_d8( cbuf, 0xC0-1+$src$$reg );
2625      pop = 0x03;
2626    }
2627    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2628  %}
2629
2630  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2631  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2632    int pop = 0xD0 - 1; // -1 since we skip FLD
2633    if ($src$$reg != FPR1L_enc) {
2634      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2635      emit_d8( cbuf, 0xC0-1+$src$$reg );
2636      pop = 0xD8;
2637    }
2638    emit_opcode( cbuf, 0xDD );
2639    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2640  %}
2641
2642
2643  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2644    MacroAssembler masm(&cbuf);
2645    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2646    masm.fmul(   $src2$$reg+0);   // value at TOS
2647    masm.fadd(   $src$$reg+0);    // value at TOS
2648    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2649  %}
2650
2651
2652  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2653    // load dst in FPR0
2654    emit_opcode( cbuf, 0xD9 );
2655    emit_d8( cbuf, 0xC0-1+$dst$$reg );
2656    if ($src$$reg != FPR1L_enc) {
2657      // fincstp
2658      emit_opcode (cbuf, 0xD9);
2659      emit_opcode (cbuf, 0xF7);
2660      // swap src with FPR1:
2661      // FXCH FPR1 with src
2662      emit_opcode(cbuf, 0xD9);
2663      emit_d8(cbuf, 0xC8-1+$src$$reg );
2664      // fdecstp
2665      emit_opcode (cbuf, 0xD9);
2666      emit_opcode (cbuf, 0xF6);
2667    }
2668  %}
2669
2670  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2671    // Allocate a word
2672    emit_opcode(cbuf,0x83);            // SUB ESP,8
2673    emit_opcode(cbuf,0xEC);
2674    emit_d8(cbuf,0x08);
2675
2676    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2677    emit_opcode  (cbuf, 0x0F );
2678    emit_opcode  (cbuf, 0x11 );
2679    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2680
2681    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2682    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2683
2684    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2685    emit_opcode  (cbuf, 0x0F );
2686    emit_opcode  (cbuf, 0x11 );
2687    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2688
2689    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2690    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2691
2692  %}
2693
2694  enc_class Push_ModX_encoding( regX src0, regX src1) %{
2695    // Allocate a word
2696    emit_opcode(cbuf,0x83);            // SUB ESP,4
2697    emit_opcode(cbuf,0xEC);
2698    emit_d8(cbuf,0x04);
2699
2700    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2701    emit_opcode  (cbuf, 0x0F );
2702    emit_opcode  (cbuf, 0x11 );
2703    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2704
2705    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2706    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2707
2708    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2709    emit_opcode  (cbuf, 0x0F );
2710    emit_opcode  (cbuf, 0x11 );
2711    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2712
2713    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2714    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2715
2716  %}
2717
2718  enc_class Push_ResultXD(regXD dst) %{
2719    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2720
2721    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2722    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2723    emit_opcode  (cbuf, 0x0F );
2724    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2725    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2726
2727    emit_opcode(cbuf,0x83);    // ADD ESP,8
2728    emit_opcode(cbuf,0xC4);
2729    emit_d8(cbuf,0x08);
2730  %}
2731
2732  enc_class Push_ResultX(regX dst, immI d8) %{
2733    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2734
2735    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2736    emit_opcode  (cbuf, 0x0F );
2737    emit_opcode  (cbuf, 0x10 );
2738    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2739
2740    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2741    emit_opcode(cbuf,0xC4);
2742    emit_d8(cbuf,$d8$$constant);
2743  %}
2744
2745  enc_class Push_SrcXD(regXD src) %{
2746    // Allocate a word
2747    emit_opcode(cbuf,0x83);            // SUB ESP,8
2748    emit_opcode(cbuf,0xEC);
2749    emit_d8(cbuf,0x08);
2750
2751    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2752    emit_opcode  (cbuf, 0x0F );
2753    emit_opcode  (cbuf, 0x11 );
2754    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2755
2756    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2757    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2758  %}
2759
2760  enc_class push_stack_temp_qword() %{
2761    emit_opcode(cbuf,0x83);     // SUB ESP,8
2762    emit_opcode(cbuf,0xEC);
2763    emit_d8    (cbuf,0x08);
2764  %}
2765
2766  enc_class pop_stack_temp_qword() %{
2767    emit_opcode(cbuf,0x83);     // ADD ESP,8
2768    emit_opcode(cbuf,0xC4);
2769    emit_d8    (cbuf,0x08);
2770  %}
2771
2772  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2773    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2774    emit_opcode  (cbuf, 0x0F );
2775    emit_opcode  (cbuf, 0x11 );
2776    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2777
2778    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2779    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2780  %}
2781
2782  // Compute X^Y using Intel's fast hardware instructions, if possible.
2783  // Otherwise return a NaN.
2784  enc_class pow_exp_core_encoding %{
2785    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2786    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2787    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2788    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2789    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2790    emit_opcode(cbuf,0x1C);
2791    emit_d8(cbuf,0x24);
2792    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2793    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2794    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2795    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2796    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2797    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2798    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2799    emit_d32(cbuf,0xFFFFF800);
2800    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2801    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2802    emit_d32(cbuf,1023);
2803    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2804    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2805    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2806    emit_rm(cbuf,0x3,0x4,EAX_enc);
2807    emit_d8(cbuf,20);
2808    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2809    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2810    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2811    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2812    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2813    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2814    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2815    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2816    emit_d32(cbuf,0);
2817    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2818    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2819  %}
2820
2821//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2822//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2823
2824  enc_class Push_Result_Mod_D( regD src) %{
2825    if ($src$$reg != FPR1L_enc) {
2826      // fincstp
2827      emit_opcode (cbuf, 0xD9);
2828      emit_opcode (cbuf, 0xF7);
2829      // FXCH FPR1 with src
2830      emit_opcode(cbuf, 0xD9);
2831      emit_d8(cbuf, 0xC8-1+$src$$reg );
2832      // fdecstp
2833      emit_opcode (cbuf, 0xD9);
2834      emit_opcode (cbuf, 0xF6);
2835    }
2836    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2837    // // FSTP   FPR$dst$$reg
2838    // emit_opcode( cbuf, 0xDD );
2839    // emit_d8( cbuf, 0xD8+$dst$$reg );
2840  %}
2841
2842  enc_class fnstsw_sahf_skip_parity() %{
2843    // fnstsw ax
2844    emit_opcode( cbuf, 0xDF );
2845    emit_opcode( cbuf, 0xE0 );
2846    // sahf
2847    emit_opcode( cbuf, 0x9E );
2848    // jnp  ::skip
2849    emit_opcode( cbuf, 0x7B );
2850    emit_opcode( cbuf, 0x05 );
2851  %}
2852
2853  enc_class emitModD() %{
2854    // fprem must be iterative
2855    // :: loop
2856    // fprem
2857    emit_opcode( cbuf, 0xD9 );
2858    emit_opcode( cbuf, 0xF8 );
2859    // wait
2860    emit_opcode( cbuf, 0x9b );
2861    // fnstsw ax
2862    emit_opcode( cbuf, 0xDF );
2863    emit_opcode( cbuf, 0xE0 );
2864    // sahf
2865    emit_opcode( cbuf, 0x9E );
2866    // jp  ::loop
2867    emit_opcode( cbuf, 0x0F );
2868    emit_opcode( cbuf, 0x8A );
2869    emit_opcode( cbuf, 0xF4 );
2870    emit_opcode( cbuf, 0xFF );
2871    emit_opcode( cbuf, 0xFF );
2872    emit_opcode( cbuf, 0xFF );
2873  %}
2874
2875  enc_class fpu_flags() %{
2876    // fnstsw_ax
2877    emit_opcode( cbuf, 0xDF);
2878    emit_opcode( cbuf, 0xE0);
2879    // test ax,0x0400
2880    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2881    emit_opcode( cbuf, 0xA9 );
2882    emit_d16   ( cbuf, 0x0400 );
2883    // // // This sequence works, but stalls for 12-16 cycles on PPro
2884    // // test rax,0x0400
2885    // emit_opcode( cbuf, 0xA9 );
2886    // emit_d32   ( cbuf, 0x00000400 );
2887    //
2888    // jz exit (no unordered comparison)
2889    emit_opcode( cbuf, 0x74 );
2890    emit_d8    ( cbuf, 0x02 );
2891    // mov ah,1 - treat as LT case (set carry flag)
2892    emit_opcode( cbuf, 0xB4 );
2893    emit_d8    ( cbuf, 0x01 );
2894    // sahf
2895    emit_opcode( cbuf, 0x9E);
2896  %}
2897
2898  enc_class cmpF_P6_fixup() %{
2899    // Fixup the integer flags in case comparison involved a NaN
2900    //
2901    // JNP exit (no unordered comparison, P-flag is set by NaN)
2902    emit_opcode( cbuf, 0x7B );
2903    emit_d8    ( cbuf, 0x03 );
2904    // MOV AH,1 - treat as LT case (set carry flag)
2905    emit_opcode( cbuf, 0xB4 );
2906    emit_d8    ( cbuf, 0x01 );
2907    // SAHF
2908    emit_opcode( cbuf, 0x9E);
2909    // NOP     // target for branch to avoid branch to branch
2910    emit_opcode( cbuf, 0x90);
2911  %}
2912
2913//     fnstsw_ax();
2914//     sahf();
2915//     movl(dst, nan_result);
2916//     jcc(Assembler::parity, exit);
2917//     movl(dst, less_result);
2918//     jcc(Assembler::below, exit);
2919//     movl(dst, equal_result);
2920//     jcc(Assembler::equal, exit);
2921//     movl(dst, greater_result);
2922
2923// less_result     =  1;
2924// greater_result  = -1;
2925// equal_result    = 0;
2926// nan_result      = -1;
2927
2928  enc_class CmpF_Result(eRegI dst) %{
2929    // fnstsw_ax();
2930    emit_opcode( cbuf, 0xDF);
2931    emit_opcode( cbuf, 0xE0);
2932    // sahf
2933    emit_opcode( cbuf, 0x9E);
2934    // movl(dst, nan_result);
2935    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2936    emit_d32( cbuf, -1 );
2937    // jcc(Assembler::parity, exit);
2938    emit_opcode( cbuf, 0x7A );
2939    emit_d8    ( cbuf, 0x13 );
2940    // movl(dst, less_result);
2941    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2942    emit_d32( cbuf, -1 );
2943    // jcc(Assembler::below, exit);
2944    emit_opcode( cbuf, 0x72 );
2945    emit_d8    ( cbuf, 0x0C );
2946    // movl(dst, equal_result);
2947    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2948    emit_d32( cbuf, 0 );
2949    // jcc(Assembler::equal, exit);
2950    emit_opcode( cbuf, 0x74 );
2951    emit_d8    ( cbuf, 0x05 );
2952    // movl(dst, greater_result);
2953    emit_opcode( cbuf, 0xB8 + $dst$$reg);
2954    emit_d32( cbuf, 1 );
2955  %}
2956
2957
2958  // XMM version of CmpF_Result. Because the XMM compare
2959  // instructions set the EFLAGS directly. It becomes simpler than
2960  // the float version above.
2961  enc_class CmpX_Result(eRegI dst) %{
2962    MacroAssembler _masm(&cbuf);
2963    Label nan, inc, done;
2964
2965    __ jccb(Assembler::parity, nan);
2966    __ jccb(Assembler::equal,  done);
2967    __ jccb(Assembler::above,  inc);
2968    __ bind(nan);
2969    __ decrement(as_Register($dst$$reg)); // NO L qqq
2970    __ jmpb(done);
2971    __ bind(inc);
2972    __ increment(as_Register($dst$$reg)); // NO L qqq
2973    __ bind(done);
2974  %}
2975
2976  // Compare the longs and set flags
2977  // BROKEN!  Do Not use as-is
2978  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2979    // CMP    $src1.hi,$src2.hi
2980    emit_opcode( cbuf, 0x3B );
2981    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2982    // JNE,s  done
2983    emit_opcode(cbuf,0x75);
2984    emit_d8(cbuf, 2 );
2985    // CMP    $src1.lo,$src2.lo
2986    emit_opcode( cbuf, 0x3B );
2987    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2988// done:
2989  %}
2990
2991  enc_class convert_int_long( regL dst, eRegI src ) %{
2992    // mov $dst.lo,$src
2993    int dst_encoding = $dst$$reg;
2994    int src_encoding = $src$$reg;
2995    encode_Copy( cbuf, dst_encoding  , src_encoding );
2996    // mov $dst.hi,$src
2997    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2998    // sar $dst.hi,31
2999    emit_opcode( cbuf, 0xC1 );
3000    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
3001    emit_d8(cbuf, 0x1F );
3002  %}
3003
3004  enc_class convert_long_double( eRegL src ) %{
3005    // push $src.hi
3006    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3007    // push $src.lo
3008    emit_opcode(cbuf, 0x50+$src$$reg  );
3009    // fild 64-bits at [SP]
3010    emit_opcode(cbuf,0xdf);
3011    emit_d8(cbuf, 0x6C);
3012    emit_d8(cbuf, 0x24);
3013    emit_d8(cbuf, 0x00);
3014    // pop stack
3015    emit_opcode(cbuf, 0x83); // add  SP, #8
3016    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3017    emit_d8(cbuf, 0x8);
3018  %}
3019
3020  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
3021    // IMUL   EDX:EAX,$src1
3022    emit_opcode( cbuf, 0xF7 );
3023    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
3024    // SAR    EDX,$cnt-32
3025    int shift_count = ((int)$cnt$$constant) - 32;
3026    if (shift_count > 0) {
3027      emit_opcode(cbuf, 0xC1);
3028      emit_rm(cbuf, 0x3, 7, $dst$$reg );
3029      emit_d8(cbuf, shift_count);
3030    }
3031  %}
3032
3033  // this version doesn't have add sp, 8
3034  enc_class convert_long_double2( eRegL src ) %{
3035    // push $src.hi
3036    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3037    // push $src.lo
3038    emit_opcode(cbuf, 0x50+$src$$reg  );
3039    // fild 64-bits at [SP]
3040    emit_opcode(cbuf,0xdf);
3041    emit_d8(cbuf, 0x6C);
3042    emit_d8(cbuf, 0x24);
3043    emit_d8(cbuf, 0x00);
3044  %}
3045
3046  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
3047    // Basic idea: long = (long)int * (long)int
3048    // IMUL EDX:EAX, src
3049    emit_opcode( cbuf, 0xF7 );
3050    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
3051  %}
3052
3053  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
3054    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
3055    // MUL EDX:EAX, src
3056    emit_opcode( cbuf, 0xF7 );
3057    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
3058  %}
3059
3060  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
3061    // Basic idea: lo(result) = lo(x_lo * y_lo)
3062    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
3063    // MOV    $tmp,$src.lo
3064    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
3065    // IMUL   $tmp,EDX
3066    emit_opcode( cbuf, 0x0F );
3067    emit_opcode( cbuf, 0xAF );
3068    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3069    // MOV    EDX,$src.hi
3070    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3071    // IMUL   EDX,EAX
3072    emit_opcode( cbuf, 0x0F );
3073    emit_opcode( cbuf, 0xAF );
3074    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3075    // ADD    $tmp,EDX
3076    emit_opcode( cbuf, 0x03 );
3077    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3078    // MUL   EDX:EAX,$src.lo
3079    emit_opcode( cbuf, 0xF7 );
3080    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3081    // ADD    EDX,ESI
3082    emit_opcode( cbuf, 0x03 );
3083    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3084  %}
3085
3086  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3087    // Basic idea: lo(result) = lo(src * y_lo)
3088    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3089    // IMUL   $tmp,EDX,$src
3090    emit_opcode( cbuf, 0x6B );
3091    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3092    emit_d8( cbuf, (int)$src$$constant );
3093    // MOV    EDX,$src
3094    emit_opcode(cbuf, 0xB8 + EDX_enc);
3095    emit_d32( cbuf, (int)$src$$constant );
3096    // MUL   EDX:EAX,EDX
3097    emit_opcode( cbuf, 0xF7 );
3098    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3099    // ADD    EDX,ESI
3100    emit_opcode( cbuf, 0x03 );
3101    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3102  %}
3103
3104  enc_class long_div( eRegL src1, eRegL src2 ) %{
3105    // PUSH src1.hi
3106    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3107    // PUSH src1.lo
3108    emit_opcode(cbuf,               0x50+$src1$$reg  );
3109    // PUSH src2.hi
3110    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3111    // PUSH src2.lo
3112    emit_opcode(cbuf,               0x50+$src2$$reg  );
3113    // CALL directly to the runtime
3114    cbuf.set_inst_mark();
3115    emit_opcode(cbuf,0xE8);       // Call into runtime
3116    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3117    // Restore stack
3118    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3119    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3120    emit_d8(cbuf, 4*4);
3121  %}
3122
3123  enc_class long_mod( eRegL src1, eRegL src2 ) %{
3124    // PUSH src1.hi
3125    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3126    // PUSH src1.lo
3127    emit_opcode(cbuf,               0x50+$src1$$reg  );
3128    // PUSH src2.hi
3129    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3130    // PUSH src2.lo
3131    emit_opcode(cbuf,               0x50+$src2$$reg  );
3132    // CALL directly to the runtime
3133    cbuf.set_inst_mark();
3134    emit_opcode(cbuf,0xE8);       // Call into runtime
3135    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3136    // Restore stack
3137    emit_opcode(cbuf, 0x83); // add  SP, #framesize
3138    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3139    emit_d8(cbuf, 4*4);
3140  %}
3141
3142  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3143    // MOV   $tmp,$src.lo
3144    emit_opcode(cbuf, 0x8B);
3145    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3146    // OR    $tmp,$src.hi
3147    emit_opcode(cbuf, 0x0B);
3148    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3149  %}
3150
3151  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3152    // CMP    $src1.lo,$src2.lo
3153    emit_opcode( cbuf, 0x3B );
3154    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3155    // JNE,s  skip
3156    emit_cc(cbuf, 0x70, 0x5);
3157    emit_d8(cbuf,2);
3158    // CMP    $src1.hi,$src2.hi
3159    emit_opcode( cbuf, 0x3B );
3160    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3161  %}
3162
3163  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3164    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3165    emit_opcode( cbuf, 0x3B );
3166    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3167    // MOV    $tmp,$src1.hi
3168    emit_opcode( cbuf, 0x8B );
3169    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3170    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3171    emit_opcode( cbuf, 0x1B );
3172    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3173  %}
3174
3175  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3176    // XOR    $tmp,$tmp
3177    emit_opcode(cbuf,0x33);  // XOR
3178    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3179    // CMP    $tmp,$src.lo
3180    emit_opcode( cbuf, 0x3B );
3181    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3182    // SBB    $tmp,$src.hi
3183    emit_opcode( cbuf, 0x1B );
3184    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3185  %}
3186
3187 // Sniff, sniff... smells like Gnu Superoptimizer
3188  enc_class neg_long( eRegL dst ) %{
3189    emit_opcode(cbuf,0xF7);    // NEG hi
3190    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3191    emit_opcode(cbuf,0xF7);    // NEG lo
3192    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3193    emit_opcode(cbuf,0x83);    // SBB hi,0
3194    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3195    emit_d8    (cbuf,0 );
3196  %}
3197
3198  enc_class movq_ld(regXD dst, memory mem) %{
3199    MacroAssembler _masm(&cbuf);
3200    __ movq($dst$$XMMRegister, $mem$$Address);
3201  %}
3202
3203  enc_class movq_st(memory mem, regXD src) %{
3204    MacroAssembler _masm(&cbuf);
3205    __ movq($mem$$Address, $src$$XMMRegister);
3206  %}
3207
3208  enc_class pshufd_8x8(regX dst, regX src) %{
3209    MacroAssembler _masm(&cbuf);
3210
3211    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3212    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3213    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3214  %}
3215
3216  enc_class pshufd_4x16(regX dst, regX src) %{
3217    MacroAssembler _masm(&cbuf);
3218
3219    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3220  %}
3221
3222  enc_class pshufd(regXD dst, regXD src, int mode) %{
3223    MacroAssembler _masm(&cbuf);
3224
3225    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3226  %}
3227
3228  enc_class pxor(regXD dst, regXD src) %{
3229    MacroAssembler _masm(&cbuf);
3230
3231    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3232  %}
3233
3234  enc_class mov_i2x(regXD dst, eRegI src) %{
3235    MacroAssembler _masm(&cbuf);
3236
3237    __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3238  %}
3239
3240
3241  // Because the transitions from emitted code to the runtime
3242  // monitorenter/exit helper stubs are so slow it's critical that
3243  // we inline both the stack-locking fast-path and the inflated fast path.
3244  //
3245  // See also: cmpFastLock and cmpFastUnlock.
3246  //
3247  // What follows is a specialized inline transliteration of the code
3248  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3249  // another option would be to emit TrySlowEnter and TrySlowExit methods
3250  // at startup-time.  These methods would accept arguments as
3251  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3252  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3253  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3254  // In practice, however, the # of lock sites is bounded and is usually small.
3255  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3256  // if the processor uses simple bimodal branch predictors keyed by EIP
3257  // Since the helper routines would be called from multiple synchronization
3258  // sites.
3259  //
3260  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3261  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3262  // to those specialized methods.  That'd give us a mostly platform-independent
3263  // implementation that the JITs could optimize and inline at their pleasure.
3264  // Done correctly, the only time we'd need to cross to native could would be
3265  // to park() or unpark() threads.  We'd also need a few more unsafe operators
3266  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3267  // (b) explicit barriers or fence operations.
3268  //
3269  // TODO:
3270  //
3271  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3272  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3273  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3274  //    the lock operators would typically be faster than reifying Self.
3275  //
3276  // *  Ideally I'd define the primitives as:
3277  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3278  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3279  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3280  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3281  //    Furthermore the register assignments are overconstrained, possibly resulting in
3282  //    sub-optimal code near the synchronization site.
3283  //
3284  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3285  //    Alternately, use a better sp-proximity test.
3286  //
3287  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3288  //    Either one is sufficient to uniquely identify a thread.
3289  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3290  //
3291  // *  Intrinsify notify() and notifyAll() for the common cases where the
3292  //    object is locked by the calling thread but the waitlist is empty.
3293  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3294  //
3295  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3296  //    But beware of excessive branch density on AMD Opterons.
3297  //
3298  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3299  //    or failure of the fast-path.  If the fast-path fails then we pass
3300  //    control to the slow-path, typically in C.  In Fast_Lock and
3301  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3302  //    will emit a conditional branch immediately after the node.
3303  //    So we have branches to branches and lots of ICC.ZF games.
3304  //    Instead, it might be better to have C2 pass a "FailureLabel"
3305  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3306  //    will drop through the node.  ICC.ZF is undefined at exit.
3307  //    In the case of failure, the node will branch directly to the
3308  //    FailureLabel
3309
3310
3311  // obj: object to lock
3312  // box: on-stack box address (displaced header location) - KILLED
3313  // rax,: tmp -- KILLED
3314  // scr: tmp -- KILLED
3315  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3316
3317    Register objReg = as_Register($obj$$reg);
3318    Register boxReg = as_Register($box$$reg);
3319    Register tmpReg = as_Register($tmp$$reg);
3320    Register scrReg = as_Register($scr$$reg);
3321
3322    // Ensure the register assignents are disjoint
3323    guarantee (objReg != boxReg, "") ;
3324    guarantee (objReg != tmpReg, "") ;
3325    guarantee (objReg != scrReg, "") ;
3326    guarantee (boxReg != tmpReg, "") ;
3327    guarantee (boxReg != scrReg, "") ;
3328    guarantee (tmpReg == as_Register(EAX_enc), "") ;
3329
3330    MacroAssembler masm(&cbuf);
3331
3332    if (_counters != NULL) {
3333      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3334    }
3335    if (EmitSync & 1) {
3336        // set box->dhw = unused_mark (3)
3337        // Force all sync thru slow-path: slow_enter() and slow_exit() 
3338        masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3339        masm.cmpptr (rsp, (int32_t)0) ;                        
3340    } else 
3341    if (EmitSync & 2) { 
3342        Label DONE_LABEL ;           
3343        if (UseBiasedLocking) {
3344           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3345           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3346        }
3347
3348        masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3349        masm.orptr (tmpReg, 0x1);
3350        masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3351        if (os::is_MP()) { masm.lock();  }
3352        masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3353        masm.jcc(Assembler::equal, DONE_LABEL);
3354        // Recursive locking
3355        masm.subptr(tmpReg, rsp);
3356        masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3357        masm.movptr(Address(boxReg, 0), tmpReg);
3358        masm.bind(DONE_LABEL) ; 
3359    } else {  
3360      // Possible cases that we'll encounter in fast_lock 
3361      // ------------------------------------------------
3362      // * Inflated
3363      //    -- unlocked
3364      //    -- Locked
3365      //       = by self
3366      //       = by other
3367      // * biased
3368      //    -- by Self
3369      //    -- by other
3370      // * neutral
3371      // * stack-locked
3372      //    -- by self
3373      //       = sp-proximity test hits
3374      //       = sp-proximity test generates false-negative
3375      //    -- by other
3376      //
3377
3378      Label IsInflated, DONE_LABEL, PopDone ;
3379
3380      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3381      // order to reduce the number of conditional branches in the most common cases.
3382      // Beware -- there's a subtle invariant that fetch of the markword
3383      // at [FETCH], below, will never observe a biased encoding (*101b).
3384      // If this invariant is not held we risk exclusion (safety) failure.
3385      if (UseBiasedLocking && !UseOptoBiasInlining) {
3386        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3387      }
3388
3389      masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3390      masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3391      masm.jccb  (Assembler::notZero, IsInflated) ;
3392
3393      // Attempt stack-locking ...
3394      masm.orptr (tmpReg, 0x1);
3395      masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3396      if (os::is_MP()) { masm.lock();  }
3397      masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3398      if (_counters != NULL) {
3399        masm.cond_inc32(Assembler::equal,
3400                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3401      }
3402      masm.jccb (Assembler::equal, DONE_LABEL);
3403
3404      // Recursive locking
3405      masm.subptr(tmpReg, rsp);
3406      masm.andptr(tmpReg, 0xFFFFF003 );
3407      masm.movptr(Address(boxReg, 0), tmpReg);
3408      if (_counters != NULL) {
3409        masm.cond_inc32(Assembler::equal,
3410                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3411      }
3412      masm.jmp  (DONE_LABEL) ;
3413
3414      masm.bind (IsInflated) ;
3415
3416      // The object is inflated.
3417      //
3418      // TODO-FIXME: eliminate the ugly use of manifest constants:
3419      //   Use markOopDesc::monitor_value instead of "2".
3420      //   use markOop::unused_mark() instead of "3".
3421      // The tmpReg value is an objectMonitor reference ORed with
3422      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3423      // objectmonitor pointer by masking off the "2" bit or we can just
3424      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3425      // field offsets with "-2" to compensate for and annul the low-order tag bit.
3426      //
3427      // I use the latter as it avoids AGI stalls.
3428      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3429      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3430      //
3431      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3432
3433      // boxReg refers to the on-stack BasicLock in the current frame.
3434      // We'd like to write:
3435      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3436      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3437      // additional latency as we have another ST in the store buffer that must drain.
3438
3439      if (EmitSync & 8192) { 
3440         masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3441         masm.get_thread (scrReg) ; 
3442         masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3443         masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3444         if (os::is_MP()) { masm.lock(); } 
3445         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3446      } else 
3447      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3448         masm.movptr(scrReg, boxReg) ; 
3449         masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3450
3451         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3452         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3453            // prefetchw [eax + Offset(_owner)-2]
3454            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3455         }
3456
3457         if ((EmitSync & 64) == 0) {
3458           // Optimistic form: consider XORL tmpReg,tmpReg
3459           masm.movptr(tmpReg, NULL_WORD) ; 
3460         } else { 
3461           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3462           // Test-And-CAS instead of CAS
3463           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3464           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3465           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3466         }
3467
3468         // Appears unlocked - try to swing _owner from null to non-null.
3469         // Ideally, I'd manifest "Self" with get_thread and then attempt
3470         // to CAS the register containing Self into m->Owner.
3471         // But we don't have enough registers, so instead we can either try to CAS
3472         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3473         // we later store "Self" into m->Owner.  Transiently storing a stack address
3474         // (rsp or the address of the box) into  m->owner is harmless.
3475         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3476         if (os::is_MP()) { masm.lock();  }
3477         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3478         masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3479         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3480         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3481         masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3482         masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3483                       
3484         // If the CAS fails we can either retry or pass control to the slow-path.  
3485         // We use the latter tactic.  
3486         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3487         // If the CAS was successful ...
3488         //   Self has acquired the lock
3489         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3490         // Intentional fall-through into DONE_LABEL ...
3491      } else {
3492         masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3493         masm.movptr(boxReg, tmpReg) ; 
3494
3495         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3496         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3497            // prefetchw [eax + Offset(_owner)-2]
3498            masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3499         }
3500
3501         if ((EmitSync & 64) == 0) {
3502           // Optimistic form
3503           masm.xorptr  (tmpReg, tmpReg) ; 
3504         } else { 
3505           // Can suffer RTS->RTO upgrades on shared or cold $ lines
3506           masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3507           masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3508           masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3509         }
3510
3511         // Appears unlocked - try to swing _owner from null to non-null.
3512         // Use either "Self" (in scr) or rsp as thread identity in _owner.
3513         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3514         masm.get_thread (scrReg) ;
3515         if (os::is_MP()) { masm.lock(); }
3516         masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3517
3518         // If the CAS fails we can either retry or pass control to the slow-path.
3519         // We use the latter tactic.
3520         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3521         // If the CAS was successful ...
3522         //   Self has acquired the lock
3523         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3524         // Intentional fall-through into DONE_LABEL ...
3525      }
3526
3527      // DONE_LABEL is a hot target - we'd really like to place it at the
3528      // start of cache line by padding with NOPs.
3529      // See the AMD and Intel software optimization manuals for the
3530      // most efficient "long" NOP encodings.
3531      // Unfortunately none of our alignment mechanisms suffice.
3532      masm.bind(DONE_LABEL);
3533
3534      // Avoid branch-to-branch on AMD processors
3535      // This appears to be superstition.
3536      if (EmitSync & 32) masm.nop() ;
3537
3538
3539      // At DONE_LABEL the icc ZFlag is set as follows ...
3540      // Fast_Unlock uses the same protocol.
3541      // ZFlag == 1 -> Success
3542      // ZFlag == 0 -> Failure - force control through the slow-path
3543    }
3544  %}
3545
3546  // obj: object to unlock
3547  // box: box address (displaced header location), killed.  Must be EAX.
3548  // rbx,: killed tmp; cannot be obj nor box.
3549  //
3550  // Some commentary on balanced locking:
3551  //
3552  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3553  // Methods that don't have provably balanced locking are forced to run in the
3554  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3555  // The interpreter provides two properties:
3556  // I1:  At return-time the interpreter automatically and quietly unlocks any
3557  //      objects acquired the current activation (frame).  Recall that the
3558  //      interpreter maintains an on-stack list of locks currently held by
3559  //      a frame.
3560  // I2:  If a method attempts to unlock an object that is not held by the
3561  //      the frame the interpreter throws IMSX.
3562  //
3563  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3564  // B() doesn't have provably balanced locking so it runs in the interpreter.
3565  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3566  // is still locked by A().
3567  //
3568  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3569  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3570  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3571  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3572
3573  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3574
3575    Register objReg = as_Register($obj$$reg);
3576    Register boxReg = as_Register($box$$reg);
3577    Register tmpReg = as_Register($tmp$$reg);
3578
3579    guarantee (objReg != boxReg, "") ;
3580    guarantee (objReg != tmpReg, "") ;
3581    guarantee (boxReg != tmpReg, "") ;
3582    guarantee (boxReg == as_Register(EAX_enc), "") ;
3583    MacroAssembler masm(&cbuf);
3584
3585    if (EmitSync & 4) {
3586      // Disable - inhibit all inlining.  Force control through the slow-path
3587      masm.cmpptr (rsp, 0) ; 
3588    } else 
3589    if (EmitSync & 8) {
3590      Label DONE_LABEL ;
3591      if (UseBiasedLocking) {
3592         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3593      }
3594      // classic stack-locking code ...
3595      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3596      masm.testptr(tmpReg, tmpReg) ;
3597      masm.jcc   (Assembler::zero, DONE_LABEL) ;
3598      if (os::is_MP()) { masm.lock(); }
3599      masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3600      masm.bind(DONE_LABEL);
3601    } else {
3602      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3603
3604      // Critically, the biased locking test must have precedence over
3605      // and appear before the (box->dhw == 0) recursive stack-lock test.
3606      if (UseBiasedLocking && !UseOptoBiasInlining) {
3607         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3608      }
3609      
3610      masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3611      masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3612      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3613
3614      masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3615      masm.jccb  (Assembler::zero, Stacked) ;
3616
3617      masm.bind  (Inflated) ;
3618      // It's inflated.
3619      // Despite our balanced locking property we still check that m->_owner == Self
3620      // as java routines or native JNI code called by this thread might
3621      // have released the lock.
3622      // Refer to the comments in synchronizer.cpp for how we might encode extra
3623      // state in _succ so we can avoid fetching EntryList|cxq.
3624      //
3625      // I'd like to add more cases in fast_lock() and fast_unlock() --
3626      // such as recursive enter and exit -- but we have to be wary of
3627      // I$ bloat, T$ effects and BP$ effects.
3628      //
3629      // If there's no contention try a 1-0 exit.  That is, exit without
3630      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3631      // we detect and recover from the race that the 1-0 exit admits.
3632      //
3633      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3634      // before it STs null into _owner, releasing the lock.  Updates
3635      // to data protected by the critical section must be visible before
3636      // we drop the lock (and thus before any other thread could acquire
3637      // the lock and observe the fields protected by the lock).
3638      // IA32's memory-model is SPO, so STs are ordered with respect to
3639      // each other and there's no need for an explicit barrier (fence).
3640      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3641
3642      masm.get_thread (boxReg) ;
3643      if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3644        // prefetchw [ebx + Offset(_owner)-2]
3645        masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3646      }
3647
3648      // Note that we could employ various encoding schemes to reduce
3649      // the number of loads below (currently 4) to just 2 or 3.
3650      // Refer to the comments in synchronizer.cpp.
3651      // In practice the chain of fetches doesn't seem to impact performance, however.
3652      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3653         // Attempt to reduce branch density - AMD's branch predictor.
3654         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3655         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3656         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3657         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3658         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3659         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3660         masm.jmpb  (DONE_LABEL) ; 
3661      } else { 
3662         masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3663         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3664         masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3665         masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3666         masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3667         masm.jccb  (Assembler::notZero, CheckSucc) ; 
3668         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3669         masm.jmpb  (DONE_LABEL) ; 
3670      }
3671
3672      // The Following code fragment (EmitSync & 65536) improves the performance of
3673      // contended applications and contended synchronization microbenchmarks.
3674      // Unfortunately the emission of the code - even though not executed - causes regressions
3675      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3676      // with an equal number of never-executed NOPs results in the same regression.
3677      // We leave it off by default.
3678
3679      if ((EmitSync & 65536) != 0) {
3680         Label LSuccess, LGoSlowPath ;
3681
3682         masm.bind  (CheckSucc) ;
3683
3684         // Optional pre-test ... it's safe to elide this
3685         if ((EmitSync & 16) == 0) { 
3686            masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3687            masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3688         }
3689
3690         // We have a classic Dekker-style idiom:
3691         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3692         // There are a number of ways to implement the barrier:
3693         // (1) lock:andl &m->_owner, 0
3694         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3695         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3696         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3697         // (2) If supported, an explicit MFENCE is appealing.
3698         //     In older IA32 processors MFENCE is slower than lock:add or xchg
3699         //     particularly if the write-buffer is full as might be the case if
3700         //     if stores closely precede the fence or fence-equivalent instruction.
3701         //     In more modern implementations MFENCE appears faster, however.
3702         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3703         //     The $lines underlying the top-of-stack should be in M-state.
3704         //     The locked add instruction is serializing, of course.
3705         // (4) Use xchg, which is serializing
3706         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3707         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3708         //     The integer condition codes will tell us if succ was 0.
3709         //     Since _succ and _owner should reside in the same $line and
3710         //     we just stored into _owner, it's likely that the $line
3711         //     remains in M-state for the lock:orl.
3712         //
3713         // We currently use (3), although it's likely that switching to (2)
3714         // is correct for the future.
3715            
3716         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3717         if (os::is_MP()) { 
3718            if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3719              masm.mfence();
3720            } else { 
3721              masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3722            }
3723         }
3724         // Ratify _succ remains non-null
3725         masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3726         masm.jccb  (Assembler::notZero, LSuccess) ; 
3727
3728         masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3729         if (os::is_MP()) { masm.lock(); }
3730         masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3731         masm.jccb  (Assembler::notEqual, LSuccess) ;
3732         // Since we're low on registers we installed rsp as a placeholding in _owner.
3733         // Now install Self over rsp.  This is safe as we're transitioning from
3734         // non-null to non=null
3735         masm.get_thread (boxReg) ;
3736         masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3737         // Intentional fall-through into LGoSlowPath ...
3738
3739         masm.bind  (LGoSlowPath) ; 
3740         masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3741         masm.jmpb  (DONE_LABEL) ; 
3742
3743         masm.bind  (LSuccess) ; 
3744         masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3745         masm.jmpb  (DONE_LABEL) ; 
3746      }
3747
3748      masm.bind (Stacked) ;
3749      // It's not inflated and it's not recursively stack-locked and it's not biased.
3750      // It must be stack-locked.
3751      // Try to reset the header to displaced header.
3752      // The "box" value on the stack is stable, so we can reload
3753      // and be assured we observe the same value as above.
3754      masm.movptr(tmpReg, Address(boxReg, 0)) ;
3755      if (os::is_MP()) {   masm.lock();    }
3756      masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3757      // Intention fall-thru into DONE_LABEL
3758
3759
3760      // DONE_LABEL is a hot target - we'd really like to place it at the
3761      // start of cache line by padding with NOPs.
3762      // See the AMD and Intel software optimization manuals for the
3763      // most efficient "long" NOP encodings.
3764      // Unfortunately none of our alignment mechanisms suffice.
3765      if ((EmitSync & 65536) == 0) {
3766         masm.bind (CheckSucc) ;
3767      }
3768      masm.bind(DONE_LABEL);
3769
3770      // Avoid branch to branch on AMD processors
3771      if (EmitSync & 32768) { masm.nop() ; }
3772    }
3773  %}
3774
3775
3776  enc_class enc_pop_rdx() %{
3777    emit_opcode(cbuf,0x5A);
3778  %}
3779
3780  enc_class enc_rethrow() %{
3781    cbuf.set_inst_mark();
3782    emit_opcode(cbuf, 0xE9);        // jmp    entry
3783    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
3784                   runtime_call_Relocation::spec(), RELOC_IMM32 );
3785  %}
3786
3787
3788  // Convert a double to an int.  Java semantics require we do complex
3789  // manglelations in the corner cases.  So we set the rounding mode to
3790  // 'zero', store the darned double down as an int, and reset the
3791  // rounding mode to 'nearest'.  The hardware throws an exception which
3792  // patches up the correct value directly to the stack.
3793  enc_class D2I_encoding( regD src ) %{
3794    // Flip to round-to-zero mode.  We attempted to allow invalid-op
3795    // exceptions here, so that a NAN or other corner-case value will
3796    // thrown an exception (but normal values get converted at full speed).
3797    // However, I2C adapters and other float-stack manglers leave pending
3798    // invalid-op exceptions hanging.  We would have to clear them before
3799    // enabling them and that is more expensive than just testing for the
3800    // invalid value Intel stores down in the corner cases.
3801    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3802    emit_opcode(cbuf,0x2D);
3803    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3804    // Allocate a word
3805    emit_opcode(cbuf,0x83);            // SUB ESP,4
3806    emit_opcode(cbuf,0xEC);
3807    emit_d8(cbuf,0x04);
3808    // Encoding assumes a double has been pushed into FPR0.
3809    // Store down the double as an int, popping the FPU stack
3810    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3811    emit_opcode(cbuf,0x1C);
3812    emit_d8(cbuf,0x24);
3813    // Restore the rounding mode; mask the exception
3814    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3815    emit_opcode(cbuf,0x2D);
3816    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3817        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3818        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3819
3820    // Load the converted int; adjust CPU stack
3821    emit_opcode(cbuf,0x58);       // POP EAX
3822    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3823    emit_d32   (cbuf,0x80000000); //         0x80000000
3824    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3825    emit_d8    (cbuf,0x07);       // Size of slow_call
3826    // Push src onto stack slow-path
3827    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3828    emit_d8    (cbuf,0xC0-1+$src$$reg );
3829    // CALL directly to the runtime
3830    cbuf.set_inst_mark();
3831    emit_opcode(cbuf,0xE8);       // Call into runtime
3832    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3833    // Carry on here...
3834  %}
3835
3836  enc_class D2L_encoding( regD src ) %{
3837    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3838    emit_opcode(cbuf,0x2D);
3839    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3840    // Allocate a word
3841    emit_opcode(cbuf,0x83);            // SUB ESP,8
3842    emit_opcode(cbuf,0xEC);
3843    emit_d8(cbuf,0x08);
3844    // Encoding assumes a double has been pushed into FPR0.
3845    // Store down the double as a long, popping the FPU stack
3846    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3847    emit_opcode(cbuf,0x3C);
3848    emit_d8(cbuf,0x24);
3849    // Restore the rounding mode; mask the exception
3850    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3851    emit_opcode(cbuf,0x2D);
3852    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3853        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3854        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3855
3856    // Load the converted int; adjust CPU stack
3857    emit_opcode(cbuf,0x58);       // POP EAX
3858    emit_opcode(cbuf,0x5A);       // POP EDX
3859    emit_opcode(cbuf,0x81);       // CMP EDX,imm
3860    emit_d8    (cbuf,0xFA);       // rdx
3861    emit_d32   (cbuf,0x80000000); //         0x80000000
3862    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3863    emit_d8    (cbuf,0x07+4);     // Size of slow_call
3864    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3865    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3866    emit_opcode(cbuf,0x75);       // JNE around_slow_call
3867    emit_d8    (cbuf,0x07);       // Size of slow_call
3868    // Push src onto stack slow-path
3869    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3870    emit_d8    (cbuf,0xC0-1+$src$$reg );
3871    // CALL directly to the runtime
3872    cbuf.set_inst_mark();
3873    emit_opcode(cbuf,0xE8);       // Call into runtime
3874    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3875    // Carry on here...
3876  %}
3877
3878  enc_class X2L_encoding( regX src ) %{
3879    // Allocate a word
3880    emit_opcode(cbuf,0x83);      // SUB ESP,8
3881    emit_opcode(cbuf,0xEC);
3882    emit_d8(cbuf,0x08);
3883
3884    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3885    emit_opcode  (cbuf, 0x0F );
3886    emit_opcode  (cbuf, 0x11 );
3887    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3888
3889    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3890    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3891
3892    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3893    emit_opcode(cbuf,0x2D);
3894    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3895
3896    // Encoding assumes a double has been pushed into FPR0.
3897    // Store down the double as a long, popping the FPU stack
3898    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3899    emit_opcode(cbuf,0x3C);
3900    emit_d8(cbuf,0x24);
3901
3902    // Restore the rounding mode; mask the exception
3903    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3904    emit_opcode(cbuf,0x2D);
3905    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3906      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3907      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3908
3909    // Load the converted int; adjust CPU stack
3910    emit_opcode(cbuf,0x58);      // POP EAX
3911
3912    emit_opcode(cbuf,0x5A);      // POP EDX
3913
3914    emit_opcode(cbuf,0x81);      // CMP EDX,imm
3915    emit_d8    (cbuf,0xFA);      // rdx
3916    emit_d32   (cbuf,0x80000000);//         0x80000000
3917
3918    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3919    emit_d8    (cbuf,0x13+4);    // Size of slow_call
3920
3921    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3922    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3923
3924    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3925    emit_d8    (cbuf,0x13);      // Size of slow_call
3926
3927    // Allocate a word
3928    emit_opcode(cbuf,0x83);      // SUB ESP,4
3929    emit_opcode(cbuf,0xEC);
3930    emit_d8(cbuf,0x04);
3931
3932    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3933    emit_opcode  (cbuf, 0x0F );
3934    emit_opcode  (cbuf, 0x11 );
3935    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3936
3937    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3938    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3939
3940    emit_opcode(cbuf,0x83);      // ADD ESP,4
3941    emit_opcode(cbuf,0xC4);
3942    emit_d8(cbuf,0x04);
3943
3944    // CALL directly to the runtime
3945    cbuf.set_inst_mark();
3946    emit_opcode(cbuf,0xE8);       // Call into runtime
3947    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3948    // Carry on here...
3949  %}
3950
3951  enc_class XD2L_encoding( regXD src ) %{
3952    // Allocate a word
3953    emit_opcode(cbuf,0x83);      // SUB ESP,8
3954    emit_opcode(cbuf,0xEC);
3955    emit_d8(cbuf,0x08);
3956
3957    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3958    emit_opcode  (cbuf, 0x0F );
3959    emit_opcode  (cbuf, 0x11 );
3960    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3961
3962    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3963    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3964
3965    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3966    emit_opcode(cbuf,0x2D);
3967    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3968
3969    // Encoding assumes a double has been pushed into FPR0.
3970    // Store down the double as a long, popping the FPU stack
3971    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3972    emit_opcode(cbuf,0x3C);
3973    emit_d8(cbuf,0x24);
3974
3975    // Restore the rounding mode; mask the exception
3976    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3977    emit_opcode(cbuf,0x2D);
3978    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3979      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3980      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3981
3982    // Load the converted int; adjust CPU stack
3983    emit_opcode(cbuf,0x58);      // POP EAX
3984
3985    emit_opcode(cbuf,0x5A);      // POP EDX
3986
3987    emit_opcode(cbuf,0x81);      // CMP EDX,imm
3988    emit_d8    (cbuf,0xFA);      // rdx
3989    emit_d32   (cbuf,0x80000000); //         0x80000000
3990
3991    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3992    emit_d8    (cbuf,0x13+4);    // Size of slow_call
3993
3994    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3995    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3996
3997    emit_opcode(cbuf,0x75);      // JNE around_slow_call
3998    emit_d8    (cbuf,0x13);      // Size of slow_call
3999
4000    // Push src onto stack slow-path
4001    // Allocate a word
4002    emit_opcode(cbuf,0x83);      // SUB ESP,8
4003    emit_opcode(cbuf,0xEC);
4004    emit_d8(cbuf,0x08);
4005
4006    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4007    emit_opcode  (cbuf, 0x0F );
4008    emit_opcode  (cbuf, 0x11 );
4009    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4010
4011    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4012    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4013
4014    emit_opcode(cbuf,0x83);      // ADD ESP,8
4015    emit_opcode(cbuf,0xC4);
4016    emit_d8(cbuf,0x08);
4017
4018    // CALL directly to the runtime
4019    cbuf.set_inst_mark();
4020    emit_opcode(cbuf,0xE8);      // Call into runtime
4021    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4022    // Carry on here...
4023  %}
4024
4025  enc_class D2X_encoding( regX dst, regD src ) %{
4026    // Allocate a word
4027    emit_opcode(cbuf,0x83);            // SUB ESP,4
4028    emit_opcode(cbuf,0xEC);
4029    emit_d8(cbuf,0x04);
4030    int pop = 0x02;
4031    if ($src$$reg != FPR1L_enc) {
4032      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4033      emit_d8( cbuf, 0xC0-1+$src$$reg );
4034      pop = 0x03;
4035    }
4036    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4037
4038    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4039    emit_opcode  (cbuf, 0x0F );
4040    emit_opcode  (cbuf, 0x10 );
4041    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4042
4043    emit_opcode(cbuf,0x83);            // ADD ESP,4
4044    emit_opcode(cbuf,0xC4);
4045    emit_d8(cbuf,0x04);
4046    // Carry on here...
4047  %}
4048
4049  enc_class FX2I_encoding( regX src, eRegI dst ) %{
4050    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4051
4052    // Compare the result to see if we need to go to the slow path
4053    emit_opcode(cbuf,0x81);       // CMP dst,imm
4054    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4055    emit_d32   (cbuf,0x80000000); //         0x80000000
4056
4057    emit_opcode(cbuf,0x75);       // JNE around_slow_call
4058    emit_d8    (cbuf,0x13);       // Size of slow_call
4059    // Store xmm to a temp memory
4060    // location and push it onto stack.
4061
4062    emit_opcode(cbuf,0x83);  // SUB ESP,4
4063    emit_opcode(cbuf,0xEC);
4064    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4065
4066    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4067    emit_opcode  (cbuf, 0x0F );
4068    emit_opcode  (cbuf, 0x11 );
4069    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4070
4071    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4072    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4073
4074    emit_opcode(cbuf,0x83);    // ADD ESP,4
4075    emit_opcode(cbuf,0xC4);
4076    emit_d8(cbuf, $primary ? 0x8 : 0x4);
4077
4078    // CALL directly to the runtime
4079    cbuf.set_inst_mark();
4080    emit_opcode(cbuf,0xE8);       // Call into runtime
4081    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4082
4083    // Carry on here...
4084  %}
4085
4086  enc_class X2D_encoding( regD dst, regX src ) %{
4087    // Allocate a word
4088    emit_opcode(cbuf,0x83);     // SUB ESP,4
4089    emit_opcode(cbuf,0xEC);
4090    emit_d8(cbuf,0x04);
4091
4092    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4093    emit_opcode  (cbuf, 0x0F );
4094    emit_opcode  (cbuf, 0x11 );
4095    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4096
4097    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4098    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4099
4100    emit_opcode(cbuf,0x83);     // ADD ESP,4
4101    emit_opcode(cbuf,0xC4);
4102    emit_d8(cbuf,0x04);
4103
4104    // Carry on here...
4105  %}
4106
4107  enc_class AbsXF_encoding(regX dst) %{
4108    address signmask_address=(address)float_signmask_pool;
4109    // andpd:\tANDPS  $dst,[signconst]
4110    emit_opcode(cbuf, 0x0F);
4111    emit_opcode(cbuf, 0x54);
4112    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4113    emit_d32(cbuf, (int)signmask_address);
4114  %}
4115
4116  enc_class AbsXD_encoding(regXD dst) %{
4117    address signmask_address=(address)double_signmask_pool;
4118    // andpd:\tANDPD  $dst,[signconst]
4119    emit_opcode(cbuf, 0x66);
4120    emit_opcode(cbuf, 0x0F);
4121    emit_opcode(cbuf, 0x54);
4122    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4123    emit_d32(cbuf, (int)signmask_address);
4124  %}
4125
4126  enc_class NegXF_encoding(regX dst) %{
4127    address signmask_address=(address)float_signflip_pool;
4128    // andpd:\tXORPS  $dst,[signconst]
4129    emit_opcode(cbuf, 0x0F);
4130    emit_opcode(cbuf, 0x57);
4131    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4132    emit_d32(cbuf, (int)signmask_address);
4133  %}
4134
4135  enc_class NegXD_encoding(regXD dst) %{
4136    address signmask_address=(address)double_signflip_pool;
4137    // andpd:\tXORPD  $dst,[signconst]
4138    emit_opcode(cbuf, 0x66);
4139    emit_opcode(cbuf, 0x0F);
4140    emit_opcode(cbuf, 0x57);
4141    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4142    emit_d32(cbuf, (int)signmask_address);
4143  %}
4144
4145  enc_class FMul_ST_reg( eRegF src1 ) %{
4146    // Operand was loaded from memory into fp ST (stack top)
4147    // FMUL   ST,$src  /* D8 C8+i */
4148    emit_opcode(cbuf, 0xD8);
4149    emit_opcode(cbuf, 0xC8 + $src1$$reg);
4150  %}
4151
4152  enc_class FAdd_ST_reg( eRegF src2 ) %{
4153    // FADDP  ST,src2  /* D8 C0+i */
4154    emit_opcode(cbuf, 0xD8);
4155    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4156    //could use FADDP  src2,fpST  /* DE C0+i */
4157  %}
4158
4159  enc_class FAddP_reg_ST( eRegF src2 ) %{
4160    // FADDP  src2,ST  /* DE C0+i */
4161    emit_opcode(cbuf, 0xDE);
4162    emit_opcode(cbuf, 0xC0 + $src2$$reg);
4163  %}
4164
4165  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4166    // Operand has been loaded into fp ST (stack top)
4167      // FSUB   ST,$src1
4168      emit_opcode(cbuf, 0xD8);
4169      emit_opcode(cbuf, 0xE0 + $src1$$reg);
4170
4171      // FDIV
4172      emit_opcode(cbuf, 0xD8);
4173      emit_opcode(cbuf, 0xF0 + $src2$$reg);
4174  %}
4175
4176  enc_class MulFAddF (eRegF src1, eRegF src2) %{
4177    // Operand was loaded from memory into fp ST (stack top)
4178    // FADD   ST,$src  /* D8 C0+i */
4179    emit_opcode(cbuf, 0xD8);
4180    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4181
4182    // FMUL  ST,src2  /* D8 C*+i */
4183    emit_opcode(cbuf, 0xD8);
4184    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4185  %}
4186
4187
4188  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4189    // Operand was loaded from memory into fp ST (stack top)
4190    // FADD   ST,$src  /* D8 C0+i */
4191    emit_opcode(cbuf, 0xD8);
4192    emit_opcode(cbuf, 0xC0 + $src1$$reg);
4193
4194    // FMULP  src2,ST  /* DE C8+i */
4195    emit_opcode(cbuf, 0xDE);
4196    emit_opcode(cbuf, 0xC8 + $src2$$reg);
4197  %}
4198
4199  // Atomically load the volatile long
4200  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4201    emit_opcode(cbuf,0xDF);
4202    int rm_byte_opcode = 0x05;
4203    int base     = $mem$$base;
4204    int index    = $mem$$index;
4205    int scale    = $mem$$scale;
4206    int displace = $mem$$disp;
4207    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4208    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4209    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4210  %}
4211
4212  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4213    { // Atomic long load
4214      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4215      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4216      emit_opcode(cbuf,0x0F);
4217      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4218      int base     = $mem$$base;
4219      int index    = $mem$$index;
4220      int scale    = $mem$$scale;
4221      int displace = $mem$$disp;
4222      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4223      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4224    }
4225    { // MOVSD $dst,$tmp ! atomic long store
4226      emit_opcode(cbuf,0xF2);
4227      emit_opcode(cbuf,0x0F);
4228      emit_opcode(cbuf,0x11);
4229      int base     = $dst$$base;
4230      int index    = $dst$$index;
4231      int scale    = $dst$$scale;
4232      int displace = $dst$$disp;
4233      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4234      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4235    }
4236  %}
4237
4238  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4239    { // Atomic long load
4240      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4241      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4242      emit_opcode(cbuf,0x0F);
4243      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4244      int base     = $mem$$base;
4245      int index    = $mem$$index;
4246      int scale    = $mem$$scale;
4247      int displace = $mem$$disp;
4248      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4249      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4250    }
4251    { // MOVD $dst.lo,$tmp
4252      emit_opcode(cbuf,0x66);
4253      emit_opcode(cbuf,0x0F);
4254      emit_opcode(cbuf,0x7E);
4255      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4256    }
4257    { // PSRLQ $tmp,32
4258      emit_opcode(cbuf,0x66);
4259      emit_opcode(cbuf,0x0F);
4260      emit_opcode(cbuf,0x73);
4261      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4262      emit_d8(cbuf, 0x20);
4263    }
4264    { // MOVD $dst.hi,$tmp
4265      emit_opcode(cbuf,0x66);
4266      emit_opcode(cbuf,0x0F);
4267      emit_opcode(cbuf,0x7E);
4268      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4269    }
4270  %}
4271
4272  // Volatile Store Long.  Must be atomic, so move it into
4273  // the FP TOS and then do a 64-bit FIST.  Has to probe the
4274  // target address before the store (for null-ptr checks)
4275  // so the memory operand is used twice in the encoding.
4276  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4277    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4278    cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
4279    emit_opcode(cbuf,0xDF);
4280    int rm_byte_opcode = 0x07;
4281    int base     = $mem$$base;
4282    int index    = $mem$$index;
4283    int scale    = $mem$$scale;
4284    int displace = $mem$$disp;
4285    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4286    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4287  %}
4288
4289  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4290    { // Atomic long load
4291      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4292      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4293      emit_opcode(cbuf,0x0F);
4294      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4295      int base     = $src$$base;
4296      int index    = $src$$index;
4297      int scale    = $src$$scale;
4298      int displace = $src$$disp;
4299      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4300      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4301    }
4302    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4303    { // MOVSD $mem,$tmp ! atomic long store
4304      emit_opcode(cbuf,0xF2);
4305      emit_opcode(cbuf,0x0F);
4306      emit_opcode(cbuf,0x11);
4307      int base     = $mem$$base;
4308      int index    = $mem$$index;
4309      int scale    = $mem$$scale;
4310      int displace = $mem$$disp;
4311      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4312      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4313    }
4314  %}
4315
4316  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4317    { // MOVD $tmp,$src.lo
4318      emit_opcode(cbuf,0x66);
4319      emit_opcode(cbuf,0x0F);
4320      emit_opcode(cbuf,0x6E);
4321      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4322    }
4323    { // MOVD $tmp2,$src.hi
4324      emit_opcode(cbuf,0x66);
4325      emit_opcode(cbuf,0x0F);
4326      emit_opcode(cbuf,0x6E);
4327      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4328    }
4329    { // PUNPCKLDQ $tmp,$tmp2
4330      emit_opcode(cbuf,0x66);
4331      emit_opcode(cbuf,0x0F);
4332      emit_opcode(cbuf,0x62);
4333      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4334    }
4335    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4336    { // MOVSD $mem,$tmp ! atomic long store
4337      emit_opcode(cbuf,0xF2);
4338      emit_opcode(cbuf,0x0F);
4339      emit_opcode(cbuf,0x11);
4340      int base     = $mem$$base;
4341      int index    = $mem$$index;
4342      int scale    = $mem$$scale;
4343      int displace = $mem$$disp;
4344      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4345      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4346    }
4347  %}
4348
4349  // Safepoint Poll.  This polls the safepoint page, and causes an
4350  // exception if it is not readable. Unfortunately, it kills the condition code
4351  // in the process
4352  // We current use TESTL [spp],EDI
4353  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4354
4355  enc_class Safepoint_Poll() %{
4356    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
4357    emit_opcode(cbuf,0x85);
4358    emit_rm (cbuf, 0x0, 0x7, 0x5);
4359    emit_d32(cbuf, (intptr_t)os::get_polling_page());
4360  %}
4361%}
4362
4363
4364//----------FRAME--------------------------------------------------------------
4365// Definition of frame structure and management information.
4366//
4367//  S T A C K   L A Y O U T    Allocators stack-slot number
4368//                             |   (to get allocators register number
4369//  G  Owned by    |        |  v    add OptoReg::stack0())
4370//  r   CALLER     |        |
4371//  o     |        +--------+      pad to even-align allocators stack-slot
4372//  w     V        |  pad0  |        numbers; owned by CALLER
4373//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4374//  h     ^        |   in   |  5
4375//        |        |  args  |  4   Holes in incoming args owned by SELF
4376//  |     |        |        |  3
4377//  |     |        +--------+
4378//  V     |        | old out|      Empty on Intel, window on Sparc
4379//        |    old |preserve|      Must be even aligned.
4380//        |     SP-+--------+----> Matcher::_old_SP, even aligned
4381//        |        |   in   |  3   area for Intel ret address
4382//     Owned by    |preserve|      Empty on Sparc.
4383//       SELF      +--------+
4384//        |        |  pad2  |  2   pad to align old SP
4385//        |        +--------+  1
4386//        |        | locks  |  0
4387//        |        +--------+----> OptoReg::stack0(), even aligned
4388//        |        |  pad1  | 11   pad to align new SP
4389//        |        +--------+
4390//        |        |        | 10
4391//        |        | spills |  9   spills
4392//        V        |        |  8   (pad0 slot for callee)
4393//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4394//        ^        |  out   |  7
4395//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4396//     Owned by    +--------+
4397//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4398//        |    new |preserve|      Must be even-aligned.
4399//        |     SP-+--------+----> Matcher::_new_SP, even aligned
4400//        |        |        |
4401//
4402// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4403//         known from SELF's arguments and the Java calling convention.
4404//         Region 6-7 is determined per call site.
4405// Note 2: If the calling convention leaves holes in the incoming argument
4406//         area, those holes are owned by SELF.  Holes in the outgoing area
4407//         are owned by the CALLEE.  Holes should not be nessecary in the
4408//         incoming area, as the Java calling convention is completely under
4409//         the control of the AD file.  Doubles can be sorted and packed to
4410//         avoid holes.  Holes in the outgoing arguments may be nessecary for
4411//         varargs C calling conventions.
4412// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4413//         even aligned with pad0 as needed.
4414//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4415//         region 6-11 is even aligned; it may be padded out more so that
4416//         the region from SP to FP meets the minimum stack alignment.
4417
4418frame %{
4419  // What direction does stack grow in (assumed to be same for C & Java)
4420  stack_direction(TOWARDS_LOW);
4421
4422  // These three registers define part of the calling convention
4423  // between compiled code and the interpreter.
4424  inline_cache_reg(EAX);                // Inline Cache Register
4425  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4426
4427  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4428  cisc_spilling_operand_name(indOffset32);
4429
4430  // Number of stack slots consumed by locking an object
4431  sync_stack_slots(1);
4432
4433  // Compiled code's Frame Pointer
4434  frame_pointer(ESP);
4435  // Interpreter stores its frame pointer in a register which is
4436  // stored to the stack by I2CAdaptors.
4437  // I2CAdaptors convert from interpreted java to compiled java.
4438  interpreter_frame_pointer(EBP);
4439
4440  // Stack alignment requirement
4441  // Alignment size in bytes (128-bit -> 16 bytes)
4442  stack_alignment(StackAlignmentInBytes);
4443
4444  // Number of stack slots between incoming argument block and the start of
4445  // a new frame.  The PROLOG must add this many slots to the stack.  The
4446  // EPILOG must remove this many slots.  Intel needs one slot for
4447  // return address and one for rbp, (must save rbp)
4448  in_preserve_stack_slots(2+VerifyStackAtCalls);
4449
4450  // Number of outgoing stack slots killed above the out_preserve_stack_slots
4451  // for calls to C.  Supports the var-args backing area for register parms.
4452  varargs_C_out_slots_killed(0);
4453
4454  // The after-PROLOG location of the return address.  Location of
4455  // return address specifies a type (REG or STACK) and a number
4456  // representing the register number (i.e. - use a register name) or
4457  // stack slot.
4458  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4459  // Otherwise, it is above the locks and verification slot and alignment word
4460  return_addr(STACK - 1 +
4461              round_to(1+VerifyStackAtCalls+
4462              Compile::current()->fixed_slots(),
4463              (StackAlignmentInBytes/wordSize)));
4464
4465  // Body of function which returns an integer array locating
4466  // arguments either in registers or in stack slots.  Passed an array
4467  // of ideal registers called "sig" and a "length" count.  Stack-slot
4468  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4469  // arguments for a CALLEE.  Incoming stack arguments are
4470  // automatically biased by the preserve_stack_slots field above.
4471  calling_convention %{
4472    // No difference between ingoing/outgoing just pass false
4473    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4474  %}
4475
4476
4477  // Body of function which returns an integer array locating
4478  // arguments either in registers or in stack slots.  Passed an array
4479  // of ideal registers called "sig" and a "length" count.  Stack-slot
4480  // offsets are based on outgoing arguments, i.e. a CALLER setting up
4481  // arguments for a CALLEE.  Incoming stack arguments are
4482  // automatically biased by the preserve_stack_slots field above.
4483  c_calling_convention %{
4484    // This is obviously always outgoing
4485    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4486  %}
4487
4488  // Location of C & interpreter return values
4489  c_return_value %{
4490    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4491    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4492    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4493
4494    // in SSE2+ mode we want to keep the FPU stack clean so pretend
4495    // that C functions return float and double results in XMM0.
4496    if( ideal_reg == Op_RegD && UseSSE>=2 )
4497      return OptoRegPair(XMM0b_num,XMM0a_num);
4498    if( ideal_reg == Op_RegF && UseSSE>=2 )
4499      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4500
4501    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4502  %}
4503
4504  // Location of return values
4505  return_value %{
4506    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4507    static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4508    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4509    if( ideal_reg == Op_RegD && UseSSE>=2 )
4510      return OptoRegPair(XMM0b_num,XMM0a_num);
4511    if( ideal_reg == Op_RegF && UseSSE>=1 )
4512      return OptoRegPair(OptoReg::Bad,XMM0a_num);
4513    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4514  %}
4515
4516%}
4517
4518//----------ATTRIBUTES---------------------------------------------------------
4519//----------Operand Attributes-------------------------------------------------
4520op_attrib op_cost(0);        // Required cost attribute
4521
4522//----------Instruction Attributes---------------------------------------------
4523ins_attrib ins_cost(100);       // Required cost attribute
4524ins_attrib ins_size(8);         // Required size attribute (in bits)
4525ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4526ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4527                                // non-matching short branch variant of some
4528                                                            // long branch?
4529ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4530                                // specifies the alignment that some part of the instruction (not
4531                                // necessarily the start) requires.  If > 1, a compute_padding()
4532                                // function must be provided for the instruction
4533
4534//----------OPERANDS-----------------------------------------------------------
4535// Operand definitions must precede instruction definitions for correct parsing
4536// in the ADLC because operands constitute user defined types which are used in
4537// instruction definitions.
4538
4539//----------Simple Operands----------------------------------------------------
4540// Immediate Operands
4541// Integer Immediate
4542operand immI() %{
4543  match(ConI);
4544
4545  op_cost(10);
4546  format %{ %}
4547  interface(CONST_INTER);
4548%}
4549
4550// Constant for test vs zero
4551operand immI0() %{
4552  predicate(n->get_int() == 0);
4553  match(ConI);
4554
4555  op_cost(0);
4556  format %{ %}
4557  interface(CONST_INTER);
4558%}
4559
4560// Constant for increment
4561operand immI1() %{
4562  predicate(n->get_int() == 1);
4563  match(ConI);
4564
4565  op_cost(0);
4566  format %{ %}
4567  interface(CONST_INTER);
4568%}
4569
4570// Constant for decrement
4571operand immI_M1() %{
4572  predicate(n->get_int() == -1);
4573  match(ConI);
4574
4575  op_cost(0);
4576  format %{ %}
4577  interface(CONST_INTER);
4578%}
4579
4580// Valid scale values for addressing modes
4581operand immI2() %{
4582  predicate(0 <= n->get_int() && (n->get_int() <= 3));
4583  match(ConI);
4584
4585  format %{ %}
4586  interface(CONST_INTER);
4587%}
4588
4589operand immI8() %{
4590  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4591  match(ConI);
4592
4593  op_cost(5);
4594  format %{ %}
4595  interface(CONST_INTER);
4596%}
4597
4598operand immI16() %{
4599  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4600  match(ConI);
4601
4602  op_cost(10);
4603  format %{ %}
4604  interface(CONST_INTER);
4605%}
4606
4607// Constant for long shifts
4608operand immI_32() %{
4609  predicate( n->get_int() == 32 );
4610  match(ConI);
4611
4612  op_cost(0);
4613  format %{ %}
4614  interface(CONST_INTER);
4615%}
4616
4617operand immI_1_31() %{
4618  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4619  match(ConI);
4620
4621  op_cost(0);
4622  format %{ %}
4623  interface(CONST_INTER);
4624%}
4625
4626operand immI_32_63() %{
4627  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4628  match(ConI);
4629  op_cost(0);
4630
4631  format %{ %}
4632  interface(CONST_INTER);
4633%}
4634
4635operand immI_1() %{
4636  predicate( n->get_int() == 1 );
4637  match(ConI);
4638
4639  op_cost(0);
4640  format %{ %}
4641  interface(CONST_INTER);
4642%}
4643
4644operand immI_2() %{
4645  predicate( n->get_int() == 2 );
4646  match(ConI);
4647
4648  op_cost(0);
4649  format %{ %}
4650  interface(CONST_INTER);
4651%}
4652
4653operand immI_3() %{
4654  predicate( n->get_int() == 3 );
4655  match(ConI);
4656
4657  op_cost(0);
4658  format %{ %}
4659  interface(CONST_INTER);
4660%}
4661
4662// Pointer Immediate
4663operand immP() %{
4664  match(ConP);
4665
4666  op_cost(10);
4667  format %{ %}
4668  interface(CONST_INTER);
4669%}
4670
4671// NULL Pointer Immediate
4672operand immP0() %{
4673  predicate( n->get_ptr() == 0 );
4674  match(ConP);
4675  op_cost(0);
4676
4677  format %{ %}
4678  interface(CONST_INTER);
4679%}
4680
4681// Long Immediate
4682operand immL() %{
4683  match(ConL);
4684
4685  op_cost(20);
4686  format %{ %}
4687  interface(CONST_INTER);
4688%}
4689
4690// Long Immediate zero
4691operand immL0() %{
4692  predicate( n->get_long() == 0L );
4693  match(ConL);
4694  op_cost(0);
4695
4696  format %{ %}
4697  interface(CONST_INTER);
4698%}
4699
4700// Long Immediate zero
4701operand immL_M1() %{
4702  predicate( n->get_long() == -1L );
4703  match(ConL);
4704  op_cost(0);
4705
4706  format %{ %}
4707  interface(CONST_INTER);
4708%}
4709
4710// Long immediate from 0 to 127.
4711// Used for a shorter form of long mul by 10.
4712operand immL_127() %{
4713  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4714  match(ConL);
4715  op_cost(0);
4716
4717  format %{ %}
4718  interface(CONST_INTER);
4719%}
4720
4721// Long Immediate: low 32-bit mask
4722operand immL_32bits() %{
4723  predicate(n->get_long() == 0xFFFFFFFFL);
4724  match(ConL);
4725  op_cost(0);
4726
4727  format %{ %}
4728  interface(CONST_INTER);
4729%}
4730
4731// Long Immediate: low 32-bit mask
4732operand immL32() %{
4733  predicate(n->get_long() == (int)(n->get_long()));
4734  match(ConL);
4735  op_cost(20);
4736
4737  format %{ %}
4738  interface(CONST_INTER);
4739%}
4740
4741//Double Immediate zero
4742operand immD0() %{
4743  // Do additional (and counter-intuitive) test against NaN to work around VC++
4744  // bug that generates code such that NaNs compare equal to 0.0
4745  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4746  match(ConD);
4747
4748  op_cost(5);
4749  format %{ %}
4750  interface(CONST_INTER);
4751%}
4752
4753// Double Immediate
4754operand immD1() %{
4755  predicate( UseSSE<=1 && n->getd() == 1.0 );
4756  match(ConD);
4757
4758  op_cost(5);
4759  format %{ %}
4760  interface(CONST_INTER);
4761%}
4762
4763// Double Immediate
4764operand immD() %{
4765  predicate(UseSSE<=1);
4766  match(ConD);
4767
4768  op_cost(5);
4769  format %{ %}
4770  interface(CONST_INTER);
4771%}
4772
4773operand immXD() %{
4774  predicate(UseSSE>=2);
4775  match(ConD);
4776
4777  op_cost(5);
4778  format %{ %}
4779  interface(CONST_INTER);
4780%}
4781
4782// Double Immediate zero
4783operand immXD0() %{
4784  // Do additional (and counter-intuitive) test against NaN to work around VC++
4785  // bug that generates code such that NaNs compare equal to 0.0 AND do not
4786  // compare equal to -0.0.
4787  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4788  match(ConD);
4789
4790  format %{ %}
4791  interface(CONST_INTER);
4792%}
4793
4794// Float Immediate zero
4795operand immF0() %{
4796  predicate( UseSSE == 0 && n->getf() == 0.0 );
4797  match(ConF);
4798
4799  op_cost(5);
4800  format %{ %}
4801  interface(CONST_INTER);
4802%}
4803
4804// Float Immediate
4805operand immF() %{
4806  predicate( UseSSE == 0 );
4807  match(ConF);
4808
4809  op_cost(5);
4810  format %{ %}
4811  interface(CONST_INTER);
4812%}
4813
4814// Float Immediate
4815operand immXF() %{
4816  predicate(UseSSE >= 1);
4817  match(ConF);
4818
4819  op_cost(5);
4820  format %{ %}
4821  interface(CONST_INTER);
4822%}
4823
4824// Float Immediate zero.  Zero and not -0.0
4825operand immXF0() %{
4826  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4827  match(ConF);
4828
4829  op_cost(5);
4830  format %{ %}
4831  interface(CONST_INTER);
4832%}
4833
4834// Immediates for special shifts (sign extend)
4835
4836// Constants for increment
4837operand immI_16() %{
4838  predicate( n->get_int() == 16 );
4839  match(ConI);
4840
4841  format %{ %}
4842  interface(CONST_INTER);
4843%}
4844
4845operand immI_24() %{
4846  predicate( n->get_int() == 24 );
4847  match(ConI);
4848
4849  format %{ %}
4850  interface(CONST_INTER);
4851%}
4852
4853// Constant for byte-wide masking
4854operand immI_255() %{
4855  predicate( n->get_int() == 255 );
4856  match(ConI);
4857
4858  format %{ %}
4859  interface(CONST_INTER);
4860%}
4861
4862// Constant for short-wide masking
4863operand immI_65535() %{
4864  predicate(n->get_int() == 65535);
4865  match(ConI);
4866
4867  format %{ %}
4868  interface(CONST_INTER);
4869%}
4870
4871// Register Operands
4872// Integer Register
4873operand eRegI() %{
4874  constraint(ALLOC_IN_RC(e_reg));
4875  match(RegI);
4876  match(xRegI);
4877  match(eAXRegI);
4878  match(eBXRegI);
4879  match(eCXRegI);
4880  match(eDXRegI);
4881  match(eDIRegI);
4882  match(eSIRegI);
4883
4884  format %{ %}
4885  interface(REG_INTER);
4886%}
4887
4888// Subset of Integer Register
4889operand xRegI(eRegI reg) %{
4890  constraint(ALLOC_IN_RC(x_reg));
4891  match(reg);
4892  match(eAXRegI);
4893  match(eBXRegI);
4894  match(eCXRegI);
4895  match(eDXRegI);
4896
4897  format %{ %}
4898  interface(REG_INTER);
4899%}
4900
4901// Special Registers
4902operand eAXRegI(xRegI reg) %{
4903  constraint(ALLOC_IN_RC(eax_reg));
4904  match(reg);
4905  match(eRegI);
4906
4907  format %{ "EAX" %}
4908  interface(REG_INTER);
4909%}
4910
4911// Special Registers
4912operand eBXRegI(xRegI reg) %{
4913  constraint(ALLOC_IN_RC(ebx_reg));
4914  match(reg);
4915  match(eRegI);
4916
4917  format %{ "EBX" %}
4918  interface(REG_INTER);
4919%}
4920
4921operand eCXRegI(xRegI reg) %{
4922  constraint(ALLOC_IN_RC(ecx_reg));
4923  match(reg);
4924  match(eRegI);
4925
4926  format %{ "ECX" %}
4927  interface(REG_INTER);
4928%}
4929
4930operand eDXRegI(xRegI reg) %{
4931  constraint(ALLOC_IN_RC(edx_reg));
4932  match(reg);
4933  match(eRegI);
4934
4935  format %{ "EDX" %}
4936  interface(REG_INTER);
4937%}
4938
4939operand eDIRegI(xRegI reg) %{
4940  constraint(ALLOC_IN_RC(edi_reg));
4941  match(reg);
4942  match(eRegI);
4943
4944  format %{ "EDI" %}
4945  interface(REG_INTER);
4946%}
4947
4948operand naxRegI() %{
4949  constraint(ALLOC_IN_RC(nax_reg));
4950  match(RegI);
4951  match(eCXRegI);
4952  match(eDXRegI);
4953  match(eSIRegI);
4954  match(eDIRegI);
4955
4956  format %{ %}
4957  interface(REG_INTER);
4958%}
4959
4960operand nadxRegI() %{
4961  constraint(ALLOC_IN_RC(nadx_reg));
4962  match(RegI);
4963  match(eBXRegI);
4964  match(eCXRegI);
4965  match(eSIRegI);
4966  match(eDIRegI);
4967
4968  format %{ %}
4969  interface(REG_INTER);
4970%}
4971
4972operand ncxRegI() %{
4973  constraint(ALLOC_IN_RC(ncx_reg));
4974  match(RegI);
4975  match(eAXRegI);
4976  match(eDXRegI);
4977  match(eSIRegI);
4978  match(eDIRegI);
4979
4980  format %{ %}
4981  interface(REG_INTER);
4982%}
4983
4984// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4985// //
4986operand eSIRegI(xRegI reg) %{
4987   constraint(ALLOC_IN_RC(esi_reg));
4988   match(reg);
4989   match(eRegI);
4990
4991   format %{ "ESI" %}
4992   interface(REG_INTER);
4993%}
4994
4995// Pointer Register
4996operand anyRegP() %{
4997  constraint(ALLOC_IN_RC(any_reg));
4998  match(RegP);
4999  match(eAXRegP);
5000  match(eBXRegP);
5001  match(eCXRegP);
5002  match(eDIRegP);
5003  match(eRegP);
5004
5005  format %{ %}
5006  interface(REG_INTER);
5007%}
5008
5009operand eRegP() %{
5010  constraint(ALLOC_IN_RC(e_reg));
5011  match(RegP);
5012  match(eAXRegP);
5013  match(eBXRegP);
5014  match(eCXRegP);
5015  match(eDIRegP);
5016
5017  format %{ %}
5018  interface(REG_INTER);
5019%}
5020
5021// On windows95, EBP is not safe to use for implicit null tests.
5022operand eRegP_no_EBP() %{
5023  constraint(ALLOC_IN_RC(e_reg_no_rbp));
5024  match(RegP);
5025  match(eAXRegP);
5026  match(eBXRegP);
5027  match(eCXRegP);
5028  match(eDIRegP);
5029
5030  op_cost(100);
5031  format %{ %}
5032  interface(REG_INTER);
5033%}
5034
5035operand naxRegP() %{
5036  constraint(ALLOC_IN_RC(nax_reg));
5037  match(RegP);
5038  match(eBXRegP);
5039  match(eDXRegP);
5040  match(eCXRegP);
5041  match(eSIRegP);
5042  match(eDIRegP);
5043
5044  format %{ %}
5045  interface(REG_INTER);
5046%}
5047
5048operand nabxRegP() %{
5049  constraint(ALLOC_IN_RC(nabx_reg));
5050  match(RegP);
5051  match(eCXRegP);
5052  match(eDXRegP);
5053  match(eSIRegP);
5054  match(eDIRegP);
5055
5056  format %{ %}
5057  interface(REG_INTER);
5058%}
5059
5060operand pRegP() %{
5061  constraint(ALLOC_IN_RC(p_reg));
5062  match(RegP);
5063  match(eBXRegP);
5064  match(eDXRegP);
5065  match(eSIRegP);
5066  match(eDIRegP);
5067
5068  format %{ %}
5069  interface(REG_INTER);
5070%}
5071
5072// Special Registers
5073// Return a pointer value
5074operand eAXRegP(eRegP reg) %{
5075  constraint(ALLOC_IN_RC(eax_reg));
5076  match(reg);
5077  format %{ "EAX" %}
5078  interface(REG_INTER);
5079%}
5080
5081// Used in AtomicAdd
5082operand eBXRegP(eRegP reg) %{
5083  constraint(ALLOC_IN_RC(ebx_reg));
5084  match(reg);
5085  format %{ "EBX" %}
5086  interface(REG_INTER);
5087%}
5088
5089// Tail-call (interprocedural jump) to interpreter
5090operand eCXRegP(eRegP reg) %{
5091  constraint(ALLOC_IN_RC(ecx_reg));
5092  match(reg);
5093  format %{ "ECX" %}
5094  interface(REG_INTER);
5095%}
5096
5097operand eSIRegP(eRegP reg) %{
5098  constraint(ALLOC_IN_RC(esi_reg));
5099  match(reg);
5100  format %{ "ESI" %}
5101  interface(REG_INTER);
5102%}
5103
5104// Used in rep stosw
5105operand eDIRegP(eRegP reg) %{
5106  constraint(ALLOC_IN_RC(edi_reg));
5107  match(reg);
5108  format %{ "EDI" %}
5109  interface(REG_INTER);
5110%}
5111
5112operand eBPRegP() %{
5113  constraint(ALLOC_IN_RC(ebp_reg));
5114  match(RegP);
5115  format %{ "EBP" %}
5116  interface(REG_INTER);
5117%}
5118
5119operand eRegL() %{
5120  constraint(ALLOC_IN_RC(long_reg));
5121  match(RegL);
5122  match(eADXRegL);
5123
5124  format %{ %}
5125  interface(REG_INTER);
5126%}
5127
5128operand eADXRegL( eRegL reg ) %{
5129  constraint(ALLOC_IN_RC(eadx_reg));
5130  match(reg);
5131
5132  format %{ "EDX:EAX" %}
5133  interface(REG_INTER);
5134%}
5135
5136operand eBCXRegL( eRegL reg ) %{
5137  constraint(ALLOC_IN_RC(ebcx_reg));
5138  match(reg);
5139
5140  format %{ "EBX:ECX" %}
5141  interface(REG_INTER);
5142%}
5143
5144// Special case for integer high multiply
5145operand eADXRegL_low_only() %{
5146  constraint(ALLOC_IN_RC(eadx_reg));
5147  match(RegL);
5148
5149  format %{ "EAX" %}
5150  interface(REG_INTER);
5151%}
5152
5153// Flags register, used as output of compare instructions
5154operand eFlagsReg() %{
5155  constraint(ALLOC_IN_RC(int_flags));
5156  match(RegFlags);
5157
5158  format %{ "EFLAGS" %}
5159  interface(REG_INTER);
5160%}
5161
5162// Flags register, used as output of FLOATING POINT compare instructions
5163operand eFlagsRegU() %{
5164  constraint(ALLOC_IN_RC(int_flags));
5165  match(RegFlags);
5166
5167  format %{ "EFLAGS_U" %}
5168  interface(REG_INTER);
5169%}
5170
5171operand eFlagsRegUCF() %{
5172  constraint(ALLOC_IN_RC(int_flags));
5173  match(RegFlags);
5174  predicate(false);
5175
5176  format %{ "EFLAGS_U_CF" %}
5177  interface(REG_INTER);
5178%}
5179
5180// Condition Code Register used by long compare
5181operand flagsReg_long_LTGE() %{
5182  constraint(ALLOC_IN_RC(int_flags));
5183  match(RegFlags);
5184  format %{ "FLAGS_LTGE" %}
5185  interface(REG_INTER);
5186%}
5187operand flagsReg_long_EQNE() %{
5188  constraint(ALLOC_IN_RC(int_flags));
5189  match(RegFlags);
5190  format %{ "FLAGS_EQNE" %}
5191  interface(REG_INTER);
5192%}
5193operand flagsReg_long_LEGT() %{
5194  constraint(ALLOC_IN_RC(int_flags));
5195  match(RegFlags);
5196  format %{ "FLAGS_LEGT" %}
5197  interface(REG_INTER);
5198%}
5199
5200// Float register operands
5201operand regD() %{
5202  predicate( UseSSE < 2 );
5203  constraint(ALLOC_IN_RC(dbl_reg));
5204  match(RegD);
5205  match(regDPR1);
5206  match(regDPR2);
5207  format %{ %}
5208  interface(REG_INTER);
5209%}
5210
5211operand regDPR1(regD reg) %{
5212  predicate( UseSSE < 2 );
5213  constraint(ALLOC_IN_RC(dbl_reg0));
5214  match(reg);
5215  format %{ "FPR1" %}
5216  interface(REG_INTER);
5217%}
5218
5219operand regDPR2(regD reg) %{
5220  predicate( UseSSE < 2 );
5221  constraint(ALLOC_IN_RC(dbl_reg1));
5222  match(reg);
5223  format %{ "FPR2" %}
5224  interface(REG_INTER);
5225%}
5226
5227operand regnotDPR1(regD reg) %{
5228  predicate( UseSSE < 2 );
5229  constraint(ALLOC_IN_RC(dbl_notreg0));
5230  match(reg);
5231  format %{ %}
5232  interface(REG_INTER);
5233%}
5234
5235// XMM Double register operands
5236operand regXD() %{
5237  predicate( UseSSE>=2 );
5238  constraint(ALLOC_IN_RC(xdb_reg));
5239  match(RegD);
5240  match(regXD6);
5241  match(regXD7);
5242  format %{ %}
5243  interface(REG_INTER);
5244%}
5245
5246// XMM6 double register operands
5247operand regXD6(regXD reg) %{
5248  predicate( UseSSE>=2 );
5249  constraint(ALLOC_IN_RC(xdb_reg6));
5250  match(reg);
5251  format %{ "XMM6" %}
5252  interface(REG_INTER);
5253%}
5254
5255// XMM7 double register operands
5256operand regXD7(regXD reg) %{
5257  predicate( UseSSE>=2 );
5258  constraint(ALLOC_IN_RC(xdb_reg7));
5259  match(reg);
5260  format %{ "XMM7" %}
5261  interface(REG_INTER);
5262%}
5263
5264// Float register operands
5265operand regF() %{
5266  predicate( UseSSE < 2 );
5267  constraint(ALLOC_IN_RC(flt_reg));
5268  match(RegF);
5269  match(regFPR1);
5270  format %{ %}
5271  interface(REG_INTER);
5272%}
5273
5274// Float register operands
5275operand regFPR1(regF reg) %{
5276  predicate( UseSSE < 2 );
5277  constraint(ALLOC_IN_RC(flt_reg0));
5278  match(reg);
5279  format %{ "FPR1" %}
5280  interface(REG_INTER);
5281%}
5282
5283// XMM register operands
5284operand regX() %{
5285  predicate( UseSSE>=1 );
5286  constraint(ALLOC_IN_RC(xmm_reg));
5287  match(RegF);
5288  format %{ %}
5289  interface(REG_INTER);
5290%}
5291
5292
5293//----------Memory Operands----------------------------------------------------
5294// Direct Memory Operand
5295operand direct(immP addr) %{
5296  match(addr);
5297
5298  format %{ "[$addr]" %}
5299  interface(MEMORY_INTER) %{
5300    base(0xFFFFFFFF);
5301    index(0x4);
5302    scale(0x0);
5303    disp($addr);
5304  %}
5305%}
5306
5307// Indirect Memory Operand
5308operand indirect(eRegP reg) %{
5309  constraint(ALLOC_IN_RC(e_reg));
5310  match(reg);
5311
5312  format %{ "[$reg]" %}
5313  interface(MEMORY_INTER) %{
5314    base($reg);
5315    index(0x4);
5316    scale(0x0);
5317    disp(0x0);
5318  %}
5319%}
5320
5321// Indirect Memory Plus Short Offset Operand
5322operand indOffset8(eRegP reg, immI8 off) %{
5323  match(AddP reg off);
5324
5325  format %{ "[$reg + $off]" %}
5326  interface(MEMORY_INTER) %{
5327    base($reg);
5328    index(0x4);
5329    scale(0x0);
5330    disp($off);
5331  %}
5332%}
5333
5334// Indirect Memory Plus Long Offset Operand
5335operand indOffset32(eRegP reg, immI off) %{
5336  match(AddP reg off);
5337
5338  format %{ "[$reg + $off]" %}
5339  interface(MEMORY_INTER) %{
5340    base($reg);
5341    index(0x4);
5342    scale(0x0);
5343    disp($off);
5344  %}
5345%}
5346
5347// Indirect Memory Plus Long Offset Operand
5348operand indOffset32X(eRegI reg, immP off) %{
5349  match(AddP off reg);
5350
5351  format %{ "[$reg + $off]" %}
5352  interface(MEMORY_INTER) %{
5353    base($reg);
5354    index(0x4);
5355    scale(0x0);
5356    disp($off);
5357  %}
5358%}
5359
5360// Indirect Memory Plus Index Register Plus Offset Operand
5361operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5362  match(AddP (AddP reg ireg) off);
5363
5364  op_cost(10);
5365  format %{"[$reg + $off + $ireg]" %}
5366  interface(MEMORY_INTER) %{
5367    base($reg);
5368    index($ireg);
5369    scale(0x0);
5370    disp($off);
5371  %}
5372%}
5373
5374// Indirect Memory Plus Index Register Plus Offset Operand
5375operand indIndex(eRegP reg, eRegI ireg) %{
5376  match(AddP reg ireg);
5377
5378  op_cost(10);
5379  format %{"[$reg + $ireg]" %}
5380  interface(MEMORY_INTER) %{
5381    base($reg);
5382    index($ireg);
5383    scale(0x0);
5384    disp(0x0);
5385  %}
5386%}
5387
5388// // -------------------------------------------------------------------------
5389// // 486 architecture doesn't support "scale * index + offset" with out a base
5390// // -------------------------------------------------------------------------
5391// // Scaled Memory Operands
5392// // Indirect Memory Times Scale Plus Offset Operand
5393// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5394//   match(AddP off (LShiftI ireg scale));
5395//
5396//   op_cost(10);
5397//   format %{"[$off + $ireg << $scale]" %}
5398//   interface(MEMORY_INTER) %{
5399//     base(0x4);
5400//     index($ireg);
5401//     scale($scale);
5402//     disp($off);
5403//   %}
5404// %}
5405
5406// Indirect Memory Times Scale Plus Index Register
5407operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5408  match(AddP reg (LShiftI ireg scale));
5409
5410  op_cost(10);
5411  format %{"[$reg + $ireg << $scale]" %}
5412  interface(MEMORY_INTER) %{
5413    base($reg);
5414    index($ireg);
5415    scale($scale);
5416    disp(0x0);
5417  %}
5418%}
5419
5420// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5421operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5422  match(AddP (AddP reg (LShiftI ireg scale)) off);
5423
5424  op_cost(10);
5425  format %{"[$reg + $off + $ireg << $scale]" %}
5426  interface(MEMORY_INTER) %{
5427    base($reg);
5428    index($ireg);
5429    scale($scale);
5430    disp($off);
5431  %}
5432%}
5433
5434//----------Load Long Memory Operands------------------------------------------
5435// The load-long idiom will use it's address expression again after loading
5436// the first word of the long.  If the load-long destination overlaps with
5437// registers used in the addressing expression, the 2nd half will be loaded
5438// from a clobbered address.  Fix this by requiring that load-long use
5439// address registers that do not overlap with the load-long target.
5440
5441// load-long support
5442operand load_long_RegP() %{
5443  constraint(ALLOC_IN_RC(esi_reg));
5444  match(RegP);
5445  match(eSIRegP);
5446  op_cost(100);
5447  format %{  %}
5448  interface(REG_INTER);
5449%}
5450
5451// Indirect Memory Operand Long
5452operand load_long_indirect(load_long_RegP reg) %{
5453  constraint(ALLOC_IN_RC(esi_reg));
5454  match(reg);
5455
5456  format %{ "[$reg]" %}
5457  interface(MEMORY_INTER) %{
5458    base($reg);
5459    index(0x4);
5460    scale(0x0);
5461    disp(0x0);
5462  %}
5463%}
5464
5465// Indirect Memory Plus Long Offset Operand
5466operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5467  match(AddP reg off);
5468
5469  format %{ "[$reg + $off]" %}
5470  interface(MEMORY_INTER) %{
5471    base($reg);
5472    index(0x4);
5473    scale(0x0);
5474    disp($off);
5475  %}
5476%}
5477
5478opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5479
5480
5481//----------Special Memory Operands--------------------------------------------
5482// Stack Slot Operand - This operand is used for loading and storing temporary
5483//                      values on the stack where a match requires a value to
5484//                      flow through memory.
5485operand stackSlotP(sRegP reg) %{
5486  constraint(ALLOC_IN_RC(stack_slots));
5487  // No match rule because this operand is only generated in matching
5488  format %{ "[$reg]" %}
5489  interface(MEMORY_INTER) %{
5490    base(0x4);   // ESP
5491    index(0x4);  // No Index
5492    scale(0x0);  // No Scale
5493    disp($reg);  // Stack Offset
5494  %}
5495%}
5496
5497operand stackSlotI(sRegI reg) %{
5498  constraint(ALLOC_IN_RC(stack_slots));
5499  // No match rule because this operand is only generated in matching
5500  format %{ "[$reg]" %}
5501  interface(MEMORY_INTER) %{
5502    base(0x4);   // ESP
5503    index(0x4);  // No Index
5504    scale(0x0);  // No Scale
5505    disp($reg);  // Stack Offset
5506  %}
5507%}
5508
5509operand stackSlotF(sRegF reg) %{
5510  constraint(ALLOC_IN_RC(stack_slots));
5511  // No match rule because this operand is only generated in matching
5512  format %{ "[$reg]" %}
5513  interface(MEMORY_INTER) %{
5514    base(0x4);   // ESP
5515    index(0x4);  // No Index
5516    scale(0x0);  // No Scale
5517    disp($reg);  // Stack Offset
5518  %}
5519%}
5520
5521operand stackSlotD(sRegD reg) %{
5522  constraint(ALLOC_IN_RC(stack_slots));
5523  // No match rule because this operand is only generated in matching
5524  format %{ "[$reg]" %}
5525  interface(MEMORY_INTER) %{
5526    base(0x4);   // ESP
5527    index(0x4);  // No Index
5528    scale(0x0);  // No Scale
5529    disp($reg);  // Stack Offset
5530  %}
5531%}
5532
5533operand stackSlotL(sRegL reg) %{
5534  constraint(ALLOC_IN_RC(stack_slots));
5535  // No match rule because this operand is only generated in matching
5536  format %{ "[$reg]" %}
5537  interface(MEMORY_INTER) %{
5538    base(0x4);   // ESP
5539    index(0x4);  // No Index
5540    scale(0x0);  // No Scale
5541    disp($reg);  // Stack Offset
5542  %}
5543%}
5544
5545//----------Memory Operands - Win95 Implicit Null Variants----------------
5546// Indirect Memory Operand
5547operand indirect_win95_safe(eRegP_no_EBP reg)
5548%{
5549  constraint(ALLOC_IN_RC(e_reg));
5550  match(reg);
5551
5552  op_cost(100);
5553  format %{ "[$reg]" %}
5554  interface(MEMORY_INTER) %{
5555    base($reg);
5556    index(0x4);
5557    scale(0x0);
5558    disp(0x0);
5559  %}
5560%}
5561
5562// Indirect Memory Plus Short Offset Operand
5563operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5564%{
5565  match(AddP reg off);
5566
5567  op_cost(100);
5568  format %{ "[$reg + $off]" %}
5569  interface(MEMORY_INTER) %{
5570    base($reg);
5571    index(0x4);
5572    scale(0x0);
5573    disp($off);
5574  %}
5575%}
5576
5577// Indirect Memory Plus Long Offset Operand
5578operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5579%{
5580  match(AddP reg off);
5581
5582  op_cost(100);
5583  format %{ "[$reg + $off]" %}
5584  interface(MEMORY_INTER) %{
5585    base($reg);
5586    index(0x4);
5587    scale(0x0);
5588    disp($off);
5589  %}
5590%}
5591
5592// Indirect Memory Plus Index Register Plus Offset Operand
5593operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5594%{
5595  match(AddP (AddP reg ireg) off);
5596
5597  op_cost(100);
5598  format %{"[$reg + $off + $ireg]" %}
5599  interface(MEMORY_INTER) %{
5600    base($reg);
5601    index($ireg);
5602    scale(0x0);
5603    disp($off);
5604  %}
5605%}
5606
5607// Indirect Memory Times Scale Plus Index Register
5608operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5609%{
5610  match(AddP reg (LShiftI ireg scale));
5611
5612  op_cost(100);
5613  format %{"[$reg + $ireg << $scale]" %}
5614  interface(MEMORY_INTER) %{
5615    base($reg);
5616    index($ireg);
5617    scale($scale);
5618    disp(0x0);
5619  %}
5620%}
5621
5622// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5623operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5624%{
5625  match(AddP (AddP reg (LShiftI ireg scale)) off);
5626
5627  op_cost(100);
5628  format %{"[$reg + $off + $ireg << $scale]" %}
5629  interface(MEMORY_INTER) %{
5630    base($reg);
5631    index($ireg);
5632    scale($scale);
5633    disp($off);
5634  %}
5635%}
5636
5637//----------Conditional Branch Operands----------------------------------------
5638// Comparison Op  - This is the operation of the comparison, and is limited to
5639//                  the following set of codes:
5640//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5641//
5642// Other attributes of the comparison, such as unsignedness, are specified
5643// by the comparison instruction that sets a condition code flags register.
5644// That result is represented by a flags operand whose subtype is appropriate
5645// to the unsignedness (etc.) of the comparison.
5646//
5647// Later, the instruction which matches both the Comparison Op (a Bool) and
5648// the flags (produced by the Cmp) specifies the coding of the comparison op
5649// by matching a specific subtype of Bool operand below, such as cmpOpU.
5650
5651// Comparision Code
5652operand cmpOp() %{
5653  match(Bool);
5654
5655  format %{ "" %}
5656  interface(COND_INTER) %{
5657    equal(0x4, "e");
5658    not_equal(0x5, "ne");
5659    less(0xC, "l");
5660    greater_equal(0xD, "ge");
5661    less_equal(0xE, "le");
5662    greater(0xF, "g");
5663  %}
5664%}
5665
5666// Comparison Code, unsigned compare.  Used by FP also, with
5667// C2 (unordered) turned into GT or LT already.  The other bits
5668// C0 and C3 are turned into Carry & Zero flags.
5669operand cmpOpU() %{
5670  match(Bool);
5671
5672  format %{ "" %}
5673  interface(COND_INTER) %{
5674    equal(0x4, "e");
5675    not_equal(0x5, "ne");
5676    less(0x2, "b");
5677    greater_equal(0x3, "nb");
5678    less_equal(0x6, "be");
5679    greater(0x7, "nbe");
5680  %}
5681%}
5682
5683// Floating comparisons that don't require any fixup for the unordered case
5684operand cmpOpUCF() %{
5685  match(Bool);
5686  predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5687            n->as_Bool()->_test._test == BoolTest::ge ||
5688            n->as_Bool()->_test._test == BoolTest::le ||
5689            n->as_Bool()->_test._test == BoolTest::gt);
5690  format %{ "" %}
5691  interface(COND_INTER) %{
5692    equal(0x4, "e");
5693    not_equal(0x5, "ne");
5694    less(0x2, "b");
5695    greater_equal(0x3, "nb");
5696    less_equal(0x6, "be");
5697    greater(0x7, "nbe");
5698  %}
5699%}
5700
5701
5702// Floating comparisons that can be fixed up with extra conditional jumps
5703operand cmpOpUCF2() %{
5704  match(Bool);
5705  predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5706            n->as_Bool()->_test._test == BoolTest::eq);
5707  format %{ "" %}
5708  interface(COND_INTER) %{
5709    equal(0x4, "e");
5710    not_equal(0x5, "ne");
5711    less(0x2, "b");
5712    greater_equal(0x3, "nb");
5713    less_equal(0x6, "be");
5714    greater(0x7, "nbe");
5715  %}
5716%}
5717
5718// Comparison Code for FP conditional move
5719operand cmpOp_fcmov() %{
5720  match(Bool);
5721
5722  format %{ "" %}
5723  interface(COND_INTER) %{
5724    equal        (0x0C8);
5725    not_equal    (0x1C8);
5726    less         (0x0C0);
5727    greater_equal(0x1C0);
5728    less_equal   (0x0D0);
5729    greater      (0x1D0);
5730  %}
5731%}
5732
5733// Comparision Code used in long compares
5734operand cmpOp_commute() %{
5735  match(Bool);
5736
5737  format %{ "" %}
5738  interface(COND_INTER) %{
5739    equal(0x4, "e");
5740    not_equal(0x5, "ne");
5741    less(0xF, "g");
5742    greater_equal(0xE, "le");
5743    less_equal(0xD, "ge");
5744    greater(0xC, "l");
5745  %}
5746%}
5747
5748//----------OPERAND CLASSES----------------------------------------------------
5749// Operand Classes are groups of operands that are used as to simplify
5750// instruction definitions by not requiring the AD writer to specify separate
5751// instructions for every form of operand when the instruction accepts
5752// multiple operand types with the same basic encoding and format.  The classic
5753// case of this is memory operands.
5754
5755opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5756               indIndex, indIndexScale, indIndexScaleOffset);
5757
5758// Long memory operations are encoded in 2 instructions and a +4 offset.
5759// This means some kind of offset is always required and you cannot use
5760// an oop as the offset (done when working on static globals).
5761opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5762                    indIndex, indIndexScale, indIndexScaleOffset);
5763
5764
5765//----------PIPELINE-----------------------------------------------------------
5766// Rules which define the behavior of the target architectures pipeline.
5767pipeline %{
5768
5769//----------ATTRIBUTES---------------------------------------------------------
5770attributes %{
5771  variable_size_instructions;        // Fixed size instructions
5772  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5773  instruction_unit_size = 1;         // An instruction is 1 bytes long
5774  instruction_fetch_unit_size = 16;  // The processor fetches one line
5775  instruction_fetch_units = 1;       // of 16 bytes
5776
5777  // List of nop instructions
5778  nops( MachNop );
5779%}
5780
5781//----------RESOURCES----------------------------------------------------------
5782// Resources are the functional units available to the machine
5783
5784// Generic P2/P3 pipeline
5785// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5786// 3 instructions decoded per cycle.
5787// 2 load/store ops per cycle, 1 branch, 1 FPU,
5788// 2 ALU op, only ALU0 handles mul/div instructions.
5789resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5790           MS0, MS1, MEM = MS0 | MS1,
5791           BR, FPU,
5792           ALU0, ALU1, ALU = ALU0 | ALU1 );
5793
5794//----------PIPELINE DESCRIPTION-----------------------------------------------
5795// Pipeline Description specifies the stages in the machine's pipeline
5796
5797// Generic P2/P3 pipeline
5798pipe_desc(S0, S1, S2, S3, S4, S5);
5799
5800//----------PIPELINE CLASSES---------------------------------------------------
5801// Pipeline Classes describe the stages in which input and output are
5802// referenced by the hardware pipeline.
5803
5804// Naming convention: ialu or fpu
5805// Then: _reg
5806// Then: _reg if there is a 2nd register
5807// Then: _long if it's a pair of instructions implementing a long
5808// Then: _fat if it requires the big decoder
5809//   Or: _mem if it requires the big decoder and a memory unit.
5810
5811// Integer ALU reg operation
5812pipe_class ialu_reg(eRegI dst) %{
5813    single_instruction;
5814    dst    : S4(write);
5815    dst    : S3(read);
5816    DECODE : S0;        // any decoder
5817    ALU    : S3;        // any alu
5818%}
5819
5820// Long ALU reg operation
5821pipe_class ialu_reg_long(eRegL dst) %{
5822    instruction_count(2);
5823    dst    : S4(write);
5824    dst    : S3(read);
5825    DECODE : S0(2);     // any 2 decoders
5826    ALU    : S3(2);     // both alus
5827%}
5828
5829// Integer ALU reg operation using big decoder
5830pipe_class ialu_reg_fat(eRegI dst) %{
5831    single_instruction;
5832    dst    : S4(write);
5833    dst    : S3(read);
5834    D0     : S0;        // big decoder only
5835    ALU    : S3;        // any alu
5836%}
5837
5838// Long ALU reg operation using big decoder
5839pipe_class ialu_reg_long_fat(eRegL dst) %{
5840    instruction_count(2);
5841    dst    : S4(write);
5842    dst    : S3(read);
5843    D0     : S0(2);     // big decoder only; twice
5844    ALU    : S3(2);     // any 2 alus
5845%}
5846
5847// Integer ALU reg-reg operation
5848pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5849    single_instruction;
5850    dst    : S4(write);
5851    src    : S3(read);
5852    DECODE : S0;        // any decoder
5853    ALU    : S3;        // any alu
5854%}
5855
5856// Long ALU reg-reg operation
5857pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5858    instruction_count(2);
5859    dst    : S4(write);
5860    src    : S3(read);
5861    DECODE : S0(2);     // any 2 decoders
5862    ALU    : S3(2);     // both alus
5863%}
5864
5865// Integer ALU reg-reg operation
5866pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5867    single_instruction;
5868    dst    : S4(write);
5869    src    : S3(read);
5870    D0     : S0;        // big decoder only
5871    ALU    : S3;        // any alu
5872%}
5873
5874// Long ALU reg-reg operation
5875pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5876    instruction_count(2);
5877    dst    : S4(write);
5878    src    : S3(read);
5879    D0     : S0(2);     // big decoder only; twice
5880    ALU    : S3(2);     // both alus
5881%}
5882
5883// Integer ALU reg-mem operation
5884pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5885    single_instruction;
5886    dst    : S5(write);
5887    mem    : S3(read);
5888    D0     : S0;        // big decoder only
5889    ALU    : S4;        // any alu
5890    MEM    : S3;        // any mem
5891%}
5892
5893// Long ALU reg-mem operation
5894pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5895    instruction_count(2);
5896    dst    : S5(write);
5897    mem    : S3(read);
5898    D0     : S0(2);     // big decoder only; twice
5899    ALU    : S4(2);     // any 2 alus
5900    MEM    : S3(2);     // both mems
5901%}
5902
5903// Integer mem operation (prefetch)
5904pipe_class ialu_mem(memory mem)
5905%{
5906    single_instruction;
5907    mem    : S3(read);
5908    D0     : S0;        // big decoder only
5909    MEM    : S3;        // any mem
5910%}
5911
5912// Integer Store to Memory
5913pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5914    single_instruction;
5915    mem    : S3(read);
5916    src    : S5(read);
5917    D0     : S0;        // big decoder only
5918    ALU    : S4;        // any alu
5919    MEM    : S3;
5920%}
5921
5922// Long Store to Memory
5923pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5924    instruction_count(2);
5925    mem    : S3(read);
5926    src    : S5(read);
5927    D0     : S0(2);     // big decoder only; twice
5928    ALU    : S4(2);     // any 2 alus
5929    MEM    : S3(2);     // Both mems
5930%}
5931
5932// Integer Store to Memory
5933pipe_class ialu_mem_imm(memory mem) %{
5934    single_instruction;
5935    mem    : S3(read);
5936    D0     : S0;        // big decoder only
5937    ALU    : S4;        // any alu
5938    MEM    : S3;
5939%}
5940
5941// Integer ALU0 reg-reg operation
5942pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5943    single_instruction;
5944    dst    : S4(write);
5945    src    : S3(read);
5946    D0     : S0;        // Big decoder only
5947    ALU0   : S3;        // only alu0
5948%}
5949
5950// Integer ALU0 reg-mem operation
5951pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5952    single_instruction;
5953    dst    : S5(write);
5954    mem    : S3(read);
5955    D0     : S0;        // big decoder only
5956    ALU0   : S4;        // ALU0 only
5957    MEM    : S3;        // any mem
5958%}
5959
5960// Integer ALU reg-reg operation
5961pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5962    single_instruction;
5963    cr     : S4(write);
5964    src1   : S3(read);
5965    src2   : S3(read);
5966    DECODE : S0;        // any decoder
5967    ALU    : S3;        // any alu
5968%}
5969
5970// Integer ALU reg-imm operation
5971pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5972    single_instruction;
5973    cr     : S4(write);
5974    src1   : S3(read);
5975    DECODE : S0;        // any decoder
5976    ALU    : S3;        // any alu
5977%}
5978
5979// Integer ALU reg-mem operation
5980pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5981    single_instruction;
5982    cr     : S4(write);
5983    src1   : S3(read);
5984    src2   : S3(read);
5985    D0     : S0;        // big decoder only
5986    ALU    : S4;        // any alu
5987    MEM    : S3;
5988%}
5989
5990// Conditional move reg-reg
5991pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5992    instruction_count(4);
5993    y      : S4(read);
5994    q      : S3(read);
5995    p      : S3(read);
5996    DECODE : S0(4);     // any decoder
5997%}
5998
5999// Conditional move reg-reg
6000pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
6001    single_instruction;
6002    dst    : S4(write);
6003    src    : S3(read);
6004    cr     : S3(read);
6005    DECODE : S0;        // any decoder
6006%}
6007
6008// Conditional move reg-mem
6009pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
6010    single_instruction;
6011    dst    : S4(write);
6012    src    : S3(read);
6013    cr     : S3(read);
6014    DECODE : S0;        // any decoder
6015    MEM    : S3;
6016%}
6017
6018// Conditional move reg-reg long
6019pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
6020    single_instruction;
6021    dst    : S4(write);
6022    src    : S3(read);
6023    cr     : S3(read);
6024    DECODE : S0(2);     // any 2 decoders
6025%}
6026
6027// Conditional move double reg-reg
6028pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
6029    single_instruction;
6030    dst    : S4(write);
6031    src    : S3(read);
6032    cr     : S3(read);
6033    DECODE : S0;        // any decoder
6034%}
6035
6036// Float reg-reg operation
6037pipe_class fpu_reg(regD dst) %{
6038    instruction_count(2);
6039    dst    : S3(read);
6040    DECODE : S0(2);     // any 2 decoders
6041    FPU    : S3;
6042%}
6043
6044// Float reg-reg operation
6045pipe_class fpu_reg_reg(regD dst, regD src) %{
6046    instruction_count(2);
6047    dst    : S4(write);
6048    src    : S3(read);
6049    DECODE : S0(2);     // any 2 decoders
6050    FPU    : S3;
6051%}
6052
6053// Float reg-reg operation
6054pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6055    instruction_count(3);
6056    dst    : S4(write);
6057    src1   : S3(read);
6058    src2   : S3(read);
6059    DECODE : S0(3);     // any 3 decoders
6060    FPU    : S3(2);
6061%}
6062
6063// Float reg-reg operation
6064pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6065    instruction_count(4);
6066    dst    : S4(write);
6067    src1   : S3(read);
6068    src2   : S3(read);
6069    src3   : S3(read);
6070    DECODE : S0(4);     // any 3 decoders
6071    FPU    : S3(2);
6072%}
6073
6074// Float reg-reg operation
6075pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6076    instruction_count(4);
6077    dst    : S4(write);
6078    src1   : S3(read);
6079    src2   : S3(read);
6080    src3   : S3(read);
6081    DECODE : S1(3);     // any 3 decoders
6082    D0     : S0;        // Big decoder only
6083    FPU    : S3(2);
6084    MEM    : S3;
6085%}
6086
6087// Float reg-mem operation
6088pipe_class fpu_reg_mem(regD dst, memory mem) %{
6089    instruction_count(2);
6090    dst    : S5(write);
6091    mem    : S3(read);
6092    D0     : S0;        // big decoder only
6093    DECODE : S1;        // any decoder for FPU POP
6094    FPU    : S4;
6095    MEM    : S3;        // any mem
6096%}
6097
6098// Float reg-mem operation
6099pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6100    instruction_count(3);
6101    dst    : S5(write);
6102    src1   : S3(read);
6103    mem    : S3(read);
6104    D0     : S0;        // big decoder only
6105    DECODE : S1(2);     // any decoder for FPU POP
6106    FPU    : S4;
6107    MEM    : S3;        // any mem
6108%}
6109
6110// Float mem-reg operation
6111pipe_class fpu_mem_reg(memory mem, regD src) %{
6112    instruction_count(2);
6113    src    : S5(read);
6114    mem    : S3(read);
6115    DECODE : S0;        // any decoder for FPU PUSH
6116    D0     : S1;        // big decoder only
6117    FPU    : S4;
6118    MEM    : S3;        // any mem
6119%}
6120
6121pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6122    instruction_count(3);
6123    src1   : S3(read);
6124    src2   : S3(read);
6125    mem    : S3(read);
6126    DECODE : S0(2);     // any decoder for FPU PUSH
6127    D0     : S1;        // big decoder only
6128    FPU    : S4;
6129    MEM    : S3;        // any mem
6130%}
6131
6132pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6133    instruction_count(3);
6134    src1   : S3(read);
6135    src2   : S3(read);
6136    mem    : S4(read);
6137    DECODE : S0;        // any decoder for FPU PUSH
6138    D0     : S0(2);     // big decoder only
6139    FPU    : S4;
6140    MEM    : S3(2);     // any mem
6141%}
6142
6143pipe_class fpu_mem_mem(memory dst, memory src1) %{
6144    instruction_count(2);
6145    src1   : S3(read);
6146    dst    : S4(read);
6147    D0     : S0(2);     // big decoder only
6148    MEM    : S3(2);     // any mem
6149%}
6150
6151pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6152    instruction_count(3);
6153    src1   : S3(read);
6154    src2   : S3(read);
6155    dst    : S4(read);
6156    D0     : S0(3);     // big decoder only
6157    FPU    : S4;
6158    MEM    : S3(3);     // any mem
6159%}
6160
6161pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6162    instruction_count(3);
6163    src1   : S4(read);
6164    mem    : S4(read);
6165    DECODE : S0;        // any decoder for FPU PUSH
6166    D0     : S0(2);     // big decoder only
6167    FPU    : S4;
6168    MEM    : S3(2);     // any mem
6169%}
6170
6171// Float load constant
6172pipe_class fpu_reg_con(regD dst) %{
6173    instruction_count(2);
6174    dst    : S5(write);
6175    D0     : S0;        // big decoder only for the load
6176    DECODE : S1;        // any decoder for FPU POP
6177    FPU    : S4;
6178    MEM    : S3;        // any mem
6179%}
6180
6181// Float load constant
6182pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6183    instruction_count(3);
6184    dst    : S5(write);
6185    src    : S3(read);
6186    D0     : S0;        // big decoder only for the load
6187    DECODE : S1(2);     // any decoder for FPU POP
6188    FPU    : S4;
6189    MEM    : S3;        // any mem
6190%}
6191
6192// UnConditional branch
6193pipe_class pipe_jmp( label labl ) %{
6194    single_instruction;
6195    BR   : S3;
6196%}
6197
6198// Conditional branch
6199pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6200    single_instruction;
6201    cr    : S1(read);
6202    BR    : S3;
6203%}
6204
6205// Allocation idiom
6206pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6207    instruction_count(1); force_serialization;
6208    fixed_latency(6);
6209    heap_ptr : S3(read);
6210    DECODE   : S0(3);
6211    D0       : S2;
6212    MEM      : S3;
6213    ALU      : S3(2);
6214    dst      : S5(write);
6215    BR       : S5;
6216%}
6217
6218// Generic big/slow expanded idiom
6219pipe_class pipe_slow(  ) %{
6220    instruction_count(10); multiple_bundles; force_serialization;
6221    fixed_latency(100);
6222    D0  : S0(2);
6223    MEM : S3(2);
6224%}
6225
6226// The real do-nothing guy
6227pipe_class empty( ) %{
6228    instruction_count(0);
6229%}
6230
6231// Define the class for the Nop node
6232define %{
6233   MachNop = empty;
6234%}
6235
6236%}
6237
6238//----------INSTRUCTIONS-------------------------------------------------------
6239//
6240// match      -- States which machine-independent subtree may be replaced
6241//               by this instruction.
6242// ins_cost   -- The estimated cost of this instruction is used by instruction
6243//               selection to identify a minimum cost tree of machine
6244//               instructions that matches a tree of machine-independent
6245//               instructions.
6246// format     -- A string providing the disassembly for this instruction.
6247//               The value of an instruction's operand may be inserted
6248//               by referring to it with a '$' prefix.
6249// opcode     -- Three instruction opcodes may be provided.  These are referred
6250//               to within an encode class as $primary, $secondary, and $tertiary
6251//               respectively.  The primary opcode is commonly used to
6252//               indicate the type of machine instruction, while secondary
6253//               and tertiary are often used for prefix options or addressing
6254//               modes.
6255// ins_encode -- A list of encode classes with parameters. The encode class
6256//               name must have been defined in an 'enc_class' specification
6257//               in the encode section of the architecture description.
6258
6259//----------BSWAP-Instruction--------------------------------------------------
6260instruct bytes_reverse_int(eRegI dst) %{
6261  match(Set dst (ReverseBytesI dst));
6262
6263  format %{ "BSWAP  $dst" %}
6264  opcode(0x0F, 0xC8);
6265  ins_encode( OpcP, OpcSReg(dst) );
6266  ins_pipe( ialu_reg );
6267%}
6268
6269instruct bytes_reverse_long(eRegL dst) %{
6270  match(Set dst (ReverseBytesL dst));
6271
6272  format %{ "BSWAP  $dst.lo\n\t"
6273            "BSWAP  $dst.hi\n\t"
6274            "XCHG   $dst.lo $dst.hi" %}
6275
6276  ins_cost(125);
6277  ins_encode( bswap_long_bytes(dst) );
6278  ins_pipe( ialu_reg_reg);
6279%}
6280
6281instruct bytes_reverse_unsigned_short(eRegI dst) %{
6282  match(Set dst (ReverseBytesUS dst));
6283
6284  format %{ "BSWAP  $dst\n\t" 
6285            "SHR    $dst,16\n\t" %}
6286  ins_encode %{
6287    __ bswapl($dst$$Register);
6288    __ shrl($dst$$Register, 16); 
6289  %}
6290  ins_pipe( ialu_reg );
6291%}
6292
6293instruct bytes_reverse_short(eRegI dst) %{
6294  match(Set dst (ReverseBytesS dst));
6295
6296  format %{ "BSWAP  $dst\n\t" 
6297            "SAR    $dst,16\n\t" %}
6298  ins_encode %{
6299    __ bswapl($dst$$Register);
6300    __ sarl($dst$$Register, 16); 
6301  %}
6302  ins_pipe( ialu_reg );
6303%}
6304
6305
6306//---------- Zeros Count Instructions ------------------------------------------
6307
6308instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6309  predicate(UseCountLeadingZerosInstruction);
6310  match(Set dst (CountLeadingZerosI src));
6311  effect(KILL cr);
6312
6313  format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6314  ins_encode %{
6315    __ lzcntl($dst$$Register, $src$$Register);
6316  %}
6317  ins_pipe(ialu_reg);
6318%}
6319
6320instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6321  predicate(!UseCountLeadingZerosInstruction);
6322  match(Set dst (CountLeadingZerosI src));
6323  effect(KILL cr);
6324
6325  format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6326            "JNZ    skip\n\t"
6327            "MOV    $dst, -1\n"
6328      "skip:\n\t"
6329            "NEG    $dst\n\t"
6330            "ADD    $dst, 31" %}
6331  ins_encode %{
6332    Register Rdst = $dst$$Register;
6333    Register Rsrc = $src$$Register;
6334    Label skip;
6335    __ bsrl(Rdst, Rsrc);
6336    __ jccb(Assembler::notZero, skip);
6337    __ movl(Rdst, -1);
6338    __ bind(skip);
6339    __ negl(Rdst);
6340    __ addl(Rdst, BitsPerInt - 1);
6341  %}
6342  ins_pipe(ialu_reg);
6343%}
6344
6345instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6346  predicate(UseCountLeadingZerosInstruction);
6347  match(Set dst (CountLeadingZerosL src));
6348  effect(TEMP dst, KILL cr);
6349
6350  format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6351            "JNC    done\n\t"
6352            "LZCNT  $dst, $src.lo\n\t"
6353            "ADD    $dst, 32\n"
6354      "done:" %}
6355  ins_encode %{
6356    Register Rdst = $dst$$Register;
6357    Register Rsrc = $src$$Register;
6358    Label done;
6359    __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6360    __ jccb(Assembler::carryClear, done);
6361    __ lzcntl(Rdst, Rsrc);
6362    __ addl(Rdst, BitsPerInt);
6363    __ bind(done);
6364  %}
6365  ins_pipe(ialu_reg);
6366%}
6367
6368instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6369  predicate(!UseCountLeadingZerosInstruction);
6370  match(Set dst (CountLeadingZerosL src));
6371  effect(TEMP dst, KILL cr);
6372
6373  format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6374            "JZ     msw_is_zero\n\t"
6375            "ADD    $dst, 32\n\t"
6376            "JMP    not_zero\n"
6377      "msw_is_zero:\n\t"
6378            "BSR    $dst, $src.lo\n\t"
6379            "JNZ    not_zero\n\t"
6380            "MOV    $dst, -1\n"
6381      "not_zero:\n\t"
6382            "NEG    $dst\n\t"
6383            "ADD    $dst, 63\n" %}
6384 ins_encode %{
6385    Register Rdst = $dst$$Register;
6386    Register Rsrc = $src$$Register;
6387    Label msw_is_zero;
6388    Label not_zero;
6389    __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6390    __ jccb(Assembler::zero, msw_is_zero);
6391    __ addl(Rdst, BitsPerInt);
6392    __ jmpb(not_zero);
6393    __ bind(msw_is_zero);
6394    __ bsrl(Rdst, Rsrc);
6395    __ jccb(Assembler::notZero, not_zero);
6396    __ movl(Rdst, -1);
6397    __ bind(not_zero);
6398    __ negl(Rdst);
6399    __ addl(Rdst, BitsPerLong - 1);
6400  %}
6401  ins_pipe(ialu_reg);
6402%}
6403
6404instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6405  match(Set dst (CountTrailingZerosI src));
6406  effect(KILL cr);
6407
6408  format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6409            "JNZ    done\n\t"
6410            "MOV    $dst, 32\n"
6411      "done:" %}
6412  ins_encode %{
6413    Register Rdst = $dst$$Register;
6414    Label done;
6415    __ bsfl(Rdst, $src$$Register);
6416    __ jccb(Assembler::notZero, done);
6417    __ movl(Rdst, BitsPerInt);
6418    __ bind(done);
6419  %}
6420  ins_pipe(ialu_reg);
6421%}
6422
6423instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6424  match(Set dst (CountTrailingZerosL src));
6425  effect(TEMP dst, KILL cr);
6426
6427  format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6428            "JNZ    done\n\t"
6429            "BSF    $dst, $src.hi\n\t"
6430            "JNZ    msw_not_zero\n\t"
6431            "MOV    $dst, 32\n"
6432      "msw_not_zero:\n\t"
6433            "ADD    $dst, 32\n"
6434      "done:" %}
6435  ins_encode %{
6436    Register Rdst = $dst$$Register;
6437    Register Rsrc = $src$$Register;
6438    Label msw_not_zero;
6439    Label done;
6440    __ bsfl(Rdst, Rsrc);
6441    __ jccb(Assembler::notZero, done);
6442    __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6443    __ jccb(Assembler::notZero, msw_not_zero);
6444    __ movl(Rdst, BitsPerInt);
6445    __ bind(msw_not_zero);
6446    __ addl(Rdst, BitsPerInt);
6447    __ bind(done);
6448  %}
6449  ins_pipe(ialu_reg);
6450%}
6451
6452
6453//---------- Population Count Instructions -------------------------------------
6454
6455instruct popCountI(eRegI dst, eRegI src) %{
6456  predicate(UsePopCountInstruction);
6457  match(Set dst (PopCountI src));
6458
6459  format %{ "POPCNT $dst, $src" %}
6460  ins_encode %{
6461    __ popcntl($dst$$Register, $src$$Register);
6462  %}
6463  ins_pipe(ialu_reg);
6464%}
6465
6466instruct popCountI_mem(eRegI dst, memory mem) %{
6467  predicate(UsePopCountInstruction);
6468  match(Set dst (PopCountI (LoadI mem)));
6469
6470  format %{ "POPCNT $dst, $mem" %}
6471  ins_encode %{
6472    __ popcntl($dst$$Register, $mem$$Address);
6473  %}
6474  ins_pipe(ialu_reg);
6475%}
6476
6477// Note: Long.bitCount(long) returns an int.
6478instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6479  predicate(UsePopCountInstruction);
6480  match(Set dst (PopCountL src));
6481  effect(KILL cr, TEMP tmp, TEMP dst);
6482
6483  format %{ "POPCNT $dst, $src.lo\n\t"
6484            "POPCNT $tmp, $src.hi\n\t"
6485            "ADD    $dst, $tmp" %}
6486  ins_encode %{
6487    __ popcntl($dst$$Register, $src$$Register);
6488    __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6489    __ addl($dst$$Register, $tmp$$Register);
6490  %}
6491  ins_pipe(ialu_reg);
6492%}
6493
6494// Note: Long.bitCount(long) returns an int.
6495instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6496  predicate(UsePopCountInstruction);
6497  match(Set dst (PopCountL (LoadL mem)));
6498  effect(KILL cr, TEMP tmp, TEMP dst);
6499
6500  format %{ "POPCNT $dst, $mem\n\t"
6501            "POPCNT $tmp, $mem+4\n\t"
6502            "ADD    $dst, $tmp" %}
6503  ins_encode %{
6504    //__ popcntl($dst$$Register, $mem$$Address$$first);
6505    //__ popcntl($tmp$$Register, $mem$$Address$$second);
6506    __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6507    __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6508    __ addl($dst$$Register, $tmp$$Register);
6509  %}
6510  ins_pipe(ialu_reg);
6511%}
6512
6513
6514//----------Load/Store/Move Instructions---------------------------------------
6515//----------Load Instructions--------------------------------------------------
6516// Load Byte (8bit signed)
6517instruct loadB(xRegI dst, memory mem) %{
6518  match(Set dst (LoadB mem));
6519
6520  ins_cost(125);
6521  format %{ "MOVSX8 $dst,$mem\t# byte" %}
6522
6523  ins_encode %{
6524    __ movsbl($dst$$Register, $mem$$Address);
6525  %}
6526
6527  ins_pipe(ialu_reg_mem);
6528%}
6529
6530// Load Byte (8bit signed) into Long Register
6531instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6532  match(Set dst (ConvI2L (LoadB mem)));
6533  effect(KILL cr);
6534
6535  ins_cost(375);
6536  format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6537            "MOV    $dst.hi,$dst.lo\n\t"
6538            "SAR    $dst.hi,7" %}
6539
6540  ins_encode %{
6541    __ movsbl($dst$$Register, $mem$$Address);
6542    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6543    __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6544  %}
6545
6546  ins_pipe(ialu_reg_mem);
6547%}
6548
6549// Load Unsigned Byte (8bit UNsigned)
6550instruct loadUB(xRegI dst, memory mem) %{
6551  match(Set dst (LoadUB mem));
6552
6553  ins_cost(125);
6554  format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6555
6556  ins_encode %{
6557    __ movzbl($dst$$Register, $mem$$Address);
6558  %}
6559
6560  ins_pipe(ialu_reg_mem);
6561%}
6562
6563// Load Unsigned Byte (8 bit UNsigned) into Long Register
6564instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6565  match(Set dst (ConvI2L (LoadUB mem)));
6566  effect(KILL cr);
6567
6568  ins_cost(250);
6569  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6570            "XOR    $dst.hi,$dst.hi" %}
6571
6572  ins_encode %{
6573    Register Rdst = $dst$$Register;
6574    __ movzbl(Rdst, $mem$$Address);
6575    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6576  %}
6577
6578  ins_pipe(ialu_reg_mem);
6579%}
6580
6581// Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6582instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6583  match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6584  effect(KILL cr);
6585
6586  format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6587            "XOR    $dst.hi,$dst.hi\n\t"
6588            "AND    $dst.lo,$mask" %}
6589  ins_encode %{
6590    Register Rdst = $dst$$Register;
6591    __ movzbl(Rdst, $mem$$Address);
6592    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6593    __ andl(Rdst, $mask$$constant);
6594  %}
6595  ins_pipe(ialu_reg_mem);
6596%}
6597
6598// Load Short (16bit signed)
6599instruct loadS(eRegI dst, memory mem) %{
6600  match(Set dst (LoadS mem));
6601
6602  ins_cost(125);
6603  format %{ "MOVSX  $dst,$mem\t# short" %}
6604
6605  ins_encode %{
6606    __ movswl($dst$$Register, $mem$$Address);
6607  %}
6608
6609  ins_pipe(ialu_reg_mem);
6610%}
6611
6612// Load Short (16 bit signed) to Byte (8 bit signed)
6613instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6614  match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6615
6616  ins_cost(125);
6617  format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6618  ins_encode %{
6619    __ movsbl($dst$$Register, $mem$$Address);
6620  %}
6621  ins_pipe(ialu_reg_mem);
6622%}
6623
6624// Load Short (16bit signed) into Long Register
6625instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6626  match(Set dst (ConvI2L (LoadS mem)));
6627  effect(KILL cr);
6628
6629  ins_cost(375);
6630  format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6631            "MOV    $dst.hi,$dst.lo\n\t"
6632            "SAR    $dst.hi,15" %}
6633
6634  ins_encode %{
6635    __ movswl($dst$$Register, $mem$$Address);
6636    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6637    __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6638  %}
6639
6640  ins_pipe(ialu_reg_mem);
6641%}
6642
6643// Load Unsigned Short/Char (16bit unsigned)
6644instruct loadUS(eRegI dst, memory mem) %{
6645  match(Set dst (LoadUS mem));
6646
6647  ins_cost(125);
6648  format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6649
6650  ins_encode %{
6651    __ movzwl($dst$$Register, $mem$$Address);
6652  %}
6653
6654  ins_pipe(ialu_reg_mem);
6655%}
6656
6657// Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6658instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6659  match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6660
6661  ins_cost(125);
6662  format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6663  ins_encode %{
6664    __ movsbl($dst$$Register, $mem$$Address);
6665  %}
6666  ins_pipe(ialu_reg_mem);
6667%}
6668
6669// Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6670instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6671  match(Set dst (ConvI2L (LoadUS mem)));
6672  effect(KILL cr);
6673
6674  ins_cost(250);
6675  format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6676            "XOR    $dst.hi,$dst.hi" %}
6677
6678  ins_encode %{
6679    __ movzwl($dst$$Register, $mem$$Address);
6680    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6681  %}
6682
6683  ins_pipe(ialu_reg_mem);
6684%}
6685
6686// Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6687instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6688  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6689  effect(KILL cr);
6690
6691  format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6692            "XOR    $dst.hi,$dst.hi" %}
6693  ins_encode %{
6694    Register Rdst = $dst$$Register;
6695    __ movzbl(Rdst, $mem$$Address);
6696    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6697  %}
6698  ins_pipe(ialu_reg_mem);
6699%}
6700
6701// Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6702instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6703  match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6704  effect(KILL cr);
6705
6706  format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6707            "XOR    $dst.hi,$dst.hi\n\t"
6708            "AND    $dst.lo,$mask" %}
6709  ins_encode %{
6710    Register Rdst = $dst$$Register;
6711    __ movzwl(Rdst, $mem$$Address);
6712    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6713    __ andl(Rdst, $mask$$constant);
6714  %}
6715  ins_pipe(ialu_reg_mem);
6716%}
6717
6718// Load Integer
6719instruct loadI(eRegI dst, memory mem) %{
6720  match(Set dst (LoadI mem));
6721
6722  ins_cost(125);
6723  format %{ "MOV    $dst,$mem\t# int" %}
6724
6725  ins_encode %{
6726    __ movl($dst$$Register, $mem$$Address);
6727  %}
6728
6729  ins_pipe(ialu_reg_mem);
6730%}
6731
6732// Load Integer (32 bit signed) to Byte (8 bit signed)
6733instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6734  match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6735
6736  ins_cost(125);
6737  format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6738  ins_encode %{
6739    __ movsbl($dst$$Register, $mem$$Address);
6740  %}
6741  ins_pipe(ialu_reg_mem);
6742%}
6743
6744// Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6745instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6746  match(Set dst (AndI (LoadI mem) mask));
6747
6748  ins_cost(125);
6749  format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6750  ins_encode %{
6751    __ movzbl($dst$$Register, $mem$$Address);
6752  %}
6753  ins_pipe(ialu_reg_mem);
6754%}
6755
6756// Load Integer (32 bit signed) to Short (16 bit signed)
6757instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6758  match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6759
6760  ins_cost(125);
6761  format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6762  ins_encode %{
6763    __ movswl($dst$$Register, $mem$$Address);
6764  %}
6765  ins_pipe(ialu_reg_mem);
6766%}
6767
6768// Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6769instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6770  match(Set dst (AndI (LoadI mem) mask));
6771
6772  ins_cost(125);
6773  format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6774  ins_encode %{
6775    __ movzwl($dst$$Register, $mem$$Address);
6776  %}
6777  ins_pipe(ialu_reg_mem);
6778%}
6779
6780// Load Integer into Long Register
6781instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6782  match(Set dst (ConvI2L (LoadI mem)));
6783  effect(KILL cr);
6784
6785  ins_cost(375);
6786  format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6787            "MOV    $dst.hi,$dst.lo\n\t"
6788            "SAR    $dst.hi,31" %}
6789
6790  ins_encode %{
6791    __ movl($dst$$Register, $mem$$Address);
6792    __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6793    __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6794  %}
6795
6796  ins_pipe(ialu_reg_mem);
6797%}
6798
6799// Load Integer with mask 0xFF into Long Register
6800instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6801  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6802  effect(KILL cr);
6803
6804  format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6805            "XOR    $dst.hi,$dst.hi" %}
6806  ins_encode %{
6807    Register Rdst = $dst$$Register;
6808    __ movzbl(Rdst, $mem$$Address);
6809    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6810  %}
6811  ins_pipe(ialu_reg_mem);
6812%}
6813
6814// Load Integer with mask 0xFFFF into Long Register
6815instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6816  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6817  effect(KILL cr);
6818
6819  format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6820            "XOR    $dst.hi,$dst.hi" %}
6821  ins_encode %{
6822    Register Rdst = $dst$$Register;
6823    __ movzwl(Rdst, $mem$$Address);
6824    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6825  %}
6826  ins_pipe(ialu_reg_mem);
6827%}
6828
6829// Load Integer with 32-bit mask into Long Register
6830instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6831  match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6832  effect(KILL cr);
6833
6834  format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6835            "XOR    $dst.hi,$dst.hi\n\t"
6836            "AND    $dst.lo,$mask" %}
6837  ins_encode %{
6838    Register Rdst = $dst$$Register;
6839    __ movl(Rdst, $mem$$Address);
6840    __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6841    __ andl(Rdst, $mask$$constant);
6842  %}
6843  ins_pipe(ialu_reg_mem);
6844%}
6845
6846// Load Unsigned Integer into Long Register
6847instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6848  match(Set dst (LoadUI2L mem));
6849  effect(KILL cr);
6850
6851  ins_cost(250);
6852  format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6853            "XOR    $dst.hi,$dst.hi" %}
6854
6855  ins_encode %{
6856    __ movl($dst$$Register, $mem$$Address);
6857    __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6858  %}
6859
6860  ins_pipe(ialu_reg_mem);
6861%}
6862
6863// Load Long.  Cannot clobber address while loading, so restrict address
6864// register to ESI
6865instruct loadL(eRegL dst, load_long_memory mem) %{
6866  predicate(!((LoadLNode*)n)->require_atomic_access());
6867  match(Set dst (LoadL mem));
6868
6869  ins_cost(250);
6870  format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6871            "MOV    $dst.hi,$mem+4" %}
6872
6873  ins_encode %{
6874    Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6875    Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6876    __ movl($dst$$Register, Amemlo);
6877    __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6878  %}
6879
6880  ins_pipe(ialu_reg_long_mem);
6881%}
6882
6883// Volatile Load Long.  Must be atomic, so do 64-bit FILD
6884// then store it down to the stack and reload on the int
6885// side.
6886instruct loadL_volatile(stackSlotL dst, memory mem) %{
6887  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6888  match(Set dst (LoadL mem));
6889
6890  ins_cost(200);
6891  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6892            "FISTp  $dst" %}
6893  ins_encode(enc_loadL_volatile(mem,dst));
6894  ins_pipe( fpu_reg_mem );
6895%}
6896
6897instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6898  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6899  match(Set dst (LoadL mem));
6900  effect(TEMP tmp);
6901  ins_cost(180);
6902  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6903            "MOVSD  $dst,$tmp" %}
6904  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6905  ins_pipe( pipe_slow );
6906%}
6907
6908instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6909  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6910  match(Set dst (LoadL mem));
6911  effect(TEMP tmp);
6912  ins_cost(160);
6913  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6914            "MOVD   $dst.lo,$tmp\n\t"
6915            "PSRLQ  $tmp,32\n\t"
6916            "MOVD   $dst.hi,$tmp" %}
6917  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6918  ins_pipe( pipe_slow );
6919%}
6920
6921// Load Range
6922instruct loadRange(eRegI dst, memory mem) %{
6923  match(Set dst (LoadRange mem));
6924
6925  ins_cost(125);
6926  format %{ "MOV    $dst,$mem" %}
6927  opcode(0x8B);
6928  ins_encode( OpcP, RegMem(dst,mem));
6929  ins_pipe( ialu_reg_mem );
6930%}
6931
6932
6933// Load Pointer
6934instruct loadP(eRegP dst, memory mem) %{
6935  match(Set dst (LoadP mem));
6936
6937  ins_cost(125);
6938  format %{ "MOV    $dst,$mem" %}
6939  opcode(0x8B);
6940  ins_encode( OpcP, RegMem(dst,mem));
6941  ins_pipe( ialu_reg_mem );
6942%}
6943
6944// Load Klass Pointer
6945instruct loadKlass(eRegP dst, memory mem) %{
6946  match(Set dst (LoadKlass mem));
6947
6948  ins_cost(125);
6949  format %{ "MOV    $dst,$mem" %}
6950  opcode(0x8B);
6951  ins_encode( OpcP, RegMem(dst,mem));
6952  ins_pipe( ialu_reg_mem );
6953%}
6954
6955// Load Double
6956instruct loadD(regD dst, memory mem) %{
6957  predicate(UseSSE<=1);
6958  match(Set dst (LoadD mem));
6959
6960  ins_cost(150);
6961  format %{ "FLD_D  ST,$mem\n\t"
6962            "FSTP   $dst" %}
6963  opcode(0xDD);               /* DD /0 */
6964  ins_encode( OpcP, RMopc_Mem(0x00,mem),
6965              Pop_Reg_D(dst) );
6966  ins_pipe( fpu_reg_mem );
6967%}
6968
6969// Load Double to XMM
6970instruct loadXD(regXD dst, memory mem) %{
6971  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6972  match(Set dst (LoadD mem));
6973  ins_cost(145);
6974  format %{ "MOVSD  $dst,$mem" %}
6975  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6976  ins_pipe( pipe_slow );
6977%}
6978
6979instruct loadXD_partial(regXD dst, memory mem) %{
6980  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6981  match(Set dst (LoadD mem));
6982  ins_cost(145);
6983  format %{ "MOVLPD $dst,$mem" %}
6984  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6985  ins_pipe( pipe_slow );
6986%}
6987
6988// Load to XMM register (single-precision floating point)
6989// MOVSS instruction
6990instruct loadX(regX dst, memory mem) %{
6991  predicate(UseSSE>=1);
6992  match(Set dst (LoadF mem));
6993  ins_cost(145);
6994  format %{ "MOVSS  $dst,$mem" %}
6995  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6996  ins_pipe( pipe_slow );
6997%}
6998
6999// Load Float
7000instruct loadF(regF dst, memory mem) %{
7001  predicate(UseSSE==0);
7002  match(Set dst (LoadF mem));
7003
7004  ins_cost(150);
7005  format %{ "FLD_S  ST,$mem\n\t"
7006            "FSTP   $dst" %}
7007  opcode(0xD9);               /* D9 /0 */
7008  ins_encode( OpcP, RMopc_Mem(0x00,mem),
7009              Pop_Reg_F(dst) );
7010  ins_pipe( fpu_reg_mem );
7011%}
7012
7013// Load Aligned Packed Byte to XMM register
7014instruct loadA8B(regXD dst, memory mem) %{
7015  predicate(UseSSE>=1);
7016  match(Set dst (Load8B mem));
7017  ins_cost(125);
7018  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
7019  ins_encode( movq_ld(dst, mem));
7020  ins_pipe( pipe_slow );
7021%}
7022
7023// Load Aligned Packed Short to XMM register
7024instruct loadA4S(regXD dst, memory mem) %{
7025  predicate(UseSSE>=1);
7026  match(Set dst (Load4S mem));
7027  ins_cost(125);
7028  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
7029  ins_encode( movq_ld(dst, mem));
7030  ins_pipe( pipe_slow );
7031%}
7032
7033// Load Aligned Packed Char to XMM register
7034instruct loadA4C(regXD dst, memory mem) %{
7035  predicate(UseSSE>=1);
7036  match(Set dst (Load4C mem));
7037  ins_cost(125);
7038  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
7039  ins_encode( movq_ld(dst, mem));
7040  ins_pipe( pipe_slow );
7041%}
7042
7043// Load Aligned Packed Integer to XMM register
7044instruct load2IU(regXD dst, memory mem) %{
7045  predicate(UseSSE>=1);
7046  match(Set dst (Load2I mem));
7047  ins_cost(125);
7048  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
7049  ins_encode( movq_ld(dst, mem));
7050  ins_pipe( pipe_slow );
7051%}
7052
7053// Load Aligned Packed Single to XMM
7054instruct loadA2F(regXD dst, memory mem) %{
7055  predicate(UseSSE>=1);
7056  match(Set dst (Load2F mem));
7057  ins_cost(145);
7058  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
7059  ins_encode( movq_ld(dst, mem));
7060  ins_pipe( pipe_slow );
7061%}
7062
7063// Load Effective Address
7064instruct leaP8(eRegP dst, indOffset8 mem) %{
7065  match(Set dst mem);
7066
7067  ins_cost(110);
7068  format %{ "LEA    $dst,$mem" %}
7069  opcode(0x8D);
7070  ins_encode( OpcP, RegMem(dst,mem));
7071  ins_pipe( ialu_reg_reg_fat );
7072%}
7073
7074instruct leaP32(eRegP dst, indOffset32 mem) %{
7075  match(Set dst mem);
7076
7077  ins_cost(110);
7078  format %{ "LEA    $dst,$mem" %}
7079  opcode(0x8D);
7080  ins_encode( OpcP, RegMem(dst,mem));
7081  ins_pipe( ialu_reg_reg_fat );
7082%}
7083
7084instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
7085  match(Set dst mem);
7086
7087  ins_cost(110);
7088  format %{ "LEA    $dst,$mem" %}
7089  opcode(0x8D);
7090  ins_encode( OpcP, RegMem(dst,mem));
7091  ins_pipe( ialu_reg_reg_fat );
7092%}
7093
7094instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7095  match(Set dst mem);
7096
7097  ins_cost(110);
7098  format %{ "LEA    $dst,$mem" %}
7099  opcode(0x8D);
7100  ins_encode( OpcP, RegMem(dst,mem));
7101  ins_pipe( ialu_reg_reg_fat );
7102%}
7103
7104instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7105  match(Set dst mem);
7106
7107  ins_cost(110);
7108  format %{ "LEA    $dst,$mem" %}
7109  opcode(0x8D);
7110  ins_encode( OpcP, RegMem(dst,mem));
7111  ins_pipe( ialu_reg_reg_fat );
7112%}
7113
7114// Load Constant
7115instruct loadConI(eRegI dst, immI src) %{
7116  match(Set dst src);
7117
7118  format %{ "MOV    $dst,$src" %}
7119  ins_encode( LdImmI(dst, src) );
7120  ins_pipe( ialu_reg_fat );
7121%}
7122
7123// Load Constant zero
7124instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7125  match(Set dst src);
7126  effect(KILL cr);
7127
7128  ins_cost(50);
7129  format %{ "XOR    $dst,$dst" %}
7130  opcode(0x33);  /* + rd */
7131  ins_encode( OpcP, RegReg( dst, dst ) );
7132  ins_pipe( ialu_reg );
7133%}
7134
7135instruct loadConP(eRegP dst, immP src) %{
7136  match(Set dst src);
7137
7138  format %{ "MOV    $dst,$src" %}
7139  opcode(0xB8);  /* + rd */
7140  ins_encode( LdImmP(dst, src) );
7141  ins_pipe( ialu_reg_fat );
7142%}
7143
7144instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7145  match(Set dst src);
7146  effect(KILL cr);
7147  ins_cost(200);
7148  format %{ "MOV    $dst.lo,$src.lo\n\t"
7149            "MOV    $dst.hi,$src.hi" %}
7150  opcode(0xB8);
7151  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7152  ins_pipe( ialu_reg_long_fat );
7153%}
7154
7155instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7156  match(Set dst src);
7157  effect(KILL cr);
7158  ins_cost(150);
7159  format %{ "XOR    $dst.lo,$dst.lo\n\t"
7160            "XOR    $dst.hi,$dst.hi" %}
7161  opcode(0x33,0x33);
7162  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7163  ins_pipe( ialu_reg_long );
7164%}
7165
7166// The instruction usage is guarded by predicate in operand immF().
7167instruct loadConF(regF dst, immF src) %{
7168  match(Set dst src);
7169  ins_cost(125);
7170
7171  format %{ "FLD_S  ST,$src\n\t"
7172            "FSTP   $dst" %}
7173  opcode(0xD9, 0x00);       /* D9 /0 */
7174  ins_encode(LdImmF(src), Pop_Reg_F(dst) );
7175  ins_pipe( fpu_reg_con );
7176%}
7177
7178// The instruction usage is guarded by predicate in operand immXF().
7179instruct loadConX(regX dst, immXF con) %{
7180  match(Set dst con);
7181  ins_cost(125);
7182  format %{ "MOVSS  $dst,[$con]" %}
7183  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
7184  ins_pipe( pipe_slow );
7185%}
7186
7187// The instruction usage is guarded by predicate in operand immXF0().
7188instruct loadConX0(regX dst, immXF0 src) %{
7189  match(Set dst src);
7190  ins_cost(100);
7191  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7192  ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7193  ins_pipe( pipe_slow );
7194%}
7195
7196// The instruction usage is guarded by predicate in operand immD().
7197instruct loadConD(regD dst, immD src) %{
7198  match(Set dst src);
7199  ins_cost(125);
7200
7201  format %{ "FLD_D  ST,$src\n\t"
7202            "FSTP   $dst" %}
7203  ins_encode(LdImmD(src), Pop_Reg_D(dst) );
7204  ins_pipe( fpu_reg_con );
7205%}
7206
7207// The instruction usage is guarded by predicate in operand immXD().
7208instruct loadConXD(regXD dst, immXD con) %{
7209  match(Set dst con);
7210  ins_cost(125);
7211  format %{ "MOVSD  $dst,[$con]" %}
7212  ins_encode(load_conXD(dst, con));
7213  ins_pipe( pipe_slow );
7214%}
7215
7216// The instruction usage is guarded by predicate in operand immXD0().
7217instruct loadConXD0(regXD dst, immXD0 src) %{
7218  match(Set dst src);
7219  ins_cost(100);
7220  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7221  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7222  ins_pipe( pipe_slow );
7223%}
7224
7225// Load Stack Slot
7226instruct loadSSI(eRegI dst, stackSlotI src) %{
7227  match(Set dst src);
7228  ins_cost(125);
7229
7230  format %{ "MOV    $dst,$src" %}
7231  opcode(0x8B);
7232  ins_encode( OpcP, RegMem(dst,src));
7233  ins_pipe( ialu_reg_mem );
7234%}
7235
7236instruct loadSSL(eRegL dst, stackSlotL src) %{
7237  match(Set dst src);
7238
7239  ins_cost(200);
7240  format %{ "MOV    $dst,$src.lo\n\t"
7241            "MOV    $dst+4,$src.hi" %}
7242  opcode(0x8B, 0x8B);
7243  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7244  ins_pipe( ialu_mem_long_reg );
7245%}
7246
7247// Load Stack Slot
7248instruct loadSSP(eRegP dst, stackSlotP src) %{
7249  match(Set dst src);
7250  ins_cost(125);
7251
7252  format %{ "MOV    $dst,$src" %}
7253  opcode(0x8B);
7254  ins_encode( OpcP, RegMem(dst,src));
7255  ins_pipe( ialu_reg_mem );
7256%}
7257
7258// Load Stack Slot
7259instruct loadSSF(regF dst, stackSlotF src) %{
7260  match(Set dst src);
7261  ins_cost(125);
7262
7263  format %{ "FLD_S  $src\n\t"
7264            "FSTP   $dst" %}
7265  opcode(0xD9);               /* D9 /0, FLD m32real */
7266  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7267              Pop_Reg_F(dst) );
7268  ins_pipe( fpu_reg_mem );
7269%}
7270
7271// Load Stack Slot
7272instruct loadSSD(regD dst, stackSlotD src) %{
7273  match(Set dst src);
7274  ins_cost(125);
7275
7276  format %{ "FLD_D  $src\n\t"
7277            "FSTP   $dst" %}
7278  opcode(0xDD);               /* DD /0, FLD m64real */
7279  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7280              Pop_Reg_D(dst) );
7281  ins_pipe( fpu_reg_mem );
7282%}
7283
7284// Prefetch instructions.
7285// Must be safe to execute with invalid address (cannot fault).
7286
7287instruct prefetchr0( memory mem ) %{
7288  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7289  match(PrefetchRead mem);
7290  ins_cost(0);
7291  size(0);
7292  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7293  ins_encode();
7294  ins_pipe(empty);
7295%}
7296
7297instruct prefetchr( memory mem ) %{
7298  predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
7299  match(PrefetchRead mem);
7300  ins_cost(100);
7301
7302  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7303  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
7304  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7305  ins_pipe(ialu_mem);
7306%}
7307
7308instruct prefetchrNTA( memory mem ) %{
7309  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7310  match(PrefetchRead mem);
7311  ins_cost(100);
7312
7313  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7314  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7315  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7316  ins_pipe(ialu_mem);
7317%}
7318
7319instruct prefetchrT0( memory mem ) %{
7320  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7321  match(PrefetchRead mem);
7322  ins_cost(100);
7323
7324  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7325  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7326  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7327  ins_pipe(ialu_mem);
7328%}
7329
7330instruct prefetchrT2( memory mem ) %{
7331  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7332  match(PrefetchRead mem);
7333  ins_cost(100);
7334
7335  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7336  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7337  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7338  ins_pipe(ialu_mem);
7339%}
7340
7341instruct prefetchw0( memory mem ) %{
7342  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7343  match(PrefetchWrite mem);
7344  ins_cost(0);
7345  size(0);
7346  format %{ "Prefetch (non-SSE is empty encoding)" %}
7347  ins_encode();
7348  ins_pipe(empty);
7349%}
7350
7351instruct prefetchw( memory mem ) %{
7352  predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
7353  match( PrefetchWrite mem );
7354  ins_cost(100);
7355
7356  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7357  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
7358  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7359  ins_pipe(ialu_mem);
7360%}
7361
7362instruct prefetchwNTA( memory mem ) %{
7363  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7364  match(PrefetchWrite mem);
7365  ins_cost(100);
7366
7367  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7368  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7369  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7370  ins_pipe(ialu_mem);
7371%}
7372
7373instruct prefetchwT0( memory mem ) %{
7374  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7375  match(PrefetchWrite mem);
7376  ins_cost(100);
7377
7378  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
7379  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7380  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7381  ins_pipe(ialu_mem);
7382%}
7383
7384instruct prefetchwT2( memory mem ) %{
7385  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7386  match(PrefetchWrite mem);
7387  ins_cost(100);
7388
7389  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
7390  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7391  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7392  ins_pipe(ialu_mem);
7393%}
7394
7395//----------Store Instructions-------------------------------------------------
7396
7397// Store Byte
7398instruct storeB(memory mem, xRegI src) %{
7399  match(Set mem (StoreB mem src));
7400
7401  ins_cost(125);
7402  format %{ "MOV8   $mem,$src" %}
7403  opcode(0x88);
7404  ins_encode( OpcP, RegMem( src, mem ) );
7405  ins_pipe( ialu_mem_reg );
7406%}
7407
7408// Store Char/Short
7409instruct storeC(memory mem, eRegI src) %{
7410  match(Set mem (StoreC mem src));
7411
7412  ins_cost(125);
7413  format %{ "MOV16  $mem,$src" %}
7414  opcode(0x89, 0x66);
7415  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7416  ins_pipe( ialu_mem_reg );
7417%}
7418
7419// Store Integer
7420instruct storeI(memory mem, eRegI src) %{
7421  match(Set mem (StoreI mem src));
7422
7423  ins_cost(125);
7424  format %{ "MOV    $mem,$src" %}
7425  opcode(0x89);
7426  ins_encode( OpcP, RegMem( src, mem ) );
7427  ins_pipe( ialu_mem_reg );
7428%}
7429
7430// Store Long
7431instruct storeL(long_memory mem, eRegL src) %{
7432  predicate(!((StoreLNode*)n)->require_atomic_access());
7433  match(Set mem (StoreL mem src));
7434
7435  ins_cost(200);
7436  format %{ "MOV    $mem,$src.lo\n\t"
7437            "MOV    $mem+4,$src.hi" %}
7438  opcode(0x89, 0x89);
7439  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7440  ins_pipe( ialu_mem_long_reg );
7441%}
7442
7443// Store Long to Integer
7444instruct storeL2I(memory mem, eRegL src) %{
7445  match(Set mem (StoreI mem (ConvL2I src)));
7446
7447  format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7448  ins_encode %{
7449    __ movl($mem$$Address, $src$$Register);
7450  %}
7451  ins_pipe(ialu_mem_reg);
7452%}
7453
7454// Volatile Store Long.  Must be atomic, so move it into
7455// the FP TOS and then do a 64-bit FIST.  Has to probe the
7456// target address before the store (for null-ptr checks)
7457// so the memory operand is used twice in the encoding.
7458instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7459  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7460  match(Set mem (StoreL mem src));
7461  effect( KILL cr );
7462  ins_cost(400);
7463  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7464            "FILD   $src\n\t"
7465            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7466  opcode(0x3B);
7467  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7468  ins_pipe( fpu_reg_mem );
7469%}
7470
7471instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7472  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7473  match(Set mem (StoreL mem src));
7474  effect( TEMP tmp, KILL cr );
7475  ins_cost(380);
7476  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7477            "MOVSD  $tmp,$src\n\t"
7478            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7479  opcode(0x3B);
7480  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7481  ins_pipe( pipe_slow );
7482%}
7483
7484instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7485  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7486  match(Set mem (StoreL mem src));
7487  effect( TEMP tmp2 , TEMP tmp, KILL cr );
7488  ins_cost(360);
7489  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7490            "MOVD   $tmp,$src.lo\n\t"
7491            "MOVD   $tmp2,$src.hi\n\t"
7492            "PUNPCKLDQ $tmp,$tmp2\n\t"
7493            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7494  opcode(0x3B);
7495  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7496  ins_pipe( pipe_slow );
7497%}
7498
7499// Store Pointer; for storing unknown oops and raw pointers
7500instruct storeP(memory mem, anyRegP src) %{
7501  match(Set mem (StoreP mem src));
7502
7503  ins_cost(125);
7504  format %{ "MOV    $mem,$src" %}
7505  opcode(0x89);
7506  ins_encode( OpcP, RegMem( src, mem ) );
7507  ins_pipe( ialu_mem_reg );
7508%}
7509
7510// Store Integer Immediate
7511instruct storeImmI(memory mem, immI src) %{
7512  match(Set mem (StoreI mem src));
7513
7514  ins_cost(150);
7515  format %{ "MOV    $mem,$src" %}
7516  opcode(0xC7);               /* C7 /0 */
7517  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7518  ins_pipe( ialu_mem_imm );
7519%}
7520
7521// Store Short/Char Immediate
7522instruct storeImmI16(memory mem, immI16 src) %{
7523  predicate(UseStoreImmI16);
7524  match(Set mem (StoreC mem src));
7525
7526  ins_cost(150);
7527  format %{ "MOV16  $mem,$src" %}
7528  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7529  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7530  ins_pipe( ialu_mem_imm );
7531%}
7532
7533// Store Pointer Immediate; null pointers or constant oops that do not
7534// need card-mark barriers.
7535instruct storeImmP(memory mem, immP src) %{
7536  match(Set mem (StoreP mem src));
7537
7538  ins_cost(150);
7539  format %{ "MOV    $mem,$src" %}
7540  opcode(0xC7);               /* C7 /0 */
7541  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7542  ins_pipe( ialu_mem_imm );
7543%}
7544
7545// Store Byte Immediate
7546instruct storeImmB(memory mem, immI8 src) %{
7547  match(Set mem (StoreB mem src));
7548
7549  ins_cost(150);
7550  format %{ "MOV8   $mem,$src" %}
7551  opcode(0xC6);               /* C6 /0 */
7552  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7553  ins_pipe( ialu_mem_imm );
7554%}
7555
7556// Store Aligned Packed Byte XMM register to memory
7557instruct storeA8B(memory mem, regXD src) %{
7558  predicate(UseSSE>=1);
7559  match(Set mem (Store8B mem src));
7560  ins_cost(145);
7561  format %{ "MOVQ  $mem,$src\t! packed8B" %}
7562  ins_encode( movq_st(mem, src));
7563  ins_pipe( pipe_slow );
7564%}
7565
7566// Store Aligned Packed Char/Short XMM register to memory
7567instruct storeA4C(memory mem, regXD src) %{
7568  predicate(UseSSE>=1);
7569  match(Set mem (Store4C mem src));
7570  ins_cost(145);
7571  format %{ "MOVQ  $mem,$src\t! packed4C" %}
7572  ins_encode( movq_st(mem, src));
7573  ins_pipe( pipe_slow );
7574%}
7575
7576// Store Aligned Packed Integer XMM register to memory
7577instruct storeA2I(memory mem, regXD src) %{
7578  predicate(UseSSE>=1);
7579  match(Set mem (Store2I mem src));
7580  ins_cost(145);
7581  format %{ "MOVQ  $mem,$src\t! packed2I" %}
7582  ins_encode( movq_st(mem, src));
7583  ins_pipe( pipe_slow );
7584%}
7585
7586// Store CMS card-mark Immediate
7587instruct storeImmCM(memory mem, immI8 src) %{
7588  match(Set mem (StoreCM mem src));
7589
7590  ins_cost(150);
7591  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7592  opcode(0xC6);               /* C6 /0 */
7593  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7594  ins_pipe( ialu_mem_imm );
7595%}
7596
7597// Store Double
7598instruct storeD( memory mem, regDPR1 src) %{
7599  predicate(UseSSE<=1);
7600  match(Set mem (StoreD mem src));
7601
7602  ins_cost(100);
7603  format %{ "FST_D  $mem,$src" %}
7604  opcode(0xDD);       /* DD /2 */
7605  ins_encode( enc_FP_store(mem,src) );
7606  ins_pipe( fpu_mem_reg );
7607%}
7608
7609// Store double does rounding on x86
7610instruct storeD_rounded( memory mem, regDPR1 src) %{
7611  predicate(UseSSE<=1);
7612  match(Set mem (StoreD mem (RoundDouble src)));
7613
7614  ins_cost(100);
7615  format %{ "FST_D  $mem,$src\t# round" %}
7616  opcode(0xDD);       /* DD /2 */
7617  ins_encode( enc_FP_store(mem,src) );
7618  ins_pipe( fpu_mem_reg );
7619%}
7620
7621// Store XMM register to memory (double-precision floating points)
7622// MOVSD instruction
7623instruct storeXD(memory mem, regXD src) %{
7624  predicate(UseSSE>=2);
7625  match(Set mem (StoreD mem src));
7626  ins_cost(95);
7627  format %{ "MOVSD  $mem,$src" %}
7628  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7629  ins_pipe( pipe_slow );
7630%}
7631
7632// Store XMM register to memory (single-precision floating point)
7633// MOVSS instruction
7634instruct storeX(memory mem, regX src) %{
7635  predicate(UseSSE>=1);
7636  match(Set mem (StoreF mem src));
7637  ins_cost(95);
7638  format %{ "MOVSS  $mem,$src" %}
7639  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7640  ins_pipe( pipe_slow );
7641%}
7642
7643// Store Aligned Packed Single Float XMM register to memory
7644instruct storeA2F(memory mem, regXD src) %{
7645  predicate(UseSSE>=1);
7646  match(Set mem (Store2F mem src));
7647  ins_cost(145);
7648  format %{ "MOVQ  $mem,$src\t! packed2F" %}
7649  ins_encode( movq_st(mem, src));
7650  ins_pipe( pipe_slow );
7651%}
7652
7653// Store Float
7654instruct storeF( memory mem, regFPR1 src) %{
7655  predicate(UseSSE==0);
7656  match(Set mem (StoreF mem src));
7657
7658  ins_cost(100);
7659  format %{ "FST_S  $mem,$src" %}
7660  opcode(0xD9);       /* D9 /2 */
7661  ins_encode( enc_FP_store(mem,src) );
7662  ins_pipe( fpu_mem_reg );
7663%}
7664
7665// Store Float does rounding on x86
7666instruct storeF_rounded( memory mem, regFPR1 src) %{
7667  predicate(UseSSE==0);
7668  match(Set mem (StoreF mem (RoundFloat src)));
7669
7670  ins_cost(100);
7671  format %{ "FST_S  $mem,$src\t# round" %}
7672  opcode(0xD9);       /* D9 /2 */
7673  ins_encode( enc_FP_store(mem,src) );
7674  ins_pipe( fpu_mem_reg );
7675%}
7676
7677// Store Float does rounding on x86
7678instruct storeF_Drounded( memory mem, regDPR1 src) %{
7679  predicate(UseSSE<=1);
7680  match(Set mem (StoreF mem (ConvD2F src)));
7681
7682  ins_cost(100);
7683  format %{ "FST_S  $mem,$src\t# D-round" %}
7684  opcode(0xD9);       /* D9 /2 */
7685  ins_encode( enc_FP_store(mem,src) );
7686  ins_pipe( fpu_mem_reg );
7687%}
7688
7689// Store immediate Float value (it is faster than store from FPU register)
7690// The instruction usage is guarded by predicate in operand immF().
7691instruct storeF_imm( memory mem, immF src) %{
7692  match(Set mem (StoreF mem src));
7693
7694  ins_cost(50);
7695  format %{ "MOV    $mem,$src\t# store float" %}
7696  opcode(0xC7);               /* C7 /0 */
7697  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7698  ins_pipe( ialu_mem_imm );
7699%}
7700
7701// Store immediate Float value (it is faster than store from XMM register)
7702// The instruction usage is guarded by predicate in operand immXF().
7703instruct storeX_imm( memory mem, immXF src) %{
7704  match(Set mem (StoreF mem src));
7705
7706  ins_cost(50);
7707  format %{ "MOV    $mem,$src\t# store float" %}
7708  opcode(0xC7);               /* C7 /0 */
7709  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7710  ins_pipe( ialu_mem_imm );
7711%}
7712
7713// Store Integer to stack slot
7714instruct storeSSI(stackSlotI dst, eRegI src) %{
7715  match(Set dst src);
7716
7717  ins_cost(100);
7718  format %{ "MOV    $dst,$src" %}
7719  opcode(0x89);
7720  ins_encode( OpcPRegSS( dst, src ) );
7721  ins_pipe( ialu_mem_reg );
7722%}
7723
7724// Store Integer to stack slot
7725instruct storeSSP(stackSlotP dst, eRegP src) %{
7726  match(Set dst src);
7727
7728  ins_cost(100);
7729  format %{ "MOV    $dst,$src" %}
7730  opcode(0x89);
7731  ins_encode( OpcPRegSS( dst, src ) );
7732  ins_pipe( ialu_mem_reg );
7733%}
7734
7735// Store Long to stack slot
7736instruct storeSSL(stackSlotL dst, eRegL src) %{
7737  match(Set dst src);
7738
7739  ins_cost(200);
7740  format %{ "MOV    $dst,$src.lo\n\t"
7741            "MOV    $dst+4,$src.hi" %}
7742  opcode(0x89, 0x89);
7743  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7744  ins_pipe( ialu_mem_long_reg );
7745%}
7746
7747//----------MemBar Instructions-----------------------------------------------
7748// Memory barrier flavors
7749
7750instruct membar_acquire() %{
7751  match(MemBarAcquire);
7752  ins_cost(400);
7753
7754  size(0);
7755  format %{ "MEMBAR-acquire ! (empty encoding)" %}
7756  ins_encode();
7757  ins_pipe(empty);
7758%}
7759
7760instruct membar_acquire_lock() %{
7761  match(MemBarAcquire);
7762  predicate(Matcher::prior_fast_lock(n));
7763  ins_cost(0);
7764
7765  size(0);
7766  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7767  ins_encode( );
7768  ins_pipe(empty);
7769%}
7770
7771instruct membar_release() %{
7772  match(MemBarRelease);
7773  ins_cost(400);
7774
7775  size(0);
7776  format %{ "MEMBAR-release ! (empty encoding)" %}
7777  ins_encode( );
7778  ins_pipe(empty);
7779%}
7780
7781instruct membar_release_lock() %{
7782  match(MemBarRelease);
7783  predicate(Matcher::post_fast_unlock(n));
7784  ins_cost(0);
7785
7786  size(0);
7787  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7788  ins_encode( );
7789  ins_pipe(empty);
7790%}
7791
7792instruct membar_volatile(eFlagsReg cr) %{
7793  match(MemBarVolatile);
7794  effect(KILL cr);
7795  ins_cost(400);
7796
7797  format %{ 
7798    $$template
7799    if (os::is_MP()) {
7800      $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7801    } else {
7802      $$emit$$"MEMBAR-volatile ! (empty encoding)"
7803    }
7804  %}
7805  ins_encode %{
7806    __ membar(Assembler::StoreLoad);
7807  %}
7808  ins_pipe(pipe_slow);
7809%}
7810
7811instruct unnecessary_membar_volatile() %{
7812  match(MemBarVolatile);
7813  predicate(Matcher::post_store_load_barrier(n));
7814  ins_cost(0);
7815
7816  size(0);
7817  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7818  ins_encode( );
7819  ins_pipe(empty);
7820%}
7821
7822//----------Move Instructions--------------------------------------------------
7823instruct castX2P(eAXRegP dst, eAXRegI src) %{
7824  match(Set dst (CastX2P src));
7825  format %{ "# X2P  $dst, $src" %}
7826  ins_encode( /*empty encoding*/ );
7827  ins_cost(0);
7828  ins_pipe(empty);
7829%}
7830
7831instruct castP2X(eRegI dst, eRegP src ) %{
7832  match(Set dst (CastP2X src));
7833  ins_cost(50);
7834  format %{ "MOV    $dst, $src\t# CastP2X" %}
7835  ins_encode( enc_Copy( dst, src) );
7836  ins_pipe( ialu_reg_reg );
7837%}
7838
7839//----------Conditional Move---------------------------------------------------
7840// Conditional move
7841instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7842  predicate(VM_Version::supports_cmov() );
7843  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7844  ins_cost(200);
7845  format %{ "CMOV$cop $dst,$src" %}
7846  opcode(0x0F,0x40);
7847  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7848  ins_pipe( pipe_cmov_reg );
7849%}
7850
7851instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7852  predicate(VM_Version::supports_cmov() );
7853  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7854  ins_cost(200);
7855  format %{ "CMOV$cop $dst,$src" %}
7856  opcode(0x0F,0x40);
7857  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7858  ins_pipe( pipe_cmov_reg );
7859%}
7860
7861instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7862  predicate(VM_Version::supports_cmov() );
7863  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7864  ins_cost(200);
7865  expand %{
7866    cmovI_regU(cop, cr, dst, src);
7867  %}
7868%}
7869
7870// Conditional move
7871instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7872  predicate(VM_Version::supports_cmov() );
7873  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7874  ins_cost(250);
7875  format %{ "CMOV$cop $dst,$src" %}
7876  opcode(0x0F,0x40);
7877  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7878  ins_pipe( pipe_cmov_mem );
7879%}
7880
7881// Conditional move
7882instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7883  predicate(VM_Version::supports_cmov() );
7884  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7885  ins_cost(250);
7886  format %{ "CMOV$cop $dst,$src" %}
7887  opcode(0x0F,0x40);
7888  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7889  ins_pipe( pipe_cmov_mem );
7890%}
7891
7892instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7893  predicate(VM_Version::supports_cmov() );
7894  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7895  ins_cost(250);
7896  expand %{
7897    cmovI_memU(cop, cr, dst, src);
7898  %}
7899%}
7900
7901// Conditional move
7902instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7903  predicate(VM_Version::supports_cmov() );
7904  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7905  ins_cost(200);
7906  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7907  opcode(0x0F,0x40);
7908  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7909  ins_pipe( pipe_cmov_reg );
7910%}
7911
7912// Conditional move (non-P6 version)
7913// Note:  a CMoveP is generated for  stubs and native wrappers
7914//        regardless of whether we are on a P6, so we
7915//        emulate a cmov here
7916instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7917  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7918  ins_cost(300);
7919  format %{ "Jn$cop   skip\n\t"
7920          "MOV    $dst,$src\t# pointer\n"
7921      "skip:" %}
7922  opcode(0x8b);
7923  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7924  ins_pipe( pipe_cmov_reg );
7925%}
7926
7927// Conditional move
7928instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7929  predicate(VM_Version::supports_cmov() );
7930  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7931  ins_cost(200);
7932  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7933  opcode(0x0F,0x40);
7934  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7935  ins_pipe( pipe_cmov_reg );
7936%}
7937
7938instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7939  predicate(VM_Version::supports_cmov() );
7940  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7941  ins_cost(200);
7942  expand %{
7943    cmovP_regU(cop, cr, dst, src);
7944  %}
7945%}
7946
7947// DISABLED: Requires the ADLC to emit a bottom_type call that
7948// correctly meets the two pointer arguments; one is an incoming
7949// register but the other is a memory operand.  ALSO appears to
7950// be buggy with implicit null checks.
7951//
7952//// Conditional move
7953//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7954//  predicate(VM_Version::supports_cmov() );
7955//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7956//  ins_cost(250);
7957//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7958//  opcode(0x0F,0x40);
7959//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7960//  ins_pipe( pipe_cmov_mem );
7961//%}
7962//
7963//// Conditional move
7964//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7965//  predicate(VM_Version::supports_cmov() );
7966//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7967//  ins_cost(250);
7968//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7969//  opcode(0x0F,0x40);
7970//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7971//  ins_pipe( pipe_cmov_mem );
7972//%}
7973
7974// Conditional move
7975instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7976  predicate(UseSSE<=1);
7977  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7978  ins_cost(200);
7979  format %{ "FCMOV$cop $dst,$src\t# double" %}
7980  opcode(0xDA);
7981  ins_encode( enc_cmov_d(cop,src) );
7982  ins_pipe( pipe_cmovD_reg );
7983%}
7984
7985// Conditional move
7986instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
7987  predicate(UseSSE==0);
7988  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7989  ins_cost(200);
7990  format %{ "FCMOV$cop $dst,$src\t# float" %}
7991  opcode(0xDA);
7992  ins_encode( enc_cmov_d(cop,src) );
7993  ins_pipe( pipe_cmovD_reg );
7994%}
7995
7996// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7997instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7998  predicate(UseSSE<=1);
7999  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8000  ins_cost(200);
8001  format %{ "Jn$cop   skip\n\t"
8002            "MOV    $dst,$src\t# double\n"
8003      "skip:" %}
8004  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8005  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
8006  ins_pipe( pipe_cmovD_reg );
8007%}
8008
8009// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8010instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
8011  predicate(UseSSE==0);
8012  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8013  ins_cost(200);
8014  format %{ "Jn$cop    skip\n\t"
8015            "MOV    $dst,$src\t# float\n"
8016      "skip:" %}
8017  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8018  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
8019  ins_pipe( pipe_cmovD_reg );
8020%}
8021
8022// No CMOVE with SSE/SSE2
8023instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
8024  predicate (UseSSE>=1);
8025  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8026  ins_cost(200);
8027  format %{ "Jn$cop   skip\n\t"
8028            "MOVSS  $dst,$src\t# float\n"
8029      "skip:" %}
8030  ins_encode %{
8031    Label skip;
8032    // Invert sense of branch from sense of CMOV
8033    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8034    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8035    __ bind(skip);
8036  %}
8037  ins_pipe( pipe_slow );
8038%}
8039
8040// No CMOVE with SSE/SSE2
8041instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
8042  predicate (UseSSE>=2);
8043  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8044  ins_cost(200);
8045  format %{ "Jn$cop   skip\n\t"
8046            "MOVSD  $dst,$src\t# float\n"
8047      "skip:" %}
8048  ins_encode %{
8049    Label skip;
8050    // Invert sense of branch from sense of CMOV
8051    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8052    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8053    __ bind(skip);
8054  %}
8055  ins_pipe( pipe_slow );
8056%}
8057
8058// unsigned version
8059instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
8060  predicate (UseSSE>=1);
8061  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8062  ins_cost(200);
8063  format %{ "Jn$cop   skip\n\t"
8064            "MOVSS  $dst,$src\t# float\n"
8065      "skip:" %}
8066  ins_encode %{
8067    Label skip;
8068    // Invert sense of branch from sense of CMOV
8069    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8070    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8071    __ bind(skip);
8072  %}
8073  ins_pipe( pipe_slow );
8074%}
8075
8076instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
8077  predicate (UseSSE>=1);
8078  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8079  ins_cost(200);
8080  expand %{
8081    fcmovX_regU(cop, cr, dst, src);
8082  %}
8083%}
8084
8085// unsigned version
8086instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
8087  predicate (UseSSE>=2);
8088  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8089  ins_cost(200);
8090  format %{ "Jn$cop   skip\n\t"
8091            "MOVSD  $dst,$src\t# float\n"
8092      "skip:" %}
8093  ins_encode %{
8094    Label skip;
8095    // Invert sense of branch from sense of CMOV
8096    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8097    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8098    __ bind(skip);
8099  %}
8100  ins_pipe( pipe_slow );
8101%}
8102
8103instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8104  predicate (UseSSE>=2);
8105  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8106  ins_cost(200);
8107  expand %{
8108    fcmovXD_regU(cop, cr, dst, src);
8109  %}
8110%}
8111
8112instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8113  predicate(VM_Version::supports_cmov() );
8114  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8115  ins_cost(200);
8116  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8117            "CMOV$cop $dst.hi,$src.hi" %}
8118  opcode(0x0F,0x40);
8119  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8120  ins_pipe( pipe_cmov_reg_long );
8121%}
8122
8123instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8124  predicate(VM_Version::supports_cmov() );
8125  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8126  ins_cost(200);
8127  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8128            "CMOV$cop $dst.hi,$src.hi" %}
8129  opcode(0x0F,0x40);
8130  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8131  ins_pipe( pipe_cmov_reg_long );
8132%}
8133
8134instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8135  predicate(VM_Version::supports_cmov() );
8136  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8137  ins_cost(200);
8138  expand %{
8139    cmovL_regU(cop, cr, dst, src);
8140  %}
8141%}
8142
8143//----------Arithmetic Instructions--------------------------------------------
8144//----------Addition Instructions----------------------------------------------
8145// Integer Addition Instructions
8146instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8147  match(Set dst (AddI dst src));
8148  effect(KILL cr);
8149
8150  size(2);
8151  format %{ "ADD    $dst,$src" %}
8152  opcode(0x03);
8153  ins_encode( OpcP, RegReg( dst, src) );
8154  ins_pipe( ialu_reg_reg );
8155%}
8156
8157instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8158  match(Set dst (AddI dst src));
8159  effect(KILL cr);
8160
8161  format %{ "ADD    $dst,$src" %}
8162  opcode(0x81, 0x00); /* /0 id */
8163  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8164  ins_pipe( ialu_reg );
8165%}
8166
8167instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8168  predicate(UseIncDec);
8169  match(Set dst (AddI dst src));
8170  effect(KILL cr);
8171
8172  size(1);
8173  format %{ "INC    $dst" %}
8174  opcode(0x40); /*  */
8175  ins_encode( Opc_plus( primary, dst ) );
8176  ins_pipe( ialu_reg );
8177%}
8178
8179instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8180  match(Set dst (AddI src0 src1));
8181  ins_cost(110);
8182
8183  format %{ "LEA    $dst,[$src0 + $src1]" %}
8184  opcode(0x8D); /* 0x8D /r */
8185  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8186  ins_pipe( ialu_reg_reg );
8187%}
8188
8189instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8190  match(Set dst (AddP src0 src1));
8191  ins_cost(110);
8192
8193  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8194  opcode(0x8D); /* 0x8D /r */
8195  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8196  ins_pipe( ialu_reg_reg );
8197%}
8198
8199instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8200  predicate(UseIncDec);
8201  match(Set dst (AddI dst src));
8202  effect(KILL cr);
8203
8204  size(1);
8205  format %{ "DEC    $dst" %}
8206  opcode(0x48); /*  */
8207  ins_encode( Opc_plus( primary, dst ) );
8208  ins_pipe( ialu_reg );
8209%}
8210
8211instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8212  match(Set dst (AddP dst src));
8213  effect(KILL cr);
8214
8215  size(2);
8216  format %{ "ADD    $dst,$src" %}
8217  opcode(0x03);
8218  ins_encode( OpcP, RegReg( dst, src) );
8219  ins_pipe( ialu_reg_reg );
8220%}
8221
8222instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8223  match(Set dst (AddP dst src));
8224  effect(KILL cr);
8225
8226  format %{ "ADD    $dst,$src" %}
8227  opcode(0x81,0x00); /* Opcode 81 /0 id */
8228  // ins_encode( RegImm( dst, src) );
8229  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8230  ins_pipe( ialu_reg );
8231%}
8232
8233instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8234  match(Set dst (AddI dst (LoadI src)));
8235  effect(KILL cr);
8236
8237  ins_cost(125);
8238  format %{ "ADD    $dst,$src" %}
8239  opcode(0x03);
8240  ins_encode( OpcP, RegMem( dst, src) );
8241  ins_pipe( ialu_reg_mem );
8242%}
8243
8244instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8245  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8246  effect(KILL cr);
8247
8248  ins_cost(150);
8249  format %{ "ADD    $dst,$src" %}
8250  opcode(0x01);  /* Opcode 01 /r */
8251  ins_encode( OpcP, RegMem( src, dst ) );
8252  ins_pipe( ialu_mem_reg );
8253%}
8254
8255// Add Memory with Immediate
8256instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8257  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8258  effect(KILL cr);
8259
8260  ins_cost(125);
8261  format %{ "ADD    $dst,$src" %}
8262  opcode(0x81);               /* Opcode 81 /0 id */
8263  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8264  ins_pipe( ialu_mem_imm );
8265%}
8266
8267instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8268  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8269  effect(KILL cr);
8270
8271  ins_cost(125);
8272  format %{ "INC    $dst" %}
8273  opcode(0xFF);               /* Opcode FF /0 */
8274  ins_encode( OpcP, RMopc_Mem(0x00,dst));
8275  ins_pipe( ialu_mem_imm );
8276%}
8277
8278instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8279  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8280  effect(KILL cr);
8281
8282  ins_cost(125);
8283  format %{ "DEC    $dst" %}
8284  opcode(0xFF);               /* Opcode FF /1 */
8285  ins_encode( OpcP, RMopc_Mem(0x01,dst));
8286  ins_pipe( ialu_mem_imm );
8287%}
8288
8289
8290instruct checkCastPP( eRegP dst ) %{
8291  match(Set dst (CheckCastPP dst));
8292
8293  size(0);
8294  format %{ "#checkcastPP of $dst" %}
8295  ins_encode( /*empty encoding*/ );
8296  ins_pipe( empty );
8297%}
8298
8299instruct castPP( eRegP dst ) %{
8300  match(Set dst (CastPP dst));
8301  format %{ "#castPP of $dst" %}
8302  ins_encode( /*empty encoding*/ );
8303  ins_pipe( empty );
8304%}
8305
8306instruct castII( eRegI dst ) %{
8307  match(Set dst (CastII dst));
8308  format %{ "#castII of $dst" %}
8309  ins_encode( /*empty encoding*/ );
8310  ins_cost(0);
8311  ins_pipe( empty );
8312%}
8313
8314
8315// Load-locked - same as a regular pointer load when used with compare-swap
8316instruct loadPLocked(eRegP dst, memory mem) %{
8317  match(Set dst (LoadPLocked mem));
8318
8319  ins_cost(125);
8320  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8321  opcode(0x8B);
8322  ins_encode( OpcP, RegMem(dst,mem));
8323  ins_pipe( ialu_reg_mem );
8324%}
8325
8326// LoadLong-locked - same as a volatile long load when used with compare-swap
8327instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8328  predicate(UseSSE<=1);
8329  match(Set dst (LoadLLocked mem));
8330
8331  ins_cost(200);
8332  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8333            "FISTp  $dst" %}
8334  ins_encode(enc_loadL_volatile(mem,dst));
8335  ins_pipe( fpu_reg_mem );
8336%}
8337
8338instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8339  predicate(UseSSE>=2);
8340  match(Set dst (LoadLLocked mem));
8341  effect(TEMP tmp);
8342  ins_cost(180);
8343  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8344            "MOVSD  $dst,$tmp" %}
8345  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8346  ins_pipe( pipe_slow );
8347%}
8348
8349instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8350  predicate(UseSSE>=2);
8351  match(Set dst (LoadLLocked mem));
8352  effect(TEMP tmp);
8353  ins_cost(160);
8354  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8355            "MOVD   $dst.lo,$tmp\n\t"
8356            "PSRLQ  $tmp,32\n\t"
8357            "MOVD   $dst.hi,$tmp" %}
8358  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8359  ins_pipe( pipe_slow );
8360%}
8361
8362// Conditional-store of the updated heap-top.
8363// Used during allocation of the shared heap.
8364// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8365instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8366  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8367  // EAX is killed if there is contention, but then it's also unused.
8368  // In the common case of no contention, EAX holds the new oop address.
8369  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8370  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8371  ins_pipe( pipe_cmpxchg );
8372%}
8373
8374// Conditional-store of an int value.
8375// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8376instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8377  match(Set cr (StoreIConditional mem (Binary oldval newval)));
8378  effect(KILL oldval);
8379  format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8380  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8381  ins_pipe( pipe_cmpxchg );
8382%}
8383
8384// Conditional-store of a long value.
8385// ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8386instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8387  match(Set cr (StoreLConditional mem (Binary oldval newval)));
8388  effect(KILL oldval);
8389  format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8390            "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8391            "XCHG   EBX,ECX"
8392  %}
8393  ins_encode %{
8394    // Note: we need to swap rbx, and rcx before and after the
8395    //       cmpxchg8 instruction because the instruction uses
8396    //       rcx as the high order word of the new value to store but
8397    //       our register encoding uses rbx.
8398    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8399    if( os::is_MP() )
8400      __ lock();
8401    __ cmpxchg8($mem$$Address);
8402    __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8403  %}
8404  ins_pipe( pipe_cmpxchg );
8405%}
8406
8407// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8408
8409instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8410  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8411  effect(KILL cr, KILL oldval);
8412  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8413            "MOV    $res,0\n\t"
8414            "JNE,s  fail\n\t"
8415            "MOV    $res,1\n"
8416          "fail:" %}
8417  ins_encode( enc_cmpxchg8(mem_ptr),
8418              enc_flags_ne_to_boolean(res) );
8419  ins_pipe( pipe_cmpxchg );
8420%}
8421
8422instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8423  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8424  effect(KILL cr, KILL oldval);
8425  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8426            "MOV    $res,0\n\t"
8427            "JNE,s  fail\n\t"
8428            "MOV    $res,1\n"
8429          "fail:" %}
8430  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8431  ins_pipe( pipe_cmpxchg );
8432%}
8433
8434instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8435  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8436  effect(KILL cr, KILL oldval);
8437  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8438            "MOV    $res,0\n\t"
8439            "JNE,s  fail\n\t"
8440            "MOV    $res,1\n"
8441          "fail:" %}
8442  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8443  ins_pipe( pipe_cmpxchg );
8444%}
8445
8446//----------Subtraction Instructions-------------------------------------------
8447// Integer Subtraction Instructions
8448instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8449  match(Set dst (SubI dst src));
8450  effect(KILL cr);
8451
8452  size(2);
8453  format %{ "SUB    $dst,$src" %}
8454  opcode(0x2B);
8455  ins_encode( OpcP, RegReg( dst, src) );
8456  ins_pipe( ialu_reg_reg );
8457%}
8458
8459instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8460  match(Set dst (SubI dst src));
8461  effect(KILL cr);
8462
8463  format %{ "SUB    $dst,$src" %}
8464  opcode(0x81,0x05);  /* Opcode 81 /5 */
8465  // ins_encode( RegImm( dst, src) );
8466  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8467  ins_pipe( ialu_reg );
8468%}
8469
8470instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8471  match(Set dst (SubI dst (LoadI src)));
8472  effect(KILL cr);
8473
8474  ins_cost(125);
8475  format %{ "SUB    $dst,$src" %}
8476  opcode(0x2B);
8477  ins_encode( OpcP, RegMem( dst, src) );
8478  ins_pipe( ialu_reg_mem );
8479%}
8480
8481instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8482  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8483  effect(KILL cr);
8484
8485  ins_cost(150);
8486  format %{ "SUB    $dst,$src" %}
8487  opcode(0x29);  /* Opcode 29 /r */
8488  ins_encode( OpcP, RegMem( src, dst ) );
8489  ins_pipe( ialu_mem_reg );
8490%}
8491
8492// Subtract from a pointer
8493instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8494  match(Set dst (AddP dst (SubI zero src)));
8495  effect(KILL cr);
8496
8497  size(2);
8498  format %{ "SUB    $dst,$src" %}
8499  opcode(0x2B);
8500  ins_encode( OpcP, RegReg( dst, src) );
8501  ins_pipe( ialu_reg_reg );
8502%}
8503
8504instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8505  match(Set dst (SubI zero dst));
8506  effect(KILL cr);
8507
8508  size(2);
8509  format %{ "NEG    $dst" %}
8510  opcode(0xF7,0x03);  // Opcode F7 /3
8511  ins_encode( OpcP, RegOpc( dst ) );
8512  ins_pipe( ialu_reg );
8513%}
8514
8515
8516//----------Multiplication/Division Instructions-------------------------------
8517// Integer Multiplication Instructions
8518// Multiply Register
8519instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8520  match(Set dst (MulI dst src));
8521  effect(KILL cr);
8522
8523  size(3);
8524  ins_cost(300);
8525  format %{ "IMUL   $dst,$src" %}
8526  opcode(0xAF, 0x0F);
8527  ins_encode( OpcS, OpcP, RegReg( dst, src) );
8528  ins_pipe( ialu_reg_reg_alu0 );
8529%}
8530
8531// Multiply 32-bit Immediate
8532instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8533  match(Set dst (MulI src imm));
8534  effect(KILL cr);
8535
8536  ins_cost(300);
8537  format %{ "IMUL   $dst,$src,$imm" %}
8538  opcode(0x69);  /* 69 /r id */
8539  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8540  ins_pipe( ialu_reg_reg_alu0 );
8541%}
8542
8543instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8544  match(Set dst src);
8545  effect(KILL cr);
8546
8547  // Note that this is artificially increased to make it more expensive than loadConL
8548  ins_cost(250);
8549  format %{ "MOV    EAX,$src\t// low word only" %}
8550  opcode(0xB8);
8551  ins_encode( LdImmL_Lo(dst, src) );
8552  ins_pipe( ialu_reg_fat );
8553%}
8554
8555// Multiply by 32-bit Immediate, taking the shifted high order results
8556//  (special case for shift by 32)
8557instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8558  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8559  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8560             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8561             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8562  effect(USE src1, KILL cr);
8563
8564  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8565  ins_cost(0*100 + 1*400 - 150);
8566  format %{ "IMUL   EDX:EAX,$src1" %}
8567  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8568  ins_pipe( pipe_slow );
8569%}
8570
8571// Multiply by 32-bit Immediate, taking the shifted high order results
8572instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8573  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8574  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8575             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8576             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8577  effect(USE src1, KILL cr);
8578
8579  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8580  ins_cost(1*100 + 1*400 - 150);
8581  format %{ "IMUL   EDX:EAX,$src1\n\t"
8582            "SAR    EDX,$cnt-32" %}
8583  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8584  ins_pipe( pipe_slow );
8585%}
8586
8587// Multiply Memory 32-bit Immediate
8588instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8589  match(Set dst (MulI (LoadI src) imm));
8590  effect(KILL cr);
8591
8592  ins_cost(300);
8593  format %{ "IMUL   $dst,$src,$imm" %}
8594  opcode(0x69);  /* 69 /r id */
8595  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8596  ins_pipe( ialu_reg_mem_alu0 );
8597%}
8598
8599// Multiply Memory
8600instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8601  match(Set dst (MulI dst (LoadI src)));
8602  effect(KILL cr);
8603
8604  ins_cost(350);
8605  format %{ "IMUL   $dst,$src" %}
8606  opcode(0xAF, 0x0F);
8607  ins_encode( OpcS, OpcP, RegMem( dst, src) );
8608  ins_pipe( ialu_reg_mem_alu0 );
8609%}
8610
8611// Multiply Register Int to Long
8612instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8613  // Basic Idea: long = (long)int * (long)int
8614  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8615  effect(DEF dst, USE src, USE src1, KILL flags);
8616
8617  ins_cost(300);
8618  format %{ "IMUL   $dst,$src1" %}
8619
8620  ins_encode( long_int_multiply( dst, src1 ) );
8621  ins_pipe( ialu_reg_reg_alu0 );
8622%}
8623
8624instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8625  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8626  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8627  effect(KILL flags);
8628
8629  ins_cost(300);
8630  format %{ "MUL    $dst,$src1" %}
8631
8632  ins_encode( long_uint_multiply(dst, src1) );
8633  ins_pipe( ialu_reg_reg_alu0 );
8634%}
8635
8636// Multiply Register Long
8637instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8638  match(Set dst (MulL dst src));
8639  effect(KILL cr, TEMP tmp);
8640  ins_cost(4*100+3*400);
8641// Basic idea: lo(result) = lo(x_lo * y_lo)
8642//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8643  format %{ "MOV    $tmp,$src.lo\n\t"
8644            "IMUL   $tmp,EDX\n\t"
8645            "MOV    EDX,$src.hi\n\t"
8646            "IMUL   EDX,EAX\n\t"
8647            "ADD    $tmp,EDX\n\t"
8648            "MUL    EDX:EAX,$src.lo\n\t"
8649            "ADD    EDX,$tmp" %}
8650  ins_encode( long_multiply( dst, src, tmp ) );
8651  ins_pipe( pipe_slow );
8652%}
8653
8654// Multiply Register Long where the left operand's high 32 bits are zero
8655instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8656  predicate(is_operand_hi32_zero(n->in(1)));
8657  match(Set dst (MulL dst src));
8658  effect(KILL cr, TEMP tmp);
8659  ins_cost(2*100+2*400);
8660// Basic idea: lo(result) = lo(x_lo * y_lo)
8661//             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8662  format %{ "MOV    $tmp,$src.hi\n\t"
8663            "IMUL   $tmp,EAX\n\t"
8664            "MUL    EDX:EAX,$src.lo\n\t"
8665            "ADD    EDX,$tmp" %}
8666  ins_encode %{
8667    __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8668    __ imull($tmp$$Register, rax);
8669    __ mull($src$$Register);
8670    __ addl(rdx, $tmp$$Register);
8671  %}
8672  ins_pipe( pipe_slow );
8673%}
8674
8675// Multiply Register Long where the right operand's high 32 bits are zero
8676instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8677  predicate(is_operand_hi32_zero(n->in(2)));
8678  match(Set dst (MulL dst src));
8679  effect(KILL cr, TEMP tmp);
8680  ins_cost(2*100+2*400);
8681// Basic idea: lo(result) = lo(x_lo * y_lo)
8682//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8683  format %{ "MOV    $tmp,$src.lo\n\t"
8684            "IMUL   $tmp,EDX\n\t"
8685            "MUL    EDX:EAX,$src.lo\n\t"
8686            "ADD    EDX,$tmp" %}
8687  ins_encode %{
8688    __ movl($tmp$$Register, $src$$Register);
8689    __ imull($tmp$$Register, rdx);
8690    __ mull($src$$Register);
8691    __ addl(rdx, $tmp$$Register);
8692  %}
8693  ins_pipe( pipe_slow );
8694%}
8695
8696// Multiply Register Long where the left and the right operands' high 32 bits are zero
8697instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8698  predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8699  match(Set dst (MulL dst src));
8700  effect(KILL cr);
8701  ins_cost(1*400);
8702// Basic idea: lo(result) = lo(x_lo * y_lo)
8703//             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8704  format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8705  ins_encode %{
8706    __ mull($src$$Register);
8707  %}
8708  ins_pipe( pipe_slow );
8709%}
8710
8711// Multiply Register Long by small constant
8712instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8713  match(Set dst (MulL dst src));
8714  effect(KILL cr, TEMP tmp);
8715  ins_cost(2*100+2*400);
8716  size(12);
8717// Basic idea: lo(result) = lo(src * EAX)
8718//             hi(result) = hi(src * EAX) + lo(src * EDX)
8719  format %{ "IMUL   $tmp,EDX,$src\n\t"
8720            "MOV    EDX,$src\n\t"
8721            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8722            "ADD    EDX,$tmp" %}
8723  ins_encode( long_multiply_con( dst, src, tmp ) );
8724  ins_pipe( pipe_slow );
8725%}
8726
8727// Integer DIV with Register
8728instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8729  match(Set rax (DivI rax div));
8730  effect(KILL rdx, KILL cr);
8731  size(26);
8732  ins_cost(30*100+10*100);
8733  format %{ "CMP    EAX,0x80000000\n\t"
8734            "JNE,s  normal\n\t"
8735            "XOR    EDX,EDX\n\t"
8736            "CMP    ECX,-1\n\t"
8737            "JE,s   done\n"
8738    "normal: CDQ\n\t"
8739            "IDIV   $div\n\t"
8740    "done:"        %}
8741  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8742  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8743  ins_pipe( ialu_reg_reg_alu0 );
8744%}
8745
8746// Divide Register Long
8747instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8748  match(Set dst (DivL src1 src2));
8749  effect( KILL cr, KILL cx, KILL bx );
8750  ins_cost(10000);
8751  format %{ "PUSH   $src1.hi\n\t"
8752            "PUSH   $src1.lo\n\t"
8753            "PUSH   $src2.hi\n\t"
8754            "PUSH   $src2.lo\n\t"
8755            "CALL   SharedRuntime::ldiv\n\t"
8756            "ADD    ESP,16" %}
8757  ins_encode( long_div(src1,src2) );
8758  ins_pipe( pipe_slow );
8759%}
8760
8761// Integer DIVMOD with Register, both quotient and mod results
8762instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8763  match(DivModI rax div);
8764  effect(KILL cr);
8765  size(26);
8766  ins_cost(30*100+10*100);
8767  format %{ "CMP    EAX,0x80000000\n\t"
8768            "JNE,s  normal\n\t"
8769            "XOR    EDX,EDX\n\t"
8770            "CMP    ECX,-1\n\t"
8771            "JE,s   done\n"
8772    "normal: CDQ\n\t"
8773            "IDIV   $div\n\t"
8774    "done:"        %}
8775  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8776  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8777  ins_pipe( pipe_slow );
8778%}
8779
8780// Integer MOD with Register
8781instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8782  match(Set rdx (ModI rax div));
8783  effect(KILL rax, KILL cr);
8784
8785  size(26);
8786  ins_cost(300);
8787  format %{ "CDQ\n\t"
8788            "IDIV   $div" %}
8789  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8790  ins_encode( cdq_enc, OpcP, RegOpc(div) );
8791  ins_pipe( ialu_reg_reg_alu0 );
8792%}
8793
8794// Remainder Register Long
8795instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8796  match(Set dst (ModL src1 src2));
8797  effect( KILL cr, KILL cx, KILL bx );
8798  ins_cost(10000);
8799  format %{ "PUSH   $src1.hi\n\t"
8800            "PUSH   $src1.lo\n\t"
8801            "PUSH   $src2.hi\n\t"
8802            "PUSH   $src2.lo\n\t"
8803            "CALL   SharedRuntime::lrem\n\t"
8804            "ADD    ESP,16" %}
8805  ins_encode( long_mod(src1,src2) );
8806  ins_pipe( pipe_slow );
8807%}
8808
8809// Integer Shift Instructions
8810// Shift Left by one
8811instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8812  match(Set dst (LShiftI dst shift));
8813  effect(KILL cr);
8814
8815  size(2);
8816  format %{ "SHL    $dst,$shift" %}
8817  opcode(0xD1, 0x4);  /* D1 /4 */
8818  ins_encode( OpcP, RegOpc( dst ) );
8819  ins_pipe( ialu_reg );
8820%}
8821
8822// Shift Left by 8-bit immediate
8823instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8824  match(Set dst (LShiftI dst shift));
8825  effect(KILL cr);
8826
8827  size(3);
8828  format %{ "SHL    $dst,$shift" %}
8829  opcode(0xC1, 0x4);  /* C1 /4 ib */
8830  ins_encode( RegOpcImm( dst, shift) );
8831  ins_pipe( ialu_reg );
8832%}
8833
8834// Shift Left by variable
8835instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8836  match(Set dst (LShiftI dst shift));
8837  effect(KILL cr);
8838
8839  size(2);
8840  format %{ "SHL    $dst,$shift" %}
8841  opcode(0xD3, 0x4);  /* D3 /4 */
8842  ins_encode( OpcP, RegOpc( dst ) );
8843  ins_pipe( ialu_reg_reg );
8844%}
8845
8846// Arithmetic shift right by one
8847instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8848  match(Set dst (RShiftI dst shift));
8849  effect(KILL cr);
8850
8851  size(2);
8852  format %{ "SAR    $dst,$shift" %}
8853  opcode(0xD1, 0x7);  /* D1 /7 */
8854  ins_encode( OpcP, RegOpc( dst ) );
8855  ins_pipe( ialu_reg );
8856%}
8857
8858// Arithmetic shift right by one
8859instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8860  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8861  effect(KILL cr);
8862  format %{ "SAR    $dst,$shift" %}
8863  opcode(0xD1, 0x7);  /* D1 /7 */
8864  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8865  ins_pipe( ialu_mem_imm );
8866%}
8867
8868// Arithmetic Shift Right by 8-bit immediate
8869instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8870  match(Set dst (RShiftI dst shift));
8871  effect(KILL cr);
8872
8873  size(3);
8874  format %{ "SAR    $dst,$shift" %}
8875  opcode(0xC1, 0x7);  /* C1 /7 ib */
8876  ins_encode( RegOpcImm( dst, shift ) );
8877  ins_pipe( ialu_mem_imm );
8878%}
8879
8880// Arithmetic Shift Right by 8-bit immediate
8881instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8882  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8883  effect(KILL cr);
8884
8885  format %{ "SAR    $dst,$shift" %}
8886  opcode(0xC1, 0x7);  /* C1 /7 ib */
8887  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8888  ins_pipe( ialu_mem_imm );
8889%}
8890
8891// Arithmetic Shift Right by variable
8892instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8893  match(Set dst (RShiftI dst shift));
8894  effect(KILL cr);
8895
8896  size(2);
8897  format %{ "SAR    $dst,$shift" %}
8898  opcode(0xD3, 0x7);  /* D3 /7 */
8899  ins_encode( OpcP, RegOpc( dst ) );
8900  ins_pipe( ialu_reg_reg );
8901%}
8902
8903// Logical shift right by one
8904instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8905  match(Set dst (URShiftI dst shift));
8906  effect(KILL cr);
8907
8908  size(2);
8909  format %{ "SHR    $dst,$shift" %}
8910  opcode(0xD1, 0x5);  /* D1 /5 */
8911  ins_encode( OpcP, RegOpc( dst ) );
8912  ins_pipe( ialu_reg );
8913%}
8914
8915// Logical Shift Right by 8-bit immediate
8916instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8917  match(Set dst (URShiftI dst shift));
8918  effect(KILL cr);
8919
8920  size(3);
8921  format %{ "SHR    $dst,$shift" %}
8922  opcode(0xC1, 0x5);  /* C1 /5 ib */
8923  ins_encode( RegOpcImm( dst, shift) );
8924  ins_pipe( ialu_reg );
8925%}
8926
8927
8928// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8929// This idiom is used by the compiler for the i2b bytecode.
8930instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
8931  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8932
8933  size(3);
8934  format %{ "MOVSX  $dst,$src :8" %}
8935  ins_encode %{
8936    __ movsbl($dst$$Register, $src$$Register);
8937  %}
8938  ins_pipe(ialu_reg_reg);
8939%}
8940
8941// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8942// This idiom is used by the compiler the i2s bytecode.
8943instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
8944  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8945
8946  size(3);
8947  format %{ "MOVSX  $dst,$src :16" %}
8948  ins_encode %{
8949    __ movswl($dst$$Register, $src$$Register);
8950  %}
8951  ins_pipe(ialu_reg_reg);
8952%}
8953
8954
8955// Logical Shift Right by variable
8956instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8957  match(Set dst (URShiftI dst shift));
8958  effect(KILL cr);
8959
8960  size(2);
8961  format %{ "SHR    $dst,$shift" %}
8962  opcode(0xD3, 0x5);  /* D3 /5 */
8963  ins_encode( OpcP, RegOpc( dst ) );
8964  ins_pipe( ialu_reg_reg );
8965%}
8966
8967
8968//----------Logical Instructions-----------------------------------------------
8969//----------Integer Logical Instructions---------------------------------------
8970// And Instructions
8971// And Register with Register
8972instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8973  match(Set dst (AndI dst src));
8974  effect(KILL cr);
8975
8976  size(2);
8977  format %{ "AND    $dst,$src" %}
8978  opcode(0x23);
8979  ins_encode( OpcP, RegReg( dst, src) );
8980  ins_pipe( ialu_reg_reg );
8981%}
8982
8983// And Register with Immediate
8984instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8985  match(Set dst (AndI dst src));
8986  effect(KILL cr);
8987
8988  format %{ "AND    $dst,$src" %}
8989  opcode(0x81,0x04);  /* Opcode 81 /4 */
8990  // ins_encode( RegImm( dst, src) );
8991  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8992  ins_pipe( ialu_reg );
8993%}
8994
8995// And Register with Memory
8996instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8997  match(Set dst (AndI dst (LoadI src)));
8998  effect(KILL cr);
8999
9000  ins_cost(125);
9001  format %{ "AND    $dst,$src" %}
9002  opcode(0x23);
9003  ins_encode( OpcP, RegMem( dst, src) );
9004  ins_pipe( ialu_reg_mem );
9005%}
9006
9007// And Memory with Register
9008instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9009  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9010  effect(KILL cr);
9011
9012  ins_cost(150);
9013  format %{ "AND    $dst,$src" %}
9014  opcode(0x21);  /* Opcode 21 /r */
9015  ins_encode( OpcP, RegMem( src, dst ) );
9016  ins_pipe( ialu_mem_reg );
9017%}
9018
9019// And Memory with Immediate
9020instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9021  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9022  effect(KILL cr);
9023
9024  ins_cost(125);
9025  format %{ "AND    $dst,$src" %}
9026  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
9027  // ins_encode( MemImm( dst, src) );
9028  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9029  ins_pipe( ialu_mem_imm );
9030%}
9031
9032// Or Instructions
9033// Or Register with Register
9034instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9035  match(Set dst (OrI dst src));
9036  effect(KILL cr);
9037
9038  size(2);
9039  format %{ "OR     $dst,$src" %}
9040  opcode(0x0B);
9041  ins_encode( OpcP, RegReg( dst, src) );
9042  ins_pipe( ialu_reg_reg );
9043%}
9044
9045instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
9046  match(Set dst (OrI dst (CastP2X src)));
9047  effect(KILL cr);
9048
9049  size(2);
9050  format %{ "OR     $dst,$src" %}
9051  opcode(0x0B);
9052  ins_encode( OpcP, RegReg( dst, src) );
9053  ins_pipe( ialu_reg_reg );
9054%}
9055
9056
9057// Or Register with Immediate
9058instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9059  match(Set dst (OrI dst src));
9060  effect(KILL cr);
9061
9062  format %{ "OR     $dst,$src" %}
9063  opcode(0x81,0x01);  /* Opcode 81 /1 id */
9064  // ins_encode( RegImm( dst, src) );
9065  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9066  ins_pipe( ialu_reg );
9067%}
9068
9069// Or Register with Memory
9070instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9071  match(Set dst (OrI dst (LoadI src)));
9072  effect(KILL cr);
9073
9074  ins_cost(125);
9075  format %{ "OR     $dst,$src" %}
9076  opcode(0x0B);
9077  ins_encode( OpcP, RegMem( dst, src) );
9078  ins_pipe( ialu_reg_mem );
9079%}
9080
9081// Or Memory with Register
9082instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9083  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9084  effect(KILL cr);
9085
9086  ins_cost(150);
9087  format %{ "OR     $dst,$src" %}
9088  opcode(0x09);  /* Opcode 09 /r */
9089  ins_encode( OpcP, RegMem( src, dst ) );
9090  ins_pipe( ialu_mem_reg );
9091%}
9092
9093// Or Memory with Immediate
9094instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9095  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9096  effect(KILL cr);
9097
9098  ins_cost(125);
9099  format %{ "OR     $dst,$src" %}
9100  opcode(0x81,0x1);  /* Opcode 81 /1 id */
9101  // ins_encode( MemImm( dst, src) );
9102  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9103  ins_pipe( ialu_mem_imm );
9104%}
9105
9106// ROL/ROR
9107// ROL expand
9108instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9109  effect(USE_DEF dst, USE shift, KILL cr);
9110
9111  format %{ "ROL    $dst, $shift" %}
9112  opcode(0xD1, 0x0); /* Opcode D1 /0 */
9113  ins_encode( OpcP, RegOpc( dst ));
9114  ins_pipe( ialu_reg );
9115%}
9116
9117instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9118  effect(USE_DEF dst, USE shift, KILL cr);
9119
9120  format %{ "ROL    $dst, $shift" %}
9121  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
9122  ins_encode( RegOpcImm(dst, shift) );
9123  ins_pipe(ialu_reg);
9124%}
9125
9126instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
9127  effect(USE_DEF dst, USE shift, KILL cr);
9128
9129  format %{ "ROL    $dst, $shift" %}
9130  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
9131  ins_encode(OpcP, RegOpc(dst));
9132  ins_pipe( ialu_reg_reg );
9133%}
9134// end of ROL expand
9135
9136// ROL 32bit by one once
9137instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
9138  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9139
9140  expand %{
9141    rolI_eReg_imm1(dst, lshift, cr);
9142  %}
9143%}
9144
9145// ROL 32bit var by imm8 once
9146instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
9147  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9148  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9149
9150  expand %{
9151    rolI_eReg_imm8(dst, lshift, cr);
9152  %}
9153%}
9154
9155// ROL 32bit var by var once
9156instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9157  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9158
9159  expand %{
9160    rolI_eReg_CL(dst, shift, cr);
9161  %}
9162%}
9163
9164// ROL 32bit var by var once
9165instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9166  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9167
9168  expand %{
9169    rolI_eReg_CL(dst, shift, cr);
9170  %}
9171%}
9172
9173// ROR expand
9174instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9175  effect(USE_DEF dst, USE shift, KILL cr);
9176
9177  format %{ "ROR    $dst, $shift" %}
9178  opcode(0xD1,0x1);  /* Opcode D1 /1 */
9179  ins_encode( OpcP, RegOpc( dst ) );
9180  ins_pipe( ialu_reg );
9181%}
9182
9183instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9184  effect (USE_DEF dst, USE shift, KILL cr);
9185
9186  format %{ "ROR    $dst, $shift" %}
9187  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9188  ins_encode( RegOpcImm(dst, shift) );
9189  ins_pipe( ialu_reg );
9190%}
9191
9192instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9193  effect(USE_DEF dst, USE shift, KILL cr);
9194
9195  format %{ "ROR    $dst, $shift" %}
9196  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9197  ins_encode(OpcP, RegOpc(dst));
9198  ins_pipe( ialu_reg_reg );
9199%}
9200// end of ROR expand
9201
9202// ROR right once
9203instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9204  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9205
9206  expand %{
9207    rorI_eReg_imm1(dst, rshift, cr);
9208  %}
9209%}
9210
9211// ROR 32bit by immI8 once
9212instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9213  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9214  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9215
9216  expand %{
9217    rorI_eReg_imm8(dst, rshift, cr);
9218  %}
9219%}
9220
9221// ROR 32bit var by var once
9222instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9223  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9224
9225  expand %{
9226    rorI_eReg_CL(dst, shift, cr);
9227  %}
9228%}
9229
9230// ROR 32bit var by var once
9231instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9232  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9233
9234  expand %{
9235    rorI_eReg_CL(dst, shift, cr);
9236  %}
9237%}
9238
9239// Xor Instructions
9240// Xor Register with Register
9241instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9242  match(Set dst (XorI dst src));
9243  effect(KILL cr);
9244
9245  size(2);
9246  format %{ "XOR    $dst,$src" %}
9247  opcode(0x33);
9248  ins_encode( OpcP, RegReg( dst, src) );
9249  ins_pipe( ialu_reg_reg );
9250%}
9251
9252// Xor Register with Immediate -1
9253instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9254  match(Set dst (XorI dst imm));  
9255
9256  size(2);
9257  format %{ "NOT    $dst" %}  
9258  ins_encode %{
9259     __ notl($dst$$Register);
9260  %}
9261  ins_pipe( ialu_reg );
9262%}
9263
9264// Xor Register with Immediate
9265instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9266  match(Set dst (XorI dst src));
9267  effect(KILL cr);
9268
9269  format %{ "XOR    $dst,$src" %}
9270  opcode(0x81,0x06);  /* Opcode 81 /6 id */
9271  // ins_encode( RegImm( dst, src) );
9272  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9273  ins_pipe( ialu_reg );
9274%}
9275
9276// Xor Register with Memory
9277instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9278  match(Set dst (XorI dst (LoadI src)));
9279  effect(KILL cr);
9280
9281  ins_cost(125);
9282  format %{ "XOR    $dst,$src" %}
9283  opcode(0x33);
9284  ins_encode( OpcP, RegMem(dst, src) );
9285  ins_pipe( ialu_reg_mem );
9286%}
9287
9288// Xor Memory with Register
9289instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9290  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9291  effect(KILL cr);
9292
9293  ins_cost(150);
9294  format %{ "XOR    $dst,$src" %}
9295  opcode(0x31);  /* Opcode 31 /r */
9296  ins_encode( OpcP, RegMem( src, dst ) );
9297  ins_pipe( ialu_mem_reg );
9298%}
9299
9300// Xor Memory with Immediate
9301instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9302  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9303  effect(KILL cr);
9304
9305  ins_cost(125);
9306  format %{ "XOR    $dst,$src" %}
9307  opcode(0x81,0x6);  /* Opcode 81 /6 id */
9308  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9309  ins_pipe( ialu_mem_imm );
9310%}
9311
9312//----------Convert Int to Boolean---------------------------------------------
9313
9314instruct movI_nocopy(eRegI dst, eRegI src) %{
9315  effect( DEF dst, USE src );
9316  format %{ "MOV    $dst,$src" %}
9317  ins_encode( enc_Copy( dst, src) );
9318  ins_pipe( ialu_reg_reg );
9319%}
9320
9321instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9322  effect( USE_DEF dst, USE src, KILL cr );
9323
9324  size(4);
9325  format %{ "NEG    $dst\n\t"
9326            "ADC    $dst,$src" %}
9327  ins_encode( neg_reg(dst),
9328              OpcRegReg(0x13,dst,src) );
9329  ins_pipe( ialu_reg_reg_long );
9330%}
9331
9332instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9333  match(Set dst (Conv2B src));
9334
9335  expand %{
9336    movI_nocopy(dst,src);
9337    ci2b(dst,src,cr);
9338  %}
9339%}
9340
9341instruct movP_nocopy(eRegI dst, eRegP src) %{
9342  effect( DEF dst, USE src );
9343  format %{ "MOV    $dst,$src" %}
9344  ins_encode( enc_Copy( dst, src) );
9345  ins_pipe( ialu_reg_reg );
9346%}
9347
9348instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9349  effect( USE_DEF dst, USE src, KILL cr );
9350  format %{ "NEG    $dst\n\t"
9351            "ADC    $dst,$src" %}
9352  ins_encode( neg_reg(dst),
9353              OpcRegReg(0x13,dst,src) );
9354  ins_pipe( ialu_reg_reg_long );
9355%}
9356
9357instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9358  match(Set dst (Conv2B src));
9359
9360  expand %{
9361    movP_nocopy(dst,src);
9362    cp2b(dst,src,cr);
9363  %}
9364%}
9365
9366instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9367  match(Set dst (CmpLTMask p q));
9368  effect( KILL cr );
9369  ins_cost(400);
9370
9371  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9372  format %{ "XOR    $dst,$dst\n\t"
9373            "CMP    $p,$q\n\t"
9374            "SETlt  $dst\n\t"
9375            "NEG    $dst" %}
9376  ins_encode( OpcRegReg(0x33,dst,dst),
9377              OpcRegReg(0x3B,p,q),
9378              setLT_reg(dst), neg_reg(dst) );
9379  ins_pipe( pipe_slow );
9380%}
9381
9382instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9383  match(Set dst (CmpLTMask dst zero));
9384  effect( DEF dst, KILL cr );
9385  ins_cost(100);
9386
9387  format %{ "SAR    $dst,31" %}
9388  opcode(0xC1, 0x7);  /* C1 /7 ib */
9389  ins_encode( RegOpcImm( dst, 0x1F ) );
9390  ins_pipe( ialu_reg );
9391%}
9392
9393
9394instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9395  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9396  effect( KILL tmp, KILL cr );
9397  ins_cost(400);
9398  // annoyingly, $tmp has no edges so you cant ask for it in
9399  // any format or encoding
9400  format %{ "SUB    $p,$q\n\t"
9401            "SBB    ECX,ECX\n\t"
9402            "AND    ECX,$y\n\t"
9403            "ADD    $p,ECX" %}
9404  ins_encode( enc_cmpLTP(p,q,y,tmp) );
9405  ins_pipe( pipe_cmplt );
9406%}
9407
9408/* If I enable this, I encourage spilling in the inner loop of compress.
9409instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9410  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9411  effect( USE_KILL tmp, KILL cr );
9412  ins_cost(400);
9413
9414  format %{ "SUB    $p,$q\n\t"
9415            "SBB    ECX,ECX\n\t"
9416            "AND    ECX,$y\n\t"
9417            "ADD    $p,ECX" %}
9418  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9419%}
9420*/
9421
9422//----------Long Instructions------------------------------------------------
9423// Add Long Register with Register
9424instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9425  match(Set dst (AddL dst src));
9426  effect(KILL cr);
9427  ins_cost(200);
9428  format %{ "ADD    $dst.lo,$src.lo\n\t"
9429            "ADC    $dst.hi,$src.hi" %}
9430  opcode(0x03, 0x13);
9431  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9432  ins_pipe( ialu_reg_reg_long );
9433%}
9434
9435// Add Long Register with Immediate
9436instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9437  match(Set dst (AddL dst src));
9438  effect(KILL cr);
9439  format %{ "ADD    $dst.lo,$src.lo\n\t"
9440            "ADC    $dst.hi,$src.hi" %}
9441  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9442  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9443  ins_pipe( ialu_reg_long );
9444%}
9445
9446// Add Long Register with Memory
9447instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9448  match(Set dst (AddL dst (LoadL mem)));
9449  effect(KILL cr);
9450  ins_cost(125);
9451  format %{ "ADD    $dst.lo,$mem\n\t"
9452            "ADC    $dst.hi,$mem+4" %}
9453  opcode(0x03, 0x13);
9454  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9455  ins_pipe( ialu_reg_long_mem );
9456%}
9457
9458// Subtract Long Register with Register.
9459instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9460  match(Set dst (SubL dst src));
9461  effect(KILL cr);
9462  ins_cost(200);
9463  format %{ "SUB    $dst.lo,$src.lo\n\t"
9464            "SBB    $dst.hi,$src.hi" %}
9465  opcode(0x2B, 0x1B);
9466  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9467  ins_pipe( ialu_reg_reg_long );
9468%}
9469
9470// Subtract Long Register with Immediate
9471instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9472  match(Set dst (SubL dst src));
9473  effect(KILL cr);
9474  format %{ "SUB    $dst.lo,$src.lo\n\t"
9475            "SBB    $dst.hi,$src.hi" %}
9476  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9477  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9478  ins_pipe( ialu_reg_long );
9479%}
9480
9481// Subtract Long Register with Memory
9482instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9483  match(Set dst (SubL dst (LoadL mem)));
9484  effect(KILL cr);
9485  ins_cost(125);
9486  format %{ "SUB    $dst.lo,$mem\n\t"
9487            "SBB    $dst.hi,$mem+4" %}
9488  opcode(0x2B, 0x1B);
9489  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9490  ins_pipe( ialu_reg_long_mem );
9491%}
9492
9493instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9494  match(Set dst (SubL zero dst));
9495  effect(KILL cr);
9496  ins_cost(300);
9497  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9498  ins_encode( neg_long(dst) );
9499  ins_pipe( ialu_reg_reg_long );
9500%}
9501
9502// And Long Register with Register
9503instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9504  match(Set dst (AndL dst src));
9505  effect(KILL cr);
9506  format %{ "AND    $dst.lo,$src.lo\n\t"
9507            "AND    $dst.hi,$src.hi" %}
9508  opcode(0x23,0x23);
9509  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9510  ins_pipe( ialu_reg_reg_long );
9511%}
9512
9513// And Long Register with Immediate
9514instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9515  match(Set dst (AndL dst src));
9516  effect(KILL cr);
9517  format %{ "AND    $dst.lo,$src.lo\n\t"
9518            "AND    $dst.hi,$src.hi" %}
9519  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9520  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9521  ins_pipe( ialu_reg_long );
9522%}
9523
9524// And Long Register with Memory
9525instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9526  match(Set dst (AndL dst (LoadL mem)));
9527  effect(KILL cr);
9528  ins_cost(125);
9529  format %{ "AND    $dst.lo,$mem\n\t"
9530            "AND    $dst.hi,$mem+4" %}
9531  opcode(0x23, 0x23);
9532  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9533  ins_pipe( ialu_reg_long_mem );
9534%}
9535
9536// Or Long Register with Register
9537instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9538  match(Set dst (OrL dst src));
9539  effect(KILL cr);
9540  format %{ "OR     $dst.lo,$src.lo\n\t"
9541            "OR     $dst.hi,$src.hi" %}
9542  opcode(0x0B,0x0B);
9543  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9544  ins_pipe( ialu_reg_reg_long );
9545%}
9546
9547// Or Long Register with Immediate
9548instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9549  match(Set dst (OrL dst src));
9550  effect(KILL cr);
9551  format %{ "OR     $dst.lo,$src.lo\n\t"
9552            "OR     $dst.hi,$src.hi" %}
9553  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9554  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9555  ins_pipe( ialu_reg_long );
9556%}
9557
9558// Or Long Register with Memory
9559instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9560  match(Set dst (OrL dst (LoadL mem)));
9561  effect(KILL cr);
9562  ins_cost(125);
9563  format %{ "OR     $dst.lo,$mem\n\t"
9564            "OR     $dst.hi,$mem+4" %}
9565  opcode(0x0B,0x0B);
9566  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9567  ins_pipe( ialu_reg_long_mem );
9568%}
9569
9570// Xor Long Register with Register
9571instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9572  match(Set dst (XorL dst src));
9573  effect(KILL cr);
9574  format %{ "XOR    $dst.lo,$src.lo\n\t"
9575            "XOR    $dst.hi,$src.hi" %}
9576  opcode(0x33,0x33);
9577  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9578  ins_pipe( ialu_reg_reg_long );
9579%}
9580
9581// Xor Long Register with Immediate -1
9582instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9583  match(Set dst (XorL dst imm));  
9584  format %{ "NOT    $dst.lo\n\t"
9585            "NOT    $dst.hi" %}
9586  ins_encode %{
9587     __ notl($dst$$Register);
9588     __ notl(HIGH_FROM_LOW($dst$$Register));
9589  %}
9590  ins_pipe( ialu_reg_long );
9591%}
9592
9593// Xor Long Register with Immediate
9594instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9595  match(Set dst (XorL dst src));
9596  effect(KILL cr);
9597  format %{ "XOR    $dst.lo,$src.lo\n\t"
9598            "XOR    $dst.hi,$src.hi" %}
9599  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9600  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9601  ins_pipe( ialu_reg_long );
9602%}
9603
9604// Xor Long Register with Memory
9605instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9606  match(Set dst (XorL dst (LoadL mem)));
9607  effect(KILL cr);
9608  ins_cost(125);
9609  format %{ "XOR    $dst.lo,$mem\n\t"
9610            "XOR    $dst.hi,$mem+4" %}
9611  opcode(0x33,0x33);
9612  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9613  ins_pipe( ialu_reg_long_mem );
9614%}
9615
9616// Shift Left Long by 1
9617instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9618  predicate(UseNewLongLShift);
9619  match(Set dst (LShiftL dst cnt));
9620  effect(KILL cr);
9621  ins_cost(100);
9622  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9623            "ADC    $dst.hi,$dst.hi" %}
9624  ins_encode %{
9625    __ addl($dst$$Register,$dst$$Register);
9626    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9627  %}
9628  ins_pipe( ialu_reg_long );
9629%}
9630
9631// Shift Left Long by 2
9632instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9633  predicate(UseNewLongLShift);
9634  match(Set dst (LShiftL dst cnt));
9635  effect(KILL cr);
9636  ins_cost(100);
9637  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9638            "ADC    $dst.hi,$dst.hi\n\t" 
9639            "ADD    $dst.lo,$dst.lo\n\t"
9640            "ADC    $dst.hi,$dst.hi" %}
9641  ins_encode %{
9642    __ addl($dst$$Register,$dst$$Register);
9643    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9644    __ addl($dst$$Register,$dst$$Register);
9645    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9646  %}
9647  ins_pipe( ialu_reg_long );
9648%}
9649
9650// Shift Left Long by 3
9651instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9652  predicate(UseNewLongLShift);
9653  match(Set dst (LShiftL dst cnt));
9654  effect(KILL cr);
9655  ins_cost(100);
9656  format %{ "ADD    $dst.lo,$dst.lo\n\t"
9657            "ADC    $dst.hi,$dst.hi\n\t" 
9658            "ADD    $dst.lo,$dst.lo\n\t"
9659            "ADC    $dst.hi,$dst.hi\n\t" 
9660            "ADD    $dst.lo,$dst.lo\n\t"
9661            "ADC    $dst.hi,$dst.hi" %}
9662  ins_encode %{
9663    __ addl($dst$$Register,$dst$$Register);
9664    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9665    __ addl($dst$$Register,$dst$$Register);
9666    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9667    __ addl($dst$$Register,$dst$$Register);
9668    __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9669  %}
9670  ins_pipe( ialu_reg_long );
9671%}
9672
9673// Shift Left Long by 1-31
9674instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9675  match(Set dst (LShiftL dst cnt));
9676  effect(KILL cr);
9677  ins_cost(200);
9678  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9679            "SHL    $dst.lo,$cnt" %}
9680  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9681  ins_encode( move_long_small_shift(dst,cnt) );
9682  ins_pipe( ialu_reg_long );
9683%}
9684
9685// Shift Left Long by 32-63
9686instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9687  match(Set dst (LShiftL dst cnt));
9688  effect(KILL cr);
9689  ins_cost(300);
9690  format %{ "MOV    $dst.hi,$dst.lo\n"
9691          "\tSHL    $dst.hi,$cnt-32\n"
9692          "\tXOR    $dst.lo,$dst.lo" %}
9693  opcode(0xC1, 0x4);  /* C1 /4 ib */
9694  ins_encode( move_long_big_shift_clr(dst,cnt) );
9695  ins_pipe( ialu_reg_long );
9696%}
9697
9698// Shift Left Long by variable
9699instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9700  match(Set dst (LShiftL dst shift));
9701  effect(KILL cr);
9702  ins_cost(500+200);
9703  size(17);
9704  format %{ "TEST   $shift,32\n\t"
9705            "JEQ,s  small\n\t"
9706            "MOV    $dst.hi,$dst.lo\n\t"
9707            "XOR    $dst.lo,$dst.lo\n"
9708    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9709            "SHL    $dst.lo,$shift" %}
9710  ins_encode( shift_left_long( dst, shift ) );
9711  ins_pipe( pipe_slow );
9712%}
9713
9714// Shift Right Long by 1-31
9715instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9716  match(Set dst (URShiftL dst cnt));
9717  effect(KILL cr);
9718  ins_cost(200);
9719  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9720            "SHR    $dst.hi,$cnt" %}
9721  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9722  ins_encode( move_long_small_shift(dst,cnt) );
9723  ins_pipe( ialu_reg_long );
9724%}
9725
9726// Shift Right Long by 32-63
9727instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9728  match(Set dst (URShiftL dst cnt));
9729  effect(KILL cr);
9730  ins_cost(300);
9731  format %{ "MOV    $dst.lo,$dst.hi\n"
9732          "\tSHR    $dst.lo,$cnt-32\n"
9733          "\tXOR    $dst.hi,$dst.hi" %}
9734  opcode(0xC1, 0x5);  /* C1 /5 ib */
9735  ins_encode( move_long_big_shift_clr(dst,cnt) );
9736  ins_pipe( ialu_reg_long );
9737%}
9738
9739// Shift Right Long by variable
9740instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9741  match(Set dst (URShiftL dst shift));
9742  effect(KILL cr);
9743  ins_cost(600);
9744  size(17);
9745  format %{ "TEST   $shift,32\n\t"
9746            "JEQ,s  small\n\t"
9747            "MOV    $dst.lo,$dst.hi\n\t"
9748            "XOR    $dst.hi,$dst.hi\n"
9749    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9750            "SHR    $dst.hi,$shift" %}
9751  ins_encode( shift_right_long( dst, shift ) );
9752  ins_pipe( pipe_slow );
9753%}
9754
9755// Shift Right Long by 1-31
9756instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9757  match(Set dst (RShiftL dst cnt));
9758  effect(KILL cr);
9759  ins_cost(200);
9760  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9761            "SAR    $dst.hi,$cnt" %}
9762  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9763  ins_encode( move_long_small_shift(dst,cnt) );
9764  ins_pipe( ialu_reg_long );
9765%}
9766
9767// Shift Right Long by 32-63
9768instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9769  match(Set dst (RShiftL dst cnt));
9770  effect(KILL cr);
9771  ins_cost(300);
9772  format %{ "MOV    $dst.lo,$dst.hi\n"
9773          "\tSAR    $dst.lo,$cnt-32\n"
9774          "\tSAR    $dst.hi,31" %}
9775  opcode(0xC1, 0x7);  /* C1 /7 ib */
9776  ins_encode( move_long_big_shift_sign(dst,cnt) );
9777  ins_pipe( ialu_reg_long );
9778%}
9779
9780// Shift Right arithmetic Long by variable
9781instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9782  match(Set dst (RShiftL dst shift));
9783  effect(KILL cr);
9784  ins_cost(600);
9785  size(18);
9786  format %{ "TEST   $shift,32\n\t"
9787            "JEQ,s  small\n\t"
9788            "MOV    $dst.lo,$dst.hi\n\t"
9789            "SAR    $dst.hi,31\n"
9790    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9791            "SAR    $dst.hi,$shift" %}
9792  ins_encode( shift_right_arith_long( dst, shift ) );
9793  ins_pipe( pipe_slow );
9794%}
9795
9796
9797//----------Double Instructions------------------------------------------------
9798// Double Math
9799
9800// Compare & branch
9801
9802// P6 version of float compare, sets condition codes in EFLAGS
9803instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9804  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9805  match(Set cr (CmpD src1 src2));
9806  effect(KILL rax);
9807  ins_cost(150);
9808  format %{ "FLD    $src1\n\t"
9809            "FUCOMIP ST,$src2  // P6 instruction\n\t"
9810            "JNP    exit\n\t"
9811            "MOV    ah,1       // saw a NaN, set CF\n\t"
9812            "SAHF\n"
9813     "exit:\tNOP               // avoid branch to branch" %}
9814  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9815  ins_encode( Push_Reg_D(src1),
9816              OpcP, RegOpc(src2),
9817              cmpF_P6_fixup );
9818  ins_pipe( pipe_slow );
9819%}
9820
9821instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
9822  predicate(VM_Version::supports_cmov() && UseSSE <=1);
9823  match(Set cr (CmpD src1 src2));
9824  ins_cost(150);
9825  format %{ "FLD    $src1\n\t"
9826            "FUCOMIP ST,$src2  // P6 instruction" %}
9827  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9828  ins_encode( Push_Reg_D(src1),
9829              OpcP, RegOpc(src2));
9830  ins_pipe( pipe_slow );
9831%}
9832
9833// Compare & branch
9834instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9835  predicate(UseSSE<=1);
9836  match(Set cr (CmpD src1 src2));
9837  effect(KILL rax);
9838  ins_cost(200);
9839  format %{ "FLD    $src1\n\t"
9840            "FCOMp  $src2\n\t"
9841            "FNSTSW AX\n\t"
9842            "TEST   AX,0x400\n\t"
9843            "JZ,s   flags\n\t"
9844            "MOV    AH,1\t# unordered treat as LT\n"
9845    "flags:\tSAHF" %}
9846  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9847  ins_encode( Push_Reg_D(src1),
9848              OpcP, RegOpc(src2),
9849              fpu_flags);
9850  ins_pipe( pipe_slow );
9851%}
9852
9853// Compare vs zero into -1,0,1
9854instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9855  predicate(UseSSE<=1);
9856  match(Set dst (CmpD3 src1 zero));
9857  effect(KILL cr, KILL rax);
9858  ins_cost(280);
9859  format %{ "FTSTD  $dst,$src1" %}
9860  opcode(0xE4, 0xD9);
9861  ins_encode( Push_Reg_D(src1),
9862              OpcS, OpcP, PopFPU,
9863              CmpF_Result(dst));
9864  ins_pipe( pipe_slow );
9865%}
9866
9867// Compare into -1,0,1
9868instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9869  predicate(UseSSE<=1);
9870  match(Set dst (CmpD3 src1 src2));
9871  effect(KILL cr, KILL rax);
9872  ins_cost(300);
9873  format %{ "FCMPD  $dst,$src1,$src2" %}
9874  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9875  ins_encode( Push_Reg_D(src1),
9876              OpcP, RegOpc(src2),
9877              CmpF_Result(dst));
9878  ins_pipe( pipe_slow );
9879%}
9880
9881// float compare and set condition codes in EFLAGS by XMM regs
9882instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9883  predicate(UseSSE>=2);
9884  match(Set cr (CmpD dst src));
9885  effect(KILL rax);
9886  ins_cost(125);
9887  format %{ "COMISD $dst,$src\n"
9888          "\tJNP    exit\n"
9889          "\tMOV    ah,1       // saw a NaN, set CF\n"
9890          "\tSAHF\n"
9891     "exit:\tNOP               // avoid branch to branch" %}
9892  opcode(0x66, 0x0F, 0x2F);
9893  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9894  ins_pipe( pipe_slow );
9895%}
9896
9897instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
9898  predicate(UseSSE>=2);
9899  match(Set cr (CmpD dst src));
9900  ins_cost(100);
9901  format %{ "COMISD $dst,$src" %}
9902  opcode(0x66, 0x0F, 0x2F);
9903  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
9904  ins_pipe( pipe_slow );
9905%}
9906
9907// float compare and set condition codes in EFLAGS by XMM regs
9908instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9909  predicate(UseSSE>=2);
9910  match(Set cr (CmpD dst (LoadD src)));
9911  effect(KILL rax);
9912  ins_cost(145);
9913  format %{ "COMISD $dst,$src\n"
9914          "\tJNP    exit\n"
9915          "\tMOV    ah,1       // saw a NaN, set CF\n"
9916          "\tSAHF\n"
9917     "exit:\tNOP               // avoid branch to branch" %}
9918  opcode(0x66, 0x0F, 0x2F);
9919  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9920  ins_pipe( pipe_slow );
9921%}
9922
9923instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
9924  predicate(UseSSE>=2);
9925  match(Set cr (CmpD dst (LoadD src)));
9926  ins_cost(100);
9927  format %{ "COMISD $dst,$src" %}
9928  opcode(0x66, 0x0F, 0x2F);
9929  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
9930  ins_pipe( pipe_slow );
9931%}
9932
9933// Compare into -1,0,1 in XMM
9934instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9935  predicate(UseSSE>=2);
9936  match(Set dst (CmpD3 src1 src2));
9937  effect(KILL cr);
9938  ins_cost(255);
9939  format %{ "XOR    $dst,$dst\n"
9940          "\tCOMISD $src1,$src2\n"
9941          "\tJP,s   nan\n"
9942          "\tJEQ,s  exit\n"
9943          "\tJA,s   inc\n"
9944      "nan:\tDEC    $dst\n"
9945          "\tJMP,s  exit\n"
9946      "inc:\tINC    $dst\n"
9947      "exit:"
9948                %}
9949  opcode(0x66, 0x0F, 0x2F);
9950  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9951             CmpX_Result(dst));
9952  ins_pipe( pipe_slow );
9953%}
9954
9955// Compare into -1,0,1 in XMM and memory
9956instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9957  predicate(UseSSE>=2);
9958  match(Set dst (CmpD3 src1 (LoadD mem)));
9959  effect(KILL cr);
9960  ins_cost(275);
9961  format %{ "COMISD $src1,$mem\n"
9962          "\tMOV    $dst,0\t\t# do not blow flags\n"
9963          "\tJP,s   nan\n"
9964          "\tJEQ,s  exit\n"
9965          "\tJA,s   inc\n"
9966      "nan:\tDEC    $dst\n"
9967          "\tJMP,s  exit\n"
9968      "inc:\tINC    $dst\n"
9969      "exit:"
9970                %}
9971  opcode(0x66, 0x0F, 0x2F);
9972  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
9973             LdImmI(dst,0x0), CmpX_Result(dst));
9974  ins_pipe( pipe_slow );
9975%}
9976
9977
9978instruct subD_reg(regD dst, regD src) %{
9979  predicate (UseSSE <=1);
9980  match(Set dst (SubD dst src));
9981
9982  format %{ "FLD    $src\n\t"
9983            "DSUBp  $dst,ST" %}
9984  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9985  ins_cost(150);
9986  ins_encode( Push_Reg_D(src),
9987              OpcP, RegOpc(dst) );
9988  ins_pipe( fpu_reg_reg );
9989%}
9990
9991instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9992  predicate (UseSSE <=1);
9993  match(Set dst (RoundDouble (SubD src1 src2)));
9994  ins_cost(250);
9995
9996  format %{ "FLD    $src2\n\t"
9997            "DSUB   ST,$src1\n\t"
9998            "FSTP_D $dst\t# D-round" %}
9999  opcode(0xD8, 0x5);
10000  ins_encode( Push_Reg_D(src2),
10001              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10002  ins_pipe( fpu_mem_reg_reg );
10003%}
10004
10005
10006instruct subD_reg_mem(regD dst, memory src) %{
10007  predicate (UseSSE <=1);
10008  match(Set dst (SubD dst (LoadD src)));
10009  ins_cost(150);
10010
10011  format %{ "FLD    $src\n\t"
10012            "DSUBp  $dst,ST" %}
10013  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10014  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10015              OpcP, RegOpc(dst) );
10016  ins_pipe( fpu_reg_mem );
10017%}
10018
10019instruct absD_reg(regDPR1 dst, regDPR1 src) %{
10020  predicate (UseSSE<=1);
10021  match(Set dst (AbsD src));
10022  ins_cost(100);
10023  format %{ "FABS" %}
10024  opcode(0xE1, 0xD9);
10025  ins_encode( OpcS, OpcP );
10026  ins_pipe( fpu_reg_reg );
10027%}
10028
10029instruct absXD_reg( regXD dst ) %{
10030  predicate(UseSSE>=2);
10031  match(Set dst (AbsD dst));
10032  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
10033  ins_encode( AbsXD_encoding(dst));
10034  ins_pipe( pipe_slow );
10035%}
10036
10037instruct negD_reg(regDPR1 dst, regDPR1 src) %{
10038  predicate(UseSSE<=1);
10039  match(Set dst (NegD src));
10040  ins_cost(100);
10041  format %{ "FCHS" %}
10042  opcode(0xE0, 0xD9);
10043  ins_encode( OpcS, OpcP );
10044  ins_pipe( fpu_reg_reg );
10045%}
10046
10047instruct negXD_reg( regXD dst ) %{
10048  predicate(UseSSE>=2);
10049  match(Set dst (NegD dst));
10050  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
10051  ins_encode %{
10052     __ xorpd($dst$$XMMRegister,
10053              ExternalAddress((address)double_signflip_pool));
10054  %}
10055  ins_pipe( pipe_slow );
10056%}
10057
10058instruct addD_reg(regD dst, regD src) %{
10059  predicate(UseSSE<=1);
10060  match(Set dst (AddD dst src));
10061  format %{ "FLD    $src\n\t"
10062            "DADD   $dst,ST" %}
10063  size(4);
10064  ins_cost(150);
10065  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10066  ins_encode( Push_Reg_D(src),
10067              OpcP, RegOpc(dst) );
10068  ins_pipe( fpu_reg_reg );
10069%}
10070
10071
10072instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10073  predicate(UseSSE<=1);
10074  match(Set dst (RoundDouble (AddD src1 src2)));
10075  ins_cost(250);
10076
10077  format %{ "FLD    $src2\n\t"
10078            "DADD   ST,$src1\n\t"
10079            "FSTP_D $dst\t# D-round" %}
10080  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10081  ins_encode( Push_Reg_D(src2),
10082              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10083  ins_pipe( fpu_mem_reg_reg );
10084%}
10085
10086
10087instruct addD_reg_mem(regD dst, memory src) %{
10088  predicate(UseSSE<=1);
10089  match(Set dst (AddD dst (LoadD src)));
10090  ins_cost(150);
10091
10092  format %{ "FLD    $src\n\t"
10093            "DADDp  $dst,ST" %}
10094  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10095  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10096              OpcP, RegOpc(dst) );
10097  ins_pipe( fpu_reg_mem );
10098%}
10099
10100// add-to-memory
10101instruct addD_mem_reg(memory dst, regD src) %{
10102  predicate(UseSSE<=1);
10103  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10104  ins_cost(150);
10105
10106  format %{ "FLD_D  $dst\n\t"
10107            "DADD   ST,$src\n\t"
10108            "FST_D  $dst" %}
10109  opcode(0xDD, 0x0);
10110  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10111              Opcode(0xD8), RegOpc(src),
10112              set_instruction_start,
10113              Opcode(0xDD), RMopc_Mem(0x03,dst) );
10114  ins_pipe( fpu_reg_mem );
10115%}
10116
10117instruct addD_reg_imm1(regD dst, immD1 src) %{
10118  predicate(UseSSE<=1);
10119  match(Set dst (AddD dst src));
10120  ins_cost(125);
10121  format %{ "FLD1\n\t"
10122            "DADDp  $dst,ST" %}
10123  opcode(0xDE, 0x00);
10124  ins_encode( LdImmD(src),
10125              OpcP, RegOpc(dst) );
10126  ins_pipe( fpu_reg );
10127%}
10128
10129instruct addD_reg_imm(regD dst, immD src) %{
10130  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10131  match(Set dst (AddD dst src));
10132  ins_cost(200);
10133  format %{ "FLD_D  [$src]\n\t"
10134            "DADDp  $dst,ST" %}
10135  opcode(0xDE, 0x00);       /* DE /0 */
10136  ins_encode( LdImmD(src),
10137              OpcP, RegOpc(dst));
10138  ins_pipe( fpu_reg_mem );
10139%}
10140
10141instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
10142  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10143  match(Set dst (RoundDouble (AddD src con)));
10144  ins_cost(200);
10145  format %{ "FLD_D  [$con]\n\t"
10146            "DADD   ST,$src\n\t"
10147            "FSTP_D $dst\t# D-round" %}
10148  opcode(0xD8, 0x00);       /* D8 /0 */
10149  ins_encode( LdImmD(con),
10150              OpcP, RegOpc(src), Pop_Mem_D(dst));
10151  ins_pipe( fpu_mem_reg_con );
10152%}
10153
10154// Add two double precision floating point values in xmm
10155instruct addXD_reg(regXD dst, regXD src) %{
10156  predicate(UseSSE>=2);
10157  match(Set dst (AddD dst src));
10158  format %{ "ADDSD  $dst,$src" %}
10159  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10160  ins_pipe( pipe_slow );
10161%}
10162
10163instruct addXD_imm(regXD dst, immXD con) %{
10164  predicate(UseSSE>=2);
10165  match(Set dst (AddD dst con));
10166  format %{ "ADDSD  $dst,[$con]" %}
10167  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
10168  ins_pipe( pipe_slow );
10169%}
10170
10171instruct addXD_mem(regXD dst, memory mem) %{
10172  predicate(UseSSE>=2);
10173  match(Set dst (AddD dst (LoadD mem)));
10174  format %{ "ADDSD  $dst,$mem" %}
10175  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10176  ins_pipe( pipe_slow );
10177%}
10178
10179// Sub two double precision floating point values in xmm
10180instruct subXD_reg(regXD dst, regXD src) %{
10181  predicate(UseSSE>=2);
10182  match(Set dst (SubD dst src));
10183  format %{ "SUBSD  $dst,$src" %}
10184  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10185  ins_pipe( pipe_slow );
10186%}
10187
10188instruct subXD_imm(regXD dst, immXD con) %{
10189  predicate(UseSSE>=2);
10190  match(Set dst (SubD dst con));
10191  format %{ "SUBSD  $dst,[$con]" %}
10192  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
10193  ins_pipe( pipe_slow );
10194%}
10195
10196instruct subXD_mem(regXD dst, memory mem) %{
10197  predicate(UseSSE>=2);
10198  match(Set dst (SubD dst (LoadD mem)));
10199  format %{ "SUBSD  $dst,$mem" %}
10200  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10201  ins_pipe( pipe_slow );
10202%}
10203
10204// Mul two double precision floating point values in xmm
10205instruct mulXD_reg(regXD dst, regXD src) %{
10206  predicate(UseSSE>=2);
10207  match(Set dst (MulD dst src));
10208  format %{ "MULSD  $dst,$src" %}
10209  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10210  ins_pipe( pipe_slow );
10211%}
10212
10213instruct mulXD_imm(regXD dst, immXD con) %{
10214  predicate(UseSSE>=2);
10215  match(Set dst (MulD dst con));
10216  format %{ "MULSD  $dst,[$con]" %}
10217  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
10218  ins_pipe( pipe_slow );
10219%}
10220
10221instruct mulXD_mem(regXD dst, memory mem) %{
10222  predicate(UseSSE>=2);
10223  match(Set dst (MulD dst (LoadD mem)));
10224  format %{ "MULSD  $dst,$mem" %}
10225  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10226  ins_pipe( pipe_slow );
10227%}
10228
10229// Div two double precision floating point values in xmm
10230instruct divXD_reg(regXD dst, regXD src) %{
10231  predicate(UseSSE>=2);
10232  match(Set dst (DivD dst src));
10233  format %{ "DIVSD  $dst,$src" %}
10234  opcode(0xF2, 0x0F, 0x5E);
10235  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10236  ins_pipe( pipe_slow );
10237%}
10238
10239instruct divXD_imm(regXD dst, immXD con) %{
10240  predicate(UseSSE>=2);
10241  match(Set dst (DivD dst con));
10242  format %{ "DIVSD  $dst,[$con]" %}
10243  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
10244  ins_pipe( pipe_slow );
10245%}
10246
10247instruct divXD_mem(regXD dst, memory mem) %{
10248  predicate(UseSSE>=2);
10249  match(Set dst (DivD dst (LoadD mem)));
10250  format %{ "DIVSD  $dst,$mem" %}
10251  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10252  ins_pipe( pipe_slow );
10253%}
10254
10255
10256instruct mulD_reg(regD dst, regD src) %{
10257  predicate(UseSSE<=1);
10258  match(Set dst (MulD dst src));
10259  format %{ "FLD    $src\n\t"
10260            "DMULp  $dst,ST" %}
10261  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10262  ins_cost(150);
10263  ins_encode( Push_Reg_D(src),
10264              OpcP, RegOpc(dst) );
10265  ins_pipe( fpu_reg_reg );
10266%}
10267
10268// Strict FP instruction biases argument before multiply then
10269// biases result to avoid double rounding of subnormals.
10270//
10271// scale arg1 by multiplying arg1 by 2^(-15360)
10272// load arg2
10273// multiply scaled arg1 by arg2
10274// rescale product by 2^(15360)
10275//
10276instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10277  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10278  match(Set dst (MulD dst src));
10279  ins_cost(1);   // Select this instruction for all strict FP double multiplies
10280
10281  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10282            "DMULp  $dst,ST\n\t"
10283            "FLD    $src\n\t"
10284            "DMULp  $dst,ST\n\t"
10285            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10286            "DMULp  $dst,ST\n\t" %}
10287  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10288  ins_encode( strictfp_bias1(dst),
10289              Push_Reg_D(src),
10290              OpcP, RegOpc(dst),
10291              strictfp_bias2(dst) );
10292  ins_pipe( fpu_reg_reg );
10293%}
10294
10295instruct mulD_reg_imm(regD dst, immD src) %{
10296  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10297  match(Set dst (MulD dst src));
10298  ins_cost(200);
10299  format %{ "FLD_D  [$src]\n\t"
10300            "DMULp  $dst,ST" %}
10301  opcode(0xDE, 0x1); /* DE /1 */
10302  ins_encode( LdImmD(src),
10303              OpcP, RegOpc(dst) );
10304  ins_pipe( fpu_reg_mem );
10305%}
10306
10307
10308instruct mulD_reg_mem(regD dst, memory src) %{
10309  predicate( UseSSE<=1 );
10310  match(Set dst (MulD dst (LoadD src)));
10311  ins_cost(200);
10312  format %{ "FLD_D  $src\n\t"
10313            "DMULp  $dst,ST" %}
10314  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10315  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10316              OpcP, RegOpc(dst) );
10317  ins_pipe( fpu_reg_mem );
10318%}
10319
10320//
10321// Cisc-alternate to reg-reg multiply
10322instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10323  predicate( UseSSE<=1 );
10324  match(Set dst (MulD src (LoadD mem)));
10325  ins_cost(250);
10326  format %{ "FLD_D  $mem\n\t"
10327            "DMUL   ST,$src\n\t"
10328            "FSTP_D $dst" %}
10329  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10330  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10331              OpcReg_F(src),
10332              Pop_Reg_D(dst) );
10333  ins_pipe( fpu_reg_reg_mem );
10334%}
10335
10336
10337// MACRO3 -- addD a mulD
10338// This instruction is a '2-address' instruction in that the result goes
10339// back to src2.  This eliminates a move from the macro; possibly the
10340// register allocator will have to add it back (and maybe not).
10341instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10342  predicate( UseSSE<=1 );
10343  match(Set src2 (AddD (MulD src0 src1) src2));
10344  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10345            "DMUL   ST,$src1\n\t"
10346            "DADDp  $src2,ST" %}
10347  ins_cost(250);
10348  opcode(0xDD); /* LoadD DD /0 */
10349  ins_encode( Push_Reg_F(src0),
10350              FMul_ST_reg(src1),
10351              FAddP_reg_ST(src2) );
10352  ins_pipe( fpu_reg_reg_reg );
10353%}
10354
10355
10356// MACRO3 -- subD a mulD
10357instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10358  predicate( UseSSE<=1 );
10359  match(Set src2 (SubD (MulD src0 src1) src2));
10360  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10361            "DMUL   ST,$src1\n\t"
10362            "DSUBRp $src2,ST" %}
10363  ins_cost(250);
10364  ins_encode( Push_Reg_F(src0),
10365              FMul_ST_reg(src1),
10366              Opcode(0xDE), Opc_plus(0xE0,src2));
10367  ins_pipe( fpu_reg_reg_reg );
10368%}
10369
10370
10371instruct divD_reg(regD dst, regD src) %{
10372  predicate( UseSSE<=1 );
10373  match(Set dst (DivD dst src));
10374
10375  format %{ "FLD    $src\n\t"
10376            "FDIVp  $dst,ST" %}
10377  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10378  ins_cost(150);
10379  ins_encode( Push_Reg_D(src),
10380              OpcP, RegOpc(dst) );
10381  ins_pipe( fpu_reg_reg );
10382%}
10383
10384// Strict FP instruction biases argument before division then
10385// biases result, to avoid double rounding of subnormals.
10386//
10387// scale dividend by multiplying dividend by 2^(-15360)
10388// load divisor
10389// divide scaled dividend by divisor
10390// rescale quotient by 2^(15360)
10391//
10392instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10393  predicate (UseSSE<=1);
10394  match(Set dst (DivD dst src));
10395  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10396  ins_cost(01);
10397
10398  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10399            "DMULp  $dst,ST\n\t"
10400            "FLD    $src\n\t"
10401            "FDIVp  $dst,ST\n\t"
10402            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10403            "DMULp  $dst,ST\n\t" %}
10404  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10405  ins_encode( strictfp_bias1(dst),
10406              Push_Reg_D(src),
10407              OpcP, RegOpc(dst),
10408              strictfp_bias2(dst) );
10409  ins_pipe( fpu_reg_reg );
10410%}
10411
10412instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10413  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10414  match(Set dst (RoundDouble (DivD src1 src2)));
10415
10416  format %{ "FLD    $src1\n\t"
10417            "FDIV   ST,$src2\n\t"
10418            "FSTP_D $dst\t# D-round" %}
10419  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10420  ins_encode( Push_Reg_D(src1),
10421              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10422  ins_pipe( fpu_mem_reg_reg );
10423%}
10424
10425
10426instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10427  predicate(UseSSE<=1);
10428  match(Set dst (ModD dst src));
10429  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10430
10431  format %{ "DMOD   $dst,$src" %}
10432  ins_cost(250);
10433  ins_encode(Push_Reg_Mod_D(dst, src),
10434              emitModD(),
10435              Push_Result_Mod_D(src),
10436              Pop_Reg_D(dst));
10437  ins_pipe( pipe_slow );
10438%}
10439
10440instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10441  predicate(UseSSE>=2);
10442  match(Set dst (ModD src0 src1));
10443  effect(KILL rax, KILL cr);
10444
10445  format %{ "SUB    ESP,8\t # DMOD\n"
10446          "\tMOVSD  [ESP+0],$src1\n"
10447          "\tFLD_D  [ESP+0]\n"
10448          "\tMOVSD  [ESP+0],$src0\n"
10449          "\tFLD_D  [ESP+0]\n"
10450     "loop:\tFPREM\n"
10451          "\tFWAIT\n"
10452          "\tFNSTSW AX\n"
10453          "\tSAHF\n"
10454          "\tJP     loop\n"
10455          "\tFSTP_D [ESP+0]\n"
10456          "\tMOVSD  $dst,[ESP+0]\n"
10457          "\tADD    ESP,8\n"
10458          "\tFSTP   ST0\t # Restore FPU Stack"
10459    %}
10460  ins_cost(250);
10461  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10462  ins_pipe( pipe_slow );
10463%}
10464
10465instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10466  predicate (UseSSE<=1);
10467  match(Set dst (SinD src));
10468  ins_cost(1800);
10469  format %{ "DSIN   $dst" %}
10470  opcode(0xD9, 0xFE);
10471  ins_encode( OpcP, OpcS );
10472  ins_pipe( pipe_slow );
10473%}
10474
10475instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10476  predicate (UseSSE>=2);
10477  match(Set dst (SinD dst));
10478  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10479  ins_cost(1800);
10480  format %{ "DSIN   $dst" %}
10481  opcode(0xD9, 0xFE);
10482  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10483  ins_pipe( pipe_slow );
10484%}
10485
10486instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10487  predicate (UseSSE<=1);
10488  match(Set dst (CosD src));
10489  ins_cost(1800);
10490  format %{ "DCOS   $dst" %}
10491  opcode(0xD9, 0xFF);
10492  ins_encode( OpcP, OpcS );
10493  ins_pipe( pipe_slow );
10494%}
10495
10496instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10497  predicate (UseSSE>=2);
10498  match(Set dst (CosD dst));
10499  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10500  ins_cost(1800);
10501  format %{ "DCOS   $dst" %}
10502  opcode(0xD9, 0xFF);
10503  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10504  ins_pipe( pipe_slow );
10505%}
10506
10507instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10508  predicate (UseSSE<=1);
10509  match(Set dst(TanD src));
10510  format %{ "DTAN   $dst" %}
10511  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10512              Opcode(0xDD), Opcode(0xD8));   // fstp st
10513  ins_pipe( pipe_slow );
10514%}
10515
10516instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10517  predicate (UseSSE>=2);
10518  match(Set dst(TanD dst));
10519  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10520  format %{ "DTAN   $dst" %}
10521  ins_encode( Push_SrcXD(dst),
10522              Opcode(0xD9), Opcode(0xF2),    // fptan
10523              Opcode(0xDD), Opcode(0xD8),   // fstp st
10524              Push_ResultXD(dst) );
10525  ins_pipe( pipe_slow );
10526%}
10527
10528instruct atanD_reg(regD dst, regD src) %{
10529  predicate (UseSSE<=1);
10530  match(Set dst(AtanD dst src));
10531  format %{ "DATA   $dst,$src" %}
10532  opcode(0xD9, 0xF3);
10533  ins_encode( Push_Reg_D(src),
10534              OpcP, OpcS, RegOpc(dst) );
10535  ins_pipe( pipe_slow );
10536%}
10537
10538instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10539  predicate (UseSSE>=2);
10540  match(Set dst(AtanD dst src));
10541  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10542  format %{ "DATA   $dst,$src" %}
10543  opcode(0xD9, 0xF3);
10544  ins_encode( Push_SrcXD(src),
10545              OpcP, OpcS, Push_ResultXD(dst) );
10546  ins_pipe( pipe_slow );
10547%}
10548
10549instruct sqrtD_reg(regD dst, regD src) %{
10550  predicate (UseSSE<=1);
10551  match(Set dst (SqrtD src));
10552  format %{ "DSQRT  $dst,$src" %}
10553  opcode(0xFA, 0xD9);
10554  ins_encode( Push_Reg_D(src),
10555              OpcS, OpcP, Pop_Reg_D(dst) );
10556  ins_pipe( pipe_slow );
10557%}
10558
10559instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10560  predicate (UseSSE<=1);
10561  match(Set Y (PowD X Y));  // Raise X to the Yth power
10562  effect(KILL rax, KILL rbx, KILL rcx);
10563  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10564            "FLD_D  $X\n\t"
10565            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10566
10567            "FDUP   \t\t\t# Q Q\n\t"
10568            "FRNDINT\t\t\t# int(Q) Q\n\t"
10569            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10570            "FISTP  dword [ESP]\n\t"
10571            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10572            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10573            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10574            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10575            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10576            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10577            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10578            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10579            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10580            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10581            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10582            "MOV    [ESP+0],0\n\t"
10583            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10584
10585            "ADD    ESP,8"
10586             %}
10587  ins_encode( push_stack_temp_qword,
10588              Push_Reg_D(X),
10589              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10590              pow_exp_core_encoding,
10591              pop_stack_temp_qword);
10592  ins_pipe( pipe_slow );
10593%}
10594
10595instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10596  predicate (UseSSE>=2);
10597  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10598  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10599  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10600            "MOVSD  [ESP],$src1\n\t"
10601            "FLD    FPR1,$src1\n\t"
10602            "MOVSD  [ESP],$src0\n\t"
10603            "FLD    FPR1,$src0\n\t"
10604            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10605
10606            "FDUP   \t\t\t# Q Q\n\t"
10607            "FRNDINT\t\t\t# int(Q) Q\n\t"
10608            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10609            "FISTP  dword [ESP]\n\t"
10610            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10611            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10612            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10613            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10614            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10615            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10616            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10617            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10618            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10619            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10620            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10621            "MOV    [ESP+0],0\n\t"
10622            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10623
10624            "FST_D  [ESP]\n\t"
10625            "MOVSD  $dst,[ESP]\n\t"
10626            "ADD    ESP,8"
10627             %}
10628  ins_encode( push_stack_temp_qword,
10629              push_xmm_to_fpr1(src1),
10630              push_xmm_to_fpr1(src0),
10631              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10632              pow_exp_core_encoding,
10633              Push_ResultXD(dst) );
10634  ins_pipe( pipe_slow );
10635%}
10636
10637
10638instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10639  predicate (UseSSE<=1);
10640  match(Set dpr1 (ExpD dpr1));
10641  effect(KILL rax, KILL rbx, KILL rcx);
10642  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10643            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10644            "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10645
10646            "FDUP   \t\t\t# Q Q\n\t"
10647            "FRNDINT\t\t\t# int(Q) Q\n\t"
10648            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10649            "FISTP  dword [ESP]\n\t"
10650            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10651            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10652            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10653            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10654            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10655            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10656            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10657            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10658            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10659            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10660            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10661            "MOV    [ESP+0],0\n\t"
10662            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10663
10664            "ADD    ESP,8"
10665             %}
10666  ins_encode( push_stack_temp_qword,
10667              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10668              Opcode(0xDE), Opcode(0xC9),   // fmulp
10669              pow_exp_core_encoding,
10670              pop_stack_temp_qword);
10671  ins_pipe( pipe_slow );
10672%}
10673
10674instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10675  predicate (UseSSE>=2);
10676  match(Set dst (ExpD src));
10677  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10678  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10679            "MOVSD  [ESP],$src\n\t"
10680            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10681            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10682
10683            "FDUP   \t\t\t# Q Q\n\t"
10684            "FRNDINT\t\t\t# int(Q) Q\n\t"
10685            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10686            "FISTP  dword [ESP]\n\t"
10687            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10688            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10689            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10690            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10691            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10692            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10693            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10694            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10695            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10696            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10697            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10698            "MOV    [ESP+0],0\n\t"
10699            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10700
10701            "FST_D  [ESP]\n\t"
10702            "MOVSD  $dst,[ESP]\n\t"
10703            "ADD    ESP,8"
10704             %}
10705  ins_encode( Push_SrcXD(src),
10706              Opcode(0xD9), Opcode(0xEA),   // fldl2e
10707              Opcode(0xDE), Opcode(0xC9),   // fmulp
10708              pow_exp_core_encoding,
10709              Push_ResultXD(dst) );
10710  ins_pipe( pipe_slow );
10711%}
10712
10713
10714
10715instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10716  predicate (UseSSE<=1);
10717  // The source Double operand on FPU stack
10718  match(Set dst (Log10D src));
10719  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10720  // fxch         ; swap ST(0) with ST(1)
10721  // fyl2x        ; compute log_10(2) * log_2(x)
10722  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10723            "FXCH   \n\t"
10724            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10725         %}
10726  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10727              Opcode(0xD9), Opcode(0xC9),   // fxch
10728              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10729
10730  ins_pipe( pipe_slow );
10731%}
10732
10733instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10734  predicate (UseSSE>=2);
10735  effect(KILL cr);
10736  match(Set dst (Log10D src));
10737  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10738  // fyl2x        ; compute log_10(2) * log_2(x)
10739  format %{ "FLDLG2 \t\t\t#Log10\n\t"
10740            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10741         %}
10742  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10743              Push_SrcXD(src),
10744              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10745              Push_ResultXD(dst));
10746
10747  ins_pipe( pipe_slow );
10748%}
10749
10750instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10751  predicate (UseSSE<=1);
10752  // The source Double operand on FPU stack
10753  match(Set dst (LogD src));
10754  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10755  // fxch         ; swap ST(0) with ST(1)
10756  // fyl2x        ; compute log_e(2) * log_2(x)
10757  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10758            "FXCH   \n\t"
10759            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10760         %}
10761  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10762              Opcode(0xD9), Opcode(0xC9),   // fxch
10763              Opcode(0xD9), Opcode(0xF1));  // fyl2x
10764
10765  ins_pipe( pipe_slow );
10766%}
10767
10768instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10769  predicate (UseSSE>=2);
10770  effect(KILL cr);
10771  // The source and result Double operands in XMM registers
10772  match(Set dst (LogD src));
10773  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10774  // fyl2x        ; compute log_e(2) * log_2(x)
10775  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10776            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10777         %}
10778  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10779              Push_SrcXD(src),
10780              Opcode(0xD9), Opcode(0xF1),   // fyl2x
10781              Push_ResultXD(dst));
10782  ins_pipe( pipe_slow );
10783%}
10784
10785//-------------Float Instructions-------------------------------
10786// Float Math
10787
10788// Code for float compare:
10789//     fcompp();
10790//     fwait(); fnstsw_ax();
10791//     sahf();
10792//     movl(dst, unordered_result);
10793//     jcc(Assembler::parity, exit);
10794//     movl(dst, less_result);
10795//     jcc(Assembler::below, exit);
10796//     movl(dst, equal_result);
10797//     jcc(Assembler::equal, exit);
10798//     movl(dst, greater_result);
10799//   exit:
10800
10801// P6 version of float compare, sets condition codes in EFLAGS
10802instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10803  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10804  match(Set cr (CmpF src1 src2));
10805  effect(KILL rax);
10806  ins_cost(150);
10807  format %{ "FLD    $src1\n\t"
10808            "FUCOMIP ST,$src2  // P6 instruction\n\t"
10809            "JNP    exit\n\t"
10810            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10811            "SAHF\n"
10812     "exit:\tNOP               // avoid branch to branch" %}
10813  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10814  ins_encode( Push_Reg_D(src1),
10815              OpcP, RegOpc(src2),
10816              cmpF_P6_fixup );
10817  ins_pipe( pipe_slow );
10818%}
10819
10820instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
10821  predicate(VM_Version::supports_cmov() && UseSSE == 0);
10822  match(Set cr (CmpF src1 src2));
10823  ins_cost(100);
10824  format %{ "FLD    $src1\n\t"
10825            "FUCOMIP ST,$src2  // P6 instruction" %}
10826  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10827  ins_encode( Push_Reg_D(src1),
10828              OpcP, RegOpc(src2));
10829  ins_pipe( pipe_slow );
10830%}
10831
10832
10833// Compare & branch
10834instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10835  predicate(UseSSE == 0);
10836  match(Set cr (CmpF src1 src2));
10837  effect(KILL rax);
10838  ins_cost(200);
10839  format %{ "FLD    $src1\n\t"
10840            "FCOMp  $src2\n\t"
10841            "FNSTSW AX\n\t"
10842            "TEST   AX,0x400\n\t"
10843            "JZ,s   flags\n\t"
10844            "MOV    AH,1\t# unordered treat as LT\n"
10845    "flags:\tSAHF" %}
10846  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10847  ins_encode( Push_Reg_D(src1),
10848              OpcP, RegOpc(src2),
10849              fpu_flags);
10850  ins_pipe( pipe_slow );
10851%}
10852
10853// Compare vs zero into -1,0,1
10854instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10855  predicate(UseSSE == 0);
10856  match(Set dst (CmpF3 src1 zero));
10857  effect(KILL cr, KILL rax);
10858  ins_cost(280);
10859  format %{ "FTSTF  $dst,$src1" %}
10860  opcode(0xE4, 0xD9);
10861  ins_encode( Push_Reg_D(src1),
10862              OpcS, OpcP, PopFPU,
10863              CmpF_Result(dst));
10864  ins_pipe( pipe_slow );
10865%}
10866
10867// Compare into -1,0,1
10868instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10869  predicate(UseSSE == 0);
10870  match(Set dst (CmpF3 src1 src2));
10871  effect(KILL cr, KILL rax);
10872  ins_cost(300);
10873  format %{ "FCMPF  $dst,$src1,$src2" %}
10874  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10875  ins_encode( Push_Reg_D(src1),
10876              OpcP, RegOpc(src2),
10877              CmpF_Result(dst));
10878  ins_pipe( pipe_slow );
10879%}
10880
10881// float compare and set condition codes in EFLAGS by XMM regs
10882instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10883  predicate(UseSSE>=1);
10884  match(Set cr (CmpF dst src));
10885  effect(KILL rax);
10886  ins_cost(145);
10887  format %{ "COMISS $dst,$src\n"
10888          "\tJNP    exit\n"
10889          "\tMOV    ah,1       // saw a NaN, set CF\n"
10890          "\tSAHF\n"
10891     "exit:\tNOP               // avoid branch to branch" %}
10892  opcode(0x0F, 0x2F);
10893  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10894  ins_pipe( pipe_slow );
10895%}
10896
10897instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
10898  predicate(UseSSE>=1);
10899  match(Set cr (CmpF dst src));
10900  ins_cost(100);
10901  format %{ "COMISS $dst,$src" %}
10902  opcode(0x0F, 0x2F);
10903  ins_encode(OpcP, OpcS, RegReg(dst, src));
10904  ins_pipe( pipe_slow );
10905%}
10906
10907// float compare and set condition codes in EFLAGS by XMM regs
10908instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10909  predicate(UseSSE>=1);
10910  match(Set cr (CmpF dst (LoadF src)));
10911  effect(KILL rax);
10912  ins_cost(165);
10913  format %{ "COMISS $dst,$src\n"
10914          "\tJNP    exit\n"
10915          "\tMOV    ah,1       // saw a NaN, set CF\n"
10916          "\tSAHF\n"
10917     "exit:\tNOP               // avoid branch to branch" %}
10918  opcode(0x0F, 0x2F);
10919  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10920  ins_pipe( pipe_slow );
10921%}
10922
10923instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
10924  predicate(UseSSE>=1);
10925  match(Set cr (CmpF dst (LoadF src)));
10926  ins_cost(100);
10927  format %{ "COMISS $dst,$src" %}
10928  opcode(0x0F, 0x2F);
10929  ins_encode(OpcP, OpcS, RegMem(dst, src));
10930  ins_pipe( pipe_slow );
10931%}
10932
10933// Compare into -1,0,1 in XMM
10934instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10935  predicate(UseSSE>=1);
10936  match(Set dst (CmpF3 src1 src2));
10937  effect(KILL cr);
10938  ins_cost(255);
10939  format %{ "XOR    $dst,$dst\n"
10940          "\tCOMISS $src1,$src2\n"
10941          "\tJP,s   nan\n"
10942          "\tJEQ,s  exit\n"
10943          "\tJA,s   inc\n"
10944      "nan:\tDEC    $dst\n"
10945          "\tJMP,s  exit\n"
10946      "inc:\tINC    $dst\n"
10947      "exit:"
10948                %}
10949  opcode(0x0F, 0x2F);
10950  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10951  ins_pipe( pipe_slow );
10952%}
10953
10954// Compare into -1,0,1 in XMM and memory
10955instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10956  predicate(UseSSE>=1);
10957  match(Set dst (CmpF3 src1 (LoadF mem)));
10958  effect(KILL cr);
10959  ins_cost(275);
10960  format %{ "COMISS $src1,$mem\n"
10961          "\tMOV    $dst,0\t\t# do not blow flags\n"
10962          "\tJP,s   nan\n"
10963          "\tJEQ,s  exit\n"
10964          "\tJA,s   inc\n"
10965      "nan:\tDEC    $dst\n"
10966          "\tJMP,s  exit\n"
10967      "inc:\tINC    $dst\n"
10968      "exit:"
10969                %}
10970  opcode(0x0F, 0x2F);
10971  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
10972  ins_pipe( pipe_slow );
10973%}
10974
10975// Spill to obtain 24-bit precision
10976instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
10977  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10978  match(Set dst (SubF src1 src2));
10979
10980  format %{ "FSUB   $dst,$src1 - $src2" %}
10981  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10982  ins_encode( Push_Reg_F(src1),
10983              OpcReg_F(src2),
10984              Pop_Mem_F(dst) );
10985  ins_pipe( fpu_mem_reg_reg );
10986%}
10987//
10988// This instruction does not round to 24-bits
10989instruct subF_reg(regF dst, regF src) %{
10990  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10991  match(Set dst (SubF dst src));
10992
10993  format %{ "FSUB   $dst,$src" %}
10994  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10995  ins_encode( Push_Reg_F(src),
10996              OpcP, RegOpc(dst) );
10997  ins_pipe( fpu_reg_reg );
10998%}
10999
11000// Spill to obtain 24-bit precision
11001instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
11002  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11003  match(Set dst (AddF src1 src2));
11004
11005  format %{ "FADD   $dst,$src1,$src2" %}
11006  opcode(0xD8, 0x0); /* D8 C0+i */
11007  ins_encode( Push_Reg_F(src2),
11008              OpcReg_F(src1),
11009              Pop_Mem_F(dst) );
11010  ins_pipe( fpu_mem_reg_reg );
11011%}
11012//
11013// This instruction does not round to 24-bits
11014instruct addF_reg(regF dst, regF src) %{
11015  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11016  match(Set dst (AddF dst src));
11017
11018  format %{ "FLD    $src\n\t"
11019            "FADDp  $dst,ST" %}
11020  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
11021  ins_encode( Push_Reg_F(src),
11022              OpcP, RegOpc(dst) );
11023  ins_pipe( fpu_reg_reg );
11024%}
11025
11026// Add two single precision floating point values in xmm
11027instruct addX_reg(regX dst, regX src) %{
11028  predicate(UseSSE>=1);
11029  match(Set dst (AddF dst src));
11030  format %{ "ADDSS  $dst,$src" %}
11031  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
11032  ins_pipe( pipe_slow );
11033%}
11034
11035instruct addX_imm(regX dst, immXF con) %{
11036  predicate(UseSSE>=1);
11037  match(Set dst (AddF dst con));
11038  format %{ "ADDSS  $dst,[$con]" %}
11039  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
11040  ins_pipe( pipe_slow );
11041%}
11042
11043instruct addX_mem(regX dst, memory mem) %{
11044  predicate(UseSSE>=1);
11045  match(Set dst (AddF dst (LoadF mem)));
11046  format %{ "ADDSS  $dst,$mem" %}
11047  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
11048  ins_pipe( pipe_slow );
11049%}
11050
11051// Subtract two single precision floating point values in xmm
11052instruct subX_reg(regX dst, regX src) %{
11053  predicate(UseSSE>=1);
11054  match(Set dst (SubF dst src));
11055  format %{ "SUBSS  $dst,$src" %}
11056  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
11057  ins_pipe( pipe_slow );
11058%}
11059
11060instruct subX_imm(regX dst, immXF con) %{
11061  predicate(UseSSE>=1);
11062  match(Set dst (SubF dst con));
11063  format %{ "SUBSS  $dst,[$con]" %}
11064  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
11065  ins_pipe( pipe_slow );
11066%}
11067
11068instruct subX_mem(regX dst, memory mem) %{
11069  predicate(UseSSE>=1);
11070  match(Set dst (SubF dst (LoadF mem)));
11071  format %{ "SUBSS  $dst,$mem" %}
11072  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
11073  ins_pipe( pipe_slow );
11074%}
11075
11076// Multiply two single precision floating point values in xmm
11077instruct mulX_reg(regX dst, regX src) %{
11078  predicate(UseSSE>=1);
11079  match(Set dst (MulF dst src));
11080  format %{ "MULSS  $dst,$src" %}
11081  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
11082  ins_pipe( pipe_slow );
11083%}
11084
11085instruct mulX_imm(regX dst, immXF con) %{
11086  predicate(UseSSE>=1);
11087  match(Set dst (MulF dst con));
11088  format %{ "MULSS  $dst,[$con]" %}
11089  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
11090  ins_pipe( pipe_slow );
11091%}
11092
11093instruct mulX_mem(regX dst, memory mem) %{
11094  predicate(UseSSE>=1);
11095  match(Set dst (MulF dst (LoadF mem)));
11096  format %{ "MULSS  $dst,$mem" %}
11097  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
11098  ins_pipe( pipe_slow );
11099%}
11100
11101// Divide two single precision floating point values in xmm
11102instruct divX_reg(regX dst, regX src) %{
11103  predicate(UseSSE>=1);
11104  match(Set dst (DivF dst src));
11105  format %{ "DIVSS  $dst,$src" %}
11106  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
11107  ins_pipe( pipe_slow );
11108%}
11109
11110instruct divX_imm(regX dst, immXF con) %{
11111  predicate(UseSSE>=1);
11112  match(Set dst (DivF dst con));
11113  format %{ "DIVSS  $dst,[$con]" %}
11114  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
11115  ins_pipe( pipe_slow );
11116%}
11117
11118instruct divX_mem(regX dst, memory mem) %{
11119  predicate(UseSSE>=1);
11120  match(Set dst (DivF dst (LoadF mem)));
11121  format %{ "DIVSS  $dst,$mem" %}
11122  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
11123  ins_pipe( pipe_slow );
11124%}
11125
11126// Get the square root of a single precision floating point values in xmm
11127instruct sqrtX_reg(regX dst, regX src) %{
11128  predicate(UseSSE>=1);
11129  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
11130  format %{ "SQRTSS $dst,$src" %}
11131  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11132  ins_pipe( pipe_slow );
11133%}
11134
11135instruct sqrtX_mem(regX dst, memory mem) %{
11136  predicate(UseSSE>=1);
11137  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
11138  format %{ "SQRTSS $dst,$mem" %}
11139  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11140  ins_pipe( pipe_slow );
11141%}
11142
11143// Get the square root of a double precision floating point values in xmm
11144instruct sqrtXD_reg(regXD dst, regXD src) %{
11145  predicate(UseSSE>=2);
11146  match(Set dst (SqrtD src));
11147  format %{ "SQRTSD $dst,$src" %}
11148  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11149  ins_pipe( pipe_slow );
11150%}
11151
11152instruct sqrtXD_mem(regXD dst, memory mem) %{
11153  predicate(UseSSE>=2);
11154  match(Set dst (SqrtD (LoadD mem)));
11155  format %{ "SQRTSD $dst,$mem" %}
11156  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11157  ins_pipe( pipe_slow );
11158%}
11159
11160instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11161  predicate(UseSSE==0);
11162  match(Set dst (AbsF src));
11163  ins_cost(100);
11164  format %{ "FABS" %}
11165  opcode(0xE1, 0xD9);
11166  ins_encode( OpcS, OpcP );
11167  ins_pipe( fpu_reg_reg );
11168%}
11169
11170instruct absX_reg(regX dst ) %{
11171  predicate(UseSSE>=1);
11172  match(Set dst (AbsF dst));
11173  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11174  ins_encode( AbsXF_encoding(dst));
11175  ins_pipe( pipe_slow );
11176%}
11177
11178instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11179  predicate(UseSSE==0);
11180  match(Set dst (NegF src));
11181  ins_cost(100);
11182  format %{ "FCHS" %}
11183  opcode(0xE0, 0xD9);
11184  ins_encode( OpcS, OpcP );
11185  ins_pipe( fpu_reg_reg );
11186%}
11187
11188instruct negX_reg( regX dst ) %{
11189  predicate(UseSSE>=1);
11190  match(Set dst (NegF dst));
11191  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11192  ins_encode( NegXF_encoding(dst));
11193  ins_pipe( pipe_slow );
11194%}
11195
11196// Cisc-alternate to addF_reg
11197// Spill to obtain 24-bit precision
11198instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11199  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11200  match(Set dst (AddF src1 (LoadF src2)));
11201
11202  format %{ "FLD    $src2\n\t"
11203            "FADD   ST,$src1\n\t"
11204            "FSTP_S $dst" %}
11205  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11206  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11207              OpcReg_F(src1),
11208              Pop_Mem_F(dst) );
11209  ins_pipe( fpu_mem_reg_mem );
11210%}
11211//
11212// Cisc-alternate to addF_reg
11213// This instruction does not round to 24-bits
11214instruct addF_reg_mem(regF dst, memory src) %{
11215  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11216  match(Set dst (AddF dst (LoadF src)));
11217
11218  format %{ "FADD   $dst,$src" %}
11219  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11220  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11221              OpcP, RegOpc(dst) );
11222  ins_pipe( fpu_reg_mem );
11223%}
11224
11225// // Following two instructions for _222_mpegaudio
11226// Spill to obtain 24-bit precision
11227instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11228  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11229  match(Set dst (AddF src1 src2));
11230
11231  format %{ "FADD   $dst,$src1,$src2" %}
11232  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11233  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11234              OpcReg_F(src2),
11235              Pop_Mem_F(dst) );
11236  ins_pipe( fpu_mem_reg_mem );
11237%}
11238
11239// Cisc-spill variant
11240// Spill to obtain 24-bit precision
11241instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11242  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11243  match(Set dst (AddF src1 (LoadF src2)));
11244
11245  format %{ "FADD   $dst,$src1,$src2 cisc" %}
11246  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11247  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11248              set_instruction_start,
11249              OpcP, RMopc_Mem(secondary,src1),
11250              Pop_Mem_F(dst) );
11251  ins_pipe( fpu_mem_mem_mem );
11252%}
11253
11254// Spill to obtain 24-bit precision
11255instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11256  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11257  match(Set dst (AddF src1 src2));
11258
11259  format %{ "FADD   $dst,$src1,$src2" %}
11260  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11261  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11262              set_instruction_start,
11263              OpcP, RMopc_Mem(secondary,src1),
11264              Pop_Mem_F(dst) );
11265  ins_pipe( fpu_mem_mem_mem );
11266%}
11267
11268
11269// Spill to obtain 24-bit precision
11270instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11271  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11272  match(Set dst (AddF src1 src2));
11273  format %{ "FLD    $src1\n\t"
11274            "FADD   $src2\n\t"
11275            "FSTP_S $dst"  %}
11276  opcode(0xD8, 0x00);       /* D8 /0 */
11277  ins_encode( Push_Reg_F(src1),
11278              Opc_MemImm_F(src2),
11279              Pop_Mem_F(dst));
11280  ins_pipe( fpu_mem_reg_con );
11281%}
11282//
11283// This instruction does not round to 24-bits
11284instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
11285  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11286  match(Set dst (AddF src1 src2));
11287  format %{ "FLD    $src1\n\t"
11288            "FADD   $src2\n\t"
11289            "FSTP_S $dst"  %}
11290  opcode(0xD8, 0x00);       /* D8 /0 */
11291  ins_encode( Push_Reg_F(src1),
11292              Opc_MemImm_F(src2),
11293              Pop_Reg_F(dst));
11294  ins_pipe( fpu_reg_reg_con );
11295%}
11296
11297// Spill to obtain 24-bit precision
11298instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11299  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11300  match(Set dst (MulF src1 src2));
11301
11302  format %{ "FLD    $src1\n\t"
11303            "FMUL   $src2\n\t"
11304            "FSTP_S $dst"  %}
11305  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11306  ins_encode( Push_Reg_F(src1),
11307              OpcReg_F(src2),
11308              Pop_Mem_F(dst) );
11309  ins_pipe( fpu_mem_reg_reg );
11310%}
11311//
11312// This instruction does not round to 24-bits
11313instruct mulF_reg(regF dst, regF src1, regF src2) %{
11314  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11315  match(Set dst (MulF src1 src2));
11316
11317  format %{ "FLD    $src1\n\t"
11318            "FMUL   $src2\n\t"
11319            "FSTP_S $dst"  %}
11320  opcode(0xD8, 0x1); /* D8 C8+i */
11321  ins_encode( Push_Reg_F(src2),
11322              OpcReg_F(src1),
11323              Pop_Reg_F(dst) );
11324  ins_pipe( fpu_reg_reg_reg );
11325%}
11326
11327
11328// Spill to obtain 24-bit precision
11329// Cisc-alternate to reg-reg multiply
11330instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11331  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11332  match(Set dst (MulF src1 (LoadF src2)));
11333
11334  format %{ "FLD_S  $src2\n\t"
11335            "FMUL   $src1\n\t"
11336            "FSTP_S $dst"  %}
11337  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11338  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11339              OpcReg_F(src1),
11340              Pop_Mem_F(dst) );
11341  ins_pipe( fpu_mem_reg_mem );
11342%}
11343//
11344// This instruction does not round to 24-bits
11345// Cisc-alternate to reg-reg multiply
11346instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11347  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11348  match(Set dst (MulF src1 (LoadF src2)));
11349
11350  format %{ "FMUL   $dst,$src1,$src2" %}
11351  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11352  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11353              OpcReg_F(src1),
11354              Pop_Reg_F(dst) );
11355  ins_pipe( fpu_reg_reg_mem );
11356%}
11357
11358// Spill to obtain 24-bit precision
11359instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11360  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11361  match(Set dst (MulF src1 src2));
11362
11363  format %{ "FMUL   $dst,$src1,$src2" %}
11364  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11365  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11366              set_instruction_start,
11367              OpcP, RMopc_Mem(secondary,src1),
11368              Pop_Mem_F(dst) );
11369  ins_pipe( fpu_mem_mem_mem );
11370%}
11371
11372// Spill to obtain 24-bit precision
11373instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11374  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11375  match(Set dst (MulF src1 src2));
11376
11377  format %{ "FMULc $dst,$src1,$src2" %}
11378  opcode(0xD8, 0x1);  /* D8 /1*/
11379  ins_encode( Push_Reg_F(src1),
11380              Opc_MemImm_F(src2),
11381              Pop_Mem_F(dst));
11382  ins_pipe( fpu_mem_reg_con );
11383%}
11384//
11385// This instruction does not round to 24-bits
11386instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
11387  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11388  match(Set dst (MulF src1 src2));
11389
11390  format %{ "FMULc $dst. $src1, $src2" %}
11391  opcode(0xD8, 0x1);  /* D8 /1*/
11392  ins_encode( Push_Reg_F(src1),
11393              Opc_MemImm_F(src2),
11394              Pop_Reg_F(dst));
11395  ins_pipe( fpu_reg_reg_con );
11396%}
11397
11398
11399//
11400// MACRO1 -- subsume unshared load into mulF
11401// This instruction does not round to 24-bits
11402instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11403  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11404  match(Set dst (MulF (LoadF mem1) src));
11405
11406  format %{ "FLD    $mem1    ===MACRO1===\n\t"
11407            "FMUL   ST,$src\n\t"
11408            "FSTP   $dst" %}
11409  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11410  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11411              OpcReg_F(src),
11412              Pop_Reg_F(dst) );
11413  ins_pipe( fpu_reg_reg_mem );
11414%}
11415//
11416// MACRO2 -- addF a mulF which subsumed an unshared load
11417// This instruction does not round to 24-bits
11418instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11419  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11420  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11421  ins_cost(95);
11422
11423  format %{ "FLD    $mem1     ===MACRO2===\n\t"
11424            "FMUL   ST,$src1  subsume mulF left load\n\t"
11425            "FADD   ST,$src2\n\t"
11426            "FSTP   $dst" %}
11427  opcode(0xD9); /* LoadF D9 /0 */
11428  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11429              FMul_ST_reg(src1),
11430              FAdd_ST_reg(src2),
11431              Pop_Reg_F(dst) );
11432  ins_pipe( fpu_reg_mem_reg_reg );
11433%}
11434
11435// MACRO3 -- addF a mulF
11436// This instruction does not round to 24-bits.  It is a '2-address'
11437// instruction in that the result goes back to src2.  This eliminates
11438// a move from the macro; possibly the register allocator will have
11439// to add it back (and maybe not).
11440instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11441  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11442  match(Set src2 (AddF (MulF src0 src1) src2));
11443
11444  format %{ "FLD    $src0     ===MACRO3===\n\t"
11445            "FMUL   ST,$src1\n\t"
11446            "FADDP  $src2,ST" %}
11447  opcode(0xD9); /* LoadF D9 /0 */
11448  ins_encode( Push_Reg_F(src0),
11449              FMul_ST_reg(src1),
11450              FAddP_reg_ST(src2) );
11451  ins_pipe( fpu_reg_reg_reg );
11452%}
11453
11454// MACRO4 -- divF subF
11455// This instruction does not round to 24-bits
11456instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11457  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11458  match(Set dst (DivF (SubF src2 src1) src3));
11459
11460  format %{ "FLD    $src2   ===MACRO4===\n\t"
11461            "FSUB   ST,$src1\n\t"
11462            "FDIV   ST,$src3\n\t"
11463            "FSTP  $dst" %}
11464  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11465  ins_encode( Push_Reg_F(src2),
11466              subF_divF_encode(src1,src3),
11467              Pop_Reg_F(dst) );
11468  ins_pipe( fpu_reg_reg_reg_reg );
11469%}
11470
11471// Spill to obtain 24-bit precision
11472instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11473  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11474  match(Set dst (DivF src1 src2));
11475
11476  format %{ "FDIV   $dst,$src1,$src2" %}
11477  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11478  ins_encode( Push_Reg_F(src1),
11479              OpcReg_F(src2),
11480              Pop_Mem_F(dst) );
11481  ins_pipe( fpu_mem_reg_reg );
11482%}
11483//
11484// This instruction does not round to 24-bits
11485instruct divF_reg(regF dst, regF src) %{
11486  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11487  match(Set dst (DivF dst src));
11488
11489  format %{ "FDIV   $dst,$src" %}
11490  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11491  ins_encode( Push_Reg_F(src),
11492              OpcP, RegOpc(dst) );
11493  ins_pipe( fpu_reg_reg );
11494%}
11495
11496
11497// Spill to obtain 24-bit precision
11498instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11499  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11500  match(Set dst (ModF src1 src2));
11501  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11502
11503  format %{ "FMOD   $dst,$src1,$src2" %}
11504  ins_encode( Push_Reg_Mod_D(src1, src2),
11505              emitModD(),
11506              Push_Result_Mod_D(src2),
11507              Pop_Mem_F(dst));
11508  ins_pipe( pipe_slow );
11509%}
11510//
11511// This instruction does not round to 24-bits
11512instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11513  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11514  match(Set dst (ModF dst src));
11515  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11516
11517  format %{ "FMOD   $dst,$src" %}
11518  ins_encode(Push_Reg_Mod_D(dst, src),
11519              emitModD(),
11520              Push_Result_Mod_D(src),
11521              Pop_Reg_F(dst));
11522  ins_pipe( pipe_slow );
11523%}
11524
11525instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11526  predicate(UseSSE>=1);
11527  match(Set dst (ModF src0 src1));
11528  effect(KILL rax, KILL cr);
11529  format %{ "SUB    ESP,4\t # FMOD\n"
11530          "\tMOVSS  [ESP+0],$src1\n"
11531          "\tFLD_S  [ESP+0]\n"
11532          "\tMOVSS  [ESP+0],$src0\n"
11533          "\tFLD_S  [ESP+0]\n"
11534     "loop:\tFPREM\n"
11535          "\tFWAIT\n"
11536          "\tFNSTSW AX\n"
11537          "\tSAHF\n"
11538          "\tJP     loop\n"
11539          "\tFSTP_S [ESP+0]\n"
11540          "\tMOVSS  $dst,[ESP+0]\n"
11541          "\tADD    ESP,4\n"
11542          "\tFSTP   ST0\t # Restore FPU Stack"
11543    %}
11544  ins_cost(250);
11545  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11546  ins_pipe( pipe_slow );
11547%}
11548
11549
11550//----------Arithmetic Conversion Instructions---------------------------------
11551// The conversions operations are all Alpha sorted.  Please keep it that way!
11552
11553instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11554  predicate(UseSSE==0);
11555  match(Set dst (RoundFloat src));
11556  ins_cost(125);
11557  format %{ "FST_S  $dst,$src\t# F-round" %}
11558  ins_encode( Pop_Mem_Reg_F(dst, src) );
11559  ins_pipe( fpu_mem_reg );
11560%}
11561
11562instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11563  predicate(UseSSE<=1);
11564  match(Set dst (RoundDouble src));
11565  ins_cost(125);
11566  format %{ "FST_D  $dst,$src\t# D-round" %}
11567  ins_encode( Pop_Mem_Reg_D(dst, src) );
11568  ins_pipe( fpu_mem_reg );
11569%}
11570
11571// Force rounding to 24-bit precision and 6-bit exponent
11572instruct convD2F_reg(stackSlotF dst, regD src) %{
11573  predicate(UseSSE==0);
11574  match(Set dst (ConvD2F src));
11575  format %{ "FST_S  $dst,$src\t# F-round" %}
11576  expand %{
11577    roundFloat_mem_reg(dst,src);
11578  %}
11579%}
11580
11581// Force rounding to 24-bit precision and 6-bit exponent
11582instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11583  predicate(UseSSE==1);
11584  match(Set dst (ConvD2F src));
11585  effect( KILL cr );
11586  format %{ "SUB    ESP,4\n\t"
11587            "FST_S  [ESP],$src\t# F-round\n\t"
11588            "MOVSS  $dst,[ESP]\n\t"
11589            "ADD ESP,4" %}
11590  ins_encode( D2X_encoding(dst, src) );
11591  ins_pipe( pipe_slow );
11592%}
11593
11594// Force rounding double precision to single precision
11595instruct convXD2X_reg(regX dst, regXD src) %{
11596  predicate(UseSSE>=2);
11597  match(Set dst (ConvD2F src));
11598  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11599  opcode(0xF2, 0x0F, 0x5A);
11600  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11601  ins_pipe( pipe_slow );
11602%}
11603
11604instruct convF2D_reg_reg(regD dst, regF src) %{
11605  predicate(UseSSE==0);
11606  match(Set dst (ConvF2D src));
11607  format %{ "FST_S  $dst,$src\t# D-round" %}
11608  ins_encode( Pop_Reg_Reg_D(dst, src));
11609  ins_pipe( fpu_reg_reg );
11610%}
11611
11612instruct convF2D_reg(stackSlotD dst, regF src) %{
11613  predicate(UseSSE==1);
11614  match(Set dst (ConvF2D src));
11615  format %{ "FST_D  $dst,$src\t# D-round" %}
11616  expand %{
11617    roundDouble_mem_reg(dst,src);
11618  %}
11619%}
11620
11621instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11622  predicate(UseSSE==1);
11623  match(Set dst (ConvF2D src));
11624  effect( KILL cr );
11625  format %{ "SUB    ESP,4\n\t"
11626            "MOVSS  [ESP] $src\n\t"
11627            "FLD_S  [ESP]\n\t"
11628            "ADD    ESP,4\n\t"
11629            "FSTP   $dst\t# D-round" %}
11630  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11631  ins_pipe( pipe_slow );
11632%}
11633
11634instruct convX2XD_reg(regXD dst, regX src) %{
11635  predicate(UseSSE>=2);
11636  match(Set dst (ConvF2D src));
11637  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11638  opcode(0xF3, 0x0F, 0x5A);
11639  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11640  ins_pipe( pipe_slow );
11641%}
11642
11643// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11644instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11645  predicate(UseSSE<=1);
11646  match(Set dst (ConvD2I src));
11647  effect( KILL tmp, KILL cr );
11648  format %{ "FLD    $src\t# Convert double to int \n\t"
11649            "FLDCW  trunc mode\n\t"
11650            "SUB    ESP,4\n\t"
11651            "FISTp  [ESP + #0]\n\t"
11652            "FLDCW  std/24-bit mode\n\t"
11653            "POP    EAX\n\t"
11654            "CMP    EAX,0x80000000\n\t"
11655            "JNE,s  fast\n\t"
11656            "FLD_D  $src\n\t"
11657            "CALL   d2i_wrapper\n"
11658      "fast:" %}
11659  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11660  ins_pipe( pipe_slow );
11661%}
11662
11663// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11664instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11665  predicate(UseSSE>=2);
11666  match(Set dst (ConvD2I src));
11667  effect( KILL tmp, KILL cr );
11668  format %{ "CVTTSD2SI $dst, $src\n\t"
11669            "CMP    $dst,0x80000000\n\t"
11670            "JNE,s  fast\n\t"
11671            "SUB    ESP, 8\n\t"
11672            "MOVSD  [ESP], $src\n\t"
11673            "FLD_D  [ESP]\n\t"
11674            "ADD    ESP, 8\n\t"
11675            "CALL   d2i_wrapper\n"
11676      "fast:" %}
11677  opcode(0x1); // double-precision conversion
11678  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11679  ins_pipe( pipe_slow );
11680%}
11681
11682instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11683  predicate(UseSSE<=1);
11684  match(Set dst (ConvD2L src));
11685  effect( KILL cr );
11686  format %{ "FLD    $src\t# Convert double to long\n\t"
11687            "FLDCW  trunc mode\n\t"
11688            "SUB    ESP,8\n\t"
11689            "FISTp  [ESP + #0]\n\t"
11690            "FLDCW  std/24-bit mode\n\t"
11691            "POP    EAX\n\t"
11692            "POP    EDX\n\t"
11693            "CMP    EDX,0x80000000\n\t"
11694            "JNE,s  fast\n\t"
11695            "TEST   EAX,EAX\n\t"
11696            "JNE,s  fast\n\t"
11697            "FLD    $src\n\t"
11698            "CALL   d2l_wrapper\n"
11699      "fast:" %}
11700  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11701  ins_pipe( pipe_slow );
11702%}
11703
11704// XMM lacks a float/double->long conversion, so use the old FPU stack.
11705instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11706  predicate (UseSSE>=2);
11707  match(Set dst (ConvD2L src));
11708  effect( KILL cr );
11709  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11710            "MOVSD  [ESP],$src\n\t"
11711            "FLD_D  [ESP]\n\t"
11712            "FLDCW  trunc mode\n\t"
11713            "FISTp  [ESP + #0]\n\t"
11714            "FLDCW  std/24-bit mode\n\t"
11715            "POP    EAX\n\t"
11716            "POP    EDX\n\t"
11717            "CMP    EDX,0x80000000\n\t"
11718            "JNE,s  fast\n\t"
11719            "TEST   EAX,EAX\n\t"
11720            "JNE,s  fast\n\t"
11721            "SUB    ESP,8\n\t"
11722            "MOVSD  [ESP],$src\n\t"
11723            "FLD_D  [ESP]\n\t"
11724            "CALL   d2l_wrapper\n"
11725      "fast:" %}
11726  ins_encode( XD2L_encoding(src) );
11727  ins_pipe( pipe_slow );
11728%}
11729
11730// Convert a double to an int.  Java semantics require we do complex
11731// manglations in the corner cases.  So we set the rounding mode to
11732// 'zero', store the darned double down as an int, and reset the
11733// rounding mode to 'nearest'.  The hardware stores a flag value down
11734// if we would overflow or converted a NAN; we check for this and
11735// and go the slow path if needed.
11736instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11737  predicate(UseSSE==0);
11738  match(Set dst (ConvF2I src));
11739  effect( KILL tmp, KILL cr );
11740  format %{ "FLD    $src\t# Convert float to int \n\t"
11741            "FLDCW  trunc mode\n\t"
11742            "SUB    ESP,4\n\t"
11743            "FISTp  [ESP + #0]\n\t"
11744            "FLDCW  std/24-bit mode\n\t"
11745            "POP    EAX\n\t"
11746            "CMP    EAX,0x80000000\n\t"
11747            "JNE,s  fast\n\t"
11748            "FLD    $src\n\t"
11749            "CALL   d2i_wrapper\n"
11750      "fast:" %}
11751  // D2I_encoding works for F2I
11752  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11753  ins_pipe( pipe_slow );
11754%}
11755
11756// Convert a float in xmm to an int reg.
11757instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11758  predicate(UseSSE>=1);
11759  match(Set dst (ConvF2I src));
11760  effect( KILL tmp, KILL cr );
11761  format %{ "CVTTSS2SI $dst, $src\n\t"
11762            "CMP    $dst,0x80000000\n\t"
11763            "JNE,s  fast\n\t"
11764            "SUB    ESP, 4\n\t"
11765            "MOVSS  [ESP], $src\n\t"
11766            "FLD    [ESP]\n\t"
11767            "ADD    ESP, 4\n\t"
11768            "CALL   d2i_wrapper\n"
11769      "fast:" %}
11770  opcode(0x0); // single-precision conversion
11771  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11772  ins_pipe( pipe_slow );
11773%}
11774
11775instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11776  predicate(UseSSE==0);
11777  match(Set dst (ConvF2L src));
11778  effect( KILL cr );
11779  format %{ "FLD    $src\t# Convert float to long\n\t"
11780            "FLDCW  trunc mode\n\t"
11781            "SUB    ESP,8\n\t"
11782            "FISTp  [ESP + #0]\n\t"
11783            "FLDCW  std/24-bit mode\n\t"
11784            "POP    EAX\n\t"
11785            "POP    EDX\n\t"
11786            "CMP    EDX,0x80000000\n\t"
11787            "JNE,s  fast\n\t"
11788            "TEST   EAX,EAX\n\t"
11789            "JNE,s  fast\n\t"
11790            "FLD    $src\n\t"
11791            "CALL   d2l_wrapper\n"
11792      "fast:" %}
11793  // D2L_encoding works for F2L
11794  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11795  ins_pipe( pipe_slow );
11796%}
11797
11798// XMM lacks a float/double->long conversion, so use the old FPU stack.
11799instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11800  predicate (UseSSE>=1);
11801  match(Set dst (ConvF2L src));
11802  effect( KILL cr );
11803  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11804            "MOVSS  [ESP],$src\n\t"
11805            "FLD_S  [ESP]\n\t"
11806            "FLDCW  trunc mode\n\t"
11807            "FISTp  [ESP + #0]\n\t"
11808            "FLDCW  std/24-bit mode\n\t"
11809            "POP    EAX\n\t"
11810            "POP    EDX\n\t"
11811            "CMP    EDX,0x80000000\n\t"
11812            "JNE,s  fast\n\t"
11813            "TEST   EAX,EAX\n\t"
11814            "JNE,s  fast\n\t"
11815            "SUB    ESP,4\t# Convert float to long\n\t"
11816            "MOVSS  [ESP],$src\n\t"
11817            "FLD_S  [ESP]\n\t"
11818            "ADD    ESP,4\n\t"
11819            "CALL   d2l_wrapper\n"
11820      "fast:" %}
11821  ins_encode( X2L_encoding(src) );
11822  ins_pipe( pipe_slow );
11823%}
11824
11825instruct convI2D_reg(regD dst, stackSlotI src) %{
11826  predicate( UseSSE<=1 );
11827  match(Set dst (ConvI2D src));
11828  format %{ "FILD   $src\n\t"
11829            "FSTP   $dst" %}
11830  opcode(0xDB, 0x0);  /* DB /0 */
11831  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
11832  ins_pipe( fpu_reg_mem );
11833%}
11834
11835instruct convI2XD_reg(regXD dst, eRegI src) %{
11836  predicate( UseSSE>=2 && !UseXmmI2D );
11837  match(Set dst (ConvI2D src));
11838  format %{ "CVTSI2SD $dst,$src" %}
11839  opcode(0xF2, 0x0F, 0x2A);
11840  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11841  ins_pipe( pipe_slow );
11842%}
11843
11844instruct convI2XD_mem(regXD dst, memory mem) %{
11845  predicate( UseSSE>=2 );
11846  match(Set dst (ConvI2D (LoadI mem)));
11847  format %{ "CVTSI2SD $dst,$mem" %}
11848  opcode(0xF2, 0x0F, 0x2A);
11849  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
11850  ins_pipe( pipe_slow );
11851%}
11852
11853instruct convXI2XD_reg(regXD dst, eRegI src)
11854%{
11855  predicate( UseSSE>=2 && UseXmmI2D );
11856  match(Set dst (ConvI2D src));
11857
11858  format %{ "MOVD  $dst,$src\n\t"
11859            "CVTDQ2PD $dst,$dst\t# i2d" %}
11860  ins_encode %{
11861    __ movdl($dst$$XMMRegister, $src$$Register);
11862    __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11863  %}
11864  ins_pipe(pipe_slow); // XXX
11865%}
11866
11867instruct convI2D_mem(regD dst, memory mem) %{
11868  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11869  match(Set dst (ConvI2D (LoadI mem)));
11870  format %{ "FILD   $mem\n\t"
11871            "FSTP   $dst" %}
11872  opcode(0xDB);      /* DB /0 */
11873  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11874              Pop_Reg_D(dst));
11875  ins_pipe( fpu_reg_mem );
11876%}
11877
11878// Convert a byte to a float; no rounding step needed.
11879instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11880  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11881  match(Set dst (ConvI2F src));
11882  format %{ "FILD   $src\n\t"
11883            "FSTP   $dst" %}
11884
11885  opcode(0xDB, 0x0);  /* DB /0 */
11886  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11887  ins_pipe( fpu_reg_mem );
11888%}
11889
11890// In 24-bit mode, force exponent rounding by storing back out
11891instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11892  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11893  match(Set dst (ConvI2F src));
11894  ins_cost(200);
11895  format %{ "FILD   $src\n\t"
11896            "FSTP_S $dst" %}
11897  opcode(0xDB, 0x0);  /* DB /0 */
11898  ins_encode( Push_Mem_I(src),
11899              Pop_Mem_F(dst));
11900  ins_pipe( fpu_mem_mem );
11901%}
11902
11903// In 24-bit mode, force exponent rounding by storing back out
11904instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11905  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11906  match(Set dst (ConvI2F (LoadI mem)));
11907  ins_cost(200);
11908  format %{ "FILD   $mem\n\t"
11909            "FSTP_S $dst" %}
11910  opcode(0xDB);  /* DB /0 */
11911  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11912              Pop_Mem_F(dst));
11913  ins_pipe( fpu_mem_mem );
11914%}
11915
11916// This instruction does not round to 24-bits
11917instruct convI2F_reg(regF dst, stackSlotI src) %{
11918  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11919  match(Set dst (ConvI2F src));
11920  format %{ "FILD   $src\n\t"
11921            "FSTP   $dst" %}
11922  opcode(0xDB, 0x0);  /* DB /0 */
11923  ins_encode( Push_Mem_I(src),
11924              Pop_Reg_F(dst));
11925  ins_pipe( fpu_reg_mem );
11926%}
11927
11928// This instruction does not round to 24-bits
11929instruct convI2F_mem(regF dst, memory mem) %{
11930  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11931  match(Set dst (ConvI2F (LoadI mem)));
11932  format %{ "FILD   $mem\n\t"
11933            "FSTP   $dst" %}
11934  opcode(0xDB);      /* DB /0 */
11935  ins_encode( OpcP, RMopc_Mem(0x00,mem),
11936              Pop_Reg_F(dst));
11937  ins_pipe( fpu_reg_mem );
11938%}
11939
11940// Convert an int to a float in xmm; no rounding step needed.
11941instruct convI2X_reg(regX dst, eRegI src) %{
11942  predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11943  match(Set dst (ConvI2F src));
11944  format %{ "CVTSI2SS $dst, $src" %}
11945
11946  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11947  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11948  ins_pipe( pipe_slow );
11949%}
11950
11951 instruct convXI2X_reg(regX dst, eRegI src)
11952%{
11953  predicate( UseSSE>=2 && UseXmmI2F );
11954  match(Set dst (ConvI2F src));
11955
11956  format %{ "MOVD  $dst,$src\n\t"
11957            "CVTDQ2PS $dst,$dst\t# i2f" %}
11958  ins_encode %{
11959    __ movdl($dst$$XMMRegister, $src$$Register);
11960    __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11961  %}
11962  ins_pipe(pipe_slow); // XXX
11963%}
11964
11965instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
11966  match(Set dst (ConvI2L src));
11967  effect(KILL cr);
11968  ins_cost(375);
11969  format %{ "MOV    $dst.lo,$src\n\t"
11970            "MOV    $dst.hi,$src\n\t"
11971            "SAR    $dst.hi,31" %}
11972  ins_encode(convert_int_long(dst,src));
11973  ins_pipe( ialu_reg_reg_long );
11974%}
11975
11976// Zero-extend convert int to long
11977instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
11978  match(Set dst (AndL (ConvI2L src) mask) );
11979  effect( KILL flags );
11980  ins_cost(250);
11981  format %{ "MOV    $dst.lo,$src\n\t"
11982            "XOR    $dst.hi,$dst.hi" %}
11983  opcode(0x33); // XOR
11984  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11985  ins_pipe( ialu_reg_reg_long );
11986%}
11987
11988// Zero-extend long
11989instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11990  match(Set dst (AndL src mask) );
11991  effect( KILL flags );
11992  ins_cost(250);
11993  format %{ "MOV    $dst.lo,$src.lo\n\t"
11994            "XOR    $dst.hi,$dst.hi\n\t" %}
11995  opcode(0x33); // XOR
11996  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11997  ins_pipe( ialu_reg_reg_long );
11998%}
11999
12000instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
12001  predicate (UseSSE<=1);
12002  match(Set dst (ConvL2D src));
12003  effect( KILL cr );
12004  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12005            "PUSH   $src.lo\n\t"
12006            "FILD   ST,[ESP + #0]\n\t"
12007            "ADD    ESP,8\n\t"
12008            "FSTP_D $dst\t# D-round" %}
12009  opcode(0xDF, 0x5);  /* DF /5 */
12010  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
12011  ins_pipe( pipe_slow );
12012%}
12013
12014instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
12015  predicate (UseSSE>=2);
12016  match(Set dst (ConvL2D src));
12017  effect( KILL cr );
12018  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12019            "PUSH   $src.lo\n\t"
12020            "FILD_D [ESP]\n\t"
12021            "FSTP_D [ESP]\n\t"
12022            "MOVSD  $dst,[ESP]\n\t"
12023            "ADD    ESP,8" %}
12024  opcode(0xDF, 0x5);  /* DF /5 */
12025  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
12026  ins_pipe( pipe_slow );
12027%}
12028
12029instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
12030  predicate (UseSSE>=1);
12031  match(Set dst (ConvL2F src));
12032  effect( KILL cr );
12033  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12034            "PUSH   $src.lo\n\t"
12035            "FILD_D [ESP]\n\t"
12036            "FSTP_S [ESP]\n\t"
12037            "MOVSS  $dst,[ESP]\n\t"
12038            "ADD    ESP,8" %}
12039  opcode(0xDF, 0x5);  /* DF /5 */
12040  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
12041  ins_pipe( pipe_slow );
12042%}
12043
12044instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
12045  match(Set dst (ConvL2F src));
12046  effect( KILL cr );
12047  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12048            "PUSH   $src.lo\n\t"
12049            "FILD   ST,[ESP + #0]\n\t"
12050            "ADD    ESP,8\n\t"
12051            "FSTP_S $dst\t# F-round" %}
12052  opcode(0xDF, 0x5);  /* DF /5 */
12053  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
12054  ins_pipe( pipe_slow );
12055%}
12056
12057instruct convL2I_reg( eRegI dst, eRegL src ) %{
12058  match(Set dst (ConvL2I src));
12059  effect( DEF dst, USE src );
12060  format %{ "MOV    $dst,$src.lo" %}
12061  ins_encode(enc_CopyL_Lo(dst,src));
12062  ins_pipe( ialu_reg_reg );
12063%}
12064
12065
12066instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
12067  match(Set dst (MoveF2I src));
12068  effect( DEF dst, USE src );
12069  ins_cost(100);
12070  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
12071  opcode(0x8B);
12072  ins_encode( OpcP, RegMem(dst,src));
12073  ins_pipe( ialu_reg_mem );
12074%}
12075
12076instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
12077  predicate(UseSSE==0);
12078  match(Set dst (MoveF2I src));
12079  effect( DEF dst, USE src );
12080
12081  ins_cost(125);
12082  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
12083  ins_encode( Pop_Mem_Reg_F(dst, src) );
12084  ins_pipe( fpu_mem_reg );
12085%}
12086
12087instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
12088  predicate(UseSSE>=1);
12089  match(Set dst (MoveF2I src));
12090  effect( DEF dst, USE src );
12091
12092  ins_cost(95);
12093  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
12094  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
12095  ins_pipe( pipe_slow );
12096%}
12097
12098instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
12099  predicate(UseSSE>=2);
12100  match(Set dst (MoveF2I src));
12101  effect( DEF dst, USE src );
12102  ins_cost(85);
12103  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
12104  ins_encode( MovX2I_reg(dst, src));
12105  ins_pipe( pipe_slow );
12106%}
12107
12108instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
12109  match(Set dst (MoveI2F src));
12110  effect( DEF dst, USE src );
12111
12112  ins_cost(100);
12113  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
12114  opcode(0x89);
12115  ins_encode( OpcPRegSS( dst, src ) );
12116  ins_pipe( ialu_mem_reg );
12117%}
12118
12119
12120instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
12121  predicate(UseSSE==0);
12122  match(Set dst (MoveI2F src));
12123  effect(DEF dst, USE src);
12124
12125  ins_cost(125);
12126  format %{ "FLD_S  $src\n\t"
12127            "FSTP   $dst\t# MoveI2F_stack_reg" %}
12128  opcode(0xD9);               /* D9 /0, FLD m32real */
12129  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12130              Pop_Reg_F(dst) );
12131  ins_pipe( fpu_reg_mem );
12132%}
12133
12134instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
12135  predicate(UseSSE>=1);
12136  match(Set dst (MoveI2F src));
12137  effect( DEF dst, USE src );
12138
12139  ins_cost(95);
12140  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
12141  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12142  ins_pipe( pipe_slow );
12143%}
12144
12145instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
12146  predicate(UseSSE>=2);
12147  match(Set dst (MoveI2F src));
12148  effect( DEF dst, USE src );
12149
12150  ins_cost(85);
12151  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12152  ins_encode( MovI2X_reg(dst, src) );
12153  ins_pipe( pipe_slow );
12154%}
12155
12156instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12157  match(Set dst (MoveD2L src));
12158  effect(DEF dst, USE src);
12159
12160  ins_cost(250);
12161  format %{ "MOV    $dst.lo,$src\n\t"
12162            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12163  opcode(0x8B, 0x8B);
12164  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12165  ins_pipe( ialu_mem_long_reg );
12166%}
12167
12168instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12169  predicate(UseSSE<=1);
12170  match(Set dst (MoveD2L src));
12171  effect(DEF dst, USE src);
12172
12173  ins_cost(125);
12174  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12175  ins_encode( Pop_Mem_Reg_D(dst, src) );
12176  ins_pipe( fpu_mem_reg );
12177%}
12178
12179instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12180  predicate(UseSSE>=2);
12181  match(Set dst (MoveD2L src));
12182  effect(DEF dst, USE src);
12183  ins_cost(95);
12184
12185  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12186  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12187  ins_pipe( pipe_slow );
12188%}
12189
12190instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12191  predicate(UseSSE>=2);
12192  match(Set dst (MoveD2L src));
12193  effect(DEF dst, USE src, TEMP tmp);
12194  ins_cost(85);
12195  format %{ "MOVD   $dst.lo,$src\n\t"
12196            "PSHUFLW $tmp,$src,0x4E\n\t"
12197            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12198  ins_encode( MovXD2L_reg(dst, src, tmp) );
12199  ins_pipe( pipe_slow );
12200%}
12201
12202instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12203  match(Set dst (MoveL2D src));
12204  effect(DEF dst, USE src);
12205
12206  ins_cost(200);
12207  format %{ "MOV    $dst,$src.lo\n\t"
12208            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12209  opcode(0x89, 0x89);
12210  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12211  ins_pipe( ialu_mem_long_reg );
12212%}
12213
12214
12215instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12216  predicate(UseSSE<=1);
12217  match(Set dst (MoveL2D src));
12218  effect(DEF dst, USE src);
12219  ins_cost(125);
12220
12221  format %{ "FLD_D  $src\n\t"
12222            "FSTP   $dst\t# MoveL2D_stack_reg" %}
12223  opcode(0xDD);               /* DD /0, FLD m64real */
12224  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12225              Pop_Reg_D(dst) );
12226  ins_pipe( fpu_reg_mem );
12227%}
12228
12229
12230instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12231  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12232  match(Set dst (MoveL2D src));
12233  effect(DEF dst, USE src);
12234
12235  ins_cost(95);
12236  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12237  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12238  ins_pipe( pipe_slow );
12239%}
12240
12241instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12242  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12243  match(Set dst (MoveL2D src));
12244  effect(DEF dst, USE src);
12245
12246  ins_cost(95);
12247  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12248  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12249  ins_pipe( pipe_slow );
12250%}
12251
12252instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12253  predicate(UseSSE>=2);
12254  match(Set dst (MoveL2D src));
12255  effect(TEMP dst, USE src, TEMP tmp);
12256  ins_cost(85);
12257  format %{ "MOVD   $dst,$src.lo\n\t"
12258            "MOVD   $tmp,$src.hi\n\t"
12259            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12260  ins_encode( MovL2XD_reg(dst, src, tmp) );
12261  ins_pipe( pipe_slow );
12262%}
12263
12264// Replicate scalar to packed byte (1 byte) values in xmm
12265instruct Repl8B_reg(regXD dst, regXD src) %{
12266  predicate(UseSSE>=2);
12267  match(Set dst (Replicate8B src));
12268  format %{ "MOVDQA  $dst,$src\n\t"
12269            "PUNPCKLBW $dst,$dst\n\t"
12270            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12271  ins_encode( pshufd_8x8(dst, src));
12272  ins_pipe( pipe_slow );
12273%}
12274
12275// Replicate scalar to packed byte (1 byte) values in xmm
12276instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12277  predicate(UseSSE>=2);
12278  match(Set dst (Replicate8B src));
12279  format %{ "MOVD    $dst,$src\n\t"
12280            "PUNPCKLBW $dst,$dst\n\t"
12281            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12282  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12283  ins_pipe( pipe_slow );
12284%}
12285
12286// Replicate scalar zero to packed byte (1 byte) values in xmm
12287instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12288  predicate(UseSSE>=2);
12289  match(Set dst (Replicate8B zero));
12290  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12291  ins_encode( pxor(dst, dst));
12292  ins_pipe( fpu_reg_reg );
12293%}
12294
12295// Replicate scalar to packed shore (2 byte) values in xmm
12296instruct Repl4S_reg(regXD dst, regXD src) %{
12297  predicate(UseSSE>=2);
12298  match(Set dst (Replicate4S src));
12299  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12300  ins_encode( pshufd_4x16(dst, src));
12301  ins_pipe( fpu_reg_reg );
12302%}
12303
12304// Replicate scalar to packed shore (2 byte) values in xmm
12305instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12306  predicate(UseSSE>=2);
12307  match(Set dst (Replicate4S src));
12308  format %{ "MOVD    $dst,$src\n\t"
12309            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12310  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12311  ins_pipe( fpu_reg_reg );
12312%}
12313
12314// Replicate scalar zero to packed short (2 byte) values in xmm
12315instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12316  predicate(UseSSE>=2);
12317  match(Set dst (Replicate4S zero));
12318  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12319  ins_encode( pxor(dst, dst));
12320  ins_pipe( fpu_reg_reg );
12321%}
12322
12323// Replicate scalar to packed char (2 byte) values in xmm
12324instruct Repl4C_reg(regXD dst, regXD src) %{
12325  predicate(UseSSE>=2);
12326  match(Set dst (Replicate4C src));
12327  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12328  ins_encode( pshufd_4x16(dst, src));
12329  ins_pipe( fpu_reg_reg );
12330%}
12331
12332// Replicate scalar to packed char (2 byte) values in xmm
12333instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12334  predicate(UseSSE>=2);
12335  match(Set dst (Replicate4C src));
12336  format %{ "MOVD    $dst,$src\n\t"
12337            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12338  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12339  ins_pipe( fpu_reg_reg );
12340%}
12341
12342// Replicate scalar zero to packed char (2 byte) values in xmm
12343instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12344  predicate(UseSSE>=2);
12345  match(Set dst (Replicate4C zero));
12346  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12347  ins_encode( pxor(dst, dst));
12348  ins_pipe( fpu_reg_reg );
12349%}
12350
12351// Replicate scalar to packed integer (4 byte) values in xmm
12352instruct Repl2I_reg(regXD dst, regXD src) %{
12353  predicate(UseSSE>=2);
12354  match(Set dst (Replicate2I src));
12355  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12356  ins_encode( pshufd(dst, src, 0x00));
12357  ins_pipe( fpu_reg_reg );
12358%}
12359
12360// Replicate scalar to packed integer (4 byte) values in xmm
12361instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12362  predicate(UseSSE>=2);
12363  match(Set dst (Replicate2I src));
12364  format %{ "MOVD   $dst,$src\n\t"
12365            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12366  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12367  ins_pipe( fpu_reg_reg );
12368%}
12369
12370// Replicate scalar zero to packed integer (2 byte) values in xmm
12371instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12372  predicate(UseSSE>=2);
12373  match(Set dst (Replicate2I zero));
12374  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12375  ins_encode( pxor(dst, dst));
12376  ins_pipe( fpu_reg_reg );
12377%}
12378
12379// Replicate scalar to packed single precision floating point values in xmm
12380instruct Repl2F_reg(regXD dst, regXD src) %{
12381  predicate(UseSSE>=2);
12382  match(Set dst (Replicate2F src));
12383  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12384  ins_encode( pshufd(dst, src, 0xe0));
12385  ins_pipe( fpu_reg_reg );
12386%}
12387
12388// Replicate scalar to packed single precision floating point values in xmm
12389instruct Repl2F_regX(regXD dst, regX src) %{
12390  predicate(UseSSE>=2);
12391  match(Set dst (Replicate2F src));
12392  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12393  ins_encode( pshufd(dst, src, 0xe0));
12394  ins_pipe( fpu_reg_reg );
12395%}
12396
12397// Replicate scalar to packed single precision floating point values in xmm
12398instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12399  predicate(UseSSE>=2);
12400  match(Set dst (Replicate2F zero));
12401  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12402  ins_encode( pxor(dst, dst));
12403  ins_pipe( fpu_reg_reg );
12404%}
12405
12406// =======================================================================
12407// fast clearing of an array
12408instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12409  match(Set dummy (ClearArray cnt base));
12410  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12411  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12412            "XOR    EAX,EAX\n\t"
12413            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12414  opcode(0,0x4);
12415  ins_encode( Opcode(0xD1), RegOpc(ECX),
12416              OpcRegReg(0x33,EAX,EAX),
12417              Opcode(0xF3), Opcode(0xAB) );
12418  ins_pipe( pipe_slow );
12419%}
12420
12421instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
12422                        eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
12423  match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12424  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12425
12426  format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
12427  ins_encode %{
12428    __ string_compare($str1$$Register, $str2$$Register,
12429                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
12430                      $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12431  %}
12432  ins_pipe( pipe_slow );
12433%}
12434
12435// fast string equals
12436instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12437                       regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12438  match(Set result (StrEquals (Binary str1 str2) cnt));
12439  effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12440
12441  format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12442  ins_encode %{
12443    __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12444                          $cnt$$Register, $result$$Register, $tmp3$$Register,
12445                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12446  %}
12447  ins_pipe( pipe_slow );
12448%}
12449
12450instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12451                        eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
12452  predicate(UseSSE42Intrinsics);
12453  match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12454  effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
12455
12456  format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
12457  ins_encode %{
12458    __ string_indexof($str1$$Register, $str2$$Register,
12459                      $cnt1$$Register, $cnt2$$Register, $result$$Register,
12460                      $tmp1$$XMMRegister, $tmp2$$Register);
12461  %}
12462  ins_pipe( pipe_slow );
12463%}
12464
12465// fast array equals
12466instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12467                      regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12468%{
12469  match(Set result (AryEq ary1 ary2));
12470  effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12471  //ins_cost(300);
12472
12473  format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12474  ins_encode %{
12475    __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12476                          $tmp3$$Register, $result$$Register, $tmp4$$Register,
12477                          $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12478  %}
12479  ins_pipe( pipe_slow );
12480%}
12481
12482//----------Control Flow Instructions------------------------------------------
12483// Signed compare Instructions
12484instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12485  match(Set cr (CmpI op1 op2));
12486  effect( DEF cr, USE op1, USE op2 );
12487  format %{ "CMP    $op1,$op2" %}
12488  opcode(0x3B);  /* Opcode 3B /r */
12489  ins_encode( OpcP, RegReg( op1, op2) );
12490  ins_pipe( ialu_cr_reg_reg );
12491%}
12492
12493instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12494  match(Set cr (CmpI op1 op2));
12495  effect( DEF cr, USE op1 );
12496  format %{ "CMP    $op1,$op2" %}
12497  opcode(0x81,0x07);  /* Opcode 81 /7 */
12498  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12499  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12500  ins_pipe( ialu_cr_reg_imm );
12501%}
12502
12503// Cisc-spilled version of cmpI_eReg
12504instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12505  match(Set cr (CmpI op1 (LoadI op2)));
12506
12507  format %{ "CMP    $op1,$op2" %}
12508  ins_cost(500);
12509  opcode(0x3B);  /* Opcode 3B /r */
12510  ins_encode( OpcP, RegMem( op1, op2) );
12511  ins_pipe( ialu_cr_reg_mem );
12512%}
12513
12514instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12515  match(Set cr (CmpI src zero));
12516  effect( DEF cr, USE src );
12517
12518  format %{ "TEST   $src,$src" %}
12519  opcode(0x85);
12520  ins_encode( OpcP, RegReg( src, src ) );
12521  ins_pipe( ialu_cr_reg_imm );
12522%}
12523
12524instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12525  match(Set cr (CmpI (AndI src con) zero));
12526
12527  format %{ "TEST   $src,$con" %}
12528  opcode(0xF7,0x00);
12529  ins_encode( OpcP, RegOpc(src), Con32(con) );
12530  ins_pipe( ialu_cr_reg_imm );
12531%}
12532
12533instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12534  match(Set cr (CmpI (AndI src mem) zero));
12535
12536  format %{ "TEST   $src,$mem" %}
12537  opcode(0x85);
12538  ins_encode( OpcP, RegMem( src, mem ) );
12539  ins_pipe( ialu_cr_reg_mem );
12540%}
12541
12542// Unsigned compare Instructions; really, same as signed except they
12543// produce an eFlagsRegU instead of eFlagsReg.
12544instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12545  match(Set cr (CmpU op1 op2));
12546
12547  format %{ "CMPu   $op1,$op2" %}
12548  opcode(0x3B);  /* Opcode 3B /r */
12549  ins_encode( OpcP, RegReg( op1, op2) );
12550  ins_pipe( ialu_cr_reg_reg );
12551%}
12552
12553instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12554  match(Set cr (CmpU op1 op2));
12555
12556  format %{ "CMPu   $op1,$op2" %}
12557  opcode(0x81,0x07);  /* Opcode 81 /7 */
12558  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12559  ins_pipe( ialu_cr_reg_imm );
12560%}
12561
12562// // Cisc-spilled version of cmpU_eReg
12563instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12564  match(Set cr (CmpU op1 (LoadI op2)));
12565
12566  format %{ "CMPu   $op1,$op2" %}
12567  ins_cost(500);
12568  opcode(0x3B);  /* Opcode 3B /r */
12569  ins_encode( OpcP, RegMem( op1, op2) );
12570  ins_pipe( ialu_cr_reg_mem );
12571%}
12572
12573// // Cisc-spilled version of cmpU_eReg
12574//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12575//  match(Set cr (CmpU (LoadI op1) op2));
12576//
12577//  format %{ "CMPu   $op1,$op2" %}
12578//  ins_cost(500);
12579//  opcode(0x39);  /* Opcode 39 /r */
12580//  ins_encode( OpcP, RegMem( op1, op2) );
12581//%}
12582
12583instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12584  match(Set cr (CmpU src zero));
12585
12586  format %{ "TESTu  $src,$src" %}
12587  opcode(0x85);
12588  ins_encode( OpcP, RegReg( src, src ) );
12589  ins_pipe( ialu_cr_reg_imm );
12590%}
12591
12592// Unsigned pointer compare Instructions
12593instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12594  match(Set cr (CmpP op1 op2));
12595
12596  format %{ "CMPu   $op1,$op2" %}
12597  opcode(0x3B);  /* Opcode 3B /r */
12598  ins_encode( OpcP, RegReg( op1, op2) );
12599  ins_pipe( ialu_cr_reg_reg );
12600%}
12601
12602instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12603  match(Set cr (CmpP op1 op2));
12604
12605  format %{ "CMPu   $op1,$op2" %}
12606  opcode(0x81,0x07);  /* Opcode 81 /7 */
12607  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12608  ins_pipe( ialu_cr_reg_imm );
12609%}
12610
12611// // Cisc-spilled version of cmpP_eReg
12612instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12613  match(Set cr (CmpP op1 (LoadP op2)));
12614
12615  format %{ "CMPu   $op1,$op2" %}
12616  ins_cost(500);
12617  opcode(0x3B);  /* Opcode 3B /r */
12618  ins_encode( OpcP, RegMem( op1, op2) );
12619  ins_pipe( ialu_cr_reg_mem );
12620%}
12621
12622// // Cisc-spilled version of cmpP_eReg
12623//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12624//  match(Set cr (CmpP (LoadP op1) op2));
12625//
12626//  format %{ "CMPu   $op1,$op2" %}
12627//  ins_cost(500);
12628//  opcode(0x39);  /* Opcode 39 /r */
12629//  ins_encode( OpcP, RegMem( op1, op2) );
12630//%}
12631
12632// Compare raw pointer (used in out-of-heap check).
12633// Only works because non-oop pointers must be raw pointers
12634// and raw pointers have no anti-dependencies.
12635instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12636  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12637  match(Set cr (CmpP op1 (LoadP op2)));
12638
12639  format %{ "CMPu   $op1,$op2" %}
12640  opcode(0x3B);  /* Opcode 3B /r */
12641  ins_encode( OpcP, RegMem( op1, op2) );
12642  ins_pipe( ialu_cr_reg_mem );
12643%}
12644
12645//
12646// This will generate a signed flags result. This should be ok
12647// since any compare to a zero should be eq/neq.
12648instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12649  match(Set cr (CmpP src zero));
12650
12651  format %{ "TEST   $src,$src" %}
12652  opcode(0x85);
12653  ins_encode( OpcP, RegReg( src, src ) );
12654  ins_pipe( ialu_cr_reg_imm );
12655%}
12656
12657// Cisc-spilled version of testP_reg
12658// This will generate a signed flags result. This should be ok
12659// since any compare to a zero should be eq/neq.
12660instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12661  match(Set cr (CmpP (LoadP op) zero));
12662
12663  format %{ "TEST   $op,0xFFFFFFFF" %}
12664  ins_cost(500);
12665  opcode(0xF7);               /* Opcode F7 /0 */
12666  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12667  ins_pipe( ialu_cr_reg_imm );
12668%}
12669
12670// Yanked all unsigned pointer compare operations.
12671// Pointer compares are done with CmpP which is already unsigned.
12672
12673//----------Max and Min--------------------------------------------------------
12674// Min Instructions
12675////
12676//   *** Min and Max using the conditional move are slower than the
12677//   *** branch version on a Pentium III.
12678// // Conditional move for min
12679//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12680//  effect( USE_DEF op2, USE op1, USE cr );
12681//  format %{ "CMOVlt $op2,$op1\t! min" %}
12682//  opcode(0x4C,0x0F);
12683//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12684//  ins_pipe( pipe_cmov_reg );
12685//%}
12686//
12687//// Min Register with Register (P6 version)
12688//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12689//  predicate(VM_Version::supports_cmov() );
12690//  match(Set op2 (MinI op1 op2));
12691//  ins_cost(200);
12692//  expand %{
12693//    eFlagsReg cr;
12694//    compI_eReg(cr,op1,op2);
12695//    cmovI_reg_lt(op2,op1,cr);
12696//  %}
12697//%}
12698
12699// Min Register with Register (generic version)
12700instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12701  match(Set dst (MinI dst src));
12702  effect(KILL flags);
12703  ins_cost(300);
12704
12705  format %{ "MIN    $dst,$src" %}
12706  opcode(0xCC);
12707  ins_encode( min_enc(dst,src) );
12708  ins_pipe( pipe_slow );
12709%}
12710
12711// Max Register with Register
12712//   *** Min and Max using the conditional move are slower than the
12713//   *** branch version on a Pentium III.
12714// // Conditional move for max
12715//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12716//  effect( USE_DEF op2, USE op1, USE cr );
12717//  format %{ "CMOVgt $op2,$op1\t! max" %}
12718//  opcode(0x4F,0x0F);
12719//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12720//  ins_pipe( pipe_cmov_reg );
12721//%}
12722//
12723// // Max Register with Register (P6 version)
12724//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12725//  predicate(VM_Version::supports_cmov() );
12726//  match(Set op2 (MaxI op1 op2));
12727//  ins_cost(200);
12728//  expand %{
12729//    eFlagsReg cr;
12730//    compI_eReg(cr,op1,op2);
12731//    cmovI_reg_gt(op2,op1,cr);
12732//  %}
12733//%}
12734
12735// Max Register with Register (generic version)
12736instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12737  match(Set dst (MaxI dst src));
12738  effect(KILL flags);
12739  ins_cost(300);
12740
12741  format %{ "MAX    $dst,$src" %}
12742  opcode(0xCC);
12743  ins_encode( max_enc(dst,src) );
12744  ins_pipe( pipe_slow );
12745%}
12746
12747// ============================================================================
12748// Branch Instructions
12749// Jump Table
12750instruct jumpXtnd(eRegI switch_val) %{
12751  match(Jump switch_val);
12752  ins_cost(350);
12753
12754  format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
12755
12756  ins_encode %{
12757    address table_base  = __ address_table_constant(_index2label);
12758
12759    // Jump to Address(table_base + switch_reg)
12760    InternalAddress table(table_base);
12761    Address index(noreg, $switch_val$$Register, Address::times_1);
12762    __ jump(ArrayAddress(table, index));
12763  %}
12764  ins_pc_relative(1);
12765  ins_pipe(pipe_jmp);
12766%}
12767
12768// Jump Direct - Label defines a relative address from JMP+1
12769instruct jmpDir(label labl) %{
12770  match(Goto);
12771  effect(USE labl);
12772
12773  ins_cost(300);
12774  format %{ "JMP    $labl" %}
12775  size(5);
12776  opcode(0xE9);
12777  ins_encode( OpcP, Lbl( labl ) );
12778  ins_pipe( pipe_jmp );
12779  ins_pc_relative(1);
12780%}
12781
12782// Jump Direct Conditional - Label defines a relative address from Jcc+1
12783instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12784  match(If cop cr);
12785  effect(USE labl);
12786
12787  ins_cost(300);
12788  format %{ "J$cop    $labl" %}
12789  size(6);
12790  opcode(0x0F, 0x80);
12791  ins_encode( Jcc( cop, labl) );
12792  ins_pipe( pipe_jcc );
12793  ins_pc_relative(1);
12794%}
12795
12796// Jump Direct Conditional - Label defines a relative address from Jcc+1
12797instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12798  match(CountedLoopEnd cop cr);
12799  effect(USE labl);
12800
12801  ins_cost(300);
12802  format %{ "J$cop    $labl\t# Loop end" %}
12803  size(6);
12804  opcode(0x0F, 0x80);
12805  ins_encode( Jcc( cop, labl) );
12806  ins_pipe( pipe_jcc );
12807  ins_pc_relative(1);
12808%}
12809
12810// Jump Direct Conditional - Label defines a relative address from Jcc+1
12811instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12812  match(CountedLoopEnd cop cmp);
12813  effect(USE labl);
12814
12815  ins_cost(300);
12816  format %{ "J$cop,u  $labl\t# Loop end" %}
12817  size(6);
12818  opcode(0x0F, 0x80);
12819  ins_encode( Jcc( cop, labl) );
12820  ins_pipe( pipe_jcc );
12821  ins_pc_relative(1);
12822%}
12823
12824instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12825  match(CountedLoopEnd cop cmp);
12826  effect(USE labl);
12827
12828  ins_cost(200);
12829  format %{ "J$cop,u  $labl\t# Loop end" %}
12830  size(6);
12831  opcode(0x0F, 0x80);
12832  ins_encode( Jcc( cop, labl) );
12833  ins_pipe( pipe_jcc );
12834  ins_pc_relative(1);
12835%}
12836
12837// Jump Direct Conditional - using unsigned comparison
12838instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12839  match(If cop cmp);
12840  effect(USE labl);
12841
12842  ins_cost(300);
12843  format %{ "J$cop,u  $labl" %}
12844  size(6);
12845  opcode(0x0F, 0x80);
12846  ins_encode(Jcc(cop, labl));
12847  ins_pipe(pipe_jcc);
12848  ins_pc_relative(1);
12849%}
12850
12851instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12852  match(If cop cmp);
12853  effect(USE labl);
12854
12855  ins_cost(200);
12856  format %{ "J$cop,u  $labl" %}
12857  size(6);
12858  opcode(0x0F, 0x80);
12859  ins_encode(Jcc(cop, labl));
12860  ins_pipe(pipe_jcc);
12861  ins_pc_relative(1);
12862%}
12863
12864instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12865  match(If cop cmp);
12866  effect(USE labl);
12867
12868  ins_cost(200);
12869  format %{ $$template
12870    if ($cop$$cmpcode == Assembler::notEqual) {
12871      $$emit$$"JP,u   $labl\n\t"
12872      $$emit$$"J$cop,u   $labl"
12873    } else {
12874      $$emit$$"JP,u   done\n\t"
12875      $$emit$$"J$cop,u   $labl\n\t"
12876      $$emit$$"done:"
12877    }
12878  %}
12879  size(12);
12880  opcode(0x0F, 0x80);
12881  ins_encode %{
12882    Label* l = $labl$$label;
12883    $$$emit8$primary;
12884    emit_cc(cbuf, $secondary, Assembler::parity);
12885    int parity_disp = -1;
12886    bool ok = false;
12887    if ($cop$$cmpcode == Assembler::notEqual) {
12888       // the two jumps 6 bytes apart so the jump distances are too
12889       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12890    } else if ($cop$$cmpcode == Assembler::equal) {
12891       parity_disp = 6;
12892       ok = true;
12893    } else {
12894       ShouldNotReachHere();
12895    }
12896    emit_d32(cbuf, parity_disp);
12897    $$$emit8$primary;
12898    emit_cc(cbuf, $secondary, $cop$$cmpcode);
12899    int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12900    emit_d32(cbuf, disp);
12901  %}
12902  ins_pipe(pipe_jcc);
12903  ins_pc_relative(1);
12904%}
12905
12906// ============================================================================
12907// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12908// array for an instance of the superklass.  Set a hidden internal cache on a
12909// hit (cache is checked with exposed code in gen_subtype_check()).  Return
12910// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12911instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12912  match(Set result (PartialSubtypeCheck sub super));
12913  effect( KILL rcx, KILL cr );
12914
12915  ins_cost(1100);  // slightly larger than the next version
12916  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12917            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12918            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12919            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12920            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12921            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12922            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12923     "miss:\t" %}
12924
12925  opcode(0x1); // Force a XOR of EDI
12926  ins_encode( enc_PartialSubtypeCheck() );
12927  ins_pipe( pipe_slow );
12928%}
12929
12930instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12931  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12932  effect( KILL rcx, KILL result );
12933
12934  ins_cost(1000);
12935  format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12936            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12937            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12938            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12939            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12940            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12941     "miss:\t" %}
12942
12943  opcode(0x0);  // No need to XOR EDI
12944  ins_encode( enc_PartialSubtypeCheck() );
12945  ins_pipe( pipe_slow );
12946%}
12947
12948// ============================================================================
12949// Branch Instructions -- short offset versions
12950//
12951// These instructions are used to replace jumps of a long offset (the default
12952// match) with jumps of a shorter offset.  These instructions are all tagged
12953// with the ins_short_branch attribute, which causes the ADLC to suppress the
12954// match rules in general matching.  Instead, the ADLC generates a conversion
12955// method in the MachNode which can be used to do in-place replacement of the
12956// long variant with the shorter variant.  The compiler will determine if a
12957// branch can be taken by the is_short_branch_offset() predicate in the machine
12958// specific code section of the file.
12959
12960// Jump Direct - Label defines a relative address from JMP+1
12961instruct jmpDir_short(label labl) %{
12962  match(Goto);
12963  effect(USE labl);
12964
12965  ins_cost(300);
12966  format %{ "JMP,s  $labl" %}
12967  size(2);
12968  opcode(0xEB);
12969  ins_encode( OpcP, LblShort( labl ) );
12970  ins_pipe( pipe_jmp );
12971  ins_pc_relative(1);
12972  ins_short_branch(1);
12973%}
12974
12975// Jump Direct Conditional - Label defines a relative address from Jcc+1
12976instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12977  match(If cop cr);
12978  effect(USE labl);
12979
12980  ins_cost(300);
12981  format %{ "J$cop,s  $labl" %}
12982  size(2);
12983  opcode(0x70);
12984  ins_encode( JccShort( cop, labl) );
12985  ins_pipe( pipe_jcc );
12986  ins_pc_relative(1);
12987  ins_short_branch(1);
12988%}
12989
12990// Jump Direct Conditional - Label defines a relative address from Jcc+1
12991instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12992  match(CountedLoopEnd cop cr);
12993  effect(USE labl);
12994
12995  ins_cost(300);
12996  format %{ "J$cop,s  $labl\t# Loop end" %}
12997  size(2);
12998  opcode(0x70);
12999  ins_encode( JccShort( cop, labl) );
13000  ins_pipe( pipe_jcc );
13001  ins_pc_relative(1);
13002  ins_short_branch(1);
13003%}
13004
13005// Jump Direct Conditional - Label defines a relative address from Jcc+1
13006instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13007  match(CountedLoopEnd cop cmp);
13008  effect(USE labl);
13009
13010  ins_cost(300);
13011  format %{ "J$cop,us $labl\t# Loop end" %}
13012  size(2);
13013  opcode(0x70);
13014  ins_encode( JccShort( cop, labl) );
13015  ins_pipe( pipe_jcc );
13016  ins_pc_relative(1);
13017  ins_short_branch(1);
13018%}
13019
13020instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13021  match(CountedLoopEnd cop cmp);
13022  effect(USE labl);
13023
13024  ins_cost(300);
13025  format %{ "J$cop,us $labl\t# Loop end" %}
13026  size(2);
13027  opcode(0x70);
13028  ins_encode( JccShort( cop, labl) );
13029  ins_pipe( pipe_jcc );
13030  ins_pc_relative(1);
13031  ins_short_branch(1);
13032%}
13033
13034// Jump Direct Conditional - using unsigned comparison
13035instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13036  match(If cop cmp);
13037  effect(USE labl);
13038
13039  ins_cost(300);
13040  format %{ "J$cop,us $labl" %}
13041  size(2);
13042  opcode(0x70);
13043  ins_encode( JccShort( cop, labl) );
13044  ins_pipe( pipe_jcc );
13045  ins_pc_relative(1);
13046  ins_short_branch(1);
13047%}
13048
13049instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13050  match(If cop cmp);
13051  effect(USE labl);
13052
13053  ins_cost(300);
13054  format %{ "J$cop,us $labl" %}
13055  size(2);
13056  opcode(0x70);
13057  ins_encode( JccShort( cop, labl) );
13058  ins_pipe( pipe_jcc );
13059  ins_pc_relative(1);
13060  ins_short_branch(1);
13061%}
13062
13063instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13064  match(If cop cmp);
13065  effect(USE labl);
13066
13067  ins_cost(300);
13068  format %{ $$template
13069    if ($cop$$cmpcode == Assembler::notEqual) {
13070      $$emit$$"JP,u,s   $labl\n\t"
13071      $$emit$$"J$cop,u,s   $labl"
13072    } else {
13073      $$emit$$"JP,u,s   done\n\t"
13074      $$emit$$"J$cop,u,s  $labl\n\t"
13075      $$emit$$"done:"
13076    }
13077  %}
13078  size(4);
13079  opcode(0x70);
13080  ins_encode %{
13081    Label* l = $labl$$label;
13082    emit_cc(cbuf, $primary, Assembler::parity);
13083    int parity_disp = -1;
13084    if ($cop$$cmpcode == Assembler::notEqual) {
13085      parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
13086    } else if ($cop$$cmpcode == Assembler::equal) {
13087      parity_disp = 2;
13088    } else {
13089      ShouldNotReachHere();
13090    }
13091    emit_d8(cbuf, parity_disp);
13092    emit_cc(cbuf, $primary, $cop$$cmpcode);
13093    int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
13094    emit_d8(cbuf, disp);
13095    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
13096    assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
13097  %}
13098  ins_pipe(pipe_jcc);
13099  ins_pc_relative(1);
13100  ins_short_branch(1);
13101%}
13102
13103// ============================================================================
13104// Long Compare
13105//
13106// Currently we hold longs in 2 registers.  Comparing such values efficiently
13107// is tricky.  The flavor of compare used depends on whether we are testing
13108// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
13109// The GE test is the negated LT test.  The LE test can be had by commuting
13110// the operands (yielding a GE test) and then negating; negate again for the
13111// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
13112// NE test is negated from that.
13113
13114// Due to a shortcoming in the ADLC, it mixes up expressions like:
13115// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
13116// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
13117// are collapsed internally in the ADLC's dfa-gen code.  The match for
13118// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
13119// foo match ends up with the wrong leaf.  One fix is to not match both
13120// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
13121// both forms beat the trinary form of long-compare and both are very useful
13122// on Intel which has so few registers.
13123
13124// Manifest a CmpL result in an integer register.  Very painful.
13125// This is the test to avoid.
13126instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
13127  match(Set dst (CmpL3 src1 src2));
13128  effect( KILL flags );
13129  ins_cost(1000);
13130  format %{ "XOR    $dst,$dst\n\t"
13131            "CMP    $src1.hi,$src2.hi\n\t"
13132            "JLT,s  m_one\n\t"
13133            "JGT,s  p_one\n\t"
13134            "CMP    $src1.lo,$src2.lo\n\t"
13135            "JB,s   m_one\n\t"
13136            "JEQ,s  done\n"
13137    "p_one:\tINC    $dst\n\t"
13138            "JMP,s  done\n"
13139    "m_one:\tDEC    $dst\n"
13140     "done:" %}
13141  ins_encode %{
13142    Label p_one, m_one, done;
13143    __ xorptr($dst$$Register, $dst$$Register);
13144    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
13145    __ jccb(Assembler::less,    m_one);
13146    __ jccb(Assembler::greater, p_one);
13147    __ cmpl($src1$$Register, $src2$$Register);
13148    __ jccb(Assembler::below,   m_one);
13149    __ jccb(Assembler::equal,   done);
13150    __ bind(p_one);
13151    __ incrementl($dst$$Register);
13152    __ jmpb(done);
13153    __ bind(m_one);
13154    __ decrementl($dst$$Register);
13155    __ bind(done);
13156  %}
13157  ins_pipe( pipe_slow );
13158%}
13159
13160//======
13161// Manifest a CmpL result in the normal flags.  Only good for LT or GE
13162// compares.  Can be used for LE or GT compares by reversing arguments.
13163// NOT GOOD FOR EQ/NE tests.
13164instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13165  match( Set flags (CmpL src zero ));
13166  ins_cost(100);
13167  format %{ "TEST   $src.hi,$src.hi" %}
13168  opcode(0x85);
13169  ins_encode( OpcP, RegReg_Hi2( src, src ) );
13170  ins_pipe( ialu_cr_reg_reg );
13171%}
13172
13173// Manifest a CmpL result in the normal flags.  Only good for LT or GE
13174// compares.  Can be used for LE or GT compares by reversing arguments.
13175// NOT GOOD FOR EQ/NE tests.
13176instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13177  match( Set flags (CmpL src1 src2 ));
13178  effect( TEMP tmp );
13179  ins_cost(300);
13180  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13181            "MOV    $tmp,$src1.hi\n\t"
13182            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13183  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13184  ins_pipe( ialu_cr_reg_reg );
13185%}
13186
13187// Long compares reg < zero/req OR reg >= zero/req.
13188// Just a wrapper for a normal branch, plus the predicate test.
13189instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13190  match(If cmp flags);
13191  effect(USE labl);
13192  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13193  expand %{
13194    jmpCon(cmp,flags,labl);    // JLT or JGE...
13195  %}
13196%}
13197
13198// Compare 2 longs and CMOVE longs.
13199instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13200  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13201  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13202  ins_cost(400);
13203  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13204            "CMOV$cmp $dst.hi,$src.hi" %}
13205  opcode(0x0F,0x40);
13206  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13207  ins_pipe( pipe_cmov_reg_long );
13208%}
13209
13210instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13211  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13212  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13213  ins_cost(500);
13214  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13215            "CMOV$cmp $dst.hi,$src.hi" %}
13216  opcode(0x0F,0x40);
13217  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13218  ins_pipe( pipe_cmov_reg_long );
13219%}
13220
13221// Compare 2 longs and CMOVE ints.
13222instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13223  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13224  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13225  ins_cost(200);
13226  format %{ "CMOV$cmp $dst,$src" %}
13227  opcode(0x0F,0x40);
13228  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13229  ins_pipe( pipe_cmov_reg );
13230%}
13231
13232instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13233  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13234  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13235  ins_cost(250);
13236  format %{ "CMOV$cmp $dst,$src" %}
13237  opcode(0x0F,0x40);
13238  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13239  ins_pipe( pipe_cmov_mem );
13240%}
13241
13242// Compare 2 longs and CMOVE ints.
13243instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13244  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13245  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13246  ins_cost(200);
13247  format %{ "CMOV$cmp $dst,$src" %}
13248  opcode(0x0F,0x40);
13249  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13250  ins_pipe( pipe_cmov_reg );
13251%}
13252
13253// Compare 2 longs and CMOVE doubles
13254instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13255  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13256  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13257  ins_cost(200);
13258  expand %{
13259    fcmovD_regS(cmp,flags,dst,src);
13260  %}
13261%}
13262
13263// Compare 2 longs and CMOVE doubles
13264instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13265  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13266  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13267  ins_cost(200);
13268  expand %{
13269    fcmovXD_regS(cmp,flags,dst,src);
13270  %}
13271%}
13272
13273instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13274  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13275  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13276  ins_cost(200);
13277  expand %{
13278    fcmovF_regS(cmp,flags,dst,src);
13279  %}
13280%}
13281
13282instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13283  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13284  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13285  ins_cost(200);
13286  expand %{
13287    fcmovX_regS(cmp,flags,dst,src);
13288  %}
13289%}
13290
13291//======
13292// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13293instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13294  match( Set flags (CmpL src zero ));
13295  effect(TEMP tmp);
13296  ins_cost(200);
13297  format %{ "MOV    $tmp,$src.lo\n\t"
13298            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13299  ins_encode( long_cmp_flags0( src, tmp ) );
13300  ins_pipe( ialu_reg_reg_long );
13301%}
13302
13303// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13304instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13305  match( Set flags (CmpL src1 src2 ));
13306  ins_cost(200+300);
13307  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13308            "JNE,s  skip\n\t"
13309            "CMP    $src1.hi,$src2.hi\n\t"
13310     "skip:\t" %}
13311  ins_encode( long_cmp_flags1( src1, src2 ) );
13312  ins_pipe( ialu_cr_reg_reg );
13313%}
13314
13315// Long compare reg == zero/reg OR reg != zero/reg
13316// Just a wrapper for a normal branch, plus the predicate test.
13317instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13318  match(If cmp flags);
13319  effect(USE labl);
13320  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13321  expand %{
13322    jmpCon(cmp,flags,labl);    // JEQ or JNE...
13323  %}
13324%}
13325
13326// Compare 2 longs and CMOVE longs.
13327instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13328  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13329  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13330  ins_cost(400);
13331  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13332            "CMOV$cmp $dst.hi,$src.hi" %}
13333  opcode(0x0F,0x40);
13334  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13335  ins_pipe( pipe_cmov_reg_long );
13336%}
13337
13338instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13339  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13340  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13341  ins_cost(500);
13342  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13343            "CMOV$cmp $dst.hi,$src.hi" %}
13344  opcode(0x0F,0x40);
13345  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13346  ins_pipe( pipe_cmov_reg_long );
13347%}
13348
13349// Compare 2 longs and CMOVE ints.
13350instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13351  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13352  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13353  ins_cost(200);
13354  format %{ "CMOV$cmp $dst,$src" %}
13355  opcode(0x0F,0x40);
13356  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13357  ins_pipe( pipe_cmov_reg );
13358%}
13359
13360instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13361  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13362  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13363  ins_cost(250);
13364  format %{ "CMOV$cmp $dst,$src" %}
13365  opcode(0x0F,0x40);
13366  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13367  ins_pipe( pipe_cmov_mem );
13368%}
13369
13370// Compare 2 longs and CMOVE ints.
13371instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13372  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13373  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13374  ins_cost(200);
13375  format %{ "CMOV$cmp $dst,$src" %}
13376  opcode(0x0F,0x40);
13377  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13378  ins_pipe( pipe_cmov_reg );
13379%}
13380
13381// Compare 2 longs and CMOVE doubles
13382instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13383  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13384  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13385  ins_cost(200);
13386  expand %{
13387    fcmovD_regS(cmp,flags,dst,src);
13388  %}
13389%}
13390
13391// Compare 2 longs and CMOVE doubles
13392instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13393  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13394  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13395  ins_cost(200);
13396  expand %{
13397    fcmovXD_regS(cmp,flags,dst,src);
13398  %}
13399%}
13400
13401instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13402  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13403  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13404  ins_cost(200);
13405  expand %{
13406    fcmovF_regS(cmp,flags,dst,src);
13407  %}
13408%}
13409
13410instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13411  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13412  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13413  ins_cost(200);
13414  expand %{
13415    fcmovX_regS(cmp,flags,dst,src);
13416  %}
13417%}
13418
13419//======
13420// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13421// Same as cmpL_reg_flags_LEGT except must negate src
13422instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13423  match( Set flags (CmpL src zero ));
13424  effect( TEMP tmp );
13425  ins_cost(300);
13426  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13427            "CMP    $tmp,$src.lo\n\t"
13428            "SBB    $tmp,$src.hi\n\t" %}
13429  ins_encode( long_cmp_flags3(src, tmp) );
13430  ins_pipe( ialu_reg_reg_long );
13431%}
13432
13433// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13434// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13435// requires a commuted test to get the same result.
13436instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13437  match( Set flags (CmpL src1 src2 ));
13438  effect( TEMP tmp );
13439  ins_cost(300);
13440  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13441            "MOV    $tmp,$src2.hi\n\t"
13442            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13443  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13444  ins_pipe( ialu_cr_reg_reg );
13445%}
13446
13447// Long compares reg < zero/req OR reg >= zero/req.
13448// Just a wrapper for a normal branch, plus the predicate test
13449instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13450  match(If cmp flags);
13451  effect(USE labl);
13452  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13453  ins_cost(300);
13454  expand %{
13455    jmpCon(cmp,flags,labl);    // JGT or JLE...
13456  %}
13457%}
13458
13459// Compare 2 longs and CMOVE longs.
13460instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13461  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13462  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13463  ins_cost(400);
13464  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13465            "CMOV$cmp $dst.hi,$src.hi" %}
13466  opcode(0x0F,0x40);
13467  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13468  ins_pipe( pipe_cmov_reg_long );
13469%}
13470
13471instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13472  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13473  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13474  ins_cost(500);
13475  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13476            "CMOV$cmp $dst.hi,$src.hi+4" %}
13477  opcode(0x0F,0x40);
13478  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13479  ins_pipe( pipe_cmov_reg_long );
13480%}
13481
13482// Compare 2 longs and CMOVE ints.
13483instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13484  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13485  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13486  ins_cost(200);
13487  format %{ "CMOV$cmp $dst,$src" %}
13488  opcode(0x0F,0x40);
13489  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13490  ins_pipe( pipe_cmov_reg );
13491%}
13492
13493instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13494  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13495  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13496  ins_cost(250);
13497  format %{ "CMOV$cmp $dst,$src" %}
13498  opcode(0x0F,0x40);
13499  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13500  ins_pipe( pipe_cmov_mem );
13501%}
13502
13503// Compare 2 longs and CMOVE ptrs.
13504instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13505  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13506  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13507  ins_cost(200);
13508  format %{ "CMOV$cmp $dst,$src" %}
13509  opcode(0x0F,0x40);
13510  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13511  ins_pipe( pipe_cmov_reg );
13512%}
13513
13514// Compare 2 longs and CMOVE doubles
13515instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13516  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13517  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13518  ins_cost(200);
13519  expand %{
13520    fcmovD_regS(cmp,flags,dst,src);
13521  %}
13522%}
13523
13524// Compare 2 longs and CMOVE doubles
13525instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13526  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13527  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13528  ins_cost(200);
13529  expand %{
13530    fcmovXD_regS(cmp,flags,dst,src);
13531  %}
13532%}
13533
13534instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13535  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13536  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13537  ins_cost(200);
13538  expand %{
13539    fcmovF_regS(cmp,flags,dst,src);
13540  %}
13541%}
13542
13543
13544instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13545  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13546  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13547  ins_cost(200);
13548  expand %{
13549    fcmovX_regS(cmp,flags,dst,src);
13550  %}
13551%}
13552
13553
13554// ============================================================================
13555// Procedure Call/Return Instructions
13556// Call Java Static Instruction
13557// Note: If this code changes, the corresponding ret_addr_offset() and
13558//       compute_padding() functions will have to be adjusted.
13559instruct CallStaticJavaDirect(method meth) %{
13560  match(CallStaticJava);
13561  predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13562  effect(USE meth);
13563
13564  ins_cost(300);
13565  format %{ "CALL,static " %}
13566  opcode(0xE8); /* E8 cd */
13567  ins_encode( pre_call_FPU,
13568              Java_Static_Call( meth ),
13569              call_epilog,
13570              post_call_FPU );
13571  ins_pipe( pipe_slow );
13572  ins_pc_relative(1);
13573  ins_alignment(4);
13574%}
13575
13576// Call Java Static Instruction (method handle version)
13577// Note: If this code changes, the corresponding ret_addr_offset() and
13578//       compute_padding() functions will have to be adjusted.
13579instruct CallStaticJavaHandle(method meth, eBPRegP ebp_mh_SP_save) %{
13580  match(CallStaticJava);
13581  predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13582  effect(USE meth);
13583  // EBP is saved by all callees (for interpreter stack correction).
13584  // We use it here for a similar purpose, in {preserve,restore}_SP.
13585
13586  ins_cost(300);
13587  format %{ "CALL,static/MethodHandle " %}
13588  opcode(0xE8); /* E8 cd */
13589  ins_encode( pre_call_FPU,
13590              preserve_SP,
13591              Java_Static_Call( meth ),
13592              restore_SP,
13593              call_epilog,
13594              post_call_FPU );
13595  ins_pipe( pipe_slow );
13596  ins_pc_relative(1);
13597  ins_alignment(4);
13598%}
13599
13600// Call Java Dynamic Instruction
13601// Note: If this code changes, the corresponding ret_addr_offset() and
13602//       compute_padding() functions will have to be adjusted.
13603instruct CallDynamicJavaDirect(method meth) %{
13604  match(CallDynamicJava);
13605  effect(USE meth);
13606
13607  ins_cost(300);
13608  format %{ "MOV    EAX,(oop)-1\n\t"
13609            "CALL,dynamic" %}
13610  opcode(0xE8); /* E8 cd */
13611  ins_encode( pre_call_FPU,
13612              Java_Dynamic_Call( meth ),
13613              call_epilog,
13614              post_call_FPU );
13615  ins_pipe( pipe_slow );
13616  ins_pc_relative(1);
13617  ins_alignment(4);
13618%}
13619
13620// Call Runtime Instruction
13621instruct CallRuntimeDirect(method meth) %{
13622  match(CallRuntime );
13623  effect(USE meth);
13624
13625  ins_cost(300);
13626  format %{ "CALL,runtime " %}
13627  opcode(0xE8); /* E8 cd */
13628  // Use FFREEs to clear entries in float stack
13629  ins_encode( pre_call_FPU,
13630              FFree_Float_Stack_All,
13631              Java_To_Runtime( meth ),
13632              post_call_FPU );
13633  ins_pipe( pipe_slow );
13634  ins_pc_relative(1);
13635%}
13636
13637// Call runtime without safepoint
13638instruct CallLeafDirect(method meth) %{
13639  match(CallLeaf);
13640  effect(USE meth);
13641
13642  ins_cost(300);
13643  format %{ "CALL_LEAF,runtime " %}
13644  opcode(0xE8); /* E8 cd */
13645  ins_encode( pre_call_FPU,
13646              FFree_Float_Stack_All,
13647              Java_To_Runtime( meth ),
13648              Verify_FPU_For_Leaf, post_call_FPU );
13649  ins_pipe( pipe_slow );
13650  ins_pc_relative(1);
13651%}
13652
13653instruct CallLeafNoFPDirect(method meth) %{
13654  match(CallLeafNoFP);
13655  effect(USE meth);
13656
13657  ins_cost(300);
13658  format %{ "CALL_LEAF_NOFP,runtime " %}
13659  opcode(0xE8); /* E8 cd */
13660  ins_encode(Java_To_Runtime(meth));
13661  ins_pipe( pipe_slow );
13662  ins_pc_relative(1);
13663%}
13664
13665
13666// Return Instruction
13667// Remove the return address & jump to it.
13668instruct Ret() %{
13669  match(Return);
13670  format %{ "RET" %}
13671  opcode(0xC3);
13672  ins_encode(OpcP);
13673  ins_pipe( pipe_jmp );
13674%}
13675
13676// Tail Call; Jump from runtime stub to Java code.
13677// Also known as an 'interprocedural jump'.
13678// Target of jump will eventually return to caller.
13679// TailJump below removes the return address.
13680instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13681  match(TailCall jump_target method_oop );
13682  ins_cost(300);
13683  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13684  opcode(0xFF, 0x4);  /* Opcode FF /4 */
13685  ins_encode( OpcP, RegOpc(jump_target) );
13686  ins_pipe( pipe_jmp );
13687%}
13688
13689
13690// Tail Jump; remove the return address; jump to target.
13691// TailCall above leaves the return address around.
13692instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13693  match( TailJump jump_target ex_oop );
13694  ins_cost(300);
13695  format %{ "POP    EDX\t# pop return address into dummy\n\t"
13696            "JMP    $jump_target " %}
13697  opcode(0xFF, 0x4);  /* Opcode FF /4 */
13698  ins_encode( enc_pop_rdx,
13699              OpcP, RegOpc(jump_target) );
13700  ins_pipe( pipe_jmp );
13701%}
13702
13703// Create exception oop: created by stack-crawling runtime code.
13704// Created exception is now available to this handler, and is setup
13705// just prior to jumping to this handler.  No code emitted.
13706instruct CreateException( eAXRegP ex_oop )
13707%{
13708  match(Set ex_oop (CreateEx));
13709
13710  size(0);
13711  // use the following format syntax
13712  format %{ "# exception oop is in EAX; no code emitted" %}
13713  ins_encode();
13714  ins_pipe( empty );
13715%}
13716
13717
13718// Rethrow exception:
13719// The exception oop will come in the first argument position.
13720// Then JUMP (not call) to the rethrow stub code.
13721instruct RethrowException()
13722%{
13723  match(Rethrow);
13724
13725  // use the following format syntax
13726  format %{ "JMP    rethrow_stub" %}
13727  ins_encode(enc_rethrow);
13728  ins_pipe( pipe_jmp );
13729%}
13730
13731// inlined locking and unlocking
13732
13733
13734instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
13735  match( Set cr (FastLock object box) );
13736  effect( TEMP tmp, TEMP scr );
13737  ins_cost(300);
13738  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
13739  ins_encode( Fast_Lock(object,box,tmp,scr) );
13740  ins_pipe( pipe_slow );
13741  ins_pc_relative(1);
13742%}
13743
13744instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13745  match( Set cr (FastUnlock object box) );
13746  effect( TEMP tmp );
13747  ins_cost(300);
13748  format %{ "FASTUNLOCK $object, $box, $tmp" %}
13749  ins_encode( Fast_Unlock(object,box,tmp) );
13750  ins_pipe( pipe_slow );
13751  ins_pc_relative(1);
13752%}
13753
13754
13755
13756// ============================================================================
13757// Safepoint Instruction
13758instruct safePoint_poll(eFlagsReg cr) %{
13759  match(SafePoint);
13760  effect(KILL cr);
13761
13762  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13763  // On SPARC that might be acceptable as we can generate the address with
13764  // just a sethi, saving an or.  By polling at offset 0 we can end up
13765  // putting additional pressure on the index-0 in the D$.  Because of
13766  // alignment (just like the situation at hand) the lower indices tend
13767  // to see more traffic.  It'd be better to change the polling address
13768  // to offset 0 of the last $line in the polling page.
13769
13770  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13771  ins_cost(125);
13772  size(6) ;
13773  ins_encode( Safepoint_Poll() );
13774  ins_pipe( ialu_reg_mem );
13775%}
13776
13777//----------PEEPHOLE RULES-----------------------------------------------------
13778// These must follow all instruction definitions as they use the names
13779// defined in the instructions definitions.
13780//
13781// peepmatch ( root_instr_name [preceding_instruction]* );
13782//
13783// peepconstraint %{
13784// (instruction_number.operand_name relational_op instruction_number.operand_name
13785//  [, ...] );
13786// // instruction numbers are zero-based using left to right order in peepmatch
13787//
13788// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13789// // provide an instruction_number.operand_name for each operand that appears
13790// // in the replacement instruction's match rule
13791//
13792// ---------VM FLAGS---------------------------------------------------------
13793//
13794// All peephole optimizations can be turned off using -XX:-OptoPeephole
13795//
13796// Each peephole rule is given an identifying number starting with zero and
13797// increasing by one in the order seen by the parser.  An individual peephole
13798// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13799// on the command-line.
13800//
13801// ---------CURRENT LIMITATIONS----------------------------------------------
13802//
13803// Only match adjacent instructions in same basic block
13804// Only equality constraints
13805// Only constraints between operands, not (0.dest_reg == EAX_enc)
13806// Only one replacement instruction
13807//
13808// ---------EXAMPLE----------------------------------------------------------
13809//
13810// // pertinent parts of existing instructions in architecture description
13811// instruct movI(eRegI dst, eRegI src) %{
13812//   match(Set dst (CopyI src));
13813// %}
13814//
13815// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
13816//   match(Set dst (AddI dst src));
13817//   effect(KILL cr);
13818// %}
13819//
13820// // Change (inc mov) to lea
13821// peephole %{
13822//   // increment preceeded by register-register move
13823//   peepmatch ( incI_eReg movI );
13824//   // require that the destination register of the increment
13825//   // match the destination register of the move
13826//   peepconstraint ( 0.dst == 1.dst );
13827//   // construct a replacement instruction that sets
13828//   // the destination to ( move's source register + one )
13829//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13830// %}
13831//
13832// Implementation no longer uses movX instructions since
13833// machine-independent system no longer uses CopyX nodes.
13834//
13835// peephole %{
13836//   peepmatch ( incI_eReg movI );
13837//   peepconstraint ( 0.dst == 1.dst );
13838//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13839// %}
13840//
13841// peephole %{
13842//   peepmatch ( decI_eReg movI );
13843//   peepconstraint ( 0.dst == 1.dst );
13844//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13845// %}
13846//
13847// peephole %{
13848//   peepmatch ( addI_eReg_imm movI );
13849//   peepconstraint ( 0.dst == 1.dst );
13850//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13851// %}
13852//
13853// peephole %{
13854//   peepmatch ( addP_eReg_imm movP );
13855//   peepconstraint ( 0.dst == 1.dst );
13856//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13857// %}
13858
13859// // Change load of spilled value to only a spill
13860// instruct storeI(memory mem, eRegI src) %{
13861//   match(Set mem (StoreI mem src));
13862// %}
13863//
13864// instruct loadI(eRegI dst, memory mem) %{
13865//   match(Set dst (LoadI mem));
13866// %}
13867//
13868peephole %{
13869  peepmatch ( loadI storeI );
13870  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13871  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13872%}
13873
13874//----------SMARTSPILL RULES---------------------------------------------------
13875// These must follow all instruction definitions as they use the names
13876// defined in the instructions definitions.
13877